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Abstract

Several mathematical models which are based mainly on the boundary 
integral equations are developed for computer simulation of injection 
moulding. The models are then implemented for the viscous flows in the 
filling stage, and the temperature field during the cooling stage of the 
process. Starting with the modelling of nonisothermal laminar flow in 
ducts, the dependence of viscosity on the pressure, temperature and shear 
rate is taken into account, and the velocity and temperature solutions to 
fully developed flow are developed. The solutions are used to obtain the 
approximate axial solutions and possibility of choking is discussed. The 
solutions are further extended to the cases of a slightly tapered circular 
pipe, and of cross sections of any shape the latter of which uses a boundary 
element model.

Boundary element methods are chosen for the computer simulation 
because of their efficiency and accuracy resulting from one dimension 
reduction in the modelling and continuous solution in the domain. The melt 
flow in the filling stage is characterised by a moving front. It is suggested 
that a Lagrangian description for the modelling is better than the traditional 
Eulerian description for fluid mechanics. A boundary element method based 
on the Lagrangian description has the apparent advantage avoiding the mesh 
tangling problems which have troubled the models based on the domain grid 
system for many years. Also when a part geometry is very complicated 
from a modelling point of view, a boundary element approach can certainly 
reduce the effort in its cooling analysis. On the basis of these ideas, a 
previously developed boundary element model for the filling process of thin 
cavities is firstly reviewed and discussed before a new and better model 
derived. The model is implemented for flow pattern analysis, and two 
examples are given for showing the efficiency and accuracy. The multi
medium transient heat conduction problem is modelled by the boundary 
element method based on the time-dependent fundamental solution, and two 
cooling examples are calculated. Discussion then follows on the 
simplifications of the model without interfacial elements or division into 
convex sub-domains.

Boundary element studies were also carried out for particle and fibre 
orientations caused by the fountain flow effects during the filling stage, and 
the particle-in-domain idea is introduced for the simulations. The result of 
the particle orientation explains the phenomena of "V" mark, and it agrees



II

with the experimental results given by Dr. Schmidt*. The fibre orientation 
is based on Jeffery's formulation. A further development of the boundary 
integral equation method is presented for modelling unsteady viscous flow 
with a free surface. The formulations are based on the Lagrangian 
description and the Oseenlet solutions. Two examples are given on 
compression moulding.

Several practical mouldings of plastics components are simulated by 
using a finite element package called MOLDFLOW, and a principle for 
balancing a feed system for a family set of moulds is suggested. Detailed 
analyses on materials, moulding conditions and shapes of geometry are 
given.

A computer package named CASIM is the result of the author's work in 
modelling injection moulding. The kernel of the package is the BEM 
modules which have been developed, and a graphically enhanced pre- and 
post-processor is designed to assist the simulation.

*Schmidt, L.R., "Interrelationship of Flow, Structure, and Properties in 
Injection Molding", the Proceedings o f  the 2nd World Congress o f  
Chemical Engineering, Montreal, Canada, Vol.VI, p516-518, Oct., 1981.
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Chapter One 

Overview

1.1 Injection Moulding Technology

Plastic material is one of the most widely used materials and its industry 
is one of the fastest growing industries in the world. Injection moulding is 
one of the major methods by which plastics are fabricated. The importance 
of injection moulding to the plastic industry is indicated by the great 
amount of material fabricated by the process, approximately one third by 
weight of all plastics processed goes through injection moulding 
machines^].

Historically, injection moulding was similar to the centuries-old process 
of metal die-casting, in which melted metal was poured into a closed mould 
made of sand or plaster. Most metal parts are still made by the die-casting 
process, in thousands of metal foundries all over the world. By 1872 the 
Hyatt Brothers (John and Isaiah) in the United States had patented the first 
plastics injection moulding machine, which was used to mould cellulose ni
trate (Celluloid), the first man-made plastic, invented by John Hyatt a few 
years earlier. However, the process was not widely used until the 1920's 
when the first to be produced in series was a plunger-type machine, manu
factured in 1926t2’3]. The real impetus for the widespread use of injection 
moulding came in the 1930's with the introduction of polym ethyl 
methacrylate and polystyrene moulding materials. These could not be fully 
exploited using the then widely practised art of compression moulding 
which had blossomed following the invention of phenol-formaldehyde 
resins (Bakelite resins) in 1909.

The next major development occurred in 1951 when William H. Wilert 
developed the reciprocating screw plasticizer for injection moulding ma
chines W which can be found on most injection moulding machines built and 
used today. They are replacing the earlier plunger injection units which 
have a disadvantage of high pressure loss (about 80 per cent of the total ram 
pressure) in the cylinder, with correspondingly longer injection time. The 
most recent development concerns process controls that permit controlling 
the plastic melt.
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The advantage of injection moulding is that moulded parts can be manu
factured economically in unlimited quantities with little or practically no 
finishing operations. Principally, it is a mass-production method, and be
cause of the high capital investment in machines, moulds, and auxiliary 
equipments, it operates most economically only as such. The surface of the 
injection mouldings is as smooth and bright or as grained and engraved as 
the surfaces of the mould cavity in which they were prepared. There are 
many developments and potentials, such as reinforced reaction injection 
moulding (RRIM), foam moulding, and blow moulding, etc. New plastic 
materials continue to be bom, which may require better technology, 
tougher conditions, or on the contrary, have wider working range of pro
cessing.

Because of ever-growing requirements, injection moulding plants con
tinue to expand, to modernise or to be built up. These plants are aiming at 
production of quality injection moulded parts to meet the customers' per
formance requirements to get economic success. Although this success de
pends on some other factors, one of the essential factors is how to produce 
parts as good as possible. Only with the beginning of deeper understanding 
of the process mechanism and their underlying physical laws has plastic 
processing technology and machinery design made any real progress.

Although the complete operation of injection moulding is a much more 
complicated process than the term "injection moulding" can describe, a 
block diagram shown in Fig. 1.1.1 outlines the major technical operations:

So f tw a re  Operation

( Material Selection )

( Prototyping: Part Design j

I
Mould Design 

Gate Positioning
T

(Setting Process Conditions)

Hardware Operation

(Mould Making ) (  Material Handling )

Setting up Machine & 
Auxiliary Equipments

( Quality Testing, Trouble Shooting )

f Operation & Production )
/•   V  '
( Packaging, Delivering )

S o f t w a r e
Operation
Re-evaluate 
Part Design, 

Material 
Selection 

& Machine 
Performance

Optimize 
Process 

Conditions; 
Reduce Cost

Figure 1.1.1 Injection Moulding Technical Operations

The software operations have their significant importance. Part design 
requires basically the information of the properties of plastics, structure re-
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sponses, performance characteristics, process variables, part shape, and 
economics, whereas mould design is mainly based on the past experiences. 
Even for recognised experts the complexity of a viscoelastic polymer ma
terial, an irregular mould geometry, steep temperature gradients and other 
criteria such as appearance and dimensional tolerances make mould design a 
difficult task. Prototyping is one of the steps by which the engineering and 
feasibility studies can be converted into a product. Numerous iterations in 
prototyping a plastics part prior to satisfactory moulding are costly in terms 
of engineering resources. Misuse and misapplication often result in higher 
cost paid. Successful designs and control settings can lead to a great deal of 
gain by material saving and high productivity. This success must be 
strongly based on engineering and processing analysis along with practical 
troubleshooting. One may associate the software operations with computers. 
In fact, computers, which have been developing in parallel to the evolution 
of the plastic industry, are really manifesting themselves as the key roles. 
Even in hardware operation, CAD/CAM in mould-making, digital-comput- 
ers in machine-controlling, and on-line operation robot handling are very 
common nowadays. To analyse the processing of injection moulding, one 
has to understand the characteristics of the polymer materials and the basic 
processing principles in the injection moulding machine. Fig. 1.1.2 shows 
the main parts of an injection moulding machine.

Moving half of the mould

Nozzle
Mould

Screw movement

Heater bands HoPPer

\  !; > » \ « \ v \  » \  ; : \ ' « \  'fcY <■: >

Ejectors Product

Screw rotation

Non-return Valve Injection unit 
movement

: Hydraulic system E3: Granular polymer |B :  Plasticating & melting polymer

Figure 1.1.2. Main parts of an injection moulding machine

In a typical cycle action as shown in Fig. 1.1.3, the mould is first closed 
and the plastic material comes from a hopper whose tapered portion is con
nected to the throat, where the rotating screw is exposed to the material for
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pickup. The rotation causes the material to move forward, be compressed 
and sheared while heaters around the cylinder chamber heat it up until it is 
fully and homogeneously plasticised into a melted state, at the same time 
forcing the already prepared and metered melted material into the clamped 
mould. The mould may consist of a single cavity or a number of similar or

Mould Close

i

Nozzle Forward

Screw Forward

FiU Mould

Hold Pressure Moulding
Screw Retract Being

Nozzle Retract Cooled

Mould Open & Moulding Ejected
|__ -------------- *-------------

Figure 1.1.3 A typical moulding cycle

dissimilar cavities, each connected to flow runners that direct the flow of 
the melted plastic to the individual cavities. Adequate pressure is then 
maintained for some time after the mould was filled to permit the plastic in 
the mould to solidify, and cooling water is circulated through channels in 
the mould so as to keep the mould cavity walls at a temperature usually 
between room temperature and the softening temperature of the polymer. 
Thus, the hot polymer begins to cool as it enters the mould. When it is 
cooled to a sufficiently rigid state, the mould is opened and the piece is 
ejected out by pin ejectors.

1.2 Characteristics of the injection moulding

From the general description in section 1.1 one can see a few of basic but 
important features about the process. The significant complicating features 
are the nonisothermal, compressible and visco-elastic characters. It should 
have become evident that the injection moulding can not be done without 
controlling those features by a number of process parameters. Before more 
detailed research is presented about these features a few major variables are 
introduced hereafter.
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1.2.1 Temperature

One fundamental principle of injection moulding is that hot material 
enters the mould, where it cools rapidly to a temperature at which it 
solidifies sufficiently to retain the shape of the im pression. The 
temperatures of the mould and the melt are therefore important as they 
govern a portion of the overall moulding cycle. The hot melt flows more 
freely in a hot mould, yet a greater cooling period is required before the 
solidified moulding can be ejected. Alternatively, while the melt solidifies 
quickly in a cold mould it may not reach the extremities of the impression. 
A compromise between the two extremes must therefore be accepted to 
obtain the optimum moulding cycle. The main parameters for controlling 
the thermal feature are then the melt temperature and mould temperature. 
The more detail and more practical discussion of these two parameters will 
be given in chapter seven.

There are three thermal phenomena which complicate the process. In the 
first place the mould surfaces, which are the flow boundaries, are not usu
ally at the same temperature as the melt. This follows principally from the 
difficulty of uniform control of temperature throughout the mould block. 
In addition to spatial variations of temperature, the cyclic nature of the pro
cess involves time-varying temperature within the mould block. Thus the 
dynamics of heat transfer in the mould block contributes an unsteady non- 
isothermal character to the mould-filling process. A consequence of the 
nonisothermal boundaries is the freezing of the polymer at the flow bound
aries if they are sufficiently cold. The principal effect of boundary solidifi
cation is the constriction of the flow path, which leads to large pressure in
creases. This can be noticed especially in the filling stage of a thin cavity. A 
third nonisothermal feature is due to viscous heating. Under some condi
tions the combination of high viscosity and small flow channels can lead to 
significant temperature rises of the melt as it proceeds toward the cavity. 
With some polymers this creates the possibility of thermal degradation. In 
any event significant temperature rises will strongly affect the relationship 
between the pressure drop and the flow rate. Because injection moulding 
can involve pressure as high as several thousand atmospheres, it is necessary 
to keep in mind that the viscosity of melted polymer is known to depend on 
pressure.
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1.2.2 Pressure

Pressure in injection moulding process varies according to location and 
time of the action. It would be confusing if the term "injection pressure" 
were used for analysis or operation because it could be hydraulic pressure 
supplied by the drive unit of the machine, or cavity pressure inside the cav
ity, or the holding pressure specially for a secondary pressure stage. The 
hydraulic pressure can not be set at the machine because it depends on the 
flow resistance of the runner system, gate, and mould cavity. It is a reflec
tion of many factors like screw speed, m elt tem perature, mould 
temperature, material viscosity, shape of the geometry, and switch-over 
time, etc. The readings of the hydraulic pressure provide no basis for 
conclusions regarding the holding pressure stage and the pressure inside the 
cav ity^ . For analysing or controlling the flow process, the cavity pressure 
plays a central role.

The information obtainable from a cavity pressure curve is illustrated in 
Fig. 1.2.1 by a characteristic curve with technical parts.

Pressure
Filling Stage

Effects from: 
-Injection Speed 
-Temperatures of 
hydraulic oil, melt 
and mould 
-Viscosity of melt 
-Pressure depend
ency of screw drive

Effects on: 
-Viscosity 
-Molecular 
degradation 
-Crystallinity 
-Molecular 
Orientation in part 
surface 
-Surface 
Qualitŷ .

Compression 
Stage

Effects from:
-Switch-over to holding 
pressure 
-Control of pressure reserve

Effects on:
a. Material:
-Crystallinity
-Anisotropy
b.Part:
-Completeness of moulded 
part
-Flash formation 
-Weight

Holding Pressure Stage 
Effects from:
-Temperature of cavity wall 
-Deformation of mould 
-Stablity of clamping unit 
-Magnitude of clamping force

Effects on:
-Molecular Orientation 

-Voids & sink marks 
-Crystallinity 

-Shrinkage 
-Dimensions 

-Relaxation 
-Ejection

-Weight

Time

Mould Filling Compression Holding pressure & Cooling Stage Mould 
Close Stage Stage °Pen

Figure 1.2.1. A characteristic curve of pressure with technical explanations.
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From the graph, it is possible to classify it into three fundamental stages: 
filling stage (or called injection stage in some sources), compression stage, 
and holding pressure stage (or called cooling stage). (The stage classifica
tion can also be done in terms of times, which are "boost time" for filling 
and compression stages, "dwell time" for the rest; or in terms of volume, 
which are filling phase for the period until the mould is just filled, 
pressurisation phase for extra 15% of the material and compensation phase 
for compensating 25% volumetric change from the melt to the so lid s , 
etc.). These three stages can be related to certain effects as well as to quality 
criteria. The filling stage primarily affects the cosmetics of the moulded 
part, while the holding pressure controls, above all, the dimensions. The 
graph illustrates the relative importance of the cavity pressure very well. 
The first section of the curve shows the function of overcoming the flow 
resistance from the nozzle to the cavity, which keeps going up almost 
linearly. If there was any pressure drop in this section, it would either be 
back flow or render the computer analysis unsuitable. The back flow gives 
bad orientation of the material, and cause flaws. The second section 
(compression stage) of the curve provides information about typical 
mistakes in the process technique. A high pressure peak in the compression 
stage may cause serious difficulty. It results from an incorrectly set or 
unreliably functioning switch-over to lower holding pressure and produces 
flash or even worse, a packed mould. Fig. 1.2.2 shows four basic 
possibilities of switch-over:

Injection without switch-over Premature switch-over
t  from injection to Q ii \  Cavity filling with holding 

holding pressure c l  \  \ pressure

u
CL.

. ...... ^

a. b.

^  Late switch-over Correct switch-over, smooth
\  .Discharge of mould , 
y (melt flows back o .

l \  transition from injection 

\  to holdina pressure

J
' — __ jQtn h arrp l)

\  t u \ ,
C.

►

d.

Figure 1.2.2 Four basic possibilities of switch-over.
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(a) Injection without switch-over. This is practicable if the necessary final 
pressure is close to the filling pressure, which is often the case with small 
gates and with parts having a large flow length to thickness ratio. The haz
ard of late switch-over exists for with large gate.
(b) Injection with late switch-over. Overpacking is the result which causes 
back flow which in turn causes undesirable and unfavourable shear stresses 
because of the combination of flowing and freezing. It is also the principal 
cause of damage to the mould by deforming cavity edges and overloading 
the clamping unit.
(c) Injection with premature switch-over. This indicates that the filling pro
cess takes place under holding pressure, which is too low for proper filling, 
and consequently with reduced injection speed. At the moment of switch
over, the flow may stagnate briefly, which produces troublesome surface 
marks.
(d) Injection with optimum switch-over. Proper selection of this point is 
particular important. There are four primary methods of determining when 
to switch over which are discussed in detail in [5].

The hydrostatic pressure itself does not cause stresses but the difference 
of the pressure does in the cavity. The profile of the pressure shown in the 
graph can not display the difference. It is only with more comprehensive 
results given by two- or three-dimensional computer analysis can the pres
sure difference in the cavity and its consequently results be shown and in
terpreted.

1.2.3 Velocity

Although flow rate is one of the major parameters in controlling the 
moulding process, velocity of the melted polymer plays an important role 
in analysis. Velocity directions in different locations give a preliminary idea 
of the molecular orientation. In a plastic melt at rest, individual molecular 
segments are in a random, tangled state of maximum irregularity. During 
filling stage, molecular chains are deformed by the flow of melt, which 
causes them to become oriented in the direction of flow. Although at certain 
conditions (low molecular weight, high temperature, and low pressure), the 
oriented molecular chains, after some time of standstill, regain their 
irregular, random state due to their thermal motion (Brownian motion), it 
usually takes only a fraction of a second, especially in the surface layers, 
for the material to solidify, and a considerable part of the orientation
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produced during the filling is always "frozen-inM. The strength of moulded 
part is always higher in the direction of orientation than perpendicular to it. 
The same idea is specially important for fibre orientation research when the 
strength in a particular direction is needed. Velocity differential in space 
can indicate shear elongation and shear deformation of melt, which can give 
a whole image of the stress's distribution caused by the combination of 
viscosity and shear deformation. The viscosity itself is the function of the 
local velocity difference and its rate, so are the constitutive relations which 
will be discussed in later sections. This feature of melted polymer becomes 
extremely difficult in modelling analysis. The velocity information can also 
give the location of flow front about time, weld lines, and meld lines, which 
in turn give an intuitive information of the filling. Fig. 1.2.3 illustrates the 
weld line and meld line by means of velocity directions.

Weld line

Figure 1.2.3. Weld line and meld line

1.3 General Considerations of Effects

There are many flow and thermal effects which cause different problems 
in moulded parts. Before more detailed researches about the process are 
introduced, some general considerations of five major effects for those 
problems are presented.

1.3.1 Weld / meld lines

As mentioned above, weld line and meld line are obvious flow effects. 
Weld lines are formed when two melt flow fronts meet and join together, 
usually with no shear or mixing of the two flows. As well as being visually
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unacceptable, they are potential cracks and give areas of local concentrated 
stresses. Weld lines can be seen around a hole or a thinner area as melt 
flows join up after surrounding the obstacle, or in the joining area where 
flows from two or more gates meet together. Although both flows are 
"welded" together, there is little incentive for molecules to bridge the 
boundary since the polymer molecules are oriented along the directions of 
flow. It is so even when pressure is applied. A higher temperature will 
promote more thermal diffusion, but the weakness of weld-lines will be 
more pronounced in mineral- or fibre-reinforced polymer compounds be
cause of the absence of fibres bridging the join, as a report^  stated. From 
this point of view, meld lines, which are formed by two flow fronts moving 
in parallel, have the same weakness as weld lines do, but the head-on meet
ing of two melt fronts may cause some entrapment of air as the join extends 
through the thickness of the wall to reach the mould faces as shown in Fig. 
1.3.1. This is why a short weld line can be seen immediately after the 
meeting but gradually disappears as it extends in its elongation direction. 
The entrapment of air is a real risk of crack-like defect, or even burning of 
the polymer. Venting is a way to avoid the defect. Weld lines are normally 
inevitable, but they can be repositioned in the least sensitive area by re
designed the gate position.

Fronts

Entrapment of air

Melt fronts meet

Figure 1.3.1 Weld line and entrapment of air viewed in two directions
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1.3.2 Hesitation effects

Hesitation effects are induced when there are significant changes in wall 
thickness in a part. Under the same pressure, the melt flow always chooses 
the easier path to fill the cavity. So wherever it has the choices of filling 
either a thick section or a thin diaphragm, it sits at the edge of the thin sec
tion losing heat, goes to the thick section, until the mould almost completely 
filled when the pressure is then increased sufficient to try to fill the thin 
section. Often by this time, the front around the thin section is frozen, leave 
the thin section unfilled. The simple way to solve the problem is to 
reposition the gate(s), and let the thin section be the last to fill. As long as 
the melt continues to flow at a steady rate there is no difficulty in filling the 
thin section^.

1.3.3 Shrinkage / warpage / sink mark / void

Polymers have high thermal expansion coefficients because of their 
characteristic microstructures. Thermal expansion is anisotropic if there is 
molecular orientation present, with the expansion coefficient being smaller 
in the direction that has the greater fraction of covalent bonding. In the in
jection moulding process the cooling rate is relatively fast, and it varies 
with the position in the product, with the outer layers being quicker cooled 
than the centre. If a polymer is capable of crystallising then the effect of the 
changing the cooling rate may be dramatic, especially if the maximum rate 
of the crystal growth is not too high. In this case it may be possible to cool 
thin sections of the plastic fast enough to avoid any significant 
crystallisation, whereas in thicker sections the degree of crystallinity is 
different due to the time spent in the crystallisation temperature range. 
When a glass forming polymer is cooled, a slower cooling rate gives the 
polymer more time to relax towards an equilibrium glassy state, this state 
continues even if the polymer is held at a low temperature. All these 
reasons cause the variations in density across a product, they are therefore 
the fundamental factors for the shrinkage. Recent released MF/WARP's 
introduction® indicates the four components for calculating the shrinkage: 
a). Volumetric shrinkage; b). Crystallisation kinetics; c).relaxation 
characteristics; d). orientation vector.

Warpage is the phenomenon caused by variations in shrinkage throughout 
the product. However, how much a part warps depends on the magnitude of
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warpage-driving force and the stiffness of the part. A product warps if the 
driving force is locally sufficiently large, and has residual stress little 
warping if  the driving force is sufficiently small. The flow effect on 
warpage is mainly the orientation in a moulding, whilst the thermal effect is 
the temperature and cooling rate difference throughout the component.

As mentioned above, the general remedy for shrinkage /  warpage of a 
moulding is to increase the amount of feeding of the mould to compensate 
the volume change. This can be controlled either by increasing the holding 
pressure or the length of the holding time, or by enlarging the gate. 
Nevertheless, the orientation has to be solved by further shaping on the 
wall-profiling of the product, and careful design of the mould. The follow
ing defects are those which can not be solved by only increasing the amount 
of feeding.

Sink mark often happens in thick junction area. This is also because of 
local shrinkage. Fig. 1.3.2a illustrates how an island of melt is cut off from 
the main supply during the solidification. Fig. 1.3.2b shows how solid skin 
is pulled inwards by the contracting core as it cools, and sink marks can be 
left in the surfaces of a box. If the skin is strong enough to resist the con
tracting force, a void may be caused inside the box.

Melt O
- t

Solid Skins

^  I "
Sink Marks

Island of melt

; r i m
3.6s 9s

a.

Void

b.

Figure 1.3.2 a. Shrinkage cavity at the intersection of a plate with a 
reinforcing rib 

b. Formation of sinks and voids

1.3.4 Orientation

Orientation in polymers simply refers to alignment of polymer chains, 
whether they are stretched or not. The shear and extensional flows in injec
tion moulding affect the microstructure of the melt. Polymer chains have a 
preferred relaxed state. If they are not frozen so stiff to move, it is their
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nature to randomly coil up into a "fuzz-ball" configuration. When polymer 
is pushed through gates and/or runners into mould cavities, these fuzz-balls 
distort from the stretching and shearing forces. This distortion creates 
alignment of chains parallel to each other in the flowing directions. If there 
are rigid additives present, such as glass fibres, these can be aligned with 
the flow as well. If this non-equilibrium microstructure is "frozen" into the 
solid state, then there is said to be the orientation of the part. In oriented 
areas, normally in skins, there are strong and weak directions just like the 
function of fibres. The strong direction is always along the direction of 
orientation because the atom-to-atom bonds are much stronger than the 
weak forces attracting neighbouring chains.

<D

oo
13>

Weak

High shear

Relaxed polymer Surface highly oriented Enlargement 

Fig. 1.3.3. Orientation of cavity melt flow in cross section view

The fact is, injection moulded parts are not uniformly oriented. The 
degree of orientation varies considerably from the surface to the core 
through the cross section, and from the gate to the extremes. Fig. 1.3.3 
shows the orientation in a cross section of a mould where the flow proceeds 
from left to right. Often a high level of molecular orientation is regarded as 
a bad feature in injection moulding, since the direction in perpendicular to 
the flow is weakened, and will be the potential weakness for developing 
cracks, though the orientation could be beneficial if it were in the direction 
of the main structural loads. How pronounced these variations are also de
pends on the moulding conditions—more precisely, the point-to-point flow,

Core has more time to relax

Melt front

Oriented Skin 
from stretching
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temperature, and pressure conditions at every location in the mould. High 
residual stress is not a prerequisite for orientation. It is generated from 
stretching and shearing during the filling stage: fast filling tends to put 
more orientation on the part surface and less in the core, because the maxi
mum shear always appears near the mould wall where the skin is solidified 
first, whereas the core freezes later and has more time for melt relaxation. 
While in the packing and cooling stage, the stretching and shearing essen
tially disappear, and the polymer orientation can relax out to various de
grees. High melt temperature allows the melt to freeze more slowly and al
lows more time for orientation decay after flow ceases, whereas high hold
ing pressure packs more material into the cavity to compensate for the 
shrinking melt, and the orientation near the gate and in the core will be ex
acerbated.

1.3.5 Jetting

When a small gate feeds a plane cavity in the same direction as shown in 
Fig. 1.3.4, jetting may occur.

A jet of melt is squirted across to the opposite wall without touching the 
cavity surface. When the jet reaches the wall it buckles and collapses onto 
the surface. Then the jetting ceases and the melt fills the remaining space in 
the cavity by spreading disc flow, forming weld-lines as it flows over the 
cool, buckled jet. Some experiments about jetting have shown that jetting 
may occur at both lower and higher injection rates, while simple mould 
filling occurs in the intermediate range of injection rates. The development 
of simple mould filling is caused by the contact of the extrudate with the 
mould wall. This can serve as a criterion for jetting. Another way to elimi
nate jetting is to use barriers near the gate. Detail discussion can be found in 
reference .

Fig. 1.3.4 Jetting
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1.4 Mathematical Description and Difficulties

The fluid mechanics and heat transfer of the injection moulding can be 
generally described by the conservation equations of mass, momentum and 
energy:

where p, vi? Oy, gi5 E, T and Q indicate the density, velocity vector compo
nents, stress tensor components, body force vector components, internal en
ergy, temperature and heat source strength of the field, respectively; t rep
resents the time and j is the dummy index for summation; cp and k are 
specific heat and thermal conductivity.

The closed system needs two more relations (of which forms can be flow 
and/or material dependent), that is, the appropriate constitutive equation for 
the stress tensor, and the equation of state for the internal energy. The as
sociated boundary conditions include:

Solid boundary for the flows:

(1.3)

a i )

a. 2)

v. = 0i
T = Tflow mold (1.4)

mold.,

Flow front boundary for the melt:

a..n. = 0 
y j (1.5)

Exterior boundary for the mould:
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T . n .  = h ( T - T J  (1.6)
* J J

where h represents the heat transfer coefficient between the mould and the 
ambient air at a temperature of Too.

Thus, the complete system (1.1-1.6) gives us a transient, compressible, 
non-isothermal, non-Newtonian, three dimensional fluid flow problem with 
geometric complexity, advancing flow front coupled with a transient heat 
conduction among the plastic melt, steel mould and cooling liquid.

It is readily seen that the most general, comprehensive formulation of 
injection moulding results in a very large and complex mathematical prob
lem. While the basic difficulties associated with compressible Navier-Stokes 
equations remain intact, the constitutive equations of non-Newtonian flows 
contain higher-order derivatives and non-linear terms, and their best rep
resentatives are either of the integral or of the implicit type. The filling 
stage causes most concern as well as being the most difficult because of the 
unsteady moving flow front of the melt and the heat transfer through the 
interfaces between the plastic melt and the mould. Even in cooling stage 
when the melt is in a state of standstill, the mathematical difficulties include 
not only the three dimensional transient heat conduction among the melt, 
mould and the cooling liquid, but also the optimisation of the location and 
the size of the coolants. What is more, a theory of molecular orientation 
must be able, at least in principle, to give a complete picture of the process.

However, all the mathematical models that have appeared so far either 
focus on a specific subset of the general problem or involve major simplifi
cations related to the difficulties mentioned above, or both. Compressibility 
effects are believed negligible during the filling stage though they may be 
present due to the large pressure variations involved in the injection 
moulding. The importance of this simplification is shown from the follow
ing advantages: the energy equation can be separately solved; the internal 
energy is reduced to temperature only; and the divergence of the velocity 
becomes zero. Another major simplification is that the non-linear terms of 
convection in the momentum equation can be dropped because polymer 
melt flows have high viscosity.

1.5 Review on Computer simulation of injection moulding

The highly competitive nature of the plastic industry and the complicated 
characteristics of polymer processing have served as two impetuses for
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computer simulation of injection moulding. Over the last two decades, there 
has been a tremendous growth in the computer software engineering and 
intensive research on the numerical methods for serving the injection 
moulding industry. Some of the products of the software engineering which 
have evolved over this period are packages that serve to replace the "rules 
of thumb" of the past with more and more accurate analysis based on 
sounder theoretical principles. The common feature of the software tools is 
to combine the relatively matured numerical methods with quickly devel
oped graphical display technologies to aid the engineering analysis. With 
this feature, the computer simulation has extended from the flow analysis 
for the filling stage to holding and cooling analysis, stress and creep analy
sis and shrinkage and warpage analysis for the later stages. As a result, 
greater emphasis is being placed on the optimisation of the product quality 
and performance.

Although the general principles in the dynamics of polymer liquid are 
very intricate and still developing, the modelling of polymer flow processes 
stemmed from very simple approaches. Colin A ustin^, who laid down the 
foundation of the Moldflow company in 1978 and who was involved in de
veloping the original software himself, has successfully skipped the compli
cated mathematics and found the inherent simplicity for the flow analysis. 
He adopted a very straightforward equilibrium formulation for a thin slice 
(which could be a rectangular, or a round, or radial section) and assembled 
all the slices into a whole component following a time marching method. 
There are some basic ideas behind this simplification. One of them is that 
the fundamental relation between pressure and the shear stress for a thin 
slice is quite independent of material or flow characteristics. A second idea 
is that any errors from predicting shear rate come from the viscosity pa
rameter given and not from any mathematical sim plification^]. Then the 
accuracy is mainly based on the ways of obtaining the viscosity and the 
database for them. K.K. Wang et a /.tn »i2] set Up a team engaging in an 
interdisciplinary research on various problems of injection moulding 
process in Cornell University since 1974, a product of which is another 
famous commercial package for the injection moulding analysis called C- 
FLOW. Their two-dimensional model in the 70s was based on Hele-Shaw 
flow theory (a lubrication model) which was first introduced into this field 
by RichardsonF3]} and employed the inelastic generalised Newtonian fluid in 
a thin cavity by Wang, Shen and Hiebetf14!. Other models include the trans
port models introduced by Harry and P arro tt^] who coupled one-dimen
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sional flow analysis with a heat-balance equation for a rectangular cavity; 
by Basov and Felipchuk!16! who used the same flow equations but heat con
duction equations for the liquid and solid phases; and by Kamal and 
Kenig!17! and Berger and Gogos!18! using the assumptions of a radial creep
ing flow for a disc mould filling problem. Since the resulting system of the 
transport phenomena is quite complex, those various assumptions have to be 
made by the authors to simplify the mathematical treatment. They are 
mainly based on two considerations: the first is that the assumptions will not 
seriously damage the simulation accuracy; and the second is that some 
questionable items are neglected if they greatly reduce complexity and the 
error introduced results in more "conservative" solutions. Later on two- 
dimensional laminar-type flow models were mainly adopted. Broyer et 
a/.!19! suggested Hele-Shaw-type model for the flow in a narrow gap mould; 
Kamal et <2/.[20,2i] developed Laplace-type expression for the pressure in a 
thin cavity; White!22! used the same model to describe the flow in a fully 
developed flow region. Since the governing equations can be formulated 
without explicit reference to the rheology of the fluid, these approximations 
result in the advantage of numerical solving and reach a conclusion that the 
flow pattern and pressure distribution are independent of the rheological 
properties of the material. Finite element method was employed for solving 
the generalised Hele-Shaw flow by Hieber and Shen!23! who had been en
gaged in the research in the Cornell Injection Molding Group. A few years 
later, Shent24’25! reported their new developments of the method which was 
modified in two aspects: a boundary-integral formulation replaced the finite 
element treatment of the pressure, and an 'energy integral' approach was 
used for the transient temperature. A Poisson equation of the pressure po
tential was solved by the then newly developed boundary integral 
method!26!. A different but similar modification was given by Jin et al\ 27! in 
which a fictitious potential was introduced by using the Kirchhoff trans
formation, then the Laplace equation of the potential was much easier to be 
solved by the boundary element method. Almost at the same time as Wang- 
Hieber-Shen's team, Kamal and Lafleur!28! developed the creeping motion 
equations for the filling stage, the steady compressible equations for the 
packing stage and the transient heat transfer equation for the cooling stage 
with an extra term added for the heat generated by the crystallisation of the 
polymer (which was developed by Dietz!29!). The simulations of the flow 
fronts of the melt are considered no less important than the thin cavity flow 
approximation of the melt. Tadmor!30! was the first to propose a semi-
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quantitative model in order to explain the effect of the fountain flow on the 
orientation distribution. Bhattacharji and Savict31i presented an analytical 
solution to the fountain flow in a circular tube, assuming a flat flow front. 
Castro and Macoskot32] gave a similar solution for the plane flow under the 
same assumption. However, the assumption of a flat front is unrealistic. 
Numerical simulations have shown some results much closer to a practical 
flow front that is actually close to a semicircle. Biggt33], Huangt34] and 
Kamal et al&5*36] have used the Marker-And-Cell (MAC) m ethod^ to give 
the results. The Galerkin finite element technique was employed to give the 
solution of the fountain flow by Mavridist38’39̂ . Most of the modelling 
methods in the past are collected in a newly published book edited by 
Tucker m ^ i

During the same period, the designs of commercialised packages on 
simulations for filling stage with more powerful functions as well as other 
stages of the injection moulding were under the way. In early eighties, the 
finite element method was introduced into both in C-FLOW and 
MOLDFLOW. Moldflow, ACAETI (Advanced CAE Technology Inc.), 
GEC (General Electric Co.), SDRC (Structural Dynamics Research Co.), 
AEC (Application Engineering Co.) CIMP (Cornell Injection Molding 
Program) finished the commercialised programs for cooling stage in the 
mid-eighties, separately, which are called MOLDTEMP, TMCONCEPT, 
IMES, C-COOL2D, MCAP, POLYCOOL2, MOLDCOOD41-44] and 
COOL3DI45], respectively. Other commercially available packages are re
viewed in references [46,47]. At this stage, CAD/CAM techniques which 
were developing in parallel begin to be merged with the processing analysis 
as these packages appeared to be graphically enhanced, interactive, user- 
friendly and integrated computer-aided engineering (CAE) systems.

The idea of using a display device to visually show the programmed cut
ter path was proposed and developed during the 1960's, which was actually 
the predecessor to today's CAD/CAM/CAE systems. Since then the graphi
cal hardware and software developments have been strongly stimulated be
cause the newcomers to the computer field brought in a totally new price 
and performance spectrum which created a drastic increase in the accep
tance of computers in general, and in the use of computers for scientific, 
engineering, and manufacturing functions in particular. The rapid devel
opment of these technologies has yielded a completely different methodol
ogy of engineering analysis and design, especially after the occurrence of 
the systems that could display three-dimensional objects in high resolution.
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The CAD/CAM/CAE products are revolutionising the speed and the effi
ciency of the plastic design and processing tasks. The "rules of thumb" that 
governed the designs of the past are giving way to sophisticated computer 
packages which are enabling major advances in speed, productivity, accu
racy and quality. At first, these programs are mainly for manipulation of 
the complicated geometries, putting ideas into a shape and saving the ge
ometry into a database. The obvious advantages are the intuitively guided 
creation, manipulation of geometrical information, and the presentations 
and outputs from the systems. Secondly, they are used as pre- and post-pro- 
cessor of other packages like stress analysis, economic and operation anal
ysis, etc. Many interfaces are designed for transferring the graphical and 
physical data between the two types of packages. As the requirements grow 
for computers to evaluate the geometrical designs and productivity, and the 
computer hardware techniques develop, gradually the evolution of the sys
tems of purely geometrical manipulations merges with the development of 
the analysis systems. For example, EBM(Greenock)f48] is now building up a 
highly integrated CIM (Computer Integrated Manufacturing) system for in
creasing its productivity and competing ability, in which the most beneficial 
aspects of the applications will be the prototyping the part, the designing of 
mould, and mould-making. Xerox Co. has already built up a CAE package 
called  ACTFLOWI49] whose flow solvers are based on those of 
MOLDFLOW, C-FLOW and MEFISTO (developed in Institut fu r  
Kunststoffverarbeitung, Germany). The details about what and how benefits 
are for the designs can be found in the reference written by Gosztylat50!.

The geometrical complexity is a really difficult task in computer simula
tion of injection moulding. However, the most difficult task, which many 
researchers tried to avoid, or to simplify, or to simulate with more accurate 
models, is in the rheological aspects of modelling plastic behaviours. Plastic 
liquids are non-Newtonian fluids; the non-linear constitutive relations 
characterised by the rheological properties therefore play a central role in 
governing the way they flow and deform in response to applied forces and 
the stresses inside them. Some classic and pioneering works on the 
polymeric rheology of continuum and combination of the molecular theory 
and continuum are introduced in several recently published bookst51"55!. 
Kamal and RyanM give a very good review on the rheological aspects. It is 
pointed out in their paper that in modelling a polymer processing operation, 
two opposing factors must be carefully considered in selecting a rheological 
constitutive equation. First, it is desirable to select a constitutive equation
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which has the capability of accurately describing the rheological response of 
material over a broad range of environmental conditions and deformation 
histories. On the other hand, the constitutive relation must be utilised in 
conjunction with the governing equations, therefore, the mathematical 
simplicity of the relationship is of prime concern. Crochet and Watlers!57! 
also point out that for reasons of tractability, the more complex the flow 
problem, the simpler has to be the constitutive model used in non- 
Newtonian fluid mechanics. Tanner!55] gives a table of five reflections of 
twenty different constitutive models subject to seven types of classified 
flows. From the table he suggests that it would be wasteful and counterpro
ductive to always insist on using the most complex model of constitutive 
equation for all purposes. One should choose only those which are suitable 
for the problems studied. Because of the geometrical complexity in the 
computer simulation of injection moulding, it is necessary to compromise 
between the accuracy in the description of material response and the 
mathematical tractability of the resulting governing equations. Especially on 
practical applications, easier approaches for prediction of the flow phenom
ena are preferable.

