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Except where stated otherwise within the text Chapters 3
to 8 are claimed as original. This work was partly done
in collaboration with B.P.Dolan ( mainly Chapters 5,6 and
8 ).

The contents of chapters 3 and 4 have appeared, at the
time of writting, in preprint form. Specifically in the
preprint entitled

'Compactifying Solutions to an Extended Chaline-Manton
Lagrangian'

A brief summary of some of content of Chapters 5 and 6
Wwill appear in the proceedings of the Nato ARW at Simon
Fraser University Summer 1986. and will also appear in
preprint form in

'Compactification of 10 dimensional Superstring theories

on Non~-Symmetric Coset Spaces with Torsion!
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The aim of this work 1is to consider the recently
introduced ten dimensional Superstring theories and, by
considering the 1low energy field theory 1limit, consider
possible compactification schemes where the original ten
dimensions split up into four observed space time
dimensions and six ,highly curved, compactified
dimensions. We shall attempt to find solutions which
satisfy the classical equations of motion and then, using
these solutions, we shall ¢try to obtain schemes which
give a spectrum of particles which is compatible with the
observed spectrum.

We shall, by considering situations where we allow non-
zero torsion on the compactified 6-D manifold,
investigate possibilities other than the Calabi-Yau

spaces which are usually considered.

In Chapter 0 we give a ( very biased ) review of particle
physics and in Chapter 1 we give a 1little Superstring
formalism. In Chapter 2 we discuss the low energy limit
of Superstring theories and decide upon the lagrangian
which we shall subsequently use. The two types of
internal manifold which we shall consider are group
manifolds and Coset spaces. We consider these because
they provide a natural ansatz for a non-zero torsion. In
Chapter 3 we attempt to find solutions to the equations
of motion when the internal manifold is a group space and

in Chapter 4 we discuss the consequence of any such
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solutions. In Chapters 5 and 6 we do the same for Non-
Symmetric Coset Spaces and 1in Chapter 7 we 1look at
Symmetric Coset Spaces. In Chapter 8 we return to the

issue of what the low energy field theory should be.



ha ie
For many years now it has been the goal of many
theoretical physicists to find a theory which would
describe nature by a single Force ( and a small number
of elementary particles ) of which the known forces are
just different aspects . The recent "Superstring"
theories are interesting candidates for such a theory.
In this chapter we shall review the known forces and
give some of the arguments leading to Superstrings.
In nature there appears to be four forces -
Electromagnetism, the Strong interaction, the Weak
interaction and finally Gravity. Of these there exists
a well known ,experimentally solid ,theory describing
the first three which is known as the 'Standard Model'
[1] ( the introduction of which in 1967 won the Nobel
prize in physics for Glashow,Salam and Weinberg). We
shall give a brief summary of this model here. The
Standard Model is a 'Gauge Theory'. What do we mean by
this ? If we take the Dirac lagrangian ( describing a
free ,spin% massless fermion eg an electron )
L = --J:W*”’B/»W ak (0.1)
Then this lagrangian is invariant under the following
transformation of the.fermion field ¢'.
¢1 — eL“¥ ( &« a constant ) (0.2)
This rather simple observation leads wus to a physical
conservation law - conservation of electric charge
( from a theorem due to Noether every symmetry of a
lagrangian leads to a conservation 1law ). However the

conservation law is a global law whereas physically we




have local conservation ( ie <charge 1is conserved at
every point vrather than just the total charge of the
Universe remaining fixed ) This suggests we should try
to construct a theory which would be invariant under
transformations (0.2) where now o is a function of the
coordinates x ie oL(x). However if we do this with the
lagrangian (0.2) we find that this is not invariant (
due to EyJOK terms ). We can get around this problem by
introducing another field %u(x) which we call a Gauge
boson and changing the lagrangian to
L = - -;ESLTJ ~C 2 +ighy(x) )¢ a (0.3)

( g is a constant called the coupling constant )
Then we find this lagrangian 1is invariant under the
following generalisation of (0.2)

LP — e'(,.((x)q/

Ap —> By € Dt (0.4)
We can also give the Ap(xo field a life of its own by
introducing its kinetic term.

L = —-;;_S(b/,AV -b,A,,)(b”A" - (0.5)
This kinetic term 1is invariant under the gauge
transformation (0.4) in 1its own right. If we identify
%NCx) with the potential for the electromagnetic field
then the resulting theory proves to be a very sucessful
one for describing the interaction of a spin i fermion (
eg the electon ) with the electromagnetic field. It is
also about the simplest type of gauge theory. We can
extend the concept further, suppose we have a set of
fermions 4@ or‘i , and these have a group of symmetries

acting upon them. Suppose this is a Lie group G with



a
generators T ( the ¢ and T* must be in some

-

representation of G ) Then the lagrangian will be
) 0 M 4
L =-,—,:Si*s Ip ¢ od'x (0.6)
This must be invariant under the following global

transformation ' “1’“
Y — et ™ % (0.7)

( double a-indices implies summation )
We wish to make the d?'local. To do this we must make
the following change in (0.6)

Quw —> ( 2u +igA:(x)T°‘) (0.8)
We must also add the bosonic 1lagrangian which is a
generalisation of (0.5)

L o= - #{F;VFQ"’V o *x (0.9)
where F;b = ?u%:- av%: +C°‘bC Ai,A:
( CQbC_ are the structure constants of G )
We must also generalise (0.4)
Our simple example had U(1) for 1its group G. The group
G for the standard model is SU(3)xSU(2)xU(1) . The
strong interaction being described by the SU(3) and the
electro-weak by the SU(2)xU(1).
What are the fermions present ? . These split into two
groups - leptons and quarks . The leptons are not
affected by the strong force and consist of- the electon
e , the muon AJ, the tau muon € and three neutrinos ( one
for each of e /.)2-))43\/,‘, Vp . There are six quarks to
match the six leptons - u,d,c,s,t,b ( the existance of
the t-quark is a little suspect at present) [A ] . These

fit into three families the first of which is

e ,)Q , u , d



The other two families are just matching sets with the

same quantum numbers only with a higher mass - these are
/-) ’v y ¢ 4, S
%9\/%1 t ’ b

Each of the above particles ( except possibly the
neutrinos ) has two 'chiralities'. What do we mean by
this ? - a fermion field ? can be split into two parts
( called chiralities ) thus
¢ =Lawdb e L-%) Y = g v Wp (0.10)
The Lagrangian also splits up into two parts if we do
this ie
¢, - P54 r Px Ouly 0.1
The (P& and lPL also transform under Poincare
transformations independently. So 4L and 4ﬁl can be
taken as different objects, usually refered to as the
left and right handed <chiralities. It 1is one of the
most intrLgude aspects of the standard model that the
left and right chiralities appear differently within the

theory. The left chiralities fit 1into SU(2) doublets as

e\ » (u L ( plus the same for
\é d o the other families )
L

Whereas the right handed chiralities appear as SU(2)

"follows

singlets

up » dg s e ( and possibly\Q¢~ )
This aspect of the standard model is difficult to
explain and will appear again. The quarks ( both left
and right ) are SU(3) triplets and the leptons are SU(3)

singlets. As we have three families of chiral fermions



we often say the number of chiral fermions is three. It
is uncertain whether there are more families as yet
undiscovered but cosmological evidence suggests the no
of families is & 4 [3] ( this is only a good argument if

the neutrinos are massless )

The standard model  has been very sucessful in
describing the Electro-Weak-Strong interactions. It has
successfully described the known Electro-Weak phenomena
to high quantitative agreement and predicted the
existance of the Wt and Z° bosons which were discovered
about 1982 at CERN [2] ( the gauge bosons A% of
SU(2)xU(1) are identified with the photon,W' ,W~ and the
Z° ) Everywhere that the standard model has been able to
make predictions has been a source of excellent
agreement ( 1in the SU(3) sector there have been major
difficulties 1in <calculating the predictions of the
theory but things are getting better via Lattice Gauge
Theory [4%1 ). Gauge theories also have the very
imporﬁant property of being consistent quantum theories
( ie renormalisable ).

There are however criticismsof this model

1. There are a lot of "free parameters" within the
theory by this we mean there are a 1lot (~ 23 ) of
constants Which appear 1in the Lagrangian without any
good theoretical reason why they should have the values
they do ( from working backward from experiments )

2. The Unification group is hardly in some ways much of

a Unification -it is just three groups pasted together.



In (0.8) we have written a single g but for the standard
model since we have SU(3)xSU(2)xU(1) , a direct product
of three groups , we could have three different g's one
for each of the groups and in fact if»we fit experiment
to theory we must take different values to start with -
in a genuine unification we would like to see only one
independent coupling constant for one force.)

3. Although not previously mentioned if we wish give the
W:t ,Zc> and the fermions a mass we must have spin-0
Higgs particles present. There is no principle why they
must be present. ( Most of the free parameters
mentioned in 1. are in the Higgs sector,)

4, Charge conservation 1is a result of the model but
charge quantisation is not.

5. Gravity 1is not incorporated within this model.

The next stage in our Unification scheme was the
introduction of 'Grand Unified Theories' [%] ( the story
of nomenclature in particle physics is rather
dramatic ).' Whose idea was as follows-= we should have
some grand unification group G which is a single group
with one coupling constant, the vacuum state however
does not possess the full G symmetry so at energies less
than the scale of the vacuum solution we will observe a
smaller symmetry than G , G/ say, (},C.G . We are
trying to obtain G/ =SU(3)x3U(2)xU(1) from some G. To
make sense the scale of the solution must be of the
order 1CfSGeV. ( The coupling constants are a function

of energy scale and upon extrapolating one finds they



have the same value at about this energy.) Grand unified
theories contain more gauge bosons than the standard
model but the unseen ones have a mass of the order of
the vacuum scale. These, although massive, do have in
principle observable effects eg they can mediate proton
decay. The proton lifetime is rather large however ~
103°years [61. There are various candidates for G
=SU(5) was originally a popular candidate for G others
are S0(10) and Eg. Of the problems 1.-5. above Grand
unification gives good progress on 1.,2. and 4. However
3. and 5. are still problems and an additional problem
appears. Why should the scale of Grand Unification and
that of the weak interactions be so different ? . We
need to 'fine tune' the parameters in the original G
theory very carefully to make the scales so different.

This is the famous Hierarchy problem.

A solution to this problem was provided by the
introduction of fSupersymmetry!' ({[7] ( which also has
many other interésting points ). Supersymmetry is a
symmetry between bosons and fermions and as such this is
quite a 1leap forward 1in unification - one can regard
bosons and leptons as Jjust two aspects of the one
particle. Supersymmetry solves the hierarchy problem
because the mass of the Wt,Z° and of the fermions are
suppressed , to much less +than the wunification scale,
because their mass term is not supersymmetric and cannot
appear 1if supersymmetry exists. It also answers the

tantalising question of why do we need fermions at all -




recall the gauge boson kinetic term was invariant by
itself so a gauge theory of bosons alone 1is perfectly
acceptable. Supersymmetry predicts a matching of bosons
and fermions. The supersymmetry generators S transform
fermions into bosons and vice-versa . So there should be
a matching up of fermions and bosons with the same
quantum number. Unfortunately this 1is not observed
amongst the known particles ! . So we must be in a
similar situation to the Grand unification schemes where
the symmetries of the lagrangian are not observed 1in
nature - so Supersymmetry must be broken. This breaking
must occur somewhere above the weak interaction scale (
100 GeV ) but if we are still to solve the hierarchy
problem it cannot be too far above, certainly well below
the unification scale. It is not really known at what
scale it is broken. ( Hence the excitment amongst
supersymmetry phenomenologists whenever any hint of

experimental deviation from the = standard model 1is

suggested!).

So far we have been talking of global supersymmetry. It
is when we allow the supersymmetry transformation
parameters to become 1local that supersymmetry really
starts proving its worth. We obtain ( amongst other
locally supersymmetric theories ) the so-called
supergravity theories which contain spin-2 ©particles
which we identify as the graviton, the particle which
mediates gravity, So for the first time 1in our journey

we find the fourth force finding a place. In 4-D there




are various types of supergravity depending on how much
supersymmetry is present ie

N

1 supergravity has a 1-D group of S's

N = 2 supergravity has a 2-D group of S's etc
We will not consider supergravities ( or supersymmetries
) with N > 8 since these must contain spin > 2
particles and it is not known how to deal with such
objects [8] and it is thought there exists no consistent

way of including them.

Our next step forward is the idea, originaly due to
Kaluza and Klei(n in the 20's [9], that we should take
the possibility that we live 1in dimensions > 4
seriously. If we had a 4+k dimensional theory and a
solution which was of the form

(4-D flat space)x(k-D compact space with length scale L)
Then for lengths very much larger than L this would
appear to be a 4-Dimensional space. So 1is the Universe
really Y4-Dimensional or does it only appear to be ? . We
shall look briefly at the original Kaluza-Klein model to
illustrate the ideas. This model had a space-time which
was 4+1 dimensional and the theory was five dimensional
gravity. If we take simple 5-D gravity and take ( 4-D
Minkowski ) x ( 1-D torus ) as our solution, then the
resultant low energy 4-D theory will look rather more
complicated than simple gravity. If we take indices A,B
to be 1-5 and w,V to be 1-4 and carry out a

redefinition of our 5-D metric field Gﬂe

Gov = Baw +  Auhy




Ggg = @ (0.12)

( these are a definition of g~v,Af, and ¢ )

Then we find at 1lengths much larger than that of the
torus then the lagrangian will approximate to that for
4-Dimensional gravity ( Buv ), an Abelian Yang-Mills
field ( %p) and a scalar particle (‘¢). This is a very
simple model which was originally introduced to unify
gravity and electromagnetism ( in the 1920s ). The
coupling constant for the Yang-Mills field is related to
the size of the torus. We shall note a few of the
features of this model.

1. Gravity and electomagnetism in 4-D are just different
aspects of 5-D gravity

2. Charge conservation arises from this model as a
direct analogue of momentum conservation. F?r momentum
conservation since for a wave function - ;Pl Wwe can
have aﬁy value of p and so we do not have quantisation.
However since the fifth dimension 1is a torus a

efs*s ,
is not single valued unless pg

wavefunctionae
obeys a quantisation condition ie ié a constant multiple
of some fundamental wunit ( which 1is proportional to
1/(length scale) )

3. The scalar field arises in a natural manner

4, 1In fact for our redefined field ,A,jX) say ,this

would appear in four dimensions as a infinite set of

particles since we can expand ( X = X ,Xxg)

[-d . A
Au(X) = Z A,u"(x)e""’-“"“°cS (0.13)

NnNs o
(a 1s the radius of torus)

- 10 -




Each of the AN'1(X) is a valid 4-D field which will have
a massiwhich will be of the order n-a? As the natural
length scale for gravity is the planck length then we
would expect a ~ (planck 1length ) this results 1in
a 2 1 2 .
mass ~nx( 10 GeV ) so only the n=0 fields would
appear at low energies However we cannot forget about
the other fields completely eg they effect the Quantum

properties of the theory.

We can generalise this procedure to a more general.
situation. Starting with the Einstein-Hilbert action in
4+k dimensions

f-g_ Rag A *E SO (0.14)
Then if we take for our solution

( 4-D minkowski)x( k-D compact K )

Then we will find in U4-D gravity, scalars and Yang-
Mills fields The Yang-mills fields will have Gauge group
G which is related to the symmetries of K [to]( in
- particular if K has no symmetries there will be no
(massless) Yang-Mills fields ). It would be very nice
to obtain Yang-Mills fields with gauge group
SU(3)xSU(2)xU(1) or one of the wunification groups in
this way. If we wish to obtain SU(3)xSU(2)xU(1) in this
manner then sheer size arguments imply we must start
with k ) 7. Of course any other fields present in the
original theory will also appear in various ways in 4-D.
Eg an initial spirn—i Rarita-Schwinger fermion field

will split into spin~}i and spin--‘,i fields in 4-D.




Supergravity theories 1in dimensions greater than four
dimensions are 1in some ways natural candidates for
complete theories. If we take N=1 supergravity 1in 4+k
dimensions then, %2 the simplest compactification we
will find N= 2[51( [ 1] denotes 1integer part )
supergravity in 4-D. for k > 7 we will have N > 8 and so
we must obtain spins > 2. These particles are very
undesirable. If we do not wish to have these particles
we must restrict ourselves to k 7. The two conditions
k > 7 and k7 which apply if we want our gauge bosons
to arise from the metric and not obtain spins > 2 seem
strongly to suggest looking carefully at k=7, if a Nz=1
supergravity exists. In fact such a N=1 theory does
exist for dimension 11 [tl] and is in fact a very simple
supergravity theory containing only three fields- the
metric Bag » @ spin-% fermion field lP and a three
form A ( or field Aﬁacwhich is antisymmetric in ABC ).
This theory is very attractive and has been studied very
carefully over the last few years However it has been
largly discredited due to several problems mainly

1. Although is is possible to obtain SU(3)xSU(2)xU(1) as
the gauge group 1t proved very difficult to obtain the
fermions in the correct representation [I4]

2. The U4-D observed fermions are '"chiral" and it 1is a
theorem due to Witten that ( with some assumptions )
that chiral fermions can only be obtained if (a) the
original space-time is even dimensional and (b) Yang-
Mills fields exist in the original theory [13] ( these

are necessary conditions not sufficient ) The N=1 D=11

Supergravity theory fails on both counts 1.

- 12 -




3. We are really interested in Quantum Mechanical
theories. The standard model and the Unified theories
are consistent quantum field theories. However when we
introduce gravity the theory 1is no longer able to be
quantised consistently. It was hoped that the
supergravity theories would due to their high symmetry
be able to be quantised. Calculating "™ loop diagrams"
ywhich for a theory to be renormalisable must be well
behaved, we find for pure gravity that one-loop diagrams
are fine but the two-loop and higher are not. For
supergravities it is thought that the two-loop diagrams
are well-behaved but three or more loops will 1lead to
problems [I4]. So it appears that the supergravity

theories are not quantum-mechanical consistent.

There exist supergravity theories 1in dimensions less
that 11 but greater than 4 however if we wish to obtain
SU(3)xSU(2)xU(1) in 4-D we must couple these to Yang-
Mills theories ( not always possible ) these could then
solve 1. and 2. but 3. still remains and introducing
Yang-Mills without a good reason could just be done in
4-D 1. So without some fundamental reason for including

the Yang-Mills fields these are unsatisfactory.

The major difficulty of producing a consistent quantum
field theory of gravity has led to the introduction of
Superstring theories [15] which are not point particle
field theories but have fundamental objects which are

"strings™ rather than point particles. The difficulty




with Quantum gravity occurs in the regime where two
point particles are very close together. At short
distances string theories are radically different from
point particle theories so we might hope for a different
behaviour.

The fundamental object in a superstring theory is a
"string". A string is a one-dimensional object which can

either be open or closed ie

OPEN STRING CLOSED STRING
Bosonic string theories have been around since the early
seventies [/6] but it has been the introduction of the
Supersymmetric Superstring theories which has provoked
the recent interest 1in superstrings. These string
theories incorporate both fermions and bosons.
There are various types of string theory.
~ If we have open and closed strings we say we have a type
I superstring theory
If we have only closed strings we say we have a type II
superstring theory
There is a third type of string theory -the heterotic
string which only has closed strings but the closed
strings are rather strange in that the vibrational modes
appear differently depending on which way they travel

around the stringl 487,

- 14 -




( N.B. we cannot have only open strings since an open
string can join ends to form a closed )
A very crucial point of Superstring theories is that for
a few very restictive conditions being satisfied then
they are consistent Quantum Theories. For consistency we
must have:
1. The superstring theories are only consistent if they
are written down in ten-dimensions
2. For type I and heterotic superstrings there is a
Yang-Mills type 1index associated the strings. The are
strong restrictions on what the gauge group may be ie
For Type I we may only have S0(32)
For the Heterotic we may have SO(32)/21 or Est&

The strings may interact in various ways eg.

a8
O
AL

I

0f course at’experimental energies ( at present ) we do
not see strings we see point particles. To explain this
the length scale of the strings must be very small- as
string theories have only one length scale it is natural
that this must be the planck length which is 10 'm which
is much less than experimentally investigated distances.

Strings have an infinite number of vibrational modes

- 15 =



most of which will have energies/masses planck energy.
At low energies the only modes which would be excited
are those which are massless. These massless modes
would interact amongst each other like point particles.
So at low energies the string would simulate a point
particle theory. In fact the massless modes of
Superstring theories form ten-dimensional Supergravity
theories the form of which depends on the string theory.
Type II strings form a N=2 10-D supergravity

Type I and Heterotic strings form a N=1 10-D
supergravity which is also coupled to Yang-Mills
supermultiplets the gauge group being that of the
initial string. ( Although we have Yang-Mills fields
these are not ad hoc but are specified by the string

theory.)

This work will be concerned with the analysis of the
effective 10-D point particle theory for Type I and
Heterotic Superstrings and the process by which six of
the ten dimensions compactify leaving four dimensions.
We shall be examining alternate compactification schemes
to the popular one where the internal six dimensions are
a "Calabi-Yau" space [17].( These spaces are rather
interesting objects- being Ricci-flat and having no
symmetries ). In the next chapter we shall look at a
little Superstring formalism -just (?) enough for our
purposes and in Chapter 2 we shall examine closely the

the N=1 D=10 supergravity theory which we shall be

working with.

- 16 -




Chapter 1 A look at Superstrings

In this ©brief chapter we shall take a short look at
superstring formalism and give a justification of the
statement that the =zero mass modes of a string form
supergravity multiplets. For a more detailed exposure
see for example references [I5] and [|8].

We shall present a little of the superstring formalism,
The original bosonic superstring theories were based in
26 dimensions as this was the only dimension where they
could be written down consistently. The Superstring
theories can only be consistently written down in ten-
dimensions for quantum mechanical reasons.

We shall start by describing a 1little of the bosonic
string. A string, which since it is a one-dimensional
object , will sweep out a two dimensional 'world sheet!
in space-time as it develops. ( as opposed to the
world 1line swept out by a point particle, ) For the
bosonic string the string kinematics are completely
given by X’ko‘ft)) O‘E(O,ﬂ) where XMare space-time
coordinates and 0 and 7 are world sheet coordinates, O
is space-like and T is time-like. At fixed T, O
describes position along the string. We can have two
types of string - open strings where the endpoints do
not neccessarily coincide and closed strings where we

must have

X o0, %) = x%m, ) (1.1)
Closed strings can also be orientated or unorientated.
If the string is invariant under o -»K-¢ then we call it
unorientated otherwise it is orientated. The string is

described by thé action

- 17 -




s = '537\' Sds‘ dr =g g B_QX”BQX,U (1.2)
(ec,(.‘a are world sheet indices 1-2 refering to < and
7, g€ is the world sheet metric, )
Associated with string theories there is only one free
parameterthe so called string tension which has 1is in
units of inverse mass®. The inverse of the string
tension should appear premultiplying the action (1.2).
It is natural and usual to take this to be the inverse
(planck mass)z. We shall usually work in wunits where
the string tension 1is one and we shall not explicitlb
mention it again.
For the world sheet metric ‘S‘(w:e can solve its algebraic
equations of motion and substitute back into (1.2) (
this is only valid for D=26 ) We have reparameterisation
invariance of (1.2) so we can also choose g*c such that

& g%t g = dtag-1,m) (1.3)
The g“e equations of motion will then manifest
themselves as constraints

(3, %" £3.x*)% = 0 (1.4)
These constraints are important. If we started with q*%
in the action instead of g we would not obtain them.
Without these constraints we would not obtain a physical

Hilbert space of states when the theory is quantised.

