

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A METHOD FOR SPECIFYING COMPLEX REAL-TIME SYSTEMS
WITH APPLICATION TO AN EXPERIMENTAL VARIABLE

STABILITY HELICOPTER

by

Roy Bradley, B .Sc., M .Sc., F .I.M .A ., C.M ath.

Dissertation submitted to the Faculty of Engineering, University of Glasgow, for the
Degree of Doctor of Philosophy

April 1992

© RBradley, 1992

ProQuest Number: 10987098

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10987098

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

CONTENTS

Page
Acknowledgements i
Abstract ii
Abbreviations iii
1. INTRODUCTION 1

1.1 AIMS OF THE RESEARCH 1
1.2 STRUCTURE OF THE THESIS. 3
1.3 BACKGROUND 4
1.4 DEVELOPMENT OF THE SPECIFICATION 5

1.4.1 Preliminary Design 10
1.4.2 Design Development 11
1.4.3 Version 1 12
1.4.4 Version 2 13
1.4.5 Version 3 13
1.4.6 Simulation 15

1.5 THE MATURE METHOD 16
1.6 CONCLUSIONS 17

2. JACKSON SYSTEM DEVELOPMENT 18
2.1 AIMS AND ORIGINS OF JSD 18
2.2 JACKSON STRUCTURED PROGRAMMING 19

2.2.1 Data Structure 19
2.2.2 Program Structure 20

2.3 JSD MODELLING 21
2.4 THE NETWORK 22
2.5 IMPLEMENTATION 24
2.6 CONCLUSIONS 25

3. EARLY DESIGN STUDIES 26
3.1 PURPOSE OF A SYSTEM DIAGRAM 26
3.2 DIFFICULTIES WITH JSD 26
3.3 LESSONS FROM THE NETWORK 28
3.4 DEVELOPMENTS 30
3.5 AFTERMATH 30
3.6 CONCLUSIONS 31

4. CONTROL OF THE ACT SYSTEM: THE SUPERVISOR 33
4.1 CONTROL ACTIONS 33

4.2 SPECIFICATION OF A SUPERVISOR 34
4.2.1 Flow Chart 34
4.2.2 Finite State Machine 34

4.3 SUPERVISOR IMPLEMENTATION 35
4.4 JSD AND THE DEMISE OF THE SUPERVISOR 35
4.5 CONCLUSIONS 36

5. JSD FOR A COMPLEX SYSTEM 37
5.1 JSD FOR FLIGHT CONTROL SYSTEMS 37

5.1.1 Component Simulation 3 8
5.1.2 Example of Component Simulation 3 9

5.2 SPECIFICATION OF COMPLEX SYSTEMS BY
COMPOSITE SIMULATION 41
5.3 COMPOSITE SIMULATION USING JSD 43

5.3.1 Decomposition 43
5.3.2 Specification 44
5.3.3 Inter-unit Connections 44

5.4 CONCLUSIONS 45
6. SPECIFICATION STRUCTURE 47

6.1 INITIAL DECOMPOSITION 47
6.2 ELEMENT DESCRIPTIONS AND JSD UNITS 50
6.3 JSD NARRATIVE 52
6.4 SYSTEM TEST AND FAULT MANAGEMENT 53
6.5 CONSOLIDATION 55
6.6 REVIEW 57

7. THE ADA SIMULATION 58
7.1 SIMULATION AIMS 58
7.2 TARGET SIMULATION HARDWARE 60
7.3 INCREMENTAL SIMULATION 61
7.4 THE USE OF ADA 62
7.5 CODE GENERATION 63

7.5.1 Implementing Fault Tolerance 64
7.5.2 Unit and Connection Descriptions 65

7.6 DECOMPOSITION REVISITED 66
7.7 SUPPORTING MODULES 69

7.7.1 Helicopter Model 69
7.7.2 The AFCS 71
7.7.3 The PFCU 71
7.7.4 The Series Actuator 71

7.7.5 The Parallel 72
7.7.6 Other Modules 72

7.8 OPERATING THE SIMULATION 73
7.9 REVIEW OF THE SIMULATION 73

8. SUMMARY 76
8.1 JSD FOR COMPLEX SYSTEMS 76
8.2 THE LIVING SPECIFICATION 76
8.3 DECOMPOSITIONS 77
8.4 UNIT NETWORK 78
8.5 FAULT MANAGEMENT 78
8.6 CONCLUSIONS 79

9 .REVIEW 80
9.1 ROLE OF JSD 80
9.2 JSD UNITS 81
9.3 CONSOLIDATION WITH VOTING 82
9.4 UNIT DESCRIPTIONS AND REDUNDANCY 82
9.5 DUAL DUPLEX CONCERNS 83
9.6 TEXT INTEGRATION 84
9.7 LARGE SIMULATIONS 85
9.8 CONCLUSIONS 85

APPENDICES:
Al. CASE TOOLS 87

A l.l THE DATABASE 87
A l.2 EDITORS 88
A1.3 UNIT/CONNECTION DESCRIPTIONS 89
A l.4 CONCLUSIONS 89

A2. MODELLING OF ACT SYSTEM CONTROL 90
A2.1 INTRODUCTION 90
A2.2 FINITE STATE MACHINE MODEL 90
A2.3 JACKSON MODEL 91
A2.4 CONCLUSIONS 92

A3. CURTAIN LIMITER 93
A3.1 LIMITERS 93
A3.2 CURTAIN LIMITERS 93
A3.3 PHASE PLANE DIAGRAMS 94
A3.4 CURTAIN LIMITER ALGORITHM 95
A3.5 THE ALGORITHM PROCEDURE 96

A4. THE SYSTEM TEST 99
A4.1 ORIGINS 99
A4.2 STRUCTURED APPROACH 99
A4.3 DEVELOPMENTS 101
A4.4 CONCLUSIONS 102

A5. PACKAGE SPECIFICATIONS 104
A5.1 S Y STEM_MATRIX 104
A5.2 LINEAR_HELI 104
A5.3 AFCS.PACKAGE 105
A5.4 ACTUATOR_SYSTEM 106
A5.5 PARALLEL_ACTUATOR_SYSTEM 106
A5.6 SERIES_ACTUATOR_S Y STEM 107
A5.7 P_F_C 107
A5.8 CONCLUSIONS 108

A6. INJECTION OF ERRORS 109
A6.1 ERROR INJECTION 109
A6.2 TYPES OF FAULTS 109
A6.3 HARDWARE DESCRIPTION 110
A6.4 CONCLUSIONS 110

REFERENCES
FIGURES

111
117

Acknowledgements

I wish to thank the following persons for their advice and encouragement
during the period of the research: Dr Gareth Padfield of the Flight Systems
Department, Defence Research Agency for his unflagging enthusiasm for the ACT
Lynx project, Mr John Cameron of the erstwhile Michael Jackson Systems Ltd. for his
inspirational course and valuable discussions on Jackson methods, and Mr Peter
Wright of Westland Helicopters Ltd. for his patient explanations of helicopter systems.

Abstract

Engineering systems increasingly contain a significant element of embedded
software. The specification of such systems causes problems because of the diversity
of the sub-systems which they contain. For example, in modem aerospace systems a
combination of mechanical, electrical, hydraulic and digital sub-systems need to
function together in a safety-critical manner. The need is for a uniform means of
specification which spans the whole diversity of sub-systems and which serves both to
verify and to validate the functional aspects of the total system.

Verification is concerned with the consistency and completeness of the
specification, while validation is a broader concept concerned with fitness-for-purpose,
which is the ultimate requirement. The validation of large systems causes difficulties
because of the variety of specialists who need to be satisfied of a system’s
acceptability; reliability engineers, pilots and actuator engineers are among those who
may require different views of the system in order to perform their validation, yet
underlying the whole system there must be a single definitive specification.

The development of a specification method for an active flight control system
for a variable stability research helicopter is described. Software engineering
techniques and computer based tools are employed to specify the whole system - not
merely the embedded software. The software specification method used is Jackson
System Development, which for this application needs to be enhanced by the concept of
’units’, so that a large system is reduced first to a network of loosely coupled units with
a restricted type of intercommunication. The decomposition of a system into units
produces a significant reduction of complexity and leads naturally into a further
decomposition based on redundancy, and to support by additional software engineering
tools.

The reduction in complexity accruing from the unit approach has the benefit of
highlighting several important design issues which include the fault management
strategy and the integrity of system control. The software engineering approach
develops a design which has integral consistency checks for verification and which
allows a direct translation into a working simulation of the proposed system. In this
context the value of automatic code generation is emphasised. The resulting simulation
contributes to validation because non software-specialists can effectively interact with
the specification to investigate its acceptability. The disciplined development of a
specification which integrates text, JSD design and simulation is termed a ’living
specification’.

Abbreviations

There are a number of abbreviations used in the text which avoid repetition of often
lengthy phrases. For reference, a complete list is given below.

ACP Activity/ Channel/ Pool
ACT Active Control Technology
ADME Actuator Drive and Monitoring Element
ADMU Actuator Drive and Monitoring Unit
ADSE Air Data Sensing Element
AE Actuator Element
AFCS Automatic Flight Control System
AMSE Aircraft Motion Sensing Element
AWACS Airborne Warning and Control System
BITE Built in Test Equipment
CASE Computer Assisted Software Engineering
CLE Control Law Element
CLISE Control Law Input Support Element
CLOSE Control Law Output Support Element
CORE Controlled Requirements Expression
CSE Crew Station Element
DRA Defence Research Agency
DS Data Stream
ESSE External System Support Element
FCC Flight Control Computer
FOFS Fail-Operative/ Fail-Safe
FSM Finite State Machine
HDD Head Down Display
HOOD Hierarchical Object Oriented Design
HUD Head Up Display
IDA Intercommunication Data Area
JSD Jackson System Development
JSP Jackson Structured Progamming
JWB Jackson Work Bench
LBMS Learmonth Burchett Management Systems
MASCOT Modular Approach to Software Construction, Operation and Test
MOD Ministry of Defence
MODAS Modular Data Acquisition System
MP Menu Panel
MSP Mode Select Panel
NOE Nap of the Earth
0 0 Object Oriented
PCP Pilots Control Panel
PDF Program Design Facility
PFCU Primary Flight Control Unit
RAE Royal Aerospace Establishment
RP Repeater Panel
SADME Series Actuator Drive and Monitoring Element
SADMU Series Actuator Drive and Monitoring Unit
SADT Structured Analysis and Design Technique
SE Sensor Element
SE Structured English
SID System Implementation Diagram
SND System Network Diagram
STD State Transition Diagram
SVI State Vector Inspection
WHL Westland Helicopters Ltd

CHAPTER 1

INTRODUCTION

1.1 AIMS OF THE RESEARCH
The aim of the research described in this thesis is to develop a method for the

specification of complex real-time systems and to demonstrate its application to a
representative engineering system. Some of the terminology in the aim, as stated, is
particular to this research therefore it is apposite to expand briefly on the terms used in
the statement above. The first to be considered is ’’specification”; a specification is a
statement of what is required - posed in such a way that it can be implemented, that is,
constructed if it is a piece of hardware such as an actuator, or coded if it is software -
although in this context even the latter must have have its final manifestation as an
embedded system on a piece of hardware. There are two major problems which can
arise in this area. The first is that the final delivered system may not be what the
specifier actually wanted - in other words the specification is deficient. The terms often
used to avoid this situation is that the specification must be complete and unambiguous.
The second problem is that it may not be possible to build the system as specified at all.
There are aspects of completeness here but the most useful classification is that the
specification is some general way contradictory when it should be consistent. The
theme of how to develop a method which results in a complete, unambiguous,
consistent maintainable specification was a persistent one throughout the programme of
research.

A ’’complex system” in the context of this work is one that has major elements
that are not digital, that is, are not dependent on software. No satisfactory general
terminology has been discovered to describe a system which may involve hydraulic
components, mechanical levers, electrical actuators and relays, analogue electronics and
even human operators. The terms ’’mixed-motivator”, ’’dissimilar”, ’’mixed-media”
have been among the many candidates discussed and discarded. Complexity can arise
in different ways, of course, but within the confines of this work there is no confusion
in using the term in this specialised manner. In particular, the emphasis is on systems
which have a significant digital component embedded within them, so that software
specification is a major factor.

The term ’’real-time” had only one meaning until recently, and that was that all
calculated quantities within a system had to be updated at a pace that kept step with the

1

real world, and that there should be no accumulating backlog of information. The
classical application is a ground-based, piloted flight simulator where the positional and
attitude information must be delivered to the motion system at a rate representative of a
real aircraft. A real-time application closer to the current study is an aircraft digital
autostabiliser. Unfortunately the term has been hi-jacked by the data-processing
fraternity who use it to refer to reservation systems and similar applications where there
is no precise response-time requirement so that a better terminology here would be
”while-you-wait”. Accordingly the alternative terminology ’’time-critical” has grown up
in the aerospace area. In the present study there are elements of the two interpretations.
The software for the control laws and autostabiliser are real-time in the time-critical
sense, whereas the control law and disturbance selections do not have response
deadlines of the same kind.

As will be described more fully in the remainder of this thesis, the need for
precision and integrity directed the development of the specification method towards the
techniques of software engineering. However another factor, that of accessibility,
influenced its development but received little formal acknowledgement during the
course of the work. The need for precision drives the specification towards greater
formality but it is that very formality which begins to deny access to the traditional
engineer. The challenge is to find a method of description which can be accepted by a
wide cross section of engineers and yet contain within it sufficient formality to dictate
the details of implementation. Graphical representations can be a valuable supplement in
this context and they played a major role in the development of the method presented
herein.

The method and its supporting techniques have been developed to have general
applicability but the need to specify an Active Control Technology (ACT) system for
a Westland Lynx helicopter stimulated the research in the first instance and it is to this
complex system that the method has been applied. In the discussion to be found in later
chapters it will become clear that the ACT Lynx system is a demanding application and
a stem test for any specification method.

The use of the term ’’methodology” to describe a harmonious combination of
isolated techniques, methods and philosophy to form a procedure identifiable in its own
right can be irritating to those who prefer to retain its proper meaning as a study of
methods. Therefore the latter meaning will be used in this thesis and ’’method” will
have a broader meaning to include aspects of philosophy, approach, and extensions to
established techniques.

2

1.2 STRUCTURE OF THE THESIS.
There is a strong narrative theme to the development of the ACT Lynx

Requirements Specification which needs to be appreciated for a full understanding of
the problems encountered and solved in the course of this research. A concise account
has been presented in References 1 and 2. However, it would not be appropriate to
base the format of a thesis on this narrative thread, so the course adopted in this work
has been to place the narrative in section 1.4 of this introduction after a discussion of
the background of the project. The technical issues raised in the course of the narrative
are then discussed individually in subsequent chapters and, where appropriate, in more
detailed appendices. It is necessary to introduce some preparatory material and devote
Chapter 2 to the Jackson System Development (JSD) method for software system
development. A full tutorial would be out of place, but it is necessary to draw out those
features of the method which have particular relevance to the theme of this work.
Consequently Chapter 3 is concerned with the early activity of creating a representation
of the ACT Lynx system which could be used to plan subsequent development work.
The control of the ACT system is discussed in Chapter 4. During the project the
design of the software behind the pilot’s various interfaces for controlling the system
became known as ’’the supervisor issue”; the problems associated with it and their
resolution have general applicability. Chapter 5 describes the essence of the method
adopted for the application of JSD to a complex system. It is concerned with the
rationale of the method, which is at heart very simple, as applied to the ACT Lynx
system. Its application was a substantial task and the content and structure of the
resulting specification is described in Chapter 6. In practical terms, the end product of
this stage was a written, structured specification with much of the JSD underpinning
quite separate. The development of a JSD specification using CASE tools and a parallel
development of an Ada simulation is described in Chapter 7. Several of the
components of the Ada simulation are mentioned only in outline, with details being
confined to specific appendices. Issues surrounding the incorporation of a semi
automatic system test are discussed separately in Appendix 4. The combination of a
structured specification, in text, implemented as an Ada simulation using JSD as a
common expression of the design is the practical target of this stage of the ACT Lynx
project. The achievement is summarised in Chapter 8, followed in Chapter 9 by critical
evaluation of those achievements. The evaluation leads to some proposals for future
work, both in the particular area of the application and on the method in general.

3

1.3 BACKGROUND
The specification method was developed in response to the needs of the ACT

Lynx project, which has as its aim the procurement of an experimental variable stability
helicopter since in-flight simulation provides the ultimate validation test of a new flight
control concept. The realism of flight test overcomes the deficiencies of ground based
simulation associated with cue fidelity and modelling inaccuracies. On the other hand,
cost and safety issues constrain what is achievable in experimental flight test. A
balance must be struck between ground and flight test in order to mature a control
concept fully. In the field of helicopter flight control and handling qualities, the
potential benefits offered by Active Control Technology (ACT) are considerable [3]
and results derived from ground and in-flight simulation in Europe and North America
have demonstrated benefits at moderate performance levels. Future military rotorcraft
will need to operate at considerably higher performance levels and in tougher
environments than currently achievable. Additionally, reduced manning may be
imposed in order to save weight and logistical support costs. To support the
development of appropriate handling criteria, carefree manoeuvring features, and the
associated technologies in controls and displays, a number of research laboratories are
exploring the options for enhanced in-flight facilities. In the UK, at the Royal
Aerospace Establishment (RAE), now the Defence Research Agency (DRA), attention
has been focussed on studies for the development of an ACT system for a research
Lynx. Studies include the development of a rationale for a programme of research
[4,5], and establishing the procedures for managing the life-cycle of control laws from
initial design through to flight [6,7]. Particularly relevant to the present work was a
series of studies to demonstrate the practical feasibility of modifying the RAE AH7
Lynx into a full authority flight-test facility [8]. The concept is illustrated in Figure 1.1.
The helicopter is flown by one of two pilots - the safety pilot and the evaluation pilot.
When the ACT system is not engaged, the safety pilot controls the helicopter using the
conventional inceptors and mechanical control runs (’inceptors’ is a generic term used
in the UK for controls: for example, levers and joy-sticks). When the system is
engaged, the evaluation pilot flies the helicopter by using a side-stick controller which
provides inputs into the Flight Control Computer (FCC). The demands produced by the
FCC are taken to an Actuator Drive and Monitoring Unit (ADMU) which generates the
drive signals for the parallel actuators which are connected to the mechanical control
runs. The system is engaged by energising the parallel actuators and, when energised,
the parallel actuator back-drives the safety pilof s inceptors and at the same time
forward-drives the existing Lynx Primary Flight Control Units (PFCUs). There is
provision for filtering out the high frequency component of the demands and taking it
directly to the series actuator of the PFCU in order to avoid a high frequency

4

component in the backdriven control runs. The triplex architecture of the FCC and the
dual duplex nature of the ADMU ensure a fail-operative / fail-safe (FOFS) system. The
FOFS architecture is necessary to provide safe experimental flight at the edges of the
flight performance envelope and in the nap-of-the-Earth (NOE) environment.

The impact of this total functionality on the system requirements is
considerable and RAE identified a need for a precise yet versatile specification of the
system. The specification should address functionality (for normal and failed states),
operation of the integrated system, together with interfaces, constraints and testing
requirements. It should also be fit for establishing realistic development costs and
timescales. This last consideration introduces another facet of the background which
was important in influencing the direction in which the project developed. At this time
the Ministry of Defence had had unfortunate experiences as a procurer for major
projects, particularly when a significant element of novel software was involved. There
was a history of cost over-runs and non-completions which culminated in the AWACS
/Nimrod fiasco. The MOD have subsequently responded to this situation by imposing
a strict regime for the development of new systems. This climate extended to the
research establishments and from the outset RAE were determined that the specification
should be the basis of a well managed procurement exercise, and as such, should solve
all of the outstanding design issues of the system. Potential suppliers would then be
able to assess accurately the costs of supplying the various components of the system,
since the possibility of being involved in expensive open-ended design work would be
eliminated. Also by solving the outstanding design problems ab initio, RAE would be
sure that the system could actually be supplied in accordance with the specification.

Therefore, as RAE prepared to place a contract for the production of a
requirements specification, they were clear about what was needed from the
specification, but were uncertain on how it was to be achieved. It was clearly
necessaiy to provide some guidance for the contractors about the approach to be taken.

1.4 DEVELOPMENT OF THE SPECIFICATION.
An area where the preparation of specifications has received a great deal of

attention is that of software. The production of complete, unambiguous specifications
and their managed development into functioning systems raised the possibility of using
similar disciplines on complex systems such as the ACT Lynx. The techniques of
software engineering would ensure a rigorous development of the design and the
associated CASE tools would assist in maintaining the precision and integrity of the
specification.

5

Once the introduction of software engineering techniques into the project had
been argued as a potential method of providing the specification with verification, it
was of interest to survey what methods were available to the systems designer, bearing
in mind that what was contemplated was an extension, in some manner as yet
unknown, into the non-software parts of the system. So at the very least the method to
be selected must be compatible with those parts even if it had little design input to offer.
There is a wide range of design methods competing for the attention of the system
developer: Freeman [9] lists 24 techniques and the Department of Industry [10] lists 21
potential candidates. A particularly useful contribution is provided by Birrel and Ould
[11] who apply a selection of methods to an image processing system in a comparative
case study. Their criteria for a short list include:

(a) Public availability of sufficient information to allow potential users make an
initial value judgement.

(b) There must be commercial support or substantial coverage in the literature.

The issue of public availability is an important one. One may sympathise with the
commercial need for confidentiality, but design is concerned with communicating a way
of solving problems and an ‘open systems’ approach to methodology would benefit the
whole software development community. The commercial aspects could then be
satisfied by consultancy expertise and by the marketing of CASE products. To the
criteria above, one may add for the present application:

(c) The method of expressing the design must easily make sense to a wide
community of engineers - not solely the software personnel.

(d) Adequate CASE support for large systems is vital.

(e) There must be sufficient detail required by the method to ensure proper
verification.

The scope for the method must include the definition, design and production phases,
where the last named phase largely satisfies criterion (e). The phases are not to be
interpreted too dogmatically since there can be some overlap of phases between
methods. In view of the criteria above, one may confine discussion to the following
candidates.

6

Consider first Structured English (SE). The method uses a number of
sentences derived from templates in a hierarchical structure to give successive levels of
refinement. Ostensibly limited to the definition phase and considered suitable only for
small systems, SE does at least offer readability by a non software-specialist, even if
the language is rather stilted. It is also attractive for the non-software parts of a
complex specification since it has some similarity with the traditional specification
couched as far as possible in standard phraseology.

System definition is also the objective of Controlled Requirements Expression
(CORE) [12]. CORE uses a hierarchy of viewpoints as one of its principal concepts.
For each viewpoint, a table is compiled of activities, inputs and outputs. Then, on the
table, connections are drawn between each input and every associated activity; the
outputs are treated similarly. This information, once captured, can be processed for
internal consistency to ensure that, for example, each input has a corresponding output.
The hierarchical structure requires that a record is maintained of the data-flow
decompositions, and CASE support is normally used for this purpose. The
identification of an appropriate set of viewpoints is essentially a modelling exercise, and
for a complex system the viewpoint would probably be related to the items of hardware
comprising the system. It is important to select a set of viewpoints which do not
overlap but which give a complete coverage of the system.

CORE is often partnered by MASCOT [13,14] for the design and production
stages. The Mascot design phase produces an activity/channel/pool (ACP) diagram
based on the information compiled during the system definition. The ACP diagram is a
network of processes communicating via channels (message queues) and pools
(reference data). More recent terminology [14,15] refers to ‘activities’ rather than
processes and to ‘intercommunication data areas’ (IDAs) rather than pools and
channels, but the distinction between pools and channels should be recalled when
Jackson System Development (JSD) [16,17] is described in Chapter 2. Strictly
speaking, the ACP diagram is not hierarchical but for large systems it is convenient to
group together elements of the network and define subsystem IDAs. Such ‘chunking’
[18] is an indispensable part of coping with large systems, but how to select the chunks
is not always obvious. JSD also suffers from an absence of a natural hierarchy and one
of the results of the present work is a method for selecting the chunks in a complex
system in a way that is compatible with JSD (Chapters 5 and 8). In the production
phase MASCOT offers a set of constructional tools and mechanisms to verify the
design before the code is ported to the target system.

7

A long established method is the Structured Analysis and Design Technique
(SADT) [19] which has benefited from early CASE support. The method spans the
definition and design phases, constructing a hierarchy of formal diagrams by functional
decomoosition. A SADT diagram consist o f a small (<= 61 boxes connected byX ^ -------------------------- v / ------ j

arrows. The boxes represent activities, the arrows entering them are either inputs,
control or mechanisms, and the arrows leaving them represent outputs. Decomposition
takes one of the boxes and expands it into several smaller activities linked by more
arrows. Naturally, for consistency, the number of arrows leaving and entering the
diagram must be the same as for the original box. The separation into ‘control’ and
‘other’ data loosely parallels the channels and pools of the original MASCOT. Clearly,
the success of the SADT method depends on the confidence with which functional
decomposition can be applied, and the ease with which control and other data can be
separated.

A popular set of similar methods are due to Yourdon [20], De Marco [21], and
Ward and Mellor [22] which are discussed here in the context of their application to
real-time systems. The methods use a network of processes, depicted as circles,
connected by flows of data. The network is termed a dataflow diagram (DFD) or
bubble diagram and several types of characteristic network elements, such as
transformations and transactions, may be identified. In real-time applications there is
also a flow of control information which is typically processed by a Finite State
Machine (FSM) approach (the FSM has certain advantages and was seriously
considered for the present work - as described in Chapter 4 & Appendix 2). The
dataflows and activities are decomposed until a level is reached where implementation is
straightforward. The popularity of the method may have come about due to the lack
associated design discipline, so that there is considerable freedom left for the designer
either to use or abuse. Unfortunately, when the initial design phase is neglected, it is
possible for the decompositional sequence to produce modules which exhibit poor
cohesiveness. Indeed, Thewlis [18] reports that the problem of lack of cohesiveness
can become so serious that a wholesale modification of the way in which the method is
applied is required.

Discussion of JSD and its relationship to the methods above is postponed until
Chapters 2 and 9. At this stage one may merely note the common feature of a number
of methods: a network of communicating processes with two types of data - control
data and reference data.

8

Recently a design approach has gained currency which supplants the dynamic
view of a system as suggested by ‘process’ or ‘activity’ with the more static
terminology of ‘object’. Object oriented (OO) methods are not new and they have
their origins in SIMULA in the 1960’s. The OO approach considers a system to be a
set of interacting objects requesting services from other objects by issuing messages to
them. An important advantage of the approach is that it encourages cohesion and
additionally promotes software re-use by virtue of its encapsulation of data.
Hierarchical Object Oriented Design (HOOD) is described in Reference 23. Modem
object oriented languages such as C++ [24] have also been a factor in the increasing
popularity of of the OO approach, but its incorporation into large-scale system design
has not yet matured. Cameron [25] reports the current incomplete developments with
OOJSD. It is also certain that while OO languages and design may aid good system
development and maintenance, there will always remain an initial system definition
stage which is creative and not prescriptive.

For the ACT Lynx system, at the time of its definition the lack of support ruled
out OO methods. Nevertheless, the conclusions reached in Chapters 5 and 8 appear to
be in keeping with the anticipated developments of JSD. From the available
contenders, JSD was selected partly because of its modelling emphasis and also
because of compliance with contemporary policy in the relevant part of RAE. JSD is
particularly suitable for a research environment where it is relatively common for new
systems to be developed ab initio. The JSD method is described in Chapter 2, and some
illustrations of the application of JSD within this project are also given there. However
it should be remembered that in the early stages it was not known how to apply the
method to those parts of the system which were not digital. Even the application to
those parts which were likely to be digital was not trivial. Moreover, it was desirable
that at the specification stage there should be some freedom as to the type of
implementation ultimately chosen - leaving open, for example, the option of dissimilar
implementations of redundant units. Exactly how to treat analogue, mechanical,
hydraulic and even human components of the system within the context of JSD was
not clear. Advice was sought from various sources about the viability of using JSD to
specify the ACT Lynx system, and encouraged by the responses, the decision was
taken to stipulate JSD for the preparation of the ACT Lynx Requirements Specification.
In the light of subsequent events, and the problems encountered, it is significant that the
sources concerned did not attempt to suggest how it might be done - only that it
should be possible.

9

The description of one way in which complex systems may be specified, in
particular using JSD, is the main result of this thesis. It will be shown that there is a
simple approach - a principle - which can be successfully applied to a system as
complex as the ACT Lynx. The essence of the method, together with the techniques
required to implement it, are described in Chapter 5.

These ideas were not available at the time the contract was placed with
Westland Helicopters Ltd (WHL) for the preparation of a Requirements Specification
for an ACT Lynx using the JSD method. The author's direct involvement in the ACT
Lynx project stems from this time when invited to act on behalf RAE in providing
advice about the use of JSD, having collaborated with RAE in the use of JSD in a
number of projects [26,27]. Once the contract was underway there was the usual
regular sequence of progress and technical meetings which involved personnel from
RAE and WHL together with a number of specialist advisers. For convenience this
group will be referred to as ’the design team’

1.4.1 Preliminary Design
In preparation for the start of the contract some effort was expended by RAE in

preparing an outline design in the form of a network of communicating processes
along the lines of a JSD System Network Diagram. Chapter 3 reviews this early work
in some detail and the network ultimately produced is shown in Figures 3.1-3.3. There
was some concern at the time that the processes were not being identified and specified
by a correct JSD analysis. This was indeed true but not appreciated by all concerned.
Nevertheless the outcome was a useful overview of the design even if only interpreted
as a signal flow diagram of the likely system. Dogma gave way to pragmaticism in
this instance and, as will be made clear later, obtaining this overview of the total system
is an essential step in applying JSD to complex systems. There are several points of
interest which arise immediately from a study of Figures 3.1-3.3. First is the place of
interfaces on on a process network. Since they do actually transform information there
is a case for retaining them, however if the interface merely changes the form of
representation of the same information they are unnecessary from a functional point of
view. In subsequent developments they were omitted for the sake of clarity of the
whole diagram unless they possessed some functional behaviour. Second, it is clear
that the process labelled BITE (Built In Test Equipment - later denoted System Test)
apparently has little interaction with the remainder of the system. The whole system test
issue is described in Appendix 4 but it is worth highlighting that even at this early stage
its poorly defined nature was identified by the simplest of analyses. Finally it can be
noted that a single physical item can give rise to several processes on the network. For

10

example, a parallel actuator can give rise to a parallel actuator function process and a
parallel actuator entity process. Again this is an early indication of an important
ingredient in the method as finally employed, and is set out in full in Chapter 5.

