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SUMMARY

This thesis presents the results of an experimental
and theoretical study of reinforced concrete skew slabs
designed using the elastic stress fields in conjunction
with the vyield criterion for reinforced concrete slabs.
The elastic stress field is obtained from finite element
program using uncracked stiffness and the yield criterion

adopted is given by

(Mxy + M*&sina cos & )2 = 0

where My, MY and Mxy are the elastic applied bending and
torsion moments normal to the x and y axis at the
ultimate load. M*y and M} are the ultimate flexural
moment capacities of the section normal to the x and skew
axis respectively and , is the angle of skew between x

and , axis.

The experimental work was conducted on a "large
scale" skew slabs. The models included slabs of uniform
thickness and ribbed slabs. The major parameters were the
angle of skew and the arrangement of steel in the slab

viz orthogonal or skew directions.

The theoretical work was done using the nonlinear
finite element program based on the isoparametric Mindlin
element. In order to allow for the development of cracks
through the thickness, the "layer approach" was adopted.
Nonlinear effects due to + the vyielding of steel,

cracking and crushing of concrete were included. A



nonlinear finite element program was used to study the
spread of yielded zones in the slab, the effect of fixing
the direction of crack at its first appearance,
prediction of the true deflection at working loads from
the elastic deflection at working loads and a careful

study of the yield criterion itself.

The results show that the design procedure adopted
is viable but care has to be taken to ensure that punching

shear failure does not occur at obtuse corners.
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NOTATION

a' The depth from the compression face to the neutral axis.
A The area of a rigid region.
Aj The Equivalent area of steel of i~th layer.

Actx» Acty The effective concrete areas in tension per unit width in
the x and y direction.
Ay The equivalent area of steel normal to the crack.

Ag Area of steel in the Longitudinal direction

ax. Ay The spacing of cracks in the x and y directions.

Ay Area of steel in the « direction.

a Maximum cracks spacing.

b The section breath.

bg Body forces.

[B] Strain matrix.

[Be] Strain matrix associated with fiexural deformation.
[Bp] Strain matrix associated with plane stress deformation.
[Bs] Strian matrix associated with shear deformation.

C Shear strain coefficient.

Cy, Co Coefficients for the tension stiffening.

D The flexural stiffness per unit width.

{D] Elasticity matrix.

('] The instantaneous elasticity matrix.

[Dc1 The elasticity matrix related to inplane stresses for

cracked concrete

(Del Rigidity inplane matrix for steel layer.
[Dp] Elasticity matrix related to inplane stresses.
{Dg] Elasticity matrix related to transverse shear stresses.

[D] Rigidity inplane matrix for cracked concrete.



The effective depth.

Depth to the neutral axis.

The thickness of i—th layer

Young's modulus.

Young's modulus of concrete.

Young's modulus of steel.

Young's modulus in X and Y directions in an isotropic
plate.

Young's modulus in the lateral plane.

Bond stress.

Bearing stress.

Compressive stress in concrete at seviceability.
Compressive strength of concrete.

Cylinder compressive strength of concrete.

Cube compressive strength of concrete.

Equivalent biaxial compressive strength of concrete.
The steel force per unit width of i~th layer.

The stress in i-tR layer of steel inclined an angle xpi to
direction normal to the crack direction.

The resolved steel force per unit length in the.
n-direction.

Discontinuity stress.

The stress in the equivalent area of steel normai to the
crack.

Modulus of rupture.

The tensile stress in the steel.

The compressive yield stress in the steel.

The yield strength of the steel.

The x-steel stress.

The x-steel stress.



{F} Vector of nodal forces in the cartesian coordinate system.

{F;} Vector of nodal forces in the local coordinate n,t.
G Shear modulus.

h Plate thickness.

H! The strain hardening parameter for steel.

1 Moment of inertia.

| Moment of intertia of a cracked section.

Ig Gross moment of inertia of uncraked section.

Iert Effective moment of inertia of a section.

[J] Jacobian matrix.

[J]‘1 Inverse of Jocobian Matrix.

Ky The tranverse shear stiffness for cracked section.
Kp Constant to account for the distribution and surface

Charactesistic of bars for the bond stress.

K Coefficient depends on the slab shape, load patterns and
support condtion

(k] Stiffness matrix.

[K]1€ Stiffness matrix related the local axes.

Kq, Kg Coefficients depend upon the probability of exceedence.

Ly The length of the slab.

m Ratio between tensile and compressive strengths of
concrete.

M Bending moment at any stage of loading.

Mer Cracking moment.

My, My, Mxy Applied moment component at a point in cartesian

coordinates.
Mx*' M«* Design moments in X, « direction respectively.
Mgo* Design moment in y direction.
Mn* The yield strength of the section at the yield line.

Mp, Mg, Mpe Applied moment components at a point in local



coordinate system n,t.
My, My, Myy Applied moment components at a point in u, v coordinates
system.

Ny, Ny, Nxy Inplane forces at a point in the Cartesian coordinate

system.
p The applied load.
Per Cracking load.
Psr, Service deflection load.
Py First yield load.
Py Ultimate load.
q The load intensity.

Qg Qy Shear force components in cartesian coordinate.

Qx, Q%' Qy, Q'y The shear force acting on the sides of the element.
Re Cover ratio.

S The loaded surface area.

{?} Stress vector.

Sx, Sy The effective shear moduli in the x and y directions-

[Tp] The transformation matrix for boundray condition.
{T] The transformation matrix for cracks.

au The total internal potential energy.

AV The total external potential energy.

v The volume of the plate.

u, v, w The displacements at point in the plate with coordinates
(x, vy z).

ug, vg, wo The displacements at the plane reference plane.

W Crack width.

Va The transverse shearing force for cracked section.
Wnax Maximum crack width.

W The total load acting on the element.

X, ¥y, z Rectangular cartesian coordinates.



X, ¥, 2z Distances along x, y, z respectively.

Xy Depth of stress block.

z The level at a point in x,y cartesian system of
coordinates.

Zj The distance from the reference plane to the layer centre.

« Angle of skew.

i The angle between the x-direction and the i-th layer

“ni The angle between the normal to the crack and xjTth steel
layer.

B Shear retention factor.

¥ Shear shape factor.

’xz, ”yz Shear strain compoments in the cartesian coordinates.

“nz, ”tz Shear strain compoments in the local coordinates n,t.

{6} Nodal displacement vector in the cartesian coordinates.
{6'} Nodal displacement vector in the local coordinates n,t.
A Shear displacement.

€f The ficitious strain

€c The current strain.

€n, €t, €pt Strain components in n,t coordinate.
€x, €y €xy Strain components in cartesion coordinates.
€4 The strain in the direction of an ith layer of

reinforcement at angle «; to the n- direction.

€m The strain at any depth from the compression face.

€p The peak strain

€erf Recorded strain at the previous converged configuration.
€y The steel yield strain.

Ae The incremental strain in the steel.

€ The strain vector.

€9 The vector of initial strains

£, ¢ Nondimensional local coordinate system.



Yb
vd

YbAn

VbAs

Px. Py
Px
{ot

1°0Y

oi
%gct
%n

e

Angle of principal plane.

The angle of crack with related to X-axis.

The rotations of the normal in the xz and yz planes
respecively.

The rotations of the normal in the nz and tz planes
respectively.

Poission's ratio.

Shear resistance of the slab.

Shear stress at design load.

Shear resistance of the beam considering effective steel
area.

Shear resistance of therbeam considering longitudinal area
of steel.

Shear stress.

Shear stress at ultimate load.

The transverse shear rotations in the xz and yz plane.
respectively.

Steel ratios in the X and Y direction.

Steel ratio in the « direction.

The stress vector.

The initial stress vector.

Stress at a point.

The incremental stress.

The octahedral normal streee.

The normal stress.

The peak stress.

9%+ 9y» 9xy Stress components in cartesian coordinates.

Oy, O,

T

(note; Txy has the same meaning of °xy)

The principal stresses.

Xy, Txz+ Tyz The shear stresses in Xy, xz, yz planes respectively.



Bar diameter.

Bar diameter in the x diretion.

Bar diameter in the « direction.



CHAPTER ONE

INTRODUCTION

Reinforced concrete skew slabs find extensive
application in bridges and possible application in
building floor systems. Present designs of reinforced
concrete slabs are based on limit state concepts so as to
ensure that the structure satisfies the prescribed "limit
state" requirements. Accordingly, two 1limit state
criteria have to be satisfied by such designs wviz: the
ultimate limit state and the serviceability limit state.
Most of the existing methods of slab design are based on
limit analysis concepts and concentrate exclusively on the
ultimate l1limit state. Thus the main concern of these
methods is the ultimate load for the slab, with empirical
rules (e.g. span/depth ratio....etc.) to ensure
satisfactory performance at the serviceability 1limit

state.