The equations of motion arising from (1.2) are

b_q._. -D:; A = 0 1
with additional boundary conditions for open strings
2 x”(6~,F) =0 at 6€=04& T (1.6)
o0
The solution to (1.5) and (1.6) is
¥ (6, )= xV "t +iZ,—'\( a"’,\e"""t Yycosn @ (1.7)
nfo
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This is for a open string,For a closed string we apply
(1.5) and (1.1) but not (1.6) to give for the general

solution

» ) “2nleT) L0 ainl6t?)
(e, = x¥ T . i%;( b 2L B Y (e
NFO
Notice that «closed strings have double the modes that

open strings do. As in field theory wupon quantisation
we let a’:‘, bph and 't‘;ﬂh be creation/annihilation

operators satisfying appropriate commutation relations.
For the closed string the bpn and‘gﬁl\are operators for
modes travelling 1in opposite directions around the

string.

In superstring theory we have both bosonic and fermionic
coordinates which are functions of +the world sheet
parameters . We fully describe the string by XAJ(G‘{E )
and ‘)(a( G, t) A=1,2 these are interpreted as 10-D
superspace coordinates ?<A are D=2 ( world sheet )
scalars but D=10 Majorana-Weyl spinors. We have N=2
superspace/supersymmetry.
We must generalise our bosonic action to a
supersymmetric extension. The appropriate form for a
non-interacting string is

S = S, + S, (1.9)
Where S, is the naive extension

Si = - gdé‘d?f:g RSP ABRATIN (1.10)
Where 7\"':,~ :bAX”—iEA.'SZA‘S'NB*'X“
and‘*’vare the 10-D gamma matrices
S, in fact is not a free string action so we add Sq as

an additional term to make S non-interacting

S, = %Lgda' ar €5 SR X7 (RN 3N = X, D X )
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X DR XA XA bo(1.11)
( E“Q is the antisymmetric tensor in « and ¢ )
We <can again use the equations of motion for g‘e'to
solve,substitute back and set equal to qf?’ as before
again yielding vital constraints. However the
constratnts are complicated. We will continue this
discussion in a particular gauge - the 'Light Cone
Gauge'. We change from coordinates Xﬁl/u =0,9 to
xT 1-1,8 and X~ where
L x°+ x7 (1.12)
V2,

-’-
In this gauge we can use the constraints to solve for X~

-+
X—

in terms of XI so all the physical degrees of freedom

Will reside within the XI . Local fermionic symmetries

of (1.9) also allow us to impose

\c"")(':\(f')(.q': 0 wherefiz J',:"-(YQ+K“ ) (1.13)
(1.13) truncates 7U , 7&1 to 8 component S0(8)
representations

~' > x ~x* - X (1.14)

Which spinor representations 8¢ or 8¢ depends on the
original D=10 chirality of X . Xi is 1in the vector
representation 8, of 3S0(8).

In the light cone-gauge the equations of motion become

(?%,,_-g-p)f: 0 (1.15)

(:3)'1- +g§)2_<=o (1.16)

(?ﬁ'%&)% =0 (1.17)
We also obtain boundary conditions for open strings

N (c, ) = X (€,%) €=08T (1.18)
2 xX(e,t) =0, €:0 & T (1.19)

O¢
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(1.18) requires X and 52 to have the same chirality and
reduces the supersymmetry to N=1. We obtain, by solving
(1.16)-(1.17) the mode expansions for X and X . That

I . . . .
for X is identical to (1.7) ( with A/ replaced by I )

~

-un(t-6)
?(.(G‘,'t):Z’Xe ( (1.20)
-~ n:-.ow- -‘Ln{‘l""s)
KE,t) = K, (1.21)
:..-Q
When we quantisenthe theory we obtain the mass formula
D N E R R ks o (1.22)

( a is a fermionic index previously omitted )
So the zero mass state of the string will consist of the
ground state of the Fock space of the & and '7(,\
oscillators tensored with a general function of the
superspace coordinates

10 >f( x , fermionic coordinates ) (1.23)
The fermionic coordinates are not quite the same as the
X, ( see [IB] ). Expansion of the f( x ,j(f) in powers
of the fermionic coordinates will yield 16 functions of
x ,8 of which will be bosonic and 8 will be fermionic.
We find the massless modes of an open string will be

8,O 8¢ of 50(8) . (1.24)
Looking back to the bosonic string we notice that for a
closed string we have two sets of operators , each set
the same as the open string set of operators , one for
each direction of motion around the string. We get a
doubling of modes. It can be shown that the open string
states fall within multiplets R, with mass™=n and the
closed string states are in multiplets with masézzun
formed by R@®Rna. So to find the massless states for a

closed string we need just need to product two open
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string massless multiplets. We obtain type II
superstring theories in this manner. S0(8) has the
property of having three 8 -dimensional representations
8y the vector bosonic representation and two spinor
representations 8. and 85. We can take either spinor rep
for the open string. When we product two open strings we
have two possibilities. We <can either take two open
strings with different spinor 8s or two with the same
type of spinor §_ . The first possibility corresponds
to type IIA superstrings and the second to type IIB. We

obtain for the massless modes

IIAN (8v® 8 ®( 8y 80 " (1.25)
IIB ( 8v® 8s) ®O( 8v & 8y) (1.26)
These produce the following states ( bosonic states
first )

IIA 1@ 28D35@ D56y 8D 5680 56 (1.27)

IIB 1D28 O35 H1®28D355 » 8D 56,@ §@6; (1.28)
(1.27) and (1.28) are just the field contents of Type
IIA and Type IIB N=2 D=10 supergravities as given in
Table 1.1. These string are orientated strings

The only known theory based on open and closed stings
involves unorientated closed strings based on type IIB.
Imposing the condition of invariance under o-»N-0"
eliminates half the states in the IIB theory leaving the
same states as the Type I N=1 D=10 Supergravity as given
in Table 1.2. The massless content of this theory (
known as Type I supeérstring theory ) is that of type I
supergravity plus the massless content of the open

strings ( §v(:) 8s). The open strings can (must) have a
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Yang-Mills index associated with the free end. If the
Yang~-Mills group is G then the massless states will be

( 8,®8s, 1 )®( 1, adjoint of G ) (1.29)
This 1is the same content as a D=10 super Yang-Mills
multiplet.
For a consistent quantum theory we must be very
restrictive in our choice of G , To enable anomalies to
cancel when we quantise we have only one choice of G
namely S0(32). At this time this appears +to give a
finite consistent theory.
Apart from the three type of string theory I,IIA and IIB
there 1is one further type of string theory the
'Heterotic Superstring' which is based on closed strings
only,

The Heterotic superstring is a very strange object- it
is a closed string theory for which the modes moving
around the string in the two directions are very
different  objects[48), Mathematically one set are
superstring modes in 10-D and the other set are bosonic
string modes in 26-D. The 26-D is compactified to 10-D.
The net result ( the analysis is complicated and not
really necessary here ) for the zero modes is to find
Type I supergravity plus a super Yang-Mills multiplet
where the Gauge group, if we require anomaly
cancelation, can have only two possible choices- EBXEB
or S0(32)/Zy.These are both rank 16 groups.

Here we have shown ( or indicated ) how we obtain the
same 'fields' as D=10 supergravities when we look at the

massless modes of superstring theories, However this is
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not the same as showing that they form a supergravity
theory. Detailed analysis of the interaction between the

zero modes does confirm that they do form these thecories

[18].

The Behaviour of the string is determined by its entire
( infinite ) spectrum of states., However at low energies
we would hope that we may approximate the behaviour by
analysing the behaviour of the zero mass modes. There
must be more to the 1low energy limit than just the
supergravity lagrangians since these suffer from
anomalies whereas the full string theories do not. We
shall in this work attempt to analyse phenomenological
aspects of some of the superstring theories by examining
the 10-D field theory lagrangians which are based on the
10-D supergravity lagrangians with appropriate
corrections due to the higher mass modes. These
Lagrangians are only approximations to the superstring
but we should be able to 1learn something from them. (
After all physics 1is a very good approximation to a
point particle world- there 1is no direct experimental

evidence at the moment for matter being extended objects

)

We shall be interested mainly in the compactification
of the ten dimensions into four flat plus six highly
curved dimensions. If we wish to explain our manifestly
4.D wuniverse by a 10-D theory +this must certainly

happen.  We shall attempt to find compactifying
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solutions to the classical equations of motion arising
from the lagrangians which result in physical particle
specra and Yang-Mills symmetries. We regard these
classical solutions as the background solutions for when

we quantise the theory.

Type II supergravities have no ( apart from a U(1) in
ITA ) fundamental Yang-Mills fields hence it is very
difficult to see how after compactification we can find
SU(3)xSU(2)xU(1) Yang-Mills fields. ( Recall from
chapter 0 that we cannot obtain enough Yang-Mills fields
from the metric for dimensions less than 11.) Hence we
shall only deal with the type I supergravity ,which is
derived from both Type I and Heterotic superstrings,
coupled to various Yang-Mills. 1In the next chapter we
shall introduce this supergravity lagrangian which 1is
known as the Chapline~Manton 1lagrangian and discuss the

possible alterations to it.
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Table 1.1 Field content of the type II Supergravities

N=2 D=10 Type IIA Supergravity

Field Symbol Rep of S0(8)
scalar ¢ 1
metric g/uv iS‘V

U(1) Yang-Mills A/, 8y

Two form A,V\/ 28

Three form A/'NC 56 4
Gravitino (}/ 56, 56 ¢
( Majorana )

Spinor '>\ §s@8c

( Majorana )

N=2 D=10 Type IIB Supergravity

Field Symbol Rep of S0(8)
Complex scalar B 1®1
graviton gﬂv §_§_v

complex two form A/W 28 D 28
Four form with A/"Vf"' _3_55

self dual field

strength

Gravitino ( Weyl) t}/ ?‘_65 ®56¢
Spinor( Weyl ) N 8, ® 8y
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Iable 1.2 Field content of type I D=10 N=1
Supergravity

Field Symbol Rep of S0(8)

scalar ¢ 1

graviton g 35v

two form Ayv 28

gravitino q: 56 ¢

( Majorana/Weyl)

Spinor j\ 8¢

( Majorana/Weyl)

This can also be coupled to a super Yang-Mills
multiplet which will have content ( in reps of

S0(8)xYang-Mills group G)
Ap
X

Yang-Mills

Spinor
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ha tende apli a Lagrangia
In this chapter we shall introduce the Lagrangian which
Wwe Will be working with in Chapters 3-7,

As discussed 1in chapter 1 at the 1low energy 1limit of
Type I and Heterotic superstrings the zero modes of the
superstring behave as point particles of the d=10,N=1
Chapline-Manton supergravity coupled to specific Yang-
Mills fields. For +type I superstring theory the Yang-
Mills are S0(32) fields and for the heterotic string
theory they are EgxEg or S50(32)/Zsa. This is the lowest
order Lagrangian. There are various reasons to suppose
it is not sufficient to consider only the zeroth order
approximation and we must consider additional terms from
the next order 1in perturbation theory. The d=10,N=1
supergravity contains the following fields ( we are not
coupling to Yang-Mills yet ).

E - the gravitational orthonormal one forms

describing a spin 2 particle A=0,9

gdag the lorentz connection related to the EP

via the torsion TH

dE® vy nE® = 17
B - a two form ( or Bpg @ two index field )
N - a scalar spin 0 field
¢y - a spin%: fermion field
- oa spin-i fermion field

The lagrangian also features field strengths defined
from some of these fields

Rﬂ A(.'\ WCB

n = dwag +W
H = dB

The abpropriate lagrangian is [19]
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i AB 2
:1RgGI\*E -‘l(‘_e'UHI\*H —d,;l\*d/\)
T ¢ A8 A w P
~EF D Y *Egey -AX WD N A *EQ
- 8
B (PPSTAAREG IAR( d L )

+4e” HAC KON, ¢ ) ) (2.1)

+ four fermion couplings

Where K( N, ¥ ) is defined as

- = £
rE 9 - LE

Where we have used the following notation/definitions

G FF 6 |
‘}'*E%w6+%EQK*('+V *E))  (2.2)

d 1is the exterior derivative which takes p-forms to
(p+1)=forms d acting twice on any form gives zero ie

d( d(a form))=0.

A is the interior product operation which acts on a p-

form and a q-form to yield a (p+q)~form.

R - a? Ry QP

[
E means E'nE RE'h.. AE

* is the operation of Hodge dual which take p-forms to

.. A
10-p forms. Its action on the EA Pis defined by
hro B ghe B gt Coe
10-p)! 8,...8
a ( P) n-p
( ia"' 1o is the antisymmetric tensor in ten
indices)

Another operation which we will wuse is that of interior
derivation in, iP:p-forms -» (p-1)-forms and is defined

8
on Esby i“E‘s :"]A where Yl:diag(—1,+1,+1.....,+1).
This supergravity theory can be coupled to a Yang-Mills
supermultiplet by adding the following fields [20]

A - Yang-Mills potential

- 29 -




X - spin é; supersymmetric partner to A
These fields have a group index ( which we suppress ).
We find we must add to the Lagrangian the bosonic term
v+ 4 e tr( FA ¥ ) (2.3)
where F is the field strength of A ,F=dA +AAA. We also

must add the fermionic terms

- A — <
~dtr (XD X1 aMyg triXs™ A *

— &t ~n .
- & ke R+ Fa G (2.1)
where we have introduced Mpge wWhich is defined by
I B oA DN
MA&L = 4310151CH 12 R6&C
- i%¢ ( u% .
,‘_5_3_‘1 g (4 m\sb+3~c°'\-m)tp (2.5)

( circumflexed quantities are super covariantised )
We find we must also alter our definition of H to
H= dB - JL,,where Slyyis the Yang-Mills Chern-Simons
term which is defined by

LQM =tr{ FAA -LAnAnd } (2.6)
With these changes we now have the standard Chapline-
Manton lagrangiana
When we use our gauge groups arising from superstrings
we must be careful what we mean by the trace ¢tr( ). If
we have the Estg gauge group then the Yang-Mills lie in
the adjoint representation the generators of which if
taken as anti-hermitian ( ie Qt = -Q¢ ) are usually
normalised to Tr( Q.Q+) =-305¢5.In this case we find we
must replace tr( ) be EﬁbTr( ) whereever this occurs.
For SO(32) we have the Yang-Mills 1in the fundamental
representation which is normalised to Tr( Q. Q) = -.Sgs.

For SO(32) we replace tr( ) by Tr( ).
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Throughout this work we shall be setting the fermion
fields to zero in our ansatzes. Obsewationally non-zero
fermion fields are not ruled out but there 1is no
positive evidence for them. So we shall only consider
the bosonic lagrangian.({@s the fermion fields occur in
pairs when we set them equal to zero there will be no
residual contributions to the equation of motion from
the fermionic terms in the Lagrangian when we do this ).
RS LA —dunrdm

+deMtr( FA* ) (2.7)
Although this is the lowest order lagrangian there are
reasons why it alone cannot describe physics ( and hence
we must consider higher order terms ) One reason is the
argument due to Freedman et al [2}]) "ten into four
won't go" which states that given <certain assumptions
then there are no solutions when space-time 1is 4-D
maximally symmetric and there are six compactified
dimensions. To see this we look at the scalar equation

of motion arising from (2.7)

2a%dp -de”HARH +Le’tr( FA*F ) = 0 (2.8)
S 4Coat ={ee( HH ) -eMtr( g(F,F) ) }*1 (2.9)
now tr( g(F,F) ) = - 7<¢'g(F&,Fg) so we find

( ?(l is the normalisation of the generators )

WD *1 (e g(H,H) +e¥X g(F, ,Fo) }*1 (2.10)
If H and F have no time components then the RHS of
(2.10) is positive, However [Q// only has negative or
zero modes so the LHS must be negative or zero. The only
solution hence is DA =0 and H = F = 0. This also

implies the curvature scalar is zero. So we do not have
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any possibilities of 1interesting compactification.
Another problem , of a rather different nature and
perhaps more significant, is that if we attempted to
quantise this theory we would have both gravitational
and Yang-Mills anomalies [22]. Whereas in the original
string theories these have been shown to vanish. So the
higher order terms must be significant as they must
contain elements which will yield a cancelation of the
anomalies present in the Chapline-Manton theory.

So it appears we must consider some of the alterations

to the lagrangian due to higher order string effects.

The 'full' point particle field theory lagrangian which
would simulate string theories would contain an infinite
number of fields and terms; however in certain
circumstances perhaps we need only consider some of
them. If the typical momentum of a field is k then all
the terms will have a certain power of k associated with
them. For dimensional reasons we wWill have a factor of
Mg with each k where Mg is the mass scale of the string
( inverse string tension ) so we can regard infinite
lagrangian as a infinite sum of terms whose ‘'size' is
powers of (k/Mg). IF this parameter is small ( < 1)
then we can regard this as a perturbation expansion and
for some purposes just consider the first few terms,
This is what we are doing ,we are taking the lowest
order terms which correspond to the zero mode terms and
adding some of the terms in higher powers of (k/Mg). The

terms in higher powers of (k/Ms) come from the
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correspondingly higher modes of the string theory. (
These are sometimes refered to as higher derivative
terms.) It is an unresolved problem as to whether it is
valid to assume this parameter is small. However we
shall assume that it sensible to do SO, Some
Justification being that Mg is wusually expected to be
the planck scale and in standard Kaluza-Kletn theories
when we have compactifying solutions in is usual to find
the typical momentum to be less ( 0.01-0.1 of ) than the
~planck scale.

We should include the higher order terms which make the
lagrangian anomaly free.,( Since the string theory 1is
anomaly free then in a perturbation expansion there must
be a cancellation of anomalies ). It was found that be

redefining H to be

H= dB -y Lior (2.11)
where Sl pis the Lorentz Chern-Simons term
‘2 L
Q- tr( RA W -Swhw'\w) (2.12)

( where the trace is a S0(10) trace )

then we find we have cancelation of anomalies 1in the
lagrangian [AA]l. The next order in an expansion would
be expected to 1include curvature squared terms In [1?#]
it was proposed that the curvature squared term take the

form

_ieﬂtr( RA ¥R ) (2.13)

however such a term would lead to gravitational ghosts
and Zwiebach [%}] has proposed the following ghost free

alternative.
<h
+ L e¥Ragnheyn %EA® (2.14)
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This differs from (2.13) by terms involving the (Ricci
tensor )1and ( curvature scalar )(‘L ( and so for Calabi-
Yau spaces will not be different ). In 4-D this term is
just the Euler density and locally is a total derivative
thus not affecting the dynamics, However in 10-D this is
not the case. The addition of (2.14) to the Chapline-
Manton lagrangian invalidates the No-go theorem.

We shall attempt to find solutions to the case where we
have made these two alterations to the bosonic Chapline-
Manton lagrangian. It should be wunderstood that this is
not all the alterations neccesary to form a consistent
truncation of the perturbation expansion to second

order. We shall return to this issue in Chapter 8.

Before presenting the equations of motion we must decide
whether to use first or second order formalism ( ie do
we regard the Lorentz connection as an indepencent field
to be varied giving an equation or not ). In the
original Chapline-Manton theory , when the fermion
fields are =zero the role of torsion is clear- the
torsion cannot be an independent field and must be set
to zero, ( supersymmetry fixes it to be zero ). When we
consider higher order terms arising from string theory
however it is not so clear what the situation is -
higher order terms could conceivably manifest themselves
as degrees of freedom for the connection co“b. We should
be able to decide this from string arguments. Certainly
the string modifications do seem to imply a symmetry

between F and R, or A and W, ( we added the Lorentz
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Chern-Simons term to matci

o
ct

W~ 37 o~ < =
he Yang-¥ills Cherrn-Simons

S]

term and we zdded the Iwie

J

zcn term wnich is closely

r
t

related to tr{ RA*R )} which would match tr{ FA ¥ ) )
so it is possible that the similarities may extended to
{gﬁs being an independent field in analogy with A. Since
we are looking at z modified lagrangian we are including
the effects of the massive modes, primarily those in the
first massive level, so it 1is possible that these modes
could manifest themselves by giving degees of freedom
which appear as those for the Lorentz connection. Hence
we will take a look a2t the first massive level of states
to see if = 2 of S0{(9) 1is present. If no such
representation is present then it seems we should not
regard the connection 2s an independent field ( to this
order in the expansion }. This is a2 one-way argument if
a.g of S0(9) does exist in the first massless level then
we really can say nothing as to whether it could be a
connection without proper analysis.

If we look at the spectra of Type I strings we recall
from Chapter 1 that the open strings had massive

. 2 1
multiplets of mass =n

and the closed strings had
multiplets of mass zin ( this is in units of ( string
tension f' ). So we look at the first massive level of
the open string. This turns out to be fairly simple and
for the bosonic modes is a %E of S0(9) this is a two
index symmetric field. The second mass level is 36 ®

115 ( a two index antisymmetric tensor and a three index

symmetric tensor ).
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For the Heterotic string where we only have closed
strings we must look at the modes in the first massive
level of the string which arise from

R ® R} (2.15)
Where R:,Rf'are the n=1 modes from the appropriate open
string theory, These are representations of S0(9)x(

Yang-Mills Gauge group ). We find [15]

Ry = (44, DO 8, DS 128, 1)
R = (44, 1) + ( 9,496) + ( 1,69256) (2.16)

Where the 69256 depends on the gauge group

For EqxEq 69256 = (248,248) + 2(1,1) + (3875,1)

———

For S0(32) 69256 = 2'® + 35960 +527 + 1
We wish to look for representations of the form ( 9, l)
these can only come from {(44,1)& 84,1)aX128,1) kX 44,1)

carrying out the expansions gives ( dropping the 1 )

4D Us = 1 D36 DU D50 D Y95 DII0
84 44 = 84 (D231 D 924 & 2457

128D 448 - 16 128 B U32 B 576 © 1920 H 2560 (2.17)

So for both cases we do not find a 9 of S0(9) so we
shduld certainly take second order formalism and not
regard &> as an independent field

There is still the question of whether even if the
connection is not a free field the torsion is zero or
not. In the original Chapline -Manton theory the
torsion can only be non-zero if the fermion fields ( and
in particular certain fermion bilinears see [2Q] ) are

non-zero. However for the low energy limit of

superstrings this may not be the case.
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When approaching compactification ,via the (t—function
approach [25], some authors [26],[2F] have seen the need
to have the torsion temsor T, ( T = T% E®¢ ) set
equal to the three index tensor Hgage ( H = HQbCEG‘C) to
Within a factor of f?. This is closely related to what
.is done in Chapter 8 where we are mainly interested in
- further modifications to the 1lagrangian. In this work
however we shall mainly be interested in the effects of
allowing variable torsion,tkqfls not having H=T but
allowing more freedom. In actual fact the ansatzes we
consider still havelgbc proportional to Tege Dbut the
proportionality in non fixed. What is the source .of
this torsion ?. It could easily come from higher order
terms arising from the string theory although we have
shown ,at least to first order, that the torsion cannot
be propagating. Even at the Chapline-Manton lagrangian
level we <can have ,via non-zero fermion bilinears,
torsion in the system and when <considering the extra
fermion terms which are the supersymetric partners to
the Lorentz Chern-Simmons and Zwiebach [A8] terms then
we have extra possibilities. Of course to be completely
rigourous here we would have to produce the field and
. show they satisfied the ( complicated ) fermionic
equations. Even if the background fields are zero then
Quantum fluctuations of the fermion fields could produce
a torsion.This was discussed in [29] where the authors
also considered variable torsion. So we will take the

viewpoint that even if not a free field there is still

the possibility that the torsion may be non-zero and we
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shall attempt to solve the equations of motion with this
crucial difference. Whenever we have solutions we shall

investige where ,if at all, H=T.

