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Abstact

The aim of this work is to consider the recently

introduced ten dimensional Superstring theories and, by 

considering the low energy field theory limit, consider 
possible compactification schemes where the original ten 

dimensions split up into four observed space time 

dimensions and six ,highly curved, compactified 

dimensions. We shall attempt to find solutions which 

satisfy the classical equations of motion and then, using 

these solutions, we shall try to obtain schemes which 

give a spectrum of particles which is compatible with the 

observed spectrum.

We shall, by considering situations where we allow non­

zero torsion on the compactified 6-D manifold, 

investigate possibilities other than the Calabi-Yau 

spaces which are usually considered.

In Chapter 0 we give a ( very biased ) review of particle 

physics and in Chapter 1 we give a little Superstring 

formalism. In Chapter 2 we discuss the low energy limit 

of Superstring theories and decide upon the lagrangian 

which we shall subsequently use. The two types of 

internal manifold which we shall consider are group 

manifolds and Coset spaces. We consider these because

they provide a natural ansatz for a non-zero torsion. In

Chapter 3 we attempt to find solutions to the equations

of motion when the internal manifold is a group space and 

in Chapter 4 we discuss the consequence of any such



solutions. In Chapters 5 and 6 we do the same for Non- 

Symmetric Coset Spaces and in Chapter 7 we look at 

Symmetric Coset Spaces. In Chapter 8 we return to the 

issue of what the low energy field theory should be.
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Chapter 0 A review
For many years now it has been the goal of many 

theoretical physicists to find a theory which would 

describe nature by a single Force ( and a small number 

of elementary particles ) of which the known forces are 

just different aspects . The recent "Super string" 

theories are interesting candidates for such a theory. 

In this chapter we shall review the known forces and 
give some of the arguments leading to Super strings.

In nature there appears to be four forces 

Electromagnetism, the Strong interaction, the Weak

interaction and finally Gravity. Of these there exists 

a well known ,experimentally solid ,theory describing 

the first three which is known as the ’Standard Model' 

[I] ( the introduction of which in 1967 won the Nobel 

prize in physics for Glashow,Salam and Weinberg). We 

shall give a brief summary of this model here. The 
Standard Model is a ’Gauge Theory’. What do we mean by 

this ? If we take the Dirac lagrangian ( describing a 

free ,spin ̂  massless fermion eg an electron )

L = - If dx (0. 1 )
Then this lagrangian is invariant under the following 

transformation of the fermion field ^  .
(p — ê *̂  ̂  a constant ) (0.2)

This rather simple observation leads us to a physical 

conservation law - conservation of electric charge 

( from a theorem due to Noether every symmetry of a 

lagrangian leads to a conservation law ). However the 

conservation law is a global law whereas physically we
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have local conservation ( ie charge is conserved at 

every point rather than just the total charge of the 

Universe remaining fixed ) This suggests we should try 

to construct a theory which would be invariant under 

transformations (0.2) where now ex. is a function of the 

coordinates x ie cx.(x). However if we do this with the 

lagrangian (0.2) we find that this is not invariant ( 

due to terms ) . We can get around this problem by

introducing another field ^(x) which we call a Gauge 

boson and changing the lagrangian to

L = - \ ̂  +lgA^(x) )ijjdx (0.3)
( g is a constant called the coupling constant )

Then we find this lagrangian is invariant under the 

following generalisation of (0.2)

^  (0.4)

We can also give the A^(x) field a life of its own by 
introducing its kinetic term.

L = C (<)̂  Av - \ â )(ÏTa‘' - ' S ' (0.5)
This kinetic term is invariant under the gauge 

transformation (0.4) in its own right. If we identify 

A^Cx) with the potential for the electromagnetic field 

then the resulting theory proves to be a very sucessful 
one for describing the interaction of a spin fermion ( 

eg the electon ) with the electromagnetic field. It is 
also about the simplest type of gauge theory. We can 

extend the concept further, suppose we have a set of 

fermions or , and these have a group of symmetries 

acting upon them. Suppose this is a Lie group G with

— 2 —



generators T^ ( the ^  and T ̂  must be in some

representation of G ) Then the lagrangian will be

L = oi'̂ 'x (0.6)
This must be invariant under the following global

transformation ^

4  — >  e ‘'*̂  ^  4  (0.7)
( double a-indices implies summation )

CLWe wish to make the c< local. To do this we must make 

the following change in (0.6)

'byo +igA^(x)x‘̂ ) (0.8)
We must also add the bosonic lagrangian which is a 

generalisation of (0.5)

L = - (0.9)

where /̂u\/ - *0 tc^yu^v
( are the structure constants of G )

We must also generalise (0.4)

Our simple example had U(1) for its group G . The group 

G for the standard model is SU(3)xSU(2)xU(1) . The

strong interaction being described by the SU(3) and the 

electro-weak by the SU(2)xU(1).

What are the fermions present ? . These split into two 

groups - leptons and quarks . The leptons are not 

affected by the strong force and consist of- the electon 
e , the muonyU, the tau muon ^  and three neutrinos ( one 

for each of e yV 2: )  ̂ . There are six quarks to
match the six leptons - u,d,c,s,t,b ( the existance of 

the t-quark is a little suspect at present) [% ] . These 

fit into three families the first of which is 

e , , u , d

- 3 -



The other two families are just matching sets with the 

same quantum numbers only with a higher mass - these are

^  1 ; C » S

t  t , b
Each of the above particles ( except possibly the

neutrinos ) has two 'chiralities'. What do we mean by

this ? - a fermion field can be split into two parts 
( called chiralities ) thus

‘t = - ^ 0 (0.10)
The Lagrangian also splits up into two parts if we do 

this ie

The and 4^^ also transform under Poincare

transformations independently. So 4̂  ̂ and can be

taken as different objects, usually refered to as the

left and right handed chiralities. It is one of the

most intrugULno^ aspects of the standard model that the 

left and right chiralities appear differently within the 
theory. The left chiralities fit into SU(2) doublets as 

follows

e A  , / u  ̂\ ( plus the same for

^  j \ d L / the other families )
Whereas the right handed chiralities appear as SU(2) 

singlets

, d^ , e^ ( and p o s s i b l y ^  )

This aspect of the standard model is difficult to 
explain and will appear again. The quarks ( both left 

and right ) are SU(3) triplets and the leptons are SU(3) 
singlets. As we have three families of chiral fermions
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we often say the number of chiral fermions is three. It 

is uncertain whether there are more families as yet 

undiscovered but cosmological evidence suggests the no 

of families is ^ 4 [3] ( this is only a good argument if 

the neutrinos are massless )

The standard model has been very sucessful in 

describing the Electro-Weak-Strong interactions. It has 

succQSSfully described the known Electro-Weak phenomena 
to high quantitative agreement and predicted the 

existance of the W" and bosons which were discovered

about 1982 at CERN [2.] ( the gauge bosons of
SU(2)xU(1) are identified with the photon,W* ,W" and the 

Z® ) Everywhere that the standard model has been able to 

make predictions has been a source of excellent 

agreement ( in the SU(3) sector there have been major 

difficulties in calculating the predictions of the 

theory but things are getting better via Lattice Gauge 
Theory [ ) . Gauge theories also have the very

important property of being consistent quantum theories 

( ie renormalisable ).

There are however criticisms of this model

1. There are a lot of "free parameters" within the 

theory by this we mean there are a lot ( 23 ) of 

constants which appear in the Lagrangian without any 

good theoretical reason why they should have the values 

they do ( from working backward from experiments )

2. The Unification group is hardly in some ways much of 

a Unification -it is just three groups pasted together.
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In (0.8) we have written a single g but for the standard 

model since we have SU(3)xSU(2)xU(1) , a direct product

of three groups , we could have three different g's one 

for each of the groups and in fact if we fit experiment 

to theory we must take different values to start with - 

in a genuine unification we would like to see only one 

independent coupling constant for one force.)

3. Although not previously mentioned if we wish give the
4- ^W *" ,Z and the fermions a mass we must have spin-0

Higgs particles present. There is no principle why they

must be present. ( Most of the free parameters 

mentioned in 1. are in the Higgs sector. )
4. Charge conservation is a result of the model but 

charge quantisation is not.

5. Gravity is not incorporated within this model.

The next stage in our Unification scheme was the

introduction of ’Grand Unified Theories' [51 ( the story
of nomenclature in particle physics is rather
dramatic ). Whose idea was as follows- we should have

some grand unification group G which is a single group

with one coupling constant, the vacuum state however

does not possess the full G symmetry so at energies less

than the scale of the vacuum solution we will observe a
/ fsmaller symmetry than G , G say, G C G . We are

trying to obtain G ̂  =SU(3)xSU(2)xU(1) from some G . To 
make sense the scale of the solution must be of the 

order lo'^GeV. ( The coupling constants are a function 

of energy scale and upon extrapolating one finds they
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have the same value at about this energy.) Grand unified
theories contain more gauge bosons than the standard

model but the unseen ones have a mass of the order of
the vacuum scale. These, although massive, do have in

principle observable effects eg they can mediate proton

decay. The proton lifetime is rather large however^ 
3 010 years [($>]. There are various candidates for G 

~SU(5) was originally a popular candidate for G others 

are S0(10) and E^. Of the problems 1.-5. above Grand 

unification gives good progress on 1.,2. and 4. However

3. and 5. are still problems and an additional problem 

appears. Why should the scale of Grand Unification and 

that of the weak interactions be so different ? . We
need to 'fine tune' the parameters in the original G 

theory very carefully to make the scales so different. 

This is the famous Hierarchy problem.

A solution to this problem was provided by the
introduction of 'Super symmetry' [7] ( which also has

many other interesting points ). Super symmetry is a

symmetry between bosons and fermions and as such this is

quite a leap forward in unification - one can regard

bosons and leptons as just two aspects of the one

particle. Super symmetry solves the hierarchy problem
“t obecause the mass of the W ,Z and of the fermions are 

suppressed , to much less than the unification scale,

because their mass term is not super symmetric and cannot

appear if super symmetry exists. It also answers the 

tantalising question of why do we need fermions at all -
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recall the gauge boson kinetic term was invariant by 

itself so a gauge theory of bosons alone is perfectly 

acceptable. Super symmetry predicts a matching of bosons 

and fermions. The super symmetry generators S transform 

fermions into bosons and vice-versa . So there should be 

a matching up of fermions and bosons with the same 

quantum number. Unfortunately this is not observed 

amongst the known particles ! . So we must be in a

similar situation to the Grand unification schemes where 

the symmetries of the lagrangian are not observed in 

nature - so Super symmetry must be broken. This breaking 

must occur somewhere above the weak interaction scale ( 

100 GeV ) but if we are still to solve the hierarchy 

problem it cannot be too far above, certainly well below 

the unification scale. It is not really known at what 

scale it is broken. ( Hence the excitment amongst 

super symmetry phenomenologists whenever any hint of 

experimental deviation from the standard model is 

suggested !).

So far we have been talking of global super symmetry. It 

is when we allow the super symmetry transformation 

parameters to become local that super symmetry really 

starts proving its worth. We obtain ( amongst other 

locally super symmetric theories ) the so-called 

supergravity theories which contain spin-2 particles 

which we identify as the graviton, the particle which 

mediates gravity. So for the first time in our journey 

we find the fourth force finding a place. In 4-D there
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are various types of supergravity depending on how much 

super symmetry is present ie 
N = 1 supergravity has a 1-D group of S's 

N = 2 supergravity has a 2-D group of S's etc 

We will not consider supergravities ( or super symmetries 

) with N > 8 since these must contain spin > X

particles and it is not known how to deal with such 

objects [J] and it is thought there exists no consistent 
way of including them.

Our next step forward is the idea, originaly due to 

Kaluza and Klein in the 20's [*î], that we should take 
the possibility that we live in dimensions > 4

seriously. If we had a 4+k dimensional theory and a 

solution which was of the form

(4-D flat space)x(k-D compact space with length scale L) 

Then for lengths very much larger than L this would 

appear to be a 4-Dimensional space. So is the Universe 

really 4-Dimensional or does it only appear to be ? . We 

shall look briefly at the original Kaluza-Kleln model to 

illustrate the ideas. This model had a space-time which 

was 4+1 dimensional and the theory was five dimensional 

gravity. If we take simple 5-D gravity and take ( 4-D 
Minkowski ) x ( 1-D torus ) as our solution, then the 

resultant low energy 4-D theory will look rather more 

complicated than simple gravity. If we take indices A,B 

to be 1-5 and // , V  to be 1-4 and carry out a 

redefinition of our 5-D metric field

G^y = g^^ +
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0 ^ 5 = ^  (0.12)
( these are a definition of and )

Then we find at lengths much larger than that of the 

torus then the lagrangian will approximate to that for 
4-Dimensional gravity ( g^^ ), an Abelian Yang-Mills

field ( A^) and a scalar particle {</>). This is a very 

simple model which was originally introduced to unify 

gravity and electromagnetism ( in the 1920s ). The 

coupling constant for the Yang-Mills field is related to 

the size of the torus. We shall note a few of the 

features of this model.

1. Gravity and electomagnetism in 4-D are just different 

aspects of 5-D gravity

2. Charge conservation arises from this model as a 

direct analogue of momentum conservation. For momentum
LOX

conservation since for a wave function e we can

have any value of p and so we do not have quantisation. 

However since the fifth dimension is a torus a 
wavefunctione ' is not single valued unless p^

obeys a quantisation condition ie is a constant multiple 

of some fundamental unit ( which is proportional to 

1/(length scale) )
3. The scalar field arises in a natural manner

4. In fact for our redefined field ,A^X) say ,this

would appear in four dimensions as a infinite set of
particles since we can expand ( X = x ,x^)

A„(X) = 2 L  A^"(x)e * (0.13)” nao
(a is the radius of torus)
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Each of the ^ (x) is a valid 4-D field which will have 

a mass^which will be of the order n^a^ As the natural 

length scale for gravity is the planck length then we 

would expect a (planck length ) this results in

mass n X ( 10 GeV ) so only the n=0 fields would

appear at low energies However we cannot forget about
the other fields completely eg they effect the Quantum

properties of the theory.

We can generalise this procedure to a more general 

situation. Starting with the Einstein-Hilbert action in 

4+k dimensions
(0.14)

Then if we take for our solution
( 4-D minkowski)x( k-D compact K )

Then we will find in 4-D gravity, scalars and Yang- 

Mills fields The Yang-mills fields will have Gauge group 

G which is related to the symmetries of K [*o] ( in 

particular if K has no symmetries there will be no 

(massless) Yang-Mills fields ). It would be very nice 

to obtain Yang-Mills fields with gauge group 

SU(3)xSU(2)xU(1) or one of the unification groups in 

this way. If we wish to obtain SU(3)xSU(2)xU(1) in this 
manner then sheer size arguments imply we must start 

with k ^ 7. Of course any other fields present in the 

original theory will also appear in various ways in 4-D. 

Eg an initial spin-J Rarita-Schwinger fermion field 

will split into spin-ï  and spin—^ fields in 4-D.
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Supergravity theories in dimensions greater than four 

dimensions are in some ways natural candidates for

complete theories. If we take N=1 supergravity in 4+k 
dimensions then, on the simplest compactification we

t i lwill find N= 2 ( [ 1 denotes integer part )

supergravity in 4-D. for k > 7 we will have N > 8 and so 

we must obtain spins > 2. These particles are very

undesirable. If we do not wish to have these particles 
we must restrict ourselves to k ^ 7. The two conditions 

k ^ 7 and k X 7 which apply if we want our gauge bosons 

to arise from the metric and not obtain spins > 2 seem

strongly to suggest looking carefully at k=7, if a N=1
supergravity exists. In fact such a N=1 theory does 

exist for dimension 11 [11] and is in fact a very simple 

supergravity theory containing only three fields- the 
metric g^g , a spin- ̂  fermion field and a three

form A ( or field Â ç̂_ which is antisymmetric in ABC ). 

This theory is very attractive and has been studied very 

carefully over the last few years However it has been 

largly discredited due to several problems mainly
1. Although is is possible to obtain SU(3)xSU(2)xU(1) as 

the gauge group it proved very difficult to obtain the 

fermions in the correct representation [i%]

2. The 4-D observed fermions are "chiral" and it is a 
theorem due to Witten that ( with some assumptions ) 

that chiral fermions can only be obtained if (a) the 
original space-time is even dimensional and (b) Yang- 

Mills fields exist in the original theory [i3] ( these 

are necessary conditions not sufficient ) The N=1 D=11

Supergravity theory fails on both counts I.
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3. We are really interested in Quantum Mechanical 

theories. The standard model and the Unified theories 

are consistent quantum field theories. However when we 
introduce gravity the theory is no longer able to be 

quantised consistently. It was hoped that the 

supergravity theories would due to their high symmetry 

be able to be quantised. Calculating " loop diagrams" 
,which for a theory to be renormalisable must be well 

behaved, we find for pure gravity that one-loop diagrams 

are fine but the two-loop and higher are not. For 

supergravities it is thought that the two-loop diagrams 

are well-behaved but three or more loops will lead to 

problems [*̂ *]. So it appears that the supergravity 
theories are not quantum-mechanical consistent.

There exist supergravity theories in dimensions less 

that 11 but greater than 4 however if we wish to obtain 

SU(3)xSU(2)xU(1) in 4-D we must couple these to Yang- 
Mills theories ( not always possible ) these could then 

solve 1. and 2. but 3. still remains and introducing 

Yang-Mills without a good reason could just be done in 

4-D !. So without some fundamental reason for including 
the Yang-Mills fields these are unsatisfactory.

The major difficulty of producing a consistent quantum 

field theory of gravity has led to the introduction of 

Superstring theories [151 which are not point particle 

field theories but have fundamental objects which are 
"strings" rather than point particles. The difficulty
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with Quantum gravity occurs in the regime where two 

point particles are very close together. At short 

distances string theories are radically different from 

point particle theories so we might hope for a different 
behaviour.

The fundamental object in a superstring theory is a 

"string". A string is a one-dimensional object which can 

either be open or closed ie

OPEN STRING CLOSED STRING

Bosonic string theories have been around since the early 

seventies [/&] but it has been the introduction of the 

Super symmetric Super string theories which has provoked 

the recent interest in superstrings. These string 

theories incorporate both fermions and bosons.

There are various types of string theory.

If we have open and closed strings we say we have a type 

I superstring theory

If we have only closed strings we say we have a type II 

superstring theory
There is a third type of string theory -the heterotic 

string which only has closed strings but the closed 
strings are rather strange in that the vibrational modes 

appear differently depending on which way they travel 

around the string!. 4-03 ,
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( N.B. we cannot have only open strings since an open
string can join ends to form a closed )

A very crucial point of Superstring theories is that for 

a few very restictive conditions being satisfied then 

they are consistent Quantum Theories. For consistency we 

must have:

1. The superstring theories are only consistent if they 

are written down in ten-dimensions

2. For type I and heterotic superstrings there is a 

Yang-Mills type index associated the strings. The are

strong restrictions on what the gauge group may be ie

For Type I we may only have S0(32)
For the Heterotic we may have S0(32)/Zi or EgxE&

The strings may interact in various ways eg.

V GO
V

Of course at experimental energies ( at present ) we do 

not see strings we see point particles. To explain this 

the length scale of the strings must be very small- as 

string theories have only one length scale it is natural 

that this must be the planck length which is 10 m which 
is much less than experimentally investigated distances. 

Strings have an infinite number of vibrational modes
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most of which will have energies/masses planck energy. 

At low energies the only modes which would be excited 

are those which are massless. These massless modes 

would interact amongst each other like point particles. 

So at low energies the string would simulate a point 

particle theory. In fact the massless modes of 

Superstring theories form ten-dimensional Supergravity 
theories the form of which depends on the string theory. 

Type II strings form a N=2 10-D supergravity 

Type I and Heterotic strings form a N=1 10-D

supergravity which is also coupled to Yang-Mills 

supermultiplets the gauge group being that of the 

initial string. ( Although we have Yang-Mills fields 
these are not ad hoc but are specified by the string 

theory.)

This work will be concerned with the analysis of the 

effective 10-D point particle theory for Type I and 
Heterotic Superstrings and the process by which six of 

the ten dimensions compactify leaving four dimensions. 

We shall be examining alternate compactification schemes 

to the popular one where the internal six dimensions are 

a "Calabi-Yau" space [17]-( These spaces are rather 

interesting objects- being Ricci-flat and having no 

symmetries ). In the next chapter we shall look at a 

little Superstring formalism -just (?) enough for our

purposes and in Chapter 2 we shall examine closely the

the N=1 D=10 supergravity theory which we shall be

working with.
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Chapter 1 A look at Superstrings
In this brief chapter we shall take a short look at 

superstring formalism and give a justification of the 
statement that the zero mass modes of a string form 

supergravity multiplets. For a more detailed exposure 

see for example references [/5] and [|&].

We shall present a little of the superstring formalism, 

The original bosonic superstring theories were based in 
26 dimensions as this was the only dimension where they 

could be written down consistently. The Superstring 

theories can only be consistently written down in ten- 

dimensions for quantum mechanical reasons.
We shall start by describing a little of the bosonic 

string. A string, which since it is a one-dimensional 

object , will sweep out a two dimensional 'world sheet' 

in space-time as it develops. ( as opposed to the 

world line swept out by a point particle, ) For the 

bosonic string the string kinematics are completely 
given by X^( 0" , t   ̂ crefo,/!*) where X ^  are space-time 

coordinates and CT and are world sheet coordinates. <T" 

is space-like and t  is time-like. At fixed "2*, <T 

describes position along the string. We can have two 

types of string - open strings where the endpoints do 
not neccessarily coincide and closed strings where we 

must have
X^( 0, ■?:) = X'"(7T , t) (1.1)

Closed strings can also be orientated or unorientated. 

If the string is invariant under O"-y/Y- <T then we call it 

unorientated otherwise it is orientated. The string is 

described by the action
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s = ^  do- d ? r / ^  (1.2)

( oc, Ç» are world sheet indices 1-2 refering to <T and

2", g"*? is the world sheet metric, )

Associated with string theories there is only one free

parameterthe so called string tension which has is in

units of inverse raasŝ . The inverse of the string

tension should appear premultiplying the action (1.2).
It is natural and usual to take this to be the inverse 

z,(planck mass) . We shall usually work in units where 

the string tension is one and we shall not explicit^ 
mention it again.

For the world sheet metric ^  we can solve its algebraic

equations of motion and substitute back into (1.2) (

this is only valid for D=26 ) We have reparameterisation 

invariance of (1.2) so we can also choose g*̂ C such that 

/Ig gTt= = diag(-1,1) (1.3)

The g"^^ equations of motion will then manifest 

themselves as constraints

( b ^ X ^  ± Vx'*" )̂  = 0 ( 1.4)
These constraints are important. If we started with 

in the action instead of g**̂  we would not obtain them.