1.6 L agrangian  D escription in the N um erical S im ulation

Although most of the formulations mentioned above, or more general — 
in fluid mechanics, are based on Eulerian description, Lagrangian ideas are 
found very important in the numerical simulation of injection moulding. 
From the most intuitive point of view, the filling stage of the problem is a 
finite fluid flow with a moving boundary, the phenomenon of a quantity of 
polymeric liquid which moves, deforms from one space to another. On the 
other hand, the polymeric fluids are viscoelastic materials whose constitu
tive laws are expressed as integro-differential equations written for a parti
cle. Therefore it is better to trace a particle's trajectory in time to give an 
effective way for the calculation!58]. Even for some simple models of the 
constitutive equation, the viscous terms dominate the flow so that the con
vection terms can be naturally dropped, therefore Lagrangian formulation 
can be relatively ideal. A further requirement for the Lagrangian descrip
tion is to give the orientation of plastic particles or even fibre-like particles 
concerned. The numerical techniques based on a Lagrangian description 
have been developed for fluid mechanics both in finite difference methods 
and in finite element methods for many years. They can date back to 1950s,
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when the famous world59! by von Neumann-Richtmyer was developed using 
a one dimensional Lagrangian description. Although later developments 
(like Kolskyl60!, Wilkins!61!, Goudreau and Hallquistf62!, etc.) of the 
Lagrangian techniques in two- and three-dimensions are mainly concen
trated on hyperbolic equations of compressible fluid and/or elastic-plastic 
flows, their extensions to incompressible, non-Newtonian liquids can still 
be found!63'67!. Since the coordinate system follows the fluid motion, they 
have significant advantages of sharp resolution of material interface and no 
convection across the boundary of each element so that the methods are 
highly accurate and stable, and easily implemented. Therefore they are 
often used in the studies of multimaterial interaction and the incorporation 
of surface tension effects. However, the major disadvantage of the tech
niques is the mesh tangling at severe distortions, and it has been thought to 
block their developments. Numerous efforts have been made to mitigate the 
mesh distortion problem, such as various methods of remeshing, and some 
Lagrangian-Eulerian hybrid m ethods like Particle-In-C ell method 
(PIC)!68’69!, Marker-And-Cell method (MAC)!37!, Arbitrary Lagrangian 
Eulerian method (ALE)!70!, Finite Volume Method (FVM)!71!. Although 
these combinations of both Lagrangian and Eulerian give successful solu
tions to the computational fluid mechanics, some of these hybrid methods 
require enormous computer space to store both the grid and particle infor
mation, and double the computing time; Others not only increase the com
puting time two-fold but also lose both the accuracy and the original 
characteristics of Lagrangian description which appear to be important in 
the injection moulding simulations.

1.7 Why Boundary Element Methods

The disadvantage of these pure Lagrangian techniques is because of the 
FDM’s or FEM's grid system in which most of the unknowns are defined 
and solved explicitly or implicitly. Although it seems that only Free 
Lagrangian Method (FLM)!72! manages to extend the pure Lagrangian 
techniques without loss of the accuracy and improve mesh distortion prob
lem by reconnecting mesh based on some connectivity rules, it is worth
while trying to develop them by a completely new method without the do
main grid system involved. Boundary element methods have emerged as a 
powerful alternative; since the unknowns to be solved are those on the 
boundaries, the unknowns within the domain in most of cases can be
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derived from the boundary values, which give better accuracy and a contin
uous solution.

Boundary element methods stem from the modem theory of boundary 
integral equations which could date back to 1903 when Fredholm£73] estab
lished the existence of solutions on the basis of his limiting discretisation 
procedure. Only after the advent of fast digital computers did the possibility 
of implementing the discretisation process arithmetically opened up. 
Although there were considerable developments on the numerical imple
mentation of the discretisation of the equations (they were reviewed in 
[74]), since the finite difference and later the finite element methods had 
been dominating the numerical analysis in engineering, boundary integral 
equation methods did not obtain much attention from the engineering circle 
until 1978 when Brebbia's first book!75] on boundary element method was 
published, in which the discretisation of the classic boundary integral equa
tions was transferred into the concepts and transformations of the type al
ready known in finite element methods. The advantages of this alternative 
give an impetus to the rapid development in many areas of which the fun
damental solutions of the governing equations are available, such as poten
tial problems and linear elastostatics. There are still some useful features in 
its extension to non-linear and time-dependent problems, such as accuracy 
and easy implementation, though its "boundary only mesh" advantages ap
pears to be no longer exist since most of the developments in these areas 
have suffered from the application of finite element concepts in the domain. 
However, the potential promotion remains as some papers show efforts to 
preclude the domain integrals by the dual reciprocity principlet76-78! and the 
multiple reciprocity methodf79'82}.

The first numerical application of boundary methods to fluid mechanics 
was in the amazing paper by Trefftzt83!. The integral equations governing 
flows of incompressible viscous fluids and the fundamental solutions to 
classic Stokes equations, time-dependent creeping motion equations, and 
even the Stokes equations with one simplified convection term can be found 
in Oseen's remarkable monograph^84]. However, there are various ways to 
deal with different problems in fluid mechanics so that the integral equa
tions can take several forms. The early notable numerical approximations 
of boundary integral equations in fluid mechanics started in potential flow, 
when Hess and SmitW85! developed their pioneering work in aerodynamics. 
In early 1970s, Wut86i began his investigations with a velocity-vorticity 
formulation, which separates the kinematics from the kinetics of the incom
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pressible problem. Later on, Coleman^87’88] has done some researches on 
steady Newtonian and non-Newtonian flows with a formulation of the 
stream and stress functions; Bush and Tanner^89!, Tosaka and Onishi9°3 have 
used the fundamental solutions of primitive variables to develop the 
formulation for steady viscous flows; Tosaka and OnisM91] have also given 
their integral formulations and the fundamental solutions for unsteady 
viscous flows by time-differencing; Kitagawa and Brebbiat92’93] have devel
oped the penalty function method. Dargush and Banerjeet94! have followed 
Oseen's fundamental solutions of both steady and unsteady viscous flows to 
give their applications of boundary element methods. Some other recent 
works related to various fluid dynamics are reviewed in newly published 
bookst94’95!.

It is not surprising that all these developments in boundary element 
methods are based on Eulerian coordinate system, trying to face the non- 
linearities rather than to avoid them. As far as the author knows the only 
exception is Hebeker's workt96J in which he uses the Lagrangian form to 
drop the convection terms. In this regard this thesis emphasises developing 
boundary element approaches in Lagrangian description, both for steady 
and unsteady incompressible viscous flows. Boundary element methods are 
also used to solve some simplified models for non-Newtonian flow in ducts 
and in thin cavities.

From another point of view, the boundary element methods are really 
manifesting themselves as better roles in Computer Aided Engineering sys
tems, especially for those three dimensional problems. Hence in a long 
term, the methods should be at least one part of the basis of a new system, 
such as CASIM, the system this thesis is establishing, which brings these 
new and better ideas into the computer simulation of injection moulding, 
and is expected to be able to solve various practical processing problems in 
injection moulding.

1.8 The Arrangement of the Thesis

This thesis is arranged roughly according to the degree of modelling 
complexity. The second chapter concerns mainly the non-isothermal non- 
Newtonian flow in a pipe, and gives a boundary element model for other 
shapes based on the analytical solutions for the pipe flow. Chapter Three 
reviews a boundary element model which is based on a group of simplified 
governing equations for the filling stage in thin cavities, and shows a
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boundary solution of the velocity potential and a further development of 
modelling the temperature field of the stage. Two examples are given for 
testing the effectiveness and accuracy in predicting the flow front patterns. 
Transient temperature field of the cooling stage is simulated in Chapter 
Four by using a time-dependent boundary element method for multimedia 
problems. Discussions are given on the use of interfacial elements and the 
concave domain calculations. In Chapter Five, the governing equations of 
steady viscous flow are transferred into boundary integral equations and the 
unknown pressure is decoupled from the equations; problems concerning 
the particle and fibre orientations and free moving surface related to 
fountain flow are simulated by using the boundary element method resulted 
from creeping model. Chapter Six gives a detail formulation of boundary 
integral equations on unsteady viscous flow. Two unsteady problems with 
free moving surface are given to demonstrate the effectiveness of the 
resulting boundary element method. The practical simulations of some 
IBM's computer parts with geometrical complexity are given in Chapter 
Seven by using MOLDFLOW; A useful principle is suggested there for 
simulating complicated multicavity mouldings.

Chapter Eight outlines the CASIM program design which includes the 
basic techniques in writing graphical enhanced pre-, post-processors, image 
processor and in all the modules of BEM models mentioned in Chapter 
Three, Four, Five and Six.

It is noted that the aim of the development of the boundary element 
methods is to solve the complicated problem effectively and accurately. The 
most headache obstacle in the development is the involvement of domain 
integrals. Although the author treats the domain integrals by domain 
meshing in the thesis, the last contribution to the thesis is a new dual 
reciprocity theory which, in author's view, will be the next step in 
boundary-only scheme. This is the reason the author mentions the 
developments in chapter two, three, four, five and six but leaves the 
numerical implementations and examples for his future work. Yet it is not 
the only challenge in this computer simulation of injection moulding since 
there are so many outstanding problems. Therefore in the last chapter, the 
author wishes to suggest the immediate next step of the research, the 
difficulties and the modelling potentials.
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Chapter Two 

Nonisothermal Laminar Flow in Ducts

2.1 Introduction

In the injection moulding process one first encounters viscous flows in 
ducts. Plastic melt is forced through confined channels at relatively high 
speed so as to minimise the cycle time. The flows inside the confined chan
nels such as sprues or runners are typically laminar. Because most polymers 
have a low thermal conductivity and a high viscosity which is dependent on 
the shear-rate, pressure and temperature, the entanglement of these factors 
in the flows results in. various concerns. One of the phenomena is the 
choking possibilityt9*̂ 9^ c a u se d  by the high pressure involved and its 
dependence of the viscosity. Others include the velocity profile and the 
temperature increases caused by the shear-rate dependence. As mentioned 
before, severe rise in temperature can result in degradation in thermo
plastics, or trigger premature reactions in thermosets. Therefore it is very 
important to be able to estimate the local temperature change in ducts due to 
viscous heating and heat transfer so that the processing melt temperature 
and the injection speed can be properly controlled.

Although the controlling equations for general viscous flow are very 
complicated, when the flow occurs in straight ducts with constant cross 
section, it can be assumed as a fully developed steady flow, and then the 
nonlinear convective terms in the momentum equations vanish identically. 
For Newtonian fluids with an isothermal assumption in some regular cross 
sections, even exact solutions of the resulting linear equations can be easily 
worked outt"k However, the cross section is not often regular and the fluid 
inside is completely non-Newtonian or viscoelastic. The nonisothermal 
characters of the flows require the energy equation to be taken into account 
and solved simultaneously with the other equations. Since this fully devel
oped tube flow is characterised with simple shearing, and very close to 
steady viscometric, a generalised Newtonian fluid (GNF) model can be 
suitable to give quite good results for flow rate and shearing stresst55»53k 
The high dependence of the non-Newtonian viscosity on the pressure, shear 
rate and temperature can then be expressed in simple ways.
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For flows in a circular tube, much work has been done by using different 
models. It is simply because fully developed flow implies that 3Vz/3z=0, 
and on the basis of symmetry, there is no 0 dependence at all. Therefore 
from the continuity equation and no slip boundary condition it can be seen 
that Vr=0. With an isothermal assumption, the controlling equations are 
then reduced to

together with proper relation between the stress and the strain-rate. The 
Newtonian relation between them gives the simplest form

in which [i is the viscosity constant. The exact solution for a Newtonian 
fluid is given as follow:

where Vz is the velocity component in the axial direction, R is the radius of 
the tube, P0 and P l are the pressure from both ends of the tube with length 
L. From this result the relation between the volume rate of flow and the 
pressure drop can be obtained:

which is the famous result of Hagenl10°] and Poiseuillel101L
The idea of generalised Newtonian fluid models is to modify the viscosity 

of Newton's law by varying it with the shear rate. One of the GNF models 
is the well known power-law modell102!

(2. L I )

(2. 1. 2)

( V  - P 2
2

(2 .1 .3 )

4

(2 .1 .4 )

.n  -  1 
T1 =  T|0Y (2.1. 5)
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in which rj0 and n are two parameters and y  is the square root of the half 
second scalar invariant of the strain-rate tensor

y = V i 'V k , (2. 1.6)

Replacing Newtonian viscosity by expression (2.1.5), equation (2.1.1) 
now results ini103!

V = [ - R
z V s + 1

R (p0 - p l )
2r |0L ‘ - ( i )

s + 1

(2.1. 7)

where s=l/n. For n< l this gives a velocity profile that is flatter than the 
parabolic profile in equation (2.1.3) for Newtonian fluids. It is easy to ob
tain the volume rate of flow Q

Q =
(  3  ̂

7CR R(P0 - P L) ,j
vs + 3 y 2n„L J

(2 . 1. 8 )

For n= l it reduces to the Hagen-Poiseuille "law".
Clearly the temperature rise by viscous heating and heat transfer is ap

preciable because of the high viscosity for polymeric fluids and the large 
velocity gradients. The isothermal assumption is no longer appropriate and 
the energy equation for temperature distribution must be taken into account

p c , v , f  = k 1 a < r »L )+
r 3r 3r d z 4

+  T
y

zr
dVV
~dr (2 .1 .9 )

where T is temperature, p is density, CP is specific heat and k is thermal 
conductivity. In general those physical properties are temperature depen
dent, but they are assumed to be constants for most polymeric flow and heat 
transfer calculations, according to the information obtained^104! for some 
materials. Only the specific heat is found to be a strong function of 
temperature for some semi-crystalline materials.

Although it is reasonable in many calculations to assume that k, CP, and p 
do not vary with temperature, the same cannot be said for the parameters in 
the generalised Newtonian fluid model for T|. Apart from the temperature 
and shear-rate, pressure is also found to have influence on the viscosityt105L
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A useful empirical equation for these dependences of the power-law form 
of viscosity is:

t| = r|0eP(p-Po)-a(T~T°)Yn ” 1 (2.1.10)

where p0 and T0 are reference pressure and temperature, respectively; and 
r |0, p, a  and n are considered as constants and are determined for each fluid 
from experimental data.

In general, the governing equations (2.1.1), (2.1.2), (2.1.9) and (2.1.10) 
are difficult to solve. By making different simplifications, however, solu
tions for the each case can be obtained. By neglecting the heat conduction 
and convection in the axial direction, Kearsleyl106] obtained the solution for 
n= l case. By assuming that the viscous-heating is unimportant, ignoring the 
axial heat conduction in equation (2.1.9), and the velocity profile as given 
by equation (2.1.7), an asymptotic solution of the temperature distribution 
for small z can be obtained^107]. By ignoring the axial heat conduction and 
assuming a=0, that is, the viscosity expressed as equation (2.1.5), Dinh and 
Armstrong!108! obtained analytic solution with an infinite set of eigenfunc
tions corresponding to the infinite set of eigenvalues. By assuming that the 
temperature is independent on z, Martini109] obtained the exact solution for 
the fully developed flow in a pipe for oc^O and n ^ l  case. Recently 
Richardsonl110-113] extended the solutions to developing flows in several 
different shapes of the ducts. However, the pressure dependence of the 
viscosity was not taken into account in all these solutions.

In this chapter, the exact solution for the case of fully developed flow 
(both temperature and velocity) is extended to an exact solution for oc^O, 
n ^ l and P^O case, and an approximate solution in the axial direction is de
veloped.. They are then generalised for slightly tapered pipe. The possibility 
of choking is discussed in different cases. In later sections starting from 2.6, 
boundary element formulations for nonisothermal laminar flows in ducts of 
arbitrary cross sections are developed, in which a dual reciprocity method 
is introduced.

2.2 Fully Developed Flow in a Pipe

Assume first that the temperature is fully developed, then the energy 
equation (2.1.9) reduces to
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r drv dr zr dr (2. 2 1 )

where the right hand side is actually a negative value since we define

dV.
dr (2.2 2)

with proper boundary conditions given as follows (no frozon layer):

T = T w, V 

= 0 ,

W ’ • Z

dT dV. 
dr dr

0 when r = R

= 0 when r = 0

(2  2 .3a) 

(2  2 .3b)

then equations (2.1.1), (2.1.10), (2.2.1-3) construct a complete controlling 
system for this nonisothermal steady flow in a pipe of radius R.

From equation (2.1.1) the stress can be expressed as a function of pres
sure gradient and, combining with (2.2.2), yields the following relation

^zr
.n -ldV .

■ f l l =  -11 o exp[P AP -» < T  - T w) ] f  - ^ 7 ( 2  2 .4 )

From the expression (2.1.6), the strain-rate can be worked out easily as 
y  =-dVz/dr. Substituting this relation into (2.2.4) results in

dV,
dr

^ rP .

v 2Tl0y
exp[as(T - T w)-psAp] (2 .2  5)

where s = 1/n, Pz=-dp/dz and Ap is the pressure drop along the pipe. 
Substituting equations (2.2.4) and (2.2.5) into equation (2.2.1) yields

k ^ i x  ( r " f r ) =  " 110 exvias(r ” T  w )" P sAP ]
rP

s + 1

* 1 0
(2  2. 6)

The solution to this equation, according to Martin's solution^109!, can be 
written in the following form:

T = T w + ±  ln{exp(4>AT) + & -exp(())AT)]xs+ 3} (2. 2. 7)
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where <j)=—as/2, x=r/R and

AT = j{ln(l±JT^m;yin2] (2 .2  8 )

in which Nap =
T|0asR

s + 3 s + 1

2(s + 3) k exp(psAp) 2 t i0
is defined as a dimension-

less parameter called Nahme number based on the pressure drop, which is 
often used to interpret the ratio of heat generation to heat required to alter 
the viscosity in non-isothermal problems.

It can be seen that the variation of Nap can only be between 0 and 1/4, 
AT has two roots corresponding to any value in the range other than 1/4. 
However the range for pressure drop can be very large.

Substituting the temperature solution into (2.2.5) produces

dV5
dr

-  exp(-PsAp)x:

{  exp(<j)AT) + [1 -exp(<j>AT) ]xs + 3}
E *
2rlo

(2 .2 .9 )

By using the velocity boundary conditions in (2.2.3), the volumetric flow 
rate can be obtained as follow

dx = 7tR
(s + 3)exp(<|>AT + PsAp) V2Tloy

(2. 2. 10)

This relation, according to (2.2.8), indicates that the same pressure dis
tribution (or drop) along the axis can have two values of the flowrate. This 
is similar to the discussion in reference [112], however, the pressure drop 
corresponding to a single value of flowrate may never be reached if 
parameter p is not zero, therefore two curves case may occur.

Eliminating the pressure related factors, the velocity function can be ex
pressed as

V ^x ) =
Q(s + 3) 

JtR2

1

J
-  expOjjAT^’ dx’

|exp((|>AT) + [1 -exp(<|>AT)]x's+ 3}
(2  2. 11)
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Expressions (2.2.7,10&11) are the complete solutions of the temperature, 
volumetric flow rate and velocity within the pipe. Both equations (2.2.7) 
and (2.2.11) are two parameter dependent functions, they are <|>AT and s, or 
more basically, aAT and s. ocAT is often defined as a dimensionless 
parameter called Pearson number which in the present case is interpreted as 
the ratio of the heat flux resulting from the temperature difference between 
the centre and the wall to heat required to alter the viscosity. Fig.2.2.1 and
2.2.2 show schematically the temperature and velocity curves in terms of 
these two parameters, respectively.

0.8

ccAT=6
(s= l)0.6 0.6

aAT=2

0.4 0.4

0.2 0.2

0.2
Fig.2.2.1 Dimensionless temperature profile

0.4 0.6 0.8

Differentiating equation (2.2.9) it can be seen that there is a zero point of 
the second derivative of the velocity which can be expressed as follow:

s + 3 _ (s + l)exp(<])AT)
(s + 5) (1 -  exp((|) AT)) (2  2. 12)

Clearly, if the zero point is about a half, as shown in Fig.2.2.2, the ve
locity in the boundary layer is much slower than that in the centre part. 
This profile requires the Pearson number higher than a critical value. When 
the Pearson number is above that value, even though it cannot indicate that
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there must a "frozen" layer existing next to the wall, the profile can quite 
smoothly extend to the stagnant boundary layer. The frozen layer can be 
taken into account by introducing a melting temperature Tm which can be 
located with Rm if Tw<Tm<Tw+AT. Thus the dimensionless r/R becomes 
r/Rm in Fig.2.2.2, and upper bond of the integration in (2.2.11) changes to 
Rm/R. A full discussion of frozon layer can be found in reference [112].

6

s=8 , aAT=2.2

s=5, ocAT=2.2

s=3,
aAT=2.2

0.2 0.4 0.6
Fig.2.2.2 Dimensionless velocity profile

0.8 1 °r/R

2.3 Choking Possibility

From solution (2.2.10) it can be seen that when the flowrate has a single 
value (which means that Nap =l/4), the pressure drop has to satisfy the 
following equation

d(Ap)
dz = -  K exp

( P sA p ^  

 ̂s + 1 > ; where K =
(s + 3)2k(2il0)s

asR
(2. 3 .1 )

If the boundary conditions (Ap=0, when z=L; Ap=Ap0, when z=0) are 
used, this equation leads directly to the following solution

psKLA S + l  ,
1 - (2 .3 .2 )
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This solution predicts a rapid increase in the required pressure to reach a 
certain distance from the inlet, and because of the pressure dependence, 
choking of the flow occurs when PsKL/(s+l) approaches to unity. If a= 0  
(c()=0 ), a similar equation can be derived from solution (2 .2 .10) which is the 
same conclusion as that from reference [97]; If s= l, (2.3.2) reduces to the 
same solution as equation (22) in reference [98].

It is interesting to see that even if oc^O and the pipe is longer than a 
critical length, (s+l)/(3sK, choking would still be predicted to occur at 
L=(s+l)/PsK. In practice, however, choking never happens!98!. Therefore it 
is fully justified to repudiate the assumption* of fully developed tem
perature, though in some cases the critical length could be very long.

In order to use the fully developed solutions to obtain an approximate 
solution for the temperature distribution in the z direction, some new as
sumptions must be made. First the mean temperature T and a new refer
ence temperature Tn are introduced, and a relation

AT = 2 ( T - T n) (2 .3 . 3)

is assumed in which AT is a function of z, and Tn is a function of s and a .
Substituting this relation into (2.2.10) and then differentiating the equa

tion results in

-  aP* dT = dP* (2 .3 . 4)

where P*.= exp(~pAp)Pz.
One more equation to relate the mean temperature and the pressure along 

the axial direction is needed. The simplest model is to assume that the 
heating along the axis is adiabatic, for which the first law of thermodynam
ics leads to an expression for the temperature rise in the form!114!

pCpQdT = Qdp (2 .3 .5 )

in which p and Cp are density and heat capacity per unit mass. However, 
this equation does not show the direction of the increasing pressure. In the 
filling process the pressure decreases in the positive z direction while the 
temperature increases. Therefore, a negative sign should be added in either 
side when the differentiation is with respect to z.

The boundary conditions are as follows

* Actually dT/r)z is not zero, the temperature field is thus fully developed in the sense that convection  and 
axial conduction arc negligible but not in the sense that the temperature field is independent o f  z.
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Ap = Ap ̂  T = T 0 when z = 0 
Ap = 0 when z = L

(2 .3 .6 )

A complete system for both the pressure and the mean temperature along 
the z axis is constructed through (2.3.4-2.3.6). If the constant part of K is 
defined as K'

K' = 2 ilo
R

Q(3n + 1 )

mcR‘
(2 .3 .7 )

then, by simple manipulations, the following relation is produced

1 + aP + -j r̂T- (K1 L e x p (-aT 0)exp(pAp0)
v j

(2 .3 .8 )

from which it can be seen that choking never occurs.
Like expression (18) in the referencet97], equation (2.3.8) can be written 

in a more useful form:

P + L exp(-aT  0) = exp
^  P J

«APo

v P c p y
-exp(-pAPo) (2 .3 .9 )

If (3=0, the pressure drop can be explicitly expressed as

A A v ° = l n

i . a K 'L  x1 + exp(-aT  0) (2. 3. 10)

If a=0, (2.3.8) reduces to equation (9) in reference [97].

2.4 Axial A pproxim ate Solutions for T em pera tu re  an d  P ressure

Expression (2.3.9) is the approximate relation between the length L of 
the tube and the pressure drop Ap0 which is the pressure difference p 0-pL* 

Therefore the pressure at z=L can be expressed in terms of the starting 
pressure and the starting mean temperature. According to the referencet97],



Chapter Two: Noni.sothermal Laminar Flow in Ducts 36

however, only if L is longer than a certain length can the equation be 
useful.

The approximate distributions of the pressure and the mean temperature 
within the range (0,L) are given as follows:

p = P l  - t i t  a ~ ]  to{ r  + 0  ~ f ) exp
VP +  pC 

P o - P
p)

p +
oc

L V pC p J4p"]}
T = T +

0 pC

(2. 4.1)

(2 .4 .2 )

The last relation indicates that the mean temperature at z=L can also be 
expressed in terms of the starting pressure and the starting mean tempera
ture:

APoT = T + — -
L 0 pcD

(2 .4 .3 )

o(T -T )

- TC

0.8

0.6

0 . 4

0.2

X 1 0 00.1 1 01

Fig.2.4.1 The pressure drop and the mean temperature.

/ X = ^ K 'L e x p ( ^ x T 0); X  = X ^ ;  P 1 = 2 .5 ^ - ;  p 2 = 1 . 5 ^ '
P J
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Equations (2.3.9) and (2.4.3) are very useful explicit expressions for the 
mean temperature and the pressure in terms of inlet conditions and other 
parameters such as the flow-rate, radius and those for viscosity. Fig.2.4.1 
shows the distributions of the mean temperature and the pressure.

2.5 Approximate Solution for Slightly Tapered Circular Tube

In practical injection moulding, a tapered tube is often designed for a 
sprue or a runner in order to be easily ejected with the moulding connected. 
The flow in a tapered tube requires consideration of both the radial 
direction and an acceleration in the axial direction, but it is still reasonable 
to assume that the flow will maintain axial symmetry. Therefore it can be 
assumed that the velocity is independent of 0 direction. The continuity 
equation and the r- and z-components of the equation of motion are then

i a 3vx
^ i (rVr) + l f  = 0 ( 2 - 5 - 1}

( a v r a v  '
V + V , r

V r 3r z dz J

f j \

P
av z av7

V r 5r z dz J

 1  a  /  x d ^ z r  a P  / o  c  o  \

-  r * ( « , )  + 3 Z "  0 r (2 .5 .2 )

_  i a y v ^ T z z  ap 0 Q.
“  r 0 r (rXzr) dz dz (2 .5 .3 )

These nonlinear equations are difficult to solve in general. However the 
advantage of the fact can be taken that the geometry changes slowly to show 
that these equations are dominated by only a few terms, and if the small 
terms are neglected, the problem is easy to solve.

At first the sizes of the velocities is estimated. The axial velocity is de
termined by the volumetric flow rate and must be of order (Q/7tR2). This is 
written as

V =CXQ/rcR2) (2 .5 .4 )

The size of Vr is dictated by the continuity equation which gives.
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1 3  dV.

^ R qL
1 -

V

R

R

2 Y
(2 .5 .5 )

L /J

Clearly if the tube is slightly tapered which means that (R0-Rl ) /L « 1 ,  
then this derivative is very small. If it is approximately assumed that the 
derivative is zero, then the controlling equations reduce to equation (2 .1 .1) 
again. The same assumption can also be used as it has been used in section
2 . 2  for the temperature so that the solutions (2 .2 .8 -1 0 ) for the circular tube 
case can still be used here.

Differentiating expression (2.3.1) with respect to z again, noticing that 
this time R is a linear function of z such that R=R0+(Rl -R0)(z/L), then the 
relation between the pressure gradient and the temperature difference is 
obtained as follow

z dK'dp .
*  —  -rr |  OCdT

P .  K
(2 .5 .6 )

By using the first law of thermodynamics and the boundary conditions 
again, a differential equation for the pressure drop is obtained

d(Ap) . 
I T  = -K exp -a T  0 -

« A P o

pcD
+ P + a

pC AP
P J

( 2 5 .7 )

The solution to this equation can be written in a similar form as equation 
(2.3.9)

P + exp(-<xT0) = exp
” py

aAP 0 

V p("P J
-expC-pAp,,) (2 .5 .8 )

in which K" is the integration

K" = ]k ' dz = 2t] 0
" Q(3n + 1 )“

n
L R3Ln -  R30n

L UK  J 3n(RL - R 0) (2  5 .9 )
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from which it can be easily seen that in the extreme case when RL approach
es R0, K" approaches K'L. Thus solution (2.5.8) reduces to (2.3.9).

The solution of the pressure in the range of (0,L) is given as follow:

P = PL + -vj/ to*
r  -  r :

R l” -  R o"

R
3n

R ( l  -  evAp") + e
Xj/Ap,

(2. 5 .10)

in which <|)=(p+a/(pCp)). The mean temperature expression is the same as
(2.4.2), but the pressure should be obtained from (2.5.10).

Equations (2.4.1) and (2.5.10) can be easily written in a dimensionless 
form. Fig.2.5.1 shows the pressure distribution in three cases: co=l, co=0.5 
and co=0.2 (cô R q/Rl), with the power law index n=0.5.

0.8 0.8
co=l

n=0.50.6 0.6

co=0.0.4 0.4

0.2 0.2

(0= 0.2

- 0.2
0 0.2 0.4 0.6 0.8 1

z/L

Fig.2.5.1 Dimensionless pressure curves within the range (OjZ/LXgH R o/Rl.
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2.6 Non-isothermal Steady Flow in a Cross Section of Any Shape

A runner system in injection moulding often consists of ducts with cross 
sections other than circular. For flow through other conduits of constant 
cross section, the assumption of fully developed flow can still be used. The 
equations of momentum conservation reduce to a single equation

^  + = (2.6. i )dx dy dz 

in which

n  -  1

x xz = n 0 exp [p A p -a (T -T w)][o .5 (V 2z, x + V 22>y)] V z>x (2 .6 .2 )
n  -  1

x yz = n 0 exp [p A p -a (T -T w)][o .5 (V ZiX+ V 2z>y)] V zy (2 .6 .3 )

If it is still assumed that the temperature is independent of z, then the en
ergy equation reduces to

kV2T = - x xzV z x - x yzV z>y (2 .6 .4 )

Equations (2.6.1-4) together with proper boundary conditions construct a 
controlling system for the non-isothermal steady flow in a straight duct of 
arbitrary cross section.

From equations (2.6.2) and (2.6.3) the velocity derivatives can be in
versely expressed in terms of the stresses, temperature and pressure differ
ences

d V z exp[ccs(T - T w)-psA p]xxz
~^T = -----------------------------HI (2 .6 .5 )

T f o ^ O ^  + ^yz) ] 2
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3V , e x p [a s (T -T w)-(3sAp]x
- j *  = -----------------------------n r 1  (2 - 6 . 6 )

y ^ O - S O L  + ^ y z )]2

Substituting these two relations into the energy equation, the following 
equation is produced

S + 1

kV2T = -  2 2 r i ; s exp[as (T - T w)-psAp] (x 2̂  + x2̂ ) (2. 6 .7 )

As is known, equation (2.6.1) for a Newtonian fluid can be a form of 
Poisson's equation with a constant in right hand side

v V * f  <2-6-8)
The exact solutions of this equation for cross sections of many shapes can 

be obtained^"]. The velocity Vz can always be expressed as

v > = » + i - f ( x ! + , j )  ( 2 6 - 9 )

in which the function \j/ satisfies

V2\|/ = 0 (2 . 6 .10)

with the boundary condition

^=- î rJir( x 2 +y2) ( 2 6 - n )

Such an idea can be adopted for non-Newtonian flows, since it can be as
sumed that the stresses are the derivatives corresponding to a potential func
tion (j)
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which enable equation (2.6.7) to solved independently.
Equation (2.6.7) can be expressed in integral equation form as follow

c T £ , C) + J t-^ - dr = J t* |^  dr + B(g, 0 (2 .6 .13 )

in which c is a constant based on the location ( |,  Q (1/2  on the smooth 
boundary, 1 inside the domain), and the function B(^,r|) is a domain inte
gral as follows

9 T i

B ( t  0  = C Jt  exp[as(T - T w)] ( t2„  + x2̂ )  ’ d.Q (2. 6 .14)

where Q is the whole cross section domain, and C is a constant. T* is the 
fundamental solution of the two dimensional Laplace equation

T = - 1
471 InL(x -  +  (y  -  Q 2J (2 .6 .1 5 )

Since the unknown temperature is involved in the domain integration 
(2.6.14), equation (2.6.13) requires iteration. Having known the tempera
ture solution of a circular cross section, one can easily give an approximate 
solution of the cross section for the first step. For example, for flow 
through a duct of elliptical cross section of major and minor semiaxes a and 
b, the first trial function of the temperature distribution can be a form as 
follow

exp[-ccs(T -  T w)] = Ci + C; iL  f i
a 2 +  b 2 )

(2 . 6 .16)

where Cj and C2 are two constants.
But this is only an approximate solution because it does not satisfy the 

energy equation (2 .6 .6 ) unless a=b.
The stress potential function (]) for the elliptical cross section is given in 

the reference ["1
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(2.6. 17)

By using equation (2.6.11), the temperature solution can be worked out 
through the iteration of equation (2.6.13).

The axial temperature rise in a duct of arbitrary cross section should be 
more or less like the distribution in a circular duct, therefore from an 
engineering point of view equation (2.4.3) can still be used to estimate the 
temperature rise. For more accurate results of the temperature, pressure 
and velocity, one has to resort three dimensional models.

2.7 Dual Reciprocity M ethod

The existence of a domain integral (2.6.14) requires the whole domain to 
be discretised into cells which loses the elegance and computational effi
ciency of the boundary integral equation method. However, a new and ef
fective technique, the so-called "dual reciprocity method" can be used to 
transform the domain integral into the boundary. The method was first 
proposed by Brebbia and NardinU115! for elastodynamic problems, and ex
tended by Wrobel et al [77,78,116,ii7] to transient heat conduction problems. 
The method is explained through its application to nonisothermal laminar 
flow problems below.

Assume that the domain integral (2.6.14) is expressed as follow:

The function G(x,y) can now be replaced by a sum of a series of N co
ordinate functions to reduce it to a boundary only form:

The indices i indicate that the function series is based on different polar 
origins, q which are chosen to correspond to all the boundary nodes and 
some internal points. In order to reduce the domain integral to a boundary 
one, each of the functions must to satisfy the following Laplace equation:

s +  1

B = Jt * GdQ; where G(x, y) = Cexp[<xs(T - T w)] ( 't2xz + t2̂ ) * (2 .7 .1 )
a

N

(2 .7 .2 )
i = 1
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Af .(r) = 5(r -  r .) (2 .7 .3 )

Thus, equation (2.6.13) can be rewritten as follows

cT - ji
,*8T

T 3n T 3n

M
dr+ > A .  (f.O .n.-f. ,n.0)dr + c,0(r.)

j - d  1 J v 1 , j j 1, J J 1 v V
i = i _r

(2. 7. 4)
where C! is a constant based on the location of polar origins q, O is the 
fundamental solution of the biharmonic equation.

O and fj are given as follows

°  = ^  + (y “ -  ^)2 + (y -  C)2]

f i = - i tot x - x i)2 + ( y - y i ) 2]

(2 .7 .5)  

( 2  7 .6)

Ai is obtained as follow

- 1
{A.} = [F] {GJ (2 .7 .7 )

where (Gi) is a vector of the values on the boundary nodes and the internal 
points, and [F] is a matrix:

[Fl = T~  ln r  • •
_ 47C (2 .7 .8 )

It can be seen that the position of the polar origin q should not be chosen 
to coincide with any of the boundary nodes or internal points because the 
distances qj in matrix [F] cannot be zero, qj is expressed as follow

r >j =  V ( X i ~ X i +  X ) 2  +  ( y i - y j +  X) i
(2 .7 .9 )

where % is an arbitrary positive constant, and (Xj+%, yj+%) are the positions 
of those boundary nodes and internal points.
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2.8 C oncluding R em arks

The above developments on the non-isothermal laminar flow in ducts are 
based on some previous models. Although the analytical solutions can only 
be obtained for simple geometry such as a circular tube, they can reveal 
phenomena which could be easily missed in numerical solutions. On one 
hand it should be said that all the analytical or semi-analytical models can 
readily supply solutions to temperature, pressure and velocity in terms of 
some known parameters for different simplified cases, or approximate es
timates of these variables, which form the basis of the understanding of the 
fluid and heat transfer problems and provide testing examples for other 
methods. On the other hand, though these models are gradually more and 
more comprehensive, it must be realised that the accurate and complete 
solutions of the whole governing equations for this complicated problem 
cannot be obtained in this way. In the last two sections, the boundary inte
gral equation method has been applied for the extension to ducts of constant 
arbitrary cross section and made use of a boundary element method. There 
are some other numerical methods available in getting the approximate 
results. In later chapters, the author emphasises the numerical approaches, 
especially the boundary element methods, which are the main techniques to 
obtain the solutions.

Although the dual reciprocity method mentioned in the last section has 
not been implemented in this chapter, it will be the basis for later devel
opments on the applications of the boundary element methods because the 
time-dependent problems, non-linearity in Navier-Stokes equations and 
non-Newtonian constitutive models need the domain integrals transferred 
onto boundary.
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Chapter Three 

BEM for Filling Process in Thin Cavities

3.1 Introduction

Although the equations to govern the three dimensional non-Newtonian, 
non-isothermal flows are very complicated, possible approximations can be 
made. In the filling process slowly varying, relatively narrow viscous flow 
in thin cavities is dominant. These flows usually can be simplified by using 
the well-known lubrication approximation, which originated with the 
famous workt118] by Osbome Reynolds who laid the theoretical foundations 
of hydrodynamic lubrication. A significant assumption of the lubrication 
approximation is that any motion of the fluid in a direction normal to the 
surfaces can be neglected in comparison with motion parallel to them. Apart 
from this assumption, originally there are others as follows: (a) the fluid is 
incompressible; (b) inertial forces are neglected in comparison with the 
shear viscous forces because of the slowness of the flow; (c) there is no slip 
on the walls; (d) the fluid is Newtonian; (e) the flow is isothermal. In order 
to describe the polymer behaviours more effectively, however, the last two 
assumptions are no longer available, since the viscosity is rate- and 
temperature-dependent. This model with a concept of gapwise-average 
velocity was first proposed by Hieber and Shenl23] who provided a rigorous 
derivation of the governing equations for the nonisothermal non-Newtonian 
flow, and called their model a generalised Hele-Shaw flow. A distinct 
advantage of this model is that the governing equations of the flow can be 
combined to yield a single equation for a single variable which does not 
vary across the cavity thickness. Although their model was first solved by a 
finite element/difference method, they soon applied a boundary integral 
method to solve the resulting equationl24-26!.

In this chapter, the boundary element method for the filling process of 
thin cavities in the injection moulding is first reviewed. The method was 
first introduced in the calculation by Kwonl263, and the Kirchhoff 
transformation was used later on for improving the boundary integral 
formulation by Jin and Samuelssonl22]. Based on the method a further 
development on the energy equation is suggested, and the feasibility for 
practical applications is discussed. In the last section, two examples are
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given to show the effectiveness and accuracy of the model for the moving 
front pattern, and comparisons are done between the modelling results and 
the corresponding experimental results from reference [119].

