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SYNOPSIS

Steel beams, whether rolled or built-up, contain unavoidable
initial imperfections and residual stresses and are subject to
unintentional eccentricity of applied loading. Such beams which also
possess inadequate lateral restraint are prone to failure as a result of
lateral-torsional instability, which occurs under elastic or inelastic
conditions depending on the slenderness of the member. A review of the
literature pertaining to the bracing requirements of steel beams
revealed 1ittle published work concerned with the restraint of beams of
intermediate and low slenderness which fail inelastically. The
provision of adequate midspan restraint for the prevention of inelastic
instability in centrally loaded, single span I-beams formed the basis of
this study.

The non-linear analysis capabilities of the finite element
programmes MSC/NASTRAN and FINAS were employed to provide theoretical
verification of the results of a series of tests on small-scale,
fabricated, steel I-beams. Measured initial geometrical imperfections
of the test beams were modelled in the finite element idealisation by
suitable adjustment of nodal coordinates and both geometrical and
material non-linearites were accounted for in the analysis. Numerical
instability and convergence difficulties were encountered in both
analyses, although their occurrence was less frequent in FINAS. 1In
FINAS analyses where these difficulties did not arise, collapse loads
were determined and post-buckling behaviour followed with relative

ease.

A bracing fork device for the provision of a predetermined
stiffness of midspan restraint was developed and subsequently employed
in all tests. Strain gauges attached to the prongs of this device
permitted bracing forces to be measured at any stage in the tests.

In general, satisfactory correlation was achieved between finite
element and experimental results, allowing bracing criteria for single
span, centrally loaded and restrained beams to be proposed. As
anticipated, the bracing requirements of inelastic beams proved more
onerous than those demanded by the classical bifurcation analysis
employed in problems of elastic beam buckling. A subsequent series of



Vi

comparative designs in accordance with the three current (1985) British
steelwork codes (BS 449, BS\5950 and BS 5400) revealed that bracing
members designed as struts in compliance with the minimum strength

and maximum slenderness criteria of these documents provided adequate
stiffness and strength of restraint.
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NOTATION

The following notation is employed in this thesis. 1In all cases
the symbols are defined where they first appear in the text.

a height of application of point load above shear centre

as distance from root of bracing prong to the point of
contact between prong and beam flange

A coefficient employed in assumed twist function

Ap* required cross-sectional area of lateral restraint

Ay cross-sectional area of lateral restraint provided

Ag cross-sectional area of compression f]ange of beam
= bete

Ay cross-sectional area of beam or bracing prong

b breadth of rectangular cross-section

bs breadth of compression flange

B coefficient employed in assumed twist function

[B] strain matrix in conventional finite element notation

c critical stress factor

CII value of critical stress factor consistent with second
mode elastic buckling

C torsional rigidity of cross-section = GJ

Cq warping rigidity of cross-section = ET

C2 coefficient employed in assumed twist function

D overall depth of beam section

Dy, Dy, D3 terms employed in bifurcation analysis of Chapter 2

e non-dimensional stiffness of torsional restraint = K+l
J
ecp ~ critical value of 'e' for fully effective torsional
restraint
E Young's modulus

[E] elasticity matrix employed in finite element analysis

xii



Fis Fp

FoLs For

~

cr

K]
[K,]
K]

strain hardening modulus

elasto-plastic stress-strain matrix employed in
materially nonlinear finite element analysis

form factor for shear
terms employed in bifurcation analysis of Chapter 2

lateral forces acting on bracing prongs at the
points of contact with beam flanges

initial values of F,, Fp arising from setting
up the experimental apparatus

distance from neutral axis of beam to nearer edge of

- yielded zone in cross-section

shear modulus
terms employed in bifurcation analysis of Chapter 2

level of attachment of translational restraint relative
to shear centre

distance from beam centroid to centroid of steel ball
attached to underside of beam at midspan

distance from web/compression flange junction to centroid
of above steel ball

2nd moment of area

2nd moment of area of beam cross-section about its minor
axis

2nd moment of area of beam cross-section about its major
axis

St. Venant torsion constant for beam cross-section
effective length factor

constant of proportionality relating yield stress Ty
to Vickers hardness number Vy

absolute stiffness of translational (lateral) restraint
critical value of K corresponding to A,

absolute stiffness of rotational (torsional) restraint
elastic structural stiffness matrix

initial linear elastic global stiffness matrix

geometric stiffness matrix

xill



Xiv
span of beam
length of Tateral restraint member

lengths of the two spans adjacent to the braced point

defined by reciprocal average length of adjacent spans:
1 1/1 .1

-— — e

Tav . 21 TR

length of Tonger adjacent span ie. greater of 1, and

R

spacing of lateral restraints

applied uniform‘bending moment

bending moment at first yield in section

fully plastic moment

moment at which flanges fully yielded, web still elastic
critical (or ultimate) moment

elastic critical moment of beam/restraint system

maximum lateral bending moment in compression flange

coexistent with moment Mp about major axis of beam

critical moment of unrestrained beam under uniform
moment

moment associated with critical load Pnok

moments on the left and right bracing prongs at the
strain gauged cross-sections arising from forces F,

Fr

initial values of M, Mp arising from setting up
the experimental apparatus

point load applied to beam
point Toad producing first yield in cross-section

theoretical value of central point load producing plastic
hinge at midspan

point load at which flanges fully yielded, web still
elastic

axial force in lateral restraint
compression flange force

fully yielded compression flange force = Aijy



cr

crl

crll

cra
nok

Pult
Qos""03

{0

XV

critical (or ultimate) load

elastic first mode critical load of unbraced beam with
load applied at the appropriate level on the cross-section

elastic second mode critical load of braced beam

elastic critical Toad of braced beam with appropriate
load/restraint geometry and restraint stiffness

critical load of beam under shear centre loading and
without lateral restraint '

ultimate load sustained by beam

terms employed in rate of straining analysis of Chapter
5

vector of structure nodal forces in finite element
analysis

radius

minor axis radius of gyration

non-dimensional shape parameter = (12&])1’2
Er

thickness of compression flange

web thickness

lateral defiection of beam

initial lateral deflection of compression flange at
midspan

strain energy of beam/restraint system

potential energy of load system

Vickers hardness number

uniformly distributed load

axis of global cartesian coordinate system

axis of global cartesian coordinate system

elastic section modulus of beam cross-section

plastic section modulus of beam cross-section

required elastic section modulus of bracing member about

an axis parallel to the longitudinal axis of the restrained
member



XVi

axis of global cartesian coordinate system-

vertical deflection of shear centre during virtual
disturbance of beam

vertical deflection of point of load application relative
to shear centre during virtual disturbance of beam

shear strain

parameter employed in conversion of bracing fork strains
to internal moment

warping constant for beam cross-section

central lateral deflection of beam

amplitude of initial lateral crookedness

as an independent variable denotes vertical deflection;
as prefix to another variable (eg. AM ) denotes finite

change in prefixed variable

measured vertical deflection of steel ball attached to
underside of beam at midspan

vertical deflection of above ball attributable to beam
deformation only

vertical deflection of beam centroid
vector of structure nodal displacements
direct strain

yield strain = oy/E

strain at onset of strain hardening
vector of initial internal strains

axis of local cartesian coordinate system
axis of local cartesian coordinate system
Perry-Robertson imperfection factor
rotation of beam

rotation of beam under applied moment M

P

non-dimensional stiffness of lateral restraint = K13
48EIn

critical value of 'A' for fully effective lateral
restraint
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Xvii

slenderness parameter for lateral- tors1ona1 buckling
employed in BS 5400 and BS 5950

6

rotation capac1ty = B
3

axis of local cartesian coordinate system

total potential energy of beam/restraint system
load factor

stress

yield stress

uniaxial yield stress in tension

maximum residual compressive stress in section
vector of initial, internal stresses

twist corrections applied to vertical deflection
readings

angle of twist (radians)

midspan angle of twist

initial angle of twist at midspan (radians)

in-plane curvature of beam

in-plane curvature of beam at first yield in section

shape parameter for rectangular sections (Ref. 12)
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CHAPTER 1

INTRODUCTION, REVIEW OF PREVIOUS RESEARCH
AND SCOPE OF THE PRESENT STUDY

1.1 General Introduction

There are two possible modes of failure of a beam subjected to
loading in the plane of its maximum flexural rigidity:

.{a) Excessive in-plane deformations following the attainment of
full in-plane strength. This strength is determined not only
by the cross-sectional geometry of the beam and its yield stress
but also by the loading and support geometry. Plastic hinge
action is consistent with this type of failure which occurs
only in beams of low slenderness ("stocky" beams). Well-
proven methods exist for the prediction of ultimate
strength. )

(b) In the case of more slender beams, failure occurs by flexural-
torsional (or lateral-torsional) buckling, a phenomenon 1in
which Tateral bending is accompanied by twisting of the member
and, in general, warping of the cross-section (Fig. 1.1).

In practice, slender elements such as beams of narrow rectangular
section and of narrow-flanged I-section lack both lateral flexural
rigidity and torsional rigidity and are conseqdent]y susceptible to the
latter mode of failure. Other thin-walled open section beams such as
channels or zeds also have low torsional rigidity, whereas box girders
display high lateral bending and torsional rigidities and hence do not,
in general, become laterally unstable.

Although a distinction has been made between in-plane plastic
collapse and failure by flexural-torsional instability, the latter
need not occur solely under elastic conditions. Inelastic instability
occurs in beams of intermediate slenderness, where the rigidity of
the member decreases with the spread of plasticity through the section,
both the in-plane and out-of-plane deformations of the beam being
defined by the behaviour of the elastic core (Fig. 1.2).



In the case of an initially perfect beam subjected to an uniform
moment, the same degree of stiffness degradatioﬁ applies at all sections
on the span and consequently this represents the most unfavourable
pattern of loading on the beam.

Figure 1.3 shows a typical non-dimensional relationship between
ultimate load (Mcr/Mp) and beam slenderness (1/ry), wherein the
following notation has been used:

Mcr critical (or ultimate) moment
Mp fully plastic moment

1 span

ry minor axis radius of gyration

Three regions of slenderness have been identified in Fig. 1.3 . The
first, covering a small range of slenderness values, is characterised by
attainment of the fully plastic moment. Beams in this category are
often described as "stocky". The second region contains beams of
intermediate slenderness which fail by inelastic buckling at a moment
smaller than the fully plastic moment, Mp. The failure load of a beam
in this category is significantly Tower than that predicted by elastic
theory for the same slenderness (broken 1ine in figure). The range of
slenderness values over which inelastic buckling occurs is controlled by
a number of factors, not least of which is the presence of residual
stresses, discussed more fully in Section 1.2.2 . Slender beams which
fail at, or close to, the theoretical elastic critical load for their
slenderness compose the third category.

A direct analogy can be drawn between the ultimate behaviour
of beams and that of columns: the beam which achieves its full in-
plane strength can be compared with the column which reaches its
squash load in that both attain full plasticity; and the failure of
a column of thin-walled open cross-section in a mode of combined
‘twisting and lateral bending is akin to the phenomenon of



flexural-torsional buckling of a beam in which attainment of the
ultimate load is accompanied by gross lateral and torsional
deformations.

Mathematically, the case of a column buckling elastically by
bending in a plane of symmetry of its cross-section is more readily
analysed (using tabulated values of the stability functionsl, for
example) than the problem of column buckling involving twist and hence
also torsion. No beam buckling mode analogous to the in-plane buckling
behaviour of columns exists due to inevitable twisting of the beam
during buckling. Twisting occurs because the lateral bending stiffness
of the tension flange increases with increasing flange tension, whereas
the tendency towards instability of the compression flange increases
with increasing compression. As the buckling load of the beam is
reached, twisting of the cross-section is therefore unavoidable. The
analogy with column behaviour is thus only of value for member failure
attributab]e either to the attainment of full plasticity or to buckling
involving torsional deformation.

The classical so]ution2

to the elastic beam stability problem
assumes an initially perfect beam under ideal loading conditions and
attempts to determine the smallest applied load at which a bifurcation
of the equilibrium modes is possible. Being essentially an eigenvalue
ana]ysis, this solution predicts no out-of-plane deformations until the
critical load is reached when, theoretically, these deflections become
infinite (Fig. 1.4). Nevertheless, the mode shape corresponding to the

critical load is readily obtained.

In practice, however, all beams possess initial imperfections,
‘are subject to some unintentional eccentricity of applied loading and
do not necessarily behave elastically. The most significant
imperfections and their effects are described more fully in Section
1.2.2 . Although the inclusion of some of these imperfections in the
analysis is possible, the complexity of the solution becomes
disproportionately greater with increasing number of imperfections
included. In some instances, closed-form solutions of the governing
differential equations become no longer practicable. However, in cases
where some account can be taken of the imperfections, the analysis shows
that lateral deflections commence as soon as load is applied (Fig. 1.4).




Indeed, as the ultimate load is approached, the lateral displacements
become large and the initial assumption of small displacements no longer
applies.

In the case of non-linear material behaviour, the calculated value
of critical load is dependent on the assumed variation in strain across
the section during buckling. The tangent modulus theory, in which it is
assumed that no strain reversal occurs in the cross-section during
buckling, has received considerable support and yields results in close
agreement with experimentation.

As an alternative to the closed-form solutions obtained from the
differential equations of equilibrium by Timoshenkoz, the energy
methods can be used to provide closed-form solutions to the elastic
beam buckling problem. However, more complex analyses, often based
on assumed displacement functions and the principles of minimum total
potential energy, seldom yield closed-form solutions suitable for hand
calculation of critical loads. Nevertheless, the resulting equations
are generally suitable for computer-based numerical solution using
iterative methods such as the determinant search technique. That the
accuracy of solutions obtained using assumed displacement functions
is dependent of the form of the assumed functions is shown by example
in Chapter 2.

~ More recent solutions to a wide variety of structural stability
calculations have been computer-based. Early finite difference and
finite integral techniques for the numerical solution of the governing
equations have been overshadowed in recent years by finite element
analysis. In cases where direct comparison of finite element with
exact theoretical solutions is possible, very close correlation can be
observed. 1In addition, it has been found that algorithms for the
solution of materially and geometrically non-linear behaviour can be
incorporated into the analysis.

Although experimental investigations into both the elastic and
inelastic buckling of beams are possible, full-scale inelastic buckling
tests are relatively expensive since the beam suffers plastic
deformation during the test, thus preventing its re-use in subsequent
tests.




Just as the usable strength of a slender cq]umn can be increased
by the provision of a greatér'degree of end fixity or by the attachment
of intermediate restraints along its length, a beam susceptible to
failure by flexural-torsional buckling can be similarly restrained, as
shown in Fig. 1.5 . The spacing of such intermediate restraints can
also be reduced in order to decrease the slenderness (and also the
effective length) of the primary member and hence increase its
resistance to buckling. Although both longhand analytical solutions
(equilibrium-based and energy-based) and computer-based finite
difference, finite integral and finite element solutions of the
restraint problem are generally also possible, the complexity of the
manual methods even in some cases of relatively simple braced beam
systems renders them unmanageable and recourse must be made to the
computer-based, specific numerical solutions.

It is generally recognised that there are two criteria to be met
by bracing if it is to be considered effective: adequate axial and/or
rotational stiffness in order to provide sufficient lateral and/or
torsional restraint to the beam at the point of attachment; and adequate
strength in order to withstand any forces developed as a result of
deformation of the beam.

In general, for a given system of loading, the plastic design
method permits the use of lighter, more slender members than would
be required by conventional elastic design methods. However, since
stability varies inversely as slenderness, the requirements of restraint
systems associated with plastically-designed structures will,
intuitively, be more exacting. As it is a stated requirement of the
method that "adequate" restraint be provided to any member so designed,
the designer should give careful consideration to the bracing criteria,
no matter how trivial these might appear numerically.



1.2 Review of Previous Research

1.2.1 Lateral-Torsional Buckling of Unbraced Steel Beams

The elastic and inelastic lateral-torsional buckling behaviour
of unbraced beams has received considerable attention in the literature.
The techniques employed in published work range from the purely
experimenta13‘7 to closed-form and elementary numerical solutions
of the governing differential and energy equationsS'18 and to the
more modern, computer-based finite integra]lg’zo and finite element

technique521'23.

As a result of this work, unified approaches allowing the analysis

of a wide range of elastic and inelastic buckling problems have been

24'27. These have been

observed to be "approximate but accurate" by Allen and Bulson.

published by Nethercot, Rockey and Trahair

As noted in Section 1.1, all real beams possess initial geometrical
and material imperfections. These are random in nature and have a
significant effect on the response of a member to an applied load (Fig.
1.4). Geometrical imperfections reported in the literature are
discussed more fully in Section 1.2.2 . Several modifications to the
well-established Southwell extrapolation techm’que28 for geometrically
imperfect struts have been proposed in an attempt to permit the
calculation of the elastic critical loads of real beams not loaded to
failure. OQriginally proposed as a method of predicting the elastic
critical Toads of pin-ended struts with sinusoidal initial crookedness,
the "Southwell" technique rectifies the pre-buckling load-deflection
hyperbola for the column (similar to that shown in Fig. 1.4 for the
“real" beam) to produce a linear relationship from which estimates of
the critical load and magnitude of the initial imperfection may be
deduced.

Successive modifications to the Southwell procedure by Masseyzg,
Trahair30, Meck3! and Attard32 have been based on Massey's??
theoretical observation that the central lateral deflection '&"' of a
beam with sinusoidal initial crookedness of amplitude '&,' when
subjected to an uniform bending moment 'M' can be related to the




elastic critical moment Mcr by the relation

3 8 )
}:1_2 = .._:r + _g; ..o(l.l)

from which it can be deduced that the plotting of experimental values
of ' & /M2 against '§ ' yields a straight 1ine of slope 1/Mcr2.
Contributions by Traha1r30, Meck3! and Attard32 have extended the

scope of Massey's method to include the effects of concentrated loading,
varying levels of load application with respect to the member cross-
section and to the case of end-loaded cantilever beams. Collectively,
this published work presents useful, non-destructive procedures for the
determination of the elastic critical loads of simply-supported beams
and cantilevers.

The requirements for the elastic design of beams in both the
current British Steelwork Code BS 44933 and the previous Australian
Code34 were based largely on early work employing the mathematical

theory of stabi]ity2’8. The Tateral stability of beams and girders

was further investigated by Kerensky, Flint and Brown3?

, whose

attempts to simplify the procedure for designing beams against failure
by lateral-torsional buckling did much to influence the requirements of
BS 153: 19583° and the previous editions of the British3’/ and
Australian3® Codes. Following the introduction of structural sections
~in Grade 55 steel, Dib]ey38 performed a series of lateral-torsional
buckling tests on thirty such sections in order to assess the Code
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requirements”’ which had been based on the work of Kerensky et a1.3°

for Tower grade steels.

More recently, reflecting the versatility of the finite element
method21‘23, theoretical studies have been made of the importance
of parameters such as the magnitude and distribution of residual
stresses and initial imperfections in as-rolled beams39-41, Indeed,
many of the 1imiting cases from these studies have served to verify
previous closed-form solutions.

It is evident that the determination of elastic and inelastic
critical loads for beams has received considerable attention in the
literature. As a result, exact or approximate solutions exist for a
large number of combinations of loading and structural geometry and it



can be said that, in particular, the buckling behaviour.of beams which
fail in the elastic range is now well understood. As previously noted
however, the majority of studies have assumed rigid translational and
rotational intermediate supports in cases of both elastic and inelastic
buckling. In part, this has been due to the greater complexity of an
analysis in which the supports are considered to have finite rather than
infinite stiffness.

-1.2.2 1Initial Imperfections in Real Beams

As noted in Sections 1.1 and 1.2.1, whereas various random
imperfections exist in real beams, these are neglected in the
mathematically "well-behaved" beams used in classical buckling
solutions such as those of Timoshenko?:8. The influence of initial
imperfections on the load-deflection behaviour of a beam is shown in
Fig. 1.4. The lateral stability of the member is reduced as the
magnitude of the initial imperfection increases. Just as such
imperfections reduce the beam's stability and hence its critical load,
their presence demands more rigorous bracing systems if instability is
to be prevented. Initial imperfections are therefore of major
importance in the present study.

In general, initial imperfections can be assigned to one of three
categories: geometrical, loading or material. Nethercot3d has
identified the most significant imperfections in each category; Table
1.1 abstracted from Ref. 39 and presented here with minor amendments,
summarises these imperfections and, where possible, comment is made on
their relative importance. .

Although Table 1.1 does not provide an exhaustive list of all
possible imperfections in a beam or in its loading and support geometry,
it does indicate the main factors affecting beam stability. It will be
observed that, of the eight imperfections noted for real beams, only
that concerned with deflection in the plane of the applied load
consistently produces an increase in the calculated critical load.

- Consequently, for design purposes, this effect is frequently ignored
in calculation of critical loads, thereby providing slightly
conservative (ie. low) estimates of strength. Although typical
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increases in critical load of between 1 and 6 per cent have been
attributed to this effect in Table 1.1, the increase in any particular
case is dependent on the cross-sectional geometry of the beam, its span
and the nature of the applied loading. A detailed account of this
effect has been published by Trahair and WOo1cock43, who noted
increases in excess of 20 per cent for American rolled 8WF31 sections
used as beams. (The 8WF31 section corresponds approximately to the
British 203 x 203 UC 46 metric section.) As the use of column sections
as beams was considered the exception rather than the rule, the Tower
increases of between 1 and 6 per cent noted for typical beam sections
have been given in Table 1.1 .

t39'41, examining the effect of

Published work by Netherco
residual stresses on calculated inelastic critical Toads of beams,
concluded that these loads were less affected by the pattern of residual
stress than by peak values of residual flange stress since the latter
determine the moment at which flange yielding commences. Fig. 1.6 shows
Nethercot's*! prediction of the effect of residual stress level on the
critical load of an 8WF31 section over a large range of slenderness
(1/ry) values. In the derivation of these curves (based on the
tangent modulus concept), the beam has been assumed to be simply
supported and loaded with equal end moments. In addition, an elastic-
perfect plastic material behaviour has been assumed (Fig. 1.7). The
notation employed in Fig. 1.6 is as defined in Section 1.1 for Fig. 1.3

except for the»fo11owing additional parameters:

ij yield stress of beam material
O rc maximum residual compressive stress in section

Fig. 1.6 shows that the presence of residual stresses decreases
the critical load of the beam, the actual decrease being a function
of the slenderness (1/ry) and the magnitude of the residual stress
(opc). The graph also shows that one effect of increasing the
residual stress Tevel is to extend the range of slenderness values over
which inelastic buckling occurs.

Although the effects of non-vertical and eccentric loading on
the load-carrying capacity of beams are likely to be significant, these



imperfections are again random in nature. Arguably, the difficulty

in obtaining representative values of eccentricity and 'out-of-plumb’
exceeds that associated with the determination of representative values
of residual stresses. Therefore, although the individual or combined
effects of loading imperfections can be examined theoretically, even
with relative ease in cases of elastic buckling, few field measurements
or experimental data are available to provide the necessary link between

theory and practice.

With the exception of initial geometric deformations (ie. initial
bow and twist), the relative importance of each of the other
imperfections shown in Table 1.1 has been indicated therein.

0f all the imperfections listed, the presence of initial bow and/or
initial twist in a length of beam has probably the most detrimental
effect on the stability and behaviour of the member in service. As
indicated in Fig. 1.4, beams possessing these imperfections deflect
laterally and twist from the onset of loading. Consequently, the
buckling behaviour of such beams does not conform to the classical
mathematical analysis presented by Timoshenko 2, Although the
elastic and inelastic behaviour of beams and columns is generously
reported in the literature, there exist very few quantitative
assessments of such imperfections in test specimens. This is
substantiated by examination of the literature concerned with
theoretical and experimental investigations into beam and column
stability problems. Table 1.2 summarises relevant data obtained from a
total of thirty-one references considered most likely to furnish the
necessary information. The following notation has been used in Table
1.2:

Ug initial lateral deflection of compression flange at midspan
1 span of beam

$o initial angle of twist at midspan (radians)

D overall depth of beam section

e Perry-Robertson imperfection factor
minor axis radius of gyration

Sinusoidal distributions of both crookedness and twist were assumed
by Trahair30 and Meck3l in their derivations of modified Southwell
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plot procedures for beams. Initial sinusoidal bows of amplitude equal
to one-thousandth of the spén'were assumed by Zuk45, Massey47’48,
Med1and*® and Lui and Chen®3 in theoretical analyses, Massey's

analyses also assuming particular values for sinusoidal distributions of
initial twist (Table 1.2).

Sinusoidal distributions of crookedness and twist were relinquished
by Kerensky et a135 in favour of the Perry-Robertson approach which,
they demonstrated, could be applied to all cases of elastic or inelastic
buckling of beams and girders in order to obtain satisfactory design
curves. In consequence, the Perry-Robertson approach was subsequently
adopted in both BS 153(1958)3¢ and BS 449(1959)37. More recently,
Nethercot?4s39554 a5 highlighted the reliability of the approach and
its potential for application in limit-state as well as elastic design
methods. Its incorporation in the new limit-state Bridge Code®® and
Steelwork in Buildings Code®® lends further support to these
assertions.

Only five of the published works examined prior to compilation
of Table 1.2 presented numerical data obtained from direct measurement
of imperfections in test beams. Of these, only that of Dib]ey38
reported measurements on British sections, the sections being rolled in
Grade 55 steel. Fukumoto et a1.50-52 presented mean imperfections for
a total of ninety-six rolled and sixty-eight welded beams manufactured
in Japan whilst Dux and Kitipornchai4 reported test measurements for
each span in each of nine tests on continuous beams. The values shown in
Table 1.2 for Dux and Kitipornchai's tests indicate the maximum values
recorded for each beam.