Without these constraints we would not obtain a physical

Hilbert space of states when the theory is quantised.

The equations of motion arising from (1.2) are

( ( O', 1:: ) = 0 (1.5)
with additional boundary conditions for open strings

O-.t ) = 0 at <r = 0 & TV (1.6)
&<r

The solution to (1.5) and (1.6) is

( 6" ; 1: )= x'^+p^2‘+ i ^ I ^ (  a'^e"'^'^ )cosn <T (1.7)
A ÿo
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This is for a open string,for a closed string we apply 
(1.5) and (1.1) but not (1.6) to give for the general 
solution

x^((T,'k)= d.s)
<>4o

Notice that closed strings have double the modes that 

open strings do. As in field theory upon quantisation
/o fj 'V. yüwe let a ^ , b and b ^ be creation/annihilation 

operators satisfying appropriate commutation relations. 

For the closed string the b and b are operators for 

modes travelling in opposite directions around the 

string.

In superstring theory we have both bosonic and fermionic 
coordinates which are functions of the world sheet 
parameters . We fully describe the string by X'^(6“ ,'t) 

and t  ) A=1 ,2 these are interpreted as 10-D

superspace coordinates ^  are D=2 ( world sheet )
scalars but D=10 Majorana-Weyl spinors. We have N=2 

super space/super symmetry.

We must generalise our bosonic action to a

super symmetric extension. The appropriate form for a 

non-interacting string is

S = S; + S 2 (1.9)
Where S, is the naive extension

S| = 2^ ^d ̂  d /-g g ^ 7^ at. ^ (1.10)
Where =0.^ X“̂ - i  X  X ' ’

and V  are the 10-D gamma matrices

S, in fact is not a free string action so we add S as

an additional term to make S non-interacting
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( £1*̂  ̂ is the antisymmetric tensor in and Ç )
We can again use the equations of motion for g to 
solve, substitute back and set equal to as before

again yielding vital constraints. However the

constraints are complicated. We will continue this 

discussion in a particular gauge - the ’Light Cone 

Gauge'. We change from coordinates yu =0,9 to
-r +

X 1=1,8 and X ” where

X- = ;=• ( X°± x"’) (1.12)
•fx +

In this gauge we can use the constraints to solve for X ”

in terms of x"̂  so all the physical degrees of freedom
will reside within the X^ . Local fermionic symmetries

of (1.9) also allow us to impose

X *  = = 0 where 'C” = p" ( ) (1.13)NX
(1.13) truncates x' , to 8 component S0(8)

representations

^  I X  X C  ̂  ^  "X" (1.14)

Which spinor representations or depends on the
original D=10 chirality of X  . X i s  in the vector

representation of S0(8).

In the light cone-gauge the equations of motion become

( ^  + ^  ) X  = 0 (1.16)DXr 06" ^
(b_ - )7C = 0 (1.17)O T  0  6"

We also obtain boundary conditions for open strings

%  (o-,!:) = 6c cr,?-) «■= o & (i.18)
â. x^ ( r, t )  = 0, <f =0 k 7T (1.19)
o<r
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(1.18) requires X  and X  to have the same chirality and

reduces the super symmetry to N=1. We obtain, by solving

( 1.16)-(1.17) the mode expansions for %  and X  . That

for is identical to (1.7) ( w i t h r e p l a c e d  by I )

z (1.20)
9 C ( 6 - , ^ ) =  (1.21)

r* =
When we quantise the theory we obtain the mass formula 

X X .1
K

( a is a fermionic index previously omitted )
M = X-nT.,) (1-22)

So the zero mass state of the string will consist of the 

ground state of the Foch space of the and

oscillators tensored with a general function of the

superspace coordinates

iO>f( X , fermionic coordinates ) (1.23)

The fermionic coordinates are not quite the same as the

X  ( see [/5] ). Expansion of the f( x , %  ) in powers

of the fermionic coordinates will yield 16 functions of

X )8 of which will be bosonic and 8 will be fermionic. 
We find the massless modes of an open string will be

I v ©  S0(8) (1.24)
Looking back to the bosonic string we notice that for a

closed string we have two sets of operators , each set
the same as the open string set of operators , one for 

each direction of motion around the string. We get a

doubling of modes. It can be shown that the open string
Xstates fall within multiplets with mass =n and the

oclosed string states are in multiplets with mass =4n 

formed by R,^®Rn* So to find the massless states for a 
closed string we need just need to product two open
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string massless multiplets. We obtain type II 
superstring theories in this manner. S0(8) has the 

property of having three 8 -dimensional representations 
8̂Y the vector bosonic representation and two spinor 

representations _8_c and _8_̂ . We can take either spinor rep 

for the open string. When we product two open strings we 

have two possibilities. We can either take two open 

strings with different spinor _8s or two with the same 

type of spinor 8 . The first possibility corresponds

to type IIA superstrings and the second to type IIB. We 

obtain for the massless modes

IIA ( 8y(+) 8j) (x) ( 8y<3 8 c) (1.25)
IIB ( 8 y<© 85) ® (  8v (£) 8 )̂ (1.26)
These produce the following states ( bosonic states 

first )

IIA J_<B28®25>(38/±:)^6v , ^ ^ 5 6 < ^ C ) ^ 6 ^  (1.27)

IIB ic£)28 1_^28 cB1 5 3  , 5 6 ^ < 3 ( 1 ' 2 8 )
(I.27) and (1.28) are just the field contents of Type 

IIA and Type IIB N=2 D=10 supergravities as given in 
Table 1.1. These string are orientated strings .

The only known theory based on open and closed stings 

involves unorientated closed strings based on type IIB. 

Imposing the condition of invariance under (T-?7T- (T" 

eliminates half the states in the IIB theory leaving the 

same states as the Type I N=1 D=10 Supergravity as given 

in Table 1.2. The massless content of this theory ( 

known as Type I superstring theory ) is that of type I 

supergravity plus the massless content of the open 
strings ( 8v ©  8̂ ). The open strings can (must) have a

- 22 -



Yang-Mills index associated with the free end. If the 

Yang-Mills group is G then the massless states will be 

( 8y©8j, I ) (X) ( 1_ , adjoint of G ) (1.29)
This is the same content as a D=10 super Yang-Mills 

mul tipi et.

For a consistent quantum theory we must be very 

restrictive in our choice of G .To enable anomalies to 

cancel when we quantise we have only one choice of G 
namely SO(32). At this time this appears to give a 

finite consistent theory.

Apart from the three type of string theory I,IIA and IIB 

there is one further type of string theory the 
’Heterotic Superstring’ which is based on closed strings 

only ,

The Heterotic superstring is a very strange object- it 

is a closed string theory for which the modes moving 

around the string in the two directions are very 

different objectsDfQ, Mathematically one set are 
superstring modes in 10-D and the other set are bosonic 

string modes in 26-D. The 26-D is compactified to 10-D. 

The net result ( the analysis is complicated and not

really necessary here ) for the zero modes is to find

Type I supergravity plus a super Yang-Mills multiplet 
where the Gauge group, if we require anomaly 

cancelation, can have only two possible choices- EgxEg

or S0( 32)/Zj^.These are both rank 16 groups.
Here we have shown ( or indicated ) how we obtain the 

same ’fields’ as D=10 supergravities when we look at the 

massless modes of superstring theories. However this is

- 23 -



not the same as showing that they form a supergravity 

theory. Detailed analysis of the interaction between the 

zero modes does confirm that they do form these theories 

[(&].

The Behaviour of the string is determined by its entire 

( infinite ) spectrum of states. However at low energies 
we would hope that we may approximate the behaviour by 

analysing the behaviour of the zero mass modes. There 

must be more to the low energy limit than just the 

supergravity lagrangians since these suffer from

anomalies whereas the full string theories do not. We

shall in this work attempt to analyse phenomenological 

aspects of some of the superstring theories by examining 

the 10-D field theory lagrangians which are based on the 
10-D supergravity lagrangians with appropriate 

corrections due to the higher mass modes. These

Lagrangians are only approximations to the superstring 
but we should be able to learn something from them. ( 

After all physics is a very good approximation to a 

point particle world- there is no direct experimental 

evidence at the moment for matter being extended objects 

)

We shall be interested mainly in the compactification

of the ten dimensions into four flat plus six highly

curved dimensions. If we wish to explain our manifestly

4-D universe by a 10-D theory this must certainly
happen. We shall attempt to find compactifying
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solutions to the classical equations of motion arising 
from the lagrangians which result in physical particle 

spectra and Yang-Mills symmetries. We regard these 

classical solutions as the background solutions for when 

we quantise the theory.

Type II supergravities have no ( apart from a U(1) in 
IIA ) fundamental Yang-Mills fields hence it is very 
difficult to see how after compactification we can find 
SU(3)xSU(2)xU(1) Yang-Mills fields. ( Recall from 

chapter 0 that we cannot obtain enough Yang-Mills fields 

from the metric for dimensions less than 11.) Hence we 

shall only deal with the type I supergravity ,which is 

derived from both Type I and Heterotic super strings, 

coupled to various Yang-Mills. In the next chapter we 

shall introduce this supergravity lagrangian which is 

known as the Chapline-Manton lagrangian and discuss the 

possible alterations to it.
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XfiLblq 1.1 Field content M  the type H  Suoergravities

Field

scalar
metric

U(1) Yang-Mills 

Two form 

Three form 

Gravitino 
( Majorana ) 
Spinor

( Majorana )

Field

Complex scalar 

gray iton
complex two form 

Four form with 

self dual field 

strength

Gravitino ( Weyl) 

SpinorC Weyl )

Supergravity

Symbol Rep of 30(8)

1_

V 8 V
28

V v ç

'f' ^  c

Supergravity

Symbol Rep of 30(8)

B l < © i

/̂/V ^  ^

35s

Y 55s © 5 6  4

•> i s ®  8s
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Table 1.2 Field content n£. type 1 J2=Ua J=1
SupergravitY

Field Symbol Rep of S0(8)

scalar ^

graviton g
two form 

gravitino ij;

( Majorana/Weyl) 

Spinor

( Majorana/Weyl)

I

> èlv 

^ 6

This can also be coupled to a super Yang-Mills 

multiplet which will have content ( in reps of

S0(8)xYang-Mills group G)
Yang-Mills > adjoint of G )

Spinor X  ( 8 , adjoint of G )
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Chapter 2 The Extended Chapline Manton Lagrangian
In this chapter we shall introduce the Lagrangian which

we will be working with in Chapters 3-7*
As discussed in chapter 1 at the low energy limit of

Type I and Heterotic superstrings the zero modes of the

superstring behave as point particles of the d=10,N=1

Chapline-Manton supergravity coupled to specific Yang-

Mills fields. For type I superstring theory the Yang-

Mills are SO(32) fields and for the heterotic string
theory they are EgxEg or S0(32)/Zj^. This is the lowest

order Lagrangian. There are various reasons to suppose

it is not sufficient to consider only the zeroth order
approximation and we must consider additional terms from

the next order in perturbation theory. The d=10,N=1

supergravity contains the following fields ( we are not

coupling to Yang-Mills yet ). 
aE - the gravitational orthonormal one forms 

describing a spin 2 particlejA=0,9 
5 - the lorentz connection related to the E^

avia the torsion T

dE^ + w \  E*̂  = t'’

B - a two form ( or Bp^ a two index field )

- a scalar spin 0 field
l|/ - a spin^ fermion field

^  - a spin*^ fermion field

The lagrangian also features field strengths defined 

from some of these fields 

= dw^^ +wAt%
H = dB

The appropriate lagrangian is [1*̂ ]
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- .L H A. *H -dyu A *dyu 

Y *Eflg^ -Xÿ ^''d> A *Ea 
- A^(>f V'iS*^ A *Eg ) A»( d4» *Efl )

+ -^e^ H A( K( 'X , 4» ) ) (2.1)

+ four fermion couplings 

Where K( ) is defined as

*(Ÿ'(''E.4') + +(&E *(tT^"^*E&) (2.2)*"* b[ A6o>6 Iff

Where we have used the following notation/definitions

d is the exterior derivative which takes p-forms to 

(p+1)-forms d acting twice on any form gives zero ie 

d( d(a form))=0.

A is the interior product operation which acts on a p-

form and a q-form to yield a (p+q)-form.

E ^ * means pf**E^xE^., a E^^

* is the operation of Hodge dual which take p-forms to
10-p forms. Its action on the E^’*^^is defined by 

A,... Ap  ̂ j fti . .E — •--  C. n E
0»-fy. ®' •

( is the antisymmetric tensor in ten

indices)

Another operation which we will use is that of interior 

derivation i^, i*:p-fonns (p-l)-forms and is defined 

on E by i^E = fj where ^  =diag( — 1 , +1 , +1 .... . , +1 ) .

This supergravity theory can be coupled to a Yang-Mills 
supermultiplet by adding the following fields [^o]

A - Yang-Mills potential

- 29 -



X  - spin ^  super symmetric partner to A 
These fields have a group index ( which we suppress ). 

We find we must add to the Lagrangian the bosonic term

+ i e'"' tr( F a  *F ) (2.3)
where F is the field strength of A ,F=dA +k/\A. We also 
must add the fermionic terms

I A ^ A&C
- ̂ tr(7t D X} *1

- F^+Fs<, (2.4)
where we have introduced which is defined by

-^i»ij:( 4 - , ^ ^  +3\ \ ^  (2.5)
( circumflexed quantities are super covariantised )

We find we must also alter our definition of H to 

H = dB - JZ.y^where is the Yang-Mills Chern-Simons

term which is defined by

= tr{ F a A - X A a A a A } (2.6)
With these changes we now have the standard Chapline- 

Manton lagrangian#

When we use our gauge groups arising from superstrings 

we must be. careful what we mean by the trace tr( ). If 

we have the EgxE% gauge group then the Yang-Mills lie in 

the adjoint representation the generators of which if 

taken as anti-hermitian ( ie q J = -Q ̂ ) are usually 
normalised to Tr( =-30&^.In this case we find we

must replace tr( ) be ^^ T r ( ) whereever this occurs.
For S0(32) we have the Yang-Mills in the fundamental 

representation which is normalised to Tr( Q^Q^) = - St'̂  . 

For S0(32) we replace tr( ) by Tr( ).
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Throughout this work we shall be setting the fermion 
fields to zero in our ansatzes. Obsewationally non-zero 

fermion fields are not ruled out but there is no 

positive evidence for them. So we shall only consider 
the bosonic 1agrangian*( Rs the fermion fields occur in 

pairs when we set them equal to zero there will be no 

residual contributions to the equation of motion from 

the fermionic terms in the Lagrangian when we do this ).

+ i^e^tr( F a *F ) (2.7)

Although this is the lowest order lagrangian there are 

reasons why it alone cannot describe physics ( and hence 

we must consider higher order terms ) One reason is the 

argument due to Freedman et al [%f]) "ten into four

won't go" which states that given certain assumptions 
then there are no solutions when space-time is 4-D 

maximally symmetric and there are six compactified

dimensions. To see this we look at the scalar equation 

of motion arising from (2.7)
2d*d/j - A +-^e'^tr( F A *F ) = 0 (2.8)

={e"V^g( H,H ) -e^tr( g(F,F) ) }»1 (2.9)

now tr( g(F,F) ) = - g (F̂  , F̂,*) so we find 

( is the normalisation of the generators )
9-D/U *1 ={^g(H,H) +e^X%(F^,F^) }»1 (2.10)

If H and F have no time components then the RHS of

(2.10) is positive, However only has negative or

zero modes so the LHS must be negative or zero. The only

solution hence is =0 and H = F = 0. This also

implies the curvature scalar is zero. So we do not have
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any possibilities of interesting compactification. 

Another problem , of a rather different nature and 

perhaps more significant, is that if we attempted to 

quantise this theory we would have both gravitational 

and Yang-Mills anomalies [3A]* Whereas in the original 

string theories these have been shown to vanish. So the 

higher order terms must be significant as they must 
contain elements which will yield a cancelation of the 

anomalies present in the Chapline-Manton theory.

So it appears we must consider some of the alterations 

to the lagrangian due to higher order string effects.

The 'full' point particle field theory lagrangian which 
would simulate string theories would contain an infinite 

number of fields and terms; however in certain 

circumstances perhaps we need only consider some of 

them. If the typical momentum of a field is k then all 

the terms will have a certain power of k associated with 

them. For dimensional reasons we will have a factor of 
M5 with each k where M^ is the mass scale of the string 

( inverse string tension ) so we can regard infinite 

lagrangian as a infinite sum of terms whose 'size' is 

powers of (k/Mj). IF this parameter is small ( < 1 )

then we can regard this as a perturbation expansion and 

for some purposes just consider the first few terms. 
This is what we are doing ,we are taking the lowest 

order terms which correspond to the zero mode terms and 

adding some of the terms in higher powers of (k/M^). The 

terms in higher powers of (k/M^) come from the
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correspondingly higher modes of the string theory. ( 
These are sometimes refered to as higher derivative 
terms.) It is an unresolved problem as to whether it is

valid to assume this parameter is small. However we

shall assume that it sensible to do sOj 5ome 
justification being that M5 is usually expected to be 

the planck scale and in standard Kaluza-Kl&un theories 

when we have compactifying solutions in is usual to find 

the typical momentum to be less ( 0.01-0.1 of ) than the 

planck scale.

We should include the higher order terms which make the 

lagrangian anomaly free.( Since the string theory is 

anomaly free then in a perturbation expansion there must 

be a cancellation of anomalies ). It was found that be 

redefining H to be

H = dB ütofî. (2.11)
where ,/l^^is the Lorentz Chern-Simons term

fSUjox = t r ( R a w  - ^ w / n W a w  ) (2.12)

( where the trace is a S0(10) trace )

then we find we have cancelation of anomalies in the 

lagrangian [XX], The next order in an expansion would 

be expected to include curvature squared terms In [i?] 

it was proposed that the curvature squared terra take the 

f orm
- X e ^ t r ( R A « R )  (2.13)

however such a term would lead to gravitational ghosts 

and Zwiebach [%3] has proposed the following ghost free 

alternativ e.
+ (2.14)
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This differs from (2.13) by terms involving the (Ricci 

tensor ) and ( curvature scalar ) ( and so for Calabi-

Yau spaces will not be different ). In 4-D this term is 
just the Euler density and locally is a total derivative 

thus not affecting the dynamics. However in 10-D this is 
not the case. The addition of (2.14) to the Chapline- 

Manton lagrangian invalidates the No-go theorem.

We shall attempt to find solutions to the case where we 
have made these two alterations to the bosonic Chapline- 

Manton lagrangian. It should be understood that this is 

not all the alterations neccesary to form a consistent 

truncation of the perturbation expansion to second 

order. We shall return to this issue in Chapter 8 .

Before presenting the equations of motion we must decide 

whether to use first or second order formalism ( ie do 

we regard the Lorentz connection as an independent field 

to be varied giving an equation or not ). In the 
original Chapline-Manton theory , when the fermion 

fields are zero the role of torsion is clear- the 

torsion cannot be an independent field and must be set 

to zero, ( supersymmetry fixes it to be zero ). When we 

consider higher order terms arising from string theory 

however it is not so clear what the situation is 
higher order terms could conceivably manifest themselves 

as degrees of freedom for the connection CO fc>. We should 
be able to decide this from string arguments. Certainly 

the string modifications do seem to imply a symmetry 

between F and R, or A and u> , ( w e  added the Lorentz
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Chern-Simons term to match the Yang-Mills Chern-Simons

term and we added the Zwiebach term which is closely

related to tr( E ) which would match tr( F /\ *F ) )
so it is possible that the similarities may extended to 
ACO ^ being an independent field in analogy with A. Since 

we are looking at a modified lagrangian we are including 
the effects of the massive modes, primarily those in the 
first massive level, so it is possible that these modes 
could manifest themselves by giving degees of freedom 
which appear as those for the Lorentz connection. Hence 
we will take a look at the first massive level of states 
to see if a 9 of S0(9) is present. If no such
representation is present then it seems we should not 
regard the connection as an independent field ( to this 

order in the expansion ). This is a one-way argument if 
a 9 of S0(9) does exist in the first massless level then 
we really can say nothing as to whether it could be a 

connection without proper analysis.
If we look at the spectra of Type I strings we recall
from Chapter 1 that the open strings had massive
multiplets of mass^=n^ and the closed strings had

1 «%.multiplets of mass =4n ( this is in units of ( string
— Itension ) ). So we look at the first massive level of

the open string. This turns out to be fairly simple and 
for the bosonic modes is a 45 of 30(9) this is a two 
index symmetric field. The second mass level is 36 0  

115 ( a two index antisymmetric tensor and a three index 

symmetric tensor ).
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For the Heterotic string where we only have closed
strings we must look at the modes in the first massive
level of the string which arise from

«/‘■©R,*'- (2.15)

Where R, ̂ R,*̂  are the n=1 modes from the appropriate open 

string theory, These are representations of S0(9)x( 

Yang-Mills Gauge group ). We find [ 15]

R") = ( 4J, J) (© ( 8J, 1) ®  ( 128 , 1)

= ( 44> 1J + ( 9.496) + ( 1,69256) (2.16)
Where the 69256 depends on the gauge group 

For EjxEj 69256 = (248,^) + 2(1_,1_) + (3875.1 )

For S0(32) 69256 = 2*® + 35960 +527 + 1_

We wish to look for representations of the form ( 9, 1) 

these can only come from {( 44 ,1 )(£( 84 ,1 )©( 1^, 1.) }<2C( 44 ,1) 
carrying out the expansions gives ( dropping the )

44 (%> = 1 _ < î > 3 j t 5 > 4 4 c D 4 ^ c D  495 cD 9J_0

M  = 84 c£> ^ 1  9J4 Æ> 2457

1 ^ < ^ 4 4  = 16 Æ) 128 (Æ) 432 ®  576 <© 1 920 €>2560 (2.17)

So for both cases we do not find a 9 of S0(9) so we 
should certainly take second order formalism and not 

regard w  as an independent field

There is still the question of whether even if the

connection is not a free field the torsion is zero or 
not. In the original Chapline -Manton theory the 

torsion can only be non-zero if the fermion fields ( and 
in particular certain fermion bilinears see [CIO] ) are 

non-zero. However for the low energy limit of 

superstrings this may not be the case.
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When approaching compactification , via the (S-function 
approach [JSl, some authors have seen the need
to have the torsion tensor ) set
equal to the three index tensor ( H = to

within a factor of This is closely related to what 

is done in Chapter 8 where we are mainly interested in

further modifications to the lagrangian. In this work

however we shall mainly be interested in the effects of 

allowing variable torsion^t^oct/S not having H=T but 

allowing more freedom. In actual fact the ansatzes we 

consider still have proportional to Tĉ c. but the
proportionality in non fixed. What is the source of 
this torsion ?. It could easily come from higher order 

terms arising from the string theory although we have 

shown ,at least to first order, that the torsion cannot 

be propagating. Even at the Chapline-Manton lagrangian 

level we can have ,via non-zero fermion bilinears, 

torsion in the system and when considering the extra 

fermion terms which are the super symétrie partners to 

the Lorentz Chern-Simmons and Zwiebach [%%] terms then 

we have extra possibilities. Of course to be completely 

rigourous here we would have to produce the field and

show they satisfied the ( complicated ) fermionic

equations. Even if the background fields are zero then 

Quantum fluctuations of the fermion fields could produce 

a torsion.This was discussed in where the authors

also considered variable torsion. So we will take the 

viewpoint that even if not a free field there is still 

the possibility that the torsion may be non-zero and we
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shall attempt to solve the equations of motion with this 

crucial difference. Whenever we have solutions we shall 
investige where ,if at all, H=T.