Apart from the code rules, the general design
methods available are:
(a) Yield Line method: In this method, a number of
collapse mechanisms compatible with the edge conditions of
the slab are used to derive the limit load. The true
collapse load corresponds to the collapse mechanism giving
the least load. This method provides an upper bound to the
ultimate load.
(b) Hillerborg's Strip method: In the simple version of
this method, a torsionless stress field, which is in
equilibrium with the externally applied load, is used to

calculate the necessary strength at various points in the



slab. This method provides a lower bound to the ultimate
load.

(c) Elastic stress fields: Another lower bound approach to
slab design, which 1is called direct design method and
used extensively in UK bridge design practice, 1is to use
an elastic moment field in conjunction with the slab's

yield criterion to design the slab.

The basic requirement by this approach is to
satisfy the equilibrium and the yield conditions. For
slabs the equilibrium equation to be satisfied (see

section (2.2.3.1)) is

9 2My 32 Myy 82My
=

axay | 3y (1.1)

X

where (Mg, My, Mxy) are the moment components at any
point on the slab and q is the lateral load. By adopting
linear elastic moment-curvature relationships, (section

(2.2.2) Egn (1.1) can be transformed to

3w 3w + e q
x x4y < 3y’

(1.2)

d
+
N

]

[w)

where w the lateral deflection and D is the isotropic

flexural stiffness of the plate.

The solution to the Eqgn (1.2) results in a set of
elastic stresses (Mg, My, Mgy) in equilibrium with

external loads.

The yield criteria for skew slabs (section (3.3))

is given by



(M*% - My + M% cos? )( M% sini - My) -

(MXY + M: sina cosa )2 = 0.0 (1.3)

where M*, and M} are the ultimate flexural moment capacity
of the section normal to x and & skew axis respectively.
a is the skew angle between the ®x and o axis clockwise

positive (from x axis).

For given ( My, My, Mxy)' the values of M*, and Mi
are calculated so as to satisfy the yield criterion Egn

(1.3).

This results in a possible lower bound approcach to

the design of reinforced concrete slabs.

The object of the present study is to critically
examine both experimentally and by numerical studies based
on nonlinear finite element analysis, the behaviour of the
skew slabs designed by direct design procedure. Attention
will be focussed on the behaviour of the slab at the two
important limits. Apart from the ultimate load, the
aspects of behaviour which will be studied in detail are:
(i) Spread of yielding in the slab.

(ii) Calculation of the "working load" deflection from the
initial elastic deflection.
(iii) Possbilty of shear failure at obtuse corner.

(iv) Effect of fixing the direction of crack in the slab.

The aim of this work is to produce a fully
"verified" general design procedure for the design of

reinforced concrete skew slabs.



CHAPTER TWO

LITERATURE REVIEW

2.1 INTRODUCTION

Reinforced concrete slabs are relatively thin
structural elements, whose main function is to resist
loads acting normal to their plane. Slabs are used as
floors and roofs of buildings, as walls in tanks and
buildings and as bridge decks. The design criteria to be
satisfied reflects the different types of loading and the
main functions of the slab. The design criteria for
reinforced concrete slabs is based on elastic and plastic
behaviour. The purpose of this Chapter is to discuss the
background to these criteria and some basic aspects of

the nonlinear analysis of reinforced concrete slabs.

2.2 ANALYSIS AND DESIGN OF REINFORCED CONCRETE SLABS

2.2.1 Introduction

In this section, the manner in which slab theories
and design methods have developed is summarised. The
behaviour of 1linearly elastic thin plates loaded
perpendicular to their plane was investigated by Lagrange
(1) using differential equation of plate bending. The
first method of dealing with rectangular plates was
developed by Navier (1). He wused a double fourier series
to transform the differential equation into a series of
algebraic equations. Use of a single trigonometric series
to represent loading which, greatly facilitated progress,

was proposed by Levy (1). An excellent survey has been



presented by Timoshenko and Woinowsky - Krieger (1).
Unfortunately as slabs become more complex and more
representative of actual slabs, it becomes more and more
difficult to find suitable deflection functions which
satisfy the boundary conditions. Due to this difficulty,
approximate numerical methods were developed for analysis
of complex slabs. The first method to meet with widespread
success was the method of finite differences (1), (2) and
(12). In this approach, the differential equations are
replaced by algebraic expressions linking deflections at a
grid of stations. The solution procedure involved the
setting up and solving a set of linear simultaneous
equations. This approach was used by Robinson (3) to study
the behaviour of simply-supported skew bridge slabs under
concentrated 1load. Morley (12 ) also investigated a
uniformly loaded, simply supported rhombic slabs for a
range of skew angles from O'to 68 degrees. Major
developments were made in finite difference methods when
large sets of simultaneous equations were solved using
digital computer. In the last three decades, the finite
element method has been developed (4,5) which is
particularly suitable for automatic computation. This
mgthod has been used extensively in this work and further

details are given Chapter Four.

The development of mathematical theory of
plasticity leads to the development of theory of 1limit
analysis. This theory enabled the collapse 1loads of
perfectly plastic bodies to be calculated as upper and

lower bounds to true collapse load.



A well-known method of obtaining upper bounds for
slabs is Johansen's yield line theory. On the other hand
a lower bound method which was developed for the direct
design of slabs is the strip method of Hillerborg (7).
Another lower bound design method is to use an elastic
moment field in conjunction with the vyield criterion for
reinforced concrete slabs. This is the method used in
this study and will be discussed in detail in Chapters

three and five.

2.2.3 ELASTIC METHOD OF ANALYSIS

In this section two theories of elastic plate
behaviour wviz; classical plate theory and Mindlin plate
theory will be discussed. In the classical plate theory,
it is assumed that shear deformation and inplane effects
due to restraints at the boundaries can be ignored. This
theory is suitable for thin slabs in which the lateral
deflection is sufficiently small compared to the slab
thickness. Mindlin plate theory (63) allows for transverse
shear deformation effects to be included and can be used

for both thin and thick slabs.

2.2.3.1 Equilibrium

Considering the equilibrium of forces acting on the
slab element shown in Fig. (2.1), with dimensions dx and
dy in the x and y directions respectively and thickness t
in z direction. The following equilibrium equations can

be derived.
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Fig. (2.1) Equilibrium of slab element



3% 3y q = 0.0
- BMx oM
e + _xzax +Qx = 0.0 (2.1)
- M oM
=L + + = 0.0
y dy Y
where q is the normal loading intensity, g = q(x,vy)

Qx and Qy are the shearing forces per unit length
along x and y directions respectively

My, MY and MXy are the bending moment per unit
length along x and y direction and torsional moment
respectively
By eliminating Qyx and QY from the three equations, they
can be combined in to one equation as

32My azmxy My B
2 - axay + ayz = =-q (2.2)

X

Egn (2.2) is known as the plate equilibrium equation.

2.2.3.2 Stress—-Strain Relationship

In case of classical plate theory the following
assumptions are usually made;
(a) The material obeys Hooke's law.
{b) The deflection is small relative to the slab
thickness.
(c) The direct stress normal to the middle surface can be
ignored.
(d) Plane section remain plane before and after bending.
Therefore the strains due to displacement at any level =z

are given by;



BGX 90 30 a0
€ T T Z3— , € = -z —2 and ¢ = -z (= + L)
X X y ay Xy ay ax (2.3a)

where €y, €¢ and €y y are the inplané strains at level z
at a point in =x,y cartesian system of coordinates. It
should be noted that in the classical plate theory the
rotations (9x andey) of normals to neutral axis can be

related to the lateral displacement (w) as follows

0 = - : (2.3b)
y 3y

On the other hand in Mindlin's plate theory in which the
lateral deflection, w and the rotation 9x,6y are treated

as independent variables, reference to Fig. (2.2) shows

that
_ ow _ ow
Ox R i lpX ! ey T 3y * wy (2.4a)
The inplane strains are given by
aex 30 aex 36 (2.4D)
Ex = -2z -a';- s EY = -z '—Xay and Exy = 'z(-a—y— + ——zax ) :

where V., and ¢y are the average rotation due to the
transverse shear effects in the x and y directions

respectively.

The stresses are related to the strains by

{ Y ( 3
lox Ex Exl 0 ’ €x
| |
g = E E
iy x1 Gy ° € (2.5)
o |
Xy 0 0 G €
) R4

where Ex, Ey, G and Ex; are independent material constants
which are needed to define the elastic properties of the

plate.
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The moments (bending and torsional) are given by

(
My t/2 9,
M = g
y y zdz (2.6)
M
Yy ‘t/2 ny
\ / )

For classical plate theory, moments can be written as

follows:
( azw\
¢ 3 -
Mx t/2 Ex Exl 0 3x< 1
| = Eaq By 0 _%_2; , dz  (2.7)
M -t/2 0 0 G _%3
\ xy. Xy 23%0y 4
or 2, )
B M D _ a
x x Px1 0 axZ
_ 32w
My = Dxl Dy 0 - 5;2
M 0 o D 2 32w (2.8)
Xy oxdy )
E t3 E t3 3
where D = X D = et D _ Gt
x 12 4 y 12 ! Xy 12 (2.9)
3
and D- = Ex]_t
xI ~ 12

For Mindlin plate theory, moments and shearing forces can

be written as follows:

v ) (30
X Dx Dxl 0 T Tex
= 39 2.10
My Dy1 Dy 0 Yy ( )
gy
M 0] o] D 0 30
\ XY) Xy —51 + J
L dy Ix
Q s 0 0o - M
x x - % (2.11)
Q o} S 0 .
y y y ~ 33



where Sy and Sy are the effective shear moduli in the x
and y directions respectively. For an isotropic material
Sx = Sy = SEt>/12 (14 v).