1.4.2 Design Development
With this preliminary work available to them the design team considered how

best to make use of it in pursuing the JSD specification. Indeed the whole question of
the suitability of JSD for the specification exercise became an issue. At the root of the
problem was the fact that the ACT system was complex in nature and that, even given a
familiarity with the JSD method for software system design, the way to apply the
method to such systems had not been established. What compounded the difficulty,
was that the majority of the design team lacked experience in JSD, and, not unnaturally,
felt a lack of confidence in tackling a large, novel application, when they would have
found even a conventional application a demanding exercise. As is discussed in
Chapter 2, the first, modelling, stage in JSD is one where beginners often lose heart.
The level of detail that needs to be drawn in just, it seems, to get started is an anathema
to ’top-down’ and ’broad-brush’ exponents. Seasoned practitioners recognise that
valuable design issues are being resolved - ’the bad news now* syndrome - and
develop the patience to see this stage through to a successful conclusion. Bradley [28]
set out a strategy based on using JSD on an area of the system where it could be applied
in a conventional manner. The pilot’s control panel offered such an opportunity and
some preliminary JSD studies were presented to form a starting point for the
development of such a strategy. An example of an early modelling of pilot interaction
is shown in Figure 1.2. The argument for this method of progress was that by starting
with a situation where JSD could be applied with confidence, design work of known
value would be achieved and, further, by following the threads of the design it would
naturally lead on to those areas where the method was less well defined. For example,
in Figure 1.2 it would need to be established exactly what effect BITE was to have on
the remainder of the system. Therefore the approach would at least indicate, in JSD
terms, what was required of the remainder of the system and possibly give some clue
as to how the design of the majority of the system should be developed formally. It is
also worthy of note that Bradley [28] also observed, at this seminal stage, that once a
JSD specification was available, if only in part, then it could be implemented as a
prototype simulation with which to validate the specification and contribute to its
continued development. In Chapter 7 an Ada Simulation is described which brings such
ideas to fruition. The concept of specification through simulation, or ’living
specification’ as it is dubbed in the ACT exercise, has currently found favour for
aerospace software systems [29], but the it is believed that the ACT application is the

11

first complex system to be specified in this way. In the event, these ideas did not hold
sway with the majority of the design team at that time, but they were developed
independently and their culmination is discussed in appropriate detail in Chapter 5.

1.4.3 Version 1
The design team preferred to progress in a more conventional manner and relied

on a traditional format of a document composed of chapters containing numbered
paragraphs of text supplemented by a set of technical illustrations and diagrams.
Ultimately this work led to Version 1 of the Requirements Specification [30], which
contained a wealth of technical detail upon which most of the later work was built. It
is not appropriate to review every aspect of this document in detail; it would, for
example, be out of place to examine the non-functional requirements such as the
stipulated weight limits for a particular unit, when the present work is devoted to the
requirements for functionality. Some aspects are, however, crucially relevant, and it is
on these that attention will be concentrated.

The first important aspect that was a source of intense debate was the need in
the specification to make the control of the ACT System, that is its interface with the
pilot, highly visible in the specification so that it would be utterly clear to the
prospective implemented exactly what was required. In addition, to guarantee the
integrity of the implementation, the specification should be cast in a form from which
software could be directly written. Also mooted was the possibility of retaining the
whole of the control of the system in a single process, referred to as the Supervisor, so
that resources could be directed to it at implementation time to ensure a very high degree
of reliability. The Supervisor issue came to be studied in some depth and involved
some important general principles, accordingly a separate chapter - Chapter 4, The
Supervisor - is devoted to the subject. Eventually, as a result of continued study, the
majority of the tasks originally associated with the supervisor, became reconciled into
the various roles of the pilot entity, but this was not until Version 3 of the specification
was produced.

The second aspect was the absence in the specification document of much of the
rationale for detailed statements of the requirements) or explanation of why it was
necessary or desirable for the system to work in a particular way. The inclusion of
such design information was felt to be necessary in order to achieve the required
versatility of the specification. If some component of the specification were to be
changed as a consequence of alternative technology becoming available, for example a
new type of parallel actuator, then the relationship with the rest of the system in terms

12

of the supply of demands, failure monitoring and reconfiguration etc. should be set out
clearly and completely in the specification.

Finally, there was some concern that there was an absence of cohesiveness in
the whole specification. It was difficult to appreciate from the text the relationship
between the various components of the system and the communications between the
individual units. This aspect is obviously related to the second one discussed above but
here there was more emphasis on the need for formal descriptions including a
diagrammatic representation of the system, for example an updated and elaborated
version of the system diagram of Figures 3.1- 3.3 . It is in this area that an approach
based on software design methods would be expected to make a significant
contribution.

1.4.4 Version 2
The next issue, Version 2, of the specification [31] attempted to ameliorate the

shortcomings identified above. In it, the control of the state of the ACT system was
discussed via Finite State Machines (FSM) and transition diagrams. Interestingly, the
inclusion of FSM material was a stimulant to constructive debate on the essentials of the
specification, including the discussion on the Supervisor in Chapter 4. (The concepts
and notation of FSM seem easily accessible to non-specialists and this is a valuable
property not shared by Jackson techniques.) The criticism regarding the absence of a
rationale for the selected design approach was met by including supplementary design
information to accompany the specification text. The final point about design
cohesiveness was met by including a partially developed De Marco [21] description of
the ACT system. The method is hierarchical and decompositional, and so the
decompositions of processes and data flows are performed on a heuristic basis until
they are resolved at the lowest stage of the hierarchy. Therefore it is not until this
lowest level is reached that the decompositions are justified. Unfortunately the
decompositions were not taken down to such a level and the work in this area was not
as valuable as it should have been, whereas JSD would ensure that these considerations
were dealt with first.

1.4.5 Version 3
As a matter of deliberate policy Version 2 was subject to careful scrutiny in

order to determine those areas where it could be significantly improved. In particular
the possibility of using JSD was re-examined since in the context of the ACT Lynx
application a method which was biased towards system development was considered to
be more appropriate than a decompositional, hierarchical technique. A strength of the

13

Jackson method is that it spans the full range of activity from system definition to
production of code [11], so that at one end it is concerned with modelling correctly, for
example, the actions of the pilot when he uses the Pilot’s Control Panel, illustrated in
Figure 1.3, and at the other end, contains the level of detailed specification necessary
to generate code. Such a level of detail ensures that the design problems of the
specification have been addressed even if the software is not actually produced - in this
case the further step was taken and is described in Chapter 7. These two areas -
modelling and attention to detail - had not been given sufficient emphasis in the earlier
versions and the disciplines of JSD would force attention to them.

The production of Version 3 of the specification is described in detail in Chapter
6 so will covered here with considered brevity. Employing the techniques described
for complex systems in Chapter 5 was a substantial, practical test of the viability of the
method. As will be made clear in Chapter 6 and 7 not only did the application of the
method fit smoothly with the preparation of new specification but it opened the door to
advances in generating an associated simulation.

The first step was to perform a decomposition of the total system into logical,
largely hardware-based, elements as illustrated in Figure 6.1. They may be listed as:

(i) SE - Sensor Element
(ii) CSE - Crew Station Element
(iii) CLISE - Control Law Input Support Element
(iv) CLE - Control Law Element
(v) CLOSE - Control Law Output Support Element
(vi) ADME - Actuator Drive and Monitoring Element
(v) AE - Actuator Element
(vi) ESSE - External Support Element

Such a decomposition follows the principles for complex systems set out in
Chapter 5. Each element - or unit if the element is composed of replicated units - was
then specified under the following headings:

14

(i) TYPE
00 FUNCTION
(iii) OPERATION
(iv) PERFORMANCE
(v) INPUTS & OUTPUTS
(vi) INTERFACES
(vi) TESTING
(vii) FAILURE REPORTING & RECOVERY

These headings are also considered in detail in Chapter 6. Important headings
include FUNCTION and OPERATION; the former being a statement of the tasks of
that element or unit, and the latter being a detailed account of how those tasks are
achieved. A substantial amount of preliminary JSD design was needed for the main
processing elements to ensure that the narrative in the OPERATION section was a
viable basis for a JSD specification using the CASE products. The end product was a
written specification that had been carefully structured and compiled so as to be
compatible with a full JSD specification based on the composite simulation approach of
Chapter 5. Therefore the further step to prepare a full, computer-based JSD
specification was one that could be faced with confidence and the generation of an
associated simulation a straightforward matter.

1.4.6 Simulation
A full JSD specification and implementation of the associated simulation was

prepared from Version 3 of the written specification by Learmonth Burchett
Management Systems Pic (LBMS) under contract. The preparation of a full JSD
specification gave an independent verification of the written text of Version 3, while the
simulation offered the opportunity for hands-on validation of the specification. The
development of the simulation is described in Chapter 7. A particular contribution of
LBMS was expertise in code generation tools, where in addition to the Adacode tool for
direct generation of Ada from the JSD database, extensions were developed to enable
replicated units to be generated from a formal description. The importance of this work
is emphasised in Section 5 of Chapter 7. Since the formal descriptions include a
definition of the requirements for fault management and consolidation it is possible to
include the software for these features as part of the automatic generation. In turn this
led to a decompositional view of the system based on the replication of the components
of the system as well as its logical elements. The resultant unit networks, Figures 7.9 -
7.11, provide high level views of the system to give an overall perspective but ,when

15

viewed from below by an implemented define the structure of the code to be generated.
Therefore this phase of the work provided not only the combination of specification and
simulation called a living specification (as introduced in Chapter 5) but also contributed
to the overall method by formalising the unit definition for the hardware structure which
could then be mapped directly onto the JSD Units of Chapter 5. The production of the
simulation marked the end of the activities associated with Version 3 of the
specification. The results of the verification and validation exercises will be collated
and incorporated into a final, definitive version of the text. The objectives established
by the review of Version 2 will then have been achieved.

1.5 THE MATURE METHOD
From a review of Section 1.4, above, one can identify the important

ingredients of the method leading to a living specification. They may be summarised as
follows:

(a) Decompose the system into significant elements. The decomposition should
be tailored to the application but one based on hardware subsystems and
redundancy is probably common to most applications.

(b) Prepare a natural language specification for that decomposition. Chapter 6
provides a useful prototype for the structure of the description. The
specification should be underpinned by appropriate JSD design studies using
the techniques of composite simulation developed in Chapter 5.

(c) Use CASE tools to prepare a foil JSD specification. This step provides
verification of the text prepared in step (b) and any inadequacy therein should be
remedied by formal revision of the text.

(d) Use code generation to prepare Ada code for the specification. Novel code
generation facilities may be necessary for a new application area to reflect any
new decompositional criteria.

(e) Compile the code into a runnable simulation for validation of the original
specification. Again, any inadequacy should be dealt with by formal revision of
the text.

To these steps one should attach the rider that the specifier should not be too
constrained by them. The success of this work has depended on adapting accepted

16

orthodoxy and taking a flexible approach. The application of a few simple principles is
the appropriate way to tackle large complex systems, adjusting the detail to suit the
particular system. JSD and Ada have been used in this project but the ideas should
transfer to any equally mature design and code generation environment.

Finally, although it is not listed above, the validation stage should be considered
when preparing the JSD design; the data necessary for validation must be produced by
the simulation. A specific element of the ACT Lynx system was dedicated to data
acquisition and management.

The method, as described, has developed contemporaneously with Reference
29 concerning the use of simulation in the specification of software systems and with
Reference 32 relating to the development of an avionics-systems simulation
environment. The present method, it is asserted, is more comprehensive than the
former and more mature than the latter. The specific achievements surrounding the
development of the method are considered in Chapter 8 where the benefits accruing,
particularly in relation to making a formal specification accessible to the non-specialist,
are emphasised. A critical analysis of the method and the outlook for future
developments are undertaken in Chapter 9. In particular, the potential for further
developing the unit/connection descriptions and networks is explored, and the need
for incorporating the text specification within the JSD database is argued.

1.6 CONCLUSIONS
This introductory chapter has stated the aims of the research and related them to

needs of the ACT Lynx application. The application background has been discussed in
order to demonstrate the nature and architecture of the system and justify its
classification as a complex system . The development phases of the specification have
been discussed in detail in order to place in context the advances that have been made.
The discussion also places on record the special difficulties encountered and those
approaches which did not prove fruitful. The specification method has been
summarised as a sequence of steps to be considered for general application to complex
systems.

17

CHAPTER 2

JACKSON SYSTEM DEVELOPMENT

Summary
The elements of Jackson System Development (JSD) are described in this

chapter in a manner which relates to the ACT Lynx specification project. Jackson
Structured Programming (JSP) is described first since it is a prerequisite to an
understanding of JSD. JSD is introduced via modelling of external entities, including
the concept of roles of an entity. The use of data (or static) entities is emphasised since
they play a crucial part in the subsequent development of the ACT Lynx specification.
Finally, network development and implementation are treated in the conventional
manner.

2.1 AIMS AND ORIGINS OF JSD.
The development of systems covers a range of activities concerned with

specifying and implementing computer systems. In an ideal application the starting
point is a written explanation of what the system is to do, conventionally termed a
narrative, together with some background material. The quantity of such material (and
its quality) naturally varies with the sophistication of the application, but one of the
features of the JSD technique is that attention is given at an early stage to resolving
ambiguities and vaguenesses so that subsequent development can proceed on a secure
foundation. From the initial definition, JSD constructs a network of communicating
processes, with each process fully defined using Jackson Structured Programming JSP
(see 2.2 below) and although there may be alternative methods of implementing the
system, possibly reflecting different hardware configurations, there is the opportunity
to generate code from the network/ process definition. Therefore JSD has a remarkable
scope since it involves several activities, including those termed systems analysis,
systems design, and programming, and as such covers the whole spectrum of
development from system definition to production of code [11].

Historically, JSP originated in the observation by Jackson [33] that the data
structures associated with the input and output of a program must be reflected in the
structure of the program itself, and that any processing of information can be attached
directly to that stiucture.The crucial development into JSD came about [16,17] when it
was realised that operator and system actions in real time applications had the same
effect, so that a system could be viewed as a collection of programs (processes) each
designed by JSP. Often a major difficulty lies in interpreting or ’modelling’ the input

18

actions of the outside world, so that JSD, as taught, sets great store by the initial
modelling phase.

The two features of JSD that had a deleterious influence on the initial
development of the ACT Lynx specification are: (i) the ability to generate code implies a
level of detailed treatment which was unacceptable to the original design team and (ii)
the emphasis on modelling confuses the issue when data entities predominate (section
2.3).

2.2 JACKSON STRUCTURED PROGRAMMING
There are tutorial texts available on JSP, for example [34], so only an

abbreviated discussion, specific to the ACT Lynx System, is considered in this
section.

2.2.1 Data Structure
Consider a program required to control the engagement state of the system, so

that when the state is engaged then the parallel actuator is connected to the control run
(or equivalently the hydraulics of the parallel actuator are pressurised). The actions, or
input records, to be processed by the program are an ENGAGE message from the
pilots, a DISENGAGE message from the pilots or the redundancy management system,
an ARM message from the pilot, and an ARMED message from the process which
matches actuator position to ACT demand. JSP asks what the ordering constraints
applicable to this situation are, and requires them to be expressed in a structure
diagram. Figure 2.1 shows the appropriate structure, where the three basic
substructures of the JSP notation may be observed. First, the engagement sequence
ARM, ARMED, ENGAGE, DISENGAGE is represented by the sequence of boxes so
labelled. This sequence construct imposes the correct order of actions for the pilot to
engage the system. In addition to the sequence substructure, there is the selection
substructure which indicates mutually exclusive alternatives. For example, there is a
selection between the two possible sorts of cycle. One is the normal sequence just
described, the other is one where a DISENGAGE has interrupted the sequence. The
symbol (o) in the boxes for Normal Cycle and Early Cycle denotes the fact that the box
Engage Cycle is either a normal or an early disengage cycle. The final substructure is
the iteration, which is a repetition of none or more occurrences of the box indicated by
the symbol (*), so that Pilot Engagement is a repetition of Engagement Cycle. The box
named Actions in the Early Disengage sequence represents either an Arm, or an Arm
followed by an Armed, that is, the part of the normal sequence which is then

19

interrupted. As will be made clear below there is no need to elaborate the detail at this
stage.

2.2.2 Program Structure
As is often the case when using JSP in a JSD context the program structure is

easy to derive. Since the program is to be used merely to hold the system state as a
reference for other processes, then the input structure can be adopted as the program
structure. The boxes or components of the diagram are used to indicate the flow of
program control. The diagram requires some elaboration in order to direct the
generation of code, as shown in Figure 2.2. Sequences are trivial since in all procedural
languages, the order of the statements indicates the sequence of processing. An
iteration requires a terminating condition (or more correctly, a continuation condition);
this must in general be supplied in terms of a condition applied to data within the
program. This may be either data which have been read in, or data derived from internal
calculations such as counters. In the case illustrated, since the program is required to
cycle continuously, the continuation condition is TRUE. This trivial situation is
common in embedded systems where a process is required to run during the whole time
the system is switched on. Each of the alternatives in a selection must have a condition
attached to it; usually this is simple to achieve and the condition is determined by
information immediately available within the program - often as a result of recent input.
Some times, as here, there is a difficulty (a recognition difficulty) and when an ARM
message arrives there is no way of knowing whether it will continue along the normal
cycle or whether there will be an early disengage. The (?) in the selection boxes show
that the selection is unknown and that the normal cycle is proceeded with (POSITED)
but if a DISENGAGE message is detected after ARM or ARMED by the QUIT boxes
marked (!) then there is a need to change control (ADMIT) to the early disengage cycle
at an appropriate point. The appropriate point is the disengage box since the preceding
actions have already been taken care of in the normal cycle (termed beneficial side
effects). To show that the collection of odd actions need not be a concern when code is
generated, the Actions box, now elaborated to show the types of actions to which it
refers, is marked with a (-) and subsequently ignored. The processing required within
the program is listed as a set of operations which are attached as sequence boxes to the
program structure. In this instance they are few and simple, being merely message
reading and setting the system state. An initial message is read to establish the
disengaged state.

Figure 2.3 shows the basic data structure associated with the pilot initiated System
Test. It has the same elements as the Pilot Engagement: a non-terminating iteration

20

waiting for the test to start then the body of the test - the result of which is undecided
when the test begins. The elaboration of the system test body is a substantial item
considered in Appendix 4.

2.3 JSD MODELLING.
The creation of a data structure based on input messages has been discussed in

section 2.2.1 above. The data structure models the pilot engagement entity of the
outside world and so, in JSD, the process derived from it is also termed an entity. The
classical JSD modelling exercise compiles a list of all relevant actions - particularly
externally applied actions - and attempts to group them so that they can be associated
with an identifiable entity in the outside world. In 2.2.1 above the actions associated
with pilot engagement have been grouped together in this way. Figure 2.4 shows part
of the list of actions from which the pilots engagement actions were extracted. Usually
for a beginner the modelling stage is an exercise fraught with difficulty and frustration
as slow or even no progress is made. Correspondingly it is an area which receives
particular attention in taught courses and the tutorial books (beginners experiencing the
same difficulties may be observed in mathematical modelling workshops, which
suggests that any formal modelling is a creative activity quite different to the usual
technical exercise of skill). There are two aspects of modelling that require emphasis
for the ACT Lynx system. The first point is that there can be more than one model
associated with an outside world entity. In section 2.2.2 there have been descriptions
of Pilot Engagement and System Test, which can also be ascribed to the pilot. The
recent JSD terminology for this situation is that the entity has different roles and each
role has its own independent, single threaded, structure. Bradley [27] used these ideas
in the specification of the control of a piloted flight simulator and constructed models
for several aspects of the user, including data-logging user, hardcopy user and pilot-
rating user. At the time of that work the ’role’ terminology and concept had not been
developed in conventional JSD. The second point is fundamental to the development
of the method applied to the ACT Lynx system in Chapter 5. A good example is taken
from Bradley [26] which involved the application of JSD to the design of a device for
injecting preprogrammed inputs into the series actuator of the Primary Flight Control
Unit (PFCU), shown schematically in Figure 2.5(a). The modelling of the operator
through a touch sensitive screen overlay provides a conventional modelling exercise of
some interest, which is reported in Reference 26, but since the preprogrammed input
may optionally be superimposed on the existing Automatic Right Control System
(AFCS) there is a need to model the actions of the AFCS by a suitable model structure.
A non-JSD person would regard this as a trivial exercise and merely sample the AFCS
demand values at an appropriate frame time using an analogue to digital converter. So

21

would a JSD person with any experience but often the means of explaining the situation
has left much to be desired. The search for actions to attach to this entity led to such
explanations as ’the pitch rate demand gets changed’ is the action being modelled. Such
convoluted explanations can be confusing to a beginner and it is possible that JSD has
been resisted by some real-time practitioners because of its loss of credibility on this
simple point. The appropriate data-structure for the model is shown in Figure 2.5(b)
where the input message is simply the ’tick’ of a frame time clock - Time Grain Marker
is the respectable JSD term. The single operation, other than reading the tick message,
is inspecting the value of the ADC and retaining the data for other processes in the
system to use. The structure always has the form shown although sometimes data is
sent out directly as messages. This type of model is very common in real time
applications and has been called a Data Entity by the author to emphasise its effect of
merely capturing and holding data for the rest of the system to use. Conventional JSD
came to call such models Static Entities to reflect the relatively uninteresting structure.
It is helpful in the ACT Lynx work to avoid viewing data entities as poor cousins of
entities with more interesting structures. A viewpoint where data entities are the norm
and occasional transitions in value can be interpreted as discrete events - more akin to
analogue applications - is the key to a consistent approach to JSD for complex systems.
Further discussion on this important aspect is postponed to Chapter 5.

2.4 THE NETWORK
Some important components of the JSD network diagram are shown in Figure

2.6(a), where processes are shown as boxes and message queues as circles. Message
queues are referred to as data streams in JSD parlance. A simple situation is where a
process P reads messages arriving on data stream DS1. Process P also writes messages
on data stream DS2. Many programs are of this simple form; DS1 may be composed
of records from a file or a keyboard, for example. The output DS2 may be composed of
records being sent to another file or possibly a screen. In a system, we are concerned
with the situation where the messages may originate from another process and be sent
to yet others, as shown in Figure 2.6 (b), so that the whole forms a network of
communicating sequential processes. Conventionally, the terminating data streams,
where there is a connection with the outside world, are marked with a squiggle. The
network in Figure 2.6(b) also shows that a process may merge the messages emanating
from several data streams. Another network component, the diamond representing a
state vector inspection, is shown in Figure 2.6(c). A state vector inspection (SVI)
enables a process to inspect, but not modify, the internal variables of another process.
The inspection requires no action on the part of the process being inspected and

22

consequently does not feature in the process description. As has been noted in Chapter
1, these two types of communication are common to many methods [13,19,22].

The development of the network in a JSD project starts with the boxes
representing the entities, or roles of the entities if there are more than one. In Figure
2.7, some simplified examples are taken from the ACT Lynx. The pilot’s inceptors are
modelled, as is the engagement of the ACT system. In addition there is a modelling of
the helicopter, in the sense that its attitude and rate information is sampled. As outputs
or functions of the system there are demands for the series and parallel actuators and the
operation of the clutch to connect the parallel actuator to the normal control runs. The
outputs are shown as SVIs since, as will be discussed in Chapter 5, they are the most
appropriate type in an application of this kind. A control law process is shown since
such a process would be expected between the inceptors and actuators. The control
laws would use sensor information too, but the nature of the connections - datastream
or SVI is uncertain until the detail is worked out. The network stage of JSD is to
discover what supplementary processes are needed to derive the required outputs from
the inputs provided by the model processes. The messages between processes also
need to be specified, as do any required state vector inspections. The designer looks to
the narrative describing the requirements of the system to provide sufficient information
to enable him to elaborate the network once the modelling phase is complete. For a
large system elaborating the network can involve a substantial quantity of effort.
However, apart from the usual difficulties caused by omission of information from the
narrative, developing the network is a task enjoyed by software personnel, and uses
skills that they are keen to exercise. There are some problems of managing a large
network diagram, particularly the JSD type since it should be clear that it is essentially a
two-level representation of the system, and not hierarchical in a similar way to the
MASCOT network [13] described in Chapter 1. The top level is the process network,
called the system network diagram (SND), and below that there is only the process
level with its JSP structure diagrams. It is a situation which calls for computer
assistance and there are several CASE tools available, some specific to JSD. Appendix
1 discusses CASE tools in the context of ACT Lynx specification. In practice the
developer works on a reasonably sized segment of the whole diagram which then has to
be integrated within the whole network. Figure 2.8 shows part of the ACT network
associated with the control laws as an example. The process boxes can be seen, as can
the datastream and SVI connections. The strokes across the connections to the
Disturbance Imposer process, for example, indicate a multiple connection, that is, there
are several copies of the Disturbance Imposer (represented by a single box for clarity
since they have the same structure) and the connection is to each of them. A complete

23

set of connections is shown only for the Control Law Algorithm process. Other
processes only have those connections shown which connect to it.

When complete, the network specification contains sufficient detail to be
formally executed. This level of detail is one of the problems with developing a
specification in JSD since only the problem of matching the specification to the target
implementation environment remains. After that it is merely a case of generating code.
The rationale is that it is not possible to specify a system until all of the relevant detail
has been worked through. Nevertheless, it is common for contracts for software
systems to be placed and accepted on the basis of a quite inadequate requirements
specification. The hope is that there will be no intractable problem, and that those
problems that do occur will be solved in a reasonable time. It is at the same time a
strength and weakness of JSD that it cannot be used in this way. It is a strength because
of the integrity of its detail: it is a weakness because purchasers of systems often cannot
devote the resources necessary to develop a JSD specification, and prefer to risk the
possibility of failure.

2.5 IMPLEMENTATION
A full discussion of the scope for matching the network to particular

implementation environments is beyond the scope of this Chapter. Since the subject is
fully covered elsewhere [16,35,36] the following discussion is purposely limited. The
most straightforward implementation would be a multi-processor environment with one
processor devoted to each JSD process. The processes could then run concurrently,
and messages could be passed asynchronously via appropriate channels. That extreme
implementation may be technically achievable at the present time, but appears never to
have been chosen for a major application. The other extreme is to use a single
processor and use it to run each of the processes in turn according to some stipulated
schedule. Often the schedule is such that processes are waiting to read an input
message. When one is supplied to a process it is executed until it reaches another read
whereupon it suspends. It may, of course, be only partially through its thread of
execution, and having suspended there must restart from that same position. Processes
are usually implemented as procedures or subroutines and no current procedural
language allows a convenient suspension and restart (although that is precisely what an
operating system does). The device used to allow suspension and restart is called
inversion [16] and, if necessary, preprocessors may be used on normal procedural code
to implement it in a way invisible to a programmer. Interrupts can also be employed to
execute processes according to an established priority.

24

A simple example of implementation will be discussed for Figure 2.9(a). The
SVI operations are not important to the System Implementation Diagram (SID), and the
first stage is to identify the input data streams, here labelled a,b,c and d . These data
streams are then gathered up and the network allowed to ’hang5 as shown in Figure
2.9(b). A scheduler process is introduced in place of the input data streams and the
result is Figure 2.10(a). Messages from a,b,c and d are received by the scheduler and
passed on to the appropriate processes A, B and C respectively via procedure calls. In
turn, A and B pass the messages to D on data streams e and f respectively, also by
procedure calls. This is a simple way of converting a network into a SID. It was used
by Bradley for a programmable control input device [26]. The technique described
above maps the SND into a hierarchy of procedures, but it should be noted that the
hierarchy is not a tree. Another option is shown in Figure 2.10(b) where the inversion
has been taken a stage further. In this scheme the messages to D from A and B are
also handled by the scheduler, and the result is a simple, uniform structure to the SID at
the expense of a more complicated scheduler. The ACT Lynx simulation described in
Chapter 7 was implemented in a manner similar to this latter SID.

2.6 CONCLUSIONS
The foregoing sections of this chapter have contained a very brief summary of

the main elements of JSD. The vocabulary and notation of the method have been
introduced in the way that they will be used in the Chapters to follow. The use of the
process and network diagrams have been explained in order to emphasise the level of
detail and precision that is required of a JSD specification. The importance of static
entities in real -time applications, and in particular the ACT Lynx, has been underlined.
It should be bome in mind when reading this work and the referenced material, that
JSD is a method which develops and continues to develop in a commercial
environment. As a consequence the most recent changes to the jargon and philosophy
may not be widely available. Often such changes do not affect the basic tenets of the
approach, however it is likely in the near future that the method will be cast in an object
oriented mould rather than one which is process oriented. Such an approach may
appear, superficially, to be quite significantly different but it would not invalidate the
essentials of modelling, network and implementation, and the methods described in
subsequent chapters for handling complex systems would continue to apply.

25

CHAPTER 3

EARLY DESIGN STUDIES

Summary
This chapter is concerned with the collation of all of the information contained

in the various feasibility studies and related work into an annotated diagram. JSD
techniques were to be used and the resulting system diagram was planned to be the
basis of the detailed specification prepared by the contracted design team. Difficulties
associated with the use of JSD are described, and the options for making use of the
network diagram are discussed

3.1 PURPOSE OF A SYSTEM DIAGRAM
The practicalities of modifying the RAE research Lynx into an ACT flight-test

vehicle were examined in some detail [8] and several reports had been assembled
concerning the probable form of the pilot interface, and the architecture of certain parts
of the system. The task of the first design exercise was to take this accumulated material
and to create a complete plan of the whole design. The purpose of this complete plan
was two-fold. First it would enable RAE better to manage the development of the
specification by having a clear view of the whole system, and secondly, it would
enable different groups to work on the specification of different parts of the system in
the confidence that the parts would ultimately combine to form a harmonious whole.
The use of JSD would ensure that even at a detailed level there would be consistency
between separately developed elements of the system because the interfaces between
them would be defined precisely.

3.2 DIFFICULTIES WITH JSD
Direct application of the JSD method involves modelling the relevant parts of

the outside world in order to obtain the inputs into a system. The outputs are then
derived from the model processes via function processes, which may need information
from intermediate processes of varying complexity. For the ACT system, the relevant
world outside the system was reasonably well defined. The experimental pilot is ’seen*
by the system through the movement of his inceptors, the setting of switches and the
pressing of buttons. They constitute in JSD terms different roles of the pilot. Similarly
the safety pilot has inceptors, switches and buttons which capture his actions for the
system. The other main entity, which can easily be overlooked, is the helicopter itself.
The manner in which it interacts with the system is that its kinematics may be used by

26

the control laws and so the attitude angles, rates etc. need to be captured for their use.
This sampling activity is a classic ’data’ or static entity formulation. Later, other
features needed modelling such as the rotor brake, and rotor speed but they are
essentially of the same nature and together form a ’helicopter’ model for the system.

The outputs are no more difficult to identify. The principal output is the set of
four PFCU actuator displacements to give the pitch of the rotor blades. The four
control axes are, of course, collective, longitudinal and lateral cyclic, and tail rotor
collective. In addition are the various displays associated with flight tests: head up
(HUD), head down (HDD), and helmet. There are also some lamp displays on the
ACT control panel which need to be serviced.