We can now calculate the equations of motion* First we 

give the Einstein equation(s)

i^(H A»H)-2(i®H)A *H )

-{ i®(dA»A*dA) -2(i'^d/w) A *d/u }
+ ̂ e ‘*'tr{ i^(FA*F) -2(i®F)A*F }

• 6 AAC2>+ fe Rps aR^o a i *E = 0  (2.18)

For the Yang-Mills we will have
yM jj yu
D ( e^ *F ) +e F a *H = 0  (2.19)

( The F A *H arises from the Yang-Mills Chern-SimoOS
term.)
ynD is the Yang-Mills covariant derivative.

Variation wrt B yields

d( ) = 0 (2.20)

Variation of the scalar field gives us 
2d*dyV -ie^'"'HA*H + tr (F a  *F )

+ a Rç̂ a »e '’®‘̂'̂ = 0 (2.21)

The field strengths F and H must satisfy Bianchi 

identities arising from theur definitions
,dH = tr( R a R ) -tr( F A F ) (2.22)

= 0 = dF +AaF -FaA (2.23)

We shall be attempting to find solutions to these
classical equations of motion. We are trying to

determine the 'background solution' for the quantum 

theory about which quantum fluctuations ( particles ) 

propagate. The very obvious solution to the equations
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of motion is 10-D Minkowski space-time with F,H and all 
the fermion fields zero (yv any constant ). However if 
this were the solution we would observe a ten- 

dimmensional world with gauge fields SO(32) or EgxE& 

which is rather different from the observed 4-D world 

with SU(3)xSU(2)xU(1) fields. We shall look for 

solutions which are of the form 

( 4-D space-time ) x ( 6-D internal space )
If we are not to 'see' the internal six dimensions they 

must be highly compactified. This high curvature 

endangers the expansion in terms of (k/M*) however as 

mentioned previously 'typical' Kaluza-KlCcn theories 

give k < Mj . Even when such solutions exist it is 

unresolved why such a solution should be preferred to 

M,Q or even solutions with split ups into dimensions 

other than 4 x 6 ( 3 x 7 , 5 x 5  etc ).

If the torsion on the internal manifold is zero then 

there are arguments which suggest that the three form H 

must be zero, the 6-space should be one of the now 

celebrated Ricci-flat Calabi-Yau, and the Yang-Mills 

should be set equal to the curvature ( regarding the 

curvature as a S0(6) field ). These have been

extensively studied in the literature [ We shall
investigate the alternative possibility of finding 

solutions where the torsion is non-zero ( and H 

possibly non-zero also ). We shall consider 6-D spaces

which are Group manifolds or Coset spaces. These have

the advantage that a natural ansatz exists for the
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torsion with these spaces [30] . ( Not all coset spaces 
however only ’ non-symmetric* ones )»

If we take the Einstein equations (2.16) and take the 

product of Eg with it we obtain the equation

4 A *E -e^ H A *H - 8d/-»A*d/.̂
+3e^tr( F a »F ) + | k * E = 0 (2.24)

If yV is a constant we can take this minus 6 x scalar 

equation (2.21) to obtain
4R^^a*E +2e ^H A  *H = 0 (2.25)

Using ( defining ) R^^A'E^^ = R  »1 , Ha»H = g( H,H )»1
this becomes

R. = - lg( H,H ) (2.26)

This is a fairly simple equation which will be very 

useful later. If for the moment we specialise to space 

time being 4-D Minkowski with H zero on space-time then 
g( H,H ) will be positive and hence the internal 

curvature must be negative ( unless both zero ). If our 
compact internal manifolds have zero torsion their 

curvature would be positive,Hence our torsion must be 

large enough to change the sign of the curvature.( This 

is not a valid argument when space-time is for RxS^/HS^ 

or deSitter/AntideSitter space-time ). When the torsion 

is equal to zero we must have H = 0 and the
curvature = 0, ( This is one of the properties of the 

Ricci-flat Calabi-Yau spaces ).

Having decided to investigate letting the torsion be 

non-zero we must decide what it must be !. For Group
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manifolds and non-symmetric Coset Spaces there is a very 

natural ansatz for the torsion [3o] . An investigation of 
these two types of space ( with a brief mention for 
symmetric coset spaces ) will be the main aim of this 

work. In Chapters 3-4 we analyse group spaces and in 

Chapters 5-7 we look at coset spaces. These spaces also 

have their geometrical structures given more explicitly 
than for Calabi-Yau spaces.

We shall also mention a useful property of the Einstein 

equations namely that , under certain conditions , the 

scalar equation in contained within them.

If H and F have no E*'̂ component ie i^H = i^F =0 , =0

for all A and d/_/ =0 then the 0-th Einstein equation 

will be
1/2Raa*i°*E** -1/4i“(H a »H) +1/2i*’(tr(F a *F))

+1/4Rftj«R(.Ai‘’»E'*®^ = 0 (2.27)

i°{ 1/2R*a *E** -1/4H A *H +1/2tr(FA*F)
+ 1/4R^,a Rc6A*e '’̂  }= 0 (2.28)

so 1/2R ^ a *e'** -1/4H A *H +1/2tr(FA*F)
+ = 0 (2.29)

We also have equn (2.24) which always holds. ( This was 
obtained by multiplying (2.18) with Eg). (2.22) minus 

eight times (2.27) yields

H a »H -tr(FA*F) -1/2R^4ARtoA*E‘̂ ^‘* (2.30)
This is just the scalar equation (2.19) ( to within a

factor ) So with fairly modest assumptions ( d/v =0 ,
A®i°F=0 , i*H=0 and R =0 ) we have that the scalar

equation is not an independent equation but is contained

in the Einstein equations.
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AOThe condition on R will be satisfied by 4-D Minkowski 

and Rx( three-sphere or three-hyper sphere ) but not for 

deSitter/Anti-deSitter.

This fact will prove quite useful in the following 

chapters and we will refer to it again.
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Chapter 1 Group Manifold*

In this chapter we shall attempt to find solutions to 

the equations of motion (2.18)-(2.21) of the extended 
Chapline-Manton lagrangian ,which was discussed in 
Chapter 2, which take the form

( 4-d space-time )x( 6-d group manifold )
Why are group manifolds interesting ?. - As discussed 

in chapter 2 we wish to be able to define a non-zero 

torsion and for a group manifold G we have a natural 
ansatz

t“ - E*’*' (3.1)
where are the structure constants for G [3o] .

How many 6-D Lie groups are there? We find only three
6SU(2)xSU(2), SU(2)xU(1) & U(1) .

( S0(4) ^  SU(2)xSU(2) )

The SU(2)xSU(2) case is particularly interesting since 

by taking the three form field H to be the sum of the 

volume elements for the two 3-dimensional manifolds we 

have a natural ansatz which will give compactification 
in an analogous manner to the Freund-Rubin .mechanism 

[3 j] ( which was introduced for 11-D supergravity ). 

SU(2) is isomorphic to the three sphere.

We shall take the case of SU(2)xSU(2) first. We shall 

use indices 4-6 for the first SU(2) and 7-9 for the 

second.
We shall take the following ansatz for the fields *r-

yj z constant (3*2)
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For the three form H a natural ansatz for H is the sum

of the volume elements of the two SU(2)s ( SU(2) is
three dimensional )

H = ) (3.3)
For the torsion we have

0 for a=0-3

T = t, for a,b,0=4-6 (3.4)

\  r f o r  a, b, 0=7-9 
where s the totally antisymmetric tensor in

a,b,0=4,5,6 with =1 and similarly for P ( these

are the structure constants for SU(2) )

The internal curvatures are given by

R“̂  =̂ r, e^ E*’̂  a,b=4-6 (3.5)
R*'*’ =ir^e^E*‘' a,b=7-9 (3.6)

( r, and r are strictly positive if the torsion is zero. 

However if the torsion is non-zero they may be

negative, )
For the space-time curvature we work with two different 

cases

(A) R** : ÿ,e"^E“’*’ a,b=0-3 (3.7)
this corresponds to 4-D Minkowski deSitter (dS)

or Anti-deSitter (AdS) according to the value of R(̂ ( =0 

, > 0 , < 0 respectively ).
(B) R^® = 0 1=1-3 (3.8)

R^ =lR^e**^E^^ i,j=1-3 (3.9)
this is a time-independent spacelike 3-sphere (S^) or 

hypersphere (HS^) depending on the sign of R^ ( > 0 ,

< 0 respectively ).
In case (B) we may also add to H the extra term

e^'^h^E'“  (3.10)
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( This is the volume element of a three
sphere/hyper sphereo)

The vielbiens obey the following for the internal 
dimensions

dE = -jRi a,b,c =4,5,6 (3.11)

dE = a,b,c =7,8,9 (3.12)
R, and Rĵ  are the length scales of the SU(2)s and are 
strictly positive ,

The Yang-Mills field strength F is a SU(2)xSU(2) field. 

If we label the first SU(2) by 4,5,6 and the second by 

7,8,9 then our ansatz for F is given by

F = *̂ e ̂ fj a,b,0=4 ,5,6 (3.13)

r V  a, b, 0=7,8,9 (3-19)

the and P % c  as defined previously. There

exists a well defined Yang-Mills potential corresponding 

to this F ( A%k.E*') and so the Bianchi identity (2.23) 

will be satisfied automatically. Since F is 

topologically trivial f, and are free parameters, ie

they are not subject to a quantisation condition.

We have inserted appropriate powers of e in our ansatz 

so that when we look at the resulting equations e"̂  has
AJ

vanished, ie we have scaled e out of the problem. We

shall, do this in chapters 5 & 7 also.
This means any single solution will be in fact a one- 

parameter family ( and choosing the value o f ^  will fix 

the scale).
With this ansatz the equations of motion reduce to a 

system of non-linear algebraic equations. For simplicity 

we shall present here the case where the two SU(2)s and 

the fields on them are identical ie
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= h

t j = t = t 

r, =r^ = r 
Rj = Rĵ = R

& f, =f% = f (3.15)
We shall take case (A) first For this case we find the 

ten Einstein equations reduce to two separate equations 

2r } -h -G'X. f +{ R^.r + r^ } = 0  (3.16)

{ kr } -2'X'f'̂  +{kR(^.r +lrt +,\Rh >= 0 (3.17)
where is a normalisation factor arising from the

generators of SU(2)xSU(2) obeying tr(0^0^)=

We also have the scalar equation

2h'̂  +6‘X f ’’ -{ IR^.r +r'*' +J-R^ } = 0 (3-18)
We also have ( contained in these three, see page 40

(2.26) )
g( H,H ) = -2 ( R* +2r ) (3.19)

or h’- =-(k* +2r) (3.20)

We can use the scalar equation to define f

6%"f^ ={ 2R|̂. r +r"̂  +^R,^ }-2h^ (3.21)
Eliminating f from (3.16) and using (3.20) to 

eliminate h'̂  we find the following equation

- ^  R { 1+2r + ̂ R(^ } = 0 (3.22)
so we have two possibilities 

(1) Ry. =0 (2) Rf̂  =-6-12r
In case (1) we find

h** =-2r (3.23)
6 K  f ̂  = r( r+4 ) (3.24)

The requirement that f ^  0 and h^ 0 is only satisfied

for r ^ -4
In case (2) we find

-  46 -



-6( 1 +2r ) (3.25)
h'^ = lOr +6 (3.26)

 ̂ t 1 -7
6X f  = -9r -20r -9 (3.27)

The function on the rhs of (3.27) is negative for all

values of r so we do not find any consistent solutions

in this case. So only Minkowski solutions exist
We shall now look at case (B) ie space-time being 

3 3Rx(S /HS ). Here we find three Einstein equations which 
are

{ Rj +2r } -iho -h’‘-6'X f +( 2R^.r +r’- } = 0 (3.28)
{5R3 +2r } +Jh^- +( !(%.r +r'*' } = 0 (3.29)
{ R, +4r } -ih' +{iR,.r + = 0 (3.30)3 Z. 3 3
With a little algebraic manipulation we obtain for the 

hs
h^ = %{ 2r. R^ +R-J } ( 3.31 )

t  %
h^ = r.Ra +r } -4>f (3.32)3 ^

and for f*^
itTU'"*' = i{ r( 2Rj +r ) +2( 2r+ R% ) ) (3.33)

substituting back into (3.32) we obtain
h®’ = _ Ir - & R ?  -^r.Ra (3.34)

*lm 'I,We will only have valid solutions whenever h* ,h & f

are all positive. Requiring > 0 gives us a
restiction on the values of r and Rn̂

R^ 0 and r ^ ^  (3.35)

or Rg ^ 0 and r ^ ^  (3.36)
Requiring h 0 gives us the restriction

R^ -3r/( r+2 ) (3.37)

finally requiring f^ 0 gives
R < _ ( r'^+4r )/( r+1) (3.38)3 V
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There is a non-zero region where all three conditions

are satisfied. This is illustrated on diagram (3*1) •
The region where valid solutions exist is bounded by two

%
curves. Along the upper curve f =0 and along the lower 
a.
h =0. Note that solutions only exist for both r and 

negative, R3 being negative means that space-time is a 

hypersphere (HS^) rather than a sphere. For r it means 

that the torsion must be large enough to make r 

negative. We have the relation between the torsion t,the 
length scale R and r being

r = e " T 3/(2R'*' ) } (3-39)
As we are using second order formalism t is an 
arbitrary parameter and we can choose t to satisfy this 

relation»( As r is negative we are always guaranteed 

> 0 ).
We should note that the Yang-Mills equation is not 

satisfied trivially but reduces to a constraint. Note 

that if A^ =kE then
f = k(^k + r"') (3.40)

Both D*F*and F% are non-zero and proportional to 

.We find the resulting constraint is

r“‘ +k = h (3.41)

or R = h -k , (3.42)
There is no immediate reason why the RHS of (3.42) 

should be positive ( which it must be ) however since 

only h^ and f^ are fixed in terms of r ( and R3 ) we 
can choose the sign of h and f to ensure R3 is positive.
We can show that (3.24) in terms of k ( with some

manipulation and (3.41) ) becomes
k = hi /h^ -f so :ç Jh^ -f (3.43)
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by choosing the negative root ( and the -ve root for f 
) we can ensure R is positive *

Another possible ansatz for the Yang-Mills field is a 
U(1)^xU(1)^ field

F" =f, ,F^ ,f ‘ =f| E**

F^ rf^E®' ,F* rf^E'*’ .f’ zf^E^*" (3.44)

( The coefficients are the same on each SU(2) to ensure 

that the energy momentum tensor is a product of a unit 
matrix.)

We find solutions in a very similar manner over the 

same range of parameters as for F being a SU(2)xSU(2) 

field.
If we take R3 = 0 then the RxHS^case reduces ( as one 

would hope ! ) to the minkowski case. If we take r =-4 

then we find we reduce to the case of Dolan et al who 

[3%] studied the case where the Yang-Mills fields were 

set to zero.

We shall now look at the case where the internal
Cmanifold is U( 1 )

This is just a six-torus, We can have a coordinate 

system with coordinates i=1..6, with vielbiens

d©^ , since dE‘'r 0 we . find the ( torsion-free ) 

curvature to be zero. We note immediately that solutions 

to the equations of motion with T = F = H =  R = 0  must 
exist. We shall attempt to find other solutions where 
some of the fields are non-zero I. (we shall only give 

for simplicity the case where all the R are identical.) 

The natural torsion defined in (3.1) is zero here and
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there is no obvious alternative so we shall have T = 0 
and hence Rg^= 0 ( for the internal dimensions ) What 
should the F field be ? If we take

A = _a_ (&,dG], -<^dej (3.45)
then we find

F = a e '̂  (3.46)

This is non-zero and obeys D*F=d*F=0, generalising we 
can take for our F field a U(1) ansatz ie

F'zfE*"® , F*'=fE‘  ̂ , F* zfE^^ (3.47)

What do we take for H ? Almost anything will obey 
dH = d*H = 0 but we must also have Fa*H = 0 if the Yang-Mills 
equation is to be obeyed. An ansatz which satisfies this 
is

H = h,( e '̂ ® + E*^^ ) (3.48)
( Notice that with this F and H the U(1) cannot be 

regarded as U(lJ xU(ljf with no mixed fields.)

With this ansatz we find the equations of motion follow
in a very similar manner to those for SU(2)xSU(2) and we

can obtain them from the SU(2)xSU(2) case by setting the 

internal curvature r equal to zero. Letting r = 0  for 

the case where space-time is AdS or dS we find ( from 

equations (3.23) and (3.24) )
h|^ = f^ = 0 (3.48)

So we find no non-trivial solutions. If we take space­

time to be Rx(S*/HS^) we find the equations are ( from 

(3.31),(3.32) and (3.34) )

= 5 ^ 3  (3.4 9)
h^ = -^R3 (3.50)3

4 X f " =  2 R3 (3.51)
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The positivity conditions on the three objects cannot 

simultaneously be satisfied so we will obtain no valid 
solutions ,

So the case for U(1) is simple.We find no solutions 
other than the case where F = H =

We lastly consider the case of the internal dimensions

being SU(2)xU(1) ,We shall deal first with the case

where space-time is AdS or dS. We shall use indices 0-3

for space-time,4-6 for the SU(2) and 7-9 for the U(1)^.

We shall take the F field to be a SU(2) field living on

the SU(2) manifold ( as in (3.13) ) and on the U(1)^
manifold we take the F field as a U(1) field

SIF = f( E +E +E ) (3.52)

For the H field we will take the volume elements of the
3SU(2) and the 0(1) ie

H = h,E^ +h%E (3.53)
We consider case (A) first. Ry. and r shall be the 4-d 
and internal curvatures respectively.( As in (3.5) and 

(3.7) ) With this choice of ansatz we find the three 

Einstein equations become

R^.r } ~ -ÿ  ̂I }
f,\fx }, = 0 (3.54)

{ Ry, +l"i ) + )
- } = 0 (3.55)

^  R^ +r } + I R4. r } - hj*’ -hj }
-y^( = 0  (3.56)

When we look at the Yang-Mills equation we find for the 

SU(2) part neither D*F nor F a *H is zero and we obtain a
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similar constraint to that for the SU(2)xSU(2) case. For 

the U(1) field we find D*F=d*F=0 but F A *H  ̂ O.This 
means either hĵ  or f m u s t  be zero. We take the case of 

h%=0 first. We find on using the equations to find ĥ  

; and f in terms of and r that

= -{ 5Rt +2r } (3.57)

-3Rit } -&Rk.r (3.58)
O, T. ^  ®

"X f, = M  27R^+16r } + 1%Rî . r (3.59)
The scalar equation places one constraint on R^ and r. 
We find

Rq.( 1 +r ) = 0 (3.60)
so either Rî. = 0  or r = -1 . In either of these two

cases it is impossible to find any values or R^ and r
'I, X 4.such that all of h^ , fj and f^ are simultaneously

non-negative so we find no solutions. We now can 

consider 0 and h x \  0 We find our three Einstein

equations can be solved giving

hi = - ^ R ^  - ̂ R».r (3.61)
h = { — ̂ R*y .Jr } — R̂i*. ̂  (3.62)

- { 3R^+2r ) + 2R|f.r (3.63)
The scalar equation again reduces to

Rî ( 1+r ) = 0 (3.64)
So again R^ = 0 or r = -1. If we substitute either

possibility into (3.61)-(3.63) then we find we do not 

simultaneously have all of hj , h^ and f ̂ positive at 

any point.
We consider our last possibility - space-time being 

Rx(S^/HS^). We find four Einstein equations, ( We can 

forget the scalar see P41-42 ), These are 

R3 +r } + «̂ { ZR^.r } - +fx^ )
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- y.{ +hĵ  +h%} = 0 (3.65)
3 ^ 1  +r } + i{ i R j . r  } f t  + f ^

~ -hg +hf +h^} = 0 (3.66)H*
R j  +r } + i {  i R j . r  } - 1 {

- t ( h ^  -h,'̂  +h%) = 0 (3.67)
Rj + r } + 2 { iRj.r ) - i{ f,"̂  _ If^)

-  ;;(  +h^ -h%} = 0 ( 3 . 6 8 )

Again we find the Yang-mills equation for the U(1) field

on the U(1) manifold reduces to hĵ  . = 0 so either

f̂ ,= 0 or h^= 0. So again we have two possibilities.