Substitution of Egns (2.8) in Egn (2.2) ,leads to the
following fourth-order partial differential equation of

classical plate theory, in the X, y cartesian system

34w ol 3w
D —_— = .
x 32+ 2ny) axZay2 * Dy e (2.12a)
introducing the notation, H = D; + 2ny
we obtain
3w 't Atw -
x ax% T Mgy * Dy HyE A (2.12b)
For isotropic plates:
_ - E - E - E
ExTE T ¢ B T M 6Ty
and Egqn (2.12a) reduces to
34w 3t % .
'a—x—._; + 2 W 4+ F = % (2.12C)

where E and ¥ are the values of Young's modulus and
Poisson's ratio. Egn (2.12c) can be solved in simple
cases by analytical methods and in more complicated cases
by numerical methods of finite differences and finite
elements. In the analytical procedures, the deflections of
the plate are represented by either a double infinite
fourier series (Navier solution) or by single infinite
fourier sine series (Levy's solution). A detailed account
of such methods can be found in text books on plate theory

(1,2).

{a) Oblique Coordinates

12



When considering skew plates, it 1is useful to

rewrite Eqn (2.12c) with the oblique angle equal to the

skew angle of the plate &

Consider the oblique axis set (u,v) which is related

to cartesian set (x,y), Figs (2.3a) and (2.3b) by

X=u+vsina and y = Vv cos a

or (2.13)

u = x-y tan 4 and v = y sac- o
Using this transformation, the moments in the oblique

system are related to the cartesian system as follows:

M = gseca(M +M tana - 2 M _ tan a )

u x y xy

M = M sec a

v y (2.14)
M =M +M tan a

w  xy oy "

The moment-curvature relationships in terms of the
oblique coordinate Fig. (2.3) can be written for an

isotropic plate as follows:

3 2 3%y 3%
t d°w _ 9w
M= 5 By ez AL wr T A Tuav )
3 32 3%w 3%
t W
= L @, SS+aA, —-A, —
Mv 12 ( 12 3u 22 4v2 23 3u3v (2.15)
M = t3 32w 32w 3w
av s= (A, = - Ayy T * Agy o=
12 13 3u? 23 junv Juyv
and shearing forces as
3 3 3 3 53
t d°w a°w 3w W
T3 (- Al 597 - 3 A3 Taey - Br t 2833) Tz T A3 ags )
3 3, (2.16)
3 3 3 3
t 9°w - W
5 (- Agy g3 - Ay + 2 435) 570 - 3 Ay 533 )

13



{a) Slab dimension

(b) The oblique axis system

Fig. (2.3) Skew slab in the oblique system of coordinate
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where

A11 = Ex cos a + 2(Ex1 + 2G) sin o tan a + Ey sin o tan3q

A22 = Ey sec3y

A33 = G sec a + Ey tan?a sec a

A12 = Exl sec a + Ey tanZq sec q

A13 = (Exl + 2G) tan o - }"_'.y tan3 a

A23 =-By tan o secZy
The governing differential equation in terms of

oblique coordinates can be written for the case of an

isotropic plate as follows:

vy = 1
D (2.17)
where
2 2
v = 2 3° ; 32
sec G[Ez 2 sin a_uav +3‘-,-2-]

Analytical solutions to this equation have been found
for some of the simpler loading arrangements and boundary
conditions by using the series type solution or the strain

energy method (10) (13).

(b) The series type solution

Quintan (10) assumed the displacement in the form of
double infinite trigonometric series. By the introduction
of certain functions called root functions and boundar?
functions, this double series can be transformed into a
single infinite series. This, he claimed, will handle any
of the simple boundary conditions and loading patterns.
Unfortunately, no results have been published for this
method. In 1964 Kennedy and Huggins (11) published a
method for solving a skew plate simply supported on two

opposite edges and elastically supported at the other two
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edges under the action of a uniform load. The displacement
was assumed as a single infinite fourier series. Results
were obtained for a range of angles of skew 15 to 175
degrees and the ‘aspect ratio (length/breadth) in the range
of 0.7 to 2.0. It was noticed that the convergence

deteriorated with increasing angle of skew.

(c) Strain energy solution

The concept of strain energy solution for plates was
developed by Ritz (1) based on the principle of
minimization of total potential. The strain energy stored
in an isotropic skew plate is given by

ra b
U = D.sec a {

£ N2 } P 3w 9w 52 2 2.18
7 J(‘ J(§<V w)4+ 2(1 \))sec a (__3—62. '—3;2- (E—gv ) ]]dudv ( )

The work done by the external forces during the deflection
of the plate is given by

a {b

3w - Q .w-M -g—‘si ) ds (2.19)

V = cosa q.w du vu - (M n ns
n on

where a and b are the sides of the plate, M, the normal
moment, Mpg the tangential moment and Qp the force in the

n direction.

The principle of virtual displacements states that for
equilibrium, the change in strain energy is equal to the

external work done by the forces during the displacement.
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where U and V obtained by applying variational calculus

to Egns (2.18) and (2.19).

If a function is assumed for the deflected surface
of the plate, then by substitution into Egqn (2.20) a

solution can be found.

Using this form of solution, Morely (12) solved the
problem of a swept cantilever plate under the action of a
uniform load. Using Egqn (2.18) and assuming that the
stress resultants and load could be taken as functions of
one of the coordinate, Coull (13) solved the problem of a
uniformly loaded skew plate with two sides simply
supported and the other two free. Coull (14) extended this
work to include the effect of line loads parallel to the
supports by using Macaulay's method of brackets to allow
for discontinuity. This artifice also enabled him to
analyse continuous skew slab by treating the internal
supports as line loads. He concluded that in order to
obtain a convergent solution to the problem, only the
first two terms of a more general power series for the
oblique bending moment in the direction of span need be
employed. To obtain better accuracy, the method may be
extended by assuming more terms in the series used, but
only at the expense of a greater difficulty of solution of

the resulting equations.

2.2.3 NUMERICAL SOLUTION

Under this group, three methods are considered viz;

finite differences, finite element and grillage analogy.



2.2.3.1 Finite Difference Method: In the finite

differences method, a slab is first covered by a grid work
of stations. Where possible a regular grid of equally
spaced stations is employed (1) using rectangular or
skew co-ordinates mesh. In applying this method, the
derivatives in the differential equation (2.12b) are
replaced by linear algebraic expressions, having
deflections at stations as variables. A linear equation
representing the differential equation 1is formed at each
station for which there is an unknown deflection. Together
they constitute a set of linear simultaneocus equations,
whose solution provides the values of deflections at the
stations. The deflections at the nodes are used to form
approximate expressicns for curvatures etc. to determine
moments and shear forces. The derivation of the method and
its application in case of skew slabs, can be found in
(1), (2), (12), (15). The method has begn largely

superseded by the finite element method.

2.2.3.2 Finite Elements Method: A slab to be analysed

by finite element is first modelled by an assembly of
discrete elements of simple geometric shape. In the most
popular approach, a displacement field is assumed over
each element in terms of values of displacement at
prescribed nodal points (16). In an alternative approach,
moment fields are assumed over elements and
displacements are assumed on the boundaries of the
element. The method of virtual work is used to form a set

of linear simultaneous equations called stiffness

18



equations. An isoparametric element (17) based on
Mindlin plate theory (63) has been used in this study and

further details will be given in Chapter Four.

2.2.3.3 Grillage Analogy: Analysis of a grillage of

beams by the stiffness method 1is a relatively
straightforward and economic process. To predict the
behaviour of a slab by grillage analysis, it is first
necessary to specify the properties and layout of the
component beams. The accuracy of a solution is largely
dependent on the accuracy of this structural modelling.
For a skew slab bridge deck, for example, members are
positioned parallel to the abutments and free edges.
Solution o©of the stiffness equations provides the joint
deflections and rotations. The equivalent plate bending
moments and shear forces are usually calculated from the
interpretation of the concentrated bending and torsional
couples at ends of each grillage member. The application
of this method of analysis to bridge decks can be found in

(18).

2.2.4 PLASTIC METHOD OF ANALYSIS AND DESIGN (78)

Because of the nonlinearity of the material
properties of reinforced concrete resulting from the
tensile cracking of concrete and plastification of steel,
redistributions of moments and shears away from the
elastic wvalues occur. This is possible only if the slab
sections are sufficiently ductile so that the sections

continue to deform at constant moment. This section

19



discusses some of the popular plastic methods as applied

to reinforced concrete plates.

