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(1)

PREFACE

This thesis is concerned with an attempt to develop a very
detailed knowledge and understanding of the electronic, magnetic,
optical, and chemical properties of nd5 transition-metal ions and their
complexes, particularly Ru3+ and its complexes. The link between these
properties is the Tanabe-Sugano diagram whose development is described
in the first part of the thesis.

The thesis is subdivided into two major parts, a theoretical
part represented by Chapters One to Four, and a practical part
represented by Chapters Five and Six. Chapter One explains how, by
taking interelectronic repulsion effects on term energies into account, an
energy level diagram for the nd5 configuration of the isolated Ru3+ ion
can be derived. Chapter Two describes the effects of crystal fields on
isolated nd5 ions, and shows how the electronic wave functions of these
ions change on going from a strong octahedral crystal field -+ to the
"spin cross-over" point + to a weak octahedral field. The derivation of
the Tanabe-Sugano diagram for an nd5 ion is described in this chapter
and the effects of crystal fields of different symmetries are also
described in detail. In Chapter Three, the magnetic properties of nd5
ions, including the Ru3+ ion, are related to the Tanabe-Sugano diagram,
and their characteristic, and complex magnetic behaviour in a strong
octahedral field, in a weak octahedral field, and at the "spin cross-over"
point is considered, as is the effect of changing the geometry of the

transition-metal ion complex.




(ii)

Chapter Four shows how electron paramagnetic resonance
measurements can be used to obtain information about the electronic
ground states of nd5 ions in complexes. The very intricate and very
sensitive relationships connecting electron paramagnetic resonance data

with geometrical properties of complexes is considered in great detail.

In the second part of this thesis, the theoretical knowledge
built up from the first part is used to identify two ruthenium complexes.

The first of these was prepared from a solid state reaction
between benzoin and "commercial ruthenium trichloride”, RuCQ,3.xHZO.
The complex was identified as Ru656H4202. It possessesvery interesting
spectroscopic properties which are described in detail and used to
characterise the molecular structure of the compound. Its formation
must involve interesting redox reactions followed by polymerization, and
these are described in detail in Chapter Five of the thesis.

The last chapter describes the reaction of dithiobenzoin with
ruthenium(II)-chloride. This produces a mixture of two closely similar
)aI‘FdRuHRuIHS (S,HC,Ph,)>. The rather
2’2 2VT27 AT 22

interesting spectroscopic and magnetic properties of these substances

II
substances, Ruz SZ( SZCZPh

are described in detail in this chapter and along with other physio-

chemical properties, are used to characterise the compounds.

M.J.B. Al-Assadi

January, 1987.
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- CHAPTER ONE -

THE TERMS OF THE 4d5 CONFIGURATION OF THE

ISOLATED Ru>' ION




To develop a full picture of the nature of the bonding between
central metal ion and ligands in a transition metal-ion complex, and to
set the energy levels associated with it, it is necessary to construct a
general Hamiltonian, and then solve the proper Schrodinger equation for
that complex. However, this is not a simple matter, and in order to
simplify the problem it is necessary to tackle it stepwise, i.e. to divide
the general Hamiltonian of the system into its several components,
starting with the free ion Hamiltonian, finding its proper wave functions
and their corresponding eigenvalues, then incorporating the crystal
field contribution to the Hamiltonian,.... and so on until the nuclear
Zeeman contribution to the Hamiltonian is taken into account, as shown
below. Provided the different contributions are written in descending
order of magnitude, each successive contribution can be considered to
perturb the eigenvalues and eigenfunctions of the preceding contributions,
and the problem then becomes a series of exercises in the application of
perturbation theory.

The general Hamiltonian is

H=V+V + V + V. o+ V + V (1.1)

v is the free ion energy, including only the

electronic kinetic energies, and all the electronic

electrostatic interactions in the free ion; VF ¥ 105 cm_lz
VxQ, is the crystal field interaction energy; VX2” 104 cm_lz
VSO is the spin-orbit interaction energy; Vso% 103—102 cm—l:

VZ is the electronic Zeeman interaction energy; VZ < 100 cm_1



VSS is the spin-spin interaction energy; VSS G4 1-10—l cm—l:
-1 ..-3 -1

VSI is the nuclear Zeeman interaction energy; VSI ¥ 10 -10 " cm

‘In general, the last five terms in equation (1.1) are small compared to
VF’ i.e. they can be considered as perturbations to VF'

1.1 THE EIGENFUNCTIONSE AND EIGENVALUES OF TEE FREE ION
1-7

HAMILTONIAN H = v,

To find the energy levels available to N equivalent electrons
moving in a central field, assuming the single electron approximation in
which the N electrons distribute themselves among single electron orbitals,
it is necessary to start with the appropriate Hamiltonian and the

Schrodinger equation VF Y = EY, i.e., in c.g.s. units,

BZ N 2 N eZ 1 N N ez
" LV - L3zl 1 1¥=EY (1.2)
i=1 i=1 i i=1 j=1 i

where

+Ze is the atomic, or ionic, nuclear charge; m and-e are the mass and
charge of the electron respectively; Vi is the Laplacian operator which
operates on the spatial coordinates (ri, ei, d)i) of the ith electron;
-(Zez/ri) is the Coulomb interaction between the atomic nucleus and the
ith electron, where r, is the distance between the ith electron and the
nucleus; ez/rij is the Coulomb interaction between the ith and jth
electrons; V¥ is the wave function for the N electrons, and its form

depends upon the space and the spin coordinates of all N electrons

>
Y = ¥ (ry, o5 r,, 0y



Fi is an abbreviation for T Oi, q>i, the spherical polar coordinates of
electron i; g, is the spin coordinate of electron i; E is the total energy
of the N electrons.

Equation (1.2) can not be solved exactly for N > 1. There-
fore to find the wave function ¥ and the energies E for a many-electron
system, for example one consisting of five electrons, approximation
methods must be used. Using the so-called central-field approximation
in conjunction with a perturbation calculation gives rise to the procedure
known in the literature as the "Slater theory of atoms and ions".7

At this point it is convenient to add the quantity
+ I; eV(r) - I; eV(r) to the Hamiltonian in equation (1.2) where V(r)
1sPt1he "shield];_nlg potential", i.e. a spherically symmetrized averaged

electrostatic potential generated at electron i by all other electrons.

!
VF is then subsequently divided into two parts "HO + ‘H , i.e

v, = H (1.3)

with .
2 N 2 N
—HO =-§—m L vo- T oevir) (1.4)
i=1 i=1
and
Yoo 1 ¥ Y e
H 5 [—— S eVl + 3 ] =2 — (1.5)

i 1i#] ij
If the shielding potential, V(ri), is chosen such that ‘H' ,
everywhere in coordinate space, is as small as possible, ‘chen“-{l may be

treated as a perturbation operator acting on the unperturbed system

that is described by the Shrodinger equation



'}(0 y0 - gy (1.6)

The effect of '}[' on the system will be discussed in section
- (1.2.¢). The differential equation (1.6) can be solved to give solutions

for ‘PO which are products of one-electron functions l‘ba (?i . Oi) where
i

N a (o)
Y (i) =Y (r,0) =R (r)Y (6,9) (1.7)
2 g, by,mg my n, 4 gi’mli {3 (0)}

The wave functions ‘PO in equation (1.6) can be written in the form

v =y (Dw (D (1.8)

1 2 N

and the corresponding energy is given by

E = ¢ + € ... + €
nl,ll nZ"Q‘Z n._,4%

(1.9
Equation (1.8) does not take exchange of the coordinates of
the electrons in the system into account. There are in total N! different
product functions which can be obtained from equation (1.8) by perform-
ing all possible permutations of the electron coordinates. Every linear
combination of these N! functions is an eigenfunction of the unperturbed
Hamiltonian of (1.6) with the eigenvalue (1.9). Hence, when exchange

is taken into account, the most general eigenfunction, ¢, of}'{o,

equation (1.4), is7




& = (1/W1) £ (-1)° py? (1.10)
P

(1/vV/N1) is a normalization factor and the summation is taken over all
‘permutations P of the electron coordinates. The antisymmetric function
®, (1.10), is called the Heisenberg-Slater function, HS-function, and in

abbreviated form it is usually written as

¢ (a
or

¢ (n,,2,,m, ,m ;n,,&,,m, m_ ;.....;n_,% ,m, ,m_ )
112151222252 NN,Q,NSN

(1.11)
For electrons belonging to the same subshell, i.e. electrons possessing

the same n and £ values, ¢ can be written as

® (m, ,m s M, ;T e ;m, ,m_ ) (1.12)
L7ey T T, ' o
or
+ - +
® (m P M. ... ;m. ) (1.13)
21 9,2 JLN

The positive sign being used when mg = +%— and the negative sign when
ms = —%. The function ¢, equation (1.10), can also be written in
determinantal form;z’7 It is a normalized and orthogonalized function.
Before investigating which energy values, E, an atomic
N-electron system is allowed to have in the central-field approximation,

it is necessary to establish clearly the significance of two quantities,

configuration and term, and to distinguish between them.



