VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk



http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

STUDIES
OF
MAGNETIC OPTICAL
ACTIVITY
IN

RAMAN SCATTERING

A Thesis
Submitted for the Degree of
DOCTOR OF PHILOSOPHY
in the Department of Chemistry of
the
University of Glasgow

by

CORNELIUS MEEHAN

April 1986



ProQuest Number: 10991740

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10991740

Published by ProQuest LLO (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLO.

ProQuest LLO.

789 East Eisenhower Parkway
P.Q. Box 1346

Ann Arbor, M 48106- 1346



To
recently

my moth

the memory of
deceased father,

er and to the rest

my family, in particular to

deceased

sister Anne—Marie.

my

of

ny



The great thing is to last and to
get your work done, and see and
hear andbunderstand and write when
there is something you know and
not before and not too damn much
after.

Ernest Hemingway

Ah, but that is a fine hypothesis.
It explains so many things.

Lagrange ( On hearing Laplace’s
remark that God was a hypothesis

Qg did not require. )



CONTENTS

Page
List of tables A (xii)
List of figures (xiii)
Acknowledgements (xv)
Declaration o (xvi)
Summary ‘ : (xvii)
Chapter 1 INTRODUCTION TO THE PHENOMENON OF MAGNETIC
RAMAN OPTICAL ACTIVITY.
1.1 Introduction ' ' -1
1.2 Summary of Thesis 16
References 19
Chapter 2 GENERAL THEORETICAL BACKGROUND TO MOLECULAR
SCATTERING
2.1  Introduction . 21
2.2 Calculation of the Basic Quantum
Mechanical Expressions for the
Molecular Scattering Tensors
2.2.1 Introduction 22
2.2.2 Notation and definitions 23
2.2.3 Derivation of the general
polarizability expressions 24
2.3 Vibronic Coupling Expressions for the
Polarizability Tensors
2.3.1 Introduction 29

2.3.2 Specification of quantum states for a

(iv)



2.4.1

2.4.2

2.6

2.6.1

2.6.2

2.6.3

molecular system 29
Vibronic coupling expressions for the
electronic polarizability tensor 31
The Magnetically Perturbed

Polarizability Tensor

Introduction 34
Derivation of the expressions for the
magnetically perturbed

polarizability tensor 34
Discussion of the magnetically perturbed
polarizability tensor 36
General Formulae for the Scattered
Intensities

Introduction 38
Stokes parameters for the incident

beam 38
Stokes parameters for the scattered

beam in terms of the incident beam 40
Molecular expressions for the
depolarization ratio and the M_.C.I.D.
components 43
Summary of Irreducible Tensor Methods
Introduction 46
The basic concepts 46
Irreducible tensor expressions for the

various types of group 49

References 53

(v)



Chapter 3

Page
FURTHER DEVELOPMENT OF THE MOLECULAR SCATTERING

TENSORS
3.1 Introduction 56
3.2 Vibronic Coupling for Molecules with a

Totally Symmetric Ground Electronic

State
3.2.1 Introduction 58
3.2.2 Extended use of the Herzberg-Teller

approximation 58
3.2.3 Derivation of the general polarizability

expressions : 59
3.2.4 Discussion of equation (3.2.9) 62
3.2.5 Identification of the constants ai énd

az with the 0-1 and 0-0 scattering

pathways 64
3.2.6 Comparison of the 0-0 and 0-1 scattering

contributions to symmetric and

antisymmetric scattering ) 67
3.3 The Magnetically Perturbed

Polarizability Tensor in Molecules

with a Totally Symmetric Ground

Electronic State
3.3.1 Introduction 70
3.3.2 Symmetry considerations 70
3.3.3 Derivation of general expression in

complex form 71
3.3.4 Conversion to the real form of the

general expression 73

3.3.5 cCalculation of the relative signs of

(vi)



3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

3.5

3.5.1

3.5.2

3.6.1

3.6.2

Page

the perturbed tensor patterns for the

0-1 and 0-0 scattering pathways 76
Final expressions for the perturbed
polarizability tensor 78
The Polarizability Tensor for Molecules

with Degenerate Electronic Ground

States

Introduction 79
Symmetry preliminaries 79
Totally symmetric modes 80
Non-totally symmetric modes 85
Deductions about Z Using (3.4.29) 86

Mechanisms for Generating Magnefic

Optical Activity

fntroduction 92
M.R.O.A. originating from ground state
electronic degeneracy 92
M.R.O.A. originating from excited state
electronic degeneracy ' 3
The Frequency Dependance of the

Scattering Parameters in the Case of
Resonance

Introduction 95
Lineshape functions for resonance
scattering 95
The frequency dependance of the

molecular scattering tensors 98
The frequency dependance of the

depolarization ratio and the M.C.I.D.

(vii)



at resonance ) 100

References 105

Chapter 4 EXPERIMENTAL METHOD FOR OBSERVING

RAMAN OPTICAL ACTIVITY

4.1 Introduction 107
4.2 Experimental Apparatus and

Configuration 107
References 113

Chapter 5 RAMAN OPTICAL ACTIVITY IN FERROCYTOCHROME C

5.1 Introduction : ‘ 114
5.2 The Electronic Structure of.
Ferrocytochrome c 116
5.3 Symmetry Considerations for
Ferrocytochrome c 118
5-4 The Patterns for the Polarizability
Tensors in Ferrocytochrome ¢ 120
5.5 Calculation of the Depolarization

Ratio and M.C.I.D. Components for

Ferrocytochrome ¢ 122
5.6 Comparison between Theory and

Experiment 125
5.7 Conclusion 12¢
References 129

(viii)



Chapter 6

RAMAN ELLECRON PARAMAGNETIC RESONANCE

6.1

6.2

6.2.1
6.2.2
6.3

6.4

6.4.1
6.4.2

6.4.3

6.5.1
6.5.2

6.5.3

Introduction

Experimental Observation of Raman
E.P.R.

Introduction

Experimental results

Electronic Sructure of [ IrClsl2-
Calculation of the Polarizability
Tensor Components for the Totally
Symmetric Mode of [IrCle]2-
Introduction

Symmetry preliminaries
Calculation for the totaily symmetric
mode

Calculation of the depolarization
ratio and M_.C.I.D. values for the

totally symmetric modes of [IrCls]Z-

- Compar ison between theory and

experiment for the totally symmetric
mode

A simplified model for calculating the
Raman E.P.R. of A1 modes

Calculations for the Non-totally
Symmetric Normal Modes of [IrClel?-
Introduction

Symmetry preliminariés

Simplification of the Z tensbr using
the resonance condition

Tehsor patterns for the E normal

(ix)

Page

130

131
133

135

137

137

1358

141

144

150

150

151



Chapter

Chapter

7

B

vibrational mode

6.5.5 Tensor patterns for the Tzg normal
vibrational mode

6.5.6 Calculation of the depolarization
ratio and M.C.I.D. parameters for E
and Tzg modes

6.5.7 Comparison of calculated results
with experiment for the E and Tzg
vibrational modes

References

LIGHT SCATTERING BY ATOMIC SObIUM

7.1 Introduction

7.2 Rayleigh Scattering by Atoms

7.2.1 Symmetry preliminaries

7.2.2 Derivation of general expression

7.2.3 Deductions from general resﬁlt

7.3 Resonance Rayleigh Scattering by
Atomic Sodium

7.3.1 Electronic structure of atomic sodium

7.3.2 Symmetry considerations

7.3.3 Calculation of the polarizability
components

References

A SURVEY OF THE SCATTERING TENSORS FOR

VARIOUS POINT GROUPS

8.1

Introduction

(x)

153

156

158

161

162

165

170

175

176



Chapter 9

8.2 Calculation of the Scattering
Parameters for Molecular Point Groups
References

GENERAL CONCLUSIONS

9.1 Introduction

9.2 Review of Polarizability Tensor
and M_R.O_A_. Properties

9.2.1 Introduction

9.2.2 The polarizability tensor

9.2.3 Magnetic Raman optical activity

9.3 Recent Developments in M.R.O.A.

9.4 Conclusions

9.4_.1 Introduction

9.4.2 Molecules with degenerate ground
states

9.4.3 Molecules with non—-degenerate ground
states

References

(xi)

177

183

184

185

185

187

190

191

191



4.1

LIST OF TABLES

Description

Classification of the real and imaginarQ
polarizability tensor components for
A1 modes.

Table of the irreducible representations
spanned in Da by the electric and
magnetic dipole moment operators.

The depolarization ratios for the singly
degenerate modes of cytochrome c.

M.C.I.D. values for exact resonance with
the 0-0 band

Details of the M_R.O._A. spectra of
iridium hexachloride

Table of experimental and calculated
scattering parameters for the normal modes

of iridium hexachloride.

(xii)

B2

118

122

124

133

160



LIST OF FIGURES

Figure Description Page
1.1 Experimental set up used by Arago in his 3

discovery of optical rotation

1.2 Lineshape functions for optical rotation 8
generated by the Faraday A and C terms.

1.3 Production of elliptically polarized light 9
from circularly polarized light by
circular dichroism.

1.4 Lineshape functions for circular dichroism 12

generated by the Faraday A and C terms.

2.1 Polarization ellipsé with respect to the | 39
(i,i.k) coordinate system, and also showing
the azimuth and the ellipticity.

2.2 Diagram showing the relationship between 40
the incident wave coordinate system (i,i.k)
and the scattered wave coordinate system
(19,439,.k9).

3.1 Diagram illustrating the 0-0 and 0O-1 64
scattering pathways

3.2 The absorption and dispersion lineshape 97
functions f and g.

4.1 Block diagram showing the experimental 107
configuration for measuring M.R.O.A.

5.1 Simplified diagram of the porphyrin ring. 116

5.2 The excited states of the porphyrin ring. 117

5.3 Electronic absorption and magnetic 124

(xiii)




Figure

Description

circular dichroism spectra of cytochrome,
including the positions of the incident
laser frequencies used.

Raman and M_.R.O.A. spectra obtained
using an incident frequency of 546.3nm.
Raman and M.R.O.A. spectra obtained
using an incident frequency of 552.7nm.
Raman and M_R.O_A. spectra obtained
using an incident frequency of 501.7nm.
Raman and M.R.O_A. spectra obtained
using an incident frequency of 514_5nm.
Raman and M-R-O.A- spectra for iridium
hexachloride.

Raman and M.R.0_A. spectra for copper(II)
tetrabromide.

Raman and M_R.0_.A. spectra for iron(III)
tetrabromide.

The ground and excited electronic states
of iridium hexachloride, plus the
spin—-orbit expressions for these states.
The splitting of the degenerate electronic
ground state for both positive and
negative g-factors.

Diagram showing the Raman scattering
pathways and their frequencies.

Diagram showing the pathways mediated by

right and left circularly polarized light.

(xiv)

125

126

127

132

133

134

135

144

146

148




ACKNOWIL EDGEMENTS

I wish to express my sincere gratitude to Professor
Laurence D. Barron, my supervisor, for suggesting the topic,
for his interest and for his continual encouragement. I
would also like to thank him for his'ffiendlv and proficient
advice and guidance throughout the course of this work, for
his patience and finally for his help in the preparation of
this thesis.

My thanks are also extended to my colleagues in the
Theoretical Chemistry Department for their company and
encouragement. My thanks in particular go to Dr Brian Clark,
with whom I had many interesting discussions.

I gratefully ackhowledge the award of a research
studentship for the duration of my research project by the
Science Research Council.

Finally, I would like to thank my employer’s at St.
Margaret Mary’s, Castlemilk, for allowing me the use of
their computing facilities during the preparation of this

thesis.

(xv)




DECL ARAT ION

Several parts of this thesis contain material which has
already been published.

The experimental results given in Section 6.2.2 have
already been published in a paper in Chemical Physics
Letters along with L.D. Barron ( see Chapter 6, ref. (1).)

The material in Section 6.4.5 concerning the observation
of a negative g—-factor for iridium hexachloride has also
already been published, in a paper in Molecular Physics,
along with L.D. Barron and J. Vrbancich.

Much of the material in Section 5.6 has already been
published in a paper in the Journal of Raman Spectroscopy,
along with L_.D. Bérron and J. Vrbancich; The spectra
published in that paper, and in particular Figures 5.3-7
reproduced here were obtained by J. Vrbancich after the
experimental work for the present project had been

completed.

(xvi)




SUMMARY

This thesis consists mainly of theoretical and
experimental studies in Magnetic Raman Optical Activity (
M.R.O.A. ), although the main theoretical result also allows
general deductions to be made about conventional vibrational
Raman scattering.

The main new experimental result presented in the thesis
is the discovery of the phenomenon called Raman Electron
Paramagnetic Resonance, which is a new category of
vibrational M.R.0.A., involving scattering by degenerate
ground state molecules.

The main objective of the theoretical research was to
apply the general magnetic optical activiﬁy expressions to
explain the spectral features obtained for molecules
exhibiting the effect. The main tool used for doing this was -
Irreducible Tensor Methods. The theoretical framewor k
developed falls naturally into two parts, one for molecules
having a non—degenerate ground state, and one for molecules
having a degenerate ground state.

For the former case, general formulae were obtained for
the perturbed and unper turbed polarizability tensor
patterns. These allow all the scattering parameters of
interest to be calculated. They also allow very general
deductions to be made about the form of the M_R.O.A. spectra
for wvarious classes of normal mode, along with information
about the frequency dependence of M_R.O_A. General
conclusions concerning the conditions under which
non—degenerate molecules should exhibit signifigant M_R.O_A.

are also deduced.

(xvii)




For the latter, irreducible tensor methods were used to
obtain general expressions for the polarizability tensor
patterns. These show that all degenerate ground state
molecules satisfying certain conditions should exhibit Raman
E.P.R., and facilitate the calculation of detailed tensor
patterns for specific moleculeé-

These results are then applied to explain the form of the
spectra of various types of molecule which have exhibited

M.R.O.A.

(xviii)




CHAPTER 1

INTRODUCTION TO THE PHENOMENON OF MAGNETIC RAMAN OPTJICAL

ACTIVITY

1.1 Introduction

Some objects possess the property of handedness , 1i.e.
they are not superimposable on their mirror image. Objects
possessing this property are said to be chiral. Many
everyday objects possess this property, e.g. gloves,shoes
etc. It is also a property possessed by numerous organic
compounds, including many biologically active molecules.!
The first discovery of a chiral molecule was made by
Pasteur, who in 1848 discovered that sodium ammonium
tartrate crystals actually have two forms which are mirror
images of each other. He immediately realised that it must
be the molecules making up the crystals which were mirror
images of each other.2 Since then, a large branch of organic
chemistry called stereochemistry has been developed. This
branch includes - the study of chiral molecules, a term
first used by Lord Kelvin.3

Pairs  of objects which are mirror images behave
identically when interacting with any achiral external
influence or object. However, the pair can be distinguished
by their different behaviour when they interact with some
chiral influence or object. For example, a chiral object
will react differently from it s mirror image when
irradiated with circularly polarized light, which is itself

chiral. This phenomenon is called optical activity.?®

(1)




Magnetically induced gptical actjvity

Now the above mentioned chiral objects have optical
activity as an inherent property. There is another class of
objects, which although achiral in their natural state, can
have optical activity indﬁced in them by associating them in
some way with a chiral object. An example of this might be
the adding of a chiral substituent onto an achiral molecule.
Another example is when an external magnetic field is
applied to a molecule possessing a permanent magnetic
moment. In this case a coupling occurs between the magnetic
field and the magnetic moment of the molecule. This coupled
system, like the one above, also constitutes a chiral
system. A slight variation of the above can occur. It may
be that a molecule does not have a permanent magnetic
moment, so that it can’t couple with the applied magnetic
field in its ground state. However, it may possess excited
state(s) which either have a dipole moment or between which
a transition magnetic dipole moment exists. Suppose now we
have an incident radiation field which excites the molecule
to these excited states. When so excited, the molecule may
couple with the magnetic field, again producing an optically
active system. -

In the two cases above, the coupled system of achiral
molecule and chiral magnetic field constitues a chiral
object. ( It should be noted that we are here using the term
chiral loosely. In fact, these objects possess what has been
termed "false chirality”.%) As such it possesses the
property of optical activity. This is called magnetic

optical activity.*®

(2)




s of tical Activit

There are many experimental situations involving the
interaction between 1light and matter in which optical
activity effects may be studied. These have evolved into
research fields which have yielded much detailed information
on molecular structure. In all cases, where a naturally
occuring optically active interaction has been observed
involving a chiral substance, it has been possible to induce
the effect using a magnetic field. Thus to each of the
naturally occuring effects there is a magnetic analogue,
which is exhibited by all molecules, not Jjust those which
are chiral. ( Electric fields may also induce optical
activity, but generally the maQnitude of such effects is
smaller than for a magnetic field, and no further mention
will be made of these.7)

Below, a brief account will be given of the major areas
of optical activity investigation, together with a
historical note on the first observation of the effect. The

major reference used was Barron’s volume on optical

activity.®
(a) Optical rotation and magnetic optical rotation.