The difficulties start with the next stage. How can one derive the outputs from
the given inputs, and so define the intermediate processes? Starting from a precise
definition of the outputs required in terms of available inputs it should be possible to
define the intermediate processes and their internal structure - after all that is what a
feasibility study had shown. It is not guaranteed, of course, but even assuming that it is
possible the result of the exercise would be the very specification that is the object of
the exercise. Therefore one needs to do all the work before one starts (one may note
that this situation is not uncommon when using Jackson techniques. Even when
dealing with specifying a single piece of software to be contracted out, a JSP
specification virtually requires it to be written in advance). Alternatively one might
approach the difficulty by trying to establish the kind of network of processes likely to
be suitable for the kind of outputs likely to be specified. This latter approach is not JSD
of course, but if one sets the dogma aside for a moment, the situation is that it is known
what components and sub-systems are likely to comprise the final system, and many of
the interactions between them can be anticipated. Therefore based on this knowledge,
Figures 3.1-3.3 were compiled from the available technical notes and reports. Together
they were the first representation of total ACT System available for development. Each
box on the diagram denotes the processing or transforming of information in some
way. A table giving fuller names for the processes is provided in Figure 3.4-3.5.

The first observation that can be made about Figures 3.1-3.3 is that it is not
JSD. The communications are shown simply by directed lines, they are neither data
streams nor state vector inspections. The reason for this is that at the time the diagram
was prepared it was not understood how to interpret data streams and SVIs in a
situation where some processes are analogue, such as the Air Data Unit, and some are
mechanical, such as the clutch. A method of resolving this problem is described in

27

Chapter 5. Advice at the time was that data streams should be used for any causal
signal, but this interpretation is not helpful in this application. Also since the boxes do
not have their internals specified there is no guarantee that they will be single thread in
the final system, therefore one must accept that each box may be a small network of
single thread processes - a top down approach which is an anathema to JSD orthodoxy.

The processes are labelled <letter> <letter> <number>, where the first letter
D,A,M or H denote digital, analogue, mechanical or human respectively to denote the
’type’ of the process. The designation of type is useful since it helps identify where
interfaces are needed and conveys some of the implications for implementing the
system as regards power supplies etc. However, it was the original intention that the
specification should remain flexible and implementers should have the freedom to opt
for either, say, digital or analogue components depending on their expertise. It proved
difficult to retain such generality when producing a detailed specification and the
decision was taken to stipulate the likely type of a process and give a blanket
concession allowing alternative implementations which had equivalent functionality.

Interfaces are shown as processes in Figures 3.1-3.3 although, since they
merely change the representation of information rather than modify it, there is a case for
omitting them, and simplifying the diagram.

The mechanical control runs connect the safety pilot’s inceptors to the PFCUs,
but are moved by the parallel actuator when the clutch is engaged and then back drive
the inceptors. This is a little complicated to handle in diagram notation since several
arrows can change direction due to the system state. It can set a puzzle for a JSD
representation, (and caused no little discussion) but is handled comfortably by the
general principles outlined in Chapter 5.

3.3 LESSONS FROM THE NETWORK
The network diagram serves the purpose of showing clearly what the system is

about. The general functioning of the system should be clear to a project manager, a
systems engineer, a software engineer, and even a pilot. Generally, the inputs are
shown on the left and the outputs on the right. There are several threads of activity. The
experimental pilot (HE1) moves his inceptors (DE2), the movement is transmitted to the
control laws (DP3) where sensor information (DEI) is also available. The demands
produced by the control laws are split (DP6) into high and low frequency information
(DP7,DP8) and the replicated signals are consolidated (DP32,DP33). The high and low

28

frequency information produce series actuator and parallel actuator demands (DF9,
DF10) respectively. The parallel actuator (MP10) moves the control run (MP15),
provided the clutch (MP11) is engaged, to inject demands into the PFC (MF12) which
also receives signals from the series actuator. At the same time the control run back
drives the safety pilot inceptors (AE17). When the clutch is not engaged, the safety
pilot (HE2) flies the Lynx via his inceptors (AE17) and the control run (MP15). The
engagement of the clutch (DF20) is controlled by a button operated by the experimental
pilot (DE2) and a requirement that there is synchronisation (DP 17) between the control
run position and the parallel actuator displacement. There is also an opportunity for the
safety pilot to force ’break-out’ via a switch on the control run. This is conveyed by
connection ’C’. Both the series and parallel actuators are modelled (DPI 1, DP 14) so
that any failure of the actuator can force a compensating reconfiguration (DP22). The
displays HDD, HUD, and Helmet (AF28,AF29 and AF30) receive the majority of their
information from the sensors (DEI). Finally, the control and engagement of the ACT
system (DE4) is indicated by the panel lights (DF21).

It is also clear from the diagram that although published notes indicate BITE
(built in test equipment), initialisation and reset processes (DP5, DP28, DP30)
corresponding to buttons on a draft of the control panel layout, their interaction with the
rest of the system is minimally defined. The BITE is a test or check-out of the whole
system prior to engagement, or take off. ’Initialisation’ ensures that all of the
monitoring and failure reporting is initialised in the correct sequence. ’Reset’ takes the
system back to its normal functioning after a monitored fault has caused a
reconfiguration. These activities are potentially as complicated as any in the system yet
no detailed information is available.

A possibly disturbing feature of the diagram is the appearance of multiple
occurrences of the same object. For example, we have DF10 Parallel Actuator
Demand, AP9 Parallel Actuator Demand Interface, MP10 Parallel Actuator, AF13
Parallel Actuator Interface, DEI6 Parallel Actuator, and even DP 14 Parallel Actuator
Model. The placing of the interfaces suggests why this occurs. DEI 6 is a model in
software of the ’real’ parallel actuator MP10, serviced by the data emanating from the
interface AF13. It will be shown in Chapter 5 that even when the interfaces are absent it
is crucial to retain a similar pattern of multiple representations of the same object when
applying JSD to complex systems.

29

3.4 DEVELOPMENTS
The compilation of the network shown in Figures 3.1-3.3 is a summary of the

components, processing and communications within the ACT system. For the
progress of the specification it was necessary to establish whether it was a good
foundation on which to build future work, and if so in which direction should it be
developed, bearing in mind that it was not clear how to weave into this activity a closer
relationship with ’correct’ JSD. The options for immediate action were in essence:

(a) Apply JSD to those areas where it can be applied directly such as the inceptors,
switches and control panel, and simultaneously within the design team work at
the specification of the control panel functions such as BITE and Reset, and at
the general philosophy of applying JSD to complex systems. This approach
was argued by the author [28].

(b) Elaborate each of the functional boxes with a formal (mathematical) statement of the
processing to occur in the box, implementing a kind of successive refinement.

(c) Do no further work on the network representation but use it for preparing a
detailed specification in a traditional, text dominated, format using numbered
paragraphs.

In fact, course (c) was chosen as the main thrust of activity, mainly because of the lack
of familiarity with JSD within the design team. Eventually, in the second phase of the
evolution of the specification, when JSD was readopted this detailed text was a
valuable source of information. It worth noting that course (b) would produce
descriptions which could contribute to either (a) or (c) and is an exercise which would
have to be done eventually when JSD was applied fully over the whole network.

Course (a) was pursued individually by the author and the results of the continuation of
the JSD approach are described in the present work.

3.5 AFTERMATH
The creation of the network shown in Figures 3.1-3.3 proved valuable both in

directing future studies and as a vehicle for communicating discussion. A second,
revised, version responding to suggestions for modifications, was prepared with
separate networks for the different types of process - digital, analogue, mechanical and
human. The network was described using a database approach where each process is

30

described in a record, as shown in Figure 3.6 . One important element of the record is
a list of the input and output connections together with a statement of the data flowing
along the connection. Tliis example is taken from the control panel roles of the pilot
model. JSD is applicable in a straightforward manner and the process shown would be
part of the input subsystem. The inputs and outputs can be classified relatively simply:
the inputs are the SVIs of the state - open or closed - of the RESET, MODE-SELECT,
BITE and INIT buttons. The outputs are the press/release messages which are
interpreted from the button states and sent to the appropriate control process. A
network fragment of the process is also incorporated in the record. An explicit
statement of the multiplicity of the process occurs for the first time. Although simple,
such a database is capable of elaboration to form a powerful tool. For example, if the
process is of the single thread type then one field of the database can be used to point to
some representation of the processing - such as a structure diagram. If the process is
composed of several other processes then fields can points to those. If appropriate
software is written then the database can be used to draw the network. There is nothing
new in these ideas; many CASE tools provide such facilities. The package marketed for
Jackson design techniques is Speedbuilder [37], which is currently being replaced by
Jackson Workbench [38], but there are numerous others which provide similar facilities
for maintaining a database of network information. (Jackson CASE tools also provide
the ability to generate code from the process information.) Rather than invest time in
developing the record format shown in Figure 3.6, Speedbuilder was ultimately used
for the JSD work. The network fragments from each record were subsequently
combined to produce version 2 of the system network diagram. Interestingly, this was
the last time that a diagram of the whole system was compiled.

3.6 CONCLUSIONS
The early design studies, described in this chapter, impinged upon several

important principles, whose value was only appreciated with hindsight, and which have
general applicability to complex systems.

(a) A network diagram representing the whole system is a valuable document for
focussing further development. This is true even if there are substantial areas of
uncertainty within the network.

(b) A top-down approach, separating the system into its physical components is an
appropriate way to begin to apply JSD to a complex system. (See Chapter 5).

(c) CASE tools can be applied at an early stage.

31

These are lessons to be carried forward to any comparable design and specification
study.

32

CHAPTER 4

CONTROL OF THE ACT SYSTEM: THE SUPERVISOR

Summary
One area which, from the beginning, was subject to intense scrutiny was the

need for the automatic control or overall supervision of the pilot interaction with the
ACT Lynx system, so that the pilot would be prevented from taking actions which were
invalid in the prevailing context. This chapter describes the type of actions which are
relevant to this discussion, and considers a number of options which were explored for
overall control. In the main these options were rejected for reasons which have general
applicability and so the chapter concludes with a set of recommendations for systems
which have a human interface of significant complexity.

4.1 CONTROL ACTIONS
Clearly, the controlling sequence for the engagement of the ACT system is a

critical area where it is essential to get the specification and implementation absolutely
correct. For example, engagement can only take place when there been a matching of
the position of the ACT parallel actuator with the displacement of the conventional
control runs. Other control activities may depend on the engagement state: for example,
control law and parameter set selection cannot take place when the state is engaged, but
control mode selection and disturbance injection can. System test can be initiated after
power up and from the standby state, but the system test cannot be initiated when the
rotor brake is off or the rotor is turning - and should terminate if these conditions occur
during system test. The following is a list of the operations, in addition to system
engagement, that have an interface with the pilot and are candidates for control by a
global controller or supervisor process.

(a) Control law selection.
(b) Parameter set selection.
(c) Disturbance selection.
(d) Disturbance injection.
(e) Control mode selection.
(e) System test.

33

Once a decision has been made about which aspects of pilot interaction are to be
subject to supervisory process, further decisions must be made about (i) how to specify
it, and (ii) how to implement it. Both are considered below.

4.2 SPECIFICATION OF A SUPERVISOR.

4.2.1 Flow chart.
An example of an early model of pilot activity is shown as the flow chart in

Figure 4.1, where the System Test, initiated by the pilot, if successful, is followed by a
repetition of the arm, engage, disengage sequence of actions. While useful for
conveying the general idea of the pilot’s interaction in this area, it was not sufficiently
precise to base software directly upon. For example, it is possible in the specification,
to return to Standby through a disengage action without an engagement of the system.
This path is not shown in the flow chart; neither is the opportunity to repeat the System
Test from Standby. It is perfectly conceivable that code could be generated
automatically from a suitably annotated flow chart, but the author is unaware of any
such commercial product. Figure 4.1 therefore may be rejected because of the lack of
CASE support and because the description is inadequate for the application.

4.2.2 Finite State Machine
To express the requirements in a precise manner finite state machines (FSM)

were mooted and proved a very useful approach. It was observed that information
expressed in FSM form was very accessible to both specialists and non-specialists, so
that it is is attractive in applications such as the ACT Lynx project where personnel
from different backgrounds are involved. The FSM shown in Figure 4.2 included the
additional transitions to Standby omitted from the flowchart, but suffered from a shared
disadvantage that the system test, itself, can include arm, engage, disengage sequences.
However, FSMs have the advantage that they are readily transformed into software.
To specify a FSM, a response to any possible message must be defined for each state.
The response should consist of the transition (the next state) and the message to be
output. The definition is easily processed either directly into code or indeed into a JSP
tree diagram. The problems experienced with this approach were twofold. First,
incorporating all of the possible states and transitions afforded by the pilot resulted in a
very complex FSM; it was difficult to interpret and militated against a correct
implementation. One can observe this in Figure 4.3 [39] which was a first attempt to
provide a complete FSM for the the control of the ACT system. Since any FSM can be
represented by a JSP structure diagram, it is clear that the structure diagram
corresponding to Figure 4.3 would, in essence, be the Pilot model required for JSD.

34

This course was pursued to completeness by Bradley [40] and is reported briefly in
Appendix 2. The second source of difficulty is that, as conventionally defined,
transitions cannot be conditional on other information within the system and so their
applicability is limited. The effect of this limitation can be seen in Figure 4.3 where, in
order to prevent system test being initiated when the rotor brake is off, an explicit
’brake-off message has to be incorporated. It would be preferable to merely ignore a
system test message in those circumstances. In practice, it would be possible to
enhance the FSM to include preconditions or even attach a filter for incoming
messages. Nevertheless, for a monolithic supervisor process, the FSM was considered
to have reached a size where it was too complex to be useful since its specification and
maintenance would be prone to error.

4.3 SUPERVISOR IMPLEMENTATION
During the deliberations about the specification of the supervisor concern was

beginning to surface about the implementation of a monolithic supervisor. It had
developed into a complex process which had no natural location in the system as
envisaged. Consequently, the possibility of making it a separate hardware item was
mooted although viewed with apprehension.

4.4 JSD AND THE DEMISE OF THE SUPERVISOR
The discussions above relate to Versions 1 and 2 of the ACT specification.

Once work started on Version 3 [41] then the modelling of the system using JSD
principles naturally led to a different evolution of the specification. The different
interfaces which are manipulated by the pilot each represents one of his roles.
Therefore each role carries its own model process and tree diagram, for example
Figures 2.1 and 2.3. The control of the ACT System is based on these model
processes, so that the control is distributed rather than monolithic. Any conditions
associated with an actions are incorporated by appropriate interlocks or common
context filters using information from state vector inspections. It is now possible to
relate this approach to earlier work. First, the complexity has been reduced by
distributing the functionality among several processes. Second, there is the opportunity
to generate code via the usual JSD/TSP method. Finally, and crucially in this context, it
is clear that the specification must be done this way for optimum integrity. For
example, the section of code exercised in the control of engagement and disengagement
during system test is precisely that code which will be used in flight. For a monolithic,
single-threaded, supervisor this is not necessarily the case (see Appendix 2). The same
applies to the code for the other model processes, so the distributed approach
encouraged by the ’roles’ of the JSD method leads naturally to a desirable specification.

35

It should be noted that once the ’role’ approach has been accepted then there is the
opportunity to use FSMs within that role (bearing in mind its limitations expressed
earlier). In fact, although not presented here, this was done as part of the preliminary
studies for Version 3. The considerations discussed above led to the disappearance of
the supervisor issue once the need for the independent integrity of each role was
appreciated as an important factor.

4.5 CONCLUSIONS
As a result of the experiences associated with the specification of the ACT Lynx

control processes the following recommendations can be made systems with a complex
interface:

(a) Monolithic ’supervisors’ should only be used when it can be implemented simple
process.

(b) Control can be distributed among several process without compromising the
integrity of the specification.

(c) It is essential to separate out test-processes, so that the remaining processes are
subject to testing in as near to authentic conditions as possible.

Having such a set of recommendations to hand at an early stage of the Lynx study
would have prevented much sterile discussion.

36

CHAPTER 5

JSD FOR A COMPLEX SYSTEM.

Summary
This chapter introduces a procedure for interpreting the elements of a complex

system in such a way that their functioning can be represented by JSD notation. Initially
the ideas are described in relation to analogue components of a flight control system and
then extended to more general systems including mechanical and hydraulic. The main
principle behind the application of JSD to such systems is quite straightforward,
possibly deceptively so, consequently the underlying disciplines are emphasised.
Examples of the approach are taken from the ACT Lynx system.

5.1 JSD FOR FLIGHT CONTROL SYSTEMS
The Jackson method for structured programming, JSP, has its origins in

commercial data-processing. The sequential processing of one or more files to
produce other sequential files or sequential outputs is a traditional data processing
application which is well served by the techniques of JSP. Surprisingly, the same
approach to the sequential processing of actions, messages or events gave the key to
the successful development of commercial ‘real-time’ systems such as library systems -
a standard case study in a JSD course - and reservation systems. JSD has not achieved
the same success in time critical applications such as flight control. There are several
factors which explain the lack of penetration of JSD techniques in this area.

One factor is that much of the processing is algorithmic and inappropriate to
JSD analysis. For a flight control engineer the algorithmic aspects - their precision and
their accuracy - dominate his attention. Yet despite this antipathy there are good reasons
for at the very least wanting to use JSD notation in the design of flight control software.
The first is that the algorithmic part is almost certainly embedded in a system which has
a significant element of system-control software involving interaction with the pilot.
This system-control software is ideally suited to the JSD treatment, and therefore for
consistency there is a strong motivation for employing JSD for the whole. If this is
done then documentation is treated in a unified way and the same CASE tool can be
used for design and automatic code generation. A second reason is that the JSD
network stage is a representation of the design which can be used to implement the
system on multiple processors so if a multi-processor implementation is envisaged,
there is a natural advantage from using JSD techniques.

37

A second factor is that, traditionally, control systems have been designed as a
network of transfer function blocks of the kind shown in Figure 5.1. This
representation has a direct implementation in analogue components, as indicated in
Figure 5.2. The design representation shown in Figures 5.1 and 5.2 has been the
traditional approach of control engineers. It is appreciated that, more recently, design
procedures based on discrete formulations more appropriate to digital implementations
are becoming accepted, but that is not the issue here - this discussion concerns the
application of JSD to an area apparently unsuited to it. Cameron [42] formulates a
novel approach based on the JSD analysis of ‘events’ and communicating sequential
processes [43]. The view taken is that an event is the arrival of a data value (i) at the
input of Figure 5.1, (ii) at each of the transfer function boxes, and (iii) ultimately at the
output of the system. The arrival of an event at a box ‘fires’ appropriate processing
activity, and the modified data from the process is dispatched to ‘fire’ the next box in
the network. Further, there are synchronising events where paths in the network join.
It is interesting that the approach taken is akin to the ‘actions’ used in JSD modelling
and is a refinement of it for the particular context. Recalling the comments made in
Chapter 2 about actions not always being the correct modelling response to a situation,
it is instructive to examine this application from a less sophisticated modelling
viewpoint.

5.1.1 Component Simulation.
The standard way of providing a digital implementation of systems such as

Figure 5.1 would be to express the transfer functions in differential form and formulate
the whole system as a set of differential and algebraic equations to which a standard
solution technique would be applied. The result would be a single process hosting a
complicated algorithm. Set this approach aside for the moment and, in addition, ignore
any indeterminacies caused by cross connections or non-linearities in the network.
Such features need to be addressed whatever the implementation approach. Consider
instead the analogue circuit of Figure 5.2, and ask the question whether its behaviour is
caused by the inputs arriving on the left hand side. Causality is fundamental to the
event-driven interpretation of JSD modelling, and an examination of causality was
suggested as possible way forward for developing JSD for the ACT Lynx
specification. Tracing causality in a large system, which can involve a significant
element of feedback can be difficult and unproductive task. An alternative approach
is not to look for directly causality at all, and merely view each analogue component as
evolving in time subject to the constraints imposed by the network. In other words the
causation is time and the circuits impose constraints on the data in the system. This

38

view is easily simulated and the network simply expressed in JSD form, as in Figure
5.3. Each component is an independent process which implements a discrete algorithm
which corresponds to the transfer function or gain of the component. Each process is
as simple as the original component from which it originated. Note the essential
features of this mapping. Each process is driven only by time since the only data
stream input to it is a time grain marker. The communications with other components
are by state vector inspection. Therefore each process is essentially polling other
processes in the system to obtain the data to update its own. The processes have the
same concurrency as the original analogue system. The only question to resolve, as in
any digital version of a continuous system, is to minimise the truncation error to an
acceptable value. In the spirit of the component simulation described above, the
truncation error can be reduced by a sufficiently frequent clocking of the time grain
marker. For an application such as a flight control system an increase in the clocking
rate to satisfy the requirements for truncation error may not be not be attractive but in
principle it can be done. It is this concept of component simulation with independant
evolution in time which is carried forward to the general situation. Before the general
situation is considered, an example of a component simulation is discussed in some
detail to emphasise how a desire to economise on clock rate leads to a tighter coupling
between components of the systems and eventually to event driven, data-stream
communications.

5.1.2 Example of Component Simulation
In order to demonstrate the concepts associated with component simulation the

simple lag component of Figure 5.4 is considered. The figure shows (a) the transfer
function, (b) the analogue equivalent, and (c) the equivalent JSD component
simulation. The single process has only one input data stream, and that is a regular time
grain marker (tgm) which prompts a frame of calculation of the process. The structure
diagram of the process is the familiar polling iteration with only three operations: (1)
Read the tgm tick, (2) Get the most recent value for x from the upstream process and
(3) perform one step of an algorithm designed to represent a simple lag and make the
output y available for downstream processes. Consider a suitable algorithm for the lag.
For simplicity, low order methods are discussed without any loss of generality. In any
event, it is often the case that the discontinuities in the system make high order
schemes inappropriate.

From:
a _ y

s+b x

39

the differential form is:

dy u
dt by=ax

which may be discretised as:

Vn+̂ Yn + Kayn+1 + (l-a)yn) = ax* (5.1)
or

where a is a constant, 0 <= a <= 1, and n is an index of frame time, so that rn = n5r,
and yn approximates y{Tn) etc.
The LHS is a second order trapezoidal form for a = 1/2, but the position in time of the
term on the RHS is not specified. Since the value of x*is the latest available from a
state vector inspection the whole method cannot be guaranteed to be more than first
order, as can be seen from the rearrangement:

(l-(l-a)fc6r) , 5r ax* ^
yn+l = ---------------yn + • (5.2)
n 1 (1+aflBr) (l+a66r)

One possible way of maintaining the consistency of the scheme and improving
the order is for the process A which makes x* available is to additionally keep the
associated value of time, that is the process maintains a set of the pairs (Ajn,Tm) for
appropriate values of m. If m=n and m=n+1 are available then the use of

aAn+l + (l-oO^h = x *

in Eqn. 5.1 above will match the truncation error of the LHS. If the process has not yet
generated the n+ 1th value, then an alternative discretisation can be employed. For
example if the n th and n- 1th values are available and a= 1/2 for a second order
integration method, the order is retained by the form

(3/2) Xn - (l/2)xn_i = x*.

The method can be adapted, in principle, to suit dynamically whatever
information is available from process A, and the order of method required. The result
is that the need for both precision and economy has resulted in a transfer of additional
information which has tightened the coupling between the processes.

40

The coupling is further tightened by eliminating the need to allow for a variation
in the time attribute of the available values; if % and are always available then the

update calculation Eqn 5.2 always has the same form and variations need not be
considered. The processing required is thus minimised at the expense of a further
tightening of the coupling between processes. One way of guaranteeing that the same
values are always available to update process T is to send them as a message in a data
stream as shown in Figure 5.5. This also guarantees their processing by process T and
eliminates the time grain marker so that process T is driven by process A. Process A is
driven by its time grain marker or an equivalent driving process.

To summarise, the use of component simulations of the kind shown in Figures
5.3 and 5.4, where the processes are driven independently by time and have loose
interconnections, is a justifiable modelling method which captures the essence of the
analogue systems being simulated. It is common, in a practical exercise, to couple the
processes of the simulation together in a tighter manner in order to achieve benefits in
terms of performance and economy. When faced with problems in the application of
JSD to new area there turn out to be advantages in regressing to the simplicity of the
loose coupling.

5.2 SPECIFICATION OF COMPLEX SYSTEMS BY COMPOSITE SIMULATION.
The question posed at the beginning of this work was whether it is possible to

use software engineering techniques to specify complex systems, which, we recall,
may include non-software elements such as hydraulic actuators, mechanical levers and
gears, and analogue implementations of transfer functions. If the answer is in the
affirmative then there is a secondary question about the technicalities of using JSD in
this context. Since the stimulus for this work was the initial failure to make progress
on the specification of the ACT Lynx it is possible that at the time there was to much
concern with the intricacies of JSD and too little consideration of the general problem of
describing non-software systems through software methods. Firstly, it is important to
realise that the specification is concerned with functional matters - the relevant activities
of the system rather than the non-functional properties such as size and weight. One
may then pose the question whether would be possible to create a computer simulation
of the functional behaviour of the system being considered. Invariably, in the
circumstances of a real situation, the reply will be in the affirmative, so that we may
assume the existence of a piece of code that simulates, in a relevant manner, the subject
system. Now any piece of code in a procedural language may be described in terms of a
software specification and, in particular, in JSD notation. The mapping may not be
one-to-one but, no matter, the existence of a specification has been demonstrated, albeit

41

informally. The answer, therefore, to the original question is that one can indeed
specify non-software systems and that one should do it by specifying an equivalent
simulation. That such a specification exists has not been proved but has been given
plausibility by the discussion above. The demonstration of existence, of course, is not
sufficient although it is encouraging; it leads to the more specific question about how to
build a simulation of a non-software system, and it is at this point that JSD, and its
notation, have a contribution to make. The basic ideas are those expressed in 5.1 above
extended to a wider range of systems. Bradley [44] summarised the approach to be
taken when creating simulations of this kind. For convenience they are called
composite simulations There are certain rules to be followed which expedite the
formulation of composite simulations and these are discussed in the following section
in relation to JSD. A final, and important, point to be made at this juncture is that once
such a specification is available then it is readily implemented to form an executable
simulation of the specification. Such an approach to specification is being proposed for
software systems [29] but it is believed that the extension to complex systems is being
addressed here for the first time in the current work. It is also worth noting, as
mentioned in the introduction, that it was recognised very early in the project [28] that a
side effect of using JSD would be a working, living, version of the specification. The
term living is used in Reference 2 to describe a specification which has been developed
in the manner described in this work. From a properly structured, text specification of a
system, a corresponding JSD design is produced, from which code can be generated.
When compiled into an executable form it can be run and used as an interactive form of
the specification - and indeed is part of the specification itself. In such a way the
sequence of four steps - text, JSD, code, and finally a working simulation - makes the
specification live. Another view of the word livingis that a disciplined implementation
of the sequence of steps allows the specification to evolve in response to changing
requirements with a corresponding simulation being generated as a matter of course.
Naturally, the validity of the approach depends on the integrity of each of the four
steps. It is possible to automate the steps from JSD design to simulation and thus
eliminate any ambiguity. For the ACT Lynx system the production of a simulation is
described in Chapter 7. The earlier steps: text and JSD at the present time are not
automated and require the adoption of a disciplined procedure to maintain integrity.
Chapter 6 describes how this was successfully achieved for the ACT Lynx system. It
is important to distinguish between the well defined mapping of text into simulation via
the steps described above and what is usually termed prototyping. Prototyping has
gained a reputation as high level ‘hacking’ of code to obtain an acceptable system. With
a living specification, changes start at the specification level so that the integrity of the
whole is maintained.

42

Having indicated the existence of a JSD specification for a complex system, and
its role in providing an interactive manifestation of a written, text specification, the
following section is concerned with the constmction of a JSD specification. That is, a
statement of how to create a JSD specification for a complex system.

5.3 COMPOSITE SIMULATION USING JSD
The method of constructing a composite simulation follows the development

described in Reference 44. The principle is simple and this simplicity gives it two
important attributes. First, it is clear how to start, and second, it is very adaptable in its
application - even to the extent that a fresh start is readily made when it is clear that an
alternative approach would have been preferable. The total system which will be
considered - the complex system - is considered to be a representative modem
aerospace system with a significant software based digital component. This forms part
of total system which may contain mechanical, hydraulic or electrical components, for
example. The section above has indicated that the non-digital elements are to be
simulated, therefore the whole simulation is a composite arrangement comprising
several connected simulations, and a software component which may be considered a
prototype of the software for the real system - and in some circumstances could even
be used in the real system. It is convenient to denote a digital component of the whole
an internal system and any other component an external system. The method starts by
selecting a decomposition of the total system.

5.3.1 Decomposition
The total system is decomposed into internal and external systems in a

commonsense manner - that is, based on its hardware characteristics. For example, in
the ACT Lynx system one might identify the parallel actuator - a hydraulic component -
as an external system and the Flight Control Computer (FCC) as an internal system.
The initial decomposition is top-down in the sense that there is a partitioning of the
whole without detailed attention to its functionality. However, by decomposing the
system according to its type one would expect some natural cohesiveness to result.
Further decompositions may be subsequently dictated by the particular application; in
Chapter 6 a decomposition of the FCC is specified in order to make the control law part
readily replaceable, which again emphasises the role of the hardware in determining the
decomposition. The decomposition step is not difficult since it is done in terms of the
hardware architecture and this would be familiar to an engineer.

43

5.3.2 Specification
After decomposition comes the specification step. Each of the external and

internal systems is specified using JSD. For the internal systems this is a normal
specification exercise since they are known to be digital. The external systems must be
specified as a simulation of the real external system. Therefore each of the external and
internal systems is specified as a JSD network. It is convenient and very relevant to the
development of the treatment of complex systems to give a network produced in this
way a special name, therefore the term JSD unit is introduced for this purpose. The
process is shown schematically in Figure 5.6 where a total system composed of a
digital part embedded in external hardware is mapped into a JSD unit representation to
form a network of communicating units. For convenience in subsequent discussions,
the qualifiers internal and external are used to describe units derived from internal and
external systems respectively. In keeping with the principles of component simulation
outlined above there are restrictions on the unit network:

(a) All units may only communicate with other units by State Vector
Inspection.

(b) All units have only one data stream input and that is a time-grain-marker.

Figure 5.7 shows a network of this type. The specification of the internals of a unit is a
detailed task which is highly dependent on the particular application. For the ACT Lynx
system, Chapters 6 and 7 deal with this aspect, but there are important modelling
principles to maintain and these are now considered.