1.2 ELECTRON CONFIGURATION AND TERMS

A configuration is an assignment of a given number of electrons
_to a set of orbitals, each of the form wa(i), equation (1.7), and it can
be written symbolically as, (nl,Q,l)a, (nzﬂ,z)b, ..... ,(ni,Q,i)N, where
a,b,..... ,N are the number of electrons which occupy one electron

orbital of energy, €

lsz,ZSZ,ZpZ, ..... ,nd5. It is important to realise that a given

0’ equation (1.9). For example

configuration gives rise to a number of energy levels.

Possible eigenfunctions of 'HO, ®, associated with a particular
electron configuration are obtained when within this electron configuration
all the possible orbital occupations allowed by the Pauli Exclusion
Principle are taken into account. For instance, to find the ¢® functions
allowed for the nd5 configuration, the five (nd) valence electrons are
to be distributed over the 2(22+1), i.e., 10-degenerate d-orbitals taking
the Pauli Principle into consideration. If, for example, four electrons

- +
are placed in the orbitals (m,Qll,ms ) = 5, (mﬁz’ms )y = 2, (mSZ, s y = 1,

- 1 2 3 3
and (mQ‘ ym ) = 1, then the fifth electron can occupy only one of the
4 4 + -+ - % -
orbitals (m2 »m ) =0, 0, -1, -1, -2 or -2. From this, it follows that
5 5

the following functions are acceptable eigenfunctions ¢ of ‘Ho,

equation (1.4).

¢[{(m, ,m_ );(m, ,m_ );(m, ,m_ );(m, ,m_ );(m, ,m_ )] =
Ry s R s, s T s g s

N o+
oo

oot + - 4+ = - + -+ - ¢
& »1,1,0) or ©(2,2,1,1,0) or ¢(2,2,1,1,-1)

b

- +

+ - + - I e + -
®(2,2,1,1,-1)or ®(2,2,1,1,-2)or (2,2,

—

:i:-é)



The remaining acceptable ¢ functions can be similarly derived by

considering all other possible occupations of the d orbitals.

1.2.a ELECTRON CONFIGURATIONS AND TERMS FOR nd5 IONS

All physically different & functions can then be ordered

according to the quantities ML = (m21+m22+m9,3+m£4+m2'5) and

M =(m +m +m +m +m ) and tabulated as in Table (1.1). It can
S sy S, S3 s, Sg

be shown in this way that there are 252 physically different ¢ functions

belonging to the nds-configuration. Table (1.1) shows the general
scheme involved in drawing up the ML’MS table and lists the number of

possible ¢ functions in each box for the possible values

531 1 3 5

- —2—: 2’; E: _Z) -§, _2'

Table (1.2) is an expansion of the main table, for the ML=0, MS:% box

ML = 6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6 and MS

with its proper ¢ functions. The nd5 configuration is 252-fold

degenerate in the central-field approximation.

The determinantal functions ¢ are eigenfunctions of ‘HO,

equation (1.4). They are not generally eigenfunctions of the free ion
Hamiltonian VF’ equation (1.3). These ¢ functions are known as
"microstates". They are degenerate. The perturbation term ',

equation (1.5), perturbs 'HO and according to degenerate perturbation
theory in principle it mixes the degenerate functions ¢, and removes
their degeneracy.

The total angular momentum and its allowed z-axis components,
must always be constants of the motion for all the electrons in an

isolated atom or ion. However, in equation (1.3) there are no inter-



Table (1.1)

> 3 +1 .1 3 5
L 2 2 2 2 2 2
6 1 1
5 2 2
4 1 5 5 1
3 2 8 8 2
2 3 12 12 3
1 4 14 14 4
0 1 5 16 16 5 1
-1 4 14 14 4
-2 3 12 12 3
-3 2 8 8 2
-4 1 5 5 1
-5 2 2
-6 Lo 1




Table (1.2)

—~ g

¢, (1, 1, 0, -1, -1)

<I>1 (2, 2, 0, -2, -2)

+ 4+

+

t1>4 (2, 1, 0, -1, -2)

+

+ 4
®3 (2,1, 0, -1, -2)

+

+
@6 (2, 1, 0, -1, -2)

+

+

+
o, (2, 1, 0, -1, -2)

> 0: _1; —2)

@10(2, 1, 0, -1, -2)

@9 (2, 1, 0, -1, -2)

+

+

: <I>ll(2, 1, 0, -1, -2)

0]




actions that couple the space and spin coordinates of the electrons, so
it follows that eigenfunctions of VF can be obtained which are simultane-
ous eigenfunctions of the total orbital angular momentum, and the total
spin angular momentum of the electrons, and of their allowed z-axis
components. From the quantum mechanics of angular momentum and its
operators, the total orbital and spin angular momenta can be defined by
guantum numbers L and S, and their z-axis components by the quantum
numbers ML and Ms respectively. The total orbital and spin angular
momenta are VY L(L + 1) £ and Vv S(S + 1) +H respectively, Their
corresponding z-axis components are given by ML‘h and Ms'h. The total
orbital angular momentum of the electron distribution is similarly defined
by a total angular momentum quantum number J, and is given by
VI3 + 1) h.

The eigenvalues. of VF’ equation (1.3), i.e. the energy
levels, or terms, for the free ion can thence be denoted by specifying

the term symbol 25+1

LJ, where (25+1) is the spin multiplicity, and when
L=0;1;2;3;4;5;6;..... the L quantum number is denoted by S;P;D;F;G;
H;I..... , respectively. The degeneracy of the term is (2L+1)(2S+1),
i.e. each value of ML, where ML = L,(L-1),..... , or L, occurs (2S+1)

times and each wvalue of MS, where MS = 5,S-1,..... , or =S, occurs

10

(2L+1) times in the term. For example, a 4G term is 36~fold degenerate.

It has already been pointed out that for the nds—configuration,

there are 252 "microstates", eigenfunctions, &, of ‘f-(o. It therefore

follows that there are 252 eigenstates of VF for the nd5—ions. These

are substates of all possible terms QSHLJ for the ndS—ions, and it is
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important at this point to determine which linear combination of the
"microstates", ¢, correspond to the eigenfunctions of the substates
labelled by the possible ML’MS quantum numbers of each of the terms in
25+1 5 . . c
the term symbol L. It turns out that the nd -configuration gives
rise to l6-terms whose L and S values and term symbols are listed in

Table (1.3). The number of "microstates" that contribute to each of

these terms are also listed in this table.

1.2.b THE EIGENFUNCTIONS OF V_: THE TERM WAVEFUNCTIONS

In equation (1.3) the operators L, S, LZ = Z(',Qi)z and
~ i
SZ = Z(§i)z, all commute with VF and with each other. Eigenfunctions
i
Y of the wave-equation (1.2) can therefore be found which are simul-

2,3,1 These functions are

taneous eigenfunctions of these operators.
denoted by ‘{’(L,ML,S,MS) and from angular momentum theory, the

following algebraic relationships now follow:

~2 B 2
L® ¥(L, M_, S, M) = L(L+1) H° v, M, S, M)

L =0,1,2,3,4,..... (1.14)
L, ¥(L, M, S, M) = MLt W(L, M_, S, M)

M. =L,(L-1),..... , or -L (1.15)

L

"2
S°¥(L, M, S, M) = 5(S+D) he gL, M, S, M)

S

S =0,51,2,2,2,3,..... (1.16)



Table (1.3)

Number of microstates, @

S Term
= (2L +1)(2S8 + 1)

5/2 bg 6
3/2 g 36
3/2 4y 28
3/2 5)) 20
3/2 p 12
1/2 °r 26
1/2 °y 22
172 | 2xG 2x18
1/2 | 2x°F 2x14
12 | 3x°D 3x10
1/2 %p 6
1/2 25 2

Total = 252

12
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S, ¥(L, M_, S, M_) = Msh Y(L, M, S, M)

