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PREFACE

Very recently it has been noticed that whenever a Be star has been 

photometrically well observed, the light curves seem to exhibit a 

double wave form with unequal maxima and/or minima. The minima of 

these light curves are often found not to be symmetrically spaced in 

phase. Usually it is spectrometry and photometry that are engaged in 

the modelling of such phenomena. The major proposal of this thesis is 

that these light curves are caused by a co-rotating light scattering 

atmospheric bulge controlled or created in some way by a magnetic 

field. Such a scenario produces a phase dependent polarization. A 

canonical model is causally developed leading to the second proposal 

that polarimetry is more important than photometry and should be lifted 

from the backyard of techniques and given a more central role.

The numerous new procedures designed here for analysing 

polarimetric data in terms of the proposed model show that indeed 

polarimetry is a very powerful diagnostic tool, leading to information 

on stellar inclination, periodicity, co-latitude of the scattering 

bulge and its optical depth, and the sense of rotation.

The availability of measurements for model adoption (i.e. the 

combination of polarimetric, photometric and magnetometric data) was 

found to be unfortunately rather limited, but it does thus give

exciting scope for observational programs.

The work of this thesis was carried out in co-operation with Dr.

D. Clarke.

The contents of the chapters are as follows, the original work 

appearing in Chapters 2, 3 and 4.

Chapter 1: Introduction to the phenomenon of the Be stars and a review

of typical papers concerning the polarimetry of early-type stars. 

Chapter 2: Review and enhancement of techniques for variability

searching. Construction of a simple polarimetric point source/point
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scattering stochastic model extendable to periodicity. Development of 

several new analytical techniques for use in the application of the 

model to polarimetric data.

Chapter 3: Searching for fluctuations in the polarization of several

Be stars. Assiduous study of data relating to X Persei and a Ori E in 

terms of the scattering bulge model.

Chapter 4: Comparison of a photospheric spot and extended but

localized scattering region model to extensive UBV data on EM Cep. 

Chapter 5: Conclusions of the thesis and suggestions for future work.

Where extended mathematical proofs are required the facility of an 

appendix has been invoked. Several FORTRAN?? programs were developed 

to carry out model fitting to data and listings of some of them appear 

in Appendix E. When these programs were used it was assumed that they 

were error free, even although extensive debugging procedures were 

carried out.

At the time of writing three of the chapters have produced four 

completed papers (authors Clarke and McGale):

Temporal Polarization Variations of Be Stars

I. Models Based on Stochastic Behaviour, Astron. and Astrophys. (in 

press) (1986a)

II. Model Fitting of Polarimetric Data, Astron. and Astrophys. 

(accepted) (1986b)

III. The Polarimetric Behaviour of X Persei, Astron. and Astrophys.

(submitted) (1986c)

Double Periodicity in Be Stars. IAU Coll. 92 "Physics of Be Stars" 

(in press) (1986d)

I wish to extend thanks to Professor A. E. Roy for the use of the 

facilities of the Department of Astronomy which, in the last few weeks, 

has become the Department of Physics and Astronomy. The friendliness 

of the Department's members through both my undergraduate and
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postgraduate years have helped make my stay an enjoyable and 

rememberable one. Thanks are particularly directed towards the 

personnel, past and present, of the University Observatory (Dr. Brian 

G. Stewart, Mr. W. Edgar and Mr. R. Loney) for their general 

friendship, and finally to Mrs. Margaret Morris for her by no means 

minor contributions towards the technical aspects of the thesis 

production and her immaculate typing of it.

In the true theatrical tradition the best is kept till last. The 

subject of the thesis was suggested by Dr. D. Clarke and his constant 

enthusiasm was a sustaining influence. It is a pleasure to acknowledge 

his assistance.

During the period of this work I was supported by a S.E.R.C. 

studentship grant.

Paul A. McGale 
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SUMMARY

Over the past few years it has been shown that some (single) 

early-type stars display polarimetric variability, with the data 

distributed in the normalized Stokes plane above the usual experimental 

noise. Presently, in this thesis, a simple point source/point 

scattering model is developed, which can mimic these distributions. It 

is found that they should always exhibit at least one axis of symmetry, 

this being the projection of the stellar equatorial plane onto the sky. 

In addition the model is extended to involve the effects of stellar 

rotation and schemes are proposed for investigating the underlying loci 

in the distributions which lead to determination of stellar periods.

Polarimetric data for particular stars are not always plentiful 

and may not be suitable for full model application. Plotting of data 

in the (q, u) plane may prove to be informative, compared to more 

common polarization, time and position angle, time presentations, for 

cursory inspection in the light of differing shapes of loci expected 

from particular scattering geometries. After consideration of 

instrumental stability by investigation of standard stars, various 

tests can be applied, normality, regression/correlation, and Welch, to 

search simply for fluctuations within the polarimetric data.

When measurements prove to be extensive enough for model adoption, 

special procedures are needed, and indeed various approaches are 

developed. Data can be treated as a density distribution if it is 

thought that the polarigenic mechanism is random in local stellar 

azimuth or just that the nature of the observational sampling has 

induced a resultant randomness.

The method of moments allows for correction of instrumental noise 

and, after consideration of any possible interstellar contribution, 

enables the stellar inclination to be estimated depending on the angle 

at which the direction of maximum data spread occurs to the equatorial



line, i.e. the line that joins the centre of gravity of the 

measurements to the tip of the interstellar vector. If this direction 

is parallel to the equatorial line, equatorial localized events are 

inferred and if perpendicular then the scattering takes place at polar 

latitudes of the star under study.

A Chi-square test in conjunction with Monte Carlo simulations 

allows full model application by considering the probability 

distributions of sectorized data, which may also have been weighted 

according to experimental error.

Often stellar intrinsic periodicity may be expected to emerge from 

data and so needs to be treated as a time-series. The most obvious 

tool for periodicity searching is the method of least squares and it 

has been supplemented here by a powerful F-statistic. Two other 

procedures are also proposed. One test considers the correlation of 

the polarization position angle with that expected from a model of 

chosen geometry and periodicity. Secular and stochastic effects may 

also be present in data, and these may be overcome by investigating the 

sign (i.e. +ve or -ve) of the observed u and again comparing to 

artificially generated data of some chosen model, quantifying the 

result via the continuous curve approximation to the binomial 

distribution.

The techniques for variation searching are applied to polarimetric 

data on the Be stars Ç Tau, y Cas and 28 co CMa which are all found to 

exhibit fluctuations of some kind (i.e. over particular timescales).

Extensive polarimetric data on X Persei were available and 

conclusions as to its nature, an oblique rotator, are drawn as well as 

the discovery of a rapid periodicity and the physical and geometric 

parameters of the applied oblique rotator model.

The oblique rotator scenario (i.e. the obliqueness of the location 

of the polarigenic mechanism to the stellar rotational axis) seemed to
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fit the helium rich star a Ori E, even with a relative paucity of data, 

particularly well, with its polarization, light and magnetic field all 

varying in a synchronous manner consistent with the model.

It is also proposed that in considering any polarimetric model it 

should be possible to predict the form of the light curve through the 

total intensity Stokes parameter. The oblique rotator scenario as well 

as a photospheric spot model are fitted to comprehensive UBV 

photometric data of the helium rich star EM Cep. The statistical study 

shows that both models explain the behaviour of the data equally well; 

under particular circumstances (geometric) the two models can produce 

essentially identical results. It is judged that such a situation must 

apply in this case.

Finally, it is concluded that polarimetry should be given a more 

central role to play in the investigation of early-type stars. The 

scattering dipole-oblique rotator model, seen as an atmospheric 

bulge(s) seems to fit the helium rich (B1^B2.5), helium weak (B2.5-B6) 

and Ap stars particularly well and so the three techniques polarimetry, 

photometry and magnetometry should be given equal credence in 

considering such a model since relevant forms can be predicted and 

hence tested. Actually investigation via polarimetry alone can reveal 

most of the required parameters, vi.z. stellar inclination, rotation 

period, co-latitude of the scattering mechanism (magnetic pole?) and 

its optical depth, and the sense of stellar rotation.

* The n o m e n c la tu re  of " r ic h ' ’ and "weak" r e fe r s  to  the  s tre n g th  o f th e  h e liu m  

lin e s  a t c la s s ific a tio n  d isp e rs io n  (as used U n d e rb iU  & P oaean  Ci?83)).
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CHAPTER 1. Introduction
1.1 About Be Stars

Although the title of the thesis may imply that a survey of the 

photopolarimetry of the early-type stars is about to be undertaken, 

this is not strictly the case. There will be a heavy bias towards a 

subgroup, vtz. the Be stars. These are noted for their extraordinary 

variability over a wide range of parameters and time-scales, and hence 

draw attention to themselves as subjects worthy of investigation. As 

pointed out in the narrative below not all of the related recorded 

phenomena are unique to Be stars. Some of the Be observational traits 

can be readily associated with the rest of the early-type stars. Also, 

Be stars are notoriously difficult to classify spectrally and hence 

within the thesis title a hint of caution lies! Firstly, I shall 

elaborate on the phenomena that give rise to the requirement of a 

special category that is the Be stars.

Since their discovery, the first being y Cas, in 1866 by A. 

Secchi, Be stars have been studiously observed over a wide range of 

wavelengths. They make up about 20% of all B stars and peak at type 

B2-B3. The normal B stars were the epitome of classical stellar 

modelling, i.e. having few lines in their visual spectrum. The Be 

stars, by their very nature, disturbed such a view and were cited as a 

simple illustration of the effect of an extended atmosphere/envelope 

brought about by rotational instability inducing mass loss. It is now 

well known, through space observations (in UW, X-ray), that both B and 

Be stars have a mass flux and so rotational effects cannot be solely 

responsible for the extended atmosphere. The stellar winds of the Be 

stars require, therefore, excursions into cool regions of dimensions 

able to produce observable emission lines in the visible spectral 

region.

The general taxonomy of Be implies that the spectrum is that of



Table 1.1.1

An illustration of the resultant problems of Be star spectral 

classification (from Harmanec 1983)

VARIOUS ESTIMATES OF THE SPECTRAL TYPE OF KX And (HD 218393)

A5p HD catalogue

A ve Merrill (1930)

B9p Harper (1937)

B3e Swings and Struve (1940)

B8e Beals (1951)

B8 la Herman ct at. (1959)

B6pe shell Schmidt-Kaler (1967)

B2 V-IIIe Doazan and Peton (1970)

B3e 4- K1 III Polidan (1976)

BO IV-IIIe Hubert-Delplace and Hubert (1979)
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any B-type with HI Balmer emission. More specifically, a Be star

manifests itself by showing time variability in a large range of 

parameters, vtz. line spectrum, continuous spectrum, radial velocity, 

polarization, etc., but not necessarily on similar time-scales. Such 

wide-ranging fluctuations are unusual for stars near the main-sequence, 

and cannot be wholly explained by subtle physical and/or geometrical

changes.

Be stars are known to undergo a gradual B  ̂Be/shell transition, 

of which Y Cas is an oft-quoted example, the shell spectrum being one 

of absorptions which are narrow and deep in both Balmer and

singly-ionized metal lines. Such transmogrifications take place on 

very short time-scales (years, decades) compared to an evolutionary 

sequence. Usually there is an infra-red excess as well as an 

ultra-violet excess or deficiency. UV observations reveal spectra of 

high ionization lines (CIV, NV, etc.) indicating signs of mass outflow 

- which incidentally may be variable. Singularly, all these properties 

are not unique to Be stars. Many OB supergiants display similar UV 

spectra, as could be said of the line spectra of late B and A type 

supergiants, to the shell spectrum. Other emission line stars, e.g. T 

Tauri, are familiar with the transition phenomenon.

There is a consensus that Be stars are fast rotators due to the

high V^qSini (projection of the equatorial velocity onto the sky; i the

inclination of the stellar rotation axis with respect to the line of

sight) values recorded for them. However the technique used to derive

VgqSini for Be stars is susceptible to a wide range of influences (see,

e.g., Doazan and Thomas, 1983). As a result, V sini values must beeq
considered as highly uncertain quantities.

Similarly the spectral classification of Be stars suffers the

harassment of contamination of relevant lines by the Be envelope,

making the process a little subjective. Table 1.1.1 clearly shows the



consequences and, as I have found myself, this is certainly not an 

unique example!

The picture of a Be star at present, then, is an object with mass 

in the range 2Mq  to 20Mq and an effective temperature of IxlO^K to 

3xlO‘*K, with an extended slowly moving outer atmosphere (5R* to 15R*) 

having subionized regions relative to its photosphere and a variable 

mass flux. They are thought to be young and moving through the first 

stages of evolution of a star relatively rapidly.

1.2 Scope of Variability

Throughout this thesis I shall define, in accordance with Harmanec 

(1983), the period of variability to be:

(i) Long-term if duration is of years to tens of years,

(ii) Medium-term " " " several days to months,

(iii) Rapid " " " " 0.1^ to several days, and

(iv) Ultra-Rapid " " " minutes.

Due to observational (technical) bias, the long-term fluctuations 

are usually spectroscopic, though not all are periodic. Most

medium-term changes, as seen by spectroscopy and photometry, seem to be 

associated with binaries. The rapid variations are generally of small 

amplitude for Be stars, and are well recorded by photometry. The cause 

of rapid variations may be any one of or combination of some type of 

pulsation, contact eclipsing binaries or rotation. The periodicity of

this last variability can be difficult to detect as monitoring is

unavoidably on time-scales comparable to the actual period itself, with

the end result producing false cycles. Batten (1973) has given a 

scholium on the generation of spurious periods. The ultra-rapid 

variations are at the moment testing the state of the art detectors and 

the observationalists' awareness of various noise sources. This thesis 

will mainly be concerned with rapid type variations.
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1.3 Polarimetry of Early-Type Stars

Little has been said here about polarimetry; this sadly reflects 

its usage in the modelling of Be stars, which so far has been dominated 

by results from spectroscopy and photometry.

The first Be star to have been discovered to exhibit an intrinsic 

linear polarization was y Cas (again!), in 1959 by A. Behr. Although a 

direct polarization may be measured, this has an added component caused 

by the interstellar matter between star and observer. Only the 

variability, by either wavelength or time, of the intrinsic

polarization allows it to be discerned from any assumed constant

interstellar contribution - which may not be well known. The discovery

of linear interstellar polarization, by J. S. Hall and W. A. Hiltner,

preceded that of Behr's finding by ten years.

As to be expected several scenarios followed to try and interpret
•¥r

how such an intrinsic linear polarization might be produced.

In order to explain the polarization of the eclipsing binary B 

Lyr, Shakhovskoi (1964) proposed that the simplest way for polarization 

to be produced would be to have the stellar radiation scattered by 

particles contained in a volume that is not spherically symmetrical 

with respect to the observer. Later Coyne and Kruszewski (1969)

suggested a model in which the intrinsic polarization of the Be stars

is caused by electron scattering (which is wavelength independent) in 

the envelope, whose geometry is aspherical with respect to the 

observer, the variation of polarization with wavelength being mainly 

due to continuous absorption by hydrogen.

To a certain extent the intensity of the Ha emission represents 

the electron density in the envelope if it is optically thin. It is

worth noting, however, that a variation in the polarization strength

*From now on "polarization" by itself will infer "linear polarization"



6
(Be stars have typically a low degree of polarization in the continuum, 

'v 1%) may not be reflected in the Ha emission lines, as these are 

thought to be formed at distances much further out (^ 15R*) than those 

at which the polarization is generated ("v 2R*) (see Poeckert and

Marlborough 1977, 1978a, 1978b). Fluctuations in the position angle of 

the polarization imply changes in the geometry of the envelope. So, at 

this point the greatest contribution that polarization can make to the 

modelling of Be stars is in the geometry of the extended outer 

atmosphere.

Not until 1977 was this contribution properly quantified. 

However, notable exceptions up to this point are the works of

Shakhovskoi (1975) and Capps ct aZ. (1973). Both authors considered 

the Be envelope as an extended disk separate from the source star. 

Approximations such as a point source star and an optically thin

envelope for scattering were made. The situations were then studied in 

a particular case, vZz. the disk being observed edge-on, and 

Shakhovskoi showed that here the scattered radiation alone would give a 

polarization maximum of 1/3.

Brown and McLean (1977) showed that, after Thomson scattering in 

an axisymmetric, circumstellar envelope, the polarization, p, observed 

in the continuous radiation of the Be stars is given by p =

2T(l-3y)sin^i where; t is the optical depth of the electron scattering 

averaged over solid angle, as seen from the source star; y is the 

envelope flattening factor; i, as before, is the angle between the

star's rotational axis (or axis of envelope symmetry) and the line of

sight, i.e. the inclination. Obviously measuring p alone does not

allow the individual parameters t , y, i to be separated. However, if

it can be assumed that the rotation axes of Be stars are randomly

orientated (in which case the intrinsic polarization position angles 

should be random), the statistical distribution of p = 2f(l-3y) can be
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determined from the distribution of the observed p, since the 

probability distribution of sin^i can then be known.

From a study of a sample of 67 Be stars, McLean and Brown (1978)

found that most of them were not only seen to have large V sini valueseg
but also very small polarizations. Hence the implication is that the

majority of Be stars have quasi-spherical atmospheres and not highly

flattened disk-shaped envelopes as had been presupposed. However the

validity of this result must be questioned due to the high uncertainty

in determining V sini as mentioned in Section 1.1. eq
The intrinsic polarization exhibited by Be stars is not a peculiar 

feature. It is often observed in many other emission-line stars, e.g. 

Herbig's Ae/Be stars, the Wolf-Rayet and Of stars, and the late-type 

supergiants.

As hinted earlier. Be stars can exhibit temporal variability in 

their polarization. In Fig. 1.3.1 the B wide-band polarimetric 

observations of y Cas (BO.5 IVe) by Piirola (1979) have been plotted in 

the normalized Stokes parameter (q, u) plane; the wisdom of which will 

become apparent as the thesis unfolds (usually it is the polarization 

and its position angle that are plotted against time). This star seems 

to exhibit both rapid and long-term variations, as the measurements 

taken on three nights in 1973 are well removed from those on the night 

in 1977, and at the same time real changes (i.e. above the instrumental 

noise) are reported in both groups. Piirola attributes the changes as 

being due to inhomogeneities and instabilities in the rotating 

circumstellar envelope.

Fig. 1.3.2 displays the B wide-band measurements of w Ori (B2

Ille) by Hayes (1980) over the interval October 1979 to March 1980.

There is an obvious well defined linear pattern to the changes, and 

Hayes claims them to be ordered (in terms of time) as well as of rapid

type. Hayes attributes the fluctuations to a variable mass loss rate.
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According to Hayes and Guinan (1984) these collinear changes are still 

apparent in this star.

Hayes (1984) has also performed observations on the early-type 

supergiants k Gas (B1 la) and a Cam (09.5 la), and they are shown in 

the (q, u) plane in Figs. 1.3.3 and 1.3.4 respectively. The data were 

recorded from several months in 1976 and 1978. Both stars are claimed 

to exhibit rapid fluctuations; the changes seem neither to be 

stochastic nor strictly periodic. Hayes also attributes them to be due 

to variable mass loss in the extended stellar atmospheres.

Coyne and McLean (1975) have looked at the star  ̂ Per (BO IV-V/e+?) 

over a wide range of wavelengths and band widths. The measurements at 

3600/500 A are plotted as Fig. 1.3.5. The base line of the 24 

observations is from 1966 to 1975 and stochasticity is obviously 

apparent. Coyne and McLean attribute changes in electron density 

and/or temperature as the cause.

Immediately it can be seen that the forms of the variations are 

not homogeneous. Since the presences of the loci are essentially 

explained by the same attributives (and assuming them to be correct 

interpretations) the differences must be due, in part, to geometry. 

Without wanting to be too polemical, most of the arguments proposed by 

the relevant authors to substantiate the shape of any of the above 

loci, have been overly qualitative.

In this thesis I would like to present some ideas on how a locus 

in the (q, u) plane could be produced, and to give various new and 

novel methodologies that can be used in their analysis. The objective 

is to determine the geometry of the system whence it came, as well as 

investigating physical parameters (e.g. for variations in the optical 

depth at which the scattering is taking place). The scheme will be 

applicable for treating the data both as density distributions to cover 

stochastic effects and as a time sequence to search for periodicities.
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It would seem that the astronomer's working principle is "There's 

no variability without periodicity", and his motto is "If there's a 

variability, let's determine its periodicity." One scenario in which 

polarimetric periodicity could emerge, would be from a binary system 

scattering from a co-rotating cloud of electrons. The majority of 

observations relating to such a phenomenon have been performed by J. C. 

Kemp's group (e.g. see their work on AO Cas (Rudy and Kemp (1976)), o

Ori E (Kemp and Herman (1977)), Cyg X-1 (Kemp at oJi, (1978)) with the

slightly more definitive (ĉ . Rudy and Kemp (1978)) theoretical work 

being done by Brown aJi. (1978). It is noted that Buerger and

Collins (1970) carried out detailed radiative transfer calculations for

contact binary systems. The encounter of the observations with the 

theory and subsequent analyses was the subject of a thesis by Aspin 

(1981).

Another scenario could be the consequence of an oblique rotator,

where cones of material are in co-rotation with a star, at an angle

relative to the spin axis of the star (Clarke and McGale (1986c)). 

Polarimetrically this is a new idea and is explored further in Chapter 

3 of this thesis.

1.4 Relating Polarimetry and Photometry

The inclusion of a discussion on photometry in this thesis is the

result of a windfall of the total intensity Stokes parameter. A short

discussion follows.

Percy (1982) has listed a dozen Be stars which display rapid 

photometric variations. There are several possibilities that could be 

responsible for these continuum fluctuations (note that they all taunt 

periodicity !)

1) Eclipses in a close binary system (e.g. Lynds ( 1959a))
2) Photospheric spots (e.g. Torres and Eerraz Mello (1973))
3) Radial pulsations

I e.g. Lesh and Aizenman (1974)
4) Non-radial pulsations
5) Oblique rotator (e.g. Harmanec (1984)).
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In considering any polarimetric model it should be possible to 

predict the form of the relative light curve, the scattered radiation 

detected as a polarization being apparent photometrically as an 

intensity modulation. So it can be seen that it might be possible to 

eliminate some of the mechanisms 1 to 5 by observing in both 

polarimetry and photometry. It is of course appreciated that other 

information from, e.g., radial velocity, spectroscopyc may also help in 

model selection. In the end, though, what is needed if any star system 

is to be modelled toto is coverage of the broadest wavelength range, 

enabling investigation at a variety of optical depths.

The concept of the oblique rotator as a photospheric phenomenon, 

really possibility 2 above, or as a scattering phenomenon is considered 

fully in Chapter 4.

1.5 Aim

The aim of this thesis is to:

1) Present a scheme that may be used to search simply for variations

in polarimetric data.

2) Introduce stochastic polarimetric models that mimic, superficially

at least, (q, u) loci found for some early-type stars.

3) Give some means of quantitatively analysing loci, in terms of

statistical significance of fit.

4) Reinforce that polarimetry and photometry are relatable through the 

notion of an oblique rotator.

5) Qualify the above by the analysis of polarimetric data on q Cep, 

3 Cas, 55 Cyg, y Cas, Ç Tau, 3 Vir, 2H Cam, 28 w CMa, X Per, 

HDE 226868 (Cyg X-1?) and a Ori E, and photometric data on EM Cep.

It is hoped that the thesis may contribute towards making these 

most variable of all variable stars a little less phenomenological and 

a little more noumenonological.
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CHAPTER 2. Detecting Polarimetric Variations, Stochastic Polarimetric

Models and Their Fitting to Data

2.1 Preamble Regarding Polarimetric Variations

Before considering stellar polarimetric data in relation to 

models, and models themselves, a discussion on searching for 

variability within such measurements is given.

Two terms that are often connected with data of any kind are 

accuracy and precision. Accuracy is a measure of certainty whereas 

precision is a measure of observational consistency. In performing any 

statistical test, precision is assumed great enough such that 

hypothesis failures/passes can be regarded as due to intrinsic 

variations within the data and that failures/passes are not caused by 

an unstable recording device. This is a very important general

statement but it is sometimes forgotten with a result that false 

variability (more often in photometry than in polarimetry) is 

carelessly reported. All too often insufficient time and effort is put 

into the monitoring of standard stars to check on instrumental 

stability.

In polarimetry one way of investigating precision is to study 

stars that are classed as polarimetric standards, i.e. stars whose

polarization (p), if any, and position angle (6) are constant in time 

and wavelength. Serkowski (1974, pp.168-170) has listed such a set of 

stars. The non-polarized standards also allow the presence of any 

polarization induced by the detector and telescope combination to be 

ascertained. The polarized standards on the other hand are favourable 

for the finding of the orientation of the instrumental frame relative 

to the equatorial frame. It is generally taken that the positive 

q-axis, of the Stokes parameter equatorial frame, corresponds to the 

direction of celestial north, whilst the u-axis is rotated 45° north 

through east relative to the q-axis. The instrumental frame is an
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arbitrary plane of measurement and is controlled by one of the elements 

of the polarimeter. So, if data are to be compared between observers, 

a standard reference is required - as is the purpose of the equatorial 

frame.

In investigating the precision of an instrument via polarimetric

standards, analysis can be carried out in the instrumental frame. The 

q and u measurements (treated as independent parameters) of such stars 

would be expected to be normally distributed for high photon counts (at 

least above 100 per integration), have no correlation with time and be 

significantly non-variant in time. The time-base of stability should 

be tested on time-scales similar to those used in searching for suspect 

variability in program stars. Clarke and Stewart (1986) have given a 

method that may be used to elucidate the presence of any instrumental

polarization. Clarke and Stewart also suggest that it is better to 

work with q and u rather than p and 6, since values of p are usually 

biased, even after having debiasing procedures applied.

2.2 Normality Testing

In the case of limiting noise (i.e. photon counting) a

polarimetric standard would be expected to exhibit q and u measures 

which are normally distributed about means q and U respectively. This 

hypothesis can be tested by investigating the skewness and kurtosis of 

the two distributions. Skewness describes the symmetry of a 

distribution and is defined to be the average value of (Xj-p)^, i.e. 

the third moment about the population mean. The mean value of (Xj-p)‘* 

is called the kurtosis; this quantity relates the width of a 

distribution and has also been described as a test of unimodality 

versus bimodality. To render skewness and kurtosis independent of 

scale, they are divided by powers of (Xj-p)^/n. The resulting ratios 

of moments are known as the coefficient of skewness, , and the

coefficient of kurtosis, 3^, where the sample estimates are given by
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n (x .-Y)^ (2.2.1)
and  ̂   ; x = the sample mean

Xj = observation 
n = number of observations

For the normal distribution = 0 and gg = 3. In a distribution

that has y^ > 0, the low values of "x" are concentrated towards its

mean, and if $2 > 3 the tails are longer than a Gaussian of the same 

m^. So if y2 and ^2 can be calculated for any data set, a confidence

may be set on whether they follow the pattern of a normal distribution

or not. Brooks (1984) has produced improved tables of percentage

points of y2 and $2 for samples from 3 of up to 125 points. Thereafter

relevant critical values may be calculated using the unbiased

estimators and §2 of y^ and ^2 respectively where

- _ , r  6n(n-l ) i i
^1 ” -  ̂ L (n-2)(n+1)(n+3)

(2.2.2)
24n(n-l)^  -, , r  Z 4 n i n - i _;_ _ _ _  1

^2 - ? - c L (n-3)(n-2)(n+3)(n+5)

and n as before is the number of points in the sample under study with 

c being the ordinate of the percentage point to be calculated (e.g. c =

1.96 corresponds to the 95% confidence limit).

The bias refers to the denominator used in calculating the

moments. Taking n as the divisor, the moment is termed a bias

estimator and an unbiased estimator if n-1 is used instead. There is

little difference between the two if n is large ( > ^120).

Whilst Qj gives a good approximation to y^, 62 is rather poor until n %

1000; this is because the distribution of kurtosis is skew.

Skewness in itself is an important test. A failure in q and/or u 

may relate to a time drift in the measurements or the presence of a 

point or points unusually well departed from the sample's mean, these 

being termed outliers or glitches, caused by a sudden change in the
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noise characteristics or an astrophysical fluctuation. It is therefore 

useful to know how good are skewness and kurtosis at detecting 

glitches.

The power of skewness and kurtosis can be investigated by carrying 

out Monte Carlo simulations on the distributions of skewness and

kurtosis. A program of the following nature would be required:

(i) Sample (n times) from a normal distribution of mean zero and

unit variance (i.e. = 1).

(ii) Add a glitch of ko(kdR^) to one of the sample points.

(iii) Calculate Yi and and store.

(iv) Repeat for another 2000 data strings of length n.

(v) Order the values of 9^ and §2 and take the 11th and 1990th

points for the 99% confidence limits and the 51st and 1950th for 

the 95% confidence limits of and ^2.

(vi) Repeat another 50 times, so that the mean 99% and 95% confidence 

limits of Y2 and 2̂ with standard errors can be found.

(vii) Repeat for another value of n.

Such a program was constructed in conjunction with the Numerical 

Algorithms Group's routines G05CCF, G05DDF and MOIANF. G05CCF sets the 

random number generator routine to a non-repeatable starting position. 

G05DDF returns a pseudo-random number taken from a normal distribution 

of user specified mean and standard deviation. MOIANF allows the 

vectors, in this case, of Y^ and $2 to be sorted into ascending order. 

The numbers 2000 and 50 were chosen after inspection of the simulations 

of a related nature by Jones (1969) and Brooks {toe. dtt. ). They are a 

compromise between allowable computing time and the requirement that 

the investigated levels actually are those levels to within 

approximately ±0.5%. The standard errors derived for the present 

simulation are comparable with those in the tables of Brooks. The 

glitch, k, was made to range from 0.0 to 5.0 with a resolution of 0.1,
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of k added to a sample of N points from a normal 
distribution of zero mean and unit variance.
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with the number of points in the sample covering 4(1)10 and 15(5)30. 

The results for n=6,8,10,15,20,25, and 30 are displayed as Figures 

2.2.1(a)-(g). The graphs reveal (when the lines begin to curve) at 

what value of k, for some n, do skewness and kurtosis appreciate the 

presence of a glitch. Obviously the larger the sample the easier it is 

to detect an outlier as is confirmed from the graphs. Theoretically it 

is possible to calculate skewness with as few as 3 points and kurtosis 

with 4, but Figs. 2.2.1(a)-(g) imply that the minimum number of points 

needed for a reliable normality test is a little larger. With at least 

a sample size of 10 a confident result would be expected.

2.3 Regression/Correlation

A method of sighting coherent drifts in q or u is to perform 

sample linear regressions of q and u on time (T). As an example

consider q and T. The equation of the sample regression can be written

as
q = a + b T  (2.3.1)

where q is the estimate of q at time T; the object - to derive the 

sample estimates a and b, a the interception of the q-axis and b the 

gradient in the (T, q) plane, the usual technique of least squares

being applied to the estimates (e.g. see Barford (1967), Ch. 3).

Having carried out the fitting procedure, the null hypothesis that the 

population regression line has zero slope, i.e. the means of q are 

unrelated to time, can be tested. This may be done by comparing the 

value of b/Sy (Sĵ  is the sample estimate of the standard error of b) to 

a table of percentage points of the t distribution with (n-2) degrees 

of freedom (df).

The line described by
T = a' + b'q (2.3.2)

can also be fitted, enabling the population correlation coefficient (p) 

to be estimated by the sample correlation coefficient (r), where
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r = 1/bb'l (2.3.3)

Its value can then be compared with the comprehensive percentage levels 

with ndf for the correlation coefficient given in Appendix A. So, the 

null hypothesis that p = 0 is easily tested at the required degree of 

significance.

As with the sample linear regression, the correlation coefficient 

may be regarded only as an indicator of the strength of a linear (in 

this case) relationship between two variables and not proof that they 

are actually correlated. Justification of the causality of "X" to "Y" 

needs to come from external sources. Essentially the two tests are 

identical, although it should be noted that the mathematical model of 

linear regression requires the X in Y = a + bX to be known without 

error. This condition will be violated in the situation of fitting 

Equation (2.3.2), making b ' a bias estimator of the population 

gradient. It is not a totally insurmountable problem, however (see, 

e.g., Snedecor and Cochran, Sec. 9.14, 1980). So the linear

regression, in particular circumstances, is perhaps a more powerful 

test for searching for drifts, in so much as its robustness is less 

challenged in relation to correlation.

2.4 Welch Testing

The Welch test (e.g. see Brown and Forsyth, 1974) is useful for 

searching for variability that is not necessarily coherent with time. 

Data can be divided into groups to form a set of means and variances. 

The null hypothesis that all the population means are equal is 

testable. The tables that can be used to check the significance of 

equality are the F tables, since the Welch statistic (W) is 

approximately distributed as an F statistic if the null hypothesis is 

true. W requires only that the observations within any group are 

Gaussian.

Brown and Forsyth suggest that the critical values of W are valid
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for groups containing as low as 5 observations, remembering that they 

have to be normal. So in using skewness and kurtosis to check on the 

normality before proceeding with the Welch test, this limit will rise 

slightly if a chance reduction in the power of W is to be avoided.

2.5 The Search for Variability

Reduction of data on program stars may also be carried out in the 

instrumental frame. In order, though, to make any variations 

immediately more relatable to the star (assuming it to be responsible 

for them!), analysis could be done in a plane where changes in q 

correspond to changes in intrinsic polarization and with wavelength (if 

position angle is assumed colour independent), and fluctuations in u to 

intrinsic position angle - a (p, 0) frame. This would necessitate 

evaluation of any interstellar contribution (a difficult problem) and 

knowledge of the relevant intrinsic position angle. McLean and Clarke 

(1979) have cited various methods whereby interstellar components can 

be resolved. The intrinsic position angle may be approximated in the 

form of a weighted mean of all relating observations providing a 

"snapshot" of the angle in time.