(i) Historically, the first observation of optical
activity was made by Arago (1811), who noticed that coloured
light emerged after sunlight was passed successively through
a polarizer, a quartz crystal and another polarizer set at

90° to the first one.( see Fig. 1.1)

In the following year, Biot discovered that one of the

(3)




Fig. 1.1 Experimental set up used by Arago in his
discovery of optical rotation .

contributory mechanisms producing the coloured 1light was
optical rotation, 1i.e. the rotation of the plane of
polérization of a linearly polarized 1light beam. The
following equation, the Drude equation ( a modification of a
relationship first noticed by Biot ) relates the angle of
rotation o{ to the wavelength of the radiation used and the

absorption wavelegths 2J0f the rotating medium

=35 Aj (1.1.1)
-J

A% TG
where the A3 are constants relating to the absorption
wavelenghths.

Equation (1.1.1) is a purely empirical relationship. The
first theoretical explanation of optical rotation was made
by Fresnel in 1825. Subsequent to his discovery of
circularly polarized 1light, he realised that linearly
polarized light can be regarded as a superposition of left
and fight circularly polarized 1light beams of equal
magnitude. Using this fact, he explained optical rotation in

terms of the different velocities of propagation of the left

(4)




and right circularly polarized components. This difference ,
according to Fresnel, caused the phase difference between
the left and right components to change, thus causing a
change in the plane of polarizaton of the linearly polarized
beam, of which they are components. Using the fact that the
velocity of a beam of light is inversely proportional to
it’s refractive index, it is a simple matter to obtain the
following equation for the optical rotation per unit length
of a given medium:

K= (w/a)( n- - nk) (1.1.2)
In the above ( nt - nR), the difference of the respective
refractive indices for left and right cicularly polarized
light, is known as the circular birefringence of the medium.
AThus optical rotation Vis a consequence of circular
birefringence.

This classical argument can be further developed using
quantum mechanical arguments. The refractive index of a
substance is related through Maxwell’s equation to the
dielectric constant, which is in turn related to the
polarization of the substance. From quantum mechanical
arguments concerning the polarization of a substance caused
by the time derivative of the magnetic field, one can deduce
the Rosenfeld equation (1928)%: ‘

X = N(2Wae/30)3 Rno (1.1.3)
" (who — w2)
where Rno 1is the rotational strength of the n &— 0O
transition. This provides a theoretical explanation for the
form of (1.1.1).
Optical rotation measurements are routinely made on all

optically active compounds. The device used is called a

(5)




polarimeter, which has a configuration very similar to that
used by Biot ( Fig. 1.1) The experimental quantity which is
measured is the specific optical rotatory power, or the
optical rotation. This is related to the measured optical
rotation angle by the following expression:-

[RA] =V (1.1.4)

“ml

where VvV is the volume containing a mass m of the optically
active substance, and 1 is the path length. This is a
fundamental property of the molecule, and can be either (+)
or (=), depending on which stereochemical form of the
-species is used. Molecules giving these signs are
designated the D or L forms respectively.

The main uses of optical rotation measurements are to
identify whether we have the D or L form of a molecule, and
to check the optical purity of a sample, i.e. to check that
we have only one form of a molecule present in a sample.l®©

A phenomenon closely associated with optical rotation is
optical rotary dispersion. This originates in the
variation of the optical rotation angle as we vary the
frequency of the incident radiation, and was first

identified by Biot in 1812.

(ii) The first observation of magnetic optical rotation was
made by Faraday in 1846. He first measured the effect (
subsequently termed the Faraday effect ) using a rod of lead
borate glass which was placed between the poles of an
électromagnet, with the direction of propagation of the
light beam parallel to the applied magnetic field. Further

studies by Verdet in 1854 showed that the following law

(6)




holds for the optical rotation angle per unit path length:-

o{ = VBcos© ' (1.1.5)
where B is the magnitude of the applied magnetic field, © is
the angle between the Mmaaneric Field and the light
beam and - V is the Verdet constant. V in general depends on
both the temperature and the wavelength.

As well as (1.1.4), magnetic optical rotation also obeys
(1.1.2). This can be used as the starting point for a
quantum mechanical derivation of equation (1.1.4). As in the
natural case, we use the relatonship between the refractive
index and the polarization of the medium to express the
former in terms of the polarizability  tensor. We then
consider the perturbation of the polarizability tensor

caused by the applied magnetic field. This vyields the

following expression for the optical rotation'®
A6 = —uwoclNB: |2winw* ( f2—-g2)A +w2f( B + C ) (1.1.6)
3h 1] kT

In the above, 1 1is the path length of the beam, N is the
total number of molecules per unit volume, Bz 1is the
magnetic field strength, f and g are the lineshape functions

‘(see Section 3.6) and the Faraday A,B, and C terms are

A= 3/dn§.(ﬂlj“_‘ mn) Im(<nlux1j><jluvind) (1.1.7a)
B =3xIm [E<kimzin> (<ntux)§><ituviky —=<niuy 13> G luxt k)

3; " hwkn

+3 ¢iimzl k> (<nluxt 3> <kluvind = <nluvlid<kluxind) ]

" hwk 3 (1.1.7b)
€ = 3/dn T Ma Im(< nluxtid<Gluvind ) (1.1.7¢)

(dn 1is the degeneracy of the ground molecular state. For an
explanation of the rest of the notation used in (1.1.6), see

Section 2.2. )

(7)




From the Faraday terms, we see that there are three
separate mechanisms for generating magnetic optical
rotation. These are when there is a ground state magnetic
moment, an excited state magnetic moment, or when there
exists a transition magnetic dipole moment between two
different states. The mechanisms originating from the A and

C terms have very distinctive spectral lineshapes.!! (see

Fig. 1.2)
C term A tera
4 4
a0
Ab

ls__lP”

0 > 0 w
'S—'P-, ls._l&‘ IS._IP_I

Fig. 1.2 Lineshape functions for optical rotation

generated by the Faraday A and C terms.

Because of this, ground state and excited state degeneracy
can be readily identified by studying the magnetic optical
rotation spectra of a molecule. By performing specific
calculations, one can also deduce information about the
nature of these degenerate states. Thus such spectra are a
valuable tool in the elucidation of the configuration of the
electronic states of a molecule.2 ( See also magnetic

circular dichroism below.)

(8)




(b) C.D. and M.C.D.

(i) As we have seen, the difference in the transmission
properties of right and left cicularly polarized light
through an optically active medium gives rise to the optical
rotation of a plane polarized beam of light. One might
expect to see analagous effects caused by the difference in
the absorption properties of right and 1left circularly
polarized light. Such an effect was first observed by
Haidinger in amethyst quartz crystals in 1848, and by Cotton
in solutions of copper chromium tartrate in 1895.

The effect they actually observed was that a beam of
light which was initially linearly polarized, became
elliptically polarized after it had been passed through an
optically active absorbing medium. To explain this, we again
consider linearly polarized light as a superposition of two
equal amplitude circularly polarized beams. If the right and
left components are absorbed differently by the optically
active medium, then their superposition would indeed produce

an elliptically polarized beam.(see Fig. 1.3)

Fig. 1.3 Production of elliptically polarized light from
circularly polarized light by circular dichroism.

(9)




From this figure, we can see that the ellipticitv“b’of the
emergent beam is given by
tan{= (Er - EL)/(Er + EL) (1.1.8)

From a simple consideration of the absorption indices n’R
and n’t for the right and left circularly polarized beams,
and assuming that the ellipticity is small, we can write

N = (W /A)x( n’t — n’R) (1.1.9)
From this, we see that the ellipticity depends on the
quantity ( n’t - n’R), the circular dichroism of the medium.
Hence the name given to the phenomenon is Circular Dichroism
(C.D.).

There are two experimental quantities which are usually
measured in C.D. experiments on an optically active
substance. The first of these is the specific ellipticity,
which is given by

V] = v : (1.1.10)

ml
where m is the mass of substance, V is it’s volume, 1 is the
path length and‘ﬂr is the measured ellipticity. The second
quantity, which is nowadays more common, is the decadic
molar extinction coefficient for right and left cicularly
polarized light respectively.
This is given by -
€ =1 log Ii (1.1.11)
el Ir
where c is the molarity of the substance and 1 is the path
length. These two measurements are connected through the
following relationship:
[©] = 3300( et - £R) = 3300AE (1.1.12)

Another quantity which is often quoted is the dissymmetry

(10)




factor g first defined by Kuhn in 1930. g is defined as

g - €L - gR (1.1.13)

1/2(g- + €R)

Circular dichroism spectra are wusually measured using
either visible or wultraviolet incident radiation. Since
these frequencies correspond to the energy differences
between the electronic states of a molecule, it is
information about the electronic structure of a molecule
which is usually obtained from C.D. studies. Since the
- stereochemical structure of the molecule determines the
nature of the electronic states, one can thus deduce very
valuable information on the former. This is especially true
when there is a chromophore in the molecule, for then the
C.D.b spectra can give information on the stereochemical
environment of this chromophore. For the special case when
the chromophore is a carbonyl group, deductions can be made

using the famous "octant rule” .13

(ii) The magnetic analogue of C.D. is called Magnetic
Circular Dichroism (M.C.D.). The molecular mechanism which
generates this effect is the Zeeman splitting of degenerate
electronic states.'?® Now transitions between different
components of degenerate states are mediated by either right
or left circularly polarized 1light. Thus the Zeeman
splitting causes slight differences between the absorption
of left and right circularly polarized 1light. A detailed
quantum mechanical treatment produces an expression for the
ellipticity of the transmitted beam which is very similar to

that obtained for the optical rotation angle, namelyl5
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1 = —HoClNB: Awinw2(fg)A +w2g( B + C ) (1.1.14)

3h | h kT
The terms A,B and C are the Faraday terms defined earlier.
The presence of different combinations of the‘lineshape
functions in (1.1.14) compared to those in (1.1.6) should be
noted.l¢ Because of this, the experimentally observed
lineshapes for M.C.D. signals corresponding to the A and C
terms are different from those for optical rotation. The

appropriate lineshapes are shown below. (Fig. 1.4)

o

ls._lP”

C term A term

Fig. . ; . . '
gonerated by the Faraney 4 oekioTSepior Cireular dichroisn
M.C.D. 1is one of the main tools for obtaining detailed
information about the ground and excited electronic states
of a molecule. It not only extends the measurement of Zeeman
splittings to many molecules for which conventional
measurements are impossible because of band-width problems,
but allows detailed assignments of symmetry species to the
ground and excited electronic states, often utilizing
information available from vibronic transitions. It has been
most fruitfully used in the study of inorganic
complexes.!7-18 However, important information has been
obtained about certain classes of organic compounds,
including porphyrins.1?

(Note: Circular dichroism is also involved in a phenomenon
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called the Cotton effect. This involves circular dichroism
accompanied by anomalous optical rotary dispersion, and
occurs when the inciden? light frequency falls within an

absorption band.)

(c) v.C.D. and M_V_C.D.

As we have seen, conventional C.D and M.C.D. measurements
involve the use of visible or uv incident radiation. Thus
they mainly vyield information concerning the electronic
structure of the molecule. Until fairly recently, it was
difficult to measure circular dichroism using infrared
incident radiation, although infrared optical rotation had
been observed by Biot and Mellini in 1836. The main problem
was that because the magnitude of optical activity effects
depend on the incident radiation frequency, using infrared
meant that the effects were too small to be observed.
However, such experiments are now being performed, many of
the technical problems having been overcome. The first
observation of Vibrational C.D. ( V.C.D.) was made by
Dudley, Mason and Peacock2® in 1972. Since then, V.C.D. has
become a routine experimental technique.?!.22

Impor tant infofmation concerning the vibrational
structure and molecular conformation of a molecule can be
obtained from V.C.D. experiments. Thus this field are likely
to be of increasing importance in the future. It’s one
serious limitation seems to be the difficulty in obtaining
spectra when the frequency goes below about 900 cm—1.

In the analagous field of magnetic V.C.D., the first

observation was made by Keiderling?3 in 1981.
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(d) R.O.A. and M.R.0Q.A.

Comparatively recently, optical activity has been
detected in the field of Raman scattering. As in the case of
absorption spectra, both natural and mégnetic optical
activity have been observed. These phenomena are called
respectively Raman Optical Activity (R.0O.A.) and Magnetic
Raman Optical Activity (M_R.O.A.).

To measure R.O.A., one performs a Raman scattering
experiment on a chiral molecule using both right and left
circularly polarized 1light. The scattered intensity is
measured separately for the two circularities ( involving
the measurement of both the polarized and depolarized
components.) We then subtract the Raman spectrum obtained
from the left circularly polarized light from that obtained
from the right, giving a difference spectra IR-I- for
species which exhibit the effect. For the bands in the
difference spectra we calculate the following dimensionless
quantities.

Ax=1 -1t Az=18-1t (1.1.14)
R+ IY I + IL
These are respectively the polarized and depolarized
Circular Intensity Differentials ( C.I.D.s ). When we are
measuring the magnetic analogue, these are called the
Maénetic C.I.D.s, or M.C.I.D.s.

Before they had been observed, both of these effects had
been predicted in the seminal papers ofv Barron and
Buckingham.24-25

The first observation of Raman Optical Activity was made

by Barron, Buckingham and Bogaard in the Raman spectra of 1-
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phenylethylamine in 19732¢_ Since then, R.O._A. spectra have
been obtained for many molecules.27 As mentioned above, much
information about vibrational structure and molecular
conformation can be obtained from V.C.D. However, as also
already mentioned, it cannot penetrate beyond 900cm—1.
R.0.A. on the hand can be measured down to 501, and is thus
a complimentary technique to V.C.D.

However , in order to elicit all the information
potentially available, a detailed theory is required. Such a
theory, the bond polarizability theory, has begun to be
developed for R.O.A. It was originated by the work of
Barron#®, and has been refined and applied by Barron, Clark
et 31.29,30

One of the limitations of early R.O.A. experiments was the
difficulty in measuring polarized C.I.D.s, due to the
presence of artifacts. Recently however, these experimental
difficulties have been overcome, and polarized C.I.D.s can
now be obtained.3! Their measurement has allowed a further
application of R.O.A. to be developed. From a theoretical
treatment, it emerges that the polarized C.I.D. for certain
bands should be exactly double the depolarized C.I.D.
However, this depends upon the bonds being axially
symmetric. Thus the presence of this feature in a molecule’s
~ R.O.A. spectra provides evidence for axially symmetric bonds
in that molecule.

Magnetic Raman Optical was first observed by Barron32,
in the resonance Raman spectrum of ferrocytochrome c. At the
start of the present project, no detailed theory had emerged

for calculating specific spectral features.
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1.2 Summary of Thesis

wWwhen this Ph.D. project was started, it’s aim was to
- account for the M_.R.O.A. spectrum of ferrocytochrome ¢, and
to try and discover other molecules which displayed magnetic
optical activity. As will be seen in the following pages,
both of these aims have been realised with at least some
success.