S
Mg =S, (5-1),..... , or -S (1.17)
~N "N
(L;ij) ‘P(L,ML,S,MS)=‘E v (L.tML+1)(1;ML7 ¥(L,M_*1,5,M,) (1.18)
A A
(s}g;sy) W(L,ML,S,MS)=hﬂers+1)(5+Ms) ¥(L,M_,S,M_t1) (1.19)

It should be noted that if a function ‘P(L,ML,S,MS) is known
then all other functions \b(L,M’L,S,M'S) with M'L=L,(L—l), ..... , or -L
and M’S=S,(S—1), ..... , or =S, can be determined by repeated application
of the shift operator relationships in equations (1.18) and (1.19).7

In general, the term eigenfunctions ‘P(L,ML,S,MS) are linear
combinations of "microstates" ¢, with the same ML and MS values. In
general, the "microstates", &, are not term eigenfunctions, and it is
only when one "microstate", ¢, is in a given box in Table (1.1) that
® "microstate" is an acceptable term wavefunction. Thus, Table (1.1)

+ 4+ o+ 0+

+
shows that the function ¢(2,1,0,~-1,-2) is a term eigenfunction with

ML = 0, MS = —g—, belonging to the 6S term.

and therefore, the antisymmetrized product functions ¢ of the "micro-

states” safisfy the relationships



(LX iiLy) ‘P(mz M e ;my ,m_ )

1 1 N N
]/
= ‘hi:zl (liimziﬂ)(%i:mzi) @(mg’l,msl,....(mziil),msl, mRN,mSN)
and (1.20)
~ ~
(S *1i Sy) @(mgl,m l, ..... ,mZN,mSN)
N
:hjle‘(/%imsi)(%lmsi) ®(m£1,msl;....;mzi,(msitl);....;mZN,mSN)
(1.21)

A

The ¢ functions are eigenfunctions of LZ and SZ with sharply

defined eigenvalues h ML = h(m21+ m22+ ..... +m2N) and

'h MS = ‘h(ms + m ) for these operators.

1 2 N
The most useful proc:edure8 for determining the term eigen-

functions ¥ (L,ML,S,MS) is as follows:

1) The functions W(L,ML,S,MS) are represented by linear combinat-
ions of the ¢ functions in the appropriate ML’ MS box in Tables
(1.1) and (1.2).

2) ~If a function ‘P(L,ML,S,MS) is known, then all the other functions

25+1

l[’(L,M‘L,S,M'S) that belong to the same term L are generated

by repeated application of the shift relationships given in equations

(1.18)-(1.21).
3) The functions ‘P(L,ML,S,MS) are orthogonal and they are now
normalized, i.e.

]
< ‘P(L,ML,S,MS) | Y(LLM' LS M) > =8 $ .8

. .6
L,L' ML,M'L s,s' MS,M'S
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For example, as already explained, the "microstate"

+ -+ + 4
9(2,2,1,0,-1) is the only "microstate" in its box in Table (1.1). It

is therefore an eigenfunction ‘P(L,ML,S,MS) for which ML = 4, and

MS = % The 4G-term for which L. = 4, S = % generates a substate for
which ML = 4 and MS = 1;’— It therefore follows, from Table (1.1) that

this "microstate® is an eigenfunction of VF and
33 + - + + +
‘1’(4,4,2,7) = 9(2,2,1,0,-1) (1.22)

The other eigenfunctions belonging to the 4G—term, i.e. the other

-31.1.3
- 212: 2) 2;

3
L’2’

35-states in all can be generated with the aid of the lowering operators

Y(4,M MS) functions where ML =3,2,1,0,-1,-2,-3 and MS

(LX -1 Ly) and (SX - i Sy)' - For example, application of the first of
these to both sides of equation (1.22) gives

b A4-4+1) (4+4) ¥(4,3,

)

N W
ool w

)

N w

s

c 7 3
(LX i Ly) ‘9(4,4,2,

2 /Th 9(4,3,% ) (1.23)

oW

and
+ -+ 4+ o+

A ~ + -+ + 4+
(Lx-i Ly) ®(2,2,1,0,-1) =[/2-2+1)(2+2) ®(1,2,1,0,-1)

+ - + + +

+ A 2-2+1)(2+2) ©(2,1,1,0,-1)

+

+ - o+ o+
+ /(1-1+41)(1+1) ©(2,2,0,0,-1)

+ - + +
+ /(0-0+1)(0+0) 9(2,2,1,-1,-1)

+ A1-1+1) (1+0) @(5,5,1,5,—5)]11 (1.24)
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For the same reasons that lead to the Pauli Exclusion Principle,
the first, the third and the fourth terms of the right hand side of

equation (1.24) are zero, therefore

~ ~ + - + + + + - + + + + - + +
(L -i Ly) ©(2,2,1,0,-1) =h(26(2,1,1,0,-1) + ¢(2,2,1,0,-2)]
and it now follows that

+ - + + + 1 + -+ + 4+
@(2;1:1;01-1) + 2 _ ®(2:2)1107’_2) (1-25)

v(4,3, ,%) - 1
N2 V2

[\NSJ*Y)

%’%) associated with the 4G—'cerrn has

been derived, and shown to be one of the linear combinations of the two

i.e. a second eigenfunction ¥(4,3,

"microstates" belonging to the box in Table (1.1) for which Mj__ = 3,

M_ = % The complete list of 36-states of the 4G-term can be derived

S
in a similar way, and similar arguments eventually lead to a list of all

possible eigenfunctions of the terms derived from the nds—configuration.

For example, some of the eigenfunctions of VF for which
ML =0, MS = %, in terms of the determinental "microstates" ¢ for the

nds—conﬁguration are given below. These functions are taken from

reference 2, page 335.
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51

6
2,5 0°8]

¥(0,0

_ 3 a d —d —d B - - _ _
= (10) * (-9370 =00 =00 =040, =070,

¥(4,0,1,916)

-1
- 2 - - - - -
= (210) (3(I>3+3<1> +3¢1>5+3<I> 2®7+8<1> 70 2‘1’10 2@11 7@12)

4 6 8 9

‘¥(3,0,1,%)[4F]

1
_ -z -6 - _ -
= (30) (<I>3 <I>4 3<I>5+3<I>6 <1>9+2¢>10 2®1l+®12)
Slater gives a complete list of the eigenfunctions VF of the form
‘P(L,O,S,%) for each of the terms of the nd5—configuration.2 The other
eigenfunctions can be generated from these by using the shift operators

as described above.

1.2.¢ INTERELECTRONIC REPULSIONS AND TERM ENERGIES

The term of lowest energy for any electronic configuration can
always be determined by applying Hund's rules. Accordingly, the 6S—
term is the ground term of the nd5 configuration. In order to find the
energies of the other terms, however, it is necessary to go back to
equations (1.3) and (1.5) and consider the effects of the perturbation

! . . 0 . .
term H{ on the degenerate eigenfunctions of H°. According to time-
independent degenerate perturbation theory, 'H' formally mixes together

all of the 252 eigenfunctions of ‘HO and perturbs their energies by
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AE. In applying perturbation theory either the @1,@2. . ..,@252 or
l1’1(L,ML,S,MS), \FZ(L,ML,S,MS), ..... ,‘PZSZ(L,ML,S,MS) bases can be

used, and no matter which is used a 252 x 252 secular determinant

Hyp -8E  Hyp ==-mmmm oo H,252

Hyp Hy "BE-==-==-~--"H; 55,

! N

i L N

1 i N =0
1 ! >

] I \\

| { ~

) [l AN

) ! AN

' | AN

Hoso 1 Hygp 777777777 Hysp 252 TAE

(1.26)

is obtained. If one begins with the & bases then the matrix elements
1
H, are defined by the integrals Hy; = < @imi 2, >. If the
- . . — ‘
‘%(L,ML,S,MS) basis is used then Hij =< ‘Pi|H| ‘{’]. >.
In principal the determinantal equation (1.26) can be expanded

in the polynomial form

(AE)ZSZ—(H11+H y (bE)Pleei il B

22" "'+H252,252 11 22 "H252,252):°

1.27)

and the 252 roots, AE, extracted by standard methods. This would
result in 252 x 252 = 63504 matrix elements, Hij being calculated, but
the work involved can be considerably reduced by using the