A scheme to search simply for polarimetric variations in the data 

of stars could be:

i) Observe polarimetric standards, 

ii) Perform normality, regression and Welch procedures on the 

data of the standards, 

iii) If stability is evident at some chosen level - proceed, 

iv) Test for instrumental polarization using non-polarized 

standards.

v) Compare the position angle(s) of the polarized standard(s) 

with its (their) value(s) in the equatorial plane, 

vi) Derive interstellar contribution for program star,

vii) Rotate measurements of program star to a (p, 0 ) frame.
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viii) Perform normality, regression and Welch tests.

ix) Write paper, with the q and u measurements tabulated in the 

equatorial frame!

If in studying the polarimetric standards an accurate value of the 

variance from photon counting statistics (the limiting noise) can be

ascertained, then step ii) can be missed out. Hayes (1980), for

example, performs a test on the variances of program star data to 

see if they significantly exceed that expected from photon counting 

statistics. Further parameters relating to the instrument usually need 

investigating as well, such as the wavelength dependence of the 

retarder used, the effective wavelength of the filter-detector

(photomultiplier) combination, and instrumental depolarization. All in

all, "detection" of false variability should be avoided if steps i) to

viii) are adhered to, directly or in principle. The problems regarding 

stability, unfortunately, do not end there; other considerations 

include, for example, the effects of atmospheric seeing, a

non-uniformly sensitive cathode of a photomultiplier. Stewart (1984) 

has explored further these and other related problems.

The achievement of higher and higher polarimetric precision is a

never ending story.

2.6 Preamble on Models Based on Stochastic Behaviour

Eventually variations of any kind need to be modelled if an 

understanding as to why they occur is to be found. As illustrated in 

Chapter 1, temporal fluctuations in early-type stars, particularly Be 

stars, of p are common, the behaviour being complex and covering a 

range of time-scales. The polarimetric changes could be either well 

ordered or stochastic or demonstrate a periodicity or even a 

combination of these traits.

Both slow global changes and periodicities may be detected by 

examining coherent movements of the "time-path" through the data when
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plotted in the normalized Stokes parameter plane. However, sometimes 

the data distribution is "apparently random" from which an underlying 

random behaviour for the polarigenic mechanism is inferred. Randomness 

in polarimetric measurements has been qualitatively described by Lupie 

(1983) in terms of vector changes with no preferred position angle 

relative to the centre of gravity of the data point distribution with a 

range of magnitudes.

In this thesis the way the stochastic behaviour affects the data 

distribution is more rigorously explored with a view to determining 

models for recorded data of Be and other early-type stars. The 

geometry described in Brown, McLean and Emslie (1978) is adapted to 

allow the investigation of the polarimetric effects of localised 

concentrations of electrons acting as scattering globules, these 

perhaps being superimposed on the level produced by a general average 

distribution of an extended axisymmetric atmosphere.

2.7 The Model Geometry

Whilst it is appreciated that polarimetric variability could also 

in some cases be modelled via e.g. binaries, non-radial pulsators, the 

evidence that B and Be stars exhibit a mass loss (variable for Be 

stars), suggests the scenario of the scattering of the stellar 

radiation by an enhancement/bulge of free electrons detached from the 

stellar photosphere as an attractive starting point. The scatterers 

need not necessarily be limited to free electrons, as symmetrical 

scatterers (e.g. H2 molecules) have the same scattering angle 

dependence. Further, a stochastic globule model could be easily 

extended to cover periodicity if the bulge is allowed to co-rotate.

The approach below to the investigation of the polarigenic effects 

of scattering globules is, although simplistic, basic. It is assumed 

that the initial unpolarized radiation originates from a point source 

star and that the polarization is produced by an assembly of free
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electrons considered to act as a point scatterer. In reality the 

globule is likely to be placed at distances comparable with the stellar 

photospheric radius, with the geometry involving a spread in the

scattering angles tending to reduce the polarization with respect to

the effect of a point source/point scatterer; a similar end result

would be expected if the scatterer was no longer considered to be a

point.

In addition, the electron concentration in the globule may provide 

a non-optically thin situation with multiple scattering reducing the 

emerging polarization. As already indicated in Chapter 1, the extended 

atmosphere also produces a polarization, some of this flux possibly 

entering the globule and influencing the resultant.

Thomson scattering is wavelength independent. Temperature

influences the ratio of the number of absorbing (wavelength

dependent) atoms to the number of scattering electrons e,̂ go

affecting the optical depth, x^, especially at lower

temperatures (i.e. below ionization temperatures). Therefore, 

can be wavelength dependent, hence inducing a 

wavelength reliance to the polarization. Emission adds 

to the dilution of the polarization at higher 

temperatures, if the emission itself is presumed to be

unpolarized.

In comparing models with real data, such effects then may need to 

be incorporated; nonetheless the models should give insight to the 

interpretation of observational material.

Consider two sets of Cartesian co-ordinates, one (X,Y,Z) 

associated with the preferred axes of the local stellar geometry (e.g. 

Z might be the spin axis of the star, or XY might be the plane of the 

equatorial bulge of an axisymmetric extended atmosphere) the other 

(X',Y',Z') being dependent on the observer's position; the emitting



(a)
to Earth

(b)
Fig. 2.7.1 The stellar point source is at 0 and P is a 
general scattering region providing a scattering angle x • 
Stellar (X,Y,Z) and observer (X’,Y',Z’) co-ordinates have 0 
as a common origin and are uncoupled by the inclination i 
(arc XZ*) of the star's rotation axis (OZ), whilst OX* is the 
direction to Earth. The stellar co-ordinates (r,6 , (f>) of P 
can be related to X through its observer spherical 
co-ordinates (r*,6*,&*).



22

star is at their common origin 0; the line of sight to Earth is OX'. 

The relative orientation of the two frames (see Fig. 2.7.1(a)) is given 

by the great circle arc xx' which may be resolved into the great circle 

arcs xm and mx'. In the description below, the value of the fiduciary 

azimuthal angle corresponding to the arc xm is unimportant and 

arbitrary and for convenience is taken as zero as in Fig. 2.7.1(b). 

The arc mx' corresponds to (^i) where i is the inclination of the 

stellar pole to the line of sight.

If P is considered as a globule of free electrons, the flux 

scattered towards the Earth is

*^0^ (1+cos^x) (2.7.1

with a polarized component given by

sin̂ X (2.7.2)

where is the unpolarized isotropic intensity of the point source

star, the scattering cross section efficiency of a single free

electron, n the number of electrons at P, a distance r from the star
o^n

and X the scattering angle. The scaling factor — —  represents the 

total solid angle subtended by the electrons as seen from the star and 

is the scattering optical depth (i.e. ^^) of the globule. By referring 

the polarized component to the reference plane which is set at an angle 

Y to the local scattering plane, the Stokes vector of the polarization 

may be written as

(2.7.3)

I 1 + cos^x

Q = I*"o sin^X cos2\)j

U sin^X sin2^

with the direction of Q corresponding to the projection of the stellar 

equator on the sky, this being referred to as the Q,quüOLtoHAjaJt iÂ,YLQ,.
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From the geometry depicted in Fig. 2.7.1 the following 

relationships are readily established:

—  = sinB' cos4>'

= sinS' sin<t>'

  = COS0'

= cosy

= siny cos^ = B 

= siny sin\|; = C

(2.7.4)

By adding the direct contribution of the star to the scattered 

intensity and using the identities above, having related them to the 

local stellar frame through spherical triangle ZZ'P, the observed 

Stokes vector for the linear polarization may be written as:

= I

1 + T^(l + cos^y)

To(B: - [:)

2t BC o

(2.7.5)

where B = sin 6 sin (j)

and C = cos 6 sini + sin 0 cos <p cosi

Since >> + cos^y), we may write the observed normalized

Stokes parameters as:

q = I  = - C")
(2.7.6)

2t BC o

It may be noted that the forms of Equations (2.7.6) are applicable 

to all forms of Rayleigh scattering which has the same angular 

dependence as for free electrons.

2.8 A Preliminary Exploration of Possible Polarimetric Variations

The application of Equations (2.7.6) depends to a large degree on 

the underlying astrophysical processes involved in the generation and 

evolution of the globules and on the variety of ad koc geometries that 

are considered. However, insight into possible polarimetric behaviour
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Fig. 2.8.1 For a globule in orbit about a stellar equator 
(0=90 ) the shape described in the (q,u) plane departs from a 
circle, to an ellipse, to a straight line as the inclination, 
i, of the star takes values from 0° to 90°.
(e): Dissipation of the globule during its orbit may produce
spiral type figures.
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can be gained by first considering two simple scenarios involving 

globules in orbit about the star at constant latitude.

2.8(a) Equatorial Break-up Because of high V/^^sini values associated 

with Be stars, proposals for sporadic ejection of material from the 

stellar equator have a long history; references to the topic can be 

found in Peters (1976).

For an equatorially ejected globule, the polarizatio locus can be 

investigated from Equations (2.7.6) by setting 8 = and allowing (}> to 

take all possible values from 0 to 2t t. Figure 2.8.1 displays the 

behaviour for a range of inclination values, the amplitudes of the q, u 

values depending on the size of the globule and its distance from the

stellar point source. It can be seen that the locus varies from a
Hcircle, through an ellipse to a straight line as i changes from 0 to 2* 

In reality, such regular loci are unlikely to be maintained. As 

the globule evolves, perhaps increasing its distance from the star and 

dissipating, the polarization locus would match this evolution. A 

possible schematic temporal development is shown in Fig. 2.8.1(e), the 

degree of spiralling being dependent on the dissipation rates and the 

stellar rotation period. The situation may be even more complicated as 

more than one globule and of differing strengths may be simultaneously 

present at different longitudes.

2.8(b) Oblique Rotator The photometric behaviour of some Be stars

has been interpreted in terms of an oblique rotator model (see

Harmanec, 1984) and this proposal may be extended to describe 

polarization variations. For example a magnetic pole might influence a 

concentrated outflow of material with globules which follow the field 

lines. If the magnetic pole is oblique to the rotational pole by the 

angle 6 then, during its lifetime, the scattering globule is also at 

co-latitude 6. For a dipole field, two spots in the form of N and S 

poles are simultaneously present providing means for outflow and inflow
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Fig. 2.8.2 In the scenario of a classical oblique rotator, 
an orbiting globule at angle q ' from the rotational pole 
provides a wide range of (q,u) loci. As 0 is varied from 90° 
(equatorial zone) to 5 (polar zone), the loci change from 
ellipses, to double-loops, to renal shapes, to near ellipses, 
their appearance depending on i. It can be seen that the loci 
always have at least one axis of symmetry , i.e. the q-axis 
being the projection of the equatorial plane on the sky; for 
the extreme case of 8=90 , the major axis is parallel to the 
equatorial line and for 6 close to zero the major axis is 
orthogonal to this line.
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of scattering material. However, as the scattering geometry is 

symmetric, the overall effect can be equated to a single globule at 

either pole and the subsequent discussion is therefore couched in terms

of there being just one active region. This assumes that two globules,

one at either pole, have a difference in of exactly ± t t ,  and that one 

globule has a co-latitude of 8 and the other a co-latitude it -  6 .

Figure 2.8.2 displays the behaviour of polarimetric loci for a

range of 6 and i values. For a given inclination, the 0 dependence 

shows that, starting at 6 = y (i.e. on the equator), the pattern varies 

from being elliptical to a double loop, to a renal shape, to a near 

ellipse as 0 approaches 0 (i.e. the pole). It may be noted that for 

these two physical extremes of 0, the major axes are orthogonal and 

that for 0 = Y  ; the pattern encompasses the origin while for 0 = 0, it 

does not. In all cases, the locus has at least one axis of symmetry, 

this being the equatorial line.

Comparison may be made between the double looped pattern (see, for 

example. Fig. 2.8.2(b-iii)) and the data for a Ori E (Kemp and Herman, 

1977). In view of the observational evidence of a magnetic field 

periodicity (Landstreet and Borra, 1978), the magnetic oblique rotator 

model is an attractive alternative to the interactive binary model 

which has been applied to the data.

Again, in practice, the temporal behaviour will be more 

complicated than outlined by the simple theory above. For example the 

globule's radial distance will change continuously and the cloud will 

dissipate; several globules may be present simultaneously. The 

geometry might be complex in that the globules could emerge within a 

coned volume around the magnetic pole, hence making 0 come from an 

interval. Indeed there may be a continuous stream in the cone with the 

occasional globule. Nonetheless, investigation of polarimetric data as 

outlined below provides means for investigating underlying geometries.
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2.9 Geometry Assessment Based on Random Observations If it can be 

considered that at any given time the observed polarization is 

generated by a single globule, then, for a given value of i, the 

position of the data point in the q, u plane depends on the size of the 

globule, its distance from the star and its co-ordinates 8 , (() . 

Neglecting the effects of the usual experimental noise, if it can be 

shown that n, r, 0 and (J) are independent of each other, the probability 

of observing the first normalized Stokes parameter in the range q to q 

+ Aq is given by

P(q I n,r, 0, (j>)Aq = P(n)An.P(r)Ar.P(0)A0.P(^)AO

Similarly for the second parameter (2.9.1)

P(u I n,r, 0, (j))Au = P(n)An.P(r)Ar.P(0)A0.P(^)A^

These Equations in combination with Equations (2.7.6) provide the 

Stokes plane data density distribution. Hence it is the underlying 

behaviour of the various probabilities associated with the sizes of the 

globules, P(n), and with their geometric positions P(r), P(0), P(^)

which controls the probability distributions of the normalized Stokes 

parameters.

Again it may be noted that this approach is perhaps too simplistic 

to expect exact modelling. In real situations it is likely that the 

four probability distributions will not be completely independent. For 

example P(n) is likely to depend on P(r), particularly if the 

measurement sampling occurs during the evolution of a globule; 

similarly P(n) may depend on P(0). Nonetheless it is instructive to 

perform the exercise with the simplification of probability 

independence and this is done briefly below for some special model 

cases.

2.9(a) The Truly Random Model As mentioned earlier, reports on 

stellar polarimetric behaviour occasionally make reference to
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Fig. 2.9.1 For a given value of t with angular co-ordinates 
6, 4) coming from constant probability distributions between 0 

TT and 0 2it respectively, the locus produced in the (q,u) 
plane is a circle, the density distribution being influenced 
by i.
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time-paths in the data when plotted in the q, u plane; the term /landom 
is sometimes used to describe the pattern when no regular periodicity 

is detected or any other correlation with time is observed. However, 

the density distribution of the data in the q, u space is never 

assessed quantitatively and compared with what might be the expected 

behaviour of true random effects. Indeed, truly random effects in the 

star do not get translated into random data distributions in the q, u 

plane.

In terms of the scattering geometry, the truly random case occurs 

when P(6) and POf) are constant for all values of 8(0 ton) and (f> (0 

to 2tt). Figure 2.9.1 displays computer generated data for this case 

with various values for i and with both P(n) and P(r) set at unity at 

particular values of n and r. From a cursory view it might be thought 

that a distribution of globules over 8 and 4 as outlined above would 

give rise to q, u density distributions which are independent of i, as 

the random position of the globule has no significance in respect to 

this parameter. However, the scattering geometry does involve i and it 

is this contribution to the polarigenic mechanism that gives rise to 

the apparent biasing. For the above scenario, the Stokes plane density

distribution depends on the probability distributions of B and C (see

Equation (2.7.6)). As these latter terms use trigonometrical functions 

involving 0, 4 and i as variables, biased density functions

automatically ensue.

2.9(b) Restricted Models with Random Globules For the models 

involving equatorial break-up or the active spot (oblique rotator) as 

outlined earlier, a specific value is assigned to 0, so adding a

restriction to the q, u density distribution. However all values of 4

may still be considered to have equal probability either because that 

is the statistical nature of the globule generation or, in the case of 

a spot source following the rotation of the star, because of random
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Fig. 2.9.2 (a) Using the same stellar geometries as Fig.
2.8.2(b) but introducing a Gaussian distribution for the size 
(n) of the globules and random values of 4 , the basic data 
patterns are aberrated, the strength of the effect depending 
on the position on the periphery.
(b) Introducing a restricted flat probability distribution 
for r but keeping n fixed, the data2patterns display density 
distributions reflecting the 1/r dependence of the 
scattering.
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sampling in time by the observer. By assigning probability 

distributions to n and r, computer generated q, u density distributions 

may again be developed. Figure 2.9.2(a) depicts the result for the 

case where P(n) has been given a normal distribution with P(r) being 

unity at a particular value of r whereas Figure 2.9.2(b) shows the 

effect of P(r) having a uniform distribution, but letting P(n) be unity 

for a chosen value of n. The chosen geometries are the same as for 

Fig. 2.8.2 and the underlying behaviour patterns are clearly seen in 

Fig. 2.9.2(a) between the fuzzy boundaries resulting from the

introduction of the P(n) distribution. Because of the 1/̂ 2 dependence 

of the strengths of the observed polarization parameters, the 

introduction of any reasonable function for P(r) results in a bias to 

the density distributions with respect to the origin. As can be seen

from Figure 2.9.2(b), the outer boundaries of the underlying patterns 

are more fuzzy than their inner edges. The effect increases as 6 tends 

to the pole, gradually deforming the locus to a cone.

It may be noted that where the geometry provides larger 

polarization values, the data points become more spread, this

reflecting that, with the chosen probability distributions, the

departures from the underlying pattern reflect fractional changes to 

the polarization.

The magnitude of the data spread depends on the variance of the 

P(n) function in relation to the mean value of n. If the variance is 

relatively large then open patterns tend to fill in with data points 

from one part of the underlying pattern overlapping the points from 

another part. Nonetheless, all of the density distributions produce at 

least one axis of symmetry which, if determined, provides the

equatorial line for the star.

2.9(c) Ad hoc Restricted Models A more realistic model situation 

ensues if, in addition to the randomness of 4, the values of 6 are
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Fig. 2.9.4 (a) Introducing a normal distribution for the
size (n) of the globules but otherwise applying the same 
constraints on the other parameters as in Fig. 2.9.3, the 
loci are similar, but with removal of sharp boundaries (of. 
Fig. 2.9.2(a)).
(b) Restoring n to a unique value and letting r come from a 
restricted flat distribution, but otherwise using the same 
parameters as (a), the patterns produced are similar to those 
of Fig. 2.9.2(b).
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allowed to lie in a restricted range. In this way, for example, the 

effect of an outflow of material from a magnetic pole on the surface of 

a rotating star might be investigated by ascribing globules to the 

limits of a cone.

Figure 2.9.3 gives examples of the restricted cone model with a

range of values of i. Both n and r are given unique values just to

show how the introduction of a spread in 8 tends to fill in the density 

distributions. With the addition of a normal P(n) distribution (Fig.

2.9.4 - set (a)), the sharp limits of the q, u density distribution 

disappear, providing a behaviour which, at a superficial level, mimics

real data. Giving P(n) a singular value and allowing P(r) to be a

uniform distribution. Fig. 2.9.4(b) ensues. The degree of deformation 

of the expected q, u loci given by various particular values of i and

6, is consistent with the results of section 2.9(b).

It may be again noted that the computer generated data always 

produce at least one axis of symmetry related to the equatorial line. 

In the comparison of data for the equatorial flow in relation to a 

polar outflow it can be seen that the major axes of the elliptical or 

near-elliptical distributions are parallel to and perpendicular to the 

equatorial line respectively. Hence, even a cursory examination of 

data should indicate any preference of geometry for the outflow.

2.10 Preamble to Model Fitting of Polarimetric Data

Sections 2.7 to 2.9 showed that if sufficient measurements are 

made of stars which display fluctuations of polarization, quantitative 

analysis of the density distributions of the data in the q, u plane may

provide insight into the geometries and size distributions of the

globules which give rise to the variations. Such studies would be 

particularly relevant in helping to decide on the basic causes of other 

rapid variations (photometric and spectral) as to whether they result 

from rotating inhomogeneities, non-radial pulsations or the presence of
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a close companion.

This suggests the need to compare the recorded q and u probability 

functions with the basic models and their equivalent computer generated 

data, with a view to isolating the key underlying astrophysical 

processes and geometries. Data reduction and processing techniques 

will be required, and the description of these follows.

With the ideas on mechanisms for producing polarimetric

variability in mind and with the intent of evaluating the parameters

associated with the best fit of the stochastic globule model to a set 

of measurements, i.e. determining the basic geometry of the situation 

and the sizes and evolution of the globules, a variety of approaches to 

the analysis of polarimetric data are presented.

Any previous general temporal polarimetric analysis has been 

applied in relation to periodicity searching and the establishment of 

geometries associated with interactive binaries (for example, see 

Brown, McLean and Emslie, 1978). In this thesis, new approaches to 

temporal data analysis will be presented and, in addition, other novel 

schemes will be demonstrated that concentrate on the distribution of 

the q, u values without recourse to the times of measurement, allowing

for situations where there is no underlying periodicity or where it

might be assumed that if any periodicity is present, the observational 

scheme imposes a randomness to the sampling.

Before applying the analyses described below, it is assumed that 

statistical tests will have first been undertaken to demonstrate that 

the distribution of measured values in the q, u plane represent real 

fluctuations above the experimental noise; such tests to see if the 

spread of points is greater than that expected from experimental and 

photon shot noise are described in the polarimetric work of Kemp and 

Barbour (1983) and Hayes (1984) for example, or a scheme of the type 

described in Section 2.5 carried out.
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2.11 Further on the Model Equations

Equations (2.7.6) may be written as:

q = T^^a^ + a^cos^ + a2Cos2 )̂ 

u = Tg(b^sin^ + b2sin20) 

where a^ = sin^i(ysin^6 - 1)

(2.11.1)

= -i sin26 sin2i b^ = sin2 0 sini

a^ = -i sin^e(l + cos^i) b2 = sin=6 cosi

In practice the application of these equations is made complicated for 

four reasons, it being convenient to introduce them in the following 

order. Firstly, there is likely to be an intrinsic polarization from 

the global extended atmosphere. This situation has been modelled for 

the optically thin axisymmetric case by Brown and McLean (1977) and 

provides an offset, q^, in the first parameter only. Secondly, the

stellar equatorial line will, in general, be rotated relative to the 

instrumental measuring frame which in turn is normally relatable to the 

standard celestial equatorial frame. Thirdly, there may be an 

interstellar polarization affecting both normalized Stokes parameters. 

Usually its value, q^, Up is expressed in the standard celestial

equatorial co-ordinate frame or instrumental frame. Relating the 

overall situation to the chosen reference frame by using the Mueller 

calculus (see Clarke and Grainger, 1971), Equations (2.11.1) may be 

written as:

q*j = qj + (q^ + T^(a^ + â cos(|)j + a^cosZ^j ) )cos2Q - T^(b^sin(|ij + b2sln2 *j)sin2Q +

(2.11.2)
= Uj + (q^ + T^(a^ + a^cos4>j + B2Cos2 (|)j ) )sin22 + T^(b^sin(|)j + b^sinZ^ycosZQ +

where Q is the rotation (positive) of the stellar equatorial line to

the reference frame and the subscript j refers to the values associated
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with the measurement. More correctly, for the general stochastic

model, should also be subscripted to allow for its variability. In 

most of the analytical procedures it is assumed to be constant.

Fourthly, as indicated in Equations (2.11.2), the measurements carry 

the usual experimental noise which in the optimum case is set by photon 

shot noise. To a good approximation, it can be assumed that the

experimental noise behaves as though it is additive to the underlying

polarization, i.e. it is not a fractional noise. Its values n and

n̂ j can be considered to be taken from a probability distribution, say

from normal distributions with zero mean and standard deviations and

a^. For the proposed schemes of analysis, it is assumed that the data

are fairly homogeneous in terms of noise strength with each of the

values of q and u carrying the same uncertainty (o^ =o^).

If the globule is in co-rotation with the star and Equations

(2.11.2) are being considered with a view to determining periodicities, 

they can be modified by replacing with (2ïïVt + e) where v  is the

rotational frequency and e the phase relative to some epoch, say the

time of the first measurement in the data stream. Terms involving 2 t t v

may be defined as contributors of the fundamental and those with

the harmonic. Values of v may be positive or negative depending on the

sense of rotation of the star; a positive value corresponds to a

left-to-right rotation as seen by the observer.

Hence

q*(tj) = qj + (q^ + T^(a^ + a^cos(2îrvtj + e^) + a2Cos(4ïïvtj + e^)) cos2S

- T (b,sin(2ïïvt. + E^) + b„sin(4TTvt. + E,)) sin2Q + n 0 1  J  T z. J * *  Aj

(2.11.3)

u*(tj) = Uj + (q^ + T^(a^ + a^cos(2TTvtj + e ^) + a2COs(4ïïvtj + e^)) sin2Q

+ T (b,sin(2TTvt. + E r ) +  b^sinC^irvt. + e )) cos2Q + n o i  j r z  J n u ;
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Fig. 2.11.1 Stellar intrinsic normalized Stokes parameter 
axes are translated and rotated ( 2^ ) relative to the 
instrumental axes (q*,u*) by the interstellar components 
(qj,Uj). A set of axes parallel to the intrinsic axes but 
with origin on the centre of gravity of the data (q
are used to investigate their distribution by the method of 
moments, and by X tests (sector width Aa ); periodicity may 
also be investigated by the method of least squares, by 
correlation of the position angle, a, and by correlation of 
the sign of u'*^.



33

where refers to the time of the individual measurements and and

refer to the planes of the fundamental and harmonic respectively;

in this model = 2e^. An example of the behaviour of Equations

(2.11.3) with noise is depicted in Figure 2.11.1. Some idea of how the 

data pattern would change according to the stellar geometry (i, 6 ) can 

be obtained by considering Figs. 2.8.1 and 2.8.2, adding an offset 

intrinsic polarization, rotating the co-ordinate frame, taking points 

at random on the locus and adding an experimental noise.

Even if the experimental noise is small, rather than following

clearly defined loci, values from the stochastic globule model and real 

measurements provide data densities with a spread that is influenced by 

the probabilities associated with the various model parameters (8,^,^^ 

- see Section 2.9). The analytical techniques described below address 

the problem of fitting the recorded data density distribution to the 

stochastic model.

2.12 Data Reduction Procedures

Some points on reducing data have been raised before by previous 

workers but not in a unified way as is done here.

Equations (2.11.2) and (2.11.3) may be used to various degree to 

provide information about stellar systems. In the first place they may 

be considered solely in connection with periodicity searches with 

either or both Stokes parameters being investigated. The amplitudes of 

the q and u fundamental and harmonic frequency components might be 

evaluated independently and compared to ascertain the basic geometric 

coefficients (i, 0) of the system and its orientation 5 relative to the 

instrumental reference frame. Ultimately the best model fit might be 

investigated incorporating the combination of the fundamental and its 

harmonic simultaneously for both Stokes parameters, with the 

appropriate phase restraints, as necessary.

Another approach might involve determination of the basic geometry
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of the star ignoring the times of measurement, involving only the 

behaviour of the q, u data density distribution.

The chief difficulty in performing any data analysis is the 

decoupling of the model parameters (i, 0) from those introduced by the 

observer (Q, and e if relevant). If any of the parameters can be 

determined prior to the main analysis, especially 2, the model fitting 

procedures are greatly simplified.

Valuable insight to the situation should be available if the 

interstellar polarization is known before the main analysis (see 

Section 2.5). Its position (q^, Uj) in the reference frame provides an 

origin for the intrinsic polarization (see Fig. 2.11.1).

Knowledge of the intrinsic origin is particularly useful for 

making preliminary assessments of the data by looking for 

characteristic patterns as described in Sections 2.7 to 2.9, this being 

particularly valid if it can be assumed that the times of observation 

have imposed a randomness on the values of 4). Assuming that the 

measurements constitute a large sample taken randomly with respect to 

any underlying periodicity, their centre of gravity (q*^, u*^) may be 

defined as (c^. Equations (2.11.3)):

= Uj + (q^ + T^a^)sin2Q

(2.12.1)

Hence if the interstellar polarization can be estimated 

accurately, its offset can be subtracted allowing the orientation of 

the stellar equatorial line to be determined, since q^^ and u*^ should 

lie on this line; the direction of the centre of gravity of the data 

distribution relative to the intrinsic origin corresponds to the 

equatorial line. With knowledge of 2, model fitting could be 

undertaken more directly.
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Comment on the underlying nature of Equations (2.11.3) has 

previously been made by Brown at. (1978). They have clearly 

demonstrated that the fundamental and the harmonic treated separately 

represent elliptical figures. With the nomenclature here, the 

fundamental ellipse has its major-axis parallel to the u-axis of the 

stellar frame, while the harmonic ellipse is parallel to the q-axis, 

the eccentricities depending on the inclination. The relative size of 

the ellipses depends on the position of the globule in the stellar 

system. A strong fundamental ellipse indicates a globule nearer to the 

pole while a strong harmonic indicates a globule closer to the equator.

If there is an obvious eigendirection in the data density 

distribution, this corresponds to the major-axis of one of the ellipses 

(fundamental or harmonic) described above. Thus the value of 2 is 

determined with ambiguity, i.e. the preferred axis corresponds to 2 or 

2 + ,̂ remembering that angles are doubled when plotted in the q, u 

plane.

More quantitative investigations along these lines form part of a 

more general approach to model fitting from which all of the geometric 

parameters - those associated with the star and its geometric aspect 

automatically emerge. This scheme is now presented below.

2.13 The q, u Density Distribution

2.13(a) Investigation by Taking Moments A first approach to the 

investigation of the data density distribution can be made by 

projecting the measurements along various axes and examining their 

distribution in the form of a histogram. Comparison might be made of 

the histogram profile with computer generated data via Equation

(2.11.1). For convenience the axes might be made to pass through the 

centre of gravity of the data, the measurements having been transformed 

to the centre of gravity frame to provide new values given by q'*^ = 

(q*-q* ) and u \  = (u*-u* ) - Equations (2.11.2) and (2.12.1). By
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rotating the centre of gravity frame, the various projected frequency 

distributions might be examined and the direction along which the 

maximum spread occurs might be termed the major principal axis (MPA).

It can be seen from Equation (2.11.1) that q and u will have 

maxima. In the case of the q parameter, this occurs when c|)=:0 but for 

u, the required value of depends on the choice of u^ and U2. The 

relative magnitude of the q and u maxima also depends on the underlying 

model parameters and if an elongation is seen in the data, its 

direction corresponds to either the q or u axis. Thus by estimating 

the direction along which positions of the data extrema lie to 

determine the MPA, it may be seen from Equations (2.11.2) that 2 can be 

deduced but with ambiguity (2 or 2 +^)j depending on the underlying 

values of i and 6, as already described above in relation to the 

equatorial and polar ellipses.

A more quantitative statistical approach can be applied by taking 

various moments m^^^ about the centre of gravity, here the moment being 

defined for N data points (ĉ . Section 2.2) as:

"(k) = 1 ; m I (2.13.1)
q j=i N (k)^ j=l N

The incorporation of the centre of gravity of the data points q*^,

into the definitions automatically forces the first moment to be

zero.

The second moment gives a measure of the spread of the data, 

defining the population variance, and it can be used for assessing the 

presence of eigendirections and determining the stellar equatorial 

line. Further, the second moment can be used for establishing i, if it 

can be shown that 8 has a value from either the equatorial or polar 

zones.

If the reference frame for the measured Stokes parameters is
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rotated through an angle a, the data can be transformed to the new 

frame by applying the appropriate Mueller matrix to Equations (2.11.2) 

to give:

q*-i - q-fCosZa + u.sinZa + n cosZa + n sinZa J 1 1 qj Uj

+ (q̂  ̂+ '*■ + a2CosZ4>j))cosZ(Q - a)

- T̂ (b̂ sin4»j + b2sinZiJ)j)sinZ(Q - a)
(2.13.2)

u . = -q sinZa + u,cosZa - n sinZa + n cosZa J I I qj Uj

+ (q̂  ̂+ T^(â  + â cosij)̂ + a2C0sZ(|)j))sinZ(Q - a)

+ T̂ (b̂ sin4»j + b2sinZ(}>j)cosZ(Q - a)

By taking the second moments in the new frame, in the limit for a 

large sample, it may be shown that:

= l2_ ((a * + a„*)cos*Z(Q - a) + (b/ + b,*)sin*Z(Q - a))(Z)q̂  2 1 2 1 Z

+ a ĉoŝ Za + o ŝin®Za q u
(2.13.3)

% ®
((â z + a2*)sin*Z(Q - a) + (b̂ * + b2*)cos*Z(Q - a))

%
+ Oq'sin^Za + ô 'coŝ Za

(See Appendix B for proof).

Hence the second moments take on maxima and minima when a=2 or 

2+^, depending on the relative magnitudes of (q^^^+q^^) and (uj^^+u^^). 

For example, for the equatorial case, Sj^^b^^O and a2^b2 and the maximum 

of m(2) occurs when ot=2; for the polar case, a2=b2=0 and bĵ >a2, 

giving the maximum of m/m\ at a=24-ÿ-. Thus the ambiguity of

determining 2 already mentioned in earlier general discussions is

clearly identified. However, if the direction of the interstellar 

polarization is known with reasonable confidence, the ambiguity might 

be resolvable. With noisy measurements it may also be noted that the

eigendirections will be difficult to identify if the underlying model
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provides (a^^+a^^) = (bĵ +̂b2*). It may also be noted that the test is 

strictly valid only if o^ = ô , so making the effects of noise 

independent of the choice of the co-ordinate frame. A check on whether 

the maximum and minimum variances are statistically significantly 

different can be made by the usual F-test (see Snedecor and Cochran, 

Sec. 6.12, 1980).