After the introductory chapter, the second chapter
contains all the established background theory.
First of all the basic expressions for the molecular
scattering tensors are developed ( a slightly modified
approach 1s wused when vibronic coupling expressions are
considered.) Included are expressions for the magnetically
perturbed polarizability tensor. A brief discussion of the
conditions necessary for this to have an observable
magnitude constitutes, along with the modification mentioned
above, the only original work in this chapter. This is
followed by the derivation of the basic expressions for the
scattering observables which are of interest to us. Finally,
a summary of irreducible tensor methods that are used later
on in the thesis is presented.

The remainder of the thesis contains the main original
work done during the research project.

Chapter 3 contains the main new theory in the thesis. First
of all, we build wupon the different approach taken in
dealing with the vibronic polarizability expressions in
Chapter 2. This leads to the derivation of simple formulae
which greatly facilitate the calculation of polarizability

and perturbed polarizability tensor patterns. From this
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development, we also obtain the relationship between the 0-0
and 0-1 vibronic scattering pathways for both the
unper turbed and perturbed polarizability tensors. Secondly,
irreducible tensor methods are used to deduce some
properties of the polarizability tensor for the case of
molecules with degenerate ground states. These properties
are useful when calculating the Raman E.P.R. spectra. Then a
slightly more detailed development of the M.R.0.A. is
presented, showing the two different contributory
mechanisms. This is followed by some simplification of these
expressions. The chapter is rounded off by a consideration
of the frequency dependance of the various scattering
observables.

Chapter 4 starts with a description of the experimental
set—-up. Following this, a brief description of the
preparation of samples 1is given. Finally, some of the
problems involved in measuring M.R.O.A. are discussed.

The remainder of the thesis contains work on specific
systems.

Chapter S5 contains calculations on the Raman spectra of
ferrocytochrome c, followed by comparison with experiment.

Chapter 6 contains the main new experimental results of
the thesis. These consist of the discovery of the phenomenon
of Raman E._P.R for three complex metal ions. These results
are followed by calculations on the Raman spectra of iridium
hexachloride, followed by comparison with experiment.

Chapter 7 contains two parts. The first involves general
considerations concerning atomic Rayleigh scattering. The
second contains calculations involving the resonance

Rayleigh scattering of atomic sodium.
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Chapter 8 is concerned with using the formulae developed
earlier to deduce information on the Raman scattering which
is independent of the molecule and dependent only on the
molecular point group. This 1is done for all the simply
reducible point groups, apart from O.

Chapter 9 consists of two parts. The first part summarises
the new developments made during the course of the thesis.
The second part contains predictions for possible future
work in the field of M._R.O.A., and gives an account of
M.R.O.A. studies performed between the end of the present

project and the present.
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CHAPTER 2

GENERAL THEORETICAL BACKGROUND TO MOLECUL AR SCATTERING

2.1 Introduction

In this chapter, the general theoretical framework upon
which the calculations in the subsequent chapters are based
will be presented. First of all, quantum mechanical
expressions for the molecular scattering tensors are
calculated. This is done initially for a general system, and
then for the specific case of vibronic coupling (based on
the work of Albrecht!). Following this, the ekpressions for
the Rayleigh and Raman scattering intensities in terms of
the scattering tensors are calculated. Using these, the
general equations governing magnetic optical activity (both
Rayleigh and Raman ) are calculated.

After this, various general properties of the scattering
tensors are developed. These include magnetically perturbed
tensors, line shape functions etc.

The remainder of the chapter is devoted to a short
summary of the irreducible tensor methods which will be used
throughout the thesis. This will include equations for the
full rotation group and both simply and non—-simply reducible
point groups.

The approach taken in this chapter follows closely that of
Barron’s review articlet, which 1in turn is based on the
papers of Barron and Buckingham, which inaugurated the

subject of magnetic Raman optical activity.
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2.2 Calculation of the Basic Quantum Mechanical Expressions

for the Molecular Scattering Tensors

2.2.1 Introduction

This section is devoted to the calculation of quantum
mechanical expressions for the molecular scattering tensors
in terms of molecular wave functions. Before starting to
derive the expressions, some general points on the approach
to be taken should be noted.

The process with which we are concerned is the
scattering of an incident light beam by a 1liquid sample.
This scattering originates in the induction of oscillating
multipole moments in the sample by. the incident
electromagnetic wave. These oscillating moments then produce
electromagnetic radiation, which constitutes the scattered
light which we observe. There are various contributions to
this radiation e.g. electric dipole, electric quadrupole,
magnetic dipole etc.3 1In the particular case which we are
considering, the dominant contribution to the scattered
intensity is that arising from the induced electric dipole
moment. Therefore in what follows we shall confine ourselves
solely to this contribution.

The first step in calculating the scattered intensity is
to obtain an expression, in terms of molecular wave
functions, for the induced electric dipole moment. We do
this within a semi-classical framework, i.e. we treat the
the electromagnetic field classically and the molecular
scattering system quantum mechanically.

At this stage, it is necessary to introduce some notation
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and definitions. These follow in the next section.

2.2.2 Notation and definitions

Notatien Throughout what follows, S.I. units are used.
Cartesian tensor notation is also used throughout, where
appropriate. Under this system, any Greek symbol takes on
the values x,y and z, and vectors are written as first rank
tensors, i.e. a vector A is written as Ax. The appearance of
a repeated Greek symbol 1in an expression means that a
summation over x, v and z is to be performed, e.g.
A, By = AxBx + AvyBvy + AzB:z (2.2.1)
A quantity which is made use of later is the first rank
antisymmetric pseudotensor &egv. This tékes the values +1
and -1, depending on whether d4g¥ is an even or an odd
permutation of xyz respectively. From this definition it |is
easily deduced that interchanging any pair of symbols
changes it’s sign. It is most commonly met in the definition
of the vector product i.e.
[A x Bla = Edpv AgBs (2.2.2)
N or n denotes initial state, M or m denotes final state.
J or j denotes the excited state involved = in the
virtual transition from the ground state. Finally, K or k
denotes the excited state involved in vibronic mixing with J

or j. Extra notation will be introduced as it is needed.

Definitions For any collection of charges, we define the
magnetic and electric dipole moments operators respectively

to be4-5

My = 5 e1/2mi(lia+ g1S1d (2.2.3)
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U = Fejrie (2-2-4)

.
[

where
i = the ith particle
riot = the position vector w.r.t. some chosen axis
system
e1 = the charge
liot = the orbital angular momentum vector
Sia = the spin angular momentum vector
g1 = the electronic g-factor

(2.2.5)
Other definitions will be introduced in the course of the

development.

2.2.3 Derivation of the general polarizability expressions

In the absence of external electric and magnetic fields,
the quantum states‘{ﬁ'n of a molecular system satisfy the

time dependent Schrodinger equation®

Ho n = ~h/dF n (2.2.6)
where oY
e, = the Hamiltonian of the system.

We assume that the Hamiltonian is independent of time. We
further assume that we have a complete orthonormal set of
vt

solutions of (2.3.1), of the form Y (33 e

which satisfy

3 0¥ n = Enn (2.2.7a)
where
En = the energy of the nth state 4¥rn
g = the spatial coordinates of the system (2.2.7b)
wn = En/h

We now apply to this system a plane electromagnetic wave
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propagating along the z-direction, where the origin of our

reference frame is taken to be some point within the
molecular system (note that the direction of propagation of
the rincident light wave defines the +ve z~direction). The
electric and magnetic field components of the in¢ident beam

are respectively?-8

‘E; = E;.exp[-iw(t—z/c)] (2.2.8a)
Ba = 1/c EdpkaE' (2.2.8b)

where w is the angular frequency of the light beam and k is
the direction of propagation.

Classically, the interaction energy of the electric
field component of the incident light beam with the electric
dipole moment of the molecule is?®

W —(E.) ooy, (2.2.9)

where

(E o = [(Eoeint + (Efbe-1wt] (2.2.10)

Thus the perturbation term M in the Hamiltonian for the
field and the molecule together is given by
R’ = —(Ea)ouy (2.2.11)
where u is the electric dipole moment operator defined
earlier.
The Schrodinger equation for the perturbed system is now
(Mo-ih%T)ln’) =-o¢n’> (2.2.12)
We next derive the general expressions for the
polarizability tensors in terms of molecular wavefunctions.
The development given here is based on the approaches used
by Placzek!® (1934) and by Born and Huang!! (1954).
We assume that the wave function In’)> for the perturbed
system can be written in the form
In®> = In> +5 [ asna(Ex) + bina(E%) 11j> e 1wt (2.2.13)

dtn
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where the coefficients asnea and bina are constants. To
determine their values, we substitute (2.3.8) into (2.3.7).
This gives
(Wn—ih_.~iwn)In>-ih ,’z” {[ajnu.(g.c) + bina (Ex*) 115>

+  —iunlasna (B + bina(Eg®) 115> e-twat 3
=—(E) ug | +3 [asna(Ex) + bina (E®) 115> e-iwat(2.2.14)

If in (2.2.14) we ignore the terms above first order in
the field, then after multiplying from the left by <m ,
integrating and equating the coefficients of ei¥t and e ivwt,

we obtain

asno Clugdnd/2h(win—w) -(2.2.15a)

bine Jlugind/2h(wintw) (2.2.15b)

Thus the wavefunctions for the perturbed system have the

form

>¥n

2h (Win—W) (Wintw) (2.2.16)

In’) = )n) +% (jlu.dn)E,g{ e;i"" + einwt } 1J) e ivat

In the case of Rayleigh scattering, we now simply
calculate the expectation value of the electric dipole
moment operator for the state given by (2.3.11), and from
this we obtain the desired expression for the electric
polarizability tensor. For Raman scattering, we have to
calculate the corresponding transition dipole moment between
the initial state m and the final state n. Since this is in

general complex, the appropriate expression for the real

transition dipole moment islZz

(U ) mn (mhueind + <(mlugind*

2Re( (mlualnd ) : (2.2.17)

Using our perturbed wave functions, we therefore have
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S¥m
2h

(ug)m°n*= 2Re [(ml +3 (EFU‘UP'"')‘{ eivt + g-iwt %(J’l) ]
)

(Wim—W) (wx-fw

S*0

x[e“'m*-ud In> +Z E-{(JlUfln)‘{e 1wt 4 pglwt 3(.]! e lwat )]
)

2h (Win—w) (Wintw

2Re(é1"~nt(mluiln)

+ T [<miugl §>CGluglmdEget (wemaadt

>
™ 2h(WJ-—W)
+ {miugl j><jluglndE e 1¢m-wmn)t
2h(wietw)
+ & [<miugl §><CitugindEqe 1 (w-wmadt
rY 2
n 2h(Win—w)
+ (Mlug 133<jlugIn)E e i¢memmalt )
2h(wintw)
+ terms of higher order in the field (2.2.18)

We are concerned with the anti-Stokes and Stokes
contributions to the scattered radiation. Because of this,
we need only consider terms linear in the field which have
the frequency factor e i(w-%~n)t 13 Thus we have

(U ) mn = (2.2.19)

2Re (T [<miuql 3> <ilugind+imiul ><ilugind[Ege 1 (w-mmt +..)
G":\ 2h(win-w) 2h(wintw)

In the above we have included j=m,n for both terms. This
is permissible because we are dealing mainly with
vibrational Raman, for which case the terms omitted are
usually zero.

Thus we can write the complex dipole moment as

r~

(Ug)m?ne = a,ﬁEp (2.2.20)
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Taking the real part of expression (2.2.20) yvyields (2.2.19).
5QP is the complex electric polarizability tensor, and as
can be seen from (2.2.20), it determines, to first order,
the response of a molecule to an applied electric field.
This can be modified by making use of the following
expression!4
Wim<mlugl i><jtuginy + wyndimlugli><jluglnd
= 1/2(w5-+wjn)((mlu¢lj>(j|up|n) + mlugl j><jlualind)
+1/2wn-(<mluglj)<jlu53n)—(mluAtj><jlu,ln>) (2.2.21)
When used in (2.2.19) this gives us
(aﬁp)-n =l/2hA§”l/(WJn—W)(NJ-+N)
X [(w3n+w3-)Re((mlud|j)(jIUpln>+<mluplj><jludln))
+ (2wtwnm)Re(<miual j><ilughnd—<miug) j><jluai nd)]
. (2.2.22a)
('a.,ff,)-n =-1/2h.*Z 1/ (Win—w) (Wim+W)
Stn
X [(Wintwsm)Im(<miuxl 3><itugl nd>+<miugl 3> <CGluglnd)
+ (2w+wn-)Im(<m)udbj)(lepln)—(mluPlj>(j)udln))]
(2.2.22b)
where Aap and a%ﬁ are the real and imaginary parts of the
polarizability tensor. The complex polarizability is
expressed in terms of these as
(Fuglan = (aupden - ilagy)en (2.2.23)
Inspection of the above expressions show that both the
real and imaginary parts of the polarizability contain a
symmetric and an antisymmetric part. Thus it is possible for
antisymmetric scattering to occur with the imaginary part of
the polarizability zero.

In the next section, the above expressions are developed to

include vibronic coupling.
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2.3 Vibronic Coupling Expressions for the Polarizability

Tensors

2.3.1 Introduction

In the expressions developed in the last section, we
were dealing with general molecular states n)> without going
into any detail about the states. In this section we are
going to consider these states in more detail. We shall
see that if we wuse the adiabatic approximation, the
expressions as they stand are inadequate for the generation
of vibrational Raman intensities. For this reason, it is
necessary to include vibronic coupling. This is done later
in this section using the crudest of the adiabatic

approximations, the Herzberg-Teller approximation.

2.3.2 Specification of quantum states for_a molecular system

The molecular states In) dealt with in the last section
were assumed to be exact wave  functions of the
molecule,depending on both the electronic and nuclear
positions, i.e.

In> = In(r,R)> (2.3.1)
with r and R representing the electronic and nuclear
coordinates respectively.

They therefore satisfy the following equation!$s

[ T(r) + T(R) + V(r,R) + V(R) 1In> = W(r,R)Im> (2.3.2)
where T(r) and T(R) are respectively the kinetic energy
operators for the electrons and nuclei in the molecule,

V(r,R) includes the potential energy terms for the electron
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-electron and electron—nuclei interactions and V(R) is the
'potential energy for the nuclear—nuclear interactions. In
general this is impossible to solve, so we must resort to

some approximation.

The first approximation normally applied is the adiabatic

approximation. Under this approximation, we write ln) as
In(r,R)> = lne(r,R)>Inv(R)> (2.3.3)
The electronic part of the wavefunction, ne(r,R)>,

satisfies the following equation!é
H(r,R)Ine> = we(R))ne> (2.3.4)
where H(r,R) = T(r) + Vv(r,R) (2.3.5)

In the above, we treat the nuclear coordinates as if they
were fixed, so that they appear as parameters in the
solution. As tHe nuclei move, they causé a change 1in the
form of the electronic wavefunction. The vibrational part
Inv(R)> satisfies a corresponding equation involving only
nuclear coordinates.

We next use a much cruder approximation, in order to
totally separate the electronic and nuclear coordinates 1in
the zeroth order. (Although coupling of the two is involved
from first order upwards ).

The approximation we use is the Her zberg-Teller
approximation. In this approximation, we expand the
Hamiltonian (2.3.5) as a power series in the normal
coordinates!”’:18 j e.

H(r,R) (2.3.6)

= H(r,R) +§ (dH/2ap)o@p + F (22H/20p0QQ)oQpQq) + . ...
We treat the first term ;;;the unper turbed Hamiltonian of
the system. This corresponds to treating the equilibrium

nuclear coordinates as fixed and solving the electronic
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Schrodinger equation wusing these. The crudeness of the

approximation lies in the use only of the first order term
as the perturbation. In this section we follow the standard
procedure and use only this first term. In the next chapter,
we will see that it is not necessary to make this gross
approximation.