We can now calculate the equations of motions First we

give the Einstein equation(s)

-,':R%Af*z“ Sx e B Ay -2(FH) A )
~{ iB(dpnatdp) —2(i%d ) A *du )
sde¥tr{ i E(Fa*F) -2(1FF) A¥F )
+ 4 Rag AR A 1THEMT S0 (2.18)
For the Yang-Mills we will have
D eV *F ) sFAM = 0 (2.19)

( The FA*H arises from the Yang-Mills Chern-Simons

terma)

]
Dy is the Yang-Mills covariant derivative,

Variation wrt B yields

a( e¥'# ) =0 (2.20)
Variation of the scalar field gives us

2d%dp - L HAM 42 e/ tr(FA*F)

A # AOCD

+-:-”e')R9°,\RQ =0 (2.21)

The field strengths F and H must satisfy Bianchi

identities arising from the(r definitions

dH = tr( RAR ) -tr( FAF ) (2.22)
"
gF‘:O = dF +AAF =FAA (2.23)

We shall be attempting to find solutions to these
classical equations of motion. We are trying to
determine the 'background solution' for the quantum
theory about which quantum fluctuations ( particles )

propagate. The very obvious solution to the equations
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of motion is 10-D Minkowski space-time with F,H and all
the fermion fields =zero ( A any constant ). However if
this were the solution we would observe a ten-
dimmensional world with gauge fields 3S0(32) or EgxEg
which is rather different from the observed 4-D world
with SU(3)xSU(2)xU(1) fields. We shall look for
solutions which are of the form
( 4-D space-time ) x ( 6-D internal space )

If we are not to 'see' the internal six dimensions they
must be highly compactified. This high curvature
endangers the expansion in terms of (k/Mg) however as
mentioned previously 'typical!' Kaluza-Klein theories
give k < Mg . Even when such solutions exist it is
unresolved why such a solution should be preferred to
M,p or even solutions with split wups into dimensions

other than 4 x 6 ( 3 x 7 , 5 x 5 etc ).

If the torsion on the internal manifold is zero then
there are arguments which suggest that the three form H
must be zero, the 6—space should be one of the now
celebrated Riceci-flat Calabi-Yau, and the Yang-Mills
should be set equal to the curvature ( regarding the
curvature as a S0(6) field ). These have been
extensively studied in the 1literature [|3#].  We shall
investigate the alternative possibility of finding
solutions where the torsion is non-zero ( and H
possibly non-zero also ), We shall consider 6-D spaces
which are Group manifolds or Coset spaces. These have

the advantage that a natural ansatz exists for the
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torsion with these spaces [30]. ( Not all coset spaces

however only 'non-symmetric' ones o

If we take the Einstein equations (2.18) and take the
product of Eg with it we obtain the equation

AG .
YRga A *E" —eT HA *H - 8du A *dp

D
Asc =0 (2.24)

V4 3 M
+3e tl"( F A *F ) +-ie RAB"RCD ;\*E
If M is a constant we can take this minus 6 x scalar
equation (2.21) to obtain

8
yr. a*e?® e A% = 0 | (2.25)

AL
Using ( defining ) RABA*Ens =R *¥1 , HA*H = g( H,H )*1
this becomes

R = -4g( HH) (2.26)
This 1is a fairly simple equation which will be very
useful later. If for the moment we specialise to space
time being 4-D Minkowski with H zero on space-time then
g( H,H ) will be positive and hence the internal
curvature must be negative ( unless both zero ). If our
compact internal manifolds have zero torsion thecr
curvature would be positivé.Hence our torsion must be
large enough to change the sign of the curvature.( This
is not a valid argument when space-time is for RxS3/HS3
or deSitter/AntideSitter space-time ). When the torsion
is equal to zero wWe must have H = 0 and the

curvature = 0,( This is one of the properties of the

Ricei-flat Calabi-Yau spaces ).

Having decided to investigate letting the torsion be

non-zero we must decide what it must be !. For Group
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manifolds and non-symmetric Coset Spaces there is a very
natural ansatz for the torsion [30]. An investigation of
these two types of space ( with a brief mention for
symmetric coset spaces ) will be the main aim of this
work. In Chapters 3-4 we analyse group spaces and in
Chapters 5-7 we look at’coset spaces. These spaces also
have their geometrical structures given more explicith

than for Calabi-Yau spaces.

We shall also mention a wuseful property of the Einstein
equations namely that , under certain conditions , the
scalar equation in contained within them.

If H and F have no E° component ie i°H =i%F =0 , R =0
for all A and da/ =0 then the O0-th Einstein equation
will be

1/2RABAi°*EAB ~1/4i°(H A *¥H) +1/21i°(tr(F A *F))

+1/URggaRey a1 *E 2P = 0 (2.27)
i%( 1/72Rag *EM® -1/4H A *H +1/2tr (F A *F)
+1/4R gy ARy A¥EASP 32 0 (2.28)
50 1/2R, A*ER® _1/8H A *H +1/2tr (F A *F)
+1/UR ARy n ¥E PO = 0 (2.29)

We also have equn (2.24) which always holds, ( This was
obtained by multiplying (2.18) with Eg ). (2.22) minus

eight times (2.27) yields

AsLh (2.30)

HA*H -tr(FAa *F) -1/2R%,.,Rw,.*E
This is Jjust the scalar equation (2.19) ( to within a
factor ) So with fairly modest assumptions ( da=0 ,
i°F=O , ioH:O and Rﬂozo ) we have that the scalar
equation is not an independent equation but is contained

in the Einstein equations.
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The condition on Rao will be satisfied by 4-D Minkowski
and Rx( three-sphere or three-hypersphere ) but not for
deSitter/Anti-deSitter.

This fact will prove quite wuseful in the following

chapters and we will refer to it again.
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Chapter 3 Group Manifolds

In this chapter we shall attempt to find solutions to
the equations of motion (2.18)-(2.21) of the extended
Chapline-Manton lagrangian ,which was discussed 1in
Chapter 2, which take the form

( 4-d space-time )x( 6-d group manifold )

Why are group manifolds interesting ?. - @As discussed
in chapter 2 we wish to be able to define a non-zero
torsion and for a group manifold G we have a natural
ansatz

T~ %, EPC (3.1)
where C&bn are the structure constants for G [30O].

How many 6~D Lie groups are there? We find only three
SU(2)xSU(2), SU(2)xU(1)> & uen®.
( SO(4) & sSu(2)xsu(2) )

The SU(2)xSU(2) case is particularly interesting since
by taking the three form field H to be the sum of the
volume elements for the two 3-dimensional manifolds we
have a natural ansatz which will give compactification
in an analogous manner to the Freund-Rubin mechanism
[3{] ( which was introduced for 11-D supergravity ).

SU(2) is isomorphic to the three sphere.

We shall take the case of SU(2)xSU(2) first. We shall
use indices U4-6 for the first SU(2) and T7-9 for the

second.

We shall take the following ansatz for the fields -

M= constant (3.2)
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For the three form H a natural ansatz for H is the sum
of the volume elements of the two SU(2)s ( SU(2) is

three dimensional )

S T +nE¥8T ) (3.3)
For the torsion we have
0 for a=0-3
T® = t, TWheE®® for a,b,c=t-6 (3.4)

ty MLESS for a,b,c=7-9

where 7Tﬁk;s the totally antisymmetric tensor in
a,b,c=4,5,6 with N¢g¢ =1 and similarly for f’*bc ( these
are the structure constants for SU(2) )

The internal curvatures are given by

re® =gr, &7 g*b
RP =4 678 8,279 (3.6)

a,b=4-6 (3.5)

( r, and r4 are strictly positive if the torsion is zero.
However if the torsion 1is non-zero they may be
negative,)

For the space-time curvature we work with two different

cases
» ab

(A) r*> =kRy€ E a,b=0-3 (3.7)
this corresponds to 4-D Minkowski (My), deSitter (dS)
or Anti-deSitter (AdS) according to the value of Rq ( =0
> 0, < 0 respectively ).
(B) RY® = 0 i=1-3 (3.8)
RS 2lRye¥ER 1,521-3 (3.9)
this is a time-independent spacelike 3-sphere (S3) or
hypersphere (HS3) depending on the sign of Rqy ( > 0,
< 0 respectively ).

In case (B) we may also add to H the extra term

¥y 2 (3.10)
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( This is the volume element of a three
sphere/hypersphere,)

The vielbiens obey the following for the internal
dimensions

a

—1
dE = -%:R‘ T\AbLELQ'

a,b,c :u,5’6 (3-11)
dE = LRy M EBC
- i 2 bQE a’b,C :7y819 (3-12)
Ry and Ry are the length scales of the SU(2)s and are
strictly positive,
The Yang-Mills field strength F is a SU(2)xSU(2) field.
If we label the first SU(2) by 4,5,6 and the second by
7,8,9 then our ansatz for F is given by

a -
FY o= Lers, b EXS a,b,c=4,5,6 (3.13)

be

Py a
-})-_e fy {7 be E

the e and %, are as defined previously. There

Fk:

a,b,c=7,8,9 (3.14)
exists a well defined Yang-Mills potential corresponding
to this F ( Aﬁ:kE“) and so the Bianchi identity (2.23)
will be satisfied automatically. Since F is
topologically trivial f, and f, are free parameters. ie
they are not subject to a quantisation condition.

We have insertéd appropriate powers of e” in our ansatz

e

so that when we look at the resulting equations e" has

vanished. ie we have scaled e"out of the problem. We

shall, do this in chapters 5 & 7 also.

This means any single solution will be in fact a one-

parameter family ( and choosing the value of/u: will fix

the scale).

With this ansatz the equations of motion reduce to a
system of non-linear algebraic equations., For simplicity

we shall present here the case where the two SU(2)s and

the fields on them are identical ie
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ty =ty=t
r,=ry=r
R, =Ry =R
& f,=f,=f (3.15)

We shall take case (A) first For this case we find the

ten Einstein equations reduce to two separate equations

0 (3.16)

(fRyr 2r  } -0 -6XE" 4l Ryor + r* ]
{ Ry+ 4r ) —ox gt +Ry.r +ke™ GlRE}z 0 (3.17)
where X is a normalisation factor arising from the
generators of SU(2)xSU(2) obeying tr(0,0; )= —3(1Sd5
We also have the scalar equation
20 +6XF -{ QRy.r +r™ +5iR$ } =0 (3.18)
We also have ( contained in these three, see page 40
(2.26) )
g( HyH ) = =2 ( Ry +2r ) (3.19)
or h* =Ry +2r) (3.20)
We can use the scalar equation to define fl
6xX £ = 2Ryr  +r* +-l-'5_R: }-2n* (3.21)
Eliminating f > from (3.16) and wusing (3.20) to
eliminate hl we find the following equation
~ L Ry { Te2r +-<',-R4} =0 (3.22)
so we have two possibilities
(1) Ry =0 (2) Ry =-6-12r
In case (1) we find

h* =-2r (3.23)

Sl 3
6Xf r( r+4 ) (3.24)

The requirement that £ 30 and h~ 3 0 is only satisfied

L

for r S

In case (2) we find
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Ry=-6C 1 +2r ) (3.25)

h™ = 10r +6 (3.26)

6™

~9r™ ~20r -9 (3.27)
The function on the rhs of (3.27) is negative for all
values of r so we do not find any consistent solutions
in this case. So qnly Minkowski solutions exist

We shall now 1look at case (B) ie space-time being

Rx(SS/Hss). Here we find three Einstein equations which

are
K8

{ Ry +2r } -dhg -h*-6X +{ 2Ryer +r™} = 0  (3.28)
kN

(4Ry +2r } +Jnd -n*-6 X  +{%Rg.r +rT} =0 (3.29)

Ry +fr ) -dnd -2X'2™ 4(&Ryr +dr™ =0 (3.30)

With a little algebraic manipulation we obtain for the

hs

2 _ 2

he = Z{ 2r.Ry +Ry } (3.31)

T 2

h*:%{ r.Ry+r } -4Xf (3.32)
and for fq'

BREL = { r( 2Ry +r ) +2( 2r+ Ry) ) (3.33)
substituting back into (3.32) we obtain

h> - -1r _%h -%r.R; (3.34)

(8
We will only have valid solutions whenever hg ,h* & £
are all positive. Requiring hem > 0 gives wus a

restiction on the values of r and Raq

- L .
RB >0 and r >, z (3.35)
or Ry O and rg - é‘ (3.36)
Requiring h™> > 0 gives us the restriction
Ry =3r/( r+2 ) (3.37)
finally requiring fa >, 0 gives
Ry & - ( r o elr )/Cret) (3.38)
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There is a non-zero region where all three conditions
are satisfied. This is 1illustrated on diagram (3.1).
The region where valid solutions exist is bounded by two
curves. Along the upper curve faEO and along the lower
leo. Note that solutions only exist for both r and Ry
negative, R4 being neggtive means that space-time is a
hypersphere (HS3) rather than a sphere. For r it means
that the torsion must be 1large enough to make r
negative. We have the relation between the torsion t,the
length scale R and r being .

r= e t3scer™) 6t ) (3.39)
As wWe are using second order formalism t is an

arbitrary parameter and we can choose t to satisfy this

relation,( As r 1is negative we are always guaranteed

2
£ 0).

We should note that the Yang-Mills equation is not
satisfied trivially but reduces to a constraint. Note
that if A™ =kE then

£= k(gk+ KD (3.40)

Both D*F~and FA *i are non-zero and proportional to

*EQ' .We find the resulting constraint is

R +k = h (3.41)
or R =h -k , (3.42)
There 1is no immediate reason why the RHS of (3.42)
should be positive ( which it must be ) however since
only ha'and £f2 are fixed in terms of r ( and Ry ) we

can choose the sign of h and f to ensure Ra is positive.

We can show that (3.24) in terms of k ( with some

manipulation and (3.41) ) becomes

k = h*/h* -f so i: /0 -f (3.43)
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by choosing the negative root ( and the -ve root for f
) We can ensure R is positive 4

Another possible ansatz for the Yang-Mills field is a
U3 xU(n> field

F*=r e3¢ r® o % F¢ onE
Fr =f153°' JF® =5, Y ,FY = E7? (3.44)

( The coefficients are the same on each SU(2) to ensure
that the energy momentum tensor is a product of a unit
matrix,)

We find solutions in a very similar manner over the
same range of parameters as for F being a SU(2)xSU(2)
field.

If we take Raq = 0 then the RxHSa'case reduces ( as one
would hope ! ) to the minkowski case. If we take r =-=4
then we find we reduce to the case of Dolan et al who

[32] studied the case where the Yang-Mills fields were

set to zero.

We shall now 1look at the case where the internal
manifold is U(1)4

This is just a six-torus, We can have a coordinate
system with coordinates EBL i=1..6, with vielbiens

":—47 dB;, since dE Y 0 we , find the ( torsion-free )

curv;;ure to be zero. We note immediately that solutions
to the equations of motion with T = F = H= R = 0 must
exist. We shall attempt to find other solutions where
some of the fields are non-zero !. ( we shall only give

for simplicity the case where all the R are identical.)

The natural torsion defined in (3.1) is zero here and
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there is no obvious alternative so we shall have T = 0
and hence Rab= 0 ( for the internal dimensions ) What

should the F field be ? If we take

A = _a (pde, -ade,) (3.45)
LR}
then we find
.
F =akE ' | (3.46)

This is non-zero and obeys D¥F=d*F=0, generalising we
can take for our F field a U(1) ansatz ie

Flare®® | p2oee®t | P2 oipp 7B (3.47)
‘What do we take for H ? QAlmost anything will obey
dH=d*¥H=0 but we must also have FA ¥H=0 if the Yang-Mills
equation is to be obeyed. An ansatz which satisfies this
is

H (3.48)

1
=
-.’-\
]
+
]
N~

( Notice that with this F and H the 1U(1) cannot be
regarded as U(19$xU(173 with no mixed fields.)

With this ansatz we find the equations of motion follow
in a very similar manner to those for SU(2)xSU(2) and we
can obtain them from the SU(2)xSU(2) case by setting the
internal curvature r equal to zero. Letting'r = 0 for

the case where space-time is AdS or dS we find ( from

equations (3.23) and (3.24) )
ht= £ =0 , (3.48)
So we find no non-trivial solutions. If we take space-

time to be Rx(S3/HSZ) we find the equations are ( from

(3.31),(3.32) and (3.34) )

he = 2R3 (3.49)
hl =..%R3 (3-50)
b X = 2Ry | o (3.51)
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The positivity conditions on the three objects cannot
simultaneously be satisfied so we will obtain no valid
solutions,

6

So the case for U(1) is simple,We find no solutions

other than the case where F = H = Oa

We lastly consider the case of the internal dimensions
being SU(2)xU(1)3 yWe shall deal first with the case
where space-time is AdS or dS. We shall use indices 0=3
for space-time,4-6 for the SU(2) and 7-9 for the U(1)3.
We shall take the F field to be a SU(2) field living on
the SU(2) manifold ( as in (3.13) ) and on the U(1)‘5
manifold we take the F field as a U(1) field

F = f¢( E¢$+Ea1+Eﬁ;) (3.52)
For the H field we will take the volume elements of the
SU(2) and the U(1)3 ie

Hoz b "™ e o (3.53)
We consider case (A) first. Ry and r shall be the 4-d

and internal curvatures respectively.( As in (3.5) and

(3.7) ) With this choice of ansatz we find the three

Einstein equations become

KN

LRy er )+ Ryer ) -17'*{ h," +hg }

~x{ f‘:'-;-f: }b =0 (3.54)
{ Ry +r.:!; } o+ 1_';{ 2%{‘,-1‘ } -—:-’.{-h':. +h:}

- X{-4E+Ep } = 0 (3.55)
H O Rysr )+ MR ) - 3t h* -hy )

L,
-1 £y =4fq} = 0 (3.56)

When we look at the Yang-Mills -equation we find for the

SU(2) part neither D*F nor FA®* is zero and we obtain a



similar constraint to that for the SU(2)xSU(2) case, For
the U(1) field we find D¥F=d*F=0 but F A *H # 0,7This
means either hy or f, must be zero. We take the case of
hy=0 first. We find on using the equations to find hf

a R
,f‘ and f, in terms of R» and r that

2
-{h. = -{ 5Rq. +2r } —3{(9.1" _ (3.57)
LS e
?L,Lfl,,_ = l"_{ 3{{4 } —%Rq.r (3.58)
X f, = "'i{ 2TR +16r  } + 1‘%Rl*.r' (3.59)
The scalar equation places one constraint on R‘4and r.
We find
Rq( 14r ) =0 (3.60)
so either RW =0 orr = -1, In either of these two

cases it is 1impossible to find any values or Ry and r

1
such that all of h;', fﬁ‘ and f, are simultaneously

non-negative so we find no solutions. We now can

consider f, = 0 and hp§ O We find our three Einstein

equations can be solved giving

hy = -2£R, - Lry.r (3.61)
he = { -3Ry o} - 2Ryt (3.62)
Ke = [ 3Ry +2r )+ 2Ry.r (3.63)
The scalar equation again reduces to
Ry( 1+r ) = 0 (3.64)
So again Ry, =0 orr = -1, If we substitute either

possibility into (3.61)-(3.63) then we find we do not
simul taneously have all of hf‘ ,h;' and ff‘ positive at
any point.