However we find if we take either case then we can

deduce that h^ = = 0 so we have only one case. We

can solve for everything in terms of and r. We find 

^ ho = 3 } + ^ R ) . r } (3.69)
= 0 (3.70)

i C  = ) + tt-lgRl-r ) (3.71)
= 0 (3.72)Q. '*•
= X{ 2R3 +2r } + X {  2 R y r  } (3.73)

We must ask whether we can all five (coefficients)

non-negative. On Diagram 3.2 We show the region where
all the positivity constraints are satisfied As can be 

seen solutions only exist for both R3 and r being

negative . As for the SU(2)xSU(2) case this means space­
time must be a hypersphere (HS^) and on the internal

space the torsion ( on the SU(2) ) must be large enough 
to change the sign of the curvature. For our solutions 

both H and F are zero on the U(1) so there ore^no fields 

being non-zero on the tori. As a difference between the 

SU(2)xSU(2) and SU(2)xU(1)^ notice that Minkowski space-
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time is not a limiting case for SU(2)xU(1)^ whereas it 
was for SU(2)xSU(2),

So in summary we find solutions to the equations of
motion in several instances

for SU(2)xSU(2) both Minkowki and RxHS^

for U(lf xSU(2) RxHS^
Cfor U(1) we find only the rather trivial case 

F=H= R=0

We shall examine the consequences of these solutions in 

the following Chapter

We should mention that our solutions in many cases can 

be expanded to form a larger class as follows - Suppose 

we have a F field which is a solution with gauge group 

G. This means for the ( large ) gauge group in the 

theory certain of the component fields are non-zero . If 

the gauge group of the theory is large enough to contain 

GxG then it is possible to have a field FxF as a

solution . We must change the coefficient by but

once this is done the algebraic equations will be almost 

identical,( hjote we are only free to do this since the 

coefficient of F was a free parameter ). So if F is a

solution we can have fields FxFxF.. with as many Fs
nonzero as we can fit into the gauge group of the

theory. This has a major effect on the possible

resultant 4-D gauge groups predicted after
compactification. This will be dealt with in the next

chapter.
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We now turn our attention to the possibility, as 

discussed in Chapter 2 of having T=H for our solutions. 
The precise statement of T=H is

(3.74)
( see Chapter 2 p37, Chapter 8 and [33],)
For our SU(2)xSU(2) ansatz this reduces to

(3.75)

t is defined by (3.39) ie

= ^ . 1. -r (3.76)

R is specified by the Yang-Mills equation (3.42). For 

our ansatz with RxHS^4-D space-time we find (3.76) 

becomes

6t* = (3.77)
ftApplying the constraint and substituting for h in 

terms of r and R3 we obtain an equation
aRj +hj cR^ +d +e = 0  (3.78)

tphere

c = ( k.r +2 )3
d = 2=r^ +4r3
e = -Jir +2r (3.79)10&

When we solve (3.78) for R^(r) we find a curve which 

lies within the allowed region on Diagram 3.1 and very 

close to the boundary given by h =0 ( so close as to be
indistinguisKable at the scale of the Diagram). This is 

not surprising since (3.75) is only going to be 

satisfied when h"̂  is small. We have one more 

possibility. When f =0 we find in actual fact that the
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Yang-Mills equation does not yield any constraint so R 

is not fixed by the Yang-Mills equation. Instead we can 
fix it via

= 6t +r = 648h"^ +r 

( Although r is -ve the total RHS is +ve so is well
defined *)

So along the boundary given by F=0 we can satisfy H=T. 

Since we have H=0 on 4-D space-time we must ask is H=T 

for the 4-D space-time components. In our original 

ansatz we took the torsion as zero on space-time. There 

are two possible viewpoints. One would be to say we 

only need H=T on the internal space and the other would 

be to introduce torsion on 4-D space time. Since we 

have F=0 on 4-D space-time this poses no difficultjes for 

our ansatz ( we are in the same situation as for the 

F=0 boundary ) but may give observational difficulties. 

So in conclusion ,for the SU(2)xSU(2) case ,we can have 

two distinct one parameter families where T=H. For 

SU(2)xU(1) we find a similar pattern.
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Diagram l.j Arse of Ih-r plane for which solutions 
■gxist far manifolds of the form 

(JBJLS^/lLS>)jt(^(2)xSil(2)_)

5.0
=-(4r+r^)/(2r+2)

2.5

0.0-5 —4

- 7.5

Along this edge h = 0

Along this edgeSolutions exist for values of

1 r

R_ and r in the shaded area F = 0
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Diag ram 3 .2..Area of Ra-r -P l a n e f or w h i c h  s o l u t i o n s  
ÆXig.t for m a n i f o l d s  of the f o r m  

(^xS^/H^U(_Sü(2)jÜi(l)i_)

5.0
Rx =-2r/(r+2)

2.5

0.0,-8 -6 -2-4

- 2.5

- 7.5

- 10.0

- 12.5

- 15.0

Along this edge h =0

Along this edgeSolutions exist for values of

1 r

R_ and r in the shaded area F = 0
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ChaDter 4 Phvsics from Group Manifolds

We shall now investigate the consequences of taking our 

solutions from Chapter 3 seriously. We shall 
investigate several consequences namely

1. Efffective 4-D Yang-Mills fields
2. 4-D Fermions

3. Cosmological aspects

1. Effective 4-D Yang-Mills fields

If we have an extended Chapline-Manton Lagrangian with 
Yang-Mills group G - E%xEg, SO(32) or S0(32)/Z^then at 

high energies this will be the observed gauge group 
( and space-time would appear ten dimensional ) . However 

if we have a compactifying solution of the form (4-D 

space-time )x( some six dimensional compact manifold) 

then at energies much less than the compactification 

scale space-time will appear four dimensional and the 

gauge group will be different from G. For the gauge 

bosons in G some of them will become massive ,with 

masses the order of the compactification scale, and so 

we will not observe them directly at energies much less 

than the compactification scale ( which if we assume is 

roughly the planck seal^ suncc
-I?

lOOGeV / compactification scale 10
The present experimental energies available cu-e roughly 

lOOGeV. So if we have gauge group G at high energies 
then of these bosons we will only see a smaller group G 

at low energy ( G^CG ). If the compactify ing solution 

has Yang-Mills fields F set equal to zero then G will be
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unbroken and we will have G . If the Yang-Mills

field is non-zero , say , then when we expand F A  *F 

about Fg) then some of the fields will aquire a mass from 
this term. Only those fields whose generators have zero 

commutator with those in F^ will be massless ( on the 

compactification scale )«These will form the resultant 

gauge group. This is the "usual case" when bosons 

aquire a mass from Fa*F. Notice that a U(1) solution 

for F̂  will not break the symmetry group G . However for 

the extended Chapline-Manton lagrangian the presence of 

the Yang-Mills Chern-Simons term gives a mass to these 

U(1) fields also [3if] . We find in total that if the 

compactify ing solution has Fq a H group and if Ĝ  xH
/( C G) is maximal in the sense that we can’t expand G 

at all then the resulting low energy symmetry group will 

be G .
We can also have 4-D Yang-Mills fields arising from the

fl &Einstein part of the lagrangian a . If we split

up our 10-D metric g^^ as follows

(4.1)

Where k \  are the Killing vectors for the internal 

manifold. oL is a label for the isometries of the 

internal manifold ( which form a Lie group ). For the 

internal manifold we then find the 10—D Einstein—Hilbert 

action RpjA splits up into the 4-D Einstein-

Hilbert action + the Yang-Mills lagrangian for the F 

field. The index <X. is the group index of these Yang-

—  6 0 “



Mills fields. If the internal manifold is a gauge group 

G then we find these "Kaluza-Klein" fields are GxG, If 
we have a coset space G/H ( H/1 ) then these fields are 

a G field [30] . If the internal manifold has no 

isometries ( eg as is the case for Calabi-Yau spaces ) 
then there is no massless Yang-Mills fields.

This is the usual case for Einstein gravity with 

lagrangian density R^^k *E , however for our theory we 

also have present the Zwiebach form a to

consider ( and also the Lorentz Chern-Simons term 
in H ) Although we speak of this as a curvature squared 

term it is more than just the curvature scalar squared 

in fact ( in index notation ) it is [121

( where )
The curvature scalar is just so as we can see we

have terms other than the square of the curvature

scalar. It seems quite possible that these extra terms 

may upon compactification yield mass terms for some ,or 

all ,of the Kaluza-Kle. an bosons . So whether we would 

expect to see any bosons from the metric is at present 

unclear,( For the Calabi-Yau spaces the problem does not 

exist sinde these spaces do not have any symmetries and 

hence no Kaluza-Klein bosons ).
The total gauge symmetry is the product of the "Kaluza-

Klecn" group and the remnant of the original gauge

symmetry. ,, /
C-h-) T U s  ^  ^

5^ /-/ X M  ^/-O /'s hr^(X:^^eX
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What are the large symmetry groups broken to ?. The 
groups which we start with are are 50(32) , S0(32)/Z. 
and EgxEg .

We shall first deal with the case where the internal

manifold is SU(2)xSU(2). We have two Yang-Mills

ansatzes - SU(2.)̂  and U( 1 )̂ » ( We could also ’mix’ and

have SU(2)xU(1)^ ). We shall look first at the

possibilities of breaking E^ via SU(2)s. ( Recall we
could have multiple SU(2)s in our solution see p54 )*If 
/
HxSU(2) is a maximal subgroup of E^ then if this SU(2)

/ //is non-zero the gauge group will break down to H .If H 

xSU(2) is a maximal subgroup of H ̂ then we can let this
IISU(2) be non-zero and be left with H etc . So we have

a large number of possibilities for the resultant group.

Diagram 4.1 indicates the possible groups left over from

breaking Eg via maximal SU(2)s. ( This is not
n

exhaustive of the possible imbeddings of SU(2) within Eg 

). The resultant from EgxEg will just be the direct 

product of two of the possibilities. If one Eg is 

unbroken then the fields from this Eg will only interact 

with the other fields gravitationally and so will appear 

as ’dark matter’ . The existence of which is not 

inconsistent with Cosmological evidence. It is 

noticable that none of the interesting groups E^, 50(10) 

or SU(5) appear in Diagram 4.1.
If we try to break Eg xE g via U(1)^ then we have 

different possibilities depending on how many U(1)g go 

into each Eg. If all six are imbedded within one Eg then 

we will be left with E%x( a rank 2 group )̂  As
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su(3)xSU(2)xU(1) has rank 4 this is obviously not going 

to give us a physical gauge symmetry. Since the 0(1) 

fall into two sets of 3 it seems natural to keep these

U(1)s together within the same E ̂  so the only other

possibility is imbedding U(1)^ within each Eg this 

will lead to the product of two rank 5 groups one 
possible ’physical’ route would be 

Eg ^  U(1) X E^breaking the U(1) gives E-̂

E^ 3  0(1) X E{ breaking this 0(1) gives E (;

E ^ 3  0(1) X S0(10) breaking this 0(1) gives S0(10)

So it is possible to obtain a ’physical’ group , S0(10),

via this ansatz. Multiple imbeddings of 0(1)^ are not

very interesting since they break the Eg too far.

For SO(32) there are even more possibilities than for 

Eg. SO(32) has rank 16 so imbedding S0(2)xS0(2) would 

leave us with a rank 14 group. We shall not try to 

categorise the possibilities but mention a few 

possibilities - as ( SO(2)&SO(3) as algebras we might 

expect to be able to break SO(32) down to S0( 32-3n)xsorae 

0(1)s with ease,However S0(2) and S0(3) are not quite 
the same groups and there are subtÜLties involved ). 

S0(2)xS0(2) %  S0(4) so we would expext to be able to 

break S0(32) down to' S0( 32-4n), This is indeed possible. 

However we obtain S0(12) and S0(8) (amongst others ) in 

this way but not the desirable S0(10).
Imbedding 0(1)^ within SO(32) will give us a rank 10
group which is too big. A double imbedding will yield a 

rank 4 group which can be S0(5) via the following

pathway.
50(32) 3  SO(22)xSO(10)
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Since S0(22) is rank 11 we can break this via eleven 
U(1)s leaving S0(10).

Now S0(10) 2 3  U(1)xSU(5) so imbedding one U(1)

within the U(1) will leave SU(5) as the low energy gauge

group. This is a fairly attractive scheme since this is 
C

the most U(1) s we can imbed, within S0(32).

3For our manifold being SU(2)xU(1) we had a gauge group 

of SU(2) ( Recall that we started with a ansatz of 

SU(2)xU(1) but found the U(1) part to be zero,) So we 

can obtain the same groups as for SU(2)xSU(2).

It is difficult to take this manifold seriously^however 

when no Minkowski space-time solution exists •

For the case where the internal manifold is U(1)^ we 

have no solutions to consider other than the trivial 

case F = 0 which would not lead to any symmetry 

breaking.

2. 4-D fermions
Although the background field for the fermions are zero

we will still have different looking fermions in 4-D at

low energy from those which appear in the 10-D

lagrangian. The original fermions lay in the adjoint of
the original Yang-Mills gauge group G when this symmetry

is broken to G ^then this representation will split up
/

into various representations of G . Eg if we have E%xE% 

to start with then we will have a (248,248) as our 
fermion represention. Then if, for example, the symmetry 

was broken to EgXE^via a SU(2) being non-zero ie
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EgXEgJ> EgxE^xSU(2)

then we find the (248,248) splits into the following 
representations

(2jJ_8,^) ,3) (D ( 248, 133, 1 ) ^  (248,56,2)
The most popular physical groups are SU(5),SO(10) and 

E^. The representations which we would like to obtain 

are, respectively, the 10 + 5, the 16 and the 27. As we 

have three ( or four ) families of chiral fermions we 

would like to obtain three ( or four ) of these with no 

matching chiral partners.

We now look into the possibility of obtaining chiral 

fermions in four dimensions. If we were setting F = R a 
la Calabi-Yau then since the Euler characteristic for 

our 6-D manifolds is zero we would obtain no chiral 

fermions. Since our F field is different from R we must 

look further at the Index theorem.

Suppose we have a solution with Yang-Mills field F set 

= F^ F^ has gauge group G ^ which has centraliser 
within the overall gauge group. An original fermion 
representation A will split into (B,C) plus possibly 

(B, cl plus others of Ĝ xHg,(̂  B is the opposite chirality 

to B ). The imbalance upon compactification of massless

Cs of Hoover Cs in 4-D will be given by the imbalance of

"bs of Glover Bs in the background field F̂  . This number

is given by the index theorem for a six dimensional

manifold which is [35] 
n^ -n 3Cj-3c2.c, + c , ) - ^ | p , c ,  (4.3)

Where the c^ are the i-th Chern classes for the manifold

c. = F ) ̂ iJT
c. = J_Tr( F a  F ) -  ^ J r (  F )ATr( F )
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/\ I )

= 3  = ^ T r (  F a F a F  )4, i_Tr( F,\ F f- ^Tr(F) ^Tr(F) /\Tr(F) 
V *  i«n» L

( 4 . 4 )

and Pi is the first Pontrjagin class 

p, = Tr

On substititing the c^s into the first integral in (4.3) 
it reduces to

Tr( F a  F a  F )- t /'2v-nV2^n
This is ,for the SU(2), more useful. For our SU(2) 
fields we have

Tr( F a F  a F  ) = 0 

( Since tr( ) will not give any terms mixing the SU(2)s

this will yield six forms on the SU(2)s which will 

reduce to zero») So the first term will be zero. The 

first Chern class Cj is zero for non-U(l) fields so we 

will find n^ -n_zO so for our SU(2) fields we cannot

obtain Chiral fermions.

For our U(1) fields we have that c ̂  and c ̂  are zero 

however we must also look at c,c,c, and p, c, . c,c,c, is 

tr F A tr F ̂ tr F (4.5)

tr F is not zero for our U(1) fields however (4.5) must
be ( a sum of ) a (four form in one SU(2)) y\ (a two form

in the other). Since a four form must be zero c, c, c,
must be zero,The class p/ must also ' be zero ( since 

SU(2)xSU(2) S^xS* ). So for our 0(1) ansatz we also 

obtain that n ̂  -n _ =0 and so no chiral fermions. ( The 

above analsis will follow through for any 6-D manifold 

which is of the form (3-D)x(3-D) with no mixed Yang- 

Mills fields. )
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So we do not obtain any chiral fermions for our

solutions. This is a major difficulty if we wish to 

regard our solutions as physical. It is possible that

some mechanism , operating at energies intermediate

between the compactification scale and 100 GeV may give
a mass to one chirality of fermion but we have no

concrete suggestions to make for such a mechanism.

3. Cosmological Aspects
Observationally we live in a four dimensional universe

whose three spatial dimensions seem to be ( at large

enough scale ) homogeneous ,isotropic and expanding.

This can be described by the Robertson-Walker solutions
3 3 .where the Universe is of the form RxS /HS with a time

dependent scale for the S^/HS^. At the present moment

the curvature of the universe is very small compared to
-

the planck scale (*^10 )% If we are really in a 10-D

world with six dimensions curled up then the curvature 

of the internal six dimensions must be reasonably large 

( 10**̂  of planck scale ) otherwise they would be

observed directly The large difference in the

curvatures is something which hopefully a sucessful 

theory would explain. Experimentally it seems that the 

universe initially started with an initial state which

was highly curved in 4-D also ( big bang model )[34]
We have been trying to find solutions of the form

( 4-D space-time )x( 6-D internal space )

One of the possibilities we have considered is space 

-time being flat ie Minkowski M^ obviously this does not
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fit in with the initial state of the Big-Bang model 
however My. seems to be the t —^ oo limit of the universe 

so M y. X compact space should be a limiting solution of a

fundamental theory. Of the two cases SU(2)xSU(2) and

SU(2)xU(1? Mi^is only a solution for SU(2)xSU(2). It is 

very interesting to note that for this case the solution 

space extends from the case of M%x( curved 6-D) to the 

case (curved 4-D)x(curved 6-D) since a slow variation 

with time between these two cases is compatible with 

the big-bang model.

We do not discuss the possibility of resultant 4-D

super symmetry, although this is an important question , 

because the lagrangian we are using is an extended 

Chapline-Manton lagrangian and hence the Chapline-Manton 

super symmetry transformations will no longer be valid. 

At present we do not know which changes , to the

transformations, are neccessary to restore

super symmetry. It may be true that we must add more 
terms before we can reach a super symmetric lagrangian.

In conclusion with have great difficulty in matching our 

solutions for the internal space being a group manifold 

to the physical world and none can be described as 

remotely realistic. In particular the non-chiral nature 

of the fermions is a huge stumbling block. The existance 

of a family of solutions linking (RxS /HS )x(compact 

6-D) to M^x( compact 6-D ) is interesting.
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Chapter 5 Non-Svmmetric Coset Spaces

We shall attempt to solve the equations of motion for 
the case of the internal manifold being a Non-Symmetric 

Coset Space ( N.S.C.S ).

First we present a summary of our definitions and 

notation.

If we have a Lie-group S which has a Lie-subgroup R

then we can give the left cosets of R a differential

structure in the standard manner [30] a summary of which 

we shall present here. Let a=1..dimS, i=1..dimR, 

a=1..dimS-dimR . If Q^ are a suitable choice of the 

generators for S then they will split into two sets 

which are the generators for R and the remaining We

have -( since S is a Lie group )

[ Q » , Q a  ] r ' X c V Q A  ( 5 . 1 )
^  b C. tc

The"Xc*gg are the structure constants for S. ( Ve have 

introduced \ s o  we can normalise the C and then

will give the scale ).

We can set up a co-ordinate system y ( at least

locally ) on S/R. Each independent value of y will label

distinct left cosets of R within S. For each value of y 

we can choose an element L(y) of S from the appropriate 

coset. Since S/R is a differentiable manifold L(y) is a 

differentiable function wrt the coordinate system y. 

Hence we can define the S-lie algebra valued one-form

E(y) = - L^y)dL(y) (5.2)

This can be expanded in terms of the generators of S
A _

E(y) = E'(y)Q. = E"(y)Q_ +E'(y)Q.^ (5.3)

where E*(y) and E*(y) are one forms on S/R
XSince d =0 we will have
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dE(y) = E(y)^E(%) (5.4)

Using (5.1) this will lead us to
2 r. % tcdE = -^C^JgE (5.5)

A metric on S/R can be constructed from the E^ by using

them as orthonormal one-forms. Considering the metric

as a rank two symmetric co-variant tensor we define it

to be

g = E*(&E* (5.5)

Thus we now have our Coset space with its metric. We
AN

now look at the structure constants C*g2"

Since R is a Lie-subgroup we will have

c \ -  =0 (5.7)

We always have

C*g2 =-C ® 2k (5.8)
However we can further choose our generators such that 

A
the C 3re cyclic ie

csgg = cg»2 ( cjjj ) (5-9)
We can also choose to normalise the C ,s so that

S, ÎSÎ çfiî
c Eg c = S  ( 5 . 1 0 )

It is also- possible that some or all of the following

will be obeyed
krof ^aol

(5.11)
(5 .1 2)
(5.13)
( 5 . 1 4 )

If these are obeyed then we will have (from (5.10) )

dimR.ng =( dim S/R ).n* (5.15)

2n, + n^ =1 (5.16)

n^ + n^ =1 (5.17)

hcé ç.ac(
kc C = n, 6

«V
be C = V, Ù

Ok n Û
be C ' =

E pbcJ
bZ C = nn g. 6
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If we find that all the are zero then we define

this to be a ’Symmetric Coset Space’ if there exists a 

nonzero C b c then we define this to be a ’Non-Symmetric 

Coset Space’ (N.S.C.S) As previously discussed on P37 we 

are interested in cases where we can define a non-zero 

torsion. For the non-symmetric case we have a natural 

ansatz for the torsion- (see ref [30] )

t “ =(1-^ (5.18)

^ being a free parameter ( for symmetric coset spaces 

this ansatz is zero#)

With this choice for the torsion we find the connection 

60 b to be

co'^b (5.19)
and the curvature two forms to be

+ f  ̂  (5.20)
We find the Ricci one-forms are ( this involves

knowledge of the structure constants ) 

R®" = ^( 4 +2 Ç -

So our coset spaces are Einstein spaces.

We note the two special cases (S = 1,0 which are refered 

to in the mathematical literature as [3g] canonical

connections of the first,second type

For ^=0 we find R*̂|, =  ̂ (5.21)

For (b = 1 we have the torsion free case.

For ^  =0 R %  will have holonomy group R ( for coset

space S/R ) .

For ^  ̂  0 the holonomy group is S0(6).
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For non-symmetric coset spaces we can with a suitable 

choice of ^ ) obtain a Ricci-flat space) this

was noted by Lust [%&] who also noted that with H = F = 

0 he had a solution to the equations of motion for the 

unextended Chapline-Manton lagrangian .However with this 

choice of (3 the Zwiebach form is not

zero and we do not find solutions to the extended 

lagrangian ( as we will see , ) Also in [%?] Lust noted 

that for a specific value of ^  there was a cancelation 

of the conformai anomaly.