Using the above approximations, we write the wavefunction

13> = Vjeiv> 1in the form

Viejv> = 1je(®jv> +(1/h)E (ke‘® kv}lHaQplje ®? jv> ke ®)kv>
[
5 W3 (0 —wi €0

(2.3.7)

(in the above the (9) signifies that we are using the
equilibrium nuclear coordinates. We also use the
abbreviation He for the term (9H/2Qp )0 .)
It will be noted that this is a slightly different approach
from that taken in ref. [A]. There, only the perturbation
to the electronic state je is considered. However, it will
be seen later that this leads to considerable
simplifications.

With the same approximations, the energy of the state )j>
becomes

hws = ther-{%i\<je(°’jleoQIje‘°’jv> + ... (2.3.8)
Using these pertu:bed wavefunctions and energies, we now go-

on to develop further the polarizability expressions.

2.3.3 Vibronic coupling expressions for the electronic

polarizability tensors

To obtain the required vibronic expressions, we insert

the perturbed wavefunctions and energies into (2.2.22).
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Doing this, we obtain the following expressions

(%,,,;P)-n = (‘5:%)." +(Ta':?).n (2.3.9)
(32p)mn -3 Win/h(Wiesvnenv—w®) (X3 + 235) (2.3.10a)
(334 )mn :En(u/h)(wiumenv—w’)(x:,. +23 )  (2.3.10b)
where
Xup = (MelUal je) (el uplned<mv) jvd<ivine) (2.3.11)

Zﬁﬂ = 2; (kelHal ned (meludlje>(jeluplke> )(2-3.12)
R
3 hwneke x<{mvljivd<ivikv)<kviagpinv)

(kelHolme)[<kelu¢lje><jeluplne>
hwmeke x(kvljv)(jvlnv)(kvloplmv))
(kelHa) je> <me|u&1je>(keluPlne)

hwjeke ( )

x<{mvljv><kvinv)<kviapljv>

(kelHolje)(fmelud)ke)(jeluPlne>

hwjeke x<mvikv)<{jvinv)<{kviapl jv>
xgp = 1/2¢( X,.P + Xﬁa) X:p = 1/2( X”P - Xﬁd) (2.3.13a)
Z:‘/‘ = 1/2( Zup *+ zpd) Z:P = 1/2( de - zpd) (2.3.13b)

In the above development we have omitted the contribution
to the perturbation originating from the vibronic
per turbation ’of the electronic energies. This gives rise to
Albrecht’s B term.l® It has been omitted because it is only
non—zero for A1 modes, and in that case the major
contribution to the polarizability is made by the X
tensor. i
( In obtaining the above expressions, we see that the X
tensor is the zero-order term, and that the 2Z tensor
originates from the vibronic perturbation of the adiabatic
wavefunctions. Thus the X and Z terms are clearly equivalent
to Albrecht’s A and C terms.2¢)

Expressions (2.3.11-12) are similar to, but not identical

with, the corresponding expressions in Barron’s book.21
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This is due to the different treatment of the
Her zberg—-Teller approximation, which we commented on
earlier. However, we can invoke closure, since in the above
we have an infinite sum involving lke¢)><kvl . When we do this,
the above expressions revert back to those normally quoted.
In the remainder of the thesis, we shall use either these
expkessions or else the expressions which are obtained from
these by invoking closure.

various properties of the X and Z tensors for the case of
transparent scattering can be deduced?2. Since we are mainly
interested in resonance Raman, we do not pursue the matter
further here.

The above expressions apply not only to Raman scattering
but élso to Rayleigh scattering. In the latter case, as with
the case of totally symmetric modes of vibration, the main
contribution comes from the X tensor. However, the X tensor
vanishes when we are dealing with non-totally symmetric
modes.23 Thus we see that non-totally symmetric scattering
derives its intensity from the Z tensors, which have their
origins in vibronic coupling. It is for this reason that it

was necessary to introduce vibronic coupling earlier.
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2.4 The Magnetically Perturbed Polarjzability Tensor

2.4.1 Introduction

In the previous section, expressions for the electronic
polarizability  tensor were derived. These arose from
vibronic coupling, which we treated as a perturbation.
Another perturbation, which we consider in this section, is
that arising from the presence of an applied static magnetic
field. This gives rise to the magnetically per turbed
polarizability tensors. These are responsible for producing
Raman optical activity in molecules which do not possess a
ground state magnetic moment, as we shall see in a later

chapter .

2.4_2 Derivation of the expressions for the magnetically

Perturbed Polarizability Tensor.

In the presence of a magnetic field, the magnetic dipole
moment interacts to give the following contribution to the
HamiltonianZ24-25 -

H? = -mB, (2.4.1)
With this as the perturbation, we can apply first order
perturbation theory as before. There are three different
mechanisms by which the perturbation can couple with the
molecule. These are via a ground state magnetic moment, an
excited state magnetic moment, and a transition dipole
moment between two electronic states. These give rise
respectively to the Faraday C, A and B terms (1.1.7-9)

mentioned in Chapter 1. We shall see later that there is a

(34)



separate mechanism for the generation of magnetic optical
activity when the molecule has a ground state magnetic
moment. Thus we assume here that the ground state magnetic
moment is zero. We consider only the effect of the
perturbation -on the energies of the molecular states,
assuming that an excited electronic state of the system
possesses a non—-zero magnetic dipole moment. We are
therefore including only the equivalent of the Faraday A
term contribution. We omit the modifications to the
wavefunction, which correspond to the Faraday B term
contribution. This 1is because the A term is the dominant
contribution. ( However, the B term generates a residual
contibution even when all the magnetic dipole moments of the
system are zero. Hence all molecules in principle exhibit
M_.R.O.A.)

The effect of the perturbed energies are incorporated in
general by using the expression

Wi*n* = wWin — 1/hB,(mi, — m7) (2.4.2)
However, as we mentioned earlier, we assume that m} 1s zero.
We now insert the modified value for wji*n* into the
frequency factor 1/(wj°ns-w2). Having done this, we expand
the denominator as a power series in the field, and retain
only the first term in the field. We then obtain the
following expression for the polarizability
gelﬁ(g“) = 5‘/3 + guP’vEf (2.4.3)

where ';ﬁﬁ is as in 2.3.3 and the symmetric and
antisymmetric parts of zgpv , the magnetically perturbed
polarizability tensor, ére given by

Ts - N 2 s s J
aZpy = 1/h 52:(\ (Wint+ w2) Xas * Z‘*f’ Ymiy (2.4.4a)

f(win-w2)2
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'5"‘.,,96 = 1/112:“ 2ugnw (X35 + 23, dmY (2.4.4b)
fi(Win—w2)2
These expressions will be used later for the case of

molecules with a non—-degenerate ground state.

2.4.3 Discussion of the magnetically perturbed

polarizability tensor

There are several important general points which can be
made from the form of the expressions for S;Fg-developed
above. The first of these concerns the magnitude of 5%,
relative to 5%,; To investigate this, we consider first of
all the contribution to each from a single excited
electronic state je. From the above, we see that the ratio
of the contributions to Sgp and Sgﬁg is of the same order of
magnitude for both the symmetric and antisymmetric parts.
Assuming that win 1is of the same order of magnitude as w,
this ratio is approximately

2wy B (2.4.5)
h(win-w2)

Now my4 By represents the splitting of the excited
electronic state je caused by the magnetic field. In order
to study the rest of the ratio, we assume-that we are not at
resonance and that win 1is roughly twice w. Then the
frequency term reduces to 4/hwin. Now this is the frequency
of the electronic transition from the ne to Jje. This is
always much greater than the splitting caused by an applied
magnetic field ( for a large applied magnetic field, the
ratio would be of the order of 104 ). From this comparison,

we see that even for a strong magnetic field, it would be
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expected that the magnetic polarizability would be roughly a
ten—thousandth of the ordinary polarizability. These
relative values are reflected in the magnitude of the
M.C.I.D.’s, as we shall see later on. The above argument
provides an explanation for the fact that M.C.I.D.s have

not been observed at transparent frequencies.

For the case of resonance, however, the above ratio is
at least an order of magnitude higher, since the denominator
becomes very small. From these considerations, we would
expect it to be much easier to observe M.C.I.D. for the case
of resonance scattering. In fact, the only case where
M.C.I.D.s arising from the magnetically per turbed
polarizability tensor have been observed has been in the
case of resonance Raman scattering.

A further point to note is that it is not sufficient to
be in resonance with any excited electronic state for 3}P{
to have a reasonable magnitude. The state with which we are
in resonance must be a degenerate electronic state. This is
because it is essential that we be in resonance with a state
with a non-zero magnetic moment. Hence, for most cases, we
must be in resonance with an E state. However, this is
exactly the condition for good resonance enhancement of
non—totally symmetric scattering ( see later ). Thus the
theory predicts that good candidates for exhibiting an
M.C.I.D. spectrum are molecules which show strong resonance

enhancement of non-totally symmetric modes.
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2.5 General Formulae for the Scattered Intensities

2.5.1 Introduction

This section 1is concerned with deriving the general
- expressions for the scattered intensities in terms of
molecular transition tensors. The approach followed is
essentially that covered by Barron2¢. First of all, the
Stokes parameters of the incident beam are defined.
Following this, the Stokes parameters of the scattered beam
are expressed in terms of the Stokes parameters of the
incident beam and the molecular transition tensors. These
are then used to obtain the formulae for the depolarization
ratio and the M.C.I.D.s which will be used in the rest of

the thesis.

2.5_.2 Stokes parameters for the incident beam

In order to measure the polarization of a light beam, one
needs to let it interact with some object and then study the
intensities of the transmitted light. Thus the experimental
quantities which give information on the polarization of a
light beam are quadratics in - the field. From a simple
analysis, one sees that the appropriate quantities have the
form E; E;. Using these one can contruct various sets of
parameters to describe the polarization state of a
monochromatic plane wave light beam.27 The three main sets
of quantities used are the polarization tensor, the Jones
vector and the Stokes parameters of the beam. We will make

use of the latter set of quantities.
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The Stokes parameters of a light beam are defined in terms

of the above products of electric field components as

follows28:
So = ExEx + EvEv (2.5_1a)
S1 = ExEx - EvEv. (2.5.1b)
S2 = —(E&E;*+ E;E:) (2.5.1c)
L Ak o~ P
Sz = —i(ExEvy - EvEx) (2.5.1d)

In terms of the intensity I, the azimuth © , the
ellipticity ) and the degree of polarization P these can be

rewritten as?? (see Fig. 2.1 )

So = E¢0 (2.5.2a)
S1 = PE¢®? cos2 cos2© (2.5.2b)
Sz = PE(®) cos27 sin2e (2.5.2¢)
Sz = PE(®*sin2m (2.5.2d)

The Stokes parameters can also be expressed in terms of
another set of parameters, namely the degree of circular
polarization, the degree of maximum linear polarization and
the angle between the principal axis of the polarization
ellipse and the vy-axis. However, we do not pursue this

approach here.3°

Fig. 2.1 Polarization ellipse with respect to the (i,,j,k)
coordinate system, and also showing the azimuth and the
ellipticity.
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2.5.3 Stokes parameters for the scattered beam in terms of

the incident beam

The Stokes parameters have been defined for the incident
light beam with respect to the coordinate system defined by
the unit vectors (i, j.k). (See Fig. 2.1 )

We can similarly define the Stokes parameters for the
scattered beam w.r.t. the coordinate system defined by the
unit vectors (id, j9,k9) (where d stands for light scattered

in the direction d.)31

So = JEx) 2 + IEv] 2 (2.5.3a)

S1 = JEx) 2 - 1Evl 2 (2.5.3b)
a3

Sz = -2Re( Ex Ev ) ' (2.5.3c)
A I\f* ’

Sz = 2Im( Ex Ev ) (2.5.3d)

Fig. 2.2 Diagram showing the relationship between the
incident wave coordinate system (i, j,k) and the scattered
wave coordinate system (id, j9,kd).
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We need to be able to express the electric field vectors

of the scattered beam with respect to the (id,jd,kd)
coordinate system in terms of the (i, j,k) coordinate system.
From Fig. 2.2 we see that the following relations hold32

(} is the scattering angle )

id = i (2.5.4a)
j9 = jcos§ - ksin$ (2.5.4b)
kd = jsinf + kcosf (2.5.4¢)

Using the above relations, we obtain the following

expressions33

sd = 1Ex) 2+1Ev)2cosS +1Ez) 2sinf -2Re(Ev E7)cosisini (2.5.5a)

S¢ = 1Ex12-1Evl 2cos§ - 1Ez)2sin§ +2Re(Ev £7)cosisinf (2.5.5b)
s¢ = -2Re(Ex Ev')cosk + 2Re(Ex Ez*)sink (2.5.5¢)
s¢ = 2Im(Ex Ev')coss + 2Im(Ex E:%)sing (2.5.5d)

In ref. [A] these are used to obtain general expressions

for scattering for any angle. Such expressions allow
calculations involving forward scattering, backscattering
etc. to be performed.34 In this thesis, however, we are
concerned solely with 90°¢ scattering (& = 90°). We therefore

use the modified version of the above i.e.

Sf:lgx\z +1Ez) 2 (2.5.6a)
Se=1Exl2 —)Ezl 2 (2.5.6b)
sg=2Re (ExEz") (2.5.6c)
sd=2Im(ExEz") (2.5.6d)

Now the electric field intensities for the scattered beam
can be expressed in terms of those for the incident beam and
the scattering tensor using the relation35.3¢

E9EG = (w2po/anR)2E,n 3%, B0y Elors
= 2Kaﬁpa* E‘°)E‘°)‘ (2.5.7)

Using this, we obtain the following expressions.
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sg:x[(|'5xxla+i§xvlz+lgzx|1+lgzvr)So-f(I%’xx11+i5'lez— l'é'xvll-lgzﬂ;)s,
—2Re( gxxgx:’ + Fzxazy )S, —2Im( gxxgx‘s/ + ?:l'zxgzv* )s, ]

sd=K[( lgxxli+ Bxy) = 13zx )V =13z v\i)So +(Vaxx) + 13z vV — ) 3xv ) =13z x\l)S,
—2Re ( SxxAxvt — Azxazv )S; —2Im( AxxAxy - gzxg—zv*)ss]

Sg=2K[Re( Axxazx + ngng )S. +Re( axvazy - ﬁa—xxgzx*)S.

~ A~ K A e R - o~ X P e 3
—-Re( axxazv + azxaxy )SyIm( axxazvy + azxaxy )S, ]

S;’=—2K[ Im( 3xxazx + axvazy )S, +Im( gxxgzx*— ngébzv* )S,
~Im( Axxazy - 'o::l'zx.’a"x\r"t )S, +Re( axxazy - sz’a‘&v*)sg]
(2.5.8a-d)
The above results enable us to obtain expressions for all
the scattering intensities which might be of interest. 1In
this thesis we are interested in two specific areas. The
first of these is the case of the scattering of light which
is linearly polarized perpendicular to the plané. The
second is the case of the scattering of right and left
circularly polarized 1light. The first of these cases
involves the measurement of the depolarization ratio for
linearly polarized incident radiation. The second case
corresponds to the measurement of optical activity. We deal

with these two cases in the next section.
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2.5.4 Molecular expressions for the depolarization ratio and

the M.C.I1.D. components.

(a) The Depolarization Ratio.

The depolarization ratio for linearly polarized incident
radiation 1is given by37
/D(x)zlz/Ix To measure it, incident light which is linearly
polarized perpendicular to the scattering plane is used. For
such a beam, P=1,© =0 and #] =0. Thus it has Stokes
parameters So=1 and Si=1.