‘V(L,ML,S,MS) functions and making use of the so-called "diagonal-sum

Jrule".‘]"5 Since ﬂ' commutes with LZ, SZ, Lz and SZ, it follows that

the secular determinant (1.26) will factorize into a number of smaller

determinants, one for each possible pair of wvalues ML’ M , and for each

S



.
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r
of these AE, + AE_+....¥AE = Y __H.+.... . Hence, the sum of the
—_— 1 2 r 1=17i
roots, AE, for those terms that contribute to each of these smaller
T
sub-determinants is just £ H...
i=1 H

This diagonal-sum rule is important because it follows from
it that, the sum of the Hii for all the functions ¥ (or &) that contribute
to a given box of the ML’ MS table, for example Tables (1.1) and (1.2)
for the n‘d5—configuration, gives the sum of the energies of the terms
that contribute to that ML’ Ms box. Subtracting similar sums for
suitable adjacent boxes then gives the energy of any term that occurs
only once in the configuration. However, if a term appears more than
once in the configuration, for example the 2G, 2F and 2D terms of the

nds—configuration, then some of the off-diagonal elements Hij will need

to be determined and a secular determinant will then have to be solved.9

To evaluate the matrix element Hij’ it is important to

remember that the ‘P(L,ML,S,MS) functions are linear combinations of

_ . _ (r) (r) (r) .
the Slater-determinants @r = @r[al ay Th.e.enay 1, the a, being
symbols for the four quantum numbers ni’Ri’mSL ;m_ equation (1.11)
i i
i.e.
q’i = Ci1¢1 + Ci2®2+y°' s e ,+C,1r®r+,..c .«
and
‘l’j = leq)l + cj2<I>2+, ..... ,+cjs¢>s+, .....

!
so that an integral < ‘{’i INI ‘Pj > is made up additively of sub-integrals

of the form

\ ‘
h o=<e [Hl e > (1.28a)



20

The perturbation operator,'H' , equation (1.5) may be recast to give

N
jzl %
4

(1.28b)

nes12

1 @ i=1,
1

where Ui is the one-electron operator

_ 2
Ui = —(Ze /ri) + eV(ri)
and
Qij is the two-electron operator,
_ 2
Qij = e /rl]
The integral hrs can itself be expressed in terms of integrals
involving the one-electron functions \pa , equation (1.7). The most

i
general form of the integral involving the two-electron operator%
1
having the form V(a,,a.,a_,a ) where
1 P aq

V(a.,a.,a ,a
(1 1P q)

"
A
o
W

|
o
)
v

(1.29)

»
w
~
)
e
o
s
A
=
5
>
5
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with
3 2m
k o4 2T *
¢ (Rumy ikim )=Gag) fo g Yy o (B0 Yy o (8,9) x
i j i’ L. L.
i i j
x Y, (6, ¢)sinbdod¢ (1.30a)
.,m
TR,
]
and
k
R (n.,8.;n.,%.:n ,% ;n ,2 )
1 3 1} P P 49 q
2 0 * rl<< 2.2
- e jo -{o Rn.,l.(ri)Rn.,SL.(rj) k+1 Rn s & (ri)Rn » & (rj)r.lr]. dridrj
11 1] ry P q q
(1.30b)
where Y,Q m  are normalized spherical harmonics, Rn l(r) are the radi al

2, 3
parts of the one-electron functions wn’z'mg’ms and r< and r> are,
respectively, the smaller and the larger of r, and rj.

When p=i and gq=j, the general radi al integral defined in
(1.30b) become identical with the Slater-Condon parameters, Fk, that

are encountered in the 1iterature.3’4’5

Rk(n.,IL.;n.,R.;n.,Q,.;n.,IL.) = Fk(n.,i?,.;n.,ﬂ,.) (1.31)
RS A RN R SRS St S R S

Other, more useful forms of radial integralsof this kind, are encountered
in the literature: for example, the Slater-Condon Parameters, Fk.
When Q,i=2,j=2, the relationships between the two sets of parameters are:

1 2 1 4
5 5 = F (1.32)

~O|
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In the ligand field calculations it is customary to use the so-called
Racah parameters10 A, B and C which are defined through the relation-

ships:
A = FO—49F4, B = F2—5F4, C = 3‘»5F4 (1.33)

The radial integrals (1.30b) are most commonly encountered in the
literature in the form of the Slater-Condon parameters Fk and the Racah
parameters A, B and C: these are all positive.

The Racah parameters are slightly more useful because it turns
out that if they are used, then the separation between the terms of the
same multiplicity within the configuration involve only the parameter B:
separations between terms of different multiplicities, however, involve
both B and C. If Slater-Condon parameters are used, then the
separation between the terms, even with the same multiplicity, in

general are functions of both F2 and F4.

Systematic evaluation of these one-electron repulsive integrals,
use of the "diagonal-sum_ rule", and use of relationships developed by
Racah4’10 connecting term energies of the nds—configuration with term
energies of the ndz—convfiguration (cf. appendix I), eventually lead to
the theoretical energies for the terms of the nd5-configuration. These
are listed in Table (1.4),3’4 in terms of both the Slater-Condon and

the Racah forms of the various electronic repulsion parameters.



Table (1.4)

Energies

Term Racah parameters(4) Slater Condon parameters(g)
6

S 10A - 35B L0F - 35F ,- 315F
te 10A - 25B + 5C 10F ,-25F - 190F
e 10A - 13B + 7C 10F -13F ,- 180F
4y 10A - 18B + 5C 10F - 18F ,-225F ,
4p 10A - 28B + 7C 10F - 28F ,- 105F ,
21 10A - 24B + 8C 10F - 24F - 90F
n 10A - 22B + 10C 10F -22F - 30F
%G 10A - 13B + 8C 10F - 13F ,- 145F
2a 10A + 3B + 10C 10F - 3F - 155F
2

F 10A - 9B + 8C 10F -25F - 15F,
2 10A - 25B + 10C 10F - 9F - 165F
’p 10A - 4B + 10C 10F - 4F ,-120F

2.t

D', 10A - 38 + 11C 10F - 3F - 90F

. 1 1

+ 3(57B% + 2BC + C%)*? t(513F§-4500F2F4+20,700F2)"‘

%p 10A + 20B + 10C 10F +20F - 240F
2

s 10A - 3B + 8C 10F - 3F - 195F
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5

1.2.d TERM ENERGIES FOR TEE 4d” CONFIGURATION CF THE

3+I

ISOLATED Ru ON

Theoretical expressions similar to those listed in Table (1.4)
can be derived for other ndN configurations, and experimental values
for the Racah and Slater-Condon parameters can be obtained by equating
differences in such tables with absorption and/or emission spectral
da’ca.11 Experimentally determined semi-empirical B and C/B values for

1,4

Ru, Ru+, Ru2+ are listed in Table (1.5). Experimental parameters

for Ru3+ do not seem to be available in the literature. However,

theoretical values of Fk and of the 4G and 4P term energies of the 4d5

configuration of Ru3+ have been listed by Fraga, Karwowski and
Saxena.12 Conversion of these to Fk and then to A, B and C, using
equations (1.32) and (1.33) gives the parameters listed for Ru3+ in

Table (1.5)
Table (1.5)
atom/ion ] B (cm_l) C/B
Ru 600 5.4
Ru’ 670 3.5
Ru’? 620 (474)% 6.5 (3.8)%
*
Ru? (929.21) 12 (4.03)12

* - -
Theoretical values'?: A=135254.4 cm ) and C=3744.9 cm °.
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Combining the data for Ru3+ in Table (1.5) with the theoreti-
cal expressions listed in Table (1.4) leads to the free ion term energies,
relative to the 6S term, for the 4d5 configuration of Ru3+ listed in

Table (1.6) and shown in Figure (1.1).

Figure (1.2) shows in more general form, how the energy
level diagram for an isolated nds—conﬁguration changes as the ratio of
(B/C) is changed. For Ru3+ (B/C) = 0.248, and it should be noted
that the energies of the 4F, ZD'_, ZF' , 2G and 2H terms are very close

together for this ratio.

1.3 SPIN-ORBIT COUPLING IN FREE IONS

In order to understand the magnetic properties of free ions,
or for that matter of ions in chemically interesting systems, it is
necessary to consider the effects of spin-orbit coupling on the eigen-
functions and eigenvalues of the free ions or of the ion in a ligand
field. Both spin and orbital angular momenta contribute to the magnetic
dipole of the electron. Furthermore, the spin and orbital magnetic
moments are coupled together, the interaction being known as, "spin-
orbit coupling", and it changes the energy of the ion. Spin-orbit
interaction energies vary between 100-5000 cm—1 in the transition series
of elements.