2.2.4.1 Yield Line Theory

Yield 1line theory is an upper bound method of
flexural analysis of under-reinforced slabs. For purposes
of analysis, a collapse mechanism is assumed at ultimate
load such that
(a) The moments at the plastic hinges are equal to the
ultimate moments of resistance of the section.

{b) The collapse mechanism is compatible with the boundary

conditions.

A collapse mechanism, defined by a displacement at a
particular point, is used and this permits the
corresponding displacements at 1load points and the
rotations at the vyield lines to be determined from the
geometry. The work done by the loading is equated to the
energy dissipated at the yield lines. To simplify the
calculations, it 1is assumed that the deformations are
confined yield lines only, and that the segments of slab
between them remain rigid. With these assumptions the work

equation simplifies to.

=]

L
(2.21)

o™
=
o]
Q.
]
™

i=1 b

where nj; is the number of yield lines,8 is the rotation of
the couples M; which is the ultimate moment of section at
yield line, n, is the number of rigid, flat segments, q is

load intensity, 8§ is displacement at the point of

20



application of q, s is the distance measured along a yield
line and A is the area of a rigid region. Detailed
descriptions of the theory and applications are given in

Park and Gamble (6).

The main advantage of yield line theory is that it
requires relatively simple calculations. Its greatest use
is in assessing the strength of existing slabs, although
it can be used as a design method. The difficulty of this
method in design is that an engineer must use imagination
and experience to ensure that all 1likely failure models
have been investigated. Althougn it is a theoretical upper
bound method and thus results in an overestimation of the
true collapse load of a slab, many factors such as
‘membrane force effect, strain hardening of steel, etc.
contribute to the actual collapse load being greater
than the the theoretical ultimate lcad and thus leading to
a 'safe' design. Morley (22) extended conventional yield
line theory by considering mechanisms which involve yield
lines in which both rotations and displacements normal to
the yield line occur. The rotations and displacements can
be obtained from considerations of the geometry of a
displaced slab. More details are given in Park (6).
However, these methods rely heavily on an assessment of
the in-plane restraint provided and this is extremely
difficult to determine for actual structures. Although the
yield line theory applies to any shape of slab, any load
and any edge conditions, it is restricted in pracfice to
slabs of constant thickness, uniformly reinforced in each
of two mutually perpendicular or skew directions. The

method does not give any information on the best steel

21
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distribution within the slab and does not give any
information about the general behaviour of the slab w.r.t

crack width and deflection.

2.2.4.2 The Lower Bound Method

The lower bound method postulates a distribution of
moments in the slab system at the ultimate load such that:
(a) The equilibrium conditions are satisfied at all points
of the slab system.

{b) The vyield criterion defining the strength of the slab
sections is not exceeded any-where in the slab system.
(c) The boundary conditions are complied with.

The ultimate 1load 1is calculated from the
equilibrium equation and the postulated distribution of
moments. For a given slab system the lower bound method
gives an ultimate load which 1is either equal to or less

than the true ultimate 1load.

The methods based a lower bound approcach to the
ultimate load include
(a) Hillerborg's simple and advanced strip method
(b) Strong bands method
(c) Strip deflection method

(d) Direct design approach

2.2.4.2.1 Hillerborg's simple and advanced Strip Method

(23)

In any lower bound design method, a designer is
free to choose any moment distribution that he wishes

provided that it satisfies the slab equilibrium equation:



2% a2M-  92M
52 Y Ty s e (2.22)

Hence it is permissible to put Mgy = 0.0 throughout the
slab, so that Eqn (2.22) reduces to

32M 32y
X & I - _ (2.23)
3x2 ay Z

If it is now decided to divide the load g into a component
qcarried in the x-direction and (1- o )g in the y-

direction,Eqn (2.23) can be split into two equilibrium

equations:
3-"Mx 32M
_Tax = -agq and ——ay% = - (1 -0) q (2.24)

It is emphasised that the chosen value of o« can,

and in general, does, vary over a slab.

It is usual to choose a = 0.0 (all of the load
carried in the Y-direction),a = 0.5 (the load is shared
equally between the x- and y-direction) or e =1.0, (all of

the load carried in the x- direction).

In general, it is first necessary to decide upon
the positions of the lines which divide the slab into
regions of different 1load distribution direction. These
lines are referred to as load dispersal lines or
discontinuity lines. A designer is free to choose any load
dispersal, and any discontinuity 1lines that he wishes.
However, it is sensible to choose load dispersals which
result in the load being transmitted to its nearest
support. Moreover, Hillerborg (23) has suggested that it
is preferable to take the load a relatively long distance

to a built-in support than a relatively short distance to

23



a simple support. Thus, for discontinuity lines emanating
from a corner, he suggested the positions shown in Fig.

(2.4)

Equations (2.24) are the equilibrium equations for
beams running in the x- and y- directions. Hence a two
dimensional slab design problem has been reduced to a one

-dimensional beam problem (or strip).

Hillerborg's strip method is illustrated by
considering the design of a skew slab with two parallel
edges simply supported and the other edges free as shown
in Fig. (2.5a), to resist a uniformly distributed load of

0.01 N/mm.

For the slab under consideration, two distributions
are considered Figs (2.5a) and {(2.5b). In the first case,
a system of beams are running in the skew direction,
gives a system of statically determinate beams. The second
system is similar to the first one with a strong diagonal

beam Al1-A2 Fig. (2.5c).

Considering distributions (2.5a) and (2.5b) only in
the case Fig. (2.6a) the reaction distribution is very
different from the elastic distribution, because skew
slab transmits a considerable portion of 1loading to the
obtuse corners and the strips must reflect the true slab
action. In the second distribution when a strong beam is
considered, the distribution of the reaction is similar to
the elastic solution using finite element, but different
in value depending on the stiffness of the strong beam

{(the dimension of the considered strong beam is given in

24
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Fig. (2.4} Load discontinuity Lines at a corner
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Fig. (2. b)). The envelopes of longitudinal moment M at
different sections are given in Figs (2.6b), (2.6c) and
(2.6d). It can be seen from these curves that the moment
distribution due to the first distribution is in
considerable error compared with the finite element
solution and that the effect of the strong beam improves

the solution.

It can be seen from this example that the use of
the simple strip method is not at all straightforward.
One needs to think carefully about the system of beams
which will be best suited to reflect the behaviour of

skew slabs.

However 1if the correct solution 1s obtained,
reinforcement must be provided to fit exactly the strip
moments. Wood and Armer (111') have critically examined the
strip method and concluded that it leads to an exact
solution, with coincidental upper and lower bounds, if the
reinforcement is provided to fit exactly the strip
moments. However, Fernando and Kemp (25) have since shown
that Wood and Armer's conclusion is not necessarily true,
although it is extremely difficult to find practical

situations in which it is not true.

One important drawback of the strip method is
that, in pursuit of simple solution, the designer may
choose stress distributions which depart far from those
required for a good serviceability behaviour i.e. widely
different from 1linear elastic solution. Such a

distribution will seriously impair the function of the
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slab at early stages of loading.

The simple strip method as described cannot be
applied to concentrated loads. In order to deal with
concentrated loads, Hillerborg (24) introduced 1load
distribution elements which essentially transform the
concentrated load to a uniformly distributed load. A slab
is divided into elements bounded by lines of zero shear
force and zero twisting moment. A bending moment
distribution is then chosen such that zero shear forces
occur along the element boundaries. Hence, the chosen
moment distribution must result in maximum sagging or
hogging moment at the elements boundaries. The three types
of element which can be used to divide the slab of Fig.
(2.7a) are illustrated in Fig. (2.7b) and described below:

Type 1: Rectangular shape, in which the load is
dispersed in one direction and which is supported along
one edge.

Type 2: Triangular shape, in which the 1load is
dispersed in one direction and which is supported along
one edge.

Type 3: Rectangular shape, in which the 1load is
dispersed in two directions and which is supported at one
corner.

The Type 3 element transforms the concentrated load
to a uniformly distributed load and permits one-way strip
action to be considered in the type 1 and type 2 elements.

"Further details can be found in (26).

2.2.4.2.2 Strong Bands Method
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Because of the difficulties of Hillerborg's
derivation of the moment fields for the Type 3 element,
Wood and Armer (111) have proposed the use of strong bands
of reinforcement within a slab. These act as beams which
transfer the concentrated load to the supports or to be

rest of the slab.

For example, for the slab given in Fig. (2.7a} the
two sets of strong bands shown in Fig. (2.8) could be
adopted to carry the locad to the supports. This figure
also shows the directions in which the load is assumed to

be carried in the various parts of the slab.