5.3.3 Inter-unit Connections
Of particular concern is the connection between units which form the boundary

of the internal and external systems. JSD modelling principles dictate that within the
internal unit there should be a model of the external system using data from the
corresponding external unit. In addition there may be a function process in the internal
unit to provide data for the external unit. Therefore the configuration shown in Figure
5.8 may be expected to be generic. An example taken from the ACT Lynx system will
make this point clear. Suppose a digital actuator drive and monitoring unit (ADMU) is
connected to an actuator unit, then one would expect one function of the ADMU would
be to supply the demand (or drive) signals to the actuator. In addition, the ADMU must
contain a model of the actuator if it is to detect disengagement. In fact, one must expect
units to ''ontain appropriate models of their neighbours and for them to have functions
to provide neighbouring units with data. Therefore, referring back to Chapter 3, the

44

occurrence of the same name in several boxes in the preliminary system diagram,
Figures 3.1-3.3, is not only acceptable - it is essential.

Another important principle is that models should only use data that is available
in the real system. Again the ACT Lynx system provides an illustrative example: if the
generation of the drive signal for an actuator requires the position of the actuator as
feedback information, then in the real system this information is not directly available
and a position pick-off would be provided. It is important that the pick-off is used in
the model and if there are a number of redundant lanes driving the actuator then each
lane should have and independent pick-off signal if this is the case with the real system.
Related to the principle above, is the further principle that external systems should not
be over-modelled. For example, suppose one of the external systems is a simple
control panel connected to an internal system which interprets the button state and
powers the lamps. Then the corresponding external unit should merely offer open /
closed information about the buttons to the internal unit and illuminate lamps in
response to the signals received. There should be no modelling of button-press actions
or pilot entities in the external unit.

5.4 CONCLUSIONS
The principles of specifying complex systems through the specification of an

associated composite simulation using a network of JSD units have been set out above.
The principles are deliberately simple in order to make the ideas accessible to a wide
range of engineers. It is also believed that simple principles are needed to deal with
complex systems, and the method outlined adds very little overhead to JSD as taught -
in fact it simplifies certain of the modelling issues. Chapters 6 and 7 describe the
application of the method to the ACT Lynx system, which is believed to be sufficiently
complex as to provide a stringent test of the method. It will be seen that bonuses accrue
from the use of the method since the fault tolerant architecture of the system is not only
accommodated by the method but is able to influence the decomposition process.

It is appropriate to conclude this chapter by recalling an earlier difficulty
encountered in the ACT Lynx specification and showing how the method described in
this chapter deals with it. In Chapter 3 the puzzle of the causality of the control run was
described. When the system is engaged, the control runs are moved by the parallel
actuators and the safety pilot’s inceptors are backdriven. When the system is
disengaged, the control runs are moved by the safety pilot’s inceptors and the parallel
actuators follow this movement. Addressing the causality by the use of JSD data
streams proved difficult and unhelpfully complicated, but the situation is greatly

45

simplified if the control runs are mapped into an external unit. At each tick of the unit’s
time-grain-marker, using data from neighbouring units, the control runs’ positions are
set to those of the parallel actuators if the system is engaged, otherwise they are set to
the positions of the safety pilot’s inceptors. Moreover, the dynamics of the control
runs are easily incorporated if more sophisticated modelling is required.

46

CHAPTER 6

SPECIFICATION STRUCTURE

Summary
This chapter describes the structure of Version 3 of the ACT Lynx

specification. It is put forward as a prototype of the kind of specification which would
blend well with the principles for the application of JSD as described in Chapter 5.
First, there is a decomposition into major components; the components correspond to
the JSD Units introduced in Chapter 5. Each component is then described under a
number of prescribed headings, and the influence of JSD at this stage is examined in
detail. The chapter concludes with a critical review of the achievements of such a
specification.

6.1 INITIAL DECOMPOSITION.
The specification structure describes the system in terms of its major functional

elements. This decomposition was the only one that was imposed on the system a priori
and reflects a separation based on major hardware components. Such a subdivision is
in keeping with the principles of Chapter 5, but does not preclude further subdivisions
should they evolve from the design and specification process. The outcome is shown in
Figure 6.1, where the square and rectangular components are those relevant to the
specification exercise. The bold rectangles are referred to as processing elements
embodied in a Flight Control Computer (FCC) although such terminology was not used
in the specification.

The elements of the system are described in the order of the primary flow of the
signal information illustrated by the arrows in Figure 6.1.

(i) Sensor Element (SE). This leading element contains the aircraft motion sensors -
attitude, heading and rate gyros and accelerometers, and also the air data units for
obtaining velocity components, pressure and temperature information.

(ii) Crew Station Element (CSE). The other leading element incorporates the
conventional controls for the safety pilot and a versatile side arm controller facility
for the experimental or evaluation pilot. For convenience these inceptor
components were subsequently grouped together as an Inceptor Element (IE). The

47

CSE also contains the various interfaces for the pilot to engage, operate and be cued
by the ACT system (Figure 1.3) as follows:

(a) Pilots Control Panel (PCP) - used by the Evaluation Pilot for engagement and
disengagement and also for conducting the system-test sequence. Engage and
Disengage operations would normally be performed using switches on the pilot’s
controls.

(b) Repeater Panel (RP) - provides a copy of the displays for the Safety Pilot.

(c) Menu Panel (MP) - provides other ACT interactions, such as selecting one of
the available control laws and sets of parameter values. The same panel provides
the interface for injecting preprogrammed disturbances into the system, as part of a
flight-test facility used, for example, in the validation of the helicopter mathematical
models and in demonstrating compliance with handling qualities requirements of
new control laws.

(d) Mode Select Panel (MSP) - available for in-flight selection of control modes,
for example, height-hold and speed-hold.

Clearly the interactions associated with the CSE would be expected to feature
significantly in any JSD modelling exercise, with the pilot assuming a number of
different roles as he interacts with different components of the system. The
modelling would be situated in the component which provides the system interface
to the CSE.

(iii) Control Law Input Support Element (CLISE). This element has the main purpose
of processing and managing the information from the Crew Station and Sensor
Elements, and since it provides the system interface to the CSE it will host the JSD
modelling. It also contains the process for the scheduling of a comprehensive
system test. The details of the system test are considered in Appendix 4.

(iv) Control Law Element (CLE). This element is supplied with inceptor, sensor, mode
selection and related information by the CLISE. The CLE is the raison d’etre of the
ACT Lynx since it hosts the experimental control laws which are to be evaluated. It
is this element that the user of the ACT Lynx, the handing qualities engineer or
flight dynamicist, will interact with. Carefully verified and validated control law
software [6] will be plugged into and unplugged from this element. Typically six

48

control laws will be selectable by the experimental pilot with an additional choice of
up to six sets of parameters within each law. The demands produced by the CLE
for each of the four axes may be separated into low and high frequency demands, if
required, which are destined for the parallel and series actuators respectively (an
option being currently evaluated). The separation algorithm is part of the user
supplied CLE software. Alternatively this function could be achieved in software
and a combined signal fed to full authority actuators.

(v) Control Law Output Support Element (CLOSE). The element following the CLE
interfaces the demands produced to the remainder of the system. It also provides a
selectable limiter on the demands produced by the control law as additional
protection against immature software.

(vi) Actuator Drive and Monitoring Element (ADME). The final element to provide
processing takes the demands from the CLOSE and produces drive signals for the
parallel actuators resident in the Actuator Element, and the series actuators in the
Primary Flight Control Units (PFCU). The ADME also manages the engagement of
the ACT system through the energising of the parallel actuators, and supplies a
normal autostabilisation function when the ACT system is not engaged.

(vii) Actuator Element. The parallel actuator system is last in the sequence. The parallel
actuators are connected to the conventional control runs from the safety pilot; when
the actuators are engaged (hydraulically powered), the controls are back driven to
provide the safety pilot with essential control position cues and to aid in
recoveries, and forward driven to the existing Lynx PFCUs.

(viii) External System Support Element (ESSE). In support of this network of elements
is an element which essentially provides a catchment for all of the significant data in
the system. It interfaces with the standard on-board data acquisition system
MOD AS [45] and also with the experimental displays such as helmet mounted or
head down displays. A record of all system related events such as engagement,
disengagement, and diagnostic messages is retained in a System Journal.

The decomposition is clearly based mainly on the nature of the hardware
architecture but the division of what is ostensibly a Right Control Computer into
CLISE, CLE, CLOSE requires further comment. This subdivision is dictated by the
need to make the user replaceable part of the system a separate item of hardware. This

49

specialised requirement is easily accommodated by the techniques of Chapter 5. The
revised system architecture is shown in Figure 6.2 which provides an update to Figure
1.1. The CLISE, CLE and CLOSE are each triplex with one to one interconnections
between the elements. The connections to the dual duplex ADME are full cross
connections, that is, each sub-lane of the ADME is connected to each lane of the
CLOSE. Figure 6.3 further illustrates the connectivity of the system. The connections
shown are those from the triplex inceptor element, via the CLISE, CLE and CLOSE, to
the ADME. It is necessary to separate out the series actuator part of the ADME since the
series actuator must operate when the ACT system is unpowered in order to provide
autostabilisation. The dual duplex ADME is composed of two identical lanes each
containing an ADMU and a SADMU (Series Actuator Drive and Monitoring Unit).
Each lane is composed of two ADMU sub-lanes and two SADMU sub-lanes which
have a one-to-one connection. Both the ADMU and SADMU sub-lanes are treated as
JSD Units in the specification.

6.2 ELEMENT DESCRIPTIONS AND JSD UNITS
Version 3 of the specification [41] contains a detailed description of each of the

elements identified above. As far as possible, the recommendations of the STARTS
[46] guide relating to the procurement of real time systems were followed in the
preparation of the specification. Further, each element is described in detail under the
headings Type, Function, Operation, Performance, Inputs & Outputs, Interfaces,
Testing, and Failure Reporting & Recovery. Where a particular element is composed
of replicated units, so that several units together comprise an element, the replication
of units in the element is stated and the unit itself is described under the same headings.
For example, the CLISE is a triplex element composed of three identical CLISUs
(Control Law Input Support Units). In the transformation to JSD each unit of this type
becomes a JSD Unit. In detail the descriptions are:

TYPE - Some indication is given here of whether implementation is anticipated as an
analogue, digital, mechanical, hydraulic, electro-mechanical or human process.
The suggested implementation is not intended to exclude alternatives if a
supplier possesses a particular specialism or preferred approach. The view was
taken, after some deliberation, that it was better to make specific
recommendations rather than to leave the ’type’ issue open. A general allowance
could then be made for variations that nevertheless complied with the functional
aspects of the specification.

50

FUNCTION - Under this heading is a complete statement of the tasks of the unit, that
is,a statement of what job the unit has to do. For example, one of the tasks of
the CLU (a unit of the CLISE) is inceptor management; the entry reads: ’The
inceptor displacements and inceptor switch positions shall be processed to
provide consolidated signals for the associated Control Law Unit (CLU)”

OPERATION - This sub-section is concerned with how the unit will achieve its
functions. This is done by detailed description, in text, of the processing
required for each function. For the CLISE example above, the full details of the
processing of the triplex signals would be supplied, including the consolidation
algorithms for fault tolerance. The narrative under this heading is used to build
the JSD Specification; the full JSD is not held within the text of Version 3, but
sufficient initial design work was undertaken to be confident that a JSD
specification could be derived from the narrative, as discussed in Section 6.3
below.

PERFORMANCE - This deals with ’how much’ and ’how well’ issues, including a
statement of the times within which the tasks must be completed and, where
appropriate, the accuracy that must be achieved. For example, a certain part of
the system test must be performed within a stipulated time. The sampling rates
for the unit would be specified here. One important defined constraint in the
ACT Lynx system is that the total system time delay should be less than 25 ms.

INPUTS & OUTPUTS - This contains a list of all signals received by the unit and
those transmitted by it. It includes the source of a received signal and the
destination of a transmitted one. This information is also presented in
diagrammatic form, Figure 6.4, for example, where the connections to
neighbouring units are shown in JSD notation. There is, of course, a need to
maintain consistency here, since for each input listed there must be a
corresponding output on some other unit. Such consistency is easily maintained
by a CASE tool such as Jackson Work Bench (JWB) [38].

INTERFACES - A list of the units and their types, both internal and external, to
which the subject unit is connected. The purpose of this information is to
identify the interfacing requirements between units - analogue to digital, for
example.

51

TESTING - A statement of how the function, operation and performance of the unit is
verified. In particular this may be done at a system test invoked prior to take
off, or by the inbuilt monitoring.

FAILURE REPORTING AND RECOVERY- A statement of how errors, produced by
a fault and having been detected, are reported within the system. Usually they
are reported to the pilot via the Menu Panel, and sent to the system journal part
of the ESSE. Cautions and Warnings may also be raised through the Central
Warning System. In addition, a statement of the recovery of the system may be
required; often the recovery is by returning to Standby via a controlled
disengage - as would be the case when one of the monitoring tolerances within
the system has been exceeded.

6.3 JSD NARRATIVE.
The material included in the OPERATION section of each unit description

provides the narrative for the design and specification of the JSD network describing
the internals of the corresponding JSD Unit. The question arises as to whether it is, in
fact, possible to achieve the functions of the unit - one of the vital specification issues.
This can only be answered with certainty when a full design has been completed, but an
experienced person can identify the crucial parts of the unit’s network and develop
those in detail to give a reply with a high degree of confidence. Such a study in depth
was made of those units with a significant quantity of system functionality, and the
detailed text specification was based on these studies. The units treated in this way
include:

(1) The Mode Control Panel (3.2.2)
(2) The Menu Panel (3.2.3)
(3) Pilots Control Panel and Repeater Panel (3.2.4)
(4) The Control Law Input Support Element (3.4.1)
(5) The Control Law Element (3.4.2)
(6) The Control Law Output Support Element (3.4.3)
(7) The Actuator Drive and Monitoring Element (3.4.4)
(8) The External System Support Element (3.4.5)

where the figures in parentheses indicate the section of Reference 41 where resulting
specification may be found; it amounts to 35 pages of text. It is instructive to examine
a small sample of the network fragments produced during this evolutionary stage,
although some of the terminology has been superceded. Figure 6.5 shows three such

52

fragments - for the Parallel Actuator Drive, Series Actuator Drive and the Engage and
Disengage Control and Monitoring. All three show how the component simulation
approach described in Chapter 5 is useful in such contexts for demonstrating a plausible
network without needing to specify detail. In Figure 6.5(a) the drive signal is simply
obtained from the difference between the demand and the positional feedback. For the
series actuator, Figure 6.5(b) a smooth transition is required at disengage so there is a
blend between the ACT demand and the Automatic Flight Control System (AFCS)
demand. The EDCM in Figure 6.5(c) contains the engage/disengage role of the parallel
actuator entity as well as the engagement function - again in the spirit of Chapter 5. The
Pilot Control (PC) and the ADMU finite state machine (A_FSM) are shown in Figure
6.6. Essentially PC is a context filter for the finite state machine which represents the
Pilot_Engagment role. Since FSMs proved to be popular with the initial design team
they were retained as a specification method for the engagement control software for a
considerable time. Ultimately they were discarded in the interest of uniformity, and in
any event they would need to be converted to JSP for Jackson CASE tools. Apart from
some variation in terminology, the only significant difference between the FSM of
Figure 6.6 and the pilot model of Figure 2.1 - which was ultimately adopted - is in the
handling of the ARMED signal (the instant when the low frequency demand is brought
to match the parallel actuator position). Here the alignment signal is handled by the PC
filter so that an engage signal is blocked until alignment is achieved and the system is
ARMED. In Figure 2.1 the ARMED is handled explicitly. In Figure 6.6, ROTOR
refers to the rotor brake, FCLE is the flight control law element (the ’F’ being
subsequently dropped), FCSE is the flight control support element which became the
CLISE and the CLOSE, PEB is the pilof s engage button which was incorporated in the
Inceptor Element of the CSE, and the PCP is the Pilots Control Panel. Therefore the
FSM of Figure 6.6 may be used to specify the detail of the control of system
engagement. Figure 6.6 also indicates from where in the system the information to be
used by the PC is to come.

6.4 SYSTEM TEST AND FAULT MANAGEMENT.
A significant part of the specification was concerned with ensuring the correct

operation of the ACT System. There are two aspects to this. First is the fail operative/
fail safe requirement that demands a certain level of fault tolerance. The second is a
check of the system before take off - or System Test as it is called. There are a
possibilities for duplication between the two aspects in as much as the system test
could be required to test every aspect of the system including the redundancy within
elements. The view taken in the specification was that the pre-flight system test should
be solely concerned with the pilot’s interface with the system and consist of a check that

53

the inceptors, panels, switches - particularly disengage switches-etc. are functioning
correctly. The remainder of the system should be continually and automatically
monitored for faults as part of the fault management strategy. The general principle of
the fault management has three layers:

(1) fault tolerance,
(2) fault monitoring,
(3) reconfiguration.

using the terminology of Reference 47. The fault tolerance is obtained by accepting the
median of a set of redundant continuous data. For example, the median value of the
triplex parallel actuator demands from the CLOSE is used in subsequent processing by
the units of the AMDE. For discrete data, such as the system engagement state, a
majority vote is taken if the connection is triplex. The variation between the data on a
connection and the voted value is an error which is used to monitor the data’s validity.
If it exceeds a certain tolerance and persists more than a certain time then a fault is
assumed. The fault is reported to the pilot’s Menu Panel and to the reconfiguration
mechanism which then causes all data from the faulty source to be ignored in
subsequent processing. This reconfiguration can only apply sensibly to a single failure
in a triplex connection so the safety pilot should respond to a reported fault by
disengaging the ACT system and taking over manual control. However, should a
further fault be detected prior to disengagement by the pilot then the system makes an
automatic disengagement. The precise mechanism by which automatic disengagement
should take place was not included in the text of Version 3 and had to be supplied when
the detailed JSD design, described in Chapter 7, was being prepared. The principle of
the mechanism was to maintain a map, in the ADME, of the validity of every unit of the
whole system upstream of the ADME. The map is scanned regularly and if the integrity
of the system is compromised then automatic disengagement is invoked. The integrity
is compromised when valid information is no longer available from an element. For
example, when two lanes of the triplex Inceptor Element are faulty then the monitoring
cannot identify a valid lane and when this information is relayed to the map the next
scan will induce a disengagement. In a general system there may be several ways of
maintaining the validity map through the network of inter-unit connections; in the ACT
Lynx application there is an obvious flow of information from the inceptors and
sensors through to the ADME. In fact, a distributed map was implemented where the
CLISE maintained and scanned the sensor and inceptor information, for example, and
the ADME managed the CLOSE/ CLE/ CLISE validity status. The concept of a validity
map simplifies a potentially complex area. It also allows for a subsequent enhancement
of diagnostic facilities, since connection failures may be deduced from some
combinations of unit failure messages.

54

System Test and fault management are discussed further in Appendix 4 and
Chapter 8 respectively.

6.5 CONSOLIDATION
There is a major problem with replicated asynchronous systems in a practical

situation. It relates to the sampling of input data which is discrete - such as an OPEN/
CLOSED switch position or the number of a selected mode; one lane samples data
differently to another and in extreme cases one lane may not detect data that another lane
does detect and possibly acts upon. For example, in the ACT Lynx system the system
test should abort if the rotor brake is released. Potentially, therefore with an
asynchronous system there is the danger of one lane continuing with system test and
another aborting it if the brake is applied at an instant which is close to the
commencement of system test. This aspect of system design is referred to as
consolidation; it must be distinguished from the occurrence of a fault since the lanes are
operating correctly and a reconfiguration is not the appropriate response. Consolidation
must ensure that if no lane acts on data unless all the lanes act on it. Silva [48] describes
a method which has been adopted to consolidate signals within the EH101 helicopter
flight control system. This method was specified for the ACT Lynx; it is concisely
described as a sequence of steps:

(1) Each lane samples a value (the sample may be a voted value).

(2) Each lane calculates a detected-value as follows: if among the latest n samples
there are n-1 contiguous samples with the same value then the detected-value is set
equal to that common value otherwise the value is unchanged (n is termed the history
length).

(3) Each lane calculates a consolidated value as follows: if the detected-value is
identical to that of the other lanes (siblings) then the consolidated-value is set to the
common detected-value otherwise it is unchanged.

This procedure guarantees that the lanes will change their consolidated values
in a coordinated manner. The inter-lane (sibling) sampling required in step 3 is
assumed to be done instantaneously when arguing the validity of the algorithm. Figure
6.7(a) illustrates the operation of the algorithm; it shows time running from left to right
with sampled values for lanes A,B, and C indexed by frame. The value changes from 0

55

to 1 between G2 and A3 and returns to 0 between B5 and C5 (C2 indicates the 2nd
sampling event of lane C etc.). The detected values are shown for n=3 as are the
consolidated values derived from them. As one would expected, the processing of the
data introduces a delay into the pulse of 1 values.

Unfortunately in Version 3 of the specification an important remark relating to
additional monitoring was overlooked in Reference 48. It is important to avoid the
situation where the changes in the consolidated values of all lanes are inhibited by one
lane developing a fault and becoming ’stuck’. Silva [48] suggests that built-in
monitoring should invoke a reconfiguration in order to isolate the faulty lane. Although
such a reconfiguration is part of the fault management strategy adopted for the ACT
Lynx, the first element of the strategy is a fault tolerant operation. Accordingly voting
was introduced into step 3 so that if a majority of lanes agree then the consolidated
value is changed. This is shown in the final row of Figure 6.7(a) where it can be seen
that the effect has been to alter the position of the resultant pulse of consolidated values.
Voting significantly alters the philosophy of the algorithm and one would expect its
effects to be most pronounced for pulses of values where the duration of the pulse is
close to the time history length. An example is shown in Figure 6.7(b) where a short
duration pulse is detected by lanes A and B but not by C. However, C is brought into
line by the voting. The result is that the pulse is recognised by all lanes whereas without
voting it would have been recognised by none. Despite these differences it is possible
to conclude on the basis of an experimental investigation that voting provides the
required consolidation and in addition gives the first level of fault tolerance.

The same method was used to investigate the criticality of the need for
instantaneous sibling sampling, and heuristically it appears that provided that the
sampling time of propagation is not a significant fraction of the frame interval then,
again, the behaviour of the algorithm is satisfactory.

As a final remark on consolidation, it is interesting to examine the implicit
architecture that it imposes on the system. Figure 6.8 depicts the sampling and
consolidation of a source by a triplex element. The source is marked as synchronised
since the same information is available to each of the sampling units, but they only
sample a value when a lane ’tick’ arrives. Since the same ’tick’ drives the consolidation
as drives the sampling these two aspects work in mutual synchrony. It is this known
mutual synchrony which is at the heart of the consolidation algorithm since it enables
one lane to predict the behaviour of another.

56

6.6 REVIEW
The decomposition of the specification into elements based on the hardware of

the system proved to be a turning point in its evolution. The composite simulation
approach introduced in Chapter 5 successfully enabled the elements to be specified in
detail using JSD analysis. Subsequently a full JSD specification using the Jackson
CASE tools was undertaken by LBMS Pic. Therefore the test of Version 3 was
whether the written material in the specification and, in particular, the detailed narratives
in the OPERATIONS sections were adequate to assemble a full JSD specification.
Only one major omission was subsequently identified. This was concerned with the
voting arrangements of the consolidation algorithm and is discussed in Chapter 7. In
fact, rather than an omission, it was an error in the specification. If it had not been
recognised at the design stage then it would have been recognised during the evaluation
of the simulation. There have been a number of areas where the specification has
needed clarification, and additional material, but none where a significant revision of
the specification has been necessary. The question arises as to whether it would have
been possible, or even desirable, build the full JSD specification concurrently with the
preparation of Version 3. In principle, the development of Text, JSD and simulation in
parallel is the ideal situation. For the ACT Lynx application the software tools were
not available to make simulation of such a complex system an integral part of the
development of the specification - as will be emphasised in Chapter 7.

57

CHAPTER 7

THE ADA SIMULATION

Summary
This chapter is concerned with the implementation in Ada of a JSD specification

of a complex system. The work undertaken in the ACT Lynx project is used to
demonstrate the practical application of the principles involved. The crucial role of code
generation in the implementation of substantial simulations is emphasised. The
decomposition of complex systems on the basis of the underlying hardware receives
renewed attention with the interconnections between hardware units providing an
additional factor in a revised decomposition. Finally, there is a discussion of the
additional software needed to support a system simulation by providing a
correspondingly authentic real world to which the simulation can interface.

7.1 SIMULATION AIMS
The concept of a living specification - an integration of a written specification

and a working simulation - was introduced in Chapter 5. Once the techniques of
Chapter 5 have been used to prepare a JSD specification, the implementation of a
simulation is, in principle, a routine exercise. All that is needed is for the target
hardware environment to be selected and for a corresponding implementation strategy
adopted for the JSD network. In fact, the size of the subject system can be such that
traditional implementation techniques are prohibitively expensive and an automation of
at least part of the implementation procedure is a necessity. The first consideration
must be the choice of hardware platform, and this is substantially determined by the
purpose of the simulation - that is, in what respect is it expected to animate the
specification. For the ACT Lynx system the following aims for the simulation were
identified [49].

(i) Control and pilot operation of the system. Pilot acceptance of the procedures
for operating the system, for example, the arm/engage/disengage sequence can
be evaluated through hands-on experience. Also suppliers can directly examine
the nature of the interface between their equipment and the rest of the system.

(ii) Synchronised control information. The techniques for managing and
synchronising control information within an asynchronous system or loosely
synchronous system can be verified.

58

(iii) Establishing tolerances. An asynchronous system generally must allow
some tolerance in the monitoring of the information from replicated units.
Suitable tolerances can be verified or even derived.

(iv) Computational load. The processor power and memory requirements of the
system can be more confidently deduced from a simulation than a paper
specification. Alternative implementations can be evaluated for processing
efficiency.

(v) Fault management. The mechanisms for reconfiguration and the issuing of
caution and warning signals may be directly verified.

(vi) Design evolution. Alternative designs for the components of the system can
be directly evaluated.

These aims fall into three categories which are relevant to the general principle
of the living specification. The first is the validation of the specification. Aims (i),(ii)
and (v) above fall into this category. Its purpose is to ensure that the specification is
actually what is required by the specifier. It is by no means unusual for a strict
interpretation of written text to be at variance with what the original author intended;
neither is it unusual for the full import of a set of detailed statements to elude a less than
fastidious reader. An example is the Pilots Control Panel of the ACT Lynx. The
specification set out, clearly and unambiguously, the illumination of the lamps during
the system test and engagement operations yet it was not until the simulation actually
emulated the illumination of the lamps by putting them on a screen that the specified
pattern was dismissed as being unacceptable to a pilot. Item (v) is unusual in that if the
system and the hardware is functioning correctly there will be no faults to detect.
Therefore to evaluate the fault management capability of the simulation it is essential to
incorporate in the simulation a method of injecting faults into the system. Moreover, the
need to inject faults brings with it a need to define the types of fault that are likely to
occur and to find a method of modelling those faults. There are standard ways of
modelling faults in digital systems [47]; the methods used in the ACT Lynx system
specification are described in Appendix 6. The second category is the use of the
simulation to enhance the specification, or fill in some of the details omitted due to lack
of information. Items (iii) and (iv) fall under this heading; the requirements for
processing power and memory size for the digital parts of the system may be used to
improve the original written specification. The tolerances to be used for the monitoring

59

of faults in an asynchronous system are extremely difficult to adjust a priori so that
obtaining the optimum position between too many nuisance disconnects - automatic
disengagements invoked by the monitoring - and a dangerous tolerance to persistent
discrepancies can be a useful contribution of a simulation. The final category is of
particular importance to an evolving specification. Item (v) in the list of aims above
emphasises the importance in a real-life project to be able to respond to modifications to
hardware components. In the ACT Lynx, for example, the parallel actuators were
originally planned to be electro-mechanical, then they became duplex valve hydraulic,
and finally, as described in Version 3 of the specification, simplex, direct drive valves
were the preferred candidate. For each of the candidate systems, a simulation allows a
practical study of the integration of the new actuators into the remainder of the system,
and enforces a thorough review of the associated fault management. Further, a
working simulation gives the opportunity to assess the modifications in action, so no
questions can be shirked and left unanswered. One could also examine how the
existing hardware and fault management strategies would transfer to an entirely triplex
architecture. Obviously, such a profound change, even though in principle it would be
a prime role for a simulation, would entail a considerable burden of work, but as
subsequent sections of this chapter will illustrate, automation of the production of a
simulation can resolve this difficulty. Simulation, in brief, allows the specifier to get
close to seeing how his various options will work in practice, and is an important
feature in allowing a specification to evolve along a properly validated path.

7.2 TARGET SIMULATION HARDWARE.
The implementation stage is concerned with matching the JSD network to the

target environment. Normally the flexibility which is available at this stage is a useful
property of JSD in that it enables the specification to be verified prior to it being
implemented on the target hardware. This becomes a crucial feature rather than a useful
property in the living specification, where the target hardware may not be available. In
the JSD network each process executes concurrently with every other. This is unlikely
to be the case even in the target environment and the use of a limited number of
processors has the implication that some of the processes must be suspended while
others execute - Chapter 2 has considered the standard inversion technique for the
suspension of processes. For a simulation, the simplest realistic target hardware is
appropriate and a single processor would be used if possible - as was done for the ACT
Lynx system simulation. It will be recalled that the ACT Lynx system is composed of a
number of replicated units and the implications of using a single processor to emulate
these are discussed in subsequent sections of this chapter. In fact, the target hardware
for the ACT Lynx system simulation was an IBM PC, or compatible. Initially its

60

configuration was a Dell 310 (80386 processor with 80387 coprocessor) and 5 Mbytes
of RAM - mainly to support the Alsys Ada compiler. Figures 7.1 to 7.4 show
photographs of the screens, which largely correspond to the panels of Figure 1.3,
together with a display of the series and parallel actuator displacements. The screens
are toggled by presses of the Escape key. Other keys provide all of the functions of the
pilots interaction. In addition to inceptor movements, this includes engagement and
disengagement, mode selection and system test. The Menu Panel functions are also
provided via the keys of the PC; these include control law selection and parameter set
selection. The full interaction for the disturbance injection is available from the
keyboard so that the type of input - doublet or frequency sweep, for example - may
selected, and then injected into the system after a rehearsal has been observed. The
nature of the menu panel interaction is rudimentary - but, nevertheless, is in keeping
with the specification. Ultimately a more sophisticated interface, similar to that
supplied in the work of Reference [26], will be included. The validation of the the
specification proceeds by operating the simulation from the keyboard and observing the
screens for compliance with the written requirements.