3.2 Simplified Governing equations

All those assumptions mentioned in the above section give rise to the sim
plifications of the governing equations to the form

where ux and uy are the velocity components in x- and y-directions, comma 
denotes the space derivative, P is the pressure, and r| is the viscosity which 
can be a rate-, temperature- and even pressure-dependent function

The pressure is independent of z direction except in the narrow area 
immediately behind the flow front. However the fountain flow effects in the 
area are assumed to be neglected (the effects is discussed in Chapter Five), 
therefore equation (3.2.1) can be integrated with respect to z as follow

k = x, y (3 .2 .1 )

T] = f 1(T,Y>I0 (3 .2 .2 )

The incompressible continuity condition can be expressed as:

(3 .2 .3 )

The boundary conditions for the velocity field are

u = 0  on walls
k

u , = 0  at z = 0
k , z

(3 .2 .4 )
(3 .2 .5 )

(3. 2 .6 ) 
(3 .2 .7 )

P = 0 along the flow front
P = P e along the inlet

(3 .2 .8 )

in which the boundary conditions (3.2.5) have been used.
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After differentiating them with respect to k(=x,y), and using equation 
owing relation is yielded

From this equation, it seems that the whole thing between the brackets 
might be replaced by the corresponding derivatives of a function, that is,

which could be substituted into (3.2.9) to form a Laplace equation. 
However, it can be readily seen that is a z-dependent function unless the 
velocity distribution in z direction were proportional to z. Thus further 
integrations should be carried out in order to eliminate the dependence of z. 
A gapwise-average velocity results from integrating equations (3.2.8) twice:

b b

(3 .2 .9 )

(3 .2 .10 )

where (3. 2 .11)
o z

and then the governing equation becomes:

(3.2. 12)

U » » I ~
0 z

and using (3.2.2), the following equation can be obtained:

1 I zwhere S = -g- J J -^-dz’dz. Differentiating (3 .2 .1 2 ) with respect to k(=x,y),

(3.2. 13)

Since S is no longer a z-dependent function, the Kirchhoff transformation 
can be applied on equation (3.2.13), that is,
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from which the velocity components can be directly obtained according to 
(3.2.12). The governing equation finally becomes:

where is an arbitrary constant.
Equation system (3.2.15-18) should be considered for the velocity field 

rather than for the pressure field because S is a function of the position 
which cannot be determined by this system. Equation (3.2.15) is merely the 
gapwise-average velocity potential equation which can also be directly ob
tained from integration of the continuous equation with respect to z. From 
this system it can be seen that the gapwise-average velocity field depends 
only on the boundary of the thin cavity, and it can be solved independently.

The pressure field, however, depends on the viscosity which, due to its 
temperature dependence, requires the energy equation to be taken into 
account. It seemed because of the difficulties in solving both connected 
equations that the concept of the thermal layer was introduced in references 
[26,27]; an assumption of linear variation of the temperature in the layer 
was made, and an approximate expression for the thickness of it was derived 
from the energy equation. In spite of such a simplification, the calculation 
of the thickness required the pressure gradients to be known, and a finite 
difference method was used for the computation.

In fact, for a certain type of the viscosity models, the pressure gradients 
and the temperature fields can be solved separately as well. In the following 
part of the section, the energy equation is reformulated, and an easier way 
for solving the pressure gradients and the temperature fields is given for 
one case. The energy equation can be written as

where means the Lagrangian time derivative, a  thermal diffusivity.

, kk
=  0 (3.2. 15)

and boundary conditions (in x-y plane)

VF = 0 along the flow front
= C along the inlet

. = 0 on wal Is
»

(3. 2 .16)

(3 .2 .17 ) 
(3 .2  18)

(3. 2 .19)
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Integrating this equation with respect to z over the half-gap thickness, the 
governing equation for the gapwise-average temperature can be obtained:

DT
Dt = a

V
i-T  b + T

z = b
, kk + H k = x, y (3 .2 .20)

in which T ,z = 0 has been used due to the symmetry, T
z= o T- i l Tdz and

o
„  1 f  .2  1 _ 2

H = b d z = p ,ku k = s u0
(3.2 .21)

The boundary conditions for the gapwise-average temperature field are

T = T e along the inlet 
T = T w along the walls 
T = T w along the flow front

(3 .2 .22 ) 
(3. 2. 23) 
(3. 2. 24)

It can be seen that there are the pressure gradients or the viscosity in
volved in (3.2.21), naturally the expression of the viscosity has to be given 
for any attempt for the solution. A power-law model is used for the de
scription of the strain-rate and temperature dependence of the viscosity:

T | = T l ng ( T ) Y
n -  1

(3. 2. 25)

where g(T) is an arbitrary function of temperature. 
The strain rate is defined as

y  + A , z + u y> (3. 2. 26)

and by using (3.2.8) and (3.2.25), after rearrangement it can be expressed 
as

7 =
Az

TlngCT)
(3.2. 27)
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where s is 1/n and A = + / P x + P y .

By substitution of (3.2.27) into (3.2.25), S and H can be expressed as 
follows:

From expressions (3.2.21) and (3.2.28), A can be obtained as follow

Thus S and H in (3.2.28) can be expressed without involving the pressure 
gradients though they are dependent on the pressure gradients. This result 
decouples equation (3.2.20) which can be solved separately after the velocity 
field is obtained. From (3.2.28-30) it can be seen that the temperature 
distribution in the z direction becomes essential in determining S and H, 
and subsequently in solving the pressure gradients and the gapwise-average 
temperature fields. However, the temperature distribution in the z direction 
does not affect both fields very much, and it can always be expressed by a 
function of the local gapwise-average tem perature. Therefore an 
approximation can be made for it. For g(T)=exp[-(3(T-Tw)], which is often 
used in modelling polymer flows. It is assumed that

S = As *5; H = A S+15 (3 .2 .28 )

where

b

(3 .2 .29 )

n

(3 .2 .30 )

(3. 2 .31)

where C is a gapwise-average temperature dependent parameter. 
Thus, following expressions can be easily obtained:
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(3. 2. 32)

Q  (3. 2. 33)

and the relation between the gapwise-average temperature and C can be ap
proximately expressed as

T - T m + £ l n C  (3 .2 .34)

S +  1

5 = 

3T
(s + 2)C tr

dz
z=  b

=  - ^ ( s + 2 ) a -

where Tm is a parameter dependent on s and p. A more accurate relation 
between T and C can be found by integrating equation (3.2.31) (or a 
temperature function) over the thickness.

By substitution of all these expressions into (3.2.20), the governing 
equation of the gapwise-average temperature field finally becomes

DT 2(2n + l ) a , ,  ^  . | \ ^ 2 n  + l V f f l u h
d T  =  a T . k k  P  - Q  +  ^  ( L e v — n — >»J t V J  ( 3 - 2 - 3 5 )

in which the magnitude of the velocity appears in the last term. Therefore 
the temperature should be solved after the velocity field is obtained.

From (3.2.12) the pressure equation can be obtained as follows

S ,u , S .

p . t t = - V r - = - i - p .k <3- 2- 36)

Since S involves the parameter C which is a position function, the pres
sure field can be worked out after the temperature field is solved.

3.3 The Boundary Integral Expressions

For the potential ¥  at any point £ in a given domain bounded by its 
boundary T, the boundary integral equation corresponding to Laplace 
equation (3.2.15) can be written as



Chapter Three: BEM for Filling Process in Thin Cavities 53

c(^)'I/ (^) + J 'F O  , n . d r  =  J O V  . n . d r  ( 3 . 3 . 1 )

where c(^) is geometrical dependent constant, c(%)=0.5 for £ on a smooth 
boundary and c(^)=l for  ̂ inside the domain. O is the fundamental solution 
of the Laplace equation, which can be written as

®  =  ( 3 . 3 . 2 )

where r is the distance between the source point and observing point.
Differentiating equation (3.3.1) with respect to k (k=x,y) results in the 

gapwise-average velocity components:

c(§)u k©  + JV® ikn J  dr = Jo k u ,n . dr (3. 3. 3)

In fact this expression is only necessary for points inside the domain. The 
velocity components on the free surface boundary can be obtained by using 
the following relations

u k = 'i' . n . n k (3 .3 .4 )

where is the flux on the boundary which is obtained from equation
(3.3.1).

The integral equation corresponding to equation (3.2.35) can also be 
written as follows

t

c T (t  t) = J Ja(T ,T* -T T * .)n .d r - |F(T)T*dQ dt’ + J[T T *] dQ
tj_r ’ a  J q  o

(3. 3. 5)
where Q and T are the domain and its boundary at time t’, Q0 is the domain 
at time t0, and

r-v;™ 2(2n  + l ) a „ ^  „ f^ 2 n  + n Y M !  ,-nF(T) =  -p------- ( 1 - Q - t i 0̂ C— — )  (3 .3 .6)
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Also, T* is the fundamental solution of classical diffusion equation which 
can be found in Chapter Four. The condition for this formulation is that the 
difference between t and t0 is very small. Details of the formulation of 
equation (3.3.5) are similar to those for time dependent viscous flow field in 
Chapter Six, and they are therefore not given here.

The unknown pressure, governed by a Poisson equation given by 
(3.2.36), can be solved by a similar integral equation to equation (3.3.1) but 
with a domain integral involved:

c(S)P(S) + Jp<1> in id r  = J® p  in i d r  + J®S~2S j U . d Q  (3. 3 . 7 )
r  r  o.

3.4 Discussions on the Equations

Equations (3.3.1), (3.3.3), (3.3.5) and (3.3.7) can be used to solve the 
whole flow field of the three major physical variables in the filling process 
of a thin cavity. Despite the apparent advantages in implementing equation
(3.3.1) for the velocity potential, it is readily seen that the involvement of 
domain integrals are the main difficulties in implementing the other equa
tions, especially for this moving boundary problem. Because the domain has 
to be remeshed for the evaluation of the integrals when the previous grid is 
distorted, it has eliminated the key advantage of the boundary element 
method, and results in virtually no difference from the finite element 
method. The better solution to the domain integral involvement is to use a 
dual reciprocity method which is already introduced in the last chapter.

An intrinsic feature of this gapwise-average velocity potential is that the 
mould filling pattern, in terms of the shape of the front, is independent of 
the rheological properties of the polymers, even independent of the thick
ness of the cavity. Although in practical thermoplastic injection moulding, it 
is observed that the rheological properties do not affect much on the flow 
pattern in mould cavities with uniform thickness, the hesitation effect is a 
typical phenomenon of the dependence of the flow pattern on the variation 
of thickness, which also strongly reflects the rheological influence. Thus it 
is difficult to apply this model to mouldings with variable thickness.

A second restriction is that the model cannot, at least in theory, be ex
tended to the mould cavities with turnings in the third dimension. An ap
proximation method used in some packages is to lay flat a three dimensional
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mould cavity for calculation. However, the turnings have, rigorously 
speaking, effects on the flow field. Also if the flow meets a "T" or a "+" 
shape joint, the model seems powerless. Geometrical complexity is one of 
the basic features in simulation of injection moulding, this boundary element 
model therefore has to be further developed to fit the real situation.

The integral equation for the temperature field is set up following a 
Lagrangian description. In the Lagrangian description, the trajectory of a 
particle is actually the coordinate curve. Therefore the convection terms 
under an Eulerian coordinate system vanish since each particle is "carrying" 
its mass, momentum and energy with it all the way through a fixed 
coordinate system. However, the trajectory has to be approximated by small 
segments of straight lines each of which is formed in each time increment. 
Therefore the time increment has to be small enough for following the 
particle trajectory. If otherwise it would lead to a wrong way and the whole 
calculation result would be distorted.

In spite of these limitations, this model is considered very effective in 
obtaining the flow front shape for a plane thin cavity or for a simple three 
dimensional cavity with uniform thickness. In the following section, two 
simple examples are given to show the effectiveness and accuracy.

3.5 N um erical Im plem entation and Testing Exam ples

The simplest problem is a plane part moulded with an isothermal 
Newtonian fluid, and based on experimental evidence for injection moulding 
there is reason to hope that it will give good estimates of flow front shapes 
for nonisothermal and non-Newtonian flows. The parameter S can be easily 
obtained in this case

This is the constant factor between the velocity potential T7 and pressure 
P, and equations (3.2.15) and (3.2.36) become identical so that only one 
Laplace equation is required to be solved.

The numerical implementation of a boundary element method is 
straightforward, since a sample program is given in Brebbia's bookt75h A 
general purpose boundary element program is coded for this potential 
function, and linear element approximation is used. The program is a part
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of the package CASIM, which is introduced in Chapter Eight. The basic 
feature for this moving boundary type problem is that the free surface 
boundary nodes move at their local speed in each time step. Therefore the 
program is designed to have functions of insertion and deletion of nodes. 
When any of the elements is stretched longer than a critical length, one 
more node is inserted between the two nodes which define two new elements 
to replace the old one. On the other hand, if two adjacent elements are 
shrunk to be less than another critical length, the sharing node is then taken 
away. Any node meets the wall of the cavity, it is stopped moving by 
assigning a zero to its velocity components. This procedure is much easier 
than a remesh routine for a finite element method.

It is not necessary to nondimensionalise a Laplace equation since there 
would be no dimensionless parameters produced, and as explained in the last 
section, this is precisely the reason why the advancing front is independent 
of rheological properties and thickness but the shape of the boundary itself. 
Also the length of a time increment is not so critical as it for a time- 
dependent equation, but for this moving boundary problem, the time 
increment should not be chosen very large otherwise it would cause 
unacceptable errors in predicting the shape of the flow front, such as 
“ripples” or sharp vertex comers developed. Once the first time increment 
is found suitable for a stable calculation, the rest of the time increment can 
be chosen either the same as the first time increment, or a calculated value 
following a principle that the average displacement is kept the same as it 
during the first time increment. Obviously the latter scheme is faster in 
most of the injection moulding problems since the velocity of a flow front 
becomes slower while the front is stretched longer.

The first example is a mould filling process of a disc, which diameter is 
assumed much longer than its thickness. The gate position is at the bottom 
edge of the disc. Since this example has been carried out by the some 
previous researchers, it is easier for verifying the model and the program. 
In the initial state, the flow front is assumed as a circular segment with the 
gate at the centre, and the inlet flow is assumed to keep a flow rate all the 
time so that the fill time is a function of the initial velocity and its local 
radius. No slip condition is adopted on the cavity wall. If the effect of 
circumferential wall were neglected, the flow front would continuously 
move radially into the cavity from the gate. From the flow front pattern 
shown in Fig. 3.5.1, it can be seen that in the early stage of the filling, the 
wall exerts a retarding force, and the flow front in the vicinity of the wall
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bends back towards the gate. As the flow progresses, that area moves faster 
than the centre of the front because the curved wall deflects the melt. 
Gradually the shape of the front becomes linear and then in the later stages 
curves away from the gate.

CASIM

Fig. 3.5.1 Flow front pattern during filling a disc mould.

The computer simulation result shown above is very close to an 
experimental result given by Beyer and Spencert119!. In order for 
comparison, the successive photograpHj^s of the flow front of the 
experimental result are given in Fig.3.5.2. (Carefully observed of the 
pictures one would find that there are some dark particles which were 
deliberately put inside the polymer. In the fifth frame of the pictures, a
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streak of them is shown entering the cavity, and in subsequent frames as it 
travels across the mould, the particles move faster than the advancing front. 
’’When it catches up the advancing front it is forced outward against the 
mold wall.” Then a black smear is left behind it against the wall. The 
phenomena of particles moving towards the front and being stretched near 
the walls viewed transversely are fully discussed later in Chapter Five). In 
spite of the quality of the pictures, the polymer front at each frame can be 
recognised. The detail of the front surface shape near the wall is not clear 
enough for comparing the corresponding part of the computed graphical 
result, where the curving-back front shape is approximated by a segment of 
straight line.

Figure 3.5.2. Sequence of flow front moving across the mould.

One of the other experimental examples shown in reference [119] is the 
filling process in the same disc but with a circular insert in the middle to 
show the formation of a weld line. The sequence of flow around the circular 
insert is shown in Fig.3.5.3.
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Figure 3.5.3. Sequence of flow around a circular insert.

In general, a numerical modelling of a weld line formation is not easy since 
once two fronts meet together, the resulting weld line requires not only the 
potentials but also the potential gradients approached from both sides to be 
identical. In a boundary element method, if the domain is a single
connected, any node on the weld line will be used twice following the 
normal procedure. Because of the two unknowns on the weld line, the 
program has to be carefully designed for setting a different equation in each 
time. In this example the weld line is assumed on the symmetric line, thus 
zero normal gradient condition can be given to the weld line node(s). The 
same diameter ratio is used in the calculation as the experiment. Fig.3.5.4 
shows the development of the flow front of the computer modelling.

It is clear from the computer graphical result that the flow of polymer 
adjacent to the insert is greatly retarded. As a result the two flow streams 
produced by the insert first meet at a distance from the insert. The weld line 
then forms in toward the insert as well as in the direction of the flow. It can 
be seen that a small pocket of air may be trapped between the insert and the 
joining fronts unless means are provided in practical process for allowing 
the entrapped air to escape. The butt-in streams soon become one and form 
a common front moving up. The rest of the development of the front has 
little difference from the normal pattern without the insert shown in 
Fig.3.5.1.
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CASIM 1.0

Figure 3.5.4 Computer result of the flow front pattern around the circular 
insert and forming a weld line.

The boundary elements give an advantage to trace the formation of the 
weld line in the beginning, but those elements on the weld line would soon 
become redundant for rest of the calculation if a cavity were much bigger. 
A remaining problem is how to eliminate the elements and set up a double
connected region for rest of the calculation and leave a track of the weld 
line for recognition in post-processing.

In both examples the character of symmetry has not been used. This is 
because the velocity on the symmetrical line could not be directly worked 
out from the flux value, if the symmetrical line were discretised with
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boundary elements. Since the normal component of the velocity is zero, the 
tangential component has to be worked out by using a finite difference 
method. It would not save many elements but possibly produce bigger 
errors because the accuracy of the computed component would actually 
depend on the size of the elements on the symmetrical line. The errors 
produced from the full-scale calculations can be detected carefully from 
these two diagrams: both sides are not exactly identical, and the computed 
weld line is not a straight line, slightly offset from the symmetrical line.
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Chapter Four 

BEM for Cooling Analysis

4.1 Introduction

Cooling-system design affects both the part quality and productivity very 
significantly. Normally more than three quarters of the cycle time in the 
injection moulding is taken by the cooling stage. Hence, there is a substantial 
incentive for reducing cycle time by improving the cooling system. On the 
other hand, a good cooling system should also extract heat from the melt 
uniformly throughout the mould. Two major problems in quality can be 
avoided if uniform cooling is designed for a mould. Warpage of a 
moulded product is one of them whose roots may lie in the proper design of 
the cooling system. Another problem is that the homogeneity of properties 
in parts moulded from crystalline resins is strongly dependent on 
temperature history and cooling time. Minor changes in these variables can 
result in major differences in crystal formation and thus in the mechanical 
properties of the moulded product. In addition, the quality also depends on 
the repeatability of the moulding machine used. Therefore the objective of 
an optimum cooling system design is to achieve a maximum rate, uniform 
and balanced cooling. The basic design variables of such a system include 
the sizes of the cooling channels, their locations, cooling fluid flow rate and 
its inlet temperature. Then the requirements for an analysis tool should be 
able to give an accurate picture of the distribution and history of the 
temperature development on which the mould designers can revise their 
design of a cooling system. A further requirement for a package may 
associate the cooling analysis with the optimum design, so that a rough 
design is the input, and a possible ideal design is the output of the package. 
Although the discussion of the optimum design is beyond the range of this 
thesis, the common fundamental is an accurate and efficient numerical 
method.

Most of previous works on the cooling analysis are based on some 
empirical and/or simplified heat transfer models. These models are still 
playing very important roles in quick evaluation of a proposed cooling 
system in some commercialised packages. However, the rapid development 
of the boundary element techniques in the last two decades has made both
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accurate and fast calculation possible. The designers of both COOL3D and 
MOLDTEMP have adopted boundary element methods for their three 
dimensional modellings of the process. Recent papersi45>12°i of CIMP group 
showed that in COOL3D, a local one-dimensional transient analysis was 
used for the plastic part, and the steady-state equation of the temperature 
distribution was adopted for a cycle-average three-dimensional mould 
analysis.

The intention of this chapter is to develop the boundary element 
techniques for a fully, coupled transient heat conduction analysis of the 
cooling stage. Although only the two-dimensional case is carried out in this 
chapter, the techniques can be easily extended into three dimensional 
problems. In the last section of this chapter, a new dual reciprocity method 
for the transient boundary element method with a time dependent 
fundamental solution is introduced.

4.2 G overning E quations

During the cooling stage of the injection moulding process, the polymer 
liquid inside the mould is brought to a standstill, being cooled down and 
solidified. The transient heat conduction in the whole system is then 
dominating the period of the process. The media in the analysis include the 
melt polymer, the solid mould and the cooling fluid. Thermal diffusivity of 
polymer is typically much smaller than that of the mould material, 
therefore the cooling time depends largely upon the rate at which the melt 
polymeric material transfers heat from its inner region to its interface with 
the mould. Another feature of the problem is that the specific heat of 
polymeric materials may be a strong function of temperature especially in 
the case of semi-crystalline materials £12 ii. To express the problem 
mathematically, one has to consider the following initial-boundary value 
controlling equation for the heat conduction in the finite time interval 0 < t 
<  t , where the term of strain energy is assumed to be too small to be taken 
into account:

PC p̂  = (kT in Q x ( 0 , t )  (4 .2 .1 )

with initial condition:

T (P ,0) = T 0(P) • on a (4 .2 .2 )
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and boundary conditions:

T(P, t) = T(P) on r Tx(0 ,T ) (4 .2 .3 )

q (P ,t)= q (P )  o n r qx(0,T) (4. 2 .4 )

q (P ,t) = h [T (P ,t ) -T 1(P)] o n r hx(0,T) (4. 2. 5)

where Q  is the domain concerned which is bounded by boundary 
r = r xu r qu r h, P is any point within the domain or on the boundaries, and q 
is the boundary heat flux defined by q=-3T/3n in which n is the unit 
outward normal vector at the boundary. T, q , h and Tx are given smooth 
functions on their corresponding boundaries and T0 is a smooth function on 
Q. p, Cp, k and h are density, specific heat, thermal conductivity and 
convective heat transfer coefficient, respectively. The thermal properties 
are obviously d iscon tinu^  from one medium to another. The boundary 
conditions between two adjacent media are given as following types:

There is a convection term added in the governing equation for the 
cooling liquid:

where are the velocity components.
In most heat conduction calculations it is assumed that the thermal 

conductivity, specific heat and density do not change appreciably with 
temperature. The information in reference [104] gives the temperature 
dependence of those thermal properties for some polymer materials; only 
the specific heat is found to vary appreciably with temperature for some 
polymers in the range of temperature of interest. Therefore the governing 
equation (4.2.1) can be rewritten as

T(P+,t)=T(P-,t) and q(P+,t)=-q(P-,t) (4. 2. 6)

f 3T m ^
(4 .2 .7 )

= ocT .. in O x(0 ,x ) 
Ot . i i  v ' (4 .2 .8 )
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where a  is the thermal diffusivity. Equation (4.2.7) can be rewritten 
correspondingly.

4.3 Boundary Integral Formulations

The time-dependent fundamental solution T* of the adjoint equation of
(4.2.8), which has its singularity at (x,t), is given by

H ( t - f )
T ( x , t ; x \  t ')  = -----------------rpr exp

4 m ( t  - 1’)

r2
4 a ( t - t ') (4 .3 .1 )

where r represents the Euclidean distance between the two points x and x' 
(x g Rd), and H is the Heaviside function.

Based on this fundamental solution (4.3.1), equation (4.2.8) can be 
transformed into the following integral equation, as m entioned in 
referencest122-128h

t
cT (x , t) = J"ja(qT* -T q ‘ )d r  dt' + t, x \  t Q)dQ (4. 3. 2 )

tT a

where c = 1 if x is inside the domain Q; c = 0.5 if x is on the smooth 
boundary T  of the domain, and

= ■ <4- 3- 3>

This relation shows that the value of the function T at any point x inside 
the domain or on the boundary for any instant t > to can be expressed 
explicitly by the integration, once the initial and boundary conditions are 
known.

It is not possible to work out analytically the fundamental solution to the 
adjoint equation of (4.2.7) due to the nonlinear velocity being involved. 
However, if it is assumed that the velocity is a constant, the governing 
equation would then become:
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3T +  tr9t 1 dx
3T -  aV^T = 0 (4 .3 .4 )

where is the magnitude of the velocity of the flow along x 1 direction.
The fundamental solution to the adjoint equation of (4.3.4) is given by Vick 
and Golani129!; it is presented here for three dimensional case as follow:

T* ^  _ t , )T = ---------------j  exp
47ca(t - t ’) ‘

2 2 2 
(Xj —Xj _ x j  + ( x 2 - x ’2) + ( x 3 - x ’3)

4 a (t' - 1) (4 .3 .5 )

where x = l ai
The integral equation for this case can be written as follow:

cT(x, t) = j TT d£2 + . . ~ 
n  tJi JA  9n 1 1J l a

9T -O.n.TVdr-JaT-^-dr
r

9T
dn

dt'

(4. 3. 6)
The detailed formulation of this integral equation can be found in 

Appendix A.

4.4 Numerical Implementation of the Integral Equations

The basic features of the numerical implementation of the boundary 
integral equation are virtually the same as those in finite element 
approximations, that is, discretising both T and q over the spatial and time 
domain of concern, and establishing a system of linear equations by 
collocation at a sufficient number of nodes on the boundary at each time 
step to determine the nodal values.

In two-dimensional case, suppose there are N r nodal points {Pj}j=i,Nr 
along T. Any two adjacent points PiPi+i (i e {l,Np}) are linked by a small 
line segment T\ which is called a boundary element. Here Pnf is regarded as 
P i. Hence the boundary T  is approximated by the union of the boundary 
elem ents T\ (i= l,N p). The time interval [t0, t ]  is divided into Nt 
subintervals. Let tF= F (T-t0) /  N (0 < F < Nt). Furthermore, for calculating 
the domain integral, the domain Q is divided into Nq cells {Qe}e=i,Nn»
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where Q e is a triangle. Q is divided in such a way as the nodal points of the 
cells coincide with the nodal points of the boundary elements taken on T. If 
<|>i(x) (i= l,....,N r) is denoted as the basic functions over T  and \j/F(t) 
(F= l,....,N t) as the basic functions over [to, x], the approximations end up 
as follows:

T = T = T .j4> j(x )y F(t); q = q = q iFfj) j(x)\j/F(t) (4. 4 .1 )

The index iF represent the nodal values of T and q at node i on x and 
node F on t. Substituting equations (4.4.1) into (4.3.2), the boundary 
element equation is established for the temperature at any point in the 
domain at any instant x:

N  NT t

cT(x, x) + a  J
j= if = i r  

nt n , ^

- I I I
j= if = i r

Tjpft’ jCx') /  \|/Fq ‘ (x ,T ,x ', t ') d t '
‘p-.

? JiF<l) i(x ') J VFT*(x, x ,x ', t ')d t '

d r ( x ’)

d r ( x ’)

+ X j T C x ' . t o F V . ^ x ' . g d n c x ’) (4. 4. 2)
e =  1Q

The interpolation functions can be vectors if they are linear or higher 
order. In this chapter, a linear interpolation function is used for the spatial 
approximation and a constant for the time approximation, that is

+ i = T
1 - x  
1 + x ; v F = i; t .  =

fT ,l

1
a"

1

1
H r° 

1

; q ; =
32 .

(4 .4 .3 )

The time integrals in (4.4.2) can be integrated analytically as follow

r r ,n T i
Jq*(x, x, x', t ')d t ' = "2 ~ p _ exp( -  s p_ ,) -  exp( -  s F) (4 .4 .4 )
F -  1
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where E

(4 .4 .5 )

If the integrations over each boundary and domain element are defined as 
follows

, then equation (4.4.2) can be rewritten into the following matrix form:

where the coefficients of the matrices H, G and B are assembled by the 
terms resulting from integration over each element using (4.4.6), TF and QF 
are the vectors of the temperature and heat flow values at all boundary 
nodes.

There are two different time-marching schemes^126! which can be 
employed to solve the equation established above. The first is the 
"boundary-only” scheme. This scheme consists in starting all time 
integrations from the initial instant to up to the current time step tn. Then 
the domain integration is only needed at the initial instant. If the 
temperature distribution at the initial instant is a function of a harmonic 
type, the domain integration can even be transformed into equivalent 
boundary i n t e g r a l s  t128], jn this way no domain integrations are needed 
during the time-marching process. In each time step, however, the nodal 
values have to be stored and two more square matrices have to be calculated

f (4 .4 .6 )

N

(4.4. 7 )
F  =  1
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for evaluating the time integrations. Such requirements for the storage and 
the computing time during the time-marching process make the scheme 
impractical. The second scheme is to treat the temperature distribution of 
each previous time step as the initial condition for the current time step. 
The influence of the previous step's distribution on the current step is 
carried by the domain integration. In this way, the coefficient matrices at 
each time step are exactly the same as those at the first time step, only the 
domain integral is needed for updating the right-hand side terms. Yet it is 
precisely this domain integral that takes the most of the computing time. Up 
until now, there have been some efforts to preclude the domain integral 
such as dual reciprocity methods based on the time independent fundamental 
solutiont77’78] and the recurrent algorithmt130!. In the author's point of view, 
neither of them is accurate enough to replace the direct numerical domain 
integration, though a substantial computing time is reduced. Since the 
numerical domain integration can be easily replaced in a program if a better 
method appears (e.g. a new dual reciprocity method based on time 
dependent fundamental solution introduced in 4.8), the second scheme is 
applied here.

For the temperature at any instant tF in the scheme, equation (4.4.7) can 
be rewritten as following:

When the source point is not on the element, the coefficients hjk and gjk 
can be evaluated by standard Gaussian formulae, i.e.

where djk is the distance between the source point j and the element k, Rk is 
the element length, and L represents the number of integration points.
When the source point collocates with the element, hjj becomes c ( on 
smooth boundary c=0.5) due to the distance vanishing. The integration for 
gjj can be done a n a l y t i c a l l y t125] since the exponential integral function can be 
expanded in a seriest131!. The series and approximation forms of the

HTF -  GQp = B
F -  1

(4 .4 .8 )

ji (4 .4 .9 )

l = l
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exponential integral function as well as the analytical integrations of g1̂  are 
all given in Appendix B.

The coefficients for vector B is formed by evaluating the domain 
integration over the triangular elements. The Hammer's integration 
formulae is used, and the interpolation functions of the finite element type 
are introduced in order to save the storage and computing time, i.e.

K

B" = A e X 1
r i  4rccc(tF -  t p _ j)

exp
-  r 2

ik

\

w  Vk k (4 .4 .1 0 )

where <t> = . ri i. r i2, r |3= l- r i  i- r i2 are area coordinates defined

as r | . = , Ae is the area of the triangular element and K is the number of

integration points.

4.5 Treatment of Boundary Conditions

Since the boundary T  may consist of three types of boundary conditions 
(4.2.3-5), it can be described in the following form

j (qT  -  T q*)dr =

r Tu r ,u -r .
JqT* dT -  J T q ’ d r  +  J (h T *  -  q*)T dr

Ur T r.

+ f JqT*dr -  J jq * d r- |  hT T*dT (4 .5 .1 )
r

in which all the unknowns are put between the square brackets and the 
known boundary values are put between the parentheses. The following 
operators are introduced to simplify the notation:
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F

B r = C2T + J a  JVq’dr -  j(hT* -  q‘)Tdr
l F-. Lr ,

df (4. 5 .2 )

F

©q= J jaqT* dr df
‘p-.r T

and a function defined by

(4.5. 3 )

F

E= J c |  J q T * d r - |[q * d r -J  hTT*dr>)dt' + J lT T ^ p ^ d a -C jl

(4. 5. 4)
F̂-l Q,

where Cj=c, c2=0 if x g T j, and Ci=0, c2=c if x e r q or Th.
In this way, the boundary integral equation is finally obtained

B T -© q  = B (4 .5 .5 )

where all the unknowns are in the left hand side. Notice that there are Nj 
values of T on r T and N2 values of the other conditions on T q and/or T h, 
hence there are only N (=N j+N 2) unknowns in the system of equation
(4.5.5).

If more than one medium are considered, the interfacial boundary 
conditions (4.2.6) have to be taken into account. If an interface is denoted as 
Tj, the rest of the boundary as r Ri, q  for the location dependent parameters 
and Qj for the domains (i= 1,2 for both sides, Cj+c2= l), one should have the 
following boundary integral equations for the media from both sides of the 
interface:
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According to the interfacial boundary conditions, one can work out the 
unknown temperature and heat flux on the interface by taking both 
summation and subtraction of the above two equations, i.e.

If denote the number of interfacial points are denoted as Ni5 then the total 
number of unknowns N is N!+N2+2Nj. Only with equations (4.5.6-8) can all 
the unknowns be solved. Similarly, all the unknowns are put on the left 
hand side and the knowns on the other. Finally a boundary integral equation 
system like (4.5.5) can be obtained. The internal temperature can be worked 
out by applying (4.5.6) after all the unknowns on both the exterior and 
interfacial boundaries are solved.

4.6 Exam ples

A computer program of the boundary element method on transient heat 
conduction among multi-medium has been coded in FORTRAN. This 
program is a part of the package CASIM which will be introduced in 
Chapter Eight. The program was tested with simple geometries, and the

T(X, tF) = J J q’( Tc  + Tc  ) -  TCoijq1* -  <x2q2*) dr dt'
tp^rj. pi p2

t t

1*  2 *

(4 .5 .7 )

where q'=kiqi=-k2q2 and

(c, -c /T C x , tp) = J j q’( - ^ — 7r~c—)- T(«.q1 * + cc q2*) dr dt'
1 £ ^ ,J i- P 1 n l P 9 iV? '  2

1*  2*

tFi r l  K 1 pl 2 P2

t r t rF - l 1 Rl F -  l 1 R2
r

F -  l 1 R2
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results were compared with analytical ones. Hereafter, two simple examples 
concerning the problems in the cooling stage of the injection moulding are 
presented.

Exam ple 4.1
Fig.4.6.1 is a problem of a thin plate of melted polymer material being 

cooled down in a mould of which there are some cooling channels in each 
side of the melt. Suppose the melt temperature at the initial instant is 220 
°C, and the mould temperature is 25 °C. The cooling water flows constantly 
through the channel, and the temperature on the interface of the cooling 
channel is kept at 25 °C all the time.

Figure 4.6.1. Schematic of the transverse section of the cooling

Although the whole problem could be computed by using the boundary 
element mesh over all the boundaries and interfaces, only the dotted part 
was taken for the calculation for simplicity. The heat flux at the boundaries 
around the square is assumed to be zero. The height ratio a/b of the plastic 
melt and the mould in this part is 6:100, the ratio of the corresponding 
thermal diffusivities is 1:150, and the ratio of the diameter of the cooling 
channel and the mould height is 8:100. The location of the cooling channel 
is in the centre of the square. The initial condition of the temperature field 
is assumed as shown in the first frame.

Fig.4.6.2 shows the development of the temperature field in terms of 
contours and time intervals. It can be seen that the temperature gradient at 
the interface is always very high. The coolant absorbs the heat and causes
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Fig.4.6.2. The development of the temperature field (continued)
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Fig.4.6.2. Continued from the last page (continued)
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Fig.4.6.2. Continued from the last page (continued)
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Fig.4.6.2. Continued from the last page (continued)
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TEMPERATURETEMPERATURE
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Fig.4.6.2. The development of the temperature field from 0 to 3.76 seconds

the temperature gradient around it very high in the later stage. The speed of 
decreasing of the maximum temperature (in the centre of the thin part) 
decelerates since 0.16 second, with 13.8 °C difference in the following time 
interval comparing 4.1 °C difference in the last 7 time intervals.

E xam ple 4.2
Fig.4.6.3 shows a cross section of a part with a "+" joint in a mould in 

which there is a cooling channel in each quad of the joint. The temperature 
distribution around the joint is especially of concern because often a sink 
mark occurs in the end of the joint or a void happens inside it. Again only a 
square of a quarter of the cross section is taken to approximate the problem
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for simplicity. The zero heat flux condition is again given to the boundaries 
of the square. The rib is slightly tapered and the comer is rounded. The 
ratio of the diameter of the coolant to the thickness of the horizontal part is 
1:1. The ratio of the radius to the distance between the centre of the coolant 
and the edge of the part is 1:10. The diffusivity ratio is identical with it in 
the last example. The initial temperature field is given as shown in the first 
frame which indicates that most of the melt is at 220 °C, and the coolant is 
at 25 °C. The cooling liquid is assumed to take the heat away in such a speed 
that the surface of the coolant is kept this temperature.

Figure.4.6.3. Schematic of the "+" joint with coolants in its four quads.

The history of the evolvement of the temperature field is shown in 
Fig.4.6.4. There are similarities to the example 4.1 in the temperature 
gradients at the interfaces but the maximum temperature decreases much 
slower because of its geometrical location (in the centre of the joint). The 
sequence of these frames clearly indicates the reason for sealing off an 
island of melt inside the joint which may cause a sink mark or a void unless 
high pressure is maintained or other means for resolving the problem.
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Fig.4.6.4.The temperature evolvement in terms of contours and time 
intervals (continued).
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Fig.4.6.4. Continued from the last page (continued)
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Fig.4.6.4. Continued from the last page.

Fig.4.6.5 shows the enlargement of the temperature field at 5.6 second 
from which it can be seen that the joint centre is 52.3 °C, though most of 
the part is under 50 °C.

From this example it can be concluded that from a geometrical view 
point it is very difficult to design an ideal cooling system to cool down the 
polymer with a joint of this type uniformly. The location, size of the 
coolants and initial temperature of the cooling liquid can be designed to 
speed up the cooling, then the whole cycle time can be reduced.
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Fig.4.6.5. The enlargement of the temperature field at 5.6 second.

4.7 Further Discussions

Although all kinds of transient heat conduction problems can be solved by 
using the program, there are some limitations in the application for the 
cooling of the plastic parts. One of them is that the number of interfacial 
elements would be massive due to the geometrical complexity of the parts. 
Despite the significant reduction by one dimension, the resulting system 
could still be sizable, and the computing resources might not be satisfactory. 
In the author’s point of view, it is possible to overcome the limitation by a. 
further and reasonable simplification.

Let us consider the following transformation:
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X .

V ® '
(4 .7 .1 )

After this transformation, the coordinates are normalised. Thus there is 
no physical property involved in the governing equation in this new space. 
Equations (4.5.6a-b) become identical, no more equations are needed for 
the points on the interfacial boundaries. In return for this, a special 
attention must be paid to the distance between the source point and the 
observing point. Any straight line between these two points across a 
interfacial boundary is split in such a way as given in the following:

p 2 =
V

ra V 5 2 J 2 J
(4 .7 .2 )

where ^  and &2 are the coordinates of the intersection point between the 

straight lines and the interface, a 1? a 2 are the two corresponding thermal 
diffusivities in both sides of the interface, and p is the distance in this new 
space.