A1l values of non-dimensional initial bow (uo/l) measured by
Fukumoto et a1.90-%2 and Dux and Kitipornchai4 on Japanese and
Australian rolled sections, respectively, were lower than the "rule of
thumb" value of 0.001 noted in the theoretical beam analyses of Zuk4®
and Massey47’48. Dib]ey‘s38 results indicated larger initial
crookedness in his test beams. The AISC®’ delivery specification for
structural steel shapes demands an initial straightness tolerance of
ug/1 = 0.001 whilst the rolling tolerance specified in BS 4: Part
142 4 u,/1 = 0.00104. A tolerance on non-dimensional initial bow
of 0.001 was also demanded by a bridge design memorandum issued by the




Departmént of the Environment58 following publication of the report of
the Merrison Committee and the so-called "IDWR" document in 1973.
Initial twist was also limited by this document, twist being expressed
in terms of the relative misalignment of the flanges as shown in Fig.
1.8 . Similar tolerances on initial imperfections are demanded by Part 6

of the new British Bridge Code®>.

As would be expected, reported values of non-dimensional initial
twist (¢,D/1) displayed a scatter similar to that observed in the u,/1
measurements. On the basis of the results presented in Table 1.2,
typical values of non-dimensional twist in beams lie in the range 0.0001
to 0.0006.

In conclusion, several random initial imperfections occur in real
beams and have a significant effect on beam behaviour and, consequently,
on the adequacy of associated bracing systems. Generally, initial
crookedness, twist and residual stresses have the most detrimental
effect, although accidental eccentricity and misalignment of nominally
vertical applied loading also play an important, though less
quantifiable, role. The imperfections listed in Table 1.1 do not occur
in isolation. Depending on their distribution, coexistent initial
imperfections can have an additive or relieving effect as far as theijr
destabi]ising influence is concerned.

In practice, as it is not feasible to measure any of the
imperfections listed in Table 1.1 either prior to, or during, erection
of steelwork, design rules governing the suitability of sections in
particular applications must incorporate allowances for the most
unfavourable combinations of initial imperfections. The use of an
enhanced value of one of the imperfections to make allowance for others
which cannot be measured is therefore an attractive solution. Winter®®
was among the first to advocate such an approach for column design when
it was proposed that an enhanced crookedness of about double the AISC
crookedness tolerance be employed to account for the presence of other
imperfections. The current trend towards limit-state design
codes””»96 based on probabilistic concepts should provide a framework
into which the probability of occurrence of random initial imperfections
can be included. Such an approach would provide a method of allowing
for imperfections consistent with limit-state philosophy.

l6




1.2.3  Elastic Lateral-Torsional Buckling of Beams either Laterally
or Torsionally Restrained on the Span

In 1951 F1int®® published the results of theoretical and
experimental investigations concerned with the buckling of beams
provided with intermediate elastic supports. The results of tests on
aluminium alloy model I-section beams gave support to the equilibrium-
and energy-based solutions which had formed the basis of the theoretical
analysis. Attention was focussed on four main topics: the influence of
complete and partial end support; the effect of intermediate torsional
restraints; and the influence of intermediate restraints such as filler
joists. It was found that in order to enforce the second mode of
instability in the primary member, it was generally necessary to attach
the stay above the shear centre.

In the case of a simply-supported beam under central point loading
applied at its top flange, a single translational restraint to this
flange of stiffness greater than the lateral bending stiffness of the
primary member by a factor (denoted by 'A ') of about ten was suggested
to be adequate for the enforcement of the elastic second mode of
buckling. For shear centre restraint, A was noted to increase to
fifteen. Any increase in the axial stiffness of the brace beyond these
full-bracing values proved ineffective in increasing the critical load of
the primary member.

The non-dimensional translational restraint stiffness 'A' is
defined®d by

3
z - _Ke

Z‘gm .--(1-2)

where K = absolute stiffness of translational restraint
= span of beam
E = Young's modulus
I, = 2nd moment of area of beam cross-section about its
minor axis

In the case of tension flange restraint, although the second mode
could not be achieved even for very large restraint stiffnesses,
significant increases in critical load relative to unbraced values were
nevertheless observed.

17
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Flint had demonstrated that, although the second mode critical
load could not be altered by ‘changing the level of attachment of the
bracing, the brace stiffness required to achieve this load was minimised
when the brace was attached at the level of the compression flange.

Tests were also conducted®® on parallel primary members
interconnected by a single midspan brace. Although the bracing element
possessed both axial and flexural stiffness, Flint's tests revealed that,
under identical loading patterns on the beams, it was possible for them
to buckle together in such a way that the lateral restraint afforded by
their interconnection was zero. In this event, the axial stiffness of
the brace was not utilised. However, the flexural stiffness of the brace
or filler joist provided a degree of midspan torsional restraint to the
primary members (Fig. 1.9), thereby increasing the overall stability of
the system. Although the provision of relatively high values of such
torsional restraint did not permit second mode buckiing loads to be
achieved in the tests, theoretical analyses showed that considerable
increases in critical load could be realised. The relationship between
beam stability and torsional restraint stiffness is shown in non-
dimensional form in Fig. 1.10, taken from Ref. 59 where the effects of
the beam's warping rigidity have been neglected. Although subsequent

work by Taylor and Oja1v060

showed neglect of this parameter to have
considerable effect on the elastic analysis, Fig. 1.10 nevertheless
illustrates the beneficial effect of midspan torsional restraint. In
this figure, the following notation has been adopted and is consistent

with that employed in Chapter 2:

non-dimensional torsional restraint stiffness

o
I

= flexural stiffness of interconnecting brace or

torsional stiffness of primary beam

= stiffness of torsional spring restraint (Fig. 1.5)

torsional stiffness of primary beam

Kyl oo (1.3)
6J



where KT = absolute stiffness of torsional restraint
1

span of beam

G = shear modulus
J = St. Venant torsion constant for beam
Also, ¢ = critical stress factor

it

critical moment of system

critical moment of unbraced beam of equal span
{under uniform moment }

The possibility of attainment of the second mode elastic critical
load by the provision of only torsional restraint is considered later
in this Section and again in Chapter 2. An investigation into the
effectiveness of elastic cross beams has been presented by Nishida et
a161. This showed that the degree of torsional restraint provided by
the cross beams was often sufficient, theoretically, to induce second
mode buckling in the primary beams.

In a study devoted to the examination of the strength and stiffness
criteria to be met by translational restraints in order to provide "full"

46 proposed an analytical

restraint to elastic beams and columns, Winter
model for beams in which the compression flange, isolated from the web
and tension flange, was regarded as an independent strut free to buckle
in its own plane. It was recognised that the beam was more stable
against lateral buckling than its isolated compression portion.
Consequently, oin the grounds that the total force in the compression
portion of the beam at the instant of lateral buckling was known to be
larger than the Euler column Toad of that portion when isolated, but of
the same order of magnitude, it was suggested that bracing dimensioned to
be adequate for an independent compression flange would prove sufficient

and would not be wasteful.

In order to justify the conclusion that the provision of anything
less than full bracing to primary members was uneconomical due to the
relatively modest section sizes required for such restraint, Winter
presented the results of a series of tests on model I-section columns
braced by cardboard strips. These results showed that the usable column
strength could be increased by a factor approaching fifteen as a result



20

of the attachment of inexpenéive, intermittent bfacing. In those tests
where fracture of the bracing strips accompanied failure of the column,
the tensile strength of the individual braces was approximately one

per cent of the column strength. Additionally, the test demonstrated an
interrelatonship between bracing stiffness and strength: the stiffer
braces not only increased the column strengths but also required less
strength themselves in order to produce a given column load.

Based on Winter's conservative "independent compression flange"
method for proportioning beam bracing systems, a specific example
investigating the requirements for fully effective, continuous restraint
of an 18WF50 beam showed that the total restraining force did not exceed
5% of the compression flange squash load.

Extending the previous work by Winterd6

on the strength

requirement of braces, Zuk4d presented a theoretical investigation

into the bracing forces developed in eight typical cases of braced beams
and braced columns. Within the limitations imposed by an assumed initial
crookedness of span/1000 in the beam (Table 1.2), elastic material
behaviour and small deflection theory, the solutions obtained were either
exact (resulting from direct solution of the governing differential
equations of equilibrium) or approximate (from the principles of minimum
total potential energy). Results of beam analyses indicated a maximum
brace force not exceeding 2% of the compression flange force at buckling
in braces attached to the compression flange. Higher forces of about
2.4% of the compression flange force were noted in bracing attached at
the level of the shear centre of the beam. Zuk also deduced that a beam
restrained by more than one brace would induce into each brace a force of

about 2% of the compression flange force at buckling.

Acknowledging the possibility of only finite torsional restraint

at beam supports, Schmidt62 studied the interaction between a single,
central, elastic translational restraint and incomplete end torsional
supports. A differential equation solution was employed, in which the
assumptions of small deflections and no cross-sectional deformations were

made. The load and restraint points on the beam were also assumed to be
~at the same height above the shear centre. Formulae were presented for
the calculation of the stiffness requirements of each type of support in



order to allow the beam to dqve]op its maximum load-carrying capacity.

Defining the torsional restraint parameter, e, in terms of the
torsional stiffness of a support and that of the beam, Schmidt showed
that provision of e > 40 at each end of a beam under central point
loading would ensure fully effective torsional end restraint. Beams were
noted to be incapable of supporting any load when end supports possessed
no torsional stiffness (e=0).

In extending the work of F1int®% on intermediate torsional

restraints, Taylor and Ojalvo60

included the effects of warping in
elastic bifurcation analyses applied to three types of loading and two
types of torsional restraint. Continuous torsional restraint on the span
was shown to result in increasing c¢ritical load with increasing restraint
stiffness "apparently without 1imit". 1In the case of a single, central,
elastic torsional restraint, the critical load was again limited by the
formation of the well-known two half-wave mode (ie. the elastic second
mode) of lateral-torsional buckling. Critical loads corresponding to
second mode buckling are characterised by the plateaux of constant ‘c' in
Figs. 1.11 and 1.12, where Flint's®? torsional restraint curves (Fig.
1.10) have been superimposed on the results of Taylor and 0ja1vo60.
Flint's analyses have previously been noted to have neglected the
contribution made by a beam's inherent warping rigidity to its overall
resistance to lateral-torsional instability. In these figures,vthe shape
parameter 'R' is used as a measure of the relative importance of warping

rigidity in resisting torsional deformations. The shape parameter 'R' is

defined®3 by
R = [12aJ ... (1.4)
ET

St. Venant torsional rigidity of the section and

where GJ
Er

warping rigidity of the section.

High values of R are associated with slender beams in which warping

rigidity is low relative to torsional rigidity. Theoretically, the value

R =00 is therefore appropriate to Flint's®? analyses.

It has been noted in Section 1.1 that, as far as stability
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is concerned, uniform bending moment represents the most-unfavourable
type of applied loading on a beam. Figures 1.11 and 1.12 show that beams
attain consistently higher critical moments (and hence critical stress
factors 'c') under central point loading than under uniform bending
moment. However, the apparently greater stability of a beam under
concentrated load is not reflected in a reduction in the torsional
restraint required for attainment of second mode buckling. For example,
values of 'e' approaching 900 are required to induce second mode buckling
in beams of high warping rigidity (ie. low 'R') under concentrated load
at midspan. However, lower values of between 500 and 530 are sufficient
to provide fully effective restraint to identical beams under uniform
bending moment.

Figs. 1.11 and 1.12 also show that no further increase in critical

~ load can be achieved by providing torsional restraint stiffness 1in

excess of the minimum value required for full bracing, the "critical
brace stiffness", e... This confirms earlier conclusions of Flint>?

and Winter?®. Both second mode critical loads and critical brace
stiffnesses are depéﬁdent on the cross-sectional geometry of the primary
‘member, described by the parameter 'R', and the nature of the applied
loading. The limitations of Flint's>? analyses are highlighted in

Figs. 1.11 and 1.12, from which it can be deduced that allowance for
warping rigidity must be made if theoretical elastic bracing analyses are

to yield useful results.

Following previous studies of single span elastic beams with and

without intermediate restraints, Hartmann16

extended the investigation
to continuous elastic beams which previously could only have been
analysed by one of the variations on a lTower bound approach developed
by Salvadori. This approach treated the continuous beam as a series
of simply-supported beams, each with its appropriate moment and shear
distribution obtained from analysis of the continuous structure. A
Tower bound estimate of the critical load of the continuous beam was
then taken to be the smallest value of critical load calculated for

any of the simply-supported beams.

Hartmann questioned the validity of the inherent assumption that
" lateral displacements and twist were wholly prevented at interior
supports. His published work!® examined the effects of bracing
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stiffness at interior supports in an attempt to define minimum
stiffnesses satisfying this assumption. As the present study is
concerned with the restraint of single span beams, much of Hartmann's
work is of no direct relevance. However, analyses presented as an
introduction to the main body of his work are relevant and directly
comparable with results of previous research.

An elastic analysis based on classical small displacement buckling
theory, making allowance for the warping rigidity of sections but
neglecting cross-sectional deformations, was employed by Hartmann. This
gave the results shown in Fig. 1.13 for a simply-supported beam under
central point loading, with load applied at and translational restraint
attached at the shear centre. The results have again been plotted non-
dimensionally in terms of the critical stress factor 'c', shape
parameter 'R' and non-dimensional translational restraint stiffness 'A'.
Flint>° had proposed the following simplified relationship for the
critical stress factor 'c' in terms of 'A' for a beam of R=co under
central point Toading:

c=135/1+ A ...(1.5)

In the derivation of this relationship, translational restraint
attached at the level of the shear centre had been assumed. The curve
described by equation (1.5) is also shown in Fig. 1.13. For values of A
less than two, Flint's curve and that of Hartmann for R%= 0 are
indistinguishable. However, for larger values of A the divergence is
appreciable and critical brace stiffnesses (Aan predicted by the two
methods are markedly different: Flint's predicted value of A_.36 1is
significantly less than Hartmann's prediction of Acsll.

Flint, recognising that the relationship described by egn. (1.5)
would be "appreciably in error" as the second critical load was
approached, advocated the use of a more refined analysis to improve
accuracy. In particular, a minimum total potential energy solution
employing two or more trigonometric terms in the assumed displacement
function was recommended. Such an approach has been adopted in the
analyses presented in Chapter 2.

A later series of confirmatory elastic flexural-torsional buckling
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tests on two-span beams of rectangular cross-section was carried out by
Hartmann®. The experiments proceeded under load control and
consequently it was not possible to determine the critical load by direct
measurement. However, Trahair's "modified plot" method3C was used to
evaluate the experimental critical loads. These differed from the

theoretical va]ues16

by 6% on average.

A more recent study of the adequacy of discrete restraints by
Nethercot and Rockey63 was based on the finite element method.
Uniform applied bending moment was assumed throughout the work which
investigated the separate effects of translational and torsional
restraints. In addition to consideration being given to the effects of
warping, allowance for cross-sectional deformation was made in the
analysis. Fig. 1.14 shows the results of Ref. 63 for the case of a beam
laterally restrained at its shear centre, cross-sectional deformations
being prevented only at the restrained section. The corresponding curve
from Flint's earlier study59 of the bracing requirements of slender
beams is indistinguishable from Nethercot and Rockey's R%=e0 curve.

Nethercot and Rockey's relationship between the critical stress

factor 'c¢' and non-dimensional torsional restraint stiffness 'e' is

60 are

63

shown in Fig. 1.15 where the curves of Taylor and 0jalvo
superimposed. The curves attributed to Nethercot and Rockey®” 1in Figs.
1.14 and 1.15 have been derived on the basis of "complete attachment” of
the restraint, a condition modelled in the finite element solution by the
prevention of cross-sectional deformations of the beam at the braced

section only, all other cross-sections on the span being free to deform.

Comparison of the R2=12 curves in Fig. 1.15 shows that the finite
element solution of Ref. 63 predicts a higher value of critical torsional

restraint stiffness than does the conventional elastic analysis

‘e
employed by Taylor andcgja1v060. The predicted values are,
approximately, e.,.=150 (Ref. 63) and e.,=110 (Ref. 60). The finite
element solution also predicts a slightly lower second mode buckling
load and hence it can be deduced that the inclusion of cross-sectional
deformations at sections other than the restrained section tends to

~ decrease the predicted second mode critical load whilst also increasing

the torsional restraint stiffness required for full bracing.
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2 makes no allowance for cross-

Classical elastic buckling analysis
sectional deformations. Therefore, the level of attachment of torsional
restraint has no effect on calculated critical loads. However, Nethercot
and Rockey's63 finite element analysis, capable of modelling cross-
sectional deformations at the braced section in addition to all other
locations on the span, was used to assess the effect of deformations of
the restrained cross-section on the adequacy of the restraint. Fig. 1.16

shows the results obtained for a beam having R%=32.

Fig. 1.16 shows that, if allowance is made for deformations of the
cross-section at all points on the span, shear centre attachment of
torsional restraint is slightly more efficient than attachment to either
flange, although neither permits the second mode critical load to be
attained. This is contrary to the results obtained for transiational
restraints. Of greater efficiency, but still insufficient for complete
restraint, is the provision of half of the total stiffness Ky at each
flange. Full bracing could only be achieved by "complete attachment" of
the restraint. In this case, the critical value of e..=72 corresponds
to that shown in Fig. 1.15 on the R2=32 curve.

Whereas Nethercot and Rockey63 had examined the bracing
requirements of beams with loading restricted to uniform bending moment
on the span and translational restraint attached only at the shear
centre, a study by Mutton and Trahair®% extended the investigation to
cover a wider range of loading and restraint geometries. The finite
integral method was employed for solution of the governing differential
equations of equilibrium and deformations of the cross-section were
neglected.

Fig. 1.17, presented in terms of the shape parameter R, shows the
values of critical non-dimensional torsional restraint stiffness e.,
required for full midspan bracing of a beam under central point Toading.
Although the variation of e.,. with R is significant, e., is
independent of the level of application of applied load for slender beams
having values of R greater than 30. For beams of lower slenderness,
greater values of e.,. are noted for compression flange loading than for
load applied at points lower on the cross-section. This agrees well with
" an earlier observation by F1int®% that loads applied above the shear
centre had a greater destabilising effect on the system. Fig. 1.17
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predicts that beams loaded with central concentrated loads can always
be rigidly braced by a torsional restraint of sufficient stiffness.

A comparison of the predicted values of e.. from Fig. 1.17 with
those of Taylor and Ojalvo from Fig. 1.11 and from Ref. 60 is shown

in Table 1.3.

Table 1.3: Comparison of e.,. Values from Refs. 60 and 64

Predicted values of e.. for beam under central

R* point loading applied at the shear centre
Mutton and Trahair®? Taylor and 0ja1vo60

2 810 881

4 425 456

6 300 326

8 236 253

12 175 179

16 142 147

32 95 95

96 66 57

Allowing for the difficulty in determining accurate ba1ues of e.n.
from the small graphs presented in the published paper560’64,

correlation between the results in Table 1.3 is excellent.

The relationship between critical translational brace stiffness
Acr and shape parameter R for a beam under central point loading is
shown in Fig. 1.18. Like Fig. 1.17, Fig. 1.18 has been based on
numerical results presented in Ref. 64 but is expressed in terms of the
variables employed in the present study. From the nine combinations of
load/restraint geometry shown, it is evident that a value of A=15 is
sufficient for the complete midspan restraint of all beams having values
of R between 1 and 300 provided that the restraint is to the top
(compression) flange. Fig. 1.18 shows that as R increases the effects
of loading and restraint geometry on the required translational stiffness
Acp become less significant, until, for values of R close to 300, a
- narrow range of A.. values (8 < A_.<15) encompasses all
combinations. This conclusion agrees well with Flint's®? earlier



recommendation of A ..<15 for compression flange or shear centre
restraint. Fig. 1.18 also predicts that beams héving R <15 cannot be
fully restrained by tension flange bracing alone. Similarly, it is
predicted that shear centre restraint is insufficient for beams of R<25
loaded at the compression flange.

Although the results of previous research had supported the use
of compression flange bracing, Roeder and Assadi®® devoted a study
to the effectiveness of tension flange restraint. A finite difference
solution provided the basis for the theoretical analysis and a short
experimental programme was conducted. The results indicated that,
although tension flange restraint was incapable of increasing the elastic
critical load of a beam under uniform bending moment to a level
compatible with failure in the second mode, such restraint nevertheless
produced significant increases in the buckling loads of beams of
inherently high St. Venant torsional stiffness. In terms of the notation
employed in the present study, Roeder and Assadi suggested that torsional
stiffness dominated the buckling analysis for beams possessing R> .
Although increases of less than 8% in the critical loads of beams with
R<n and with tension flange restraint were observed, an increase in
excess of 50% was obtained experimentally for a more slender beam
continuously restrained on the tension flange by a thin steel membrane.

In conclusion, since the pioneering work on the subject by Fh'nt59

and Winter46

, a considerable research effort has been invested in

the problem of the elastic lateral-torsional buckling of simply-supported
beaims restrained either laterally or torsionally on the span. Of

primary concern in the majority of the studies reported in this Section
has been the need to provide fully effective restraint to the beam in
order that the second mode of buckling could be achieved. Winter?® and
Zuk*® demonstrated the adequacy of modest bracing in providing full
restraint to initially straight or crooked beams and concluded that the
provision of anything less than fully effective bracing was uneconomical.
The minimum stiffness of lateral or torsional restraint required to

achieve full bracing is called the critical brace stiffness.

Several factors are important in determining the adequacy of
“restraint systems possessing only one restraining action: the level of
attachment of translational restraint relative to the position of the
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shear centre of the section; the nature of the applied loading; and the
prerequisite of adequate lateral and torsional restraint at the supports.

The work of Hartmannls, Taylor and Oja]vo60 and Mutton and
Trahair64 highlighted the need for warping effects to be taken into
account in elastic buckling analyses. Both critical brace stiffnesses
and second mode critical loads were shown to be dependent on the warping
rigidity of the primary member. However, warping plays a less
significant role in very slender beams where the greater part of the
resistance to torsional deformation is derived from the St. Venant
torsional stiffness rather than from warping rigidity. Consequently,
slender beams conform most closely to the behaviour predicted by
Flint®9.

Predicted critical loads were noted to decrease and critical brace
stiffnesses to increase when allowance was made for cross-sectional
deformations in a finite element analysis presented by Nethercot and

Rockey63.

The exact nature of the deformations was dependent on the
method of attachment of the torsional brace but in all cases their
presence was seen to reduce the effectiveness of the restraint. The
optimum locations for attachment of bracing on the cross-section were
found to be different for torsional than for translational restraint. It
was suggested63 that, to obtain fully effective restraint from a

central torsional brace, the brace should be capable of preventing the

occurrence of cross-sectional distortion.

This Section has demonstrated that, in the majority of cases, fully
effective restraint can be provided by either translational or torsional
restraint on the span. In only a few cases where the level of attachment
of restraint is "low" relative to the compression flange and shear centre
is this impossible. In practice, most bracing members provide both
translational and torsional restraint and hence utilisation of both types
would appear advantageous. Some of the benefits of combined restraint
reported in the literature are described in the next Section.
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1.2.4 Elastic Lateral-Torsional Buckling of Beams Laterally and

Torsionally Restrained on the Span

In their finite element study of Ref. 63, Nethercot and Rockey
also examined the effect of combined translational and torsional
restraint on the stability of simply-supported beams under uniform
moment. As in the previous Section, warping rigidity was found to play
an important role in determining the buckling behaviour of the system.

Fig. 1.19 illustrates the increase in stability of an RZ=32 beam
(that of Fig 1.16) achieved by the provision of combined lateral and
tbrsiona] restraint at midspan. Without torsional restraint (e=0),
translational restraint of non-dimensional stiffness A =10 is required
for full bracing; however, even the provision of a very modest torsional
restraint of e=10 reduces the translational bracing requirement to
A=3.5. On the other hand, infinite torsional restraint at midspan is
itself insufficient to brace the beam adequately. Coexistent shear
centre translational restraint having A= 2 is therefore required for
attainment of second mode buckling. Tabulated values of ‘c' for other
combinations of A, e and RZ values are given in Ref. 63. 1In all
cases, allowance for combined bracing action considerably enhances beam
stability.

Another recent investigation into the combined axial and flexural
rigidity requirements of single, midspan, elastic restraints was made by
0'Connorb®. The only type of applied loading considered was uniform
bending moment. A simplified analytical model was employed in which the
beam was modelled by its flanges, the web playing a minor role and
serving only to couple flange displacements and twists. Winter?® had
previously used a similar but rather more simplified approach in
modelling a beam by its isolated compression flange. No experimental or
more refined theoretical studies were cited by 0'Connor in support of the
closed-form solutions presented. In addition, the extremely unwieldy
presentaton of equations, the lack of precise definition of symbols and
the presence of several errors both in the equations and accompanying

66

text render 0'Connor's paper®® almost unusable.

In addition to the many investigations concerned with discrete
intermediate restraints, several have dealt with continuous or diaphragm
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bracing of beams and columns. That of Trahair67_dea1ing‘with the
continuous restraint of elastic beam-columns has noted the increasing
effectiveness of continuous translational and torsional restraint with
distance above the shear centre, a conclusion seen to be in agreement
with the findings of earlier studies into discrete restraint.

A recent appraisal of various forms of bracing for elastic systems
has been published by Trahair and Nethercot®8. Reflecting the paucity
of information on the subject, this review cited few previous studies
concerned with combined translational and torsional restraint. However,
one of the previous investigations of particular importance was noted to

be that of Mutton and Trahair64.