7.3 INCREMENTAL SIMULATION.
Project management is an inescapable factor in an engineering activity of any

size. Indeed, it was the need for management control that was the driving force behind
the insistence that modem specification techniques be used and, if necessary,
developed for the ACT Lynx System specification. When the preparation of the full
JSD specification and the implementation of a simulation was contracted to LBMS Pic it
was recognised that the implementation must be conducted in a manner which was
under the full control of the design team - particularly since the final product of the
contract was to be a simulation and specification that the design team and suppliers
could modify and rebuild as necessary in order to support developments in the
specification. In this area too the decomposition method and JSD proved its worth.

The compositional, or ’’middle out”, nature of the JSD method has the property
that once a model has been built every new function added to it provides a potentially
deliverable, working, system. In fact, at any stage of the development of the network it
can be implemented. Incremental development takes advantage of this natural property
of JSD and phases development of a system over a number of increments. The added
functionality required from each increment is defined initially in outline, and as each
increment is completed it is reviewed and the contents of future increments re-examined
in the light of any modifications or additions that have been found to be necessary. The

61

development of a system is thus responsive to an evolving specification but at the same
time allows the project to be managed on the basis of milestones actually achieved.

The ACT Lynx simulation was developed over a number of increments the
material for the first six was distributed as follows:

Increment 1: A model of the pilot/ system interaction including engagement of
the ACT system and inceptor movement. The Repeater Panel and a display of
the control run position.

Increment 2: A model of the pilot/ system interaction as regards System Test,
Control Law Selection, Disturbance Selection, Mode Selection, Parameter Set
Selection. The Menu Panel, Mode Control Panel and Pilot’s Control Panel.

Increment 3: A definition of a hardware description language for units and
connections, and development of associated tools, as discussed in later sections
of this chapter. The functionality of Increments 1 and 2 based on the specified
hardware, including fault tolerance. Provision for injection of errors.

Increment 4: Completion of the Control Law Input Support Element including
the development of a tool for building a System Test process from a non­
procedural definition. The Aircraft Motion Sensor and the Air Data Elements

Increment 5: Completion of the Control Law Element and the Control Law
Output Support Element.

Increment 6: Completion of the Actuator Drive and Monitoring Element and the
Actuator Element. Further development of the System Test Builder.

It can be seen that the increments are based heavily on the element decompositions
described in Chapter 6. Essentially, the CSE, CLISE, CLE, CLOSE, and ADME are
developed in turn, but it can also be seen that the incremental method has allowed a
rescheduling of the System Test feature when certain aspects proved difficult.
Ultimately the difficulties were resolved in a novel manner (Appendix 4).

7.4 THE USE OF ADA
Ada, as a language, has its origins in the disconcerting discovery in 1976 by

the US Department of Defense (DoD) that more than 450 different languages were in

62

use in their computer systems. Even more disconcerting was the fact that none of them
were considered suitable for adoption as a standard language. The outcome was a
competition for a general purpose language which was won by a team led by Jean
Ichbiah. The definition of the new language, Ada, was completed in 1979. It is well
suited to concurrent and real-time programming, and became the mandatory language
for DoD. In the UK it is not mandatory but is "highly recommended’ by the Ministry
of Defence (MOD) so it was the natural, and the most politically acceptable, choice for
the ACT Lynx System simulation. Despite the weight of authority behind Ada, it has
not become universally accepted. Partly, this may be because it is not a suitable
language to leam ab initio, or possibly it is C and its object oriented derivatives which
have usurped its position in the systems area. Nevertheless, the extensive validation
tests which are required by the DoD have resulted in a number of very high quality
compilers being available. For any work closely related to flight critical applications the
quality of the compiler is a relevant factor. Since the quality and precision of the
specification is important in the present application, the comprehensive data-typing of
Ada is a useful feature. In addition, packages and tasks are language features which
have an important role. The are several possible mapping schemes between JSD and
Ada [50,51]. The mapping used for the ACT Lynx project relies very heavily on
packages, and is based on that described in Reference [51]. Each package corresponds
to only one specification object, such as a process or a data-stream. This
correspondence is particularly effective in the present application since it enhances
traceability between the specification and the Ada. Finally, code generation tools were
either available at the start of the ACT Lynx project or were under development.

7.5 CODEGENERATION
It is useful to begin this section by presenting some evidence of the need for

code generation. If one assumes a particular implementation strategy then the use of
code generation imposes little overhead on the number of lines of code actually
produced; so one may conclude that the code produced by automatic generation is
reasonably representative of that which would be produced by other means. The Alsys
compiler for the PC is limited to 1000 compilation units in each of 7 library families,
and this limit was effectively reached during increment 6 (see Section 7.3 above). One
can conclude that the simulation involves something of the order of 7000 compilation
units - a compilation unit is a separately compiled declaration or body of a package or
subprogram, or subunit. The time taken to constmct, ab initio, the ACT Lynx
simulation at the stage of increment number 5, that is, generate the code, compile it and
build it into an executable module, was of the order of five days. These figures give
some idea of the size and complexity of the operation of producing a simulation. To

63

use the simulation in order to investigate alternative system architectures and
redundancy management techniques by manually coding the changes and rebuilding the
system would be an enormous task. In fact such a task could well be so prone to error
as to make it impractical.

Software tools for code generation operate on a database of process descriptions
and network connections. In this section CASE tools are treated with sufficient detail
to clarify the production of a simulation from a JSD specification; they are discussed
more fully and more generally in Appendix 1. Therefore the starting point for the
discussion here is the existence of a database, such as Speedbuilder [37], which can
hold all the information relating to a system network. The information includes a
definition of all data-streams, state vector inspections, and processes. The process
descriptions, in terms of structure diagrams together with a list of operations and
conditions reside in data files of the Program Design Facility (PDF) [52]. If all of the
operations and conditions are couched in the selected programming language, and the
declaration material is included then there is sufficient information available from which
to generate code. Some standard implementation strategy must be adopted, as
discussed in Chapter 2, but when this is done the procedure can be automated. At the
beginning of the ACT Lynx project LBMS Pic had such a tool, Adacode, under
development. From the Speedbuilder description of a system it would generate code
for it as a single Ada task. Since it was being developed for a IBM PC platform, the
tool was ideal for the project. Indeed, in retrospect, its availability was crucial for
subsequent developments.

7.5.1 Implementing Fault Tolerance.
The connections between units may be one-to-one or full cross connections,

that is broadcast. Figure 6.3 illustrates both types of connection. For a broadcast
connection there is a need for a voting mechanism as described in Chapter 6 in order to
maintain the tolerance of the system to faults. In addition, for discrete information,
consolidation must be incorporated in order to allow for the polling of data by
asynchronous units. Thirdly, monitoring must be included in order to detect ,and
report, errors that occur in the system. There are advantages in dealing with these three
aspects of fault management in a standardised manner, rather than approach each
connection as a special case. Figure 7.5 shows the architecture of the software
associated with fault management. The connection of the Inceptor Element to the
Control Law Input Support Element is used to illustrate a typical situation. In each of
the units of the CLISE there is a voter process which provides the fault tolerance. A
downstream monitor process detects errors and reports faults. Faults reported to the

64

monitor cause isolation of the faulty upstream unit. If there is a need for consolidation
of discrete information - as in Figure 7.5 - then consolidation and sibling monitoring
processes also need to be included. In Ada this fault management infrastructure is
implemented, wherever it is required in the system, by instantiating a number of generic
packages.

7.5.2 Unit and Connection Descriptions.
When a system contains replicated units then the corresponding JSD Units will

consist of identical JSD networks. As a consequence there is an obvious invitation to
generate copies of a single network by automatic means. That is, specify a single JSD
Unit then from a description of the replication of the unit generate an appropriate
number of copies. For the ACT Lynx System, such an approach is described in
Reference 53. The unit description should be held on a database to allow processing by
the code generation tool so that code for the whole system including replicated units can
be generated. Figure 7.6 shows examples of unit descriptions as they are held on the
Speedbuilder database for the ACT Lynx simulation. The first field is the unit name and
after a few lines of standard information (STD-INFO) the specification begins (MAIN-
PART). The type field specifies the unit as being either analogue or digital. Digital
indicates a regular update frequency whereas analogue units are updated continually.
The next field is the base redundancy - simplex or duplex for example, followed by the
replication. A triplex element comprising three identical units would therefore have base
redundancy one (SIMPLEX) and replication three. A dual duplex element would have
duplex base redundancy and replication two. The units of a digital type of element may
be mn in synchrony or asynchronously with a specified frame lag. There is provision
in the field labelled INTRA-UNIT-CONNECTIONS to list the state vector inspections
between the units of the element. The UNIT-SID is a pointer to the description of the
unit network, the name defaulting to that of the unit if it is omitted.

To complement the unit descriptions a specification of the connections between
the units is required. Figure 6.3 shows, for example, that it is possible to have one-to-
one connections or full cross connections (broadcast). In addition, since the nature of
the inter-element connection is related to the monitoring and consolidation processes,
the specification of the connection can include a statement of the monitoring and
consolidation to be imposed. An example, of the connection object used in the ACT
Lynx simulation is shown in Figure 7.7 for the connection between the Control Law
Input Support Element and the Inceptor Element. The first field of the description
contains the connection name, which is followed by the standard information of a
Speedbuilder object. In the MAIN-PART the characteristics of the connection are

65

specified. The SOURCE and DESTINATION fields hold the names of the elements
which are being connected. The nature of the connection, broadcast or one-to-one, is
contained in the next field. If the connection is broadcast then it is possible to supply
YES for the special interface field, in which case there is access to the outputs of a
particular unit of the source element. Otherwise if the entry is NO then parameters for
the automatically generated consolidation and monitoring must be supplied in the
subsequent fields. If the entry for any of CONSOLIDATION,
SOURCE_ERROR_MONITORING, or SIBLING_ERROR_MONITORING fields is
YES then a HISTORYJLENGTH must be specified. The value must be greater than
two samples to make sense. It is, of course possible to have monitoring without
consolidation, the latter being relevant to data from a discrete set such as control mode
values.

The final step is to integrate unit and connection descriptions within the code
generation tool, and to reconsider the possibilities for implementation. Of particular
interest is the approach taken in the Adacode development where each unit is
implemented as an Ada task. Therefore to that extent the element simulations run
independently exchanging data by sampling operations. This implementation is in the
spirit of composite simulation as described in Chapter 5, and in fact the simulation
becomes non-deterministic. Taken together the set of unit and connection specifications
provide a formal high level network description of a system. Although, there currently
exists no tool for generating such networks from the database, it is readily done
manually and examples are shown in Figures 7.9 - 7.11 for various aspects of the
ACT Lynx simulation. Further discussion concerning these figures is postponed until
system dismemberment is reconsidered in the next section.

7.6 DECOMPOSITION REVISITED
Chapter 6 described a decomposition into hardware elements to which the

principles of composite simulation, outlined in Chapter 5, could be applied. Earlier
sections of the present Chapter have discussed an approach to fault management which
used standardised methods and automatic code generation through a database of unit
and connection descriptions. With the knowledge that the unit descriptions can be
associated with the architecture of the redundancy and its management then it is
appropriate to reconsider the original decomposition. The criteria to be applied in the
review include not only the basic hardware but the implicit redundancy. The difference
can be explained by examination of Figure 7.11 which shows the unit network
principally from the system engagement and disengagement point of view. The
decomposition into CLISE, CLE, and CLOSE is not necessary from any aspect of

66

redundancy - the triplex requirement could be achieved by a single element. Rather it is
the need to isolate the user software within an easily replaceable hardware unit that has
motivated this particular decomposition. The other criterion can be observed in the
decomposition of the Pilot Control Panel into a simplex display and a triplex button -
PCP Display and PCP Button respectively - so that the redundancy of the particular
components of a single piece of hardware determine its decomposition. The same
principle may be observed in Figure 7.9 where the Menu Panel is decomposed into four
components each specified as a separate unit. For the buttons there is a triplex
MP_Button unit; for the menu displays there is a simplex MP_Display; for the
diagnostic messages from the CLISE and the ADME there are the triplex MP_CLISE
and quadruplex MP_ADME respectively. Figure 7.9 shows the unit network at the end
of increment 5 prior to the development of the dual-duplex ADME simulation. In it
there is an interim representation of the ADME which is contained in the hardware unit
named THE_REST. This unit contains all of the supplementary modules which are
needed to support the simulation at this particular stage of its development. In the final
network there is a one-to-one connection between the ADME and the MP_ADME
similar to the one-to-one connection from the CLISE to the MP_CLISE.

The ADME is a complicated element and it is interesting to discuss the structure
of its specification and simulation in some detail. It includes, for example, the
processes which drive the parallel actuator in response to demands from the CLISE,
the management of the engagement and disengagement of the ACT, and a major part of
the monitoring and reconfiguration aspects of the fault management. The Series
Actuator Drive and Monitoring Element (SADME) which produces the drive signals for
the series actuator is also included within the ADME specification, but is treated
separately because it must function to provide normal autostabilisation of the helicopter
when the ACT system is not engaged. Before examining the ultimate unit/connection
network of the ADME part of the simulation, it is beneficial to examine Figure 7.12
which shows the perceived internal architecture of the ADME during the preparation of
Version 3 of the specification. The dual duplex architecture together with the
requirements of the specification impose a distinctive architecture on the element. The
sub-lanes of a lane in the dual duplex architecture are required to monitor each other and
if either detects a discrepancy between the signals of its partner and itself then it must
disconnect both sub-lanes. That is, the drive signals to the actuator are disconnected
and a caution is issued to the pilot signalling a single fault. The other lane functions
normally and hence provides the required fault tolerance. Should, however, the
second lane also become disconnected because of the occurrence of a further fault then
there will be no drive to the actuators and the requirement is to cease ACT operation and

67

disconnect the system, simultaneously issuing a disengage warning. It is clear that
although the outline concept is for four similar units to be connected into a dual duplex
arrangement, the reality must be more complex. It is necessary to provide the
interconnections shown in Figure 7.12. Essentially, the MAIN unit provides the
functionality, the COMPARATOR unit provides the cross sub-lane monitoring, and the
CAUTIONS and WARNINGS unit operates the reconfiguration. Consequently there
must be cross sub-lane connections between the MAIN and COMPARATOR units and
in order to detect second faults there must full cross connections between the
COMPARATOR sub-lanes and lanes. These features may be identified in the final unit
/ connection network, Figure 7.13. The ADME_MAIN unit,
ADME_SV_COMPARATOR and ADME_DISENGAGER provide the same
architecture. For dual duplex units the one-to-one connection also provides sub-lane
cross connections, as required for the ADME_MAIN and
ADME_SV_COMPARATOR. The connection to the ADME_DISENGAGER is
defined as one-to-one but in fact uses information from all of the units to achieve a full
cross connection. A significant property of the dual duplex architecture is that through
its sub-lane cross connections it can provide a validity signal to accompany the
functional data. For example, in Figure 7.13, the system state information being made
available to the CLE and CLOSE from the ADME_MAIN is accompanied by validity
information from the ADME_SV_COMPARATOR. The SADME has a similar MAIN
and SV_COMPARATOR part but uses the same DISENGAGER.

Figure 7.13 reveals another interesting feature. For convenience, the
supporting modules for the simulation, described in section 7.7 below, are contained in
a unit called OUTSIDE_SIMULATION so that units such as
PARALLEL_ACTUATOR and AFCS are merely acting as buffers to exchange
information between the supporting modules and the rest of the simulation. These units
contain rudimentary data entities of the type discussed in Chapter 5, and, in fact, that is
their sole purpose.

It should be clear from the discussion above that the development of a database
of unit and connection descriptions with facilities for automatic code generation invites
a refinement of the original element decomposition. The coarse original decomposition
was based simply on the nature of the hardware. It is illustrated in Figure 6.1 and was
used in the production of the written specification. The refinement mainly draws on the
redundancy of the components of the individual elements and therefore reflects more
completely the redundancies within the design concept of the fault management. The
final decomposition into units , therefore, reflects all of the redundancy of the system

68

and all of the basic separation into separate hardware elements. In the application of
composite simulation each of the units is specified as a JSD unit, so that the simplicity
and flexibility of composite simulation, as described in Chapter 5, is applicable to the
refined decomposition. In a complex application it is an advantage to have a simple
methodology [54].

7.7 SUPPORTING MODULES
The earlier sections of this work have described the features of an Ada

simulation which is an implementation of the JSD specification of a complex system.
In order to give a system simulation a representative environment in which to operate it
will, in general, be necessary to supply either real hardware, or additional simulations
with which the system simulation can interact. The use of real hardware usually
requires real-time performance from the system simulation, so even in this case, an
initial phase of additional simulation support is likely. It should be bome in mind that
the features of the supporting simulation need to be tailored to the needs of the system
simulation and not the overall application - as commented upon in Chapter 5. These
principles are enlarged upon in the remainder of this section, where, as an illustration,
the supporting modules developed for the ACT Lynx System simulation are discussed.
Where Ada packages have been developed, their specification is listed in Appendix 5.
The full Ada code is documented elsewhere [55].

7.7.1 Helicopter Model
The loop from the system’s actuators back to the Sensor Element is closed by

the provision of a helicopter simulation. The input to the helicopter simulation is the set
of four PFCU displacements, as a percentage of total travel, and its output is a set of
data for the AMSE and the ADSE. The AMSE requires the three body axes components
of acceleration, the three body axes components of angular velocity and the three
attitude angles. The ADSE requires the three body axes components of velocity and the
altitude. The simulation was supplied as an Ada Package Linear_Heli. It is based on a
simple linear model of the dynamics of the Lynx helicopter. There is no need, at least
initially, to employ a full non-linear model since the purpose of the simulation is not to
mirror with any precision the vehicle’s flight mechanics. Also a linear model consumes
a relatively small fraction of the available processor power. A more sophisticated model
is easily incorporated at a later stage simply by specifying a different package body and
compiling it. Nevertheless it is important that however simple the model incorporated
into the simulation it should be adequately verified. The integration algorithm (Runge
Kutta order 4) was checked with a test problem and the helicopter model verified
against an independant simulation. Further, the eigenvalues of the system matrix were

69

checked against the values from the HELISTAB package [56], from where the trim
values and matrix coefficients were obtained. Finally, the simulation was perturbed
and the dominant eigenvalues were extracted from the sensor data and compared to the
value obtained directly from the matrix. The extraction of the dominant eigenvalues is
easily done by adapting the Power Method Iteration [57].

The state vector xn after n steps of steplength h may be written:

r

xn = ^ ci u i e^inh

where Xj are the distinct eigenvalues of the linear system, of dimension r, with
corresponding eigenvectors u j. After a sufficiently large number of steps only the

dominant mode, corresponding to i=l and 2 without loss of generality, is significant
so that:

xn = C1 ui eM 11*1 + c2 u2 eX2nh.
Now put

V1 = clu l eM 11*1 and v 2 = c2 u2 e ^ n h

so that
xn = v l + v 2>

x n+ i = v i eM h + V2 e^2h,

xn+2 = V1 + v2 e^22h.

If eXlh and e^2h are the solutions of the quadratic a+bm+m^ =0 then it follows that

axn+bxn+i+xn+2 =0,

from which any two convenient components may be used to find values for a and b.
The quadratic a+bm+m^ =0 may be solved for solutions mi and m2- Finally, for i= 1

and i=2, Xj is calculated from mj = e^i^ . For complex conjugates: R[Xj] = log|mj|/h
and I[Xj] = arg(mj)/h.

70

7.7.2 The AFCS
When the ACT system is not engaged the helicopter is stabilised by the normal

Lynx autostabilisation equipment. The Automatic Flight Control System (AFCS) uses
sensor signals to provide feedback via the series actuator of the existing Lynx PFCU.
A single Ada package was supplied to simulate both lanes of the AFCS function. The
package was subjected to the same stringent checks as the original Linear_Heli package
to ensure that the AFCS correctly modified the helicopter’s dynamics.

7.7.3 The PFCU
The existing Primaiy Flight Control Units (PFCUs) are to be retained in the

ACT Lynx. The simulation module supplied for the ACT system simulation
incorporates simple, linear lag dynamics. Initially, as discussed above, this simple
model is acceptable and when a more realistic representation is required provision has
been made in the existing Ada package to include non-linearities in port shapes and
flow-rates.

7.7.4 The Series Actuator
In reality, the Lynx series actuator is embedded in the PFCU hardware. Its

input is directly added to the pilot’s control run by a movement of the fulcrum of the
control run’s lever. The PFCU valve is attached to the centre of the lever. The
simulation module was supplied as a separate Ada package since the series actuator is
closely integrated into the ACT system: it will be recalled that there is provision for the
high frequency component of the demand to be diverted through the series actuator.
Again, as initially supplied, the dynamics are represented by a simple linear relationship
between valve displacement and actuator velocity with provision for subsequent
inclusion of non-linearities. Such aspects are not crucial to the system simulation - but
what needs to be included are the features necessary to support the ACT functions.
Therefore, for each control axis, the package imports drive signals from each of the
four ADME sub-lanes and consolidates them within lanes for driving the duplex series
actuator. As output, the package exports a consolidated fulcrum position for use by the
PFCU and four separate position pick-off signals for feedback to the ADME sub-lanes.
In addition four connection signals are imported from the ADME sub-lanes since the
redundancy management may need to disconnect a faulty series actuator lane. The
performance which needs to be verified by suitable testing has, as a major part, those
aspects which are concerned with the validity of the response under different
connection and feedback arrangements.

71

7.7.5 The Parallel Actuator
The parallel actuator, it will be recalled, is a vital part of the ACT system. It is

connected to the safety pilot’s control run so that when the system is engaged - or
equivalently, when the actuator is energised - the parallel actuator back drives the
control run. When the system is disengaged the control run drives the parallel actuator.
Therefore the engage/disengage information is part of the simulation of the parallel
actuator. As with the series actuator, the Ada parallel actuator package incorporates
linear dynamics with provision for including certain non-linearities. To support the
actuation function, for each axis, the package imports drive signals from each of the
ADME sub-lanes together with corresponding connection information. It exports the
control run position, and four separate actuator position signals for feedback to the
ADME sub-lanes. The engagement / disengagement function requires the importing of
engage and disengage signals form the ADME and PCP respectively. These are
detected by the simulation, and hydraulic bypass valves are appropriately positioned.
The positions are monitored by microswitches and it is the positions of the
microswitches which are exported to each sub-lane of the ADME to convey the actual
engagement state. It is clear that it is the performance of the parallel actuator under the
wide variety of sub-lane connection and engagement states which has to be thoroughly
verified from the system point of view and not for example the authenticity of the port
orifice characteristics.

7.7.6 Other Modules
It is convenient at this point to list the additional modules which were specified

in algorithmic form for the ACT Lynx System simulation. They were incorporated
within the JSD networks for the appropriate units.

(a) A basic control law for inclusion in the CLE. The AFCS algorithm was employed
for this purpose.

(b) A frequency splitter algorithm for inclusion in the CLISE. The low frequency
component was obtained by a low pass filter (simple lag) and the high frequency
component calculated as the difference between the low frequency component and the
original value.

(c) A curtain limiter algorithm for inclusion in the CLOSE. This type of limiter
constrains the demand to a particular region of the phase-plane. The original version
supplied by RAE was found to be incorrect. A correct version is derived in Appendix
3.

72

7.8 OPERATING THE SIMULATION
Figures 7.1 to 7.4 show some photographs of the screen of the Dell 310 during

the operation of the simulation. Figure 7.1 shows the Repeater Panel when the ACT
system has been engaged. In Figure 7.1(a) in addition to the the power-up lamps the
green engage lamp is lit. After disengagement the red warning lamp is lit, as shown in
Figure 7.1(b). To the right of the Repeater Panel there is a display of the parallel and
series actuator displacements, which is essential for monitoring the effect of inceptor
movements - or their emulated equivalent. Figure 7.2 shows the more complex layout
of the Pilots Control Panel; there is little difference between the two displays in the
simulation but in reality the PCP would incorporate the buttons for engagement,
disengagement, and operating the system test. The button positions are shown on the
display but naturally have no effect. Figure 7.3 shows the mode control panel display
for the selection of control modes. A press of the mode scan button (or keypad
equivalent) moves the scan position along the top of the display. When the desired
position is reached then a press of the select button invokes the ARM and CAPTURE
sequence for that mode, lighting the corresponding lamps. Select also turns off a mode
if it is currently selected. Finally in Figure 7.4 the Menu Panel is shown. On the right
are the display areas for diagnostic and interaction messages from the CLISE and
ADME, while on the left are the displays and buttons for selecting control laws and
parameter sets. Also on the left are the buttons and displays for the selection and
injection of preprogrammed control inputs as part of the aeromechanics research
facility.

7.9 REVIEW OF THE SIMULATION
The implications of using JSD techniques to specify a complex system were

fully appreciated at the beginning of the ACT Lynx specification exercise. It was
realised that such a specification would enable a simulation of the system to be
implemented in a disciplined but straightforward manner. So that while the JSD
specification would verify the design, the simulation would help to validate it.

As reported earlier, there were initial difficulties with using JSD but once these
were overcome, and the principles of composite simulation understood, it was
anticipated that generating the code would be a long, routine exercise largely devoid of
intellectual content. In fact, as has been described above, the very magnitude of the
task stimulated the unit description, and unit /connection network approach and the
whole idea blended well with composite simulation. Apart from the practical utility of
unit / connection descriptions in relation to code generation, there are two additional by­

73

products. First they focussed attention on the inherent architecture of the redundancy,
and invited a refined decomposition. The application of this further decomposition
necessitated a careful interpretation of exactly what constitutes duplex or triplex. These
matters are considered again in Chapter 9, but may be simply illustrated here by taking
the example of the Aircraft Motion Sensing Element AMSE. Each AMSU consists of
identical (within practical manufacturing tolerances) rate and attitude gyroscopes so that
it is not unreasonable to consider the AMSE as triplex. However, in practice, the
AMSUs could not be all mounted in an identical position so that the data that they
process differs from unit to unit. Therefore their outputs will differ in a way that is not
attributable to noise nor to manufacturing tolerances and so in that respect the
processing in the AMSE is not triplex. The second by-product is that the unit/
connection networks shown in Figures 7.9 -7.11 to a large extent usurp much of the
value of Figure 6.1 which shows the decomposition into logical elements. The latter
has value as indicating the general framework and context of the specification, but the
former, having been derived from the same database that is used for code generation,
have an unchallengeable authenticity. The concepts and practice of the unit/connection
descriptions and their corresponding networks are generally applicable and are a useful
supplement to conventional JSD. When integrated with a code generation tool, the unit
/ connection description becomes a demonstrably powerful technique.

The value of the simulation as a tool to validate the written specification and to
evaluate alternative development paths depends on the ability of the user to know what
is happening in the simulation. Much of the information relating to engagement and
disengagement of the ACT Lynx system is conveyed to the pilot by the PCP and RP.
In addition, the system diagnostics are displayed on the Menu Panel. The remainder of
the information about the state of the ACT Lynx system is managed by the External
System Support Element (ESSE), and so this application inherently contains full
instrumentation of its operation. In a general case this may not be so, and consideration
must be given to providing ’’eyes” into the simulation by supplementing the system
specification with a specification of adequate instrumentation.

One of the aims of the ACT Lynx system simulation was to assess the
computational load so that realistic hardware could be specified for the airborne system.
It has been a salutary experience to discover the actual size of the computational load
and the need for close to real time performance even in a simulation to make it useful
for validation and evaluation studies. Naturally one would expect the emulation of
triplex and dual duplex systems on a single processor to provide some degradation but
the extent of the degradation caused by the monitoring and consolidation is serious. At

74

the end of Increment 5, for example, a problem frame time of 20 ms took 14 seconds of
computer time. The result was that the response to key presses was so sluggish as to
make the simulation virtually useless for extended validation. The implications for a
general situation are fairly obvious: the simulation may need to migrate to higher
performance platforms in order to be able to mount useful simulation studies. There are
two factors which, while not redeeming the situation, ameliorate it to a certain extent.
First, deficiencies in computational power are much easier to remedy at the specification
stage than at construction - so to that extent the simulation has done its job. Secondly,
one of the features of a JSD design is its relative ease of transfer between different
implementations. For a large simulation it would not be a trivial exercise, of course,
and the availability of code generation tools would probably be essential, but the
method caters for it.

75

CHAPTER 8

SUMMARY

Summary
This brief chapter summarises the achievements of the research described in this

thesis in relation to the original aims (In Chapter 9, these achievements are examined
more critically). First the application of JSD to complex systems is considered,
followed by a discussion of the evolution of the living specification. Next the role of
decompositions and the value of unit networks are emphasised. Finally the overall
strategy regarding fault management is described.

8.1 JSD FOR COMPLEX SYSTEMS
The starting point for the research was the need for a specification method for

complex systems. The need for precision and verifiability invited the use of software
engineering techniques and established the task of applying Jackson techniques to
other than digital systems. The resolution of the difficulties associated with the use of
JSD came from a generalisation of component simulation into the concept of composite
simulation, where a system is divided into independently evolving units which inter­
communicate solely by state vector inspections or polling operations. The units are
conveniently conceived as being based on the fundamental hardware architecture, but
other criteria, such as integral redundancy, may be used. The simplicity of the basic
technique suggests that it is adaptable to a variety of decompositional criteria. The
method’s simplicity should also make the JSD aspect more accessible to the typical
systems engineer since it focuses on data entities initially and postpones the more
esoteric modelling until a later stage. The method is described in Chapter 5, and was
used to develop a JSD specification for the ACT Lynx system. The ACT Lynx system
is sufficiently complex and comprises sufficiently diverse components as to make its
specification a substantial task and a demanding test of the proposed method. The
success of the extended JSD method in this application demonstrates its suitability for a
wide range of complex applications.

8.2 THE LIVING SPECIFICATION
The opportunity to derive a simulation from the JSD specification was

appreciated at an early stage of the work, but the realisation of its relevance as a
integral part of the specification came later. It matured into the concept of a living
specification; one that was derived in a formal manner from the written specification

76

and could be exercised to give a ’hands on’ validation of the specification or evolve in
parallel with developments in the system design. The use of simulation to validate the
specification of large software systems is gaining acceptance, but the application to the
specification of a complex system is believed to be new. It is important to distinguish
between unstructured prototyping and the discipline of the living specification.
Prototyping as a way of designing and specifying systems was earlier referred to as
high level ’hacking’. Such abuse may be uncalled for in many applications but it does
highlight the dangers of an unstructured approach to system development. The
terminology ’living specification’ was adopted to emphasise the distinctive nature of
the disciplines adopted in the current work. It has four components:

(1) Text specification.
(2) JSD design
(3) Ada code
(4) Simulation

Any modification - correction or enhancement - progresses in the order shown, from
text through JSD and Ada to simulation. The simulation is modified only by this route.
Indeed, components (3) and (4) are generated automatically. The crucial aspect of the
living specification is that, through the simulation, it makes the specification accessible
to systems engineers and other persons who are not expert in JSD. Thus the range of
persons who can contribute to the validation of the specification is increased
significantly.