However, the resulting boundary integral equation in this space is not 
identical to the equation group (4.5.7-8). The derivative of the boundary 
integral equation becomes discontinuous on the interface because of the 
discontinuity of the new coordinates on the interface. In order to smooth the 
sharp change of the heat flux q', a tiny artificial zone is introduced along 
the interface in which the thermal diffusivity change continually from 0Cj to 
a 2. In this way, the calculation of the distance is much easier because no 
intersection coordinates need to be calculated. Only when the source point is 
on the interface, the formulae of the distance is:

p 2 =
a/2 : X ’.

+ a
j

a +
V 2 :

7 ^ 7

X'

+ a ,
2 (4.7. 3)

where an average thermal diffusivity is used, and the observing point is 
assumed in domain 2. Fig. 4.7.1 shows the two different transformations 
schematically.
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x

X'

a. The transformation by equation (4.7.1) and the distance between 
two points in both sides.

x
x'

b. A thin artificial zone is assumed along the interface, the coordinates 
become continues

Fig.4.7.1 A new scheme witl^ouphterface elements
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A comparison between the BEM scheme with interface elements and the 
BEM scheme without interface elements is given in example 4.3.

Example 4.3
Two adjacent media of the same size are heated up from one end as 

shown in Fig.4.7.2. The ratio of the diffusivities is 1:10. Fig.4.7.2 is the 
temperature evolvement resulting from the boundary element scheme with 
interfacial elements, and Fig.4.7.3 is the temperature evolvement resulting 
from the boundary element scheme without the interfacial elements.
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1 0 , 1 0 0 0

TIM: 6 . 0

TEMPERATURE

0 , 0 . 0

2, 200  
4 .400  
6 ,600  
0,800 
1 0 , 1 0 0 0

TIME = 14.0

Fig.4.7.2. BEM scheme with interfacial elements for two media 
heat conduction
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2 . 200
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Fig.4.7.3. BEM scheme without interfacial elements for two media 
heat conduction

It becomes very interesting if this new idea is extended to a problem with 
a concave domain in which the boundary element methods have another 
limitation to apply. Let us still consider a problem with two media which 
have different thermal diffusivities as shown in Fig.4.7.4. If the second 
thermal diffusivity approaches zero which means that the medium is an 
insulated block, the distance between two points sitting at both sides of the 
concave comer in the other medium goes to infinity according to equation
(4.7.2). However, there is heat transferred through medium one, therefore 
the distance between the two points has to be a new concept.
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Fig .4.7.4 What is the distance between x and x' in this extreme case?

Normally, the boundary element methods can not be directly applied in 
this concave domain problem with an insulated boundary condition along 
the concave side. The domain has to be divided up into two convex sub- 
domains, and an artificial interface has to be constructed as shown in 
Fig.4.7.5. Obviously, this interface precludes the possibility of a straight 
line which belongs to the domain from bridging across the concave comer. 
Intuitively, this treatment is the same as a new concept of an effective 
distance between the two points which can be stated as follow:

Def in i t io n : An effective distance between any two points in a 
domain is the shortest curve within the domain connecting these 
two points.

Following this definition, the effective distance between the two points is 
the curve around the concave comer as shown in Fig.4.7.6.

Effective Distance

Fig.4.7.5 An interface to divide Fig.4.7.6 Effective distance within 
the domain into two convexes the concave domain
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All these can be drawn to a conclusion: T here  is no difference 
betw een using the  effective d is tan ce  an d  using  convex sub- 
d om ains fo r a concave dom ain  p ro b lem  w ith  an  in su la ted  
b o u n d ary  condition  along the  concave side(s) in  a b o u n d ary  
e lem ent m ethod. This new idea, which needs to be mathematically 
proved, permits significant extending of the boundary element methods to 
the concave domain problems without interface elements, and saving both 
manual work of dividing the concerning concave domain into convex sub- 
domains and computing resources. Based on this new idea, a program is 
coded and a example is given to prove the suitability and effectiveness 
below.

Exam ple 4.4
A square domain with a crack from the midpoint of its right side to its 

centre. All the boundaries are insulated except the right side where the 
temperature is kept 1000 °C in the upper half and 0 °C in the lower half. 
The development of the temperature field is shown in Fig.4.7.7. When the 
time is approaching to infinity the temperature field is identical to the 
temperature field in steady state. The contours should be then symmetrical 
about the crack. From the enlargement of the temperature field at 176 
second shown in Fig.4.7.8, it can be seen the contours are very close to 
symmetric about the crack.

TEMPERATURETEMPERATURE

0 : 0 . 000:0. 00

0.1000

Fig.4.7.7. The development of the temperature field in a concave domain, 
(continued)
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TEMPERATURE TEMPERATURE

0. 0. 00 0 , 0 . 00

10,1000 10,1000

TEMPERATURE TEMPERATURE

0 , 0. 00 0 : 0 . 0 0

1 0 , 10 00 1 0 , 1 0 0 0

16. 0

TEMPERATURE TEMPERATURE

0 , 0 . 00 0 , 0 . 00

10,1000 10,1000

Fig.4.7.7. Continued from the last page.
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T = 176.5

TEMPERATURE DEG C
t o  1000.0

0 . 0 . 00

A.200 .0  

8.A00. 0 
12.600. 0 

16.800. 0 

2 0 . 1000 . 0

Fig.4.7.8. The temperature field at 176 second.

4.8 Transform ation of the Dom ain Integral into Boundary  
Integrals

As mentioned in section 2.7, the existence of domain integral loses the 
elegance and efficiency of the boundary element method. The idea of the 
dual reciprocity principle can also be used in this time-dependent case to 
transform the domain integral into boundary integrals. Let us consider the 
domain integral in equation (4.3.2). Following the idea, the temperature 
field T(x',t0) is replaced by following N coordinate function series:
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N

TCx’, to)=  £ A . f . ( r ) (4 .8 .1 )
i = 1

in which fj(r) satisfies the Laplace equation (2.7.3), and q are the polar 
origins for the functions.

Equation (4.3.2) can then be rewritten into the following form

cT =
N rr

< J cx(qT -  Tq‘ )d r  dt' + £  A. J (f.4> u  - f . + c ^ C r .)
t0r  i = l Lr

(4. 8. 2)
where Cj is a constant based on the location of the polar origins, and O is 
the fundamental solution of the following Poisson equation

O .. =,ii
 ]_
47tocAtd / 2 exp

4aAt_
(4 .8 .3 )

For both two and three dimensional cases, O are given by Pina and 
Fernandes^128!

<f> =  

O =

4k
1

47tr

(  2 > -

r + y 2DV 4aAt J
erf

(4a At)'
3D

(4 .8 .4 )

The coefficients Aj are obtained in the same way as mentioned in section
2.7 of Chapter Two.
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Chapter Five 

BEM for Steady Viscous Flow

5.1 Introduction

The limitations of the models based on the thin cavity approximation 
must be realised though they have been effective in predicting quantities 
such as pressure, flow front position, and velocity. For cavities with high 
aspect ratios, or some localised problems, more accurate models should be 
used. Also, it is the phenomena that happen in the flow field near the adva
ncing front that have a profound effect on the properties of the moulding 
and must be taken into account. This flow effect is described as "fountain 
effect" due to the phenomena of deceleration and outward motion of fluid 
particles as they approach a slower moving surface.

Polymer flow can also be simplified as a creeping flow. This is a reason
able simplification because the Reynolds number in dimensionless Navier- 
Stokes equations

is so small that the inertia terms in the left hand side can then be omitted. 
For Newtonian fluids such an omission results in so-called creeping motion 
or Stokes equations as follows

in which the constitutive equation is the Newtonian relation. Polymer flow 
is characterised as high viscosity; many flow problems in polymer process
ing satisfy the low Reynolds number conditions. Therefore, to approximate 
the flows by the creeping motion equation in the filling stage of the injec
tion moulding technique is reasonable. The incompressible condition can be 
reasonably used for the flow field during the filling stage of the injection 
moulding, though the compressibility may be present due to the large

(5 .1 .1)

a .. . + Ref. = 0 (5 . 1. 2 )
ij.j i
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pressure variation involved. Therefore the continuity equation is given as 
follow

If only the time-derivative term of the inertia terms is neglected, equa
tions (5.1.1) become steady viscous flow  as follows

which can give a more accurate approximation of the filling flow of the 
injection moulding. Yet it is precisely this non-linearity that is the principal 
mathematical difficulty pervading classical hydrodynamics.

If the non-linear constitutive relationship is introduced, that is, the non- 
Newtonian models for the polymer fluids, equations (5.1.2) or (5.1.4) are 
even more difficult to solve. What is more, the energy conservation 
equation has to be added into the simultaneous equations if the non- 
isothermal effect on viscosity is taken into account.
However, as mentioned in Chapter One, several authors, notably Wu£86b 
Colemant87’88!, Bush and Tannert89b Tosaka and Onisakat90’91!, Kitagawa 
and Brebbiat92»93], Tran-Cong and P h a n - T h i e n C 1 3 2 4 3 3 ]  have developed the 
boundary element methods for solving the incompressible steady viscous 
flows, even for attacking some non-Newtonian flows. In this chapter, the 
boundary integral equation method for incompressible steady viscous flows 
in primitive variables is presented and applied for solving the fountain 
flow, particle and fibre orientations in the area and some free surface 
problems.

5.2 B oundary  In teg ra l R epresentations

It is the Green's function technique which forms the basis of the equa
tions in integral forms. However, the first systematic developments for the 
steady, incompressible creeping flows stem from the work of Lorentz^134! 
who proved the following reciprocal theorem

(5. 1.3)

Re(u.u.) . = a .. . + Ref. 
j i , j  i j . j i

(5 .1 .4)

(5 .2 .1 )
s s
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any two motions of the same fluid conforming to equations (5.1.2) and 
(5.1.3). Ten years later Oseen in his classic bookl84i gave the solutions of 
such a motion in which the velocity and stress fields were caused by a 
disturbed source at a variable point, and obtained the integral formulations 
not only for the creeping flow but also for some more complicated flows.

It can be clearer and easier, however, to derive the integral equations by 
using the weighted residual method nowadays. Let us employ a Cartesian 
tensor weight function for equation (5.1.4).

j + ~~ ^ e(UjUP j j ^ i k ^  = ^ ^
Q

where Q  is the domain in which the medium occupies with the following 
conditions on the medium boundary T:

u. =u I \
1 “ i 1

t . = g  n . = t
1 ij>j J “ i 2

(5. 2 .3 )

and T 1+ r 2= r ,  Uj and h  are prescribed velocities and tractions on the corre
sponding boundaries. Whatever the shape or position of the domain Q  is in 
a fixed frame system the integral always applies over the medium.

A requirement for these tensor functions Vik (i,k=l,2,3) is that the 
determinant of the corresponding matrix is not zero, that is:

det[Vik] *  0 (5. 2. 4)

This is the prerequisite and sufficient condition for the trivial solution of 
a group of homogeneous equations. Equations (5.2.2) can be regarded as 
such a homogeneous matrix equation where each k row is required to be 
zero, and the weight functions can be regarded as the coefficients.

According to the Gauss theorem, the following relation can be obtained 
by integration by parts:

\[o .. . -  Re(u.u.) . I v d Q  = 
j L y . j  j i ,jJ ikQ
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(5. 2. 5)

in which nj (j=l,2,3) are components of the unit outward normal to the 
boundary of the medium, and T  is the boundary which will change as the 
medium changes.

A constitutive equation must be given for the fluid material considered. 
The relation of Newtonian fluid is given for the formulation:

a .. = -  RepS.. + u. . + u . . (5 .2 .6 )
i j  r  i j  i . j  j . i

By substituting this equation into the second term on the right-hand side 
of equation (5.2.5), and after integration by parts, equation (5.2.2) becomes 
following form:

in which (i=l ,2,3) are the components of the surface traction which are 
equal to Oynj.

The weight functions for the incompressible continuity equation (5.1.3) 
are a group of vector functions since equation (5.1.3) is a scalar equation 
with three unknown velocity components

J ( u in jv
r rr

(5. 2. 8)
a

Integration by parts yields

[u . J L d Q  = fu .n . EL d T -  f J  i, i k J i i k J u. n  . dQ = 0i k, i (5. 2. 9)
Q. r Q

By adding this relation into equation (5.2.7), after rearrangement, yields
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(5.2. 10)

The requirements for the weight function Vik and Pk are clear now. They 
should result in the elimination of the first two body integrals in the right 
hand side and supply the weight functions to solve the unknowns. Both

can satisfy the requirements. Equations (5.2.11) and (5.2.12) are similar to 
those in reference [90], but equations (5.2.13) and (5.2.14) are the weight 
functions which are degraded for solving the scalar unknown, pressure. 
5(x-x') is the Dirac delta function for observation point x and source point 
x'. The functions Vik are called fundamental tensor solutions as they imply 
the velocity components in i-direction at the point x when a source of unit 
strength is applied in k-direction at the point x’. The equations (5.2.13) and 
(5.2.14), however, indicate a fictitious velocity field in which are the 
components at the point x under a source of unit strength acting at the point

The body force components fi are often those of gravitational loads in 
which case they can be expressed by a potential function as follow:

(5. 2.11) 
(5 .2 .12)

and

V. .. + V. . . - R e n  .8.. + ReU.V. . = 0 (5.2. 13) 

(5.2. 14)
>j y

V. . = 8(x -  x ')
i, i v

x .

f . = 'F .; Y = -  gx'3; b = \ o | ;  v V  = 0
l - g ,

(5 .2 .15)
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where g is the gravitational acceleration. This results in the transformation 
of the body force integral onto boundary:

in which the last integral is zero due to (5.2.12) or Regx3 due to (5.2.14).
Finally the integral representations both for the velocity components and 

the pressure are obtained:

where xz indicates the vertical distance from the zero gravitational surface, 

and a** are defined in the same way as equations (5.2.6), correspondingly

and an asterisk in the superscript means the solutions from equations
(5.2.11) and (5.2.12) while two asterisks means the solutions from 
equations (5.2.13) and (5.2.14).

Since the integral equations of velocity components (5.2.17) are continu
ous and differentiable about the space coordinates x, the integral 
expressions of the strain rates can be worked out easily from the following 
derivatives of the velocity components:

r  r  r

(5. 2 .17)

(5. 2 .18)
r

G*k. are defined as

(5 .2 .19 )
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u , =  u.G* ,n.  
k,  1 J i ik j , 1 j d r  -  J ( t . -R e u .u .n p u * k }d r  + J  Re

r r r

(5. 2 .20)

This tensor expression together with (5.2.18) can be used to obtain the 
stress tensor by using (5.2.6).

It can be readily seen that if the convective terms are neglected, equations 
(5.2.17,18,20) are then reduced to the linear boundary integrals only, 
which gives a great deal of advantages in saving the computing resources.

5.3 F undam ental solutions

The derivation of the fundamental solutions for equations (5.2.11) and
(5.2.12) was given in detail in reference [90]. The form of the fundamental 
solutions to these equations is well known, it is identical to those of incom
pressible elasticity. Hereafter the components of both velocity and stress are 
given as follows:

where O is given as the fundamental solution of the biharmonic equation

The explicit form of the fundamental solutions for two-dimensions and 
three dimensions are given by the expressions:

(5 .3 .1)

Rep*k = -A<t>jk (5 .3 .2 )

(5 .3 .3 )

<E> = o k r 2 ln r 8n 2D
(5 .3 .4 )

3D

in which r is the distance from the observation point x to the source point
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Substituting O into equations (5.3.1) and (5.3.2), the following results 
can be obtained:
2D case:

u t  = 4 - { ( 2 1 n r  + 3 )8 ik- 2 r  .r k}
ik 87C

(5 .3 .5 )

G* = a* n. = .r , r  .n. ik lkj j 7tr ,1 , k  , j  j (5 .3 .6 )

u* . = -J— ( 2r .r , r  + 8 .,r  . - S . . r  -  5, .rik . j  4 n r \  , i  , k  , j  ik , j  i j  ,k  kj , 1/ (5 .3 .7 )

1G., . = ----;
n rik, j n .r  .r , + (S ..r , + 8 , . r  . - 4 r  .r .r J ) t .n . l  (5 .3 .8 )

J , 1 , k V IJ > k kJ , 1 ,1 , j  , k /  , 1 IJ v

3D case:

u* = -j^—(8., -  r .r  Jik 47 tr  ik ,1 , k7 (5 .3 .9 )

* 3a.. =  or .r . r .n.
lk 27ir * * J J

(5 .3 .10 )

u* . = —^-y(3r .r r . + 8 .,r  . - 8 . . r  -  8. .r .)
ik, j 4 jc r  ,1 ,k  ,J ik , j  lj , k  kj , Y (5 .3 .11)

* 3G* =
lk,j 27tr3 V , i r , k + ( 5 ijr ,k + 6 kjr , i - 5 r , i r ,jr , k ) r , 1n 1]  (5- 3. 1 2 )

The fundamental solutions of equations (5.2.13) and (5.2.14) can be 
easily obtained. Firstly, due to the fact that equation (5.2.13) can be 
rewritten as

(g + Reu .u ) . = 0 
ij j 1 > j

(5 .3 .13 )

it can be found that G*.* + Remu** is an arbitrary constant tensor which is

enough for the first integral in equation (5.2.18). Secondly, the velocity 
potential can be assumed:
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u** = W . (5 .3 .14)
1 , 1

Substituting this relation into equation (5.2.14) yields the equation for the 
function 'F as follow:

AW  = 8(x-x') (5. 3. 15)

The fundamental solution of this equation is well known:

W

W 1
47tr

2D

3D
(5. 3 .16)

in which r is the distance from the observation point x to the source point 
x '.

Finally the fundamental solutions of equations (5.2.13-14) are written as 
the following expressions

; a** + Reu.u** = 0 2D 
y j i

r .
* *  _  » 1

Ui ~~ 2nr
r .

u?* = ------------- a** + Reu.u** = 0 3D
47tr « ■ J 1

(5. 3 .17)

which leads the pressure equation (5.2.18) being much easier to solve.

5.4 B oundary  points

When the observation point x is taken to the boundary, the integrals have 
a singularity. No matter what the boundary is like at x, one can always 
supplement it by a small spherical surface, such that the second integral of 
the right hand side in equation (5.2.17) is:
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Substituting any of the velocity fundamental solutions into the right hand 
side of this equation and making use of mid-value theorem, this integral 
goes to zero as 8 approaches zero.

The first integral in equation (5.2.17) however behaves differently. One 
can see that the limit of the integral over a small spherical surface can be 
written as

Lim I u.o* .n.dT = u. Lim | a * n . d r  (5 .4 .2 )
e -» 0 j- 1 **y J 1 e —> 0 p J

e e

A
The term values are now of 1/e2 order while the terms resulting

from integration over the surface are of order e2. Hence the integral
(5.4.2) does not vanish when e goes to zero but produces a free term. It can 
be proved that:

Lim fa*  n dr = 8.k( l - Q  (5 .4 .3 )
e -> 0 f  1J J 1K

e

where C is the fraction of the local space occupied by the point, which is 
1/2 for the smooth boundary, and 1 for any internal point. Consequently, a 
general tensor equation for both internal and boundary points is produced:

CukW  = J u i°Ikjn jd r -  J ( x i - R euju in j) u ’acd r  + j R e g x ' . u ^ n . d r
r  r  r

-  |*Reu.u.u* . d£2 (5 .4 .4 )J  i j i k , j  v '

For equation (5.2.18), there is a different story for the boundary point. 
Since the boundary integral involved is only of the fictitious velocity, for 
two dimensional case, it becomes:

Lim
£  —-> 0

f T u * * d rl = Lim [ (Rep -  u . n n. -  u, .n (5. 4. 5)
J 1 1 r e  _>  o  J* k  k  j  k , j  k  /  2 7 t r  v '
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The pressure and velocity derivative components can be expanded with 
their values in the centre of the circle:

p = p(0) + e<t>; uj(k = u ^  + E<|> (5 .4 .6 )

They obviously approach their centre values when 8 goes to zero. Due to 
the following fact for a half circle

i  nknj" r̂ = ~2 (5'47)r

the limit becomes

Lim
£ -> o j * * 

T . U .l l dr =
Rep (0)

+ /  (0) (0) \
2

Rep (0)

(5 .4 .8 )

where the incompressible condition has been used.
The three dimensional case can be worked out in the same way, so that 

for both boundary and internal points equation (5.2.18) becomes:

QKx) = -  J t ju**dr-Cgxz+ Jgx^u*‘n.dr (5 .4 .9 )
r  r

Once the values of the traction and velocity components on the boundary 
have been worked out, the pressure, stresses and strain rates on the bound
ary can be easily calculated. Therefore the singularity which appeared in 
the above equation is not a problem at all. The details of the formulations 
are given in Appendix C.

5.5 Boundary Element Implementation

Although equations (5.4.4) and (5.4.9) are exact statements, boundary 
element approximations have to be used for most of the boundary value 
problems. The boundary discretisation process begins by subdividing the 
whole boundary into individual elements of simple shape. The geometry of
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the boundary element and the variation of velocity and traction components 
on it are completely defined by the nodal values and associated shape 
function. They are expressed as follows:

x .(Q  = N w(Q x .w; u .(Q  = N w(C )u.w; x .(Q  = N w(O x .w (5 .5 .1 )

where £ are the intrinsic coordinates, Nw shape functions, and xjw, U j w , and 
xiw the nodal values of coordinates, velocity and traction components, 
respectively.

Only the two dimensional case is considered hereafter, and the linear 
approximation is applied in which the shape functions are written as 
follows

N j(Q  = - j ( i  -  C); n 2(Q  = - j ( i  + 0 (5 .5 .2 )

For a creeping flow (and the body force is neglected), the resulting 
equations are written as follows:

m

Cu = Y f u .  [ N o* d r  -  t .  fN  u* d r
k  iw  J  w  ik  iw  J w  ik

e= IV Te Te
(5.5. 3)

M

(5. 5 .4 )
e= 1 r

In fact, equations (5.5.3) form the only system to be implicitly solved,
(5.5.4) can be used to solve the pressure explicitly after the values of the 
traction components on the boundary are worked out.

The boundary integration can be numerically calculated for all the 
elements by Gaussian formulae except the collocation elements in which the 
analytical integrations have to be employed. They are given as follows:

i
J N,(r)
-  1 
1

1  N2<r)
-  1

^ r+  2 / i k - r , i r ,kj

ln r  + —• 16. - r  .r

dr = R

LV 2  j  ik  , i  , k_

y

LV

/

ln R 2 - - ^ |5 . . - R .R .
2  J  ik  i  k _

dr = Rl I InR 2 - 4  p .. -R .R .
A  2 y i k  1 k_

(5 .5 .5 )
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For the steady viscous flow case, the domain has to be discretised into 
elements and an iteration scheme must be carried out. Thus, for any point 
within a domain triangular element both coordinates and values of the 
velocity components are defined as follows:

where Aw are the area coordinates.
From the fundamental solutions (5.3.7) it can be seen that the kernel 

functions for the domain integral have a singularity when r approaches 
zero. This singularity is the main error source when Hammer's formulae is 
used for the numerical integration. However, this error can be reduced 
significantly by introducing the following expressions.

At first a constant velocity field roduced. It is obvious that the

Equations (5.5.8) are used for iteration and the velocity components at

the previous step can be chosen as u ̂  for each node. Therefore the error

caused by the singularity is effectively reduced.
The flow chart of the implementation is introduced in Chapter Eight, and 

a general purposed code has been designed. In the following sections, 
several problems are solved by the applications of the boundary element 
method.

(5. 5 .6 )

following integral is always zero:

dT -  f u cu cu* .dQ = 0
J  i  j  ik ,  j
ft

(5 .5 .7 )

Subtracting equation (5.5.7) from equation (5.4.4) produces

r  r  r
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5.6 Particle Orientation Caused by Fountain Flow Effect

As mentioned in Chapter One, the orientation in polymers in injection 
moulding is caused by stretching and shearing forces, especially in the skins 
of the mouldings. These phenomena involve the flow kinematics in the 
transition region between the fully developed flow and the flow front. The 
characteristics of this region are that the flow elements near the centreline 
move faster but decelerate as they approach the free surface, and then move 
outwards towards the walls. Since the melt sticking on the wall soon 
solidifies, the melt near the wall is then stretched and sheared creating a 
highly oriented skin.

In a special visualisation study of the particle orientation, Schmidd135' 137! 
found that for a thin-walled moulding coloured particles introduced along 
the centreline come out at the surface in contact with the mould walls and 
in reverse order of the colours, and producing a series of "V" marks in the 
skin area as shown in Fig.5.6.1. In a finite element simulation, Mavridis et 
al [38,39] pUt some Lagrangian fluid elements in the central area of the flow 
field near the advancing front to investigate the deformation and 
orientation of them, and illustrated the phenomena of the elements splitting 
in the front and stretching along the walls which were caused by the 
fountain effect. The "V" shape marks formed in the skin area were 
illustrated as a "rolling-type" motion which occurred far behind the 
advancing front, and the turning over of the fluid elements was illustrated 
as the result of shear flow in the fully developed region.

The shortcomings of the conclusion obtained by using the finite element 
analysis cannot be easily detected. However, the turning over of the fluid 
elements cannot happen in the fully developed region because the vertical 
velocity component is virtually zero. Therefore it can be presumed that the 
"V" marks formed in the skin area are also a direct consequence of the 
fountain effect. The fluid elements used in Maviridis et al's work actually 
captured only a portion of the phenomenon.

It is obvious that the complex fountain flow includes the non-Newtonian 
and non-isothermal characteristics. If only viewing from the point of the 
general Navier-Stokes equations, there are the compressibility and the 
inertia terms. However, the fountain flow effects are influenced, but not 
determined, by these features. At first, the hydrodynamic phenomenon 
contributes to the essential characteristic of the fountain flow, so the 
Newtonian model of the constitutive equation can provide an overwhelming
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a. Coloured particles orientation in b. "V" marks of the coloured particles in
f i n i s h e d  p a r t  viewed from top. finished part viewed transversely.

c .  Enlargement of the green "V" mark. d. Enlargement of the yellow "V" mark.

Fig.5.6.1 Schmidt's experimental result on particle orientationi140h 
(Original colour pictures)
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information of the effects. Secondly, there is almost no compressibility near 
the advancing front because of the low pressures involved; thirdly, if the 
coordinate system is moving at the same speed as it at the front tip, the flow 
becomes a steady-state problem. Also, m ost polym er flows are 
characterised as high viscosity, thus the inertia terms can be considered too 
small to be taken into account compared with other terms due to the low 
Reynolds number. Consequently, the creeping motion equations can be used 
for the approximation of the fountain flow. This gives a great advantage in 
fulfilling an idea of particle-in-domain since only the boundary integrals 
are involved in the integral equations, and the solution inside the domain of 
the flow field can have an unlimited analytical resolution.

The idea of particle-in-domain is similar to the idea of Particle-In-Cell 
(PIC) which was originally introduced by Harlowf68] for finite difference 
methods in early sixties. The later developments of the idea have evolved to 
some other m e th o d s^  such as Marker-And-Cell (MAC)f37̂ methods which 
were also used in calculating the fountain flow and predicting the 
orientations£138»i39]. The efficiency and accuracy of the boundary element 
method and the particle-in-domain idea used for this simulation are really 
tremendous, as once the boundary values are solved, the positions and 
velocities of the Lagrangian particles at any moment can be worked out 
explicitly by using the boundary values, thus much more detail of the 
fountain flow effects on the particle orientation can be given without using 
a large amount of computing resources.

Uavg

f(y)

2H

Fig.5.6.2. Fountain flow in a moving frame of reference
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The problem is shown schematically in Fig.5.6.2. Referring to this 
diagram, the boundary condition on AE is the velocity distribution as 
follows:

in which the function f(y) is the solution for the fully developed Newtonian 
flow which is given in a form as

in which H is half of the gap height, Px the pressure gradient along the 
axial direction, Uavg the average velocity in the cross section (as a symbol, 
zero Uavg means the problem is defined in a fixed frame of reference).

The boundary conditions (AB and DE) on the walls are the velocity - 
U aVg, assuming that the walls moving backward in the reference frame;
and on the free surface BCD the traction components vanish:

The efficiency of the boundary element method can also be shown in the 
determination of the shape of the flow front, because only the boundary 
values are involved. The method of determining the free surface shape is, 
however, based on the fixed frame. By moving the front at its own speed, 
we can obtain the shape until the velocity on the central point C of the 
moving front equals the average velocity U a v g -  The scheme is interpreted 
schematically in Fig.5.6.3. Some more boundary nodes are inserted 
automatically in the stretched free surface during the iteration for the sake 
of accuracy, therefore the number of the nodes is increased from 80 to 106 
finally.

Fig.5.6.4 shows the velocity vector field in the moving frame of 
reference, from which it can be seen that the fluid particles in the centre 
area approaching the flow front, decelerating, spilling over and moving 
backwards in both the skin areas. If a constant velocity vector field Uavg is

U x=f(y), Uy=0 (5. 6. 1)

(5 .6 .2 )

G..n. = t .  = 0 
y j 1

(5 .6 .3 )

where a
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superposed onto this vector field, the real velocity field can be yielded as 
shown in Fig.5.6.5.

1106

. YI
I
U -  X

 _______________________________________ ._______________________________________________________ CA5IM 1.0

Fig.5.6.3 Moving the free surface to a stable shape.

However, both pictures cannot show exactly how the "V" marks are 
formed. Only through a tracer-in-domain technique can the phenomenon be 
illustrated. Therefore some tracers are put in the central area near the inlet 
boundary AE.

Most of the evolution of the particle orientation was very similar to that 
reported in reference^39] when the same size of the tracer area was given. 
However, the "rolling"-type motion which was indicated responsible for 
forming "V" shapes in [39] could never happen in the fully developed area
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far behind the flow front. The tracers moving backward at slightly 
different speeds in the skin areas could be observed. The latter is 
undoubtedly the reason for the particles shearing and stretching in the skin 
areas. It could also be, presumably, the cause for the formation of "V" 
marks. It was this phenomenon that inspired the author to put some more 
tracers in the area farther off the centreline. The orientation history of the 
particles is shown in Fig.5.6.6.

Fig.5.6.4 The velocity vector field in the moving frame of reference.
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Fig.5.6.5 The velocity vector field in the fixed frame of reference.

It is just like some runners starting racing in rows in a track field, 
though those who are closer to the centreline run faster at first straight line 
period, they slow down and soon are left behind in the front area because 
of longer arc tracks. Those who are farther from the centreline run slowly 
all the time, therefore they are also left behind in spite of shorter arc 
tracks. Only those in the middle rows can gradually lead the race in the 
front area, and therefore the "V" marks are formed in the duration when 
all of them are turning around in the front area and running along the 
walls. This formation can be shown clearer if a closer look is taken at the 
tracers velocity pictures at individual moments.
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Fig.5.6.6 Orientation history of the particles in the moving frame 
of reference.
(In every two seconds from 0.-12., and 15.-33. seconds)

Fig.5.6.7-8 are the vector plots at 25 seconds and 29 seconds, 
respectively. From these pictures it can also be seen that the farther from 
the front, the sharper the "V" marks will be, and the longer they will be 
stretched. Clearly the phenomena are caused by the shearing effects in the 
skin areas which enhance the forming of the "V" marks. The temperature 
effect is responsible for freezing the "V" marks in the skin areas, and the 
frozen layer on the walls should start to form soon behind the flow front. 
In spite of this, the strong shearing force still exists all along the skin and
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could stretch the softer half of the "V" shape longer. Although lack of this 
non-isothermal proof, the "V" shapes of the tracers presented here are 
closely in agreement with Schmidt's experiments.

Fig.5.6.7. Enlargement of the tracer region at T=25 seconds

The tracers in a particular row can never exceed each other since they all 
have the same velocity history. After turning around in the flow front area, 
they still line up parallel to the wall surface but moving backward. This is 
the reason for the phenomenon of the tracers appearing in the skin in the 
opposite order to their entering in the gate.
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Fig.5.6.8. Enlargement of the tracer region at T=29 seconds

5.7 F ib re  O rien ta tion

The above application can be extended to fibre orientation in a creeping 
flow field. It is well known that short fibre-like particles are often added 
into a polymeric matrix to enhance the mechanical properties of the 
resulting composite material. The mechanical properties of the reinforced 
plastics are a strong function of the orientation of the fibres. This kind of 
reinforcement is mainly done by a injection moulding operation, therefore 
it is desirable to predict the orientation of the fibres through the computer



Chapter Five: BEM for Steady Viscous Flow 116

modelling based on hydrodynamic theory of suspensions of rigid in 
creeping flows.

The first study on a small ellipsoidal particle in a creeping flow was done 
by Jefferyt141], who extended Einstein’s treatment for the case of spherical 
particles, and gave the expressions for the time dependence of the 
orientation of ellipsoids of revolution under the hydrodynamic torque 
resulting from fluid stresses. Since his investigation several other authors 
have given some developments on the suspensions which are reviewed in 
references [142,99]. The numerical methods for predicting the fibre 
orientation are mainly based on those which are used for fluid fields. 
Although finite difference (FD) and finite element methods (FE) are not 
limited in offering a quantitative analysis (e.g. reference [143]), they pose 
difficulties in performing the domain discretisation when the flow field 
needs updating. The boundary element methods are well suited to this class 
of problems. Examples can be found in recent applications to the similar 
problems^144*147].

The main concern here is the prediction of fibre orientation in an 
arbitrary plane flow in which the axis of symmetry of the fibres remains. It 
should not be difficult to extend the prediction of fibre orientation to three 
dimensional case since the equations obtained by Jeffery were for that case. 
In order to use Jeffery's equations we assume that the fibres are 
represented by a prolate spheroid with 2a as the length of the axis of 
revolution and 2b as the equatorial diameter. There are some other 
assumptions which were used in Jeffery's formulation: i) the non-linear 
convection terms are neglected (creeping motion); ii) no-slip between 
fibre-liquid interface; iii) apart from the disturbance produced in the 
immediate neighbourhood of the fibre, the flow is steady; iv) there is no 
interaction between fibres; v) the fibre is non-sedimentary and has its 
centre at a point in the fluid where its translational velocity is zero; vi) the 
distance between the fibre centre and the wall of the cavity is not 
appreciable compared to the fibre size.

Since the axis of revolution lies in the x-y plane, the orientation is fully 
characterised by the angle (j) between its axis of symmetry and the x-axis as 
shown in Fig.5.7.1. This angle is governed by a differential equation 
reduced from Jeffery's equations in the following formU42h

= co +  B [y xy c o s2(f) - j t t x x  - Y yy)sm2<|> (5 .7 .1)
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where yxx, yxy, yyy are the components of strain rate tensor, co is the 
vorticity, i.e.

3ux du
Yxx = I h T '^ y y = H y"

1
’ Yxy 2

3uv 9u
+

3x dy
1,CO = j

d uv du

dx dy
(5. 7. 2)

and B is a scalar related to the aspect ratio of the fibre,

B = I i Z l
r p + i

(5 .7 .3 )

from which it can be seen that the parameter B approaches asymptotically 
to one for a slender fibre.

Fig.5.7.1 A fibre representation and its orientation angle in a reference 
frame.

As a simple test, consider the case of a uniform shear flow in the x- 
direction with a velocity gradient y. Equation (5.7.1) can be written in a 
much simpler way:
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d(j) ^ - .2 - 2 x    2.
dt 2(T2v + i y v

(r^ sin (|) + cos <j)) (5 .7 .4 )

With an initial condition ())=<|)0, one can obtain the s o l u t i o n t 1424 4 3 ]

c|) = -tan -l ^  tan(-^psign(y) J -  tan ’( r p tan <|> ^
L P

(5 .7 .5 )

where T is a period of rotation given by

T  2 n f  ^  1
T f l ' '  T w

(5 .7 .6 )

Fig.5.7.2 and 5.7.3 show the fibre orientation for two cases: rp=1000 and 
rp=3, respectively. For rp=1000 case the fibre gradually aligns along the 
horizontal line and does not flip over within this limited length. In rp=3 
case, however, one can observe the flip-over of the fibres when they pass 
the half wave-length at each y position. The numerical prediction is fully in 
agreement with the theoretical result.

Fig.5.7.2. Fibre orientation in steady shear flow for rp=1000.
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Fig.5.7.3. Fibre orientation in steady shear flow for rp=3.

Let us consider the fibre orientation in a fountain flow which, as 
discussed in the last section, is of practical importance in injection 
moulding. The boundary conditions of the viscous flow field remain the 
same as those described in the last section but the field is slightly longer 
than that in the last section, and 118 boundary elements are employed in 
this calculation. Instead of dimensionless tracers, some fibre-like particles 
are put in the centre inlet area. At first, investigation is done for the motion 
of the slender fibres (rp=1000) which are injected in the inlet area parallel 
to the flow direction there. In this case, it can be readily seen from 
equation (5.7.1) that the orientation angle remains zero in the fully 
developed flow region, because 3uy/3x=0 which results in d(j)/dt=0. In the 
fountain flow region, as shown in Fig.5.7.4, the fibres basically align along 
the flow directions.

It is remarkable to see that even though the initial orientation angle of the 
fibres is perpendicular to the flow direction as shown in Fig.5.7.5, the 
fibres gradually align along with the velocity vectors in the fully developed 
flow region both in the centre and near the wall. Although some fibres do 
not quickly flip over in the fountain flow region as they do in zero initial 
orientation angle case, all the fibres soon align up along the walls. 
Presumably, the fibres will be frozen up along the walls and the orientation 
will remain intact. Both zero and right initial orientation cases should cover 
all the other possible initial orientations. Fig.5.7.6 shows the history of the
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fibre orientation starting from random orientations and reveals the history 
of the flip-over of each fibre by tracing them with labels.

From Fig.5.7.6 it can be seen that the fibres in the upper half flip over in 
counter-clockwise way while those in the lower half rotate clockwise. The 
farther from the centreline, the quicker they flip over.

\  \

Y
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L z x
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Fig.5.7.4 Fibre orientation resulting from fountain flow effects. 
(rp=1000, <j>o=0)
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Fig.5.7.5. Fibre orientation history resulting from fountain flow effects. 
(rp=1000, 0o=7c/2)

However, the exceptions can be readily seen in the area immediately 
behind the free surface. The reason for those in that area turning the other 
way around is because the velocity gradient about the direction 
perpendicular to the velocity direction alters from negative to positive in 
the upper half, and from positive to negative in the lower half. In order to 
confirm the phenomena, another simulation is done for the case that rp=3, 
and (|)0=7t/2 which history of fibre orientation is shown in Fig.5.7.7. If 
observed carefully there should be a curve representing a zero-gradient
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Fig.5.7.6. The history of the flip-over of the fibres.
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(with respect to the perpendicular direction of the velocity) of the velocity, 
which goes along the centreline in the fully developed region and splits 
into two curves near the free surface. Referring to Fig.5.7.6 one is approx
imately between fibre 34 and fibre 6 in the upper half; the other is roughly 
between fibre 32 and 31 in the lower half, and both curves disappear at the 
ends of the free surface. The zero-gradient curves including other two are 
shown schematically in Fig.5.7.8. These phenomena clearly indicate that the 
periodic flip-over depends strongly on the velocity gradient perpendicular 
to the velocity, and the velocity itself. This is very similar to the flip-over 
period in the steady shear flow.

CASIM 1.0

Fig.5.7.7 The history of the orientation of fibres ( rp=3, <j)0=7c/2)
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3lul =0

Fig.5.7.8. The zero-velocity-gradient curves, n is the normal vector of 
streamlines.