As previously mentioned, the inclination can also be derived by 

the second moments when 0 is approximately polar or equatorial.

Case (1) Polar (0->-G°)

Here the correct orientation of the reference frame is obtained 

when a=2+^ thus:-

m/g\ = (b.^ 4- b-2) + o ^cos^2a + a ^sin^2a(2) 2 1 2  q u
Ha (2.13.4)a

T ^
m(2) = (â  ̂+ 8̂ ') + Oq̂ sin̂ 2a + ô ĉoŝ 2a

Now for any relevant distribution under study, at a the maximum

variance (V^) should occur (i.e. parallel to u-axis) and simultaneously

a minimum variance (V^) in the orthogonal direction (i.e. parallel to

q-axis); these variances will correspond to m/o\ and m(o\
"b "a

respectively. Since and are known, these two added variances 

are easily subtracted from \l̂ and ^2' So, and remembering a2=b2=0:

T  ̂ T *
- (a^^cos^2a + o^^sin^2a) = 02  ̂ = —^  b^^ = sin^20sin^i

(2.13.4)b
T  ̂ T ^

V, - (a ^sin^2ot + 0 ^cos^2a) = a, ̂ ^  a.^ = —^  sin^20sin^2ii q u 1 z 1 o

i.e. i = cos ^ ^1 (2.13.5)

Although a2=b2=0 only occurs when there are no variations (i.e. 0 =0),
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Fig. 2.13.2 For a star showing variations about its equatorial 
zone, the inclination may be derived by forming the ratio of 
the second moments. The formula can be used to give a 
reasonable estimation of the stellar inclination until 0<8O°.
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inclination can be estimated by taking the ratio of the 
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Fig. 2.13.1 shows how well the approximate formula (Equation (2.13.5)) 

holds for various values of 6. There appears to be an insignificant 

underestimation in i, until 6>30°.

Case (2) Equatorial (6=90°)

At otrQ, correct orientation is achieved, Equation (2.13.3) 

becoming:

' ( 2 ) -y- (a,^ + a?^) + a ^cos^2a + a ^sin^2a / i z q u
(2.13.6)

i/̂ x = — (b,^ + bn^) + o ^sin^2a + a ^cos^2a iZJuQ 2 1 2 q u

So for any related distribution under study, noting that aĵ =bĵ =0, 

and applying the corrections for experimental noise as in Case (1):

\l̂ - (Oq^cos^2a + a^^sin^2a) = ~ - 2 _
2 2

T ^
Vj, - (Oq^sin^Za + a^^cos^2a) = b^^ = ~y ~

sin^8(l + cos^i)^

(2.13.7)
sin^8cos^i

I.e. = COS ^
2

0, a 2 ^
1 ^ 1

(2.13.8)

Note in Equation (2.13.8) that since i has only one solution.

Fig. 2.13.2 reveals the adequacy of the approximation of i, for 

differing 0 values. Fig. 2.13.2 suggests reasonable estimates of i are 

got for 8 down to -80°.

In both cases, if experimental noise is not removed, the value of 

i derived would be further underestimated. Errors on i may be 

calculated by considering confidence intervals on the population 

variances of the sample variances \1 ̂ and ^2. Further, \l̂ anqj V2 can be 

ratioed by the variances of the experimental noise to check if and 

^2 are above the instrumental error (ĉ . Section 2.5) via the F-test.
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The third moment describes the asymmetry of any distribution and 

it can be seen from Figs. 2.8.2 or from Equations (2.11.2) that the 

stellar equatorial line provides an axis of symmetry for the general 

model. Thus by adjusting the value of a until the minimum value of 

m(3) is obtained (zero for a large data sample), Q is determined 

uniquely. The power of the third moment for determining the stellar 

equatorial axis is best for models away from the extremes of the 

equatorial and polar cases, particularly the former, which for the 

exact case provides an indeterminancy. As can be readily seen from 

Fig. 2.8.2, m^^) is zero when i=0° or =90°. However, the ambiguity

is resolved by noting that the difference between m/n\ and 

m^2) =AM(2) is zero at i=0°, but not at 8=90°.

2.13(b) Chi-Square Testing One of the standard procedures for model

fitting is the application of the y^-statistic to compare the data with 

values engendered by the theoretical model. For the exercise here, the 

data should be transformed to the centre of gravity frame. If the 

value of Q is known with the data set already expressed in the stellar 

co-ordinate frame. Equation (2.11.2) would be used with Q equal to 

zero. Classes may be constructed by dividing the data, q'*^, u'^^,

into a set of sectors of angular width Aa (see Fig. 2.11.1). According 

to Cochran (1952), the number of classes for comparison by the y^-test 

should be moderate (10-25) and have equal interval. Since y^ works

best with classes containing a larger rather than smaller sample, a 

convenient division might involve 10 sectors each of width 36°.

The observed probability (pj) for the number of data points in the 

j^^ sector is given by the ratio of the number of points in that sector 

to the total number of points, N, constituting the data. Again using 

Equation (2.11.2), the expected probability (P,) can be calculated by 

Monte Carlo methods according to the chosen model parameters i, 6 (and 

if necessary) and the selected probability distribution for (j) , an
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obvious one being that all values of are equally probable. The 

initial value of can be taken as unity since scale is not important 

in the comparison. For testing that might be varying, a variety of 

distributions for n and r can be applied, either in combination or 

singularly, depending on the proposed globule production mechanism and 

evolution.

Comparison of p^ with Pj may be made through the statistic

= N f  ~ (2.13.9)
J = 1 " j

It is then possible to test the null hypothesis, H^: Can the

observations be regarded as randomly drawn from the theoretical 

distribution? The value of can then be compared with the

appropriate tables to assess the statistical significance of any fit. 

Since the computed values of the Pj's represent estimates for the true 

probability distribution for the model, the degrees of freedom are 

(10-2) rather than (10-1). Accordingly the critical value of y^ for 

rejection at the 5% level is =15.51, for example. The parameters which 

produce the minimum value of y^ from Equation (2.13.9) provide the best 

model fit. Hence the most appropriate values of i, 6 , and Q (if 

necessary) are determined with a calculated significance. The 

sharpness of the minimum value of y  ̂ will depend on the number of 

sectors chosen in relation to the total number of data points and the 

underlying values of i and 0 not to mention the quality of the data 

used itself; in practice the number of sectors might be varied to 

achieve the sharpest minimum, i.e. to obtain the narrowest range of 

acceptable model fits.

Since the apexes of the sectors are at the origin of the centre of 

gravity frame, it will be appreciated that the chances of a data point 

in this vicinity lying in any particular sector are greatly dependent
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on the experimental noise. To reduce the error on the observed 

probabilities, weighting might be applied to the data. One possible 

scheme might remove all points within a specified radius from the 

origin and recalculate after amending the value of N. Without

knowing the value of (which cannot be found by this method), it is

very difficult to assign a value to the standard deviations of the 

experimental noise, if their effect is to be included in the 

calculation of Pj, from Equation (2.11.2). A rule of thumb might be, 

however, let the standard deviations of n^ and n^ be comparable with 

the amplitudes of a^, q2, b^ and b2 predicted by the values of i and 6 

under study.

2.14 Polarimetric Periodicities

2.14(a)_____Introduction Polarimetric periodicity may be caused by

scattering from material in co-rotation within a binary system or by a

scattering zone revolving with a single star. Equations describing the

first situation have been developed by Brown aZ. (1978) and several 

binaries have been analysed in terms of their canonical model (e.g. 

Brown at. - toe. cZt. Rudy and Kemp, 1978). In terms of

polarimetry, a single rotating star with an enhanced scattering region 

is equivalent to a special case of the binary model and is represented 

by Equations (2.11.3). It is taken that the globule acts as the 

polarigenic mechanism, with the variability caused by stellar rotation, 

the globule being attached in some way to the stellar photosphere. In 

this investigation of how the periodicities can be determined from the 

data, the discussion is couched in terms of single stars rather than 

binary systems, appreciating that additional observational material, 

such as radial velocity variations or a light curve, may be applied to 

help decide on the fundamental nature of the variability.

In the discussion below. Equations (2.11.3) are investigated with 

a view to obtaining values for the periodicity, phase and geometric
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coefficients with emphasis on quantifying the statistical significance 

of the fits of the model parameters. The application of the method of 

determining Fourier coefficients (Section 2.14(b)) makes no pretence of 

being new but a brief discussion of this topic is presented for 

completeness. Two other novel data treatments will then be presented, 

the last one being appropriate to situations in which the effective 

globule scattering strength, t ,̂ displays temporal fluctuations or in 

which the strength of the contribution from the axisymmetric atmosphere 

exhibits changes.

Again, any analysis is simplified if Q is already known and the 

problem is made easier if the value of the phase e can be assumed, say 

from independent measurements such as a light curve or a radial 

velocity curve. If the phase is being determined directly by the 

period analysis, it is important to remember that for any overall best 

fit a unique value is required such that e=e^=2e^. As a consequence of 

expressing the behaviour of q with cosine functions and that of u with 

sine functions (see Equations (2.11.1)), and using sine-wave fitting 

routines to both q and u, the oscillations in the stellar equatorial 

frame of the fundamental frequency for the two parameters should appear 

to be out of phase by ±y ; the same constraint also applies to the 

harmonic.

If analysis of the data density distribution has been applied as 

outlined above in Section 2.13, suggestions might ensue for domains in 

which i and 6 lie, allowing model fits to be confined within limits, so 

reducing the overall computing time for period searches.

2.14(b) Application of Fourier Coefficients Various approaches have 

been made in connection with binary star studies to detect 

periodicities and to apply them to determine the stellar geometry. In 

some cases the periodicity taken for the model fitting is obtained from 

photometric or spectroscopic observations.
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By expanding Equations (2.11.3) the polarimetric oscillations may 

be expressed by:

A*(tj) = q^ + q2Cos2wvtj + q2,sin2nvtj + q^cos4TTVtj + q^sin4nvtj

(2.14.1)

u*(tj) = Ug + u^cos2nvtj + U2sin2wvtj + uycos4nvtj + u^sin4nvtj

Kemp's group (Kemp Q,t at., 1976, Kemp Q,t at., 1978) have used an 

autocorrelation technique to determine the polarization power 

periodogram. Significant periods were then fitted by least squares to 

allow determination of the Fourier coefficients which were translated 

into geometric parameters describing the stellar system (Kemp and 

Barbour, 1983).

Brown oX at. (1978) have shown that the Fourier coefficients can 

be related to i, 0 and e, and they may be written as:

Fundamental Harmonic

1 + cosi  ̂ (u^ + + (qg - Ug)' 1 + cosi (uj + q*)' + (qj - V
1 - cosi - q2^* + (^2 + 1 - cosi (U) - q*)' + ("4 + q,)'

(2.14.2)

tan

As a^, bĵ , 32 and b2, are relatable to the Fourier coefficients, 

the value of 6 may be determined using either the q or the u parameters 

as follows:



Byq* : 6= tan" 2â  sin2i 
+ cos*i] By u : e = tan“*

2b2 tani
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(2.14.3)

Brown tt at. (1978) noted that the alternative forms associated

with the fundamental and harmonic serve as a consistency check. In 

later papers the fitting of the canonical model to the data has been 

investigated (Simmons, Aspin and Brown, 1980, Aspin, Simmons and Brown, 

1981) in terms of a statistic. This work showed that the normal

experimental noise produces uncertainties to the model parameters which 

are larger than those predicted by the formal error treatment and, in 

addition, the determined values from the fit carry bias.

A least-squares fit can be applied to Equations (2.14.1). This

may be done on the fundamental and harmonic separately for each of the

Stokes parameters. Alternatively, an overall model fit might be

considered by determining the least-squares values of the mean level 

and the coefficients of the fundamental and harmonic simultaneously

with the imposition of the required phase between the fundamental and

harmonic. Whether the method of least squares is applied to the

components individually or to a unified fitting procedure (i.e. to the 

model), the significance of the fit can be assessed according to the 

calculated F-value. For the least-squares fit the F-value for q^, say, 

is given by (see Daniel and Wood, 1980):

F = ' K - (2-F4-4)
q

where is the multiple correlation coefficient squared and

represents the fraction of the total variation accounted for by the

fitted equation, N = number of data points and K = number of unknowns 

(excepting the constant (DC) term, vtz. q^ in this example);

R 2 = 1 - 1  (q,j - Q*j)' / Ï (q.j - q,j)
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where Q*j is the fitted equation value for the data point and q^^ 

the mean of q*j. The F-value can be compared with tabled values using 

K as the numerator and (N-K-1) as the denominator for the degrees of 

freedom to give a joint test of the null hypothesis that all the 

coefficients are zero against the alternative that the equation, as a 

whole, produces a significant reduction in the total sum of squares. 

In the light of possible biasing effects the alternative hypothesis may 

be preferred for testing the significance of a period. Indeed any 

period search might be effected by determining the F-values and the 

results presented by plotting the F-values against v. (A full least 

squares treatment on Equations (2.14.1) appears in Appendix C).

2.14(c) Correlation of the Polarization Position Angle As already 

emphasised, the establishment of the parameters for the best fit for 

the canonical model requires both Equations (2.11.3) to be satisfied 

simultaneously and this can be achieved by comparing the variations of 

the position angle of the polarization with that generated by the model 

using the proposed parameters. Because of the uncertainties in any 

estimate of the interstellar polarization, and as the value of the 

constant term of the intrinsic polarization is unknown, the correlation 

is best performed in the frame whose origin is the centre of gravity of 

the data.

As outlined above in Section 2.12, the transformation might 

provide a reasonable value for D or a value might be obtained by 

determining the MPA, in which case the equations might be simplified by 

applying the appropriate rotation to the co-ordinate frame. No matter 

the orientation of the frame, the azimuths of the data given by 

a'j= tan"T(u'j/q'j) may be compared with those, a4^rtan"^u 4^/q ),

generated by the model according to Equations (2.11.3) with chosen

values for i and 6.

It may be noted that in determining the a's, the factor t cancels
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and therefore need not be known. However, the method requires the 

factor to be constant, as must q̂ , to maintain the position of the 

centre of gravity of the data distribution from which the azimuths are 

referred.

For any selected frequency, the value of its phase may be adjusted 

over a range of 2tt until the best correlation is achieved. The

significance of any particular frequency and phase may be calculated 

from correlation confidence tables (see Appendix A and Section

2.3). The best model match may be considered when the values i and 0 

maximise the correlation between the azimuths of the calculated data. 

Alternatively the gradient given byOi'^/at^ being closest to unity,

which should also intersect the origin for Q=0, provides a criterion. 

The exercise should be repeated after adjusting the values of i and 0 

used to determine the values of a' with a view to maximising the

correlation. Only if Q is known may the phase, e, be determined.

It will be appreciated that in performing the correlation the

limits of a' and ot' . both run from zero to 2tt. One of the problems of n J
applying the method is that a value of c l '^ close to 0°, for example, 

may equally be represented by one ot4 value either close to 0° ojr 360° 

according to the individual measurement error. If the latter occurs

for a particular point, this distorts the correlation. The final 

result becomes less meaningful the greater the noise. However, the 

problem can be reduced by weighting the data. For example, those 

points which provide close to 0° or 360° might be discarded or data 

points which are close to the centre of gravity of the distribution 

might be removed because of the uncertainty in their ot'j value.

2.14(d) Correlation of the Sign of u In setting up the model, account

has been duly made of the contribution to the polarization from the 

global effect of the extended atmosphere. For the rotation 

axisymmetric case discussed here, this intrinsic polarization is
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contained in the q parameter of the stellar equatorial frame and is

expressed in Equations (2.11.3) as q^. Many Be stars exhibit siow

secular polarization variations as though this component is subject to 

change, causing the centre of gravity of the data distribution to drift 

along the q-axis, making the implementation of all the above data 

reduction methods less precise.

In the stellar equatorial frame, any global changes affecting the 

scale but not the geometry have no effect on the value of u. Direct 

comparison of the u-data with individually predicted values from 

Equation (2.11.3) may be considered. However, this will not be 

effective if is also noisy.

One way to deal with variable q^ or noisy is to consider the u 

parameter in the stellar equatorial frame as having two states: 

positive and negative. Based on predictions by Equations (2.11.3), 

according to a chosen frequency and starting epoch, the number of 

successes of matching the signs of the u's from the model with the time 

indexed real data values can be determined. The statistical 

significance of this number can be ascertained according to the 

binomial distribution appropriate to the number of data points, the 

number of successful matches and the probability of a match, P, for the 

random condition (P=0.5; + or - being equally probable).

Again by applying a series of discrete frequencies to generate 

model u values and using a series of starting epochs to allow 

adjustment of phase, significant periods may be selected. The 

procedure may be weighted by discarding u values close to zero, these 

having a greater probability of carrying the wrong sign as a result of 

experimental noise or ill determined Q. The analysis is performed best 

if an accurate value for Q has been obtained and the axes rotated 

correctly so as to concentrate purely on the stellar equatorial frame u 

parameter. Checks might be made on the validity of Q by making
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adjustments to its value and reinvestigating the correlation.

2.15 Postamble

It is now possible to present a scheme, following Sections 2.11 to

2.14, that furthers the approach outlined in Section 2.5. The design 

below is applicable to any substantial polarimetric data indicating 

intrinsic variability:

i) Obtain an estimate for any interstellar 

polarization either from field stars and/or from the data 

themselves.

ii) By projecting the data onto various axes, check its 

statistical normality by taking moments and use the method of 

moments to search for eigendirections (related to preferred 

stellar axes) - Section 2.13(a). Information from this might 

be used directly in subsequent analyses or the derived axes 

can be compared with those obtained from the more 

comprehensive data fitting routines.

iii) Having reduced the data to a centre of gravity 

frame, investigate the data density distribution, comparing 

it (x  ̂ tests) with computer generated data according to 

various model parameter distributions and noise - Section 

2.13(b).

iv) If some coherence is suspected in the variability, 

investigation of the time-path of the data points or parts of 

the time-path, particularly if the intrinsic origin is known, 

might, be informative. Visual inspection might allow 

variation of n, r orc& to be deciphered or more quantitative 

comparisons might be applied by correlation measures of the 

time dependent vectors.

v) Should periodicity be suspected, apply appropriate 

search routines to the data, combining the results for the q.
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u parameters according to the dictates of any proposed model. 

This might be done by taking heed of the phases associated 

with the périodicités in q and u, or by correlation of the 

polarization position angle - Sections 2.14(b) and 2.14(c). 

A period fitting procedure involving an investigation of u 

only (subject to it being defined in a stellar co-ordinate 

frame) may be applied if the data appear noisy as a result 

of variability of the scattering strength of the globule - 

Section 2.14(d).

Whereas the guidelines given in Section 2.5 can be applied to 

polarimetric data in general, it must be borne in mind that the steps 

above are related to a particular model.
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CHAPTER 3. Analysis of Some Polarimetric Data
3.1 Introduction

This Chapter concerns applications of the polarimetric stochastic 

globule model and demonstrates the schemes outlined in Sections 2.5 and

2.15. Data sets that are not substantial enough (e.g. recorded over a 

few nights only) to warrant an assiduous study are investigated with 

the intention of searching for glitches and time drifts as well as 

noting the direction in which they occur. If the glitches/time drifts 

are seen to predominate along any particular course, e.g. parallel to 

or orthogonal to the p vector, inferences such as a change in 

scattering strength or geometry may be drawn. For extended data sets, 

these are analysed with a view to determining the geometry and physical 

properties of the stellar system involved, v4z. i, 0, as well as any 

periodicity associated with the fluctuations and to estimate or give an 

upper bound to the electron number density of the polarigenic 

mechanism.

The analysed data comprised measurements by Dr. D. Clarke and Mr. 

A. Brooks on r\ Cep, 3 Cas, 55 Cyg, y Cas and ç Tau acquired on the 24" 

(Morgan) and 42" telescopes at Lowell during September 1982 and on 3 

Vir, 2H Cam and 28 w CMa taken by myself and Dr. Clarke at La Palma on 

the 40" JKT, realized by a successful PATT application. Observations 

on X Per, HDE 226868 and a Ori E were taken from papers of Prof. J. 

Kemp's group.

3.2 Reduction of n Cep, 3 Cas, 55 Cyg, y Cas and Tau Data

These stars were observed through narrow-band interference filters 

(FWHM "V lOA) at H3 (4870A) and Ca II K (3955A) using the Glasgow 

University Polarimeter/Photometer (GÜPP) as described by Clarke and 

Brooks (1984). The procedure adopted for reduction of the data, i.e. 

those observations recorded in any one observing session, was:
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i) calculate the mean values of the normalized Stokes parameters 

(NSP) for the data run under study, treating q and u 

independently,

ii) test the data for normality

iii) perform linear regressions on the whole of the data run and on 

individual groups brought about by subdividing the data 

into, e.g., halves, thirds, etc., until the time-base of any 

one class is not less than approximately 30 mins.

iv) examine the equality of the means of these groups.

Sections 2.2 - 2.4 can be referred to for the stated null

hypotheses which need to be failed at greater than above some limit, 

say that of 95%, for significant results to be implied. For the case 

of non-polarized standards the projection method (Clarke and Stewart, 

1986) was used to search for any possible instrumental polarization, 

again at the 95% limit. The stars h Cep and 3 Cas were observed to

ascertain the level of instrumental polarization and 55 Cyg to get the

rotation needed to the standard equatorial frame from the frame of 

measurement.

n Cep (HD 198149, m^ = 3.59, KO IV, = 20^ 43^ 16^, 6^^ =

+61° 38' 39")

This non-polarized standard (Serkowski p. 168, 1974) was monitored 

for 1 night on the 42", the data train being 2 hrs. long, with a 

typical integration time of around 20^.

At H3, the mean values of the NSP were found to be:

q = -0.005% ± 0.023%

Ü = 0.017% ± 0.024%

both coming from normal distributions. No instrumental polarization 

was apparent. No relationship of q with time was found but u showed a 

correlation at 95% over the entire length of the data run. Carrying 

out the Welch procedure on q then on u revealed time variability (at
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95%) in both q and u between 2 groups of 1 hour duration, 4 x 30 mins. 

classes, and for u only 3 groups of 40 mins. base-line each.

At Ca II K the measured mean values were

q = -0.082% ± 0.062%

ÏÏ = 0.016% ± 0.060% 

the data exhibiting behaviour recognised as Gaussian, with no 

instrumental polarization surfacing. No correlation of q with time was 

evident although for u the first half of the data (= '̂ 1 hr) showed a 

significant result at the 95% limit. Welch testing on grouped data

revealed no significant variability in either q or u.

B Cas (HD 432, = 2.42, F5 IV, = 0^ 6'" 30®, =

+58“ 52' 27")

This star is also recognised as a non-polarized standard 

(Serkowski 1974). It was observed for 1 night on the 24", over a time 

interval of about 2  ̂hrs., a typical integration being 20 .̂

At H3 the recorded averages of q and u were:

q r -0.008% ± 0.023% 

lJ = -0.034% ± 0.023% 

with their distributions passing normality testing. The values of q

and u and their standard errors suggest there is no instrumental 

polarization. The data collected in the first hour showed a strong 

correlation (99%) of q with time and there was a 95% limit hypothesis 

failure for one group (40 mins. in length) of u data. Testing the

equality of the means formed by the classed data, showed that both q

and u were non-variant.

The mean values at Ca II K were

q = -0.010% ± 0.028%

Ü = 0.042% ± 0.028% .

Whilst q were found to behave normally, u exhibited a skewness at 

95%, but not at 99%. The polarization test was then required to be



55

carried out at the 99% confidence limit - no instrumental polarization 

being the conclusion. Neither q nor u showed any relationship with 

time, suggesting perhaps that the skewness of u was due to glitches 

rather than a steady drift in time. Scintillation noise might have 

been the culprit although indications are that the limiting error was 

dominated by photon counting statistics. On subdividing the data and 

performing the regression and Welch test analysis - no significant 

failures of the null hypotheses were found.

55 Cyg (HD 198478, = 4.89, 83 la, = 20 '̂ 47"' 14®, =

+45° 55' 40")

According to Serkowski (1974), this star is a polarized standard

with = 5300A, p^ = 2.8% ± 0.1%, and 6̂  = 3° ± 1°. However,
max max

Hsu and Breger (1982) suggest that it is not a standard star as they

claim to have found fluctuations in both p and 6 (this information

coming too late for the Lowell observing run).

A 3^.2 run was recorded on the 24", a typical integration time

being ^ 20 .̂

At H3, the measured mean values of q and u were

q = -0.240% ± 0.047%

Ü = -2.760% ± 0.048%

which imply p = 2.7% ± 0.05%. Using Serkowski's empirical interstellar

polarization law, vtz.

p(X) = p(X^g^)[exp -1.15 ln=(Xmax/X)] (3.2.1)

the expected polarization should be = 2.8% ± 0.1% which agrees well

with p. Both q and u pass normality testing. No (t, q) or (t, u) 

correlations were found except for one group (of 30 min. duration) of u 

data at the 95% limit. Neither q nor u exhibited any variations as 

seen by Welch testing.



7 Colour Polarization Measurements of y  Cas ( 9 4 3 4 Â “ ^ 3 4 I3 Â )

P(%)

# JD 2 43 9393

JD 2 4 3 9 4 6 9

JD 2 4 3 9 4 9 3

0  5

2000 4 0 0 0 6 0 0 0 100008 0 0 0
Wavelength (Â)

Fig. 3.2.1 Three sets of seven colour measurements of 
y Cas taken by Coyne(1975). The curve is a schematic 

mean, showing that the form of the polarization 
wavelength dependence does not conform to that expected 
from a pure interstellar component.
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For Ca II K the data supplied

q = -0.410% ± 0.057%
Ü = -2.556% ± 0.055% 

which imply p = 2.6% ± 0.06%. This compares with the expected value of 

P(3955) ~ 2.5% ± 0.1%. Both q and u pass normality testing. No

failures of the correlation or equality of means null hypotheses were 

found; with the exception of one group of u data (36 mins. duration) 

which showed a relationship with time at the 95% limit.

In summary, the study of the polarimetric standards (via normality 

and Welch tests), in the instrumental frames, suggests that any 

variations (i.e. equal to or above 95% limits) found within the data on

Y Cas and ç Tau are likely to be real (that is, intrinsic to the star), 

especially if they are found over time-scales of a few hours. However, 

for the measurements recorded at H3 on the 42", Welch test failures 

would need to occur at greater than or above the 99% limit if they are 

to be confidently considered as due to intrinsic changes. Only for 

T\ Cep (42", H3) does there appear to be the consistency of where there 

are correlations of q or u with time (albeit at the 95% limit) are 

there failures of the Welch test; yet the strong correlation (99% 

limit) exhibited by the first half (= li hrs.) of the q parameter of 

the 3 Cas H3 measurements induces no inequality of the means formed by 

the former and latter halves of the data. No corrections for 

instrumental polarization will be required. The following analyses of

Y Cas and 4 Tau are performed in the equatorial frame, their 

interstellar values not being known accurately enough to warrant 

reduction in their stellar frames.

Y Cas (HD 5394, m^ = 1.6-3.0, BO.5 IVe, = 0^ 53^ 40®, =

+60° 26' 47")

Fig. 3.2.1 is a plot of 3 sets of 7 colour measurements taken by 

Coyne (1975) and displayed in a (X, p) frame. The mean
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y Cas Equatorial Frame 

0 7 0  6 0  5 0 6  0  3 0  2

-  q (%)

T ̂ ( 2 4 t h )  

4"  (24th)

^  (2 3 r d )
(30th) hL  4,

V
(23rd) I- (31st)

0  1

0 2

0  3

0  4

0 5

0 6

Fig, 3.2.2 The average (q,u) values, in the equatorial
frame, from several observing runs on Y Cas between Sep
23 and 31 1982 (*-H3,D~Ca II K, the numbers correspond
to the date of the run).
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polarization-wavelength curve clearly shows that this star exhibits an 

intrinsic polarization. The data taken with GUPP were recorded over 

3 nights from Sept. 23 - Sept. 31 and the mean values of q and u for 

each run are displayed in Fig. 3.2.2, along with the interstellar 

component (McLean and Clarke, 1976 - Table 1).

At H3, on 1 night (31st) there was a 99% failure of the Welch test 

by the u parameter, the data being divided into 4 ^ 30 min. groups. 

From the approximate interstellar position, these changes would 

correspond to fluctuations in intrinsic p rather than intrinsic 6 . As 

evident from Fig. 3.2.2, a change is apparent between the 3 nights on 

which the measurements were taken, in a direction indicating a 

variation in p, the strongest fluctuations being between the 23rd and 

24th - i.e. a rapid-type change.

At Ca 11 K, on 1 night (24th) there was a significant (99%) Welch 

failure when the q's, i.e. approximately 0, were binned into 5 groups 

of 30 mins. width. Among data sets from individual observing runs, the 

strongest Welch test result occurred between the two nights 23rd and 

24th, in a direction related to p. Comparison of the other nights was 

not possible due to technical problems.

The Sept. 23-24 variation seen in both HB and Ca II K were of the 

same significance (slightly stronger in Ca 11 K, the noise in both 

colours being equivalent) and indicate a correlation of movement in the 

q, u plane. The mean values of the polarimetric data for the 

observing run are presented in Table 3.2.1.

E Tau (HD 37202, m^ = 2.9-3.0, B1 IVeishell, = 5^ 34"̂  39^,

= +21° 6 ’ 50")

This shell star is well known as a member of a spectroscopic 

binary with a period of 132*^.9735, and is reported to exhibit 

rapid-type variations in its polarimetry (Clarke and McLean, 1976) and 

photometry (Pavlovski, 1983).
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f  Tau Equotorlol Frome

' u(%)

(23rd )

< (2 8 th )

(25 th )
(23rd)

(29 th )

(28 th )

^ (25th)

0  5

0 5
q(%)

Fig. 3.2.3 Average (q,u) values, in the equatorial
frame, of several observing runs on C Tau between Sep
23 and 29 1982 (*-Hg,Q-Ca II K, the numbers correspond
to the date of the run).
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The mean values of the data recorded over 4 nights between 23rd

and 29th are plotted as Fig. 3.2.3 along with the approximate

interstellar value again taken from McLean and Clarke (1976).

The unfortunate position of the interstellar contribution in the 

(q, u) plane does not make q and u immediately realizable as intrinsic 

p and 6, unlike the y Cas situation. So, any variation found in q,

say, could correspond to a change in either p or 6 , although the

tendency is for u to p and q to 0.

At H3j there are apparently no changes as seen by Welch testing

over intervals of up to 4 hours (the longest run) resolving down to ^ ^

hr. However, there are very strong fluctuations (i.e. > 99% limit)

over at least a period of 2 days in both q and u, especially between 

the 23rd Sept. and 25th Sept. runs. These two observing nights were 

done on different telescopes but indications are that the variations 

are not due to systematic errors as the data of later nights seem to 

exhibit a "recovery" to the position in the (q, u) plane of the first 

night's (i.e. 23rd) measurement.

As with HBj for Ca II K there are no changes evident over

intervals of up to 4 hrs. resolved down to  ̂hr. There are again,

though, night to night fluctuations (especially between 23rd and 25th), 

but these are not as strong as (i.e. do not fail the Welch test at as 

high a significance) the HB variations, although the direction of 

change correlates and the noise (i.e. experimental errors) in the two 

colours is comparable.

Table 3.2.2 records the values of the means displayed in Fig.

3.2.3.

In summary, both y Cas and C Tau exhibit rapid type fluctuations 

which, from the above short observing run cannot be shown to be

periodic. For y Cas, changes are evident over a few hours and seem to 

be irregular in parameter (i.e. p or 0) and time. Its night to night



59

variations show through equally well in HB and Ca 11 K. However, for 4 

Tau the night to night fluctuations are more evident in HB than in 

Ca 11 K - possibly due to observing events at differing optical depths, 

with no variations being evident over hour timescales.

3.3 Reduction of B Vir, 2H Cam and 28 w CMa Data.

As previously mentioned, observation of these stars was made 

possible through a successful PATT application for time on the 40" JKT, 

using the People's Photometer (PP) in polarimetric mode at the Roque de 

los Muchachos Observatory. The run took place between the 9th and 15th 

of January 1985, and was unfortunately dogged by bad weather and 

technical problems.

The PP is described in "The People's Photometer User and Technical 

Manual (No. 58)" available from the RGO. Briefly, in relation to its 

polarimetric mode, the instrument contains a half-wave (X/2) plate 

which is rotated once in 960ms. The plate modulates incidental light 

as a sine-wave, with 1 cycle being a quarter of the mechanical 

frequency. A Foster prism acts both as a beam-splitter and as an 

analyser. The optical path is split into two - an undeviated beam and 

an orthogonal one - and these arrive at two photomultipliers after 

encountering the desired colour filters, in this case the narrow-band 

to intermediate-band (Glasgow) filters. The output signal A(^), for 

linear polarization takes the form

A(0) = 1 + Qcos4^ + Usin4(j) (3.3.1)

where 4) is the position angle of the fast axis of the X/2 plate and 1,

Q, U are the coefficients to be derived by regression analysis. 

Equation (3.3.1) is sampled for 10ms, 96 times over 1 mechanical 

rotation of the retarder. After an optional number of revolutions, the 

values of the NSP are calculated for that particular integration.

The gist of the scientific case for support described an

application of the stochastic globule model at an early stage of its
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Fig. 3.3.1 Variable Polarization at 4269Â of 2 8 w CMa 
during 1983 Apl 29 - May 9 (GUPP at SAAO - 0.75m).
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development. Intuitively, for a star displaying mass loss around its 

equatorial regions, any local scattering will cause polarization 

measurements to exhibit circular symmetry in the (q, u) plane if the 

star is seen pole-on. A straight line in the (q, u) plane would be 

evident if a similar star was to be observed equator-on (c^. w Ori ? 