8.3 DECOMPOSITIONS
The successful use of composite simulation with JSD Units relies on a sensible
decomposition of the original system. This additional factor departs from conventional
JSD since the decomposition operates at a high level and JSD is not a top down design
method. Therefore there is some danger of making a decomposition that is
inappropriate. The result would be a JSD design where process (modules) would
exhibit a high degree of cross Unit coupling and low cohesiveness. Conventional JSD
relies on its careful modelling phase to guarantee high cohesiveness. The present work
has demonstrated that a decompositions based on the underlying hardware and on the
replication characteristics of the components of the system can both be successfully
treated by composite simulation. In addition to breaking down the system into
manageable units from a specifier’s point of view, decomposition assists by providing
a rapidly assimilated view of the total design concept which can be useful in

77

communication between members of the design team and in project management in
general.

8.4 UNIT NETWORKS
The need for a graphical representation of a system is well illustrated by their

evolution within the ACT Lynx application. The first attempt is shown in Figures 3.1-
3.3 which brought together all of the information of the preliminary studies and was
compositional in nature. The next overall representation was the decomposition into
logical elements as depicted in Figure 6.1, where the compositional aspects are hidden
within the element components. Finally the unit / connection networks of Figures 7.9-
7.11 present the results of a decomposition based on a practical allocation of hardware
and on the redundancy of components within that hardware. However valuable the
representations prior to the unit/connection networks, it is these final diagrams than
possess the ultimate integrity. Their status is unique in the project: they offer a high
level view of the system from a variety of standpoints yet they are also the foundation
of the code generation database. The ACT Lynx experience is convincing evidence that
unit / connection networks must form part of any JSD specification of complex
systems: they have an authority which less formal representations can never possess
and yet they are just as accessible to the non-JSD specialist.

8.5 FAULT MANAGEMENT
Redundancy is introduced into a complex system in order to comply with

requirements concerning reliability. As such, it is not usually the prime function of the
system or a concern that first drives the design concept. When it is introduced, one
must guard against the neglect of a proper consideration of how that redundancy is to
be managed in the context of a fault management strategy. There are benefits in
adopting a uniform policy throughout a system: not only because of the conceptual
simplification that occurs but also because of the practical benefits of reuse of standard
modules (instantiations in Ada) in the specification and simulation. In the ACT Lynx
specification the fault management is built on three layers. The first layer provides the
robustness to invalid data by a voting or median-select algorithm. The second layer
provides a monitoring of the data in order to identify invalid data - errors - which are
symptoms of a faulty source. The second layer generates diagnostic information and
also sends messages to the third layer, which provides the reconfiguration necessary to
isolate the faulty source. The success of this approach including its suitability for code
generation shows a potential for general applicability.

78

8.6 CONCLUSIONS
All of the original objectives of the research have been achieved. Principally: -

1. The way to use JSD for complex systems has been established.
The absence of such a technique was a considerable stumbling block in the early
versions of the ACT Lynx specification.

2 .The concept o f a living specification has been developed. It has
resulted in a specification which is accessible to non-specialists and therefore
widens the scope for validation.

3. The unit / connection network has been developed from the
initial JSD Unit concept. This network is a valuable contribution to the
documentation of the specification since it provides a high level view of the
system which, again, is accessible to non-specialists but at the same time
contains essential information, which when viewed from beneath, controls the
generation of the simulation.

4. An overall fault management strategy has been developed. The
uniform application of the strategy within a system confers benefits in terms of
the clarity of the specification and standardisation of software.

The techniques described above have been applied in full to the ACT Lynx
system with considerable success. One can be confident that this application is
sufficiently representative as to ensure that the methods have a wide applicability.

79

CHAPTER 9

REVIEW

Summary
This chapter contains a critical review of the achievements of the research. The

purpose of the review is to identify recognised or potential weaknesses in the
specification method. They are then be analysed in order to suggest future work for
strengthening the method’s philosophy and techniques. First, the role of JSD is
examined against some possible alternative methods of producing a specification.
Next, the contribution of JSD Units to the method, and a possible area of
generalisation, are considered. Following this, some aspects of the treatment of
redundancy are elaborated and the requirements for enhanced CASE support are
discussed. Finally the need for a tighter integration of the text - to - JSD step of the
living specification is argued.

9.1 ROLE OF JSD
Although in the ACT Lynx specification the use of JSD was essentially

preordained, the initial difficulties experienced with the method caused a certain amount
of casting around for alternatives. In the preparation of Version 2 De Marco methods
and associated CASE support (Structured Architect) were employed. The resulting
hierarchical description of the system ended its decompositions before many of the
significant design features had been encountered - thus providing a good example of the
situation JSD is guaranteed to avoid. Of course if that approach had been pursued
down to sufficient detail then it could have been successful. An important feature of
JSD is that it asks the designer or specifier to tackle the difficult areas first. In general,
design needs to be done in a compositional way [54], while analysis may be done in a
hierarchical way. Therefore the hierarchical approach does not help the designer/
specifier to solve the design problems, but it can help him write down the design once
he has solved them. Difficulties can arise, as in the early versions of the Lynx work,
when the hierarchical description is partially written down, because it is not clear
whether or not the designer had solved the problems when the description was
terminated. One may draw the conclusion that hierarchical methods are valid provided
they are worked down to sufficient depth.

The same general conclusions may be applied to SADT [19]. The specification
methods CORE [12] and MASCOT [13,14] have an established reputation for the

80

rigour of expressing a specification but in essence depend on the explicit or implicit
existence of a valid system definition. Petri nets [11] were considered for expressing
certain of the synchronisation requirements at one stage of the ACT Lynx work but in
the absence of a formal transformation into code were not pursued.

Formal methods, such as Z [58], were only briefly considered. The aspect that
was of particular importance to the present work was the validation task. It is possible
to pose questions to a formal specification and to be able to derive its the response, so
that in principle thorough validation may be performed. It did appear that to perform
this task required skills in formal methods and predicate calculus that were beyond
those of most of the persons who would need to be involved in the validation exercise.
In this respect a simulation, as used in the Lynx study, has a major advantage. An
additional consideration was that tools for generating code from a Z specification were
not available. Moreover it was considered that the application of Z to such a large
system would be a task of enormous magnitude. It is possible that such concerns are
unwarranted misconceptions and that a representative subsystem should be selected for
a future study.

It is interesting to note that Jackson methods provide complete coverage from
system definition and scoping to the actual implementation in code. This wide coverage
had relevance to its application in the living specification sequence: text - design - code -
simulation, and in retrospect there are no obvious disadvantages to the preference of
JSD over other methods.

9.2 JSD UNITS
JSD Units, as described in Chapter 5, are time evolving JSD networks that only

interact through state vector inspection, that is, polled information. Their very
simplicity is a cause to question whether or not they are too simple. It would be
possible, formally, to allow datastream connections between Units. In a practical
application this would correspond, in composite simulation, to a discrete message
being sent, for example, from a digital unit to an analogue unit. Using only SVI the
method of handling the message would need to be an explicit part of the design - which
could indeed reflect the real situation with respect to the requirements of the analogue
unit.

In fact, in the ACT Lynx application SVIs were retained as the sole means of
communication between JSD Units. The simplicity of this approach and its flexibility
when the options for decomposition are being considered convey substantial benefits,

81

which have been noted elsewhere [32]. Therefore the preferred method is to avoid
data-stream communication in the early stages of design and specificaiton and, if
necessary, include them later. As in the Lynx project, that may prove unnecessary.
Nevertheless one can envisage the situation where the datastream is likely to be
essential - keyboard input into part of the system, for example. In fact, asynchronous
communications between digital units can only be accomplished by data-stream, and
SVT must be implemented this way [59, 60] - although this may not encroach on the
design representation. Incorporating data-streams into the hardware descriptions is not
a difficult task so the principal criterion must be that arising from specification
efficiency (that is, clarity and simplicity) this criterion added to the experience on the
ACT Lynx work indicates that the primary emphasis must be on SVI as the preferred
means of communication between JSD Units.

9.3 CONSOLIDATION WITH VOTING
In Chapter 6 there is a description of the consolidation algorithm [48] which is

needed to ensure that signals are ’seen* by all or none of the replicated units of an
element. The modification which is necessary in order to achieve robustness - that is
continued operation in the event of a single failure - is also described. However, it
does appear that even with this consolidation strategy there is a danger that
asynchronous operation of sibling units could give problems. As an example consider
the operation of the CLISUs when conducting a system test. The system test is only
started if the rotor brake is on. Therefore it is possible because of the different phasing
of the asynchronous units for one CLISU to enter system test while another does not,
because the rotor brake has changed its state in between the samplings of the CLISUs.
There is no problem in this application because the system test process will abort when
the rotor brake is subsequently detected as being off, but, in general, one must guard
against the situation where although the signals are consolidated the internal logic may
not be; particularly, of course, if there is any latching of discrete data.

9.4 UNIT DESCRIPTIONS AND REDUNDANCY
Where replicated units are employed to provide a specified redundancy, the unit

/ connection description allows a simple description of the system. At some parts of the
design this can open up a debate about the nature of replication - or when triplex is
actually triplex. In Figure 7.10, for example, it should be clear that the triplex CLISE
is actually triplex because, within the tolerances of an asynchronous system there is
identical processing of identical data. In reality, this is not the case for the AMSE since
the triplex sensor pack contains attitude and rate gyros together with accelerometers,

82

and while these are identically constructed they physically cannot be placed at the same
location relative to the centre of mass. Consequently the data that they produce cannot,
in general, be identical. This effect was initially ignored in the ACT Lynx simulation
but it is clear with hindsight how it should be treated. It is correct to describe the
sensor element as triplex and the units should be identical. The information relating to
the relative centre of mass position should not form part of the sensor element but
should be obtained from the Helicopter Entity as part of its configurational information,
since this data belongs to the helicopter itself and not the sensor. As a corollary, one
can asssert that the connection to the CLISE would not then involve a conventional
monitoring but would necessitate a special interface. The resulting view of the AMSE
is much more satisfactory and is a useful prototype of how to treat identical units which
process dissimilar data.

9.5 DUAL DUPLEX CONCERNS
A dual duplex system architecture is a simple concept but provides a number of

puzzles should designer wish to incorporate a consistent philosophy in its specification.
In the ACT Lynx, the dual duplex nature of the ADME was adopted at a time when the
parallel actuators were envisaged as being totally duplex with duplex driven valves (as
in the PFCU series actuator) in addition to a duplex hydraulic supply. The architecture
persisted when, subsequently, an actuator with a simplex valve became the favoured
solution. It is one result of the JSD design phase that it has revealed just how intimately
the processing in the ADME is influenced by the architecture of the parallel actuator and
any alternative actuator architectures need to be evaluated in detail.

There was also the consideration that a dual duplex implementation would allow
an inexpensive protection against common mode failures. This would be achieved by a
dissimilar implementation of the A and B sub-lanes. Clearly the argument is nonsense
since any such discrepancy between the A and B sub-lanes would be repeated in both
lanes and the whole system would fail. Nevertheless it is an argument that gains
occasional currency.

The benefit of dual duplex architecture arises from its self monitoring capability,
as shown schematically in Figure 7.12. Thus each sub-lane not only supplies its
functional data but in addition a validity flag. Both sub-lane flags of a lane must be set
to valid before any sub-lane functional data is to be accepted by a destination unit.
Therefore any sub-lane of a lane can mark as invalid both sub-lanes of the lane it
belongs to; this property is the strength of the dual duplex arrangement. It will be
observed in Figures 7.12 and 7.13 that the Main part of the ADME produces the

83

functional data while the Comparator part produces the validity data. The question then
arises as how to connect a dual duplex element to, for example, a triplex element and
whether standard monitoring and voting is applicable. The connection which carries the
system state information from the ADME to the CLISE and CLOSE in Figure 7.13 is a
particular example. Since the validity information is already available then no
monitoring o f the connection is required and all that must be included is the appropriate
reconfiguration response to the received validity signals. This is the essence of a
connection issuing from a dual duplex source - no monitoring is needed since it has
already been done. In fact the dual duplex arrangement is at its most useful when the
destination element, by its nature, contains no monitoring: a situation which is
precisely satisfied by the connection to the parallel actuator in the ACT Lynx system.
The actuator is a standard electro-mechanical hydraulic device and can process (respond
to) the drive data sent to it and even provide a measure of voting by means of a force-
fight in the valve. In addition, it can reconfigure - simply by means of disconnection of
the drive signals. However, it cannot monitor signals and relies on the validity signals
of the ADME in order to effect a reconfiguration.

Consolidation of signals received by a dual duplex element is another difficulty.
The consolidation algorithm [48] does not transfer directly to dual duplex.
Consolidation across sub-lanes, followed by consolidation across lanes is possible but
carries a burden of substantial complexity. Possibly the best solution is to treat dual
duplex as quadruplex for the consolidation of incoming signals with a subsequent one
to one connection to the dual duplex arrangement. The connected units would need to
operate in synchrony as in Figure 6.8 so this architecture could not be cast in terms of
separate hardware units. Therefore one is left with the rather untidy situation of an
element composed of four sub-lanes viewed on input as quadruplex but on output as
dual duplex. In the ACT Lynx simulation this issue was left unresolved and only
consolidation between sub-lanes was applied to the connection between the CLOSE and
the ADME.

9.6 TEXT INTEGRATION
The weak link in the progression from a written text specification to a working

simulation as shown in Figure 8.1 is the step from written text to a formal JSD design.
This step is a major design activity; in the case of the ACT Lynx the text was prepared
first and the full JSD derived from it as a subsequent verification exercise. No major
problems arose inthis instance because great care was taken in the preparation of the
original text to solve all of the design problems and weave the solution into the
operation narrative. An alternative approach would be to develop the narrative and the

84

JSD in parallel. Either way one arrives at the situation where both text and JSD
specifications are available and one must then consider their consistent, mutual
evolution as subsequent design changes are incorporated. Since the text to JSD step is
not automated, maintenance of this step must be a manual activity and hence prone to
the usual sources of error and omission. It is therefore appropriate to consider how it is
possible to protect the integrity of this step. Ideally it should be automated but a less
ambitious approach may be considered in the first instance which is to maintain the
specification on the same database from which one can either generate a text narrative or
a JSD design. An initial, simplistic implementation would be to hold within the unit
and connection descriptions the block of narrative appropriate to that unit. At that level
the integration is unlikely to be adequate yet to go beyond that to the process level is
more problematical. This is a significant technical problem which requires further
study. In any work in this area it should be borne in mind that the text narrative should
be readable, natural language and not an inaccessible formalism.

9.7 LARGE SIMULATIONS
The focus of the work described in this thesis has been on the development of a

specification method for complex systems - in the special sense o f’complex’ meaning
composed of dissimilar engineering devices. Ultimately as the final stage in the living
specification’ there is a simulation whose principal purpose is to provide validation of
the specification and design.

It has become clear during the course of this work that the technique has
implications for simulation studies too - and one may cite the avionics-system
evaluation facility of Reference [32] as an indication of the relevance of this remark.
Large scale simulations which often include elements of real hardware and imported
software are notoriously difficult to manage. The principles associated with the living
specification offer a way of managing the often dynamic environment of a large
simulation in a way which protects its integrity. There may be a shift of emphasis in
the purpose of the exercise - away from validation and towards performance prediction
- but the principle of specifying the higher level and generating the detail holds good.
Some simulation establishments have made progress in this direction [61]; the work
described herein suggests that these developments are on a solid foundation.

9.8 CONCLUSIONS
This chapter has concentrated on examining critically the difficulties

encountered in applying a specification method in a practical situation. The discussion
should not detract from its success in that application since in many instances it is the

85

application of the method which has brought to light fundamental issues - particularly in
regard to consolidation and the management of redundancy. The general approach of
the method led to the unit/connection descriptions for which some uncertainties
remain. This is mainly because they are not yet a mature concept and need to be
employed in other applications before one can assert what are the most useful
interfaces to incorporate within the unit and what should be left as special - or
particular to the application. As a consequence of the discussions in this chapter,
several important areas for future study have been identified. They include: -

1. The application of formal methods to a representative sub-system of the ACT
Lynx.

2. Investigation of the potential scope and variety of JSD Units.

3. A full analysis of the ramifications of consolidation on asynchronous
redundant systems.

4. The automation of the connection between the text and JSD parts of the
specification.

The last of these being the area requiring most urgent attention.

86

APPENDIX 1

CASE TOOLS

Summary
The requirements of software tools to support the specification and simulation

method described in the present work are discussed. The foundation for such tools is a
database which is supplemented by a suite of object editors. The discussion is centred
on the suitability of the Speedbuilder CASE tool [37].

A 1.1 THE DATABASE
At the heart of any software tool for Computer Assisted Software Engineering

(CASE) is a database of some kind. At is simplest it may take the form of a set of
records of the type shown in Figure 3.6 which may be used to assemble a diagrammatic
representation of the whole network diagram similar to Figures 3.1 - 3.3 . In this case
there is only one kind of record - that of a process. A more useful representation of the
network may be obtained by additionally storing a set of records relating to the
communication between processes, such as data streams in JSD. Even at this
elementary level the database serves two important functions. First, the consistency of
the design may be confirmed, in as much as each message has both source and
destination, and contains valid attributes. Second, a diagram can be assembled from
the components defined on the database. This second factor - the visual representation
of the design - contributes very little to the integrity of the design but provides a vital
human interface for communication between a design team and for design elaboration
and validation. The combination of a graphical representation for human interaction
together with the imposition of consistency through an underlying database is the
essence of a successful CASE tool and Speedbuilder, for example, suffered initially
from the absence of network graphics. Entering network information in text form is
not conducive to creative design work.

The layer below the network in JSD is the process layer and the database should
also contain, or in practice point to, the details of the process internals (Other methods
refer to the processing being done by activities). Since the processes are defined using
JSP, the database contains the JSP structure together with information about
conditions and operations. Once again there is a graphical representation [52] for the
database information and JSP structures are displayed as tree diagrams.

87

The are two further areas where the database, through its Data Base
Management System (DBMS) should contribute. One area generalises the maintenance
of consistency referred to earlier and imposes the disciplines of the design method. For
example, in a hierarchical method such as SADT [19] the database must impose the
network hierarchy and constrain the number of branches at each level to the appropriate
number (typically 6). In a JSP tree diagram if one component is a selection then all of
its siblings are also selections; a component that is an iteration cannot have a sibling
(Such considerations have given rise to the comment that the tool is the method - a
statement that may serve as a warning to designers of CASE tools). To reinforce the
point further, consider Figure 1.2. It has been drawn using a drawing package; its
objects are boxes, lines and character strings and the drawing package stores the
drawing merely as a set of graphical objects since it has no knowledge of the syntax
required for JSP. A CASE tools would store it in terms of sequences, iterations and
selections and implicitly verify the JSP syntax.

The second area is of particular importance in the development of the living
specification and concerns the use of the database for the generation of code. Software
for code generation requires complete, standardised information upon which to apply
its templates and the database is required to support this activity.

A l.2 EDITORS
The graphical representations arising from the database objects described above

offer the opportunity to populate the database by direct editing of the graphical
representation rather than by entering text into database records. The Program Design
Facility PDF [52] provides this facility for the JSP structure diagrams, and a network
editor is available for use with Speedbuilder. Changes made to the graphical
representation are then written through to the underlying database automatically
updating the fundamental data. A disadvantage of this approach is that the system
network may become so large as to be unmanageable on the screen. For Speedbuilder,
the compromise has been to restrict the graphical window to the size of two A4 sheets,
and display only a fragment of the total network. Therefore the database includes a set
of network fragments which fit together like a jigsaw to comprise the whole system.
Alternatively, they maybe considered to represent different views of the database
relating to various aspects of functionality. Figure 2.8 shows, for example, that part of
the CLE network concerned with the control law algorithm. A hierarchically developed
network is obviously much more straightforward to display on a screen.

88

Although it is, in principle, quite possible to specify a system solely by
interacting directly with the database records the use of graphical editors gives a
substantial increase in user acceptability and design visibility.

A1.3 UNIT/CONNECTION DESCRIPTIONS
The discussion above is well illustrated by the introduction of JSD Units and

their inclusion in the specification and code generation aspects of the ACT Lynx
project.

Speedbuilder allows the user to define new objects - in this case Units and
Connections - and to manipulate them within the Speedbuilder interface. Further, the
object definitions are then available in a standard way to the code generator. It is clearly
advantageous if a DBMS will allow the definition of new objects since the ability to
explore new specification and simulation techniques was critical to the development of
the living specification for the ACT Lynx. However, in the case of Unit and
Connection descriptions there was no editor available to display or modify the unit
networks. The absence of software to produce diagrams such as Figures 7.9-7.11
automatically from the descriptions held on the database was a distinct disadvantage.
Note that for these diagrams too it is necessary to restrict the diagram to particular
views of the system in order make the size acceptable.

A1.4 CONCLUSIONS
From the experiences with the Jackson software in use on the ACT Lynx

project it is clear that even with a well defined method such as JSD, it is important to
have tools with a general capability which are then tailored to the various disciplines of
the method. For JSD this would include a generalised tree diagram editor and a
generalised network editor.

89

APPENDIX 2

MODELLING OF ACT LYNX SYSTEM CONTROL

Summary
The modelling of the ACT Lynx system control via a supervisor process is

discussed for both Finite State Machine and Jackson approaches. A comparison is
made between the two methods and the concept of an overall supervisor process is
questioned.

A 2.1 INTRODUCTION.
Two questions which dogged the early stages of the development of the

specification of the ACT Lynx System were those of the suitability of JSD and the
necessity for a supervisor processto oversee all of the pilot interactions. The
supervisor is discussed in Chapter 4, and an initial state transition diagram for a FSM
approach is shown in Figure 4.3. Within the design team there was some support for
the basing future developments on the FSM since the initial state transition diagram was
readily understood by non-specialists - which property is a considerable aid to
validation. The initial misgiving were in relation to the difficulty of implementing a
supervisor process with sufficient integrity since it was conceived as a separate
component of hardware. Nevertheless there appeared to be value in continued
development of the idea and a more detailed study was undertaken [40]. The study
compared the FSM and Jackson designs for a more detailed analysis of the ACT Lynx
requirements. The discussions and conclusions are pertinent to the general question of
control of a complex system so they are summarised in the sections which follow.

A 2.2 FINITE STATE MACHINE MODEL
Figure A2.1 shows the state transition diagram (STD) which resulted from an

elaboration of Figure 4.3 . The terminology is that which prevailed at the time when
Reference 40 was produced; for example, Built In Test Equipment (BITE) is used
rather than System Test. There are two kinds of flight possible: either non-ACT or
ACT which must be preceded by a successful BITE while the helicopter is on the
ground. In the air an Airborne BITE can be selected (A/B BITE and N_BITE) and
indeed must be successfully passed for the ACT system to be engaged. The distinction
is necessary because the BITE on the ground produces movements of the rotor blade
pitch which is, of course unacceptable, in flight. Control mode changes are possible at
any time when the system is not engaged as is the reset of the monitoring system.

90

Therefore these actions appear the ground, the non-ACT and the ACT sections of the
state transition diagram. A clamp action has been introduced which indicates the bake
applied to a stationary rotor. As a consequence the diagram is a little simplified and has
a single entry point. Many of the transitions caused by clamp or apply brake actions
are shown by a token symbol since their inclusion in the conventional way results in a
confusing maze of transition paths. The diagram becomes dominated by the
interruptions to the normal functioning of the system which arise from the application
of the brake. The diagram shows that once almost independent activities such as mode
selection, reset selection, and brake application are accommodated on a single STD
there is an almost combinatorial increase in complexity and the simplicity of the basic
design is lost. In fact the complexity does not detract from the ease of verifying an
implementation of an STD, since its simple structure allows automation of this task.
This is not true of validation, where the complexity of the design process is reflected in
the difficulty of validation. For example, while it is reasonable for BITE to be inhibited
while the system is the rotor-slowing state, it is also appears that mode selection is
inhibited too. The question is whether this is by default or by design.

A 2.3 JACKSON MODEL
The stmcture diagram which models the same activities as the STD of Figure

A2.1 is shown in Figures A2.2 - A2.7. The logical view taken is that a flight is either
an ACT excursion or a non-ACT excursion. This is shown in the first figure - A2.2 and
developed further in the remainder. In particular the BITE, ENGAGE, DISENGAGE
ordering is shown in Figure A2.4. The are three points which can be usefully made
about the diagram. First, although the transformation from STD to tree diagram can be
done mechanically, constructing a structure diagram with sensible logical views was a
difficult task [40]. Second, the number of leaves on the tree diagram is about the same
as the number of states on the STD. There are more boxes on the tree diagram because
of the intermediate boxes in the hierarchy, but the basic complexity is the same - as one
would expect. Finally, the interrupts caused by clamp actions are neatly handled by
QUITS from Posited structures which method, one might argue, properly models the
real situation. The numbers attached to certain leaves of the tree identify the prevailing
context so that a context filter process can filter out unwanted actions. Examples of
allowed actions are:

Context Allowed actions
1 clamp
2 end_m ode, release_b rake

91

35
36

clamp
release_brake, select_mode, select_BITE, select_reset

A2.4 CONCLUSIONS
The conclusion of Reference 38 regarding the comparison of FSM and Jackson

methods was that there was little technically to choose between the two methods. Each
had its advantages and disadvantages and in any case the FSM design can be
transformed automatically to a Jackson structure diagram by a relatively simple tool.

With the benefit of hindsight and subsequent modelling activities it is possible
to add to this conclusion and state that the imposition of a monolithic supervisor
process is unwise in all but the most simple applications. In a complex system, there
are almost certainly a number of almost independent control activities taking place
simultaneously, and a single STD or single thread structure diagram is bound to be so
complex as to give doubtful validation. One can illustrate this by referring to Figure
A2.1 and asking how it should be altered to accommodate control law selection,
parameter set selection, and disturbance selection and injection. The better approach is
to model these activities independently - by FSM if so desired - and them build in the
appropriate inhibitions explicitly. The JSD modelling, with its emphasis on roles,
captures this idea in a natural way. In short, a monolithic supervisor has advantages
when it gives a simple overview of the whole activity. Once it loses this property it
should be discarded.

92

APPENDIX 3

THE CURTAIN LIMITER

Summary
The need for a limitation on the demands and rates which can be applied to an

actuator is discussed in this appendix. The properties of a curtain limiter are introduced
and some examples of its effects are shown. A new algorithm to implement a curtain
limiter is derived; the new algorithm corrects the deficiencies of a previously published
algorithm.

A3.1 LIMITERS
The output displacement from a hydraulic actuator is physically limited by the

movement available to the piston within its cylinder. Similarly, the rate of the
displacement is limited by the physical characteristics of the actuator such as the orifice
size or hydraulic pressure supply. These limits are represented in a simplified form in
the phase plane shown in Figure A3.1(a) by straight lines. The lines bound the region
in which the actuator can move and since they arise from physical characteristics may
be referred to as hard limits for the actuator. It is possible to process the demands
which are to be applied to the actuator and further constrain the actuator movement.
This may be done in order to protect the actuator hardware or in an experimental
situation, for example, to give a measure of protection against system failures; the
effect of a failure which results in a demand being stuck at its maximum value can be
lessened by constraining both the demand and the rate of movement to those
encountered in fairly modest manoeuvres. The pilot thus has a longer period of time in
which to cope with the failure situation. As the system matures and confidence
increases the constraints can be gradually eased to allow the use of the full performance
of the actuators. Limits achieved by processing the demands are referred to as soft
limits and a set of soft limits for demands and rates are also shown in Figure A3.1(a)

A3.2 CURTAIN LIMITERS
The imposition of simple limits on demand and rate confines the output to a

rectangle in the phase plane. There are benefits in considering a region of an alternative
shape and in particular a region shaped so that close to the extremes of the demand’s
range the rates are limited more severely than in the central portion of the range. Such
a situation is depicted in Figure A1.1(b) where the comers of the rectangular region are
excluded from the allowed region. The shape of the comer in Figure A3.1(b) is one of

93

a set proposed by RAE for the ACT Lynx system and investigated by Broad [62]. The
shape is characterised by a quadrant of the conic

X2+eXY+Y2=l

where typical values for the parameter are e=0, corresponding to a circle (scaling to an
ellipse), and e=2 corresponding to a straight line; both are shown in Figure A3.1(b).
The resulting shape shape in the phase plane resembles a curtained window, which
resemblance gives the limiter its name. ‘Closing the curtains’ or bringing the comer
quadrants closer into the centre of the region gives protection against immature control
law software and the curtains can be opened as experience is accumulated and the
software matures. The intercept fraction parameter determines the state of the curtain: a
value of 0.0 fully closes the curtains while a value of 1.0 fully opens them.

A3.3 PHASE PLANE DIAGRAMS

The test runs presented in Reference 62 did not include results in the phase
plane. When the algorithm was used to generate phase plane information the results
shown in Figure A3.2 were obtained. The input demand as a function of time, t, is

x = 50 + 60 sin t

and the parameters of the algorithm are set to limit the output to the range 0 - 100 and
the rate limited to +/- 50. The curtain parameters are: e = 0 and both intercept fractions
are set to 0.5. The output can be seen to be limited correctly in demand but not in rate.
Moreover, there is no evidence of the curtain intercepts. The correct output is shown in
Figure A3.3 which is produced by the algorithm derived in the next section, A3.4. The
correct rate and demand limits have been applied and the curtains can be seen to have
the stipulated intercept fraction. It can be seen that there is a noticeable skew to the
phase plane response; the reason for this skew is explained within the derivation of the
algorithm and is a consequence of the discretisation. An example with the curtains in a
further closed position is shown in Figure A3.4 . Here the input demand as a function
of time, t, is

x = 50 + 50 sin t

and the parameters of the algorithm are set to limit the output to the range 0 - 100 and
the rate limited to +/- 50 as in the previous example. The curtain parameters are: e = 0
and both intercept fractions are now set to 0.25. The tighter constraints on the

94

movement are clearly shown. The influence of the curtains is marked in this case and
leads one to question its effect on a high performance control law such as is anticipated
for the ACT Lynx application. It is an additional aspect which would appear to call for
careful investigation.

A3.4 CURTAIN LIMITER ALGORITHM
Although no derivation of an algorithm is included in Reference A l.l it would

almost certainly be similar to the following:

Let the supplied input demand be x; its rate dx/dt is y and the relationship y= dx/dt
may be approximated by the backward difference:

ynew = (1/dr) xnew ' (l/drjxoid

from which the current value of the rate ynew may be calculated from xnew, the current
input demand, and XqI^, the demand a time step dr previously. Therefore the point R
(xnew»Ynew) ^es on ^ne through Q (xo|{j,0) with slope (1/dr) as shown in Figure
A3.5(a). The line QR is the characteristic line of the algorithm.