Fig.5.8.1. The history of the free surface in a L shape.
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5.8 Modelling of Moving Free Surface

The applications can be further extended into determining the free 
surface positions viewed transversely. As is already described in section 
5.6, the free surface is formed by moving the boundary nodes at their own 
speeds. If the free surface in the last two sections moves further in a 
rectangular cavity, it will hit the wall and squeeze into comer. If there is a 
rib standing in the end, the flow will turn around and move into the rib as 
shown in Fig. 5.8.1.

' / / / /  
/  /

Fig.5.8.2. The velocity field at an intermediate moment of the free 
surface flow in an L shape.
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At any moment of the progression of the free surface, the velocity and 
pressure field can be easily calculated. Fig.5.8.2-3 are the velocity and 
pressure fields at an intermediate moment. From the velocity field it can be 
clearly seen that the flow encountering the wall is forced to split into two 
streams: the smaller one is squeezing into the down-right comer getting its 
shorter front line; the other one is turning 90 degrees and getting longer 
free surface. The pressure distribution reflects the building-up of pressure 
in the front wall, and the pressure gradients in both free surfaces. Although 
there are still some problems to overcome for the pressure calculation in 
comers, the comers between the free surface and the solid wall are the real 
pressure singularities. To clearly give the pressure transitions in the areas,

Fig.5.8.3. The pressure field at the moment.
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special treatments have to be done. In theory, a boundary element method 
can give a better result than the one shown here. Thus the author hopes to 
work it out in near future. The last diagram is about the flow moving into 
two channels with different thicknesses. This is a purely hydrodynamic flow 
without any surface tension being taken into account. Even so the small 
front has obviously a different speed from the other one. This is because, as 
can be seen in the above pressure field, the pressure near the transition area 
of the short front restrains the flow stream stronger, and forces less liquid 
flow into the channel, while the other has more space to release the pressure 
around it.

CASIM

Fig.5.8.4. The history of the velocity of a free surface moving into two 
channels with different thickness.
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5.9 Concluding R em arks

In this chapter the linear boundary element method for two dimensional 
steady viscous flows has been successfully implemented. The method is 
found accurate and effective especially in creeping motion type problems 
such as fountain flow effects on particle and fibre orientations, and 
determination of a free moving surface.

Although the creeping motion model is somehow not perfect, the 
applications in this chapter suggest a greater potential for more general 
problems. One naturally would consider that it would be much better to 
extend the method to non-Newtonian fluid problems, at least for 
generalised Newtonian models. A second useful extension is for the 
transient problems. Ultimately it is ideal if the model can be extended to 
compressible equations, then the packing stage can be simulated. In the next 
chapter, the transient viscous flow is being solved by a newly developed 
boundary element method described in Lagrangian form.
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Chapter Six 

BEM for Unsteady Viscous Flow

6.1 Introduction

For more accurate and more general simulation of the polymeric flow, 
unsteady viscous flow should be considered. For the filling stage of the 
injection moulding process, the flow front, or the free surface, is actually 
time-dependent. Traditionally, this type of problem is treated by a finite 
difference or finite element method. The unsteady viscous flow problems 
with free surface modelled by a boundary element method has not appeared 
due to the difficulties in handling non-linearity, time-dependence and in 
constructing of the fundamental solutions for the corresponding non-linear 
Navier-Stokes equations.

In this chapter, the Lagrangian approach is used to establish the boundary 
integral equation model for unsteady viscous flow and two numerical 
examples are given for demonstrating the effectiveness.

6.2 Governing Equations and Oseenlet

The governing equations for unsteady viscous flow can be described by 
the conservation equations, and constitutive equations as mentioned in 
previous chapters. For incompressible Newtonian fluid, the equation of 
continuity and Newtonian constitutive equation remain unchanged:

u. . = 0i, i
g ..= -  ReP8.. + u. . + u . . 

ij y  i , j  j > i

The difference from steady flow is the inertia force involved:

Du.
c .. . - R e - F- L + b. = 0 (6 .2 .3 )u.j Dt i v '

in which the second term is the "substantial derivative" of the mass flow.

( 6. 2 . 1) 

(6 . 2. 2 )
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Equations (6.2.1}-(6.2.3) together with a proper description of initial and 
boundary conditions comprise a complete system for unsteady viscous flow 
problems. The initial conditions are of the types shown below:

u. = u?(x) or
1 1  [ (6 2 4)

g .. =  g ° . ( x )  [ij u J

The boundary conditions on the medium boundary T  are of the types: 

u .(x , t) = u .(x , t) r,
V ' -V n t' (6.2.5)T .(x ,t)  = T .(x ,t) r 2 J

where T j+ I^  = T.
It is well known that the analytic solution of this system is impossible 

except for a few of the simplest cases. It is possible, however, to construct 
an analytic solution in an unbounded time-spatial region for a similar 
system called unsteady creeping equations. The basic feature of this system 
is that the convection terms do not exist. Therefore it is a linearised Navier- 
Stokes system. The solutions of the system are known as Oseenlet that were 
presented in Oseen's monograph^84!. Oseen did not give the details of the 
derivation of the solutions in his book. For reasons of completion and later 
developments of the integral equation method, the derivations have been 
done in this thesis by resorting the H orm ander's operator matrix 
method^148]. The details of the re-derivation are given in Appendix D.

The velocity and stress components of the fundamental tensor solutions 
can be written as follows:

(6. 2 . 6 )

(6 .2 .7 )

and O is the fundamental solution of the equation

V dt J
( 7) \

R e-f- -  A AO = S(x -  x')5(t -  t ’) (6 .2 .8 )
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6.3. Integral Formulation in Lagrangian Description

Based the fundamental solutions of the unsteady creeping motion 
equations, a group of integral equations can be established for replacing the 
original Navier-Stokes equations. The Green's function technique can be 
applied to such an approach, and forms the basis for Oseen's classic book on 
low Reynolds number hydrodynamics. However, if the formulation is done 
in a Lagrangian description, the coordinate system must be crucial. The 
above equations are all derived in a Cartesian coordinate system. Thus if the 
equations are defined in a time dependent deformable coordinate system, the 
deformation in time t-t' must be small enough to keep the coordinate 
perpendicularity. In such a coordinate system, both groups of equations can 
be rewritten as followings:

R e - a ^  =  _  a I k j j  +  5 ik8 ( x  -  x ' ) 5 ( t  - t ,}

Re
du.__ i_

at'
+ R efu. -  w A u . . = o.. x 'e  Q (t'); t '>  v j j/  *» j u» j

0

(6 .3 .1 )

where Wj are the velocity components of the deformable reference system, 
and the left hand side of the second groups are the expansion of the 
substantial derivative. From equation (6.3.1) following expression can be 
easily derived

3(u* u .)
Re ‘ = Rel 

9t

du du
u + u

* \ 
ik

v ik at' 1 at* j

= u*J~g.. . - R e f u .- w A u . . I - u .cf* . + u.5.,8(x -x ')8 (t - t ' )  (6 .3 .2 )i*L y.J v J jy i . jJ  i ikj.j i ik v y v J  v *

Integrating both sides of this equality over the time-spatial region 
a ( t ’)X(to,ti), where G(t') is the space which the medium occupies at time t', 
and t0<t'<tl5 tj=t+e (e > 0), produces

Re b
W t ’)

30 ! k u i)
at'

dQ dt’= J  |  u .S .k5 ( x - x ' ) 5 ( t - t ,)d Q d t, +
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J J  { u ^ 0 i j , j - Re( u j - w j)u i j ] - u i ° k j } d£2dt’ 
1.0(0

(6 .3 .3 )

Because the reference system deforms with time, the left hand side of this 
equation can be expanded as follow:

IJ dQdt'=J} i 7 J J wjnjutkuidr
toii(t’) t l  0 ( 0  IXOtoQ(0

d tf(6 .3 .4 )

where Wj is the velocity components of the moving boundary and nj is the 
unit outward vector normal to the boundary. The first integral in the right 
hand side of this expression can be further integrated

J t ?  J  u ^ u .d Q d t^  J  u*ku .d li
0(0

dt
to 0 (0

J  u Lu id£2

t' = t 0(0
(6 .3 .5 )

t’ = t.

in which the first integral disappears because u*k is zero when tj > t.

Following the property of delta functions, the first integral of the right 
hand side of equation (6.3.3) becomes uk(x,t). The first and third terms of 
the second integration can yield boundary integrals after integrations by 
parts twice, which procedures are the same as explained for steady viscous 
flow in Chapter Five:

J J  ( u L°ij, j -  u iCTtkj, j ) d£2 d t’ = J1 J  <u Ik°i -  u i°Ik)d r  d t'
t„Q(0

t,
t.ixo

t0O(O

According to equations (6.2.6-7), the last integral is zero. Assembling all 
the results from (6.3.4-6), the integral equations can now be rewritten as:
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Uk(x ,t)  = h e
toLr(t’)

R t J  J ’ku .d r d t ’+ J  u*ku.| dQ (6 .3 .7 )
Q(t„) *

It can be readily seen that the second domain integral can be eliminated if 
Wj=Uj. This is to say that the reference system is the Lagrangian one which 
is fixed on the deforming and moving medium. The coordinates of the 
reference system, when viewed as functions of particles and time, are 
expressed as the displacement functions x^x^xoijt^t), where x0i is the initial 
location of the fluid particles at reference time t0. On the contrary, if the 
velocity function of the boundary, LU, is zero, the Eulerian reference is 
used. Equation (6.3.7) then reduces to the conventional form which 
Oseen£843 obtained many years ago and some researchers (e.g. Dargush and 
Banerjeef148̂ ; Piva and Morino049]; Tosaka and Kakudat150!) have developed 
and/or tried numerical implementations recently. For the more general 
case, equation (6.3.7) can be considered as the basis for an Eulerian and 
Lagrangian combination.

The result of the integral equations under the Lagrangian reference can 
be written as follow:

The last domain integral can be simpler if the velocity fundamental 
solutions (6.2.20) and the continuity equation (6.2.1) are used again. It 
becomes

(6 .3 .8 )

J  u*ku.dQ  = J  u kA O d Q - J  O ku .n .d r
G(t.) Q(t0) r(t0)

(6.3.9)
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Finally, the boundary integral representations are set up for the compo
nents of velocity in Lagrangian form:

where the constants C& are 5& for x inside the medium body, and C8ik for x 
on the boundary. The accurate value of C is discussed in section 6.5.

It can be readily seen that the last domain integral is exactly the same 
form as it appeared in the boundary integral equation for transient heat 
transfer problem which was introduced in Chapter Four. It can be, needless 
to say, transferred to boundary if the dual reciprocity theory introduced in 
section 4.8 can be successfully proved and implemented. It is really a 
promising development for the boundary element methods since no domain 
mesh involving in the calculation.

This group of equations (6.3.10) provides a required relationship in a 
Lagrangian description between the velocity-stress field inside the medium 
and the corresponding velocity and traction boundary values. Based on the 
equations, the motion of a finite fluid medium or multimedia interactions 
can be solved, as well as that for infinite fluid motion. The major difference 
from the conventional Eulerian description is the disappearance of the time- 
spatial integral about the convection terms.

6.4 Integral Equation for Pressure

The above idea can be easily extended to the decoupled integral 
formulation for the unknown pressure. Notice the domain integral in 
equation (6.3.6), the second term disappears according to equation (6.2.7), 
whereas the pressure can be integrated if the velocity components of the 
fundamental solutions satisfy

(u.c* - u * G .  -  Reu.n.u* u.)dT dt'
'  i  ik  ik  i j  j  ik  v

)

J  O ku .n .d r  -  J  u kAOdQ
r(t0) ’ 1 1 O(to) ,

(6 .3 .1 0 )

u;;. = 5 ( x - x ’)S( t - f ) (6 .4 .1 )
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where it has to be an one-order tensor because the pressure is a scalar 
function. Two asterisks are used in order to distinguish it from the 
fundamental solution given in section 6.2.

A group of supplemental equations have to be given for completing the 
system for the fundamental solutions:

du*
Re i _**— c .. . 

3t u.j
(6 .4 .2 )

Replacing the fundamental solutions in equations (6.3.6) by these new set 
yields:

ReP(x ,t)=J  J (u.a** -u**c.)dr dt'-J  J (u p c . .  . -u .a*’ )dC2 dt1
i.r(t') t0a ( o

(6. 4. 3)
Using equations (6.4.2) and (6.3.3) the domain integral can be replaced as 

follows:

f (V o..  .-u.aVAdQ =  Re f 
J V i y.j i u . j /  Ja(f) n(i')

acu?*u.)i i'
ar

. *  *  /  s.+ u. ( u. -w A u  . . 
1 V J J /  1.J

dQ

(6. 4. 4)
Similarly, the first term can be expanded and the second term of the 

domain integral vanishes due to the deforming reference. After rearrange
ment, the integral equation for pressure is written as follow:

C P(x,t) = J  u**u.| dQ(x’) -  J  u**u.| dC^x’p)
Q(t) t,= t , fi(t0) l' = lo

+ -J— [ [ (u.a** -  u**a. -  R eu .n .u**u .)d r dt' (6 .4 .5 )Re J  J 1 1  1 1  j j i r  v '

where C is the parameter which has the same meaning as mentioned in the 
previous section.

The new set of the fundamental solutions governed by equations (6.4.1-2) 
can be obtained easily, because it can always be assumed that uj** is a
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derivative of a potential function multiplied by a delta function of time, that
is,

u?* = 0  .5(t -  t ’)
i , i  7

(6 .4 .6 )

which can be substituted into equation (6.4.1) to form a Laplace type 
equation. The fundamental solution of the Laplace equation, 0 ,  is expressed 
as follows:

0

0

1
271

1
47tr

In(i) 2D

3D
(6 .4 .7 )

Substituting (6.4.6) into equation (6.4.2) and using the Newtonian 
relation yields

3 S ( t - t ')
W t  -  f ) e itan -  ReP,k -  Re®,k = ° (6 .4 .8 )

from which the traction components can be derived:

—* *o . = n.i i
38(1-1 ')

R e0  3t -  28(t - t ')8 (x  - x ') + 2 8 ( t - t ') 0  ..n. (6 .4 .9 )

According to the solution (6.4.6), the integral equation of the unknown 
pressure is a boundary only form:

CP(x, t) = J
m

2 u .0  ..n.
i »u J
Re - n .

3 u . 2 u . 
0 - ^  +

\

V 3t Re J

o
dr

(6. 4. 10)
This is an explicit integral representation that gives pressure anywhere in 

the field or on the boundary in terms of u and a ,  which values are all 
known after the solution of equations (6.3.10).

6.5 Boundary Element Implementation
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The boundary element system for solving equations (6.3.10),(6.4.10) 
rests on the discretisation of the boundary of the medium of concern and the 
time interval during which the medium deforms and moves. Because the 
fundamental solutions are zero after t due to the property of the Heaviside 
function, the upper bound of the time integration, t ^ t + s ,  can then be 
replaced by t. In fact, the only equations to be solved are (6.3.10) for the 
unknown velocity and traction components on the boundary, and then the 
rest of the unknowns can be explicitly worked out by using those boundary 
values.

Time-m arching
From equation (6.3.10) it can be seen that the velocity of the particles are 

determined by the functions based on the velocity-traction values on the 
boundary, the position of which may be unknown, and the velocity field at 
time t0 which the position is known. Since the velocity of a particle is the 
time derivative of the position vector

The time interval must be small enough. In fact, a constant approximation 
is chosen, and the time interval is so small that both the boundary position 
and the variables on the boundary within the duration can be assumed 
independent of the time. Thus the position can be expressed in a simple way 
as follow

that is, the position of the boundary at time t can be expressed by the 
position and the velocity at time to- Also, the order of the first integration in 
equations (6.3.10) can be interchanged and the unknowns can be brought 
outside of the time integrals:

dx.
(6 .5 .1 )

The position of the particle after time t-to  is then given by

(6 .5 .2 )

X . = x° + (t  -  t J u °i i v O7 i (6 .5 .3 )
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IJ (ui k V ui°!k)drdt'= 1 [ ° j i uikdt' - ui i ° ik dtno m y  t„ t„
d r  (6 .5 .4 )

With U *k = j  u*k dt' and = Jc * k d t’ , equations (6.3.10) becomes

Cu = f ( V e *u- U * g . - R e u n .U * u . ) d r
k J \  l ik  ik  l j j ik  l /

no

+ Re J  O ku .n .d r  -  J  u kAOdQ
Vr (tD)

(6 .5 .5 )

It can be seen that based on the velocity field at the beginning of the time 
interval, equations (6.5.5) gives the flow field at the end of the time 
interval. If this small time interval is defined as a time step, that is, At=tm- 
tm_i (t=tm, to^m.j), and the flow field at the end of the previous time step is 
the flow field at the beginning of the current time step, thus the velocity 
field at any time can be obtained.

Iteration
Since the third term is a non-linear one, an iteration procedure is 

necessary in each time step. Let U;™’1 be the known velocity field at time 
step tm_i. The algorithm for the iterative process for the unknown Ujm and 

values at time step tm is briefly explained in the following paragraph.
At first the following implicit functions for the velocity and stress fields 

are defined as f

f(um, c m,um)um~ 1) = Cu“ -  [ ( um2* - U * o m - R e u mn.U* um>)drx i ’ i i ’ i 7 k J \  i ik ik i j j ik  l /
r

- R e J  o k< - ' d r  -  J  u m -  1AOdQ
V r «n-1 Q.

(6 .5 .6 )

J

where U*k and £*k can be analytically expressed:

U *ik= J  u Ikd t ’ = ^  5 ik[E , ( s ) - S o(s)]  + ^ ¥ ^ ( 8 ) }  ( 6 . 5 . 7 )
t . L r j
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E lk= J ° * d t ' =  ^ 2 { ( 8 ikx jn j +  x in k ) [ S o(s) -  e - s]

■ 2S0(s) -e " s] + x kni[ s 0(s) - l ] }  (6.5.8)
2x .x .n .x .

i  J J k

r 2

op

in which S0(s) = -̂ -(1 -  e“ s), EjCs) = J du , and s = Rer2
4At '

S

At the initial step of the iteration, the velocity value at time tm_! is used

for the velocity um in equation (6.5.6). Thus the first iteration is computed_ m 
i

as

f ( u f 1), o ^ 1). u f - 1,u |n- 1) = 0 (6 .5 .9 )

Then we have

rv m(L) m(L) m(L -  1) m - 1 \  r* m  c  1 a \f(u . ,0 .  , U .  , U ™  ) = 0 (6 .5 .1 0 )

The iteration is repeated until the computed velocity components satisfy 
the convergence criterion

m(L) m(L -  1)
U .  -  U .  i l < £ j (6 .5 .11 )

where Ej is a prescribed small value. If the process converges then the both 
the velocity and traction values obtained at the Lth iteration are assigned to 
those of m1*1 time step.

Singularities and Geometrical Dependent Parameter C
If velocity components are constants, we can prove that

k = J  u £ * kd r  -  Ref J  u kAOdQ -  J o  ku = n .d r)  (6. 5 .12 )
r  1 r  ’ 1 1 /

This relation gives a very useful tool to handle the singularities and the 
geometrical parameter C. First of all, if u2=l and u2=0, then we have
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C = J s ^ d r - R e J o  2n 2d r ;  0 = J s ‘2dr + Re j o  ^ d r  (6 .5 .13)
r  r  r  r

Similarly, if u2= l and ^ = 0 , then we have

C = J V ^ d r - R e j ®  jiijdr; 0 = J z 21dr + ReJ«D jii2dr (6 .5 .14 )
r  r  ’ r  r

6.6 Examples

A computer program of the boundary element method on the unsteady 
incompressible flow with free surface has been coded in FORTRAN. The 
program is a part of the CASIM package scheme which will be introduced 
in Chapter Eight. The insertion and deletion of boundary nodes for moving 
free surface are the basic feature of the coding which is similar to that of 
the programs for thin cavity flow and steady viscous flow introduced in 
Chapter Three and Five, respectively. Two examples have been tried for 
testing the effectiveness and accuracy of the method and the program.

Examplel: Simulation of Compression Mould Filling
In recent years, the need for high volume production of large, lightweight, 
strong and stiff parts, particularly for automotive applications, has made 
compression moulding an important process for fibre reinforced polymers. 
This is largely responsible for the increased interest in computer modellings 
for compression moulding. In the past few years some researchers have 
studied ways of the simulation in order to know more about the 
characteristics and properties of a final part before it is actually 
manufactured. Emphasis of the simulations is on the fluid mechanics of the 
mould filling, the features of which stage are very close to those in the 
filling stage of injection moulding process. The models adopted for the 
stage of compression moulding are also referred to the models for the 
filling stage of injection moulding. A generalised Hele-Shaw model on thin 
charges was first adopted by Lee, Folgar and T u c k e r t 15 2 ] f 0 r  the filling 
stage, and a finite element method was implemented for the model. 
Following the applications of boundary element methods for the modelling, 
Osswald and T u c k e r H 5 3 ]  soon useci a boundary element method based on an 
extension of the GHS model to analyse the filling stage of the compression
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moulding. However, as introduced in Chapter Three [the difference is a 
non-homogeneous term representing the compression velocity appeared in 
the right hand side of equation (3.2.15)], the GHS models can only apply to 
a thin charge of uniform thickness. A more general boundary integral 
formulation was employed by Barone and O s s w a l d n 5 4 ]  recently. This model 
is based on a newly developed flow model by Barone and Caulkt155! which is 
valid for both thick and thin charges. The newly determined fundamental 
solutions in the reference [153] for the model served the basis for the 
boundary only scheme in their numerical approximation. To date, almost all 
the models are for predicting the front progression and/or the flow field in 
the coordinate plane perpendicular to the pressing direction. In order to 
know the flow field viewed transversely, and to demonstrate the unsteady 
viscous model introduced in this chapter, the mould filling of the 
compression moulding is simulated hereafter. The model can obviously be 
extended to three dimensional simulation for the filling process so that the 
details of the flow field can be simulated without further simplifications.
The compression mould filling process is shown schematically in Fig.6.6.1. 
A pre-measured chopped fibre reinforced polymer compound is placed 
between the heated halves of a mould; these halves are then brought 
together to squeeze the charge and fill the mould, after which pressure is 
maintained while the polymer cures. The distinguishing features of this 
process include that the material is pre-prepared with layers of film and 
fibres and other additives, and the volume fraction and the size of the fibres 
can be relatively large.

Mould

Moving Half

Flow front

Fig.6.6.1. Schematic of a compression mould filling process.
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Just like the diagram, the problem viewed transversely is a block of 
charge being squeezed towards the cavity extremes. The upper half moves 
at speed v0, the lower half is fixed. No-slip condition is assumed on both 
walls. The advantage of symmetry is taken, so only half of the charge is 
simulated. On the symmetrical line the normal component of the velocity is 
set zero, and on the free surface, the traction components are zero.

Similar to the features in the programs for models discussed in Chapter 
Three and Five, a node inserting scheme is designed to the program, and 
any node touches on the walls is set the corresponding boundary conditions 
on it. Therefore during the simulation the nodes to define the free surface 
are being changed, and the number of the nodes on the walls are increasing. 
In order to trace each node both on the boundary and inside the domain, the 
nodes are not re-numbered. Unlike the other two programs, the interior 
nodes must be used for the time marching. The succession of boundary 
variation is shown in Fig.6.6.2.

Fig.6.6.2 Succession of boundary positions in compression moulding.

The velocity fields are shown successively in Fig.6.6.3. From those 
graphs it can be seen that the particles in the central area just behind the 
flow front are accelerating with the horizontal components of the velocity 
much higher than their vertical components. The original front is soon 
stretched and becomes a curve close to a semi-circle with a little bit more 
touching the lower wall first. The particles on and behind it soon split about 
a horizontal line slightly below the central line, and those in the upper half
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Fig.6.6.3. Velocity fields (Continued).
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Fig.6.6.3. Velocity fields (Continue from the last page).
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move almost horizontally to meet the downward-moving half of the mould, 
while those in the lower half move down forward to meet the fixed half.

In the last graph, the particles on and just behind the flow front meet the 
side wall at about eight times as much as the speed of the moving half. 
Obviously, the first bit to meet the side wall is slightly below the central 
point of the front, and the rest of the front is squeezed into extremes of the 
cavity. The dimension at last is 0.21:1.9 which is almost the same volume as 
its original dimension (0.4:1).

Example 2: Squeezing without a mould cavity
If the above charge is squeezed by two blocks without side restrictions 

and wall extensions, the resulting flow fields will be interesting. Of course 
this is not for an existing polymer process, since it is hard to rind a suitable 
example to verify the model, this example is just for demonstrating the 
potentials of this boundary element model for unsteady viscous flow with 
free moving boundary.

The original size is the same as the above example. The time increment 
used here is twice as much as it used in the above example. A succession of 
seven graphs of the flow front progression is shown in Fig.6.6.4. The 
velocity fields corresponding to the flow front graphs are shown in 
Fig.6.6.5.

Fig.6.6.4. Succession of the flow front progression
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Fig.6.6.5. The velocity field (Continued)
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Fig.6.6.5. The velocity field (continued from the last page).

6.7 Concluding R em arks

In this chapter, a boundary element method for transient incompressible 
viscous flow with free moving surface is presented. The formulation is 
derived in Lagrangian description, the convection terms therefore vanish 
and no unknown field variables involved in the resulting system. For 
polymer flows which are characterised with high viscosity or low Reynolds 
number, this formulation is particularly effective. The only remaining 
domain integral is about the flow field in the previous time step, which is 
exactly the same form as it in the boundary integral formulation for 
transient heat conduction equation. Although the dual reciprocity method is
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not introduced here, it should have no major difference from what was 
introduced in Chapter Four. Therefore the boundary only scheme is 
potential, and the computational advantage of the boundary element method 
has not lost. Two examples have been shown the effectiveness and accuracy 
of the model, especially for the compression mould filling. Three 
dimensional case can be extended and then the details of the flow field can 
be obtained for interpreting the process.
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Chapter Seven

Processing Analysis by MOLDFLOW

7.1 Introduction

Some real moves in the field of computer simulation of injection 
moulding have already been made by MOLDFLOW, C-FLOW and some 
other program designers. Fortunately, the author has been supplied with the 
first part of the MOLDFLOW package, which has long been used for 
practical processing analysis. The exercises of the sim ulation by 
MOLDFLOW not only give much experience of the engineering analysis 
but also inspire some ideas for the simulation itself.

In this chapter, the author wishes to introduce MOLDFLOW, its 
philosophy and powerful functions, and some ideas incurred by interpreting 
the simulation analyses of four practical IBM's computer components.

7.1.1 General Description of MOLDFLOW

MOLDFLOW is a computer package which supplies computer-aided 
engineering methods for studying the design and production of plastic parts, 
improving the quality of the parts, and reducing the manufacturing costs. 
As mentioned in Chapter One, the injection moulding technique includes 
many aspects. From a macroscopic point of view, it can be classified as 
three stages. The filling stage is the period when the plastic melt is injected 
into mould until the whole cavity is filled. The major characteristic of this 
stage is the fluid flow. The second stage concerns m ainly the 
compressibility because of the pressurisation after the mould is filled, and 
the third is the cooling stage in which the thermal characteristic is 
overwhelming. MOLDFLOW not only covers the three stages by its series 
of programs but also emphasises the effects caused by the characteristics. In 
fact, MOLDFLOW is its original name for only the flow analysis program. 
As the requirements increase, not only the flow analysis itself is updated 
several times, but also cooling, holding, shrinkage and warpage, stress and 
creep analyses are produced in succession so that the package gradually 
becomes an integrated MOLDFLOW system. The system uses the finite 
element method as its major means for the flow analysis, finite difference
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method for the holding and cooling analysis, and boundary element method 
for three dimensional cooling analysis. The shrinkage and warpage analysis 
are mainly based on the results from the flow, holding and cooling analyses, 
and the material shrinkage coefficients from the database determine the 
thermal extraction from each stage to give the shrinkages on both the 
parallel and perpendicular directions to the flow. Besides the application of 
these approximate numerical methods, the important part of the package is 
its own standard raw material database called MATDB. MOLDFLOW's 
flow and thermal analyses are based on the database and the data of which 
come from practical experiments in many laboratories and companies, 
particularly raw material suppliers. They have helped Moldflow to establish

Table 7.1.1
PRODUCT UENDOR HRRDLURRE
AUTOTROL Autotrol Technology APOLLO
BRANVO Schlumberger Application APOLLO/VAX
CADAM Cadam Inc. IBM VM /IBM  MVS
CADDS Computervision Corp. CDS4000 /  CADDStation
CADKEY Cadkey Inc. IBM PC X T /A T
CADES IBM IBM VM /  IBM MVS /  IBM RT
CATIA Dassault Systems IBM VM /IBM  MVS
DOM Calma Company APOLLO/VAX
DUCT Deltacam APOLLO/VAX
EUCLID Matra Datavision VAX
ICEM Control Data CYBER
I-DEAS SDRC VAX/APOLLO
I/FLOW Intergraph CLIPPER
PATRAN PDA Engineering VAX/APOLLO/HP9000/IBM
SABRE Gerber Technology HP9000
Unigraphics McDonnell Douglas VAX /  DG /  HP9000
VDA-FS SI ( Norway) VAX

the database and formulate uniform testing procedures of its own 
laboratory. Because of ever-increasing range of material, Moldflow has a 
plan to update the database every four months. It also has its own powerful 
pre- and post-processors for generating and meshing the geometrical 
surfaces, and displaying the results in multicoloured contour lines or solid 
modes. However, the integrated engineering product demands the
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association functioning with better developed CAD/CAM systems. The 
following tablet156] gives the interfaces of MOLDFLOW with some of such 
systems:

From this table it can be seen that the MOLDFLOW designers have put a 
great deal of effort in the connecting CAD packages to construct the 
commercialised CAE package as a powerful tool. Experiences gained by 
using the flow and thermal analyses feedback to the design work and made 
the package more and more efficient and accurate. Comparisons between 
the software predictions and laboratory trials to date, have shown that 
accurate results can be achieved^?]. More details about the first part of 
MOLDFLOW are given through the following examples in later sections.

7.1.2 M O LD FLO W 's S tru c tu re

The structure of MOLDFLOW is shown in Fig. 7.1.1:

2D Analysis

WFILE

WFILG -

MF -

MP

co
PQ

E
s<
Q

w

MOLDFLOUJ Execution Level

n  z z

M fiT D B j^ j

Standard 
Material Data 

Base

Personal DB

Material

VISDAT INPDB
r "

3D Analysis Cool Analysis

SMOD -

FMESH -

MFL(S) -

DRES

co
w

eS
<
Q

f e j

Fig. 7.1.1 The structure of MOLDFLOW, the dotted boxes are not in the 
present package.

MOLDFLOW execution level is actually a menu written in ISPF 
(Interactive System Productivity Facility) statements. Other modules are 
stored in a big library. The data files are the media between the modules in 
the same sub-menu, also the media for transferring the data with other 
packages. The standard material database, MATDB, has just over 1,100
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dated polymer materials' properties from various suppliers. A user can 
setup his /  her own personal database by using INPDB. 2D ANALYSIS 
provides a quick estimate of the processing window, pressure gradient, 
temperature and so on. The methods used in the modules are obviously the 
original simplified formulations. SMOD and FMESH are the three 
dimensional pre-processors for setting up geometrical surface model and 
generating finite element mesh, respectively. The mesh generator can 
generate up to 10,000 triangular elements or 6,000 nodes for a problem. 
These numbers are also the limitations of the package capacity in 
IBM3090(CMS). DRES is a powerful graphical enhanced post-processor 
which can be used for displaying the result files. Both SMOD and DRES are 
apparently supported by graPHIGS system. Functions and methods of using 
each module can be found in detail in MOLDFLOW Manuals!158].

7.2 B rief In troduction  to M O LD FLO W ’s S im ulation A lgorithm s

The theory behind the MOLDFLOW package has evolved from 
surprisingly simple formulations. Instead of solving the complicated 
Navier-Stokes equations, it adopted a very straightforward formulation for 
a thin slice (which could be a rectangular, or a round, or radial section) and 
assembled all the slices into a whole component following a time marching 
method. The formulation is the equilibrium equation between the pressure 
and the stresses, that is, the force pushing the block along is the pressure 
drop along the block multiplying the section area, and this force is resisted 
by the shear stresses acting on both faces, that is, shear stress multiplies the 
two face areas. That is,

Stress=pressure drop*thickness/(2*length) (7.2.1)

There is no physical property involved in this formula. If the pressure 
across the flow field is known, then the shear stress can be obtained by such 
a simple formula. If the viscosity is known, the shear rate can then be 
calculated, since it is the parameter of the linear relation between the shear 
stress and shear rate. Any errors from predicting shear rate come from the 
viscosity parameter given and not from any mathematical simplification!10]. 
Then the accuracy is mainly based on the ways of obtaining the viscosity. 
Although in practice the viscosity is a complicated function of temperature, 
shear rate, pressure, etc., it can always be found reasonably accurate if the
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data in several cases are supplied. For example, viscosity supplied from 
MATDB are at least in three cases for a power law model, and six cases for 
a second order model. The increase in velocity over a slice is the shear rate 
m ultiplied by the thickness. Then from known velocity at the solid 
boundary (which is assumed to be zero because the plastic is frozen at the 
wall), the next face of each slice over a block will then be known. The same 
procedure can be done for each block; the complete velocity distribution is 
then known across the section. Multiplying the velocity of each slice by its 
cross-sectional area gives the volumetric flow, which can then be added 
together to give the total flow rate.

The three dimensional finite element techniques used in MOLDFLOW 
are the further developments of the above ideas. The finite element method 
is well known in stress analysis. The basic procedure in this package is to 
break up the moulding into a number of small triangular elements, which 
are connected at their nodes. The basic variables ( flow rate, pressure) of 
each element are connected by a similar relation to equation (7.2.1) and a 
constitutive model, and an element resistance matrix like a "stiffness 
matrix" is formed which is dependent on the geometry of the element and 
the local viscosity. Assembling these matrices together for all the elements 
gives a large family of equations, which can then be solved to give the nodal 
flow rates and pressures by assuming the viscosity as a constant for the first 
iteration step. The viscosity is revised based on these calculated variables, 
and the constitutive law for reassembling the equations is used for a second 
solution. This procedure is repeated until a stabilised pressure distribution 
is obtained.

The crux of the finite element process is setting the boundary condition 
for each node. Either a pressure is specified and the flow rate will be 
calculated, or a flow rate is given and the pressure is then calculated. 
Because the mesh is under an Eulerian description, there is a "front nodal 
growth logic" designed in the package for the moving boundary. The 
method involves calculating the "control volume" which is based on the 
volume of all elements connected to a given nod, and subsequently each 
"node fill time" can be calculated. The algorithm is shown schematically in 
Fig. 7.2.1.

Simultaneously the temperature is being developed along with the flow 
pattern. After the nodal variables are obtained, the elemental variables — 
stresses and strains can be calculated throughout the moulding.
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Fig.7.2.1 The nodal growth logic and the FE algorithm for the flow analysis
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7.3 Sim ulation on Injection M oulding a C om puter P a rt with PVC

Some exam ples can help explain what MOLDFLOW  does. Hereafter is a 
12" monitor plate-base (part number: 6319015) o f a type o f IBM computer 
as shown in F ig .7 .3 .la . The material required for this part is polyvinyl 
chloride (PVC). It is important to understand the m oulding characteristics 
o f the material first.

7.3.1 M aterial Aspect

PVC is chem ically  inert, w ater-corrosion, weather-resistant, and an 
electrical and thermal insulator. It has a high strength-to-weight ratio, and 
it maintains its properties over long periods o f time. The m ost important

Fig. 7.3.1. 12" Monitor's plate base (a) and pivot plate (b)
(Original colour picture)

consideration o f using PVC perhaps, is the low  material costs in volum e  
terms and good price stability in the market. H ow ever, it is important to 
remember that there is only a sm all difference betw een PVC's m elting  
temperature and the temperature at which it degrades and bum s, w hich is 
thought to be the challenge to the processor. PVC hom opolym ers have a 
m elting point betw een 198 and 205 °C and begin to decom pose rapidly at
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200 °C. Copolymers are somewhat more forgiving. They begin to melt 
between 140 °C and 175 °C and offer significant processing advantages; 
Degradation remains at the high level. PVC is also classified as flexible and 
rigid. In general, injection moulding of flexible PVC is relatively easy, but 
special treatments for processing the rigid material should be taken to 
ensure part quality and long lasting life for the equipment. Rigid PVC is far 
more heat-sensitive than a flexible product, therefore heat control and flow- 
path design are more critical for rigid PVC.

MOLDFLOW has a guide menu in which it is indicated that both flexible 
and rigid PVC have the same barrel melt temperature range (140-200 °C), 
mould temperature (20 °C) and shear rate limit (20,000 1/s), but flexible 
PVC has lower maximum stress allowable (150,000 Pa) than the rigid does 
(200,000 Pa).

MOLDFLOW database gives various PVCs from five suppliers to choose 
from. However, not every PVC can be used for this particular moulding. 
Later on it will be seen that the PVC whose viscosity is higher than 300 
(Pa.sec) simply can not be used for this moulding. Only two PVCs can be 
used. H550 is a flexible PVC, and it has extremely low viscosity. It is very 
easy to find a wide range of processing conditions for H550. H550 may not 
meet the performance requirements, therefore a rigid PVC, EV103, has 
been tried as well. The lists of the major properties of H550 and EV103 are 
as follows:

Table 7.3.1
MATERIAL FILE NAME < Moldflow Standard Database >

HUELS
Material Grade Description

H550 PVC-P VESTOLIT SP 50 CRST.CLR. HUELS AG VI(180)65 HUELS AG JUN88
Material Grade Data

CONDUCTIVITY J/(m.sec.degC)
SPECIFIC HEAT J/(kg.degC)
DENSITY kg/cu.m
FREEZE TEMPERATURE degC
NO-FLOW TEMPERATURE degC

VISCOSITY

TEMPERATURE ISHEAR RATE VISCOSITY
degC I 1/sec I Pa.sec
160.0 I 100.0 I 536.0
180.0 I 1000. I 64.89
190.0 I 1.000E+04 I 11.40

==> 0.130 
==> 1500. 
==> 986.0 
==> 60.00 
= = >  110.0
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Table 7.3.2
MATERIAL FILE NAME < Moldflow Standard Database >

EVC
Material Grade Description

EV103 PVC PRIMA RI5022 ALLOY EVC VI(180)295 EVC NOV88 
Material Grade Data

CONDUCTIVITY J/(m.sec.degC) 
SPECIFIC HEAT J/(kg.degC)
DENSITY kg/cu.m
FREEZE TEMPERATURE degC 
NO-FLOW TEMPERATURE degC

VISCOSITY

TEMPERATURE ISHEAR RATE 1 VISCOSITY
degC 1 1/sec 1 Pa.sec
160.0 1 1000. 1 578.4
180.0 1 100.0 1 947.7
180.0 1 1000. 1 295.1
180.0 1 1.000E+04 1 60.55
200.0 1 100.0 1 483.6
200.0 1 1000. 1 150.6

From these two tables which are directly from MATDB of the package, 
the differences between these two PVC materials are obvious. It is noted 
that H550 has three parameters to define its viscosity curve, whereas EV103 
has six. The latter is for the second order model of the constitutive equation 
which is supposed to give a more accurate result than the three parameter's 
power law one does.