We consider our last possibility - space-time being

Rx(s3/HS3). We find four Einstein equations, ( We can

forget the scalar see P41-42 ), These are

' | X 2
A Ra+r } +4{ 2Ry.r} =={ £7 +f% ]
3t B3 4 3 2
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i N
;i-{ R3 +r } +{‘|’{ 1R3.Y‘ } - -’i{ —Js-fll+f,_ }
-4l g™ -h* +h3} = 0 (3.67)
LRy + bt 2Rgr ) - L0 - LY |
- 41 he +h® -h3} =0  (3.68)

Again we find the Yang-mills equation for the U(1) field
on the U(1) manifold reduces to hy .fq = 0 so either
fa=0 or h&: 0.S0 again we have two possibilities.
However we find if we take either case then we can

deduce that hy, = f = 0 so we have only one case. We

can solve for everything in terms of Ra and r. We find

2 ! 2
tho = L{ 4R, boegl 3Raer ) (3.69)
2hy = 0 (3.70)
I S N - -x
gh™ = Li-%Ry-r )« Lo ZR3.r ) (3.71)
46% = Ll 2Rye2r ) +4{ 2Ryr ) (3.73)

We must ask whether we can all five (coefficients)

non-negative. On Diagram 3.2 We show the region where
all the positivity constraints are satisfied As can be
seen solutions only exist for both Raand r being
negative . As for the SU(2)xSU(2) case this means space-
time must be a hypersphere (HSB) and on the internal
space the torsion ( on the SU(2) ) must be large enough
to change the sign of the curvature. For our solutions
both H and F are zero on the U(1)3 so there creno fields
being non-zero on the tori. As a difference between the

SU(2)xSuU(2) and SU(2)xU(1)3 notice that Minkowski space-
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time is not a limiting case for SU(2)xU(1)3 whereas it

was for SU(2)xSU(2),

So in summary we find solutions to the equations of
motion in several instances
for SU(2)xSU(2) both Minkowki and RXHS3
for U(1)° xSU(2)  RxHS>
for U(1)c we find only the rather trivial case
F=H=R=0

We shall examine the consequences of these solutions in

the following Chapter |

We should mention that our solutions in many cases can
be expanded to form a larger «class as follows - Suppose
we have a F field which is a solution with gauge group
G. This means for the ( large )} gauge group 1in the
theory certain of the component fields are non-zero . If
the gauge group of the theory is large enough to contain
GxG then it 1is possible to have a field FxF as a
solution . We must change the cocefficient by Jé: but
once this is done the algebraic equations will be almost
identical,( Note we are only free to do this since the
coefficient of F was a free parzmeter ). So if F 1is a
solution we can have fields FxFxF.. with as many Fs
nonzero as we can fit into the gauge group of the
theory. This has a major effect on the possible
resultant 4-D gauge  groups predicted after

compactification. This will be dealt with in the next

chapter.
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We now turn our attention to the possibility, as
discussed in Chapter 2 of having T=H for our solutions.
The precise statement of T=H is
= J3 Habe (3.74)
( see Chapter 2 p37, Chapter 8 and [331,)
For our SU(2)xSU(2) ansatz this reduces to
h™ - At™ (3.75)
£ is defined by (3.39) ie
6t =2a-r (3.76)
R is specified by the Yang-Mills equation (3.42). For
our ansatz with RxHS3 4.D space-time we find (3.76)

becomes

:%(_%r_%ﬂs-%r.ﬂ5)“ 'H'le (W +v)+ br+2Rq (3.77)

Applying the constraint and substituting for hq‘ in

terms of r and Ra we obtain an equation

aRq +bJ cRq +d +e =0 (3.78)

where
a = %—% +-—ér‘+2)
I
b =% G.ao31%)
Cc = (':LX" +2)
3
d = ”-rz +U4r
3
e = =r +2r (3.79)
1od

When we solve (3.78) for R3(r) we find a curve which
lies within the allowed region on Diagram 3.1 and very
close to the boundary given by htEO ( so close as to be
indistinguishoble at the scale of the Diagram). This is
not surprising since (3.75) is only going to be
b is small. We have one more

satisfied when h

possibility. When f =0 we find 1in actual fact that the
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Yang-Mills equation does not yield any constraint so R

i1s not fixed by the Yang-Mills equation. Instead we can

fix it via

3 2 e n ™

:L—.‘—l,,_ = 6t +r = 61+Sh +I

( Although r is -ve the total RHS is +ve so %i is well
defined,)

So along the boundary given by F=0 we can satisfy H=T.
Since we have H=0 on 4-D space-time we must ask is H=T
for the 4-D space-time components. In our original
ansatz we took the torsion as zero on space-time. There
are two possible viewpoints. One would be to say we
only need H=T on the internal space and the other would
be to introduce torsion on 4-D space time, Since we
have F=0 on 4-D space-time this poses no difficultwis for
our ansatz ( we are in the same situation as for the
F=0 boundary ) but may give observational difficulties.
So in conclusion ,for the 3U(2)x3U(2) case ,we can have
two distinct one parameter families where T=H. For

SU(2)xU(1)3 we find a similar pattern.
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D_ia.gnam_i.l_hma_oi_m—ul_anmr_ﬂhish_mﬂnm
exist for manifolds of the form
(_BxS3/HS®)x(_SU(2)xSU(2)_)

a2 5.0
Ry ==(4r+r®)/(2r+2)

2.5

Along this edge h = 0

Solutions exist for values of Along this edge

R& and r in the shaded area F=0
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Diagram 3.2 Area of Rs-r plane for which solutions
" (_RxS3/HS®)x(_SU(2)xU(1)>_)

Ry ==2r/(r+2)

I 1 | . | 0 0

-8 -5 -4 -2 0| 2

Vs
-5.0
-7.5 |
; -18.8 |
) i
\
v ;
/¥

\\ -12.5 |
%_ !
Ry ==3r/(r+4) 1 /] i

Vi

Along this edge h =0

Solutions exist for values of Along this edge

R3 and r in the shaded area F =20

- 58 -

r



Chapter 4 Physics from Group Manifolds
We shall now investigate the consequences of taking our
sclutions from Chapter 3 seriously. We shall
investigate several consequences namely

1. Efffective 4-D Yang-Mills fields

2. U4-D Fermions

3. Cosmological aspects

1. Effective 4-D Yang-Mills fields

If we have an extended Chapline-Manton Lagrangian with
Yang-Mills group G - EgxEg, S0(32) or S0(32)/Zy then at
high energies this will be the observed gauge group
( and space~time would appear ten dimensional ). However
if we have a compactifying solution of the form (4-D
space-time )x( some six dimensional compact manifold)
then at energies much less than the compactification
scale space-time will appear four dimensional and the
gauge group will be different from G. For the gauge
bosons in G some of them will become massive ,with
masses ﬁhe order of the compactification scale, -and so
we will not observe them directly at energies much less

than the compactification scale ( which if we assume is

roughly the planck scale) sun ce

100GeV / compactification scale ~- 16"
The present experimental energies available asre roughly
100GeV. So if we have gauge group G at high energies
then of these bosons we will only see a smaller group GI

at low energy ( G’C;G ). If the compactifying solution

has Yang-Mills fields F set equal to zero then G will be
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unbroken and we will have G/: G . If the Yang-Mills

field is non-zero ,F, say , then when we expand FA ¥F
about Fy then some of the fields will aquire a mass from
this term. Only those fields whose generators have zero
commutator with those in Fp, will be massless ( on the
compactification scale ), These will form the resultant
gauge group. This 1is the Musual case"™ when bosons
aquire a mass from F A *F. Notice that a U(1) solution
for Fo Will not break the symmetry group G. However for
the extended Chapline-Manton lagrangian the presence of
the Yang-Mills Chern-Simons term gives a mass to these
U(1) fields also [QJ4]. We find in total that if the
compactifying solution has Fo a H group and if G’xH

( € G) is maximal in the sense that we can't expand G’

at all then the resulting low energy symmetry group will

4
be G .
We can also have 4-D Yang-Mills fields arising from the
. AB .
Einstein part of the lagrangian Rns N *E . If we split

up our 10-D metric g“ﬁ as follows
, . —

VR,V r, b
gt A AL ALK,

AB

g - (4.1)

ab

1 —

A k%
Where Kq‘.are the Killing vectors for the internal
manifold. ol is a label for the isometries of the
internal manifold ( which form a Lie group ). For the
internal manifold we then find the 10-D Einstein-Hilbert
action Rgga *EP®  splits up into the 4-D Einstein-
Hilbert action + the Yang-Mills lagrangian for the F

field. The index o is the group index of these Yang-
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Mills fields. 1If the internal manifold is a gauge group
G then we find these "Kaluza-Klein" fields are GxGq If
Wwe have a coset space G/H ( HZ1 ) then these fields are
a G fielé&>[301. If the internal manifold has no
isometries ( eg as is the case for Calabi-Yau spaces )
then there-is no massless Yang-Mills fields.

This is the usual case for Einstein gravity with
lagrangian density RABN*ERG , however for our theory we

Ageh to

also have present the Zwiebach form RDG tho"*E
consider ( and also the Lorentz Chern-Simons term
in H ) Although we speak of this as a curvature squared
term it is more than just the curvature scalar squared
in fact ( in index notation ) it is [2}]

;DQG cpA D epeb

4,2
R peep + BRoacal * Rogast (4.2)

( where Ry, =iR.,  E®)
The curvature scalar 1is just Rnsne SO as we c¢can see we
have terms other than the square of the curvature
scalar. It seems quite possible that these extra terms
may upon compactification yield mass terms for some ,or
all ,of the Kaluza-Klein bosonse So whether we would
expect to see any bosons from the metric 1is at present
unclear,( For the Calabi-Yau spaces the problem does not
exist sinte these spaces do not have any symmetries and
hence no Kaluza-Klein bosons ).

The total gauge symmetry is the product of the "Kaluza-

Kleun" group and the remnant of the original gauge

symmetry. . '
@3 Thds (s the casc w hen H s Vwaﬁu“qL)

otherwise  We obtain G x N(IH) where
N4’ IRE st 1dx NI(HD s moagunad
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What are the large symmetry groups broken to ?. The
groups which we start with are are S0(32) S0(32)/Zy
and EBXE3 .

We shall first deal with the case where the internal
manifold 1is Su(2)xsu(2). We have two Yang-Mills
ansatzes - SU(QJL and U(1)6.( We could also 'mix' and
have SU(2)xU(1)® ). We shall look first at the
possibilities of breaking Eg via SU(2)s. ( Recall we
could have multiple SU(2)s in our solution see p54 ), If
H;SU(Z) is a maximal subgroup of Eg then 1if this SU(2)
is non-zero the gauge group will break down to H'.If H"
xSU(2) 1is a maximal subgroup of Hl then we can let this
SU(2) be non-zero and be left with H” etc . So we have
a large number of possibilities for the resultant group.
Diagram 4.1 indicates the possible groups left over from
breaking Egq via maximal SU(2)s. ( This is not
exhaustive of the possible imbeddings of SU(Z;\within Eg
). The resultant from EgxEg will just be the direct
product of two of the possibilities. If one Eg 1is
unbroken then the fields from this Eg will only interact
with the other fields gravitationally and so will appear
as 'dark matter' . The existence of which 1is not
inconsistent with Cosmological evidence. It is
noticable that none of the interesting groups Eg, S0(10)
or SU(5) appear in Diagram 4.1.

If we try to break Eg xEg via U(1)‘ then we have
different possibilities depending on how many U(1)g goO
into each Eg. If all six are imbedded within one Eg then

we will be left with rEax( a rank 2 group ), fAs
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SU(3)x3U(2)xU(1) has rank 4 this is obviously not going
to give wus a physical gauge symmetry. Since the U(1)
fall into two sets of 3 it seems natural to keep these
U(1)s together within the same E¢ so the only other
possibility is imbedding U(1)3 within each Eg this
will 1lead to the preduct of two rank 5 groups one
possible 'physical! route would be
Eq @ U(1) x Ezbreaking the U(1) gives Eg
E3 D U(1) x Egbreaking this U(1) gives Eg¢
Eo, D U(1) x SO(10) breaking this U(1) gives S0(10)
So it is possible to obtain a 'physical' group , S0(10),
via this ansatz. Multiple imbeddings of U(‘l)6 are not
very interesting since they break the Eg too far.
For S0(32) there are even more possibilities than for
Eq. S0(32) has rank 16 so imbedding SU(2)xSU(2) would
leave us with a rank 14 group. We shall not try to
categorise the possibilities but mention a few
possibilities ~ as ( SU(2) «&S0(3) as algebras we might
expect to be able to break SO(32) down to S0(32-3n)xsome
U(1)s with ease,However SU(2) and SO(3) are not quite
the same groups and there are subtle. ties involved ).
SU(2)xSU(2) & SO(4) so we would expext to be able to
break SO(32) down to S0(32-4n), This is indeed possible,
However we obtain SO(12) and 30(8) (amongst others ) in
this way but not the desirable S0(10).
Imbedding U(1)6' within SO(32) will give wus a rank 10
group which is too big. A double imbedding will yield a
rank 4 group which can be SU(5) via the following
pathway.-

S0(32) D S0(22)x50(10)
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Since S0(22) 1is rank f1 we can break this via eleven
U(1)s leaving S0(10).

Now S0(10) >  U(1)xSU(5) so imbedding one U(1)
within the U(1) will leave SU(5) as the low energy gauge
group. This is a fairly attractive scheme since this is

4
the most U(1) s we can imbed within S0(32).

For our manifold being SU(2)xU(1)3 we had a gauge group
of SU(2) ( Recall that we started with a ansatz of
SU(2)xU(1) but found the U(1) part to be zero,) So we
can obtain the same groups as for SU(2)xSU(2),

It is difficult to take this manifold seriouslthoweveg

when no Minkowski space-time solution exists.

for the case where the internal manifold is U(1)‘ we
have no solutions to consider other +than the ¢trivial

case F = 0 which would not lead to any symmetry

breaking.

2. 4-D fermions

Although the background field for the fermions are zero
we will still have different looking fermions in 4-D at
low energy from those which appear in the 10-D
lagrangian. The original fermions lay in the adjoint of

the original Yang-Mills gauge group G when this symmetry

is broken to G ‘then this representation will split up

/
into various representations of G . Eg if we have Eg xE ¢
to start with then we will have a (248,248) as our
fermion represention. Then if, for example, the symmetry

was broken to Est$via a SU(2) being non-zero ie
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EgXxEg O EgxEy xSU(2)
then we find the (248,248) splits into the following

——

representations

(248,248) —>(248,1,3) @ (248,133,1) @ (248,56,2)
The most popular physical groups are SU(5),S0(10) and
E¢. The representations which we would like to obtain
are, respectively, the 10 + E, the 16 and the 27. As we
have three ( or four ) families of chiral fermions we
would like to obtain three ( or four ) of these with no
matching chiral partners.

We now 1look into the possibility of obtaining chiral
fermions in four dimensions. If we were setting F = R 3
la Calabi-Yau then since the Euler characteristic for
our 6-D manifolds 1is zero we would obtain no chiral
fermions. Since our F field is different from R we must
look further at the Index theorem.

Suppose we have a solution with Yang-Mills field F set
= F, Fg, has gauge group Go which has centraliser Hy
within the overall gauge group.  An original fermion
representation A will split into (B,C) plus possibly
(B,C) plus others of GxHo(, B is the opposite chirality
to B ). The imbalance upon compactification of massless
Cs of Hgover Cs in 4-D will be given by the imbalance of
.Es of Gjover Bs in the background field Fg. This number

is given by the index theorem for a six dimensional

manifold which is [35]

3 !
n_ -n_= :é j} 303-3czc, +cy ) - {3 Sp‘c, (4.3)
Where the ¢ are the i-th Chern classes for the manifold
_ L
cy = :ﬁIr( F )
= 2 - L Tr( F )NTr( F )
Cq -iﬁgr( FAF ) =
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/\Jr(f—)

cg =" LTr( FAFAF )at Tr( FAF /—GTr‘(F)ATr(F) Tr(F)
’W% 16113 L,?n'& A

(4.4)
and p; is the first Pontrjagin class
p, = ;';r;rr(rzml
On substititing the cs into the first integral in (4.3)
it reduces to
-_é. Tr( FAFAF )
2vn’™
This 1is ,for the SU(2), more useful. For our SU(2)
fields we have
Tr( FAFAF ) =0
( Since tr( ) will not give any terms mixing the SU(2)s
this will yield six forms on the SU(2)s which will
reduce to zero,) So the first term will be =zero. The
first Chern class ¢, is zero for non-U(1) fields so we
will find n, -n_=0 so for our SU(2) fields we cannot
obtain Chiral fermions.
For our U(1) fields we have that c4 and ca are zero
however we must also look at c,c,c, and p,¢,. c,c,cy 1is
tr FAtr FAatr F ‘ (4.5)
tr F is not zero for our U(1) fields however (4.5) must
be ( a sum of ) a (four form in one SU(2)) A (a two form
in the other). Since a four form must be zero c, ¢ ¢
must be zero,The class p, must also ' be zero ( since
SU(2)xSU(2) & SﬁxS3 ). So for our U(1) ansatz we also
obtain that n, -n_=0 and so no chiral fermions. ( The

above analsis will follow through for any 6-D manifold

which is of the form (3-D)x(3-D) with no mixed Yang-

Mills fields. )
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So wWe do not obtain any chiral fermions for our
solutions. This is a major difficulty if we wish to
regard our solutions as physical. It is possible that
some mechanism , operating at energies intermediate
between the compactification scale and 100 GeV may give
a mass to one chirality of fermion but we have no

concrete suggestions to make for such a mechanism.

3. Cosmological Aspects
Observationally we 1live in a four dimensional universe
whose three spatial dimensions seem to be ( at large
enough scale ) homogeneous ,isotropic and expanding.
This can be described by the Robertson-Walker solutions
where the Universe 1is of the form RxSs/HS3 with a time
dependent scale for the S3/HSB. At the present moment
the curvature of the universe 1is very small compared to
the planck scale (~—H§9‘).If Wwe are really in a 10-D
world with six dimensions curled up then the curvature
of the internal six dimensions must be reasonably large
( }.10-# of planck scale ) otherwise they would be
observed directly The 1large difference 1in the
curvatures is something which hopefully a sucessful
theory would explain. Experimentally it seems that the
universe initially started with an initial state which
was highly curved in 4-D also ( big bang model )[36]
We have been trying to find solutions of the form

( 4-D space~time )x( 6-D internal space )
One of the possibilities we.have considered is space

-time being flat ie Minkowski M}~obviously this does not
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fit 1in with the initial state of the Big-Bang model
however My seems to be the t-»o0 1limit of the universe
so M‘+x compact space should be a limiting solution of a
fundamental theory. Of the two cases SU(2)xSU(2) and
SU(2)ﬂJ(1P My is only a solution for SU(2)xSU(2). It is
very interesting to note that for this case the solution
space extends from the case of Myx( curved 6-D) to the
case (curved U4-D)x(curved 6-D) since a slow variation
Wwith time ©between these two éases is compatible with

the big-bang model.

We do not discuss the possibility of resultant 4-D
supersymmetry, although this is an important question ,
because the lagrangian we are wusing is an extended
Chapline-Manton lagrangian and hence the Chapline-Manton
supersymmetry transformations will no longer be valid.
At present we do not know which changes ,to the
transformations, are neccessary to restore
supersymmetry. It may be true that we must add more

terms before we can reach a supersymmetric lagrangian.

In conclusion with have great difficulty in matching our
solutions for the internal space being a group mamifold

to the physical world and none can be described as

remotely realistic. In particular the non-chiral nature

of the fermions is a huge stumbling block. The existance

3

of a family of solutions linking (RxS /HSz)x(compact

6-D) to M»x( compact 6-D ) is interesting,
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Chapter 5 Non-Symmetric Coset Spaces

We shall attempt to solve the equations of motion for
the case of the internal manifold being a Non-Symmetric
Coset Space ( N.S.C.S ).

First we present a summary of our definitions and
notation,

If we have a Lie-group S which has a Lie-subgroup R
then we <can give the left cosets of R a differential
structure in the standard manner [3Q] a summary of which
we shall present here. Let g=1..dims, a=1..dimR,
a=1..dimS-dimR . If Q§ are a suitable choice of the
generators for S then they will split into two sets Qg
which are the generators for R and the remaining Q4. We
have -( since S is a Lie group )

,\[ Qg,Qe] =f>\Cag€Q'& (5.1)
The?\C“gg are the structure constants for S. ( We have
introduced )\ so we can normalise the Cagzs and then
will give the scale ).

We <can set up a co-ordinate system y ( at 1least

locally ) on S/R. Each independent value of y will label
distinct left cosets of R within S. For each value of y
Wwe can choose an element L(Z) of S from the appropriate
coset. Since S/R is a differentiable manifold L(y) is &
differentiable function wrt the coordinafe system y.
Hence we can define the S-lie algebra valued one-form

E(y) = - L (ydL(y) (5.2)
This can be expanded in terms of the generators of S

E(Z) = EQ(X)QG = Ez(g)Qa +E°‘(X)Qq (5.3)
where E®(y) and E®(y) are one forms on S/R

Since d¥=0 we will have
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dE(y) = E(YIAE(Y) (5.4)

Using (5.1) this will lead us to
o)

a a e
dE° = -?&c 2 oE (5.5)
A metric on S/R can be constructed from the E by using
them as orthonormal one-forms. Considering the metric

as a rank two symmetric co-variant tensor we define it
to be
A
& = Map B OF

Thus we now have our Coset space with its metric. We
~n

now look at the structure constants C‘gz.

e (5.6)

Since R is a Lie-subgroup we will have

c*gz =0 (5.7)
We always have

N la)

nge :-Caeg (5.8)
However we can further choose our generators such that

A
the c“gg are cyclic ie

Cage= Cpog = Caaf ( Cafe =M53C 8¢ ) (5:9)
We can also choose to normalise the C ,s so that

~ AAI\ "3
a bcd a
cpa € "= B (5.10)
It is also- possible that some or all of the following

will be obeyed

cd d
c*pz ™7 = n, 8% (5.11)
d d
C®pe ci‘ = ny §°7 (5.12)
s pad ¥
Aokl n, 88 (5.14)
If these are obeyed then we will have (from (5.10) )
dimR.n4 =( dim S/R ).n, (5.15)
2n, + ny =1 (5.16)
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If we find that all the C%*pe¢ are zero then we define
this to be a 'Symmetric Coset Space' if there exists a
nonzero Cqbcthen we define this to be a 'Non-Symmetric
Coset Space' (N.S.C.S) As previously discussed on P37 we
are interested in cases where we can define a non-zero
torsion. For the non-symmetric case we have a natural
ansatz for the torsion- (see ref [3Q] )

be (5.18)

a % q
ebeing a free parameter ( For symmetric coset spaces
this ansatz is zeroa)

With this choice for the torsion we find the connection

Loqbto be
be <
wqb :A?—q“("%)cqth + ()\CqbaEbg (5.19)
and the curvature two forms to be
e * o < A=
R p = ?‘ic bz CSole EGLL
a, Q ¢
+ Q?_l;: C%e Clole E&
L\ a <
+ Qbﬁ» C de C be E (5.20)

We find the Ricci one-forms are ( this 1involves
knowledge of the structure constants )

RS - X 1 23 -%"“)E“

'

So our coset spaces are Einstein spaces.
We note the two special cases e:1,0 which are refered
to in the mathematical 1literature as [38] canonical
connections of the first,second type
For Q:O we find Re’b ='§C“b€ CE&(&E""L (5.21)
For Q_—.1 we have the torsion free case.
For Q =0 R‘b will have holonomy group R ( for coset
space S/R ).
For Q* 0 the holonomy group is S0(6).
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For non-symmetric coset spaces we can with a suitable
choice of (= 1#/5 ) obtain a Ricci-flat space)this
was noted by Lust [2¢] who also noted that with H = F =
0 he had a solution to the equations of motion for the
unextended Chapline-Manton lagrangian .However with this
choice of (@ the Zwiebach form RQGARQ,\*E“‘D is not
zero and we do not find solutions to the extended
lagrangian ( as we will see , ) Also in [L#] Lust noted
that for a specific value of Q» there was a cancelation
of the conformal anomaly.