A local set of bands over the columns 1is first
considered Fig. (2.8b). The columns support the short,
narrow strong bands which provide a uniform reaction
over the centre 1.5 m square of slab. The central square
of slab supports the strong bands of Fig. (2.8a), which,
in turn, support strips in the outer parts of slab. The
designer is free to choose the widths of the latter strong
bands and to choose either the moment distributions in
the strips and strong bands or the reactions between the
various intersecting strips and strong band. It is
emphasised that the moment distribution obtained is
dependent on the assumptions of strips widths made by the

designer.

Kemp (112) has pointed out that a drawback of the
strong band approach is that it is difficult to choose
suitable widths for the strong bands. If the band widths
are chosen to be too . narrow, then the reinforcement is

heavily concentrated over the narrow band. Although a
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satisfactory reinforcement arrangement will be achieved
from the strength wviewpcint, excessive cracking or
deflection could occur at working loads because of the
large amounts of moment redistribution reguired. In order
to overcome this problem, and to make more efficient use
of areas of a slab outside the strong bands, Kemp (112)
proposed a method of design based upon chasen
distributions of shear force. This iIs in contrast to the
chosen distributions cf loading which are used in the

conventional strip method.

A slab is first divided into rectangular elements
whose sides are parallel to the reinforcement directions.
In common with the simple strip method, it is assumed that
there are no twisting moments on the sides of the element.
Such an element is shewn in Fig. {2.9) together with the
total load (W) acting on the element and the shear forces
ﬁ@%, G;, CY” C}E which act on its sides. The vertical

equilibrium equaticn of the element is

Qg - Qx) + (Qy - Q) = # (2.25)

The principle of the method is simply to choose

shear forces on the sides of the element which satisfy
this equilibrium equation. In this way, a shear force
distribution throughout the slab is obtained. From the
shear force distribution, the bending moments may be
calculated. Fig. (2.10) shows one possible shear force
distribution throughout the slab under consideration in

Fig. (2.7a).

2,2,4.2,3 Strip Deflection Method




Fig. (2.9 Shear forces on slab element

+ L d +
88 59 Wk
L] - *
12] 142 B ® o ®e 1
% 38 0
Py +
e (=]
12| 2 e O Fr @ 2
110 A
3 . O I R B 3
w2l 4 - F-M=w_ | e
i %L
12 .
|
12 :
| [ 12 12 12 12|
{a} 1t : 1
12.1 \2.1
T + +
T R -
04 et Tt tow®
\ 29 | e
¥ + /"/,‘///
DV LR o ’ﬁ:};{ .
25 [ 396.°
?—_ . .
oh i
L
: ! VR
(o) Loe L oow | oo |

+ Shear force acts upwerd on the external boundary of the element

¢ Shear force acts downward on the externa] boundary of the element

Fig. (2.10) Elements and shear forces (KN) for shear distribution:

(a) Stage 1 mesh (b) Fine mesh for centre squre of Stage ! mesh

36



As mentioned in section (2.2.4.2.1)it is possible
when using the simple strip method to choose any value of
load distribution parameter which in the hands of a bad
designer can lead to an unexceptable design. Fernando and
Kemp (27) have proposed the strip deflection method to

overcome this difficulty.

In this method a slab is first divided into
orthogonal/skew strips parallel to the reinforcement
directions to form a set of rectangular, square or skew
areas. The intensity of loading on each area is assumed
to be uniform but can vary from area to area. In the
simple strip method, a designer would choose the amount
of load, qx, carried in the X-direction and for
equilibrium, the amount of 1locad, sz carried in the Y-
direction in then (g - g ). In the strip deflection
method, a value of g is not chosen, but a and %{ are
determined such that there 1is compatibility of elastic
deflections at intersection point of the strip centre
lines. The elastic deflections can be determined using
elastic beam theory (because the twisting moments are
assumed to be zero) in terms of the unknown loads qi and
qy = (g - qx\ and appropriate flexibility coefficients
which are independent of loading, but depend on the
geometry and boundary conditions of the problem. Once the
load distributions is known, the shear forces and bending
moments can be determined. In this method, increasing the
number éf strip improves the accuracy, but at the expense
of increasing the number of simultaneous equations to be

solved.
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It is interesting to note that the Rankine-Grashof
method of slab design the CP110 (30) is a special case of
the general strip deflection in which a single strip is
considered in each direction. Fernando and Kemp (27) have
pointed out the similarity between the strip deflection
method and the analysis of a slab as a grillage with zero
torsional stiffness. This has been used to solve the same
example in Fig. (2.5a) by considering the distribution of
the strips in Fig. (2.5c), using the programme package

FLASH (20).

The envelopes of the reactions and the moments at
different section are given in Figs (2.6a), (2.6b), (2.6¢c)
and (2.6d) and (2.6e). There 1is not much difference
between the simple one way strips and the strip deflection
method for the example under consideration thus

emphasising the importance of torsion in skew slabs.

It may be useful to use grillage analysis to
predict the behaviour of a skew plate, but it is necessary
to specify the properties and layout of the component
beams. The accuracy of solution is largely dependent on
the aptness of this structural modelling. Solution of the
stiffness equations provides the joint deflections and
rotations. Bending moments are usually calculated from the
interpretation of the concentrated bending and torsional
couples at ends of each grillage member. Engineering
judgement is needed at this stage to minimise the
introduction of further errors in the estimations of these

moments and forces.
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Fig. (2.11) shows two types of grillage fromework
for the slab under consideration (Fig. (2.5 a) , the
choice is dependent on the reinforcement arrangement. In
Figs (2.12a), (2.12b), (2.12c) and (2.12d) show the
comparison of the reaction and bending moments for the
grillage analysis and the finite element method. It can be
seen that grillage analysis results compare well with
finite element solution specially when the grillage

fromewok was orthogonal as shown in Fig. (2.11b).

In practice, according to CP110 (30), torsional
reinforcement is normally added at a corner contained by
edges over only one of which the slab is continuous as a
certain percentage of the midspan reinforcement. Hago (9)
carried out a design of a series of a uniformly loaded
rectangular slabs with wvarious boundary condition and
aspect ratios, by this following two approaches:

1- "Using the simple strip method (torsionless analysis)
to provide reinforcement to resist the normal moment
components My, and My. The torsional stress component Mxy
was ignored and in addition torsion steel was provided,
using the CP 110.

2- Using direct design method (9) (torsion analysis) to
provide reinforcement to resist the three moment

components My, My and Myy.

Based on a comparison of the total reinforcement
volume he concluded the torsional analysis is at least 10%

more economical than the torsionless analysis.

2.2.4.5 Direct Design Approach
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This approach unlike the pure upper bound (yield
line) and pure 1lower bound (Hillerborg's strip method)
considers serviceability and ultimate load behaviour of a
under-reinforced slab. In this method an elastic stress
field and a yield criteria for slab is used to design the
slab. The approach was first proposed by Hillerborg (23)
and later reconsidered and restarted by Wood (75), for the
case of orthogonal steel. Nielsen (76) has also presented
equations for the optimum design of orthogonal steel.
Subsequently Armer (77) derived equations for the case in
which the steel 1lies in predetermined skew directions.
Hago (9) used this approach to design and test 'large
scale' orthogonally reinforced rectangular slabs and beam
slab model with various boundary conditions. He carried
out an experimental and theoretical work to check this
approach. He concluded that the Direct Design approach
provides designs with good service and ultimate behaviour
with a reserve strength at least 10% above the design
loads. The basic idea of this approach and the derivation
for the general case of angle of skew will be considered

in Chapter Three.

2.3 DESIGN AND ANALYSIS FOR SERVICEABITILY LIMIT STATE

2.3.1 Introduction

It is essential that all structures should be
designed so that they possess not only adequate strength
but also they behave in a satisfactory manner under all

load conditions (i.e at limit states). Satisfactory
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behaviour at working 1loads is generally considered in
terms of cracking, deflection and vibration
characteristics. Each of these characteristics is a
function of stiffness and working load stress levels (in
particular steel stress levels). It is important to
consider the effects of both applied forces and applied
deformation (e.g. shrinkage and temperature movements) on
serviceability limit state. The following discussion is
limited to deflections and cracks due to applied load

only.

The European and American design codes ( 8 ) and
(32) of practices generally ensure that the material
stresses in reinforced concrete slabs are not excessive at
the serviceability 1limit state and thus specific stress
limitations are not generally given in codes. However, the
British bridge code BS 5400 (BSI, 1978) does give stress
limitations, because this code does not require crack
widths to be checked under all possible 1load

combinations.

Because concrete cracks under sustained loading,
determination of the displacements of a reinforced
concrete slab, even under working 1loads, strictly
requires a non-linear analysis. Suitable methods will be
reviewed in section (2.4), and one of these methods will
be given in detail in Chapter Four. However, such analyses
are in general too expensive for design office, Hand
calculation methods are often used to estimate the
curvatures, in order to calculate deflections or crack

widths. Such calculation can be based on the elastic
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moment field calculated by using uncracked section
properties. The determination of moment/curvature
relationships will be considered before considering the

various serviceability criteria.