If the point R is external to the allowed region of the phase plane, as shown in Figure
A3.5(b), then the values of demand and rate to be provided as output from the limiter
are the x and y values of the point S where the characteristic line meets the boundary of
the allowed region. The use of the characteristic line to implement the curtain limiter
gives rise to the skew previously noted. The skew is determined by the slope 1/dr, and
the skew is reduced as dr -> 0 . Where S lies on a simple demand or rate limit the
calculation of the coordinates of S is straightforward; when S lies on part of the curtain
then the approximation illustrated in Figure A3.5(c) is employed. A is the point on the
curtain with the same x value as R and B is the point on the line QR with the same y
value as A. (The simple limits are first applied to R if they are initially exceeded.) The
point B is used as the approximation to S; the approximation is valid if QR is steep (dt
« 1) . In fact the method can be viewed as one step of a Fixed Point iteration for
finding S. For a single step the configuration is symmetric in all quadrants, which
simplifies the algorithm. If a more accurate solution were required then additional steps
of the iteration would involve distinguishing between the quadrants.

It is interesting to note that an application of the trapezium rule leads to an
alternative procedure based on

95

ynew = (2rtiT) xnew" (2/dr)x0](j - y0]d

where additionally the previous value of the rate is required. In this case R’
(xnew>Ynew) lies on the line through Q’ (xoid,-yold) w^h slope (2/dr), as shown in
Figure A3.5(d).

A3.5 THE ALGORITHM PROCEDURE
The algorithm described above was implemented in Acorn BASIC V procedure

for extensive testing. The following is a commented listing of the procedure:

DEF PROCcurtain(oldem,indem,RETURN outdem, RETURN outrate)

REM This curtain limiter procedure takes in the current value of the demand
REM and outputs the limited demand and rate.
REM indem - the current value of the input demand
REM oldem - the value of the output demand at the previous frame
REM outdem - the output demand from the limiter
REM outrate - the output rate from the limiter (not normally used subsequently)
REM
REM Global variables accessed by the procedure
REM
REM actl,acth - minimum and maximum demands, that is, demand limits
REM actc - datum for limiter (not used)
REM maxrate - maximum value for magnitude of rate, that is, rate limit
REM dt - frame time interval
REM ecc - eccentricity, curtain limiter parameter e
REM dx,dy - fractional intercepts, curtain limiter parameters
¥ \ a » ~'k w j. .1. .t. .i. .i. a, -I. a, |L ̂ jl a, a. at a< ̂ a* a, ̂ ̂ a* a< a* a* ̂ a> a< ̂ ̂ a* a« a« ̂ ^ a< a* ̂ a* a* ^ a* a> ̂ 4c 4* 4cu n /l ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ T T T T n* T T ̂ T T T T T T T T T T T T T T T *r T T* T *r* T T T T T *1* T 'r *1* T T

LOCAL xl,yl,x2,y2,x3,y3,xmax,xc,hx,hy,inrate
REM
REM first limit actuator demand
REM
IF indem > acth THEN

xl=acth
ELSE

IF indem < actl THEN
xl=actl

ELSE
xl=indem

ENDIF
ENDIF
REM
REM actuator demand is now xl
REM
REM calculate rate
REM

96

inrate=(x 1 - oldem)/dt
REM
REM limit rate and find corresponding demand
REM
IF inrate > maxrate
THEN

yl=maxrate
xl=oldem+dt*yl

ELSE
IF inrate< -maxrate
THEN

yl=-maxrate
xl=oldem+dt*yl

ELSE
yl=inrate

ENDIF
ENDIF
REM
REM actuator rate is now yl
REM
REM calculate half range and mid value of demand to use in scaling
REM
xmax=(acth-actl)/2
xc=(acth+actl)/2
ymax=yrate
REM
REM scale and use absolute value to confine to first quadrant
REM
x2=ABS(xl-xc)/xmax
y2=ABS(y 1)/ymax
REM
REM scaled variables for demand and rate are now x2 and y2
REM
REM transform to coordinates at the centre of the conic curtain
REM
hx=l-dx
hy= 1-dy
x3=(x2-l)/hx
y3=(y2-l)/hy
REM
REM x3, y3 are scaled demand and rate relative to the centre of the conic curtain
REM
REM check whether inside conic, if TRUE then place on boundary at x3
REM
IF (x3*x3+ecc*x3*y3+y3*y3)<l THEN

y3=-.5*(ecc*x3+SQR(x3*x3*(ecc*ecc-4)+4))
y2=l+y3*hy

ENDIF
REM

97

REM transform back to original coordinates
REM
outrate=y2 * ymax* SGN (y 1)
outdem=oldem+outrate*dt
ENDPROC

It will be observed that the intercepts dx and dy must lie in the interval [0,1).
The parameter ecc (e) is intended to lie in the interval [0,2] for the type of limiter being
considered in the present work.

98

APPENDIX 4

THE SYSTEM TEST

Summary.
This appendix describes the development of testing procedures during the

evolution of the ACT Lynx system specification. Some general conclusions pertinent
to complex systems are drawn from the experience.

A4.1 ORIGINS
In the early studies [8] of the feasibility of the ACT Lynx there was the notion

of a comprehensive test of the ACT system prior to flight. Since the test was to be
largely automatic it was referred to in convention terms as Built in Test Equipment
(BITE). It was also accepted that the test would involve adjusting the pitch of the rotor
blades, either by inceptor movements or by programmed positional changes injected
into the actuators. Since such activities could not be performed in-flight a more modest
pre-engagement test, Airborne (A/B) BITE, was envisaged once the aircraft had left the
ground. In fact, apart from a button marked ’system test’ there was little specification
as to the detail of these tests - as can be judged from Figures 3.1 - 3.3 where the BITE
process appears to do nothing but illuminate the lamp on the control panel. There was
little detail added as the specification evolved through Versions 1 and 2 since the
argument was that the test would be dependent on the particular implementation of the
system and therefore could not be specified until the implementation plans were being
prepared. An argument to avoid proper specification activity is always seductive;
particularly so in this case where a poll of the design team to establish those parts of
the system which should be exercised in the system test procedure produced a list so
extensive and unstructured as to make its casting into a specification a substantial task.
Nevertheless in the planning of Version 3 it was ordained that such vagueness was
unacceptable and that the design team should specify the test with as much precision as
was possible in the absence of implementation information.

A 4.2 A STRUCTURED APPROACH
Much of the difficulty with the system test came from the diversity of the

requirements that were suggested by the various members of the design team.
Examples are:

99

- it should ensure that when the system is engaged that inceptor movement
actually moves the blades,

- it should ensure that all the triplex lanes are working properly,

- it should make sure that the RAM in the computing systems is valid.

Now these represent three quite different types of functionality of the system.
The first is concerned with the pilot’s interface - in this instance the inceptors. The
second is concerned with the functioning of the ACT system in terms of its redundancy
and monitoring; while the third is related to the validity of the basic components of the
system. Version 3 of the specification separated out these different concerns in a
structured or layered approach. The top layer is the pilot’s interface: inceptors, Pilots
Control Panel, Menu Panel, etc. and it is this layer alone which is the subject of the
system test. The intermediate layer, the internals of the ACT system itself, is handled
by the integral fault management, and the lowest layer - that of component level - is
actually ignored in Version 3 although, as commented on below, it can be
accommodated in a straightforward manner in the three-layer frame-work. With such an
approach the FUNCTION entry for the system test becomes:

There shall be a facility for conducting a test o f the ACT system. It should test the
correct operation o f the following:

(a) Control o f the blade pitch by the inceptors.
(b) The series actuators.
(c) The parallel actuators.
(d) The arm, engage, disengage actions.
(e) The selection o f Control Laws.

...etc.

The corresponding content of the OPERATION entry is then, after a description
of the interactions via the menu panel:

(a) Control o f the blade pitch by the inceptors.
The system shall be engaged in the normal way in response to menu panel messages
and then inceptor movements prompted.

(b) The series actuators.
The inceptor management process shall inject suitable signals into the engaged system
to drive the series actuators.

...etc.

100

All of the pilot interfaces, including the fault management diagnostic messages,
are part of this schedule. One advantage of the scheme is that it is quite clear which
aspects of the system are to be included in this test - now called System Test rather than
BITE. Correspondingly it is clear that the remaining aspects of the system validity must
be dealt with by the fault monitoring so there is now some important guidance on the
required scope of the fault management. The lowest level, though ignored in Version
3, is accommodated in a straightforward way by this approach. All that is needed is for
the lowest level BITE to make a validity signal to be made available to the monitoring
processes at the next level up. It will be observed that even this level of description of
system test lacks total precision although it is a significant improvement on its
predecessors. Another problem was that even focussing solely on the pilot interface
resulted in a large elaborate structure for the system test process when the simulation
was being prepared. This complexity could cause difficulties should the test need to be
modified to accommodate evolution in the system architecture. Although not
implemented some proposals have been made for overcoming these difficulties [63]

A4.3 DEVELOPMENTS
As a means of specifying in detail a flexible, yet comprehensive, system test

Moore [63] suggests a tool for automatic generation of the process from a standardised
description. After an initial statement of the conditions which must apply throughout the
test, such as rotor brake on, there is a list of individual tests. Each test is described in
four parts:

(a) A statement of the preconditions for the test.

(b) A list of test messages.
The messages are either instructions to the pilot or the initiation of automatic
injection of test data.

(c) The interval for a time-out on the test is specified.

(d) The conditions which define a ’pass’ for the test are listed.

For the preparation of the JSD specification and simulation code. The file
containing this information is then subject to preprocessing to produce the system test
process structure and operations automatically. In addition to the obvious benefits in
reducing the work involved and in subsequently introducing modifications to the test
process there is the less obvious advantage of forcing the specifier to confine the tests
within the standard description. There is less chance of the tests being specified
incorrectly or incompletely when they have to be entered into a pro forma. It is this pro

101

forma which makes the test description manageable and enables the automatic
generation to be straightforward.

A remaining difficulty is to match the vocabulary of the written specification to
the variable names in the simulation. For example suppose that the specifier wishes to
introduce within the system test a further test that requires as a precondition that the
rotor is not rotating (Ignoring, for simplicity, that this is actually a requirement for the
whole system test). One of the preconditions will be:

’rotor speed must be zero’.
To express this in a form which can be incorporated directly into the simulation it must
be written in terms of the appropriate variable name such as

ROTOR_SPEED = 0.0,
or

ROT.SPEED =0.0,
or even, if the rotor speed sensor needs some processing to detect its zero position:

ROTOR_SPEED_ZERO = TRUE.
It is clear that the specifier needs a detailed knowledge of the specification in order to
express the conditions correctly. Another problem is that of ambiguity in the text. For
example, whether ’rotor brake is on* is related directly to the rotor speed being zero is a
question that can only be answered by the specifying engineer. The simplest way to
deal with this situation is to have one, master, version of the specification written in
normal text, which is then converted to its equivalent version using variable names. The
conversion would occur as part of the preparation of the full JSD specification from the
written text, so that the treatment of the system test description would be consistent
with the treatment of the specification as a whole.

A4.4 CONCLUSIONS
It is instructive to draw out from the work on the system test those lessons

which have more general applicability than the ACT Lynx application. It is generally
recognised that testing and fault management should be developed in parallel with the
development of the principal design concept. Unfortunately, it is unlikely that such an
integrated approach will ever become universal practice, particularly when the
applications are prototypes or solely for research. Nevertheless, what can be reasonably
done in this respect should be done. Specific conclusions are:

(a) The system test should not be a blank left to be completed only when the rest of the
specification has been finalised.

102

(c) When a specification is being drawn up, it must be subject to the discipline of
associating with every function the manner of its testing. The testing may involve some
interactive procedures or rely on the embedded fault management.

(d) The automatic generation of a system test process has important potential
particularly in the rapidly changing environment of a prototype application.

These conclusions are not revolutionary (except possibly (d)); but their adoption
should ensure that the system-test aspects do not frustrate the completion of a
specification.

103

APPENDIX 5

PACKAGE SPECIFICATIONS

'S f -

Summary
This appendix contains listings of the package specifications of the modules

provided for the ACT Lynx simulation. For convenience in the total simulation they
were ultimately incorporated into the Outside Simulation hardware unit. The package
bodies may be found in the simulation documentation [55] or the delivered software;
they are omitted here solely because of the space that the listings would require.

A 5.1 SY STEM_MATRIX
This package contains the system and control matrices used in the linear

helicopter model in the ACT Lynx simulation. The model takes the actuator
displacements and generates the corresponding kinematic data for the sensors. The
package also contains the trim state and control vectors together with the gain matrix
which is used to convert from actuator displacements to blade pitch values. The values
supplied in this package correspond to a Lynx helicopter in horizontal rectilinear flight
at 80 knots and were obtained from the HELISTAB package [56]. For brevity the
numeric values are omitted.

Package System_Matrix is
type Matrix is array (Integer range <>,Integer range o) of Float;
type Vector is array (Integer range<>) of Float;

-- System Matrix A with ordering
— l:u, 2:w, 3:q, 4: theta, 5:v, 6:p, 7:phi, 8:r
— for trim at 80.0 KNOTS imperial units

A: Constant Matrix(1..8,1 • • 8):=
(1« > (1= > —

— Control Matrix B with ordering
— l:thetac, 2:thetals, 3:thetalc, 4:thetatr
— collective, long-cyclic, lat cyclic, tail collective

B: Constant Matrix(l..8,1-4) :=
(1= > (1=>...

104

- Trim state at 80 KNOTS

xO: Constant Vector(A’Range(2)):=
(1=>...)

Trim controls at 80 KNOTS

uO: Constant Vector (b’Range(2)):=
(1=>...)

~ Gain Matrix, percent to radians

G: Constant Matrix (b’Range(2),1..2):=
(!=>(!=>.. .

end System_Matrix;

A5.2 LINEARHELI
The state vector is initialised and updated by this package. Sensor data for the

triplex AMSE and the duplex ADSE are derived from the model. A Runge-Kutta
integration routine is used.

with System_Matrix; use System_Matrix
Package Linear_Heli is

—amsu components are ax,ay,az,p,q,r,theta,phi,psi
—adsu components are u,v,w,h (altitude)

subtype Amsu is Vector(1 ..9);
subtype Adse is Vector(1. .4);
amse: array (1. .3) of Amsu;
adse: array(1 ..2) of Adsu;
x: Vector(A,Range(2));
u: Vector (B’Range(2));
procedure Initialise;
procedure RK4 Step(h: Float);
end Linear_Heli;

A 5.3 AFCS_PACKAGE
The standard Lynx autostabiliser and computer acceleration control equipment

is modelled by this package. It calculates AFCS demands for the series actuator on the
basis of kinematic information and pilot demands which are available from the packages
Linear_Heli and Actuator_System respectively. The AFCS is duplex so the reference to
Lanes is in fact 2; the Lane information is available from Actuator_System. The same

105

control law was supplied to form part of the CLE as one of those available in ACT
mode.

with System_Matrix; use System_Matrix;
with Linear_Heli; use Linear_Heli;
with Actuator_System; use Actuator_System;
package AFCS_package is
type AFCS_demand_sets is array (Lanes) of Positions;
AFCS_demand_set: AFCS_demand_sets;
procedure Update_AFCS;
end AFCS_package;

A 5.4 ACTUATOR_S Y STEM
The actuator system package provide types which are common to both series

and parallel actuators. This includes the state of the hydraulic bypass valves in a dual
duplex configuration and the pick off information for positional feedback and
monitoring. The Axes type refers to the number, 4, of control lanes in order to
distinguish it from the lanes and sublanes of the architecture.

package Actuator_System is
subtype Axes is Integer Range 1 ..4;
subtype Lanes is.Integer Range 1..2;
subtype Sub_lanes is Integer Range 1..2;
type Positions is array (Axes) of Float;
type Bypass_pairs is array (Sub_lanes) of Boolean;
type Bypass_set type is array(Lanes) of Bypass pairs;
type Pickoff_pairs is array (Sub janes) of Position;
type Pickoff_set_type is array (Lanes) of Pickoff_pairs;
end Actuator_system;

A 5.5 PARALLEL_ACTUATOR_SYSTEM
In the simulation for system evaluation, rather than as a flight-mechanics study,

it is necessary to retain in the actuator model details relevant to the monitoring and
reconfiguration. Consequently, the dual duplex engage and disengage switch position
information is handled in detail even to the extent of modelling the microswitches
attached to the bypass valve solenoids in order to detect engagement and
disengagement. The individual drive signals and connexion state are also modelled, as
are the hydraulic supply states of the actuator lanes. The update procedure contains a
simple dynamic model of an actuator but there is a functional separation of drive-signal
consolidation, valve dynamics, port characteristics and flow rate properties so that a
more complex model may be conveniently incorporated once a data set is available.

with Actuator_system; use Actuator_system;
package Parallel_actuator_system is

type Engage_pairs is array (Sub_lanes) of Boolean;
type Disengage_pairs is array (Sub_lanes) of Boolean;

106

type Engage_sets is array (Lanes) of Engage_pairs;
type Disengage_sets is array (Lanes) of Disengage_pairs;
type Parallel_drive is array is array (Axes) of Float;
type Parallel_drive_pair is array (Sub janes) of Parallel_drive;
type Parallel_drive-sets is array(Lanes) of Parallel_drive_pair;

Parallel_actuator_position: Positions;
Bypass_set, Microswitch_set; Connexion_set: Bypass_set_type;
Pickoff_set: Pickoff_set_type;
Hydraulics: array(Lanes) of Boolean := (False; False);
Control_run_position:Positions;
Engage_set: Engage_sets;
Disengage_set: Disengage_sets;
Parallel_drive_set:Parallel-drive_sets;

procedure Initialisejparallel_actuator;
procedure Update_parallel_actuator(li: Float);

end Parallel_actuator_system;

A 5.6 SERIES_ACTUATOR_SYSTEM
The package specification for the series actuator is similar to that of the parallel

actuator with the exception of the engage and disengage information for the hydraulics.
The series actuator must operate at all times when that part of the system is powered up
even if the main ACT system is off. Consequently the assumption for the current
simulation is that the main hydraulics are always on. Internally the package body has
some differences since the real series actuator has separate valves for each lane and a
pivot mechanism consolidates the actuator position. This variation is not visible at the
specification level, of course.

with Actuator_system; use Actuator_system;
package series_actuator_system is
type Series_drive is array(Axes) of Float;
type Series_drive_pair is array(Sub_lanes) of Series_drive;
type Series_drive_sets is array(Lanes) of Series_drive_pair;

Pickoffjset: pickoff_set_type;
Series_drive_set: Series_drive_sets;
Series_actuator_position: positions;
Connexion_set: Bypass_set_type;

procedure Initialise_series_actuator;
procedure Update_series_actuator(h: Float);

end Series_actuator_system;

A 5.7 P_F_C
The package to model the existing Lynx primary flight control unit is a similar

actuator model to that incorporated in the series and parallel actuator packages. The
inputs are simply the control run positions from the parallel actuator together with the

107

series actuator positions. The output is the PFCU actuator position for the blade pitch
control of the helicopter model.

with Actuator_system; use Actuator_system;
with Series_actuator_system; use Series_actuator_system;
with Parallel_actuator_system; use Parallel actuator_system;
with Linearjieli; use linear_heli;
with System_matrix; use System_matrix;
package P_F_C is

procedure Initialise_P_F_C;
procedure Update_P_F_C(h: Float);

end P_F_C;

A 5.8 CONCLUSIONS
There was no difficulty in incorporating these modules into the total

specification and code generation exercise. In general, it is probable that any simulation
of a complex system will need to import existing software modules, so as an enforced
exercise it was not without its value.

108

APPENDIX 6

INJECTION OF ERRORS

Summary.
The need for a mechanism for injecting errors is discussed. The types of errors

which must be considered are surveyed and a subset suitable for validation of a
specification is selected. The relationship to the hardware description is defined.

A 6.1 ERROR INJECTION
It is not sufficient merely to simulate a fault tolerant system over a period of

time in order to demonstrate its tolerance. In a practical situation the reliability of the
simulation environment is not sufficiently representative of the final implementation.
Even if it were then it would be out of the question to investigate reliabilities of the
order of 1 fault for every 10 ̂operating hours. Therefore it is necessary to modify the
simulation environment and incorporate a facility for introducing errors of a specified
kind at a predetermined time for specified interval. In simulation terms, of course, such
a facility is not part of the simulation of the specification; it is an intrusion of the outside
world into the simulation in order to evaluate certain aspects of the specification. The
modelling of the outside world is a feature that needs careful consideration.

A6.2 TYPES OF FAULTS
It is necessary to scope the types of fault that the system must be able to

tolerate, that is, either withstand its effects through inherent robustness or detect it by
monitoring in order to initiate a reconfiguration. The ACT Lynx design incorporated
both of these features together as far as possible. Based on the work of Johnson [47]
one can specify reasonable requirements for fault injection. An initial proposal was
that for each process and data stream the following faults should be modelled:

(a) Cessation of operation.

(b) Output of rogue values.

(c) Output of an unchanging value.

It is clear that for a complex system the amount of software that such a treatment
would introduce would be enormous. Fortunately it is possible to refine these

109

requirements by observing that if one process ceases operation then one would expect
those processes which share the same processor to also cease. Therefore one can
allocate cessation of operation at a unit level. It also makes sense to allocate
communication faults at a unit level and specify error injection for connections. The
output of an unchanging value (stuck value) is straightforward, but defining ’rogue’ in
the list (b) above is difficult. If by rogue it is meant that it is out of range for the Ada
variable, then this would cause a run-time error if checking is switched on. If it is
merely intended that the value is unusual compared to previous values of the same
variable then one would expect the voting and monitoring to provide the correct
interpretation. It is preferable to avoid the ambiguity of the word ’rogue’.

Johnson [47] defines an error as incorrect information which has arisen because
of a particular fault. That is, errors are the evidence that a fault has occurred. Therefore
one could pose the question whether the proposals above inject faults or inject errors.
The semantics are satisfied if one views the modelling and inclusion of faults as the
injection of faults, but the errors which these models produce as the injection of errors.

A 6.3 HARDWARE DESCRIPTION
The development of a top level unit/connection description of the specification

enables the error injection facility to be incorporated at this level. It is an appropriate
level because it can, as in the ACT Lynx application, reflect both the hardware
decomposition and the redundant architecture of the system. Therefore, it is reasonable
to categorize faults as lying within these units or in the connections between them. For
example in the ACT Lynx simulation [53] it is possible to specify that a particular unit
will cease operation at a particular instant for specified interval. It is also possible to
specify a connection failure where a particular connection between units is set to a
constant value during a stipulated interval of time. The constant value on the
connection is specified by a 32 bit binaiy number. Although these facilities may appear
to be limited in scope, in practice they are surprisingly flexible, and more than adequate
to accommodate a lengthy validation programme.

A 6.4 CONCLUSIONS
It is necessaiy to model explicitly the occurrence of faults in order to validate a fault
tolerant system. It is also necessary to scope carefully the types of fault that are to be
modelled. Based on experience with the ACT Lynx system, it is recommended that the
anticipated validation programme be drawn up in advance of - or at the same time as -
the modelling of faults. Then the fault modelling can be specifically oriented towards
the required validation.

110

REFERENCES

1. Padfield, G. D., Bradley, R. & Moore, A. The development o f a requirement
specification for an experimental active Flight control system fora variable
stability helicopter -an Ada Ssmulation in JSD, Agard CP -503, Software for
Guidance and Control, AGARD, 1991.

2. Padfield, G.D. and Bradley, R., Creation o f a living specification for an
experimental helicopter active flight control system through incremental
simulation, Paper No. 91-74, Seventeenth European Rotorcraft Forum,
Berlin, 1991.

3. Padfield, G.D., (Editor), Helicopter Handling Qualities and Control, Proceedings
of the R.Ae.Soc Conference, London, 1988.

4. Winter, J.S. & Padfield, G.D., A discussion paper on an ACT flight research
programme using the RAE Bedford Lynx, RAE Tech Mem FS(B) 523, 1984.

5. Padfield, G.D. & Winter, J.S., Proposed programme o f ACT research on the RAE
Bedford Lynx, RAE Tech Mem FS(B) 599, 1985.

6. Tomlinson, B.N., Padfield, G.D. & Smith, P.R., Computer-aided control law
research from concept to flight test, Agard CP-473, Computer Aided System
Design and Simulation, AGARD, 1990.

7. Winter, J.S., Padfield, G.D. & Buckingham, S.L., The evolution o f active control
systems for helicopters; conceptual simulation to preliminary design.
Proceedings of the AGARD FMP symposium on ACS, Toronto, AGARD,
1984.

8. Thomson, K., The results o f the WHL feasibility study in support o f the RAE
Bedford flight controls research programme, Systems Technology Note STN
19/84, Westlands Helicopters, 1984.

9. Freeman, P. and Wasserman, A. J., Software Development Methodologies and
Ada, US Department o f Defense - Ada Joint program Office, 1982.

I l l

10. Department of Industry, Ada-based system development methodologies study
report, Volume l,DoI, London, 1981.

11. Birrel, N.D. & Ould, M.A., A Practical Handbook for Software Development,
Cambridge University Press, 1985.

12. Mullery, G.P., CORE - A method for controlled requirement specification, In
Proceedings of the 4th International Conference on Software Engineering,
1979.

13. Mascot Suppliers Association, The official handbook of MASCOT, MSA,
Malvern, 1980.

14. Mascot Suppliers Association, MASCOT 3, MSA, Malvern, 1986.

15. Various, Special issue on MASCOT 3, Software Engineering Journal, Vol 1, No
3, May 1986.

16. Jackson, M., System Development Prentice Hall, 1983.

17. Cameron, J.R., JSP&JSD: The Jackson approach to system development, IEEE
Computer Society Press, 1983.

18. Thewlis, D.J., A survey o f available tools and methods for software requirements
capture and design, Agard CP-503: Software for Guidance and Control,
AGARD, 1991.

19. SofTech, Inc., An Introduction to SADT. Structured Analysis and Design
Technique, SofTech Report 9022-78R. SofTech, Inc. Mass., 1976.

20. Yourdon, E. and Constantine, L.L., Structured Design, Englewood Cliffs, N.J.
Prentice Hall, 1978.

21. De Marco, T., Structured Analysis and System Specification Yourdon Press,
New York, 1978.

112

22. Ward, P.T. andMellor, S.J., Structured Development for Real Time Systems,
Yourdon Press, 1985.

23. European Space Agency, HOOD Reference Manual, ESA, 1989.

24. Stroustrup, B., The C*"* Programming Language, Addison Wesley, 1987.

25. Cameron, J.R., The evolution o f JSD into a properly Object-Oriented method,
Jackson User Group Meeting, London, 1991.

26. Bradley, R. A System for Parameter Estimation in Helicopter Dynamics and Data
Management in a Flight Simulator Environment. PART 1, Newcastle upon
Tyne Polytechnic, School of Mathematics Statistics and Computing, Research
Report, September, 1985.

27. Bradley, R. A System for Parameter Estimation in Helicopter Dynamics and Data
Management in a Flight Simulator Environment. PART 2', Newcastle upon
Tyne Polytechnic, School of Mathematics Statistics and Computing, Research
Report, September, 1985.

28. Bradley, R. Minutes of ACT Lynx technical meeting meeting, Yeovil, November,
1987.

29. Femandezde la Mora, G., Minguez, R., Khan, S. and Villa, J.R. A Methodology
for Software Specification and Development based on Simulation, Agard CP-
503, Software for Guidance and Control, AGARD, 1991.

30. Wright, B.P., RAE ACT Lynx - Airborne system requirement specification, Issue
1. WHL Flight Control Department Note FCDN 88/05, 1988.

31. Wright, B.P., RAE ACT Lynx - Airborne system requirement specification, Issue
2. WHL Flight Control Department Note FCDN 88/05, 1988.

32. Corbin, M.J. and Birkett, P.R., Design Considerations for Systems Modelling,
FS-91-WP-614, DRA Famborough, December 1991.

33. Jackson, M.A., Principles o f Programme Design, Academic Press, London,
1975.

113

34. King, M J . and Pardoe, J.P., Program Design Using JSP: A Practical
Introduction, Macmillan, London, 1985.

35. Cameron J.R. JSD course documentation. Michael Jackson Systems Ltd, 1986.

36. Sutcliffe A., Jackson System Development, Prentice Hall, London, 1988.

37. Michael Jackson Systems Ltd., Version 3 ofSpeedbuilder for IBM
PC/Compatibles: Installation Guide, MJSL, 1989.

38. LBMS Pic., Jackson Work Bench User Guide (In preparation), 1992.

39. Flower C.R., ACT SYSTEM Finite State Machine, ACT Lynx Technical Note,
RAE, January 1991.

40. Bradley R., ACT Lynx Control panel/Supervisor Design Study: Version 3.1, ACT
Lynx Technical Note, Department of Aeronautics and Fluid Mechanics,
Glasgow University, May, 1988.

41. RAE, ACT Lynx Airborne System Requirements Specification Issue 3.A, RAE,
1989.

42. Cameron, J. R., The Use o f JSD for Flight Control Software, RAE, 1986.

43. Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall International,
1985.

44. Bradley, R., The Use o f Jackson System Development in the ACT Lynx
Specification, ACT Lynx Technical Note, RAE, 1989.

45. Jewel, C., MODAS analysis system - system overview. Prosig Computer
Consultants, 1986.

46. D.T.L/N.C.C., STARTS Purchasers’ Handbook: Procuring software-based
systems, NCC Publications Second Edition, 1989.

114

47. J ohnson, B .'W., Design and Analysis o f Fault Tolerant Digital Systems, Addison-
Wesley, 1989.

48. Silva, A., Mode Synchronisation Algorithm for Asynchronous Autopilot, Paper
No. 38, Fourteenth European Rotorcraft Forum, Milan, 1988.

49. Bradley, R., Simulation o f the RAE Lynx AACTS, ACT Technical Note 020889,
Department of Aerospace Engineering, Glasgow University, August 1989.

50. Cameron, J.R., Mapping JSD specifications into Ada, Proceedings of the 6th Ada
(UK) Conference, 1987.

51. Lawton, J.R. and France, N., The transformations o f JSD specifications into Ada,
Ada User, January, 1988.

52. Michael Jackson Systems Ltd., Program Development Facility: Installation Guide
(Version 2.1) IBM PC Version, UKAEA, 1989.

53. LBMS Pic., A Users* Guide to the Hardware Simulation Addition toAdacode,
LBMS, December 1990.

54. Me Dermid, J., Skills and Technologies for the Development and Evaluation o f
Safety Critical Systems, In Safety of Computer Control Systems 1990 Ed.
Daniels, B.K., IFAC Symposia Series, Number 17, Pergamon, 1990.

55. Friedland, B., Increment 6Documentation, Contract AWL 12A/141, LBMS ,
1990.

56. Smith, J., An Analysis o f Helicopter Flight Mechanics Part 1- Users Guide to the
Software Package HELISTAB, RAE TM FS(B) 569, October 1984.