We are interested in finding solutions to the equations
of motion of the extended 10-D supergravity lagrangian
which are of the form

( 4-D space-time )x( 6-D non-symmetric coset space )
So we are interested in six dimensional N.S.C.Ss. There
are only three of these ,they are
SU(3)/7{ UC1)xUC1) } ,Sp(#)/{ SU(2)xU(C1) }, G2/3U(3)

The root diagrams of SU(3),Sp(4) & G2 are shown in
Appendix 1. As can be seen there exist two distinct
imbedings of SU(2)xU(1)- within Sp(4) only one of which
yields a N.S.C.S . Also in Appendix 1 we give the
structure constants and the explicit form of the
curvature two forms qu o

As in chapter 3 we shall take the scalar field to be a
constant and also as in chapter 3 pi45 we can rescale our
fields so that the scalar field does not appear in the

resultant equations of motion,Hereafter we will assume

this has been done.
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What shall we take as our ansatz for the three form
field H?. The following is a natural possibility
H= b c*®® Eope (5.22)
This choice of H has several important properties
1. d*H=0 automatically so if the scalar field is a
constant the equation of motion (2.20) will be
automatically satisfied
2. the energy momentum tensor 1is the product of
block diagonal matrices ie
1B A% )-218C B A*H = 36ngn® *EE £ 20-3
o *f g -u_9 (5.23)
3. In most cases (see later ) dH is proportional to
both tr( FAF ) and tr( RAR ) hence leaving the Bianchi
‘identity as a single constraint
Another possibility for the H field would be
BT %, Yo, feote (5.24)
This also satisfies ( at least ) properties 1. and 2.
However explicit calculation of this term for the
particular coset spaces analysed revealed it to be zero

For the case where space-time is Rx837HS31ae add to H

the extra term ( where 83 denotes a three sphere and HS3
denotes a three hypersphere.)
3
hoE (5.25)

( This is the volume element of SB/HS‘L )
We have several possibilities open to us as to what the
Yang-Mills field could be, The first is to simply take F

to be zero ie

F1 F =20 (5.26)
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secondly we could have A ( the Yang-Mills potential )
imbedded within the large gauge group as an R field

( for coset spaces S/R ) taking

-

A* = ? (5.27)
then we find
- 2 -
F2 Fo =-2‘£C°’b< he (5.28)

For <?=O this F is identical to having F a S0(6) field
equal to the curvature ( recall that for Q:O R“b had
holonomy R ).
as our third choice we can imbed A as a S-field

A% - ES A% S (5.29)
this leads to

F3 F® =0

be (5.30)

F& =- %“C“bcE
A possible fourth choice of F would be ( as in Calabi-
Yau ) to take F= R\ie imbed F as a SO(6) field. If we
do this however Tr F > =Tr Rl and so we must have dH=0.
For our ansatz this means H=0. It then follows that the
Yang-Mills equation will reduce to
DT*F = D" %R, - 0 : (5.31)
However D“';rR"‘,D X 0 unless e:o ( or W"=0 ! ). So F=R is
only any good if e =0. However for Q:O our ansatz F2 1is
exactly that !. So we shall not consider F=R further.
In all cases we shall assume F has no components in or
functional dependence on the 4-D space-time. Having F$0

on Space=-time would probably destroy 4-D Lorentz

invariance.

- 75 -



Do these F fields satisfy the Yang-Mills -equation of
Motion (2.19) ?. F1 obviously does. For F2 we find that
both D*F; and F‘A*H are zero so the equation is
satisfied leaving no constraint. For F3 we find that
both D*F * and FAA*H are proportional to *£% and we are
left with the single constraint

N +3h, = 0 (5.32)
This extra constraint makes the existence of solutions
unlikely for space-time being M, or AdS/dS,

We note that for the cases SU(3)/{ U(1)xU(C1) } and

G2/SU(3) all of (5.11) to (5.14) are satisfied

Vi- wi-

for SU(3)/{U(1)xU(1)} n, yNy=% yny=1 & ng=0

v LI-

for  G2/SU(3) n, =

,n.z: ,nsz."; & n.,:.'-:’_*
However for SP(4)/{SU(2)xU(1)} we find (5.11) and (5.12)

are satisfied with n, =n, =& but (5.13) and (5.14) are

)
not. This has important consequences for our ansatz it

E
means Rﬂ%" Rca" isE Asch is not a constant multiple of

*EE for E =z4-9. Also we find tr( RAR ) 1is not
proportional to dH.

It is possible ,by having a U(1) field ,to 'cancel' the
problem part of R“b . This however can only be done for
the case of the Yang-Mills field being a SU(2)xU(1)
field ie Case F2. It is detailed in Appendix 2 how this
may be done. If we do this 1t is possible to treat the
case Sp(4)/SU(2)xU(1) along with the other two (
provided we wuse the nL’s and normalisations appopriate
for the SU(2) alone ). From now on we shall assume
implicit(f3 that this has been done. However this can

only be done for case F2 so in the remainder of this
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Chapter we shall only 1look at case F2 for the Coset

space Sp(4)/3U(2)xU(1).

We have three possible cases for 4-D space-time Mq,AdS

3‘4e shall consider these in turn. First

or dS & RxSSVHS
we introduce a few definitions for the curvatures/fields

on the internal 6-D space —

Rran A *E™ (m,n=4-9) = r(@,N*1 (5.33)
Rmn ARpq A*E™PY (m,n,p,q=4-9) = Z(Q’\)” (5.34)
tr( FA*F ) = F(Q,N*1 (5.35)
HA*H = g( H,H )*1 (5.36)

wski ace-time
We now look at the case of $inkowski space-time, As
mentioned on P41 we can take the scalar equation as a
consequence of the Einstein equationseso we are left
with two independent equations -the internal Einstein
equations reducing to one algebraic equation and the 4-D
equations reducing to one. We find
Sre, N+ £z(@M-LeC HH )+ 4F(E)) =0 - (5.37)
%r‘({,))ﬂiz(t,)) +-£-F(Q,\) =0 (5.38)
These contain the equation (see (2.26) )
gC HH ) =- r®,» (5.39)
this we can use to define the coefficient of H in terms
of Q &N . g( H,H ) = 36n1h?‘so we have
18ny 0y =-r( ¢, ») (5.40)
We have left one remaining Einstein equation which is a
constraint on Q & )
| Breg, Ms z(p M)+ 2F(E, ) = 0 (5.41)
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We still have the dH equation to consider ,for both
SUC3)/7{ UC1)xU(C1) } and G2/3U(3), tr( RAR ) and
tr( FAF ) are proportional to dH If H = h H, then

tr( RAR ) = k°<Q,))dHo (5.42)

tr( FAF )

1;(Q,>~)dH (5.43)
(.1 refers to which F field is considered (5.26), (5.28)
or (5.30),)

S0 we can Write down the H Bianchi identity

hy = ko(8, >«)-1;(Q,>\) (5.44)
squaring h' = (ko M=17(g ) )% (5.45)
substituting in h?‘ from (5.40) gives us
i _ 1. LN
'nsn;({’)') = ( ko(Q,X) 1(esM ) (5.46)

This is another constraint on Q and ‘>\ SO WwWe now have
with (5.41) two constraints. To proceed further we must

evaluate the form of the functions we have introduced°

For all three coset spaces
2

rg, = N 2 4 480 (5.47)
For Z(Q’X) we obtain slight differences for the
different coset spaces. We find
LN (26> 36" +8¢ +20 ) for SU(3)/UCTIXUCT)
2 X Q - Q -BQ + Q + or 3 X
=4 (Q‘-2€-3€+8Q+12 ) for Sp(4)/SU(2)xU(1)

4, % 03 2t
.6'.)\ (k—2? 3Q +8Q+11 ) for G2/SU(3) (5.48)

Z(?‘,X)

For the Yang-Mills fields we obtain

F((,\)z 0 for case F1 (5.49)
(N

F(Q,X)z -3xn, = -X* for case F2 (5.50)

- K8
F(, )= =-3%n, - X " for case F3 (5.51)
( 9(1 is the normalisation factor from the generators ie
ae
tr( 0, 03)=-%&8§)

SO Z(Q,X)+2F(Q,)) =

- 78 -



N 3 2
-—é-( Q —2% —3Q +8Q +Ky) (5
where K, =20-12%™ for SU(3)/{UC1)xU(1)}
=12-12X" for Sp(4)/{SU(2)xU(1)}
=11-12%X™ for G2/SU(3) (5
SO we can write down our first constraint (5.41)
U G AL IR T
PN p-20 -4 ) =N (p-26 -3¢ +8(+K)) (5
now we find by explicit calculation

k_ (B,N)= '—?f( oy ) for SU(C3)/{U(1)xU(C1)}
°< 'me

- X ¢ Ql-u/3 ) for Sp(4)/{SU(2)xU(1)}
4

= - x’( e’*q ) for G2/SU(3) (5
1 (Q D) = 0 ( case F1 )
1(Q DY =—->7((case F2 )
La(p s =-.-XX ( case F3 ) (5
We can hence wrlte (5.46) as
N Q"' -2p -t ) 5 Q"' Ky )T (5
Where Kq = 4 for SU(3)/{U(1)xU(1)} case F1

b 4K " for SU(3)/{UC1)xU(1)} case F2

4 +4%“for SU(3)/{UC1)XU(1)} case F3 (5
For G2/3U(3) we have 1,1—47(1;1+4?Ca" respectively
and for Sp(ﬂ)/{SU(z)xU(1)} we have only 4/3-4%*for

case F2.

We can rearrange our system of two constraints (5

and (5.57) thus

~ 4
X( QQ—ZQ-M ) =,—'2—_>~( Q"-2€-3€+8Q +Ky ) (5
Li)\q’( Q"’ -2?3-3€+8Q+K. ) = )f(e"‘-[{,_)m (5

We find we can solve for ')}'thus

AF =208 -2g - )/ gt 2 @3E B K ) 5.

Leaving a single constraint on G.

( Q"’-z @-3Qz+8t Ky

-3¢ : kg )T “{‘ZQ -4) = 0 (5.
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This we write as G(%) =0,

So we must determine whether (5.62) is satisfied for
any value of e for the given values of K, and Kl.
Before we <can do this we must decide what our 9(1 must
be. This is the normalisation of our Yang-Mills
generators. We must decide what the appropriate values

are. This we do in Appendix 3 with the following

results
F2 F3
SUC3)/{U(1)xU(C1)} 1.0 ' 1/4
Sp(4)/{SU(2)xU(1)} 173 not appropriate
Gl/SU(3) 1/4 1/4 (5.63)

( We obtain case F1 ie F=0 by setting# ™=0,)
We also have some ambiguity left over in the case

SU(C3)/U(1)xU(1) to see how this arises we look at how

the factor in front of the F® field is fixed ( to be

-

g -
-%: ) .If we let A% -aE® then

< a Py N P
F = dA +ip EPATAA
- ~ 7 = L=
:éa) C“geEsc +,i°' CQSE_ELC
=4(ad+ a0 Fe B s fadkc®y, gb¢ (5.64)
In general unless a = - A the first term will not

vanish. This term is wundesirable since it involves EZ.
Since the EE: are involved when we look at the energy-
momentum tensor

15 Fa *F) -2(iBF) A *F
This will not simply be a constx*EE but will ©be more
complicated with a functional dependence on the
coordinates y of the coset space. Since our coset

.spaces are Einstein - spaces this will give great
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difficulty in find finding solutions to the Einstein
equations. However for the U(1)xU(1) case this term is
trivially zero so we would not have problems with the F
field if we took a to be arbitrary. This is a local
consideration we must be careful how we deal with the
global properties. When we consider these the
coefficient will be subject to a quantisation constraint
and will be integer multiples of the minimal value ( eg
as in the Dirac monopole which is a U(1) bundle over S3
- here we have a U(1)2bund1e over SU(3)/U(1)xU(C1) )
which is -~ 2; for the normalisation we have. S0 we
have an 1infinite possibilities for this case - but we
are not really introducing another free parameter. For
convenience we keep the coefficient as - X; but shall
allow ourselves the possibility of letting /')('L be an
integer multiple of the minimum value ( 1 ). This is
also discussed in Appendix 3 where we deal with the
normalisations.

We a priori have seven cases to consider-two coset
spaces each with F1,F2 and F3 and Sp(4)/38U(2)xU(1) with
F2,However we see that in all three cases of F2 we find
K, =8 and Kq =0 so0 we only have five separate cases to
consider,

Why do these reduce to the same case ? as we can see in
Appendix 1 the S-R structure constants the C“bc_are the
same ( upon relabeling ) for the three coset spaces so
any property depending solely wupon these will be the
same for both. With F=0 however the part of R%, not

dependant on these will be. important and so we have
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different properties. For F\p case F2 however we have a

cancelation between the F and Ruparts. This is because

this choice of F is equivalent, in the special case

Q:O, to setting F:R}So the part of R'pwhich is not
a

proportional to e» or G. cancels with F 1in both

U kA
TrR -TrF and in R RCb,h*E“°" +TrF A*F . This is the

Ash
only part of R%, which depends on the C%, . So for the

case F2 we only have single case to consider,

For the case where F is zero ( F1 ) we plot the function
G( Q) for the two cases in Diagram 5.1, As we can see
there is no root 1in any of the two cases so for F=0 we

have no solutions.

For case F2 we have the single case. G(G:) for this case
is given on diagram 5.2 . For this case we find we have

two roots both for negative,

For the case F3 we find a similar pattern to F2.
However we do not find (5.32) satisfied at the roots

hence we do not find solutions for the case F3,

We still have several positivity conditions to satisfy
%

for our F2 roots to be valid solutions. We need DY >, 0

and hz>,0 now
he w (g -2p -4) = (p -b,).((® -b-) (5.65)
l"Q—Q- - Q_*OQ"— .
where b+ = 11[3

So if (B 3 14/5 or g 1-V/5 we will find ™

positive . As can be seen (?) from diagram 5.2 this is
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the case for one root but not the other so we will have
positive h* at one of the roots.

Turning to

2 sr20g-2p -4 )/(8%-2E-36 +8¢ +Ky ) (5.66)
as (Qﬁé??-# ) > 0 at the one remaining interesting root
we are reduced to evaluating (Q#-2%3-3Q«+8Q+K,) at that
root. We 1indeed find this function to be > 0O 1in the
appropriate region.

In summary then we find for the case where space-time
is Minkowski that we find solutions , for all three
coset spaces, when the Yang-Mills field is non-zero and
of type F2 but not for Yang-Mills fields of type F1 or
F3. The consequences of these solutions will be
analysed later. We shall now turn to our next case for

the 4-D space-time.

deSitter or Anti-deSitter space-time

We now turn our attention to the case where space-time
is deSitter ( dS ) or Anti deSittep ( AdS ) The
curvature on 4-D space-time is given by

R - 'JQ:R*EW PV =0-3 (5.67)
The F and H fields will be as before ,however there will
be changes in the R and Rl ‘terms. As discussed on P41
the scalar equation must now be treated as an
independant equation. With the definitions of r(e,)),
z(Q,)\) and F(e,\) as before we find the two Einstein
equations become
,2!-_{ r({,)) +iRy b+ L4 z(t,)) +R,,.r({,\)‘ }
+%_F(Q,‘A) - 58C HH) - =0 (5.68)
1Ry }

i} il r( 1
2 Zir(i’)) +R O} k{420, ) Ry )'%,*GR
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-+%FT€,X) =0 (5.69)
The scalar equation is
! 1%
3 z(Q,X) +2Ry.r(B,N) + ¢ Ry
-$g( H,H ) +'19'_F(€,)s) = 0 (5.70)
Again we have (P40)
gC HyH ) = =10 r(g,2) +Ry} : (5.71)
This enables us to remove g( H,H ) from the system
leaving the two equations

r(@,N + 2Ry + L 2(pN)+2F(E,N)

+Ry.r @, % 1 =0 (5.72)
r(g,%) + Ry +{;{ z(e,))+2F(Q,\)
2Ry r (P, 2 +ERTY = 0 (5.73)
subtracting gives us
i L 2 -
7_.}R,, + R,*.r'(e,\) +3RyY =0 (5.74)
or Ryl 1 +r(E,N) + Ry} =0 (5.75)
so either Ry = 0 or
Ry ==6C 1+r(@,%) ) (5.76)

Ry = 0 is just the minkowski case considered previously
so0 we shall look at the other case ,substituting back
into our one remaining Einstein/scalar equation we find
the following constraint on Q and ) .
2
L - - )Y
wl 28,3 +2F<¢,\) 6r(Q, M-6r(g,» }

-i- i \ = L]
z 1P(Q, ) 0 . (5177)
The remaining constaint arising from the dH=trR -trF is
unaltered
2
B =0 ko 2-15(80) ) (5.78)

substituting in hf
- L W+ Ryt o= { koG, M=1:Ca, N 1 (5.79)
nanz{ F§N + Ry} o= L k(g ~Q>‘} 79
substituting in Ry from (5.76)

R R = [ ka(B,N=1208,0 12 .80
nani 6 5r((,))} kol N JQM} (5.80)
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(5.77) and (5.80) now form a system of two constraints
in e and X . Substituting in the exact form of r(Q,X)
etc leads us to

¥ . 3 _ & 3, % 2
){ﬁ(Q-zg -3¢ 480 +K, ) - F( gT-28 -4 )"}

$ 3¢ AT a
Q, 8
36 -15X (@ -2 -4 ) =X (07Ky) =0 (5.82)

We shall use equation (5.81) to solve for DY obtaining
x ? »
N(pr=-3(¢ -2¢ -1/ {3 (F-2@-3¢"+8 +K, )- (¢™-2¢ -4)™)
0 4 S _ 2 _3 2 - k3
(5 (p*-2¢*-3™+80 +K) ) -%(g*-20 -4 )}
(5.83)

the remaining constraint (5.82) is

Q) =2 N ()¢ K, ) -36 +15 ):L(Q)(Qﬂ"-ze-u ) = 0 (5.84)
So we are left with finding the roots of Q((}).Notice
that in (5.83) we have a choice of solutions depending
on whether we take the +ve or -ve sign in (5.83). The
function Q(Q) is plotted for the case of F=0 on
SU(3)/{UC1)xUC1)}, for both +ve and -ve choices for T\,
on diagrams 5.3 and 5.4 respectively. As can be seen we
find roots in both cases,However we must also check on
whether ﬁ:.z 0 and b= > 0. When we do this we find no
roots for the -ve choice which have both these satisfied
however for the +ve case we do. This pattern is repeated
for the other coset space with F=0 and for the case F2
( the same for all three )e The function Q(G») with
details of the roots for these cases 1is given on
Diagrams 5.5 and 5.6. As we can see Ry and r(Q.,X) have
opposite signs at the solutions. We find solutions both

when space-time is deSitter and Anti-deSitter. We find

we have two types of root described by
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(i) R» >0 , r <0 ie 4-D space-time is dS. For this
type of root IR*i almost equals |r! and so g(H,H) is
small (relative to IR»I and rl ) e

(ii) R* <0, r >0ie space-time is AdS. For this type
of root we find Ir| & ERW: and g(H,H) 1is of the same

scale as {R¥!.

Again the Yang-Mills fields being case F3 we find a
similarish pattern to the case F2 but the extra
constrawnt (5.32) is not satisfied so we find no

solutions.

RxS>/HS> 4-D space-time

We now turn to our remaining case where space-time is
RxS3/H532 We find we have three Einstein equations ( the
scalar equation is a consequence of the Einstein
equations ), We add to H the extra term Hy, :hoEFLE
otherwise the H and F fields are as previously The
space-time curvature will be given by

R = 0 iz1-3

RE = LRyES i,3=1-3 (5.85)

We have for the H field H = Hg + H, where
abt

Ho = hOE‘,-S ’ H‘ = h‘CmE
and we find g( H,H ) = g( H,,H,) +g( H,,H),
The Einstein equations are
-,E{ Ry +r(g,%) 1 + L0 2(g,%) +2r(¢,%) Ry} +J,:F(Q,k>
--(;{ g( Hy,Hy ) +g( Hy ,H,; ) } = 0 (5.86)
(4R3 +r(g, M } + 40 2, M)+ Zr(g, N Ry } +3F (3,0
- 40 -g( HpyHp d+g( Hy ,H )} = 0 (5.87)

1

2
2 L{Llz(s N+ Br(a,»).R LF,

EU Ry + 2@ T Lizp M+ Ary MRy} *EFEN

- 86 -



‘“ﬁ{ g( Hg,Ho ) } = 0 (5.88)
Manipulation of these equations allows us to solve for
g( quHo ) and g( H ,Hy ) ,we find
Lel Hoslo) = -{{ Ry+ 3r(g,)) ) +%;F(Q,X)

+ﬁ{—éz(e,>«) +%Y‘(Q,\).R3} (5.89)
S | )
£g( H,H ) = 4{ UCTRIRE S Y
1712 Y '
+ &l SZ(Q’N + 2,r(Q,)).R:, } (5.90)

We are left with one 1independent equation which for
convenience we take to be (5.86)~(5.87). We find after
substituting in the values of the g( H,H )s that this

becomes

L 4
§R3+-%r(e,\).ﬁ3 +-%F(Q,)) + 6Z(Q,\) + $F(Q,X) 0 (5.91)
We can solve for Ra
Ry= = 2r@ M+ z(p3) +F (], M 1/{ r(g,M+2 1 (5.92)
The remaining equation is dH :trRm -trFi'which is (as

usual )

h"= L ko (8% ~1i(g, %) 1™ (5.93)
We now substituting away h;~ ( hj =(1/36ng)g( H, ,H) )
using (5.90) giving us

-ér(Q,)) L AEACF2Y +2F(Q,)) } +}5r(Q,)).Rs(Q,>\) z
180, Ko(,2) =1;(g,)) b (5.94)

Now eliminating Ra using (5.92) and multiplying by
{ r(%,\) +2 } will give us (with a little rearranging )
2r(p, N =ripN) 20 28,0 +2F (N b+ Ar(e, Nz )

= 18n,{ r(Q,)) +2 bR g -1;((,).) } (5.95)
Now we can substitute in the explicit form of all the
functions and after dividing by ekq-be left with a cubic
polynomial in T{Lwhich is of the form

A(Q))‘ +B(Q>>f' (g e +D(@) = 0 (5.96)

where the coefficients are given by
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9/(24%.(@1-&;( C-2p -4 ) (5.97)
-1/28.(g%-2p -t ).(Q‘*-ze’-3@4’+8g +K,)
-36/(2u%). (@-Kt)"‘ (5.98)
"(Q -7 -33" +8 +Ky) -g-2p - (5.99)
~(§5-2p - ) (5.100)

A(Q)
B(Q)

H

C(Q )
D(E)

The cubic polynomial will have for each value of Q at

least one root and possibly up to three. Defining the

"radicant" ( we are using the prescription specified in

[39] ) by

RADICANT = -{-f (B/A) ~(B.C)/AY +D/a 3>
+1' c/a- B/ 33 (5.101)

m»

We find one,two,three roots if this is positive, zero,
negative respectively. When it is positive our one root
is given by
S
'X(Q) 3/ - A(sray - Z(B. c)/a™ - Lp/a +A/RADICANT }
T3 x
-1

SB/A (5.102)

When the radicant is negative we find three roots-if we

first define r and ¢ by

- _ 4 _ A 1.3
roa/{ -k c/a - 20 B/a M) ) (5.103)
. - _L1( 2(B/AY- *
rcos(#) = 1( 2?(B/A) (B.C)/A " +D/A ) (5.104)
then our three solutions are given by
L
‘)}l (Q) = 2 r‘s.cos(:}s 4’ ) -éB/A
’):&,L(Q) = 2 r%.cos('a¢+’1§) -J-sB/A
L
Na@) = 2 ri.cos(4p+'T) -4pa (5.105)

The solutions of ');l as a function of Q are shown on
Diagram 5.7 for the case F=0 on SU(3)/{U(1)xU(1)}. As
can be seen it is quite complicated with many branches.
We require that fx h;'and h;l be positive. Requiring

:X> 0 rules out a few branches of solution. Requiring
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the hs be positive rules out a large number leaving only
those two branches shown in red on Diagram 5.7. We
present in Diagrams 5.8 and 5.9 a more detailed
desciption of the behaviour of the functions in these
regions . We also graph RS(Q) and r(e). This is only
for SU(3)/{U(C1)xU(1)} with F=0. For the other cases we
find a similar pattern. In diagrams 5.10 and 5.11 we
give the solutions for G,/SU(3) with F=0 and in 5.12 and
5.13 we present the solutions for the case F2 on the
three spaces. As can be seen we have two branches for
each solution one for the positive region and one in
the negative. In 5.13 we have a point where ho = R3 =0
this is the special case of our Minkowski solution. For
most of the RxSs/HS5 solutions we have R3>0 this means
we are dealing with a three-sphere 1in space-time., 1In
these cases we find r <o and [ Ry+r )|<<ir} or {R |. So
g(H,H) will be small. The exception 1is given in
Diagram 5.12 ,Which is for the F2 cases, where both R4
and r are negative ( so space-time will be RxHS3 ) and
Wwe do not find g(H,H) small. This unusual solution has

M, xCoset space as a limiting case , ( This 1is neccesary

%
since we found MQ as a solution for this case earlier ).