We are interested in finding solutions to the equations 

of motion of the extended 10-D supergravity lagrangian 

which are of the form

( 4-D space-time )x( 6-D non-symmetric coset space ) 

So we are interested in six dimensional N.S.C.Ss. There 

are only three of these ,they are

SU(3)/{ U(1)xU(1) } ,Sp(4)/{ SU(2)xU(1) }, G2/SU(3)

The root diagrams of SU(3),Sp(4) & G2 are shown in

Appendix 1. As can be seen there exist two distinct 

imbedings of SU(2)xU(1)- within Sp(4) only one of which 

yields a N.S.C.S . Also in Appendix 1 we give the 

structure constants and the explicit form of the 

curvature two forms R*''̂  ^

As in chapter 3 we shall take the scalar field to be a 

constant and also as in chapter 3 p45 we can rescale our 
fields so that the scalar field does not appear in the 

resultant equations of motion. Hereafter we will assume 

this has been done »
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What shall we take as our ansatz for the three form 

field H?. The following is a natural possibility

H = h, E (5.22)

This choice of H has several important properties

1. d*H=0 automatically so if the scalar field is a

constant the equation of motion (2.20) will be

automatically satisfied

2. the energy momentum tensor is the product of 

block diagonal matrices ie

i^( Ha*H )-2i^( H )a *H = 36n%h^ *E® £ =0-3

0 *E® Ê =4-9 (5.23)
3. In most cases (see later ) dH is proportional to 

both tr( Fa  F ) and tr( R a R ) hence leaving the Bianchi

identity as a single constraint

Another possibility for the H field would be

H = (5.24)
This also satisfies ( at least ) properties 1. and 2.

However explicit calculation of this term for the 

particular coset spaces analysed revealed it to be zero 

For the case where space-time is RxS /HS we add to H 

the extra term ( where S denotes a three sphere and HS 

denotes a three hyper sphere.)

h g E ' ^ ^  ( 5 . 2 5 )

( This is the volume element of S^/HS^ )

We have several possibilities open to us as to what the

Yang-Mills field could be^'fhe first is to simply take F

to be zero ie

FI F = 0 (5.26)
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secondly we could have A ( the Yang-Mills potential ) 

imbedded within the large gauge group as an R field 

( for coset spaces S/R ) taking

A°' * (5.27)

then we find

F2 F* (5.28)
For ^=0 this F is identical to having F a S0(6) field 

equal to the curvature ( recall that for Q = 0 R̂ j, had 

holonomy R ).

as our third choice we can imbed A as a S-field

A* =->£“■ , a“’ = 'Xe ̂  (5.29)

this leads to

F3 F* = 0

f ”" =-ÿc^bc (5.30)
A possible fourth choice of F would be ( as in Calabi- 

Yau ) to take f\= R\ie imbed F as a SO(6) field. If web •
X Xdo this however Tr F =Tr R and so we must have dH=0. 

For our ansatz this means H=0. It then follows that the 

Yang-Mills equation will reduce to

D »F = = 0  (5.31)
However D̂ VR®'̂  \ 0 unless ^=0 ( or '̂**’=0 ! ). So F=R is 

only any good if Ç=0. However for Ç=0 our ansatz F2 is 

exactly that !. So we shall not consider F=R further.

In all cases we shall assume F has no components in or 

functional dependence on the 4-D space-time. Having F^O 

on Space-time would probably destroy 4-D Lorentz 

invariance.
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Do these F fields satisfy the Yang-Mills equation of 
Motion (2.19) ?. FI obviously does. For F2 we find that 
both D*F* and F * a * H  are zero so the equation is 

satisfied leaving no constraint. For F3 we find that 

both D*F ̂  and F^a*H are proportional to and we are

left with the single constraint

"X +3h, = 0 (5.32)

This extra constraint makes the existence of solutions 

unlikely for space-time being or AdS/dS.

We note that for the cases SU(3)/{ U(1)xU(1) } and

G2/SU(3) all of (5.11) to (5.14) are satisfied
for SU(3)/{U( 1)xU( 1)} n, = ̂  ,n^^=l ,n^=1 & n^ = 0

for G2/SU(3) n, = , n^ = -k & n,p = ̂
However for SP(4)/{SU(2)xU(1)} we find (5.11) and (5.12)

are satisfied with n̂  = n^ = but (5.13) and (5.14) are

not. This has important consequences for our ansatz it
Gmeans R^A i*E is not a constant multiple of

*E^ for E =4-9. Also we find tr( R a R ) is not 

proportional to dH.

It is possible ,by having a U(1) field ,to ’cancel* the 

problem part of R^^ . This however can only be done for 

the case of the Yang-Mills field being a SU(2)xU(1) 

field ie Case F2. It is detailed in Appendix 2 how this 

may be done. If we do this it is possible to treat the 

case Sp(4)/SU(2)xU(1) along with the other two ( 

provided we use the n^^s and normalisations appopriate 

for the SU(2) alone ). From now on we shall assume 

implicite^ that this has been done. However this can 

only be done for case F2 so in the remainder of this
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Chapter we shall only look at case F2 for the Coset 
space Sp(4)/SU(2)xU( 1).

We have three possible cases for 4-D space-time Mq., AdS 
3 3or dS & RxS /HS we shall consider these in turn. First 

we introduce a few definitions for the curvatures/fields 

on the internal 6-D space

A •e'*'' (m,n=4-9) = (5-33)

A (m,n,p,q=4-9) = z(a,\)*1 (5.34)

tr( F a *F ) = F((J,X)*1 (5.35)
H a »H = g( H,H )»1 (5.36)

Minkowski soace-time 

We now look at the case of Minkowski space-time. As 

mentioned on P41 we can take the scalar equation as a 

consequence of the Einstein equationsoso we are left 

with two independent equations -the internal Einstein 

equations reducing to one algebraic equation and the 4-D 

equations reducing to one. We find

Jr(^,\)+Jz(^,X)-i g( H,H )+ ±F(^,\) =0 (5.37)

ir(&,» +Jz(^,>i) + i F ( ç A )  =0 (5.38)

These contain the equation (see (2.26) )

g( H,H ) =- r(^,X) (5.39)
this we can use to define the coefficient of H in terms 

of ^ & X . g( H,H ) = 36n^h^\so we have

=-r( O ,>) (5.40)

We have left one remaining Einstein equation which is a 

constraint on Ç ^

4 r( A , X)+ z( Ç )+lF( A ,X) = 0 (5.41)
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We still have the dH equation to consider ,for both 

SU(3)/{ U(1)xU(1) } and G2/SU(3), tr( R A R  ) and
tr( F a F ) are proportional to dH^If H = h, H* then

tr( Ra  R ) = kq(»,\)dHo (5.42)

tr( Fa F ) = l'( (5.43)
(. i refers to which F field is considered (5.26), (5.28) 
or (5.30), )
so we can write down the H Bianchi identity

hf = k^(^, >)-l'(<S,X) (5.44)
squaring hj^ = ( k^j(^ ,X)-1 ;,(̂  ,X ) )^ (5.45)
substituting in h from (5.40) gives us

-,*j^r(^,X) = ( k^(^,X)-l* (<^,X) )^ (5.46)

This is another constraint on (3 and so we now have

with (5.41) two constraints. To proceed further we must

evaluate the form of the functions we have introduced .

For all three coset spaces

r(»,X)= 2 -ïÇ’’) (5.47)
For z(^,X) we obtain slight differences for the 

different coset spaces. We find

z(&,\)= (^"^-2^-3^ +8^ +20 ) for SU ( 3)/U( 1) xU ( 1 )

■ t -3 >^+8 >+12 ) for Sp(4)/SU( 2) xU( 1 )

= i X'( ^'^-2o'-3^%8Ç +1 1 ) for G2/SU(3) (5.48)

For the Yang-Mills fields we obtain

F(^,\)= 0 for case FI (5.49)

F(ft,\)= - 3 X n ^  = for case F2 (5.50)

F( , )= -3X'n, = - ’X ’' for case F3 (5.51)

( *X is the normalisation factor from the generators ie

tr( 0^ Oi )= )

so z(* ,'X)+2F(^,'X) =
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^r( “2^ -3^ +8^ +K( ) (5.52)
where K, =20-12?(~ for SU ( 3) / (U ( 1 ) xU ( 1 )}

= 1 2 - 1 2 X ’̂  for Sp(4)/{SU(2)xU(1)}
= 11-120<'*- for G2/SU(3) (5.53)

SO we can write down our first constraint (5.41)

l3\'( ̂-2(, -4 ) = J X  ( + 8 Ç +K, ) (5.54)

now we find by explicit calculation

k (4,X)= - 'i_( 6^-4 ) for SU(3)/{U( 1)xU( 1)}
- > L (  a^-4/3 ) for Sp(4)/{SU(2)xU(1)}

= - 2u( 0^-1 ) for G2/SU(3) (5.55)
l|(&/\) = 0 ( case FI )

lj^(û ,X) %  ( case F2 )
l.̂ (h ,)i) =-2XX*'( case F3 ) (5.56)

We can hence write (5.46) as

X(^'*'-2^-4 ) ^4 Xf((^ -Kl/'' (5.57)

Where Kj = 4 for SU(3)/{U( 1 )xU( 1 )} case FI

= 4 -4X^for SU(3)/{U( 1)xU( 1)} case F2

= 4 +4%'^for SU(3)/{U(1)xU(D) case F3 (5.58)

For G2/SU(3) we have 1 ,1-4%% 1 +4^'*' respectively

and for Sp(4 )/{SU ( 2) xU ( 1 )} we have only 4/3-4 ̂ ^for the 

case F2.

We can rearrange our system of two constraints (5.54) 

and (5%57) thus

X (  ^ - 2 ^ - 4  ) = ^ X (  ^ - 2 ( ^ ^ - 3 l^  + 8 ^  +K,  ) ( 5 . 5 9 )

4 X  (  ̂ ” 2 ^ —3 ^  +8& +KI ) = X  ( ^  —K ^  ) ^  ( 5 . 6 0 )

We find we can solve for thus

= 12( ^ - 2 ^ - 4  )/( ^*^-2 ̂ - 3 ^ % S &  +K , ) (5.61)

Leaving a single constraint on (3 

( (3 -2^-3^ +8^ +K| )

-3( ^  )^( ^ - 2 ^  -4) = 0 (5.62)
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This we write as G( Ç>) = 0 „

So we must determine whether (5.62) is satisfied for 

any value of ^  for the given values of K, and 

Before we can do this we must decide what our Ç(^ must 

be. This is the normalisation of our Yang-Mills 

generators. We must decide what the appropriate values 

are. This we do in Appendix 3 with the following 

results

F2 F3

SU(3)/{U(1)xU(1)} 1.0 1/4

Sp(4)/{SU(2)xU(1)} 1/3 not appropriate

Gj^/SU(3) 1/4 1/4 (5.63)

( We obtain case FI ie F=0 by setting^^^=0.)

We also have some ambiguity left over in the case 

SU(3)/U(1)xU( 1 ) to see how this arises we look at how 

the factor in front of the F field is fixed ( to be
N. ^- —  ) .If we let A^ =aE then 

= dA*

= XoLXC*£gE^' + E^'

= i(c.X+<\')C +;l-6,XC®’bt (5.64)

In general unless a = - ^  the first term will not 

vanish. This term is undesirable since it involves E*. 

Since the E ̂  are involved when we look at the energy- 

momentum tensor

i®( F a  »F) -2( i^F) a  »F 

This will not simply be a constx*E ̂  but will be more 

complicated with a functional dependence on the 

coordinates y of the coset space. Since our coset 

spaces are Einstein spaces this will give great
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difficulty in find finding solutions to the Einstein

equations. However for the U(1)xU(1) case this term is

trivially zero so we would not have problems with the F

field if we took a to be arbitrary. This is a local

consideration we must be careful how we deal with the

global properties.. When we consider these the

coefficient will be subject to a quantisation constraint

and will be integer multiples of the minimal value ( eg

as in the Dirac monopole which is a U(1) bundle over

here we have a U(1)^bundle over SU ( 3)/U( 1 ) xU( 1 ) )

which is " for the normalisation we have. So we
%

have an infinite possibilities for this case - but we

are not really introducing another free parameter. For

convenience we keep the coefficient as ' ^  but shall
X

allow ourselves the possibility of letting be an

integer multiple of the minimum value ( 1 ). This is 

also discussed in Appendix 3 where we deal with the 

normalisations.

We à priori have seven cases to consider-two coset 

spaces each with F1,F2 and F3 and Sp(4)/SU(2)xU( 1 ) with 

F2,However we see that in all three cases of F2 we find 

K, =8 and =0 so we only have five separate cases to 

consider ̂
Why do these reduce to the same case ? as we can see in 

Appendix 1 the S-R structure constants the the

same ( upon relabeling ) for the three coset spaces so 

any property depending solely upon these will be the 

same for both. With F=0 however the part of R \  not 

dependant on these will be important and so we have
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different properties. For F\̂ 0 case F2 however we have a 

cancelation between the F and R\parts. This is because 

this choice of F is equivalent, in the special case 

^=0, to setting F=r\So the part of R't which is not 

proportional to (b or cancels with F in both
t X AâCPTrR -TrF and in +TrF a »F . This is the

only part of R %  which depends on the . So for the

case F2 we only have single case to consider *

For the case where F is zero ( FI ) we plot the function 

G( ^ ) for the two cases in Diagram 5.1, As we can see 

there is no root in any of the two cases so for F=0 we 

have no solutions.

For case F2 we have the single case. G ( ^ ) for this case 

is given on diagram 5.2 . For this case we find we have 

two roots both for negative *

For the case F3 we find a similar pattern to F2. 

However we do not find (5.32) satisfied at the roots 

hence we do not find solutions for the case F3 «

We still have several positivity conditions to satisfy
X

for our F2 roots to be valid solutions. We need ^  0
%and h >^0 now

h^ #.(^-2^ -4) = ( ̂  -b.̂  ) . ( ̂  -b_ ) (5.65)

where b + =  ̂t {5

So if Ç ^ 1+ y 5 or ^ ^  1-/5 we will find h*~

positive . As can be seen (?) from diagram 5.2 this is
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the case for one root but not the other so we will have

positive h at one of the roots.

Turning to

'>^ =12(. 1^-2^-H )/(û**-2 ç’-3Ç^+8(S +K| ) (5.66)
't,as ( ^-2 ^ - 4  ) > 0 at the one remaining interesting root

we are reduced to evaluating (^ -2^ -3Ç +8 ̂  +K,) at that

root. We indeed find this function to be > 0  in the 

appropriate region.

In summary then we find for the case where space-time 

is Minkowski that we find solutions , for all three 

coset spaces, when the Yang-Mills field is non-zero and 

of type F2 but not for Yang-Mills fields of type FI or 

F3. The consequences of these solutions will be 

analysed later. We shall now turn to our next case for 

the 4-D space-time.

deSitter or Anti-deSitter space-time

We now turn our attention to the case where space-time 

is deSitter ( dS ) or Anti deSitter ( AdS ) The

curvature on 4-D space-time is given by

R‘̂  = J - R . E ^  X/.V =0-3 (5.67)T
The F and H fields will be as before ,however there will

%be changes in the R and R terms. As discussed on P41

the scalar equation must now be treated as an

independant equation. With the definitions of r(^ ,\), 
z(^,\) and F(Ç,\) as before we find the two Einstein 

equations become

r(^,\) +^R^ } + k { z(^,\) +R|^.r(^,\) }

+ ̂ F(^,>) -ig( H,H ) =0 (5.68)

{ 3rr (6,\) +R } + {"̂ z( t ) +Ry. r( , ).]l )
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+ fF(A,X) =0 (5.59)
The scalar equation is

z ( ^ , X )  +2R | ^ . r (Ç ,X )  + ^ - R ^  }

-ig( H,H ) +-^F(4,X) = 0 (5.70)

Again we have (̂ P4O')

g( H,H ) = -1{ r(6,\) +R*} (5.71)

This enables us to remove g( H,H ) from the system

leaving the two equations

r(«,X) +lR,f + z(^,X)+2F(^,\)
+ R,,.r(Û ,\) } = 0 (5.72)

r(^,X) + R^ + ^ (  z(fl,X)+2F(Ç,\)
+2R^.r(6,X) + | R j ‘} = 0 (5.73)

subtracting gives us

.iRit + -̂ { Ry^r(&,\) + JRj^} = 0 (5.74)

or R,.{ 1 +r((i,X) + ̂ Ry. } = 0 (5.75)
SO either R = 0 or

R^ =-6( 1+r((N,\) ) (5.76)
R y = 0 is just the minkowski case considered previously

so we shall look at the other case ,substituting back

into our one remaining Einstein/scalar equation we find

the following constraint on ^ and \  .

z(^,X) +2F(»,X)-6r(^,X)-6r(^,\) }

- i -  2 r(6,\) = 0 (5.77)
% %The remaining constaint arising from the dH=trR -trF is 

unaltered

h,^ = ( k„(ç,X)-l^(^,\) (5.78)

substituting in h,

")8n' + Rt } = { k,(^,X)-l:(^,'X) )'̂  (5.79)
substituting in Rq. from (5.76)

- -6 -5r(^,X) } = { k^(^,X)-l-J^,X) (5.80)
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(5.77) and (5.80) now form a system of two constraints
in and \ . Substituting in the exact form of r(^,X)

etc leads us to

^  {^^( ̂  -2^ -3^ +8^ +K, ) — ^( ^ -2 0 -4 )*̂ }

( ̂^-2^-4 ) - ̂  = 0 (5 .8 1 )
36 -15 \ (a'^-2^ -4 ) ■ = 0 (5.82)

We shall use equation (5.81) to solve for obtaining

^X(^0=-&(^ -2 ̂  -4 )^y { ̂  ( ^-2 |Ŝ -3 +8^ +K| ) - ( (%̂ -2 ç -4 )^}

{ ̂ (  ̂ ^-2^ -3()^+8^ +K) ) -^(^^-2^ -4 )**“ }

(5.83)
the remaining constraint (5.82) is

Q( A ) X’"(^)(^-Kj )'̂ -36 +15 (l̂ -2(i-4 ) = 0 (5.84)

So we are left with finding the roots of Q( (3 ) .  Notice 

that in (5.83) we have a choice of solutions depending 

on whether we take the +ve or -ve sign in (5.83). The

function Q((3 ) is plotted for the case of F=0 on

SU(3)/{U(1 ) xU( 1 )} , for both +ve and -ve choices for 

on diagrams 5.3 and 5.4 respectively. As can be seen we 

find roots in both cases. However we must also check on 

whether A ^ 0 and h 0. When we do this we find no

roots for the -ve choice which have both these satisfied 

however for the +ve case we do. This pattern is repeated 

for the other coset space with F=0 and for the case F2 

( the same for all three )# The function Q(^ ) with 

details of the roots for these cases is given on 
Diagrams 5.5 and 5.6. As we can see R||, and r( ̂  have 

opposite signs at the solutions. We find solutions both 

when space-time is deSitter and Anti-deSitter. We find 

we have two types of root described by

-  85 -



( i) R y, > 0 , r < O i e  4-D space-time is dS. For this 

type of root |R,̂ | almost equals |r| and so g(H,H) is 

small (relative to )R̂ |̂ and | r | ) .

(ii) R < 0 , r >oie space-time is AdS. For this type

of root we find |rj «  | R and g(H,H) is of the same

seal e as I Rî l .

Again the Yang-Mills fields being case F3 we find a

similarish pattern to the case F2 but the extra

constrculnt (5.32) is not satisfied so we find no 

solutions.

RxS^/HS^ 4-D space-time

We now turn to our remaining case where space-time is 

Rx s V h S*̂ . We find we have three Einstein equations ( the 

scalar equation is a consequence of the Einstein 

equations ), We add to H the extra terra =h^E*^*^

otherwise the H and F fields are as previously The 

space-time curvature will be given by 

r‘’“ = 0  i=1-3

R ^  = JRiE*-^ i, j=1-3 (5.85)6
We have for the H field H = + H ̂ where

= h^Ej^j , H| = h^Cçj^E

and we find g( H,H ) = g ( H^,H^) +g( H,,H,) ^

The Einstein equations are

R2 +f'((V|X) } + z(^,\) +2r((S,\).Ri^ } + ‘̂F(^,\)

- g( H,,H* ) +g( H, ,H , ) } = 0 (5.86)

R̂̂  + r ( ̂, \) } + { z(̂ ,X)+ ̂ r ( ̂, X) . R Y ) **'̂ E(Ç,X)
- -g( H ^ , H o  )+g( H, ,H , ) } = 0 (5.87)

+ ̂ r(^ ,\)}+ ±{iz(^ ,\)+ hr(^,\) .R(̂  } +^F(jv,X)
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S( Hq ,Ho ) } = 0 (5.88)
Manipulation of these equations allows us to solve for 

g( ) and g( H, ,H> ) ,we find

J.g( H„,Ho) = Rj+ir(ç,X) } +^F((J,X)

+ ^(^z($,X) +&r(^,X).R.^ } (5.89)
Jg( H, ,H, ) = J{ .ir(ç,X) } + ̂  E(^ ,X)

+ + ̂ i-(^»X).R3 } (5.90)
We are left with one independent equation which for 

convenience we take to be (5.86)-(5.87). We find after 

substituting in the values of the g( H,H )s that this 

becomes

|Rs + J r(Ç ,X) .Rj + .|r(^,X) +Xz(ç,X) +-^F(|i,X) =0 (5.91)
we can solve for Rt,

R^= -{ 2r(ft ,X)+^z(ç,X) +F(^,\) }/{ r(^,\)+2 } (5.92)

The remaining equation is dH = trR -trF which is (as 

usual )

h,^= { k^(fr,X) -lL(^,\) (5.93)
We now substituting away h, ( h, = ( 1/36n^)g( H  ̂ ,H, ) )

using (5.90) giving us

Jr(^,X) + 1{ z(^,\) +2F((^,X) } + r(ft,X) .R^(^,X) =

I8n^{ K,(^,\) -ll(^.X) }'*• (5.94)
Now eliminating R3 using (5.92) and multiplying by

{ r(^ ,\) +2 } will give us (with a little rearranging- )

2r(& ,X) -A^,\) +2{ z(^,\) + 2 F (ç ,X )  } + i r ( ̂, X) . z(̂  ,X )
= I8n^{ r(4,X) +2 }.{X^(^,)») -1;(^,>) ) (5.95)

Now we can substitute in the explicit form of all the
'*■functions and after dividing by A be left with a cubic 

polynomial in A which is of the form

A(^)'X* +B(^)X'* +C(^)X +D(0) = 0 (5.96)

where the coefficients are given by
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A( ç ) = g/CSA’̂) .((î -Kj_)( ^-2(i-4 ) (5.97)

B((N) = -1/24.(ç''-2û-4 ) .(ç'*’-2(5^-3(j^+8Ç +K, )

-35/(24’-).(Ç*-Kt.)'^ (5.98)

C((3 ) = +8^ +K, ) -i(&^-2(4-4 ) (5.99)
D( ^ ) = - ( ^ - 2 &  -4 ) (5.100)

The cubic polynomial will have for each value of ^ at 

least one root and possibly up to three. Defining the 

"radicant" ( we are using the prescription specified in 

[31] ) by
RADICANT = ( ^^(B/A)^-(B.C)/a ’̂ +D/A

C/A- (B/A)‘*‘ (5.101 )

We find one,two,three roots if this is positive, zero, 

negative respectively. When it is positive our one root 

is given by

"X( & ) =%/( -^(B/A)^- j (B.C)/a ’‘- ^D/A h-VRADICANT }

- iB/A (5.102)

When the radicant is negative we find three roots-if we 

first define r and j> by

r =V{ - M  C/A - .!( B/A } (5.103)
rco-s(^) = - J ( ^(B/A)^ -(B.C)/A%D/A ) (5.104)

then our three solutions are given by 

(^) = 2 r^.cos(^<^ ) - ̂  B/A
'X‘̂ (&) = 2 r^.cos(4y{+ ) - J b/A

'x)(a) = 2 r t c o s ( % ^ + 4 l )  - J B/A (5.105)

The solutions of 'X as a function of ^  are shown on 

Diagram 5.7 for the case F=0 on SU(3)/{U(1)xU( 1 )} . As 

can be seen it is quite complicated with many branches.
4. XWe require that x and hj be positive. Requiring

^  > 0 rules out a few branches of solution. Requiring

-  88 -



the hs be positive rules out a large number leaving only 

those two branches shown in red on Diagram 5.7. We 

present in Diagrams 5.8 and 5.9 a more detailed 

desciption of the behaviour of the functions in these 

regions . We also graph R^(^) and r(^). This is only 

for SU(3)/{U(1)xU(1)} with F=0. For the other cases we 

find a similar pattern. In diagrams 5.10 and 5.11 we 

give the solutions for G^/SU(3) with F=0 and in 5.12 and

5.13 we present the solutions for the case F2 on the

three spaces. As can be seen we have two branches for 

each solution one for the positive region and one in 

the negative. In 5.13 we have a point where h^ = R^ = 0 

this is the special case of our Minkowski solution. For

most of the RxS^/HS^ solutions we have R3>0 this means

we are dealing with a three-sphere in space-time. In 

these cases we find r <o and |( R^+r )|«irl or }R | . So 

g(H,H) will be small. The exception is given in 

Diagram 5.12 ,Which is for the F2 cases, where both R^ 

and r are negative ( so space-time will be RxHS ) and

we do not find g(H,H) small. This unusual solution has

M^xCoset space as a limiting case , ( This is neccesary 

since we found My, as a solution for this case earlier ). 