Hayes, 1980). Obviously an intermediate case would be expected to 

produce an elliptical distribution.

Preliminary (q, u) measurements of 28 o) CMa at 4269A taken with 

GUPP at SAAO by Clarke and Brooks (Fig. 3.3.1) during 1983 April 29 - 

May 9, indicate that there are significant, but unequal, variations in 

orthogonal directions. So, further observations might help better 

define the apparent (q, u) distribution enabling perhaps the value of 

the stellar inclination to be estimated along with the scale of the 

mass loss (globules).

During a polarimetric observing run standard stars need also to be 

measured, 3 Vir (instrumental polarization) and 2H Cam (relative

orientation of co-ordinate frames) fulfilling the role here.

^1950 = 11  ̂ , -j_950B Vir (HD 102870, m̂ , = 3.80, F8 V, aig^n = 48"̂  5^, 6.

4-2° 2' 47")

This star is listed by Serkowski (1974) as a 

non-polarized polarimetric standard. Monitoring on several nights and
o o

at a variety of wavelengths (7 from 4269/40A to 6790/130A), was 

typically for 20 mins., with an integration for single measurements 

usually being = 50 revs. From the 18 data sets recorded, analysis in 

the instrumental frame revealed that q behaved as Gaussian 

consistently, but there were 5 normality failures for u, these being 

equally spread between beam, wavelength and passband. Possible 

instrumental polarization was recorded at wavelengths/passbands 4269/40 

and 6385/92. At 5020/70 indications were for instrumental polarization 

but, as the data behaved in a non-normal fashion, such hypothesis



Table 3.3,2

Polarization measurements of 2H Cam and a Leo (with polaroid) 
For 2H Cam typical error on p is less than 0.03% and 0°.4 for ' 

For a Leo the error on p is less than 0.04% and 0°.09 for 6. 
A corresponds to the maximum difference in each column.

Wavelength/
2H Cam a Leo

Passband(S) p(%)_________Q ( ° ) p(%)_________9 ( ° )

4269/40 3.39 29.5 96.89 93.0

4860/50 3.57 29.2 99.23 94.6

4870/10 99.64 94.5
99.64 94.5

5020/70 3.62 32.4 98.30 95.3
3.58 32.4

5320/30 3.57 31.8 98.10 96.6

6385/92 98.20 100.5

6790/130 3.28 37.9 97.62 100.8

A = 2521 0.34%±0.04% 8°.7±0°.6 2.75%±0.05% 7°.8



Table 3.3.1

Polarimetric record of the behaviour of 3 Vir during 1985 Jan 9-15 
(People's Photometer - JKT). N = number of integrations in data set, 

* = testing not possible. Y - YES, N = NO.

Wavelength, 
Passband (A) Dates N Polarized (?) Means Equal (?)

4269/40

4860/50

4870/10

5020/70

5320/70

6385/92

6790/130

9.1.85
12.1.85
13.1.85

9.1.85
13.1.85
14.1.85

9.1.85
14.1.85
14.1.85

12.1.85
13.1.85

9.1.85
14.1.85

9.1.85
14.1.85

9.1.85
13.1.85
14.1.85

11)
36)
27)

20)
23)
14)

17)
20)
24)

36)
27)

11)
20)

11)
24)

20)
23)
14)

u fails at 955

u fails at 955
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exmination was not strictly practicable.
Welch testing, where possible, was carried out between data sets 

of the same wavelength, which may have been recorded hours or days 

apart. Two failures at the 95% limit were noted for u at 4269/40 and 

4870/10. Table 3.3.1 is a résumé of the analysis.

2H Cam (HD 21291, m^ = 4.42, 89 lA, 25^ 0®, = +59°

46' 5")

This star is a polarized standard and, according to Serkowski

(1974), = 5300A, p^ = 3.5% ± 0.1%, and 8  ̂ = 115° ± 1°.
max max

Analysis by Hsu and Breger (1982) tends to support the criterion

notion, and they refine the parameters further; X = 5210A ± 30A,’ max
p^ = 3.53% ± 0.02%, and 6  ̂ = 116°.6 ± 0°.2.

max
During the present observing run, the star was observed at 5 

wavelengths, from 4269/40 to 6790/130, the time-base of any one data 

set being typically 20 mins., with an integration time = 50 revs. 

Welch testing was possible at only one of the wavelengths, 

5020/70, which passes, as at all the others only 1 set of measurements 

was available. Alone at 4269/40 do the data exhibit non-normality, 

with q skew and u kurtos.

It is important to check whether the X/2 plate used is achromatic 

or not. This was done by placing a sheet of polaroid over the sky 

baffle of the JKT and observing a bright star - a Leo. Table 3.3.2 

shows how p and 6 (in the instrumental frame) change with wavelength 

for 2H Cam and a polaroid obstructed a Leo (no correction for 

instrumental polarization has been applied and demonstrates that the 

variations behave in a correlated manner, i.e. an alteration in 9 for 

2H Cam is mirrored by a Leo). The maximum differences over wavelength 

for 2H Cam in p and 0 were 0.34% ± 0.04% and 8°.7 ± 0°.6 respectively, 

whilst for a Leo the figures are 2.75% ± 0.05% and 7°.8. The

manufacturers claim that the optic axis of the retarder changes within
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the entire spectral region by only ± 2°, but this is not obviously the 

case. The polaroid sheet used seems to be wavelength dependent, 

evident by the strength of emergent polarization.

For 2H Cam, its position angle is colour independent, the apparent 

variation coming from the employed retarder. Using Equation (3.2.1)
0 o

and the Hsu and Breger parameters, between wavelengths 6790A and 4269A 

the difference in p should be ^ 0.1%. For the measurements here, the 

difference is also 0.1%. The maximum value of p recorded was 3.62% ±

0.03% (at 5020/70) which is not significantly departed from 3.53% ± 

0.02%.
In relation to the analysis of the 28 w CMa data, 3 Vir and 2H Cam

suggest that the reduction be done in an instrumental frame, as the

evidence for a wavelength dependent/independent polarization is

uncertain. Any Welch failures will be considered significant only if

above the 99% limit. If needed, the correction to the equatorial frame 
0

is 83°.2 at 5320A, noting that the dispersion about this wavelength for 

0 from the polaroid experiment can give the rotation required at other 

colours.

28 w CMa (HD 56139, = 3.52-4.18, B2-3 IV-Ve, 12"' 47 ,̂

«195Q = -26° 41' 5")

This star has become quite prominent in Be literature through the 

work of Baade (1982a, 1982b), who claims to have found cyclic RV, line 

profile and V/R variations with a period of 1.37 days, but apparently 

there are no (or little) corresponding light changes. The V/R and RV 

refer to the relative intensity of the violet and red components of the 

double HI Balmer emission, and RV to radial-velocity. Baade has 

modelled this star as a non-radial pulsator. There may be in fact be 

two eclipsing binaries involved in this system (Harmanec 1983) 

comprising two B stars.

The PP measurements were taken at 3 wavelengths, V/CZ. 4269/40,



28 w CMo -  Instrumental Frame

X  4 2 6 9 / 4 0

A 5 0 2 0 / 7 0  

■  6 7 9 0 /1 3 0

12th

Ith 12th
12th

i  12th0 2 ®/e

13th 13th

Fig. 3.3.2 The average (q,u) values, in the 
instrumental frame, from several observing runs on 2 8 w 
CMa during 1985 Jan 11 - 13 (*-A269Â,A-5020Â,D-6790Â, 
numbers refer to date of run).



Table 3.3.3

The polarimetric behaviour of 28 w CMa during Jan 11 - 13 1985.
Times are in UT. Y - YES, N - NO.

Passband(S) ^  Heans_E_qual (?)

4269/40 12.1.85 u skew
22^ 42̂  ̂15® to 0^ 5?"̂  57®

12.1.85 q skew q ; Yes
ih ^m ŝ ^h ^^m ^^s  ̂ . Poss,

13.1.85 
2^ 52"̂  34® to 3*̂ 22*̂  59®

5020/70 11.1.85 q kurtos
oh ^̂ s ^h ^^m ^̂ s

12.1.85 q skew & kurtos
22^ 42^ 15® to 0*̂  57^ 57® u kurtos

12.1.85 q skew q : 7
ih m̂ ŝ ĥ 2^m ^^s  ̂ . y

15.1.85
2^ 52"̂  34® to 3*̂  22^ 59®

6790/130 11.1.85 q kurtos
0^ 2i"̂  49® to 3^ 37^ 53®
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5020/70 and 6790/130A. A typical run lasted 2 hrs. on which 

time-scale, and shorter, no variations were found via Welch testing.
o

At 4269/40A 3 data sets were available, 2 being essentially contiguous 

and the other recorded on the following night. For the contiguous data 

sets, in one q exhibited skewness as did u in the other. For the 4

data sets at 5020/70, q was non-Welch examinable as they behaved

non-normally, with u showing constancy. Only 1 data set was available 

at 6790/130, for which q displayed a kurtosis. Table 3.3.3 is a log of 

the behaviour of the measurements, and Fig. 3.3.2 records the mean 

positions of the data in the instrumental frame. The approximate 

interstellar vector is also shown.

The field-star polarization pattern for 28 w CMa, using 27 stars 

within a ±5° region from the catalogues of Krautter (1980), Klare and 

Neckel (1980), Mathewson and Ford (1970), Serkowski, Mathewson and Ford

(1975) and Hall (1958), implies that the mean interstellar (IS) 

position as 6̂ g = 94° ±10° and the mean polarization extinction per

unit distance modulus as p/(m-M) = 0.034 ± 0.005. The absolute

magnitude of 28 w CMa has been estimated from Allen (1955) as -2.9 

giving m-M = 6.7 which implies that p^g = 0.23% ± 0.035%. The values 

of q^g and Ujg can be transformed from the equatorial to instrumental 

(IF) frames by the relations:

q-rr = pcos2(6r - 83)
(3.3.1)

Ujg = psin2(6g - 83) 

where 8^ is the position angle in equatorial co-ordinates.

The non-Gaussian behaviour of the recorded data has made searching 

for variations through Welch difficult and inconclusive, although the 

non-normality itself implies fluctuations within some of the individual 

data sets especially for the q parameter which would, according to the 

IS position, correspond to 6. Any apparent changes of the means of the 

measurements do seem to be correlated in direction in the (q, u) plane
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with wavelength. Lastly, the 5020/70, 4269/40 and 6790/80 data have

been added to those in Fig. 3.3.1 to produce Fig. 3.3.3 to show that

there still appears to be a coherence to the polarimetric variations

over an interval of about 2 years.

3.4 The Polarimetric Behaviour of X Persei

3.4(a) Introduction

X Per (HD 24534, m^ = 6.0-6.6, 09.5 Vpe-Bone, ^1950 - 52*̂  15^,

*1950 = +30° 54' 1")

This star has been given a Be spectral classification and,

according to Moffat, Haupt and Schmidt-Kaler (1973), its 

characteristics are normal for that category. Following proposals that 

it corresponds to the position of one of the X-ray sources (3U 0352+30) 

recorded by the Uhuru satellite, it has been the focus of several 

studies (see Underhill and Doazan, 1982, for references and general 

discussion). Support to the identification of it emitting X-rays has 

come from observations made with the Copernicus and Ariel 5 satellites 

(White, Mason and Sandford, 1976) which provided evidence of 

periodicity at 13.9 mins. and 11/22 hrs. According to Weisskopf nt aZ. 
(1984), the 13.9 mins. variation has been fully established whereas the 

longer periods have not been confirmed; Weisskopf at. {toe.. cZt. ) 

claim positive identification from the high resolution imaging provided 

by the HEAO 2/Einstein satellite. It is now generally accepted that 

like Y Cas, X Per is a low luminosity source in the hard X-ray region 

(Underhill and Doazan, toe., c tt . ).

Several efforts to link optical and X-ray measurements have been 

made and have failed, but a 13.9 min. fluctuation in the Ha line has 

been reported by Mazeh, Treffers and Vogt (1982). It may be noted that 

one paper (Henricks and van den Heuvel, 1977) cites tiller's (1975) 

work on the He II 4686 line as providing positive evidence for an 

identification while another (Mazeh Q.t. a t . ,  toe. eZt.) lists it under
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the "no confirmed detection" category.

Using spectral archives of half a century, Hutchings et  Oil. (1974) 

(see Hutchings, Crampton and Redman (1975) for listings of the source 

material) have determined an orbital period of 580^ which has since 

been incorporated into all the model proposals. Following more 

intensive spectrometric studies in 1975-76 by Hutchings (1977), the 

radial velocities appeared to be noisy, making the 580^ periodic 

variation less marked. Reservations on the validity of this 

periodicity emerge from the analysis here but full comment will not be 

made until later.

Optical polarization was investigated for X Per by Baud and 

Tinbergen (1972) who found no evidence of any circular component but 

suggested that the linear might be variable, this also being claimed by 

Wolf (1972). In an attempt to estimate the relative intrinsic and 

interstellar components of the polarization, Clarke and McLean (1975) 

made measurements at the Ha and H3 emission lines. Other polarization 

observations have been made by Kemp and Wolstencroft (1973), Avery, 

Michalsky and Stokes (1973) and values are given in the catalogues of 

Hiltner (1954), Hall (1958) and Behr (1959). A substantial 

polarimetric programme has been undertaken by Kemp and Barbour (1983) - 

KB - and it is with these results that this section is concerned.

From their extensive study of X Per, KB claim to have detected a 

phase-locked polarization pattern with a period (580^) associated with 

the documented radial velocity curve. Following analysis which 

provided values for the Fourier coefficients for this period and the 

harmonic (290*̂ ), an inclination of 79° was calculated for the binary 

system according to the theory (e.g. see Brown, McLean and Emslie, 

1978) which assumes that a localised co-rotating cloud of scattering 

electrons is present. However, over and above the cyclic variation, 

the measurements reveal fluctuations of an apparently stochastic



66

nature, these dominating the temporal polarimetric behaviour.

Here the KB data are assessed comprehensively in the light of 

Sections 2.7 to 2.9 and according to the scheme outlined in Section 

2.15 with investigations of the data density distribution and searches 

for rapid-type periodicities. The results of the analyses lead to the 

proposal that X Per is an oblique rotator with the period, the 

inclination of the rotational pole and the position of the active 

region relative to the stellar pole being evaluated. It is also 

suggested that the previously deduced periods (290^ and 580^) used with 

proposed binary models correspond to a beat and its undertone resulting 

from the data sampling.

3.4(b) A Cursory View of the Data and Model Inference

The data have been taken directly from Table 1 (KB) which lists 

400 measurements of X Per in the V-band (5530/850A). Typical 

accuracies of 0.030% for q and 0.035% for u are reported. The material 

mostly provides a single set of values per night, but occasionally two 

observations were undertaken up to 6 hours apart. Polarimetric changes 

are obviously present on these short time-scales.

The magnitude of the noisy behaviour may be appreciated by 

subtracting the underlying periodic terms determined by KB from their 

tabulated data. This exercise shows how little the periodic terms 

account for the overall polarimetric behaviour which is apparently

dominated by stochastic effects either from within the star or by 

experimental noise. It was therefore decided to undertake an overall 

independent fresh appraisal of the situation.

A value for the interstellar polarization was obtained from 

analysis of the polarization pattern of field stars. For X Per, 16

stars are within a ± 5° area in the catalogues of Hall (1958) and Behr

(1959) resulting in p^^ = 0.99% ± 0.16% and 8̂ ^ = 69° ± 11°, these

values being comparable with those obtained by KB. This interstellar
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Plot of KB's data - all values (a) and 15-day
time-averages (b). The centres of the circles
correspond to the mean interstellar value, with radius
equal to lo. The dashed line (-------- ) passing through
the circle centre is the stellar intrinsic line, the
other dashed line (------ ) being the MPA. The straight
edge of the D-shape clearly seen in (b) is
approximately normal to the intrinsic line. An error
box typical of an individual measurement is indicated 
in (a).
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value with its standard error zone is plotted in Figs. 3.4.1(a) and 

3.4.1(b). The distribution of KB's tabulated data is displayed in Fig. 

3.4.1(a) and the line joining the interstellar point to the mean of the 

measurements may be considered as the intrinsic (equatorial) line of 

the star, the interstellar point acting as the origin of the intrinsic 

frame. The distribution of the data suggests that there is an 

underlying steady state intrinsic polarization which drifts slowly, 

particularly noticeable between one observing season and the next, and 

an additional short-term noisy component.

In a discussion of their data, KB combined the individual 

measurements into averages over 19-day intervals and demonstrated that 

the meaned (q, u) values provided a distribution with preferred axes or 

eigendirections (see KB, Fig. 3). They made special comment on this 

but elaborated no further as to an interpretation.

Averaging of the data was re-applied here with a range of time 

windows and it was found that the distinctive (q, u) distribution 

commented on by KB was apparently best defined when the means were 

taken over a 15-day interval and these are plotted in Fig. 3.4.1(b). 

It may be noted that the straight line boundary to the data 

distribution is perpendicular to the intrinsic line. For the limits to 

the (q, u) distribution of the basic data (Fig. 3.4.1(a)), there is 

similarity to the pattern presented in the lower part of Fig. 2.9.4(a) 

and also a hint that the locus forms a cone whose apex is roughly along 

the stellar intrinsic direction.

The data were also investigated by taking moments (Section 

2.13(a)). Both the original data and the 15-day means reveal that the 

direction along which maximum variance (MPA) occurs, is perpendicular 

to the stellar intrinsic line (to within 1° for the complete data set). 

The F-test performed on the maximum and minimum (orthogonal) variances 

showed that they are significantly different at better than the 1%
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level, so confirming the non-circularity of the distribution in the 

(q, u) plane. The difference is not related to the small difference in 

KB's measurement accuracies of q and u.

This cursory inspection of the data immediately gives four hints 

which, as well as directing a more detailed analysis, can be used to 

reveal something about the geometric and physical properties of the 

"events" causing the polarimetric variations:

1. The fact that the data distribution has identifiable 

eigendirections suggests that the polarimetric behaviour is 

relatable to preferred axes (equatorial line).

2. The orthogonality of the MPA to the intrinsic line suggests 

that the globule source (or extended atmospheric bulge) occurs 

in polar regions rather than close to the equator (ĉ . Figs. 

2.8.2(b)). Hence the MPA corresponds to the direction of the 

u-axis of the intrinsic stellar frame rather than q.

3. The presence of a straight edge to the boundary of the data 

when they are time-averaged reinforces point 2 and promotes a 

non-low inclination for the system (ĉ . Figs. 2.8.2(a)iv, 

(b)iv and (c)iv). An overall "D-shape" is very apparent.

4. The suggested appearance of a coned boundary to the tabulated 

data (ĉ . Fig. 3.4.1(a)) implies a possible variation of 

globule size, a range of globule distance from the source or a 

convolution of these two effects. The disappearance of coning 

and the establishment of the straight edge to the data limits 

when measurements are combined over longer periods 15 days) 

suggests that two controlling factors with different 

time-scales may influence the apparent polarimetric behaviour. 

Again point 2 is reinforced (ĉ . Figs. 2.9.2 and 2.9.4).
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3.4(c) Analysis of the Data Density Distribution 

Introduction

A cursory examination of both the original data and the 

time-averaged values reveals that the q, u distributions are primarily 

influenced by the three parameters i, 6 and noise (some of it possibly 

from T^) with the values of  ̂ being considered as equally probable. 

Choosing é to have a probability distribution which is constant within 

the range 0 to 2tt does not restrict the possibility that there is an 

active region, say a magnetic pole, acting as the source (or sink) for 

the globules at any particular Since the star rotates, the method of 

observation induces a distribution for 4), the values appearing to be

random whether they are individual or time-averaged.

Two approaches have been investigated with a view to obtaining 

quantitative geometry of the X Per system. Generally the full data set 

was used but, in some cases, modified forms have been applied. 

Examination of the data shows that there are a few points which have 

large deviations from the centre of gravity of the distribution; some 

of the analyses have been made on reduced data sets with outliers 

(> 3.5a in either q or u) removed. Other treatments have taken

time-averaged data.

Moments

From Section 2.13(a) it was seen that for the case where 0 has a

polar value and for a constant value of t

The results of the exercise of determining R, listed in Table 3.4.1 for 

different data treatments, show that the inclination of the system is 

fairly well defined with a value of i between 42° and 50°.

The values of R are calculated from sample variances which are
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estimates of the population variances (o') and the tabulated 

uncertainties of i correspond to the 95% confidence interval on o'. 

These were obtained using the statistic, assuming normal data and 

taking half the difference between the upper and lower bounds of the 

confidence interval.

The F-values for the distributions in the directions of maximum 

and minimum variance are larger than expected from purely experimental 

noise indicating that "events" in the star are affecting the data in 

both directions, this giving confidence to the pursuit of further 

analytical procedures.

The value of 0 determined for each data treatment to maximise R is 

used appropriately in all the subsequent analyses.

Chi-Square Investigations

Following the procedures outlined in Section 2.13(b), the best 

fitting of was applied to the data (again after various treatments 

and with rotation effected to the stellar equatorial frame) for given 

model geometries. Minimum (see Fig. 3.4.2) occurs when the data are 

time-averaged over 15 days and compared with an artificial distribution 

generated with the parameters i = 50°, 6 = 5° or 10° or 15° and with 

all values of 4) equally probable. The insensitivity of ® for polar 

events to the model fitting is to be expected. Suppose a unique figure 

were to be formed in the (q, u) plane by choosing a particular i and 0 

and letting c}) take all values from 0 to 2 t t , then by varying 8  alone and 

repeating the exercise, a set of roughly concentric figures would be 

seen, especially for the mid-range values of i (e.g. Fig.

2.8.2b(iv) and (v)). This consequence is reflected in the above result 

and holds until 6 = 20°, thus giving an upper bound to its value. If i 

had been extremely high or low (e.g. 80° or 10°), the lack of

distribution concentricity for the different values of 8 would be 

marked and more precise information on this parameter would have
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emerged. For 6 =15°, the estimation of i is at its best such that i = 
-*-17°50° 270 , the limits coming from the testing of H^, that the

observations can be considered as being randomly drawn from the

distribution generated by the model.

The data in their full form did not give a significant fit for the

model parameters (i, 6 ) considered above. However, on removal of the 

outliers, significant fits emerged again. The cause of these wild 

points which give rise to the apparent coning commented on in Section 

3.4(b) point 4 was investigated by considering the possible 

contribution of the parameter in the model. Applying a variety of 

reasonable distributions for n and r provided significant fits only 

when the outliers were again removed and their origin remains obscure.

This also shows that the apparent coning of the data points commented

on under point 4 has no statistical significance.

A question now arises as to why time-averaging with a particular 

interval (15 days) provides the minimum value and maximises the 

model fit. Certainly the effect of time-averaging would appear to 

reduce a noise from the system, probably the experimental (photon) 

noise. Another response would be to say that there is some kind of 

periodicity in the production of, or the appearance of, the 

polarimetric events, with a typical life span of 15 days. However, 

since the y'-test explores randomness, it might be that the 

time-averaging process at this interval provides values of 4» for each 

averaged data point which are more random than for the individual

measurements, this constraint on 4> being implicit to the model.

If the apparent behaviour for the generation of the globules 

requires 4> to be random, this would imply that the active zone is in 

the form of an annulus with an angle 15° relative to the stellar 

(rotational) pole. Astrophysically, this situation is overly 

artificial. However, as already outlined above, random is readily
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mimicked by an active region in rotation about the stellar pole but 

whose polarigenic effect is sampled randomly with time. If this 

represents the underlying situation, consideration of the times of 

measurements should lead to the detection of rotation and a 

determination of the period. Before this is done, the behaviour of the 

short-term changes is discussed.

4.3(d) The Short-Term Temporal Changes

KB's data table includes some measurement pairs which were 

obtained just a few hours apart during the course of a single night. 

Inspection of these data reveals that the observed polarization may 

change substantially over such time intervals giving the impression of 

a stochastic behaviour and the question might be asked as to whether 

the hour-to-hour changes reflect some form of short-term globule

evolution.

The notion of evolution may be investigated by analysis of the 

vectors defined by the initial and final positions in the (q, u) plane 

for the data pairs. For example, if the dominant trend of any 

short-term development is for the globule to maintain a constant 

latitude but move radially outwards from the star, the effect of 

increasing distance would weaken the observed polarization (Equation

2.7.6) causing the vector to be directed towards the line u=0,

intersecting it at a point corresponding to the intrinsic origin;

conversely, if the motion is towards the star, the polarimetric path 

would be away from the origin. Changes in the number density of the 

electrons within the globule would also produce similar effects.

Fig. 3.4.3 displays the vectors obtained from KB's data pairs 

plotted in the intrinsic axial frame of X Per. According to the 

evolutionary scheme outlined above it is expected that the vectors 

would converge or diverge with the origin of the frame acting as a 

focus, but it is immediately apparent that this is not the case. The
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evolutionary scenario suggests that, for example, the moduli of the 

vectors describing the data pairs would depend in some way on the time 

interval between the two measurements, according to the dynamical 

influences acting on the globules. However, no correlation was found 

and, in addition, no relationship was found between the gradients of 

the vectors and the time intervals between the measurement pairs.

The distribution of the vectors in Fig. 3.4.3 exhibits an 

elongated appearance along the stellar u direction, the pattern being 

consistent with a set obtained by taking starting and finishing points, 

according to the elapsed interval along a closed locus (ĉ . Fig. 2.8.2) 

defined by Equation 2.11.3; a locus with the same D-shape obtained 

from the 15-day time-averaged values would provide the effect if it 

were executed on a short-time scale, say 1 day.

It would seem appropriate to search for frequencies in the range 

covered by expected stellar rotation periods. Rather than doing this 

only to the measurement pairs, all the data have been included in the 

assessment.

3.4(e) Investigation of Periodicities 

Introduction

The power spectrum analysis of KB has covered the short period 

range and the only peaks that are apparent are around 12*̂  and 24^. If 

any stellar periodicity is present, it must be associated with these 

values. However KB dismiss these power peaks as being aliases caused 

by the sampling intervals, commenting that the 44 nights with 

measurement pairs serve to a certain degree to suppress this aliasing, 

although not completely. It may be noted that the calculated 

polarimetric power as plotted by KB takes no account of the relative 

phases of q and u.

If a stellar rotation period is contributing to these power peaks, 

it might be thought impossible to disentangle it from aliasing effects.
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Although periodic analysis of each of the normalized Stokes components 

treated independently may be prone to the introduction of false 

periodicities, consideration of polarigenic models imposes phase 

relationships between the components; period searches based on the 

detection of an underlying model automatically incorporate these phasal 

constraints and suppress any aliasing. As it turns out, according to 

the tests described below, it is demonstrated that any spurious 

periodicities introduced by the particular sampling intervals and 

length of data run are below significant levels in each of the 

parameters separately, even without applying the constraints of their 

combination.

Least Squares Sine-fit

According to the analysis earlier of the data density 

distribution, the value of 6 is small with i in the mid-range which, by 

Equations (2.11.3), suggests that the fundamental frequency should 

dominate the oscillatory behaviour of the NSP's. Although not 

providing the best values for the model, the single periodicity search 

was undertaken to check the detailed form of the power spectrum as 

presented by KB and to investigate the problems of aliasing, if any. 

This was done using a least squares fitting routine on the data after 

transforming it to the stellar equatorial frame with origin at the 

centre of gravity of the data. The fitted parameters were a constant 

(to allow for any systematic error of the co-ordinate origin) and the 

amplitude and phase of a sine-wave.

A series of discrete frequencies, v, corresponding to a range of 

periods from 23^(0^.001)25^ was applied. F-values (397 data points, 

outliers removed, with 2 & 394 degrees of freedom) of 4.8 and greater 

indicate a confidence of fit at or above the 99% limit. As might be 

expected in consideration of the large number of trial fits (i.e. 

2000), several periodicities produced F-values above the 99% confidence
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limit, but the zone from about 23^.75 to 24^.15 provided an envelope 

within which a comb of peaks appeared (see Fig. 3.4.4) with very strong 

significance. Since the variation in q has been expressed as a cosine 

and that of u by a sine, the sine-wave fitting procedure requires the 

restraint of the phase difference between q and u to be either ± t t / 2 .  

For this condition set within lo, the periods for the best fit were not 

the exact ones which gave the highest F-values. A similar search 

around 12 hours again provided periods but when the ± t t / 2  phase 

constraint was applied, none complied. This gave strength to the 

notion that the period of 'v 24 hours is the fundamental with the period 

of 12 hours being the first harmonic.

As a check on the influence of the sampling intervals on the 

forcing of spurious periods, data based on i = 45° and 8 = 10° were 

generated via Equation (2.11.2), allowing to be chosen at random 

between 0 and 2u. Using random values in association with the 

tabulated times of the real observations, a period search was 

undertaken. The significance of the period fits over the interval 

23^.5 to 24^.5 was much the same as to be expected from data having no 

underlying period, indicating that the form of the data run in no way 

introduces spurious periodicities (see Fig. 3.4.4). Similar tests were 

applied after assembling computer generated data with particular values 

of V and e. For these simulations, the period search rapidly 

identified the chosen v and e, but lower and higher frequencies (i.e. 

side-lobes) were also detected, albeit at a lower statistical 

significance. Thus the patterns of the frequency spectrum obtained 

from the real data are consistent with the detection of a stellar 

periodicity ^ 24 hours and the accompanying side-lobe aliases.

Three different approaches have been made to determine the best 

period and, where applicable, the stellar geometry and these are now 

presented.
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3.4(f) Determination of the Rotation Period 

Least Squares Fundamental and Harmonic Fit

In a similar manner as outlined in the preceding section, a least 

squares fitting procedure was applied to determine the coefficients for 

a constant level and amplitudes and phases for the fundamental and 

harmonic simultaneously; a grid of frequencies corresponding to 

periods between 23^.5 and 24^.5 was investigated. According to the 

degrees of freedom, the F-value for the 99% confidence limit was 3.5. 

In addition to the consideration of the F-values for the various fits, 

restraints that the phase difference between q and u should for the 

fundamental be ± tt/2 and for the harmonic be ± tt/4, each to within la, 

were applied. As it happened no frequency passed these strict criteria 

combinations - unsurprisingly due to ill defined harmonic phases.

Comment has already been made that for the i and 0 values 

determined by treating the data as being random in the fundamental 

period is dominant over the first harmonic. For the periods providing 

the highest F-values for q, the error of the amplitude of the harmonic 

is larger than its determined value, while for u the error/amplitude 

ratio is about one half, so reflecting the insignificance of the 

harmonic to the model fit and confirming the small value of 6. By 

relaxing the restraints for the harmonic in view of its low 

signal-to-noise, the two most significant periods to emerge were:

F undamental Harmonic
F-values Ac = ±tt/2 Ac = ±tt/4

23^.924 to 23^.926 q=6 + at <la + at 2.5a
u=12

23^.991 q=7 + at <la + at 2.5a
u=5
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Hence the most significant fit gives a positive (from left to 

right) stellar rotation period of 23^.924 with phase (* = 0°) at JD 

2,443,376.3±0.1. From the determined coefficients, the parameters for

the fundamental provide an inclination of i = 52° ±12°, the harmonic

giving a value with little statistical significance. By combining the 

results from the q and u parameters, the weighted value of 8 = 22° ±

13°. Similarly the weighted value for the scattering optical depth of 

the globule = 0.065% ± 0.024% which compares with -0.032% ± 0.017%

for the constant value (a^ in Equation 2.11.1). The global atmospheric

contribution is difficult to decouple from the constant effect of the 

globule because of the large uncertainty on the interstellar value. 

After fitting the determined parameters to the data, the residuals were 

tested for normality. Both parameters provided mean residuals of zero; 

the u parameter residuals behaved as a normal distribution and the q 

parameter displayed a slight positive kurtosis. The tests proved the 

adequacy of the model fit.

At the period 23^.924 the fundamental amplitudes of q and u are 

0.023% ± 0.005% and 0.037% ± 0.006% respectively, the harmonic

amplitudes being insignificant. From Section 3.4(b) it was seen that 

the typical measuring errors were "v 0.03% per data point. To confirm 

that the presence of noise is not influencing the production of 

spurious periodicities because of sampling, as in the preceding 

sub-section, computer generated data with i = 52°, 0 = 22° and (j) random 

were produced assigning KB's times of measurement but adding noise 

equivalent to the experimental error. This required that the noise had 

zero mean with standard deviation equal to O.55(=sin20 sini), being the 

appropriate scaled value for = 1. Using a grid of 23^.5(0^.01)24^.5 

for the periods, no fits greater than or equal to the 1% significance 

level emerged. This confirmed that neither the sampling, nor the 

experimental noise, nor their combination is responsible for the
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detected short-term periodicity in X Per.

Another artificial data file similar to that above was generated 

with  ̂made cyclic with a period of 23^.92. Again using the same 

scheme for the period search, the most significant period emerged at 

23^.92 in compliance with the model constraints. The amplitudes of the 

fundamental for q and u were 0.36 ± 0.04 and 0.60 ± 0.04 respectively, 

implying that i = 53° ± 6°, 0 = 20° ± 6°, = 1.10 ± 0.02 and a^ =

-0.6 ± 0.2. All these results agree well with the input values, 

showing that any noise induced biasing of deduced parameters is small 

and that this should also apply to the parameters obtained from the 

real data.