From the above expressions we have

Iz = S3(90%) - sS9(90°) = 2K(1azx12) (2.5.10a)
Ix = S8(90°) + S9(90%) = 2K(¥axx12) (2.5.10b)

Now for a liquid sample,these expressions must be averaged

over all orintations. We use the following averages38

= (kdk/;k-fk5>

= 1/15(5df56‘0'7)+ 90\'8'%‘#% +$d_(v%ﬁf) (2.5.11)
CGudpksks> |
= <ldlﬁk5kﬁ>

= 1/30(46%313 ~%a59ps ~ a5 Dgy) (2.5.12)

Cuigigdyd

ar ~ K Fad A . . . .
Thus {(axxaxx> = aqpa,§<1d561f15>
~ A% PR 3 ~ A~ Xk
= 1/15( a_y,a + a,.a +a a,, ) (2.5.13)
AR T T Tap T
Similarly

~ ~ %k ~ A A N* A A
(azxazx> = 1/30( 4aﬁpaﬁ6 - ai&%@s - aﬂﬂﬁpa) (2.5.14)
We define the following invariants in terms of the symmetric

and antisymmetric parts of the polarizability.

k2 = 1/9 x 5’,‘43;; (2.5.15)
pl0? = 1/2( 3.0 - Buadps) (2.5.16)
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Ar

p(a)2 = 3/2 x adpgg; (2.5.17)

These invariants correspond to isotropic,anisotropic and
antisymmetric scattering respectively. We now obtain our
final expression for fﬂx) in terms of these invariants.3?

P(x) = 3p(a)2 + SA(2")2 (2.5.18)

4542 + 4p(a)?

(b) The M.C.1.D. components

When we are measuring the M.C.I.D. components for the
Raman scattering of a particular molecule, we use right and
left circularly polarized incident radiation (see Chapter 4
for experimental details ). We denote the scattering
intensity obtained for these two polarization by IF and 1Ib-.
In terms of these, the M.CI.D. components are given-by

A= (1% - 1Y) Az = (18 - 1L) (2.5.19)
(1% + IL) (If + I:)

For right and left circularly polarized incident light,

P=1M=1Y/4. This gives the Stokes parameters So=1,Sz= 1.

From the expressions (2.5.8) we can write4?

IR — IY = 4KIm( Axvaxx’) (2.5.20)
IR - IL = 4KIm( Azvazx™) (2.5.21)
IR + IL = 2KIm()&xx)*)&xvi) (2.5.22)
IR + IL = 2KIm(1&8zv "+ &z xl™) (2.5.23)

As they stand, the first two expressions average to zero.
However, as we saw in the last section, in the presence of a
magnetic field, we can write Seﬁ(Bz) as ggp.+ ggszz.

Thus we can write
Axvy (Bz) 3o (Bz) = vy Bxxt + (g&vzg§§*+ Ekvakiﬁ)sz + _.(2.5.24)
If we now take an orientational average, only the first term

will give zero. The second term in Bz can be averaged using
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the following expression4!
<Jdl¥i1l§le)

(kxjﬂjtjs je >

1/30(€ﬁp$5ﬁe+&ﬁp5615 +E ae Dys) (2.5.25)
After using these to average (2.5.24) above, we obtain the

following expressions

IR-IL = 2/15KBzIm( zsgﬁep,sauév + HupEavndpsy +
A K : ~ K i~ ~ x
gdal 61/56 a-n;‘/s - %,a./'& EolTP dept atyi aﬂ‘y&an’dﬁ)
(2.5.26)
IB-IL = 2/15KBZIM( 3,5Equs Bvos + SapEpmedpoa +
aV& ,suns Y AT Toal
A~ A~ K
AupTpsaaty ) 2.5.27)

We also have to average the expressions for the sum spectra.
These are done using (2.5.11-12 ). When we do this we obtain

the following

- ~ o~ * ~ ~ % A ,\,"
IR4IL = 2/15 x KIm( 6a#5aﬁﬁ + aad?qs + aﬁﬂafd) (2.5.28)
IR+IL = 4/15 x KIm( 455ﬂ5ﬁz'—‘§;4§32 ~‘§4ﬂ3;2) (2.5.29)

It will be found that in almost all the cases for which
we use the above formulae, we will be able to greatly
simplify the above expressions.

( It should be noted that in Chapter 3, we consider under
what circumstances we should perform an orientational
average. We will then see that the above averaged
expressions apply only for molecules with non—-degenerate

ground states.)
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2.6 Summary of Irreducible Tensor Methods

2.6.1 Introduction

This section contains a brief outline of the Irreducible
Tensor Methods (I.T.M.s) which will be used in the remainder
of the book. It consists mainly of a statement of the
irreducible tensor equations which will be used. There are
three distinct areas in which I.T.M.s are used, namely for
the full rotation group, simply reducible and non-simply
reducible molecular point groups. However, the basic ideas
behind each of them are identical.

The theory for each is built upon two fundamental ideas.
These are the concepts of high symmetry éoupling
coefficients and the Wigner—-Eckart theorem. Before stating
the theorems which we shall use in the various different

situations, we say a brief word about these two concepts.

2.6.2 The basic concepts

Suppose that in a general symmetry group G, A and B are
two irreducible representations. If we take the direct
product of these two representations, AxB, then in general
these can be reduced to a sum of irreducible
representations, for which we use the symbol C (in general
there is more than one C.) Let Aa and Bb be basis functions
for the irfeducible representations A and B respectively.
Then we can choose appropriate combinations of these basis
functions to act as basis functions for the C

representations. This i1s done 1in terms of the coupling
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coefficients (ABCclAaBb)42.

Using these we have

ICc> = X <ABCclAaBb)lAa) IBb) (2.6.1)

a.’

Now these coupling coefficients have very limited symmetry
with respect to a change in the roles of A, B and C.
However, we can define high symmetry coefficients in terms
of these. [ These are called 3-j symbols or V coefficients
depending on the context. This was first done for the full
rotation group by Fano and Racah?®3, who extended the
piocneering work of Wigner44, and for simply reducible
molecular point groups by Tanabe?3 and Griffith 4. The
latter pair’s work has been extended by various authors47.48
to include non-simply reducible point groups.]

Al though the definition of these high s?mmetry
coefficients varies depending on the type of group involved,

they all have the following form

V/A B C\ = d(C)-1/2(-1)u<ABCclAaBb> (2.6.2)
(:a b c:)

where d(C) is the dimension of the representation C and u is

an integer which depends on the representations and

components involved.

Having defined V coefficients for the group in question,
one then constructs invariant sums of products of v
coefficients. The most interesting of these involve products
of four and six V coefficients, with a summation performed
over all the relevant pairs of components. These are called
respectively 6—3 and 9-j symbols in the context of the full
roation group, and W and X coefficients respectively in the

context of molecular point groups. As we shall see later,

the evaluation of complicated matrix elements is greatly
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simplified by using these invariant sums.

Associated with the idea of V coefficients or their
equivalent is the Wigner-tEckart theorem. This theorem allows
us to express the matrix element <AalOClBb) involving

particular components of the irreducible representations in
the form

{Aa)ocIBb) = (-1)uv /A B C XAlocus» (2.6.3)

(a"’ b* c")
In the above equation, a*, b* and c* either have the same
value as the corresponding component in the matrix element
or the negative of this. u is either an odd or an even
"integer, depending on the representations and the components
involved. <ANOCIB)Y 1is called a reduced matrix element, and
is independent of the particular components involved,r being
dependent only on the irreducible representations A, B and
C. In general, these states A,B and C will have been built
up from products of other states ,e.g.
JA> = I(airaz)A> (2.6.4)

Depending on the form of the operator 0¢, one can often
simplify the reduced matrix element, using formulae
involving either 6-j or W coefficients, expressing it in
terms of simpler reduced matrix elements.

Using the ideas outlined above, irreducible tensor
methods allow any matrix element, no matter how complicated,
to have all the symmetry information contained within it
utilised.

There is one prerequisite for using irreducible tensor
methods. This is that all gquantum states and operators must
be expressed as combinations of basis functions of

irreducible representations of the appropriate symmetry
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group.
We now go on to state all the theorems which will be

used in the remainder of the thesis.

2.6.3 Irreducible tensor expressions for the various types

of group.

(a) _The full rotation group Rz.

Let Jlaim> be the general classification of a quantum
state in the full rotation group, where j denotes the
angular momemtum quantum number and m denotes the particular
component of the representation j. Also, let T¥ be an
operator which spans the irreducible representation K of the
full rotation group. Then the Wigner—-Eckart theorem fof the

full rotation group states that4?®

<a'j'm')t£1ajm> = (-1)3"-="(a’ji"NT*Naj> i’ K j) (2.6.5)
-m

qm
where the symbol in round brackets is called a 3-j symbol.
(These have been tabulated by Rotenburg et al®®. The
symmetry properties are also contained in this reference.)
As was noted 1in Section 2.6.2, all operators must be
expressed in terms of irreducible tensors. The appropriate
combinations will be given when needed. One further result
is used. This involves the reduction of a reduced matrix
element when the quantum system is the direct product of two
independent systems, and the operator acts on only the first
of these. The appropriate expressions areS!
L?S*I’NT*(NLST (2.6.6)
= [L” 3% S| x (-1)L"STHIAR[(27+1)(23%+1)]2/2

J L k X  LPHTR(L)NLY
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( the coefficient in squared brackets is a 6-j symbol.)
A similar result, which we don’t require, exists when the

operator acts only on the second system.

(b) Simply reducible molecular point groups.

The main work in the development of irreducible tensor
methods as applied to simply reducible molecular point
groups was done by Tanabe in Japan and Griffiths in Britain.

Let Aa> be a general quantum state which spans the
irreducible representation A of the point group in question
( we are assuming that we are using real component systems.)
Then if the operator 0O¢ spans the irreducible representation
C, the appropriate form of the Wigner—Eckart theorem isS2

(A’a’l 0flaay = V /A’ A C\ A locilAD (2.6-7)

(:a' a c)

[ For tabulated values®3 of the V coefficients for
molecular point groups, we refer to the monograph by
Griffiths, in which he summarises his development of the
method, which was originally published in the form of
papers. This also contains the symmetry properties of the V
coefficients. ]

The following expressions for simplifying reduced matrix
elements are also used.54
{ABCCIDIES|A’B’Cc)y=(~1)A+B+C+D(ANDINA’ > CBHEIBT YW/ A B C

H(B' A’ D)

(2.6.8)
- {ABCID91ABCY=(—1)A"+B+C*+D%g5,d(C,C) <ANDINA*>W /A B C
(B’ A’ D)

(2.6.9)
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(ABCIDSHABC)>=(—1)A*+B’+C+Efapaed(C,C) <BIDIIB’>W /B’ B E)
(e o
(2.6.10)

In the last three expressions, the operator D acts within
the A and A’ system. This is independent of the B and B’,
within which the operater E acts. The W coefficient which is
contained in these expressions is an invariant composed of
sums of products of V coefficients. If it contains an A:
representation, then it reduces according to the following
formula.S5

W/AL B C\ = (-1)B*P*Ed(B,C)~1/2D gc GEer (2.6.11)
(D E F)

If we are dealing with situations where we need to use
complex components for the irreducible representations,-then
we use the following modified form of the Wigner—-Eckart
theorem. This applies to all the proper subgroups of the
octahedral group, but not the octahedral group itself.5®

(ArloclBsy = V A B C\ <anocus» (2.6.12)
(—r s t)

For the real and the complex cases, the following results

hold for V coefficients containing the totally symmetric

representation37 Ax.

B C A1\= d(B)-1/29 8c9bec V/B C A1)= d(B)-1/2§8c Pr.-=
bci ) r si (2.6.13)

The appropriate combinations to be used for the various

operators will be given as they are required.
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(c) Non—-simply reducible groups.

( We use Harnung’s formulation in what follows, except that
we use the terms V and W coefficients.)

For these groups the following form of the Wigner—-Eckart
theorem is used.5®

(aGgl|DX\a’G’g’»= 3 (-1)ut6-a) <aGl|eD“Na’G')( G K G')
€
-9 k g’/

(2.6.14)

Here, e takes the values p or s. These stand for principal
and secondary. Thus this form of the Wigner—-Eckart theorem
can in general involve two different V coefficients for the
same matrix element, along with two different reduced matrix
elements. Both s and p are needed only when repeated
representations occur. Otherwise, we need only tﬁe P
contributions.

The symmetry properties of these V coefficients, as well
as tables for the V and W coefficient, can be obtained from
Harnung.>?%

The following results®® are also used later . If Aa and Bb
are the components of £wo representations A and B, then the
combinations spanning C where C= AxB are given by

|(a1A) (azB)Cc> (2.6.15)

=2: (-1)uc2B+C-c) (~1)pr(A+B+C) [C]1/72y /A B C\ lairAad|azBb)
o (a b c)

We also use the following result, which is the inverse of
the previous result.

|a1Aa) |azBb>

C.c
abc

=}:(-l)"""*5*°’(—l)“‘z‘“c‘c’[C]l’ZV(A B C) {(a1A) (azB)Cc)

(2.6.16)
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CHAPTER 3

FURTHER DEVEL OPMENT OF THE MOLECULAR SCATTERING TENSORS

3.1 Introduction

In this chapter, the main new theoretical ideas of the
thesis are presented.

In Section 3.2, a new development of the vibronic coupling
expressions for non-totally symmetric modes is presented,
which makes use of irreducible tensor methods. It will be
seen that for the case of a molecule with a totally
symmetric ground electronic state, an important general
expression for the polarizability tensor caﬁ be deduced.
This expression allows depolarization ratios to be
predicted, using only the point group to which the molecule
belongs. The development of the polarizability tensor
continues with a discussion of the relationship between the
0-0 and the 0-1 scattering contributions for various types
of scattering.

In Section 3.3, the development of the previous section is
extended to include the perturbed polarizability tensor.
Again a general expression is obtained, and the 0-0 and 0-1
contributions are again considered.

For molecules with non—totally symmetric ground
electronic states ( 1i.e. a molecule with an odd number of
electrons ), it has not been possible so far to obtain an
analagous general formula. However, irreducible tensor
methods are used in Section 3.4 to obtain some general

properties of the polarizability tensor.
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In section 3.5, the two main mechanisms for Raman optical

activity are outlined in detail. It will be seen that a
modification of the earlier magnetically per turbed
polarizability tensors is necessary when we are considering
the second mechanism.

The final section in the chapter, Section 3.6, contains
a discussion of the frequency dependence of the various
scattering observables which are of interest to us. This is
of considerable importance when we come to compare theory

with experiment.
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3.2 Vibronic Coupling for Molecules with a Totally

symmetric Ground Electronic State

3.2.1 Introduction

What follows is restricted to molecules which have a
totally symmetric ground state. Because of this restriction,

the following facts are true about the molecule

(i) all its wave functions can be expressed in real form.
(i1)it’s point group is simply reducible.
Because of point (ii), we may use the irreducible tensor

results given in Section 2.6.3(b).

3.2.2 Extended use of the Herzberg-Teller approximation

In the previous chapter, vibronic coupling was developed
using the Herzberg-Teller approximation, with the
Hamiltonian expanded as follows

H(r,Q) = H(r,Qo) +§:(3H(L,Q)/aap)gp +
;g,Ei(aZH(g,a)/anaQq)Qpaq + ... (3.2.1)
Previously, only the first term of the expansion was
used as a perturbation. In the development which follows, we
use the above to write our Hamiltonian as
H(r,a) = H(r,ao) + H" (r,Q) (3.2.2)
where H(r,Q) contains all the expansion terms. Since this is
the Hamiltonian for the system, all the terms in it must be
totally symmetric. In particular we can say that H’ (r,Q)

transforms as Ax.
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3.2.3 Derivation of the general polarizability expressions

Following first order perturbation theory, we can write
the perturbed wavefunction for the vibronic state jeljv) as

1jejv> = Jje¢®?jv> +3 <(kekv H(r,Q) jejv) kekv) (3.2.3)
nt
2

hwiejvkekv

Now electronic energies are very much greater than
vibrational energies. Also, the differences in energy
between vibrational states are small!. Thus it is a very
good approximation to ignore the vibrational terms in the
frequency denominator. In what follows, we make this
approximation, and incorporate the frequency denominator
into the operator H(r,Q)jexe. We shall omit the subscripts
in what follows.