2.3.2 Moment-Curvature Relationships

Fig. (2.13) shows the bilinear moment-curvature

relationship. The curvature is given by

M

b Efc (2.26)

-
T

where 1/ryp is the curvature

M the moment under consideration

E- the long-term elastic modulus (in this study the
short-term elastic modulus is considered), the short term

elastic modulus is given by

— = 2
E_=4.73 V?Z- 4.25 /£ kN/mn (2.27)

where fe is the cylinder strength (N/mﬁ)
and fey is the cube strength

I.pr is the second moment of area of the cracked
section. Ignoring concrete 1in the tension 2zone
overestimates the true curvature because of the
stiffening effect of concrete in tension between cracks.
The following two approaches, adopted in practice, are

presented.

(a) Effective secant stiffness
Branson (31) has proposed, from considerations ‘of
short-term beam deflection data, the use of the effective

secant stiffness illustrated in Fig. (2.13). The short-
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term elastic modulus of concrete is given by Egn (2.27).

The effective second moment of area (Ieffﬁs given by
M 3 M 3 ]
cr cT
- - (==L I 2.28
Iéff v ) Ig + {1 (M ) ] Ter ( )
where M 1is the moment under consideration, Moy is the

cracking moment, Ig is the second moment of area of the
uncracked transformed section and I.yr is the second

moment of the cracked transformed section.

This approach was adopted by the American Building
Code ACI (32) and the American Bridge code Committees

(33).

{(b) Effective tensile concrete stress

The distributions of flexural stress in concrete
at a crack and mid-way between cracks are shown in Figs
(2.14b) and (2.14c). The average effect of the>variation
in tensile stress distributions can be considered by
assuming the triangular distribution of "average"
effective stress shown in Fig. (2.14d) with an effective
stress (fg = 1N/ﬁm) specified (21) at the centroid of the
tension reinforcement. The curvature can be obtained from

the relationships

£
1 . é%-— = — (2.29)
T c (d-x)Es

where x is the neutral axis depth, f. and fg are the

stresses in concrete and reinforcement respectively.

Assessment of stresses and the neutral axis depth

can be found by a trial-and-error approach (21). This



approach is adopted for deflection calculations in CP 110

(30) and BS 5400 (34).

2.3.3 Deflection

In design, it is usual to comply with the specified
deflection criteria by limiting span to depth ratio.
However, in exceptional cases, it may be necessary to
calculate deflection and to ensure that they are less than
the specified value. The deflection of a slab under a
simple loading can be calculated from a formula of the
type:

_ kwL2
6 = 5 (2.30)

where K is a coefficient which depends on the slab shape,
load patterns and support boundary conditions, W is the
total 1loading, L 1is the span and D is the flexural
stiffness per unit width. It is necessary to determine K
and D.

Values of coefficient K in Egn (2.30) have been
given by Timoshenko (1) for some cases of rectangular
slabs and for others «can be calculated by finite element

method.

If the slab is uncracked, then D is given simply by
Et3/ 12(1—\}), N is Poisson's ratio . However, after
cracking, D 1is given approximately by the effective
cracked stiffness (EcIgpplat a particular section which is
calculated with tension stiffening allowed for by the

method described in Section (2.3.2).
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For restrained reinforced concrete skew slabs under
uniform load Desayi and Prabhakara (35) proposed a methocd
for estimating the short-time deflection. The method is

developed in three stages.

The first stage considers the elastic behaviour of
the slab up to cracking load. The deflection at centre of
a skew slab is calculated on the basis of the solution

available for elastic skew plates (32) as

aPL"
X

Ec I (2.31)
where Ig the gross second moment of area

E. the modulus of elasticity of concrete

P the intensity of uniformly-distributed load

a is a constant for fixed skew plate based on the
ratio and skew angle and is obtained from Table 1, Page
352 of (19)
Ly is the slab length. See Fig. (2.15).

Egqn (2.31) is wvalid up to a load P = P.,, where

Por is the intensity of load corresponding to the first

cracking of concrete and can be calculated using;

B, (2.32)
in which M¢cy = fr Ig/h
where B is dependent on the aspect ratio and angle of
skew. See Ref (35) Page 354.
fr is the modulus of rupture of concrete
h the distance of extreme tensile fiber from
centroid of concrete section.

In the second stage, after cracking up to the yield
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line collapse 1load, the following equation is used to

calculate the deflection.

X (2.33)

where K is constant dependent on the aspect ratio, skew
angle and material properties of the slab. See Ref (35)
Page 8810. This result covers skew angles of 15? 30oand 450
degrees, aspect ratio of 1.5 and coefficients of
orthotropy ranging from 1.222-2.136. is constant as given

above.

Iffis the cracked moment of inertia given by
e .

.

Pcr 3 11 (Pcr )3] 1 (2.34)
Ter™ g G +[ P e '

where P and Ig are defined above, P.p is the cracking load
and I,y is the second moment of area of the cracked
section.

Egqn (2.34) for effective moment of inertia Ieﬁis
similar to the one in Ref (31) for beams and one way
slabs. Here the moment terms are replaced by load
intensity terms so the deflection can be calculated for

any given load intensity.

In the third stage the deflection is calculated at
the yield load by taking the effect of membrane force into
consideration. The method is simple and starightforward
for the first and second stages but is complicated for
the third stage. As deflection calculation at this stage

has little practical significant, it is not discussed.

2.3.4 Cracking




The problem of predicting the maximum crack width
is very complex. Due to its stochastic nature, The
assessment of crack widths is made using empirical
equations derived following statistical approach. Two
theories deal with the prediction of crack widths in the
structural members.

(a) The slip theory assumes that the crack widths depend
on the amount of bond slip in reinforcement and the crack
widths are normally expressed in terms of steel stresses.
(b} The No slip theory considers the crack widths to be
effectively zero at the face of reinforcing bar and the
crack widths are expressed in terms of strains in

concrete.

The No slip theory of cracking in reinforced
concrete slabs has been developed by Beeby (114). Beeby

(42) proposed the following design formula:

k4 acr €m

~C
1+Kr\ (acr ) (2'35)
~ “h-x

where h is the overall slab depth, x is the neutral axis
depth calculated ignoring tension stiffening, .a,. crack
spacing, ¢ the concrete cover and K4 and Ks are
coefficients which depend upon the probability of crack
width exceeding a give value. For the 20% level adopted in
building and bridge practice, K4 = 3, Kg = 2 (Beeby (
115), whilst for the 5% level adopted in the water-

retaining code, the value of X4 and Kz are 4.5 and 2.5

respectively Clark (110).

€qis the strain calculated using the following eguation

Qt
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CP110 (30)

¢ =000807bh (a'- %) A, £, (aox)
"’ (2.36)

where a is the depth of the crack from the compression
face,

Ag is the steel area, fg the steel yield strength and h and
X as given above.

Clark (110+; has shown that Egn (2.35) can be
applied to slabs in which the principal stresses do not
coincide with the reinforcement direction. In such cases,
the crack width calculation should be carried out in the
principal moment direction by using the equivalent areas
of reinforcement discussed in section (2.3.5), and a
should be measured perpendicular to the }einforcing bars

most nearly aligned to the principal moment direction.

Beeby (38) investigated cracking in one-way slab and
concluded that the no slip theory gives better prediction
of crack widths than the slip theory. He also found that
crack width and spacing are both linearly related to the
distance from the point where the crack is measured to

surface of the nearest bar.

For a Two-way slab Nawy (39) and and Orenstein (40)

have proposed the following formula (in SI units):

w=Kf /(¢ s /p) (h-x) (d-x) (2.37)
where K is a coefficient which depends on the loading and
boundary conditions of slabs, ¢ is the diameter of bars
perpendicular to the cracks under consideration, P is the
effective steel ratio of these bars and s is the spacing
of orthogonal bars { i.e. those parallel to the cracks).

Thus, it is implied that cracks always form perpendicular



to bars, which is not necessarily true.

The reason for the spacing (so) of bars parallel to
cracks being a parameter in Egn (2.37) is that the
equation was derived from tests on slabs reinforced with
welded mesh. The location of the welded intersection
influenced the crack patterns. It should be noted that
Park and Gamble (6) have shown that Egqn (2.37) can grossly
over-estimate crack widths when the transverse bar spacing
(sg) is large. However, when reinforcing bars are used,
the spacing of the transverse bars is unlikely to

influence significantly the crack spacing (114), (110).