Following their examination of isolated translational and torsional
restraint systems in Ref. 64, Mutton and Trahair in the same published
work showed that, where sufficiently high torsional restraint was
provided to beams under central point loading, it was possible in all
cases to dispense with the need for bracing possessing axial rigidity.
Although the study by Nethercot and Rockey63 had considered a different
and more onerous type of applied loading, namely uniform bending moment,
a discrepancy is apparent between Refs. 63 and 64. Contrary to the
findings of Mutton and Trahair, Nethercot and Rockey predicted that
torsional restraint in isolation would be unable to provide complete
restraint. A possible explanation is that, in addition to the more
severe loading assumed in Ref. 63, allowance for deformations of the
cross-section was also made therein. It has previously been noted
(Section 1.2.3) that the effect of these deformations was to increase
predicted critical brace stiffnesses.

Conversely, torsional restraint was not required where a sufficient
degree of translational restraint to the compression flange was provided.
In cases where translational restraint was attached Tower on the cross-
section, rotational restraint was often additionally required. Fig.

1.20 shows combined torsional and translational restraint stiffnesses

r‘equired64 for full bracing with tension flange or shear centre

attachment of translational restraint. In agreement with the trend
observed in Figs. 1.11 to 1.15, 1.17 and 1.18, Fig. 1.20 predicts that

| more substantial bracing systems are required for the complete restraint

of beams of low R.



However, it must be noted that beams in this category are generally
of low to intermediate slenderness (Fig. 1.3) and are consequently more
susceptible to inelastic than to elastic instability. The current
requirements of effective restraint systems for the prevention of first
mode inelastic buckling of beams are presented in Section 1.2.5.

1.2.5 Restraint Systems Associated with Inelastic Lateral-Torsional

Buckling of Beams

Unlike the bracing of beams for the prevention of failure by elastic
flexural-torsional buckling, the requirements of bracing associated
with beams of intermediate and low slenderness which fail under inelastic
conditions (Fig. 1.3) have received relatively scant attention in the
literature. The pioneering work on this topic was reported by Massey47
who, on the basis of an assumed 1inear elastic-perfect plastic material
characteristic (Fig. 1.7) proposed an equilibrium-based solution for
‘the force developed in a single translational restraint. Other major
assumptions were those of a single span, simply-supported beam of doubly-
symmetric I-section under uniform bending moment, restrained at its
midspan by a rigid horizontal support. Sinusoidal distributions both
of initial crookedness and twist were incorporated, permitting solution
for the restraint forces. A doubly-symmetric distribution of plasticity
over the cross-section (Fig. 1.2) was assumed for varying degrees of
plasticity from the onset of yield to full flange plasticity. This
pattern of yielding was considered by Lay and Galambos®d to be
unacceptable in an initial deflection problem as presented by Massey.
Its use in a classical buckling analysis was justified as no out-of-plane
deflections occurred until the buckling condition was reached. However,
in the initial deflection problem, lateral deflections and twist
commenced from the onset of loading and consequently longitudinal
stresses due to lateral bending and twist would destroy the symmetry
of Massey's assumed distribution. Six tests on steel model I-beams
were performed in an attempt to verify the theoretical predictions.

The main conclusion arising from both the theoretical and
experimental results was that, for short inter-brace distances, there
~was a possibility of brace forces exceeding the contemporary American

design recommendations’Y. Subsequent criticism both of the theoretical
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analysis and the experimental procedure by Lay, Galambos' and Schmidt69
questioned the interpretatioﬁ of the results in fe]ation to the American
Code. The supposedly correct interpretation invalidated Massey's
expressed concern.

Massey had assumed that the bracing force developed in a central
lateral restraint would be the force developed in an infinitely rigid

69, "there

restraint at the same point. As noted by Lay and Galambos
is no reason why [the latter] force should be synonymous with the bracing
condition required to ensure the adequate structural performance" of

the beam. Prior to Massey's paper47 in 1962, F]int59, Winter?®

and Zuk®® had demonstrated the adequacy of central translational

bracing of finite rather than infinite stiffness in providing complete
restraint to beams and columns. On the basis of Winter's conclusion

that stiffer braces required less strength, Massey's47 assumption of
infinite translational restraint would have resulted in a lower bound
estimate of the bracing force. Massey noted that the contemporary
American practice of designing bracing members to resist a force equal to
2% of the ultimate compression flange force appeared satisfactory for
beams of span greater than 130r,; for more stocky beams, it was

possible for brace forces to exceed the 2% design value by a considerable

margin. However, Lay and Galambos®?

showed the basis of Massey's
calculations to be in error and that, on correct interpretation, the
results presented in Ref. 47 predicted brace forces significantly less

than those permitted by the 2% design rule.

A later method of predicting the bracing requirements of inelastic
steel beams under uniform moment was developed by Lay and Galambos’1.
Earlier work by the same authors had provided an expression for the
transverse bending moment at which local buckling of the compression
flange would occur. Lay72’73 employed the discontinuous theory of
yielding in the derivation of critical compression flange breadth to
thickness ratios for the attainment of local buckling. The occurrence of
local buckling was also dependent on the moment gradient on the beam, the
Tength of the yielded region and the strain hardening properties of the
steel. These parameters were then incorporated into a theoretical
derivation’3 of an expression for the Tocal buckling moment My,

" defined as the maximum lateral bending moment that could develop in the

compression flange under a coexistent moment of My in the plane of the
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The major effect of inelastic buckling in a beam is to reduce the
ability of the member to carry its plastic moment My through a range of
inelastic deformations. A measure of this ability is the rotation
capacity Mo defined in equation (1.6):

= —B— -
M By 1 ...(1.6)

where 8 and Sp are as shown in Fig. 1.21. Adequate rotation capacity
is therefore an essential requirement of beams used in plastic design.

In the subsequent derivation of bracing requirements in Ref. 71,
the beam model shown in Fig. 1.22 was employed to allow the applied
moment on an initially crooked beam to be expressed in terms of the
critical moment of an equivalent idealised model. The Southwell
approximation for columns allowed the two moments to be related by the
initial crookedness and lateral deflections of the compression flange.
Lateral buckling of the idealised beam occurred when the T-shaped

compression element buckled laterally. The two longitudinal pins assumed

in the model transformed the cross-section into a lateral mechanism
and the torsional rigidity of the section was neglected.

Lay72 had shown that the combination of compressive in-plane
bending strains and the strain distribution arising from lateral
deformations of the imperfect beam would generally result in local
buckling of the compression flange. As this determined the upper limit
of the load-carrying capacity of the member, the criteria for the spacing
of restraints developed by Lay and Ga]ambos73 were based on attainment
of that value of M corresponding to local buckling of the compression
flange. For a required rotation capacity u, the restraint spacing L
was given by

... (1.7)
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where k = effective 1gngth factor (0.54 for predominantly elastic
side spans, 0.8 for fully-yielded side spans)
ry = radius of gyration of beam section about its minor
axis
€y * yield strain of steel forming beam = oy/E
€gt = sStrain at onset of strain hardening (Fig. 1.23)
E = Young's Modulus '

E¢t = strain hardening modulus (Fig. 1.23)

As the rotation capacity at the onset of local buckling was not
always readily calculable, Lay and Galambos suggested an optimum value
for American rolled sections of

mo= 0.8 (z_s:_ - 1) ...(1.8)

On the assumption of braces fully yielded at the termination of the
beam's rotation capacity, the required cross-sectional area of a single
brace Ap* was shown’! to be

€5t
AX = 2|8 Ag by ... (1.9)
S|E _[E | b
Est- Est
in which Ag = area of compression flange of beam = bgte
' bg = compression flange breadth
te = compression flange thickness

1/1,, = reciprocal average length of adjacent spans
LI S I
2\ 4 L,

1.,1g = lengths of the two spans adjacent to the
braced point.

The corresponding ultimate force in the brace (Py,.)p.. was
expressed non-dimensionally in terms of the ultimate compression flange

force, Pcy:

(Pb ) X 2 €3 - | bf (
Mbr/max £ ...(1.10)
ch 3 _E_. E Loy



In keeping with the results of earlier theoretical 1nvestigation545’46
into the forces developed in column bracing, equation (1.10) predicts
increasing brace force with decreasing span. A numerical example by
Lay and Galambos showed that for a 10WF25 beam in A36 steel, restrained

at intervals of 35r, in accordance with AISC recommendations70,

the bracing design ¥orce (Pppmax reached a value of 3.2% of the
ultimate compression flange force. Although this exceeded the '2% rule',
Lay and Galambos noted that the assumptions made in the derivation of
equations (1.9) and (1.10) would result in conservative (ie. safe)

bracing design.

Recognising that the adequacy of translational bracing systems
was also dependent on an axial stiffness criterion, the authors proposed
an inequality relating the actual cross-sectional area of the brace
supplied, Ay, to its length, 14:

A (Ab)(ea)z
— < 0'86 — _— -00(1011)
eav Af bf
where Ay = Ap* from equation (1.9)
1, = Tlength of longer adjacent span ie. greater of 1

and 1R.

This brace stiffness criterion was based on Timiting the lateral
deflection of the primary member at the point of restraint. Any lateral
relaxation of intermediate supports increased the effective length of
the primary member and hence reduced its resistance to inelastic lateral
buckling: the axial stiffness requirement was deemed to be valid for
an increase in effective length not exceeding 8%. In this context, the
brace-to-beam and brace anchorage connections were required to be almost
completely slip-free. As demonstrated in Ref. 71, the requirements of
equations (1.9) and (1.11) are easily met in practice and consequently
the provision of slip-free connections will frequently prove critical in
bracing system design. Either welded or friction grip bolted connections
should satisfy this requirement.

In cases where tension flange restraint was not provided in addition
~ to compression flange restraint of the above proportions, the following
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flexural strength and stiffness requirements were to be met by each
compression flange bracing member:

0.75 ¢,
Zb* = —‘e;—t‘;‘— -~0(1012)
| - Ao
Ay
where zy* = required brace section modulus about an axis parallel

to the longitudinal axis of the beam.
web thickness of beam

ty

For a beam of cross-sectional area 'A,' and depth 'D', the
corresponding flexural stiffness requirement was

(f_) . 038bA; .. (1.13)
D brace egDAx

The requirements of equations (1.12) and (1.13) were again shown to
be easily met in most practical situations. Nevertheless, this flexural
stiffness requirement has been criticised by Salmon and Johnson’4 as
being too onerous. However, in order that any assumed torsional
restraint afforded to the beam by the flexural stiffness of the brace was
actually made available, a moment connection of prescribed strength was
also required. Morris75 later showed that typical purlin-to-beam
connections were generally not markedly moment resistant and advocated
that the small torsional stiffness such bolt groups might possess should
be ignored.

In an extension of his previous work on elastic flexural-torsional
buckling, Hartmannl? examined the effect of lateral and torsional
restraint stiffnesses on the inelastic buckling behaviour of simply-
supported beams of rectangular cross-section. A tangent modulus solution
was employed and the cases of central point loading and third point
loading were examined in order to determine minimum restraint stiffness
criteria. In the case of central point loading, both the transverse load
and lateral bracing actions were assumed to apply at the shear centre,
whereas two combinations of load/restraint geometry were examined for
third point loading: shear centre loading with either shear centre or
A compression flange restraint. Under third point loading little increase
in critical load was achieved by changing from shear centre to



compression flange restraint. The main reason for this was thought to be
the stabilising influence of adjacent, non-critical segments in the
continuous beam.

Hartmann's results from Ref. 12 are shown non-dimensionally in terms
of the critical stress factor 'c' and non-dimensional translational
restraint stiffness 'A' in Fig. 1.24 . Whereas the shape parameter
R played an important role in the graphical presentation of results in
previous Sections, the negligible warping rigidity of rectangular
sections has necessitated the use of an alternative shape parameter. In
Fig. 1.24 the slenderness parameter Y has been employed:

“y = O‘Dc 000(1014)
E b?
where D = depth of rectangular cross-section of beam
b = breadth of rectangular cross-section

—
n

span

Hartmann noted that the upper (i >6.8) curve corresponded to
elastic failure of a braced beam with zero warping rigidity. Examination
of the R%= 0o curve in Fig. 1.13 shows the two curves to be identical,
both predicting a critical brace stiffness of A .s1l. For values of ¥
between 4.3 and 6.8, failure was by second mode inelastic buckling,
whilst beams of Y less than 4.3 were noted to fail by in-plane collapse
resulting from the formation of a plastic hinge at midspan.

A critical brace stiffness of A..3¥12 was required for attainment
of second mode inelastic lateral-torsional buckling of the =4.8 beam.
This was slightly greater than the value of A[.*11 required for 2nd
mode elastic buckling in the case of ¥ >6.8. As values of A,
necessary for the attainment of in-plane collapse on the Y =4 and ¥ =2.9
curves were lower than that required for second mode elastic buckling,
Hartmann concluded that the elastic value ( A.,.=11) would provide a
conservative estimate of inelastic bracing requirements. Although the
value of %Cr= 12 is only slightly greater than A_..=11 predicted by
the elastic curve, Hartmann's conclusion is dependent on all such
differences being small. As the Y =4.8 curve in Fig. 1.24 is the only
curve which relates to second mode inelastic instability, more inelastic
~curves would be required to verify the validity of this recommendation.
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In addition, the effects of warping would have to be indicated before
such a recommendation could be applied to sections other than the
rectangular section employed in this study.

Fukumoto and Kubo76 later presented the results of an
investigation into the optimum bracing stiffnesses for the prevention of
inelastic flexural-torsional buckling in parallel, inter-braced steel
girders containing residual stresses and subjected to an uniform bending
moment. An energy approach similar to that employed by F1int®? formed
the basis of the theoretical analysis, although the method of allowing
for the spread of plasticity through the section was not described. A
series of eleven tests was performed in order to verify the theoretical
solutions.

No basis for the comparison of measured restraint forces was
provided due to the assumption of an initially perfect beam in the
analysis. However, the bracing forces measured in the tests did not
exceed 2% of the compression flange force.

In a recent paper concerned with the provisions of the new British
Code®® in relation to the design of beams, Nethercot’” has noted that
little guidance is given in present codes as to what constitutes
"effective lateral restraint”. The current Australian Code’8 demands,
in addition to the "2%%" strength rule, a minimum axial brace stiffness
of 10(P )pax/L Where (P )pax
force and 'L' the spacing of restraints. Combining these two

is the maximum compression flange

requirements, the maximum permissible lateral deflection at the braced
point is 0.0025L. Lay and Galambos’1
maximum permissible lateral deflection of the braced point consistent
with the brace fully yielded was 0.098 inches for a 10WF25 beam
restrained at intervals of 35r,. The value of ry for this section

Y
was 1.31 inches, giving a restraint spacing of 45.85 inches and a

previously showed that the

permissible ratio of lateral deflection (u) to restraint spacing (L) of

u = 0.098 = 0.0021

L 45.85

which is seen to be more onerous than the Australian Code requirement
of 0.0025. In support of the above conclusion, Nethercot’” has



indicated that the stiffness requirement of the Australian Code has been
considered to be inadequate.

In a guide to plastic design methods, Morris and Randal1”? quoted
a required brace cross-sectional area of 4% of the area of the
compression flange with no indication of a stiffness requirement.
However, in a later paper75, Morris conceded that the stiffness
requirement might in fact be critical and consequently would control the
design of restraints. This conclusion had arisen from the observed
premature failure of restraints during ultimate load tests on portal
frames. Morris also stated that compression flange restraint should be
provided at a point not further than D/2 from a theoretical plastic hinge
location, 'D' being the overall depth of the primary member.

In conclusion, it can be said that there have been very few previous
investigations into the requirements of bracing systems associated with
the prevention of first mode inelastic instability in beams of medium to
Tow slenderness. Of greatest importance has been the study of Lay and

Ga]ambos71

in which design criteria for the proportioning of bracing
members were proposed. All of these criteria were considered to be
relatively easy to satisfy in practice, although the provision of rigid
brace anchors and slip-free brace-to-beam connections was suggested to be

a more onerous requirement.

Reflecting the need for considerably more research work on the
subject, current design recommendations33’57’78’79 for the
proportioning of bracing display considerable disagreement. Although
previous research has shown that, in general, bracing requirements are
not difficult to meet in practice, it is imperative that the designer has
access to precise and unambiguous minimum values of bracing stiffness and

strength.

39



1.3 Summary of Previous Research and Scope of the Present Study

1.3.1 Summary of Previous Research

The foregoing review of previous research presented in Sections
1.2.1 to 1.2.5 has revealed that by far the greater proportion of
research effort to date has been concerned with the elastic buckling of
beams and methods of restraint for its prevention. Various types of
analysis have been employed in these studies, ranging from relatively
simple equilibrium-based and energy-based manual solutions®d to complex
computer-based finite integra164, finite difference®® and finite
element®3 techniques.

Major Tlimitations of the classical elastic buckling ana]ysis2
have been identified. These include its inability to predict out-of-
plane deflections arising from initial imperfections in the beam or
loading geometry. Consequently, its use in assessing the adequacy of
restraint systems is limited to its ability to predict critical brace
stiffnesses but not brace forces. Allowance for initial geometrical
and loading imperfections can be made using an "initial deflection"

ana1ysis47

which predicts lateral deflections from the commencement

of loading and is therefore also capable of predicting bracing forces.
Imperfect beams have been shown*® to demand more substantial systems

of bracing than similar initially perfect beams. The interrelationship
between bracing stiffness and bracing strength was also demonstrated;
stiffer braces not only increased beam strengths but also required less
strength themselves. In the formulation of design rules for the
proportioning of bracing systems it is necessary to use enhanced values
of certain imperfections to make allowance for those imperfections which

cannot be measured or which cannot be included in the analysis.

The complexity of lateral-torsional buckling analysis is further
increased by the inclusion of non-linear material behaviour and
plasticity. In all but the simplest of cases, recourse must be made
to computer-based solutions for inelastic instability analyses.
Nethercot3? has noted that "the region of medium slenderness in which
the effects of plasticity and instability interact is the most difficult
to deal with. It is also the category which includes most beams used
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in practical situations”.

Sections 1.2.3 to 1.2.5 have demonstrated the ability of
translational or torsional restraints working in isolation or in
combination to provide fully effective restraint to beams under different
types of applied loading. The adequacy of bracing was seen to be
dependent not only on its stiffness and strength but also on the span of
the beam and the relative importance of the beam's warping rigidity in

.resisting torsional deformations, the nature of the applied loading, the
magnitude and distribution of initial imperfections and the level of
attachment of restraint. On the basis of elastic buckling theory,
compared with slender beams, those of low to intermediate slenderness
were shown16’60’63 to require greater bracing stiffnesses for full
restraint and hence attainment of second mode buckling. However, these
more stocky beams were also those more prone to failure by inelastic than
by elastic buckling. The paucity of information on the subject of
restraint systems required for the attainment of second mode inelastic
critical loads is reflected in the small number of references cited in
Section 1.2.5 compared with the numbers dealt with in Sections 1.2.3 and
1.2.4 . The only comprehensive theoretical study on this subject71 has
indicated the adequacy of even modest systems of bracing in providing
complete restraint to beams prone to first mode inelastic instability.
This work forms the basis of the contemporary AISC bracing design

recommendations57.

Recently, the increasing popularity of the plastic design method and
the trend towards the applicaion of 1imit state philosophy to structural
steelwork design have prompted a few commentators’2s77,79-81 ¢4
summarise the criteria for the provision of adequate restraint.

BriggsBO has highlighted the divergence of opinion on the subject. In a
recent review of bracing requirements, Nethercot’’ has indicated the
adéquacy of the "2%% rule" used as the strength requirement in current
British33 and Australian’8 Standards but in addition has advocated

for general use a minimum axial brace stiffness greater than the 1aﬁera1
bending stiffness of the primary member by a factor of approximately
twenty-five (ie. A= 25).

Although theoretically the criterion for adequate restraint should
be one of stiffness rather than of strength, advocates of the latter
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have argued that, in practice, the strength requirement is easier to
apply and that bracing proportioned in accordance with current strength
requirements generally possesses adequate stiffness. In support of this,
Horne80 has noted that contemporary strength and stiffness requirements
give results of the same order. Nevertheless, recent discussion by

75

Swinde]]s81 of a paper by Morris’>” revealed a lack of appreciation of

the importance of adequate brace stiffness in design.

1.3.2 Scope of the Present Study

In view of the relatively scant attention paid to the bracing
requirements of beams of low to intermediate slenderness in the
literature, the present study was undertaken in order to investigate both
the stiffness and strength criteria to be met by braces providing
complete midspan restraint to simply-supported, single span beams in this
range of slenderness. Throughout the remainder of the present study the
following assumptions have been made:

(i) Complete lateral and torsional restraint is provided at the
end supports of the beam. However, the beam is free to rotate
in plan and in elevation at these points.

(ii) Warping of the cross-section at the supports is not prevented
and

(iii) Other deformations of the beam cross-section have been neglected
on the assumption that these will be prevented either by local
stiffening at points of restraint or by the method of restraint
attachment adopted.

The critical loads and bracing requirements of beams under uniform
bending moment have received a considerable amount of attention in the
literature, probably due to the simpler analysis required for this type
of lToading. However, the occurrence of this loading condition in
practice is rare and the case of moment gradient along the span is much
more common. Into this latter category falls the case of central point
loading. As seen in Section 1.2, bracing requirements for central point
loading are commonly more demanding than for uniform moment due to the
" necessity of reaching higher in-plane loads before attainment of the
second mode buckling load. Consequently, the case of central point
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loading is extensively examined in the present study.

Based on a classical elastic buckling analysis, Chapter 2 examines
the stiffness requirements of translational and torsional bracing for
fully effective midspan restraint of a single span beam under uniform
bending moment and central point loading. The effects of varying levels
of load application and restraint attachment are considered and a series
of graphs showing critical combinations of translational and torsional
restraint stiffnesses is presented.

In Chapter 3, details of finite element procedures employed in
subsequent chapters for the solution of the inelastic instability problem
are presented. The methods adopted for incorporating initial
imperfections and non-linear material and geometrical behaviour are also
described. As typical brace-to-beam connections are not markedly moment
resistant75, attention has been restricted to midspan restraints
possessing only axial stiffness in the experimental and finite element
study reported in the third and subsequent chapters.

Chapter 4 describes the requirements of the experimental programme,
reasons for the use of model steel beams in the test programme and
construction of the test rig and its associated instrumentation.

The model beam test programme is further described in Chapter 5
where fabrication of the model beams is discussed together with the
determination of material and geometrical properties of the beams and the
experimental procedure adopted.

Examination of the literature has shown that few previous
investigators have attempted to measure actual bracing forces associated
with the restraint of initially imperfect beams. These forces have been
measured in the series of tests forming part of the present study;
Chapter 6 presents finite element and experimental results obtained from
the computer analyses and test programme. Comparison of these results is
also made in this Chapter. In addition, the relationship between bracing
stiffness and strength is investigated.

Chapter 7 presents a short parametric study based on the finite
element programme FINAS. For beams containing initial geometrical
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imperfections of sinusoidal form,'the influence of several variables
(including beam span, load/restraint geometry and lateral restraint
stiffness) on theoretical bracing forces is indicated. Comparison is
then made between the results of this parametric study and those of
Chapter 6.

Chapter 8 presents a comparison of the results of Chapters 2 and
6 with those of previous investigators and with contemporary bracing
design recommendations.

Conclusions arising from the present work and its relationship
to previous research are given in Chapter 9, which also contains
suggestions for future work.
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CHAPTER 2

THE APPLICATION OF THE ENERGY METHOD TO
PROBLEMS OF ELASTIC INSTABILITY OF RESTRAINED BEAMS.

2.1 Introduction

2.1.1 Introduction to the Rayleigh-Ritz Method

As noted in the previous chapter, several methods have been
employed for the solution of the problem of elastic buckling of beams
with and without systems of restraint. Although there has been a recent
trend towards the application of the finite element method to problems
of structural stability, the classical elastic analyses based on the
differential equations of equilibrium and on the energy methods still
prove superior in certain cases where their inherent assumptions can
reasonably be expected to be realised in practice. Unlike the computer-
" based analyses, the latter provide general solutions which allow the
effects of variations in individual parameters to be assessed directly
and which, in addition, do not require recourse to complex and often
expensive computer programmes. However, in cases where beams are
subjected to a series of discrete loads or where the loading and
restraint geometry is more complex, solution of the governing
differential equations of equilibrium becomes intractable and the
energy-based Rayleigh-Ritz method8? can be used to provide approximate
solutions to the problem of elastic buckling.

In practice, few structures can adequately be described by a single
or even a small number of degrees of freedom assigned to predetermined
locations such as joints or support positions. The approximation of
the Rayleigh-Ritz method lies in the definition of a displacement field
by a small number of displacement functions, each containing a small
number of independent coefficients. In general, the assumed functions
are chosen to satisfy the kinematic boundary conditions (ie. those
involving translations and rotations) but they need not satisfy the
static boundary conditions (involving forces and moments). The total
potential energy of the system, denoted by TT, can then be expressed in



terms of these assumed functions.

The applied load corresponding to attainment of the neutral
equilibrium condition is defined to be the critical, buckling or
bifurcation load. Attainment of this condition is characterised by a
zero change in TT when the system undergoes an infinitely small virtual
displacement and so the bifurcation state lies between the conditions of
stable and unstable equilibrium. Buckling loads calculated by this
method are "exact" only if the assumed functions are identical to the
actual ones. However, the solution is not over-sensitive to the exact
form of the assumed displacement function (for example, half sine wave
compared with a parabola) provided that the shape of the function
corresponds to the general shape of the deformed structure. .
Nevertheless, the predicted behaviour becomes increasingly better as the
assumed displacement function approaches the actual mode of deformation.

The use of only a few coefficients in each of the assumed
displacement functions is equivalent to the introduction of additional
geometric constraints so that the idealised system is stiffer than the
real one and buckling loads are generally greater.