57. Gourlay, A.R. and Watson, G.A., Computational Methods for Matrix
Eigenproblems, Wiley, 1973.

58. Ince, D.C., An Introduction to Discrete Mathematics and Formal Specification,
Clarendon Press, 1988.

115

5 9. Bradley, R., A design for the enhancement o f the reliability o f a Control Input
Device by means o f a multiprocessor system, Technical note, Dept.
Aeronautics and Fluid Mechanics, Glasgow, 1986.

60. Cameron J.R. ”An overview of JSD”, IEEE Trans. Software Eng., Vol. SE-12,
No. 2, 1986.

61. Tomlinson, B.N., Bradley, R. Flower, C: The use o f a relational database in the
management and operation o f a research flight simulator. AIAA Flight
Simulation Conference, Monterey, California, August, 1987.

62. Broad, T., The ACT Lynx Actuation Study Part 3: The Curtain Limiter, WP
FM(89) 041, RAE, July, 1989.

63. Moore, A., A proposal for further support to the development o f the ACT Lynx
system requirements specification, RT/TSW/9110001, LBMS, October, 1991.

116

Figures

1.1 The Proposed ACT Lynx System Architecture.
1.2 Early Pilot Model.
1.3 ACT Lynx Schematic Control Panels.
2.1 Pilot Engagement Structure Diagram.
2.2 Pilot Engagement Program Structure.
2.3 System Test Structure Diagram.
2.4 Typical List of Actions.
2.5 Control Input Device.
2.6 System Network Diagrams (SND).

“2.7 Example of Network Problem.
2.8 The ACT System Control Law Network.
2.9 Implementation Schemes.
2.10 Implementation Alternatives.
3.1 Initial System Network Diagram I.
3.2 Initial System Network Diagram II.
3.3 Initial System Network Diagram III.
3.4 Network Glossary I.
3.5 Network Glossary II.
3.6 A Record from the Version 2 Network Database.
4.1 Possible System Flowchart.
4.2 Possible FSM for System Control.
4.3 State Transition Diagram for ACT Modes.
5.1 Transfer Function Block Diagram.
5.2 Analogue Component Diagram.
5.3 Component Simulation Network.
5.4 Basic Component Simulation.
5.5 Tightly Coupled Component Simulation.
5.6 Total System Representation.
5.7 Unit network.
5.8 Configuration at Internal/External Boundary.
6.1 ACT System Logical Elements.
6.2 Revised ACT Lynx System Architecture.
6.3 Connections Between Units.
6.4 Connections to a CLU.
6.5 Network Fragments.

117

6.6 Pilot Control and ADMU State Control.
6.7 Consolidation and Voting.
6.8 Consolidation Architecture.
7.1 Repeater Panel Simulation.
7.2 Pilots Control Panel Simulation.
7.3 Mode Select Panel Simulation.
7.4 Menu Panel Simulation.
7.5 Schematic Diagram of Fault Processing.
7.6 Unit Descriptions.
7.7 Connection Description.
7.8 Operation of Code Generation Tool.
7.9 Menu Panel and Mode Select Panel Associated Unit Network.
7.10 Helicopter Control Unit Network.
7.11 Pilots Control an Repeater Panels Associated Unit Network.
7.12 Internal Strcture of the ADME.
7.13 ADME Associated Unit Network.
8.1 The Living Specification
A2.1 State Transition Diagram for Control Panel Supervisor.
A2.2 The Control Panel Supervisor.
A2.3 Excursion Start Component.
A2.4 The ACT Body Component.
A2.5 The A/B Select Component.
A2.6 The Non-ACT Body.
A2.7 The Excursion End Component.
A3.1 Phase Plane Limiting.
A3.2 Original Curtain Limiter Algorithm.
A3.3 New Curtain Limiter: case 1.
A3.4 New Curtain Limiter: case 2.
A3.5 Curtain Limiter Algorithm.

118

• Full Authority
• Parallel /Series Frequency Split

Actuators

•Triplex
Power Supplies

Safety Pilot with Backdriven Controls
• Sidestick Controls
• HU/HD Displays

• Triplex
• Fly-by-Wire

Sensors

Aircrew Interface

Flight Control Computers

Actuator Drive and Monitoring Units

Figure 1.1 Proposed ACT Lynx System Architecture

Control
Panel Pilot

Body

Action

BITE
PRESS

Start

MODE IGNORE

Figure 1.2 Early Pilot Model

8 8 8 o
1 2 3 CLU1
POWER UP

8 8o
1 2 ADMU
POWER UP

START CONT RETEST c a n c e l ! W
SYSTEM TEST

IhSTINGo
STANDBY

ARM

(d is e n g a g e)

o
ARMEDo

ENGAGED

|CANCEL| (^) (^)

CAUTION WARNING
LAMP TEST

o o
CL ADM
POWER UP

TESTING'

STANDBY)

ARMING ARMED ENGAGED

CAUTION WARNING

Pilots Control Panel Repeater Panel

Control Law Parameter Set Disturbance
Current

Offered

A
I select!

i

2

A 3
I se l e c t ! Ise l e c t !

y V Y iaC
ibC

ACTIVE

PASSIVE

START

RESET

2A
2B[

Menu Panel1 2 3 4 5 6 7 8 9 101 1I II II 1 1 11 1 1

s c a n Q o o o o o o o o o
ARM Q o o o o o o o o o

IN/CAP Q o o o o o o o o o

Figure 1.3. Act Lynx Schematic Control Panels

EngageArmed ActionsArm Disengage

Normal
Cycle

Disengage

Engage *
ment Cycle

Early
Disengage

Pilot
Engagement

Figure 2.1 Pilot Engagement Structure Diagram

Arm Engage

Armed Engage

Armed

Arm

10,1 Actions

Actions
DisengageEngage

ment Cycle

Normal
Cycle

Engage
ment Cycle

Disengage

Pilot
Engagement

Engage *
ment Cycle

Early
Disengage

Pilot
Engagement
Body

Operations:
I. READ MESSAGE
10. SYSTEM_STATE:=ARMING;
II. SYSTEM_STATE:=ARMED;
12. SYSTEM_STATE:=ENGAGED;
13. SYSTEM_STATE:=DISENGAGED;

Figure 2.2 Pilot Engagement Program Structure

System
Test

Success

Start
Test

Test
Body

Failure

System
Test Cycle

Figure 2.3 System Test Structure Diagram

Action Summary Attributes

ARM The pilot requests that the system be
armed.

ARMED The actuator positions and the
control law demands are in harmony

ARM_DEFAULT_MODE The initial arming of a default
control mode.

ID: MODETD.TYPE

CANCEL SYSTEM
_TEST

A request to cancel the system test.

CAPTURE This is the signal to mode to go
from ARM to ARM_AND_IN_CAP

ID: MODE_ID_TYPE

COMPLETED SYSTEM
_TEST

All tests of the system test have
been successfully completed

CONTINUE SYSTEM
_TEST

Indication that the current test of the
system test has been successfully
completed.

DISENGAGE The system has been disengaged.
This may happen before
engagement (1) by the pilot pressing
the disengage button or (2) by the
system failing to get into the
ARMED or ENGAGED state.
It may happen whilst ENGAGED
on receipt of a signal from an
actuator relaying the fact that it has
become disengaged

DOWN DISTURBANCE
.REQUEST

The pilot wishes to be offered the
previous valid disturbance, that is
the first disturbance with a lower
index number (ID)
This is equivalent to the pilot
presssing the DOWN button

ENGAGE The pilot requests (successfully)
that the system be engaged.

FAIL_TEST_STAGE The current ’automatic’ stage of the
system test has not been
successfully completed.

IN CEPTOR.V ALUE A new value representing the
current position of an inceptor
arrives

Figure 2.4 Typical List of Actions

 »
Inceptors
and sensors

Preprogrammed
inputs and
AFCS demands

AFCS
demands

Drive

Operator
actions

Position
pickoff

AFCS
drive
stage

Control
Input
Device

Series
actuator

AFCS
demand
stage

(a) Schematic Diagram

AFCS
tick

AFCS

2. Inspect AFCS value

Operations:
1. Read Tick

(b) Structure Diagram for AFCS MnHp.l

Figure 2.5 Control Input Device

(a) Elementary, single-process network

PI DS3

P3

DS4)

P2 P4DS5

(b) Multi-process network

DS3

SVI1

PI

P2

P3

(c) Network with State Vector Inspection

Figure 2.6 System Network Diagrams (SND)

Ticks

Sensor
data

Ticks

Inceptor
data

Button
presses

r

Helicopter
Model

Inceptor
Model

Engagement
Model

Internal Network

Control

Clutch
controller

Series
Actuator
Function

Parallel
Actuator
Function

Clutch
Function

Display
Function

Figure 2.7 Example of Network Problem

parameters clise_beep_trim

parameter
set

clise amse dataclise mode

clise_amse
datamode

clise adse data
cle_tgm clise_adse

data
control_law
_algorithm cla buttons

button
buffer

current set clise_inceptor

clise_incep
tor_pos

par_set_
selector

current cl actuator_
demands

engagement_status
control_law

selector
pilot_enga
gement

disturbance

disturbance
_imposer

disturbance
generator

disturbance
demands

frequency
_splitter

Figure 2.8 The ACT System Control Law Network

0 — ►

fa) The Example System Network

(b) Prepared Network

Figure 2.9 Implementation Schemes

Scheduler

B

D

(a) System Implementation Diagram. I

Scheduler

(b) System Implementation Diagram. II

Figure 2.10 Implementation Alternatives

AP20
ASE/CAC

Interface

MF12 PFC

Helicopter
Kinematics

AMSUAMSU

AF33 DE1
Sensor
Interface Sensor

Ex-pilot AE1
Ex-pilot
Trim butts

Ex-pilot
Inceptors

AF34 DE2
Inceptor Ex-pilot
Interface Inceptors

Control

EX-PILOT CONTROL RUN DP 19 Clutch Controller

Ex-pilot
Cont-panel

Ex-pilot
SA-Cont

AF5
■ Cont-panel
Interface

-*®
MF12 PFC

Ex-pilot
Cont-pane

DP30

CONTROL PANEL

SYNCHRONISA TION

MP15 Control Run ^) -
AE16
Control
Run i/f

HE2
Safety
Pilot

AE17
---------------------------------- ► S-pilot
MP15 Control Run (pH * 1 Inceptors

DE18
Control
Run

DP17
Synch
Monitor

DF10 PA Demand

AE19 AF18
S-Pilot
Interface

DE 26
S-pilot
Trim butt

S-pilot
Switches

DF23 HDD Display
DE2 Ex-pilot Inceptors ® — H

V

DP19
Clutch
Control i-KD

Figure 3.1 Initial System Network Diagram I

AP6 AP7
DF21 Cont-panel Lights (a) ^ Cont-pane- --------► Cont-panel

Lights i/f Lights

DISPLAYS

KINEMATIC DISPLAY INFORMATION

DE16 Parallel Actuator

DE12 Series Actuator

i DP19 Clutch Control

DP6
Splitter

DP7 DP32
HF Cross ---------► HFConsol
Lane Mon -idation

HIGH FREQUENCY
I (£) D P19 Clutch Control

DF21
Cont-pane
Lights

DP8
LF Cross
Lane Mon

DP33
LFConsol
-idation

LOW FREQUENCY

AP6 Cont-panel Lights i/f

DP13 Series Actuator Monitor
DP 15 Parallel Actuator Monitor

DP28
INIT

DP11
SA
Model

AF14 DE12
SA ------► Series
Interface Actuator

DP13
SA
Monitor

"(d) DP5 BITE

-KB) DP3 Control Laws

HF MONITORING

DP14
PA
Model

AF13 DE16
PA --------- ► Parallel
Interface Actuator

DP15
PA
Monitor

DP22
Monitor
Control

■© DPS BITE

-KB) DP3 Control Laws

(5) DF23 HDD Display

LF MONITORING

DP32 HF Consolidate

MP11
Clutch

DF20
Clutch

AP24
Clutch
Interface

DP33 LF Consolidate

SAFETY PILOT CONTROL RUN

Figure 3.2 Initial System Network Diagram II

DF23
HDD
Display

AP25
HDD
Interface

AF28
HDD

- * 0 HE2 Safety Pilot

HE1 Ex-Pilot

► O HE1 Ex-Pilot

DF24
HUD
Display

AP26
HUD
Interface

AF29
HUD

DF25 AP27
Helmet --------- ► Helmet
Disdav Interface

AF30
Helmet
Display

- K) HE1 Ex-Pilot

- * o HE1 Ex-Pilot

-► DF9 AP8
SA ---------► SA
Demand Demand i/f

- AP20 ASE/CAC

AE3 Ex-Pilot SA Cont (m) — ^

SERIES ACTUATOR - HF

DF10 AP9 MP10
PA PA — ► Parallel
Demand Demand i/f Actuator

DP 17 Synch Monitor

PARALLEL ACTUATOR - LF

MP15
Control
Run

MF12
PFC

OMB

I-K3
AF16 Control Run i/f

—► { p) a e 17 Safety Pilot Inceptors

ACTUATOR FEEDBACK
FOR MONITORING

Figure 3.3 Initial System Network Diagram III

IDENTIFIER NAME

AE1 Analogue entity: Experimental pilot trim buttons
AE2 Analogue entity: Experimental pilot inceptors.
AE3 Analogue entity: Experimental pilot series actuator controls.
AE4 Analogue entity: Experimental pilot control panel.
AE16 Analogue entity: Control run interface.
AE17 Analogue entity: Safety pilot inceptors.
AE19 Analogue entity: Safety pilot trim buttons.
AE22 Analogue entity: Air Data Unit.
AE23 Analogue entity: Aircraft Motion Sensing Unit
AF5 Analogue function: Control panel interface.
AF7 Analogue function: Control panel lights.
AF13 Analogue function: Parallel actuator interface.
AF14 Analogue function: Series actuator interface.
AF18 Analogue function: Safety pilot interface.
AF21 Analogue function: Autostabiliser Equipment/Computer Acceleration

Control.
AF28 Analogue function: Head down display.
AF29 Analogue function: Head up display.
AF30 Analogue function: Helmet mounted display.
AF33 Analogue function: Sensor interface.
AF34 Analogue function: Inceptor interface.
AP6 Analogue process: Control panel lights inteface.
AP8 Analogue process: Series actuator demand interface.
AP9 Analogue process: Parallel actuator demand interface.
AP20 Analogue process: Autostabiliser Equipment/Computer Acceleration

Control Interface.
AP22 Analogue process: Air Data Unit filter.
AP23 Analogue process: Aircraft Motion Sensing Unit filter.
AP24 Analogue process: Clutch interface.
AP25 Analogue process: Head down display interface.
AP26 Analogue process: Head up display interface.
AP27 Analogue process: Helmet mounted display interface.

Figure 3.4 Network Glossary I

IDENTIFIER NAME

DEI Digital entity: Helicopter sensor.
DE2 Digital entity: Experimental pilot inceptors.
DE4 Digital entity: Experimental pilot control panel.
DE12 Digital entity: Series actuator.
DE14 Digital entity: Parallel actuator.
DE18 Digital entity: Control run.
DE26 Digital entity: Safety pilot switches.
DE27 Digital entity: Autostabiliser Equipment/Computer Acceleration Control.
DF9 Digital function: Series actuator demand.
DF10 Digital function: Parallel actuator demand.
DF20 Digital function: Clutch.
DF21 Digital function: Control panel lights.
DF23 Digital function: Head down display.
DF24 Digital function: Head up display.
DF25 Digital function: Helmet mounted display.
DP3 Digital process: Control laws.
DP5 Digital process: Built in test equipment.
DP6 Digital process: Frequency splitter.
DP7 Digital process: High frequency cross lane monitoring.
DP8 Digital process: Low frequency cross lane monitoring.
DP11 Digital process: Series actuator model.
DP13 Digital process: Series actuator monitor
DP14 Digital process: Parallel actuator model.
DP15 Digital process: Parallel actuator monitor.
DP17 Digital process: Sychronisation monitor.
DP19 Digital process: Clutch control.
DP22 Digital process: Monitor control.
DP28 Digital process: Initialisation.
DP30 Digital process: Reset.
DP32 Digital process: High frequency consolidation.
DP33 Digital process: Low frequency consolidation.
HE1 Human entity: Experimental pilot.
HE2 Human entity: Safety pilot.
MF12 Mechanical function: Primary flight control unit.
MP10 Mechanical process: Parallel Actuator.
MP11 Mechanical process: Clutch.
MP15 Mechanical process: Control run.
OMB Outside model boundary.

Figure 3.5 Network Glossary II

NETWORK FRAGMENT

AF5/DE4

Ex-pilot -------
control
panel

DE4

-DE4/DP3
-DE4/DP5
DE4/DP28
DE4/DP30
DE4/DF21

DE1/DF23

PROCESS NAME
DE4 - Ex pilot control panel entity

STATE VECTOR
reset, mode, BITE, init (open, close)

PROCESS TYPE
Digital

COMMENT
The process models control panel presses and releases

INPUT 1 SVI - AF5/DE4
Open/close for Reset, mode select, BITE, INIT

OUTPUT 1 DS - DE4/DP3
Mode select press, release to Control laws process

OUTPUT 2 DS - DE4/DP5
BITE press

OUTPUT 3 DS - DE4/DP28
INIT press to the initialiser process

OUTPUT 4 DS - DE4/DP30
RESET press to the reset scheduler

OUTPUT 5 DS - DE4/DF21
Lights on, off to the control panel

Figure 3.6 A record of the Version 2 Network Database

Perform
System Test

Arm
System

Engage

Disengage

Power up
System

.System powered up

System Test in progress

.Standby

.Arming in progress

.System armed

.System engaged

Figure 4.1. Possible System Control Flowchart

Fail System Test Fail

Powered)---------- ►{ System)-------
U p /S ystem T e s t y Testing/ Pass

System Standby Arming
Arm

Pass

Fail

Armed
Disengage1

Engage

Engaged

Figure 4.2. Possible FSM for System Control

Figure 4.3 State Transition Diagram for ACT Modes

s+b

out

T4T3

s+c
s+d

T2

Figure 5.1 Transfer Function Block Diagram

A5 A1

A6

2 in

A2

out

A4A3

Figure 5.2 Analogue Component Diagram

tgm_5 tgm_l

tgm_6

tgm_2

tgm_4tgm_3

Figure 5.3 Component Simulation Network

X
a

s+b

(a) Transfer function
1/ab

(b) Analogue
tgmj

(c) JSD

Figure 5.4 Basic Component Simulation

Xn>*n+1

o — *-
¥n+l

Figure 5.5 Tightly coupled component simulation

Hardware:-
External systems

Digital:-
Internal systems

JSD external unit network

JSD internal unit
network

Figure 5.6 Total System Representation

JSD unit - v —JSD unit JSD unit
A B *̂ 0 - C

System boundary System boundary

Figure 5.7 Unit network

tgm

tgm

DS

Object function
JSD process

Object model
JSD process

Real object
- simulation

process

Figure 5.8 Configuration at Internal/External Boundary

Ground
Engineers

tation

Airborne
Recording

HUM
SystemTelemetry

MODAS

/Primary \
iFlight Control]
V Unit J

Crew
Station
Element

Sensor
Element

Crew
Station
Element

Actuator
Element

Flight
Engineers
Station

Ground
Support
System

Control Law
Element

Actuator Drive
& Monitoring
Element______

Control Law
Input Support
Element

Control Law
Output Support
Element ____

External System
Support Element

Evaluation Mechanical
Control

Rotor
Blade
Control

Figure 6.1: ACT System Logical Elements

• Triplex
Power Supplies

• Triplex
•Fly-by- Wire
Sensors

•Full Authority
• Parallel /Series Frequency Split

Actuators

Flight Control Computer

Aircrew Interface

CLISE

CLE• Safety Pilot with Back/driven Controls
• Sidestick Controls
• HU/HD Displays CLOSE

ADME

Figure 6.2 Revised ACT Lynx System Architecture

| ADMU
sublane 2B

CLOSU
lane 3

IU
lane 3

IU
lane 1

IU
lane 2

CLU
lane 1

CLOSU
lane 1

CLU
lane 2

CLU
lane 3

CLOSU
lane 2

CLISU
lane 2

CLISU
lane 3

ADMU
sublane 2A

ADMU
sublane 1A

ADMU
sublane IB

CLISU
lane 1

SADMU
sublane 2A

SADMU
sublane 1A

SADMU
sublane 2B

SADMU
sublane IB

Inceptor
Element

Control
Law
Input
Support
Element

Control
Law
Element

Control
Law
Output
Support
Element

Actuator
Drive and
Monitoring
Element

Figure 6.3 Connections Between Units

CLU
(2 siblings)

CLU

PCP ADME

CLISU CLOSU

Figure 6.4 Connections to a CLU

Parallel
Actuator
Demand

— 0 > — ►

Parallel
Actuator
Drive

Parallel
Actuator

i
©

switch

fa) Parallel Actuator Drive

Series
Actuator
Drive

Series
Actuator
Blend

Series
Actuator

switch

AFCS

(b) Series Actuator Drive

EDCMA FSM

PC

Parallel
Actuator
Hydraulics

(c) Engage/Disengage Control & Monitoring

Figure 6.5 Network Fragments

ROTOR

FCLE

A FSMFCSE PC

PEB

EDCM
PCP

fail
POWER
kUP TESTSTART A FAIL

pass

A ASE
disengaged

ami
fail, disengage_pressACTIVE engage

A ALIGi

Figure 6.6 Pilot Control and ADMU State Control

frame 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8

lane A B C A B C A B C A B C A B C A B C A B C A B

sam ple 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

detect 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0

consolidate 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

vote 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

(a) Duration between 2 and 3 frames

frame 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8

lane A B C A B C A B C A B C A B C A B C A B C A B

sam ple 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

detect 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

consolidate 0

vote 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

(b) Duration between 1 and 2 frames

8

C

0

0

0

0

8

C

0

0

0

0

Figure 6.7 Consolidation and Voting

Vote &
Consolidate
Lane 1

Sample &
Transmit
Lane 1

[tgm2J

Sample &
Transmit
Lane 2

Vote &
Consolidate
Lane 2

Source

[tgm3j [tgm3J

Sample &
Transmit
Lane 3

Vote &
Consolidate
Lane 3

synchronised part sych -> asynch part asynchronous part

Figure 6.8 Consolidation Architecture

(a) Engaged

(b) Disengaged

Figure 7.1 Repeater Panel Simulation

Figure 7.2 Pilots Control Panel Simulation

ancmncmcm □□□□□□□□□ □ ancmcmcm

Figure 7.3 Mode Select Panel Simulation

□
□

□

*If

f l i

Figure 7.4 Menu Panel Simulation

Raw values

Voted values

Valid sources

Error log
Voted values•

Consolidation Data

Valid
siblings

Consolidated values Error log y

CLISU(l)

IU(2) IU(3)

VOTER

IU(1)

CLISU(3)

CLISU(2)

SIBLING
MONITOR

DOWN
STREAM
MONITOR

CON SOLID ATER

Figure 7.5 Schematic Diagram of Fault Processing

UNIT IE
STD-INFO

LONGNAME
REFERENCE IE
[*]CLASSIFICATION-SET
[*]SUMMARY
This unit is connected to the
inceptors of the evaluation
pilot.
[o]NARRATIVE

NO
MAIN-PART

[o]TYPE
ANALOGUE

[o]BASE-REDUNDANCY
SIMPLEX

REPLICATIONS
[o]UNIT-LVL-SYNCHRONISATION

ASYNCHRONOUS
FRAME-LAG

[1INTRA-UNIT-CONNECTIONS
UNIT-SID

UNIT OLE
STD-INFO

LONGNAME
REFERENCE OLE
[*]CLASSIFICATION-SET
[*]SUMMARY
This unit houses the control
law algorithm and associated
processing. It is the middle processor
in a three processor "lane".
[o]NARRATIVE

NO
MAIN-PART

[o]TYPE
DIGITAL

[o]BASE-REDUNDANCY
SIMPLEX

REPLICATION 3
[o]UNIT-LVL-SYNCHRONISATION

ASYNCHRONOUS
FRAME-LAG 10

[*]INTRA-UNIT-CONNECTIONS
UNIT-SID

Figure 7.6 Unit Descriptions

CONNECTION IE_CL!SE
STD-INFO

LONGNAME
REFERENCE ECUS
[*]CLASSIFICATION-SET
[*]SUMMARY
[o]NARRATIVE

NO
MAIN-PART

SOURCE IE
DESTINATION CLISE
[o]DATA-TRANSMISSION

BROADCAST
[o]SPEC-INTERFACE

NO
[o]CONSOLIDATION

YES
HISTORY_LENGTH 3

[o]SIBLING_ERROR_MONITORING
YES
HISTORYJ.ENGTH 3

Figure 7.7 Connection Description

CLISE
Unit

CLE
Unit

JWB repository

Data Extraction

Template
Parameters

Template
Library

Template Processor
(JSP-MACRO)

Ada sources

Figure 7.8 Operation of Code Generation Tool

keyboard
polling [1]

mp button mp disemp displaymode s p mp adme

closecle the restd ise

❖
one -to-one O source monitoring

= sibling monitoring

broadcast consolidation

Figure 7.9 Menu Panel and Mode Select Panel Associated Unit Network

keyboard
polling [1]

adseam se actuator
display [1]

close the restclise

one -to-one

broadcast

O source monitoring

= sibling monitoring
— consolidation

Figure 7.10 Helicopter Control Unit Network

keyboard
polling [1]

pep button rp displaypep display

closecle the restclise

❖ one -to-one

broadcast

O source monitoring

= sibling monitoring
— consolidation

Figure 7.11 Pilots Control and Repeater Panels Associated Unit Network

MAIN 2A

MAIN 2B

MAIN 1A

MAIN IB

COMPARATOR 2B

COMPARATOR 2A

COMPARATOR IB

COMPARATOR 1A CAUTIONS &
WARNINGS 1A

CAUTIONS &
WARNINGS 2B

CAUTIONS &
WARNINGS 2A

CAUTIONS &
WARNINGS IB

Figure 7.12 Internal Structure of the ADME

-<£>- afcs

sadme
main

sadme sv /
comparator

V
series_ >v
actuator

parallel
actuator

adme
main

bypass_
valve

adme
disengager

adme_sv
comparator

pcp_
button

outside_
simulation

<■>

<3>

< ^ > special

one -to-one 0 source monitoring
= sibling monitoring

broadcast consolidation

Figure 7.13 ADME Associated Unit Network

Text specification

Simulation

Figure 8.1 The Living Specification

RESET
-TING

MODE
CHANGE

select_reset

elect resetode end

select
reset reset_end

select biteROTOR
TURNIN A/B

BITE

out_of
timerelease

brake
select
bite

select_mode

disengage

G_BITE
PASSED

select
reset

select
initialiseselect

mode select
G_MODE

CHANGE INITIAL
ISINGG_RESET

TING reset
end /select

G BITE out_of
timemode selectselect

reset ACT
NGAGEDSTART GROUND

CLAMP
ROTOR
LOWING

release
brake

© clamp transition to
GROUND CLAMPapply

brake
/g \ apply_brake transition to

ROTOR SLOWINGselect
mod out of time

0 release_brake transition to
NON ACT

reset
select f _end

rest
N_MOD
CHANG N BITE

elect bite

N_BITE
PASSED

RESET
-TING

select reset

select mod

Figure A2.1 State Transition Diagram for Control Panel Supervisor

Figure A2.7

Control Panel
Supervisor

Excursion
body

First Clamp

ACT body

? ACT
excursion

Excursion
start

? Non ACT 0
Excursion

Excursion

Supervisor
body

Excursion
start

Excursion
end

Start

Non ACT
body

Figure A2.3 Figure A2.4 Figure A2.6

Figure A2.2 The Control Panel Supervisor

Ex
cu

rs
io

n
St

ar
t

*

1 Am?

o
k_

Vi

c ^ .

m *3m g

o
Pi

v» .3
<a *mSftUh o

gPL,

■** £
to pq

pi
.3
§ ^
W A

w

« •3

«■ *J-■** KV MTO £

Pi
.3

3
*efO

W
—

3

3

O ^k_ 41
TO

« >d
TO I

Pi
.3

S'S w ^

pi
.3
£ s*
3 %M A

0»d■x*■h
S'
41 V*

1 u aPm

»d
£Qi W£ sa
W Ph

Pi
.3

3 Sw

aP4

Pi
.3
o
32pu,

Figure A2.3 Excursion Start Component

Fi
gu

re

A
22

AC
T

B
od

y

© *
<

A
C

T
B

od
y

— s
«

0*.

£
H 3
y £< E-«

% S3
PQ Pl.

^ v
<y ■Wffi m

&

s>
Iw

©

■sW

W

<
E-t *x>do
< pq

W

QQ

0
■4J
E-*
o

fx
O

< pq

txidO
pq
3
os

*53

02

.3pq
§ ^ < a ,

P4

za

K pq

Figure A2A The ACT Body Component

A/
B

Se
le

ct

00

y °< m

- a in m

oy °< M

y *< M

=» ^
C Q i d

5 °m

«■ >■
■X* OM «

PH

Figure A2.5 The A/B Select Component

P-4 W

M (U

Figure A2.6 The Non ACT Body Component

Figure A2.2

Two Stage

Apply BrakeClamp

Single Stage

Excursion
End

Clamp

Figure A2.7 The Excursion End Component

rate A p n

iate A

allowed region

demand

__ _ __ hard limits
■' soft limits

(a) Simple demand and rate limits

x-intercept
"H K

allowed region

y-intercept

demand

_ _ _ soft limits e=2
_______ soft limits e=0

(b) Curtain limiter

Figure A3.1 Phase plane limiting

60 : . - ..

y !
A \

/ ’ \

(a) Input demand x = 50 + 60 sin t

60

0

-60

(b) Limited output with e=0, dx=0.5,dy=0.5

Figure A3.2 Original Curtain Limiter Algorithm

60

v \ /

/ j

/ i
j

! i
I I
I i
i t

0 !Vu j

\
\

-60

x

no

(a) Input demand x = 50 + 60 sin t

50

y

o

-50

100

[b) Limited output with e=0, dx=0.5,dy=0.5

Figure A3.3 New Curtain Limiter Algorithm: case 1

(a) Input demand x = 50 + 50 sin t

50

y

o

50

(b) Limited output with e=0, dx=0.25,dy=0,25

Figure A3.4 New Curtain Limiter Algorithm: case 2.

- slope 1/dt

(a) The characteristic line (b) Intersection with limit

(c) Approximation to limit

y new ’

- slope 2/dr

(d) Alternative method

Figure A3.5 Curtain limiter algorithm

GLASGOW
UNIVERSITY
LIBRARY