Inserting this in (2.2.22), we obtain the following
expression for the zZ tensor contribution to the
polarizability tensor
zﬁﬁ :m'= [ <nemv lual jejv> <kekvlug inenv) <kekvIH(r,Q)| jeiv>

5> o+ <nemviusikekv) <jejviug inenv) (kekviH(r,Q) 1 jejvd*

+ <nemvludljejv)<jejv|gglkekv)(kekle(L,Q)lnenv)
+ (kekvluxljejv)(ieiviuginenv) (kekviH(r,Q)\ nemv)* ]
For syshems o interwt |oder (3-2.4)
( We shall see later thathPthe excited electronic states
are usually degenerate. Hence for non—-degenerate normal
modes of vibration, the last two terms in the above

expression are zero.)

Now we consider the symmetry of the vibronic state
) ieiv)>. In general, the direct product ['(je) x I’(jv) of the
irreducible representations of je and jv will contain a sum

of irreducible products J. For any degenerate J, we denote
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it s components by Jj. This applies to all the vibronic

states in (3.2.4) above. Hence we can rewrite this as

de,zzz: [' ((nemv)Mmlua iejv)Ji><(kekv)Kklua) (nenv)Nn>

R+
5 x <(kekv)KkIH(r,a)l(jeiv)Ji>
+ ((nemv)Mmluw I(kekv)Kk><(jejv)JIjlugs Knenv)hn>
x  <(kekv)KKIH(r,Q) | (jejv)3i>* ] (3.2.5)
Take the first line of (3.2.5) and apply the

Wigner—tEckart theorem to each of the three matrix elements.
This gives us
((nemv)Mmludl(jejv)Jj><(kekv)KkluPl(nenv)Nn> (3.2.6)

x <(kekv)KkIH(r,Q) ) (jeijv)JIi>

=V/MJIL\ V/KNE\ VK I A
(ﬂljti) (P&n,ﬁ) (k:j i )'
X (nevaHu(qﬂ)HjejvJ><kekalb(qu)"nenvN)(kekaNHHjejvJs
This can be simplified considerably. We have stipulated a
totally symmetric ground state. Therefore N is Ai. This
gives us two V coefficients containing Ai1. Using formula
(2.6.13), we can therefore simplify the above to
{(nemvMmiu W ieivJj> (kekvKk®u Il nenvNn>x<(kkvKkiH(r,Q)| jejvIi>
=V/MJIg, d(f,")‘l’zsxc; Bip d(JI)~1/29x30ks X
(im j4u)
(neva"u([})erjvJ)(kekaHu(q;)HnenvN)(kekaHHHjejvJ)
:v(n L. r;,) d(,l_"/,,)—1 X
m p d

<nemvMiu (D)l jeiv Ew <kekve Il u(E)MnenvN) <kekvDi Hilie jv,.)

=1 X V(M Ly r/*) x a1(Q,Cu,LL,Je,iv,ke,kv) (3.2.7)
d({;) m p o

Similar arguments apply for the second term in (3.2.5).
The only difference is that the reduced matrix elements

contained in az are different.
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Putting these results into (2.3.9) we obtain

de, = 1 x V(M L. I‘,,)Z [ as(a.L. . ,je,jv, ke, kv)]
d(I,) m A o (3.2.8)
( In the above, we were free to take the V coefficient
outside the summation because it was independent of the
summation parameters.)

The order of E‘,u. and f}&, would seem to be important in the
constants ai. However, inspection of the various simply
reducible point groups shows that V-coefficients involving
different dipole moment representations gb.and ngare always
zero for non—degenerate modes . Usually, only one
representation is involved in the non-zero polarizability
tensor components (see below for details). We can thus
consider the ai to be constants. ( Their exact form is of
importance however, and 1is discussed later on in the

section.)

This gives us the result

dup = A X v<r1 I 1;,) (3.2.9)
d(gh) m g d
where a = [ a1 + az ] is a polarizability constant whose

magnitude depends on the molecular system in question.

It must be emphasised that this result is exact. (
Although we have used the Herzberg-Teller approach, we have
included all the expansion terms.) (3.2.9) allows us to
state a necessary and sufficient condition for a molecule in
a non-degenerate ground state to support antisymmetric
scattering: namely the direct product L.x gl of the dipole
moment representations must contain the representation Az.
Molecules having higher than a two-fold axis of symmetry

satisfy this condition.
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3.2.4 Discussion of equation (3.2.9)

At first sight, it might appear, as mentioned above, that
(3.2.9) is of restricted use. It does allow us to compare
directly some of the components of the polarizability
tensor. But to do this, the components being considered must
involve the same irreducible representations. However, a
glance through the point groups will show that one of two
cases always holds for any non—-commutative group.

(x,y) transforms as E ; z transforms as A1 or Az

(x,v¥,2z) transforms as T1

This means that axx, axvy, arvrx and avy may always be
compared directly for non—-commutative groups. ( The
commutative groups are those containing no representation of
degree higher than one. ) Also for such groups, it will be
seen 1in Chapter 8 that the polarizability tensor contains
either diagonal terms or non-diagonal terms - but never
both. Also, whenever a polarizability component involving z
and either x or vy is non-zero, these are the only non-zero
components. The only case 1in practice where the relative
values of all the polarizability tensors cannot be measured
is when we have diagonal scattering ( usually involving the
totally symmetric mode.) For this case, the general rules
governing the polarizability hold.

In view of the previous discussion, it is clear that
(3.2.9) can be used, apart from one case, to calculate the
relative values of the polarizability tensor, and thus the
depolarization ratios. It further follows from (3.2.9) that
for non—-diagonal scattering, the depolarization ratios

depend only on the point group to which the molecule
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belongs. In Chapter 8, the polarizability tensor patterns
and the depolarization ratios will be calculated for each of
the point groups. (Apart from Dan, which is dealt with in
Chapter 5. ) These tensor patterns have been reported
previously, e.g. for example, by Koningstein.3 He obtained
his results by applying irreducible tensor methods to
individual normal mode representations for each point group.
Using (3.2.9) not only allows us to calculate the patterns
automatically, however. Further developments in for thcoming
sections allow extra information to deduced which 1is not
accesible by the method used by Koningstein.

Another result which follows directly from (3.2 ) is
that the tensor patterns are independent of the nature of
the excited states of the molecule. In particular, as we
reach resonance, the tensor patterns should remain
unchanged, although the absolute magnitude of the tensors
will in general be greatly affected. We shall come back to
this point when the frequency dependence of the molecular
scattering tensors and observables is discussed.

A final general point emerging from (3.2.9), and
mentioned above, is the necessary condition for
antisymmetric scattering to exist. As will be seen later,
real antisymmetric tensor components can exist. Because of
this, a slight modification to the depolarization ratio
expressions must be made.

Further consequences arise from (3.2.9), once detailed
calculations are made using it. A discussion of these is
contained in Chapter 8.

In the next section, we investigate the physical

significance of the two constants ai and az.
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3.2.5 Identification of the constants a1 and az with the 0-1

and 0-0 scattering pathways

In the previous section, we obtained a general result
which involved two’polarizability constants a1 and az. These
consisted of products of reduced matrix elements. However,
we can use (2.9.5a) to simplify the reduced matrix elements.
when we do this, it emerges that the constants correspond to
physically different scattering pathways.

First of all, we consider the constant ai. From the
previous section, we have

a1 = <(nemv)Mnu(Qﬁ)N(jejv)Qp>((kekv)gwuu(Cp)H(nenv)N)

x <(ieiv)DIIHI(kekv)Da > (3.2.10)
Before using irreducible tensor methods, we note that the
two electric dipole moment operators involve only electronic
coordinates. Therefore mv and jv must be identical, and kv
and nv must also be identical. Thus Jjv, the virtual

intermediate vibrational state, must be identical to the

jemv
(:) jenv (:>
&) @ '
nemy nem,,
nenv nenv
1 = 0-0 vibronic transition 2 = 0-1 vibronic transition
pathway pathway

Fig. 3.1 Diagram illustrating the 0-0 and 0-1 scattering
pathways
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final excited vibrational state mv. For this reason, this
scattering pathway is called the 0-1 pathway.® Hence the
constant ai: may be written as ao-1, since it describes the
0-1 scattering contribution. ( see Fig. 3.1 )

Using irreducible tensor methods, since the operator u acts
only on the electronic part of the vibronic wave function,

we have ((nemv)M)lu([:._‘)|l(jejv)[;. S

(-1)re* =*F +L d(mv)1/2d(L.)2/2 x w(je ne f,‘A)

x <neltu(Lp )N jed mv Du mv

(=1)A + my+0 +F d(mv)1/2d([u)1/2 x W/ je A1 Da
X (nellu([‘,‘)llje) (mv I}, mv)

( since ne is totally symmetric )

= (m1)A + = U+ d(mv)1/72d([n)172(~1)ie+E +mv

x d(mv)-1/2d(je)~1/2 x <nenu(E)jed

d(u)r72d(0.) "1/ 2<nelu (Tl je) (3.2.11)
( because je must equal I;'u and all the exponents come in
pairs, apart from Ai,which is equal to zero. )

Similarly, we have
((kekv)l;;\lu(['/‘,,.)ll(nenv)N) = <kellu(Tu Nine> (3.2.12)

In order to simplify the third reduced matrix element, we
now use for the first time the approximation that

H(r,Q) = (He@)® (3.2.13)
“We then have

< (jejv)l;,,n Hn(kekv)r), >

((.iejv)l;.ll (Ha@) Al (kekv)u>
(-1)k + 4 +F """d(!i'/,)1/2d(mv)‘1’2 w(je Jv [}.)

X CiellHattke ) <avilalikv> kv ke mv

1

(-1)x + 3 +C *'Vd(ﬂp)l/zd(mv)‘l/z(—1)3 +k +mv
X d(je)-172d(mv)-1/2jellHall ke> < jviailkv>

= d(mv)~1 x (jetliHallke) (jvhailkv>
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= d(mv)~! x (jel\Hallke) (mviiQlinv) (3.2.14)
since we have already identified kv and jv with nv and mv.
Putting all these together, we obtain
ao-1 = d(Lu)1/2d(Lp)~1/2d(mv)~1<mv Q nv> (3.2.15)
X (ne"u(ﬁh)Hje)(ke“u(E})Hne)(jeuHoNke)
We next simplify az. From the previous section we see
that
az = <(nemv)MHu(qp)N(kekv)€;><(jejv)gnlu(Ep)M(nenv)N>
X ((kekv)gﬂlHN(jejv)§;> (3.2.16)
Again because the dipole moment operator involves only the
electronic coordinates, we see that for this particular
pathway mv and kv are identical, and jv and nv are also
identical. Because the intermediate vibrational state is
edual to the initial vibrational state, we call this pathway
the 0-0 pathway. Hence the constant az may be written as
ao-o, since it describes the 0-0 scattering contribution.
Proceeding as before, we obtain the following

<(nemv)Muu([;)H(kekv)gL>

d(Ep)1/2d(€>)‘1/2<neuu(CLNIke)

(3.2.17)

< (jejv')l;,ll u(f}, M (nenv)nd

((kekv)?ﬂlHH(jejv)EL) = d(mv) - <{kellHall je> <mvhoUnv> (3.2.19)

<ielu(Cuiine) (3.2.18)

Putting these three results together, we obtain
av-o = d(qp)lfzd(qp)'l/zd(mv)‘l(mv“Qan) - (3.2.20)
X (neﬂu(ﬂﬁ)"ke)(jeuu(gp)nne)(ke"Hone)
It will be immediatly noted that the simplified
expressions for av-1 and ao-o are very similar but not
identical. In the next section, we investigate the relative

values of these two contributions.

(66)



3.2.6 Comparison of the 0-0 and 0-1 scattering contributions

to symmetric and antisymmetric scattering

In Section 3.2.4, expressions were obtained for the
constants ao-1 and ao-o which describe the two different
scattering pathways. The only differences between these two
expressions involve the reduced matrix elements containing
electronic states. 1In this section, we show that as-1 and
ao-o are simply related to one another.

From the previous section, we can write the ratio of ao-1
to ao-o0 as |

ac-1/ac-o = <(nelu(Lu jed (kelu(CuMine) (jelHalike) (3.2.21)
(nenu(Qp)Mke>(je"u(ﬁ»ﬁlne)(keﬂHone)

Now the operators involved in these reduced matrix
elements are hermitian. We use this fact to simplify this
ratio. Consider first of all operator Hep connecting the
states Jjei> and kek>. Then by hermiticity we have

(keklHapljejd=<(jejlHapl kek)>* (3.2.22)

As has previously been mentioned, all the states we are
considering are vreal. MWe can therefore ignore the complex
conjugate which appears above. If we now apply the
Wigner—-Eckart theorem to both sides we obtain

V/ ke je Q\ <kelHellje> = V/ je ke Q) <(jellHallke> (3.2.23)

(k J p) (J’ k p)

Using the permutation properties of V-coefficients, we

therefore deduce that

(kellHatt je) = (-1)ke+de+[ x (jellHallke) (3.2.24)
As has been previously noted, the states ke and je involved
in the scattering expressions normally have the same

symmetry . Thus we can write
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(kellHallje) = (-1)9 x (jeRHallke> (3.2.25)

In a similar way, it can be shown that

"

(ne"u(ﬁgﬂlje) (jeNu(QhMlne) (3.2.26)

<jelu(Cu Mne> = <nenu (D jed (3.2.27)

Again -using the fact that in practise non-zero
contributions occur only when Re is equal to j.. we deduce
that

aco-1/ao-o0 = (-1)@ (3.2.28)

To obtain our final expressions for the polarizability
tensor for non-totally symmetric modes of vibration, it is
convenient to consider separately the cases of symmetric and
antisymmetric scattering. This is because of the different

frequency factors involved.

(a) Symmetric scattering

From expression (3.2.9), we deduce that symmetric
scattering will occur when the V-coefficient which gives the
tensor patterns is invariant to permutations of its columns.
Inspection of the wvarious simply-reducible point groups
shows that this is the case whenever the normal mode does
not have symmetry Az. In this case, the factor (-1)9 is
equal to +1. Hence we can use the development given in this
section so far to write N
g"‘ﬁ = V(Q I‘r. [;) ? a(j) wWo-1 + Wo-0 (3.2.29)

q /3 ol

Later in this chapter, we will see that the frequency

(W3-1-w2) (w-0-w2)

factors are modified when we are close to resonance. If we
are far away from resonance, the frequency factors for the
0-1 and 0-0 scattering pathways are roughly equal, and as

can be seen from (3.2.29), they reinforce each other.
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(b) Antisymmetric scattering

As mentioned in (a) above, antisymmetric scattering occurs
when the V-coefficient contained in (3.2.29) is odd with
respect to permutation of it’s columns. As also mentioned
above, this occurs only when the normal mode is Az. For this
case, the factor (-1)° is equal to -1. Thus we obtain for
antisymmetric scattering the expression
'é'dﬁ = V(Q L. J.';,.)iJ a(j) w - W (3.2.30)

q /3 ol

( In both expressions above, a(j) 1is a constant which

2
(wo-1-w2) (Woro—w2)

depends on the excited electronic state je, and whose
magnitude is determined by the molecular structure of the
particular system involved.)

The resonance situation will be discussed later. If we
are far from resonance, the above equation shows that the
0-0 and O0O-1 contributions are approximately equal in
magnitude but opposite in sign, resulting in very low
magnitude for antisymmetric scattering away from resonance.
Thus the non-appearance of antisymmetric scattering in
transparent scattering is due to the cancellation of the 0-1
and 0-0 scattering contributions. This explanation was first
obtained by Barron®, without using irreducible tensor

methods.
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3.3 The Magnetically Perturbed Polarizability Tensor in

Molecules With a Totally Symmetric Ground Electronic State

3.3.1 Introduction.

For non—-totally symmetric modes, it was shown in (2.4.)
that the magnetically perturbed polarizability tensor is
given by

Az = 35*10 <j.‘_-jvlm,;\jejwz,,ys (3.3.1)
This was because, for molecules with non—-degenerate ground
states, <{nenv m nenv> 1S zero. Also, only the z-component
of the magnetic dipole moment operator has a non—-zero
expectation value expectation. With. these points in mind, we
now develop the above expression in a similar way to the

treatment of Z%P in the previous section.