Classically, the energy associated with spin-orbit coupling is
proportional to the orbital angular momentum vector, spin angular
momentum vector and the cosine of the angle between these two vectors,
i.e. the contribution to the electronic Hamiltonian arising from spin-

orbit coupling can be written in the form



Table (1.6)

Term Energy (cm —l)

b5 0

e 28016. 6
g 46657.0
D 34521.1
% 32718.8
21 40180.5
’H 49528. 8
°c 50401. 9
el 72759.1
°p 54118. 8
2p 46741.1
°p 66254. 7
D', 96064. 4
°p 45793. 2
’p 88555, 8
%3 59694. 1
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(10) 2D‘
+
(6) 2,
(18) 2Gl
(10) 2D
(2) 2
(14) 2p
2
(22) (18) 28
(14)
(28) f\\jﬁ‘
(10) \ 2F
(26) op!
I
(20) 4p
(12)
(36) 4,
(6) 6

-1 +
The term energies in c¢m of Ru3 ion, 44
configuration, relative to 6S assuming B/C = 0.2481.
Numbers between parentheses represent number of

®(micro states) in each term
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*}(SO = ¢z(r) %.s (1.34)

Relativistic quantum mechanics applied to an electron moving in a central
' field, the electrostatic potential being V(r), shows that the one electron

spin-orbit coupling z(r) is given by

L(r) =——2 123V(r) (1.35)
22 r
2m ¢ or
where c¢ is the velocity of light. The direct product of %.s is
£.s = & s + %4 s + & s (1.36)
z 2z X X vy -
_ 1 1
= Q’ZSZ + E 2,+S_ + 5 2_S+ (137)

When more than one electron is present, it is usual to neglect the inter-
action of the spins with orbitals other than their own, this is a valid
approximation as long as the central field is stronger than the inter-

electronic interactions, and equation (1.34) becomes

Heo = T2 iys (1.38)

1

This is often recast in the form

Ho = ALS (1.39)

where L and S are the operators for the total electronic orbital and the

total electronic spin angular momenta respectively.
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The total Hamiltonian at this stage, then becomes

0
H-H +H, (1.40)

where, from equations (1.4) and (1.5)

I§ é + Iil eV (r.) (1.41)
i Ty il !

Exact solutions for the eigenfunctions and the eigenvalues of
the Hamiltonian of (1.40) cannot be given and so usually the spin-orbit
coupling -HSO is treated as a perturbation of the unperturbed Hamiltonian
of (1.41). This is a reasonable approximation even in complexes of the
second and third transition metal-ion series. The solutions for the
unperturbed system (1.41) are those described in section 1.2 and if the
free ion basis function, (L,ML,S,MS)—scheme is used then the spin-orbit

coupling matrix elements ESO become
- ’ t 1 1
Ego < ¥(L,M,,8,My) |HSO\ ¥YU(L,M! LS, ML) D o (1.42)
and inserting equation (1.39), this gives
Ego = A < ¥(LM ,S5,M) |L.S| YI(L,M LS, M) D (1.43)
The one-electron spin-orbit coupling parameter f(r) defined

in equation (1.35) depends only on the radial distribution function of

the electron. However, when the spin-orbit coupling constant A,
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equation (1.43), for the many electron system is eva.luated5 this turns

out to depend on the two quantum numbers L and S and is found to be

A o= g, /2S) (1.44)
where
£, K2 g RS, or) % dr (1.45)
Ed 0 I’

the positive sign is used for a less than half-full shell and the negative
sign is used for a more than half-full shell. When the shell is half-full,
for example in high spin nd5 ions, L = 0 and therefore A = 0 for the
ground states.

Spin-orbit coupling parameters estimated from electronic wave
functions are very sensitive to the precise details of the wave functions
that are used and need to be treated with caution. Thus, for example,
the one electron spin-orbit coupling parameter gn,Q, for Ru3+ has been
estimated by various authors to be 1500 cm—l,7 1250 cm—l,l and 1180
cm—l 13 respectively.

For a given LS-term the matrix elements (1.38) are proport-

ional to the matrix elements L.S. It therefore follows that the matrix

elements (1.43) differ from zero only if

M + M = M + M =M (1.46)

2 &2

Since the Hamiltonian operator commutes with L™, S°, J2

and J_ it
z
follows that the corresponding quantum numbers can be chosen to

characterize the states which can, now, be designated in the form
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(L,S,J,MJ) .  Furthermore,

J2 = (L +S)2
therefore
L.S = %(JZ—LZ—SZ) (1.47)

and on neglecting the off-diagonal terms, the energy of a state

(L,S,J,MJ) is now given by

E = E(L,S) +5 ALJ(J+1)-L(L+1)-S(5+1)] (1.48)
The energy difference between similar levels J and J-1 is

AE = E(L,S,J,MJ) —E(L,S,J—l,MJ) = AJ (1.49)

and this is the so-called Landé interval rule.

Each LS-term in Figure (1.1) is split by spin-orbit coupling
into states which can be labelled by the quantum number J, where J
ranges from ]L+S[, |L+S-1], ..... , [L-S[, and it is easy to show that
(2S+1)(2L+1) states originate from a given LS-term. Table (1.7) shows
the effects of spin-orbit coupling on thesextet, quartet, and 2I terms
of the nd5 configuration.

Since L = 0 in the 6S-term, it follows that this term does not
split under spin-orbit coupling to any order. However, off-diagonal
matrix elements of the spin-orbit coupling operator can mix excited levels

of the nd5 configuration into this ground state and can modify its eigen-



Table (1.7)
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Term Degeneracy J Number of states Energy of state
at J including sping
(2S+1)(2L+1) level = (2J+1) orbit coupling
bs 6 5/2 6 E(%s) + 0
4 4
G 36 11/2 12 E(YG) + 62
9/2 10 (g + %x
7/2 8 E(te) - an
5/2 6 e(fq) - L5}
4p 28 9/2 10 ECYF) + g)\
712 E(YF) + 0
4 7
5/2 ECF) - I
3/2 4 ECYr) - 6
4 4
D 20 7/2 8 E(*D) + 3
5/2 6 E(*D) - 1
3/2 4 E(‘D) - 32
1/2 2 E(*D) - 6
4p 12 5/2 6 E(%p) + %x
3/2 4 E(lp) - )
1/2 2 E(%p) - gx
2 2
I 26 13/2 14 E(%T) + 3
11/2 12 E(%) - %A

¥

Energies in cm_l, and are derived from equation (1.48).

Energies

for free ion terms E(L,S) can be obtained from Table (1.4).
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function and eigenvalue.4 In the presence of spin-orbit coupling,
therefore, the ground state is not exactly 6S but contains admixture of

some nd5 excited level i.e.

v o= ¢ v(s) + 1c X, (1.50)
o ; 10
where
6 _ 55 6
1y( S) - \P(O’E,Z’MJ)[ S]:

S and ¢, are mixing coefficients and Xi are wave functions for the
excited level i.

It turns out that the 4P5/2 level is the only level of the nd5
configuration that is mixed in with 6S by spin-orbit coupling, and full
calculations4 show that in the presence of spin-orbit coupling the eigen-

function of the lowest level of nd5 configuration is given approximately by

v o= vds) - =5 w1355 %) (1.51)
AE("S-"P)
where
355, .4 _
q/(]-)—z_tZ:'Z)[ P] - Xi

and from Table (1.4)

rE(bs-%p) = 7B + Q)
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APPENDIX I

SEXTET AND QUARTET TERM ENERGIES OF THE

nd> CONFIGURATION?s10

The interelectronic repulsion parameters, F, or A, B and C

k

can be related to the Coulomb integral, J, and the exchange integral, K,

between the d-electrons where

t

I, ) X
i 17] i
and (I.1)

K(wa.’wa.) < 11)a.wa. |VI lpa

LI 1]

<vou |V wai_wa >

t

.wa. %
j i
The resultant relations are shown, for the nd2 configuration; in Table

(I.1).