For the case of our Yang-Mills fields taking the form F3
we find a similar pattern but to find solutions we must
apply (5.32), We can rewrite this as

HOQ) = o'“‘z/)\‘* = 1 (5.106)
When we examine H((?) for SU(3)/U1)xU(1) we find that
H(Q) §1  for any value of G; for which the other

positivity constraints are satisfied so we do not have
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any valid solutions. For Gl/SU(3) however we find that

for one of the branches of )fY G) ,where all the

positivity constraints are satisfied, that there exists

a value of Q for whichl&(ed =1. On Diagram 5.14 we
2 2

3
give X, hg , h”, Rg and r, on this region and in

Diagram 5.15 we give H(ed and the details of the root.

In chapter 3 we discussed if we had a solution F then we
could also have solutions FxFxF.. Can this also occur
for non-symmetric coset spaces ? The answer is not
clear immediately - the F fields we are dealing with are
not,as for the groups, topologically trivial so the
coefficients are not arbitrary so we are not allowed to
change the coefficient by fﬁ as we did in chapter 3 (
p54 ), Making our field FxFxF... ( n-Fs ) would have the
effect of introducing n in front of F(Q,X) everywhere
,We could incorporate this into the normalisation factor
7(? Explicit analysis of the effect on increasing in
this manner shows very 1little difference, Solutions
stilllexist ( although with different values ) whereever
they existed before. So in actual fact we can have
multiple factors of a given F field just as in chapter
3.

In the next chapter it will be of interest to take Yang-
Mills fields ,on SU(3)/U(1)xU(1), where we have a Yang-
Mills field ( U(1)xU(1) ) but with imbedding such that (
effectively ) x?} 8. For this special case we present
G( %) on Diagram 5.16 ( recall that to have Minkowski

4-D space-time as a solution we needed G(e') to have
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. ¢S

roots where h and >\ were positive ). Since this has
roots where the positivity conditions are satisfied
Minkowski 4-D space-time is definately a valid solution

for this special Yang-Mills field.

In summary we find a large class of solutions to the
equations of motion for our non-symmetric coset spaces.
A summary is given on Table 5.1,In the next chapter we
shall try to analyse the consequences of these

solutions.

We shall now determine whether H=T at any of our

solutions. The condition

Ta =3 Hape (5.107)
reduces ,for our ansatz, to
(1 -0 )2 =% h (5.108)
k5 =3
or
a\2
(1-¢) >"f, = 30> (5.109)

Dividing the RHS by the LHS and substituting in h® from

(5.45) we find

[ e 2
Medle™kd™ L. MCG) (5.110)
301 -)*
So we must determine whether Pufe)=1 at any of our
solutions. For My, and AdS/dS 4-D space-time it 1is
unlikely that we will find (5.110) satisfied at our
single points and 1indeed by inspection of the solution
this is the case. When we 1look at the case of RxS°>/HS>
4-.D space-time we have three cases to consider. Namely

F=0 for SU(3)/U(1)xU(1) and G4/SU(3) and F being case F2

for all three cosets., We have two branches of solution
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in each case. We plot M((E) for the three -ve branches

on Diagram 5.17 and for the three +ve branches on
Diagram 5.18. As we can see we have only one place
where M(Q')=1' This is for the F2 case. So for all

three coset spaces we have a single point where H=T.
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Table 5.1 Summary of Solutions

Case

Existence of solutions

Minkowki space time F1,F3
Gz/SU(3) SU(C3)/U(1)xU(1)

No solutions exist

Minkowski space-time F2
All three spaces

A single solution for
e :—2.13

AdS/dS F1
SUC3)/7{UC)xUC1)}

Four solutions
space-time both AdS & dS

Gz/SU(3) Three solutions
space-time both Ads & dS
Ads/dS Fe Two solutions

All three spaces

space-time both Ads & dS

Ads/dS F3
Go/SU(3) SU(3)/UC1)xUCT)

No solutions exist

R x three hypersphere F1

Gz/SU(B) SU(3)/70(1)xU(1)

Solutions exist in

in one parameter families
which we take as

In each case solutions
exist for @ 1in two
small regions one -ve

and one +ve eg for
SU(3)/U(1)xU(1) solns
exist for -i-3< Q<-4-z?
and 3.3<@< 49

R x three hypersphere F2
all three spaces

Solutions exist as
above

for-a13 < @ <=1-2%6

and %,2‘6 < Q < lp‘%

R x three hyprsphere F3
SU(3)/70C1)xU(1)

Gl/SU(B)

no solutions exist

a single solution exists
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Diagram 5.1_§({?)_EQL_E=Q_BQ&h_Qﬂiﬁi_ﬁﬂﬁﬁﬁﬁ

We can see that there are no solutions
to the equation G(G )=0 for either of

the relevent coset spaces
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Diazngm_i.2_§(Q})_Egz_&hg_xang—Hillﬁ_iiﬁld

o v a8 2 2

¢ A S

1
N

N-J
w-—d
)

As can be seen we have two roots to the equation

G(Q):O at Q.—.-—1.3 and at Q:-2.13
At =1.3 we do not find X% 0 and h®y 0 so we

do not have a valid solution. At -2.13 however

"- 2
we find N =3.3 and K=16.0 so we have a single

valid solution at Q--2.13
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Diagram 5.3 AdS/dS Solutions for SU(3)/U(1)xU(1)
With F=0 taking the positive sign in
Equation (5.83)

As can be seen there are six roots ri-ré6

At r3 & r4 both ’X?and h* are -ve

At r2 & r5 both 7c'and h> are +ve

At r1 and r6 ( not clear from graph ) TXL& h1 are +ve

So we have four good roots to the equn Q(QJ:O. At the

roots the functions take the following values

¢ A E(H,H) Ry r
ri -1.73 1.1 0.019 1.188 -1.198
r2 ~1.12 5.5 26.1 -14.6 1.43
r5  2.895  2.89 4.88  -26.6 3.43
ré 5.09 0.205 0.084 1.150 -1.192
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Diagram 5 .4 Ads/dS solutions for SU(”)/U(1l)xU(1)
for F=Q and choosing the -va sign

in Equation (5-M)

200

50

50

-100

-200

There are two roots, rl and r2, at both of these A

so there are no consistent solutions



Di~ér 9RL5.5 1.dS/dS solutions for G2/SU(l) case F=0

200
150
100
50
-4
ID >
00
50
-200
There are four roots rl-r4
At r2 ~ & K are both +ve
At r3 ~ are both -ve
At rl and r4 ( not clear from diagram) N~ & X are +ve
So we have three good roots to the equn Q(")=0. At the
roots the functions take the following values
r
]
rl -1 .474 2.095 0.265 1.042 -1.173
r3 3.093 2.32 19.17 -10.31 0.718
rd 5.016 0.2134 0.1184 1.129 -1.188



Dla&ram S .6 Ads/dS Solutions for Case F2

( all three spaces )

200

i50

100

58

'\

-50

100

-1 50

We have three roots to Q(")=0

r\ A \
At rl X & K areboth +ve
At 12 X & k areboth -ve
At r3 ( not clear from diagram) areboth +ve

So we have two valid solutions. At these the functions

take the following values

IX g (H,H) r
r2 3.16 1.945 15.25 -7.950 0.0325
r3 4.989 0.21706 0.1324 1.120 -1 .1865



Diagram S .7 '>(M For RxS /HS”~SUnVUEf DxUf n

-10

-15

The branches in red

conditions on , h

the branches have been

fit on the same diagram.

— 100 —

F =20

are those where the positivity

, and h”"

scaled

are satisfied. Some of

up/down to enable them to



Diagram

The solutions are

as

hj' , h*

function of

Since

Jj?r. Rx$"/JHs2,£=D__ Region A

£01L_SU (3)/D (1)xD (1)

0.75

0.25

-0.25
-0.50
0.75

-1.00

a one-parameter family which we take

our solutions have 4-D space-time

(3-D Hyper sphere)xR rather than (3-D sphere) xR.
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Solutions exist for —=<*7-< (3 . The wvariables

f Rj, and r are given on this graph as as

as



Diagram 5.3 S.pl..utl.pns F.or £=0__ Region B

For SU(*)/U(1)xU(1l)_case

.75

.50

.25

—-0.50

.75

-1.00

The solutions are a one-parameter family which we take
as ~ . Solutions exist for 323 <" < . The variables
hj~, h~ , Rg; and r are given on this graph as as

function of
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Diagram S .10 Solutions For RxS*/HS”~.F=Q Begion A

For G%/SU(l) case

0.75
.50
25
1.50 -U45 1.35  _A.<T30 1 .25
.0.25
.0.50
.0.75

1.00

The solutions are a one-parameter family which we take
s (" Solutions exist for -1'W< . The wvariabl es

h, h~ , * , and r are given on this graph as as

function of e
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D lagnajB._5.jJ Soluti*n&.for J*x.gVu*,£=D Region .B

for Cf7°/M(J)-Qa sje

0.75
.50

0.25

-0.50

-0.75

The solutions are a one-parameter family which we take
as 0 . Solutions exist for 311 < * < 4-~ . The variables
h , h~ , , R3, and r are given on this graph as as

function of

g
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Dia&ram. .5.12 Splintlong .Eo.r._ £ _a F2 fisid

For all three Coset spaces

ae&ion A

|l > A
-2.4 “2.27/ “2 e

\\2

\\6

\\8

The solutions are a one-parameter family which we take
as 0 . Solutions exist for * A~ <-il4 . The variables
h» , e | , and r are given on this graph as as
function of

Notice that there is a point where h = 0 and we

reduce to our Minkowski space-time solution
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Di*&am__5.13 Solutlona £i?r

For all three Coset spaces

JF..a FZ 1110

ae&lon P
0.3
T—— |
3.25 370~ 3.75 4.25 50 75
-0.1
-0.3
The solutions are a one-parameter family which we take
as @ . Solutions exist for 3 < b< 4 %. The variables

h > A > ~3)

function of

and r are given on this graph as as

106 —

.00



Dia&r”m 5 .M Solutions For RxS"/HS"F a FI field

P-0J-

75
50

25

.34 -1 .32 e

-25

—50

-100

This is a graph of the functional dépendance of m** , h'#
'Xa., R*, and r on * for the Yang-Mills being a F3 field
( ie for coset spaces S/R F is a S field ) We have still
got the constraint (5.»04) to be satisfied so these are
not solutions. In Diagram 5.15 we show this constraint
A

is satisfied at ~ 85 ,
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DJ*aRr aini 5. 15, H(J* )_jTOr G~/suc”) for the region

HBShown In Diagram S .14

2.0

-0.5

-2.0
As we can see there are two values where H (") =1. At one
of these the positivity condition on h is not satified

so we have no solution. At the remaining point @ =-fl&sT
all the positivity conditions are satisfied and we will

have a wvalid solution.

At this solution both and r are negative.
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Diagram. 5.36 G(”) Por SU(M/U(1)xU(1l) with a
miltiple (“-.tijes) ijbedding
of -U(1)xdX1)

750

* 250

250
-500

=750

In Chapter 6 it is ofinterest whether a multiple
imbedding of the U(l)xU(1) field willstill have

solutions. In particular we wish to know if Minkowski
solutions exist for a eight-fold imbedding. As can be

seen we have four roots to the equation G( 0>)=0 rl-r4.

THe positivity conditions on A andh are satisfied o’

ry and r™ So we have two valid solutions.
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Diagram 5.11 M (") For the three cases on

the -ve branch

\ 0.2

0.0
.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -t.d

As we can see we have a single point where M (”) =1. This

is for the case of all three coset spaces have field F2.
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Diagram 5,IB M(") for tbres cages-gj

the +ve DT angli

prO

1*/=0 G% /so(-*
f-fx cM MIQL apckCa’

As we can see there are no solutions where M(A )=1 ( At
the end of the range where it looks as if the curves

will turn up to reach one in actual fact h™ Dbecomes

negative before ths occurs )
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Chapter 6 Physics from Non-Svmmetric Coset Spaces

We shall now examine the consequences of our solutions
from chapter 5. We shall exclude some ©possibilities
first.

If F=0 then we will have ,upon compactification to four
dimensions, non-chiral fermions. Also the 4-D gauge
group will Dbe S0(32) or EgxEg. In actual fact E is a
reasonable unification group in its own right [*-0] as is
E* ( SU(5);~ Eand SO (10) E* so all the E~-E% are
possible unification groups!). However we need chiral

representations at the unification scale so an unbroken
Egt will be no good. It 1is possible that some other
symmetry breaking mechanism will occur between the
compactification scale and the unification scale.However
we have no positive suggestions tomake for a realistic

scenario as to how this takes place. So this is not a

realistic picture so we shall not consider F=0 further.

For the case F3 ( ie for coset space S/R we imbed F as S

) we have a single solution for the case RxHS with
G~/SU(3). This single solution is not terribly
attractive since we do not have as a solution. When
we consider the Yang-Mills field we find
Tr( FAFA F )is zZero and Tr( FaA F )is a total

derivative so F is topologically trivial and we will not
have chiral fermions in 4-D. The Yang-Mills symmetries
will however be broken, eg imbedding within Eg yields

, amongst others, SU(2)xSp(6) , SU(3)xSU(3) and F
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depending on how the imbedding is done. The non-chiral
nature of the fermions is a major problem and we will

not consider this case further.

S0 we shall concentrate on the case where F is a F2
field ie for coset space S/R we imbed F as R. We still
have three different theories to consider SO(32)/21,
S0(32) and EgxEg. We shall carry out calculations with
ESXES first returning to the others briefly later. The
consequences of a solution depend very much upon the
particular 1imbedding of the gauge field within the
overall gauge group. We shall not attempt to classify
completely the imbeddings as these are very numerous! (
especially when we have U(1)s to consider ) but shall be
selective looking only at physically hopeful imbeddings.
We are most interested in imbeddings which will lead to
one of the possible wunification groups . The best
candidates for a unification group are E¢ ,S0(10) and
SU(5). We would like to obtain three or four‘families of
chiral -fermions belonging to the appropriate
representation of the unification groups,( The fermions
originally 1lie in the adjoint of EgxEg ‘or S0(32) ).
These are

Eg 27

S0(10) 16

SU(5) 10 + 5
When we imbed our fields within Est% we must imbed any
simple group entirely within one E% or the other. With

non-simple groups like SU(2)xU(1) we can put the U(1) in
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one Eg and the SU(2) within the other. However it
proves that keeping the Yang-Mills group within a single
Eg gives better results. When we imbed our Yang-Mills
fields within one of the Egs we will obtain at low
energy some smaller group which we take as the physical
'visible' fields. The other Eg will be unbroken at the
compactification scale but presumably not at low
energies. These fields will only interact with the
'visible! fields gravitationally and will be
unobservable otherwise. These fields have Dbeen termed
'dark matter' and their existence is not incompatable
with cosmological evidence, So we will concentrate
on the 4-D fields obtained from breaking a single Eg.

We shall 1look at our three coset spaces in turn first

Gy /SUC3),

G,/S5U(3)

OQur Yang-Mills field 1is a SU(3) field. Imbedding SU(3)
into E% breaks the ES symmetry down to EG ( SU(3)xEG is
a maximal subgroup of Egq ). Under this imbedding the 248
of_§5 ( this is the adjoint representation ). breaks as
follows

248 —» ( 1,78 ) ®( 8,1 ) ®( 3,27 ) D( 3,27 ) (6.1)
We are primarily interested in the 27s. The imbalance
between massless 27s and E?é in four dimensions is given
by the imbalance between massless 3s and gs of SU(3) in
the background field of the internal space. This 1is
given by the index theorem for a six dimensional

manifold

- n_= L[(3cy -3c,c >y - L o (6.2)
n, n_ ‘[ Cq -3CgC, +C, a4 Pycy



Where ¢, is the ith Chern class ie [3%]

C = .&-Tr‘ F
1 o ( )

Cy {;"z}i Tr( FAF ) = Tr(F) aTr(F) )

~U_ (=2Tr(F AF AF) +3Tr(FA F) ATr(F)
2613

C3
-Tr(F) ATr(F) ATr(F))(6.3)
and p, is the first Pontrjagin class

p, = .L:‘—r-‘lTr[Ilnf{) (6.4)

Using these we can rewrite (6.3)

n, =n_ = =L i\Tr(F AFAF) —J.gp . C (6.5)
* 24 T3 & % )
The trace is in the 3 of SU(3) for this case,

¢ [42] so the first Pontrjagin class

Now GZ/SU(3) > 3
p,, which is zero for S‘, must be zero for GZ/SU(B). c,
and cq are zero for a SU(3) bundle also so we have

-n_ = 1/2 f ca (6.6)

n, -n_

When Q:O F=R and this chern class is identical to the
Euler class. The Euler characteristic is 2 for a six
sphere so we obtain

n, -n_ =1 (6.7)
For different Q» this does not alter since it is a
topological invarient. That

n,-n_=1/2.(Euler characteristic)

for a SU(3) bundle was first given in [29]. This
conclusion differs from that given 1in [43]. One excess
chiral fermion in the 3 of SU(3) on the internal space
leads to one massless chiral fermion on 4-d space time
in the 27 of Eg. Thus we have a single 27 of Eg in 4-D.
Of course we would like to have three or four and it may

be possible to gain a horizontal symmetry from the G

group of isometries associated with G,/SU(3). However if
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such a mechanism were to work one would expect a minimum
of seven families ( seven being the lowest dimensional
representation of Gq ,excluding the singlet ) which is
incompatable with cosmology [ J. Thus 1if this idea
were to work we must find some way of of breaking the G4
down to some smaller group. At present we have no

suggestions to make as to how this may be done.

Sp(4)/SU(2)xU(1)
The fermion spectra for this manifold has been

considered in [43], where the topology is discussed.

#

Considering Sp(4) as a S3 bundle over S ( it has the

same cohomology as SBXS? ) the coset space is formed by
allowing SU(2) to act on Sv'and U(1) to act on 33 so as

¥ and s°— s?

to induce the fibrations S° —> S
resulting in a Sz'bundle over Su ( since '33(53) =Z
these bundles are classified by the integers ). Hence
Sp(4)/SU(2)xU(1) is an S* bundle over S*.  Imbedding a
non-zero background SU(2)xU(1) field into one Eg

produces the following decompositions

Eg —> EgzxSU(2) — Eg x U(1) x5U(2)

(248) (133,10 1,3062,2)  (78,1) &27,1) @2.1)
& 1,1),8(1,3),@X27,2),
&X27,2) &1,2) &X1,2)_

3
(6.7)

Where the subscripts denote the U(1) quantum numbers of
the representations. The (27,l%cthe (27,2)land their
conjugates would be interpreted as fermion families in

four dimensions. We now examine the index theorem -to
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discover the excess of 27s over g?s. Since the first
Pontrjagin class of Su'vanishes the index theorem for a
fermion with U(1) charge p in a background SU(2)xU(1)
bundle over Sp(4)/SU(2)xU(1) 1is
fent suc2yxu(n)

n -n

+ “0B-
- jch{SU(z)}xch{U(n}
= (o fSUTa Lo, (SUFN ) e (U(D)
== Scz{SU(2)}* c {U(1)}
= -mnp (6.9)
( p. ==-2,1 depending on which 27 we are considering,)

(e N
Where m=monopole charge on S and n=instanton number on

st

This formula disagrees with that in [$3] by a factor
of 1/2. It is argued in Ref [43] that mn must be a
multiple of two hence we always obtain an even munber of
families in U4-D eg if mn=2 we obtain 4 more massless
27,8 than 5725 and 2 more massless Zf,s than 51‘5.

In [43] other schemes are discussed in particular one

which breaks Eg to SU(5)x3U(3)x3U(2)xU(1) giving three

families of ( 5 +10 ) of SU(5).

SU(3)/0C1)xUC1)

The fermion spectraon this manifold has been considered
in [43] and [44§] but here we shall consider an alternate
scheme.