In the five analyses presented in Sections 2.2 to 2.6, the
Rayleigh-Ritz method has been employed in order to determine the
critical loads of beams with varying degrees of lateral and torsional
restraint. In addition, the analyses permit critical combinations of A
(equation 1.2) and e (equation 1.3) for full bracing to be obtained for
beams under uniform moment or concentrated midspan loading.

2.1.2 Reasons for the Presentation of Elastic Stability Analyses

A few previous studies concerned with the elastic instability of
braced beams were noted in the previous chapter. Although both strain
energy and the equilibrium equations formed the basis of many of these
analyses, several limiting assumptions regarding the nature of the
applied loading and the level of application of both loading and
restraint (the "load/restraint geometry") were made by F]int59,
Schmidt62, Taylor and Oja]voﬁo, Hartmannl® and Nethercot and
Rockey63. The major limitations of these studies are summarised in
Table 2.1 .
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Table 2.1: Major Limitations of Previous Elastic Buckling Studies

Study Main Limitations

Flint>? warping rigidity neglected
(ie. R*z00 in all cases)

Schmidt®2 midspan restraint possessed only
translational stiffness;

load and restraint applied at same
level above shear centre

Taylor and Oja1vo60 only torsional restraints
considered
Hartmannl® load and restraint applied at shear

centre

Nethercot and Rockey63

translational restraint applied
only at shear centre; uniform
bending moment assumed

throughout

The results presented by Mutton and Trahairb® provide the most
complete published account of the classical elastic buckling behaviour
of simply-supported beams with midspan restraint, subjected to both
uniform moment and central point loading. However, there is some
difficulty in obtaining numerical results for cases other than those
presented graphically due to the dependence of the solution on the
method of finite integrals. In particular, the graphical results
presented for the case of a beam under central point Toading and with
only partial translational restraint are limited to only three values
of Nethercot and Rockey's63 shape parameter R, defined in egn. (1.4).

In order to obtain more information concerning the effectiveness of
partial restraint and the requirements for complete restraint over a
wider range of values of R and load/restraint geometries, five analyses
based on the Rayleigh-Ritz method were carried out and are presented in
Sections 2.2 to 2.6. Comparison of the results of these elastic
buckling analyses with inelastic instability results obtained
experimentally and by finite element analysis is presented in Chapter
8.
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2.1.3 Assumptions

The following assumptions are common to the analyses presented

in Sections 2.2 to 2.6 . The more important consequencies of these

assumptions are indicated.

(i)

(i)
(iii)
(iv)

(v)

(vi)

(vii)

(viii)

(ix)

The beam is initially perfect and behaves elastically.

As a result, the forces developed in the translational

and torsional restraints during buckling are indeterminate.
No initial eccentricity of load occurs.

Small deflection theory is valid.

In-plane deflections are negligible. In practice this is
valid in the majority of cases as the in-plane flexural
rigidity is generally considerably greater than the minor
axis rigidity. In addition, the tendency for in-plane
deflections to enhance the buckling resistance of the beam
is neglected. Consequently, in isolation this assumption
would lead to slightly conservative (ie. low) values of
critical load being obtained.

No distortion of the cross-section under load or during
buckling occurs. The possibility of local or secondary
buckling occurring prior to failure in the primary mode

of instability is therefore also neglected.

Loads do not change in magnitude or direction during
buckling.

The beam is of doubly-symmetric. I-section. Hence the shear
centre and centroid coincide.

The beam has "simply-supported" end conditions. Thus,
Tateral deflection and twist are prevented whilst warping
and rotation about the minor axis are wholly unrestrained at
the supports (Fig. 2.1).

The strain energy associated with shear is negligible in
comparison with that due to bending. This is valid for
beams of high span-to-depth ratio: such slender beams are
the most susceptible to failure by elastic flexural-
torsional buckling in any case.

6l



2.2 Simply-Supported Beam under Uniform Moment and with Central Elastic
Restraint o

The case of a simply-supported beam of span '1', restrained at
midspan and subjected to an uniform moment is shown in Fig. 2.2 . The
right-handed global (X,Y,Z) coordinate system has its origin at midspan
and at the centroid of the beam in its undisturbed position. The Z-axis
is coincident with the undisturbed longitudinal axis of the beam and the
X-axis lies normal to the plane of the web: 'u' represents a
translational displacement in the X-direction. In addition, a local
right-handed coordinate system (§,1,%) is defined relative to the m-n
plane and is shown in the plan view of Fig. 2.3 . The m-n plane lies
normal to the longitudinal axis of the beam in its laterally deflected
position.

The location of the elastic midspan translational restraint of
stiffness 'K' is shown in plan in Fig. 2.3; both the translational
and torsional restraints are shown in sectional elevation in Fig. 2.4 .
The translational restraint is attached at level 'h' above the shear
centre, whilst the torsional restraint is attached at the shear centre
in such a way as to conform to Nethercot and Rockey's63 “complete
attachment" condition. Fig. 2.4 also shows the orientation of the
midspan cross-section of the beam following a small virtual displacement
involving both lateral deflection and twist. At midspan (z=0), the
Tateral deflection of the centroid is denoted by 'S' and '¢f.' is the
rotation of the cross-section. The angle of twist, '¢ ', at any section
on the beam is assumed to increase according to the sense of rotation
indicated by the right-hand screw rule relative to the positive
direction of the global Z-axis.

As shown in Fig. 2.5, M, and My are defined as positive in sense
when they produce positive curvature of the element in the Y-Z and Z-E
planes, respectively.

The total extension of the translational spring resulting from
the virtual disturbance (Fig. 2.4) is 8+4.h and consequently the force
developed in the brace is K(6+¢.h) . Equilibrium demands that two
lateral reactions, each of magnitude %K(5+tﬂh), be developed at the
supports as shown in Fig. 2.6 .
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The bending moment M, about the X-axis is equal to-the applied
uniform moment M at all sections along the beam. In the following
derivation, the bending moments at a section distant 'z' from the origin
will be considered, as shown in Fig. 2.6(a). The in-plane moment vector
My lies in the m'-n' plane and can be resolved into its components
M and M, (Fig. 2.6(b)), which also Tie in the m'-n' plane. In
Fig. 2.6(b) the vectorial representation of moments has been employed
and is based on the right-hand screw rule. M, is positive as shown,
in accordance with the sign convention of Fig. 2.5 .

The bending moment applied to the beam about its weak axis in
the disturbed position is Mp. Assumption (iii) of Section 2.1.3 allows
the component of M, arising from the in—p]éne moment M, to be
approximated by M; with negligible error. The other contribution to
Mp arises from the force %K(6+4Lh) applied to the beam at z=1/2 .
This contribution is consequently -'iK(Sﬂpch)(-g—z) . Although M; has
the same vectorial sense as the positive sense of My, the contribution
from the lateral reaction acts in the opposite sense. My can therefore
be expressed as:

M, - —g—(s-i-Lﬂch)(-%— )

Substituting My = M@ = M@ into the above gives

My

My = My - %(é-upch)(%-z)

According to the bending moment convention, the lateral bending
produced by M, can be approximately described by

My = Elu’

where El, the flexural rigidity of the beam about its weak axis

the curvature of the beam in the X-Z plane according to

and u
small deflection theory. (The standard superscript
notation denotes differentiation with respect to z).

Hence the differential equation of lateral bending becomes

El,w' = My - %—(5+(pch)(%-z) ...(2.1)
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Denoting the strain energy of the beam/restraint system by 'U',
the increase in strain energy, AU,of the system during the virtual
disturbance of Fig 2.4 is

/2 ) e/2 2
AU = Eh (“) dz + %S (¢')dz  + _g_. (¢*) dz
-¢/2 -4/

K Ky p?
75(5‘+4% ) + = @c

in which C=GJ, the product of the shear modulus G and the St. Venant
torsional constant J for the cross-section. C is defined
as the torsional rigidity of the section.
and C{=EF" , the warping rigidity of the section. E is Young's
modulus and " the warping constant.

The symmetric first mode of buckling in a single half-wave is
assumed. Symmetry allows the increase in strain energy to be written
as

p\
pite

(') dz + c,j (¢°) dz

[} -]

2/2
AU = EI,lj (w)dz + cj

-}

%;(5 +@h)? 4 J%I 9 e(2.2)

The change in potential of an applied force is equal to the product
of the magnitude of the force and the corresponding displacement, due
attention being paid to the sense of the displacement. In the case
of the applied lateral bending moment M), the change in potential
of the moment with respect to a small element dz of the beam (Fig.

2.7) is equal to the product of the moment (M{ ) and the angle subtended
by the element (d© ) at its centre of curvature. The curvature of

the element is approximately u"=1/r, where 'r' is the instantaneous
radius of curvature. Assuming the properties of a circular arc,

do = irZ_ = wdz c..(2.3)

Denoting the potential energy of the load system by 'V', the change
in potential of the applied moment over the element is

dv = - (My)de - Myu'dz
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and over the full length of the beam is
t/ N .

AV = -Si Mu'dz
2
or
¢
AV = -2M§ Ju'dz ... (2.4)

o

Taking the total potential energy of the system in the undisturbed
position to be zero, the total potential of the system in the displaced
position is obtained from eqns. (2.2) and (2.4) and is
¢ L

-4

T = EI.,jz(u.“)zdz + cf(np‘)’dz + c.g (¢*) dz

o [~}

(3

2
- 2MS gu'dz  + -’zi(aaf«pch)2 + %‘-q)f .. (2.5)

The total potential is therefore a function of the two displacement
degrees of freedom 'u' and '¢p'. Instead of assuming displacement
functions for each, egn. (2.1) can be used to substitute for u", making
Tl dependent only on the displacement function assumed for ¢ .
Rearranging eqn. (2.1) gives

oMy L K £ )
w = Elqcp 2E1n(8+q)¢h)(2 z ...(2.6)

and substituting for u" in eqn. (2.5) gives

¢ 4
_ "My K(5+g.h) (e \)? 2 \a
o= EI,,SO €T, - 2511 (7 z)} dz + CXO(‘M dz

'3 ¢
Y W2 Mg K@B+g.h)(e
+ C.L(LP) dz - 2["130 {EI,, 21, (2 z)}@dz

K 2 .K;T.. 2
+_2_(5+chh) + 2<,oc

Expanding and grouping terms with a common integral leads to
¢

2 2 2 (% 2
m = ’sz ,pzdz + _K_(B;"_‘-Qch)_g (_Q_z) dz

EL, 4E1, 2

2 7
4 2 2

ve) Ve v oal @)

[~ o
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2

+ (8+cpch)2 + —}Sz-lq)c ... (2.7)

N|=x

where it should be noted that integration of & and ¢. does not need
to be performed as these are constant with respect to integration in z.

A twisted mode (z) is assumed and contains two trigonometric
terms involving the cosine function. This function reflects the
symmetrical nature of the deflected shape associated with first mode
buckling. The assumed function is

Y = Acos—%—z- + Becos 322 ...(2.8)

where A and B are independent coefficients. This function satisfies
the kinematic boundary condition (¢=0 at z=+1/2. The derivatives '
and " are therefore

(,P‘ = _%Asinlez_ - .?.55"1_3_‘2_2_
and
" n? nZz 9n? 3nz
- T nz B
Y ezAcose 77 Dcos 7,

Thus the assumed function also satisfies what is effectively a static
boundary condition: "=0 at z=£1/2 .

Substituting for () and its derivatives in egn. (2.7) allows
the integrations to be performed. Hence,

¢,

S “0%dz = —;%(Az +BY)

% 2 3
o -

% 2 T2 a2 2
K(Lp)dz = W(A»«‘)B)
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g
and Kz(cp“)zdz = 40(/\ +818?)

Eqn. (2.7) then yields

= -M¢ K1£3(6+chh)2 2 C Az 952
m= 451,,('“5) Y T oeEl, e (A +98)

"423'(A2+8I82) " %(aﬂpch)z + By

_ -M% K 2 Ke?
= 4EI,1(A -\-B) + 2(5+¢P¢h) (l+—48EIq)

T*C (A%, op? T*C(pF, glR Ke p2 ...(2.9)
+4{(A +9B) + 483(A+8E>) + > 4.

Introducing the non-dimensional restraint parameter A, previously
defined in eqn. (1.2), egn. (2.9) becomes

_ =M K 7°C (a2, op?
T = 4EL,(A +BY + (5+ch R (+2) + e (A*+ 98%)
Ke 2
4£3 Ci(p?+818Y) + SR ...(2.10)

At this stage, it is necessary to express & and . in terms
of the unknowns A and B . In Fig. 2.8, the element curvature is

. de
el

and so the length of arc z3z3' is
e )
—~-z|d6
(2

(—g— - z) uWdz

arc z,z, I

Integrating over all such elements on the half-span to obtain the total
lateral deflection at midspan yields



4 .
3 = go G%-z)u“dz

Using egn. (2.6) to remove u" gives
¢

5 = } (%Z)(%@ 2T, B+ )("'Z)) 4z

Substituting for ¢ from egn. (2.8) and expanding gives

%
_ M ¢ _ ( mz 3nz
5 = _EIVE (2 ) Acos —= A + Bcos ; )dz

2
_K(5+9.h) ‘(g_z)*dz
2EL, | \2

[¢]

£

El, ET ¢

which, on evaluation of the integrals, reduces to

Me* (A+§) _ K&B+q¢h)
mEL L 9 48E1,

Adding h to each side gives

Mo ( g_) Ke>(5+¢.h) h
S+dh = G, 9 zeer, T ¥
or
K& _ M B
(5"“’°“)( 48Elq) = nzzrn(“ )* Qeh

Substituting egn. (1.2) and noting that (), =A+B gives

(5 +q.n) = ._'Ti’““’ (R+B) + h(A+B)}

*El
Therefore,
@ M*e* B\ 2 2
(54- ‘pch) - (l+>\)z {ﬂ“EzI,; (A+ 9) + h (A-l-B)

+ 2215611 (ma)(mg)}

2E1,

e
= MAX(@ )cos“zdz + MBj(e z)cossmdz - -——i—-K('S* :h)

t
jz

(-]

..(2.11)

2
p

..(2.12)

..(2.13)
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Substituting eqn. (2.13) into the expression for T 1in eqgn. (2.10)
leads to
_ =M% 7 C (a2 2 n*Ci (a2, 8|R2
T = e (A*4+BY) + z(A»f%) ; 485(A+ )
2
K §M% g) 200 B} zmehAB(Aa) Ky 2
2(“)‘){"4{213 (A+9 + h( +) °El ( ) +9 + 2 (pc
L oM ) KMEe g)‘ Kh*(A+B)"
) 451,!(“5) *zn4£=1,;(r+x)(’“9 T 20N
KM£h ( 5) TC (4%, op?
= _(A+B)[A+—= —=(A +9B
+nz£1,z(1+>\)(A*) HCY 42( +98")
4C K 2
s I (A +818%) + Lr(a+p)
Adopting the non-dimensional form of torsional stiffness 'e'
defined in eqn. (1.3) and substituting for K in terms of A from
gn. (1.2) gives
M*¢ 24M* e\ ( B)’
T = A A+ =
451( &) TEL(+N \ 9
24EIL,R'A 48Mh\ ( 39
R Py 24ELRA (Y ST (A+B)[A + 5
T‘4C| 2 8 2 T{zc 2‘ 2 e_C A Bz
» L (W miE) o (A*+987) + =C (A+B)
2 2
= F|(H1+BZ) + F,_(A+%-) + F;(A+B) +&(A+B)(A+%)
+ Fs (A'+98*) + F (A'+81B") ..(2.14)
in which
C = GJ
C, = Er




and X
Foe oM £ _24Men
‘T 4EI, ° : TEI (14N
. 24ELRA eC ¢ . A8Mh)A
s &3(1+2) T o o AT Y YT S
o= mC £ . J*C ...(2.15)
S 4e [} G 4{3

An equilibrium configuration of the system is characterised by a
stationary value of the total potential energy TI. Mathematically, this

is expressed in the Rayleigh-Ritz method as the pair of simultaneous
equations

oTl oM
A LI == =0
A 0 and 3B

in terms of the current notation.

Differentiating eqn. (2.14) with respect to A and B in turn gives

%L}'\T AM2(R e, +Fy 1 Fy v R R +B(2§E+ZF;+'%5) ...(2.16)

]

AN _ 4[2F 10F, { F A }
T A(—9-1+2F;+ 9) + B 2(F'+8|+F3+ 5 +9Fs+8lF6)_ ...{2.17)

Thus, in matrix notation:

6TT/6A G, G, A .
= = (0]
~ ee.(2.18
am/ 6B G, Gal| B ( )
in which
Gy = 2(':""':2 “’Fa"'Et*Fs'*Fe)

Gy = §i+ 2F + 10 Fs
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G

[}
4
1

CPY

H

2(:-‘. +_g_7+ E o+ .'(';4_ + 9F, + BIF,,) .. (2.19)
It has been observed by Tauchert8? that the condition of neutral

equilibrium is identically satisfied by assuming that A,B are

indeterminate but non-zero and solving the system of equations

om 38U
oA ob
as an eigenvalue problem. Therefore, for any combination of beam and

restraint geometry, the critical applied moment is that value which
makes the determinant

det [G] = Guazz - GmGzl

vanish. Due to the complexity of the expressions Gij’ a closed-form
solution for the critical moment is not feasible and consequently a
numerical solution is required.

In order to evaluate the elastic critical Toads of restrained
beams, a simple computer programme "MODBRACE", which automatically
locates the zero determinant using a "search and bisect" strategy was
written. A description of the programme is given in Section 2.7 and a -
programme listing together with details of a typical run are given in
Appendices I{a) and (b). An associated programme "AUTOBRAC" for the
determination of critical combinations of non-dimensional restraint
stiffnesses {A,e}ér for the enforcement of second mode buckling in
single span beams was also developed. Appendix I also contains details
of this programme.

Numerical solutions for several combinations of the variables
included in the above analysis have been performed using programmes
MODBRACE and AUTOBRAC. The combinations considered are shown
diagrammatically in Fig. 2.9 and are described more fully in Section
2.7 .
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2.3 Simply-Supported Beam under Uniform Moment .and with Rigid Central
Restraint

In the case of a beam with rigid restraint at midspan, failure
occurs in the antisymmetric two half-wave mode in which a "node" or
point of contraflexure occurs at midspan in the plan view. The boundary
conditions u=0 and ¢ =0 are now seen to apply not only at the ends of
the beam but also at this central node. In addition, the development of
an antisymmetric mode does not preclude warping deformations at the
node. Consequently, if free warping at this point is assumed then the
following boundary conditions are seen to apply:

u=0and ¢=¢*=0 at z =0, x1/2

The conditions u=0 and ¢ = ¢“¥0 are noted to be those assumed at the
supports in the previous analysis and hence the expressions developed
therein are appropriate in this case, subject to the following:
(i)  for the purposes of calculation, the length of the beam should
be taken as one-half of the actual span and
(ii) the relative brace rigidities A and e should be set equal
to zero. Otherwise, restraint at the quarter point would
be applied.
Agreement between the boundary conditions in this and in the previous
section (as noted above) is a necessary but insufficient criterion for
the direct application of the previous analysis to this case of second
mode buckling. Uniformity of the applied Toading is also a requirement.
In this respect, Fig. 2.10 indicates the reasons for the applicability -
of first mode analysis to the second mode problem in the case of uniform
moment loading but not in the case of central point loading.

The second mode of buckling is the highest which can be attained
by a beam restrained at midspan, irrespective of the stiffness of the
restraints. Consequently, the critical load of a system in which there
is rigid (ie. infinite) central restraint is identical to that of a
system possessing only a finite degree of restrafnt, providing the
latter falls within the "fully effective" category as defined by
F1int®? and Winter®®. The numerical results derived from this
Section therefore provide plateaux of constant c on the curves of Fig.
2.19, described more fully in Section 2.7 .
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2.4 Simply-Supported Beam under Central Point Loading and with Central
Elastic Restraint

In the following analysis, both the level of load application and
the level of attachment of lateral restraint relative to the shear
centre are variable. The load 'P' acts at a height 'a' above the shear
centre, the restraint at height 'h' as described in Section 2.2 . The
geometry of the arrangement relative to the cross-section of the beam is
shown in Fig. 2.11 .

There are many similarities between the present analysis and that
of Section 2.2 . In this Section, the differences between the two
analyses are noted and, although the steps in this analysis are
presented in sufficient detail to permit an understanding of the method,
many of the intermediate steps involving only algebraic manipulation
have been omitted to avoid repetition.

The in-plane bending moment distribution on the beam is as shown
in Fig. 2.12, where it is noted that the in-plane bending moment M,
at any section z is given by

M, = -’—;-(%—z) .. (2.20)

The lateral bending equation corresponding to eqn. (2.1) of Section 2.2
is therefore

EI, " = cpg(_g.-z) - %(aﬂpch)(ﬁ- ) c..(2.21)
It should be noted that the application of the load at a height 'a'
above the shear centre does not affect the equation of lateral bending
as it produces no additional component of the load in this direction.
This can be verified by replacing the applied load by its statically-
equivalent actions at the shear centre (Fig. 2.13). The additional
destabilising torque indicated in Fig. 2.13(b) has no effect on the
equation of lateral bending.

The change in strain energy of the beam/restraint system is
similarly unaffected by the level of load application and is given




by egn. (2.2). However, the change in potential of the applied load
during the virtual disturbance is dependent not‘on1y on the type of
loading but also on the level at which load is applied relative to the
shear centre. For a load applied above the shear centre, the point of
Toad application falls more than the shear centre by an amount 'p'
dependent on 'a' and '¢.' (Fig. 2.14). Conversely, for a load applied

below the shear centre, the load point falls less than the shear centre.

The vertical deflection (o) of the shear centre during the virtual
disturbance is a function of '8 ' as defined in eqn. (2.11). Employing
a small angle approximation consistent with assumption (iii) in Section
2.1.3, oc can be defined as the summation (over the half-span) of all
the small vertical displacements of the elements of length dz (Fig. 2.8)
arising from their curvature u" and instantaneous twist ¢ . Hence, in
the Timit,
[ ofg)s
oc = (\0(——--z)u dz , .. (2.22)
o 2

The additional component of vertical deflection, @, is obtained by
noting that, in Fig. 2.14,

p

a - acos @,

a(l-coscpc).

Expanding cos ¢, as a Taylor series and neglecting terms of greater
than quadratic degree gives
2

cos ) = r—.%’c.

which, on substitution, yields

_ a@l
B = 5 . (2.23)

Hence the change in potential of the applied load during the disturbance
is given by
4

2 2
AV = :__P_‘.;)i’ic_ - PS (?(%-z)u.“ dz v (2.24)
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The total potential of the system following the disturbance is then

given by eqns. (2.2) and (2.24) and is
g, ¢ g

2 h 2
m = EI,,] wdz o+ CY (¢'Vdz + C,S (") dz

° -]

K 2 Ky »2 _  Pad,
+7(5+chh) 7 2

% £
- PJ (p(_z.-z)u.'dz ‘ e (2.25)
[e)
Rearranging eqn. (2.21) gives

W = _P_(ﬁ-z)Lp - M(ﬁ-) .. (2.26)
2EI,\ 2 2EIy 2
which is substituted into eqn. (2.25) for all occurrences of u". The
twist function ¢ as given in eqn. (2.8) is again valid as the deflected
shape of the beam is similar to that assumed in Section 2.2 . Likewise,
the same boundary conditions are valid. The expressions for (¢ and its
first and second derivatives are also substituted into eqn. (2.25) and
the integrations performed to give

e/z 22,3 2,3
W, _ AP2 e_) 5ABP™¢
L wYdz - 192E°T; ('* v/ T GAwEIL:

| Bpe (3+_2_ _ _APK€*(8+q.h) (,__z_)
ST6E*Iy L& 2ME? [ ﬁ

3 2,3 2
_ BPKe (a+¢p¢h)(3+ 2) , K (s+q.h)

54 T‘z Ez I)[z n 96 E2 I)-lz
b 2 272 2
o(q)‘) dz = 7;‘Z(A +9B%)
7]
w 2 4 2
L(‘P)dz - K uie)

2 2 1 3 2 3 '
e _ ) . -A_P_f_(. 5»_) _5ABPE? gf_e__(g, A)
[ ‘p(z zjwdz = Y% T 320EL, T 28BEL L
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_ AKE}(8+¢ch) (,_g) _ BK£L(5+¢.h) (3+ _2_)
2n*Ely T 54n*EL, n

Substitution of the above expressions in egn. (2.25) gives, after

grouping and cancellation of terms:
_A’-Pze‘( 6 \) sABP*¢>  B*P%? (3+2_)
2

T 92EL, | T W T eAwEL 576EL,\"  n
PTEC(4 08Y) 4+ TG ainY) 4 (a+cph)’(_ﬁf£f_+ﬁ)
4¢ 4¢° “U\96EL, 2
_Poge |, Kol .. (2.27)
2 2 A
Based on egns. (2.11) and (2.26), a similar expression to that
of eqn. (2.12) can be obtained for (&+.h). Hence,
2 64 2 2
= D ... (2.2
(5+¢.h) (@5EL,. KO (9A°D, +B*D, + 6ABD,) (2.28)
in which
2,6 3
_ P< 4 4 4P Elgh(,_ 2 2. 2,2
Pe°(, . 4 4) 4P&’Elyh 2) 2722
= — + =+ h
D 9n4(l+9n2+3n ¥ e (}+3ﬂ + 36E Ly
and

_ Pty 4 _a 6PEEIh /,_ 2
Dy = 3n# ! 3n 3ﬂ‘) ! n? (l ﬂ)

On subsititution of eqn. (2.28), egn. (2.27) becomes

. =Paj g __AEC.Q _é_) _ 5ABPe’
L 192ET,\ ' ) T G4n*Ely

Bszea( ‘2") T'C (47 98%) + TCi (A%, 81B}
TSGEL ) T Gl ) + T (A )
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2K (9A°D, + B*D, + 6ABD,)

* “3E1, (48ET, + K&°)

521(A+B)’A

2,3
= (e—q-%)(/\% B®+2AB) - 5ABP¢

AP ?/ 6
20 (“TF) B

192ET,

641‘(2E1q

BIPe’

_or< n4C,
576ETy

e (A*+818)

2 M2C [ 42 2
(3»{?2) + TL(R4o8) +

2A

’D, + B*D, + 6ABD ...(2.29)
T BELL (14N (94D, + B'D, + 2
= F (A*+B*+2AR) + F, (A?) + F, (AB) + F, (B*) + Fy(A*+9B%)
+ B (A+81B%) + F,(A%) + Fo(B) + F, (AB) ... (2.30)
in which
_ dfec_ ] 'P"z( -6_)
fo = 2(e P“) ' o= aern 't o
-5p%¢? _ -P‘e’( 2)
ERrvey- b SRR, T W)
_ 2 | w4,
fs = ZTC ” Fo = S >
F o= SDA__ F = 2Dah .
EL, €3(1+2) 3EI €3 (1+A)
F, eeo(2.31)

_ 4D\
EQ€!U+)S




Differentiating eqn. (2.30) with respect to A and B gives

am
oA

Al2(RR+FssFor R} o B(2F +Fy +Fy)

% = AR +R+F) + B{2(R+F+9F +8IE +F)f

and expressing

om _ an 0

dA ~ 8B

in matrix notation gives

3T [3A e Gel[A] .

am/oB| |6 Gul|B]
where ‘

Gy = 2(F +F, + Fs + F, + F3)

Gm: 2F:+F3 'i'Fg

GZ| e 12 »

Gy, = 2(F +F, + 9F, + 8IF, + F,)

...(2.32)

Numerical solution is again performed using the programmes MODBRACE

and AUTOBRAC, in which the above eqns. (2.32) have been incorporated.