For the case of our Yang-Mills fields taking the form F3 

we find a similar pattern but to find solutions we must 

apply (5.32), We can rewrite this as

H(>) = '/X*- = 1 (5.106)
When we examine H( (3 ) for SU( 3)/U1 ) xU( 1 ) we find that

H( ̂  for any value of (3 for which the other

positivity constraints are satisfied so we do not have
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any valid solutions. For G^/SU(3) however we find that
\ Ifor one of the branches of A ( ^) ,where all the

positivity constraints are satisfied, that there exists

a value of for which H(^) =1. On Diagram 5.14 we
. t X Xgive A ,  h^ , hj , Rj, and r, on this region and in 

Diagram 5.15 we give H(^) and the details of the root.

In chapter 3 we discussed if we had a solution F then we 

could also have solutions FxFxF.. Can this also occur 

for non-symmetric coset spaces ? The answer is not 

clear immediately - the F fields we are dealing with are 

not,as for the groups, topologically trivial so the 

coefficients are not arbitrary so we are not allowed to 

change the coefficient by ^  as we did in chapter 3 ( 

p54 Making our field FxFxF... ( n-Fs ) would have the 

effect of introducing n in front of F(ç,X) everywhere 
,We could incorporate this into the normalisation factor 

. Explicit analysis of the effect on increasing in 

this manner shows very little difference. Solutions 

still exist ( although with different values ) whereever 

they existed before. So in actual fact we can have 

multiple factors of a given F field just as in chapter 

3.
In the next chapter it will be of interest to take Yang-

Mills fields ,on SU(3)/U(1)xU(1), where we have a Yang-

Mills field ( U(1)xU(1) ) but with imbedding such that ( 
Xeffectively ) X = 8. For this special case we present 

G(^) on Diagram 5.16 ( recall that to have Minkowski 

4-D space-time as a solution we needed G ( ̂  ) to have
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o ^roots where h and A were positive ). Since this has 
roots where the positivity conditions are satisfied 

Minkowski 4-D space-time is definately a valid solution 

for this special Yang-Mills field.

In. summary we find a large class of solutions to the 

equations of motion for our non-symmetric coset spaces. 

A summary is given on Table 5.1«In the next chapter we 

shall try to analyse the consequences of these 

solutions.

We shall now determine whether H=T at any of our 

solutions. The condition

TeOc=i/3 iiabc (5.107)
reduces ,for our ansatz, to

(1 - Ç )X = ± { T  h (5.108)

(1 )'"V = (5.109)

or

%
Dividing the RHS by the LHS and substituting in h*̂  from 

(5.45) we find
= 1 = M( (3» ) (5.110)

So we must determine whether M((^) = 1 at any of our 

solutions. For My, and AdS/dS 4-D space-time it is 

unlikely that we will find (5.110) satisfied at our 

single points and indeed by inspection of the solution 

this is the case. When we look at the case of RxS /HS 

4-D space-time we have three cases to consider. Namely 

F=0 for SU(3)/U(1)xU(1) and G^/SU(3) and F being case F2 

for all three cosets. We have two branches of solution
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in each case. We plot M(^) for the three -ve branches 

on Diagram 5.17 and for the three +ve branches on 

Diagram 5.18. As we can see we have only one place 

where M(^) = 1. This is for the F2 case. So for all 

three coset spaces we have a single point where H=T.
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Table 5.1 Summary of Solutions

Ca se Existence of solutions

Minkowki space time F1,F3 
G%/SU(3) SU(3)/U(1)xU(1) No solutions exist

Minkowski space-time F2 
All three spaces

A single solution for 
Ç =-2.13

AdS/dS FI
S U ( 3 ) / { U C 1 ) x U ( 1 ) }

G j /S U (3 )

Four solutions 
space-time both AdS & dS 
Three solutions 
space-time both Ads & dS

Ads/dS F2
All three spaces

Two solutions 
space-time both Ads & dS

Ads/dS F3 
G%/SU(3) SU(3)/U( 1)xU( 1) No solutions exist

R X three hypersphere FI 

G^/SU(3) SU(3)/U(1)xU(1)

Solutions exist in 
in one parameter families 
which we take as 
In each case solutions 
exist for in two 
small regions one -ve 
and one +ve eg for 
SU(3)/U(1)xU(1) soins 
exist for 
and 3.3 c ̂  4

R x three hypersphere F2 
all three spaces

Solutions exist as 
above 

for-vi3 < Q <
 ̂ Q>  ̂ %

R x three hyprsphere F3 
SU(3)/U(1)xU( 1)

G^/SU(3)
-------

no solutions exist 

a single solution exists
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m^granL _S. 1 _G( ^ ) _J_gJL J =Q Both Coset Spaces

4̂00

200

-3 -2

-200

We can see that there are no solutions 

to the equation G(^ )=0 for either of 

the relevent coset spaces
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Diagram 5.2_G(î ) For the lang-Miila field
being case F2

500

400

300

200

100

T T
-K-3 - 1 0.

-100

-200

As can be seen we have two roots to the equation

G(Ç)=0 at ^ = -1.3 and at ^=-2.13

At -1.3 we do not find ^ 0 and h^^ 0 so we

do not have a valid solution. At -2.13 however 
a

we find 'X=3.3 and ^  zl6.0 so we have a single 

valid solution at ^=-2.13
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Diagram 5 .3_AdS/dS Solutions for SU(^)/UM )xU( 1 ) 
MltJi_F=Q taking the positive sign In 

■Efluation__

200

150

100

-2

-100

-200

As can be seen there are six roots r1-r6

At r3 & r4 both and h^ are -ve
aAt r2 & r5 both A and h are +ve

At r1 and r6 ( not clear from graph ) ^  & h are +ve 

So we have four good roots to the equn Q(^)=0. At the 

roots the functions take the following values

g(H,H) r

r1 -1 .73 1 .1 0.019 1.188 -1.198

-1 .12 5.5 26.1 -14.6 1 .43

r5 2.895 2.89 4.88 -26 .6 3.43
r6 5.09 0.205 0.084 1.150 -1.192
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Diagram 5 .4 Ads/dS solutions for SU(^)/U(1)xU(1) 
for F=Q and choosing the -va sign 

in Equation (5-M)

200

50

50

-100

-200

There are two roots, r1 and r2, at both of these a < 0 

so there are no consistent solutions
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Di^6r_9RL5.5 i.d_S/dS solutions for G2/SU( 1 ) case F=0

200

1 50

I 00

50

-4

I CD >.
00

50

-200

There are four roots r1-r4 

At r2 ^  & K are both +ve 

At r3 ^  are both - ve

At r1 and r4 ( not clear from diagram) ^  & X are +ve 

So we have three good roots to the equn Q(^)=0. At the 

roots the functions take the following values

s r

rl -1 .474 2.095 0.265 1 .042 -1.173

r3 3.093 2.32 19.17 -10.31 0.718

r4 5.016 0.2134 0.1184 1.129 -1.188
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Dla&ram S.6 Ads/dS Solutions for Case F2
( all three spaces )

200

i 50

I 00

58

~hl'\AZ
-50

-  4

I 00

-1 50

We have three roots to Q(^)=0
r\'̂  \At rl X & K are both +ve

At r2 X & k are both -ve
At r3 ( not clear from diagram) are both +ve

So we have two valid solutions. At these the functions 

take the following values

IX g(H,H) r

r2 3.16 1 .945 15.25 -7.950 0.0325

r3 4.989 0.2176 0.1324 1.120 -1 .1865
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Diagram S .7 '> ( M  For RxS / H S ^ S U n V U f  D x U f  n
F = 0

-3 -2

-5

-10

-15

> e

The branches in red are those where the positivity 

conditions on , h , and h^ are satisfied. Some of 

the branches have been scaled up/down to enable them to 

fit on the same diagram.
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D iagram Jj?r. Rx$^/JHs2,f=D_ Region A
£ oil_SU ( 3  )/D ( 1 ) xD ( 1 )

0 .75

0 .25

- 0 . 2 5

- 0 . 5 0

0 .75

- 1.00

e

The solutions are a one-parameter family which we take 

as . Solutions exist for -<*7- < (3 . The variables

hj' , h^ , f Rj, and r are given on this graph as as 

function of (3 .
Since < 0 our solutions have 4-D space-time as

(3-D Hyper sphere)xR rather than (3-D sphere)xR.
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Diagram 5.3 S.pl..utl.pns F.or £=Û__Region B
F_q t  S U ( ^ ) / U ( 1 ) x U ( 1)_ c a s e

.75

.50

.25

0.00 4.84.43.6

— 0.50

.75

- 1.00

A0̂  V

The solutions are a one-parameter family which we take 

as ^ . Solutions exist for 3 2» < ^  < . The variables

hj^, h^ , Rg; and r are given on this graph as as

function of
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Diagram S .10 Solutions For RxS^/HS^.F=Q Begion A
For G %/SU(1) case

0 .75

.50

.25

: ~  
- 1 . 3 5  _^ -< T 30 -1 .251.50 - U 4 5

- 0 . 2 5

- 0 . 5 0

- 0 . 7 5

1.00

The solutions are a one-parameter family which we take

s (̂  . Solutions exist for -1 'W < ^ . The variabl es

h, h^ , ^  , and r are given on this graph as as

function of e ■
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D_lagnajB._5.jJ Soluti^n&.for Ĵ x.gVü^,£=D Region .B

for Cf7^/M(J)-Qa_sje

0 .7 5

.50

0 .2 5

- 0 . 5 0

- 0 . 7 5

The solutions are a one-parameter family which we take 

as 0 . Solutions exist for 3 1.1 < ^ < 4-^ . The variables 

h ^  , h^ , , R3 , and r are given on this graph as as

function of e  •
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Dia&ram..5.12 Splint l o n g .Eo.r._ , f  _a F2 f i & i d

For all three Coset spaces 

ae&ion A

' I ■ ' > ^' //
“2 .2/ “2- 2 . 4

“2

“6

“8

e

The solutions are a one-parameter family which we take 
as 0 . Solutions exist f or ̂  ^ <-il4 . The variables
h^ , h**" , , and r are given on this graph as as

function of .
Notice that there is a point where h = 0 and we
reduce to our Minkowski space-time solution

-  105 -



Di^&ram__5.13 Solu tlo n a  £i?r ,F. .a FZ .Î1&1Û

For all three Coset spaces 

ae&lon P

0.3

 T------ !
3 . 2 5  3 7 ^ 0 ^  3.75 .004.75.504 . 2 5

- 0.1

-0.3

The solutions are a one-parameter family which we take 
as (3 . Solutions exist for 3 < (b < 4 %. The variables

h > ^  > ^3) and r are given on this graph as as
function of

•
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Dia&r^m 5 . M  Solutions For RxS^/ H S ^ F a FI field

P-OJ-

75

50

25

.34 -I .32I.

-25

—50

-100

e

This is a graph of the functional dépendance of ĥ *̂  , h'̂  
a.'X , R^, and r on ^  for the Yang-Mills being a F3 field 

( ie for coset spaces S/R F is a S field ) We have still 
got the constraint (5.»o4) to be satisfied so these are 
not solutions. In Diagram 5.15 we show this constraint 
is satisfied at ^ ~ 85 ,
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DĴ aRr_aini__5._15,_H(J^ )_jTQr_ G^/SUC^) for the region 
■Shown In Diagram S . 14

2.0

-0.5

- 2.0
As we can see there are two values where H(^) = 1. At one 

of these the positivity condition on h is not satified 

so we have no solution. At the remaining point (3 = -fl&sT 

all the positivity conditions are satisfied and we will 

have a valid solution.

At this solution both and r are negative.
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Diagram. 5 .j6 G( ^ )  Por SU(^)/U( 1)xU( l ) with a

multiple (̂-.tijnes) ijnbedding 
of -U(l)xUCl)

750

a

* 250
-̂L
\ \ e-6 -4 -2 0

250

-500

-750

4 6

In Chapter 6 it is of interest whether a multiple

imbedding of the U(l)xU(1) field will still have

solutions. In particular we wish to know if Minkowski

solutions exist for a eight-fold imbedding. As can be 

seen we have four roots to the equation G( Q>)=0 r1-r4.

THe positivity conditions on A and h are satisfied oJ:

ry and r̂  ̂ So we have two valid solutions.
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Diagram 5.11__M(^) For the three cases on

the -ve branch

X
L.T

1 .4

I .2

1 .0

0.8

0.6

0.4

\ 0.2

0.0,2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -f.0

As we can see we have a single point where M(^) = 1. This 

is for the case of all three coset spaces have field F2.
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Diagram 5 , IB M(^) for tbres cages-gj
the +ve_DT_angli

0 . 10

p r O
1*̂ =0 G% /so(-^
f - fx cM U\rejL apckCaj

0.08

0.06

0.04

0.02

3.25 3.50 3.75 4.00 4.25 4.50 4.75

As we can see there are no solutions where M(A )=1 ( At 

the end of the range where it looks as if the curves 

will turn up to reach one in actual fact ĥ  ̂ becomes 

negative before ths occurs )
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Chapter 6 Physics from Non-Svmmetric Coset Spaces

We shall now examine the consequences of our solutions

from chapter 5. We shall exclude some possibilities
first.

If F=0 then we will have ,upon compactification to four 
dimensions, non-chiral fermions. Also the 4-D gauge 
group will be S0(32) or EgxEg. In actual fact E is a
reasonable unification group in its own right [̂ -0] as is
E^ ( SU(5);^ E a n d  SO ( 10 ) E^ so all the E^-E% are

possible unification groups !). However we need chiral
representations at the unification scale so an unbroken 
Eĝ  will be no good. It is possible that some other 
symmetry breaking mechanism will occur between the 
compactification scale and the unification scale.However 
we have no positive suggestions to make for a realistic
scenario as to how this takes place. So this is not a

realistic picture so we shall not consider F=0 further.

For the case F3 ( ie for coset space S/R we imbed F as S 
) we have a single solution for the case RxHS with 
G^/SU(3). This single solution is not terribly 
attractive since we do not have as a solution. When 
we consider the Yang-Mills field we find 
Tr( F A F A, F ) is zero and Tr( F a F ) is a total 

derivative so F is topologically trivial and we will not 
have chiral fermions in 4-D. The Yang-Mills symmetries 

will however be broken, eg imbedding within Eg yields 

, amongst others, SU(2)xSp(6), SU(3)xSU(3) and F
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depending on how the imbedding is done. The non-chiral 

nature of the fermions is a major problem and we will 

not consider this case further.

So we shall concentrate on the case where F is a F2

field ie for coset space S/R we imbed F as R. We still

have three different theories to consider S0(32)/Z%, 

S0(32) and E^xEg. We shall carry out calculations with 

EgxEg first returning to the others briefly later. The 

consequences of a solution depend very much upon the

particular imbedding of the gauge field within the 

overall gauge group. We shall not attempt to classify 

completely the imbeddings as these are very numerous! ( 

especially when we have U(1)s to consider ) but shall be 

selective looking only at physically hopeful imbeddings. 

We are most interested in imbeddings which will lead to 

one of the possible unification groups . The best 

candidates for a unification group are ,SO(10) and

SU(5). We would like to obtain three or four families of 

chiral fermions belonging to the appropriate 

representation of the unification groups*("fhe fermions 

originally lie in the adjoint of EgxEg or SO(32) ).

These are

Eé 27
SO(IO) 16 

SU(5) 1 0 + 5

When we imbed our fields within EgxEg we must imbed any 

simple group entirely within one E ̂  or the other. With 

non-simple groups like SU(2)xU(1) we can put the U(1) in
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one Eg and the SU(2) within the other. However it

proves that keeping the Yang-Mills group within a single 

Eg gives better results. When we imbed our Yang-Mills 

fields within one of the Egs we will obtain at low

energy some smaller group which we take as the physical

'visible’ fields. The other Eg will be unbroken at the

compactification scale but presumably not at low 

energies. These fields will only interact with the 

'visible' fields gravitationally and will be 

unobservable otherwise. These fields have been termed 

'dark matter' and their existence is not incompatable 

with cosmological evidence * So we will concentrate

on the 4-D fields obtained from breaking a single Eg.

We shall look at our three coset spaces in turn first 

G%/SU(3).

Ga/SU(3)
Our Yang-Mills field is a SU(3) field. Imbedding SU(3) 

into Eg breaks the Eg symmetry down to E ̂  ( SU(3)xE^ is 

a maximal subgroup of Eg). Under this imbedding the 248 

of Eg ( this is the adjoint representation ). breaks as 

follows

248 — ^  ( 1,78 )<$>( 8,1 ) <£>( 3,27 ) c±) ( 3 , ^  ) (6.1)

We are primarily interested in the 27s. The imbalance 

between massless 27s and 27s in four dimensions is given 

by the imbalance between massless 3s and 3s of SU(3) in 

the background field of the internal space. This is 

given by the index theorem for a six dimensional 

manifold

n^ - n_ = ^  j*( 3cg -3c%c, +c ,̂ ) - J_ r P|C, (6.2)
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Where is the ith Chern class ie [3S]
c, = Tr( F )

Xn
Ox = Tr( F a F ) - Tr(F) ATr(F) )

03 = (-2Tr(F A F A F) +3Tr(F a  F) ATr(F)

-Tr(F) ATr(F) ATr(F))(5.3) 
and p, is the first Pontrjagin class

P, = ^ /lA (6.4)

Using these we can rewrite (5.3)

n. -n_ = -J-,i \ Tr(F a F a F )  -_L (p.. 0, (6.5)
J x>h J '

The trace is in the 3 of SU(3) for this case.

Now G / SU ( 3 ) Or S ̂  [4,%] so the first Pontrjagin class

Pi, which is zero for S^, must be zero for G^/SU(3). ĉ

and c % are zero for a SU(3) bundle also so we have

n^ -n_ = 1/2  ̂Cg (6.6)

When ^=0 F=R and this chern class is identical to the 

Euler class. The Euler characteristic is 2 for a six 

sphere so we obtain

n^ -n_ = 1 (6.7)

For different ^  this does not alter since it is a 

topological invariant. That

n^-n^=1/2.(Euler characteristic) 

for a SU(3) bundle was first given in [%1]. This 

conclusion differs from that given in [4-3] . One excess 

chiral fermion in the 3 of SU(3) on the internal space 

leads to one massless chiral fermion on 4-d space time 

in the 27 of E^. Thus we have a single 27 of E^ in 4-D. 

Of course we would like to have three or four and it may 

be possible to gain a horizontal symmetry from the G 

group of isometries associated with Gi/SU(3). However if
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such a mechanism were to work one would expect a minimum 

of seven families ( seven being the lowest dimensional

representation of G % ,excluding the singlet ) which is

incompatable with cosmology [ ]. Thus if this idea

were to work we must find some way of of breaking the Gĵ  

down to some smaller group. At present we have no

suggestions to make as to how this may be done,

Sp(4)/SU(2)xU(1)

The fermion spectra for this manifold has been

considered in [43], where the topology is discussed.
a 3Considering Sp(4) as a S bundle over S ( it has the

■J ?same cohomology as S xS ) the coset space is formed by
7. 3allowing SU(2) to act on S and U(1) to act on S so as

to induce the fibrations — > S ̂  and ^

resulting in a bundle over ( since ) =Z

these bundles are classified by the integers ). Hence
% USp(4)/SU(2)xU( 1) is an S bundle over S . Imbedding a

non-zero background SU(2)xU(1) field into one

produces the following decompositions

E g  — ^  E ,  xSU(2)  E ^  X U(1) xSU(2)

( 2 W  (i^,i_)Æ)Ci>3afej,22 (78,i)^<s:27,i) 0.̂ ,v

Cfï57,2) 6(1,2) C£< 1,2)
-  - - I ---- 3 ’

(5.7)

Where the subscripts denote the U(1) quantum numbers of 

the representations. The (27,1),the (27,2) and their 

conjugates would be interpreted as fermion families in 

four dimensions. We now examine the index theorem to
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discover the excess of 27s over 27s. Since the first

Pontrjagin class of vanishes the index theorem for a

fermion with U(1) charge p in a background SU(2)xU(l)

bundle over Sp(4)/SU( 2) xU( 1 ) is 

n -n_ = J ch{ SU(2)xU(1)}

= rch{SU(2)}xch{U( 1)}

f(-c j{SU(2)} + ̂ c, {SU(2)}'^ ) a C,{U(1)}

c.JSU(2)}* c ,{U(1)}

= -mnp (6.9)

( p. =-2,1 depending on which 27 we are considering,)
Ok

Where m=monopole charge on S and n=instanton number on
ILS . This formula disagrees with that in [433 by a factor 

of 1/2. It is argued in Ref [433 that mn must be a 

multiple of two hence we always obtain an even munber of 

families in 4-D eg if mn=2 we obtain 4 more massless 

2%^s than 27%s and 2 more massless 27,. s than 27̂ ,s.