It can be seen that the signal-to-noise of the amplitudes for the 

real data is ^ 5 and "v 10 for the artificial data. This suggests that 

a large proportion of the residual variations are from experimental 

error but the small discrepancy may reflect possible lack of 

homogeneity in the quality of the real data relative to the artificial 

data, or that there is noise within the star, or that for the 

artificial data the fit is made to the self-same model, there being no 

assumption that the applied model is exact.

It is also important to check on how well the model describes the 

recorded data. The goodness of fit was investigated by testing the 

significance of the multiple correlation coefficient squared, , this 

parameter measuring the fraction of the total sum of squares of the 

variations accounted for the fitted equation. For the period 23^.924,

= 0.06 and R^^ = 0.11 indicating that only a small (though still

significant) part of apparent variations are directly accountable to 

the mechanism proposed by the model.

Although the detected periodicity has a high statistical 

significance, giving a basic stellar geometry which is consistent with 

that derived from the model with the time element ignored, a large part
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of the variability of the data is not accounted for directly. However, 

as demonstrated above, it is again suggested that these residual 

fluctuations are mainly due to measuring errors from photon noise, 

rather than inadequacies of the admittedly simplistic model. It is 

because of the large number of measurements over repeated periods that 

the underlying nature of the variable polarization shows through. 

Correlations of the sign of u

Following the procedure outlined in Section 2.14(d) with the data 

rotated to the stellar frame, a series of discrete frequencies was 

applied (periods 23^.5(0*^.01)24^.5 and phase steps of 0^.1) to generate 

model u values and using a series of starting epochs to allow 

adjustment of phase, significant periods were searched for using the 

statistic of the binomial distribution. For the model with i = 45° and 

0 = 10°, the success maximum occurred at 23^.90. After removal of the 

outliers (>3.5a), the 397 values produced 276 sign correlation 

successes, providing a 7.73a detection of the period and phase, the 

significance being based on the continuous curve approximation for the 

binomial distribution. By removing data with u values within ± 0.035% 

of zero, i.e. within one standard deviation of a measured u parameter 

in KB's instrumental frame, the number of successes was 192 out of 254 

( 5 8.09a detection). Obviously the experimental errors (photon-noise) 

are masking the underlying behaviour of the star. The resulting epoch 

for all these tests covered the range JD 2,443,376.21 to 2,443,376.23 

(ĉ . phase from previous sub-section). The highest significance 

achieved on searching for spurious periods, with artificially generated 

KB-time assigned data, was less than 3a.

Correlation of the polarization Position Angle

The data have been analysed according to the proposed method of 

Section 2.14(c), the 99% confidence limit for the sample correlation 

coefficient being zero is 0.1291.
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Setting i and 6 according to the values immediately above, a

series of discrete frequencies (periods from 23^.5(0^.01)24*^.5 with

discrete phases at resolution 0^.05) was applied and correlations

between a ’ and a ' • performed, m j ^
The best gradient (0.42 ± 0.06) provided a period of 23^.92 with 

phase at JD 2,443,376.95, whilst the best correlation (0.34) provided a 

period of 23^.98 with phase at JD 2,443,376.79. The intercepts (a'j) 

at these conditions are 112° ± 11° and 115° ± 10° respectively; the 

99% confidence interval on the population correlation coefficient, p, 

is 0.21  ̂ p  ̂ 0.44, for which the value of 1 is obviously not included. 

These shortcomings set doubts on either £2 being determined correctly or 

on the significance of the results themselves. The polarization 

variability is small in relation to the experimental noise associated 

with each data point and because of the low signal-to-noise the method 

may suffer from the problems outlined in Section 2.14(c). For this 

reason, less weight should be applied to the determined phase in 

relation to the results of the two preceding sub-sections.

Again as a check on possible aliasing, model data were generated

and selected at random to replace the binned real measurements. When 

the period search on the a-correlation was performed, several v/e 

combinations provided correlations beyond the 99% confidence interval, 

as was to be expected in relation to the number of trial fits, but none 

matching the significance of the two periods described above.

3.4(g) Concluding Discussion

Analysis by means of a stochastic model of extensive data by KB of 

X Per suggests that the polarimetric fluctuations are caused by 

globules of electrons or a fairly well defined bulge in the extended

atmosphere in the polar regions of this star which offers a non-low

inclination. Both the analysis of the Stokes plane data density 

distribution and the fitting of a model involving stellar rotation
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provide consistent results showing that i = 50° ± 10° with the

co-latitude, 6 , of the polarigenic zone ^ 15° to 20°. The range of 

values for 9 represents a ball-park estimate based on the and least 

squares fitting, it being difficult to quantify any weighted value with 

the associated errors.

The time-averaged data produced well formed D-shapes implying that 

the globules (or bulge), as represented by t ,̂ are fairly constant on 

time-scales of ^ 15 days. A study of data taken during single nights

did not reveal evolution of t ,̂ but suggests that stellar rotation is

the dominant effect in explaining the apparently short-term 

"stochastic" polarimetric variations.

After checking the little effect that the average sampling 

interval and the limited data window have on producing false 

periodicity around 24 hrs. in the q and u parameters and having shown 

that, in any case, any aliasing is suppressed by performing a 

periodicity search in their combination according to the dictates of 

the stellar rotation model, a period of 23^.95 ± 0^.05 emerges, the

value within the error bounds being dependent on the method chosen to 

fit the equations representing the model. The value of the epoch 

corresponding to cj) =0° is also slightly sensitive to the method of 

implementing the equations for the model to the data but the suggested 

value is JD 2,443,376.2 ± 0.1.

The periodicity and geometry determined for X Per suggest that it 

is an oblique rotator, with the possibility that magnetic poles are 

enhancing the number density of electrons. From the value of 8, the

obliquity would be taken as 15° with an upper bound of 20°. This

discovery has great importance in its own right but the particular 

value of the rotation period is also significant for the interpretation 

of all other data related to the star.

Firstly, taking the interpretation by KB of their polarimetric
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data, the enigma of the D-shape, noted by KB when the data are 

time-averaged, is resolved. Because of the closeness of the rotation 

period to the average sampling interval, within a time-averaged 

interval, say 15 days, there is only a small change of phase. Nightly 

observations over a short span are equivalent to repetitive 

measurements, the time-averaged values providing a more accurate 

estimate for that particular phase of the rotation. Fifteen days 

represents the best interval for obtaining an accuracy which then 

allows the apparent progression to be noted from one time average to 

the next. The inclusion of measurement pairs from a single night make 

the 15-day averages noisy. Of course the D-shape obtained by the 

15-day average is the same as obtained when the data are used 

individually in the assembly; it is just that it is apparently more 

distinctive by smoothing out the noise.

Secondly an alternative explanation is also available for the long 

term periodicity detected by KB. Because the real period of the 

stellar polarimetric variation is close to 24 hrs., its sampling with 

an average interval of ^ 1 day will automatically generate beats. For 

a beat period of 290 days to be produced, sampling at 24 hrs. requires 

an underlying period of 23^.917 to be present, this being remarkably 

close to the discovered rotation period reported here. It is therefore 

suggested that KB's 290 day period and the longer one 580 days) 

correspond to a beat and its first undertone.

The question is also immediately raised as to the reality of the 

580 day radial velocity period determined by Hutchings <Lt cut, (1974). 

Examination of the data used to obtain their radial velocity curve 

reveals that they typically comprise three measurements per observing 

season over a few weeks, so imposing that any detected periodicity will 

be longer than one year. Again it is proposed that the 580 day 

velocity period corresponds to twice the beat period which itself, at



83

290 days, is too short to show from the form of their data train. It 

is interesting to note that, following more intensive spectroscopic 

activity in the middle 1970's, interpretation of the radial velocity 

data has become harder to interpret. From measurements of a variety of 

lines, no coherent picture emerges in terms of a binary model. 

According to Hutchings (1977), existence of the 580 day period still 

stands in the Balmer absorption velocities but the period is not 

clearly seen in either the He I or Balmer emission, this being hard to 

reconcile for a binary system. If the misidentification of the true 

period is taken for granted, it is therefore suggested that Balmer 

absorption and the polarimetric mechanism occur at the same atmospheric 

level. It may also be noted that a complementary analysis of archived 

spectra of X Per by Cowley (it at. (1972) concluded that if the star is 

involved in a binary system it is likely that the period lies between a 

few weeks to several months; the difficulty of locating and measuring 

truly stellar features makes the question of a possible binary system 

difficult to establish. Another argument against the 580 day period 

comes from Penrod and Vogt (1985) who claim that the variations 

reported by Hutchings at. (1974) are spurious and are caused by 

asymmetric and variable emission components hiding in the absorption 

profiles.

For the determined rotation period and assumed size of the

photosphere of X Per ('v 6 R q )  , the estimated equatorial velocity is 305

kms~^, giving a V^^sini = 235 kms After a reassessment of the

emission contamination, Hutchings (1977) provides a consistent

determination of 250 ± 25 kms ^; the value of V^^sini given by Penrod

and Vogt (1985) is 213 ± 20 kms“ .̂ By inverting the relation for

(see Equation 2.11.1) and taking a conservative estimate of the

scattering height above the photosphere as 2R^ (see Section 1.3), the
12 -3upper bound for the electron number density is found to be "v 10 cm



m

in

in

in

in

in

c\j
CJ

d

ocru.
Û
ÜJcno_<_jLÜ
cntr
=)oX

H # ̂ p 11 1
£3 X CO

X CO so
O p r -

O +J X Os
CO p p 4̂

■M > Pi X
CO U •H 3 p

0) X o
CO txD

6 0 Æ CO p CU
C o c PI

•H CO 0) CU
•M u •H p P-I

(U CO
CO c CU X
•M X ! U CO 13
CO Ü (U Pi PI

CO X o CO3 H Ü
0) 0)(Xi X) 6 P

X P (U
X IM G b•M o X >

CO p c o
CW CO X w
o T3 > e

(U P
X C (U o Pi1-1 •H CO X CO
+-» CO X 13 (30
a; +J o O p
B X X o
o O p s
4-> Ü (U
o p PL

CO X B
a ■P o

c p CO p
u •H CO X

•H O (30
M PL '13 c 13
+J 0) X <u
o Pi P a
0) CO X X P

r—1 (U CO X 13
0) CO P X O
o CO X X P
+-» o O X PL
o IM (U CU

C_) CO
Pm p CO w

PI X
•H

o\ O (U
in PL 13 rH

Pi o
<- Pi CO >, •

CO CO X o  ^
m I- ) <V 1P X

m CO p  •
bo P) 0) X  60

as O* X X
CO p CN Pm

>I
m CO



84

According to the same model which has been fitted here to the

polarimetric data, it is predicted that rotation will provide a light 

curve with the fundamental and its harmonic present. There have been 

many papers which confirm that X Per exhibits brightness changes, but 

of particular note are the results of Margon, Bowyer and Penegor (1976)

who performed extensive photometry on five consecutive nights. (Figure

3.4.5 reproduces their light curve of X Per in the B band). Although 

they suggest that their measurements do not reveal night-to-night 

variability, examination of their graphed data suggests that a B-band 

minimum was occurring each night and that the periodicity of this would 

not be inconsistent with a value of just less than 24 hours.

No concrete suggestions are made here in relation to the

generation of the X-rays but as the present situation is unsatisfactory 

as to modelling involving a compact object within the system

(Weisskopf, Q,t aZ., 1984), the introduction of there being a coherent

magnetic field (see Underhill (1983) related to magnetic activity in 

the atmospheres of early-type stars) might allow new proposals to be 

made to the suggestion by Doazan (see Underhill and Doazan, 1982) that 

the X-rays are associated with coronal activity.

3.5 A Comment on the Polarimetry of HDE 226868

(HDE 226868, m^ = 8.9, BO lb, = +35° 3' 35")

On visual inspection HDE 226868 has the guise of a single star,

but it is actually a short period spectroscopic binary. Interest arose

in the system when the X-ray source (4U 1956+35) was discovered to

emanate from the same position in the sky. (Bolton (1971, 1972) and 

Webster and Murdin (1972)). CYG XR-1 has been synonymous with

HDE 226868 ever since. For X-rays to be emitted it is generally

thought that some sort of compact object is involved. Obviously then 

it is important that the masses of the stars in the binary should be 

sought. For this, the value of the orbital inclination is needed; the
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mass of the primary, i.e. the visual component, can be estimated from 

its spectral type, leaving only the mass of the secondary to be 

ascertained straightforwardly from the usual mass function and with it, 

an opinion as to its type.

It may be reasonable to expect in such a system that the primary 

gets influenced to such an extent by the secondary as to cause it to 

have either an excessive mass loss (forming an accretion disk) or a 

tidal distortion, the effect being observed, one way, as a modulating 

intrinsic polarization.

With such a scenario in mind, Kemp's group (Nolt, a t. (1975), 

Kemp, Southwick and Rudy (1976), Kemp at. (1978) and Kemp Q,t a t. 

(1979)) decided to undertake a polarimetric campaign on the system with 

a view to determining i. Upper limits have been placed on i from 

analysis of its light-curve and through the absence of X-ray eclipses 

(see Bolton (1975) toe. c t t .), the boundary being at about 60°.

After monitoring in the V band (see Appendix D for a comprehensive 

listing of the data) over 3 years (June 1975 - December 1978), Kemp 

a t. (1979) claimed to have found a polarization component modulated 

over a 5*̂ .6 interval, synchronized with the 5^.6 radial velocity 

period, and calculated that the inclination lay between 60° and 70°, 

CAgo conflicting with the suppositions on i above. However, Simmons, 

Aspin and Brown (1980) applied a technique to the \l band data (as 

opposed to the least squares approach) and showed that the error on i 

is grossly underestimated, and revised i to lie in the interval 30° < i 

< 85°.

On observing a 9th magnitude star, even on a 61cm reflector and 

using wide-band filters, instrumental noise is obviously going to 

contribute to a significant part of any variability recorded in data 

(it was in this case the important effect of instrumental noise that 

Kemp ignored in calculating i and its error). The method of moments
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Fig. 3.5.1 The V-band data of Kemp’s group plotted in
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represents the MPA. The circular form of the 
measurements make eigendirections difficult to 
identify. The typical error on a single data point is 
indicated (the cross), as is the approximate 
interstellar direction (the full line).
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(special cases (1) and (2) in Section 2.13(a)) can directly account for

noise and so may be a particularly useful tool in such a situation.

Applying this technique to the data, the maximum variance (o^ ) was

found to be 0.04263%^ and the minimum (o^^) 0.03497%^. The two

variances, occurring at orthogonal directions, give F = = 1.22,

which compares with ^ 1.2 - the 5% significant level. So it can be

seen that there are no immediately identifiable eigendirections (see

Fig. 3.5.1). According to Kemp, the typical measuring error in either

q or u was ^ 0.15% (i.e. = 0.0225), which implies

0  ̂ ,= - o^ = 0.0201 and , = 0.0125, hence now F = 1.6.
X X e N '

Therefore employing the noise corrected second moments and their 

mean error estimates, gives i to be 61° ± 6° if the scattering

region is near or in the orbital plane or ^ 38° ± 8° if nearly

perpendicular to it. Unfortunately analysis of the field star 

polarization pattern or the 6 colour measurements of Gehrels (1972) do 

not reveal the interstellar value in the HDE 226868 direction, so no 

indication as to the co-latitude of the scattering mechanism is 

forthcoming.

Carrying out a periodicity search over the interval 5 hrs. to 40 

hrs. in steps of 0^.01, revealed no fits of significance approximately 

comparable to a 5^.6 fit.

On the whole the experimental noise seems to prevent any hope of

deriving any fundamental information, i.e. i, 6 , from the data, the one

exception being the 5*̂ .6 polarimetric periodicity.

3.6 The Polarimetric Behaviour of a Ori E

(HD 37479, = 6.7, 82 V, â çijg = 5'̂ 3é"' 16®, = -2“ 37' 38")

3.6(a) Introduction

This object can be considered as the prototype of a small class of 

helium rich stars, and it has been extensively studied. A discussion 

on the results of various observations can be found in Underhill and
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Doazan (1982, p. 159). It exhibits a diversity of rapid-type phenomena

- the light curve. He I lines, Ha emission, magnetic field and

polarization all seem to vary with a period of about 1.19 days.

Two genera of model have been proposed to explain what has been 

observed. Kemp and Herman (1977) - KH - suggested that a Ori E is a

member of a mass transfer binary system, after discovering a modulated

polarization synchronous with the light period. They derived the 

orbital inclination to be ^ 76°. The lack of radial velocity 

variations, which Bolton (1974) had shown where less than 4 kms ^, work 

against the binary hypothesis, though. Harmanec (1984) has recently

pointed out that the light curves of several Be stars behave in a

similar manner - o Ori E being taken as the archetype - and labelled

them as oblique rotators. Groote and Hunger (1977) suggested that the 

star has two helium caps, but again such a model requires radial 

velocity changes and, further, the secondary minimum of the light curve 

(Hesser, Walborn and Ugarte (1976)) occurs 0^.43 after the primary one 

and not 0^.5 as it would need to be here. Shore and Bolton (1976, 

1977, 1982) (as referenced in Harmanec (1984)) offered a magnetic

oblique rotator explanation in which the helium abundant region is 

concentrated at the magnetic equator in the form of a band. Landstreet 

and Borra (1978) - LB - in considering their version of a magnetic

oblique rotator, suggested that optically-thin localized gas clouds act 

as absorbing and/or scattering mechanisms, and attribute the lack of 

observed radial velocity variations as being due to non-robust 

measuring procedures. LB's model explains the recorded phenomena well, 

except for the Ha variability, which may be caused by localisation of

out-flowing mass controlled by the magnetic poles, and the phasing of 

the critical values of the light curve. They estimate the inclination 

of the rotation axis of the star to be near 90°, it not being possible 

to calculate the obliqueness of the magnetic pole(s) for such an aspect
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using their magnetic data alone.

If the gas clouds are considered primarily as scattering 

mechanisms, then the polarization will vary with the rotation period 

and also the apparent stellar magnitude.

The oblique rotator model, as described in Section 3.4, is applied 

to the polarimetric B wide-band measurements of KH below, with a view 

to deriving the stellar inclination, obliqueness of the magnetic pole, 

the scattering optical depth and to check if the 1^.19 period surfaces 

in both q and u with appropriate phase constraints. The latter
rotator

quantity is the severest test for an oblique/scenario. The results of 

the analysis tend to support and enhance the model of LB.

3.6(b) The Measurements

The 60 B band measurements of KH, taken over 69 days between Jan. 

7 - Mar. 17 1977, are listed in Appendix D; up to 5 points were 

recorded on any one observing night. It is unclear as to what is the 

error on a single measure, but it has been interpreted as 0.015% in 

both q and u. This seems a little small in comparison to the values 

quoted in Kemp and Barbour (1983) (^ 0.03%) for observations on X

Persei, which is a star of similar magnitude to a Ori E, since the same 

telescope and filters (V) of similar band-pass were used. KH estimated 

the interstellar polarization (Pjg) to be 0.335% (no error available) 

and = 86°.5 ± 0°.5 from the group of stars in which a Ori E is 

known to be a member.

Fig. 3.6.1 shows the B measurements in the equatorial (q, u) 

plane, along with the interstellar value and the direction of maximum 

spread (i.e. variance) in the data (MPA). It is immediately obvious 

from the figure that the MPA is almost parallel to the equatorial line, 

implying that the scattering material lies near the equatorial regions 

of the star and that the harmonic components of Equations (2.11.2) 

and/or (2.11.3) should dominate the oscillations.
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The periodograms for q ’^ — (a)—  and — (b)—  over
the interval 5(0.01)40 Rours. The 1.19 ^day (28.5hrs) 
period is very apparent in (a), but not in (b).
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3.6(c) Analysis of the Data 

Moments

As mentioned above, the direction of the MPA implies 6 - 90°, and 

so i can be estimated from the combination of maximum (o') and minimum 

(Oĵ ') variances (see Section 2, Case (2)). The result gives i = 67° ± 

9°, the error value being calculated using the mean 95% confidence 

intervals on the noise corrected second moments by way of the 

statistic. It was assumed that the form of the data sampling was such

that (}) could be treated as a random parameter.

If the experimental (o^) has been interpreted correctly then the

ratios and F^ = give 12.8 and 6.4 (ĉ . F(5%) =

1.6) respectively implying that the periodical form of both q and u 

should be detectable on fitting a sine-wave comprising a fundamental 

and harmonic frequency by least squares. However, if the true

experimental error is more on a par with that quoted in Kemp and

Barbour (1983) (=t̂ F̂  = 2.4), only a significant fit for q should emerge 

at the expected 1.19 day period. Further, the value of i derived above 

will have been slightly underestimated.

For the purposes of the analysis below, the value of 20 needed for 

rotation from the instrumental to stellar frames was taken as -76° - 

calculated using Equation (2.12.1).

Least Squares Fundamental and Harmonic Fit

The power spectrum of KH had shown that in the B measurements, the 

highest peak occurred at 0^.595 (i.e. half of 1*̂ .19). Presently a grid 

of periods 5^(0^.01)40^ was applied in a co-ordinate system whose

origin was the centre of gravity of the data points and whose axes were 

parallel to those of the stellar equatorial frame, the object being to 

check if a significant fit occurs at 1^.19 in both q and u and to see

if the ± 7 t / 2  and ± tt/4, to la, phase constraints are conformed to. The

resulting periodograms are shown in Fig. 3.6.2.
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The most evident peak occurs at 28^.55 (E 1^.19) in q, but no fits 

greater than the 1% level (i.e. f > 3.7) are seen in u above 23 hrs. - 

it being perhaps related to the lack of information concerning the 

value of the instrumental noise. Re-applying a finer comb of 

28^.54(0^.001)28^.57, still no confident results emerged for u, but the 

maximum for q (F = 9.2) revised the period to 28^.554. The F-values 

can be compared to those tabulated with numerator and denominator

degrees of freedom of 4 and 55 respectively. At 28^.554, F^ = 2.1, a^

= 0.023% ± 0.008%, ag = 0.045% ± 0.008%, b^ z 0.011% ± 0.007% and b^ =

0.016% ± 0.007%. The differences between the phases of q and u would 

be expected to be tt/2 and tt/4 for the fundamental and harmonic 

respectively. The derived values, in the sense i.e. right to

left rotation, were 161° ± 46° (i.e. slightly greater than lo) and 45° 

± 15°. So it can be seen that at 28^.554 the polarimetric variability 

conforms to an oblique rotator model.

Combining a^, a2» b^ and b2 give the weighted means i z 80° ± 6°,

0 z 85° ± 4°, T z 8.7 X 10"^ ± 1.5 x 10"^ and a z 0.041% ± 0.008%.o o
(a^ and b^ give a meaningless result for i) with phase (i.e. z 0) at 

JD 2,443,150.33 ± 0.02. No comment can be made as to whether or not 

there is a general atmospheric contribution (i.e. q^) as the error on 

Pjg is not available. Simmons, Aspin and Brown (1982) have pointed out 

that in situations of strong noise, least squares can give a biased 

(upward) value of i where error will also be underestimated. Since u 

did not give a significant fit at 28^.554 and that its coefficients are 

comparable to their accuracies imply that such a case exists here. It 

is important to note, however, that the position of the data is not 

inconsistent with there being truly high values of i and 0 as is 

supported by the method of moments.

As a check on the effect of sampling and noise on the fitting

procedure at 28^.554, artificial data were generated with the



91

parameters i = 80°, 6 = 85° and = 1, and random. Noise equivalent 

to the errors on a2 and 62 was added. Running the data set under a 

grid of periods, 28^(0^.001)29^, revealed no significant fits superior 

to the 1% level. Hence neither the sampling nor instrumental noise has 

had any noticeable effect on the manufacturing of the 28^.554 cycle.

Another artificial data set was generated again with i = 80°, 0 = 

85° and = 1, but was made cyclic with a period of 28^.554. Noise 

was added so that the "signal to noise" ratio of 02/602 was comparable 

to 02/682 of the real data. The parameters i, 0 and reproduced 

quite well giving i = 68° ± 8°, 0 = 79° ± 5° and % 1.0 ± 0.2. 

Correlation of the Sign of u

Since the u parameter appears to be dominated by noise, this 

method (see Section 2.14(d)) might more readily, compared with 

regression, identify the 28^.554 period in u at a significant level.

The data were rotated to the stellar equatorial frame and the 

signs of u matched to those of model values generated with a period 

from the interval 28^.4(0^.01)28^.6 and a series of starting epochs 

resolved to 0^.1, i = 80° and 0 = 85°. The significance of any

correlation can be assessed using the continuous curve approximation 

for the binomial distribution, for which if <)) can be considered as 

random will have a standard deviation of a z Ü.5/N, where N is the 

number of data points. The 99% limit for detection is at 2.54a.

At 28^.60, the 60 measurements produced 40 matches {= 2.4a).

Weighting by removing u values within ±0.015% of zero (i.e. the

supposed experimental error) produced 29 successes from the 42 possible 

( =2.3a) at periods ranging from 28^.51 to 28^.58. No significant 

periods were detected.

An artificial data set with the same parameters as used in the 

least squares section was generated to check if the above fits are

superior to that expected from noise alone. Applying a grid of
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periods, ranging from 28^.4(0^.01)28*^.6, and phase steps of 0^.1, the 

most significant matching result was equivalent to a 1.9o detection, on 

the data produced with (}> random and a conservative estimate of the 

scaled experimental noise. This shows that the u parameter of the B 

band measurements can be equally represented by a distribution governed 

by uniform as one in which 4) is periodic.

Re the Magnetic Field

Following Stibbs (1950) and Landstreet (1982), and considering the 

geometry of Fig. 2.7.1, where P would now represent the position of the 

field vector, it is easy to show that for an oblique dipole rotator, 

the longitudinal component of the field Bg is described by:

B^ z A + Bcos^ (3.6.1)
—8 8 where A z B^ cosB cos i, ^ sing sini, 3 is the obliquity of

the magnetic axis to the rotation axis (=6 ) and B^ is the polar field

strength.

Equation (3.6.1) is at a maximum when 4̂ z 0°. Fitting the above 

equation to the 8 magnetic observations of LB with the polarimetric 

period shows that the epoch of 4̂ = 0° is at JD 2,443,441.77 ± 

0.02+1^.1898 and hence is correctly synchronous with the polarimetric 

modulations if the magnetic poles are being considered as the site of 

the localized (enhanced) scattering.

At 1*^.1898 the F-value of the least squares fitting of Equation

(3.6.1) is 51.2 which compares to the 1% level z 13.3; A z -0.381 ±

0.191 kilogauss and B z 2.68 ± 0.26 kilogauss.

3.6(d) Conclusions

Analysis of a polarimetric B-wide-band data run of moderate length 

by KH enhances the magnetic oblique rotator model for a Ori E described 

by LB. Reduction of the data density distribution by moments implies 

that the inclination of the stellar rotation axis, i, is equal to 67° ± 

9° and that the polarigenic mechanism(s) is/are confined to the
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equatorial regions of this star. Consideration of the measurements as

a time-sequence result in i = 80° ± 6°, and the co-latitude of the

scattering cloud(s) 0 ^ 85° ± 4° and show an expected rotation period

of 28^.554 consistent with that of the light curve (see Hesser, Walborn

and Ugarte, 1976). The suggested mean value of i by combining the

values derived by the moments and least squares methods is then 74° ±

6°. It was unclear as to what the value of the experimental error in

the data of KH is, it being interpreted as 0.015% for both q and u.

The fact that u did not show through at 28^.554 in the fitting of a

sine-wave comprising fundamental and harmonic frequencies, and the

correlation of its sign demonstrated that u could be represented by a

non-periodic parameter, implies the value of the true experimental

noise to be greater by at least the order of 2. Obviously more data

are needed to clarify if u has a significant periodicity at 28^.554 or

not; but the situation at present would not rebuke i and 0 as having

high values. Neither the sampling nor the noise seem to have had any

noticeable effect on the production of the stated cycle.

If the scattering takes place in a cone of say ±5° in extent about

0 and 4) , and at a height of 2R^ above the photosphere (see Section

1.3), then the electron number density (n^) can be given an upper

bound. The scattering optical depth was found to be 8.7 x 10"^ and if
12 -3R* = 3.5Rq  (l b ) then a conservative estimate of n^ would be ^ 10 cm

for two cones, noting that n = T ^ r - the electron number and that

the volume of one scattering region \l = 8R^^sin0d0d4>/3. This figure

for n^ is not unreasonable (ĉ . Capps, Coyne and Dyck (1973) analysis

of  ̂ Tau, where they give n^ ^ IG^^cm  ̂ ). The number of the last
12 -3observable Balmer line for a Ori E gives n^ a, 2x10 cm (see LB) which 

agrees well with that above.

The fitting of a sinusoid gives the epoch of 4» = 0 at JD

2,443,150.33 ± 0.02, using the phase derived for the harmonic component
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of q as this was the one determined with least error. If the 

polarimetric fluctuations are caused by a co-rotating gas cloud, the 

same mechanism would also vary the intensity, with the secondary 

maximum brightness occurring at a JD corresponding to 0 = 0 (see Figs.

4.2.2 and 4.2.4). LB give the ephemeris of primary minimum of the 

light curve as JD 2,442,778.819 + 1.19080E, implying that the middle of 

the secondary maximum occurs, from their sketch of the modulation (LB - 

Fig. 1), about 0^.2 later, i.e. at JD 2,442,779.057 + 1.19080E. For

the photometric and polarimetric variations to be synchronous (using 

the derived polarimetric period) (3150.33 - 2779.057)/l^.1898 would

need to be an integer - which it is to the second decimal place! This 

result is all the more startling as the polarimetric phase was derived 

independent of the brightness ephemeris, unlike the analysis of KH and 

further as the data sampling was "far from optimum". The variation of 

the longitudinal component of the magnetic field has also been shown to 

be in phase with the polarimetric modulations. LB have already pointed 

out that photometric primary minimum is coincident with B^ = 0. The 

strength of the polar field may also be estimated using the relation 

(Stibbs, 1950) B^ = 3.3B^(max)/cos(6-i), which gives lG,29Ggauss ±

12Glgauss taking 0 to be the obliquity of the magnetic pole.

A major problem that the light curve posed the spot oblique 

rotator model of Groote and Hunger (1977) and LB was that the minima 

were observed to be separated by 0^.43 and not 0^.5 as might be 

expected. Such phase differences are easily explainable, if, again, 

the polarigenic and photogenic mechanisms are identical. The 

brightness trend would be described by the equation

Tg(Asin2icos(wt+n^) + Bsin'icos2(wt+n2))

where and 1I2 are phases and w = rotational velocity for scattering. 

A and B depend on the distribution of the scattering material in and



6.65

O)m
E

6.753

685

0.90.3 0.6

0.06

cr
0.03

0.00
0.90.3 0.6

0.03

0.00 0.6 0.9

- 0.03

Phase

Fig. 3.6.3 Observed variation of ^ Ori E as a function 
of phase. T o p  t o  B o t i  o m : Stromgren u magnitude;
longitudinal magnetic field strength B ; and the 
normalized Stokes parameters q and u.
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out of the equatorial plane. High values of i and 0 (- 70°), (as 

detected here!), are required for a minima detachment of 0^.4, 

assuming the relative phases (i.e. r\̂ and q^) to be similar to that 

found for the q parameter. Fig. 3.6.3 shows the phase relationship of 

the light curve and the magnetic and polarization variations from an 

epoch corresponding to cj) = 0.

Scattering may also relate the strength of the Ha emission since, 

in optically thin cases, as justified by the low value of t^, it can 

represent n^. If n^ is subject to change, e.g. temporal, or with 

wavelength due to increasing/decreasing absorption, then not only would 

the emission vary in a correlated manner but too. Hence the 

brightness and polarization would also fluctuate, the effect being 

observed either as added noise or as a reduction/increase in the 

photometric and polarimetric amplitudes. The variation in the depth of 

the minima of the light curves with wavelength, as reported by Hesser 

et at. (1977) may thus in part be explained.

The analysis has revealed an excellent union of polarimetric, 

photometric and magnetic predictions in considering a co-rotating 

scattering cloud/bulge model and makes the case of a magnetic oblique 

(spot) rotator scenario very strong for this star.
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CHAPTER 4. ASPECTS OF PHOTOMETRY

4.1 Introduction

4.2 Model Geometries

4.3 The Photometric Behaviour of EM Cep
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Fig. 4.1.1 Examples of Be stars whose light curves 
exhibit a double-wave form. (Upper after Harmanec 1984 
: Lower after Balona and Engelbrecht 1986).
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CHAPTER 4 . ASPECTS OF PHOTOMETRY
4.1 Introduction

Recently, it has been noticed that whenever a Be star is 

photometrically well observed, the light curves seem to exhibit a 

low-amplitude double-wave form with unequal maxima and/or minima with a 

period close to that of stellar rotation 1 day) with time asymmetry 

between minima pairs, e.g. see Fig. 4.1.1. Harmanec (1984) - H - has 

remarked on the similarity of the rapid cyclic variations of EM Cep, 

o Ori E and possibly LQ And. In studying the young cluster NGC 3766, 

Balona and Engelbrecht (1986) - BE - found that of the seven Be stars 

observed, four showed the characteristics commented on above and two 

others revealed variability but of too small an amplitude to derive a 

period.

Several models have been proposed to explain these strange 

waveforms but all have some difficulties. One hypothesis is that of a 

close binary companion, but this would require the secondary to be very 

close to the primary to give the short periods. Moreover, eclipsing 

and large radial velocity variations would be expected, these effects 

not being observed. Another proposal is the non-radial pulsator, but 

the difficulty that presents itself here is that the periods of such 

objects are usually less than 0.5 days.