Most of the term energies of the nd5 configuration, including
the sextet and the quartet terms, can be determined by using the
"diagonal-sum rule" procedure outlined in section (1.2.c). The energies
of the sextet and quartet terms can also be determined by means of the
following general procedure established by Racah,q’10 in which the
energies of the terms with S = 2 - 1 and S = £ + 1 in the configuration

2 2
28+1 . 2 .
(nQ) are related to the energies of (n®)”, especially when £ = 2,

According to this argument, terms with S = 5/2 and S = 3/2 in the nd5

configuration are related to the energies of terms arising from the nd2

configuration. The energies of the terms, (lG,3F,lD,3P and 1S) that



Table (I.1)
mg’values J K
2 2 A + 4B + 2C A + 4B + 2C
*+ 2 F2 A + 4B + 2C 2C
2 +1 A - 2B C 6B + C
*2 F1 A-2B +C c
+ 2 0 A -4B +C 4B + C
+ 1 +1 A+ B 2C A +B + 2C
1 +1 A+ B +2C 6B + 2C
*1 0 A +2B +C B +C
0 0 A + 4B + 3C A + 4B + 3C

36
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arise from the nd2 configuration are first worked out, using the
"diagonal-sum rule" procedure, and then the sextet and quartet energies
belonging to the nd5 configuration can be determined in the following

manner. From the ML’ Ms table for the nd2 configuraﬁ:ion,3’7 and from

Table (I.1), one obtains

£(lG) = E(2,2) = 3(2,2) = A +4B +2C
eCF) + B(fe) = E(2,1) +E(21)

= 23(2,1)

= A-4B +2C

1 3 1 5 - B M
E('D) + E(’F) + E("G) = E(2,0) + E(2,0) + E(1,1)

1§

2J3(2,0) + J(1,1)

3A - 7B + 4C

3 1 3 1 r * vy e r
EC°p) + E('D) + ECF) + E(YG) = E(2,-1) + E(2,-1) + E(1,0) + E(1,0)
= 2J(2,-1) + 23(1,0)
= 4A + 4C
e(ls) + ECp) + E(ID) + ECCR) + E(fQ) =

+ - -+ + - -+ + -
E(2,-2) + E(2,-2) + E(1,-1) + E(1,-1) + E(0,0)

2J(2,-2)+23(1,~-1) + J(0,0)

5A + 14B + 11C
From these equations, one deduces immediately the first-order electro-

static energies for terms that arise from nd® configuration. Thus,



E('s)

1]
>
+

14B + 7C

E(lD) = A - 3B +2C

E(lG) = A+ 4B + 2C (1.2)
3o,

E(CP) = A + 17TB
3., _

EC3F) = A - 8B

4 4

The energies of the five terms (65, P,4D, F and 4G) that
arise from the nd5 configuration are then related to the corresponding
energies, listed in equations (I.2), with the same L value. In terms
of the Racah A, B and C parameters, these turn out to be

d5, 6 or 4

E( L) = 1A - 21B + 7C - E(d%, 25*1) (1.3)

Equation (I.3) then gives the energies of the sextet and quartet terms

of nd5 configuration, thus

£(®s) = 10a - 35B

E(‘P) = 10A - 288 + 7C

E(*D) = 10A - 18B + 5C (1.4)
E(F) = 10A - 13B + 7C

E(%G) = 10A - 25B + 5C

38



- CHAPTER TWO -

THE EFFECTS OF CRYSTAL FIELDS ON THE

nd® CONFIGURATION
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In crystal field theory, the central metal ion of an inorganic
complex is subjected to an electric field originating from the surrounding
ions, atoms, or molecules, i.e. the ligands, and this crystal field
destroys the spherical symmetry of the free atom. Furthermore, in
crystal field theory, electrons on the ligand are not allowed to overlap
and mix with the electrons of the metal ion, and ligand-ligand and next

neighbouring interactions are neglected. 1-4,7,9,14-18

2.1 THE ELECTROSTATIC POTENTIAL GENERATED BY LIGANDS

If the distribution of charge density of all the ligands in a
given complex is given by p(ﬁ) z p(x',y',2z'") = p(R,6',¢"'), where R
is the vector joining the central metal ion to a point whose coordinates

are x',y',z' or R,0",¢', as shown in Figure (2.1), then

p(xl,yl’zl) = Q(R,e',(b')

&

Wy

~

P(X Y »2 ) = p(r,v,d))
r

Figure (2.1)

the total charge on the ligand produces at the reference point

p(;) = p(x,y,z) = p(r,6,¢), an electrostatic potential given by

v () = [ AR g (2.1)

R-z| R

where the integration is taken over the entire space covered by the

ligand charge distribution. Equation (2.1) can be expanded out in



terms of an infinite series of spherical harmonics

-> +k k
V(r) =V (r,6,¢) = Z Z Ap o Yy 408,90 (2.2)
k=0 o=rk
where > Y* -
Ao ™ Tl = k}i?l( aa dt (2.3)
, R >

Ak,OL is obviously just a number which is characteristic of the distribut-
ion of charge in the ligand.

Although equation (2.2) is an infinite series in fact only a
very few terms are important in crystal field theory of transition-metal
ion complexes, and it is worthwhile to bear the following points in mind:
(a) the electrostatic potential function V (;) must possess the same
symmetry properties as the ligand charge distribution p (l;), (b) it can
be shown that, terms in which k > 4, and terms for which k is odd do
not affect the energy of d-electrons. It therefore follows that when
considering crystal field theory of transition metal complexes that one

only needs to use the abbreviated form

+ 0 +2 2 +4 4
V (r) = AO’Or YO,O +O£—2A2,ar YZ,O‘+ 0%_4;&4,05 Y4’OL (2.4)

for the electrostatic ligand potential when considering crystal field
contributions to the electronic energies. However, it should always be
remembered that (2.4) does not describe the complete potential but only
that part which plays a role in crystal field theory of d-electrons.

Equation (2.4) is valid for all d-electron systems and it is independent

40



41

of the symmetry properties of the ligand system which generates the
potential.  Symmetry considerations, in general, lead to further simpli-
fications of the expression for the ligand potential function, as will be
seen later on in this chapter.

In the ionic crystal field theory, the charge distributions of
individual ligands are approximated by point charges or by point dipoles.
With such an approximation the integral (2.3) becomes a sum over the

ligand charges and is given by

*
—A! 1 !
G Yy ol 05 8)

1
Rk+1

A(]'_.) _ 41 z

k,oo ~ 2k+1 (2.5)

where —qa is the charge on ligand i, and superscript (L) indicates that
the ligand acts as a point charge, not as a point dipole. If all ligands
possess the same charge -q' and are at the same distance R from the

nucleus of the central ion then

(LY _ _ 4w q' * Vo
Mo T T &M fkel g Vi, o8 8 (2.6)
(L) . (L) * .
i.e. Ak,a = ay ;Yk,a (ei,q>i) (2.7a)
where 2 L) 4w q' (2.70)

k T 2k+1 Rk+1
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2.1.a ELECTROSTATIC INTERACTIONS IN TRANSITION METAL-ION

COMPLEXES

Let a transition metal-ion, at the origin of a coordinate system

be surrounded by six point charges, -q', at the vertices of a regular

octahedron and lying along the coordinate axes at a distance R from the

central ion, as shown in Figure (2.2).

L2z
p(R)f
1¢ d
>
'p(r)
- > : 4
R by |
e i
{
l
z : g——y
]
) I
|
3
* 2é
Figure (2.2)

A transition metal ion electron, charge ~e, at the point p at a distance
d from -q' interacts with the potential generated by -q' and its potential

energy, VxSL’ is altered by an amount

Veg = q'e/d (2.8)

and when the interactions with all six ligand charges are taken into

account, it is quite easy to show that the potential energy of this
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electron is altered by amount

Vicﬂ, = %'—S + D(x4 + y4 + z4 - %r4) (2.9)
1

N 12

1

15,18

when the parameter D is 35q'e/(4R5). Equation (2.9) can also be

recast in terms of spherical harmonics Yk o
3

oct , > 3 21 4 /5
Vv (1‘) = Za. Y + —a, r {Y + "“‘(Y +Y _ )} (210)
x4 S 0 0,0 4/ 4 4,0 147 4,4 " 4,-4

where

- I - 1
ag = 411;('1 and a - 3m g (2.11)

The first terms in equations (2.9) and (2.10) depend only oﬁ
the distance, R, of the ligands from the transition metal ion. They do
not depend on the symmetry properties of the ligand field. However,
the second terms in these equations do depend on, and reflect the
stereochemistry of the six ligands, in this case at the vertices of the
octahedron. It is these last terms in these equations that are respon-
sible for the removal of the electron d-orbital degeneracy. Since the
electron will prefer to avoid regions in space where the electron density
is greatest, the evxtent to which orbital alignments are determined by
these last terms obviously depends upon the number of transition metal

ion electrons present and their correlating interactions with one another.