In [4-33 other schemes are discussed in particular one 

which breaks Eg to SU(5)xSU(3)xSU(2)xU( 1) giving three 

families of ( 5 +10 ) of SU(5).

SU(3)/U(1)xU(1)

The fermion spectoaon this manifold has been considered 

in [lf33 and [4-43 but here we shall consider an alternate 

scheme.

SU(3)/U(1)xU( 1 ) can be constructed as a CP* bundle over 
2.CP . This structure is obtained by considering SU(3) as 

a bundle over S \  ( "there is one and only one non­

trivial S*̂  bundle over ,since TT(̂( S ̂  = Z ̂  [453 this

is SU(3) ). By allowing one U(1) to act on and the
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3 3 tother on S , so as to induce Hopf fibrations S — o S ^

CP ̂ and — 5> CP ̂  we reduce the bundle over S ̂  (

SU(3) ) to a s ’’ bundle over Cp’’ ( SU( 3)/U( 1 )xU( 1 ) ).

Imbeding a U(1)xU(1) field within E^ gives two of the

gauge bosons of the cartan subalgebra of a mass ,

due to expectation values of the Chern-Simon^ terms in

the field strength of the antisymmetric tensor. There

are various ways of imbedding U(1)xU(1) into E^. We

shall discuss one of these which gives E^ as a residual

gauge group in 4-D. Eg contains SU(2)xE^as a maximal

subgroup. We imbed one of the U(1)s into the SU(2).

This gives us E^ which has U( 1 ) xE ̂  as a maximal

subgroup. Identifying the remaining U(1) with the U(1)

subgroup of E^ leaves us with E^. Under this breaking

the 248 of E^ decomposes as follows

E ̂  E^ X  SU(2)

248 -3 (133,1) +(1,3)+(56,1)+(56,-1)
- ^ E ^  X  U( 1)

(133)„+(i) +(1) +(1) +(56) +(̂ )_,*-- o »o -% % — 1 — -J
_ > E ^  X  U(1) X 0(1)

78 +27 +1 +1 +1 +1 +1—  oo —Cj-x ®o -Xo \o
+ 1 +27 + ^  +1 +1 +27 +27 (6.9)

The index theorem for fermions of charge (1,1) yields

n. -n_ = o,p, (6.10)

Since c^ =c ̂  =0 for 0(1) fibres .
*X XLet X be the Kahler two form ( volume form ) on S ^ x =0^ 

and y be the Kahler two form on CP ( y =volurae form )
3y =0 then

Pj = Pj( CP ̂  ) = 3y"̂  see ref [35] (6.11)
C| = mx +ny (6.12)
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where m = the monopole number of the U(1) in S and n = 

monopole number of the other U(1) field in CP , then 

(6.10) reduces to ( c, zgmn xy , \ xy =1 )

n -n =1/2mn^' -1/8m (6.13)4* —
For fermions of charge (p,q) this is modified to

n ̂  -n__ =1/2(pm)(qn)^ -1/8(pm) (6.14)
XWhen the U(1) which breaks Ê -*> E ̂  lives on S and the

XU(1) which breaks E^-=9E^ lives on CP . Alternatively

n^ -n_ =1/2(qm) (pn -1/8(qm) (6.15)

When the fermions change roles.

For a fermion of charge (1,1) on SU(3)/U(1)xU(1) (6.13) 

shows that ra must be a multiple of 8. This reflects the 
fact that SU(3)/U(1)xU( 1 ) does not admit a spinor 

structure coupled to a U(1) field unless m is a multiple 

of 8. As an example we take the simplest case non­

trivial case n=1,m=8 From the decomposition (6.9) there

are three different 27s to consider (p,q)= (0,-2) ,(1,1)
Xand (-1,1) When the U(1) field on S is used to break

E^4> E9. (6.15) gives

n_̂  -n^ = p(4q^-1) (6.16)

Hence the number of massless 27, , exceeds that of the— •
massless 27 s by 3, the number of massless 27 s

- i - i  I - 1

exceeds the number of 27 s by 3 and there is no 

imbalence between the 27 s and 27 s If the differenceo-X 0,%.

in U(1) numbers shows up as a physical difference in 

four dimensions then it is possible that the 27̂ .̂  s 

behave differently from the 27, and so we will obtain 

a chiral theory.
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oWhen the U(1) field on CP is used for the first step

Eg E 9. (6.15) gives

-n_ = c^(4p^-1) (6.17)
Hence the number of massless 2'̂  ŝ exceeds the 27^^s by 

'%, the number of maassless 27,, s exceeds the 27  ̂  ̂s by 3 
and the number of massless 27^,3 exceeds the 27,., s by 3 - 
thus we have a total of 8 massless 27s in 4-d, though 

again the different U(1)xU(1) quantum numbers may give 

different physics in four dimensions.

All this looks very interesting for phenoraonology 

unfortunately our ansatz for solving the dynamics has 

used m=n on SU(3)/U(1)xU( 1 ) and m=n=8 leads to an 

unacceptably large number of chiral fermion families.

However should it prove possible to relax this, the

above scheme is an interesting alternative to previous

proposals. Since we have really got EgxE% we can

contrive a situation which will give this. If we take a

U( 1 )xU(1)xU(1) field and imbed U(1)xU(1) within one E^

as a ra=8,n=1 field and we imbed the other U(1) within 

the remaining E^ as a n=7 field then this we appear in 

the Einstein equations in the same way as a m=n=8 field 
but the fields arising from the Eg with two U(1)s 

imbedded would be as descibed for a m=8,n=1 case. It 

may be possible that in this case we will find at low 

energies that the 'dark matter' interacts in not quite 

so dark a manner I. Other schemes have been explored in 

references [4.3] and I W  • In particular [ 4.4.] discusses a 

scheme with E^ “•30(10) and three massless I6s of 30(10) 
in four dimensions.
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For the case when we have 30(32) or 30(32)/Z% gauge 

group we do not find any appealing schemes. Since 30(32) 

has rank 16 and our background F fields have gauge 

groups with rank 2 a single imbedding will leave us with 

a rank 14 gauge group. This is much larger than any of 

the popular candidates for a unification group. To 

obtain ( rank 6 ), 30(10) ( rank 5 ) or

3U(5) ( rank 4 ) we would have to have a multiple 

imbedding and imbed F 5-6 times. It is possible to do so 

Eg For a U(1)xU(1) field since 30(32) 30(22)xSO(10)

then imbedding 11 U(1)s within the 30(22) will leave us 

with 30(10) since 30(10).^ 3U(5)xU(1) imbedding a 

further U(1) could leave us with 3U(5). So we can 

obtain 3U(5) by imbedding ( U(1)xU(1) ) as our gauge 

group. When we do this we have the problem of why only 

6 times why not 7 or 8 ? so these imbeddings are not

very natural.

3o in conclusion we can ,when we take the EgxE^ theory, 

find compactification schemes ,for all three coset. 

spaces, which result in Yang-Mills groups of suitable 

Unification groups upon compactification. In all three 

cases we find the fermions lie in chiral representations 

however not always with the appropriate number of 

representations. In particular we find only one 27 of 

E when we compactify on G^/3U(3) ( we can obtain more 

but probably only 7 ).

As for our group manifolds our

( Rx3^/H3^)x( internal manifold )
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solutions are interesting from a cosmological viewpoint. 

In particular ,for the case where we have F^O ( case F2 

), we find solutions extending, in a smooth set, from 

the case where space-time and the internal manifold are 

both curved ( on the planck scale ) to the case where 

space-time is flat but the coset space is still highly 

curved. This is intengting because it might explain why 

the internal dimensions have such a large curvature 

relative to the present measured curvature of 4-D space­

time.

As for our group manifold case ( chapter 4 ) we shall 

not discuss whether we have residual supersymmetry when 

we compactify.
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Chapter 7 Symmetric Coset Spaces

We now consider Symmetric Coset Spaces ( S.C.S ). 

Symmetric coset spaces have the defining property that 

the structure constants C^^c, are all zero ( see p70-71 

for notation )# The only non-zero structure constants 

being C . If C*g^=0 then our ansatz for the

torsion

(7.1)
is zero as is our ansatz for the three form H. If the 

torsion is zero then we lose a great deal of the 

motivation for considering coset spaces. However for 

completeness we shall investigate whether solutions 

exist for our ansatz.

Our ansatz for the curvature reduces to

R \ =  (7.2)
We have two choices for the Yang-Mills field either

F =0 (7.3)

or

(7.4)
he only free parameter in R and F is 

For S.C.S. the combination of structure constants

C— ̂  C ^ C 1 djû o'U.s O J y ^S'y^triS ^  (7*5)
is zero hence both tr( F a F ) and tr( R a R .) are 

individually zero so the Bianchi identity for H

dH = tr( Ra R )-tr( F/>F ) (7.6)
is satisfied without leaving any constraints.

If space-time is Minkowski then we will have two 

independent equations of motion ( two Einstein say ) and 

one parameter*
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If space-time is AdS or dS then we will have three 
equations ( two Einstein and the scalar ) and two 

parameters ^  and R y. ^

If space-time is RxS /HS then we will have three 

equations ( three Einstein ) and three parameters

ho k .
So unless for Minkowski ,AdS and dS the equations are 

degenerate we will not find solutions however we may 

find solutions for the case of space-time being 

RxS

We shall use the notation of chapter 3 but now we have
Cv tfunctions of A  alone *

If we take space time to be Minkowski we have ( as 

always )

g( H,H ) r -2 r(.y ) (7.7)

as H=0 we have that

r(>)=2'X'*’ = 0 (7.8)
-so ^ = 0  is the only solution. This is just 10-D 

Minkowski.

If we take 4-D to be AntideSitter or deSitter the we 

have the two Einstein equations

r(^\)+JR% } + ̂ { z(l\)+R».r(^) } + n^F(> ) =0 (7.9)

■^{|r(^)+ 83 )+i^('^z('>)+Ri,.rO)'')+ZF('X) =0 (7.10)'

These ( plus the scalar equation ) imply

0 = g( H,H ) = -2 ( r(>) + Ry, ) (7.11)

so R.=-r(\ ) (7.12)

substituting back into the Einstein and scalar equations 

we obtain
a

z(\)+ 2F( \) } =0 (7.13)
-^r( X)-ir^X)+,.^{ z(\)+ 2F(>) } =0 (7.14)
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( 7 . 1 3 ) - 3 ( 7 . 14)  g i v e s

^r(. \ ) + ^ r (  \) = 0 (7.15)
so r( \  ) =0 or r( X  ) =-1

r ( \ )  =-1 is impossible and r(lX) =0 is again the
trivial solution so we find no non-trivial solutions in
this case.

We turn now to our last ( but best I ) possibility 

RxS^/HS^. For RxS^VHS^\ V e  have g( ) = 0 and our

three Einstein equations ( no scalar see p40 ) are 
r("X)+ R 3 }+ z ( X ) + t r ( X ) . R }  )

- ̂ g( HjHo ) + ̂ F( X ) =0 (7.16)
4j_{ r(\)+iR3 }+ z(X)+^r(X).Rj }

+ tg( H,H<j) +J-F(X) =0 (7.17)
X{ lr( X ) +  R) } + . 4 { i z ( X ) + \ r ( X ) . R i  }

- H^Ho) +.^F( X ) =0 (7.18)

(7.16) we can take as defining g( Hq ) so we can
eliminate g( )leaving two independent equations

which are
l r ( X ) + ^ R 3  } +

jk -2z( X ) + lr( X ) .R.J +4F( X ) } = 0 (7.19)
r̂( X ) } +

{ i z ( X  ) + ̂ r( X ) .R^ + 'kFC X) } = 0 (7.20)

(7.19)-4(7.20) gives

l { | R î + | r ( X )  } + |z( X )-iF( X) } = 0 (7.21)

S O
iR, =Xz(X )-ir( X) +iF('X) (7.22)
3 ^ 3  3 3

substituting back we find we have one equation 

ir(> ) + f( z( X )+2F( X ) } - Ĵr{ X )
+ 'L{ z(X)+2F(X) }.r(X) = 0 (7.23)

now z( X ) 1-X** ,F(X)'*-V* and r( \
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so
:z('X)+2F(>) = ZjjP c 'X) (7.24)

hence upon substituting (7.24) into (7.23)
^r('X).{ 1+z<jr('X ) + .̂  Zgr(‘X  ) - i  r ( >  ) } = 0 (7.25)

so r('X)=0 or 2r(>)= (2/z* -4) + /  ( ( 4-2/Zq )*-16/z, )

We require real positive solutions for r(*X) ,

This will be true iff

2/Zp -4 0 and ( 4 -2/z^ -16/Zg >^0 (7.26)

The first implies we need 0^ ^ *

The second implies ( ẑ  - ^ z *  + Tf ) ^ 0

or ( z -a^ ). ( z -a_) 0

where a+ = { ̂  ± ^  )

ie a^z 1.31 and a_ =0.19

putting the two conditions together we need

0^ Zq ^ a _ % 0.19

Now r( !X) , z("\) = ^ where =36( 2n^+n;n%)

and F(^) = - or 0 

hence z* = 1 + 3/dimR ) - ^

( if F=0 we neglect the last term ), we need z^ < 0.19, If

F=0 then z^ > 0.33 so will not find solutions. If F\0

then we must consider the value of %  _Ve find we must

have

"X. ^ %( (^-a- ) +1/dimR ) (7.27)

and -X 4 i( 1/3 +1/dimR ) (7.28)
%these are a fairly restrictive for X  .

What are the six-dimensional symmetric coset spaces ?

We find the following ^4^]
C1. SO(7)/SO(6) ( A: S )

2. SU(2)xSU(2)xSU(2)/{ U( 1 )xU( 1 )xU( 1 ) } ( s'xs’'xS*')
3. Sp(4)xSU(2)/{ S0(4)xU(1)xU(1) ) ( s’ xS^ )
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4. SU(4)/{ SU(3)xU(1) } ( *  CP^ )

5. Sp(4)/{ SU(2)xU(1) }

6. SU(3)xSU(2)/{ U(2)xU(1) } (7.29)

6. is a complicated case. If the SU(2) in the U(2) is 

factored out with the SU(2) in the top then we have the 

case of SU(3)/{ U(1)xU(1) } - a nonsymmetric coset

space. If the SU(2) in the bottom is factored out of the 

SU(3) then we have a symmetric coset space®

As discussed previously Sp(4)/{SU(2)xU(1)} has both a 

symmetric and a non—  symmetric imbeding. interest

immediately is SU(2)xSU(2)xSU(2)/{U(1)xU(1)xU(1)}

because since R is just U(1)s we can have the 

fields/normalisations as large as we want ( see Appendix 

3) this means we will be able to satisfy (7.27),

For several of our coset spaces ,S/R, we have R of the 

f orra

( simple group ) x U(1)

This will lead to difficulties in the equations of

motion analogous to those encouratered for

Sp(4)/SU(2)xU(1) in Chapter 5. We can deal with these

in the same way ( see Appendix 2 ). This means we must

take the normalisations appropriate for the simple

group. We then have no possibilities of multiple

monopole charges for the U(1)s when this is done. We

find the normalisations and give them in Appendix 3. As
we can see other than {SU(2)}^/{U(1)^} none of these 

%have large enough to admit any solutions.

For (SU(2)*1/(U(1) } we find (7.27) and (7.28) reduce to 

^ 2.1 and 'X*' ̂  3.0
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The only possibility is '^ = 3 ( must be an integer

),If we substitute back we find
r( >) = 2 , Rj = -1 , g(H,H) = -1/2 

As g(H,H) is negative we do not in fact have a valid 

solution !

So in conclusion , for the ansatz tried , we do not find 

any solutions for symmetric coset spaces for any of the 

possible space-times

In ] the particular case of SO(7)/SO(6) is considered 

and a non-trivial torsion is given.
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Chapter_8. Additional Terms For The Lagrangian

When in chapter 2 we modified the Chapline-Manton

lagrangian to take account of the extra terms which we

would expect from superstring theories we were not

performing a consistent truncation of the infinite

number of terms which we would have. The Chapline-
XManton lagrangian contains terms of order ( k/M^) (

recall from Chapter 2 that we regarded our terms of an 

expansion of terras which had ’sizes’ of different powers 

of ( k/M^) and we regarded this parameter as small ) We 

included the Zwiebach term which is of order ( k/M^)^ ( 

every derivative gives us another factor of k ) and the 

three form was modified

H = H o  + JluXK (8.1)
3H Q is order ( k/M,) and J%^,^is ( k/Mg) so our modified

H A  *H = Ha A »H, +2H, (8.2)

Will include both (k/Mj) and (k/Mj)^terms.

If we include these terms then we should also expect any
uother terms of order (k/M^) to also be needed ( not

6mention the (k/M^) ). These would be terms of the form 

, dHH \  RH^ , F*** , RF^, dHF^, H^f"̂  plus lots involving

dyU !.
In this chapter we shall attempt to produce some of 

these terms. We shall only look at when F=0 ( ie we 

forget those terras involving F ). In principle these 

terms should be derivable from string theory but this 

procedure is difficult and well out of the scope of this 

work. Instead we shall make some assumptions for which 

there is no rigourous justification but for which there 

is a little evidence to suppose might hold.
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We start off be looking at the Chapline-Manton 

lagrangian with F set to zero ie 

^ A »H - (8.3)

If we take the connection to have zero torsion then this 

can be written as

(8.4)

Where R^^ =

and u l i s  defined by

UJL = U ) ^ t  Is E ± ̂ {i^d^ Ej,-ij d^ E^ } (8.5)
( H = H..E^®'and CbJ«. is the initial connection )AvC HO
So we can write all our R/H/dyU terms as just a 

curvature term. We know the curvature squared term is 

the Zwiebach form

^ e  R,5a Rc c A *E (8.6)
If we assume the same trick occurs as above ie assume 

.ie'^Rft^ a Rc/ a •e ''®'^ (8.7)
Ifincludes all the H/R/dyu terms to order (k/M& ) then we

have a means by which we can explicitely calculate these

terms. Although this seem a rather, unjustifyable 

assumption work done in ref [33] which is calculating 

terms directly from string scattering amplitudes does 

suggest that this does work.

When we evaluate (8.7) we find we have the following 

additions to the lagrangian
-d/4).e'^I^jAHA »( E**A H ) (8.8)
+ (1/288) .ê /̂ { 2iftHA igH A *(i'‘H A i®H) (8.9)

iAu . i U .  4 8+ i*HAi"HA*( i^HA i“ H) (8.10)

+ (1 /,^ p ^  ) e ‘̂ '"dH A » (  i^H  A i^ H  ) ( 8 . 1 1 )

- ( 7 / 1 2 ) e / " R a g A d / u A * (  E * * k d y u )  ( 8 . 1 2 )
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-(7/12)ef (dyVA*dyv )a * ( dyV A *dyu ) (8.13)

+ ( 19/36 H A»H (8.14)

+(l84/48)e^^H a d//A»( H A d ^  ) (8.15)

+ i**H A d*(e/'H). ̂ (8.16)

+ (3/2)D(iQd/v}i*H A»H . (8.17)

+ (15/4)d*d//A*( H a *H (8.18)

We would like to see the effect of these terras on our 

ansatzes of Chpt 3 and 5.

For both our ansatzes yU = const so any terms involing 

to a power greater than one will give no contributions, 

so we can neglect (8.12)-(8.15). The terms involving a 

single cyU will contribute only to the scalar equation. 

We shall look at the effect of adding (8.8)-(8.l8) to 

the lagrangian on our equations of motion in turn.

First we shall look at the Equation arising from varying 

B ( H =dB+Jl. )

This is possibly the most important equation since it is 

satisfied trivially for the two ansatzes and hence any 

constraint arising ,when we have our additional terms, 

would lead us into difficulties. When we vary B we find 

we have a generalised (2.20)

d»H +T, +Tĵ  +Tj +T̂ . = 0 (8.19)

where

T, = Ad{ A •( E*»A H ) } (8.20)
=- ±  d( i^{ i&HA ,( A i^H ) } } (8.21)

T3 = - ^ d (  i'*HA*( A IgH ) } } (8.22)
\  = ; ^ d (  ip{ i*H A *dH } } (8.23)
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We shall look first at the case of SU(2)xSU(2) ( the

other manifolds are not significantly different from 

this ).

Ty, is zero since dH = 0 for this case. Since 

then Rp^A*(E^*H) ^  *H so T^will reduce to d*H which is 

zero. For the term Tj, i^H i ^  will be zero since if b 

is for the first SU(2) say then ijjH will be a two form

of the first SU(2) and hence i^Hi^ will be a four form

on the first SU(2) and hence must be zero. So is

zero also . If we look at our remaining term then

unless a and b are for different SU(2)s we will have 

zero for the same reasoning as for T so we will find 

Tj A. d (igH A 1^*( ) ) C-to.k<L A €

d (i&H A • ( H, aIa H ) ) ^

d •( H, )

d »H,

This is zero. So we find the generalisation of d*H=0 is 

still satisfied for the SU(2)xSU(2) ansatz.

The case of SU(2)xU(1)^ being the internal manifolds 

follows in close parallel.

We now take our coset space ansatz ( chpt 5 ).

Terms T̂  ̂and T^ must reduce to the form

} (8.24)

( where a,b,c are some numbers ) since these are the

only possible tensors available. For our ansatz we had

H.., *1- For our Coset spaces where we had ourAaC'
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structure constants normalised so that C was someA8 c
number and C =constxba so the first and secondh6c
terms in (8.24) must just reduce to

d( C,. •E^'^ ) (8.25)

Which is zero. The third term is proves upon evaluation 

to be zero for our coset spaces ( this was mentioned in 

page 71 )

So terms of the form (8.24) ie T#̂  and T^ will be zero
cSince dH C then T,̂  must also reduce to the

form (8.24) so T|f. will also be zero

For T , we note that

R** = R%& + ( R a 6 (8.25)
Now and R%i^ both only involve and not so

, «%,upon substitution of R and R into T , we will obtain

the form (8.24) again so giving zero. So we only need 
oconsider Rpĝ  Now

»( e " a H )= ~

«. i*i*( R%&A*H ) + i*( R^ A*H ) + R*H

R=a constant and Rp = constxEp so

= i*i*( Rp^K*H ) + constx*H

explicit evaluation of R*^x*H reveals it to be zero. So 

*Tj reduces to d*H and is hence zero. So all four of the 

terms T^ will give zero and so this equation is also 

satified by our coset space ansatz of chpter 5 ( also

for chpter 7 )

Before looking at the scaler/Einstein equations as a 

whole we shall look at the effect of terms (8.16)-(8.18) 

ie those terms which only effect the scalar equation.
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Term (8.18) will upon variation yield a contribution to 

the scalar equation of the form

d*d( * ( ) ) (8.26)

For both group and coset spaces H a  *H is a constant x*1 

so in both case this will reduce to d*d( 1 ) which is 

simply zero.