The model favoured by H and BE is one involving some form of 

spotted disk. According to Evans (1971), "the hypothesis of star spots 

has a long and dishonourable history", it being one of those rather 

vague catch-all mechanisms contrivable to explain everything, but still 

plausible when all around are failing. An early reference is Pickering 

(1880). Walker (1953) also proposed it to explain the light variations 

of EW Lac, the first Be star in which such short-period fluctuations 

were found.

BE suggest that the unequal maxima/minima are caused by two
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co-rotating spots diametrically opposed, with one more extensive in 

area than the other, and variations in the light amplitude which are 

also detected result from the spots migrating in latitude or changing 

in size. A problem that arises, though, is that the relative phases of 

the maxima (for bright spots) would be expected to be 0^.5, which they 

are often found not to be.

Consideration of the total intensity Stokes parameter (I), its 

relation with the scattering function of the free electron (or any 

symmetrical scatterer) and the geometry of the oblique rotator (i.e. 

obliqueness of the "spots" to the stellar rotational axis) reveals that 

the observed rapid periods and related phenomena can be successfully 

explained in a simple and non-contrived manner.

For convenience, let us term the spotted disk scenario:- the 

photospheric spot model (PSM), and the scattering representation:- the 

scattering oblique rotator model (SORM). The fundamental difference 

between PSM and SORM is that for the PSM the spots are "on" the stellar 

surface whereas in SORM the effect takes place above the photosphere 

and may be related to a bulge in the stellar atmosphere. It may be 

possible that both situations can result for the same initial 

mechanism, perhaps radiatively driven outflowing gas channelled through 

magnetic poles.

Below, the PSM and SORM are both fitted to readily available 

comprehensive UBV data on EM Cep, which incidentally has been the most 

extensively studied short-period Be star case, recorded by Rachkovskaya 

(1975, 1976) - R. It is sad to note, though, the remark made by BE 

that intensive photometric observations of Be stars are few and far 

between despite the potential importance they may have to the 

understanding of the Be phenomenon.

Firstly the geometry and mathematics of both PSM and SORM are 

briefly described.
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4.2 Model Geometries

The most complete mathematical description of a PSM that I have 

come across appears in a paper by Torres and Ferraz Mello (1973). The 

geometry they used is essentially that displayed in Fig. 2.7.1, but 

with the primed and unprimed axes interchanged. It is easy to show 

that the luminosity, L(X), of an unspotted star,

radius and monochromatic flux F*(X, a) at a point angled ot to the

line of sight is given by

L(X) = nR:*F*(X, 0)(l-w(X)/3) (4.2.1)

where X is the wavelength and y(X) the colour dependent coefficient of 

limb darkening. A spot with limits (8 ,̂ 0^), (^^, 4>2), monochromatic 

flux Fg(X, a) having the same y(X) as for the star but of greater 

temperature, contributes to the stellar luminosity causing a magnitude 

change Am(X, t) relative to an unblemished disk at time t is given by:

Am(X, t) = 2.51og^Q[l + G(X, t)(6-l)] (4.2.2)

where

 ̂ *2 ®2
G(X, t) =  ------------  J J (l-y(X) + y(X)cosa)cosasin8d8d#

7t (1  -  8 = 8 ^

and
F g ( X ,  a )

® ^ F*(X, a)

The spot of course affects the observed brightness only when it is 

on the apparent disk, i.e. Am(X, t) = 0 whenever cos a < 0. When the 

spot is at = 0, its effect will be at a maximum and so G(X, t) = 

Gmax^^) which will represent the relative areas of the spot and disk. 

Hence the amplitude, A(X), of the light curve is
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Fig. 4.2.1 The form of the light curve expected from
two point like diametrically opposed bright spots 
co-rotating on a stellar equator, (j) =0 at zero phase.
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A(X) = 2.51og [1 + G (X)(B-1)] (4.2.3)lu max

Two kinds of parameter are involved here, physical (through

3) and geometrical (through G). The model is most sensitive to T^ and 

Tg, the temperatures of the star and spot respectively, the spot 

co-ordinates and area, and the stellar inclination. Unfortunately 

Equation (4.2.3) has its parameters convolved such that they cannot be 

wholly extracted from data fitting, but consideration of the amplitude 

of variation of the colour indices may help in determining T^ and T^ 

(T^ can be assumed from spectral type). Limb darkening has little 

effect. Evans (1971) has stated some obvious principles regarding star 

spots and they include:

a) A brighter spot of the same area as a darker spot produces 

more noticeable effects.

b) The shape of the light curve will be almost independent of 

spot shape.

c) If variations are to be observed, the number of areas of 

anomalous brightness must be small, counting a localized group 

as a single spot (i.e. spots are not randomly scattered about 

the disk).

For i = 90° and two diametrically opposed point-like spots 

co-rotating on a stellar equator, the resultant light curve may look 

like that depicted in Fig. 4.2.1. Note the cusp-like appearance as one 

spot moves into view and the other out of view.

As shown in Section 2.7, in a point source/point scatterer 

scenario, for a globule of free electrons the flux scattered towards 

Earth is

I* (1 + cos" x) 

and, using the geometry of Fig. 2.7.1, this can be written as:



I (Arbitrary Unit»)

0^0 p
0-5 p,
(* = 0) Phase

Fig. 4.2.2 The light curves expected from a 
co-rotating point scattering bulge.
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I*T^(A + Bcoscj) + Ccos2(j)) (4.2.4)

where A = 1 + .5xsin^0sin^i + cos^ôcos^i

B = -.5xsin20sin2i 

C = .5xsin^ 0 sin^i

and since the globule/atmospheric bulge is assumed to be in 

co-rotation, (j) can be represented by a periodic term vi,z. w = stellar 

angular velocity and phase e corresponding to the epoch cj) = 0.

The total intensity thus arriving from the star is equal to:

-I + (1 + T (A + Bcos(o)t+e) + Ccos2((jüt+e) ) ) (4.2.5)a * o

where is the extinction, depending on t ,̂ along the line of sight,

i.e. when x = 0* may be variable since if the general extended 

atmosphere is also scattering the incident stellar radiation, there may 

be a further attenuation when the enhanced scattering zone possibly

moves into the line of sight. Equation (4.2.5) is applicable to all

forms of Rayleigh scattering. Temperature may invoke a form of

wavelength dependence to Equation (4.2.5), as a depletion in the number 

of free electrons would be expected the cooler the temperature, away 

from ionization levels.

It can be seen immediately from Equation (4.2.5) that if either 0 

or i equals zero, then there would be no periodic variations, but 

stochastic changes would still be apparent if fluctuates; the 

amplitudes of the periodic variations would also be variable if 

changes.

Fig. 4.2.2 shows the light curve expected for differing ratios of 

B:C. For 2:1, 1:1 and 1:2 the separation of the minima are

approximately, in terms of fraction of phase, 0^.33 & 0^.67,

0^.42 & qP.58, and 0^.46 & 0^.52 respectively. The double periodicity
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Top panel, nightly variations of Ahmed 88; bottom panel, light curve of Ahmed 88 with nightly variations 
removed. The period is 0.946 days; phase zero is JD 2446000.000. Tick marks are spaced at intervals of 0.01 mag in 
both panels.
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PHASE

Top panel, nightly mean variations of Ahmed 1, bottom panel, light curve of Ahmed 1 with nightly 
variations removed. The period is 1.739 days: phase zero is JD 2446000.000. Tick marks are spaced at intervals of 
0.05 mag in both panels.

Fig. 4.2.3 The above observed double-wave forms (after 
Balona and Engelbrecht 1986) seem to be well matched by 
the characteristics of the shape of the predicted light 
curves for a scattering mechanism as shown in Fig. 
4.2.2.
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is best seen when the fundamental and harmonic are both significantly 

present. Note also that only one globule is needed to give a variation 

throughout the whole of the rotation period; two globules 

diametrically opposed serve only to enhance the amplitudes. Decoupling 

of the parameters i and 0 from photometry alone is difficult as they 

are interchangeable (see Equation (4.2.5)). Examination of Figs. 4.2.2 

and 4.2.3 shows that the scattering mechanism is successful in 

explaining the double-wave form related in Section 4.1. However, 

comparing these curves to the waveform of o Ori E (Fig. 4.2.4) shows 

that it is the minima that are unequal rather than the maxima as 

predicted by the model. The suggestion is that point scattering theory 

may be a little too simplistic to describe accurately the photometry in 

every case. The form that Equation (4.2.5) would take, revised for an 

extended scattering region or source, would be similar to that of Brown 

zt aJi. (1978) - Equation (8) which describes the scattered intensity in 

an optically thin envelope of arbitrary shape illuminated by point 

sources:

I = Iq (1 + Tq (2(1+Yq ) + (l-3YQ)sin=i + Gsin2icos(X+X2)

+ Hsin^icos2(X+X2))) (8) or (4.2.6)

where X^ - X£ = AX, the phase difference between the first and second

harmonic contributions (or fundamental and first harmonic in the

present terminology)

G = (Yl' + Yg:)*

H = (y-" + y^'):

T Y - T T/ are moments 0 0 0 4
X is local longitude and

i is the inclination of the orbital plane.
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Fig. 4.2.5 The light curve expected from an extended 
co-rotating scattering bulge. The fundamental and 
harmonic having various relative phases but the same 
amplitudes.
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Obviously it is 6 and <J> that are affected in considering an 

extended scattering region (or extended light source), and so by 

analogy with Equation (4.2.6) the part of Equation (4.2.5) which

governs the modulation takes the form:

-Esin2icos((jot+\pi ) + Fsin^icos2(wt+^2) (4.2.7)

again no periodicity being apparent if E = F = 0 or i = 0°, with 

harmonic domination in the stellar equatorial plane or if i = 90°. 

Fig. 4.2.5 shows the form of the expected light curves when the 

amplitude of the fundamental and harmonic are equal for various

relative phase differences, and appear to be very favourably relatable 

to Figs. 4.2.3 and 4.2.4.

4.3 The Photometric Behaviour of EM Cep

(HD 208392, m^ = 7.1, B1 IVe, = 21^ 52^ 22^, = +62° 22'

40")

(a) From her UBV photoelectric observations spanning 1971 to 1974, 

R found rapid light variations (0^.806196) with amplitudes ranging from 

0^.10 to 0^.05, and indicated that the star was either a B Cep variable 

or an oblique rotator (PSM) and not a contact binary as suggested by 

Lynds (1959a, b) - the discoverer of the fluctuations. She also found 

that the light was weaker in 1974 by about 0^.05, in maximum and

minimum than in 1972. Rachkovskaya performed spectrophotometric 

observations as well (XX 3600-4900Â, dispersion AX = 37 Amm” ,̂ 

1971-1974) from which she concluded the spectral type to be BO-8 IV-V 

and that there is an excess of helium abundance in the atmosphere.

Hubert-Delplace and Hubert (1979) have reported an alternation 

between B and Be phases on time-scales of years. Rachkovskaya (1980) 

found no phase-dependent line profile variations in excess of measuring 

errors. The HB, Hy and He I 4471 profiles measured by Hilditch dt cut. 
(1982) tentatively show additional absorption near one photometric
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Fig. 4.3.1(c) B-band : J.D. 2441206.233 - J.D. 2441527.554
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Fig. 4.3.1(a) U-band : J.D. 2442239.3252 - J.D. 2442283.5656

The curves are the best fit, assuming a 0^.806196 period, of 
a PSM to UBV data on EM Cep recorded by Rachkovskaya 
(1975,1976). The arrow shows the direction of increasing 
brightness, the divisions being in magnitude. Phase is with 
respect to the time of measurement of the first data point in 
each set.



JD
CO

-o
(UTJf-i • 
O  TJ 
O  QJ
S I

CO
Q - CO 
(D CO 
CJ

CO
2: CO 
LJ S

U- VO 
O  CTv

r —I
CO VO J-> o  
CD 0 0  "D • TD 
O  O  

•H

o
SI
Q .

(+-
O

-D
O

•H

CU
CD.

CD

O  ^  -P VO
r -  

2 :  0 \U~) I—I 
G_

CO m  
r-"COCJV 

C  .-H 
•H  
4->4J 
•H

CO

CO 
> . 
CO

CO 
>  
o

sz
I— I CJ 
3  CO 
CO DC
mp >\ 

JD
0

J=

cr

CD

CD.I—I
jv

CD.
O

m

CD.
CD

A

CD.
CD

r—1 CXI A A - A
CXI i-H CN A CD
00 VO CN 00 CN
VO r~- A < f

CD CD CD 0 CD

A A - <J- A CM A A
CD 0 1—i 0 CD CD CD VO CD CD 00 CD CD
CD CD CD CD CD CD « CD CD « CD CD

0 0 0 0 0
CD CD I— 1 CD CD 1—1 CD CD CD CD CD CD CD CD 1—1
+1 +1 + 1 +1 +1 + 1 +1 +1 +1 +1 +1 +1 +1 +1 +1
CD CXI □ A ' VO □ CD A " 0 A VO 0 A CN □
CXI < r CA o \ Ov CM A 1—1 CM CM CM CN
A 1—1 A 1—1 A < t 1—1 < t 1—1 1—1 A

A A A
CD 0 CD 0 CD CD CD CD CD CD

VO 00 A VO CM A CM A A VO
CD CD A CD CD CM CD CD VO CD CD A - CD CD
CD CD « CD CD • CD CD CD CD • 0 CD

0 0 0 0 0
CD CD 1—1 CD CD 1— i CD CD CD CD CD 0 CD CD r—i
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 4-1
OV A 0 CN CN 0 r - i CD 0 VO 0 A CD 0
CN CM -d- CM CM r - 1 CM 0 rH CM CN A A CM
'd ' 1—1 0 0 r—1 00 r—1 00 rH A - <}• 1—1 00

1—1 r—H t—1 f—1 r—1
CD CD CD CD CD CD CD CD CD CD

* * 0 
C J CD. CO 
C 3 E  CO

c  x :
CL

LTV
< tKV

CVJ VO 
LTV LA 
CSJ VO rA lA
CA rA  KV 00 
CVJ cvj 
CNl CVJ

3 3
CXI CXI

t

LA
LArA

rA
LA
tA
CXI

00
CD
r~
CXI

0\ A 
lA  VO 
CXI VO 
A  A

Ov A  
A  CO 
CVJ CXI 
CXI CXI

3 3CXI CXI 
+

CO

A  < j- 
A  A
CXI A

VO A> 
CD CXI 
CXI A  
rH r-H
3 3
CXI CXI

t

00

A  
A  VO 
A  VO 
CXI A

VO A  
CD 00 
CXI CXIIS
CXI CXI

t

CO

00
A

VO A  
VO l~" 
CXI VO 
A  A

CJv A  
A  00 
CV| CXI 
CXI CXI

3 3
CxI CM

0
TD
3

J-)
•H
Ccn
CO

0
pro
w4J



104

minimum; they conclude that EM Cep is possibly a non-radial pulsator 

and not a short period binary. According to H, V^^sini ^ 3G0kms ^, 

this not being high enough to make a 0^.4 period with one minimum and 

maximum in each cycle a possibility - otherwise an unrealistically high 

rotational velocity would be needed.

The UBV data of R are reanalysed here, as both the PSM and SORM 

present themselves as attractive scenarios and favour a 0*^.806 period. 

Neither model has been applied by previous workers to the measurements; 

further, the relative goodness of fit can be appraised by examination 

of the multiple correlation coefficient squared (R^). From the figures 

presented in R, it is obvious that the experimental noise (la = 

±0^.012) is not totally responsible for the variations within the data.

(b) Fitting the PSM Here the 0^.806196 cycle is not challenged. 

The data were folded into one period and Equation (4.3.1) fitted, vXz.

two dc's, amplitudes and phases, via the method of least squares.

dg + d2sin(wti+ni) 0*̂ .0 - tĵ  < 0^.5

li = I (4.3.1)

+ ejsin(ü)tĵ+ri2) 0^.5 & < 0^.5

A difficulty that arises is that an initial epoch must be chosen 

such that the data are correctly phased for ease of adapting Equation

(4.3.1) i.e. testing for the interval in which the observation taken at 

time t^ lies. The starting time was derived for each individual 

measurement set (5 in all) by fitting a sinusoid of period 0*^.806196 

and finding the relative phase of the first data point. If this 

relative phase has been correctly found, should equal 180° and ^2?

0°. For an optimum fit i = 90° is desired. The form of the data when

folded on the assumed period fortunately suggests such a geometry. The

results are shown in Table 4.3.1 and are displayed graphically as Fig. 

4.3.1(a)-(e).
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The concurrently taken UBV data indicate that there is a positive 

correlation between increasing goodness of fit and increasing 

wavelength (assuming U ^ 3700A, B ^ 4450A, V 'v 5500A). Forming the

strict criterion that two means are significantly departed if their 

absolute difference is greater than three times the square root of the 

sum of the squares of their errors, an implication is that amplitude is 

independent of wavelength. Generally, the waves fitted to the first 

and second half of the period interval have the same dc, amplitude and 

correct phase. Note also for B, the amplitudes derived for the earlier 

extended observing run are approximately the same as for the later data 

train.

For the shorter data sets, when individually subdivided into two 

groups composed of roughly an equal number of points, it was found that 

there was a change in for all three colours. For B a fluctuation in 

both dc and amplitude was apparent. In V there was a difference 

between e^ of the first and second groups. was seen to decrease

between the sets of two classes consistently (in colour). Obviously as 

well as the rapid cyclic variations there are also medium term 

fluctuations ("v 10 days) present, which account for the wide spread in 

the data of the longer run (see Fig. 4.3.1(c)). Similar changes in dc, 

amplitude and phases are found when the extended B measurements are 

subdivided into 4 groups of roughly 30 days duration each.

As previously commented, this star appears to have a high

inclination ('v 90°) suggested by the  obvious rectified

sine-wave form, and to exhibit events around its equatorial zones. 

Taking the effective temperature of a B1 IV spectral type to be 27000°K 

(e.g. see Underhill and Doazan (1982), Table 3-5) and = 0.666, pg = 

0.65 and = 0.644 (Kopal (1959)) then Equation (4.2.3) can be used to 

estimate the possible size and temperature of the two diametrically 

opposed photospheric spots. One possible but not unique set of
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The curves are the best fit of a SORM to UBV data on EM Cep 
recorded by Rachkovskaya (1975,1976). The arrow shows the 
direction of increasing brightness, the divisions being in 
magnitude. Phase is with respect to the time of measurement 
of the first data point in each set.
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parameters that could match the requirements are i = 6G°-9G°, 6 90°,

Tg 45GGG°K and spot size equivalent to "v 25% of the stellar disk in 

area. The only deviation between the model and the observations is 

that the colour indices of the model parameters are a little larger 

than those recorded.

(c) Fitting the SORM Here the fitted equation took the form (ĉ . 

Equations (4.2.5) and (4.2.7)):

1. = d - dLcoswt. + dLsinwt. + dLcosZwt. - d.sinZwt. (4.3.2) 1 o 1 1 2 1 3 1 4 1

i.e. a dc and the amplitudes and phases of the fundamental and harmonic 

contributions. The method of least squares was invoked for data 

reduction, the procedure being analogous to that shown in Appendix C. 

According to H, various periods have been derived ranging from 

G^.8G6179 to G^.8G7187. The form of Equation (4.3.2) allows a grid of 

frequencies to be applied relatively easily, compared to that of 

Equation (4.3.1). After experimentation, the stepsize was taken as 

G^.GGGGl rather than G^.GGGGGl as the finer mesh does not appear to 

reveal any greater significant results than the coarser one.

Table 4.3.2 shows the consequence of fitting a grid of periods, 

8^.883(8*^.88881)8*^.8072, to the said UBV data and Fig. 4.3.2(a)-(e) 

displays the results in a pictorial fashion.

The shorter data sets imply that better fits emerge with 

increasing wavelength and that the period of co-rotation is less than 

that generally accepted - although the extended B run would argue this 

latter result. The fundamental amplitude is consistently (in colour) 

barely significant and for the longest individual observing run is 

essentially non-existent, implying that the variations are due to 

equatorially located events. For Thomson scattering the amplitudes 

would be expected to be colour independent and this is what is seen.

As in the PSM treatment, the measurements were each similarly
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subdivided into two classes. For the brief data sets no changes in the 

fundamental and harmonic amplitudes were cited. The phase of the 

fundamental varies for B and V, whilst the harmonic phases remain 

constant; only for B does the dc level fluctuate. In common with the 

PSM analysis, the former halves of the data consistently appear to give 

more significant fits than the latter halves. Investigation of the 

extended B measurements reveals that all the examined parameters (not 

period), except the phase of the harmonic, are subject to temporal 

change.

For equatorial zone events, it is impossible to derive a value of 

i. It is also impractical to estimate since when 6 90°, i also

acts as a scaling factor. If i ^ 90° then, to observe a peak to trough

amplitude of about 0*̂ .1, needs to be around 0.1, which still allows 

the assumption of optical thinness. The phase changes often found for 

the fundamental contributions, though little, may imply that scattering 

material is moving perpendicularly or parallel to the stellar 

equatorial plane.

(d) Conclusion Both the PSM and SORM were applied to UBV data of

EM Cep recorded by R. For the PSM, a period of 0*^.806196 was assumed

and typical colour independent amplitudes of variation of 0*̂ .13 were 

found, implying that the two diametrically opposed spots are about each 

25% of the area of the apparent disk, and "v 18000°K hotter than the 

surrounding photosphere. The implied geometry is that the stellar 

inclination is of the order of 90°, and the spots are at equatorial 

latitudes.

In fitting a SORM, derived periods ranged from 0^.80546 to 

0^.80618. The scattering material seems to be zonal to the equatorial 

regions of the star as the fundamental contributions to the observed 

variations were found to be small relative to the harmonic dominance. 

The amplitude of the harmonic fluctuations were wavelength independent
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and exhibited amplitudes of "v 0^.055. It was not possible to derive an 

inclination, but the scattering optical depth was estimated to be ^ 

0.1. In common with the PSM exercise, temporal changes were apparent

over intervals of days. Both models give approximately the same

significance of fit, but a complication for the PSM is that non-zero 

colour indices would be expected and none are observed.

The lack of strong fundamental variations makes it difficult to 

disentangle the two model types and it is suggested that further 

spectroscopic and polarimetric observations should be undertaken to 

help in distinction. Line profiles and equivalent widths are

particularly sensitive to the presence of spots and it is strange that 

the measurements of Rachkovskaya (1980) did not show any apparent 

phase-dependence. A plausible explanation could be that as one spot 

moves out of view the other is moving in, so it appears as if the disk 

is always spotted - this being particularly noticeable with lower

inclinations. Spots would not be expected to cause photospheric lines 

to exhibit changes, as the actual speed of rotation is not varying.
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CHAPTER 5. CONCLUSIONS

5.1 Conclusions

5.2 Suggestions for Future Work and Discussion
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CHAPTER 5 . Conclusions
5.1 Conclusions

The development of a simple polarimetric stochastic scattering 

model has made it possible to offer an explanation for the variety of 

scatter diagrams displayed in the normalized Stokes parameter plane by 

some early-type stars. The model allows analysis of data either as a 

density distribution, a time-series or both. It was noted that scatter 

diagrams, or loci, should always exhibit at least one axis of symmetry, 

this being related to the projection of the stellar equatorial plane 

onto the sky.

Several means of investigating polarimetric data were also 

constructed and taken all together allow correction for experimental 

noise, the overcoming of secular variations (say from the general 

extended atmosphere) and the estimation of the model parameters, 

periodicity, sense of rotation, inclination of the stellar rotation 

axis to the line of sight, co-latitude of the scattering region and its 

optical depth. Some of the procedures facilitate data weighting. It 

was made clear that obtaining a good appraisal of any interstellar 

contribution can simplify the model fitting procedures. Several 

computer programs were necessary for model to data application and 

consequently designed. It was not always possible to treat 

measurements in terms of a model, because perhaps of data paucity, but 

methods for searching for variations within the available data after 

consideration of instrumental induced effects were put forward.

It was reconfirmed that the Be stars Ç Tau, y Cas and 28 w CMa are 

polarimetric variables. Both Ç Tau and y Cas were observed in H3 and 

Ca II K. C Tau exhibited no changes from hour to hour, but night to 

night fluctuations were apparent, these being stronger in H3 than in 

Ca II K. y Cas was found to display irregular hourly variations as 

well as changes on timescales similar to that of ç Tau, but of the same
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power at both wavelengths. The several colour measures of 28 w CMa 

revealed a coherence to its fluctuations over the period of at least 2 

years.

Comprehensive V wide-band polarimetric data were available for the 

star X Persei, the behaviour of the measurements being matched by the 

above-mentioned model in the guise of an oblique rotator. A newly 

found period (23^.95) was uncovered and it was assumed to be due to 

co-rotation of scattering material.

The oblique rotator model was also applied to a Ori E and was 

found to explain the form of its polarimetric, photometric and 

magnetometric display brilliantly, with the three facets varying in the 

required synchronous manner.

It was thought possible that for any polarimetric model the

relevant light curve should also be predictable. It was found that the 

point source/point scattering model used in explaining polarimetric 

traits needed to be enhanced a little to a point (or extended)

source/extended scatterer to describe more completely photometric 

double-wave forms with unequal minima and/or maxima (the minima often 

being found not to be evenly spaced within the phase of any one 

period). The simpler model still gave a better description of such 

light curves than any other proposals, which usually involve various 

degrees of contrivance.

Photometrically, under particular geometries, photosphere spot and 

oblique rotator models can give essentially identical predictions. 

Both scenarios were fitted to readily available extended UBV data on

EM Cep. Each gave equal significance of fit to the measurements for

the respective models. EM Cep as well as exhibiting cyclic variations 

also displayed longer (several days) temporal fluctuations.

5.2 Suggestions for future Work and Discussion

For a star to have locally enhanced scattering regions there must



Table 5.2.1

Stars worthy of polarimetric, photometric and magnetometric study,

HD Name Spec. Type

members of 
NGC 3766

Ahmed 1 
Ahmed 7 
Ahmed 15 
Ahmed 36 
Ahmed 63 
Ahmed 88

B2 IVp(e) 
B2 V 
B2 III 
B4 Vne 
B1.5 Vn 
B3npe

37479
208392
24534

a Ori E 
EM Cep 
X Per

B2 \l 
B1 IWe 
Bone

224559
217675-6
109387

5394
217050
56139
33328

LQ And 
o And 
K Dra 
Y Cas 
EW Lac 
28 0) CMa 
X Eri

B3-4 IV-Ve 
B5 + A2p 
B5p
BO.5 Ive 
B3
B2-3 IV-Ve 
B2

184927 B2 V

5737
125823
142301
142990
175362

a Scl 
a Cen 
3 Sco

B5
B2.5
B3-4
83
82.5
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be a disturbing or controlling mechanism. One possibility is an 

interactive (say with the stellar wind) magnetic field (fossil or 

dynamo generated). The star o Ori E is already known to have a dipole 

magnetic field as have most other helium strong stars. An immediate 

proposal would be to search for magnetic variability in X Persei and 

EM Cep.

As already mentioned an oblique rotator, or more descriptively a 

scattering dipole-oblique rotator model (SDORM), is successful in 

explaining the photometric double-wave forms observed for many Be stars 

hence such objects suggest themselves for polarimetric and 

magnetometric study and v/ce voA^a.

It is common in astronomy for theories to be subject to vogue and 

at the moment the oblique model, and possibly now SDORM, is favoured 

for explaining the behaviour of helium rich, helium weak and Ap stars. 

Table 5.2.1 lists possible candidates for some combination of 

polarimetric, photometric and magnetometric study because of their 

known particular facet of variability.

There is scope for improvement to the simple point source/ 

point scattering model that has been proposed, as has already been done 

to a small extent in Chapter 4. For example, it can be enhanced to 

ponder specific geometrical extended scattering zones and more 

consideration of absorption with increased optical depth to cover 

possible eclipsing aspects. Techniques for analysing photometric (and 

magnetometric) data may also need to be investigated or reassessed 

along similar lines to those of Simmons aZ. (1980) for polarimetry, 

to check if model parameters derived from studies are in any way biased 

estimates. Incidentally, the paper by Aspin aZ. (1981) which 

considers the accuracy needed to determine the inclination of a 

binary's orbital plane to within ±5° from polarization measurements 

would also be applicable to single star cases. Obviously more exact
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observations are needed for systems whose geometry gives rise to the

lowest amplitudes of variations.

The armoury of spectrometry, polarimetry, photometry and

magnetometry can now be used on any program star to determine if it is 

a SDORM candidate. Spectrometry may be invoked to measure the expected 

small radial velocities of relevant lines, e.g. helium lines if the 

star is helium rich. Polarimetry may be used to define the geometry of 

the system under study, although care should be taken in interpreting 

some of the derived parameters, e.g. the co-latitude of the scattering 

bulge may not necessarily be the co-latitude of the magnetic pole as it 

is thought that for a star which shows excess helium abundance, the 

region of localisation moves away from the magnetic pole to the 

magnetic equator with increasing temperature. Photometry can be used 

to check if the light curve is exhibiting the predicted cyclic 

double-wave form, and similarly for magnetometry to examine the

magnetic field variations - if any. All four facets should be tested 

for synchrony of fluctuations. Other interesting traits may also be 

investigated, e.g. the UV C IV line for rotational modulation to reveal 

if the stellar wind is being influenced by the magnetic field. 

Spectropolarimetric studies may reveal something about the magnetic 

geometry giving possibilities of consistency checking. Some lines 

might be found to vary in antiphase, e.g. the maximum abundance of rare 

earths would be expected to occur near the negative magnetic pole. The 

boundary of the magnetosphere, i.e. the height at which the energy 

density of the field is approximately equal to the kinetic energy 

density of the trapped gas, should give the maximum level above the

photosphere at which the scattering takes place.
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Appendix A

Correlation Coefficient Percentage Levels
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APPENDIX A - Correlation Coefficient Percentage Levels

Whilst correlation tables are available in various publications, 

none was found to be comprehensive enough for use in the work contained 

in this thesis. Another reason for their production was simply for a 

convenient source of reference. The sample linear correlation 

coefficient (r) can be determined from the relation r = /bj^, where b^ 

is the measured gradient in a "(x,y)" plane and b^ in a "(y,x)" plane.

Since r is evaluated from a finite set of data points, a spread of 

possible values exists around the true correlation. For a determined 

value of r, based on N pairs of observations, to test against the null 

hypothesis that there is no relation between the two variables "y" and 

"x" the familiar statistic

'N - 2

may be used, which has a Students's t-distribution with N-2 degrees of 

freedom.

The presented table shows the associated confidence intervals for 

a true correlation of zero at the 67%, 90%, 95%, 99% and 99.9% levels.

If the absolute value of r is less than the correlation 

coefficient at the approximate confidence level, then the two variables 

are unrelated. This is usually taken as the 95% level.