7.3.2 G eom etrical Aspect

The geometry of this part is not suitable from structural point of view, 
also not good for simplification in computer data input due to the 
unsymmetrical feature. Anyway the geometrical data input is relatively 
simple except the central part, which has spherical surface to be generated. 
MOLDFLOW pre-processor, SMOD, can generate any shape of flat 
polygon surface in three dimensional space, and circles with at most twenty 
points to define. Its copy-rotating function saves the shortcomings of the 
points to define a more accurate circle if it is necessary. It also has copy- 
translating, copy-mirror functions which have been used for generating the 
geometry. Some points of the spherical surface part in the central area have 
to be calculated by hand then input into the program. In next chapter a

==> 0.150 
==> 1820. 
==> 1182. 
==> 77.00 
==> 130.0
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subroutine of CASIM will be introduced which is coded special for this 
kind of difficulty. Only one gate position is given in the centre, otherwise 
two or more gates would produce potential weakness in weld lines. The 
geometry defined by surfaces in different views are given in Fig. 7.3.2.

IBM 10

IBM 10
30

-30
30

Fig. 7.3.2. Two views of the surface model of the geometry. (They are 
directly transferred through a CASIM subroutine based on GHOST80)

After generating the geometry, the next step is to use the finite element 
mesh generator to break all the surfaces into triangle elements, as shown in 
Fig.7.3.3.
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461 SURFACES 563 POINTS 2693 NODES 5569 ELEMENTS

Fig.7.3.3 The mesh of the surface model. (This laser print-out is done 
through a PostScript file produced under GHOST80 environment)

7.3.3 R esults of M oulding with H550

Having chosen the particular PVC to be used and generated the mesh of 
the geometry, we start to scan the processing conditions through 2D 
analysis. This method, as mentioned before, is the divided flow path 
approach which gives a quick and rough range of the processing 
parameters. However, since the geometry of this fitting is very complicated, 
and the 3D finite element calculation can be always used for more accurate 
analysis, it is not worth dividing the part into several branches and analyse 
them separately. The "autofile" choice is used since the maximum length
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and the average thickness can be given for this scanning. The result of the 
scanning is listed as follow:

Table 7.3.3
MOLD TEMP 20.00 deg C MELT TEMP 195.00 deg C

TIME PRESSURE STRESS @ STRESS @ TEMP @
sec MPa START END END
0.20 9.5 131671. 45863. 200.
0.30 8.3 112700. 41359. 199.
0.50 7.0 92838. 36828. 196.
0.70 6.3 81842. 34620. 195.
1.00 5.7 71733. 33068. 192.
1.50 5.2 61924. 32532. 189.
2.00 4.9 55920. 33208. 185.
2.50 4.7 51752. 34566. 182.
3.00 4.7 48641. 36402. 179.
4.00 4.7 44232. 41189. 173.
5.00 4.8 41207. 47272. 167.
7.00 5.3 37255. 63276. 157.

10.00 6.5 33824. 98567. 143.
15.00 10.7 30844. 215830. 125.
* PLASTIC FROZEN RUN ABORTED *

From this table it can be seen that the time for filling stage can be chosen 
in a relatively big range, among which 0.7 second may be the best because 
the ending temperature is kept 195 °C. In fact, the other parameters can 
also be selected in a big range so that a relative large processing window 
can be found for this moulding. The resulting flow fields of above set of 
processing conditions are given as follows. From the filling pattern it can 
be easily seen that the flow front moves radially from the gate at first stage, 
when it hits side walls (it reaches the lower wall first since the complicated 
unsymmetrical character, though the gate is located slightly higher than the 
centre of the rectangle), the melt is then moving into comers. The thin ribs 
far from the gate is filled later than the thick plate. The temperature 
distribution is quite uniform, all falls into 6 °C difference. Low tempera
tures happen up in the top of the ribs since the thin thickness, which are also
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responsible to late arrival o f  the m elt into the ribs far from the gate. The 
m ax-m in temperature difference after the filling is only 18 °C.

FILL TIME 

MATERIAL : ( PVC ) HUELS , H550
MOLD TEMP : 20 ; MELT TEMP : 195 ; FILL TIME : 0.8 SEC.

0.0007

0. 17 

0 . 34 

0. 50 

0. 67

O. 84

191 . 8 

192. 9

194. 1

195. 2

TEMPERATURE

MATERIAL : ( PVC ) HUELS , H550
MOLD TEMP : 20 ; MELT TEMP : 195 ; FILL TIME : 0,8 S E C .

190. 6

196. 4

Fig.7.3.4. Filling pattern and temperature field.(Original colour pictures)
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S H E A R  S T R E S ' S  C P a )

P R E S S U R E  ( MPA )

M A T E R I A L  : ( P V C  ) H U E L S  , H550
MOLD TEMP : 20 ; MELT TEMP : 195 ; FILL TIME : 0.8 SEC.

7. 92

8. 34 

4. 75 

3. 17 

1 . 58

0 . 00

33659

■
53968

■
74276

■
94585 ■
114893

■
135202

M A T E R I A L  : ( PVC ) H U E L S  , H550
MOLD TEMP : 20 ; MELT TEMP  : 195 ; F I L L  T I ME  : 0.8 S E C .

Fig. 7.3.5. Shear stress and pressure distribution 
(Original colour pictures)

A ll the stress is less than the lim it given above (150,000 pa). Clearly the 
four com ers and the gate area are the high shear stress regions. The high
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stressed ribs are not very important for this moulding, and the high stress 
in the gate area will quickly disappear after the packing stage starts. Two 
reasons contribute to the high stressed comer regions: the first one is the 
higher viscosity caused by the cooler melt flow through the longer paths 
than elsewhere; the other is the geometrical complexity in the comers 
which results in already cooler melt flowing at higher shear-rate than 
elsewhere. The pressure field at the end of filling indicates the gate position 
is quite ideal for uniform filling, as the four comers have been reached at 
the same time. This position is the result of previous trials since the original 
gate position caused uneven filling and higher stresses in the top comers, 
though it was in the centre of the rectangle.

7.3.4 Results of Moulding with EV103

The processing conditions for moulding material EV103 are much more 
difficult to find, though the shear stress limit is 50,000 higher than that of 
H550. The result from 2D scanning for processing conditions are listed 
below:

Table 7.3.4
MOLD TEMP 20.00 deg C MELT TEMP 205.00 deg 1
TIME PRESSURE STRESS @ STRESS @ TEMP @
sec MPa START END END
0.20 27.9 371287. 132044. 217.
0.30 25.2 339837. 119224. 215.
0.50 21.9 299011. 104457. 212.
0.70 19.9 272165. 95888. 210.
1.00 17.9 244333. 88104. 208.
1.50 15.8 214044. 81288. 204.
2.00 14.4 193718. 78100. 201.
2.50 13.5 178736. 76809. 197.
3.00 12.9 167051. 76692. 194.
4.00 12.0 149695. 78702. 189.
5.00 11.5 137189. 82734. 184.
7.00 11.2 119969. 95111. 174.

10.00 11.5 103910. 123441. 161.
15.00 14.4 88413. 222962. 143.
* PLASTIC FROZEN RUN ABORTED *
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From this table it can be seen that the only possible filling time is range 
from 2.0 to 5.0 seconds. This is only rough estimate because the average 
thickness given is 3.5 mm, and there are much thinner ribs which could 
give less ending temperature and/or higher starting and ending shear 
stresses. If the melt temperatures were less than 205 °C, there would be 
almost no choice for "fill time". 205 °C is the highest starting melt 
temperature available for rigid PVC, and in the barrel, the temperature 
must be less than 200 °C because the material may stay there for several 
machine cycles, the temperature higher than that for such a long time would 
result in PVC degrading. However, raising the melt temperature, according 
to the property of the PVC in table 7.3.2, can significantly reduce the 
viscosity, and subsequently reduce the stress level. One philosophy of 
MOLDFLOW is to use carefully designed feed system for frictional heating 
to give the same effect for lowering the stresses without degradation of the 
material. This philosophy is adopted here to raise the melt temperature up 
13 °C through a deliberately designed sprue to reduce the stress level inside 
the cavity. The other cause for shear stress is the shear-rate which can be 
reduced by slowing down the filling rate when the filling is near the end. 
The viscosity is also a shear-rate dependent parameter, thus too low a shear- 
rate would also cause the increase of the stress level. Based on a 
compromised consideration, the filling rate profiling control technique is 
used. In general this control can also be regarded as a part of the ram 
position control in the whole cycle. MOLDFLOW supplies the filling rate 
profiling as is required for more practical flow analysis. In fact, near the 
end of filling, the melt will be squeezed into the comer extremities as 
shown schematically in Fig.7.3.6: the front speed would be accelerated 
anyway. If the original filling rate were maintained, the shear-rate in the

Table 7.3.5

Mold Temp: 20 °C Volume % % of Max Rate
Barrel Temp: 192 °C 80 95
Fill Time: 3.0 sec 85 88
Sprue Runner Size: 90

95
97

80
70
658x4x60 (mm)

Fill Rate Profile
V

100 60
J

comers would be increased very quickly, and moreover, the temperature of 
the melt, after passing the longest flow path, might be lower than
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elsewhere. The increase of viscosity caused by lower temperature with local 
increase of the shear-rate exaggerates the local shear stress level. Therefore 
the filling rate profile has to be carefully selected. After several simulation 
trials, the optimised processing condition is finally obtained as shown in 
table 7.3.5.

Fig. 7.3.6 The melt squeezing into comers

Under this set of conditions, the flow fronts as shown in Fig.7.3.7, by 
comparison with Fig.7.3.4, slow down when they reach the comers as they 
can be recognised by the density of the dark blue front lines. All the 
temperature is within 20 °C difference, and well distributed in the plate. 
The four comers are a few degrees lower because of the long distance from 
the gate. On the top of some ribs, it can be seen that the lowest temperature 
occurs, with danger of premature freezing and short shot if the melt 
temperature were not high enough. A few weld lines up in the top of some 
ribs can be detected by careful observation of the flow pattern. These weld 
lines are caused by the thickness difference between the plate and the ribs. 
The melt actually moves faster within the thick plate than it does in the thin 
ribs, and comes back to meet the slow-moving flow front in the thin ribs 
after it hits the side edges. The short-shot marks and weld lines can be seen 
clearly in the practical product (shown in Fig.7.3.1a). These weld lines or 
short shots would severely reduce the functions of the ribs which were 
designed to strengthen the plate. In fact, the thickness of the ribs has been 
thickened 0 .7 5 m m  in the drawing (the original thickness was 1mm in the 
product), the effects should therefore not be so negative now. Thickening 
the ribs is a better and economic way to mitigate (or even eliminate) the

,Flov Front Moving 
into the Corner

Gate Position
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defects. The com puter simulation here clearly demonstrates the capacity o f  
prediction o f the possib le defects.

F I L L  T I M E

MATERIAL : ( PVC ) EVC , EV103
MOLD TEMP : 20 ; MELT TEMP : 192 ; FILL TIME : 3.00 SEC.

0.0003 

■
0. 63

■
1. 26

I
1 . 89

I
2. 52

I
3. 15

T E M P E R A T U R E

MATETIAL : ( PVC ) EVC , EV103
MOLD TEMP : 20 ; MELT TEMP : 192 ; F I L L  T I ME 3.00 SEC,

186. 9

190. 6

194 . 4

198. 1

201 . 9

205.6

Fig.7.3.7. The filling pattern and temperature distribution. (Colour)



Chapter Seven: Processing Analysis bv MOLDFLOW 167

P R E S S U R E

S H E A R  S T R E S S  ( P a )

MATERIAL : ( PVC ) EVC , EV103
MOLD TEMP : 20 ; MELT TEMP : 192 ; F I L L  T I ME : 3.00 SEC.

42. 54

■
34. 03

■
25. 52

■
17. 02

■
8.51

■

0 . 0 0

MATERIAL : ( PVC ) EVC , EV103
MOLD TEMP : 20 ; MELT TEMP : 192 ; FILL TIME

■
193623

■
326833

■
455043■
583253

711463

70413

Fig.7.3.8. Shear stress and pressure distributions o f part one. 
(Original colour pictures)

From shear stress figures shown in the right colum n in F ig .7 .3 .8 , it can 
be seen that the m axim um  shear stress is m uch higher than the lim it
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(200,000 pa), but most of the high stress area occurs inside the sprue 
runner in which the shear energy produced by the shear strain and stress 
has been contributed to the temperature increase, and the sprue runner will 
be cut off anyway since it is not part of the product. Except for the gate 
area and on the top of comer ribs, the stresses in the rest area are lower 
than the limit. The high stressed comer ribs will not cause much trouble if 
the temperatures there are high enough to ensure the flow into the 
extremities. The pressure distribution indicates the high pressure drop 
within the sprue runner, and the last bit to fill.

There are two other means which allow the processing control of this 
PVC moulding. One of them is to use hot-runner technology. This 
technology, which keeps the polymer heated throughout its passage from 
the barrel to the mould cavity, has been successfully employed with most 
polymers. However, temperature control problems and other restrictions 
like flow path blocking, along with high cost have made it difficult to apply 
the hot-runner technology to PVC mouldings. In recent years, significant 
developments have been made, and in many cases the difficulties mentioned 
above have been minimised or avoided entirely. Among them, the use of a 
titanium insert at the gate makes for a hotter gate and eliminates the need 
for polymer insulation and the possibility of degradation. Others include a 
variety of cartridge-, and band-, or coil-heated machine nozzles, sprue 
bushings, manifolds, and probes, heat pipes gate shut-off devices and 
electronic . controllers for these heating elements. With these new 
developments, it is possible to control the melt under precise temperatures 
needed until it reaches the gate area. The rest of the cavity filling is the 
exactly the same as the results of starting with a melt temperature at 205 °C.

The other method to give better controls over the temperature and shear 
stress level is to re-profile the wall thickness of the plate. The approach will 
be explained in Chapter Eight.

7.4 Simulation on a Computer Part with Polycarbonate

A second example is the pivot plate which is used on the plate base 
underneath the monitor shown in Fig. 7.3.1b. The material indicated for 
this part is medium grade (or high grade) polycarbonate (PC), and it must 
be UV stabilised.
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7.4.1 Material Aspect

Polycarbonate is based on bisphenol A and has an aromatic structure. It 
is this structure that is responsible for the high softening temperature, 
broad temperature usage, rigidity complemented by toughness, and the most 
important property, especially for this moulding, is its resistance to creep 
when under the design loads for a long time. It may be fabricated with a 
very smooth surface, but it has limited scratch and abrasion resistance. This 
problem is compounded by moisture and ultraviolet light so that UV 
resistance material required for this part. The most critical property of 
polycarbonate in the injection moulding process is the hydrolysis. At 
processing temperature, moisture promotes a hydrolytic attack on 
polycarbonate, resulting in a degradation of the polymer. The effects of this 
degradation can be visualised as streaks on the surface, and some small 
bubbles in the body which is a result of the generation of a gaseous 
degradation by-product, carbon dioxide.

Polycarbonates that are suitable for injection moulding generally fall into 
the average molecular weight range of 26,000 to 35,000. Molecular weights 
higher than the upper limit of this range tend to be difficult to process 
because of high melt viscosity. Since the viscosity increases as molecular 
weight increases, the medium grade of the molecular weight is chosen to 
simulate this moulding. Because of its high viscosity, polycarbonate is 
usually processed at a high temperature in order to obtain a less viscous 
melt. This requires both high barrel temperature and high injection force 
capabilities. In MOLDFLOW's guide menu, the material data for process
ing polycarbonate are 280-320 °C for barrel temperature, 60 °C for mould 
temperature, 500,000 Pa for the shear stress limitation, and the maximum 
shear-rate not higher than 40,000 1/s. Table 7.4.1 lists the properties of the 
material chosen from MATDB.

Table 7.4.1
ENICHEM
Material Grade Description

E107 PC SINVET 253-253NR ENICHEM MED VIS UV RESIS.1&2DATA MAY84
Material Grade Data

CONDUCTIVITY J/(m.sec.degC) ==> 0.105
SPECIFIC HEAT J/(kg.degC) = = > 1 5 3 1 .
DENSITY kg/cu.m ==> 1040.
FREEZE TEMPERATURE degC ==> 160.0
NO-FLOW TEMPERATURE degC ==> 200.0
(continued in next page)
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VISCOSITY

TEMPERATURE ISHEAR RATE I VISCOSITY
degC 1 1/sec 1 Pa.sec

280.0 1 1000. 1 496.9
300.0 1 100.0 1 495.5
300.0 1 1000. 1 324.3
300.0 1 1.000E+04 1 101.0
320.0 1 100.0 1 219.9
320.0 1 1000. 1 186.2

7.4.2 Geometric Aspect

The surface model generation of the geometry of this part is beyond the 
capacity of MOLDFLOW's pre-processor. The main difficulties are to 
generate the spherical surface piece accurately, and to give its intersection

229 SURFACES , 518 POINTS , 997 NODES , 1771 ELEMENTS

T E S U

7.4.1 Finite element mesh of the geometry
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curves with other surfaces. In order to compensate the capacity, some 
functions are established in CASIM’s pre-processor, which can provide a 
piece of spherical surface as detail as possible, and produce any spatial 
curves formed by two intersected spatial surfaces. Detail of the method is 
introduced in next chapter.

The piece of spherical surface is cut off from a sphere by five planes, 
then eleven other planes are used to give the locations of holes on the 
spherical surface. With the rest surfaces being connected, the surface model 
of the geometry is completed as shown in Fig.7.4.1.

7.4.3 Processing Conditions

The rough processing conditions can be found in the same way as 
introduced in the last section. The "autofile" is used again to give a window 
of the conditions. The upper bounds of both mould and melt temperatures 
are chosen for the filling time scanning, and the lower bond of the filling 
time is 2.4 seconds. This lower bond has to be further confirmed by using 
3D finite element analysis.

7.4.4 Result analysis

The gate is positioned near the centre by one end of the guide slot as 
shown in Fig.7.4.2. The longest flow path is to the down-right comer. 
From the flow pattern diagram it can be seen that some weld lines are 
formed by meetings of fronts enclosing holes. However, the biggest weld 
line is behind the big insert where the flow is slowed down by the thinner 
and more complicated path. Two flow streams surrounding the insert from 
both sides and the stream passing through the insert area join together just 
in the middle behind the insert. This weld line can be seen clearly from the 
practical product shown in Fig.7.3.1b. This proves the correct prediction 
by the simulation. The temperatures at these weld lines' areas shown in the 
lower half of Fig.7.4.2 are high enough for the fronts to "weld" together. 
Although the strength of the weld lines is never as high as the strength of 
the rest area, as mentioned in Chapter One, the positions of the weld lines 
do not harm much of the structure. The only potential crack may happen in 
the weld line on the other end of the guide slot, as the stress concentration 
there may reach a figure higher than the strength limitation of the weld 
line.
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AW

FILL TIME

MATERIAL : ( POLYCARBONATE ) ENICHEM , E107
MOLD TEMP : 60 ; MELT TEMP : 320
F I L L  T I M E  : ( N O M I N A L  ) 2.5 , C A C T U A L  ) 2.62 0.0020
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TEMPERATURE 

MATERIAL : ( POLYCARBONATE ) ENICHEM , E107 

MOLD TEMP : 60 ; MELT TEMP : 320 ; FILL TIME : 2.5 SEC.
290. 7

296. 8 

302. 9 

309. 1 

315.2

321 . 3

Fig.7.4.2. The flow  pattern and temperature distribution. 
(O rig inal co lou r pictures)
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SHEAR RATE (1/S)

MATERIAL : ( POLYCARBONATE ) ENICHEM , E107

MOLD TEMP : 60 ; MELT TEMP : 320 ; F I L L  T I ME  : 2.5 S E C .
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P R E S S U R E

MATERIAL : ( POLYCARBONATE ) ENICHEM , E107
MOLD TEMP : 60 ; MELT TEMP : 320 ; FILL TIME : 2.5 SEC.
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Fig.7.4.3 The shear strain rate and pressure distributions.
(Original colour pictures)

The low est temperature is in the thin insert area in the centre, since the 
slow -m oving o f  the flow  and quick-cooling from both sides. It could be
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potential area of hesitation effect if the thickness was designed thinner. The 
temperature falls into the range between 302.8 and 320.4 °C in the front 
during the filling stage, 290.7 and 321.3 in the cavity just after the filling 
finishes. These can be regarded as desirable ranges.

All the shear stress and shear strain rate are less than the limitation in the 
component. Because they have very similar distribution in the cavity, only 
the colour graph of shear strain rate is shown here. The laser-printed shear 
stress distribution by contour lines is shown in Fig.7.4.4. The high stressed 
area near the gate is caused by the high shear-rate as the material deforms 
the most at the area just under the gate. Because the high stressed area is 
only a tiny part of the whole component, and it can be soon reduced in the 
packing stage, it is harmless at all.

TEST4. RES SHEAR STRESS (Pa! 
30654

17<
!Q4K

'09K

30K

!04K
65K

-2 0

Fig.7.4.4. The shear stress distribution of part two.(PostScript picture)
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7.5 Balancing a Feed System for a Set of Computer Parts

7.5.1 Introduction to balancing a feed system

Balancing a feed system means that by adjusting the dimensions of a feed 
system the plastic melt is ensured to reach each extremities at the same time 
so that all the impressions will be filled uniformly and evenly. However, 
balancing a feed system is very difficult for some family moulds. In general 
practice the majority of the feed systems are naturally balanced. Designers 
always try to avoid artificially balancing the feed systems for multi-cavity 
layouts. Fig.7.5.1 shows some examples of balanced runner systems for 
multi-impression mould. It is easy to situate the impressions on a pitch 
circle diameter and feed each impression directly from the sprue via a 
runner system.

o  o

Fig.7.5.1. Naturally balanced feed systems

For tooling and economic reasons, sometimes partially balanced runner 
systems are used for multi-impression mould like those shown in Fig. 7.5.2 
which need artificial balancing for the main runner or the sub-runner 
systems.

o o o o
0 0 0 0 0 0 0 0

Fig.7.5.2 Partially balanced feed system
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However, it is mandatory to balance some family moulds like the one to 
be shown in this section, and it is worth doing it because such a kind of 
complete set is better to be manufactured locally in a family mould rather 
than to be made separately in different moulds or even in different 
factories. From the moulding point of view, it is better to use the same 
moulding conditions, the same colour of the material in a set of moulds for 
a family of components which will be used together. If the balancing 
problem can be easily resolved, such family mouldings can obviously bring 
economic advantages.

Normally, conventional feed system balancing is often on-line and a 
matter of trial and error, and in most of the cases the balancing can only be 
achieved by varying the gate dimensions. It becomes possible when high 
efficient computer software systems are introduced to simulate the injection 
moulding processing. According to the MOLDFLOW philosophy^ the 
runner dimensions are better to be chosen to balance the feed system instead 
of the gate dimensions because of four reasons:

a) The pressure drop over the gate can be heat-transfer dominated, so 
any small change in moulding conditions gives a large change in filling 
pattern.

b) Gates are very prone to hesitation effects.
c) Entrance and exit losses, which tend to be very unstable, form a high 

proportion of the total pressure drop.
d) Machining errors or wear have a major effect on pressure drops.

The size of a runner system is much larger than that of a gate, thus less
sensitive to the hesitation and thermal effects, more stable and easier to 
machine accurately. Often there are two major variables to vary for the 
balancing (i) by varying the length and (ii) by varying the cross section. 
However, these can be generalised as the dimensional changings. There 
could be shape variations of a runner system. No matter which variable of 
the runner geometry varies, the aim is to balance within certain restrictions. 
Therefore a principle and some concepts should be introduced.

7.5.2 Balancing Principle and Some Criteria

Principle:
Under the same conditions, a balanced system must have the 

minimum energy lost
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This is generalised energy principle which can be used in balancing 
runner system as well as gating design. For balancing a runner system, one 
can deducte this principle as a more practical one: Under the same 
processing conditions, for the case of varying a single variable 
of a runner system, the correspondent pressure at any point of 
an unchanged section is a single smooth valley function of the 
variable.

This deduction gives an easy way to find out a balanced system by 
varying only one variable of the geometry. Fortunately, there are many 
methods for searching for the valley position of the function, so the 
problem is which way to choose for such a time-consuming calculation or 
expensive on-line trials.

If the form of the function could be found out, then it would be a simple 
calculation. Yet the function depends on the geometry of the feed system 
and cavities, on the properties of the plastic material to be used and on the 
processing conditions, and it is a high non-linear function of the variable.

This is, however, not sufficient to find out a best balanced runner system 
for a moulding because the geometry of a runner system can be any form 
and some other criteria must be given.

a) The cost of the material in the runner system should be as low as 
possible.

b) The cooling time for the runner system, if it dominates the cycle time 
(which is often the case), must be as short as possible.

c) In order to make use of the runner system to control the moulding 
process, i.e. the flow pattern, frictional heating and thermal shut off, the 
pressure drop along the runner system must be high enough. It is suggested 
that the total pressure drop, (cavity plus runners), is 70% of the maximum 
available injection pressure.

d) The processing window of moulding conditions should be large 
enough to bear the possible slight off-setting. This means that the valley 
point of the function will not move for a slight change of the processing 
conditions.

e) The way of ejecting the parts and runners must be taken into account.

7.5.3 Material and geometrical aspects of the parts

The parts for the feed system balancing analysis in the following sections 
are two housing components of an eight inch disc drive (Part No. 23F2210
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and 23F2220) as shown in Fig.7.5.4-5. Although both components are 
geometrically complicated, for economic, appearance and other reasons, 
they are supposed to be moulded in a family mould. Therefore not only the 
optimised processing conditions for the moulding but also a balanced feed 
system have to be found.

The material indicated for them can be either BAYBLEND 1439 or 
BAYBLEND 1441 (B1439, B1441 for short in the following). These 
ABS/PC blend materials have characteristics intermediate between ABS and 
Polycarbonate. The principal advantageous characteristics include:

Fig.7.5.4. The geometry of Part One
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Fig. 7.5.5 The geometry of Part Two

*High impact strength and hardness
*Improved heat distortion temperature compared to ABS
^Dimensional stability
*Electrical properties independent of moisture and temperature.

However, these properties can be affected by different processing 
conditions. In some situations the effects can be considerable. Therefore it 
is just as important to choose the correct moulding conditions as it is to pick 
the right material; both are critical in determining the part mechanical 
properties. The moulding related properties of both B1439 and B1441 are 
given as follows:



Chapter Seven: Processing Analysis bv MOLDFLOW 180

Table 7.5.1. Moulding Properties of BAYBLEND 1439 & 1441
Major properties: Viscosity:

Property Units ABS/PC Temp(C) Shear Rate(l/s) Viscosity
Conductivity J/m/sec/DegC 0.16 240 1000. 203.3
Specific Heat J/kg/DegC 1730 260 100. 348.0

Density kg 1 cu.m 981.0 CTv
CO 260 1000. 134.6

Freeze Temp DegC 154.0 NT
r H 260 10000. 37.09

No-flovTemp DegC 188.0 280 100. 216.9
Barrel Temp DegC 220-260 280 1000. 98.0
Mold Temp DegC 30-60 240 1000. 342.2

Max Process Temp DegC 280 260 100. 692.4
Max Shear Stress k.pa 300 ■<

TT 260 1000. 232.5
Max Shear Rate 1 I sec 5000 \T

▼—4 260 10000. 61.35
280 100. 458.7
280 1000. 159.9

The major difference between B1439 and B1441 is between their 
viscosities. Since the viscosity of B1441 is much higher than that of B1439, 
and high shear stress is hardly avoided for this complicated geometry, it 
would be much more difficult to process the injection moulding with 
B1441. The high stressed areas can detract from the strength by a 
considerable amount ( at least 10% to 20% ), and it is obvious that for the 
first component, the comer snap-hooks are designed to bear high bending 
stresses. Yet they are the longest paths from the gate which must cause 
considerable high stress when the melt reaches these comer snap-hooks. 
What is worse, the cooling holes are designed on the ways to these 
extremities which make the paths even more tortuous. Therefore, high 
shear stresses are inevitable in these comer hooks. From material selection 
point of view, B1439 must be chosen as the material for these two 
mouldings, because its lower viscosity can lessen the high stressed situation.

The table also gives a window of melt (or barrel) temperature and mould 
temperature. However, the practical processing conditions have to be 
determined by the filling analysis because of the geometrical complexity. 
The key point can be found from this table for the mouldings, which is also 
one of the general characteristics of the polymer viscosity: the higher the 
temperature and the shear rate, the less the viscosity will be.

From geometrical point of view, it can be seen that the length of the path 
from machine nozzle to the extreme ’'out" position of the cavities is quite 
long, thus it demands a mould temperature at the upper bound of the range. 
Because of many holes in both parts there must be weld lines formed by the
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meeting of fronts surrounding each hole. A higher mould temperature will 
give stronger weld lines, lower stress levels as well as glossier appearance. 
From above table it can be seen that the mould temperature can be fixed at 
60 °C.

After setting down the mould temperature, the melt temperature and 
filling time can be roughly found out by 2D analysis in MOLDFLOW. 
(Although there is a function to balance a feed system in 2D analysis 
program, for these two complicated geometry, the function can not give 
accurate dimensions of the feed system.) A tiny error in dimensions of the 
feed system could result in the family moulding unbalance. Because of these 
reasons, before starting to design and balance the feed system, each part is 
analysed first separately, and the processing window is tested individually. 
The common section of the two processing windows can then be used as the 
initial processing conditions for the family moulding. The lists below show 
that the processing window for the first part can be in a small range from 
260 °C to 280 °G in melt temperature and 1.5 to 3.0 seconds in filling time.

Table 7.5.2
MOLD TEMP 60.00 deg C MELT TEMP 280.00 deg C

TIME PRESSURE STRESS @ STRESS @ TEMP @
sec MPa START END END
0.20 22.2 193467. 127651. 291.
0.30 18.1 155832. 104310. 287.
0.50 14.0 117272. 81426. 283.
0.70 11.9 96628. 69856. 279.
1.00 10.0 78339. 60406. 275.
1.50 8.4 61468. 53175. 269.
2.00 7.5 51693. 50538. 264.
2.50 7.1 45216. 50523. 259.
3.00 6.9 40571. 51472. 254.
4.00 6.8 34312. 57338. 245.
5.00 7.2 30275. 67266. 236.
7.00 8.9 25393. 101126. 221.

10.00 15.1 21649. 208705. 203.
* PLASTIC FROZEN RUN ABORTED *
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Table 7.5.3
MOLD TEMP 60.00 deg C MELT TEMP 260.00 deg C

TIME PRESSURE STRESS @ STRESS @ TEMP
sec MPa START END END
0.20 28.3 260561. 158376. 275.
0.30 23.9 215757. 134415. 271.
0.50 19.3 168155. 110185. 266.
0.70 16.8 141813. 97701. 263.
1.00 14.6 117870. 87543. 259.
1.50 12.6 95176. 80260. 253.
2.00 11.7 81716. 78465. 248.
2.50 11.2 72652. 79647. 243.
3.00 11.1 66075. 82880. 239.
4.00 11.3 57110. 94210. 231.
5.00 12.1 51270. 111577. 223.
7.00 15.5 44171. 167168. 210.

10.00 29.7 38790. 290572. 199.
* PLASTIC FROZEN RUN ABORTED *

Because of the complexity of the dimension, the shear stress during 
injection moulding can be higher inside sharp transitions in cross sections, 
and in the four snap-hooks in the comers. Therefore the 2D analysis is not 
enough to give reasonable accurate processing conditions, 3D finite element 
analysis is needed for more accurate results.

7.5.4 Result Analysis on Each Part

(a) Part One (23F2210)
The geometry of this part is quite complicated, there are cooling holes 

and ribs across the part so that the mesh has to be fine enough to calculate it 
accurately, especially in some areas as shown in Fig. 7.5.5. The most 
difficult areas to mould, from the flow pattern analysis, are the four comer 
hooks. They are extremities, their thicknesses are thinner and they will be 
subject to bending.
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672 SURFACES , 809 POINTS , 3117 NODES , 5573 ELEMENTS

B A S E R E V

Fig. 7.5.5 The mesh of part one

The major factors which affect the temperature and the shear stress 
distributions are fill-time, melt temperature and flow rate profile. The 
profile of the flow rate, however, since it is assumed, cannot simulate the 
true processing situation but give an approximation result. The practical 
situation is that when the cavity has almost been filled, the flow rate begin 
to slow down. Therefore the flow rate profile is assumed as shown in Fig. 
7.5.6 that the pressure inside the cavity is kept increasing and the ending 
flow rate is about 75% of the nominal flow rate.
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Fig.7.5.6 The flow rate profile and the corresponding pressure

The temperature and filling time effects on temperature range and 
maximum shear stress are given as shown in Fig. 7.5.7 and Fig. 7.5.8:
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Fig. 7.5.7 Temperature range changes with the filling time

It can be seen that the shorter the filling time the smaller the temperature 
difference will be, but the maximum shear stress trend is a valley function, 
hence the processing window can be obviously chosen from the figures.
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Fig. 7.5.8 The maximum shear stress changes with the filling time

The pictures shown in Fig.5.7.9-10 are the results of the moulding under 
the conditions as follows:

 -

BARREL TEMPERATURE: 2 6 0  °C
MOULD TEMPERATURE: 60  °C
FILLING TIME: 2.6 SECOND

v_____________________________  J

At first, it was found out that the maximum pressure needed for filling 
the part was only about llMpa. This means that the cavity pressure is not 
high, a runner system can be designed such that it can bear high pressure 
drop to control the flow. Thus a sprue runner is added to the cavity, its 
function is not only transfer the melt into the cavity but also control the 
flow. According to MOLDFLOW philosophy^ that simply raising the 
barrel temperature will reduce stress levels, but will also give severe 
degradation problems because the plastic is then subject to a high 
temperature in the barrel for several machine cycles, a time measured in 
minutes. Using the frictional heating in the runner will give the same effect 
of lower stresses, but without risking degradation of the material, since the 
plastic is only subject to the higher melt temperature from the time it enters 
the runner system, until it starts to cool, a time measured in seconds.

The temperature is then within the range of 20 degrees except for the 
gate position. This is quite uniform distribution and satisfies the 
temperature requirements.
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FILL TIME

MATERIAL : ( PC + ABS ) BAYDATA , B059
MOLD TEMP : 60 ; MELT TEMP : 260 ; FILL TIME : 2.6 SEC.
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0.55 

1 . 1 1  

1 . 66  

2 . 2 1

2. 76

T E M P E R A T U R E  

M A T E R I A L  : C PC + A B S  ) B A Y D A T A  , B059
MOLD TEMP 60 ; MELT TEMP : 260 ; F I L L  T I ME  : 2.6 S E C .

254.7
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264. 8 

269. 8 

274.9

279. 9

Fig.7.5.9. The flow  pattern and temperature distribution. 
(Original colour pictures)
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SHEAR STRESS (Pa)

PRESSURE

MATERIAL : ( PC + ABS ) BAYDATA , B059
MOLD TEMP : 60 ; MELT TEMP : 260 ; FILL TIME : 2.6 SEC.
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MATERIAL : ( PC + ABS ) BAYDATA , B059
MOLD TEMP : 60 ; MELT TEMP : 260 ; FILL TIME

29335
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228046
■

327401
■

426757

526112

Fig. 7.5.10. The shear stress and pressure distributions.
(Original colour pictures)

The shear stress distribution is satisfactory as w ell. Because the longest 
flo w  path from the gate, and the sharp transition o f  cross section from
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3.2m m  to 2.5m m  or 2.0m m  in the hooks, the stresses there are relatively high 
comparing with the rest of the component, but the highest shear stress is 
only 268kpa in the upper comers.

If the flow rate is increas^l, that is , the filling time is decreased, a 
group of good results can also be obtained:

  ^

BARREL TEMPERATURE: 2 6 0  °C
MOULD TEMPERATURE: 60  °C
FILLING TIME: 2.3 SECOND

\  /

The results show that the temperature is still within 20 °C and the highest 
stress is about 301kpa. From the temperature result it can be seen that the 
melt temperature is increased about 20 °C during its passing through the 
runner. Then the shear stress is still under the limit although the flow rate 
increases and the material viscosity characteristics mentioned above are 
used here, a small but comprehensive report is given below:
Table 7.5.4
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* X

*  REPORT FROM THE RESULT FILE X

■V

*  NUMBER OF NODES: 3 1 1 7  NUMBER OF ELEMENTS: 5 5 7 3  *
•* -X

*  MAX PRESSURE 4 2 .4 0  AT NODE NUMBER 31 15 *
*  MAX FRONT TEMP 2 8 0 .8 0  MIN FRONT TEMP 2 5 9 .6 0  *
*  MAX END TEMP 2 7 9 .5 4 3 7  MIN END TEMP 2 3 5 .1 7 2 3  *
*  MAX SHEAR RATE 3 0 2 8 .1 9 0  AT ELEMENT NO. 391 1 *
*  MAX SHR STRESS 3 0 1 2 2 1 .  AT ELEMENT NO. 3 8 8  *
*  MAX COOL TIME 18.140 AT ELEMENT NO. 158 *
*  MAX CLAMP TONNAGE DURING CYCLE 41. Tonnes *
*  TOTAL VOLUME . 2 IE -0 3  cu.m 2 0 7 .7 7  *
*  NOMINAL FLOW RATE .9 0 E -0 4  cu.m /sec 9 0 .3 3  *
*  MOLD TEMP 60.0 X

*  MELT TEMP 260 .0 X

*  B 059 PC+ABS BAYBLEND FR 1439  V - 0  BAYER Co. *

*  ACTUAL INJECTION TIME: 2 .3 2 2 7 X

X

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * - * * * * * * * * *

A third set of conditions is given for offering the lower limit of the 
barrel temperature, and compose a processing window with the above two 
sets of the conditions as shown in Fig. 7.5.11:
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 -

BARREL TEMPERATURE: 2 5 6  °C
MOULD TEMPERATURE: 6 0  °C
FILLING TIME: 2 .4  SECOND

V______________________________)

Table 7.5.5
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

*  *

*  REPORT FROM THE RESULT FILE *
*  *

*
*

NUMBER OF NODES: 3 1 1 7 NUMBER OF ELEMENTS: 5 5 7 3  *
*

* MAX PRESSURE 4 3 .9 0 AT NODE NUMBER 31 15 *
* MAX FRONT TEMP 2 7 7 .1 0 MIN FRONT TEMP 2 5 5 .5 0  *
* MAX END TEMP 2 7 4 .8 7 1 6 MIN END TEMP 2 2 7 . 5 9 1 2  *
* MAX SHEAR RATE 2 8 0 2 .0 8 0 AT ELEMENT NO. 391 1 *
* MAX SHR STRESS 3 0 5 8 5 5 . AT ELEMENT NO. 3 8 8  *
* MAX COOL TIME 17.580 AT ELEMENT NO. 158 *
*  MAX CLAMP TONNAGE DURING CYCLE
*  TOTAL VOLUME .2 1 E - 0 3 c u .m
*  NOMINAL FLOW RATE .8 3 E -0 4  cu.m/sec
*  MOLD TEMP 60.0
*  MELT TEMP 25 6 .0
*  B059 PC+ABS BAYBLEND FR 1439  V - 0
*  ACTUAL INJECTION TIME: 2 .4 2 4 6
*  *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

262.5 -j
<J wa 
E
£260 .0  - 
'ZL W*QQ

257.5 -

255.0 H--------------- .--------------- 1--------------- .--------------- 1
2.2 2.5 2.8

Fill t im e(sec )

Fig.7.5.11. Processing window of part one

4 3 . Tonnes *
2 0 7 .7 7  *
83.11 *

*

*

BAYER Co. *
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Other results indicate that if  the processing conditions are a little bit 
outside the w indow  determined by above results, either temperature or the 
shear stress w ill be beyond the requirements. Further improvements can be 
made either by a considerable arrangement o f  the cooling channels to cool 
down the material evenly to com pensate the temperature distribution or by 
adju^gfTg^fTe' nhw  rate profile making the ending flow  rate less than 75%. 
Far too less^pr the ending flo w  rate m ay result in a short period o f  
a ecrea sir ffo f pressure near the end o f filling, and subsequently result in a 
little bit back flow  or m olecular orientation problem . These results are 
fu lly  d iscussed  in a student report^159] w hose work was guided by the 
author.