Expressions for ligand electrostatic contributions to the

potential energy of a transition metal-ion electron, can be derived for

3,4,7

other symmetries, and the results for the most important cases are



given in Table (2.1). It should be noticed that, (i) in each of these
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expressions the first term has a similar form, (ii) the angular dependence

for octahedral, cubic, and tetrahedral complexes is identical, (iii) the

D4h complexes have additional Y2 0 terms, and (iv) the trigonal

2

complexes have additional Y4,i3 terms.

2.2 THE ndY ION IN A CRYSTAL FIELD

If free ion interactions, crystal field interactions, and spin-
orbit interactions are all taken into account then the electronic
Hamiltonian for a system containing N electrons, for example N=5, in

its outermost shell becomes

Ho= M0 L Lot 1 Vo) + ] Voo (2.12)
i=1 i 1-1i#3—1 ij  i=l i=1

Exact eigenfunctions and exact eigenvalues of the Hamiltonian (2.12) can
not be obtained, but an approximate solution can be deduced by means
of appropriate perturbation calculations. Equation (2.12) can be recast

into the form

H=-H,, +H, (2.13)
where
H N T, Ze2
0 = §[-357 -] (2.14)
i=1
and
N N 2 N N
1 e >
H = 37 L =+ ) Vo (r) + Y V_ (i) (2.15)
1 Zim1, 551 Ty a1 2R 35S0
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Eigenfunctions and eigenvalues of ﬂOO have already been considered in
chapter one, where it has been shown that its eigenvalues for an nd
system are EOO

one-electron product functions ¢[(m, ,m_),....,(m, ,m_ )], cf. Tables
21 1 9,5 Sg

(1.1) and (1.2). These 252 ® functions are degenerate, i.e. their

energies Send are identical.

A complete perturbation calculation involving-Hl, can, in
principle, be carried out. However, it is extremely difficult to do and
it is conventional to divide the perturbation calculation into a sequence
of well-defined separate steps in which the expression on the right hand
side of the perturbation operator (2.15) are ordered according to their
magnitudes.

Three different distinguishable cases with regards to the

relative magnitudes of the three terms in (2.15) can be recognised at

this point.

(i) The weak crystal field case, where the d electron-electron repulsion

interactions are strongest, i.e.

2

|('D

>

s

33
2, . Ny
1=]1¢J.J=1 ij

- 12

N
Vg (r) > z Voo ()

(ii) The strong crystal field case, very commonly encountered in
complexes of the second and third transition series, where the crystal

field interactions are strongest, i.e.

N eZ
Loe0
Ligyd=l ]

VSO (1)

12
<

»

b
Hv
v
D] =

I~

o ~12

i
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= 5€nd’ and its eigenfunctions are the 252 anti-symmetrized
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(iii) The strong spin-orbit coupling case, encountered in the complexes

of rare-earth ions, where the spin-orbit interactions are strongest, i.e.

N N 1 N N e2
Vso (1)>§Vx£ (ry) ’2.2 z_.

Lo LA r
1—11#].]—1 ij

e 12

Since this account is concerned with transition metal-ion
complexes, spin-orbit coupling interactions for the moment will be

neglected and the Hamiltonian ﬂ 1 then becomes more manageable for,

ﬂlz

2
(2.16)

[SST]
I~z
~12
'-:,m
+
Il ~12
<
—
2]

->
21, j=1 iz <4

4 ij i
;(ez K lig

If the d electron-electron repulsion interactions and d-electron-

1.
i

ligand interactions are of the same order of magnitude then complete
perturbation analysis involving secular equations that include ﬂ 1 must
be solved, but if one of these contributions dominates then one or other

of the two limiting cases of (i) weak field or (ii) strong field complexes is

encountered.

2.2.a THE WEAK CCTAHEDRAL CRYSTAL FIELD CASE

In the weak crystal field case, ﬁ lig effectively perturbs
Hez' The quantum numbers L and S of the central ion then retain their
validity and the problem then degenerates to deciding how a given LS-

scheme is split by the ligand-field, i.e. the Hamiltonian of equation

(2.12) can be recast into the form

H - ;{ion ¥ f(lig
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where
N tx % Zez 1 N N eZ
Hion = 227 -3 1 = (2.17)
i=1 i i=1.,.j=1 7ij
i#j
= Hoo+ Hy
and the perturbation term
N
_)
.Hng = 121 Vg () (2.18)

The eigenfunctions of .Hion are the (2S+1)(2L+1) free ion eigenfunctions
l1’(L,ML,S,MS) already discussed in section 1.2.c and detailed results
of the nd5 configuration, for example, are listed in Table (1.4).

In principle the crystal field perturbation of -Hlig mixes these
basis functions and the eigenfunctions ofﬂ :.“ion +H . can be

lig

obtained by solving the secular equations (2.19).

[|] = 0 (2.19)

Il <o IH

lig | es % _AEligar,s
where OX is either the basis ‘P(L,ML,S,MS) or some linear combination
of these VY,

The solutions of the secular equations (2.19) can be greatly
simplified by making use of group theoretical arguments, in which the
appropriate irreducible representations of the terms 25 +1L are found and

then linear combinations G)X of the ‘l’(L,ML,S,MS) which transform as

the irreducible representations, i.e. appropriate symmetry adapted

linear combinations of ‘P(L,ML,S,MS) functions, are then used to
calculate the magnitudes of the ligand field splitting. Table (2.2) lists

the symmetry species of the irreducible representations that arise from
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the terms ZS+1L of the configuration nd5 for the point group Oh.

2.2.a.1 ELECTRONIC EIGENFUNCTIONS FOR AN nd5 ION IN A

WEAK CRYSTAL FIELD

The functions ‘F(L,ML,S,MS) have the same transformation

properties as spherical harmonics except for the fact that the

‘P(L,ML,S,MS) functions for an ndN system must always have even parity.

Correct symmetry adapted linear combinations of the functions
‘P(L,ML,S,MS) can, therefore, be taken directly from the symmetry

adapted linear combinations of the spherical harmonics YQ m for the
TR

appropriate point group -~ cf. for example, reference 3, pages 93-95;
reference 4, Table A19; and reference 7, pages 305-309.

The wave function for the ith irreducible representation,

25+1I’i in a weak ligand field with O symmetry, derived from the free ion

terms ZS+1L with an MS value of MS is denotedzo by the symbol

(ZS+11’. |ZS+1

; L,MS). For example, for the nd”’ configuration in a weak

field octahedral complex it can be shown that the wave function of the
6Al irreducible representation is identical with the wave function of the

MS = 5/2 level of the 6S free ion ’ce)z-m,21 i.e.

e(é’Al[és,

N
A
"
e
~~
o

.

o
| ot
.
N o
N

This same wave function can, now, be expanded out in terms of the
corresponding ¢ functions, as outlined in section 1.2.b. Table (2.3)
lists some of the wave functions for the nd5 ion in a weak crystal field

with point group symmetry O.

51
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Similar procedures also enable appropriate wave functions for

the nd5 ion in other weak fields of other symmetries to be derived.

2.2.a.2 THE ENERGY LEVELS OF AN nd5 JON IN A WEAK CRYSTAL FIELD

The energies of the progeny terms in Table (2.2) relative to
the corresponding free ion terms from which they originate can be
determined by standard perturbation procedures in this case. In this,
the crystal field contribution to the Hamiltonian, ﬂlig’ formally mixes
all the eigenfunctions of all the free ion terms, and in principle a very
large perturbation secular determinant has to be solved. However,
this can be considerably simplified when it is realised that there are no
off-diagonal matrix elements connecting symmetry adapted linear combin-

ations of the ‘P(L,ML,S,MS) functions,

M)

0. ZS+1T. lZS +1L,
i i S

which belong to different symmetry species. Furthermore, the crystal
field operator, H lig’ has no effect on spin coordinates. Hence, off-

2S5 +1 IZS +1

diagonal matrix elements connecting Oi( Fl L,MS) functions with

different S or with different Ms values are zero.

It therefore follows that the eigenfunction of the free ion term
6S is also an eigenfunction of the nd5 ion in an octahedral crystal field,
i.e.