Introduced is a table of sample size (i.e. corrected for degrees 

of freedom) versus absolute value of the correlation coefficient at the 

prescribed confidence levels and for sample sizes of 3(1)200(10)500 -» 

(50)1000(500)10,000(10,000)100,000(100,000)1,000,000.
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PERCENTAGE LEVELS FOR CORRELATION COEFFICIENTS

1. of 
nples

67^ 90^ 95^ 99^ 99.9%

3 0.869 0.988 0.997 1.000 1.000
4 0.670 0.900 0.950 0.990 0.999
5 0.556 0.805 0.878 0.959 0.991

6 0.485 0.729 0.811 0.917 0.974
7 0.434 0.669 0.754 0.875 0.951
8 0.397 0.621 0.707 0.834 0.925
9 0.368 0.582 0.666 0.798 0.898
10 0.344 0.549 0.632 0.765 0.872

11 0.325 0.521 0.602 0.735 0.847
12 0.308 0.497 0.576 0.708 0.823
13 0.294 0.476 0.553 0.684 0.801
14 0.281 0.458 0.532 0.661 0.780
15 0.270 0.441 0.514 0.641 0.760

16 0.260 0.426 0.497 0.623 0.742
17 0.252 0.412 0.482 0.606 0.725
18 0.244 0.400 0.468 0.590 0.708
19 0.236 0.389 0.456 0.575 0.693
20 0.230 0.378 0.444 0.561 0.679

21 0.2^4 0.369 0.433 0.549 0.665
22 0.218 0.360 0.423 0.537 0.652
23 0.213 0.352 0.413 0.526 0.640
24 0.208 0.344 0.404 0.515 0.629
25 0.203 0.337 0.396 0.505 0.618

26 0.199 0.330 0.388 0.496 0.607
27 0.195 0.323 0.381 0.487 0.597
28 0.191 0.317 0.374 0.479 0.588
29 0.188 0.311 0.367 0.471 0.579
30 0.184 0.306 0.36, 0.463 0.570

31 0.181 0.301 0.355 0.456 0.562
32 0.178 0.296 0.349 0.449 0.554
33 0.175 0.291 0.344 0.442 0.547
34 0.172 0.287 0.339 0.436 0.539
35 0.170 0.283 0.334 0.430 0.532

36 0.167 0.279 0.329 0.424 0.525
37 0.165 0.275 0.325 0.418 0.519
38 0.162 0.271 0.320 0.413 0.513
39 0.160 0.267 0.316 0.40b 0.507
40 0.158 0.264 0.312 0.403 0.501
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JNO. 01
samples 90^ 95^ 99^ 99.9%

41 0.156 0.260 0.308 0.398 0.495
42 0.154 0.257 0.304 0.393 0.490
43 0.152 0.254 0.301 0.389 0.484
44 0.150 0.251 0.297 0.384 0.479
45 0.149 0.248 0.294 0.380 0.474

46 0.147 0.246 0.291 0.376 0.469
47 0.145 0.243 0.288 0.372 0.465
48 0.144 0.240 0.285 0.368 0.460
49 0.142 0.238 0.282 0.365 0.456
50 0.141 0.235 0.279 0.361 0.451

51 0.139 0.233 0.276 0.358 0.447
52 0.138 0.231 0.273 0.354 0.443
53 0.136 0.228 0.271 0.351 0.439
54 0.135 0.226 0.268 0.348 0.435
55 0.134 0.224 0.266 0.345 0.432

56 0.133 0.222 0.263 0.341 0.428
57 0.131 0.220 0.261 0.339 0.424
58 0 . 1 V 'Û 0.218 0.259 0.336 0.421
59 0.129 0.216 0.256 0.333 0.418
60 0.128 0.214 0.254 0.330 0.414

61 0.127 0.213 0.252 0.327 0.411
62 0.126 0.21 1 0.250 0.325 0.408
63 0.125 0.209 0.248 0.322 0.405
64 0.124 0.207 0.246 0.320 0.402
65 0.123 0.206 0.244 0.317 0.399

66 0 . 1 2 2 0.204 0.242 0.315 0.396
67 0.121 0.203 0.240 0.313 0.393
68 0 . 1 2 0 0.201 0.239 0.310 0.390
69 0.119 0 . 2 0 0 0.237 0.308 0.388
70 0.118 0.198 0.235 0.306 0.385

71 0.117 0.197 0.234 0.304 0.382
72 0.116 0.195 0.232 0.302 0.380
73 0.116 0.194 ,0.230 0.300 0.377
74 0.115 0.193 0.229 0.298 0.375
75 0.114 0.191 0.227 0.296 0.372

76 0.113 0.190 0.226 0.294 0.370
77 0.112 0.189 0.224 0.292 0.368
78 0.112 0.188 0.223 0.290 0.365
79 0.111 0.186 0.221 0.288 0.363
80 0.110 0.185 0.220 0.286 0.361
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INO. 01
samples 67% 90% 95% 99% 99.9%

81 0.110 0.184 0.219 0.285 0.359
82 0.109 0.183 0.217 0.283 0.357
83 0.108 0.182 0.216 0.281 0.355
84 0.108 0.181 0.215 0.280 0.353
85 0.107 0.180 0.213 0.278 0.351

86 0.106 0.179 0 . 2 1 2 0.276 0.349
87 0.106 0.178 0.211 0.275 0.347
88 0.105 0.176 0.210 0.273 0.345
89 0.104 0.175 0.208 0.272 0.343
90 0.104 0.174 0.207 0.270 0.341

91 0.103 0.174 0.206 0.269 0.339
92 0.103 0.173 0.205 0.267 0.338
93 0.102 0.172 0.204 0.266 0.336
94 0 . 1 0 2 0.171 0.203 0.264 0.334
95 0.101 0 , 1  7 i 0.202 0.263 0.332

96 0 . 1 0 0 0.169 0.201 0.262 0.331
97 0.100 0.168 0.200 0.260 0.329
98 0.099 0.167 0.199 0.259 0.327
99 0.099 0.166 0.198 0.258 0.326

100 0.098 0.165 0.197 0.256 0.324

101 0.098 0.165 0.196 0.255 0.323
102 0.097 0.164 0.195 0.254 0.321
103 0.097 0.163 0.194 0.253 0.320
104 0.096 0.162 0.193 0.252 0.318
105 0.096 0.161 0.192 0.250 0.317

106 0.096 0.161 0.191 0.249 0.315
107 0.095 0.160 0.190 0.248 0.314
108 0.095 0.159 0.189 0.247 0.312
109 0.094 0.158 0.188 0.246 0.311
110 0.094 0.158 0.187 0.245 0.310

111 0.093 0.157 0.187 0.244 0.308
112 0.093 0.156 0.186 0.242 0.307
113 0.092 0.156 0.185 0.241 0.30b
114 0.092 0.155 0.184 0.240 0.304
115 0.092 0.154 0.183 0.239 0.303

116 0.091 0.153 0.182 0.238 0.302
117 0.091 0.153 0.182 0.237 0.300
118 0.090 0,152 0.181 0.236 0.299
119 0.090 0.152 0.180 0.235 0.298
120 0.090 0.151 0.179 0.234 0.297
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iMO. OI
samples 67% 90% 95% 99% 99.9%

121 0.089 0.150 0.179 0.233 0.295
122 0.089 0.150 0.178 0.232 0.294
123 0.089 0.149 0.177 0.231 0.293
124 0.088 0.148 0.176 0.231 0.292
125 0.088 0.148 0.176 0.230 0.291

126 0.087 0.147 0.175 0.229 0.290
127 0.087 0.147 0.174 0.228 0.289
128 0.087 0.146 0.174 0.227 0.287
129 0.086 0.145 0.173 0.226 0.286
130 0.086 0.145 0.172 0.225 0.285

131 0.086 0.144 0.172 0.224 0.284
132 0.085 0.144 0.171 0.223 0.283
133 0.085 0.143 0.170 0.223 0.282
134 0.085 0.143 0. 1 70 0.222 0.281
135 0.084 0JM2 0.169 0.221 0.280

136 0.084 0.142 0.168 0.220 0.279
137 0.084 0.141 0.168 0.219 0.278
138 0.084 0.141 0.167 0.219 0.277
139 0.083 0.140 0.167 0.218 0.276
140 0.083 0.140 0.166 0.217 0.275

141 0.083 0.139 0.165 0.216 0.274
142 0.082 0.139 0.165 0.216 0.273
143 0.082 0.138 0.164 0.215 0.272
144 0.082 0.138 0.164 0.214 0.271
145 0.081 0.137 0.163 0.213 0.270

146 0.081 0.137 0.163 0.213 0.270
147 0.081 0.136 0.162 0.212 0.269
148 0.031 0.136 0.161 0.211 0.268
149 0.080 0.135 0.161 0.210 0.267
150 0.080 0.135 0.160 0.210 0.266

151 0.080 0.134 0.160 0.209 0.265
152 0.080 0.134 0.159 0.208 0.264
153 0.079 0.133 0.159 0.203 0.263
154 0.079 0.133 0.158 0.207 0.263
155 0.079 0.133 0.158 0.206 0.262

156 0.079 0.132 0.157 0.206 0.261
157 0.078 0.132 0.157 0.205 0.260
158 0.078 0.131 0.156 0.204 0.259
159 0.078 0.131 0.156 0.204 0.259
160 0.078 0.131 0.155 0.203 0.258
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0 . o f  
impies 67% 90% 95% 99% 99.9%

161 0.077 0.130 0.155 0.202 0.257
162 0.077 0.130 0.154 0.202 0.256
163 0.077 0.129 0.154 0.201 0.255
164 0.077 0.129 0.153 0.201 0.255
165 0.076 0.128 0.153 0.200 0.254

166 0.076 0.128 0.152 0.199 0.253
167 0.076 0.128 0.152 0.199 0.252
168 0.076 0.127 0.151 0.198 0.252
169 0.075 0.127 0.151 0.198 0.251
170 0.075 0.127 0.151 0.197 0.250

171 0.075 0.126 0.150 0.196 0.249
172 0.075 0.126 0.150 0.196 0.249
173 0.074 0.125 0.149 0.195 0.248
174 0.074 0.125 0.149 0.195 0.247
175 0.074 0.125 0.148 0.194 0.247

176 0.074 0.124 0.148 0.194 0.246
177 0.074 0.124 0.148 0.193 0.245
178 0.073 0.124 0.147 0.193 0.245
179 0.073 0.123 0.147 0.192 0.244
180 0.073 0.123 0.146 0.192 0.243

181 0.073 0.123 0.146 0.191 0.243
182 0.073 0.122 0.146 0.190 0.242
183 0.072 0.122 0.145 0.190 0.241
184 0.072 0.122 0.145 0.189 0.241
185 0.072 0.121 0.144 0.189 0.240

186 0.072 0.121 0.144 0.188 0.239
187 0.072 0.121 0.144 0.188 0.239
188 0.071 0.120 0.143 0.187 0.238
189 0.071 0.120 0.143 0.187 0.237
190 0.071 0.120 0.142 0.186 0.237

191 0.071 0.119 0.142 0.186 0.236
192 0.071 0.119 0.142 0.185 0.236
193 0.070 0.119 0.141 0.185 0.235
194 0.070 0.118 0.141 0.185 0.234
195 0.070 0.118 0.141 0.184 0.234

196 0.070 0.118 0.140 0.184 0.233
197 0.070 0.118 0.140 0.183 0.233
198 0.070 0.117 0.139 0.183 0.232
199 0.069 0.117 0.139 0.182 0.232
200 0.069 0.117 0.139 0.182 0.231
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JNO. 0 1
samples 67% 90% 95% 99% 99.9%

210 0.068 0.114 0.135 0.177 0.225
220 0.066 0.111 0.132 0.173 0.220
230 0.065 0.109 0.129 0.170 0.216
240 0.063 0.106 0.127 0.166 0.211
250 0.062 0.104 0.124 0.163 0.207

260 0.061 0.102 0.122 0.159 0.203
270 0.060 0.100 0.119 0.157 0.199
280 0.058 0.099 0.117 0.154 0.196
290 0.057 0.097 0.115 0.151 0.192
300 0.056 0.095 0.113 0.149 0.189

310 0.056 0.094 0.111 0.146 0.186
320 0.055 0.092 0.110 0.144 0.183
330 0.054 0.091 0.108 0.142 0.180
340 0.053 0.089 0.106 0.140 0.178
350 0.052 0.088 0.105 0.138 0.175

360 0.051 0.087 0.103 0.136 0.173
370 0.051 0.086 0.102 0.134 0.170
380 0.050 0.085 0.101 0.132 0.168
390 0.049 0.083 0.099 0.130 0.166
400 0.049 0.082 0.098 0.129 0.164

410 0.048 0.081 0.097 0.127 0.162
420 0.048 0.080 0.096 0.126 0.160
430 0.047 0.079 0.095 0.124 0.158
440 0.047 0.079 0.093 0.123 0.156
450 0.046 0.078 0.092 0.121 0.155

460 0.046 0.077 0.091 0.120 0.153
470 0.045 0.076 0.090 0.119 0.151
480 0.045 0.075 0.090 0.117 0.150
490 0.044 0.074 0.089 0.116 0.148
500 0.044 0.074 0.088 0.115 0.147

550 0.042 0.070 0.084 0.110 0.140
600 0 . 0 4 0 0.067 0.080 0.105 0.134
650 0.038 0.065 0.077 0.101 0.129
700 0.037 0.062 0.074 0.097 0.124
750 0.036 0.060 0.072 0.094 0.120

800 0.034 0.058 0.069 0.091 0.116
850 0.033 0.056 0.067 0.088 0.113
900 0.033 0.055 0.065 0.086 0.110
950 0.032 0.053 0.064 0.084 0.107
1000 0.031 0.052 0.062 0.081 0.104
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No. of 
samples

1500
2000
2500
3000
3500

4000
4500

5500
6000

6500
7000
7500
8000
8500

9000
9500

10000

20000
30000
40000
50000

60000
70000
80000
90000

200000
300000
400000
.500000
600000

700000
800000
900000

1000000

67% 90% 95% 99% 99.9%

0.025 0.042 0.051 0.066 0.085
0.022 0.037 0.044 0.058 0.074
0.019 0.033 0.039 0.052 0.066
0.018 0.030 0.036 0.047 0.060
0.016 0.028 0.033 0.044 0.056

0.015 0.026 0.031 0.041 0.052
0.015 0.025 0.029 0.038 0.049
0.014 0.023 0.028 0.036 0.047
0.013 0.022 0.026 0.035 0.044
0.013 0.021 0.025 0.033 0.042

0.012 0.020 0.024 0.032 0.041
0.012 0.020 0.023 0.031 0.039
0.011 0.019 0.023 0.030 0.038
0.011 0.018 0.022 0.029 0.037
0.011 0.018 0.021 0.028 0.036

0.010 0.017 0.021 0.027 0.035
0.010 0.017 0.020 0.026 0.034
0.010 0.016 0.020 0.026 0.033

0.007 0.012 0.014 0.018 0.023
0.006 0.009 0.011 0.015 0.019
0.005 0.008 0.010 0.013 0.016
0.004 0.007 0.009 0.012 0.015

0.004 0.007 0.008 0.011 0.013
0.004 0.006 0.007 0.010 0.012
0.003 0.006 0.007 0.009 0.012
0.003 0.005 0.007 0.009 0.011
0.003 0.005 0.006 0.008 0.010

0.002 0.004 0.004 0.006 0.007
0.002 0.003 0.004 0.005 0.006
0.002 0.003 0.003 0.004 0.005
0.001 0.002 0.003 0 . 004 0.005
0.001 0.002 0.003 0.003 0.004

0.001 0.002 0.002 0.003 0.004
0.001 0.002 0.002 0.003 0.004
0.001 0.002 0.002 0.003 0.003
0.001 0.002 0.002 0.003 0.003
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Appendix B 

Moments
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APPENDIX B - Moments

A moment m^ (keZ^l can be defined as

1 k
\  = 6  .E, (x.- x) (Bl) ̂ N j=l J

where N = number of measurements 

Xj = measurement

X = the mean value of all the measurements.

Now from Equations (2.11.2) the measured Stokes parameters rotated 

through an angle a, are represented by;

qx . = qjCos2a + UjSin2a + n^.cos2ot + n^ sin2a + qj'cos2(Q-a)

- Uj'sin2(0-a)

*̂ Xj = -qisin2a + UjC0s2a - n^ .sin2a + n^ cos2a + qj'sin2(Q-a)

+ Uj'cos2(Q-a)
(B2)

where q.' = q. + T (a + a,cosO. + a_cos26 )J A o o 1 j 2 j
uj  ' = T^(b^sin4)j + b2sin20j)

remembering that q^, u^ are the interstellar contributions and 25 is 

the orientation of the stellar equatorial co-ordinates relative to the 

instrumental frame. As nq^ and n^j, the experimental noises of q and u 

respectively, have means equal to zero, then for a large sample:

Zoq . — Zn,, . — 0
j j J

If is uniformly distributed then the probability density function,

f(<t>), of is: ^
f(*) = ^  (83)ZTT

The moments of q^ and u^ are to be taken about the expectation values

<q^> and <u*> respectively. So for large N:

1<q^> = -^ J d4> = qjC0s2a + UjSin2a + (x^a^+q^)cos2(2-a), 2! (B4)
<u*> = ^  J u* d# = -q^sin2a + u^cos2a + (T^a^+q^)sin2(5-a)

0
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Hence <q^> and <u^> are the co-ordinates of the centre of gravity of 

the measurements. So it is possible to define and in a centre of

gravity (CG) frame, i.e.

q/rr\. = n cos2ot + n sin2a + t (a,cos(f). + a„cos2d>. )cos2(S-a)ILk/j qj uj o 1 j 2 j

- T̂ (b̂ sin(j)j + b2sin2$j)sin2(Q-a)

= -n sin2a + n cos2a + t (a,cos(j). + aucos26.)sin2(0-a) j o 1 J 2 J

+ Tg(b^sin#j + b2sin2 4y)cos2(Q-a)

Allowing the moments to be represented by

1 N k

1  y  k
ku ' N j=a‘̂ (CG) .

For u: By analogy with q

Second Moment

For q:

■ » V  ■ " I  ’'“ 'j

(B5)

(B6)

First Moment 

For q:

N , 2tt
If N is large then tt Z can be approximated to —  / so,

^ j=l 0

2tÏ ̂  T̂ (aĵ cos(j) + a2cos2^)cos2(0-a)d^ = 0 

1—  J T̂ (b̂ sin<j) + b2sin2(j))sin2(Q-a)d(i) = 0

m,  ̂X = 0 (87)

m. . = 0  (88)
(l)uct
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Again using the large N approximation, the important (i.e. non-zero) 

integrals are:

2 tt
J (a^cosO + a2cos2^)=d0 = i(a^= + 

j (b^sinO 4- b2sin240^dO = ^^b^= + b^^)
0

and noting that i Z n  ̂ = a  ̂ and similarly Z n  ̂ = a  ̂ the N j qj q N j Uj u
summation gives:

T :
m(2)qg = ~Y~ + a2^)cos=2(0-a) + (b^= + b2^)sin=2(D-a)]

+ a ^cos^2a + a ^sin^2a (89)q u

For u: 8y analogy with q

^(2)u “ ~~2~ + a2^)sin^2(Q-a) + (b^^ + b2^)cos^2(Q-a)]

+ 0q^sin^2a + a^^cos^2a (810)

It can be noted that the sum of the moments mro'i and mr?\ are 

independent of a whereas their difference Am^2) = ^(2)q “ *̂ (2)y is

not. Unfortunately this dependence does not help in determining 0,

as an ambiguity, demonstrated below, exists.

Assume for simplicity that = o^ then:

^^^(2) = - 2t :[a = + a ^  - b  ̂ - b =]sin4(Q-a) (811)
da o i 2 1 2

The critical values are therefore: 5 = a Q = a + ^

2 = a + J  2 = a + -^
(812)

Depending on the sign of [a^= + S2  ̂ - b^^ - b2 ]̂, the individual 

critical values (812) could be either a maximum or a minimum. Using 

the second derivative to investigate concavity:

d Am^2) _ _ + a2  ̂ - - 82 ]̂ cos4(2-a) (813)
da
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Then for 2 r a - max. 2 = a + y  - max.

(B14)
2 = a + ^ - min. 2 = a + ^  - min.

For a star displaying equatorial events, the state of the

critical values would be as (B14) because â  ̂ = bĵ  = 0 and generally 

^2  ̂ *̂ 2* However for the polar case a^ = bg ^ 0 and u^ > q^ so:

at 2 = a - min. 2 = a + ^  - min.
(B15)

S = a + ^ - max. 2 = a + - max.

Solutions (814) and (815) thus make evident the confusion in 

establishing the correct value of 2. The direction of the equatorial 

line can help resolve the ambiguity though, especially if it is clear

that the data under study have eigendirections. If the maximum

variance (i.e. m^) is perpendicular to the equatorial line, then the 

case is a polar one, but equatorial if the maximum variance is

parallel.

Third Moment

The third moment describes the asymmetry of a distribution. It

can be thought of as measuring the degree of coincidence of the median

and arithmetic mean of a set of numbers. In the case of a population 

of values the third moment or skewness is equal to zero. From Figure

2.8.2 it can be appreciated that whenever an axis of symmetry occurs, 

the skewness should be zero to within a chosen level of confidence

(e.g. see Tables of Brooks (1984)). Hence if zero skewness is found in 

both q and u simultaneously, then the implication is that 0 - 90°. 

Further, if skewness is negligible along any axis of projection, then 

i = 0.

Further, at 8 = 90° generally the maximum fluctuations should be 

observed in q. Then if the direction in which the second moment is
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greatest is also the course of significant non-skewness, the q axis of 

the stellar equatorial frame has been found.
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Appendix C

Least Squares Treatment of a Co-rotating Globule
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APPENDIX C - Least Squares Treatment of a Co-rotating Globule

In the stellar equatorial frame, the equations describing the 

polarimetric effect of a co-rotating globule at co-latitude 6, about a 

star at inclination i, and of angular velocity w, can be written as:

q*j = q^ + q^ + a^cos(wtj + e) + a^cosZfwtj + e)
(Cl)

= b^sin(wtj + e) + b^sinZCwtj + e)

where q^ is the contribution of the axisymmetric envelope

o n   ̂ a n
= --- sin^ i (— sin^0 - 1)   5 scattering optical depth =

-a n  a no o
a^ = 2i-2 sin20 sin2i b^ = 2̂ sin20 sini

- a n  a no „ „ 0
" 2r̂  sin^0(l + cos^i) b^ = 2̂ sin^e cosi

(C2)

e = arbitrary phase.

Now the plane of the equator of the star may be tilted at an angle 

2 (about the plane in which i is measured). In the instrumental (q, u) 

plane, this angle will be seen as 22, further there may be an inter­

stellar offset to (q^, Uj). So:

q. = 0L.C0S22 - u„-sin22 + q,
(C3)

u. = q..sin22 + u„ .cos22 + u,J *J *J I

By least squares (LS) via linear regression, e, 2, i, 8, x^, and a^, 

can be derived by applying a grid of w's (q^, u^ and are indeter­

minate by this method) and on expanding Equations (C3):-

q. = q + q.coswt. + qusinwt. + q_cos2wt. + q,sin2wt.J O  l J 2  J  ̂ J  ̂ J
(C4)

u . = u + uucoswt. + u^sinwt. + uucos2w t . + u,sin2ut . j o l j 2 j : >  J ^ J

where
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% = q^ + q^cos22 + a cos22 0 u0 = u? + q.sin22 + a sin22 I A 0

''1 = a^cos22cosE - b^sin2Qsine ^1 = a,sin22cosE + b,cos22sinE 
 ̂  ̂ (05

'’2 = -a^cos22sinc - b^sin22cosE ^2 = -a^sin22sinE + b^cos22cosE

‘’3 = a2Cos2Qcos2e - b2sin22sin2E = a2sin22cos2E + b2Cos22sin2E

^4 = -a2Cos22sin2c - b2sin22cos2e "4 = -a2sin22sin2e + b2Cos22cos2e

Hence the estimated equation takes the form (adapted from Daniel and 

Wood (1980))

Y = bg + b^x^ + b^x^ + bjXj + b^x^ (C6)

which can be re-written as

V - ÿ  = b^(x^-x^) + b^(x^-x^) + b^(x^-x^) + b^(x^-x^) (C7)

where y, x̂ i ^3» ^  are the means of the variables for the set of N

observations. This takes advantage of the fact that for any LS fit,

the constant b takes the form o
_  K _

b = y - Z b„x. , for K constants fitted (K = 4 here).
° &=1 *

Thus only the coefficients b^, b^, b^ and b^ need to be found. As 

usual, the LS solutions for the coefficients are obtained by minimizing 

the sum of squares of the residuals [rr] where 

N
[rr] = - bi(Xij-Xi) -

(C8)

On differentiating Equation (08) w.r.t. each b^ and setting the resul­

tant equations equal to zero, the "normal equations" ensue: 

b^[ll] + b2[12] + b^[13] + b^[14] = [ly]

b,[12] + b F22] + b F23] + b f24] = [2y]
1 2 3 4 (C9)

b^[13] + b^[23] + b^[33] + b^[34] = [3y]

b^[14] + b^[24] + b^[34] + b^[44] = [4y]
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Using the notation

[21] E [12] E Z (x.. - x.)(_,.
j=i Ij 1 2j 2Xg. - Xm) ; etc.

the b's can be solved by the determinant method, i.e. using Cramer's 

Rule.

Let
A =

Ab, =

Abo =

Ab-, =

Ab, =

[11] [12] [13] [14]
[12] [22] [23] [24]
[13] [23] [33] [34]
[14] [24] [34] [44]

[ly] [12] [13] [14]
[2y] [22] [23] [24]
[3y] [23] [33] [34]
[4y] [24] [34] [44]

[11] [ly] [13] [14]
[12] [2y] [23] [24]
[13] [3y] [33] [34]
[14] [4y] [34] [44]

[11] [12] [ly] [14]
[12] [22] [2y] [24]
[13] [23] [3y] [34]
[14] [24] [4y] [44]

[11] [12] [13] [ly]
[12] [22] [23] [2y]
[13] [23] [33] [3y]
[14] [24] [34] [4y]

(CIO)

So the coefficients are then easily calculated from

Abi Abo . Ab3 Ab4b, = —  ; b, = —  ; b, = ; b = - — (Cll)

The numerators of Equations (Cll) can be expanded by using the column

vector /[ly]\as the minors. Hence, Equations (Cll) become:
[2y]
[3y]

\[4y]/
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b, = t S [ly]
[22][23][24] [12][13][14] [12][13][14]
[23][33][34] - [2y] [23][33][34] + [3y] [22][23][24]
[24][34][44] [24][34][44] [24][34][44]

-  [ 4y ]
[12][13][14]
[22][23][24]
[24][33][34]

^2 ■ A f [ i y ]
[12][23][24] [11][13][14] [11][13][14]
[13][33][34] + [2y] [13][33][34] - [3y] [12][23][24]
[14][34][44] [14][34][44] [14][34][44]

[4y]
[11][13][I4]
[12][23][24]
[13][33][34] (C12)

b. = f<[iy]
[12][22][24] [11][12][14] [11][12][14]
[13][23][34] - [2y] [13][23][34] + [3y] [12][22][24]
[14][24][44] [14][24][44] [14][24][44]

- [4y]
[11][12][14]
[12][22][24]
[13][23][34]

- [ l y ]
[12][22][23] [11][12][13] [11][12][13]
[13][23][33] + [2y] [13][23][33] - [3y] [12][22][23]
[14][24][34] [14][24][34] [14][24][34]

+ [4y]
[11][12][13]
[12][22][23]
[13][23][33]

The solutions may be written as:

bi = + C^^[3y] + C^^[Ay]

b^ = Cgifly] + Cgg^Zy] + C23[3y] + C2^[4y]

b^ = C^^Lly] -h CjgEZy] + C33[3y] + C3^[4y]

^ 4  ■  C : ^ j [ l y ]  +  C ^ 2 [ 2 y ]  +  C ^ ^ [ 3 y ]  4-  C ^ ^ [ 4 y ]

where, e.g.

(-1)
r+c

'31
[12][22][24]
[13][23][34]
[14][24][44]

= C 3̂ ; here r=3, c=l

(C13)

The standard errors of the coefficients are:

1 /  N / [rr]
s ( b . )  = s ( y ) c . .  ; sCy) = ( ( ^ - K - l )

and the standard error of b^ is
(C14)
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Relating the Estimated Coefficients to e, Q, i, , Tq and ag 

Consider

= a^sin(20 - e) - b^sin(20 - e)

q^ - U2 = a^cos(20 - e) - b^cos(20 - e)

Uf - q2 = a^sin(20 + e) + b^sin(2Q + e)

U2 + q^ = a^cos(20 + e) + b^cos(20 + e)

U3 + q^ = a2sin(20 - 2e) - b2sin(2Q - 2e)

q^ - = a2COs(2S2 - 2e) - b2cos(20 - 2e)

U3 - q^ = a2sin(2Q + 2e) + b2sin(20 + 2e)

U4 + q^ = a2cos(20 + 2e) + b2Cos(2S2 + 2e)

Then it is obvious that (ĉ . Brown <lt aZ. <, 1978):

(C15)

e = tan

or

-1 /
"2+^1

- tan- H
‘’r '̂2

by fundamental

(C16)

tan-1 - tan-If by harmonic

and

2S2 = 7T ■ -1 ( "1 ^̂2
ban ^ U2+qj

or

tan "1+92
9i‘"2

by fundamental

(C17)

tan-1 ( "3-94 
"4+93

+ tan-1 ( "3+94 
V 9;-"4

by harmonic

Also, let D"

E'

E'

G"

■ ("l+92^' + (91-^2)'

= ["1-92)" + (i^+q^)' 

= CUj+q^)" + (q^-U/,)"3 4

(Uj-9^)" + (L%+q,)

(C18)

Then Equations (C18) give:
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•2 - 4 ^  i

(C19)

Combining Equations (C19) and (C2), the signs of a^ and ag can be 

neglected, gives;

1 = cos-1

1 = cos-1

Allowing

= tan-1

6 = tan-1

2a^ sin2i 
a^(l+cos^i)

2b2 tani

which in turn permits 

2a,
T n  =o sin26 sin2i

by fundamental 

by harmonic

by components of q

by components of u

2a.
; '̂ o sin^9 (l+cos^i)

(C20)

or To =° sin26 sini To = Sin 6 cosi

Noting that

a = T sin^i(4 sin 6̂ - 1) 0 0 2

So = A; + + ao)cos2Q

u = U, + (q. + a )sin2Q o 1 A o

qj, Uj and q^ are indeterminate

as there are 3 unknowns and only 

2 equations.
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The Standard Errors of E, 0, i, 6 , T and a' o o

The standard errors of the coefficients q ^ u, , Aq Au, that^o 4 o 4
the least squares analysis provides, need to be transferred to standard

errors of e , Q, i, 8, and a^.

Standard Error of e

Let
AA,N ( " M - V

1 +

(C21)

( V 9 n '̂

1 + "h+9n 
V " n / J

Determined by the fundamental: Ae =

harmonic: Ae

1,2

3,4
(C22)

Standard Error of Q

Determined by the fundamental: AQ = 1,2

(C23)

harmonic: AQ = 3,4



standard Errors of a^, a^, and b^

Let
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BM,N =
(uM+qN)MAu^^+Aq^^) + (q^-u^)MAq^^+AU|^n

< V 9 n '̂ +

M,N
(uM-qM)'(AUw'+AqM') + (Uw+qM)'(AuN'+AqM')

(C24)

Then

Aa-

Aa,
2\2

(83,4' ^3,4 '̂

Ab. « m I A V î '’
(C25)

Ab,
(83,4' ^3,4') =

Standard Error of i

If derived by fundamental then:

Ai = -

1 -

i b.

'Aa : Ab..'
----------- h — —

1 J

harmonic then: Let I

Ai =
■®2 ®2

b^Tij A32' + ( b ^ + b ^ i j  Ab;'

- (C26)



standard Error of 0

If derived by q then:
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A 0 =
2 ̂  ̂ Za^sinZiV

a^(l+cos^i)

r Asin^ZiAag^ 4a2^sin^2iAa^^

a^2(l+cos'i)2 a^^(l+cos*i)=

4a2^(l+3cos2i-sin2i)^Ai' 

a^^(l+cos2i)^

by u then:

A0 =
1 +

Zb^tani ^
4tan^iAb2^ 4b2^tan^iAb2^ 4b2^Ai'

b / b f b^'cos'i

Standard Error of t ,

- (C27)

If derived by a^ then: 

1
At  =o sinZesinZi 4Aa^:

16a^^A8^ lôa^^Ai^ 
tan^20 tan^Zi

by a2 then: 

Zcosec^0
At  =o " (l+cos^i)

a :sin:ZiAi= -,2
+ Aa^'cot'eAe: + (i+cos'i)'

by b^ then:

At  =o sinZ0sini

4b,^A0  ̂ b,^Ai^ ̂
., 2 +  + --------
1 tan^Z0 tan^i

by b^ then:

At  =o sin ÜCOS1 Abo= +
4b2^A8=
tan 0̂ bg^tan^iAi^

- (CZ8)
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Standard Error of a^

Aa  ̂ = j^sin‘' i (  |-sin^e-l)^AT^^ + ( |-s in^e-l)^sin^2iA i^

+ T^^sin‘*isin^20Ae^]^ (C29)

It is important to note that the above analysis on the

uncertainties Ae->■ Aa^ was a formal error treatment. In the presence

of a small signal to noise ratio, the confidence interval for a given 

parameter may therefore be an optimistic one (see Simmons Q,t cut.

(1982)). However, as seen above, there was superfluity in deriving

most of the parameters. A rule of thumb that might be used to check

for biasing is that the redundant equations give inconsistent results.

The deduction of a low inclination is an encouraging sign, regarding

the apparent effect of noise, as the LS method is biased towards high

inclinations in the company of excessive noise.
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Appendix D

Polarimetric Data on HDE 226868 and a Gri E

The data presented here were recorded by 
Kemp's group on the 61cm telescope at 
Pine Mountain Observatory.