3.3.2 Symmetry considerations.

Because we are dealing with the magnetic dipole moment
operator, it is necessary to use complex representations for
all the molecular states considered. A glance through the
simply reducible molecular point groups shows an important
point. This is that, except for 0, the z component of the
magnetic dipole moment operator always transforms as Az. A
further point is that only states having the irreducible
representation E can have a non-zero expectation value
involving an operator with symmetry Az. Thus, only excited
states with symmetry E can contribute to the magnetically
perturbed polarizability. It also means that, again apart

from the octahedral group, no perturbed polarizability with
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z as a component can have a non-zero value.

The first restriction effectively reduces the magnitude of
the perturbed polarizability considerably. This is because
many fewer excited states can contribute to it than to the
unperturbed polarizability, which in theory can have
contributions from every excited state.

We use the following complex components for the

representations E and Az.%

gx =i2=1/2(g1 - g-1) gy =2-1/2(g1 + g-1)
g9z = -igo (3.3.2)
Us.i.ng Complex Components, we now express the 2 tensors

in terms of the quantities Zr.s,z, where these are obtained
from (3.3.1) by using complex components for the operators

and states. The appropriate expressions are

Zxx = —-1/2(Z1,1 - Z1.,-2 — Z-1,1 + Z-1,-1) (3.3.3a)
Zxy = 1/2i(Z1,1 + 21.-1 — Z2-1.1 — Z2-1.-1) (3.3.3b)
Zyx = 1/2i(Z1,1 - Z1,-1 + Z2-1,1 — Z-1.-1) (3.3.3c)
Zvy = 1/2(Z1.1 + 21,-1 + Z2-1.,1 + Z-1,.-1) (3.3.3d)

( All terms involving z are zero.)
Having completed the general symmetry preliminaries, we go
on in the next section to simplify the quantity Zr.s.z using

irreducible tensor methods.

3.3.3 Derivation of general expression in complex form.

In this section, irreducible tensor methods are used to
develop an expression for Zrsz similar to that obtained
earlier for Z*p. As before, we combine the electronic and
vibrational states into a vibronic state, and take a sum

over all the vibronic state symmetries possible. This gives
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Zrs,z = 3 (3.3.4)
d#R
[ ((nemv)Mmiur 1(jeiv)Ii><(kekv)Kklug! (nenv)Nn)
X <(jejv)Jj|mzl(jejv)Jj>((kekv)KkIH(L.Q)l(jejv)Jj>
+ ((nemv)Mmluy l{(kekv)Kk><(jejv)JIjlus!(nenv)Nn>
X <(jejv)lemzl(jejv)Jj)<(kekv)Kle(L,Q)l(jejv)Jj)‘]

Using the complex form of the Wigner—-Eckart theorem, the

first term becomes

[(-1J#+r (-1]7*=[-1]7*»V/ M K gf) V¥ INCu\V/ K J A
-r ki -m s Jj ) ~k m i)

x <(nemv)MRull(jeiv)I><(kekv)Klull(nenv)N)>
x ((kekv)KIH(r,o)l(jejv)I><(jeiv)Iiimzit (jeiv)TJi> (3.3.9)
The factors involving [-1] combine to give 1, and the
product of V coefficients simplifies in a similar way to the
previous section. This leaves us with the matrix element
involving mz . However,
((Jedv)Iilm(jeiv)Ti> = [-117*3V /T J A \<{jejvIhmiljejv>
G0
= i27172j5¢je jvIlimije jvI> (3.3.6)
where the last 1line follows by inspection of the \
coefficients for groups other than O. Thus we have,
<(nemv)Mmlur) (jeiv)Jj><(kekv)Kklusl (nenv)Nn> x
((jejv)Iilmz) (Jeiv)Ii><(kekv)KklIH(r,Q)l(jeiv)Ji>

= jo2-1/2gy (M Iy [‘/‘) x <(nemvMilulljeivJ> <kekvKllulinenvN)

d(Cy) m s r X (jeivINmzNjejvI)><kekvkKIH(r,a)l jejvd>
= i271/2sV /M [y f‘l..) x b1(@,Lu.Lu,je,iv, ke, kv) (3.3.7)
d(QF) m s r

A similar result holds for the second tefm above.
Combining these results we obtain
Zr.s,z= 1271725V (M Lp P,.) ? [ b1(Q,fpu.Lu,je,iv,ke,kv)]
d(Lu) (i

m s r (3.3.8)
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( we again take the V coefficient outside the summation
since it is independent of the summation parameters )

This gives us finally

Zr.s.z= 1271725 x V(M L, r‘,) x b(Q,Cu,Cu) (3.3.9)
d(Cu) m s r
where
b(@,0m.[p) = b1(Q,Lp Ly, de,jv,ke,kv) + (3.3.10)

bz (Q,0u,[u, je, v, ke, kv).

( As before, we can consider b(Q,E},ﬂp) to be a constant.
Also as before, the two contributions b1 and bz correspond
to the O0-1 and O0-0 scattering pathways. The sign of the
perturbed polarizability tensor patterns relative to the
unper turbed polarizability tensor patterns is dependent in
general on the scattering pathway involved. This impbrtant
matter, which has consequences for the form of the M.C.I.D.
spectra, is investigated in Section 3.3.5. )

The above expression involves the complex components of the
per turbed polarizability, and contains a complex V
coefficient. In the next section, we convert this complex
form of the general expression back to a more easily used

real form.

3.3.4 Conversion to the real form of the general expressior.

We use expressions (3.3. ) to convert the complex equation
to it’s real version. For clarity, we write the above in the
following abbreviated form.

Zrs,z = isSCrs,z (3.3.11)
We write this to illustrate the fact that the R.H.S. is

equal to a tensor written in complex components multiplied
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by the factor s. Each real component must now be considered

separately. We present the explicit calculation for the xy

component.

ZxXvY .z i/2 [ Zr.1.z + Z1,-1,2— Z-1,1.2—- Z-1.-1.2]

i.i/2[ Ci,1,z - C1,-1,z2- C-1,12,2+ C-1.-1.,2]

= Cxx,z
=271/2 x V(M ., ) x b(@,Cum,I3) (3.3.12)
d(:y) m X X

In the above, we have converted back to real V coefficients
Using the above method, we obtain the following result for

the components of the magnetically perturbed polarizability

tensor .

-
ZX.X,2Z Zx.v.z | = K |-V/QEE v( QE E)

qyVvy X q X X

l}v,x,z 2y .v.2Z -v/QE E) V/QEE
qvy q Xy

b

(3.3.13)

where K contains the frequency dependance.

[ Wwe have already noted that only components involving x
and y are non—zero, and these both belong to the
representation E. Thus we can cosider b in the above as a
constant. ]

These results can be summarised by writing
Z%P,z = KxV fI'axAz E E (3.3.14)
(qﬂd>
i.e. the perturbed polarizability tensor pattern for the
normal mode Q is equal to the unperturbed polarizability
tensor pattern for the normal mode CaxA2. Following

Konigstein’s approach, mentioned in Section 3.2.4, this
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means that we can consider that the magnetic perturbation

has the effect of changing the symmetry of the states which
are connected by the operator Aﬁp.z, whilst having no effect

on the effective symmetry of this operator.
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3.3.5 Calculation of the relative signs of the perturbed

tensor patterns for the 0-1 and 0-0 scattering pathways.

As we saw earlier, there are two contributions bi and bz
to the magnetically perturbed polarizability constant b. Now
it is clear from Section 3.3.3 that

bi = <((jejv)IlmzN(jejv)I> x ai (3.3.15)
Thus we can identify bi and bz with the 0-1 and 0-0
scattering pathways respectively. We have already calculated
the form of the tensor patterns for the per turbed
polarizability tensor. As we have seen in Section 2.5, the
M_R.O_.A. spectrum is determined by terms involoving the
products of the perturbed and unperturbed polarizability
tensor. Thus we need to know the relative signs of the
constants a and b. This 1s determined by the sign of the
reduced matrix elements <((jeiv)Jlmzil(jejv)JI>.
Thus we need to further reduce this reduced matrix
element. To do this we use equation (2.6.9). For simply
reducible groups ( except 0), this gives us

<(jejv)IMm*N(dejiv)d)>

(—1)de+dv+I+ad(]J) <jeumzuje>w(je je Az)

J J Jv

-2(-1)Ivu/f Az E E) Cjellm”W\ je> - (3.3.16)
jv E E
We now consider the separate cases of 0-0 and O0O-1

scattering.

0-0 scattering.

For O0-0 scattering, Jjv 1is equal to Ai. Hence for all

normal modes,
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((jeiv)IHm*N (jeiv)d)

-2(-1)*W /A2 E E\ <jelmA\ je>
Ay E E

Ciellm?i jed (3.3.17)
(above we use (2.6.11) to simplify the W coefficient.)

This reduced electronic matrix element is positive if the
molecular system has a positive g-factor.® Hence we expect
bo-o to have the same sign as ac-o. ( We can interpret this
‘as meaning that the g-factor for the ground electronic state

and the intermediate vibronic state have the same sign.)

0-1 scattering.

In this case, jv 1s equal to the normal mode which we are
considering. Now from inspection of the various S_R. groups?

other than 0, it is clear that the following result holds:-

W/ Az EE = 1/2 (3.3.18)
jv E E

( this result can be also deduced from a consideration of

the definition of the W coefficient.)

Hence we obtain the fo}lowing result:-

<(jeiv)INmMi(jejv) Iy = =—(-1)3v{jelmtalje>

Now the term (-1)Jv is +1 except when jv = Az, in which case

it equals -1. Therefore we deduce that for Az modes,
<(jeiv)Jimi(iejv)I> = <(jelimilje) (3.3.19)

and for all other non-totally symmetric modes
<(jejv)INmn(jejv)J> = —(jelimhjed (3.3.20)

Result (3.3.20) is a generalization of the result already

reported for the B modes of cytochrome c.® This change of

sign for modes other than A1 and Az can be interpreted as a

change in the sign of the electronic g-factor for the

excited vibronic state (jeiv)Jji>. This change is important
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when we compare our calculated results with experiment.

3.3.6 Final expressions for the perturbed polarizability

tensor

As we did for the unperturbed polarizability tensor, we can
now give explicit expressions for the perturbed tensors.
There are two different situations, which we consider
separately below. These are scattering involving A modes,
and scattering involving non—degenerate modes other than A
modes. ( Below, and in the remainder of the thesis, we use
the abbreviation <m) for <(jellmMje)>. )

Aiand Az modes

aug (3.3.21)
= V /QxAz .L",.I/', = <mya(j)2w? W + w
-
a g d) (wh-0-w2)2 (Wo-0-w2)2

Other non—degenerate modes

a%p (3.3.22)
= V /QxAz Fﬂ[;‘)ﬁ {mya(j)2uwz W3 -0 - Wo-1
)
q s &

2
(Wo-0-w2)2 (Wo-0—-w2)2

From the above results, we can see that when we are far
from resonance, the O0-0 and 0-1 contributions for
non—-degenerate modes other than A modes tend to cancel each
other out. As we have already seen, the polarizability
tensor for Az scattering tends to zero for this case also.
Hence when far from resonance, the only modes for which we
would expect observable magnitudes for the perturbed tensors
are the A1 modes. This is another reason why M.C.I.D.’s have

not been observed in transparent scattering.
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3.4 The Polarizability Tensor for Molecules With Degenerate

Electronic_ Ground States

3.4.1 Introduction

In Section 3.2, a general formula was obtained for the
polarizability for molecules with an A1 ground state.
Unfortunately no such simple formula seems possible for
molecules with a degenerate ground state. However, two
useful results can be obtained using irreducible tensor
methods. The simplest case is for A1 vibrational modes,
which we consider first.( Note: some results in this section
are similar to those obtained by Barron using time-reversal
arguments._1?® However, such arguments have not vyet been

successfully applied for non—-totally symmetric modes.)

3.4.2 Symmetry preliminaries

For a molecule with a degenerate ground state, it is
appropriate to use complex components for all operators and
states. There are two situations <ﬁ5iwfgris+ to be
considered. Either the dipole moment operator transforms as
Ti, or else (ux,uy) transforms as E and uz as Az. For both

of these cases, we can express (ux, uy,uz) as follows?®

ux i2-1/2(yus1 - u-1 ) uz = —-iuo

uy 2-1/2(y+1r + u-1 ) (3.4.1)
where for the two cases we need to consider the appropriate
irreducible representations. The reverse expressions are

u+1 = —i2-1/2(ux + iuvy ) uo = iuz

"

u-1 i2-1/2(ux + uy ) (3.4.2)
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Using the above, we can express the cartesion components of

a second rank Cartesian tensor in terms of the

complex
components as follows
Axx = —-1/2(A1,1 - A1.-1 — A-1,1 + A-1,-1)
Axy = 1/2i(Ar1,1 + A1,-1 - A-1.,1 — A-1.-1)
Arx = 1/2i(A1.1 - A1,-1 + A-1.,1 - A-1,-1)
Avy = 1/2(A1,1 + A1,-1 + A-1,1 + A-1,-1)
Axz = 271/2(A1,0 - A-1,0) Avz = -i2"1/2(A1,0 + A-1.0)
Azx = 271/2(Ao,1 — Ao,-1) Azvy = -i2°1/2(Ao,1 + Ao.-1)
Azz = —Ao,o (3.4.3)

These expressions will be used explicitly in the

development below, and implicitly in later calculations.

3.4.3 Totally symmetric modes

We assume that we are dealing with resonance Raman
scattering, so that the main contribution to the
polarizability comes from the X tensor. Now in this case the
initial and final electronic states ne and me are both
components of the degenerate ground state. Assume that it is
a doubly degenerate ground state ( which is normally the
case ). We then have 4 different combinations of the initial
and final electronic states. We label the complex components
of the X tensor for each of these contributions as (Xij)rs.
We now develop expressions for these (Xij)rs.

(Xij )rs

<nertfuil jem><{jemluil nes> (3.4.4)

(neritujl jem><neslius;l jem>* (3.4.5)

( by the hermiticity of the dipole moment operator )
= (—l)u(ne—r)(_l)u(n—s) V(ne r./ul je V(ne E‘/u je) (3-4-6)
X <nlulij><n Hulj>* -r i m -s Jjm

(80)



( using version (2.6.14) of the Wigner-Eckart theorem )

= (-1)uin —r)y(-1)uin-s)y/ ne I."/u Je\ V/ ne r/_. Je
X <nl|qnj)x<n!luuj)' r —-i -m s -j -m
x(=1)utn +C +3 +n +D +5 ) (3.4.7)

( using the tranformation properties of V coeeficients )

=  (-1)u(n -r)y(-1)uln-s) y /pne f/u Je\ V/ ne FP Je
X <nlulti>x<nitulli>* r —im s -jim
x (—=1)utn +D +3 +n +G63+5 ) (3.4.8)

( because the summation variable m is a dummy variable )

= (—1)utn +ri)y(—1)uin+s) v/ ne F/J Je\ V/ he I;; Je
X <nthullij>x<nitultj>* r —im s -im
x(—1)utn +L +j5 +n +T +5 ) (3.4.9)

( because u(2r+2s) is even for a doubly degenerate state )
= (X-1,-3)-r.-s x (-1)u¢n +0 45 +n + D45 > (3.4.10)

Now both electronic states ieand ne are degenerate. So
whether we are in 0* or one of the simply reducible double
groups, we can write (-1)u¢rn *+n +J +j > =] This leaves us
with the factor (-1)u¢L + L > Now if we are in 0%, both [,
and .F}hare T1 and therefore this factor is 1. If we are not
in 0*, this factor is 1 anyway.
Hence we can write

(X13 dJrs = (X-1,-3)-r.-= (3.4.11)

Deductions about X Using (3.4.11)

(a) off-Diagonal Scattering Pathways

The following are an immediate consequence of (3.4.11).