(b)Part Tw o (23F2220)
The geom etry o f this part is more com plicated than part one. There are 

groups o f  slots in grille, higher standing ribs and som e small thin ribs and 
holes for interlocking the other part. The large number o f equally sized and 
spaced grille makes the m odelling difficult. S ince the M OLDFLOW  flow  
equations are based on an assum ption o f  "slab flow" throughout the 
com ponent —  a valid assum ption for a given flow  which width is much 
greater than its thickness, the grille areas are clearly not the case. Therefore 
the presence o f the grille requires a special consideration for the m odelling. 
The major concern is the significant effects o f  the edges o f  a rectangular 
duct in respect o f  both the resistance o f flow  and heat transfer through 
them. There are two w ays to account for the effects. One is that the 
thickness o f  the surfaces in the grille detail can be decreased to g ive an 
increased resistance to flow  which w ill give a more accurate prediction o f  
the pressure requirements and, due to the reduction in thickness, the heat 
transfer rate w ill be increased as well. H ow ever, it is difficult to quantify 
the thickness for both effects, norm ally only for an isotherm al flow  o f  
which the equivalent pressure can be calculated by using a frictional factor 
to revise the thickness. An alternative way would be to use a runner elem ent 
with an equivalent resistance to flow  to m odel the grille elem ent, in this 
w ay the program w ould allow  for the heat transfer all the way round the 
perimeter o f the element. In this case the same factor is used for calculating 
the radius o f the runner elem ent. The formulae for the factor, the revised  
thickness and the radius are given in reference [160].

The sprue runner is added on, and the w hole finite elem ent m esh is 
shown in F ig .7 .5 .12 in next page.
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1386 POINTS604 SURFACES 3S56 NOOFS 6171 FIFMFNTS

Fig.7.5.12. The finite elem ent m esh o f part two.

The sm all thin ribs in the corners have the sam e problem  as part one 
does. H owever, the high stresses there are not so important as they occur in 
the hooks in part one. The moulding conditions are as follow s:

BARREL TEMPERATURE: 2 6 0  °C 
MOULD TEMPERATURE: 60  °C 

FILLING TIME: 3.0 SECOND

The result pictures o f  the finite elem ent analysis are show n in F ig .7 .5 .13 
in solid m ode. It can be seen that the resolution o f  the pictures is higher 
than those contour plots presented before and thirty two colours are used to 
represent different values in the three dim ensional geometry.
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jet
236-3  to

B.(left) The temperature 
distribution just
after the filling.

C.(right) The pressure field  
just after the filling.

D.(right) The shear stress 
field at end o f filling.

A.(right) The flow  pattern 
during the filling stage.

Fig.7.5.13. The result pictures represented in solid colours.
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Because of the unsymmetrical feature of the geometry and so many slots 
to make the flow paths zigzagged, the flow pattern is quite complicated. The 
last area to fill can be determined from both the flow pattern and the 
pressure field which is up in the rib near the down-right comer (of part in 
the graphs). Two apparent weld lines can be observed in a enlarged flow 
pattern graph. Both the stress and the temperature are satisfactory. The 
highest stress occurs also up in that rib, and other high stressed areas are in 
the centre and up in the right wing close to the top-right comer. It would 
be suggested that the comer ribs be thickened up a little bit and the two 
grille elements in the middle of the right wing be merged into one, the 
result could be improved for above problems.

Since the processing window for this part is obviously larger than the 
window for part one, it is not necessary to simulate the moulding 
processing under other processing conditions. The common processing 
window should then be determined as the one for part one. The actual 
processing window must be checked through the finite element analysis.

7.5.5 Runner system design

a). Initial design
The criteria for this runner system design have been mentioned in section 

7.5.2. In order to make use of the runner system to control the moulding 
processing, the pressure drop along the runners must be high enough to 
allow the passing melt in the runner to produce the frictional heating. This 
frictional heating plays an important role in reducing the shear stress level 
inside the cavities, because of the temperature increasing can dramatically 
reduce the viscosity of the melt, as mentioned before. Another important 
aspect of controlling the moulding processing is that the runner had better 
to be designed as a thermal shut-off, which can be frozen off first to protect 
the possible back flow from the cavities when the pressure decreases during 
the cooling stage. The ideal runner system is to pass the melt into the 
cavities, and transfer the pressure for holding for the minimum length of 
time to avoid sink marks, then to be frozen off, preventing flowing along 
the runner. However, it cannot always be designed as such, especially when 
relatively large amount of melt has to be injected into the cavities. On the 
other hand, the way of ejecting the mouldings and runners have to be taken 
into account.
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The narrow parts o f  the runners to two cavities have both thermal off  
function and ejection function, since the narrow parts can be broken off 
naturally when the m oulds are open, and taking the upper part out o f the 
upper m ould. The rem aining parts on the components can be cut off. The 
initial size o f the runners can be roughly calculated by a formula supplied
below i161!:

D = ( 7 . 5 . 1 )

where W  is the w eight o f the part, L is the length o f  the runner and D is the 
diameter. The factor 3.7 is for metric system.

Fig.7,5.14. Two layouts o f the runner system. Above: the same diameter 
but different lengths. Below : the same length but different diameters.
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From this formula the size of each runner can be calculated separately. 
However, the layout of the cavities and the manufacturing cost must be 
taken into account, since either the length or the diameter can be varied for 
each cavity. The size of the sprue depends on the sizes of both runners 
following another formula for its tapered shape. From manufacturing point 
of view, it is better to locate the sprue in the centre of the upper plate. This 
means to balance the runners by adjusting the diameters. Nevertheless, the 
lengths of the runners are much less sensitive to a tiny error in tolerance. 
The two possible layouts are shown in Fig.7.5.14.

After the layout design, the two parts are put together, and broken into 
triangles as shown in Fig. 7.5.15.

988 SURFACES 2411 POINTS

4341 NODES , 7384 ELEMENTS

LAYOUT OF THE PARTS , DONE ON 29 MAR. 1990

Fig.7.5.15 The mesh of the two components together.
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b). Balancing of the dimensions of the runner system 
From the mesh shown in Fig.7.5.15 it can be seen that to balance the feed 

system for these two cavities by three dimensional finite element method is 
very time-consuming because there are over seven thousands elements 
involved in the calculation. Since the resistance during the whole filling 
stage depends mainly on the complicated geometry for a given material, the 
calculation has to be done by no further simplification than this 3D analysis. 
The focus then has to be put on the number of calculation times for the 
balancing, that is, to find a quick way to search the balance status for the 
system. Fortunately, the principle introduced in the section 7.5.2 was soon 
found, and it was proved by this example. At first, the single variable is 
chosen as the length of one of the runners. Since the whole length of two 
joined runners is fixed as 2 70m m , the variable is actually the position of the 
sprue between the two runners. The position can only be in the half section 
of the bigger cavity side as shown in Fig. 7.5.14. Within this section, a 
simple optimisation method can be used since the pressure function of the 
position is a concave one. The 0.618 method is chosen for the optimisation. 
The optimum method is to seek for the optimal position by selecting some 
regular points in the section as shown in Fig.7.5.16.

wn

S 29 -

Quadric Curve

27 -

2 5 - Cubic Curve

23
0.3 0.4 0.5 0.6 0.7 0.8

Position (x 135)

Fig. 7.5.16. The 0.618 method to seek for the balance position

The first trial is in the position of (1-0.618)XL, where L is assumed as 
the length of the section. And the second is in 0.618XL. By comparison of 
these two results, the optimal position must fall into the lower side, thus the
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range for searching is reduced to 0.618xL, range from 0.382 to 1 of the 
length. Then repeating the same step, assuming L as the length of the new 
range, but only one trial is necessary since the other coincides with one of 
the previous trials. Following such way of searching until the error between 
the last two trials less than a pre-given small value, the optimal position can 
then be approached, as the fast convergence is obvious.

However, the number of trials can be further reduced by constructing a 
quadric or cubic curve by three or four trial points as shown in the graph. 
The zero point of the first derivative of the curve is very close the optimum 
position, and in order to reduce the calculation time, this position can be 
regarded as the final result though it is an approximation. For more precise 
result, a new narrower searching range can be formed by the lowest point 
of the trials and the zero point of the derivative multiplying a factor of 
1/0.618, then to carry out the searching by the 0.618 method in this new 
range.

The method looks simple, and it is proved efficient. The important thing 
is its fundamental, the principle which the method is based on. Unfortu
nately, the method cannot be coded into the MOLDFLOW package, so all 
the optimisation scheme is carried out by hand. Finally, three groups of 
results of two types of balancing with different processing conditions are 
obtained as follow:

Table 7.5.6
Variable Design Runner 1 Runner 2 Processing Conditions
Diameter 1 15 15 Fill Time: 3.4 sec. 

Melt Temp: 260° CLength 1 50 220
Diameter 2 12 10.25 Fill Time: 4.3 sec. 

Melt Temp: 268° CLength 2 135 135
Diameter 3 11.55 10 Fill Time: 2.6 sec. 

Melt Temp: 260° CLength 3 135 135

The results of the finite element analysis of the balanced two mouldings 
under the first layout are given as following group of graphs in Fig. 7.5.17 
(a-b, d-e).
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B.(left) The pressrue field 
just after the filling.

The blue colour indicates the 
last parts to fill which are the 
down comers o f the first part 
and the rib in top-left comer. 
The brown and yellow  colours 
in the centre o f the second part 
indicate the pressure difference 
for filling the bigger volume. 
The higher pressures (pink and 
red colours) occur in the feed 
system.

A.(right) The flow  pattern 
during the filling stage.

The flow  patterns o f  the two 
parts are slightly different, 
though the the flow s are from  
the centres o f them. The thin 
grille certainly help the flow  
passing the hole areas in the 
second part; the high standing 
ribs take more part o f the flow  
away from the main stream in 
the plate than the first one. The 
red centre in the second part 
indicates the arrival difference.

C.(right) The pressure field  
of an unbalanced trial.

By comparison, this graph 
clearly indicates that the 
second half has been filled  
first and the pressure is built 
up inside the cavity, also the 
reading o f the highest pressure 
is higher than that in the 
balanced pressure field shown 
above.

(Continued)

4 r
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C4M
54911
79796
1646*1
129566
154451
179336
2*4221
229I06
253991
276*76
363761
326646

E.(right) The shear stress field  
at the end o f filling.

The high stressed areas are 
in the lower com ers o f the 
first part, the com er ribs o f  
the second part. A few  red 
spots can be seen in the ribs 
o f part two which are higher 
than the limit required, but 
they are not important in the 
moulding.

D.(left) The temperature 
field in contours.

The temperature plot in 
solid mode is just beyond the 
capacity o f the program due to 
so many elements. Anyway, 
the blue colour can only be 
seen in the top o f some small 
high standing ribs in the 
second part, m ost o f the area 
is covered by the contours in 
green, pink and red colours, 
which indicate the difference 
of the temperature is suitable.

Fig.7.5.17. The result o f the balanced fam ily m oulding.
(Original colour pictures)

c). The stability o f  the balanced results
An artificially balanced runner system  can only work over a certain 

range o f moulding conditions. According to M OLDFLOW  philosophy, the 
width o f this range o f the m oulding conditions determines the stability of 
the m oulding. Because the runner system  is sensitive to a tiny change of 
diameters, some more calculations have been carried out for the stability of 
the last two designs. Fig. 7.5 .18 shows the processing window o f the second
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Fill t im e(sec )

Fig. 7.5.18. The processing window for the second design

design, in which the stability has been proved. The third design allows 
much smaller range of change in the processing conditions. Three reports 
are given for its stability.

Table 7.5.7
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*

*

*
REPORT FROM THE RESULT FILE

*

*

*

*  NUMBER OF NODES:
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4341 NUMBER OF ELEMENTS 7 3 8 4 *
*

45.80 AT NODE NUMBER 4 3 2 7  *
2 7 8 .8 0 MIN FRONT TEMP 2 5 6 .6 0  *

2 7 8 .5 5 0 3 MIN END TEMP 2 3 2 . 0 5 0 5  *
4 0 5 9 .7 3 0 AT ELEMENT NO. 2 2 7 0  *

3 8 3 9 9 7 . AT ELEMENT NO. 5 9 6 7  *
2 5 .1 9 0 AT ELEMENT NO. 3 3 7  *

MAX PRESSURE 
MAX FRONT TEMP 
MAX END TEMP 
MAX SHEAR RATE 
MAX SHR STRESS 
MAX COOL TIME:
MAX CLAMP TONNAGE DURING CYCLE 
TOTAL VOLUME .5 2 E -0 3  cu.m
NOMINAL FLOW RATE .2 2 E -0 3  cu.m/sec
MOLD TEMP 60.0
MELT TEMP 25 7 .0
B059  PC+ABS BAYBLEND FR 1439  V - 0  
ACTUAL INJECTION TIME: 2 .4 0 4 2

1 1 1 .Tonnes  
5 2 4 .5 2  
2 1 8 .5 5

BAYER Co.

*

*

*

*

*

*

*

*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

REPORT FROM THE RESULT FILE

*  NUMBER OF NODES: 4341 NUMBER OF ELEMENTS:

*
*
*

7 3 8 4 *

*

*

MAX PRESSURE 
MAX FRONT TEMP 
MAX END TEMP 
MAX SHEAR RATE 
MAX SHR STRESS 
MAX COOL TIME

43 .00
2 8 0 .3 0

2 7 9 .9 3 2 6
3 7 2 4 . 7 3 0

3 8 3 9 9 7 .
2 5 .1 9 0

MAX CLAMP TONNAGE DURING CYCLE 
TOTAL VOLUME 5 2 E - 0 3  cu.m
NOMINAL FLOW RATE .2 0 E -0 3  cu.m/sec
MOLD TEMP 60.0
MELT TEMP 260 .0
B059 PC+ABS BAYBLEND FR 1439 V - 0  
ACTUAL INJECTION TIME: 2 .6 0 4 9

AT NODE NUMBER 
MIN FRONT TEMP 
MIN END TEMP 
AT ELEMENT NO. 
AT ELEMENT NO. 
MIN COOL TIME

4 3 2 7  *  
2 5 5 .8 0  *  

2 2 9 .9 7 7 9  *  
2 2 7 0  *  
5 9 6 7  *  

3 .3 9 0  *
106.  T onnes 

5 2 4 .5 2  
2 0 1 .7 4

BAYER Co.

******************************************************
******************************************************
*
*

*
REPORT FROM THE RESULT FILE

*  NUMBER OF NODES: 4341

MAX PRESSURE: 42 .90
MAX FRONT TEMP: 2 8 0 .0 0
MAX END TEMP: 2 7 9 .5 1 2 9  
MAX SHEAR RATE: 3 5 8 5 .9 1 0  
MAX SHR STRESS: 3 9 9 4 8 7 .  
MAX COOL TIME:

NUMBER OF ELEMENTS:

*

*

*

*

*

*

*

25 .1 9 0
MAX CLAMP TONNAGE DURING CYCLE 
TOTAL VOLUME .5 2 E -0 3  cu.m
NOMINAL FLOW RATE 19E-03  cu.m/sec
MOLD TEMP 60.0
MELT TEMP 260 .0
B059 PC+ABS BAYBLEND FR 1439  V - 0  
ACTUAL INJECTION TIME: 2.7051

AT NODE NUMBER 
MIN FRONT TEMP 
MIN END TEMP 
AT ELEMENT NO.
AT ELEMENT NO.
MIN COOL TIME:

1 1 2 . Tonnes  
5 2 4 .5 2  
194.27

*

*

*

7 3 8 4  *  
*

4 3 2 7  *  
' 2 5 4 .5 0  *  

2 2 7 .9 69 1  *  
2 2 7 0  *  
5 9 6 7  *  

3 .3 4 0  *

BAYER Co.

* * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *



Chapter Seven: Processing Analysis bv MOLDFLOW 202

7.5.6 Geometrical modification on the first component

There is not big difference between designing with plastics and designing 
with other materials like wood, concrete, and some metals. Of course, all 
the design information is based on properties of the material, structural 
response, performance characteristics, part geometry, process variables, 
and economics. However, sometimes the particular characteristics in 
injection moulding process are ignored in part design which could result in 
some effects on the design. A very bad flow pattern could be caused by the 
geometrical shape, and it subsequently results in somewhere overpack, 
different cooling and shrink rate, and finally a warp product. These 
characteristics, which other materials may not have, are the flow effects and 
thermal effects on the melt during the injection moulding process. For 
example, the geometrical design of part one (23F2210) may not be 
considered as a good one from the moulding processing point of view. As 
mentioned in the analysis, the comer hooks are designed to bear possible 
fatigue bending, but there are three geometrical factors to increase the flow 
stresses there: the longest path from the gate; the sharp trans^S^on of the 
thickness; and the holes jamming the way of the flows reaching the comers. 
Since the holes and ribs in the part play the cooling and structuring roles of 
the part, rearrangement of them does not affect the appearances and 
functions. This rearrangement should be under the consideration of the 
geometrical effects on the moulding. Fig.7.5.19 shows the mesh of the 
modification of the component. This arrangement of the holes and ribs can 
give much better flow pattern as shown in the fill time picture below. The 
holes, which still play the cooling roles of the part, are now put on the 
direct way of the flow to the edges, while the rids are put in diagonals to 
encourage the flows to the comers, and more important, they can also 
strengthen the part because biggest bending occurs in diagonals rather than 
in longitudinal or latitudinal directions. As shown in contour pictures 
below, this geometrical design can improve the high stress level in the 
comer hooks, and give a better temperature distribution, and the better 
flow pattern which decreases the possibility of warpage that original design 
may have. The only possible remaining defect is the weld lines created by 
the holes, which can be solved by increasing the mould and melt 
temperatures to assure that the temperatures at meeting fronts are high 
enough.



Fig.7.5.19 (above) The mesh 
of the modified part one.

Fig.7.5.20 (right) The flow 
pattern of the modified part 
one. The front is close to a 
rectangular shape.
(Original colour picture)

J f ,
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B.(left) The temperature field.
The distribution is close to 

a rectangular shape.

A.(right) The pressure field.

C.(right) The shear stress 
distribution.

The highest shear stress 
occurs at the centre instead 
o f com er hooks.

Fig.7.5.21. The result pictures 
o f the m odified part one.
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7.6 Conclusions

This chapter has introduced MOLDFLOW and given analyses of several 
practical processing examples of IBM's components. Each example has its 
own features and complexities in both material and geometrical aspects. The 
package has shown its powerful functions in solving those difficulties. All 
the above results have been appraised and assented by IBM's plastic 
processing experts. There are a few more examples which have many 
similarities to the above, and also some different treatments from the above 
calculations, such as multigate moulding exercises. They are not selected in 
this paper because of unnecessary lengthy.

The whole philosophy of MOLDFLOW and design ideas as well as its 
shortcomings give us a broader horizon to consider the simulation, 
especially in mathematical modelling aspect and geometrical treatment. It 
should be admitted that some of the modelling in previous chapters are 
based on the inspirations from the use of this package; and some of the 
functions in next chapter are actually supplements or replacements of this 
package. It should also be pointed out that the package has its vital defect — 
no velocity vector outputs which are crucial in simulating the orientations 
of particles or fibres in some plastic components, though the designers are 
trying to improve the modelling to give these functions, as the author 
knows. These functions, as mentioned in the first chapter and shown in 
other previous chapters, are better to be fulfilled in such a model that the 
Lagrangian viewpoint is adopted, and the velocity components are part of 
the basic variables to be solved in the equations.
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Chapter Eight 

CASIM Program Design

8.1 In tro d u c tio n

CASIM are the five initials of Computer Aided Simulation of Injection 
Moulding. The idea to design such a program to simulate the injection 
moulding process had occurred to the author before MOLDFLOW arrived 
when no other packages had been available for the analyses. The idea 
contains two points: the first one is just like most of the present CAE 
packages, to bring both suitable numerical methods and graphically 
enhanced pre- and post-processing techniques or CAD techniques together; 
and the second is to address the shortcomings of commercialised packages in 
which the numerical models cannot be changed if they are not well suited 
for a type of problem. The past experiences of dealing with packages give 
the author some lessons in his research; the main problem is always the lack 
of flexibility of changing models, or the inability to put ones own ideas into 
packages. It is obvious that ABAQUSt162! cannot solve most of the injection 
moulding problems in which not only the constitutive models have to be 
changed, but also the basic variables have to be changed from displacement 
to velocity. What is more, if one wants to replace the finite element model 
by a boundary element model, all the FE packages like ABAQUS appear to 
be inadequate. Therefore for some research, fundamental changes must be 
implemented and this can only be done by designing ones own program.

After MOLDFLOW's arrival, CASIM has been extended to assist some of 
the pre- and post-processing functions which MOLDFLOW appears to be 
lacking. Similarly some functions of MOLDFLOW which are not necessary 
to be designed again are used with CASIM. This is not to say that CASIM is 
becoming a complementary package of MOLDFLOW because it has its own 
kernel — the boundary element models, equation solver, and pre- and post
processors. These functions can give CASIM an independent position 
without any doubt.

However, to code a new viable package is a challenging task. Software 
engineering is a huge subject, and it requires a great deal of knowledge 
including establishing mathematical models, mastering computer environ
ments, languages, data structures, modular programming skills, and so on.
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For a large program, the coding is often carried out by a few persons co
operating together for a few years. Because of replanting reasons, the most 
important thing may be the experience of coding in various computers, and 
one has to think about designing a software which depends on hardwares as 
little as possible. The need for hardware independence relates not only to 
computer languages like standardised FORTRAN, PASCAL or even C 
which are widely used in engineering and science research, but also to 
operating systems and graphical supporting systems like UNIX and its 
progeny, and G K S E 6 3 ]  and its compatible systems.

The design of CASIM program is mainly, from the software engineering 
point of view, based on the software shielded idea. There are some good 
graphical bases available in IBM3090, the main frame of the University of 
Glasgow, such as CATIAt164h IAXL65], or some good packages in the 
VAXes, such as I-D E A S ^ ], PATRANt167!, UNERASES]. However, since 
CASIM may be used in other systems in future, the best environment for it 
here is the international standardised graphical supporting system supplied, 
such as PHIGSt169h GKS, and widely used handy GHOST-8(K17°J which can 
produce a PostScript file which subsequently can be transferred to other 
facilities. The language used is mainly FORTRAN 77 which has been long 
and widely used and well developed for engineering and science applications 
and is hardware independent. The hardware environments are the IBM5080 
series and PC graphical terminals connecting with the main frame IBM3090 
in which the current operation system is VM/XA, and other graphical 
facilities connected with the mainframe such as laser-printer, plotter and 
hard-copy machines.

CASIM has been coded in this structure such that a program library is 
created which can contains both the modules used for the elementary system 
functions like graphic and data input /  output, and the modules for analysing 
the injection moulding processing. The latter modules contain programs 
based on boundary element methods, and even ones linking the 
MOLDFLOW library. After nearly three years endeavour, the skeleton of a 
big package has appeared, and some fundamental graphical functions in both 
two and three dimensional views have been coded and appear to be working 
well. The kernel — some boundary element numerical technique modules in 
two dimensional problems have been finished. The further development 
depends only on supports and time. The whole programming idea is mainly 
based on the referencet17!].



Chapter Eight: CASIM Program Design 208

8.2 G eneral C onstruction  and Objectives

The general construction of CASIM is designed as a tree structure. All 
the "limb" modules are connected to a general control level— execution 
command level which is the "trunk" or "root" of the tree. In next level, the 
corresponding "bough" programs are connected to each of the "limb" 
modules. Further more, the "branch" subroutines are connected to each of 
the programs, and more basic "twig" functions are called by those 
subroutines. Each module or sub-module in different levels has a clear 
function and a certain independence, allowing it to be connected through its 
interface. This so-called HIPO (Hierarchical Input Process Output) 
technique is one of the modular programming technologies, and it gives an 
explicit structure of the package. However, there is an implicit data 
structure which is used by all the modules except some exotic programs 
which are linked to the highest level. The explicit and implicit structures are 
shown in Fig.8.1.1. The detail functions of some main modules are given in 
the following sections.

CASIM Execution Command Level

BEM BanksMOLDFLOW

r ix lT V X iT

Fig. 8.1.1 The explicit structure and their base —  data structure, dotted line 
means that some more modules can be connected.

The CASIM execution command level is coded in command statements, 
so that different modules coded in different languages or some executable 
modules like MOLDFLOW can be connected together, and each of the
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"bough*' modules can be designed to use the whole storage of the computer. 
This form of the structure can be used in the next level, if some of the 
"branch" modules need to use the whole storage. Since the execution level is 
coded in a sort of interpreted language, not like FORTRAN or some other 
high level computer languages, the source statements cannot be compiled or 
"hidden", only used in the form of highest level's structure.

The main programs of the first level modules are designed to use "cases". 
The option of next level's modules can be chosen either from the choice 
board from which the information into the program is an integer, or by 
command inputting which gives a string of characters into the program, or 
by some other means like locating the crosshair in a menu which is then 
"translated" into an integer to give to the program.

The design of CASIM must have the following objectives: It must

•be capable of solving various problems appeared in injection moulding 
process,
•be a clearly modularised program, easily expanded with more functions or 
models
•adopt the resources such as storage of a computer as efficiently as possible, 
especially for fitting small computers
•use graphical predominance in handling inputting and outputting 
•allow easy replacement in constitutive models 
•be stable and have fast kernel models and solver 
•have easily interfacing with other packages

One of the major tasks of those objectives is to design a data structure.

8.3 D ata stru c tu re

A programmer faces two major problems when he or she is coding a 
program: which model to use and which kind of data structure to adopt. 
Simply speaking, a combination of a mathematical model and a data 
structure is a p ro g ra m ^ ]. For most of the computational structural /  fluid 
mechanics program designers, the biggest headache is how to efficiently use 
the limited computer resources such as the internal storage. Although 
FORTRAN is overwhelmingly adopted as the computer language in most of 
the engineering and science aspects, however, the functions of FORTRAN 
in data management is not satisfied since it has only a static, simple data
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structure. Therefore, a dynamic data structure is designed for most of the 
modules. The idea stems from JINEGS systemt171] but this one is simpler 
and easier to be adopted.

If the whole internal storage resource is assumed to be a large one 
dimensional array as shown in Fig.8.3.1, it can then be divided into three 
regions: director region, record region, and vacant region. Each record can 
also be divided in these three regions, and so on.

Directors'Region "Records1 Region ^  Vacant Region ^

Fig. 8.3.1 The storage divisions

In director region, there are some pointers to give information about the 
record region and the vacant region. For example, the first number of the 
director region gives the total length of the array, the second is the length 
of the director region, and the third is the number of the records currently 
stored in the array. The rest of the elements in the director region are the 
positions of the records currently stored in the array. In this management 
system, the internal storage resource can also be used for much larger 
problems, because it stores the current records only for a module, not the 
whole records for the package. When the memory is nearly full, one 
pointer in the director region will give a sign for the program dumping 
some of the records which are not in use into disk space. When some other 
records are needed which are not in the memory, some of the pointers in 
the director region will change their status and ask to load in these records 
from the disk space into the vacant region. Therefore the whole internal 
memory is managed like a simple virtual memory management system 
within the package. Details about the idea can be found in the reference^7!].

8.4 Input / Output

The external space is accessed by Input /  Output interfaces. The disk files 
can be classified by their usage as the following five types:

•Input Data Files.
•Output Result Files.
•Files from other packages like MOLDFLOW.
•Intermediate Files for memory management.
•Specially formatted graphical Files.
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From a programming point of view, they are just 10 files. The input and 
output functions of these files are designed to be shielded within a few 
subroutines, because they are most likely to be dependent on the machines.

From the experience of using other finite element packages, the format 
and rules of input files are a real headache. A user has to search big 
manuals to find out the way of inputting data, and the error messages 
feedback from running the package are often confusing or misleading. 
Although boundary element methods have the obvious advantage in 
preparing data for some complicated problems, handy graphical pre
processing is the most intuitive way of giving the necessary information 
about the problem to a computer. Any error related to the geometry can be 
immediately detected from graphical output on screen. Therefore some 
subroutines have been designed for the surface drawing, boundary condition 
setting, and so on. After the processing, an input file is produced. Because 
of the time-dependent or iterative requirements, the input file can also be 
produced by the kernel programs during the calculation for re-starting a 
long job again.

Also, some of the input files may come from other packages like 
MOLDFLOW, or sometimes the MOLDFLOW input files are manipulated, 
improved through the pre-processing routines and transferred back to 
MOLDFLOW, or sometimes the initial input files are produced by the pre
processor then transferred to MOLDFLOW. The result files really need to 
be shared by both MOLDFLOW's post-processor and the CASIM post
processor, otherwise too much disk space would be involved in the file 
handling. All these require the 10 interface to be designed predominantly 
using MOLDFLOW file formats, though they are not ideal. Easily, the 
interface can be extended to standardised graphical formats like IGES 
(Initial Graphics Exchange Specification, American National Standard, also 
adopted by several other countries) to handle geometrical information 
exchange with some CAD/CAM software systems, or other formats to 
communicate with other FE packages like ABAQUS.

The result files are produced in order, distinguished by a name with a 
number. The name represents the problem type, and the number 
corresponds to an intermediate result at a predetermined time. Anyone of 
the result files can be read and transferred into a graphical form. Pictures 
are the language of engineering. If there is a picture for the same result of a 
print-out, nobody would like to read the lengthy numbers.
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The graphical information can be stored, transferred in a few different 
forms. For space saving, the graphical information can be packed. For 
animation use, the graphical information at different time steps must be 
stored in the form of pictures in order to increase the speed of showing. 
For laser-printing-out, the graphical data have to be transferred through 
GHOST-80 environment to PostScript files. Some programs with special 
functions have been designed for these requirements. Fig.8.4.1 shows the 10 
layout of CASIM.

INPUT FILESINTERMEDIATE
FILES

Transform
Processing

l-H

FILES FROM 
OTHER SYSTEMS 3</> MOLDFLOW

FILEScroa>

Processing based 
on graPHIGS

Transform
Processing

RESULT FILESFILES for 
ANIMATION etc.

Processing based 
on GHOST-80IBM5080 Series

Other graphical terminals

Choice
board   Hard-copy / /

/  O O J  machine / /
/  O o l°°P rn̂ ~
•J O  O f  V a l u a t o r /L

n n n n l
DDODDOOdODOO PostScript FILES

Locator

Plotters

Laser-printer

Fig.8.4.1 The Input /  Output layout.
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8.5 Modules in Pre-Processor

8.5.1 Introduction

The pre-processor contains some basic functions like surface generation, 
outline checking, etc. Some of the functions are designed to give 
geometrical information for two dimensional boundary element analysis, 
others are specially designed to compensate MOLDFLOW's pre-processor 
SMOD since it is not good enough for giving various geometrical 
information to the program. A new user may have to spend a few weeks 
using SMOD to input a complicated geometry. Some kinds of geometry 
cannot be easily inputted, though theoretically a shape may be just a piece of 
surface which can be expressed by a mathematical function. This pre
processor therefore supplies not only the necessary functions but also the 
potentials for the author to expand the capacity to handle any difficulty in 
generating a correct geometry, and simplify the procedures to make it more 
user friendly.

8.5.2 Surface Generation

Although the geometries in the injection moulding process are three 
dimensional, they are often composed of some shell elements for simplified 
mathematical models because the thickness dimension is much less than the 
other two dimensions. These shell elements are defined by surfaces and 
their thicknesses are contained in the information only in a digital form. In 
this case the surface model for generating a three dimensional geometry is 
preferable.

CASIM pre-processor is designed to use mathematical functions to handle 
different geometries. The information is then transferred into point 
coordinates and surfaces defined by these points. Two input files containing 
the point and surface information are subsequently produced in the same 
format as those produced from MOLDFLOW, so they can be transferred 
between these two packages and compensate each other's shortcomings.

Generating an intersection curve of two curved surfaces is one of the 
advantages of this pre-processor. In the second example of Chapter Seven, 
the geometry of the component has a piece of spherical surface which 
intersects with a series of planes, requires the generation of 14 intersection 
curves. In the following example which is a simpler pivot under an IBM
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PC's terminal, there is also a piece of spherical surface and about 12 
intersection curves on it. The geometry generation would take a long time 
with SMOD. The method used in generating the intersection curves is the 
same as the contour isoline generation which is introduced in section 8.6.3.

TRAY

TRAY

-30

-30

Fig.8.5.1.Two views of the surface generation of the IBM PC's pivot.
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8.5.3 Outlining

It was surprising when it was found out that there was no such function in 
MOLDFLOW to check for lack of connectivity between two connecting 
surfaces —- the problem very commonly encountered by new users. This 
kind of "crack” can result in completely wrong answer to the flow as shown 
in Fig.8.5.2. The mistake is caused by two separately defined surfaces not 
connecting properly each other.

FILL TIME 
5.00 seccnaa

TEST. RES

C.C. CC

6. C. dC

2C. 2. CC

TEST

THE GATE POSITION IS AT * 0 \  AND THE FLOW SEEMS

PASSING THROUGH ANOTHER GATE BETWEEN TWO SURTACLS NEAR ‘ 6 ‘ . -30

Fig.8.5.2. A "crack" line results in a wrong prediction.

For a simple geometry, this kind of mistake can be easily detected and 
rectified. Yet for a complicated geometry, when there are so many surfaces, 
it has to be checked out and shown clearly on screen by the computer. The 
method used here is very simple and straightforward.
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A. A part is defined 
by three surfaces: 

SI: 1-2-3-6; 
S2: 3-4-5-6; 
S3: 7-8-9-10.

B. The line between 
points 3 and 6 is 
cancelled because 
it is shared by SI 
and S2. A "crack" 
line mistake is 
created between 
points 7 and 10 
because the lines 
7-3,3-10, and 7- 
10 are not shared 
by their neighbo
uring surfaces.

C. The outline of the 
part. The correct 
surfaces should 
be defined as:

SI: 1-2-7-3-6; 
S2: 3-10-4-5-6; 
S3: 7-8-9-10-3.

Fig.8.5.3. Schematic view of outline and a "crack" line mistake.

For any geometry defined by polygonal surfaces, the outline of the 
geometry is composed by the edges of some surfaces. Each of these edges 
belongs only to one surface. In other words, any line which bridges between 
two nodes more than once is not a section of the outline. The mistake of a
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"crack" line appears when a common edge of two (even more) adjacent 
surfaces is defined by more than two nodes, and one (or more) of the nodes 
is not shared by the two adjacent surfaces. The lines which connect with this 
node (or these nodes) are therefore exposed as a part of the outline of the 
geometry, as is the line opposite it. Fig.8.5.3.shows the difference between a 
"crack" line and outline schematically. Following this principle, two 
subroutines have been designed. One of them is for checking each edge of 
all the surfaces, and shows on the screen those edges which belong to only 
one surface. The other is for checking each side of all the triangular 
elements, and shows those sides which belong to only one triangle. 
Obviously the former is much quicker because many less loops are required 
than the latter for the same purpose, while the latter can be used for more

tpgeneral cases. Fig.8.5.4 gives an example of checking for a "crack" line 
mistake in a complicated geometry.

DISCONNECTING LINE.

T E S T A

-20

Fig.8.5.4. Checking a crack line mistake in a complicated geometry.
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8.5.4 Re-profile the Wall

Only one thickness is defined to one surface in MOLD FLOW'S pre
processor SMOD. However, for some problems the thickness may be 
required to assign to elements to re-profile the walls of a component in 
order to improve the flow pattern, temperature and shear stress 
distributions as it is mentioned in Chapter Seven.

The function of changing element's thickness is designed in CASIM pre
processor. After displaying the finite element mesh on the screen, one can 
use the locator (mouse) to click the element if the thickness of which is 
considered not suitable for the injection moulding. A new thickness can then 
be inputted to replace the original, and a colour representing the thickness 
appears on the element to distinguish it from other elements with different 
thicknesses. Although the re-profiling of the wall thickness is done in this 
manual way, the wall profile can be intuitively seen by the representative 
colours, and subtle changes in element scale can be made.

Hereafter is the re-profiling of the first example in Chapter Seven. The 
aim of re-profiling this part is to improve the flow pattern in such a way 
that the original radial moving fronts are changed to those very close to a 
rectangular shape with round comers as shown in Fig.8.5.6. This flow 
pattern is realised by thickening up the diagonal paths to the comers and 
thinning out the paths to the four sides as shown schematically as follow:

The path to comer 
is thickened upThe path to side 

is thinned out

Fig.8.5.5. Schematic view of the wall profiling.

These thickness changes can be done, not necessary but the strength of the 
stmcture being ensured, within the tolerance, and only in the back side of 
the plate.
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IBM3.RES

IBM0
0 
0 

0

FILL TIME 
2.73 seconds

0.0023
■
0.55

■
1 .09

■
1 .64

■
2. 18

II
2.73

Fig.8.5.6 The flow pattern after reprofiling the wall.

This re-profiling results in the hotter melt flowing through the thicker 
paths to the comers, arriving there almost at the same time as it reaches the 
sides, and subsequently reducing the shear stress there. However, this re
profiling is just done by using the function of changing thickness element by 
element on the screen, and there is no rule to follow but trial and errors. 
Also there are some other aspects to be taken into account, for example, 
whether or not it would improve the shrinkage and warpage effects, and 
mould machining feasibility, etc. Therefore it should be expected to have a 
sounder research on this wall-profiling work.

The temperature and shear stress distributions after re-profiling the wall 
in this way are given in the next page. The material used here is ABS, thus 
the temperature and shear stress ranges are different from those shown in 
Chapter Seven.



Chapter Eight: CASIM Program Design 220

2 0 8 .  8
TEMPERATURE cleg *- 
2 0 8 . S  t o  2 3 1 . 2

Fig.8.5.8, The temperature and shear stress distributions after re-profiling 
the wall.
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8.6 Modules in Post-Processor

8.6.1 Introduction

The post-processor is designed separately from the pre-processor. The 
object to be processed is directly put into a three dimensional space which 
can be translated, rotated, and scaled. In this way, the object can be easily 
viewed in detail in any direction, from any side, and at any part freely by 
simply turning different valuators (which DRES, MOLDFLOW's post
processor, cannot do). Besides these basic functions, some other functions 
are designed such as displaying mesh result and thickness distribution, 
contouring the physical values for a three dimensional object, displaying 
moving pictures, plotting a vector picture, and so on.