The number of possible combinations of the parameters 1,A, e, h, a is
much greater than for the case of uniform moment loading in Fig. 2.9 .
A similar tree-diagram for the central point loading case is shown in

Fig. 2.15. Numerical results are described in Section 2.7 .
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2.5 Simply-Supported Beam under Central Point Loading and with Rigid
Central Restraint '

As noted in Section 2.3 and illustrated in Fig. 2.10, the direct
application of the first mode buckling analysis presented in Section 2.4
to the case of second mode failure of a beam with rigid, central
restraint under the action of a central point load is not possible due
to an incompatibility between the in-plane bending moment distributions.

In order to evaluate the critical loads of systems possessing
"fully effective" or rigid midspan restraint and subjected to central
point loading, it is only necessary to consider one half of the beam
with its associated in-plane bending moment distribution as shown in
Fig. 2.10 . The origin of the (X, Y, Z) coordinate system is located at
the left-hand end of the half-span ie. at midspan on the actual beam.

The boundary conditions u=0 and (P=tP20 apply at z=0 and z=1/2,
but in this case the antisymmetric nature of the buckled shape
necessitates the use of an assumed twisted mode (P(z) based on the sine
rather than on the cosine function. The simplest function satisfying
the ¢ and " boundary conditions is

¢ = Asinzzz + Bsin 432 ...(2.33)

The presence of rigid restraint at z=0 simplifies the analysis
as there is consequently no elastic restraint applied at any point
on the half-span. The analysis is further simplified by noting that
the requirement ¢ =0 at z=0 (ie. at midspan) demands that the change in
potential of the applied Toad (P) during the virtual deformation is
independent of its level of application (a) on the cross-section and

consequently no term involving 'a’ appears in the expression for AV.
The differential equation of lateral bending may be stated as

v _ _P &
u"' = 251‘(2 z)(p ...(2.34)

The change in potential of the applied load must be derived by the

method of Section 2.2 in which the change in potential is expressed as
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the product of a lateral bending moment and the corresponding subtended
angle. Hence ’

2
= -Pit[le. ) . ...(2.35)
AV = 2&) (2 z|Pu dz

As no elastic restraint is present, the terms involving K and Ky
in the strain energy expression, eqn. (2.2), are omitted and thus the
total potential is written as

EL [ %, w2 c%, AT
m = _2_’1j (u) dz + -z-j (@) dz + —zij (@0") dz
[o] (-] o
Y
PV purd (2.36)
__2_ _.2_.._ (Pu yd P
o ,

Performing the substitution indicated by egn. (2.34) and
substituting for ¢ and its derivatives from eqn. (2.33), integration of
the four terms in eqn. (2.36) leads to an expression for TT involving
the two independent coefficients A and B:

2 2,3 2,3 3
T o =P {Ae(_f__ !)+B£(_I ',)+ 2¢ AB}

8EL, | 16 \3 2n* 16 \3 8n 9r
+ TL(eeap?) + 2TC(R416BY) . (2.37)

Differentiating with respect to A and B yields

3T [ oA G, Gg||A )
amm /8B Gy Gxl|B|
in which
_ =P (_I__ l ) n*C 4m*C,
Gu = 64EL\3 2n¢) T TC T T e
_Ple’a
Gn = 3¢ET,

Gy = Glz
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_Pze‘s(' I -).+ 4n2C N 64 n4C, ...(2.38)

“2 L3 T Ew ; %

Solution of the simultaneous equations

am _ am _
oA ob

as an eigenvalue problem is again performed with the aid of programmes
MODBRACE and AUTOBRAC as described in Section 2.7 .

8]
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2.6 Re-analysis of the Lateral Restraint Problem of Section 2.4 using
an Assumed Displacement Function of Higher Order

An analysis by F1int®d for the case of a simply-supported beam
with midspan restraint and under the action of a central point load
showed that the energy analysis provided results which were subject to
considerable error when the assumed displacement function lacked terms
of sufficiently high order. Flint's initial analysis employed only one
trigonometric term in the assumed twist function:

P = AcosTé—z
and the numerical results were noted to be appreciably in error (Section
1.2.3 and Fig. 1.13) for values of the restraint stiffness parameter A
greater than about 1.5 . Both Flint's subsequent results and those
presented in Figs. 2.19 to 2.27 of this present work indicate the
unacceptable limitation imposed by this latter condition, on the grounds
that relative brace stiffnesses (ie. values of A) greater than 1.5 are
frequently required in order to provide full restraint to the primary
member. A subsequent analysis by Flint involving a two-term
displacement function (as employed in Sections 2.2 and 2.4) provided a
satisfactory solution which was later verified by the results of a
series of tests on model beams.

Because the analyses presented in Sections 2.4 and 2.5 are more
general than that presented by F]int59, it was considered necessary to
examine the effect of incorporating a yet more refined displacement
function within the framework of the analysis of Section 2.4. As this
re-analysis was perceived solely as a verification of the previous
analysis, the effects of variations in the level of load application (a)
and torsional restraint stiffness (Ky) were omitted in order to
simplify the solution. The assumed twist function <p(z) was:

3nz S
¢ = Acos—‘"zz— + Bcos 2 + Cjcos 22‘

in which A, B, C, are independent coefficients: the subscript notation
was employed for the third coefficient to avoid confusion with the
rigidities C and C,; already in use.




Details of the analysis are not presented, as the algebra was
found to be substantially more tedious than that of Section 2.4 .
However, the final condition

o _ BW _ T
dA ~ 6B  BcC,

can be expressed by the matrix equation

= — — — — —

aTT [ 3A Gy G Gp A
OTM[3B | = |Gy Gu Gus B = 0
om[ac,| |Gy G G| | Co_
in which
- -P2£3 6_) T[zc T(4C, 36K-F‘—2
Gu = 96£IQ6+ ) Y 2e Y e T A
, _ -5P*¢ AR
G|2 - Gz' - —GTT?E—EI_}I + I2K -—FT-
~13P*¢? F.Fa
= B E 4 36K =
G = G = FEgmEr, T PN R
Gp = _-_E’jﬂ(3+_2_) L 9mwC, 8ln*C, 4y Fo
2 7 288EI,\  w 2¢ 243 A
-17 P’ F R
= = - 12K —2_3
G2 = Gn 25607k, 2 F
I ol 257*C |, 625m*C,
G = 1, (%*400“2) T T2 T T 20
+ 36K B ...(2.39)

Fa
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and K = absolute brace stiffness, as distinct from the relative brace
stiffness A.

3
F o= 1{_(,-_2_) + 2ELh
m? m

F, = 3EI, (48EI, + Ke?)

The matrix [G] was again noted to be symmetric about the leading
diagonal and therefore,

Gz\ = Gy ’ Gy = Gp > 632 = Gz

A numerical solution was employed in obtaining the results shown
in Table 2.2. Agreement between the numerical results is excellent and
consequently it can be deduced that the very small increase in the
accuracy of critical loads predicted by the more refined analysis does
not justify the considerably more complex algebra involved in the
derivation of eqns. (2.39).

Table 2.2: Comparison of Results Obtained from Analyses Employing
Two and Three-Term Trigonometric Displacement

Functions.
critical stress factor 'c' for beam under
centroidal loading, top flange restraint, R%=4.608
A
Section 2.4 analysis Section 2.6 analysis
0 1.363 1.363
0.569 2.606 2.611
1.139 3.802 3.813
1.822 5.175 5.202
2.619 6.686 6.795
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2.7 Computer Programmes "MODBRACE" and "AUTOBRAC" and Description
of Numerical Results

This Section describes the computer programmes "MODBRACE" and
"AUTOBRAC" referred to in previous Sections 2.2 to 2.6, and their
application to the numerical solution of a large number of combinations
of load/restraint geometry for single span beams under uniform bending
moment and central point loading.

2.7.1 The Computer Programme "MODBRACE"

As noted in the previous Sections, owing to the complexity of the
final homogeneous equations derived from the Rayleigh-Ritz analyses,
closed-form solutions for the critical loads were not possible.
Consequently, a numerical method for the solution of the eigenvalue
problem (as described in Section 2.2) was developed in the form of the
interactive computer programme MODBRACE, written in FORTRAN and run on a
GEC 4070 computer.

For a given arrangement of loading and restraint, the programme
reads in the geometric and material properties of the system. Then,
for successively better estimates of the critical applied load, the
determinant of the matrix [G] (as defined in previous Sections) is
calculated and displayed. The user defines the Tevel of convergence
deemed to satisfy the requirement

det [G] = 0,

and halts the programme when the required convergence has been achieved.
A table of final results is then displayed.

The user starts the search for the zero determinant by entering
an initial estimate of the critical load or moment of the system.
Although this estimate may be appreciably in error, it is automatically
refined by a "search and bisect" strategy:
(1) the user's initial estimate is modified until at least one
positive and at least one negative value of the determinant
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have been found; _

(ii)  the greatest value of applied load causing a positive
determinant is then stored, as is the least value of applied
load causing a negative determinant;

(ii1) these two values of applied load are then averaged and
det[G] calculated on the basis of this improved estimate;

(iv) steps (ii) and (iii) are repeated until the user-defined
convergence criteria are satisfied, when the table of final
results is displayed.

The above strategy is illustrated in Fig. 2.16 in which P4
represents the initial critical load estimate provided by the user.
As the corresponding determinant, det;, is positive, the programme
increases P to obtain a better estimate P2, for which the determinant
is calculated. As det, is also positive, P3 becomes the next
estimate and this gives a negative determinant. P, and P3 are then
stored in accordance with step (ii) as these represent the current lower
and upper bounds on the actual critical load, P... P4 is the mean
of P, and P3 and the corresponding determinant, dety, is noted to
be positive. Py then replaces P, as the lower bound estimate. The
process is repeated for successively better estimates Pg,...,P,
until the determinant is considered to be sufficiently small, at which

stage P, is a very good approximation to the actual critical load.

A Tisting of the programme is given in Appendix I(a) together
with the output from a typical run (Appendix I(b)) showing data input,
the selection of the type of analysis, the results of successive
evaluations of the determinant and the format of the final results.
Commands and values entered by the user are underlined.

In the example shown, an I-section beam is subjected to central
point loading and has a single translational restraint at midspan.
Load is applied at the top flange (a=24.4255mm) and the restraint is
attached at the shear centre of the section (h=0). The axial stiffness
of the brace exceeds the lateral bending stiffness of the beam by a’
factor of 13.664 (ie. A=13.664). It can be seen that estimates of
critical load P.,. settle at 1417.257 Newtons after only twenty
iterations. However, the determinant corresponding to this twentieth
iteration is still unacceptably high and the programme is instructed to



continue until the magnitude of the determinant becomes:less than 0.01.
Consequently, it is noted that refinement of the estimates in the fourth
and subsequent decimal places accounts for a change in magnitude of the
determinant by a factor of 108 in this example. The need for a high
degree of precision in evaluating the terms of the matrix [G] is
obvious. Therefore, double precision storage of variables is employed
throughout the computer programme.

In order to check that the lowest critical load of the system
is obtained, the well-known Sturm sequence check is performed. The
sequence is formed from the leading diagonal terms of the reduced G
matrix after Gaussian elimination, and the number of sign agreements
between consecutive terms of the sequence is counted. According to the
properties of the sequence, the number of sign agreements is equal to
the number of eigenvalues (and hence, in this case, critical loads)
smaller than the current estimated value.

The table of final.results displayed by the programme shows not
only the critical Toad and critical moment of the system, but also
the ratio of the critical load P.. to the critical load P, of
an identical beam with load applied at the shear centre and without
Tateral restraint. P, is calculated from the closed-form solution
presented by Allen and Bulson’:

Por = 16.94 /EIVC (].,._“_Q'_C_‘.) ...(2.40)

£2 Ce?

In addition, the ratio of the critical moment Mcp to that of
an identical unrestrained beam under uniform moment (Mcr)UM is
shown, (Mcr)UM being calculated from

C,
Medum = _._/EI,z 1+'"Ce2) ...(2.41)

The ratio M..: (M UM is the critical stress factor 'c'

introduced in Sect1on 1.2.3 . In view of the fact that uniform moment
generally represents the most severe condition of loading on a beam, the
critical stress factor is probably the most useful non-dimensional
parameter in the comparison of critical loads of dissimilar systems.
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The critical moment corresponding to eqn.(2.40) is

Pnok 'e
4

rMl"\ok =

. 4.235 ( nzc‘)
x =5 \/EI,?CH—Cez

and hence the theoretical critical stress factor for an unrestrained
beam subjected to a central point load applied at its shear centre
is

0
"
il
R

1.35 ...(2.42)

2.7.2 The Computer Programme "“AUTOBRAC"

The programme AUTOBRAC permits the rapid evaluation of critical
combinations of non-dimensional restraint parameters ' A' and 'e'
required for complete midspan restraint of single span beams under
uniform bending moment and central point loading. Previous research by
63 and Mutton and Trahair®% indicated the
benefits accruing from the provision of combined translational and

Nethercot and Rockey

torsional restraint. In order to assess these benefits in the case of
simply-supported beams of lTow to intermediate slenderness, AUTOBRAC was
developed from the programme MODBRACE described in the previous Section.

A flow chart for AUTOBRAC is shown in Appendix I(c) and is followed
by a listing of the programme. That part of the flow chart bounded
by the broken 1ine indicates the logic for the programme MODBRACE.
Although the flow chart describes AUTOBRAC in reasonable detail, the
latter section dealing with the determination of the critical ‘{A,e}
combination for complete restraint requires further explanation. In the
following, it has been assumed that the value of 'e' is constant
throughout the analysis (ie. &e=0) and that the corresponding value of
A required for a critical {),e} combination is to be determined.
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On exit from loop 1 on the flow chart, a series of critical stress
¢' and their associated {A,e} pairs are stored. These reflect
the following relationships:

factors

el is consistent with first mode buckling

at a critical stress factor of 1
A+r, e} - do. - )
{A.+262\,e.} - do. - c3
{Al+(n—1)6%, e,} - do. - (o

where both ¢, and ¢,,_; are greater than the known critical stress

factor cyy for second mode buckling (determined from a previous

MODBRACE run). A least squares polynomial is then fitted through the
points (Aj, Ci)i=1,n as shown in Fig. 2.18 . The point of
intersection of the polynomial with the line c=cjyj corresponds to
attainment of second mode buckling and the value of A required for the
critical combination can be deduced. The point of intersection is
calculated by AUTOBRAC which subsequently displays the calculated values
of A and e.

Appendices I(d) and I(e) show examples of the use of AUTOBRAC.
In the former, 'e' is set equal to zero for the duration of the analysis
whilst A;=0.1 and 3A =1.5 . A previous analysis by MODBRACE had
shown that the critical stress factor for second mode buckling of the
beam was cyy=1.329 . AUTOBRAC continues to increment ‘A until the
values ¢=1.3347 and c¢=1.3486, both greater than the required c=1.329,
have been obtained. The search for two values of c above the second
mode critical value ensures that the behaviour of the approximating
polynomial for c>cyp remains accurate and therefore that the point of
intersection can be determined with accuracy. In this case, AUTOBRAC

predicts a critical combination of {7\,e}cr = {13.593,0}.

The same problem is analysed in Appendix I(e) except that e=0.5
is used throughout the analysis. As before, ¢;;=1.329 and a critical
restraint combination {K,e}cr = {8.579, 0.5} is predicted. The
inclusion of the small torsional restraint e=0.5 reduces the
translational stiffness requirement from A=13.593 to A=8.579. The
provision of torsional restraint therefore proves beneficial, as
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previously noted by Nethercot and Rockey63 and Mutton and

Trahair64. '

2.7.3 Numerical Results Arising from the Analyses Presented in Sections
2.2 to 2.6

As demonstrated in Figs. 2.9 and 2.15, the number of possible
combinations of the variables employed in the previous analyses is very
large. Therefore, in reporting the results of such an investigation, it
is essential that a non-dimensional form of presentation be employed in
order to make the results more generally applicable. Here, Nethercot
63 shape parameter 'R' (egn. (1.4)) and the critical
stress factor ‘c' (Sections 1.2.3 and 2.7.2) are employed.

and Rockey's

In order to verify that the calculated critical loads obtained
from the previous analyses were dependent solely on the value of RZ
and not on other cross-sectional properties, the critical loads of
two beams of grossly different size (Fig. 2.17), but with the same
value of Rz, were obtained for a series of values of A. The non-
dimensional results shown in Table 2.3 display only very slight
differences and consequently the graphical presentation of numerical
results based on the parameter 'R' is justified.

Table 2.3: Variation of the Ratio P../P,, with A for
the Beams of Fig. 2.17 (R constant).

Per/Pnok for RZ = 25.342, h = 0
A

Beam 1 (Fig. 2.17) Beam 2
0 1.0094 1.0097
2.8895 1.9015 1.9033
6.5014 2.4994 2.5042
11.558 3.0096 3.0198
18.059 3.4110 3.4288
24.560 3.6668 3.6934

The results of several analyses of beams subjected to uniform
moment and laterally restrained at midspan are shown in Fig. 2.19 .



Figs. 2.20 to 2.23 show corresponding graphs for beams under central
point loading. Six values of the R2 parameter have been considered
throughout. In Figs. 2.19 to 2.23 only the effects of translational
restraint stiffness have been considered as this is generally the sole
criterion in the design of bracing systems. Consequently, e=0 in each
of these figures.

As can be seen from the graphs, the analyses of Sections 2.3 and
2.5 provide plateaux which indicate the maximum load-carrying capacity
of the beams as governed by second mode elastic buckling. It can also
be observed that, in some cases, the elastic critical load corresponding
to second mode buckling cannot be attained, irrespective of the degree
of lateral restraint supplied at midspan. This is particularly true in
cases where the level of attachment of the restraint is below the level
of load application (Figs. 2.21 and 2.22). In each of the figures, the
criteria for adequate compression flange restraint are seen to be less
onerous than for shear centre restraint. In no case could complete
restraint be achieved by tension flange bracing, although this produced
significant increases in the first mode critical loads of beams under
central point Toading with load applied at the tension flange (Fig.
2.23).

Numerical results based on the more refined analysis of Section
2.6 are indistinguishable from those used to produce the middle curve
in Fig. 2.20 . Table 2.2 shows results obtained by the analyses of
Sections 2.4 and 2.6 for the case of a beam under central point loading
and with R2=4.608. The differences between the results are seen to be
negligible. Indeed, on the basis that the energy solution generally
overestimates the critical load, the results obtained from the simpler
analysis of Section 2.4 are to be preferred. Certainly, the slight
differences between the results do not justify the greatly increased
complexity of the more refined analysis.

In Fig. 2.20, the curve representing the case of a central point
load applied at the shear centre of the beam is seen to indicate a
critical stress factor of approximately 1.36, which agrees well with
the value of 1.35 in eqn. (2.42) obtained from closed-form solutions.

Figs. 2.24 to 2.27 show the critical combinations of A and e
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values required for the enforcement of second mode elastic buckling in
single span beams. The case of uniform applied bending moment is dealt
with in Fig. 2.24 and central point loading cases in Figs. 2.25 to 2.27.
In Fig. 2.24, curves are shown for the six values of RZ considered in
Figs. 2.19 to 2.23 and for compression flange, shear centre and tension
flange restraint. Allowance for the level of load application is made
in Figs. 2.25 to 2.27.

The figures confirm the greater efficiency of bracing attached
to the compression flange than to the shear centre or tension flange.
In addition, tension flange bracing must possess high rotational and
translational stiffness in order to provide complete restraint to the
primary member. In agreement with the trend observed by Hartmann16,
Nethercot and Rockey63, Taylor and 0ja1vo60 and Mutton and
Trahair64, stocky beams (ie, those of low R) require more substantial
systems of bracing than slender beams for attainment of second mode
critical loads. However, as illustrated in Figs. 2.19 to 2.23, the
second mode critical loads are not the same for beams of unequal R.
Hence, the curves shown in Figs. 2.24 to 2.27 do not relate to a single
value of 'c' but rather to a different value for each value of R. Thus,
although stocky beams require greater restraint, their second mode

critical loads are correspondingly greater than those of slender beams.

Discussion of these results in relation to those of previous
research and to finite element and experimental results obtained in
the present study is presented in Chapter 8.
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Fig. 23 : Plan view of beam showing orientation of local coordinate system and
location of the lateral restraint of stiffness K. (The torsional restraint
at midspan is not shown in this view.)

5 |
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~\U s |
Land \\
\\/tp;,;
Fig. 2.4 :  The undisturbed and disturbed locations of the midspan cross-section

of the beam showing the torsional restraint (K;) and the level of
attachment of the translational brace (K) relative to the shear centre
of the section.
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Fig. 26 : Plan view of disturbed configuration of beam and the resolution of

in-plane moment M,
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Fig. 27 :  The angle dO subtended by an element dz in the [-§ plane.
The radius of curvature is 'r".
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Fig. 2.8 :
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Displacement of the end of a beam attributable to the curvature

(u”) of infinitesimal element dz

beam under uniform moment elastically
restrained at midspan

compression flange shear centre
restraint restraint

Fig. 29 :
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Combinations of variables for analysis considered in Section 2.2
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2" mode BMD for the
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whole span

Fig. 210 : Differences between 1 and 2" mode buckling analyses in the cases
of uniform moment and central point loading

Fig. 211 :  Variable levels of load application and translational restraint
attachment in the case of a beam under central point loading
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of in-plane bending moment
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Fig. 213 : Comparison between the actions of a point load applied
at the shear centre and at height 'a’
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Fig. 214 : The vertical deflection (Q+B) of the point of load application when load
is applied above the shear centre
beam under central point load elastically
restrained at midspan
compression flange shear centre
loading loading
compression flange shear centre
restraint restraint

Fig. 215 :
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Combinations of variables for the analysis considered in Section 2.4.
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Fig. 296 : The "search and bisect” strategy adopted in programmes MODBRACE
and AUTOBRAC
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Fig. 217 : Beams used to verify the sole dependence of elastic critical load
on the shape parameter R
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Fig. 219 :
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varying R values and levels of lateral restraint
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Fig. 222 : c-A curves for beams under central point loading at shear centre
level
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Fig. 223 : c-A curves for beams under central point loading at tension
flange level




non-dimensijonal torsional

restraint stiffness e 104
1000 -
y M( M K
. L ] 3""& :?“
i oy 79) Ky
P \
- T ~ - —
~o ~——
\\ —
~ —~——
- N ~———
N —— 2
P~ — \\ \ R \\ B - —— R:_ —
~ o N \\\
~
100 1 —_— e ~ \\ —
- oy \ \\ \
-1 S~ \ \—
\
~ TheY—— 20
—_— 30
‘g RZ=2
- " 5
" /10
’ /15
Lateral restraint : /20
1.0 — — tension flange : /%30
7] shear centre
i T y "
. compn. flange l
- | g
E ]
i |
i
|
- ]
1
]
I
' .
0.1 T T T T7TT7T7T b T T 71 T T T T T T
0.1 1.0 10 100
non~dimensional lateral restraint stiffness A
Fig. 2.24 : e-A interaction curves for fully effective restraint of beams under

uniform moment loading




non-dimensional torsional
restraint stiffness e

10007

100

10

|
i il
Wil >,
7 Wil
IP K \\Hl
. | | 3—«/*—156 [\
h # Ky it
t
: il
- “
i Lateral restraint : il
a —— —— tension flange ‘ﬁl
N shear centre i
———— compression flange I:
- |
)
- 1
]
n
I
I
0.1 1 L LS I 1 lllflll,l T T T 11l
0.1 10 10 100
non-dimensional lateral restraint stiffness A
Fig. 2.25 : e-A interaction curves for fully effective restraint of beams under

central point loading at compression flange level

105



non-dimensional torsional

restraint stiffness e 106
10003
=
=~ T —
- =~ ——
~ o —
- S~ ~——
. ~ \
- ~ ~
e — \\ \ ——
T y — ~ N\ \ — — R2=2
\\ \ — — — ——
) S S —
== ~T::\ — ;\\\ \\ ~—~——
0 :.;_:: ‘:\t\ \\\\ - e —— 5
4+ = -~ \ —— e e
10 . ~—— N \\\\ SN \\\
— —————— ~
-~ \\":\\ NI N \\\\ ~—
i SRR - T — 10
- ~o S A N \ S~ —— ——— ——— —
.. ST N \ K —
~ N N \ \ —_—— 15
DY —
\ ~—
20 . o
- 15 XA — - 30
10 5 -
5 \‘\‘ ‘\'l
2 \\\\‘ﬂl
101 ‘::\\\‘
. \\\\ll
n \!‘\‘; ,
- Y ’
- R2=2 ‘
_ s S
10
|P } 15 ‘
n K |
——t—] ihe 20
i 77 Ky B 30
|
|
- |
‘00 o l
N 1
1 Lateral restraint : |‘
- —— — tension flange |:‘|
4 ——— shear centre ‘llh
1l ——---- compression flange |::l
‘l‘
A
- =:|
|
I
0
0-1 H 1 T T 1111 l_thlilll'l L ] T ¢ v 1T 111
01 10 10 100
non-dimensional lateral restraint stiffness A
Fig. 2.26 : e-\ interaction curves for fully effective restraint of beams under

central point loading at shear centre level



non-dimensional torsional

restraint stiffness e
1000
] P K
—
I~ —— | ] i—‘V%?‘
~ o T~ r 7 K
J S \ v
.. N o ~
— N \
T ~a N\
~ N \\ \
P— A \
[~ ~ -\\ \\ N \ \
100 FS=So N T — _R2
\\\\ X \ \ \
—_— ~ \ \
] ‘\> NN \\
1 ~ N
~ D)
o \\\ \ \ \\ 5
AN —_—
T R2=30 ://) ) \\
\ \
20 —/\>\ \\ \
] 15 W 10
5 AU N ~
10 2 ‘ . T
] W \ —
o “ \“ R2=2
] i \ 0
1] ‘
l“ 15
1 I'l 20
!
1.0 I“I
T il
. | i
- 'I'
§ i,
N :::I Lateral restraint :
i l“: — —— tension flange
N |II| shear centre
,”| -~ —— compression flange
] lll:
|ll|
0,1 T T T T T llll 71 ¢ T T T Y ™
0.1 1.0 10 100
non-dimensional lateral restraint stiffness A
Fig. 2.27 : e-N interaction curves for fully effective restraint of beams under

central point loading at tension flange level

107



CHAPTER 3

FINITE ELEMENT ANALYSIS



CHAPTER 3

FINITE ELEMENT ANALYSIS

In this Chapter, reasons for the adoption of a coupled non-linear
(ie. simultaneously geometrically and materially non-linear) analysis
in the present study are presented; the selection of a finite element
programme capable of performing the coupled non-linear analysis is then
discussed; and finally, details of the computer programme written to
perform finite element mesh generation for the initia]]y'imperfect test
beams are then presented.