SU(3)/U(1)xU(1) can be constructed as a cp! bundle over
CPz. This structure is obtained by considering SU(3) as
a 83 bundle over S%.( “fthere is one and only one non-
trivial S bundle over s® ,Since ﬂb(ss) = Z9 [43] this

is SU(3) ). By allowing one U(1) to act on Sr and the
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3
other on Sz; so as to induce Hopf fibrations S — S 2

CP' and SS-—D CPQ; we reduce the Sb bundle over Sg (
SU(3) ) to a S bundle over CP~ ( SU(3)/U(1)xU(1) ).
Imbeding a U(1)xU(1) field within Eg gives two of the
gauge bosons of the cartan subalgebra of Eg a mass [3%],
due to expectation values of the Chern-Simonsg terms in
the field strength of the antisymmetric tensor. There
are various ways of imbedding U(1)xU(1) 1into Eg. We
shall discuss one of these which gives E; as a residual
gauge group in 4-D. Eg contains SU(2)xEg as a maximal
subgroup. We imbed one of the U(1)s 1into the SuU(2).
This gives wus Ez which has U(1)xE, as a maximal
subgroup. Identifying the remaining U(1) with the U(1)
subgroup of E; leaves us with Eg. Under this breaking
the 248 of Eg decomposes as follows
Eg -2 Ej x SU(2)
248 = (133,1) +(1,3)+(56,1)+(56,-1)
—>Eq x U(1)
(1§§>°+(§%+(131+(1)1+<5§)’ +(58)_,
—>E x UCT1) x U(1)

78 427 427 +1 +1  +1  +1 1
-0

"‘O,-). _ o, o0 Qo -1.'0 150 ) N 3

+1  +27 +27 +1  +1 +27  +27 (6.9)
‘-5 1] =) -3 -"_3 "l,-l =}
The index theorem for fermions of charge (1,1) yields
%

Since Cy =c3=0 for U(1) fibres ,
2
Let x be the Kahler two form ( volume form ) on S szEO>
1
and y be the Kahler two form on CP ( vy =volume form )

y==0 then

P, p,( cp?)y = 3y1' see ref [35] (6.11)

c, mx +ny (6.12)
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where m = the monopole number of the U(1) in Sz and n =
monopole number of the other U(1) field in CPm, then
(6.10) reduces to ( c? :3mn1xy‘ , S Xy =1 )

n -n_ =1/2mn’ -1/8m (6.13)
For fermions of charge (p,q) this is modified to

n_ -n_ =1/2(pm)(an)" -1/8(pn) (6.14)
When the U(1) which breaks E;> E3 lives on s™* and the
U(1) which breaks E;®E¢ lives on CPq: Alternatively

n, -n_ =1/2(qm)(pn)* -1/8(qm) (6.15)
When the fermions change roles.
For a fermion of charge (1,1) on SU(3)/U(1)xU(C1) (6.13)
shows that m must be a multiple of 8. This reflects the
fact that SU(3)/U(C1)xU(1) does not admit a spinor
structure coupled to a U(1) field unless m is a multiple
of 8. As an example we take the simplest case non-
trivial case n=1,m=8 From the decomposition (6.9) there
are three different 27s to consider (p,q)= (0,-2) ,(1,1)
and (-1,1) When the U(1) field on S1 is used to break
E8®E4(6.15) gives

n, -n_= p(4g> -1) _ (6.16)

Hence the number of massless 27|, exceeds that of the
- %

massless §i' s by 3, the number of massless §i_‘s

]
exceeds the number of 21"5 by 3 and there 1is no

imbalence between the 21kls’and Einzg If the difference
in U(1) numbers shoWws up as a physical difference in
four dimensions then it 1is possible that the Ei_‘s
behave differently from the 27.‘3 and so we will obtain

a chiral theory.
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When the U(1) field on CIP‘1 is used for the first step
Eg 2Ez (6.15) gives

n, -n_= q(4p -1) (6.17)
Hence the number of massless 21‘13 exceeds the E?st by
‘2, the number of maassless 27,, s exceeds the ifh,s by 3
and the number of massless Zz’ls exceeds the §i-,s by 3.
thus we have a total of @ massless 27s 1in 4-d, though
again the different U(1)xU(1) quantum numbers may give
different physics in four dimensions.
All this 1looks very interesting for phenomonology
unfortunately our ansatz for solving the dynamics has
used m=n on SU(3)/U(1)xU(1) and m=n=8 leads to an
unacceptably large number of chiral fermion families.
However should it prove possible to relax this, the
above scheme is an interesting alternative +to previous
proposals. Since we have really got Est$ we can
contrive a situation which will give this. If we take a
UC1)xU(1)xU(1) field and imbed U(1)xU(1) within one Eg
as a m=8,n=1 field and we imbed the other U(1) within
the reméining Eq as a n=7 field then this we appear in
the Einstein equations in the same way as a m=n=8 field
but the fields arising from the Egwith two U(1)s
imbedded would be as descibed for a m=8,n=1 case. It
may be possible that in this case we will find at low
energies that the ‘'dark matter' interacts in not quite
so dark a manner !. Other schemes have been explored in
references [43] and [44]. In particular [44] discusses a

scheme with E% -»S0(10) and three massless 16s of SO0(10)

in fourAdimensions.
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For the case when we have S0(32) or S0(32)/Z4 gauge
group we do not find any appealing schemes. Since S0(32)
has rank 16 and our background F fields have gauge
groups with rank 2 a single imbedding will leave us with
a rank 14 gauge group. This is much larger than any of
the popular candidates for a wunification group. To
obtain Eg ( rank 6 ), S0(10) ( rank 5 ) or
SU(5) ( rank 4 ) we would have to have a multiple
imbedding and imbed F 5-6 times. It is possible to do so
Eg For a U(1)xU(1) field since S0(32) S0(22)xS0(10)
then imbedding 11 U(1)s within the S0(22) will leave us
with S0(10) since 3S0(10) = SU(5)xU(1) imbedding a
further U(1) could 1leave us with SU(5). So we can
obtain SU(5) by imbedding ( U(1)xU(1) ) as our gauge
group. When we do this we have the problem of why only
6 times why not 7 or 8 ? so these imbeddings are not

very natural.

So in conclusion Wwe can ,when we take the E$XE3 theory,
find compactification schemes ,for all three coset.
spaces, which result in Yang-Mills groups of suitable
Unification groups upon compactification. In all three
cases we find the fermions lie in chiral representations
however not always with the appropriate number of
representations. In particular we find only one 27 of
E when we compactify on Ga/SU(3) ( we can obtain more

but probably only ;‘7 ).

As for our group manifolds our

¢ RxS>/HS 2)x( internal manifold )
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solutions are interesting from a cosmological viewpoint.
In particular ,for the case where we have Ffo ( case F2
), we find solutions extending, 1in a smooth set, from
the case where space-time and the internal manifold are
both curved ( on the planck scale ) to the case where
space—time'is flat but the coset space 1is still highly
curved. This is intemrsting because it might explain why
the internal dimensions have such a large curvature
relative to the present measured curvature of 4-D space-

time.

As for our group manifold case ( chapter 4 ) we shall
not discuss whether we have residual supersymmetry when

we compactify.
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Chapter 7 Symmetric Coset Spaces

We now consider Symmetric Coset Spaces ( S.C.S ).
Symmetric coset spaces have the defining property that
the structure constants CQ1,C are all zero ( see p70-T71
for notation )e The only non-zero structure constants
being Cabc_& Cagg . If C%.=0 then our ansatz for the
torsion

T® a %, EPC (7.1)
is zero as is our ansatz for the three form H. If the
torsion 1is zero then we 1lose a great deal of the
motivation for considering coset spaces, However for
completeness we shall 1investigate whether solutions
exist for our ansatz.
Our ansatz for the curvature reduces to

oAe

Q d
R = %c‘bzc‘d@ (7.2)

We have two choices for the Yang-Mills field either
F =0 (7.3)

or

— tz,‘
2 aoa be

A
the only free parameter in R and F is D N

(7.4)

For S.C.S. the combination of structure constants
CepCde ([ 1 derotes antisymetuiohn D (7.5)
is zero hence both tr( FAF ) and tr( RAR ) are
individually zero so the Bianchi identity for H
dH = tr( RAR )-tr( FaF ) (7.6)
is satisfied without leaving any constraints.
If space-time 1is Minkowski then we will have two
independent equations of motion ( two Einstein say ) and

one parameter,
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If space-time is AdS or dS then we will have three

equations ( two Einstein and the scalar ) and two

2
parameters N and Ry o

> then we will have three

If space-time 1is RxSs/HS

equations ( three Einstein ) and three parameters
2

hey Ry Xk A A
So unless for Minkowski ,AdS and dS the -equations are
degenerate we will not find solutions however we may
find solutions for the case of space-time being
RxS /HS

We shall use the notation of chapter 3 but now we have
functions of 3ialone .

If we take space time to be Minkowski we have ( as
always )

g( HyH ) = =2 r(N) (7.7)
as H=0 we have that
P2 N = 0 (7.8)

SO 9(20 is the only solution. This is just 10-D
Minkowski.

If we- take 4-D to be AntideSitter or deSitter the we
have the two Einstein equations
L0 rN)+ LRy 1+ { 2N +Ry.r(Q) 144 F(X) =0 (7.9)
FUErO0+ Ry 1+ 2 dzO0)+Ry. r(N 2131+ AFCX) =0 (7.10)

Y

These ( plus the scalar equation ) imply
0=gCHH) = =2(r(A) +Ry) (7.11)
s0 R#z-r() ) (7.12)

substituting back into the Einstein and scalar equations
we obtain
2
LrOn)-4r0)e {20+ 2FCN) )
-4 -1 A
Eren=ArtNs E 2w 27 (X))

0o (7.13)
0 (7.14)
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(7.13)=-3(7.14) gives
2034200\ = 0 (7.15)
' 4 - ’
so r¢Z) =0 or r(\) =-1

r(n)

trivial solution so we find no non-trivial solutions in

-1 is impossible and r()\) =0 is again the

this case.

We turn now to our last ( but best ! ) possibility
RxS3/HSB. For RxSs/HS3. We have g( HyHy) = 0 and our
three Einstein equations ( no scalar see p40 ) are
10 rN+ R3 b+ 40 2N+ 2r( M) Ry )

-te( HyHy) +4F(X) =0 (7.16)
{ rOM+dRy 1+ 20 2O+ FrN) Ry )
+ 280 HeH) +4F(XN) =0 (7.17)

Pl

20Er(0)+ Ry b+ {520+ Kr( R ) Ry )
=18 HyHlo) +FF(X) =0 (7.18)
(7.16) we can take as defining g( HyHy) so we can
eliminate g( H%& Jleaving two independent equations
which are

A 2r( M)+ AR

& 223+ 2r(0) Ry wF (D) 3 = 0 (7.19)
20 ArOD) }+
(220 )+Zr(M).Ry + ¥F(X) } = 0 (7.20)

(7.19)-8(7.20) gives
k8 -
2R Zr(d) 3+ g-32(M)-%F ) 1 =0 (7.2D)
SO
br, =L -2 2 .22
$Ry = LzO0-2r(h) +3FON (7.22)
substituting back we find we have one equation
1
e g zO0e2F) ) = hr( A
"i'i{ z( A)+2F(X) }.r(X) =0 (7.23)
now z(M)w)% ,F‘())u)\l’ and r(\) ~ )"2.
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SO

P!
2(N)+2F(N) = zgr( A) (7.24)
hence upon substituting (7.24) into (7.23)
2
O Tezgr(Nag z,rM)-5r ) 1 = 0 (7.25)

s0 r(M)=0 or 2r(N)= (2/z4 -4) ./ ( ( B-2/z4 Y*-16/2, )
We require real positive solutions for r(A) .
This will be true iff

2/2g -4 3 0 and ( 4 -2/z ) -16/24 %0  (7.26)

The first implies we need 0§ 2z -;: .

The second implies ( z> -2z, +5) 30

or (z-a,).(z-a)) >0

where as = {% .‘!.'JZ%T--_,;—_- }

ie a'-; 1.31 and a_ =0.19

putting the two conditions together we need

0§ z2q L a_= 0.19
Now r( ) :C')Qn,, 2(3\) =
%™ or

hence z, —._;,( 1 + 3/dimR ) - f—",,;)(’L

%
%XY_ where q =36( 2n,1+n,n2)
0

and F(\)

( if F=0 we neglect the last term ), we need z, < 0.19, If
F=0 then 1z, > 0.33 so will not find solutions, If FXO0

2
then we must consider the value of A ,‘w'e find we must

have
2 9 1 .
K 3 Z( (xg-a-) +1/dimR ) (7.27)
and X ¢ X 1/3 +1/dimR ) (7.28)

these are a fairly restrictive for xa,.
What are the six-dimensional symmetric coset spaces ?
We find the following [46] .
(A
1. S0(7)/s0(6) ( & S )
2.3 A
2. SU(2)xSU(2)xSU(2)/{.U(1)xU(1)xU(1) } (C S'xS xS ).

3. Sp(u)xSUC2)/{ SOCHXUCDxUCT) } ¢ s*xst)
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b, SUC4)/7{ SU(3)xU(C1) 1} (A CP7 )
5. Sp(l4)/{ Su(2)xU(1) }
6. SU(3)xSU(2)/{ U(2)xU(1) } (7.29)
6. is a complicated case. If the SU(2) in the U(2) is
factored out with the SU(2) in the top then we have the
case of SU(3)/{ U(C1)xU(1) } - a nonsymmetric coset
space., If the SU(2) in the bottom is factored out of the
SU(3) then we have a symmetric coset spaces
As discussed previously Sp(4)/{SU(2)xU(1)} has both a
symmetric and a non— symmetric imbeding.O4 interest
immediately is SU(2)xSU(2)xSU(2)/{U(1)xUC1)xU(C1)}
because since R is Jjust U(1)s we can have the
fields/normalisations as large as we want ( see Appendix
3) this means we will be able to satisfy (7.27),
For several of our coset spaces ,S/R, we have R of the
form

( simple group ) x U(1)
This will lead to difficulties 1in the equations of
motion analogous to those encoumtered for
Sp(#4)/SU(2)xU(1) in Chapter 5. We can deal with these
in the same way ( see Appendix 2 ). This means we must
take the normalisations appropriate for the simple
group. We then have no possibilities of multiple
monopole charges for the U(1)s when this is done. We
find the normalisations and give them in Appendix 3. As
we can see other than {SU(2)}3/{U(1)3} none of these
have 7(2' large enough to admit any solutions.
For {SU(2)1}/{U(1)1} we find (7.27) and (7.28) reduce to

x5 2.1 and W& 3.0

7
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The only possibility is jxmz 3 ( 9(1 must be an integer
J.If we substitute back we find

r(A) =2, Ry= -1, g(H,H) = -1/2
As g(H,H) 1is negative we do not 1in fact have a valid

solution !

So in conclusion , for the ansatz tried , we do not find
any solutions for symmetric coset spaces for any of the

possible space-times

In [09] the particular case of SO(7)/S0(6) is considered

and a non-trivial torsion is given.
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ha itiona m agrangia
When 1in chapter 2 we modified the Chapline-Manton
lagrangian to take account of the extra terms which we
would expect from superstring theories wWe were not
performing a consistent truncation of the infinite
number of terms which we would have. The Chapline-
Manton 1lagrangian contains terms of order ( k/M3)1 (
recall from Chapter 2 that we regarded our terms of an
expansion of terms which had 'sizes' of different powers
of ( k/Mg) and we regarded this parameter as small ) We
included the Zwiebach term which is of order ( k/Mg)t (
every derivative gives us another factor of k ) and the
three form was modified
H=H, + L on (8.1)
Ho is order ( k/Mg) and fl_,is ( k/Mg) so our modified
H A*H = Ho A *H, +2H, A *Qge  +Woe A Sior (8.2)
Will include both (k/Ms)uand (k/MS)‘terms.
If we include these terms then we should also expect any
other terms of order (k/Ms;* to also be needed ( not
mention the (k/MS)c). These would be terms of the form

A b S NS
H“ ,dHHi) RH® , Fu , RF ,dHF ,H F plus lots involving

dp t.

In this chapter we shall attempt to produce some of
these terms. We shall only 1look at when F=0 ( ie we
forget those terms involving F ). In principle these
terms should be derivable from string theory but this
procedure is difficult and well out of the scope of this
work., Instead we shall make some assumptions for which
there is no rigourous justification but for which there

is a little evidence to suppose might hold.
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We start of f be looking at the Chapline-Manton
lagrangian with F set to zero ie

8
7 Raa A A%, -l:-eva/\ M - duntdy (8.3)

If we take the connection to have zero torsion then this

can be written as
!
Lr,anref® (8.4)

! [ Q
Where Rag = dwnb + WgaenhW '

/
A

I Q G
Wob = Wagt V3 € Hape E

( H = HMCEAGCand LS is the initial connection )

and w Bis defined by

C . * .
t Higdp By-1,dp Eq } (8.5)

So we can write all our R/H/d/J terms as Jjust a
curvature term. We know the curvature squared term is
the Zwiebach form

-Lu'eHRM,,pr\ xg 8P (8.6)
. If we assume the same trick occurs as above ie assume
-,’;eNRA,; ARcb’A *g P 0P (8.7)
includes all the H/R/dp terms to order (k/Mg )“then we
have a means by which we can explicitely calculate these
 terms. Although this seem a rather unjustifyable
assumption work done in ref [33] which 1is calculating
terms directly from string scattering amplitudes does
suggest that this does work.
When we evaluate (8.7) we find we have the following

additions to the lagrangian

~(1/78) " RogaHn *( ER% H ) (8.8)
+(17288) .7 2ipHn igHa *(ifHA 1%H) (8.9)

+igHAiPH A #( igHA i%H) (8.10)
(1 de aH A% 1PH A igH ) (8.11)
~(7712)e” Rygadps A *C EF% d ) (8.12)
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=(7/12)e# (dpa*dp)n *(dpa*dp ) (8.13)

+(19/36)e Mipgdp i dp H A #H (8.14)
+(184/48)e Mt n dpwa*( HAdw ) (8.15)
£(7/2)14dp PHA ax (et €7 (8.16)
+(3/2)D{igdp }iPH A €Y (8.17)
L(15/)d%ap a*( HAH e (8.18)

We would 1like to see the effect of these terms on our
ansatzes of Chpt 3 and 5.

For both our ansatzes wp = const so any terms involing dw
to a power greater than one will give no contributions.
so we can neglect (8.12)-(8.15). The terms involving a
single qp) will contribute only to the scalar equation.
We shall 1look at the effect of adding (8.8)-(8.18) to

the lagrangian on our equations of motion in turn.

First we shall look at the Equation arising from varying
B ( H =dB+f])

This is possibly the most important equation since it is
satisfied trivially for the two ansatzes and hence any
constraint arising ,when we have our additional terms,
would lead us into difficulties. When we vary B we find

we have a generalised (2.20)

d¥H  +T, +T, +Ty +Ty = O (8.19)
where '
T, = LAl Ryga *C ER®AH ) } (8.20)

Ty =-£dl 1,0 igHa #C PHALH ) ) ) (8.21)

Ty == d{ in{ PHAXC HA igH ) } ) (8.22)

Ty =5gkdl Lal ifH A %dH } ) (8.23)
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We shall 1look first at the case of SU(2)xSU(2) ( the
other manifolds are not significantly different from
this ).

T¢ is zero since dH = 0 for this case. Since RMSm En
then R%A*(E”H) ~ *H so T;will reduce to d*H which is
zero. For the term Tg, ibﬂ,\ibh will be zero since if b
is for the first SU(2) say then ipH will be a two form
of the first SU(2) and hence inin will be a four form
on the first SU(2) and hence must be zero. So Tg is
zero also . If we 1look at our remaining term T, then
unless a and b are for different SU(2)s we will have
zero for the same reasoning as for T so we will find

Ty ~ d (ighaig*( PHaiPH ) ) (take A€ 17592
, . B € 2™°su(2))
d (igH A * ( Hjaigh ) )
d (é;,z’ﬂ1 % Hy AHy) )
d *H,
This is zero. So we find the generalisation of d*H=0 is
still satisfied for the SU(2)xSU(2) ansatz.
The case of SU(2)xU(1)3 being the internal manifolds

follows in close parallel.

We now take our coset space ansatz ( chpt 5 ).

Terms T, and Ta must reduce to the form

pEF , . ABC

d{ aH,, Hyge H® *E

A8

*
+bHyge Hpg Hepg *E

[
*
+ch’E HsoF}%EF E } (8.24)
( where a,b,c are some numbers ) since these are the
only possible tensors available. For our ansatz we had

~ C For our Coset =spaces where we had our

H AsC:

ABC
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structure constants normalised so that C%BC'CQG( was some

DAL b )
number and CAM.C =constx SA so the first and second

terms in (8.24) must just reduce to

g RO
d( Gy, *E ) (8.25)

Which is zero. The third term is proves upon evaluation

to be zero for cur coset spaces ( this was mentioned in

page 71 )

So terms of the form (8.24) ie Tz and T3 will be zero

Si dH < E®®% then T t al duce to th
ince "~ CA&CC DEE en T, must also reduce to e

form (8.24) so Ty will also be zero
For T, we note that
a ) 2 2
Raa = R as +QRA6 +QR95 (8.25)
Now R,As and R'ZA6 both only involve Cnu and not CEB,_ S0
upon substitution of figg and Rmbs.into T, we will obtain
the form (8.24) again so giving =zero. So we only need
consider R:& Now
Ry *( EPAH )= ~ Ry i
e iPi%C ROaa* ) + 1% R§ A*H ) + R

8
AiCay

R=a constant and Rg = constxEq so

: s
= 1%i7( Rggn*H ) + constx*H

explicit evaluation of stA*H reveals it to be zero. So
-fl reduces to d¥H and is hence zero. So all four of the
terms T, will give =zero and so this equation 1is also

satified by our coset space ansatz of chpter 5 ( also

for chpter 7 )
Before 1looking at the scaler/Einstein equations as a

whole we shall look at the effect of terms (8.16)-(8.18)

ie those terms which only effect the scalar equation.
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Term (8.18) will upon variation yield a contribution to
the scalar equation of the form

d*d( * ( HA*H ) ) (8.26)
For both group and coset spaces HA *¥H is a constant x*1
so in both case this will reduce to d*¥d( 1 ) which is
simply zero.
Term (8.16) will give

Py Ad*H ) } (8.27)

d{ ing( 1
In both cases again this reduces to d*H so this will
also vanish,
Term (8.17) gives

d{ if( D(igH A*H) ) } (8.28)
in both cases inH;\*H (const)x*E 4 so this will be of
the form

a( iP( p#Eg) } (8.29)

A& ( T0 is the torsion ) so iA(D*Ea)

A 8c

now D*EA A To A¥E
will reduce to inT, *£08 1 poth our cases T®~ ¢ 8 E

( where Cgsc are different objects in the two situations

) so this will be Ga°E. *£"®. This is zero since
8 8 -
Eca*E?® = (83 *E" - §f2EB) ana cug®=Cua0. S0 this

term gives no contribution either so for our ansatzes
the terms (8.16)-(8.18) have no effect on the equations

of motion.

When we consider the Einstein equations we will only
have terms (8.8)-(8.11) to consider. These are the rY
and RHQ‘ terms. These will in fact give non-zero
alterations to the Einstien equations. It is important

to check whether the energy-momentum tensor is still of
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the form (constant depending on \W% etc)x*EE for E an

internal space index. Otherwise we will find we have
more constraints arising from the Einstein equations
than we can satisfy.
For our group manifolds it follows very easily that this
is the case.
For the Coset space ansatz ( and actually for the group
one also ) we must have the energy momentum form for the
Hq to be

) ’HF g F | (8.30)
Where 'te;._- is formed from four C“bcs. The only four such

tensors are

cEp CEg CD C oley (8.31)
CBpe €™y C™Y Coap (8.32)
CEpe Chdq CH%CMF (8.33)
% 5c Chda CedhCah £ (8.34)

(8.31),(8.32) and (8.33) immediately reduce to ( const
)rvEE so these will be fine. Explicit evaluation of
(8.34) reveals it alsg to be ( const )x Scf so the
energy-momentum form 'tﬁFwill not cause any problems in
the Einstein equations.
The energy-momentum form for the RH* terms is
—ﬁeﬂ'{LE[‘zagﬁHA)* (6:46” H}L‘{K‘mn“a %(E”r.“) (8.34)
For the RH terms recall that  ~EasalHn */Kncn“)}
Rop = R:b “’Ro‘.b +R:b
Where R and R only involve the c%. . So for the ﬁHz
and ﬁhm the energy-momentum form will reduce to

something like (8.30) so these terms will also not give

o
problems with the Einstein equations. For the RH™ term
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we find when we evaluate it we obtain =zero or (
const)x*EE so this is also fine.