8.6.2 Displaying Mesh and Thickness

Based on the 10 interface and data structure, the plotting functions are 
simply to transfer the element and node information onto the screen in three 
dimensions. The reading and outputting of the data are much quicker than 
corresponding functions of MOLDFLOW's post-processor DRES since not 
much transformation need to be done in this module. With functions of 
turning valuators, the three dimensional object is just like an object in the 
hand, one can view it freely. The lower-right corner box shows a 
coordinate base axes for a clear indication of the view angle, the position of 
origin and the scale of the picture. Command "plotl" gives a colour picture 
in which different colour gives different thickness, and "plotO" gives a 
monochromatic picture using a default colour otherwise defined before
hand. Command "dispnum" can display the node numbers on each node with 
a reasonable size which will not be enlarged when the picture is being 
enlarged. A prompt will appear after the command to let the user give the 
range of the numbers to display. If "fill" command is used, the object is 
then filled with a previous defined colour as shown in Fig.8.6.1.

The output on other graphical facilities is based on a two dimensional 
information. For instance, in GHOST-80 environment the three dimensional 
coordinate data have to transformed into an X-Y only coordinates, then the 
graphical output is possible. In fact, all the laser-printed plots shown in this 
thesis are through this transformation.



Chapter Eight: CASIM Program Design 222

Fig.8.6.1 The objective filled with a colour.

8.6.3 Contouring physical values in a three dimensional object

Contour plotting (or isoline plotting) is normally a wide-adopted  
technique for representing a scalar function of two variables. The technique 
is actually to cut a three dimensional curve surface with a series of parallel 
planes, so that the scar curves left are the contour lines needed. However, 
for contouring on three dimensional surfaces of virtually no thickness, the 
technique can no longer be interpreted in an intuitive geometrical way since 
it is hard to imagine a four dimensional problem in a three dimensional 
space. For instance, a four dimensional function is expressed as follow:

Ax + By + Cz + D f(x , y , z) + E = 0 (8 . 6. 1)
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where A, B, C, D and E are constants, and f(x,y,z) is the scalar function to 
be contoured. The task is to use a series of f planes in four dimensional 
space (like f(x,y,z) = constants) to cut the curved surface. The scar curves 
left on the three dimensional object by the cuttings should then be the 
contour lines wanted. For more general cases the planes are four 
dimensional space planes. For a single element, the technique is interpreted 
in the following steps:
l).Calculate all the distances between node i (i=l,2,3) and the plane with the 
following equation:

D.
(Ax.  + By. + Cz. + Df. + E)

2 2 2 2 
A + B  + C  + D

(i = 1,2, 3) (8. 6 . 2 )

2).Check if there is an crossed point between the plane and each side line of 
the element by the following condition:

D *  D .<  0;
i j

(i,j = 1,2,3; i * j  ) (8.6.3)

3).If equation (8.6.3) is satisfied, calculate the coordinates of the crossed 
point between the ith and jth node by

x = x . +
(Ax.  + By. + Cz. + Df. + E) (x. -x . )

1 J A*(x. -Xj) + B(y. -y . )  + C(z. -z . )  + D( f . - f .) 

(Ax.  + By. + Cz. + Df. + E) ( y . -y . )

y y ‘ + J A*(x. - x ^  + B(y. - y .) + Qz .  -Zj) + D(f. - f . )  

(A x. + B y . + Cz. + Df. + E) (z. - z .)
z = z. +

1 J A*(x. - x ^  + B(y . - y ?) + C(z. - z ^  + D(f. - fj)

(8. 6 . 4 )

4).The number of the crossed points in an element must be even, so check if 
there are crossed points on adjacent sides, or otherwise on the opposite 
sides, connecting them in pairs with a line.
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If all these four steps are done for all the elements, all the segment lines 
will assemble a curve which is the scar curve left by the cutting plane. If the 
same steps are done for all the elements by a series of parallel planes of 
f(x,y,z) = constants, all the scar curves left by the these parallel planes are 
the contours wanted.

The subroutines for this function are PROFILE, DISTANCE, CROSS.

8.6.4 Vector an Fibre Plotting

One of the basic requirements for post-processing of a numerical analysis 
of a flow problem is the vector plotting. To the author’s surprise, the 
MOLDFLOW version 5.4.2 here doesn't have the function to plot vectors. 
In fact, the result file produced by the MOLDFLOW doesn't even have the 
information of the velocity field since the basic variables are not velocity 
components. Therefore it cannot be used for studying either the velocity 
distribution across the part geometry, or the fibre-orientation. Only by 
writing one's own program, can these phenomena be studied and displayed.

The basic variables designed in CASIM include the velocity, therefore a 
vector display function for the velocity field is designed. Since the 
mathematical base behind this function is very simple, it is not necessary to 
mention it here. The subroutines for this function are VECTOR and 
ARROW. The vector pictures for this thesis have already shown in Chapters 
Five and Six.

The fibre plotting is based on the information of the fibre position and its 
orientation angle. Because of the assumptions used in the fibre orientation 
calculation in Chapter Five, the length of a fibre is not important (only for 
short fibres). Therefore it is just an input parameter here.

8.6.5 Representation of Shaded Objects or Functions and Images

The representation of shaded objects or functions and images is quite 
important in modem CAE techniques. Although a screen is a two- 
dimensional medium, a user can have an intuitive perception of a three 
dimensional object or function by using this technique. It is also one of the 
author's own interests to design the function into his own package.

IBM5080 has the capacity to display an image of 1024x1024 pixels with 
256 colours or grey degrees. In the graPHIGS disk of the main frame there 
is a module called WINSOM which can produce an image file. The data
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required for this module is typically a solid model of a geometry, which 
needs the resolution, light positions, rotation angles, scale, and the positions 
and sizes of some primitive solids, such as cube, sphere, cylinder, cone, and 
so on (as shown in Fig.8.6.2). These primitives are combined through the 
use of Boolean operations of union, intersection, and difference to construct 
complex shapes. Any shape produced by this operation is then transformed 
from a vector-oriented form to a raster-oriented (or dot-matrix) one with 
256 levels of colour shading. This function is also one of the objectives for 
extending PHIGS, which will be included in PHIGS(++)[173h therefore the 
author does not need to code his own module to replace WINSOM.

Bpife

Fig.8.6.2 The geometrical primitives for constructing a geometry
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The format of the image file is a square matrix which consists of 2nx2n 
(n=l,10) EBCDIC codes to represent the pixels. Each of the codes 
represents a colour or a grey degree of the pixel. Since EBCDIC codes 
represent 256 different characters, the basic requirements for a subroutine 
to display the image is to load in the image file and to translate the codes 
into the corresponding colour numbers, and then send the pixels onto the 
corresponding positions of the screen. The colour pictures of the runner 
system in Fig.7.5.14 (page 194) are the examples of the images.

Another task for the image representation is to construct a PostScript file 
of the image which subsequently can be transferred through the computer 
network to other systems. For instance laser-printing of an image requires a 
PostScript file to describe the pixels.

CASIM

HI

Fig.8.6.3 A three dimensional image of a part geometry
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Since the version of graPHIGS here can only display 64 colours or greys 
onto the screen at the same time, and the laser-printer can only accept 16 
greys, another function is to reduce the image grade down. Although the 
images have lost their nice colours and greys by such downgrading, the 
print-outs of them through laser-printing are still quite impressive. 
Hereafter there are some images printed from laser-printer 3820.

CASIM

/

Fig. 8.6.4 A three dimensional image of a section of a large molecule
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8.6.6 Animation

For studying a time-dependent problem, one task for post-processing is to 
be able to display animation which demonstrate the physical phenomena 
changing with time. CASIM is designed to show such kind of movie-like 
pictures. Since there are a large amount of data to handle, CASIM is 
designed to give users two choices in using this function. The first choice is 
to store all the information needed throughout the time period by relatively 
permanent result files, each of the files representing the physical fields at a 
time step. The digital result files have to be transferred sequentially into 
graphical files first and be stored in the disk, before all the graphical files 
can be displayed at a speed which can give the impression of a movie. 
Details of any individual time step can be chosen to be displayed again. The 
second choice is to connect the post-processing with the kernel computing, 
that is, to display the flow fields at the end of each time step of BE 
computation. Obviously, the first choice requires a very large disk space, 
but the animation can give a relatively fast speed and all the information of 
the result files is retained to be re-displayed without the computation again. 
On the contrary, the second choice requires only the necessary disk space to 
carry out the computation, but the animation is relatively slow, and the 
information has to be retained by auxiliary equipment like a video camera 
with a time-setting function.

8.7 BEM Modules

8.7.1 Introduction

In previous chapters (Three, Four, Five and Six), the mathematical 
developments for different boundary integral equations describing different 
problems in injection moulding and the numerical examples have been given 
in detail. The implementations of these models yield the following four 
BEM (Boundary Element Methods) modules which become the kernel of 
CASIM. Although there are quite big differences between Laplace and 
Stokes equations, and between steady and unsteady problems, the layouts of 
the flow charts for these modules appear to have many similarities, and are 
even identical in a more general view.

Simply speaking, these similarities stem from the basic principle behind 
the boundary integral equation method. It can be seen that the common
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features of these four boundary element approximations are similar to those 
in the finite element methods which include evaluation of a local stiffness 
matrix for each boundary element, assemblage of the local stiffness matrices 
into a global stiffness matrix and the known boundary conditions into a 
vector to form simultaneous algebra equations, and finally the solution to 
the equations.

The differences come from the intrinsic properties in each of the 
governing equations. An unknown vector field requires double or triple the 
calculations of a scalar field in the evaluations and assemblages for the same 
number of elements; Time-dependent problems require a domain integral to 
be evaluated. The most essential difference is from the fundamental solution 
corresponding to each of the controlling equations.

From a viewpoint of reducing the whole program length to save the 
computer resources, the similarities might be used in the program structure 
design, that is, the same subroutines could be called for the same purpose in 
a different module, and the differences could be made by the interfacial 
arguments of the subroutines. Nevertheless, this kind of programming 
should be used only in some cases with extreme care because it breaks the 
rule of a "tree structure" — a module cannot be called by two or more 
modules in higher level. In fact, the predominant computer resource is the 
internal storage, which can be saved by separately using each of the 
modules. Therefore each of the modules is designed to reside in the internal 
storage temporarily by its own. However, the similarities can be certainly 
used for drawing flow charts for saving the pages here, and the differences 
are then explained later.

8.7.2 Flow Charts

Here is the flow chart (shown in Fig.8.7.1) for the simplest boundary 
element model — potential problem controlled by a Laplace equation. The 
basic structure of other boundary element models will not have much 
difference in terms of the boundary integrations. It is assumed that the pre
processing has been done so that all the boundaries have been broken into 
elements and the input files contain all the necessary information and the 
corrections have been checked.
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Q Read input files ^

Assign all the Gaussian and other parameters

YES NO
I=J?

Which boundary condition 
is for the Jth element

End of loop for J

End of loop for I

End of loops for J & K

Solve the matrix equation

Generate the result files

Assemble the right hand vector

Assemble the global matrix

Essential boundary condition: 
pass on.

Gaussian formulae to 
evaluate the integration

Loop for all the internal points 
__________ K=1,NN_______

Analytical integration 
over the collocation element

Loop for all the boundary elements 
___________ (J=1,N)___________

Gaussian formulae to evaluate all the 
physical values on the points

Loop for all the boundary elements 
(1=1, N)

Loop for all the boundary elements 
(J=1,N)

Natural boundary condition: 
swap between the coefficients 
for the known and unknown

Figure 8.7.1 The flow chart of a boundary element program.
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From this flow chart it can be seen that some modules can be drawn in 
terms of distinguished functions. For example, the first box can be written 
in a module called "INPUT”, and the second called "GAUSS" for short. The 
function in the double loops after GAUSS is to form the coefficients of the 
matrix equation. Thus the module for the whole double loops is called 
"FMAT" for short. The module for solving the equations is obviously called 
"SOLVER" and the standard Gaussian elimination method is used in it 
because the matrix is a fully populated positive unsymmetrical one. The 
physical values on all the internal points are produced in module called 
"INTER" which differs from a lower level module called "INTE". This 
module is called by FMAT and INTER to perform the Gaussian formulae 
for evaluating the boundary integration, and the analytical integration over 
a collocation element is carried out by "INLO" module. The result files are 
produced by "OUTPUT" and "PLOT" modules for printing-out and 
graphical display, respectively.

No

Yes
End

Time steps 
^finished

INLO

PLOT

INTEDINTE

OUTPUT

FMAT

SOLVER

INTER

GAUSS

INPUT

Increase a time step

Figure 8.7.2 A flow chart composed of modules
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In fact, all the boundary element models in this thesis involve a time- 
marching scheme. Thus a bigger loop for the time steps begins from FMAT 
and it goes through the rest of the flow chart until the physical fields at the 
moment are saved in the result files. For real time-dependent problems like 
transient heat conduction in Chapter Four and unsteady viscous flow in 
Chapter Six, a domain integral has to be evaluated. The module for 
evaluating the domain integral is called "DINTE" which is used within 
INTER and FMAT modules. For the transient heat conduction model, the 
coefficients of the matrix are the same in each time step, but those in the 
right hand side vector alter with time. A flow chart composed of the 
modules explains the procedure schematically in Fig.8.7.2.

Two more modules are added in the flow chart for the boundary element 
programs in Chapters Three, Five and Six. They are called "MOVEP" and 
"ADDPT". The main function of MOVEP is to move the nodes on the 
boundaries and / or internal points at their own speeds. From the examples 
given in these chapters it can be seen that there are the following cases. In 
some examples only the boundary nodes are moved with time to give a flow 
pattern of the front positions. For the problems in a frame of moving 
reference only the internal points are repositioned at each step to 
demonstrate the particle orientations. For a purely Lagrangian type flow 
both boundary nodes and internal points have to be updated to allow 
progression to the next step. Therefore at the interface of MOVEP an 
argument is passed indicating which group of points to move. Only those 
which are permitted to move in a specific direction (or directions) can 
move, and once they meet the wall, the conditions on them will be changed 
so that next time they cannot move so freely again. The functions of module 
ADDPT are to add and/or delete a node on the boundary. If the length of a 
boundary element is longer than a critical length (which is 1.2-1.5 times of 
the average length of all the elements in the programs), the module will 
automatically perform the '’adding" function to insert a node between the 
two nodes defining the element. Then the boundary conditions and the 
physical values will be assigned to the new node and element. If the opposite 
case happens a node will be take away and the two adjacent elements will be 
joined together. Owing to the data structure, the insertion and deletion cause 
only the numbering system a little change, and the cells which other nodes 
have occupied for their information will not be repositioned. A block flow 
chart is shown below for this type of moving boundary problems.
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MOVEP

Yes

No

_  Add in result files ADDPT

Add or delete ?

Pre-given time 
steps finished

Have they met wall ?

ich group to movg2

DINTE

INLO

INTE

INTER

SOLVER

FMAT

GAUSS

INPUT

All the points

Insert node(s) Delete node(s)

Boundary nodesInternal points

Add in result files

Increase a time step

Change the 
boundary 
conditions

Figure 8.7.4 A block flow chart for moving boundary problems.

8.7.3 The differences

The lower level modules INTE, INLO and DINTE are coded for 
carrying out the integrations involving the fundamental solutions. Thus the 
basic difference in these four fundamental solutions appear to be included in
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these three modules. There are some other differences which are explained 
in modular blocks below.

Boundary Element Method for Steady Temperature or Potential 
Flow problems. The basic unknown for the matrix equation is a 
potential or a temperature field. If it is for a velocity potential, the 
unknown velocity components can be worked out in an explicit 
evaluation. These values on the internal points can be evaluated, in 
the same way as the potential values in INTER, by calling a lower 
level subroutine called INTEV. Yet the values of them on the 
boundaries have to be approximated by using equations (3.3.4) 
which use the flux values on the boundary. The calculation of the 
boundary values is coded in a lower module called BOUNV.
A time-marching scheme is needed only for a moving boundary 
problem, like the examples shown in Chapter Three.
BEMST can be easily extended for solving a Poisson equation 
which needs a domain integral to be evaluated.

BEMST

BEMTR

( Boundary Element Method for Transient Heat Transfer problems. 
The basic unknown for the matrix equation is a temperature field.
A time marching scheme is needed, because the boundary never 
moves, the coefficients of the matrix will not be calculated again 
except the right hand side vector. A domain integral is needed for 
the base of forward time-marching.
For a multimedium heat transfer problem, all the geometrical and 
physical data group in terms of different media. FMAT is coded to 
handle the interfacial elements when their corresponding coeffi
cients are put into the proper positions in the global matrix and right 
hand side vector.
In order to reduce the size of the matrix, a trial program of the 
model without the interfacial elements is coded. The difference is 
in the calculation of the distance inside the module INTE.

BEMSV

Boundary Element Method for Steady Viscous Flows. The basic 
unknowns for the matrix equation is the velocity components of a 
fluid flow field. The storage and calculations then doubled for a 
two dimensional problem. A time marching scheme is needed only 
for a moving surface problem in which case all the coefficients of 
the matrix have to be calculated again. A domain integral is needed 
for moderate or higher Renolds numbers' problems which are not 
the common case of injection moulding process.
The pressure, strain rate on the internal points can be worked out in 
a explicit form, and the formulas for the pressure, strain rates are 
coded in lower level modules called INTTP & INTES, respectively. 
For the pressure, strain rate values on the boundary nodes, another 
module called BOUNPS covers the calculation which uses the 

^formulas given in Appendix C and avoids the singularities. ______
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BEMUV

f Boundary Element Method for Unsteady Viscous Flows. The basic 
unknowns for the matrix equation is also the velocity components of 
a fluid flow field. Since it is in a Lagrangian description, all the 
points move with time, the coefficients of the matrix are calculated 
in each time step. A domain integral is needed for the base for 
forward time-marching, and another module for evaluating the 
boundary integral for the previous time step's flow field (referring to 
(6.3.10)) is added for the time-marching.
In FMAT, the coefficients for the collocation element are calculated 
based on the equations (6.5.13-14).
A module for calculating the gravitational force is added.

8.8 M iscellaneous

There are some other functions of CASIM which are not introduced in 
the previous sections because of less important and unnecessary lengthy. 
Some of them are mentioned briefly hereafter.

Two-dimensional geometry inputting by using the locator: One can put a 
two dimensional graph on the locator-board and use the locator to follow 
the boundaries / curves to input the information into the program. It 
appears on the screen and all the coordinates can be saved.

Displaying the functional keys of the choice board: when one puzzles how 
to use the function keys in the choice board, press one of the keys to display 
the all the menu immediately.

Palette: one of the functions is to set up the colour table. Theoretically, 
IBM5080 graphical terminal can display 32,767 colours. All one should do 
under CASIM status is to use the palette function, and click a colour, use 
three of the valuators to give the percentages of RGB (Red, Green, and 
Blue) to reset it.

Setting-up the boundary conditions: for a two dimensional problem, the 
boundary conditions can be setup by clicking each of the boundaries and 
give a sign for the correct condition. All the signs can be visualised on the 
screen so that they can be checked directly.
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Chapter Nine 

Concluding Remarks

In the previous chapters the mathematical models for computer 
simulation of injection moulding have been presented. Although the 
practical computer simulation work of some IBM's computer parts is based 
on a finite element package —  MOLDFLOW, the development of boundary 
element techniques is the emphasis of the thesis. The obvious benefits in 
using the boundary element techniques have been shown through the 
examples, as the system equations are expressed exclusively in terms of 
unknowns at boundary nodes. The methods are especially attractive in 
moving free surface problems which usually require mesh generation at 
various stages of the analysis. Based on the theoretical developments, these 
models can be implemented for a three dimensional case. Although some 
form of domain integration is required when analysing the viscous flow 
problem, or the time-dependent heat transfer problem, the corresponding 
discretisation effort is relatively minor in contrast to what is involved in 
generating a full finite element mesh. However, it is precisely because of the 
domain integral involvement that the boundary-only scheme is considered to 
be limited in the case of material and geometric linear problems. From 
Chapter Two to Chapter Six it can be seen that the further work on these 
topics will unavoidably encounter a domain integral evaluation. In the last 
section of Chapter Two, a dual reciprocity method is introduced for 
overcoming the barrier, and in Chapter Four, the method is proposed again 
by the formulation for transforming the domain integral into boundary 
integral series which involves the temperature field at the previous time 
step. As long as the method works, some more developments can be easily 
done. Therefore the immediate work and the next step should be the 
implementation and examination of the dual reciprocity method.

Yet this is not the only problem occurring in the development and 
application of a boundary element method. From some references it can be 
seen that the method is better suited in a convex domain, otherwise the 
domain should be divided into convex sub-domains. This kind of division, 
however, may not be known beforehand if the domain has a moving 
boundary, such as the melt flow during the filling stage. For the cooling 
stage, a complicated geometric part may require a great number of
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interfacial elements for multi-medium heat transfer analysis. Thus the 
potentials in further reducing the size of this type of problem are conceived 
in the discussions in Chapter Four.

If domain integral involvement and a concave domain are no longer of 
worry in the application of a boundary element method, the development of 
the integral equations for the temperature and pressure in Chapter Three 
can then be easily implemented. The whole physical phenomena of the melt 
flow in a thin cavity with an uniform thickness will then be worked out with 
much less computing effort. The problems mentioned in the discussion 
section of Chapter Three are still to be solved.

The generalised Newtonian flow models used in Chapters Two and Three 
should not be difficult to use in the formulations of the boundary integral 
equations in Chapters Five and Six. In fact, the creeping motion models are 
not limited to Newtonian flow. Starting from the creeping motion models, 
the boundary element techniques can be theoretically extended for studying 
flows with any kind of constitutive model. Tran-Cong and Phan-Thient133! 
suggested a way to handle the non-Newtonian model within the Navier- 
Stokes equations, the parts of the extra stress tensor representing the non- 
Newtonian effects being put in a domain integral. Tosaka and Kakuda^151! 
also proposed that the Newtonian part and the time dependent part are 
separated from the extra stress tensor, and the remaining part joins the 
forcing vector on the right hand side. In this way the resulting equations can 
be transferred into a group of boundary integral equations. Apart from a 
domain integral which arise from the treatments of a non-Newtonian model, 
there is another difficulty troubling us — the convergence of the iteration 
with the domain integral. Nevertheless, complicated constitutive models are 
not advised in computer simulation of the melt flow in injection moulding 
process, because nowadays only the dominant characteristics need to be 
efficiently worked out. The further development of creeping motion models 
should include the temperature and shear-rate dependence of the viscosity, 
which means the energy equation must be taken into account.

It should be realised that the inherent limitation of the boundary element 
method is that it is based on the direct utilisation of a weight function — 
preferably the fundamental solution for the governing equations. What has 
been done in this thesis are the developments and applications of those 
equations for which the fundamental solutions are well known or can be 
worked out. In more complicated cases, for example, the compressible fluid
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flow model which should be used in compression stage of the injection 
moulding, the fundamental solution(s) may not be obtained.

Using an existing package is very convenient for analysing physical 
phenomena appearing from a problem. Yet it has to said that for research, 
the creative ability may be limited within the capacity of the package. One 
can never do anything beyond what the package designers have coded. Of 
course nowadays computer packages are designed more and more flexibly 
and source statements are accessible by a user. This should be included as 
one of the basic requirements for CASIM program design.

Finally, it is well known that the topics in computer simulation of 
injection moulding include not only those which have been appeared in this 
thesis, but also many others. There is still a long way to go in the research 
on this work. This means that the research should never be limited to 
computer simulation, it must combine the theoretical and computational 
studies with the corresponding experimental ones.
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Appendix A

Integral Formulation For Heat 
Convection With Constant Velocity

The integral equation for this case can be easily derived by using the 
weighted residual method, as we use the fundamental solution as the weight 
function for equation (4.3.4) over the spatial and time domain f2x[t,t0]

ji
Q

a T  .. -  tr.5,.T . - 2 ^
>JJ 1 Ij . J d t

T dQ dt' = 0 (A .1)

Integrating it by parts it becomes

i f - “ . V F V  -J[(ofr , -« ,81jt ) t ; j + § t
c i r

dQ dt’ = 0

(A. 2 )
The first part of the second integral can be integrated again by parts:

j [ f  ( a T  j -  tri5ijT ) T ’ n jd r  -  J a T T > j d r l d t ' +
* \

aT*.. + 0 , 8  -T*. + ,
. jj i  ij j  3 t  J

dQ df - i n
j dT

dV d t '  J
dQdt' = 0

loLr

t0n ^ —  t0a
(A. 3)

The first domain integral disappears since the adjoint equation equals 
zero before time t, and we have the following equality from above 
derivation:

if/', r “ TT T d r -J(“f
V*
T dr dt’ +

J •
1
J3(TT ) 

d t '
dOdt' = 0

(A. 4)
The last term of this expression can be modified by interchanging the 

order of integration, i.e.
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If 3(TT )
“ a F ~

dQdt '=  [ t t I  dQ -  f TT*J t' = t J t’ = t.
Q. Q. 1

dQ (A. 5)

The fundamental solution has the following property:

lim T = 5(x -  x ')
t' -> t

(A. 6)

so that the first integral relates directly to the value of the temperature at 
point x and at time t. Finally, we have the integration equation for the 
temperature distribution in the fluid field:

cT(x, t) = J TT
Q. t'= t dQ + 1 1 / „ 3T _  rj.

3n r i J[r*dr- JaT -^-dr
r 9n

d t’

(A. 7)
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Appendix B

Exponential Integral Function 
and Its Approximations

The exponential integral function is defined by

B i o o - r v du (B. 1)

The series expansion of this function is

^  ( - l ) nxn
/x )  = - y " inx -

n = 1

(B. 2 )

where y=.5772156649 . . . .  is Euler's constant.
The polynomial and rational approximations of this function is given as 

follows:

E ^ x )  = - ln x  + a Q + a 2x + a 2x2 + a 3x 3 + a 4x4 + a 5x 5 + e(x) 
a Q = -  . 57721566, ^  = .99999193,a 2 = -  . 24991055, 
a ,  = . 05519968,a = -  . 00976004, a ,  = .001078573 4 ’ 5

0  < x < 1; |e(x)| < 2  x 1 0 ~ 7

(B. 3)

E 1(x) =
 ̂ x4 + bjX3 + b 2x2 + b 3x + b 4 

xex x4 + CjX3 + c 2x2 + c 3x + c 4 

b j = 8. 5733287401, b 2 = 18.0590169730, 
b = 8. 6347608925, b = . 2477737343

3 4
Cj = 9. 5733223454, c 2 = 25. 6329561486, 
c = 21. 0996530827, c = 3.9584969228

3 4

1 < x < oo; |s(x)| < 2 x 10  8

+ e(x)

(B. 4)

The integrations over the linear collocation element can be evaluated 
analytically:
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3 - y - l n S - £
n =  1

n(2 n + l ) ( n  + 1)!

R

■0 R

R  

'0

l - y - l n S - £
n =  1

( - l ) nSn 
n(n + 1 )!

■ s ' J o O - i )  E . (s)dr
oo

n  _y _ l n S _ ^R
3

n

11 . , O V  3 H )  S
3 Y m s  Z rfn (2n + l ) (2n  + 3)(n + l)!

n =  1

I 4 = J R4 E 1(s)dr =
4 O R 1

n
2 . , o V  3 H )  S
3 Y InS 2_! n (2n + 3)n!

n =  1

(B. 5)

(B. 6 )

(B. 7)

(B. 8 )

2  ̂where s = ocr and S = aR  , a  is a constant.
Each of the four infinite series is practically formed by the products in

which the general terms are given as follows (superindex is corresponding
to the order of the integrals):

s ’. = ! ; s ' . = s '— (a V i i ^ r )). s  ( a 9 )

s ^ sI. - > ( 7 r r r a - s  < B 1 0 >

Q3 - A .  q3 - c 3 (2 n -  1) (1  -  n) p
3o > n - n - i ( 2 n  + 3 ) (n  + l )n *■ J

4 S 4 4 (2n + 1)(1  ^  n)
S = f ;  S n = S /  ; S (B. 12)

i  5 n n - i  n(2 n + 3 )n
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Appendix C 

Pressure, Stresses and Strain Rates 
on Boundary

At each boundary node, the pressure P, stresses and strain rates can be 
determined by solving the following relations simultaneously:

a . . ( 0  n .(0  = ( C l )

a ..(Q  + 8 . . R e P ( 0 - U i j( C ) - U . i(O = 0 ( C 2 )

d x .
U. (C .3)

m  1(0

ReP(Q + = 0 (C  4)
ii

For two dimensional problems, there are nine equations from which nine 
unknowns are to be solved. Two further relations can be used:

<*xy = °yx (C  5)

U M + U yy = 0  (C  6 )

Then equations (C.l) become

^xxn x ^xyn y — ^ x   ̂ .

°xyn x + °yyn y = T yJ

Equation (C.2) become
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G„„ + ReP -  2U xy = 0
Oyy + RCP -  2Uyy = Ol. 
°*y “  U xy -  I V  = 0

(C8)

Equations (C.3) become

,21
xU x*X2 1 + U xyy2l = U  

U yx X 21 — U x * y 2i — ^ y  J
(C 9)

and equation (C.4) becomes

ReP + | ( o n  + CTyy) = 0 (C. 10)

In fact we can reduce the number of unknowns to four: P, Uxx, Uxy, Uyx. 
(C.7a)Xny plus (C.7b)Xnx gives

U xy +  U yx -  T xn y “  T yn x =  2  R e P n xIly ( C l l )

(C.7a)Xnx minus (C.7b)Xny gives

2 (2 n x - l J U , ,  = (2nx - l)R eP  + T xn x -  T yn y (C 12)

From equation (C.9) we can see that if y2i=0 , then nx=0, and

r21u ~  u y
^ x x  ~~ "xTT’ ^ y x  ”  Y

21 rr, - t t 21 ,
yn y ”  2 U X / X 2

; P =
21 21 (1 -  2ny)Re

(C 13)

if x2i=0 , then n = 0 , and

U
^ x x  ~  y

21 r21 r21

21
_  U x . p  _  T xn x +  / y 21

» U YV — v » *■xy 21 - R e (C. 14)
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In other cases

P =

21

X21

X2l l ( T xn x - T yn y)

21) (2 n i  -1)
+ 2

(  u 21 u 2yn
xn y + T yn x y  -----

21

^ 2 1  X21 

VX 21 y 2i ;

21 J

Re -4  R enxn y

U =

( T xn x - T  n )
2n n --------- ~----------- + T xn + T  n v

x y (2 n x - 1 ) x y y x y
XX

21 21

LVx 2i y 2t;
4nxn y

U = U  — + — yx xx x 21 T x
Uy1 U x X 21

y ; U tv = ^ l - U .  21
21 *y y 2i 21

21 X 21

(C. 15)

(C  16)

(C 17)
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Appendix D 

Operator Matrix Approach for 
Rederivation of Oseenlet

Here the fundamental tensor solutions satisfying the following system 
(time dependent creeping motion equations) are rederived by resorting the 
Ho inlander's operator matrix method

c * =  -  ReP, 8 .. + u* . + u* . (D. 2)
ikj k ij ik,  j j k,  i v

d u *

° k r Re^ f + b ik = °  <D- 3 >

in which the tensor force can be defined as:

b ik= - 5 . k5 ( x - x ’) 5 ( t - t ' )  (D. 4)

Equations (D.1-D.4) imply a fictitious unsteady viscous flow field in 
which the velocity component in the i-direction at the observation point x at 
moment t is caused by a source of unit strength in the k-direction at point x' 
at moment t'.

Substituting Equations (D.l), (D.2) and (D.4) into Equation (D.3) yields:

*

-  R e p k,j5 ij +  V j j  -  R e ^ f  =  8 i , A x  -  x ')5 ( t  -  l ') ( D - 5 )

where Re is the Reynolds number.
This equation together with equation (D .l) can be summarized in a 

matrix form as follow:
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A - R e
at

o 0 - R e D

0 A -  Re at 0 - R e D

0

D

0 A -  R e -  ReD .at 3
D D 0

*

u l k 5 , k

*
U 2 k S 2k

< > =  " >
*

U 3 k § 3k

*

r

, 0  ,

^ ( t  - t ' ) 8 (x - x ' )

(k=l,2,3) (D. 6 )
where D ^a/axj (i=l,2,3). This equation can be written in a more condensed 
form:

[L ij]{ Ujk} = { 5 ik5(x " x,)8(t -  1,2, 3 ,4; k = 1 ,2 ,3 )  (D. 7)

where U*4k= P * k. The determinant of the matrix [Ly] by the formal 
calculation is given by:

L = d e t f L -  A -  R e ^ -  A =  A - R e ^ - L '
i  yJ v 3t y v d t j

( D . 8 )

in which L'=(Re3/at-A)A, A is a three dimensional Laplace operator. The 
adjugate matrix of [Ly], whose component is the cofactor of the entity Ly, 
is denoted by [My]. The matrix is given by:

[ M » ] = ( 4 - R' ! ) [ “ «]

where the matrix [M y] is represented by:

(D.9)

[M-

2 2 
D 2 + D 3

- ° 1D 2

- D id 3

- ° 1D 2 

2 2 
D t + D 3

- ° 2 D 3

- D 1D 3

Re Re-r— A 
dt Re R e^— A 

dt Re

- ° 2 D 3
2 2 

D i + D 2

a v  
Re-^- -A  

3t

( a ^
A - R e ^ -  

A -R e  4 -

? s i
A - R e —-v at y

a d a i iA -R e -r-

D

D

D

v a t; Re

(D. 10)
The following two relations can be established for Ly, Mjk and M'jk:
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[Ljj][Mjk]=L5ik (i,j=l,2,3,4; k=l,2,3) (D. 11)

and

|L y ] [M jk] = L ,8 ik = 5 ik( R e - |- A ) A  (D. 12)

therefore

;Lij]{uj j = [Lij][M'jk]°=5ik(Rei  - a)a®=5 ik§(x - ^
(D. 13)

Cancelling 5ik in both sides of the last equality, following equation is 
finally obtained

Re-^—  A 
3t

AO = 5(x -  x ')8 (t -  t ')  (D. 14)

Accordingly the explicit forms of the solution for the velocity and stress 
components can be produced:

j j - ® *

o * . = (5.1,D. + 8 n,D. +8 . .D JA ® -2<& ....- R e 8 . .^ - 0  . (D. 16)
ik j  ik  j  j k  l ij  r  , l k j  iJ d t  » k

It is convenient to assume the following expression for solving equation 
(D.14):

vF = ReAO (D. 17)

Then the equation becomes:

xF = 8 ( x - x ,) 5 ( t - t ' )  (D. 18)± - - L adt Re

whose fundamental solution is known:
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ReH(t, t ) f — Rer
^ = ------------J72 exP TTTTFT

[4jc(t — t ' )] y
(D. 19)

where r is the absolute distance between the source point x' and the 
observation point x, d is the number of dimensions of the space, and H(t,t') 
is Heaviside function.

Substituting this solution into equation (D.17) yields

H( t , t ’)

[4 * (t - 1’)]
d/2 expf " Rer2  1

V 4(t -  t ')  J (D. 20)

For two dimensional problems (d=2), it is not necessary to work out the 
solution of <3> according to equations (D .l5) and (D.16) because of the 
following relations:

dO dO dr dO dO Or
dx d r dx ’ dy dr dy

where

dO H t . f )
dr  2 Re7ir C -  exp - R e r 2 

^ 4( t  - 1') JJ (D. 2 1 )

Here C should be an arbitrary constant. This constant can be chosen by 
approaching t' to t in equation (D.20). According to one of the properties of 
the fundamental solution (D .l9)

lim Re - R e r 2 = 5(x -  x !) (D. 22)

Replacing the right hand side of equation (D.20) by H(t,t')S(x - x'), C is
1 .

Substituting those relations into equations (D .l5) and (D.16), the 
fundamental solutions of u*ik and c * ikj can be finally obtained

x.x,i ku*ac = 8 ik( A ® - S 1( r ) ) - - ^ ( A « I » - 2 S 1(r)) (D. 23)
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The stresses in two-dimensional case are:

= -  ( 5 ikx j + V k + 5 jkx i ) [ ^ T 7 y + -  2S, W)

+
4 x .x . x .i k j 2 ( A O - 2 S l(r ) ) + | | d ^

K e x \ * i ± r
ij k |  i n  Rer2

- 5 . .  Rex 1 -  expf  -  Rer2 ^ + AO
V 4(t  -  t ' ) 2 (t — t*) J (D. 24)
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Appendix E

Analytical Integrations over the Linear 
Collocation Elements For S0(s), and <D(r)

S 0(s) = t [ 1  -  exp( -  s)]; s =

dr
r

Rer-
4At

ReRi
4At_ d c

2r :
4At , ds--------9-dS = -7T-

2 Rer2 2s

r R x un -
l l = J O , n . d r =  k L f JL 

, k * * i ~ ‘ 4 t c R  Ja „ 2

 i_ f S1 -  e
47lR J0 t

0
x ,n

k •d t  =
o r l 

J 1-k  l

1 -  exp -  Rer2

47tR

V 4At 

E^S) + In S + y

dr-

(E. 1)

f R r  x v n -
I = & n.-5 -dr =

2  J q  , k  1 R
L_ f l

Jn
s 1 -  e~ 1

x,n.  (
k  1

4t c R V s  0 V t dt

4tiR V s
2V s  -  J V i  , f -  V i

0 V F  J 4 ^ R 2-  A | e r f ( V S )

■j * r s . ( ! )d , = / S '  J . r T T 9  -  e " ) dt “t V F

L > ' " s - 1, + 2iSj C i  l  V t d t

- L ( e - s  _  j )  +  2V t T e r f ( V S )
. V S

(E.2)

(E. 3)

L  J0 R ^o(s)^r ReR J 0 So(-t-)dt ReR-E V  + lnS + T_ (E.4)

i 5 =  J oR^ s 0(s ) d r = v ( | L ) 1-5 j os _ i r a _ e - t ) d t  =

0 R 
 4_f At_

R2V Re

1. 5

) ( 2V S  -  V T T e r f ( V s )  ) (E. 5)
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V r r [ S . ( s > - e - !]<lr = +  l y ( l  - e  l) - e  1 dt
t

e_s -1  
2S

: 7 = - e- s ] d r = ^ w  j ! t (i - e“ ) - e~ t

1 _  f./^ J,

dt
■o R 
(e~S - 1) , 1

S 2 V S Jo V t

2-Vs “  o
(e~s -1) V i - 

S 2 a /S

JV F

erf(V S)

I 8  = 0 [ S o ( s ) - l ] d r = - | 0 ( l - e - t) - l _ dt
t

e ~ s -  1
E ( S ) - l n S - Y

2y/S
2( e~s -  1)

Vs

2-i/s

+ 2sf% e r f (V S )  -  2 V S

dt
V I

( E 6 )

(E.7)

(E. 8 )

(E. 9)
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Appendix F 

Error Function and Its Approximations

The definition of the error function is

e r f ( x ) = w  J 0 e x p ( “ t 2 ) d t
(F. 1)

Its series expansion is

erf(x) = Y —^  n!
(-D x

vTc" ^  n!(2n + 1 )
n = 0

(F.2)

The rational approximation of the error function is given as follow:

erf(x) = 1 —(aj t + a 2t2 + a 3t 3 + a 4t4 + a 5t 5)exp(-x2) + e (x ) ;

t = 1 ; |e(x)| < 1. 5 x 10 7;
1 + px

p = . 3275911; a x = . 254829592, a 2 = -  . 284496736, 
a 3 = 1. 421413741, a 4 = -1. 453152027, a 5 = 1. 061405429

(F.3)