Desayi and Kulkarni (41) also did extensive work on
two way reinforced concrete slabs, and Prabhakara (42)
extended the work to cover skew slabs subjected to
uniformly distributed loading. Assuming the reinforcement
is laid along the direction x and y Fig. (2.16) the

spacing of cracks formed in the x-direction (qx) is

l('t ff Acty

(2.38)
v(q;x/sx) k fb cos 0 + (¢y/sy) b

similarly the spacing of the cracks formed in the Y-
Direction (ay) is
kt fv&f AC

= ty
a =
n(¢x/5x) K £ cos® + (dox/Sx)fbb

(2.39)

where Actx and Acty are effective concrete areas in
tension per unit width in the X and Y directions

respectivly, and it can be calculated as follows;

Actx = 2(h-dg)-Agx
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Acty = 2(h-dy)-Asy
where h total depth of slab.
f+ tensile strength of concrete
¢x,¢y bar diameters in direction x and y
fy, bond stress
fyp bearing stress
Sx. Sy spacing between bars in directions x and y
8 the angle of skew and is equal zero for orthogonal
steel
Kp and K¢ are constants
Agx, Agy area of reinforcement per uint width in the
X and y directions respectiviy
The maximum crack width is then estimated at any stage of

loading from

Wmax = @max & Rc (2.40)
where apsy is the crack spacing at M = M., and é&:is the
strain in the steel, R cover ratio = (h-d,)/(d-d4d,)

and 4, dp effective and neutral axis depths respectively

Test results have indicated that constants Ky =
1.0, fpp =0.5 ft, fyp =fyp M/Mp and, fyp = the ultimate
bond stress can be taken from CP 110 (30) section(3.11.6).
M, Mp are the applied ultimate moments in the direction of

reinforcement.

The method estimates cracks widths with reasonable
accuracy. One good aspect of the method is that it is
independent of the type of loading and the asbect ratio of
slab. The method is established for rectangular, sgquare
and skew slabs with skew angles of 1g, 38, 4§ and with

simply supported slabs or fixed support conditions
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2.3.5 Stresses and Strains in Skew Bending

The BS 5400 code of practice (34) states that it is
necessary to check cracks widths in highway brides under
HA loading for loading combinations. This means that there
is an indirect check on the reinforcement stress. It is
desirable to ensure that the steel remains elastic under
all serviceability conditions so that cracks which open
under the application of occasional 1loading will close

when the loading is removed.

The stresses, strains and curvature of a slab
subjected to one way bending in the reinforcement
direction are determined by st*traight forward application
of conventional modular ratio theory, with the inclusion
of tension stiffening when appropriate. However, in
general, the principal stresses, strains and curvatures in
a slab do not coincide with the reinforcement directions.
It is then difficult to check accurately the strésses,
strains and hence the curvature of a slab under general
state of stress. Clark (34) has suggested the following
approximate procedure for determining stresses:

i- Assume the section to be uncracked and calculate the

four principal extreme fiber stresses caused by‘ stress
resultants due to the applied service loads.
ii- Where a principal tensile stress exceeds the
appropriate limiting value of tensile strength of
concrete, assume that cracks form perpendicular to the
direction of that principal stress.

iii- consider each set of cracks in turn and calculate an
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equivalent area of reinforcement perpendicular to these
cracks. (see step vi)

iv- Using the equivalent area of reinforcement, calculate
the stresses in the direction perpendicular to cracks by
using modular ratio theory.

v- If the calculated stress in the equivalent area of
reinforcement is f,, then calculate the stress in an i-th
layer of reinforcement, inclined at an angle ¢ to
direction perpendicular to the cracks, from f; = 5fn. The
stress transformation factor § is discussed below, after
the factors determining the equivalent area of
reinforcement normal to a crack have been considered.

vi- The calculation of equivalent area of reinforcement
(step iii above) is explained by considering a point in a
cracked slab Fig. (2.14) where the average direct and
shear strains, referred to axes perpendicular and parallel
to a crack are f,, ®¢, Fpnt.

The strain in the direction of an ith layer of

reinforcement at angle &, to the n-direction is given by

E. = E cosza. + €
n 1

.2
Sin . - Y e i
1 t i ‘lnt sin di cos ai

Assuming only axial strains in the reinforcement, the

steel stress is

where Eg 1is the elastic modulus of steel. If the steel

area per unit width is Aj, the steel force per unit width

is given by

if N such layers of steel are considered, the total
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resolved steel force per unit length in the n- direction

is

. 2.
. - ¥ sin2a;cos a;)
i )

N
- 4 + ¢ sin
=E b Ai (sn costa, ¢ nt

The force Fp can also be considered in terms of an
equivalent area (A,) of reinforcement per unit width in
the N-direction. Thus Fp = Ap Es%n. Hence, by comparison

with the previous equation,

¥
2y. cosla. - :EE sin ay cos3 a.
t Yot (2.40)

2z

A =

" et .
. a. + — sin
. Al(cos i c

1 n

([}

i
It is reasonable, at the serviceability limit state to
assume that the n- and t- directions will very nearly

coincide with the principal strain directions. Thus !ﬁ{
0, and the third term in the brackets of the above

equation can be ignored.

There are now three cases to consider for a slab
not subjected to significant tensile inplane stress
resultants.

1- If the slab is cracked on one face only and in one
direction only, €y >” ¢ and the expression A, can be taken

as

1 i 1 (2.41)

2—- If the slab is cracked in two directions on the same
face then &% will be the same sign as e, . If & is again
taken to be zero, the calculated value of Ah will be less

than the true value. It is thus conservative to use Eqn
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(2.41).

3- If the slab is cracked in two directions on opposite
faces, *+ will be of opposite sign to €4 and could take
any value. The precise value of €¢/ %, to adopt is then
very difficult to determine directly, although some
guidance is given by McNeice (45). Little error is
involved in adopting the above method for An when the
reinforcement is inclined at less than 25 to the direction
perpendicular to the cracks. In slabs subjected to varying
load patterns, the crack direction may not coincide with
the principal strain direction of the load case under
consideration. For such circumstances, it may be necessary
to include Y in an iterative procedure. This method is
simple and straightforward and it is not dependent on the
type of loading, but it is necessary to to carry out
elastic analysis to find the stress resultants due to the
applied loads. The stress transformation factor ( ¢},

referred to previously should be taken as cosloj.

2.4 NONLINEAR ANALYSIS

2.4.1 Introduction: Of the two methods used for

analysis of slabs viz linear elastic analysis and plastic
analysis,the first method 1is concerned with working load
behaviour and the second method is concerned with
behaviour at ultimate load. Neither approach provides

information on structural behaviour in the intermediate

range between the two limits.

Analysis to predict slab behaviour wunder a
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prescribed load history requires nonlinear analysis which
can be done using finite difference or finite element

methods.

The finite difference method has been used to
analyse plates by Bhaumik et al (43) and May et al (44)
using the Tresca and Von Miss criteria. In this work the
nonlinear analysis will be carried out using the finite

element method.

2.4.2 Non-linear Analysis by Finite Element Method

To account for the nonlinearity due to cracking
of concrete, yielding of steel and plastic flow under
compressive stress in concrete, two basically different
approaches have been used to obtain constitutive relations
for use in finite element method. The first is a modified
flexural rigidity approach in which an overall moment
curvature relation reflecting the wvarious stages of
material behaviour is assumed. The second approach is
based on idealized stress-strain relations for concrete
and steel together with some assumption regarding
compatibility of deformation between the constituent

materials.

2.4.2.1 Macroscopic Models: In this model, concrete is

assumed to be homogeneous and initially isotropic. Before

cracking of concrete the reinforcement contributes little

to moment of resistance (45).

In this case, material behaviour is linear elastic

with the initial elastic matrix derived in the normal way
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At the onset of cracking in the element, the

stiffness of the element starts to decrease. The new
stiffness at any stage of loading can be derived from the
moment curvature diagram shown in Fig. (2.18), Jofriet and
McNiece(45) used bilinear relationship of Beeby (38)

before and after cracking

EI = E. Ig prior cracking (2.42)
EI = Ec Iop after cracking (2.43)
where Ee =0.57 E.

Yielding of steel is not considered and thus any

information about ultimate behaviour is not available.

Macroscopic models were also used by Bell and Elms
(46, 47). In their model, the behaviour is idealised by a
four stage moment curvature relationship, Fig. (2.18).
Using the square vyield assumption several intermediate
loading surfaces were defined as shown in Fig.(2.19). The
point on the moment-curvature curve corresponding to each
surface 1is established and using the relative change of
rigidity, the stiffness of an element satisfying a yield
criterion is appropriately modified. Cook (6) has used a
direct iteration procedure in the analysis in which the
structure is solved successively under the load while
stiffnesses are changed until equilibrium is reached. The
use of moment curvature relationship is an extension of
the elementary theory of bending in which the behaviour
of concrete is not investigated in detail but only treated
grossly in the tensile and compressive zones along two

principal directions. Furthermore, 1if reinforcement
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patterns vary, several moment-curvature may be needed for
a single analysis. Load enhancement due to biaxial effects
and the effects of constraint in the plane of structure
are both neglected. Recent developments in these models
involve the use of numerically integrated, high order
elements for discretization, so that the variability of
material properties within the element can be traced (49).
Although all these models do not reflect the true
variation of stress through the slab depth, the response
can in most cases be predicted in a satisfactory manner

(45).