(X113 )-1/2,1/2 (X-1,-3)1/2,-1/2 (3.4.12)
(X143 J-1/2,-1/2 = (X-1,-3)1/2.1/2 (3.4.13)

Using expressions (3.3. ) along with (3.3.) allows wus to
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deduce the following type of result

(Xxv)-1/2,172 = 1/2i[(X1,1 + X1,-1 = X-1,1 — X-1.-1}-1/2.1/2

1/2il(X-1,-1 + X-1,1 - X1.-1 - X1.1)1/2.-1/2

-1/2i[(X1,1+ Xi1,-1 - X-1,1 = X-1.-1]1/2.-1/2

-(XxvY)1r/2.-1/2 (3.4.14)
Proceeding thus, we obtain the following results. (For
convenience, the results are given as a matrix, with the

initial and final electronic states given at the bottom

right.)

Xxx Xxy Xxz +Xxx  —Xxvy —Xxz (3.4.15)
Xvx Xvy Xvz = |=Xyx +Xvyvy +Xvz

Xzx Xzy Xzz|-1/2,1/2 —Xzx +Xzv +Xzzl1/2.-1/2

In order to proceed further, we make use of the
hermiticity of the dipole moment operator to deduce that
(X*ﬁ)r,s :(%pd)s,r (3.4-16)

We can write this in matrix form as

Xxx Xxy Xxz Xx X Xv x Xz x (3.4.17)
Xyx Xyvy Xvyz = Xxy Xy vy Xzvy
Xzx Xzvy Xzzi~-1/72.1/2 Xxz _ Xyz Xzz 1/2,-1/2

We make use of one further result. Because all the V
coefficients we wuse are real, we can deduce that all the
complex components (Xij) are real. ( see (3.4.8), where a
reduced matrix element times it’s complex conjugate appears.
) From (3.3. )we obtain the following table.

Table 4.1 : classifying tensor

components as real or imaginary

REAL IMAGINARY .
Xxx Xyy Xxvy Xy x
Xxz Xz x Xvz Xzv
Xzz
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We now combine (3.4.15) and (3.3.17) to give us

2(X J)-1/2,1/72 ={Xxx + Xxx Xvyx ~ Xxv Xzx — Xxz
Xxy = Xvx Xyy + Xvv Xzvy + Xvz
Xxz — Xzx Xvz + Xzv Xzz + Xzz
=] 2Xxx —(Xyx + Xxv) ~=(Xxz - Xzx) (3.4.18)
—(Xxy + Xvx) 2Xvyvy —-(Xzy - Xvz)
(Xxz - Xzx) (Xzy — Xvz) 2Xzz
Thus we can write
(X J-1s/2,1/2 = A iD -E
iD B -iF
E iF c (3.4.19)
where A,B,C,D,E,F are all real.
Similarly, using (3.3. ), we have
(X disz,-1s2 =| A -iD E
~-iD B -iF
it iF C (3.4.20)
These expressions have been derived without any
assumptions about the molecular system in question, and

without any
Rayleigh or Raman.
either Rayleigh
involving an
doubly degenerate
for such systems,

scattering exists.

clear later,

The above expressions also provide a

detailed

system.

specification
Thus (3.4_.18) and (3.4.19 ) are true
or

off-diagonal

e

both

calculations

totally

lectronic

real

They
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(a) Diagonal Scattering Pathways
From (3.4.11) we see immediatly that
(X Y=1/2.-172 = (X ) 1/2.1/2 (3.4.21)
Proceeding as before, we obtain the following results,

which correspond to (3.4.16):

| Xxx  Xxvy Xxz +Xxx —Xxvy —Xxz (3.4.22)
Xvx Xvvy Xvz = -Xyx +Xvyvy +Xvz
Xzx Xzvy Xzz|-1/2.-1/2 —Xzx +Xzvy +Xzzl1/2.1/2

In an identical manner to the method detailed above, we

obtain the following general expressions for the diagonal

scattering pathway.

(X Jisz.1/2 = A -iD E (3.4.23)
iD B -iF
E iF C

(X Jd-1/2,-1/2 = A ‘iD -E (3.4.24)
-iD B -iF
-£ iF C

( the above A,B,C,D,E,.F are all real, and are unrelated to
those quantities appearing in the previous subsection.)

From (3.4.23) we deduce that for diagonal scattering,
there are only real symmetric and imaginary antisymmetric
contributions. It can also be deduced, as will be seen
later, that the two contributions to the M.C.I.D.’S from
-1/2,-1/2 and 1/2,1/2 cancel each other out.

As before, these expressions are a good guideline when
performing detailed calculations.

Having obtained the above expressions for the X tensor,
we next consider the properties of the Z tensor, which is

responsible for scattering in non—totally symmetric modes.
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3.4.4 Non—totally symmetric modes

For non-totally symmetric modes, the only non-zero
contribution to the polarizability tensor comes from the 2
tensor. We now carry out a similar development to the one
for the X tensor in the previous section. As before, we go
into details for only one of the four contributions to the Z
tensor, since the details for the others are very similar.

We assume initially that the normal mode is degenerate.
Then we write
(Zaf)s.,r = {mesmvqlud) ke lkvp> (3.4.25)
x <(jecivf|uflnetny>(kelkvp|(Ha@)|jecjvf>
(_1)9(-e+-v+ﬂ)(—1)u(2-v+ﬂ—r)[M]l/ZV(me mv M)

X {(nemv)Mr tud l{kekv)Kk>

s q r
x {(jejv)Jjlufl(nenv)net)((kekv)KklHaQi(jeiv)JTi>

( where me and mv have been coupled using (2.6.16) )

= Txp(-1)u(ﬂ—r)+u(n—r)u+(J—j)+u(J—J)

V/ne mv M\ V MI",nJ v(;rAJ)v(Jr).ne)
(_s q r) -r d J) -J o1 i f t

where
T = (-1)p¢ mermverrtu(2zm,jd(M)1/2 (3.4.26a)
P = <(nemv)MNuli(kekv)K><(jejv)Jlluli(nenv)ne) (3.4.26b)
x <(kekv)KI(HaQ)N (jejv)J> )
Thus (Zdf)s,t (3.4.27)

TP X V/ne mv M\V/ M {h I\NV/J A JIN\NV/JT EW Ne
s q r) -r d 3] -j i3] -j f t
(since the sum of the factors involving u is even )

- Txp(_l)u(-e+-v+n)*u(H+Gx+J)+u(J+A+J)+u(J+Gy+ne)
V/he m¢ M\ V/M qb J\NVZ/I A J\V/J q& Ne
-s —q -Fr r -d -j J 1i-3j j -f -t
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= TxP(—1l)u(me+mv+M)+u(M+ T +T)+u(T+A+I)+u(I+ T +ne)

V(nemv M)v(n[) INV/I A I\V/ICune

L) CEDCT)EERN

( because all the summation variables are dummy variables )
= (F1)F(Z2-d.-f)-s,-¢ (3.4.28)

Now (-1)F

= (—l)umetav+M)+u(M+0 +I)+u(IT+A+T)+u(I+C +ne)

=(~-1)ui2mer+u2M)+u(ar)+u(C >+ L r+u(a+av)

(3.4.29)

Assuming the degenerate ground electronic state has symmetry
E’( which is normally the case ), u(2me) is 1. u(2M) is

always odd, u(4J) is always even, u(C+L[' ) is always even
and u(A) is 0. Therefore (-1)F is equal to (-1l)ulmv)

Hence we have

(Zdf)s.t = (—l)u(mv)(Z_g,-¢)-s.-¢ (3.4.30)

3.4.5 Deductions about 2Z using (3.4.29)

(a) Molecules having point groups other than 0*

For these molecules, (-1)4¢*¥’ is zero for all normal modes.
Thus

(Zdt)s.t = (Z-d.-f)-s.-t (3.4.31)

We shall see that this case 1is identical to the E

vibrational mode for the octahedral double group 0*, which

is dealt with below.

(b) Molecules having point group O*

There are two non-totally symmetric normal modes of interest
for this case, namely E and Tzg. We deal with these

separately.
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Normal mode E

For this mode, (-1)“(E>= Q0. Hence the development for the
E mode is similar to that for the totally symmetric mode. We

again consider the cases of diagonal and off-diagonal

scattering pathways separately.

off-Diagonal Scattering Pathways

Proceeding exactly as for the totally symmetric mode, we

obtain the following two results.

Xxx Xxv sz--1 +Xxx —Xxvy -sz-T (3.4.32)
Xyx Xyy Xvz = |—Xyx +Xvyy +Xvz

Xzx Xzy Xzz|-1/2,1/2 ~-Xzx +Xzvy +Xzzli/2,.-1/2

and

- - - -

Xxx Xxy Xxz Xxx Xy x Xz x (3.4.33)
Xyx Xvyy Xvz = Xxvy Xvy Xzvy

Xzx Xzy Xzz|-1/2.1/2 Xxz Xyz Xzzl1/2.-1/2

Now for the totally symmetric mode, we were able to
predict that certain components were real and some were
imaginary. Because the product of reduced matrix elements is
more complicated this time, we cannot do this. However, as

before we can write

2(X*p)~1/2.1/2 =] Xxx+Xxx Xy x—Xxv Xzx—Xxz (3.4.34)
Xx vy =Xy x Xyy+Xvyy Xzv+Xvz
Xxz—Xzx Xvz+Xzvy Xzz+Xzz

From this, we deduce the following form for the tensor

pattern
(Xag)-1/2,172 = | A D t (3.4.35)
-b B F
-E F C

where A,B,C, are real and D,E,F are in general complex.
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similarly, using (3.3. ), we have

(Xﬁp)1/2.-1/2 = A -b £ (3.4_36)
[} B F
E F C

They show that for such systems, both real and imaginary
antisymmetric scattering exists. They also demonstrate, as
will become clear later, that such systems yield an M.C.I.D.
couplet.

The above expressions also provide a useful check when
detailed calculations are being performed on a specific

system.

(a) Diagonal Scattering Pathways

Proceeding as before, we obtain the following results

(Xapg)-1/2.-1/72 = (X%p) 1/2,1/2 (3.4.37)
Xxx Xxvy Xxz +Xxx —Xxy —Xxz (3.4.38)
Xvyx Xvyv Xvz = —Xyx +Xvyy +Xvz
Xzx Xzy Xzz|-1/2.-1/2 —Xzx +Xzv +Xzz|1/2,1/2

In a calculation .very similar to the previous one, we
obtain the following expressions for the forms for the

tensor patterns of the diagonal scattering pathways.

(Xaplrsz.1/2 - [ A D Er (3.4.39)
-D B F -
 -E F c|

(X%p)-l/z,-x/z = r A D Eﬂ (3.4.40)
-D B F
£ F |

where A,B,C are real and D,E,F are complex, and are

unrelated to those quantities appearing in the off-diagonal
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scattering case.

From (3.4.39-40) we deduce that for diagonal scattering,
all 4 different types of the polarizability tensor (real
symmetric etc.) can 1in general exist. It can also be
deduced, as will be seen later, that the two contributions

to the M.C.I.D.s from -1/2,-1/2 and 1/2,1/2 cancel each

other out.

We now move on to study the patterns for the Tzg modes.

Normal mode Tzg

(i) off-Diagonal Scattering Pathways

The following expressions are an immediate consequence of
(3.4.%0).
(Zij )-1/2,1/72 = —(2-1,-3)1/72,-1/2 (3.4.41)
(213 J-1/2.-172 = —(Z-1.,-3)1/2,1/2(3.4.42)
Using expressions (3.3.41) along with (3.3.42) allows us

to deduce the following type of result

(Zxy)-1/2,172 =+1/2i[(Z1,1 + Z1.-1 - Z~-1,13 — Z-1,-1]-1/2.1/2
==1/2i[(Z-1.-1 + Z-1,1 = Z1.-1 - 21,1)1/2,-1/2
=+1/2i[(Z1.,1+ Z2,-1 — Z-1,1 — Z-1.-1]1/2,.-1/2
= +(2Zxv)-1/2,1/2 (3.4.43)

Proceeding thus, we obtain the following set of results,
again written in matrix form

Ixx ZIxy Ixz —Zxx +Zxvy +Zxz (3.4_.44)

Zyx 2vvy 2Ivz = +Zvyx —2vyvy —2Zvz
Zzx Z2zvy 2zz2|-1/2,1/2 +2zx —Zzvy —Zzz\|1/2.-1/2

As before, we make use of the hermiticty of the dipole
moment operator to deduce that

(Zo(p)r,s =(Zﬁu)'=.r (3.4.45)
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We can write this in matrix form as
Zxx Zxy Ixz Ixx Zvyx Zzx (3.4.46)

Zvyx 2vyvy 2vz Ixy 2vvy 2zv

2zx 2zvy 2z2\|-1/72.1/2 Zxz 2vz 2zz\|y/2.-1/2
As for the previous case of the E mode, we can no longer
predict that some tensor components are real and some

imaginary. We now combine (3.4.44) and (3.4.46) to give us

2(2%3)—1/2.1/2 (3.4.47)
= | Zxx - Zxx 2yx + Zxvy dzx + Zxz

Ixy + Zvx Zyy ~ 2vy lzy — 2Zvz

Ixz + 2Zzx vz — 2zv 2zz - 222

From this it is easily deduced that

P

(Z%p)—1/2,1/z = | 1A D E (3.4.48)
D iB F
£ -F ic

where A,B,C are all real, and D,E and F are all complex.

Similarly, using (3.3. ), we have

(Zﬂp)l/z,-l/z =|-1iA D (S (3.4.49)
| b -iB -F
~ [ad .
E F —-1C

Various conclusions can be drawn from these results. We
note first of all that when we sum the isotropic
contributions for off-diagonal scattering pathways we get
zero. Thus we deduce that there is no isotropic contribution
to the scattering for the Tg mode. A second deduction we can
make is that for off-diagonal scattering, all types of
scattering can be non-zero, unlike the case for totally
symmetric scattering. Finally, we can deduce from the form
of the tensor patterns that a non—-zero M.C.I.D. couplet will

be obtained.
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(ii) Diagonal Scattering Pathways

Using the same approach as for the E mode, we obtain the

following results

Zxx Zxy Ixz : =2Zxx +Zxvy +2Zxz - (3.4.50)
Zyx ZIvy 2vz = +2vyx  —2vvy -2vz
Zzx 2zvy 2z2z2(-1/2,-1/2 +Z2zx -2zy -2z1z |1/2.1/2
(Zup)-172.-172 = [ A D E (3.4.51)
D B F
E F c |
where A,B,C are all real.
Similarly, using (3.3. ), we have
(Zﬁp)1/2,1/2 = | -A D E (3.4.52)
| D -8 -F
£ -F -c

Again we note that when we add together the two diagonal
contributions, the isotropic part sums to zero. We also note
that, as before, the two diagonal M.C.I.D. contributions
cancel each other out.

In the next section, we look at the different mechanisms

which can give rise to M.R.O.A.
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3.5 Mechanisms for Generating Magnetic Optical Activit

3.5.1 Introduction

In this section, we are concerned with . the two
mechanisms which can generate magnetic optical activity.
These two mechanisms were outlined in the opening chapter.
The first involves molecules which have a degenerate ground
state. The second involves resonance scattering, where the
resonance state 1is degenerate. These two scattering
processes have different characteristics, which we now

discuss.

3.5.2 M.R.O.A. originating from ground state electronic

degeneracy.

In Section 2.3, expressions (2.5.20-23) were developed.
These gave the magnitude of IR-I- in terms of the molecular
scattering tensors. Thgse expressions were then averaged
over all orientations, yielding (2.5.26-29 ). However, it is
not always correct to perform this orientational average.

For the case of a molecule which has a degenerate
electronic gr