Term (8.16) will give

d{ i'̂ H Ad»H ) } (8.27)

In both cases again this reduces to d*H so this will 

also vanish.

Term (8.17) gives

d{ i^( D(i,H a »H) ) } (8.28)

in both cases i,,̂H A (const)x*E^, so this will be of

the form

d{ i^( D*E*) } (8.29)

now D*E^ ru T^\*E^^ ( T^ is the torsion ) so i^(D*E^) 

will reduce to i^T^ *E^^ In both our cases T^

( where are different objects in the two situations

) so this will be E^ *E^^. This is zero since

E(^\*E^^ = ( &^*E^ - S^*E^) and C^b^=Ca6^ = 0. So this

term gives no contribution either so for our ansatzes 

the terms (8.16)-(8.18) have no effect on the equations 

of motion.

When we consider the Einstein equations we will only 

have terms (8.8)-(8.11) to consider. These are the 

and RH terms. These will in fact give non-zero 

alterations to the Einstien equations. It is important 

to check whether the energy-momentum tensor is still of
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the form (constant depending on etc)x*E for E an

internal space index. Otherwise we will find we have 

more constraints arising from the Einstein equations 

than we can satisfy.

For our group manifolds it follows very easily that this 

is the case.

For the Coset space ansatz ( and actually for the group 

one also ) we must have the energy momentum form for the

to be

= (8.30)
Where p is formed from four The only four such

tensors are

C®bt (8.31)
(8.32)

C ^ c  (8.33)

(8.34)
(8.31),(8.32) and (8.33) immediately reduce to ( const 

)x4fg^ so these will be fine. Explicit evaluation of
nC

(8.34) reveals it also to be ( const )x o so the 

energy-momentum form ^  will not cause any problems in 

the Einstein equations.

The energy-momentum form for the RH^ terms is

(8.34)

For the RH terms recall that 

Rflti) “ ^
. 1 XWhere R and R only involve the C ^  . So for the RH

%  Xand RH the energy-momentum form will reduce to

something like (8.30) so these terms will also not give
o a,problems with the Einstein equations. For the RH term
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we find when we evaluate it we obtain zero or ( 

const)x*E^ so this is also fine.

So with the addition of our extra terms we still find 

the Einstein equations reduce to two or three algebraic 

constraints. Generally these will involve higher powers 

of A  and h than before. Eg we might find we have to

solve a sixth order polynomial for ^  rather than a 

third order , which we had before. In general this 

cannot be done analytically. This does not mean 

solutions don’t exist only that we can’t express, then in 

terms of standard functions. ( Since the equations are 

non-linear it may be however that the new set of 

solutions will not in fact have any solutions )

So the addition of the extra terms to the lagrangian 

does not alter the way the equations reduce to

constraints but is merely (?) to make the system much 

more complicated.
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Conclusions

We have examined the low energy field theory limit of 

Superstring theories and attempted to find alternate 

compactification schemes to the standard Calabi-Yau 

spaces. We have taken a lagrangian which describes the 

low energy limit and we have found solutions to the 

equations of motion for two forms of the internal, 

compactifled, manifold. Namely Group spaces and Non­

symmetric Coset spaces ( with the fermion feilds set to 

zero ).

For the solutions which were Group spaces we have 

analysed the consequences of these solutions and it is 

very difficult to regard them as serious physical 

possibilities. In particular we have not obtained 

solutions where the 4-D fermions lie within Chiral 

representations. For the Coset spaces however the 

physical implications of such spaces can be realistic. 

For the three types of Non-Symmetric Coset Space we have 

found solutions which give realistic gauge groups in 4-D 

and chiral fermions. For G^/SU(3) it is difficult to 

obtain three or four families of Chiral fermion but for 

the other two cases , ( Sp(4)/SU(2)xU(1) &

SU(3)/U(1)xU(1) ) a realistic number of chiral families 

could be found.

In both cases solutions were only found in the presense 

of non-zero torsion ( in fact for Symmetric Coset spaces 

where the torsion was zero we found no solutions at 

all ). So for the type of spaces we were considering
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the presense of torsion is crucial to finding solutions 

to the equations of motion.

The question of whether we were using an appropriate 

lagrangian was considered in Chapter 8 and the possible 

consequences of adding additional terms considered.

An important question which has not been answered within 

this work is whether thier will be residual 

supersymmetry ,left in four dimensions, after

compactification. It is desirable to have some left over 

otherwise the Hierarchy problem is not solved.
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Appendix 1 Details of structure constants etc for 

the three Coset spaces 

In this appendix we shall produce the structure 

constants, in an appropriate form, for the three groups 

we use in chapter 5 ie , Sp(4)& SU(3). We shall also 

give information on the imbeddings which yield the non- 

symetric coset spaces which are used in chapter 5. We 

also give the explicit form of the curvature two forms 

on these coset spaces and the explicit form of the Yang- 

Mills fields when they are the F2 case ( this is this 

most interesting form of the Yang-Mills fields).

If we have a simple Lie algebra L with rank rank(L) we 

can choose a basis called the Cartan basis. Within this 

basis there is an abelian subalgebra called the the 

cartan subalgebra which has generators i=1..rank( L

)
C H;, Hj] = 0 (A1.1)

The remaining generators E have a rank(L) dimensional

label OL (which we call a root ) and obey with the H,;

E (A1.2)

If ^  is a root then so is - k  and we have

[ E , E ] = «'■ H; (A1 .3)
The otl* are related to the c< ̂ by a metric g*”̂ which we

*can take as S to give o<‘'=o<.̂ . If is not a root

then and E ̂  will have zero commutator ,If however

ot +Q is another root then E a n d  Eg will obey

[ E^, E^] = N _  (A1.4)
Where the are defined by

= n(m+1 ) os^ (A1.5)

[ H", E J  = o<.
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Where n is the largest integer such that K +n^ is a 
root and m is the largest integer such that is a

root.

A graph upon which all the ^  are plotted is called the 

"root diagram" of L and is rank(L) dimensional,Not any 

choice of roots ç* will correspond to a Lie algebra 

there are various consistency conditions which must be 

satisfied ( arising from the Jacobi identities ). These 

conditions are very limiting. From the root diagram one 

can read off the « and calculate the so the

diagram contains all the commutation relations. The 

cartan basis is not a convenient basis for some purposes 

in particular the the structure constants are not 

cyclic. to obtain a basis where the structure constants 

are cyclic we change the basis to

Ei = -i-C E, +E.J
S  = E. -E_)
hJ = iHi (A1.6)

We can further normalise these generators to obtain a 

basis where

(A1.7)
This is the type of basis which we require for our work 

on coset spaces. We present here the root diagrams for 

SU(3) , Sp(4) and ,which are all two-dimensional ,

and we give the structure constants which are cyclic and 

normalised to (A1.7) We also indicate the subalgebra 

which is used to form the non-symmetric coset space.
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In all three cases the roots indicated in red are those 

which will form the subalgebra

We shall be conserned whether the additional 

normalisations (5 .11)-((5.14) are satisfied or not and 

shall give details of the n 2 where appropriate.

For Sp(4) the roots in green are those which will form ( 

together with the two Hs ) the symmetric embeding of 

SU(2)xU(1) within Sp(4)
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SU(3)

We form a cyclic basis via

T, = jtC E ,  + E .g )  , T j  = +E.g ) , T ,  = ^ ( E ^  + E , ,  )

" ^ 0  ” ^"6  ̂ ^ 6  " ^ - 6  = ^ ( E  t “ ^-c )
=iH, ,T^ =iH% (A1 .8)

We find the structure constants are cyclic the non-zero 

ones being
r ~ r _ _ __L_

yRX

( A 1 . 9 )

Cf%6 = ■ ■ ^456 =
= ^2^^ = Cilf ?

Czs& ■ = “ J
We find (5.11)- (5.14) are all obeyed

U( 1)xU( 1) within SU(3) as indicated with

n1 = 3  ' "& = 3
n■J = 1 > n (A1.10)
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We give here the curvatures 

)
for the coset space

SU(3)/U(1)xU(

E|% ■ S <

R,3 = A ' {Vi-
Riij. - 8 E ,*  +( 4 - f '

R,s = Vi
= 2 i '{

w -

■S’ ((1

R m ■ ÿ ’
( (i

■S’ 8E%  +( 4 -ç ' ’

= 'Zh
( ^ - X ( i  ) E ^

= ^  {

Rj6 = 'à . ' { (

8Ej^ + (  4 -  ^

Rfs = ^ {  2J4-
R^6 = ^ { (Ç -X(4^E^

Rs4

1̂1). -G36 
Ç )Es5

<( +tf)E.4

%<•

^IS -G|*

)E,%

^ + 4 ^  )E%3 ( A 1 .11)
And we also give the Yang-Mills ansatz F2 explicitly

)
=r3, 2,'C +Ejc FEis ) (A1.12)

For SU(3)/{U(1)xU(1)} and in fact for the other two

cases also we find the Ricci one-forms to be 

and the curvature scalar

R )

(A1.13)

(A1.14)
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Sp(4)

-8

We find a cyclic basis via

T, ' Ti = ^^tç + E-ç)
=^(Eç-E.g> Ts =a(Eû-E.,), =^(Eç_E.;)

%  =^fE^+E.,>), = T, = IH,
T,„ = IH, (A1 .15)lO <*.
We find the structure constants are cyclic and we 

normalise then to

= C,*c = r

xc^ = Cat} = = - 1 ^

54,10

f % c

= c SL&*1

ÎS.IO ■ ^îé<»

= c

= c.

(A1.16)

We find of (5.11)-(5.14) only (5.11) and (5.12) are

satisfied with 
)

= 3 "1. -= I
3

For (5.13) and (5.14) we find

(A1.17)
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= n , ( â ) S ,  C =n^(a) ̂ be  ̂ “*'3'
where n^(7)=n^(8)=n^(9)= ^ , n^(10)= 1

and n^(7)=nij.(8)=n ̂ (9) = ^  , n^XlO)= 0 
We give here the curvatures for the

(A1.18)

(A1.19) 
coset space

Sp(4)/SU(2)xU 
ARIX

•5
a

X2>

'AS
0̂.4

R

_ > 
Vi-

■ t
= >L OM-
= ^  A-H-
=

= 1

= >x

- ̂  
U¥

= 2lAi* 
Ai*--t.

36
R1*5" - ^

*#4 =

= 2̂  
Ai*

= 2^ 

Ai*
_ V

Ai*
The SU(2)xU 

F'
.A

R56 - rr.

1) for the antisymmetric impeding

Ç-1^'*’)E,3 -( Ç }

8E,^ -( 4-Ç^)( E^^ +Eii ) }

^23 +(2-Ç }

4Eis +(-4+^)E,|^ }

2+t +(2-f -%^^)E3S }
(S -iç'̂ )Ejv̂  -(Ç+t^)E/4 }
2+^-l^*^)E^^ +(2-(5 )E%6 }

36 +(-4+it)Gf4 +a^^A& ^
^ )E45 -( ̂  }

4E

F = 

F^ = 

F 4" =

"a1^^^^S4 )Ei3
Yang-Mills ansatz F2 is

E^b *■ ^is \

^  + £%(  ̂
% { e i s - E 3 A

^  { ^£ii+ - E x s  - £ n  ̂

(A1.20)

(A1.21)
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G2

- a

We find a cyclic basis via

We

T, = f = ji ( flL Eç^E.) . Tj " A  ^ E.

T, = y Ts = E,-E_j) , T(. = E< -E<)

T, = ft’’ E&+Ç,) y T* = - T<« - A E; + Ef)
T«, = Eç-E.j) y T„ " f ' V  ’ T,i -

-E,)

= > T., - ; H2. (Al .22)

find the structure constants are cyclic and we

normalise them leaving the following

= î2>S ' "C*5c = = *7tx

CiS9 = c,t; = X̂iJ\ - - ‘'AT5 ■
1

= 0̂,10 ~ =" ^3^? ="Ef <jil = + i

Ssî t = ' Î̂S.Il =
1

“4-,

Sa»/4. = '
SsjiX = - C = +J- (Al

We find (5.11 )-(5.14) are ail satisfied with
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n, = i » n /
- 3

"î 4- > n ̂ Z 3 
4- (Al.24)

We should note that our structure constants are 

different from those of Lust [%&]. Analysis of those 

used by Lust shows that the Bianchi identity 

[T^,[T^,T^]] 4- [T^,[T^, T^]] + [T^,CT^, T^]] = 0 
is not satisfied when we choose a= 2 ,b= 1 and c= 1/ ( this 

is Lust^s numbering ). In [261 it is claimed that for 

G2/SU(3) the dH equation is satisfied without constraint 

because 

dH -

and for those structure constants used this is zero. 

However we find using our structure constants that dH / 

0 so we do obtain a constriant from the dH equation 

We give the curvature two forms for G,/SU(3)

R/I

R

-  A

= ^  
IM

= ^  
= V*
lUk

=
Ik" 

=2^

=1 ok-
= V
aJf

IC

ZW. " rr

16 - rr

3V

35 rr

R

^
+( 1-^)( ) } 

(^+^-3^)E|Cj +(-i+^ )E%^

 ̂ i ^̂ 54-

2E^ +( 1- ^^ ( -E&t ) }

2Eĵ  +( 1-(^)( E,% -E%j. ) }
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( A l  . 1 1 )

If we take the case 1 ( ie take our space to be

torsion free ) we find that

^  ̂  A 6 (A 1.25)
This is the same curvature as the six-sphere ( G^/SU(3) 

is isomorphic to the six-sphere ).

And the SU(3) Yang-Mills ansatz F2 for the coset space 

is
F ' = (1 E,( -  £34

= < k Ÿ - ( l ^ Z C ^

F'̂  = f _ £ ^ 0
F** = ^  6 - ^ / 3  4- Is in')

F* = ^

F^ = ^  \  C-s-ix *■ Ê  ifO
F ^  = ^  + E3»>

f ' = - E i O  (A1.26)
X-W-
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Appendix 2 The case of Sp (4)/ISU(2)jül(_l)l

We shall now take a look at the case of

Sp(4)/{SU(2)xU(1)} Which is different from the other two 

coset spaces because of two facts

1. tr( R a R ) was not proportional to dH
B a2. Ra&ARcbhi is not simply proportional to *E

Why is there a problem ? if we take 1 . first

now

R% =rV  +?R‘b ( see 5.20 ) (A2.1)
fi'^and R %  involve only the S-R structue constants 

and so since these are essentially the same for all

three coset spaces ( see Appendix 1 ) the difficulty 

cannot arise from these terms. the problem must must be 

with R^ which involves which are different .So we

need only look at R° a R terms ( mixed terms R® R* and R® R*̂

do not contribute )
V* c o3 Ï k

= 5^ c,.- C* , (A2.2)IJ. 4 A.
JOLtif C r = n_ ie (5.13) is satisfied then we simply

find tr( R a R ) proportional to dH. However for
ahSp(4)/{SU(2)xU(1)} we find this is not obeyed C ^ 

is still proportional to but the factor is

different for the two case - c a SU(2) index and c a

U(1) index

n^(c)S^^ for c" a SU(2) index (A2.3)

for c a U(1) index (A2.4)

splitting our c indices up into c" for SU(2) and cP for

U(1) we can write 

tr( Ra  R ) =ÿ(
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JO

+ ( ti3(c')-nj(c) } (A2.5)

The first terra is just proportional to dH as usual 

however the second is not. How can we solve this 

problem ? If we take the case of the Yang-Mills fields 

being case F2 then

tr( F a F ) = - X ; / a F‘‘’ ^

= -"X^F\ F‘ -ex' -X’’ )F^\ F^" (A2.6)
the first term is just proportional to dH the second is

This can cancel the problem in tr( R R ) provided

{ nj(^)-n3(c“) } = { (A2.8)
Taking the values of n^from appendix 1 and the values 

«%.of %  from appendix 3 we do indeed find that the 

difficulties in the curvature terms are cancelled by the 

Yang-Mills fields.

Returning to problem 2. we find that again provided

(A2.8) is satisfied we have a cancelation of our awkward
aocDterms ( this is not unexpected R ^ ^ ^ x * £  is closely 

related to tr ( R A *R ) and if the U(1) part of 

tr( R a R ) is cancelled by that of tr( Fa  F ) then we 

might expect a similar cancellation with tr( R a *R ) and 

tr( Fa  *F )

If we wish to deal with a generalisation of case FI we 

have no SU(2) field and we find (A2.8) reduces to 

{ n^(c)- n^(c) } = X u ( 0  

This means 2/3 . Now we can ( effectivly ) have

for our U(1) field fields which give an integral 

multiple of the fundamental value which is 1 but we 

cannot have fractions so this will not work ie having 

just a U(1) field will not work.
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Can we have a generalisation of F3 namely a Sp(4)xU(1)
field ? If we do this we find the anologue of (A2.8) is

{ rijCc*)- n,(0 } =
This again will require being a fraction and so will

Bnot work ( The problem with the Î /»»Î /̂ i»E term will

in fact be remedied by using a Sp(4)xU(1) field ).

So we can only take case F2 for the coset space 

Sp(4)/SU(2)xU(1) the other two cases leading to extra 

constraints. We find for our ansatz that we can just 

treat this case along with the others but we must use 

normalisations appropriate for the SU(2) part alone. In 

particular we find we should in the following equation 

use the value of 1/3 for a  which is the SU(2) value.

K, = 12 -12 = 4/3 -4X

( See p55 for the definition of ) 

giving K, = 8 and = 0

We can now treat this coset space on the some footing as 

the other two coset spaces. This is done within the 

text.
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Appendix 1 Normalisation M  t M  Yang-Mills generators
In Chapter 5 it is importortant to obtain the correct 

normalisation of the generators of the Yang-Mills 

fields. We have two ansatzes for a coset space S/R . 

The Yang-Mills potential can be imbedded as a R-field ( 

F2 )or as a S-field ( F3 ) Our total gauge group can be 

EgXEg S0(32)/Z% or 30(32).

Assuming our structure constants are normalised so that

C*-J_ tn* (A3.1)

Hence in the adjoint representation

0.0;)*%= '"4 (A3-2)
The ratio n^/l is independent of the normalisation used 

for the structure constants and is , by definition, the 

ratio of the 'second index of the representation's ie

I^{ adj( R ) }/I;̂ { adj( 3 ) } (A3.3)

We will be imbedding 3 and R into Eg and we will need 

the fact that [4-?]

I^{ fund( Eg) } = I^( adj( Eg) = 60 _ (A3.4)

In the lagrangian we have written tr ( ) for E ̂  we mean

by this

Tr ( )  ̂ . ( this was mentioned on P29 )
3 0  5^

3o to calculate 9c^we must evaluate , for the case of a 

R-field,

Q3Q5} (A3.5)

This is

( Ij/fund(E,)/I%(fund(R) )

zj.tr - { Q_Qr) ... Ij(fund(R) ) . I»( fund( Ej ) )K. • b ______________________ _____ ____ _
Ij( adJ(R) ) . I^( fund( R ) )
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Using (A3.2) we can deduce

=+S-j{ -2n /I ̂  ( adj(R) ) }.

(A3.6)

For an S-field we will obtain

= { -2/1%/ adj(S) ) } SëiJ (A3.7)

For G%/SU(3) [4-9]
_ 5

SO we obtain

nijzi ,!%( adj(SU(3) ) =6 & Ii_( adj(G ) ) = 8

; ^ T r ç j {  Q g Q j } ç j =  -  5  ( A 3 . 8 )

For S U ( 3 ) / { U ( 1 ) x U ( 1)}

The U(1) generators have a normalisation within Eg given 

by

Since we have U(1) solutions we can take *x = -m where

ra is the monopole number for the U(1) field over S and 
%CP repsectively,

As l2,( adj(SU(3) ) = 6 We will have

_LTr-( Q»Q.) = (A3.10)
3 0  « b ̂  ^

For Sp(4)/{SU(2)xU(1)}

We will obtain different normalisations for the SU(2) 

and U(1). We have ( for the SU(2) ) 

n^ = ^ ,  Iü( adj(SU(2) ) = 4 and I^( adj(Sp(4)) ) = 6 

So we obtain { (X ck )

^  Trgj_( = - 5  8 Z T

For the U(1) we will have

- A15 -
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3 0  ^  (A3.12)
For the U(1) we again have = n where n is the 
monopole charge.

We also have imbeddings within S0(32) to consider. In 

the lagrangian we do not have factors of 1/30 appearing 

so we wish to evaluate

= tr^( Q^Q^)j^j Ij,( fund( R ) ) ,Ij( fund(S0(32))

I^( adj( R ) ). It( fund( R ) ) 

as in (A3.5) Since I^( fund( 30(32) ) = 2 we have

= -( 2n^/I ( adJ(R) ) ) (A3.12)

exactly as for the EgxEg case. So the factors we obtain 

are identical in both cases so in chapter 5 they can be 

considered together

In chapter 7 we dealt with symmetric coset spaces S/R 

and we again imbed the Yang-Mills potential as a R field 

and agian it is importrant to know the normalisations.

We calculate the appropriate normalisations as above.

We have U(1)s appearing in R for several of the cases so

we must be careful to define exactly what we are

normalising. In the following list we give the 

normalisations appropriate to that required in Chapter 7 

ie if R is of the form

( simple group ) x U (1)^

Then we are interested in the simple group for 

normalisation purposes. ( As for Sp(4)/SU(2)xU(1) which 

was dealt with in detail in Appendix 2 ).
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Coset Space

SO(7)/SO(6)

SU(3)xSU(2)/U(2)xU( 1) 

SU(4)/SU(3)xU( 1)

Sp(4)/SU(2)xU(1) 

Sp(4)xSU(2)/S0(4)xU(1)xU(1) I 

SU(2)xSU(2)xSU(2)/U(1)xU(1)xU(1) |

-1/5

-1/5
-1/4

-1/3

-1/5
• ( integer )
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