3.1 Differences Between Classical Buckling and Instability Analyses

Notwithstanding the recent adoption of 1imit state philosophy
for the design of structural stee]work55’56, small deflection, linear
elastic theory still provides the analytical techniques by which
internal forces in the vast majority of building and bridge structures
are determined. The validity of this approach is dependent on the
magnitude of displacements being small in relation to the overall
structural dimensions. This circumstance justifies the use of
equilibrium equations which are strictly only applicable to the geometry
of the undeformed structure. Moreover, the principle of superposition
applied to the results of such analyses offers considerable analytical
benefits. In the past, sufficiently numerous and attractive have been
the advantages of this elastic, small deflection approach to merit
consideration of the application of its fundamental principles to
problems of buckling.

Roberts and Jhita83 have identified three elastic buckling modes for
[-section beams:

(a) local buckling, in which changes in cross-sectional geometry
occur in the absence of overall lateral displacement and
twisting of the beam,

(b) lateral-torsional buckling, in which lateral deflections and
twist occur without local changes in cross-sectional geometry,
and
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(c) distortional buckling, which combines lateral displacement,
twist and cross-sectional deformations.

In terms of the above classification, the analyses of Chapter 2 fall
into the lateral-torsional buckling category whilst the finite element
study of Nethercot and Rockey63, which makes allowance for cross-
sectional deformations, is classified as distortional buckling.
Throughout the present study, only lateral-torsional buckling is
considered as it is assumed that local buckling can be prevented by
adherence to relevant flange outstand, web slenderness and web
stiffening requirements specified in the appropriate design

documents33’55’56’70.

First order buckling analysis may correctly be used to predict
the load at which a structure becomes unstable if pre-buckling
displacements and the resulting second order effects are negligible.
Its use as a basis for the design of slender, laterally unsupported
beams has been justified experimenta11y30.

Mathematically, buckling occurs when two infinitesimally close
equilibrium configurations are both possible. As noted in Chapter 2,

the buckling analysis of initially perfect beams under simple conditions

of loading may be performed longhand by solutions based either on the

differential equations of equilibrium or on the energy theorems employed

in that Chapter. However, recourse must be made to numerical solutions
of the eigenvalue problem in more complex cases. Finite element
formulation of this eigenvalue problem can be expressed by the equation

(K] + olk1){a} = {o} . (3.0).

conventional structural stiffness matrix based on
elastic small deflection theory.

in which [K]

¢ = load factor.

[Ky 1 = structural stability (or geometric stiffness) matrix
which accounts for the stiffening or weakening effect
of the forces determined by an initial elastic
analysis.

{[&} = vector of structure nodal displacements corresponding
to the difference between two equilibrium
configurations.
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The smallest value of @ which provides a zero determinant of the
total global stiffness ([K] + e LKe 1) and hence a non-trivial solution
of eqn. (3.1) defines the first critical load of the system. The
eigenvector {A} describes the corresponding mode shape of buckling.

Although of use in the calculation of critical loads of
unrestrained and restrained beams, this bifurcation approach has
~ disadvantages arising from non-uniqueness of the load-displacement
behaviour at attainment of the buckling or critical Toad. As only mode
shapes of buckling (in the form of eigenvectors) rather than absolute
buckling displacements are available, beam deflections at points of
restraint attachment are indeterminate. Consequently, as bracing forces
are also indeterminate, a more refined analysis capable of predicting
absolute buckling deformations must be employed in studies concerned
with the strength reauirements of bracing.

The introducton of an initial imperfection into the geometry of
the braced member affords the opportunity to calculate both Tateral
deflections and bracing forces based on small deflection theory. The
nature of such a solution has been indicated by Trahair and
Nethercot98.

While the field of applicability of the linear elastic, small
deflection theory is extensive, use of this method in the case of beams
in bending is only valid where in-plane and lateral displacements
represent a small fraction of the overall cross-sectional dimensions.
For larger displacements, non-linear effects become more pronounced and
accuracy of the infinitesimal theory progressively worsens. Whereas
small deflection theory permits equilibrium equations to be written for
the geometry of the undeformed structure, consideration of the effects
of geometrical non-linearity demands that the equations are written with
respect to the deformed geometry, which is not known in advance.

Although some degree of non-linearity occurs in most practical
structures due to the presence of some or all of the imperfections
described in Section 1.2.2, the severity of non-linear behaviour varies
widely. In the case of the lateral-torsional stability of real,
imperfect beams, non-Tinearity is frequently aggravated by the
occurrence of yielding as, in practice, few beams are of sufficiently



large span to confine their_]oading response to the wholly elastic
behaviour exhibited by beams of very high slenderness.

It is necessary to differentiate between the mathematically
idealised phenomenon of buckling and the collapse condition attained
by real beams. The former represents the bifurcation analysis
previously described whereas collapse, in the presence of non-linear
behaviour, is similarly attributable to vanishing structural stiffness,
but without bifurcation of the equilibrium paths. 1In cases of beam
instability, progressive softening of the structure leads to development
of a neutral equilibrium or collapse condition at a load considerably
lower than the first order buckling prediction of the infinitesimal
theory.

In the present study, the non-linear analysis capabilities of
the two finite element programmes NASTRAN and FINAS were employed to
compute the ultimate rather than the buckling Toads of beam/restraint
systems used in the experimental investigation.

1



3.2 Non-Linear Finite Element Solutions

The well-proven linear elastic analysis techniques of the finite
element method®*-8% can be used as the basis for analyses involving
both material and geometrical non-linearities. A review of two typical
methods employed in non-linear analysis is presented for completeness in
this Section; no attempt has been made to describe the solution
strategies developed and commonly adopted to minimise computing time.
Moreover, detailed derivations of the fundamental equations employed in
these solutions are not incorporated in such a brief review.

In Sections 3.2.1 and 3.2.2 which follow, it is assumed that linear
or first order elastic strain-displacement equations are valid viz. for
a three-dimensional state of strain86:

(€x du/ox
€y ov/ dy
€2 _ dw/dz
Ty ) ov/dx + 9u/dy ...(3.2)
¥yz dw/dy + 9v/dz
\ Tzx du/dz + Ow/ox

Egn. (3.2) relates direct strains Ey> 63” €, and shear strains

XXY’ XYZ’

in coordinate directions x, ¥y, z. In conventional finite element

¥ ,x to the translational degrees of freedom u, v, w

notation84, eqn. (3.2) is expressed in terms of the strain matrix [B]
in the vector equation

{ee} = [B)] {Ae} ...{3.3)

where {e°} is the element strain vector and ﬂf} the vector of element
nodal displacements.
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In addition, the constitutive law

{o’e} = [E] ({6‘} —{e:}) + {o;e} ...(3.4)

in which  {o¢]

LE]

vector of element stresses

il

il

elasticity matrix
fee] vector of initial element strains and
faed vector of initial element stesses

is used to relate element stress to strain under linear elastic

conditions.

Considering inelastic effects in an assumed isotropic, non-strain
hardening material, the von Mises yield criterion

x-0) + (o -o) + {0z - o))

b 6 (Tt + Tyt + Tod) - —§- & =0 ...(3.5)
is frequently employed, in which direct stresses oy, Oys Oy
and shear stresses 'Txys 'tyz, T,x are related to the uniaxial

tensile yield stress Oyt The von Mises criterion has been shown to
be of particular value in predicting the onset of plasticity in

stee1386’87.

An associated flow rule (ie. based on the von Mises criterion)
is used to derive the Prandtl-Reuss equation585 which subsequently ‘
permit small but finite inelastic stress changes d{oﬁ to be related to
small increments of strain dfe} via an instantaneous elastic-plastic

stress-strain matrix [Eep]85’86:

dio} = [E, ] di¢] ...(3.6)

Reference to foregoing eqns. (3.2) to (3.6) will be made in
Sections 3.2.1 and 3.2.2 when considering common solution techniques
employed in materially and geometrically non-linear analysis.



3.2.1 Materially Non-Linear Analysis

In small strain, linear elastic problems the
relationship

is generally employed in finite element analysis.
is as defined in eqn. (3.1) whilst {Q} represents
nodal forces and {A} the vector of corresponding
As well as including all externally applied loads
vector {Q} accounts for nodal forces arising from
stresses {o,] and strains {eJl.

In linear elastic analysis, the constitutive
the strain-displacement relationship of (3.3) are
addition, displacement continuity and equilibrium
satisfied. It has been found3#>8° that the small

well-known stiffness

... (3.7)

In this equation [K]
a vector of structure
nodal displacements.
on the structure,
internal, initial

Taw of eqn. (3.4) and
employed and, in
requirements must be
strain-displacement

relationship often proves satisfactory even in cases where a non-linear

constitutive law applies. In these circumstances, there is still a

need for continuity of displacements and statical
Consequently, only the linear constitutive law of

altered to make allowance for material non-linearity. Zienkiewicz

equilibrium.

eqn. (3.4) need be
84

proposes that, as the non-linear constitutive relation will be some

linear function 'f' linking {o®} and {e*} eg.

...(3.8)

then a solution of the materially non-linear problem can be found by
suitable adjustment of one of [E], f{ef} or {o*} in eqn. (3.4).

An "initial stress" approach, in which modifications are made to

the initial stress vector {c;‘}, is advocated for materials which

soften under increasing strain: structural steels conform to this

description. For a given strain, the corresponding stress in structural

steel can be uniquely determined. This is evident from examination of

the commonly assumed elastic-perfect plastic characteristic shown in

 Fig. 1.7 . The "initial strain" approach, based on f{ef} is suitable

for materials which exhibit considerable hardening whilst the "variable

4
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stiffness" approach, in which matrix [E] is modified on each iterative
step in the numerical solution, is extremely expensive in computing
time.

In both materially and geometrically non-linear analysis, a
combined incremental-iterative procedure is generally adopted in which
loads (or prescribed displacements) are applied in increments until the
desired load, total displacement or collapse condition is attained.
Within each increment an iterative procedure is employed until
equilibrium requirements are satisfied within the bounds of a previously
defined convergence criterion. The strategy is best described by the
following steps:

(a) The first increment of applied load {Qliis applied and
corresponding elastic displacements {A1§ calculated using
the initial linear elastic stiffness matrix [K,I:

b = k.1'{al) ...(3.9)

(b) Egn. (3.3) is then employed to calculate element strains from
element nodal displacements.

(c) True or actual stresses corresponding to these strains are
calculated using the yield criterion and, in particular,
eqn. (3.6).

(d) Setting {o®} in eqn. (3.4) equal to the vector of true stresses
from (c), that value of {op2} satisfying the equation
represents the new initial stress vector. {o} can therefore
be regarded as the level of initial stress required to bring the
predictions of the elastic constitutive Taw of egn. (3.4) into
agreement with the actual stresses.

(e) As the vector of applied loads is dependent on the level of
initial stress, a change of {do;efl results in a vector of
"corrective" or "residual” Toads {dQ;};. This residual
force vector represents the difference between the externally
applied loads on the structure and the nodal forces arising
from internal stresses.

(f) A vector of additional displacements {d[&l}l corresponding
to the residual load {d01}1 is calculated from

faal = [k.17'{dalh ...(3.10)
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(g) The total strains for the new disp1aced_configuration {Aii
+ {dA}; are calculated and steps (b) to (f) repeated as
an iterative process until an acceptable level of convergence
is achieved. On the nth iteration of the first load
increment, the criterion for convergence may be based on the
relative magnitude of either the residual load vector {dQlln
or incremental displacement vector &jAl}n' The vector of
cumulative nodal displacements after convergence on the rth
jteration of the first increment is

r
bl = fal + 2 {aal, ...(3.11)
(h) When convergence is achieved for the first increment of applied
load {0;}, the second and subsequent increments {01,
{03},...,{Qm§ are applied and the iterative procedure
of steps (a) to (g) employed until convergence is achieved
in each increment.

In practice, the initial stress method in materially non-linear analysis
has the combined benefits of a relatively simple theoretical basis and
satisfactory computational efficiency. More efficient procedures have
been deve]oped88 but at the expense of increased theoretical and
programming complexity.

Perhaps the main advantage of the initial stress method is that the
stiffness matrix remains unchanged during each load increment. In the
procedure outlined above, matrix [Ko] is used throughout the first
Toad increment: reduction of the matrix is therefore only performed
once, at the start of the increment. However, efficiency of the
numerical solution is increased if the structural stiffness matrix is
updated at the start of each load increment. This approach then
corresponds to the modified Newton-Raphson iterative procedure
illustrated with reference to steps (a) to (g) in Fig. 3.1 .

3.2.2 Geometrically Non-Linear Analysis

A geometrically non-linear problem is one in which a non-Tinear
relationship exists between global displacements and strains. 1In the
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analysis of this type of problem, one commonly adopted approach is to
define element local coordinate systems which follow the elements as the
structure deforms under load. The displaced element local coordinate
system may have large translational and/or rotational motion relative to
the structure global coordinate system; however, deformation of each
element with respect to its own displaced Tocal system is assumed to be
small so that, at the element level, the small strain-displacement
relationship of egn. (3.3) remains valid. Consequently, a requirement
of this method is that elements should be sufficiently small to ensure
"small" displacements with respect to each local coordinate system. In
terms of the global or overall pattern of displacements, this type of
analysis is generally known as the Targe displacement-small strain
approach. Like the procedure adopted for materially non-linear analysis
in Section 3.2.1, the strategy employed is both incremental and
iterative in nature.

Details of the solution strategy are well presented by Cook85
and are presented below in a slightly modified form to emphasise
similarity with the procedure described in Section 3.2.1 .

(a) The first increment of load {Ql% is applied and global
nodal displacements L51} calculated from eqn. (3.9).

(b) The global displacements of the element nodes result from
combined rigid body motion and local distortion of the
elements. The rigid body motion component can be subtracted
out once the displaced position and orientation of the local
coordinate system are established. Nodal displacements with
respect to the local system, {Aqef, are then calculated.

(c) In the case of small strains, element stiffness matrices
[Kle] are linear with respect to the local coordinate
systems; that is, they are not dependent on displacements.
Consequently they remain constant for all states of
deformation.

(d) Forces at element nodes arising from element distortions are
determined using the element stiffness matrices:

e} = - [K:1{a%y | .o (3.12)

(e) Vectors {Qle§ and matrices [K;€] are then referred
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to the global coordinate system by means of coordinate
transformations. The resulting "g]oba]".e1ement matrices are
{Qle}g and [Kle]g. The overall global stiffness

matrix [Kl] for the current configuration is obtained from

[K|] = 2 [Kle]g

and a global vector of nodal loads Z{Olefg formed.

(f) A residual force vector {dQ;}; = {q;} + Zi{Qle}g
is determined and a vector of corresponding displacements
calculated from {d A}, = [Ky1"1{do} ;. The total
displacement L31§ + {dA1}1 then gives the updated
prediction of the equilibrium configuration.

(g) A convergence check is performed on ejther {dQl}l or
{dl&l}l and the iterative process continued if required.

In this method of solution, all essential non-linear behaviour
is accounted for by coordinate transformations.

3.2.3 Solution of Problems Involving Coupled Non-Linearity

Similarity between the incremental-iterative procedures for
material and geometrical non-linearity described in Sections 3.2.1 and
3.2.2 suggests the possibility of merging the two procedures to produce
a programme capable of performing combined or coupled non-linear
analysis. This has been successfully achieved, much of the work being
reported in the 1iterature88 and, to a lesser extent, in documentation
accompanying the more versatile, commercially available finite element
programmes (eg. NASTRAN, LUSAS). Details of the strategy adopted for a
combined analysis are omitted herein but follow immediately from the
steps given in the two preceding Sections.

Such coupled analyses are computationally lengthy, demanding in
terms of their frequent access to a computer's central processor and
hence considerably more expensive than corresponding linear elastic
analyses. Nevertheless, with judicious choice of increment size and the
~ specification of adequate but not unduly severe convergence criteria,
effective solutions of the coupled non-linear problem are possible. 1In



addition, much more refined‘ solution strategies than those described
above and highly efficient m'atrix manipulation and reduction techniques
are employed in commercial programmes. Two such programmes capable of
combined non-linear analysis, NASTRAN and FINAS, were employed in the
present study and are described more fully in Section 3.4 .
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3.3 The Search for a Finite Element Programme Capable 6f Combined
Non-Linear Analysis

In the literature, guidance is availab1e88-90 on the transition
from the theory of non-linear solutions, outlined in Section 3.2, to the
computer implementation of the method. Nevertheless, this transition is
extremely time-consuming both in terms of programming and subsequent
programme testing and debugging. In this Section, the initial stages in
the development of a non-linear finite element programme are briefly
described and reasons given for the subsequent adoption of two "off-the-
shelf" programmes, MSC/NASTRAM and FINAS. The capabilities of these
programmes are then described and consideration given to their
application to the problem of inelastic lateral-torsional instability of
restrained beams.

3.3.1 The Development of an Elasto-Plastic Analysis Programme

As the first stage in the development of a finite element programme
capable of combined materially and geometrically non-linear analysis,
attention was focussed on the development of a materially non-linear
programme. In this, the model adopted for non-linear material behaviour
was that described by Owen and Hinton89. The geometrically non-linear
analysis capability was later to be included.

84,91,92 yere assembled

Initially, routines from three sources
to form an elastic analysis programme employing eight-noded
isoparametric plane stress elements.. The parabolic isoparametric
formulation was chosen both for ease of programming and for its proven
versatility and numerical "good behaviour"92. Although two
translational degrees of freedom in the plane of the element at each
node were sufficient to describe the in-plane behaviour of the flange
and web panels, compatibility of displacements between flanges and web
could only be achieved in the longitudinal direction (Fig. 3.2).
Moreover, no out-of-plane stiffness was ascribed to the f1angé and web
panels. Nevertheless, at the outset it was decided that the plane
stress element should form the basis of the non-linear programme as the
subsequent substitution, if required, of a more versatile element into
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the framework of an operational programme would be relatively
straightforward.

The frontal solution advocated by Hinton and Owen92 was not
implemented in the elastic plane stress programme. Instead, a simpler,
though less efficient, half band solver was adopted. This proved
adequate during testing of the elastic programme. Compatibility of
longitudinal displacements at coincident flange and web nodes, such
as A and A' in Fig. 3.2 was achieved by means of a contragredient
transformation described by Cook85,

In extending the capabilities of the elastic programme to include a
non-linear constitutive law, an initial stiffness approach was employed
in the incremental-iterative process. The solution strategy of the
initial stiffness method is represented graphically in Fig. 3.3 and
it is evident that close similarities exist with the initial stress
strategy depicted in Fig. 3.1 . The fundamental difference 1ies in the
continued use of the initial stiffness matrix [K,] beyond the first
increment of load. This allows reduction of the half band global
stiffness matrix by Gaussian elimination before entry into the
incremental and iterative cycles shown in Fig. 3.4 . The reduced matrix
and Gaussian elimination factors are then stored: the elimination
factors are subsequently used to reduce applied load vectors {Qli,
{dQl}l,..., etc. and relationships of the form of eqn. (3.7) solved
using the reduced forms of the load vector and stiffness matrix to give
displacements {44}, {dAl}l,..., etc.

The apparent advantage of the "once and for all" reduction of the .
stiffness matrix in minimising computational effort is partly offset by
the need for a greater number of iterations before convergence on each
Toad increment. 1In highly non-linear problems, recalculation of global
stiffness on each increment is to be preferred as a net saving in
computing time is likely; by definition, the initial stiffness method
can be expected to provide an efficient solution where non-linear
behaviour is less pronounced.

Unfortunately, in terms of both computing time and core storage
requirements, the contragredient transformation used to enforce
compatibility of longitudinal displacements in the elastic programme was
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found to be unacceptably 1ngfficient in the context of the elasto-
plastic analysis programme, where minimisation of both of these
quantities was important. An alternative method of ensuring
displacement compatibility by means of an array of nodal freedoms was
introduced. This proved considerably more efficient.

The elasto-plastic programme was written in FORTRAN for use on
the University's ICL 2976 mainframe computer. On completion of this
programme a review of the project timetable revealed that an
insufficient amount of time allocated to computer analysis remained
for implementation of the geometrical non-linearity capability.
Moreover, the development of a combined non-linear programme was not
the primary aim of the project and it was feared that a considerable
amount of time would be required to implement the more efficient
solution routines and data storage schemes needed for coupled non-linear
analysis.

A more determined search for a suitable, commercially available
and accessible programme eventually revealed that the Targe MSC/NASTRAN
suite was mounted at the Science and Engineering Research Council's
(S.E.R.C) Rutherford Appleton Laboratory at Chilton. An allocation of
computing time was subsequently granted by S.E.R.C. and remote access to
the system was via a local GEC 4070 computer linked to the S.E.R.C.
network. The capabilities and limitations of NASTRAN are briefly
described in the following Section.

3.3.2 MSC/NASTRAN: Description and Limitations

The programme MSC/NASTRAN is a very large, general purpose finite
element analysis suite. The original version of NASTRAN was developed
by the National Aeronautics and Space Administration (NASA) in the
United States but in 1969 the MacNeal Schwendler Corporation assumed
responsibility for maintaining, updating, documenting and marketing the
commercial version of the programme, which then became known as
MSC/NASTRAN. Currently the largest, most comprehensive finite element
package available, the programme is being continuously developed and
currently (1985) offers a wide range of static, dynamic, eigenvalue,
aeroelastic and heat transfer solutions.
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The combined materially and geometrically non-linear analysis
capability of MSC/NASTRAN was used in the preseht study. Of the large
selection of elements available in the element library, a considerably
smaller subset was available for use in non-linear solutions. Of these,
the quadrilateral isoparametric shell element QUAD493 and
subsequently the BEAM element were selected for use in predicting the
non-linear response of restrained beam systems.

Initially, the four-noded QUAD4 shell element was adopted for
modelling the entire beam cross-section. With five degrees of freedom
per node (three translational, two rotational), these elements allowed
warping and cross-sectional deformations of the beam to be included in
the analysis in addition to bending, axial, torsional and shear effects.
As a first step in assessing the suitability of the QUAD4 element in
this application, the linear elastic behaviour of a simply-supported I-
beam of span 200mm, overall depth 50mm, flange breadth 16mm and general
metal thickness 1mm was examined under central point loading. The low
span-to-depth ratio of four selected for this test problem was chosen to
check the accuracy of the programme in calculating both bending and
shear deflections.