So with the addition of our extra terms we still find
the Einstein equations reduce to two or three algebraic
constraints. Generally these will involve higher powers
of jfand h™ than before. Eg we might find we have to
solve a sixth order polynomial for ?(1 rather than a
third order , which we had before. In general this
cannot Dbe done analytically. This does not mean
solutions don't exist only that we can't express then in
terms of standard functions. ( Since the equations are
non-linear it may Dbe however that the new set of

solutions will not in fact have any solutions )

So the addition of the extra terms to the lagrangian
does not alter the way the equations reduce to
constraints but is merely (?) to make the system much

more complicated.
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Cone io

We have examined the low energy field theory 1limit of
Superstring theories and attempted to find alternate
compactification schemes to the standard Calabi-Yau
spaces. We have taken a lagrangian which describes the
low energy limit and we have found solutions to the
equations of motion for two forms of the internal,
compactified, manifold. Namely Group spaces and Non-
symmetric Coset spaces ( with the fermion feilds set to
zero ).

For the solutions which were Group spaces we have
analysed the consequences of these solutions and it is
very difficult to regard them as serious physical
possibilities. In particular we have not obtained
solutions where the U4-D fermions 1lie within Chiral
representations. For the Coset spaces however the
physical implications of such spaces can be realistic.
For the three types of Non-Symmetric Coset Space we have
found solutions which give realistic gauge groups in 4-D
and chiral fermions. For G,/3U0(3) it 1s difficult to
obtain three or four families of Chiral fermion but for
the other two cases ( Sp(a)y/ssSu(2yxu(1) &
SU(3)/U(1)xU(C1) ) a realistic number of chiral families
could be found.

In both cases solutions were only found in the presense
of non-zero torsion ( in fact for Symmetric Coset spaces
where the torsion was zero we found no solutions at

all ). So for the type of spaces we were considering

= 137 -



the presense of torsion is <crucial to finding solutions
to the equations of motion.

The question of whether we were using an appropriate
lagrangian was considered in Chapter 8 and the possible
consequences of adding additional terms considered.

An important question which has not peen answered within
this work is whether thier will be residual
supersymmetry ,left in four dimensions, after
compactification. It is desirable to have some left over

otherwise the Hierarchy problem is not solved.
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endi ai o) tr c a e
he thre e ace

In this appendix we shall produce the structure
constants, in an appropriate form, for the three groups
Wwe use in chapter 5 ie Gl’ Sp(4)& SU(3). We shall also
give information on the imbeddings which yield the non-
symetric coset spaces which are wused in chapter 5. We
also give the explicit form of the curvature two forms
on these coset spaces and the explicit form of the Yang-
Mills fields when they are the F2 case ( this is this
most interesting form of the Yang-Mills fields).

If we have a simple Lie algebra L with rank rank(L) we
can choose a basis called the Cartan basis. Within this
basis there 1is an abelian subalgebra called the the
cartan subalgebra which has generators H; i=1..rank( L

)

[ H,, Hj] =0 (A1.1)
The remaining generators E have a rank(L) dimensional
label & (which we call a root ) and obey with the Hg

[ H: = O(&E (A1.2)

¢ ?

E:]
If = is a root then so is - X and we have
[E, E_ ] =«"H, (A1.3)
R
The o are related to the o; by a metric g® which we
[ ;
can take as 8  to give «“= %, . If 5+_e is not a root
then E, and E ¢ Will have zero commutator ,If however
* +Q is another root then Ea and Eg will obey
Where the N*Q are defined by

2 v
N%e: n(m+1) oA, " (A1.5)
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Where n 1is the 1largest integer such that §441Q is a
root and m is the largest integer such that 5-4ne is a
root.

A graph upon which all the < are plotted is called the
"root diagram" of L and is rank(L) dimensional, Not any
choice of roots = will correspond to a Lie algebra
there are various consistency conditions which must be
satisfied ( arising from the Jacobi identities ). These
conditions are very limiting. From the root diagram one
can read off the « and calculate the N"\Q so the
diagram contains all the commutation relations. The
cartan basis is not a convenient basis for some purposes
in particular the the structure constants are not

cyclic. to obtain a basis where the structure constants

are cyclic we change the basis to

.
Ex = A ( Ew -E)
HY = iHg (A1.6)

We can further normalise these generators to obtain a

basis where

a Cdbc_ ) So.‘i
be ” " T

This is the type of basis which we require for our work

C (A1.7)

on coset spaces. We present here the root diagrams for
SU(3) , Sp(4) and G, ,which are all two-dimensional ,
and we give the structure constants which are cyclic and
normalised to (A1.7) We also 1indicate the subalgebra

which is used to form the non-symmetric coset space.
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In all three cases the roots indicated in red are those
which will form the subalgebra

We shall be conserned whether the additional
normalisations (5.11)-((5.14) are satisfied or not and

shall give details of the n_ where appropriate.
For Sp(4) the roots in green are those which will form (

together with the two Hs ) the symmetric embeding of

SU(2)xU(1) within Sp(4)
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SU(3)

We form a cyelic basis via

T, = Eq +Eq) 1T, = 4_;3_.( Eg +E.¢ ),Ts é(EE +E_)

-s

=
-3
'

4

ﬁ.( Ee -E_e) ,TS (J‘-b.( EE 'E-g ),T‘ é(Es -E_S)

T; = iH, ’TS =iHg (A1.8)
We find the structure constants are cyclic the non-zero

ones being

]
C = C = C = C = e —
126 13% ) 234 4%¢G ﬁi
-C = C = 4+ = C = - 4
253 YA S ﬁl’ n3 ﬁ
CZSS - CB@% = —‘zl— (A1-9)

We find (5.11)-(5.14) are all obeyed when we imbed

U(1)xU(1) within SU(3) as indicated with

] J
nl :‘-3' ) 1’12 ";S
|, n4= O (A1.10)
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We give here the curvatures for the coset space

SUC3)/UC1)xU(1)

L)

Rig = 20 (¢ -4p)E, +(P+ipDEg
o L L3

Ra = AT (R-30E -(R4EE

2 2
Ry = %{{ 8E;, +( U=07)( Egg -,,.E“ ) 1
Rye 292.:?{ (6 -4@DE, +(@+1@)Eay
R,, = %:{ ((-,{@E,é -(E‘“'{QQ)ESH-
_ 8t % 1
Rys -%*{ (¢ -L3)Ey +(B+43DEsc
= \* -La*)E e
g ;e £ Ry (R Es ]
R = A { 8E ( 4-¢°)(C E,, -E ) '}
25 a 2% +- ¢ ™ X 36
Rog =21 (@-4@DEq +(¢ +4@)Esg !
(¢ -LE9Ey -(@+3@DE, )
(6 -£E")Ezg +(0 +L3DEg
8Ey, +( 4-G)( Ege -Epy )}
(g -4€9Eyg +( g +igDE, )
(¢ —J,;_Q"“)Ew_ =( (s+;:-_QQ)E,3 }
(G- LEIEg, +( 6+Lp)Egy ] (A1
And we also give the Yang-Mills ansatz F2 explicitly

e

[V

<

1
—~—

=}

&

"
~— —~

=
<
[Tl
1]
-~

=]
-
o
1]
~—

-~

o '3
CIZER R 287 B8

gxn'.
F =3, A% +Eqq +Eyg ) (A1
VS .
For SU(3)/{U(1)xU(1)} and 1in fact for the other
cases also we find the Riceci one-forms to be
<«
a _ & _Lb s &
R = -C,-(Q.+Q> ,_Q JE (A1
and the curvature scalar
- 2
R = & (2+Q-ég ) (A1
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Sp(4)

We find a cyclic basis via

T, = f:l(b:en—:_e), T, = (B +Bg) , Ty _‘;‘«;L(ES+E_&)

Ty =é(Ee'E-e)’ Ts = A(E-Ee)r Te =r.;:(E&-E_5)

Ty :&(Eb+E_b), Tg:({.z(Eb-E_b), T = iH,

T, = iHg (A1.15)

We find the structure constants are «c¢yeclic and we

normalise then to

~Ciae = Cizs = Cagy = Cuge = -4

Cazg = Cagq = Ca¢2 = Can3z = Cggg = -14—,5\

Casyio = €3¢0 = By © ”/ﬁl

Cma'o :C?& =-24ﬁ, (A1.16)

We find of (5.11)-(5.14) only (5.11) and (5.12) are
satisfied with
, Ny = L (A1.17)

3
For (5.13) and (5.14) we find

n,:

wl-
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and

We give

Sp(4)/3U(2)xU(1) for the antisymmetric

Rag
Rys
Rye

Rgg

C
where n,(7)=ny(8)=ny(9)= £ , ny(10)= 1
ny(T)=ny(8)=n (9)= &

oot
- EL{
= Y

oS

= A

- 51 _
bed ")8 [ g £z CLGJ

:nq(é)

, “4(10)‘ 0

here the curvatures for the

PO O S
(B-2E9E;y -(@+5EDEy )
8E,, -( 4-B9)( Eqg +E3¢ )
(g-46)Eg ~(@+18)Eg,
(¢ -LEME -%*%@Esu }
(2+Q-LQ")E23 +(2-0 -L3DEsq
(8 -1aMEy, -<Q+LQ Es )
BEyg +(- iH—Q)Em ,LQE,‘ }
(248 ~L@IEy, +(2-0 -5 FYEqg
(@-t@m“ ~(e+LEIER )
(24§ ~Lo")Esy +(2-@ -LEEx
NEy +(-U+lQ)E,, +MEyg )
(¢ LeDEys -(8 +EGOEy, )
(8 ~LEIE, -(p +£@YE; )

The SU(2)xU(1) Yang-Mills ansatz F2 is

%:L{ Eqap + Ess ’\3
A {Ear+ E5Y
%‘:‘_{Ezs— Eze
2-‘;{ LEy - Eqys - Esc"}

F.I

LN

F
Fo

F% =

- AT -

coset

imbeding

(A1.18)

(A1.19)

space

(A1.20)

(A1.21)



G2

We find a cyclic basis via

T - l—’i( EgEg) » Ta = LU E+E) , Ty - If;j( B +E)
Ty = 5C BB » Ty = ZCE-E) , T, = 2(E-EQ)
Ty = FCE+E) , Ty = LCESE) , Ty = %( Ey+E,)
T = ._('1( EE_E'?) , T, = {.1;( Eg-}?:é) , Tn. = (Ji( EE-E_E)
Ty = ¢H, , T, = «Hy (A1.22)

We find the structure constants are cyclic and we

normalise them leaving the following

Cazp = Ciag = ~Gusc = <Cac = *+73

Cisq = Ciez = Cyy = Cyy = Corg = Cgn = -~

Gaya = Cnye = Cqua =- VTS Ciyz =-Coeyy = 1'7

Cospe = Caegy = *{}fg r Oy = +¢—TL1’ Cas,13 =~ %ey3 = "T'F

C;s,m = C,'u’m: +% , c&,w: +% cq’n”sz-c?,m’n: +‘1‘;

Gs,02 = Caayr = “Cgajio = "C»o,u,nzz +{1 (A1.23)

We find (5.11)-(5.14) are all sa

- A8 -
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n, = ,nl_

L
3>
) nq_ :% (A.‘-ZL")

£~ wi~

Ny =
We should note that our structure constants are

different from those of Lust [Q¢]. Analysis of those

used by Lust shows that the Bianchi identity
[?l,[Tb,Tc]] + [Tp,[T., Tg1l + [T_,[T,, Tyll =0

is not satisfied when we choose a= 2,b=9and e=1]( this

is Lusts numbering ). In [2G] it 1is claimed that for

G2/38U(3) the dH equation is satisfied without constraint

because

dH ~ CQ&CM&. o beole

and for those structure constants used this is zero.
However we find using our structure constants that dH ¢
0 so we do obtain a constriant from the dH equation

We give the curvature two forms for Gy/3U(3)
2 (3
= A 3 8
Rg = =1 (€+Q -ie )E o +(-§+Q+—Q,1 JE 4

Nt

Ris ’é—f{ (2+¢ 4¢)E +(-3+¢ 48" )Ey )
Ryy = D0 2E,, +( 1-6‘)( Egg -Ez¢ )}

Rpg :%{ (2 2+ ‘LQL)EIS +(-3—’—L+e %_Qz JEay 1}
R = %:{ (246 - tQk)Eu +(-3 +¢ +1@YEgy )
Ray = 20 (348 LpM)E -(-F+g +heMEg )
A N R R R R RS TR
Ryg =%’*{ 2Epe +( 1- ) Eyy =Ey¢ )}

Rye = 2% (3 +8-48)Ey ~(-3 40 +h@)Eyg )
Ry, =%’~{ (3+0-LE)IEsy +(-2+p+LEIE, )
Ryg =%:{ (2 +0-189Es -(-2+e+LIEy
Rag =%"{ 2By, +( 1-G)( Eyy -Epg )}

R g =‘_1>:\_:{ (% +g -%—_Q’")E“ +(——,°Z+Q+-!;_€')E,-;~ }
TR SRS A S O
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N 3 Lt 3,0 La”
RSG = _')I]. { (-i-f-i—LQ )Esc —(-,L+Q ‘LQ)E‘L'L }
(A1.11)
If we take the case Q: 1 ( ie take our space to be

torsion free ) we find that
')”1
Rao = 2 Epg (A1.25)

This is tk:: same curvature as the six-sphere ( Gl/SU(3)
is isomorphic to the six-sphere ).
And the SU(3) Yang-Mills ansatz F2 for the coset space
is

F! = &km(Eu - Eg,._,)

24

F* = %)‘L(Eg,c + Eyg)

F? = %Y{Eas - Eay)

F = G XLC"Elg + E:“)

0
F? = %)1(513* ESGB
F6 = % )\"- (-EI'L r E 45)
F7 = g*‘('ﬁs + E3e)
. .
FY¥ - _%‘;(1514 +Eag + Eac)) (A1.26)
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Appendix 2 The case of Sp(4)/{SU(2)xU(1)1

We shall now take a look at the case of
Sp(4)/{SU(2)xU(1)} Which is different from the other two
coset spaces because of two facts
1. tr( RAa R ) was not proportional to dH

& _AKD ) . £
2. RagaRepal *E is not simply proportional to ¥E

Why is there a problem ? if we take 1. first

now
f.
R® =Ry R PR ( see 5.20 ) (A2.1)
' %q
quand R 51nvolve only the S-R structue constants €l¢

and so since these are essentially the same for all

three coset spaces ( see Appendix 1 ) the difficulty

cannot arise from these terms. the problem must must be

with R® which involves Czbc which are different .So we

need only look at RQI\ Roterms ( mixed terms K R and R°Rq‘
do not contribute )

tr( RAR ) = _cabac“&c [T GE

| -
N, ab_ T s olegyh
= %Cﬂb'c {-Cah.c %\\E (A2.2)

if géé C §=n35€¥ ie (5.13) 1is satisfied then we simply

find tr( RAR ) proportional to dH. However for
) ab

Sp(4)/{SU(2)xU(1)} we find this is not obeyed C,.C by

is still proportional to o&gf but the factor is

different for the two case - G a SU(2) index and ¢ a
U(1) index
c..c®r. $)9-F for T a SUC2) i A
b E I n3(c) E§ or ¢ a (2) index (A2.3)
ab. _ o - .
Capz C g = ns(o)gg for ¢ a U(1) index (A2.4)

splitting our ¢ indices up into € for SU(2) and & for
U(1) we can write

h
tr( Ra R ) —M ny(€)Cpp, C° é E%n (e, , BN

cde. 3kE
< Aea b :
-')n (c)C..[ kE h) +

- A1l -



b na(D-ngy(d) )CaaccskE&* ) (A2.5)

The first term 1is just proportional to dH as wusual
however the second is not. How can we solve this

problem ? If we take the case of the Yang-Mills fields

being case F2 then

~

2 C
tr( FAF ) = m() X F anF
= —%FoA FC R AL (A2.6)
?guh. xd(l) xsqh.) A
the first term is just proportional to dH the second is
L o W
2 T\, &, E"D (A2.7)
-(Xu(,{_’x.sulz)sﬂ. Cde  Sh

This can cancel the problem in tr( RA R ) provided

{ ng()-ng(&) } = { x‘“ xuog (A2.8)
Taking the values of ngefrom appendix 1 and the values
of 7<L from appendix 3 we do 1indeed find that the
difficulties in the curvature terms are cancelled by the
Yang-Mills fields.
Returning to problem 2. we find that again provided
(A2.8) is satisfied we have a cancelation of our awkward
terms ( this 1is not unexpected RA@,RQ_D,.*Eﬂgi(g closely
related to tr ( R A ¥ ) and if the U(1) part of
tr( RAR ) is cancelled by that of -tr( FA F ) then we
might expect a similar cancellation with tr( RaA ¥R ) and
tr( FA *F )
If we wish to deal with a generalisation of case F1 we
have no SU(2) field and we find (A2.8) reduces to

Q a~ [N
{ n, (€)= n (C) } X o)

This means 9( = 2/3 . Now we can ( effectivly ) have

O
for our U(1) field fields which give an integral
multiple of the fundamental value which is 1 but we
cannot have fractions so this will not work ie having

just a U(1) field will not work.

- A2 -



Can we have a generalisation of F3 namely a Sp(4)xU(1)

field ? If we do this we find the anologue of (A2.8) is
(ng(@- 0, 1 = X+ ’X;@

This again will require )Q@)being a fraction and so will

not work ( The problem with the %”A%nkfiE“Ga> term will

in fact be remedied by using a Sp(4)xU(1) field ).

So We can only take case F2 for the <coset space

Sp(4)/SU(2)xU(1) the other two cases leading to extra

constraints. We find for our ansatz that we can just

treat this case along with the others but we must use

normalisations appropriate for the SU(2) part alone. In

particular we find we should in the following equation

use the value of 1/3 for 7xq.which is the SU(2) value.
K, = 12 -12x* |, Ky = 4/3 -4x

( See pS53 for the definition of K. )

giving K, = 8 and Ky = 0

We can now treat this coset space on the some footing as

the other two coset spaces. This is done within the

text.

- A13 =~



Appendix 3 Normalisation of the Yang-Mills generators

In Chapter 5 it is 1importortant to obtain the correct
normalisation of the generators of the Yang-Mills
fields. We have two ansatzes for a coset space S/R .
The Yang-Mills potential can be imbedded as a R-field (
F2 )or as a S-field ( F3 ) Our total gauge group can be

EqxEg S0(32)/Zy or S0(32).

t

b

8
Assuming our struc
c* g C
c*c ©
Hence in the adjoint representaiion
Trg( Qap) . = - g 24

Tr 0 Q070 iy = Ny Y (43.2)

constﬁnts are normalised so that

d
+ §°
ad
+ng § (A3.1)

SL)CT

0n "'S
Iln|ll >

Al

The ratio nq/1 is independent of the normalisation used
for the structure constants and 1is , by definition, the
ratio of the 'second index of the representation's ie
I,{ adj( R ) }/I,{ adj( S )} (A3.3)

We will be imbedding S and R into E% and we will need
the fact that [4%]

I,{ fund( Eg) } = I,( adj( Eg) = 60  (A3.4)
In the lagrangian we have written tr( ) for Eg we mean
by this

L Tr ( ( this was mentioned on P29 )

30 Eg )‘Gu-o"(
So to calculate 9(1'we must evaluate ,for the case of a
R-field,

]
';aTrgs{ Q-aQ:} (A3.5)
This is
-s—atr&{ KR )“ N ( I, (fund(Eg)/Ip(fund(R) )
= Ltr oo Q;Qg ody Io(fund(R) ) , Io( fund( Eg) Z

w -
Iz( adj(R) ) . Iz( fund( R ) )

- MY -



Using (A3.2) we can deduce
=+8 71 -2n, /I, (  adi(R) ) }.
For an S-field we will obtain

= -2/I,( adi(8) ) } 857 (A3.7)

For Gp/8U(3) [%7]
n"=% y I9( adj(sSu(3) ) =6 & I,( adj(G ) ) = 8
so we obtain

) -
35 TrEd WYl ut -
:;CBTT'Q{ Qch}{'-.J: -

£i- €I~

(A3.8)

For SU(3)/{U(1)xU(1)}

The U(1) generators have a normalisation within ES given

by
L Tr = Tr = =1 A3,
30 EB( Q;Q,){m‘ 58( Qst )‘ﬁ-\ (A3.9)
Since we have U(1) solutions we can take 7(42 -m where

m is the monopole number for the U(1) field over s* and

A
CP repsectively.

As Ig( adj(su(3) ) = 6 We will have _
_-L- [ = -’L Sh'\ .
?’OTrES( anb)\u 2 2ab (A3.10)

For Sp(4)/{Su(2)xU(1)}

We will obtain different normalisations for the 3SU(2)
and U(1). We have ( for the SU(2) )

n, =%, Io( adj(sSu(2) ) = 4 and Iq( adj(Sp(4)) ) = 6
So we obtain ( Y a Sul2d wndes )

) - - -1 -

20 r Eﬁ( QaQB){\J - ) 8 ab

J. = - L N
TrEg( ~Q3Q£)Q = 3331, (A3.11)

For the U(1) we will have

- A15 -



A -
29 TrEB( QQO){w‘l = -1 N (A3.12)
For the U(1) we again have X = n where n is the

monopole charge.

We also have imbeddings within S0(32) to consider. In
the lagrangian we do not have factors of 1/30 appearing
so we wish to evaluate
Trseadyt %% ) fuad
= tr&( QEQ;){“‘ I,C fund( R ) ) , Io( fund(S0(32))
I,( adj( R ) ). I.( fund( R ) )

as in (A3.5) Since I,( fund( SO(32) ) = 2 we have

= -( 2ny/I ( adi(R) ) ) 83k (A3.12)
exactly as for the Est% case. So the factors we obtain
are identical in both cases so 1in chapter 5 they can be

considered together

In chapter 7 we dealt with symmetric coset spaces S/R
and we again imbed the Yang-Mills potential as a R field
and agian it 1is importrant to know the normalisations.
We calculate the appropriate normalisations as above.
We have U(1)s appearing in R for several of the cases so
we must Dbe careful to define exactly what we are
normalising. In the following list we give the
normalisations appropriate to that required in Chapter 7
ie if R is of the form
( simple group ) X U(1)P

Then we are interested in the simple group for
normalisation purposes. ( As for Sp(4)/3U(2)xU(1) which

was dealt with in detail in Appendix 2 ).

- A16 -



Coset Space I X

S0(7)/50(6) l -1/5
SU(3)xSU(2)/U(2)xU(1) i -1/5
SUC4)/7SU(3)xU(1) i -1/4
Sp(4)/5U(C2)xU(1) ' i -1/3
Sp(ll)xSU'(2)/SO(4)xU(1)xU( 1 ! -1)5
SU(2)xSU(2)xSU(2)/UC1)xUC1)xUC1) | -( integer )
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