(Data kindly provided by Professor Kemp)
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V wide-band normalized Stokes parameters (equatorial co-ordinates)
of HDE 226868

J.D. q(%) u(%) J.D. q(%) u(%)
2442572.900 0.791 -4.603 2442660.800 0.611 - 5 .1 9 3
2442573.900 0.583 -4.974 2442661.800 0.784 - 4 .5 9 2
2442574.900 0.684 -4.571 2442662.800 0.848 -4.694
2442575.900 0.631 -5.189 2442663.800 0.495 - 4 .5 9 4
2442577.900 1.207 -5.118 2442664.800 0.471 - 4 .5 1 7
2442578.900 1.858 -5.125 2442666.800 1.337 -4.933
2442579.900 0.191 -5.460 2442668.800 0.716 - 4 .8 7 0
2442584.900 0.720 -5.295 2442670.800 0.686 -4.641
2442592.900 0.984 -4.772 2442672.800 0.687 - 5 .1 9 8
2442595.900 0.968 -4.744 2442673.800 0.331 -4.755
2442596.900 0.614 -4.461 2442674.800 0.645 -3.948
2442597.900 0.426 -4.545 2442675.800 0.784 -4.736
2442599.900 0.916 -4.448 2442676.800 0.575 -4.874
2442600.900 0.108 -4.530 2442677.800 0.590 -5.014
2442601.900 0.398 -5.139 2442678.800 0.653 -4.282
2442602.900 0.801 -4.540 2442679.800 0.774 -4.849
2442604.900 0.700 -4.720 2442680-300 0.260 -5.102
2442607.800 0.405 -4.945 2442681 .700 0.949 -4.636
2442609.800 0.557 -4.888 2442682.700 0.482 -4.748
2442623.800 1.603 -4.195 2442684.700 0.609 -4.604
2442624.800 1.154 -4.762 2442685.700 0.739 -4.825
2442626.800 0.461 -4.458 2442686.700 0.844 -4.268
2442627.800 0.706 -4.810 2442687.700 0.762 -4.608
2442628.800 0.823 -4.495 2442690-700 0.832 -4.717
2442629.300 0.595 -4.698 2442692.800 0.535 -4.648
2442630.800 0.598 -4.657 2442693.700 0.664 -4.859
24426.31 .800 0.713 -4.350 2442693.800 0.650 -5.013
2442632.800 0.755 -4.802 2442694.800 0.637 -4.995
2442633.800 1.462 -4.373 2442716.700 0.460 -4.854
2442634.300 0.565 -4.470 2442717.700 0.584 -4.406
2442635.800 0.615 -4.583 2442728.600 0.663 -4.564
2442636.800 0.999 -4.800 2442749.600 0.655 -4.637
2442639.800 0.398 -4.733 2442750.600 0.940 - 4 .5 2 6
2442648.M0 0.950 -5.042 2442755.600 0.875 -4.618
2442649.800 0.869 -4.640 2442757.600 0.465 -5.056
2442650.800 0.919 -4.925 2442767.600 0.617 -4.765
2442651.800 0.496 -4.888 2443318.800 0.105 -4.669
2442654.800 0.666 -4.584 2443320.980 -0.061 -5.195
2442657.800 0.623 -4 .7 4 4 2443321 .790 0-368 -4.785
2442658.800 0.543 -4.291 2443322.770 0.740 -5.437
2442659 .JB6* 0.978 -4 .8 1 3 2443323.757 0.864 -4.752

2443324.771 0.899 -4.860
2443325.785 0.951 -4.970
2443329.731 0.662 -4.802
2443350.729 0.597 -4.846
2443331.815 0.862 -4.841
2443332.941 0.578 -4.818
24 43335.896 9.678 -4.960
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J.D. q ( % ) u(%) J.D. q(?o) u(%)

2443336.849 0.639 -5.010 2443395.771 0.740 -4.701
2443337.044 0.621 -4.906 2443395.898 0.743 -4.745
2443338.962 0.573 -4.904 2443396.785 0.716 -5.170
2443339.923 0.945 -4.714 2443396.895 0.687 -4.986
2443340.925 0.767 -4.846 2443397.902 0.527 -4.733
2443344.833 0.772 -4.904 2443398.762 0.835 -5.093
2443345.863 0.835 -5.104 2443399.812 0.367 -4.984
2443346.755 0.649 -4.928 2443399.851 0.529 -4.918
2443349.759 0.812 -5.115 2443400.715 0.614 -5.223
2443351.906 0.498 -4.745 2443403-730 0.561 -4.752
2443353.865 0.654 -4.878 2443409.749 1.109 -4.765
2443354.719 0.712 -5.093 2443412.690 0.387 -4.595
2443355.851 0.793 -5.036 2443413.771 0.481 -5.249
2443356.921 0.645 -5.370 2443415.962 0.724 -4.645
2443358.972 0.902 -4.598 2443418.867 0.258 -4.625
2443359.684 0.917 -4.545 2443420.731 0.747 -4.417
2443359.862 1.028 -4.983 2443421.688 0.772 - 4 .6 6 6
2443360.846 0.342 -4.395 2443422.719 0.233 -5.054
2443361 .838 0.834 -4.775 2443424-816 0.318 -4.962
2443357.750 0.725 -4.632 2443425.639 0.592 -4.663
2443362.792 0.637 -4.972 2443425-789 0,636 -5.309
2443364.713 0.980 -4.761 2443426.730 0.633 -4.912
2443364.849 0.903 -4.725 2443426-832 0.913 -4.327
24^3365.913 0.410 -4.992 2443427.643 0.694 -4.988
2443366.872 0.692 -4.840 2443427.797 0.408 -5.212
2443367.764 0.901 -4.988 2443428-651 0.499 -4.630
2443367.889 0.939 -4.705 2443428.793 0.614 -4.720
2443368.786 0.815 -5.314 2443429.709 0.599 -4.843
2443368.921 0.661 -5.155 2443429.817 0.707 -5.074
2443370.719 0.611 -5.007 2443430.647 0.591 -5.046
2443370.948 0.559 -5.379 2443430.808 0.476 -4.838
2443371.969 0.544 -4.979 2443431.787 0.501 -4.657
2443372.747 0.712 -4.959 2443433.72? 0.613 -5.008
2443372.927 0.865 -4.919 2443434.644 0.601 -4.889
2443373.760 0.944 -4.943 2443434.791 0.505 -5.059
2443375.726 0.595 -4.552 2443435.647 1.134 -5.043
2443375.931 0.691 -4.797 24434-36.653 0.610 -5.033
2443377.750 0.559 -4.544 2443433.651 0.552 -5.199
2443378.705 0.681 -5.177 2443443.697 1.046 -4.895
2443378.910 0.641 -4.822 2443444.788 0.248 -5.440
2443386.743 0.624 -4.768 2443450.732 0.145 -5.065
2443387.729 0.711 -4.800 2443451.772 1.199 -4.877
2443388.802 0.569 -5.123 2443455.672 0.381 -4.850
2443390.760 0.769 -4.890 2443459.64? 0.739 -4.700
2443391.718 0.664 -4.976 2443463.657 0.556 -4.905
2443392.793 0.690 -4.643 2443467.700 0.359 -4.724
2443393.795 0.632 -4.824 2443477.694 0.166 -4.483
2443394.847 0.382 -4 jl6.16 2443481.453 JJB5 - ê J i ' 5 5
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J.D. q ( % ) u(%) J.D. q ( % ) u(%)

2443482.611 0.811 -4.321 2443660.815 0.352 -4.906
2443488.622 0.956 -4.747 2443661.795 0.743 -5.030
2443489.594 0.793 -4.825  ̂ 2443662.834 0-620 -5.061
2443496.692 0.987 -4.926 2443663.867 0.744 -4.363
2443497.632 0.654 -4.893 2443664.777 0.867 -5.100
2443568.924 0.624 -5.043 2443664.937 0.807 -4.959
2443569.101 0.647 -4.854 2443665.795 0.626 -5.086
2443574.908 0.551 -4.720 2443666.788 0.624 -5.008
2443577.984 0.580 -4.970 2443667.802 0.692 -4.870
2443583.022 0.708 -4.974 7443668.805 0-624 -4.952
2443534.093 0.712 -4.748 2443670.794 0.579 -4.736
2443585.000 0.643 -5.174 2443671.892 0.220 -4.918
2443585.984 0.799 -4.739 2443674.841 0.413 -5.019
2443586.997 0.779 -5.120 2443675.829 0.570 -5.080
2443587.988 0.733 -4.755 2443676.806 0.781 -4.879
2443593.999 0.758 -4.840 2443677.793 0.617 -4.846
2443595.029 0.324 -4.663 2443673.833 0.763 -4.829
2443596.996 0.731 “5.086 2443680.824 0.694 -4.860
2443598.971 0.522 -4.756 2443681.789 0.557 -4.845
2443603.992 0.932 -5.446 2443632.850 0.726 -4.982
2443606-960 0.600 -4.756 2443684.934 0.497 -4.956
2443607.922 0.773 -4.898 2443685.844 0.867 -4.778
2443608.922 0.924 -4.672 2443686.840 0.714 -4.940
2443609.933 0.762 -5.159 2443687.843 0.733 -4.947
2443610.921 0.519 -4.911 2443639.873 0.766 -4.745
2443611.934 0.643 -4.908 2443690.810 0.622 -4.814
2443615.958 0.372 -4.772 2443694.882 0.670 -5.149
2443619.956 0.577 -4.734 2443695.865 0.753 -4.914
2443621.979 0.595 -4.772 2443696.875 0.709 -4.997
2443626.873 0.571 -4.903 2443697.862 1 .112 -4.627
2443627.968 0.878 -4.755 2443698.782 0.630 -4.865
2443630.858 0.654 -5.182 2443699.840 0.450 -4.823
2443631-370 0.570 -4.317 2443700.747 0.428 -4.757
2443632-871 0.775 -5.091 2443700.944 0.750 -4.886
2443634.932 0.739 -4.849 2443701.745 0.710 -5.087
2443635.874 0.826 -5.282 2443701.932 0.601 -5.033
2443636.84? 1.135 -5.030 2443702.774 0.545 -4.863
2443637.859 0.489 -5.198 2443703.753 0 • 666 -4.892
2443640-842 0.528 -4.965 2443703.961 0.726 -4.854
2443642.908 0.600 -5.339 2443704.751 0.717 -5.031
2443646.891 0.583 -5.303 2443704.964 0.784 -4.855
2443643.372 0.954 -4.901 2443705.922 0.679 -4.962
2443652.355 0.689 -4.712 2443706.883 0.643 -4.781
2443653.897 0.645 -4.906 2443707.799 0.589 -4 .9 1 4
2443655.934 0.735 “ 4 .666 2443708.801 0 .7 1 7 -4.882
2443657.826 0.662 -4.912 2443709.949 0 .7 5 2 -5.007
2443658.810 0.676 -4.792 2443710.771 0.607 -4.855
2443659.816 0.742 - 5 ,1 5 7 2443711.770 0 .6 9 3 -4.833
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J.D. q ( % ) u(%) J.D. q ( % ) u(%)

2443712.768 0.852 -4.744 2443781.775 0.889 -4.753
2443712.951 0.754 -4.908 2443782.845 0.901 -4.916
2443713.787 0.753 -4.893 2443783.727 0.705 -4.828
2443714.826 0.764 -4.852 2443784.767 1.006 -4.654
2443716.964 0.658 -4.992 2443785.746 0.541 -4.886
2443717.810 0.686 -5.085 2443786.785 0.572 -4.845
2443718.804 0.641 -4.961 2443787.689 0.436 -5.050
2443719.741 0.676 -4.733 2443788.739 0.565 -4.999
2443719.887 0.745 -4.757 2443790.646 0.632 -4.722
2443720.826 0.682 -4.853 2443791.674 0.691 -5.202
2443721.794 0.617 -5.009 2443792.752 0.355 -4.581
2443722.850 0.615 -4.875 2443793.629 0.530 -4.633
2443723.846 0.586 -4.924 2443794.738 0.907 -5.306
2443724.744 0.482 -4.960 2443795.646 0.466 -4.788
2443724.909 0.645 -4.787 2443796.782 0.664 -5.233
2443725.798 0.843 -4.943 2443798.794 0.566 -4.972
2443726.756 0.599 -4.881 2443799.620 0.722 -4.929
2443727.751 0.717 -4.734 2443800.747 0.632 -4.651
2443728.752 0.516 -4.842 2443803.739 0.577 -4.629
2443729.753 0.649 -5.064 2443804.638 0.641 -5.066
2443730.790 0.353 -4.757 2443806.729 0.706 -4.693
2443731.839 0.855 -4.908 2443807.766 0.511 -4.924
2443732.737 0.75? -4.946 2443808.640 0.626 -4.821
2443733.796 0.760 -4.842 2443809.722 0.494 -4.850
2443734.798 0.767 -4.725 2443811.707 0.383 -4.841
2443735.753 0.621 -4.961 2443812.634 0.482 -5.079
2443737.925 0.640 -4.683 2443813.741 0.582 -5.041
2443738.733 0.286 -4.813 2443814.725 0.674 -4.864
2443739.725 0.574 -4.934 2443818.640 0.826 -4.539
2443740.826 0.660 -5.027 2443819.726 0.348 -4.730
2443746.746 0.535 -4.914 2443822.728 0.881 -5.156
2443747.930 0.765 -4.941 2443824.750 0.485 -5.229
2443748.907 0.532 -5.026 2443826.697 0.840 -5.165
2443749.744 0.613 -4.868 2443827.696 0.644 -4.716
2443750.696 0.451 -5.003 2443829.691 0.756 -4.933
2443751.896 0.524 -4.821 2443830.621 0.635 -5.031
2443752.716 0.508 -4.824 2443835.755 1.008 -4.782
2443753.876 0.799 -4.861 2443839.701 0.413 -4.988
2443754.704 0.861 -5.164 2443844.693 0.669 -5.109
2443755.816 0.450 -4.842 2443845.718 0.815 -4.916
2443764.771 0.424 -4.528 2443847.731 0.341 -4.834
2443766.752 0.379 -5.304 2443848.673 0.364 -4.654
2443770.917 0.232 -4.901 2443850.684 0.461 -5.195
2443771.760 0.300 -5.361 2443852.732 0.665 -4.898
2443772.770 0.758 -4.749 2443858.675 0.548 -4.696
2443374.863 0.870 -4.925 2443862.639 1.545 - 5 .0 1 3
2443779.664 0.729 -4.925 2443864.658 0 .56 2 -5.009
244378t.7_46 0.414 -4^942 2443867.657 0.532 -4.958

2443868.608 0.670 -4.787
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B wide-band normalized Stokes parameters (equatorial co-ordinates)

of o Ori E 

J.D. q(%) u(%)

2 4 4 3 1 5 0 . 8 3 0  - 0 . 2 8 5  - 0 . 0 7 9
2 4 4 3 1 5 4 . 7 3 0  - 0 . 3 3 7  - 0 . 0 8 2
2 4 4 3 1 5 6 . 6 9 0  - 0 . 3 2 1  0 . 0 6 5
2 4 4 3 1 6 3 . 6 1 0  - 0 . 3 0 3  0 . 0 0 0
2 4 4 3 1 6 3 . 8 7 0  - 0 . 2 5 1  0 . 0 3 6
2 4 4 3 1 6 6 . 6 2 0  - 0 . 3 2 2  - 0 . 0 7 8
2 4 4 3 1 6 7 . 6 7 6  - 0 . 3 3 8  0 . 0 6 5
2 4 4 3 1 6 7 . 8 0 2  - 0 . 3 1 9  0 . 0 3 2
2 4 4 3 1 6 7 . 8 6 8  - 0 . 3 0 3  - 0 . 0 9 4
2 4 4 3 1 7 2 . 6 7 8  - 0 . 2 7 5  - 0 . 0 3 0
2 4 4 3 1 7 2 . 7 1 8  - 0 . 3 1 5  - 0 . 0 2 9
2 4 4 3 1 7 2 . 8 0 4  - 0 . 3 6 1  0 . 0 5 3
2 4 4 3 1 7 6 . 6 2 9  - 0 . 2 6 1  - 0 . 0 5 0
2 4 4 3 1 6 8 . 7 0 8  - 0 . 2 9 5  0 .0 5 1
2 4 4 3 1 6 9 . 6 2 5  - 0 . 2 7 0  - 0 . 0 0 5
2 4 4 3 1 6 9 . 6 6 5  - 0 . 2 6 0  - 0 . 0 2 8
2 4 4 3 1 6 9 . 8 1 4  - 0 . 3 5 3  - 0 . 0 3 7
2 4 4 3 1 6 9 . 8 6 0  - 0 . 3 5 1  0 . 0 5 3
2 4 4 3 1 7 0 . 6 1 0  - 0 . 3 6 0  0 . 0 3 8
2 4 4 3 1 7 0 . 6 5 0  - 0 . 2 8 7  - 0 . 0 9 3
2 4 4 3 1 7 0 . 6 9 7  - 0 . 2 8 1  0 . 0 3 7
2 4 4 3 1 7 0 . 7 3 8  - 0 . 3 2 7  - 0 . 0 1 0
2 4 4 3 1 7 0 . 8 0 2  - 0 . 3 2 4  - 0 . 1 0 3
2 4 4 3 1 7 0 . 8 4 5  - 0 . 3 0 4  - 0 . 0 4 6
2 4 4 3 1 7 1 . 6 3 5  - 0 . 2 7 8  0 . 0 0 3
2 4 4 3 1 7 1 . 6 8 5  - 0 . 3 1 8  0 . 0 4 3
2 4 4 3 1 7 1 . 7 2 6  - 0 . 3 2 2  0 . 0 1 1
2 4 4 3 1 7 1 . 8 0 2  - 0 . 3 2 9  0 . 0 1 2
2 4 4 3 1 7 1 . 8 6 0  - 0 . 3 1 2  - 0 . 0 5 2
2 4 4 3 1 7 4 . 7 2 1  - 0 . 3 4 7  0 . 0 5 2
2 4 4 3 1 7 9 . 6 2 5  - 0 . 3 5 1  0 . 0 5 7
2 4 4 3 1 7 6 . 6 3 3  - 0 . 3 4 8  - 0 . 0 0 9
2 4 4 3 1 7 6 . 7 3 4  - 0 . 2 9 4  - 0 . 0 3 9
2 4 4 3 1 7 7 . 7 1 2  - 0 . 3 1 0  0 . 0 4 7
2 4 4 3 1 7 6 . 8 3 3  - 0 . 2 9 6  - 0 . 0 1 1
2 4 4 3 1 7 7 . 6 1 7  - 0 . 3 1 9  - 0 . 0 5 5
2 4 4 3 1 7 8 . 7 1 3  - 0 . 3 2 5  - 0 . 0 4 6
2 4 4 3 1 7 8 . 8 1 7  - 0 . 3 2 6  - 0 . 0 0 4
2 4 4 3 1 7 8 . 6 1 9  - 0 . 2 9 2  - 0 . 0 8 9
2 4 4 3 1 8 4 . 6 2 7  - 0 . 3 2 3  0 . 0 6 3
2 4 4 3 1 8 3 . 7 9 5  - 0 . 2 6 4  - 0 . 0 4 9
2 4 4 3 1 8 3 . 7 0 3  - 0 . 3 6 3  0 . 0 2 0
2 4 4 3 1 8 5 . 6 4 0  - 0 . 2 7 1  0 . 0 1 7
2 4 4 3 1 8 5 . 8 1 0  - 0 . 2 5 7  - 0 . 0 1 4
2 4 4 3 1 8 7 . 7 9 0  - 0 . 3 2 1  0 - 5 6 9
2 4 4 3 2 0 8 . 6 7 9  - 0 . 3 9 9  - 0 . 0 4 3
2 4 4 3 2 0 8 . 7 2 2  - 0 . 4 0 8  0 . 0 0 9
2 4 4 3 2 0 9 . 6 7 1  - 0 . 2 3 9  0 . 0 2 4
2 4 4 3 2 0 9 . 7 2 4  - 0 . 2 8 7  - 0 . 0 1 1
2 4 4 3 2 1 3 . 6 8 0  - 0 . 3 3 3  - 0 . 1 3 6
2 4 4 3 2 1 3 . 7 0 8  - 0 . 2 9 8  - 0 . 0 4 3
2 4 4 3 2 1 4 . 7 0 8  - 0 . 3 9 7  - 0 . 0 6 2
2 4 4 3 2 1 4 . 7 5 0  - 0 . 3 3 3  0 . 0 0 6
2 4 4 3 2 1 5 . 6 5 3  - 0 . 3 6 7  - 0 . 0 5 0
2 4 4 3 2 1 5 . 7 3 2  - 0 . 2 9 7  0 . 0 7 6
2 4 4 3 2 1 6 . 6 9 2  - 0 . 2 4 7  0 . 0 0 2
2 4 4 3 2 1 8 . 6 5 0  - 0 . 2 9 9  0 . 0 7 9
2 4 4 3 2 1 8 . 6 7 6  - 0 . 2 9 3  0 . 0 7 1
2 4 4 3 2 1 3 . 7 0 3  - 0 . 3 2 4  0 . 0 8 7
2 4 4 3 2 1 9 . 7 3 4  - 0 . 2 4 8  0 . 0 1 5
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Appendix E

Two FORTRAN?? Program Listings

Two programs that were composed for application 
of methods 2.14(c) and 2.14(d), U/CZ. the correlation 
of polarization position angle and correlation of 
the sign of u.
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Program carries cut the method of correlation of polarization 
position angle as outlined in Clarke and McGale (1986)(submitted 
to Astron. 8 Astrophys.). The object is to derive the best period 
and phase from a fit of the data under study to the canonical 
scattering model. The value of stellar inclination may be varied 
as can also the co-latitude of the scattering material, to give 
the best model match.
Program allows particular intervals of data to be put through 
a grid of chosen periods and phases.

PROGRAA FPAP
CHARACTER INf10,ANS
DIMENSION T(AOO),AE(AOO),AO (AOQ)
PI=4.0*ATAN(1.0)

*
a Get input parameters for particular run.
*
70 PRINT •('•Give filename:")'

READ(*,*) IN
60 PRINT '(''Give start and finishing times(incI usive) : ' •) ' 

READ(*,*) ST,FT
PRINT '(''Give upper,lower and stepsize for period(hrs) : ' ' ) ' 
READ(*,*) PU,PL,PS
PRINT '(''Give delta phase(hrs):'')'
READ(*,*) DP
PRINT •(•'Give inclination and the ta(deg):•') •
READ(*,*) INCL,TH

*
m Convert degrees to radians, open file for analysis, and calculate
* the position of the centre of gravity cf the points.
*

RI=INCL*PI/1£C.O 
RT=TH*FI/180.C
OPEN(1 ,FILE=IN,STATUS='OLD')
QS = C. C 
US=C.O 
1 = 1

5 READCI,'(F8.3,1X,F8.5,1X,F8.5)',END=6) D,Q,U 
IF(C.LT.ST) GOTO 5
IF(O.GT.FT) GOTO 6 
QS=QS+Q 
US=US+U 
1 = 1+1 
GOTO 5

6 NL=I-1 
Q B = C S / N L  
U a = U S / N L

*
* Round to five decimal places.
#

QB=INT(Q0*1OCCOC)/1COCCO.C 
UB = INT (UB*lOCOOC)/1COCGO.C 
REWIND 1

*
* Read in measurements again but translate them to a centre of
* gravity frame. Ensure that position ancle is described in the
* same sense as positive phi in the canonical model.

1 = 1
10 READ(1,'(F8.2,1X,F8.5,1X,Fg.5)',ENC=20) T(I),Q,U

IF (T(I).LT.ST) GOTO 10 
I F f r ( l ) .  6T, FT) frc rO -LO
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Q=Q-QB
U=U-UB
A0(I)=ATAN2(l,Q)
IF(AC(I).LT.C.O) A0(I)*A0(I)42*pi 
IF(AO( D.LE. FI) AO(I)=PI-AC(I)
IF (AO(I).GT.PI) A0(I)=3*PI-A0(I)
1=1 + 1 
GOTO 1C 

20 NL=I-1
CLOSE(I)

*

* Call NAG routine to get critical values of the correlation co-eff 
+ 95% & 99% confidence intervals.
*

IDF=NL-2
V95=G01CAF(0.025,IDF,0)
V99=G01CAFC0.005,IDF,0)
C95=SQRT(V95**2/((V95**2)+IDF))
C99=SQRT(V99**2/((V99**?)+IDF))*

* Write out header.
*

WRITE(*,'(//)•)
IT=INT(TH)
WRITE (♦,'(* *QB = ' ,F8.5, ' UB = **,F8.5)*) QB,UB 

WRITE(*,*( "  Inclination = ',13,*' Theta = '',13)') INCL,IT
WRITEC + ,'( "  Start time: " , F 8 . 3 , "  Finish time: ",F8.3)') ST,FT 
WRITE(*,'( "  ho. of points: ',14, ' C95 = *',F6.4," €99 ^ " , F 6 . 4

+)') NL,C95,C99
WR1TE(*,'C' Gradient error Inter. error TO Perio

+d CV") ' )
WRITE(*,'(65(1H-))')

*
* Run through the chosen mesh of periods and phases.
*

DO 30,FER=PL,PU,PS
PR=PER/24.0
DO 4C,PH=0,PER,DP
PHA=FH/24.0
T0 = T(1) + PHA

*
* Call subroutines to find model position angle ano to perform
* the two sample linear regressions needed to give the sample
* correlation co-efficient.
*

CALL SFPAPCR],RT,NL,T,TC,PR,AE)
CALL SLBGI(AC,AE,NL,AXY,EAXY,BXY,EEXY)
CALL SLBGI(A£,AO,NL,AYX,EAYX,BYX,EEYX)
SCC=SQRT(AXY*AYX)

*

* Result worth outputting?
*

IF(SCC.6E.C99.AND.AXY.GT.C.3) THEN
WRIT£(*,'(3X,4(F6.4,3X),F8.3,2X,F6.3,2X,F6.4)') AXY,EAXY,BXY,EBXY, 

+TO,PER,SCC 
END IF 

40 CONTINUE 
30 CONTINUE

«
* Option for another run with the same data file or a new data
* set before terminating program.
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WRITE(*,*(//)')
PRINT •(•'Another run with same f i l e ? " ) '  
READ(*,'(A1)') ANS 
IF(ANS.EQ.'Y') GOTO 60 
PRINT '(''Another run?*')'
READ(*,'(A1)') ANS 
I F (ANS.EQ.'Y') GOTO 70
STOP
END

*  S u b r o u t i n e  c a l c u l a t e s  m o d e l  p o l a r i z a t i o n  p o s i t i o n  a n g l e s
*  g i v e n  a n  I n c l i n a t i o n ,  c o - l a t i t u d e  o f  s c a t t e r i n g  m a t e r i a l
*  a n d  p e r i o d  a n d  p h a s e .
*

SUBROUTINE SfPAP(RI,RT,NL,T,TO,PR,AE)
DIMENSION AE(*),T(*)
PI=4.0*ATAN(1.0)

*
*
*  G e t  fundamental and harmonic amplitudes o f  q & u.
*

A1=-0.5*SIN(2*RT)*SIN(2*RI)
A2=-C.5*SIN(RT)*SIN(RT)*(1.+C0S(RI)*C0S(RI))
B1=SIN (2*RT)+SINCR1)
B2=SIN (RT)*S1NCRT)*C0S(RI)

*
* Calculate as many position angles as there are points in t h e
* data set under study.
*

DO 10,1=1,NL
P=2*PI* (T (I)-TO)/PR
QD = A1*C0S (P)+A2*C0S(2*P)
UD=B1*SIN(P)+B2+SIN(2*P)
AE(I)=ATAN2(LD,QD)
IF(AEd).LT.C.O) AE(I)=AE(I) + 2*PI 
IF(AE(I).LE.FI) AE(I)=PI-AE(I)
IF(AE(I).6T.FI) AE(I)=3*PI-AE(I)

10 CONTINUE
*
* Return to main program.
*

RETURN
END
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•
*  S u b r o u t i n e  p e r f o r a s  > a  l i n e a r  r e g r e s s i o n .  T h e  s a m p l e  g r a d i e n t
*  s a m p l e  i n t e r c e p t  a n d  t h e i r  e r r o r s  a r e  o e r l v e d  b y  t h e  m e t h o d
*  o f  l e a s t  s q u a r e s .
$

SUBROUTINE SLBGI(Y,X,NP,A,SEA,B,SEE)
DIMENSION %(*),?(*)

*
* Initialise summations.
*

SUMX=0.0
SUMX2=C.O
SUMXY=0.0
SUMY=0.0
SUMYZ=0.0

*
* Do summations for the total number of cata points involved.
*

DO 1C,K=1,NP 
SUMX=SUNX+X(*)
SUMX2=SUMX2+X(K)*X(K)
SUMXY=SUMXY+X(K)*Y(K)
SUMY=SUMY+Y(K)
SUMY2=SUMY2+Y(K)*Y(K)

10 CONTINUE
D=NP*SUMX2-SLMX**2 
AN=NP*SUMXY-SUMX*SUMY 
BN=SUMX2*SUMY-SUMX*SUMXY 
SD2=NP*SUMY2-SUHY**2-(AN**2)/D 
SO=SQRY(SD2)/NP

*
* Calculate the sample gradient anc intercept and their standard errors,
*

A=AN/D
SEA=NP*SD/SQKT((NP-2)*D)
B=BN/D
SEE=NP*SD*SQFT(SUMX2)/SQRT<NF*(NP-Z)*D)

*
* Return tc main program,
*

RETURN
END
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*
*  P r o g r a m  f i n d s  t h e  p e r i o d  a n d  p h a s e  b y  c o m p a r i n g  t h e  s i g n
*  o f  t h e  <j p a r a m e t e r  o f  r e a l  d a t a  w i t h  t h e  s i g n  g o t  b y
*  u s e  o f  t h e  p h i - t i m e  r e l a t i o n .
*  T h e  m e t h o d ,  k n o wn  a s  t h e  c o r r e l a t i o n  o f  t h e  s i g n  o f  u ,  h a s  b e e n
*  d e s c r i b e e  by  C l a r k e  and  M c G a l e  (1986)( s u b m i t t e d  t o  A s t r o n .  I
*  A s t r o p h y s . ) .
*  P r o g r a m  a l l o w s  p a r t i c u l a r  i n t e r v a l s  o f  d a t a  t o  be  p u t  t h r o u g h  a g r i d
*  o f  c h o s e n  p e r i o d s  a n d  p h a s e s ,
*

PROGRAM FPAP2
CHARACTER Ih*1C,ANS,SlGNO(AOO),SIGNE
DIMENSION T (AGO),S(10000),PERI0D(1 COOO),PHASE(10000)

+,DUM(1C000),IND (100C0),INDW(1QC00)
PI=4.0*ATAN(1.0)

•*
* Get input parameters for particular run.
*
70 PRINT •(••Give fi lename: *•)•

READ(*,*) IN
60 PRINT •(••Give start and finishing times(inclusive) ; • • ) • 

READ(*,*) ST,FT
PRINT •(••Give upper,lower and stepsize for period(hrs) :••)* 
READ(*,*) PU,PL,PS
PRINT •(••Give delta phase(hrs):••)•
READ(*,*) DP
PRINT •(••Give inclination and theta (deg):•*)*
READ(*,*) INCL,TH

*
* Convert oegrees to radians, open file for analysis, and calculate
* the position of the centre of gravity c f  the points.
*

IT=INT(TH)
RI=INCL*PI/1SO.G 
RT=TH*FI/180,G

*
* Also get the critcal u value below which measurements are to be
* ignored for this run.
*

PRINT •(••Give critical u value:••)•
REAO(*,*) CUV
OPENd,FILE=IN,STATUS=*OLD^)
QS=0,C 
US=0,C 
1 = 1

5 REAOCI,^ (F8 .3,1X,F?’.5,1X,F8.5) •,END=6) D,Q,U 
IF(D.LT.ST) GOTO 5
IF(D.GT.FT) 60TC t 
QS=GS+Q 
US=US+U 
1 = 1+1 
GOTO 5

6 NL=I-1 
QB=OS/NL 
Ua=US/NL

+ Round to five decimal places,
*

QB = INT-(QB*10CCOO)/1 COCOO.O 
UB=INT.(UB*10COOO)/1COOOO.C 
REWIND 1
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*
♦  R e a d  I n  p o i n t s  a n d  t r a n s l a t e  t h e *  t o  a c e n t r e  o f  g r a v i t y  f r a m e ,  q 
a c a n  be  i g n o r e d .
*

1=1
10 READ(1,'(F8.2,1X,F6.5,1X,F8.5)',END=20) D,Q,U

IF(D.LT.ST) GOTO 10 
IF(D.GT.FT) GOTO 20 
U=U-UB
IF(ABS(U).6T.CUV) THEN 
T(I)=D

*
* Note the sign of the observed u value.
*

IF(U.GT.O.O) SIGNO(I)='P*
IF(U.LT.O.O) SIGNO(I)=*N*
1= 1+1 
END IF 
GOTO 10 

20 NL = I-1
CL0SEC1)
B1=SIN(2*RT)*SIN(RI)
B2=SIN(RT)*SIN(RT)*COS(RI)
J = 1

*
* Run through the grid of chosen periods and phases. The stepsizes
* must be allow not more than 10G0C combinations of period and phase,
*

DO 3C,PER=PL,PU,PS
PR=PER/24.0
DO 40, PH=0,PER,DP
PHA=FH/24 .0
TO=ST+PHA
IR = 0
DO 5C,I=1,NL 
PHI=2*PI*(T(I)-T0)/PR

*
* Get the sign of the model u value and note it.
*

U=B1*SIN(PHI)+B2*SIN(2*PHI)
IF(U.GE.O.O) SIGNE='P'
IF(U.LT.G.O) SIGNE='N"

*
* Compare the observed and model signs of u .
*

I F (SIGNE.EQ.SIGNC(I)) IR=IR+1 
50 CONTINUE

S(J)=IR*1-0 
PERICD(J)=PE R 
PHASE(J)=PH 
J = J + 1 

40 CONTINUE 
30 CONTINUE 

J = J“ 1
*
* Sort results to look for the biggest success rate,using
* the NAG routine MC1AKF.
*

CALL MCIAKF(S,DUK,IND,INDW,J,10000,0)
*
* Output a header.
*
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W R I T E ( * , ' ( / / ) ' )
W R I T E ( * , ' ( ' ' @ B  =  ' ' , F 8 . 5 , '  UB =  " , F 8 . 5 ) ' )  OB, UB  
« R I T E C * , • ( • • I n c l i n a t i o n  =  • * , I 3 , ' ^  T h e t a  = • • , I 3 ) * >  I N C L , I T  
W R I T E ( + , • ( • • s t a r t  T i m e  :  • • , F 8 . 3 , ^ ^  F i n i s h  T i m e  :  " ' , F 8 . 3 ) ' )  S T , F T  
W R I T E ( + , • ( • • C r i t i c a l  u v a l u e  = ' • , F 8 . 5 ) ^ )  CUV 
W R I T E ( * , ^ ( ^ ^  P e r i o d  P h a s e  NoP N S ^ ^ ) ^ )
W R I T E ( * , ^ ( 2 8 ( 1 H - ) ) * )

*
* List the top twenty matches and the worst match.
*

DO 80,1=1,20
WRITE(*,^(1X,F6.3,1X,F8.3,2X,I3,2X,F4.0)^) PERIOD(IND (I)), 

+PHASE(IND(I)),NL,S(I)
80 CONTINUE

WRITE(*,^ (/,1X,F6.3,1X,F8.3,2X,I3,2X,F4.0)*) PERIOD(IND(J)), 
+PHASE(IND (J)),NL,S(J)

*
* Option for another run with the same data file or a new data set
* otherwise terminate program.
*

WRITE(*,'(//)•)
PRINT •(••Another run with same file?^^)^
READ(*,^(A1)•) ANS 
IF(ANS.EQ.'Y•) GOTO 60 
PRINT •(••Another run?^•)•
READ(*,^ ( A D  •) ANS 
IF(ANS.EQ.^Y•) GOTO 70 
STOP 
END
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