Of the total theoretical vertical midspan deflection 'A' given by

A = PE (l " __.___'ZfsEImi) c..(3.13)
48E Ly GA, £*
in which 1 = beam span
EImaj major axis flexural rigidity
fe = form factor for shear in the plane of the web
(fg = 1.656 for the above beam dimensions)
G = shear modulus
Ay = cross-sectional area of beam’

the contribution from shear (second term in parenthesis) was found to be
about 46% of the bending deflection and was therefore of considerable
importance. Finite element idealisations of the above beam employing
twenty QUAD4 elements (4 in web, 16 in flanges) and forty-eight QUAD4
elements (16 in web, 32 in flanges) as shown in Figs. 3.5(a) and (b)
were subjected to central point loading. For all preliminary work in

' NASTRAN, mesh grading from the relatively coarse mesh employed in
elastic regions to the central, finer inelastic mesh was "sudden" and
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not achieved by use of transition regions consisting of triangular
elements or constraint equations. The latter were to be employed during
“production” runs if the QUAD4 analysis proved economical.

The results of these linear elastic analyses are shown in Fig.
3.5(c) where the total elastic deflection predicted by eqn. (3.13) is
also shown. Agreement between the load-deflection responses is observed

to be excellent, the 48 element analysis having been performed using the
. non-linear facility in MSC/NASTRAN. The 48 element mesh was preferred
as it provided aspect ratios for the flange elements of approximately
three, half the value attainable using the 20 element mesh.

Although the 48 element mesh had been shown to be adequate for
use in elastic regions, further mesh refinement was required to enable
plasticity and large deflections to be dealt with. As an alternative
to QUAD4 mesh refinement in these zones, the introduction of higher-order
shell elements such as the parabolic isoparametric QUAD8 would probably
have been more efficient. Unfortunately, use of this eight-noded shell
element was restricted to linear elastic analysis. In accounting for
non-linear material behaviour a von Mises yield criterion was used in
conjunction with an elastic-perfect plastic material response in the
form of Fig. 1.7 .

Although suitable for testing convergence under linear elastic
conditions, the initially perfect beam model did not afford the
opportunity to test the large displacement capability. Consequently, in
the preliminary series of combined non-linear analyses an initial
lateral bow of sinusoidal form and of amplitude one-thousandth of the
span (viz. 0.2mm) was incorporated into the analysis by suitable
adjustment of nodal coordinates. The greatest extent of the theoretical
yielded zone was known for P=Pp and therefore mesh refinements were
confined to this region. Solutions employing 64, 80 and 132 elements
(Fig. 3.6) were performed and the results of these NASTRAN analyses are
shown in Fig. 3.7 . The greater vertical displacement of the initially
imperfect beam is immediately obvious. Increments of enforced vertical
displacement at midspan rather than of applied load were used in these
and in all subsequent finite element analyses to facilitate attainment
of collapse loads.



The graphs of Fig. 3.7 indicate satisfactory convergence for the
132 element model, for which the fully plastic load, Pp, falls within
2.5% of the theoretical value. A considerably refined mesh in the
central, inelastic region of this model produced flange and web element
aspect ratios of approximately 1.5 and 2.0, respectively. In
"numerically integrated" elements, such as the QUAD4, where strains and
subsequently stresses are evaluated at a limited number of integration
or Gauss points within the element, there is inevitably a lag between
the onset of yield at an element boundary and the detection of yield at
the Gauss points. Mesh refinement in probable areas of first yielding
increases the 1ikelihood of early detection and hence provides a more
accurate prediction of non-linear response. The degree of mesh
refinement in inelastic zones of the 132 element model was therefore
considered satisfactory.

It was then considered necessary to examine the sensitivity of
NASTRAN to the magnitude of initial imperfections on the test span.
The measured, initially imperfect shape of model beam Pl (see Table
5.3) was translated into a mesh of QUAD4 elements using the programme
NEWMESH described in Section 3.4 . The resulting mesh for the 600mm
span beam consisted of 732 elements. Analysis of béam P1 was followed
by a further two analyses in which sinusoidal distributions of initial
imperfections were assumed: amplitudes of the sinusoidal crookedness
were respectively double and half the maximum recorded value for beam
Pl. Comparison of the results of the three analyses revealed
considerable discrepancies arising from these differences in initial
imperfections, particularly in relation to predicted lateral deflections
of the flanges. Consequently, as bracing force, one of the main
subjects of study, was Tinearly related to flange lateral displacement,
there was a need for accurate measurement and subsequent numerical
model1ing of initial imperfections.

In addition to a substantial increase in data preparation time
for the longer beam P1, both computing time and storage requirements
were greatly increased. Central processor times well in excess of one
hour per analysis were recorded; although a considerable drain on
the total computing time allocated by S.E.R.C., infrequent runs of this
~ duration were nevertheless possible. However, the amount of direct
access storage required for updating and manipulating global stiffness
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matrices within the NASTRAN data base proved excessive and eventually,
even with a considerably enhanced storage allocation on S.E.R.C.'s

large IBM 3081 computer, allocated space was insufficient to perform
the QUAD4 shell analysis. Implementation of the NASTRAN restart
facility in an attempt to condense much of the stored data from previous
load increments proved only partially successful, in that although

this permitted the analysis of a few additional load increments in

each analysis, premature termination of analyses recurred due to the
excessive, cumulative storage demand created by successive restart

runs.

Approaches to other large users of NASTRAN revealed that none
had attempted a combined non-linear analysis of comparable magnitude.
However, it was felt that the problem was exacerbated by the need to
perform such a large analysis on a multi- rather than a single-user
system: commercial organisations running NASTRAN on in-house systems had
the ability to dedicate very large areas of direct access storage to
single NASTRAN analyses; this was not the case on the S.E.R.C. system.

As the 600mm span beam represented the shortest to be employed
in the experimental programme, it was evident that problems were likely
to worsen as analyses of longer spans were attempted. Consequently,
analysis based on the QUAD4 shell element was not considered thereafter;
instead, attention turned to the NASTRAN BEAM element.

The BEAM element in NASTRAN is a straight, two-noded element
having, in addition to three translational and three rotational degrees
of freedom at each end node, an additional, seventh freedom at each
of these locations allowing warping deformations to be included in
the analysis. In materially non-linear applications, the BEAM element
is capable of developing inelastic behaviour only at its ends, plastic
hinges being possible in these Tocations with elastic response
elsewhere. Although primarily intended for use in collapse analysis of
frames, this type of element was considered suitable for use in the
restrained beam analysis provided that several short elements were
employed in regions of potentially inelastic behaviour.

Simple analyses employing only a few BEAM elements were sufficient
to demonstrate the satisfactory performance of the element under linear
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elastic conditions. The effect on predicted bracing forces of omitting
the geometrically non-linear analysis option was then examined using
the recorded imperfection data for test beam M2 (Table 5.4).
Differences in bracing force of about 100% are evident in Fig. 3.8 for
applied loads in excess of O.9Pp. This result confirmed the need for
inclusion of the large displacement option in all analyses.

Use of the BEAM element meant that cross-sectional deformations
were no longer modelled in the MASTRAN analysis; howeVer, this was
considered to be of minor significance. O0f considerably greater
importance were the substantially reduced computing time and storage
demands compared with the QUAD4 analysis. Consequently, NASTRAN
analyses were no longer constrained by the amount of available storage
space and it was possible to employ BEAM element solutions in attempting
to provide theoretical verification of experimental results.

In this latter application, it became evident that the numerical
procedures employed in NASTRAN for the solution of highly non-linear
problems were inadequate, and divergence of the solution occurred in
every analysis before attainment of the collapse condition. The problem
of divergence had rarely been encountered in previous NASTRAN analyses,
probably due to the premature failure of earlier QUAD4 analyses on other
grounds. Considerable refinement of the beam element mesh in midspan
regions of the centrally loaded, centrally braced beam models was
carried out but, although only very small increments of enforced
displacement were applied at each stage in the analyses, numerical
instability inevitably frustrated all attempts to attain peak loads.
Indeed, results of NASTRAN BEAM analyses presented for comparison with '
experimental results in Chapter 6 display Tittle sensitivity to the
softening and destabilising effects of yielding and the occurrence of
large deflections.

Access to the FINAS programme, currently (1985) being developed

in Imperial College, London, by Bates?4 et al., was subsequently.
arranged.

3.3.3 FINAS: Description and Advantages over NASTRAN

The FINAS beam element was used to good effect, as demonstrated by
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the degree of correlation achieved between finite element and
experimental results presented in Chapter 6. The element used was a 3-
noded space beam suitable for modelling thin-walled members of open
cross-section. As in NASTRAN, geometrical non-linearity was accounted
for by means of a co-rotational or "updated Lagrangian" formulation
corresponding to the large displacement-small strain approach described
in Section 3.2.2 . Additional similarities with the preceding NASTRAN
analyses were the adoption of a von Mises yield criterion and the
facility to include warping deformations as a seventh degree of freedom
at each of the element's three nodes.

Idealisation of the initially imperfect, restrained beams tested in
the experimental programme was satisfactorily achieved using only twelve
beam elements to model the physical beam and an additional element to
represent the midspan translational restraint. Gradation of the beam
mesh from Tonger elements at the end supports to shorter at midspan was
again employed and, as access to the FORTRAN source code of FINAS was
not possible, physical modelling of the brace was required instead of
simply augmenting the appropriate diagonal term in the global stiffness
matrix of the unrestrained beam.

Consideration of the sense of initial beam crookedness allowed
the bracing element to be attached on the side of the idealised beam
appropriate to the development of axial tension in the brace. The
possibility of mobilisation of axial compression was avoided due to
the decrease in axial stiffness accompanying increasing compressive
load and the conflicting requirement for constant restraint stiffness.

The greater versatility of FINAS numerical solutions over those
implemented in NASTRAN is demonstrated in Fig. 3.9 which shows the
effect of increasing initial bow in unrestrained beams of 600mm span
containing sinusoidal imperfections of amplitude 1/500, 1/1000 and
1/4000. The theoretical elastic critical load of the corresponding
initially perfect beam, derived from the programme MODBRACE, is also
indicated in that figure. The collapse load attained by the 1/4000
beam is noted to be a close approximation to the theoretical elastic
critical load. In performing finite element analyses corresponding to
" the twenty model beam tests, the ability of FINAS to deal with non-
positive definite matrices was important. This capability, used in




conjunction with displacement rather than load control, frequently

allowed attainment of true collapse loads and in some cases subsequent
prediction of post-collapse behaviour.

FINAS was previously used as the basis of a theoretical study
of box girder collapse by Dowling et a19%,  In that application,
several solutions were curtailed by the occurrence of numerical
instability in shell element analyses. In such cases, non-convergence
of the solution was assumed to be indicative of collapse. Although
problems of non-convergence had been encountered in the use of NASTRAN
in the present study, it was considered inadvisable to adopt a similar
collapse criterion as the NASTRAN BEAM elements were not as capable of
model1ing inelastic or large displacement effects.

Divergence of FINAS analyses was also occasionally encountered

. in the present study although to a much lesser extent than with NASTRAN.
In general, however, FINAS analyses were considerably more fruitful and
numerically stable and were frequently capable of modelling highly non-
linear behaviour as displayed, for example, by model beam M10 (Fig.
6.11). Nevertheless, both NASTRAN and FINAS proved incapable of
solving the problem of an initially imperfect beam under uniform moment
loading. Attempted analyses of this prbb1em produced almost immediate
divergence and consequential failure in both programmes.

The acceptability of both FINAS and NASTRAN results when compared
with experimental findings is discussed in Chapters 6, 7 and 8.
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3.4 Finite Element Mesh Generation from Measured Imperfection Data

A prerequisite for finite element analysis of the beams employed
in the experimental programme reported in Chapters 4 to 6 was a facility
for the generation of a finite element model incorporating those
geometrical imperfections measured by the procedure described in Chapter
5. A computer programme, "NEWMESH", was written to perform this task
and a listing of the programme is given in Appendix II. The most
important features of the programme are discussed in this Section.

The FINAS beam and both the NASTRAN BEAM and QUAD4 elements were
employed at different stages in the study and so the results given by
NEWMESH were in a form broadly compatible with the input data to these
programmes.

In Appendix II, the major segments of the programme are indicated
by the letter codes (® to () . In the remainder of this Section, the
most important of these segments are described. Section (® contains a
brief description of the programme, the variables used and array
dimensions. This is followed in Section (D by a routine which accepts
measured initial imperfection data and calculates geometrical properties
for the "average" cross-section. As described in Chapter 5, prior to
model beam tests several lines of initial imperfection readings (each
Tine containing sixteen readings) were taken on the web surface (lines
W1l to W3) and flange tips (lines T1, Cl) over the full Tength of the
test span. The locations of these sixteen readings were as shown in
Table 3.1 for the 600, 800 and 1000mm spans employed in tests.

Inspection of Table 3.1 shows that the readings were not equally
spaced; rather, their spacing was determined by the normalised
coordinate

X = -cos (_“_QN:Q) ...(3.14)
in which j = reading number

N total number of readings = 16
The spacing of points was greatest at the centre of the test span and
decreased towards the ends, reflecting the need for greater definition
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near the ends of the range to counteract the tendency of approximating
polynomials to develop fluctuations in these regions. Sixteen points

on the test span (ie. N=16) proved sufficient for specification of the
imperfection data and, as described later, the interpolation of a smooth
polynomial curve through this data.

Table 3.1: Location of Sampling Points for Initial Geometrical

Imperfections
Location of Sampling Point on

Reading Mormalised Test Span of

No. Coordinate

J X :
600mm 800mm 1000mm

1 -1.0000 0 0 0

2 -0.9781 6.56 8.74 10.93
3 -0.9135 25.94 34.58 43.23
4 -0.8090 57.29 76.39 95.49
5 -0.6691 99.26 132.35 165.44
6 -0.5000 150.00 200.00 250.00
7 -0.3090 207.30 276.39 345.49
8 -0.1045 268.64 358.19 447 .74
9 0.1045 331.36 441.81 552.26
10 0.3090 392.70 523.61 654.51
11 0.5000 450.00 600.00 750.00
12 0.6691 500.74 667.65 834.56
13 0.8090 542.70 723.61 904.51
14 0.9135 574.06 765.42 956.77
15 0.9781 593.44 791.26 989.07
16 1.0000 600.00 800.00 1000.00

Allowance for the effect of self weight deflections on the measured
imperfections was necessary as the beam was supported on the tips of its
flanges during imperfection measurement and consequently minor axis .
bending under self weight affected the readings. Under self weight, the
deflected form shown in Fig. 3.10(b) is predicted by the Macauley
equation

Y ‘oq*) - 2L<x-gY
6 = i (W) - 2w

2 2
+ 6L<x-9>[(%-9) - —,LE] i ...(3.15)

for the beam shown in Fig. 3.10(a). The self weight correction was
performed in Section @© of the programme.
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The "slant" correction applied in (@ was based on .the assumption
that the four vertices of the web panel of the test beam were coplanar
in the vertical plane. In the experimental investigation, this
condition was achieved by use of the web-plumbing device described in
Chapter 4. A1l corrected initial crookedness and twist data could then
be referred to known conditions at the supports. Compatibility of
support conditions and the distribution of initial imperfections
relative to the direction of applied loading was therefore achieved
between the finite element model and actual test beam.

Imperfection readings corrected for both self weight and slant by
the above methods were then used as the basis of routine (), which
fitted Chebyshev polynomial approximations to the distribution of
imperfections in the flanges and web. Subsequently, in ® , these
polynomials were used to calculate a set of nodal coordinates defining
the initial deformed geometry of the whole beam.

A facility for plotting the initially deformed surface of the
web was included at ( in the programme. This allowed a rapid
qualitative asssessment of the distribution of web imperfections prior
to tests and, of greater significance, indicated the sense of
compression flange initial crookedness relative to the test rig and
hence the probable direction of flange lateral movement during lateral-
torsional instability. As an example, the web surface plot shown in
Fig. 3.11 shows increasing twist on the section towards midspan and
initial convexity of the compression flange in the -ve Y direction.
Under test, this beam failed in a lateral-torsional mode in which the
lateral deflection of the compression flange increased in the direction
of initial compression flange bow. ‘

In sections @ and ® , data for the FINAS beam and NASTRAN BEAM
and QUAD4 elements was generated. Reflecting the need for a different
data format for each of these elements the NEWMESH output file
contained three distinct groups of data. Deletion of the two unwanted
groups and insertion of appropriate load case data and job control
statements, etc. then provided a data file suitable for use in either
the FINAS or NASTRAN analyses.

NEWMESH was used successfully as a mesh generator for both NASTRAN
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and FINAS in all finite element work undertaken in the present study.
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Fig. 3.1: Modified Newton-Raphson incremental-iterative procedure employed

in non-linear analysis
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Fig. 3.2 :  Incompatibility between web and flange element freedoms using the
parabolic isoparametric plane stress element
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data input, init'ialisution of vectors and matrices,
calculation of half band width from geometry

[

calculate E.SM. for first element of each type and
assign appropriate E.SM. to other elements, adding E.SM."
E.SM. to the half band S.SM. as soon as E.S.M. known

[
apply support fixities using spring K= 10® N/m
l

Gauss elimination on the stored half band S.SM. and store
only the reduced form and Gauss elimination factors

e

read load factor, tolerance and maximum permissible number
of iterations for current load increment

o

form global load vector from elemental loads, taking
residual nodal forces from previous iteration into account

reduce global load array by applying the stored Gauss
factors sequentially
I

solve for incremental displacements and reactions for ‘
this iteration

calculate total elastic stresses at sampling points and
reduce these to the von Mises yield surface as appropriate

l

[calculate equivalent nodal forces from reduced stresses. ]

-

\

iteration loop

compare equivalent nodal forces with applied loads (including
previous residual forces from previous iteration) on elements
and compare with the convergence tolerance for this
iteration

load incrementation loop

[ store residual nodal forces for use in next iteration

no

yes

print total displacements, reactions and stresses at
end of this load increment

end

Fig. 3.4 : Descriptive flow chart for elasto-plastic programme
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of the large displacement analysis option
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The effect of increasing initial crookedness in unrestrained beams in
FINAS onalyses
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Fig. 310 : Beam subjected to minor axis bending during imperfection
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Fig. 311: NEWMESH plot showing initial deformed shape of web and
crookedness of web/flange junctions
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CHAPTER 4

REQUIREMENTS OF THE EXPERIMENTAL PROGRAMME
AND CONSTRUCTION OF THE TEST RIG

This Chapter describes the general requirements and objectives of
the experimental programme and provides details of the test rig
developed to achieve these objectives.

4.1 General Requirements of the Test Programme

The primary aim of the experimental work was to provide information
on the minimum translational bracing stiffnesses necessary to afford
fully effective midspan lateral restraint to simply-supported steel
beams. The forces developed in the bracing during testing were also
required. Initially, both central point loading and uniform moment
Toading conditions on the beams had been envisaged but the large amount
of time spent on the design, construction and alteration of the test rig
resulted in a curtailed experimental programme concerned only with
central point loading.

As demonstrated by the classical buckling analyses for these two
Toading conditions in Chapter 2, the maximum efficiency of a single
translational restraint is achieved when the compression flange of the
primary element is braced. It was decided that this level of bracing
attachment should be employed throughout the experimental programme.

Although compression flange bracing was to be employed in each
test, the degree of restraint afforded by the bracing {as denoted by
A) was to change from one test to the next. Consequently, some means
of providing variable restraint stiffness had to be devised. Likewise,
test spans had to be variable in order that beams of different
slenderness could be tested. Finally, load was to be applied at either
~ the shear centre or compression flange level of the test beam.

A1l tests were to be carried out under displacement rather than
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load control as the ability to attain and pass a test beam's
experimental critical load before entering the post-buckling phase was
required. Displacement control was achieved using the "loading"
apparatus described later in this Chapter; hence any subsequent
reference to beam "loading" should be interpreted as meaning the
application of an increment of enforced displacement at a point on the
beam and in the stated or implied sense of the applied "loading".

In order that the 1imits of applicability of the test results
could be assessed at the conclusion of the experimental programme,
it was imperative that details be recorded of actual support conditions,
the effect of secondary restraint exerted on the beam by loading devices
and other instrumentation and the maximum rate of straining employed in
the tests. The detrimental effect of initial material and geometric
imperfections on the load-carrying capacity of beams was emphasised in
Section 1.2.2 . Consequently, measurement of geometrical imperfections
and the magnitude and distribution of residual stresses in the beam was
also required. Where stress-relieving was considered necessary in order
to reduce the high levels of locked-in stresses, details of the process
were to be obtained. Kitipornchai and Trahair® noted that the results
of several earlier full-scale tests were difficult to interpret because
some or all of these details had either not been measured or not been
reported.

In addition to these physical requirements of the test programme,
it was imperative that the cost of the programme be minimised. Model
beams had been successfully used in previous lateral-torsional buckling
studies conducted by Massey47, Hartmann6, F]int59, Traha1r3 and
Litle et a1%0. As in the present study, cost and ease of testing had
consistently been noted to be important considerations. For these
reasons and because of the considerably reduced floor area required for
a model beam test programme, this type of study was preferred to a
series of full-scale tests. However, prior to the planning of the
experimental wokk, a review of the effectiveness of previous small-scale
model studies was considered necessary.




4.2 The Suitability of Model Tests for the Prediction of the
Lateral-Torsional Buck]ing Behaviour of Steel Beams

As noted in previous Chapters, the present study involves both
geometrical and material non-linearity as attention is focussed on beams
of short to intermediate slenderness. Hence failure is not confined to
lateral-torsional buckling within the elastic range; inelastic failure
jis possible for more stocky beams. Harris?’ has noted that the
presence of material non-linearity causes particular problems as this
must be correctly modelled for the small-scale structure to be useful in
predicting the behaviour of the prototype.

Dux and Kitipornchai4 have argued that all inelastic lateral-
torsional buckling tests should be performed on full-scale beams because
inelastic behaviour is influenced by material and geometrical
imperfections, whilst Nethe\rcot40’41 has shown that residual stresses
cause significant reductions in the inelastic failure loads predicted
by classical buckling analysis. Inevitable differences between the
residual stress distributions present in model and full-scale beams were
stated by Kitipornchai and Trahair® as one of their main objections to
the use of small-scale models under inelastic conditions. However, their
conclusions following a series of full-scale tests on four as-rolled and
two annealed beams indicated that the effect of the residual stresses
was much less significant than that due to geometrical imperfections.
Reference was also made® to the discontinuous nature of the yielding
process and hence to the physical impossibility of allowing for scale
effects in the formation of yield planes in the model and prototype.

Reiterating doubts expressed in Ref. 5, Mi11s98 has stated that
buckling and initial yielding phenomena, which are a function of the
initial state of stress, cannot be investigated using small-scale
models. However, various measurements of residual stresses in as-rolled
and welded beams have served only to illustrate the randomness both
of patterns and magnitudes of residual stresses in these beams. Any
subsequent handling of the beams causes a degree of stress-relieving
and therefore the final distribution of residual stresses within an
" erected steel member is so unpredictable that the philosophy of
neglecting residual stresses and making some allowance for this omission
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by using enhanced values of other initial imperfections has obvious
attractions. ' .

Similarity problems are made more acute by the unique yielding
and strain hardening properties of structural steel. Machined sections
of the more readily worked phosphor bronze have been used in the past
in an attempt to model the plastic behaviour of steel; however, the
relatively short yield plateau and high strain-hardening rate exhibited
by this material result in an unacceptable incompatibility between
prototype and model. Plastics too, though easily machined, are
unsuitable due to the large strains which accompany first yield and to
their frequent brittleness at high strains. They are also susceptible
to creep at room temperature.

Trahair3’30

, reporting the results of a series of tests on

slender aluminjum I-section model beams has noted that the die-quenched
material used was chosen specifically for its high 1imit of proportional
stress and its low modulus of elasticity. This combination allowed
tests to be carried out over a wide range of beam slendernesses, yet
permitting all to be completed within the elastic range. Hartmann®
and F1int>9 employed stainless steel and aluminium alloy model beams

respectively in studies again concerned only with elastic behaviour.

The use of steel for both the model and prototype clearly fulfils
the similitude requirements, although it must be conceded that
fabrication of the models is both labour-intensive and time-consuming.
Details of the fabrication of the model steel beams used in the present
study are given in Chapter 5, where several alternative methods of
fabrication are discussed.

Only a few studies concerned with the inelastic behaviour of model
steel beams exist47’96’98'101, and of these, only that of Massey47
has been concerned with the inelastic lateral-torsional behaviour of I-
beams. Although Massey's experimental programme has been severely
criticised by Lay, Galambos and Schmidt®?, it should be noted that the
use of model steel beams was not being questioned; rather, they
questioned the validity of Massey's fundamental assumption that the
" force required to hold the midspan section of an I-beam completely fixed
against out-of-plane movement was synonymous with the force developed in
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effective elastic bracing.

A recent programme of research into the effects of buckling in
shell elements of offshore structures concludedl02 that "research
using small-scale models has shown that this technique, with its
intrinsic lTow cost, could be used to provide a wider base of information
from which to develop an understanding of, and simple methods of
analysis for, offshore welded steel structures". The problems of
inelastic material behaviour and large deflections previously noted
(Chapter 3) to exist in the present study were also experienced in that
research, thereby increasing the importance of the above conclusion in
relation to the present study and, in particular, to the model beam test
programme. Owens and Dow]ingloo, in a short discussion of the
benefits of model steel structures, have noted that "with care, model
tests on steel structures can be a valuable aid in understanding elasto-
plastic behaviour".




4.3 Reguirements of and Construction of Test Apparatuslfor the Model
Beam Test Programme

Following the decision to adopt a model beam test programme as
the basis of the experimental investigation into the adequacy of
restraint systems, a test apparatus capable of providing the necessary
support, loading and restraint conditions noted in Section 4.1 was
required. Details of the development of the apparatus and its
associated instrumentation are presented in this Section. Fabrication
of the model beams, the determination of their material properties and
initial geometric imperfections and the experimental procedure employed
in the tests are described in Chapter 5.