2.4.2.2 Microscopic models

In this method, an attempt is made to simulate the
spread of cracking over the depth of the element. The
element is divided into a number of layers each of which
may become plastic, or crack separately. Each layer 1is
assumed to be in a state of plane stress and a linear
strain wvariation over the depth of the slab 1is assumed
based on the small deflection theory. As the number of
layers is increased, this model provides a more realistic
representation of the gradual spread of cracking over the
depth of the element. In order to adjust the stresses and
to evaluate stiffness characteristics of a layer, the
constitutive relationships have to be defined according to

the material state in that layer. This aspect will be

considered in Chapter Four.

2.4.2.3 Review of Layer Finite Element Models
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Layered approach is used widely with various types
of elements. The first element used by Wegmuller (50) is a
rectangular element with three degree of freedom (Qxﬁy
+W). The element ignores inplane effects, and thus assumes
a fixed position for the middle plane of plate, such an
assumption would be restricted only to problems in which

membrane forces are negligible or there is little shift in

neutral axis position.

For bending problems, as the cracking progresses
deeper into the slab depth, the neutral axis shifts from
its initial position towards the compression face. The
layer approach has been used to solve this problem by
taking the effect of membrane stresses 1into
considerations. This of course requires additional
inplane degrees to be incorporated in the element
derivation. Wegmullep {51), Hand (52), Johanarry (53),
.Cope (54) and Hago (9) have used a rectangular element
with five degrees of freedonm (u,v,w,sx, GQ at each node.
Hago (9) and Hand (52) have shown that inplane boundary
conditions have a large effect on computed locad deflection
response. Cope and Rao (54) also studied this effect on
fixed slabs and concluded that the neglect of inplane
boundary has greater effects than relaxing of the

restraints due to flexural boundary conditions.

Dotreppe et al (55) attempted to reduce
computational effort by using a reduced bending stiffness
model (similar to Wegmullter (50)). He assumed that
membrane forces are zero and the bending stiffness was

derived accordingly. Using this method the failure load of



a simply supported slab was underestimated by 10 %. This
underestimate is interpreted as being due to the neglect
of the inplane stresses. However, the assumption cannot
be applied to problems in which there are inplane
restraints. Abdel Rahman (56) used selective integration,
9 node, Hethos element based on Mindlin theory with five
nodal degrees of freedom (u, v, w, Oxs BY). He concluded
that the use of initial stress method in the nonlinear
analysis of reinforced concrete plates with coarse
convergence tolerance may result in an overestimation of

failure loads.

2.4.2.4 Modeling of Reinforcement

In developing a finite element model of

reinforced concrete, at least three possible
representations of reinforcement, Fig. (2.21), have been
used:

1- An embedded representation: The reinforcing bar is
considered to be an axial member built into the
isoparmetric element such that its displacements are
consistent with those of the element (66), (65),

2- A discrete representation: Axial force Members or bar
links, may be used with two degrees of freedom at the
nodes . Alternatively beam element may be used assumed to
be capable of resisting axial force, shear, and bending,
in this case three degrees of freedom are assigned at each
end. This representation of steel has the limitation that
the steel bars have to be along lines joining the

predetermined nodes (66)
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3- Smeared model: The steel is assumed to be distributed
over the concrete element with a given orientation angle.
Perfect bond must be assumed between the concrete and
steel and the steel is expected to resist stresses in the
original bar direction only. For layered finite element
analysis the smeared model is usually adopted. The steel
layer is assumed to be elastic- plastic in both tension
and compression with or without strain hardening. Bond
slip is sometimes represented by reducing the modulus of
steel (67)- Details of layered element stiffness

formulation will be given in Chapter Four.

2.4.3 The Observed Behaviour of Concrete

The main purpose of this section is to provide an
initial description of some aspects of observed concrete
behaviour, which will be useful in establishing the
constitutive relationships of concrete under uniaxial and
biaxial states of stress which result from in-plane stress
states. It is important to note that discussions are
limited to problems involving short term monotonic loading
in which the effects of creep and cyclic loading can be
neglected. The discussion is limited to the following
aspects.

(a) Stress/strain relationship for concrete.
(b) Tension stiffening of cracked concrete
(c) Shear transfer in concrete

This will provide the necessary background for the

later description of the constitutive modelling of the

reinforced concrete flexural system in Chapter Four.
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2.4.3.1 Stress-Strain relationship for Concrete

Concrete contains a large number of microcracks due
to shrinkage especially at the interfaces between coarse
aggregate and mortar even before any load has been
applied. This property is decisive for mechanical
behaviour of concrete. The propagation of these
microcracks during loading contributes to the nonlinear
behaviour of concrete at low stress level and causes
volume expansion near failure. A typical stress strain
relationship for concrete subjected to uniaxial
compression in shown in Fig. (2.21a). The stress-strain
curve has a linear-elastic behaviour up to about 30% its
maximum compressive strength fc. For stresses above this
point, the curve shows a gradual increase in curvature up
to about 0.75fc to .90% where upon it bends more sharply
and approaches the peak point at fc‘ Beyond this peak the
stress-strain curve has a descending part until crushing
failure occurs at some ultimate strain (73). The behaviour
of concrete in biaxial state of stress is dependent on the
state of stress (70,71). Fig. (2.22) shows the stress-
strain relationships of concrete under biaxial-
compression. A maximum strength increase of approximately
25% is achieved at a stress ratioo,/o, = 0.5 and the
increase is only about 16% at eqgual biaxial-compression
state (0,/0, =1). Under biaxial compression-tension Fig.
(2.23), the compressive strength dec;eases almost linearly
as the applied tensile stress is increaséd. Under tension,
the strength in biaxial state is almost the same as that

of unaixial tensile strength {(see Fig. (2.24))

The initial modulus of elasticity of concrete is
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highly dependent on the compressive strength. The initial
modulus of elasticity %_can be calculated with reasonable

accuracy from the empirical formula (American Concrete

Institute, 1977) (32)

N
Ec = .17058 W f N/mm? (2.44)

3 3 3 \
Where W is the unit weight of concrete in (KN/m3 ) and f.
is the uniaxial compressive cylinder strength of concrete

in (N/mmz).

Poisson's ratio ¥ for concrete under uniaxial
compressive loading is in the range of 0.15 to 0.22 with
a representative value of 0.2. Under a uniaxial 1loading
the ratio remains constant until approximately 80% of f.
at which stress the apparent Poisson's ratio begins to
increase. For mathematical modelling, a value of of 0.19

{59) or 0.15 (53,9) has been extensively used.

Fig. {(2.21b) shown the stress-strain curves for
uniaxial tension. All are nearly linear up to a relatively
high stress level. The ratio between uniaxial tensile and
compressive strength may vary considerably but wusually
lies in the ranges of 0.05 to 0.1. The modulus of
elasticity under uniaxial tension is somewhat higher and
Poisson's ratio somewhat lower than in wuniaxial
compression. Liu et al (68) proposed the following
mathematical relation for a biaxial stress-strain curve of

concrete:

E €
A+B E (2.45)

°= (1 _\)a)(l +C:€ +D€2)

where v, ¢ stress and strain in concrete, %} v Young's
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modulus and Poisson's ratio for concrete respectively,
ratio of the principal stresses in concrete and A, B, C

and D are constant and can be found from the following

conditions

1. For € = 0.0

) g =0.0
2. For e= 0.0 , 2 . E(1 -va)
3 a€
. For e = ¢ -
p 3 [0 Op
4 For ¢ = € _3_0' -
P Iy = 0.0

where o p and e pare the peak stress and peak strain in
biaxial compression, respectively.

Substituting these in Egn (2.44) and introducing the
%)

secant modulus at peak stress Egqo =ep .We have

E ¢
c

1 c > e 2 (2.46)
(1-va)(1 + mﬂ) E_- - 2)('6_‘)"'(5_) ’
se p P

gT,where is the plastic strain, and ﬁp = 0.0025 for biaxial

compression.

This equation was further investigated by Tasuji
et el (69) and was found to represent the behaviour of

concrete in both tension and compression.

4.3.4.2 Tension Stiffening of Cracked Concrete

Cracking is of prime importance in nonlinear
behaviour of reinforced concrete elements. When a
principal stress exceeds the tensile strength of concrete
% , a crack forms in a direction normal to the direction
of the offending principal stress.

Fig. (2.295) (36) shows the physical situation in
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the vicinity of a crack in a reinforced concrete tension
member. Fig. (2.26) indicates that at a crack the full
load is carried by the reinforcement only, whereas between
the cracks the load is shared between steel and concrete.
This ability of concrete between cracks to share the
tensile load with the reinforcement is termed tension
stiffening. Thus while the concrete stress is zero at
cracks, the average stress over a cracked region is not

Zero.

However as the load is increased and the stress in
the concrete between cracks reaches the ultimate strength,
then the concrete will rupture and a further crack forms
between the main cracks. Therefore, the average concrete
stress over the cracked region will progressively decrease

with loading.

Apart from stress level, other factors affecting
tension stiffening of concrete are the bond
charac