4.3.1 The Test Frame

The fundamental requirements of the test rig were that it should
provide both a rigid reference frame from which to measure displacements
and a reaction frame from which load could be applied to the test beam.
Tests were to be conducted on model beams of low to intermediate
slenderness in the range 6 <R2<20 under central concentrated loading.
For the predicted typical material and geometric properties of the model
beams, this was to be achieved by testing beams of span 600mm to
1000mm.

An U-frame from a previous experimental model bridge investigation
was adopted as the basic structural frame. Several modifications to
the frame were made during a series of fifteen preliminary tests.

The frame, incorporating some of these modifications, is shown in Fig.
4.1 . Additional refinements are described in the remainder of this

Chapter.

4.3.2 End Supports

The end supports were to be capable of providing simply-supported
end conditions with respect to both in-plane and Tateral bending
actions, warping and twist. Fig. 2.1 illustrates these requirements for

lateral bending, warping and twist.
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The in-plane requirements were met (Fig. 4.2) by supporting the
beam on hardened steel rollers; one roller was positioned in a V-groove,
thereby effectively providing knife-edge support at one end of the
beam; the other end of the beam was supported on an identical roller,
itself placed on a ground, horizontal surface. Hence, the support
conditions for in-plane bending closely approximated the theoretical
simply-supported condition by allowing shortening of the span
accompanying in-plane curvature.

The requirements of Fig. 2.1 were fulfilled by the adjustable
knife-edged plates shown in Fig. 4.2 . These plates allowed the flanges
of the beams to rotate independently in their own planes so that the
beam was free to warp. Lateral displacement and twist were prevented,
although a small gap of 0.05mm was left between the flanges and knife-
edge at one side of the beam to ensure that the knife-edges did not
"bite" into the flanges, thereby providing unwanted rotational restraint
to the flanges in plan. To further reduce this tendency, a small
quantity of grease was applied at each of the four points of contact
between the flanges and knife-edges on each support frame.

In addition to providing simply-supported end conditions in plan
and elevation as described above, it was necessary to ensure that the
four corners of the mid-surface of the web at the supports were coplanar
in the vertical plane. This configuration was employed throughout the
experimental and theoretical work to provide compatibility of support
conditions between the mathematical and physical models, thereby
Justifying direct comparison of numerical results provided that other
similitude requirements were met. In a series of nine experimental
tests, Dux and Kitipornchai4 demanded verticality of the web at both
support and load points. This requirement imposed constraints on the
beam which would not occur in practice; twist and initial crookedness at
load points should be determined solely by the known end conditions and
measured distributions of initial twist and bow on the span. 1In
general, a vertically applied load will not act in the instantaneous
plane of the web at the loaded cross-section.

Due to small variations in flange breadths, it was not possible to
enforce verticality of the web at supports merely by ensuring that the
knife-edges were vertical and that the tips of the flanges touched these
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edges. Instead, it was necessary to use the web plumbing bracket shown
in Fig. 4.3 . A 1ightweigh£ two-vial spirit Tevel was mounted on an
aluminium bracket and accurate machining of the upper surface and nibs
ensured that the bubble on the transverse vial was central when the nibs
were placed against a vertical surface. The bracket was clamped to the
web by means of a set screw passing through a small (4mm diameter) hole
in the web and bearing on a similar backing bracket on the opposite side
of the web. The finite size of the bracket and spirit level block meant
that verticality of the web was checked at a point approximately 35mm
from the support and within the test span. This error was considered to
be acceptable because measured imperfections in the webs of the test
beams were small and also because 35mm was a relatively small proportion
of the test spans which ranged from 600mm to 1000mm.

Fig. 4.4 shows the web plumbing bracket in use. The bracket has
been Teft in position after initial plumbing of the web and the
photograph shows the beam at a later stage in the test when lateral
deflection of the compression flange and twist had reached noticeable
levels. The transverse vial bubble is not central, indicating that the
web was no longer vertical at this cross-section; however, the bubble in
the longitudinal vial has remained central, indicating 1ittle in-plane
deflection at midspan. The end support frame of Fig. 4.2 is also shown
in Fig. 4.4 .

4.3.3 Loading Apparatus

As noted in Section 4.1, only the case of central point loading
was considered in the experimental programme. However, the ability
to apply load at either shear centre or compression flange level of the
cross-section was desired. Additionally, it was imperative that the
transverse concentrated load should always act in a vertical direction.
This had been observed by Lindnerl03 to be a critical requirement in
lateral-torsional buckling tests as a theoretical analysis had revealed
that apparent critical loads for beams not consistently loaded in the
vertical plane could exceed the "true" elastic critical loads by as much
as 150%. Unfortunately, details of the theoretical analysis were not

given.
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As a corollary to the requirement for vertical loading throughout,
there was a need to minimise the lateral restraint afforded to the test
beam by the loading apparatus. A1l lateral restraint was to be provided
by the bracing device described in Section 4.3.5 so that both the
bracing force and bracing stiffness could be measured. Conversely, the
stability of the beam was not to be adversely affected by any
unintentional lateral force or torsional moment arising from application
of nominally vertical loading.

The slotted pulley arrangement shown in Figs. 4.6 and 4.7 was
employed. A slot in the upper pulley of Fig. 4.7 was cut to the shape
of the cross-section of the test beam, allowing load to be applied
either through the shear centre (Fig. 4.6(a)) or through the junction
between the web and compression flange (Fig. 4.6(b)) depending on the
position of the slot relative to the centre of the pulley. Regardless
of the amount of lateral deflection or twist undergone by the beam, load
was always applied through the centre of the pulley. Frictional effects
in the lower pulley of Fig. 4.7 were reduced by the introduction of a
high quality ball bearing between the shaft and pulley. This helped to
minimise torsional restraint on the beam by allowing the upper pulley to
rotate as the angle of twist on the beam tended to increase.

In preliminary tests performed during development of the
experimental apparatus, a proving ring with a maximum rated load of
400 1bf (1780 N) was used to measure applied loads. The arrangement
is shown in Fig. 4.8 . Load was applied to the beam by tightening the
nut below the reaction plate as indicated in the figure. Deformation of
the ring under load was measured by a linear variable differential
transfdrmer (LVDT) linked to a PDP-8/L data logging system. The LVDT
had replaced a dial gauge (reading to 0.002mm) because it had been found
to be both more sensitive and more convenient as lateral deflections of
the beam were also being logged by the PDP-8/L. A major advantage of
electrical sensing of both.lateral displacements and load was that the
readings could be taken almost simultaneously by a pulse from the
logger. This was important in the present study due to the rapid
changes in some or all of these quantities at loads close to the
critical load and in the post-buckling range.

The LVDT used had been chosen to suit the proving ring's maximum
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diametric extension of approximately 2.9mm at its rated -load. The full
travel of the LVDT was about 5mm and consequent1y only the middle 60% of
its range was utilised, thereby ensuring excellent linearity of
displacement versus output signal response in use. The ring was
calibrated in a Tinius 0lsen 200,000 1bf "Electomatic" Universal Testing
Machine and excellent repeatability of readings was achieved. Moreover,
the calibration showed an almost perfectly linear relationship between
applied load and data logger reading.

The need to maintain verticality of applied load and to minimise
any lateral restraining or destabilising forces associated with load
application has been stressed. Although use of the pulley system (Figs.
4.6 and 4.7) ensured that load was consistently applied through the
centre of the pulley and that torsional restraining or destabilising
moments were minimised, it did not guarantee that loads would be applied
vertically. For this reason, controlled transverse movement of the
proving ring had to be permitted. This was achieved by means of four
hardened steel balls running in two V-grooves as shown in Fig. 4.8 .
After each increment of load, the system was allowed to settle and the
lateral displacement of the beam due to the increment was recorded. The
base of the proving ring was then moved by this amount in the same
direction so that the proving ring was positioned directly below the
point of loading on the beam at the start of the next increment. In
practice, this positioning became more difficult with increasing applied
load and at high loads it was frequently impossible to move the base
without disturbing the beam, thereby upsetting lateral and vertical

deflection readings.

Another serious disadvantage of the proving ring system was that
the self weight of the ring and base plate (totalling about 27 N) acted
as a preload on the beam. Although this force was generally negligible
in relation to the failure loads of the test beams (see Chapter 6),
its presence demanded that all loads recorded by the data logger be
increased by 27 N. For these reasons and because the proving ring
was cumbersome to set up, an alternative load transducer was selected.

" A Statham "Gold Load Cell" with a maximum rated load of 500 1bf
(2224 N) was substituted for the proving ring. As before, automatic
recording of load was possible via the PDP-8/L data logger as operation
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of the cell was again based on an LVDT within the cell. During tests,
applied load was continuously displayed by a digital volt meter (DVM)
connected to the data logger. This facility was required in order that
Toad increments of known magnitude could be applied. It was also very
useful at the onset of instability and during post-buckling deformations
when small increments of enforced displacement produced sudden
reductions in the load sustained by the beam.

The cell had previously been used in compression and so adjustment
of the LVDT within the casing was hecessany until a linear load versus
output signal response was obtained for the cell acting in tension.
Several calibrations were performed during the series of preliminary
tests with a further two calibration checks being performed during
the main series of tests reported in Chapter 6. Details of the initial
cell calibrations are presented in Section 4.4 . However, it is
sufficient to note here that the cell was found to be highly reliable
and gave excellent repeatability.

In order that the transverse position of the load cell could be
altered to maintain verticality of applied load, a "follower" carriage
for the cell was devised and constructed. This is shown in Fig. 4.5 .
The small load cell was able to be bolted to the carriage, thus
providing a much less cumbersome arrangement than had been possible with
the proving ring. An additional benefit was that the weight of the cell
was carried by the carriage and consequently the only preload applied to
the beam was the negligible self weight of the wire strand loop and
Tower pulley. Details of the carriage are given in Fig. 4.9 . The same
two pulley system of Fig. 4.7 was employed but in this case load was
applied to the beam by tightening the nut under the top cross member as
shown in Fig. 4.9 . The lower pulley of Fig. 4.7 appears at the top of
Fig. 4.5 and again in Fig. 4.9 . Adjustment of the transverse position
of the carriage in sympathy with the recorded lateral deflection of the
beam was made possible by the screw drive shown in Figs. 4.5 and 4.9 .
Transverse movement of the carriage was detected by a Mercer dial gauge
reading to 0.0lmm (Fig. 4.5). This guage has been omitted from Fig. 4.9
for clarity.

A recurrent fault in one of the DVM printed circuits in the PDP-8/L
data logger caused several delays in the test programme and eventually
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the DVM became so unreliable that a Solartron 3530 "Orion" data logging
system was employed instead. Both the scanning and printing speeds of
this system were superior to those of the PDP-8/L and the electronics
appeared subject to less temperature drift during long tests. Up to
four channels could be monitored simultaneously and continuously,
allowing, for example, the effect of load application on lateral
displacement to be examined. A cassette tape facility in the data
Togger allowed calibration factors, scanning intervals and gauge factors
for foil resistance strain gauges to be stored for use in subsequent
tests. Use of the Statham Toad cell in conjunction with the Orion data
logger proved completely satisfactory during the experimental programme.

4.3.4 Measurement of Beam Displacements

Measurement of both lateral and vertical displacements at certain
points on the test beams was required. Two methods of measuring
deflections were available: Mercer mechanical dial gauges reading to
0.0lmm and with a plunger travel of about 50mm; and Novatech type RR102
electrical displacement transducers with the same travel and a
resolution of approximately 0.001 inch (0.025mm). Both of these types
were used, the former being preferred for measurements where the rate of
change of displacement, both during load application and in the post-
buckling condition, was small. Dial gauges allowed direct readings to
be taken without the need for a data logger; displacement transducers
were to be preferred when simultaneous readings of rapidly changing
loads, displacements and strains were required. In general, there was a
greater need for rapid sensing of lateral than of vertical displacements
and the use of dial gauges was restricted to measurement of the latter

quantity.

Measurement of vertical deflection of the beam at midspan was
carried out by a dial gauge suspended by means of a magnetic base from
one of two angle-section side rails connected to the frame as shown in
Fig. 4.10 . Due to the presence of the upper loading pulley at midspan,
it was not possible to measure vertical deflection at exactly the same
" point. In practice, "central" vertical deflection was measured
approximately 10mm from the midspan cross-section. However, elastic
theory predicts negligible differences between the true midspan
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deflection and the def]ectiqn at a point 10mm from midspan. The slight
error increases with decreasing span as shown in Table 4.1, but in all
cases the differences are negligible.

Table 4.1: Error in Measuring Vertical Deflection 10mm from
Midspan

Ratio of measured to midspan vertical
Model beam test deflection (based on Engineer's Theory of
span (mm) Bending and vertical deflection measured
10mm from midspan)

600 0.9984
800 0.9991
1000 0.9994

The values shown in Table 4.1 were derived using the moment-area
theorem. Details of the calculation are shown in Appendix III.

Section 1-1 in Fig. 4.10 shows the method of transmitting vertical
deflection of the beam to the plunger of a dial gauge. Use of the rigid
arm was necessary due to the size of the dial gauge in relation to the
gap in the loop formed by the wire strand. A ball embedded in an
aluminium block, itself glued to the underside of the tension flange,
made point contact with a horizontal milled surface at the end of the
arm remote from the dial gauge. As shown in Fig. 4.10, the vertical
position of the ball does not uniquely determine the vertical position
of the section centroid (coincident with the shear centre in this case)
and consequently lateral deflections of the flanges relative to their
initial positions were recorded in order that centroidal deflections
could be deduced from dial gauge readings. The geometrical relationship
between deflection and rotation of the beam and the measured vertical
deflection of the ball is derived in Appendix IV(a). The correction
indicated by this relationship was applied to all measured vertical
deflections. The resulting vertical deflections were then consistent
with centroidal deflections obtained from FINAS and NASTRAN finite

element analyses.

Further preliminary tests indicated that "corrected" experimental
values of centroidal vertical deflection were consistently about twice
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as great as theoretical predictions. Fig. 4.11 shows the observed
elastic Toad-deflection behaviour of four 600mm‘span test beams. Their
Toad-deflection characteristics differ unacceptably from the predictions
of elastic beam theory for a beam with the average geometrical
properties of the four test beams. Allowance for the effect of shear
deformations contributed less than an additional 5% to the bending
deflections on the 600mm span and consequently this was not the major
source of error.

Several other possible reasons for the discrepancy were
investigated and eventually the problem was traced to deflection of the
test rig under load: the overall rigidity of the test frame had been
increased by attachment of the two side rails (Fig. 4.10) and therefore
appreciable deformation of the outer frame was considered unlikely.
However, when inverted dial gauges clamped to the side rails were used
to measure vertical deflection of the support plates, significant
deflections were observed during beam loading. A strategy of
measurement rather than attempted prevention of these deflections was
adopted and in all subsequent tests the vertical deflection of the
kweb/compression flange junction of the test beam was recorded at each
end support.

In the determination of actual centroidal vertical deflections of a
beam at midspan, two corrections to measured midspan vertical
deflections were required: first, the average support deflection was
calculated and subtracted from the measured deflection of the ball at
midspan to give the actual midspan movement of the ball due to
deformations of the beam; the centroidal deflection of the beam was then
calculable from the measured midspan angle of twist and the twist
correction 'T' derived in Appendix IV(a). Corrections 1 and 2 in
Appendix IV(c) illustrate the application of these support and twist
corrections to actual test data.

Fig. 4.12 shows support and midspan deflections measured during a
preliminary test on a 600mm span beam. Corrected midspan deflections
are seen to be approximately 18% larger than those predicted by beam
theory. Although still large, this error was assumed to be cumulative
" from small errors in measured E and I values, measured deflections and
the inherent conservativeness of deflections predicted by simple elastic
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beam theory. Subsequent comparison of finite e}ement and experimental
deflections in the main series of model tests showed excellent agreement
(Chapter 6).

At the commencement of the series of preliminary model tests,
a system of measurement of lateral deflections similar to that employed
11 yas envisaged. This permitted lateral deflections of the
flanges to be measured using dial gauges, and corresponding angles of
twist calculated. A free-standing frame was constructed to straddle the
test frame and to support the pulley and dial gauge system shown
schematically in Fig. 4.13 . Wire strands soldered to the flanges were

by Massey

tensioned by counterbalance weights and a dial gauge was connected "in
series" with each strand to measure lateral deflection of the flange.
Frictional effects at the pulleys were reduced by running each on a ball
bearing.

In setting up this system prior to each of the few preliminary
tests in which it was employed, a small spirit Tevel was suspended
from the taut cross wire on each side of each flange and the level
of the pulleys adjusted until the wires were horizontal. This operation
could only be carried out when the beam and its end support frames
had been set up according to the web plumbing procedure described in
Section 4.3.2 . Unfortunately, the process of Tevelling the cross wires
of Fig. 4.13 demanded vertical adjustment of the four pulleys and caused
unavoidable disturbance of the test beam. Consequently, the need for
the beam's initial midspan crookedness and twist at the start of a test
to be determined solely by its initial geometrical imperfections and
support conditions was violated.

Moreover, at the outset it had been anticipated that the system of
Fig. 4.13 would later be modified to provide midspan restraint of
predetermined stiffness to the test beam. An arrangement similar to
that employed by Massey in Ref. 47 had been envisaged in which the
strands would fulfil a dual purpose by pfoviding both the required
restraint stiffness and the mechanical 1ink to the appropriate dial
gauge. The pitfalls of Massey's bracing system, described in Chapter 1,
were to be avoided by providing restraint of finite rather than infinite
" stiffness. Further examination revealed the apparent impossibility of
reconciling the need for wires of low axial stiffness anchored to an
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immovable point on the test frame with that for accuraté measurement of
lateral deflections, requir{ng freedom of movement of the beam and
counterbalance weights. Furthermore, preliminary calculations based on
values of Acrp for elastic systems from Chapter 2 suggested that
typical axial stiffnesses of wire strand were far in excess of the
restraint stiffnesses to be investigated in the main series of tests
(see Section 4.3.5).

For all these reasons, and because anticipated frictional effects
in the dial gauges and at the pulleys would have imposed unquantifiable
midspan restraint to test beams, all lateral deflections at midspan and
at one quarter point were subsequently measured by 50mm travel Novatech
displacement transducers clamped to the side rails as shown in Fig.
4.14 .

To accommodate vertical movement of the flanges relative to the
transducers, a vertical cross piece was attached to the tip of the
stainless steel shaft and, to prevent rotation of the central shaft, a
second shaft was attached to the cross piece and guided in a slotted
block affixed to the body of the transducer. In this way, the cross
piece remained vertical as shown in Fig. 4.14 . A lead provided the
electrical connection initially to the PDP-8/L and subsequently to the
Orion data logger, enabling simultaneous readings of load and lateral
deflection to be taken.

In order to minimise the lateral restraint or destabilising force
imposed on the flanges by the transducers, the compression return
springs within the transducers were cut and the remaining piece of
spring stretched to the length of the original spring. The spring
stiffness was consequently reduced to 0.06 N/mm, representing only 0.23%
of the smallest restraint stiffness employed in the main series of
tests. Nevertheless, further precautions were taken to ensure that the
restraining or destabilising influence of the transducers was minimised
during tests. These precautions are described in Section 5.7 .

4.3.5 The Provision of Finite Lateral Restraint Stiffness at Midspan

As noted in Section 4.1, the experimental programme was to be



concerned with the minimum requirements of compression flange lateral
bracing necessary for the cohp]ete midspan restraint of simply-supported
beams under central point loading. Stiffness of the single midspan
restraint was to remain constant during each test but was to vary from
test to test to allow the effectiveness of different restraint
stiffnesses to be assessed for beams of constant span. A direct method
of measuring forces induced in the bracing was also required.
Criticism®? of Massey's experimental method*’ of measuring lateral
bracing forces was discussed in Section 1.2.5, where the importance of
measuring bracing forces associated with restraints of finite rather

than of infinite stiffness was emphasised.

Adoption of a modified form of Massey's bracing system, combining
measurement of lateral deflections with the provision of midspan lateral
restraint was discussed in the -preceding Section. Development of such a
system was halted for the reasons stated there. Separate systems to
perform these functions were then developed.

On the preliminary assumption that restraint stiffnesses of the
same order of magnitude as those required for the enforcement of second
mode buckling in Chapter 2 would be used in-the test programme, it
was estimated that the system of bracing would be required to provide
minimum values of A of about two or three (Fig. 2.22). The definition
of A in egn. (1.2) and the predicted typical geometrical properties of
the model” beams were used to‘deduce that the minimum restraint stiffness
required of the bracing system would be approximately

 48EIL, Awin
e”‘?ﬂ.’l

K min

_ 48 x 205000 x 583 x 2 = |5 N/mm
(1000)?

Axial stiffnesses of different lengths of wire strand were
calculated to examine the possibility of compression flange restraint of
this stiffness being provided by the strand. Taking Young's Modulus of
the strand to be that of mild steel (typically 205kN/mm2), the axial
stiffness of a strand of 0.5mm effective diameter and of length L=0.5m

 was

K = AxE - m x 0.5" x 205000
L 4 x 500
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80.5 N/mm

which is seen to be considerably greater than the minimum estimated
stiffness of 11.5 N/mm. The use of wire strand or fine pijano wire was
therefore ruled out on the grounds that an excessive length of small
diameter wire would have been required in order to provide the required
minimum stiffness.

As considerably sma]Ter lateral stiffnesses were evidently
attainable by utilising the flexural rather than axial properties of
potential bracing elements, a system based on the flexural stiffness
of a cantilever was devised in which a two-pronged "bracing fork"
provided a predetermined lateral restraint stiffness to the compression
flange of the test beam. The principle of operation of the system is
shown in Figs. 4.15 and 4.16 .

Each tip of the compression flange made contact with the side
of a length of 3/16 inch (4.762mm) diameter Stubbs steel rod ® , the
upper, threaded portion of each rod being screwed into an 18mm diameter
rigid cylinder ® . The cylinders were secured to a close tolerance
block © by nuts (@ to form the bracing fork assembly. Ground
vertical faces on block © permitted only vertical sliding relative to
the ground, close tolerance inside faces of the side walls ® , rear
plate ® and front cover plate (not shown). Vertical movement of the
bracing fork assembly (® -(@ ) was controlled by four threaded rods (®
which penetrated the box through tapped holes in the top plate and
bottom returns of the side plates. These allowed clamping of the
bracing fork assembly at any desired level relative to the beam, a
necessary requirement as the lateral restraint stiffness of the bracing
was determined by dimension 'ag' (Fig. 4.16), the distance from the
root of the cantilever to the point of contact between flange and fork.

Neglecting the effect of shear deformations, beam theory predicted
the lateral stiffness of restraint provided by the fork to be

3 (EI)'Fork
O.f,a

K =

Eqn. (1.2) could then be used to calculate the required active leg
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Tength 'ag' for a given value of A:

) EDe. |2
(lf. = £ (‘67\ (Eln)hemﬂj | -.-(4-1)

The bracing "box" containing the sliding bracing fork assembly was
supported by two brackets clamped to the side rails as shown in Fig.
4.16, thereby preventing movement of the bbx relative to the test frame.
Constant lateral restraint could only be provided if the bracing forks
moved in sympathy with the vertical movement of the beam's compression
flange in order that dimension '

ag' remained constant during the test.
At the end of each increment of applied load, the required vertical
movement of the forks was calculated by the methods described in
Appendices IV(b) and IV(c). The forks were then repositioned according
to this calculated movement so that the correct restraint stiffness was
achieved at the start of each load increment. Vertical movement of the
forks was measured by the dial gauge shown in Fig. 4.16 . The specimen
calculation labelled "Correction 3" in Appendix IV(c) shows that the
effect of the twist correction T, is insignificant for small angles of
twist at midspan. Only in the proximity of the buckling load and in the

post-buckling range does the T, term play a significant role.

Although the dial gauge shown in Fig. 4.16 allowed the vertical
position of the fork to be set, it did not eliminate the possibility
of a slight rotation of the bracing fork in the plane of the beam cross-
section. The accurately machined and ground deep vertical faces of
block © (Fig. 4.5) and those of the enclosing four plates of the box,
coupled with the close tolerance fit-up achieved between these parts
ensured that rotations of this nature would be minimised. Nevertheless,
any such rotation would have allowed apparently free lateral deflection
of the beam f]ange,'as the flange movement would not have been opposed
by the flexural stiffness of the prong. Consequently, small movements
of the flange giving rise to no change in bracing force would have been
possible. A spirit level was attached to header block © by means of
the bracket shown in Fig. 4.17 . Use of the spirit level during
enforced "vertical" movement of the bracing fork ensured that the prongs
remained truly vertical; therefore all lateral flange movement was
accompanied by bending of one of the prongs. The completed bracing fork
system is shown in use in the photographs of Figs. 4.18 to 4.21 .
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Forces induced in the bracing forks as a result of their
restraining action on the beam were deduced from recorded strains in
small electrical resistance foil strain gauges, () in Fig. 4.15 .
These gauges had an active length of 3mm, their longitudinal axes
running parallel to the length of the prongs. Four gauges were stuck to
the two prongs of the bracing fork using the recommended cyanoacrylate
adhesive and no peeling of gauges was observed during the tests. The
gauges were so arranged (Fig. 4.16) as to record the maximum strains in
the prongs at a level 6mm below their fixed ends, these strains arising
from lateral loading applied by the beam flange. The centres of the
four gauges lay on a line perpendicular to the longitudinal axis of the
test beam in plan view.

Initially a Vishay P-350A Digital Strain Indicator was used to
read each of the four strain gauges in turn. An i