1%s,

NIES;]
N’
I
2]
~~
(=
o

5]
NIRE,]

6
0( Alg

+

+ +
= &(2, 1, 0, -1, -2) (2.20)
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and this, for reasons which have just been explained, can not mix with
any other free ion eigenfunction. Hence, the change in energy of this
function when the crystal field interaction is taken into account is given
. oy

l6 5

_ 6 6o 5
S,5) = <o Algl S.5) lﬁ’lig

6 6 6. 5
AEhg( Alg X Algl S,5) > (2.21)
and when equation (2.20) is substituted into this, bearing in mind that,

ﬂlig’ is a2 sum of one-electron operators

5 oct o

it can be shown that

oct ct

6 oct (¢}
( 2 (;)|2>+2<1|VX2(¥)|1>+<0}Vx2(1?) |05

6o 5, _
Algl S,3)=2<2|V
(2.22)
The one-electron integrals can, then, be evaluated by

substitution in the appropriate form (2.10) for the octahedral crystal

field. For example

*
Y, Y., ,sin6d6d¢

oct .» _ 0 ¢ 27
IV (r)]2> = Ag of Io jo Y, 5¥0 0Y2.2

- 4 m o2m,* \/-5‘ .
By, 0F «(0 jo V2,20, 0%/12 (Yq,4*Yy,-4) 13 p5in 8d6d¢

(2.23)
where
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The angular integrals are listed in Table (2.4).7 Using these values

then gives

oct
Ca |V, @) 2> =-a, B A, A +/1—5;(o+0)]
’ % ’ 147

0 1 4 1
0,00 = A4 07
L R T VW

(2.24)

The first term in equation (2.24) is often denoted in the

literature by € It comes from the angular independent part of the

oct
potential energy function Vx!L (;), cf. page 41, and it shifts all of the

progeny terms ZSHI‘i that belong to same 25+1

L free ion term to the
same degree. The second term on the right hand side of equation (2.24),
in the lgterature of octahedral complexes is usually written as 10Dq or

A, where 10Dq is the so-called field-strength parameter. Dq is positive

and is given by

35 q'e 2 A 6
D = T ;qT and q = 105 5 Rnd (r) r dr.

Equation (2.24) can, then, be recast in the form

oct
<2|Vx2 (r) |2> = -eO+Dq (2.25)

It can be similarly shown that the one-electron integrals

oct
x8

oct

> . ’
%2 (r)|0) are given by

<1|VV (¥) |1> and <0|V

<1!V§?(?)]1> =—g. -4Bq and <o]v§§"(¥>;o> =—g, * 6Dgq  (2.26)

0



Table (2.4)7
Values of the integrals

1Yy (0.0 ¥ (8.0) Yy o (8,0)sin0a0d

00 ZMy
k=0 k=2 k=4
2vT (YZ,O,Yk’O,YZ,O) 1 2/5/17 617
2VT (Yz,il,Yk’O,Yz,il) 1 V517 -4/7
2vm (Yz,iz,Yk’O,Yz’iZ) 1 -2v5117 1/7
2V (Yz,iZ,Yk,ﬂ,Yz,;z) 0 0 v70/7
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Substitution of expressions (2.25) and (2.26) into equation
(2.22) gives
(6A |6S é) = 2(-e,+ Dq) + 2(-e,~ 4Dqg) -g, + 6Dg
1g! ©°2 0" -4 0 0

= —580 (2.27)

The effects of the octahedral crystal field on the other free
ion energies of the nd5 configuration are more complicated but can
nevertheless be evaluated without too much difficulty.

In the case of quartet terms the symmetry adapted functions
Oi that are derived from the free ion quartet term, 4L, can be subdivided
. . 4. 4, 3
into four sets of functions, 0O( I’i\ L’E

3

and 6(4Fi|4L,—~2— , which are eigenfunctions of different eigenvalues

4. 4 1 4. 4. 1,

MSB of the operator f; These can not be mixed by the operator 'th .
It therefore follows that the block of the perturbation determinant
originating from a free ion quartet term, 4L, splits into four subdeter-
minants which have identical roots. Accordingly, in deriving crystal
field perturbation energies, it is only necessary to obtain the roots of
one of these subdeterminants.

For example, the octahedral crystal field splits the 4D free
ion term into the progeny terms 4Eg and 4ng. The 5x5 subdetermin-
ant block in this case, then, for symmetry reasons splits into a 2x2
determinant involving the symmetry adapted basis functions @1(4Eg |4D,%) ,
@2‘( 4Eg I4D,—§—) and a 3x3 determinant involving the basis functions
61(4T2g}4D,%), @2(4T2g]4D,%), and 93(4T2g]4D,%). It turns out that,

(i) the diagonal elements in the 2x2 determinant are the same, (ii) the
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diagonal elements in the 3x3 determinant are the same, and (iii) that
all off-diagonal elements in these determinants are zero. Hence, the
crystal field perturbations to the 4Eg and 4'I' energies are

2g

4_ 4 3. 4 4. 3 4. 4, 3
pEg e 0.3 = o e ' H M | o e I'D.D) >

4 4.3 4 4. 3
<0,(°E_|"D, ) H. | 0, Egl D,3) >

lig

AE

4
lig(

4. 3. _ 4. 4. 3 4 44 3
T, 0. = <o, 'Sl e T, 1%

4

4 4.3 4 3
Coyr, I'mp H | og'T, "D >

4 4. 3 4 4.3
<oy*T,,1'D.3) |1’—(th 0,(°T, 'D.3)

By proceeding in this way, it can be shown that an octahedral
crystal field shifts, for example, each of the progeny terms of the nd5
ion by —580. Table (2.5) shows this shift of the progeny terms those
arise from the sextet and quartet free ion terms.

2.2.a2.3 TERM INTERACTIONS IN THE nd5 SYSTEMS PERTURBED

BY AN OCTAHEDRAL CRYSTAL FIELD

The procedures already described are valid for estimating the
energies of the progeny terms in a weak octahedral crystal field, if it
is assumed that there are no interactions between the same progeny
terms which arise from different free ion terms, i.e. interactions between
those terms enclosed in a circle, square or triangle in Table (2.5).
Off-diagonal matrix elements of the crystal field interaction

25+1 25+1

connecting symmetry adapted @i( Fi' L,MS) functions with the



- . Energy in weak
ree Ion Progeny Terms O, field
h
68 6A 10A-35B-5¢
1g 0
4P 10A-28B+7C-5¢

0

10A-18B +5C- 560

10A-13B+7C- 5€0

10A-25B +5C-5€0

61



62

same spin and with the same symmetry properties are different from
zZero. Those progeny terms, which are involved in term interactions,
therefore, can no longer be assigned to only one free ion term belonging
to a particular L value: they belong to all the isolated terms which

give rise to such progenies. Thus, the 4Tzg progenies in an octa-
hedral field are linear combinations of the original 4D, 4F and 4G free
ion terms. Orgel22 and Jorgensen23 have shown that crystal field
mixing of these free ion terms leads to the block shown in (2.28) in

the perturbation secular determinant in this case

el 4F p
e 4G-E 10(v377)Dq 0
4p 10(v377)Dq -k (20/v/7)Dgl= 0 (2.28)
D 0 (20//7)Dq 4p-E

where E leads to three roots, the 4TZg energies in the octahedral
crystal field, and thence to three eigenfunctions for this system.
Similarly, 4Tlg progenies are derived from linear combinations

of the free ion terms 4P,4F, and 4G. These lead to the off-diagonal

matrix elements listed in (2.29), from Table (2.3).
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4 4 i}

<o, ('P) |ﬁlig|e4(c)> = 4 /8 Dq
4 4

<o, (*r) dllﬁg{ 0, (‘o) > =-2 /5 Dq
4 4 _

<o, (°P) I-Hligl 0y (7G) > =-4 v5 Dq

(2.29)

: 4 4 _ -

<0, (°F) |'Hligl 0, ("G) > =-2/5Dq
4 4 _

<o, ('P) |Hlig| 0, (°G) > =-4 Y5 Dq

Cog ) |ﬂhg| o, (%6) > = 2/ Dgq

Although in principle the 4Eg progenies are linear combinat-

4 22,23 it turns out that

ions of the D and 4G free ion terms, in fact
off-diagonal matrix elements of the octahedral crystal field Hamiltonian
are zero in this particular case.

Jorgensenz3 has expressed the matrix elements in (2.28) and
(2.29) in terms of the free ion parameters A, B and C, or FO’ F2 and
F4. However, Slater theoretical free ion energies do not agree very
well with the experimental distribution of the multiplet energies for 4G,

4F, 4

D, and 4P terms of the free ion of most of gaseous nd5 free ions.
For this reason, the experimental energies, known from atomic spectro-
scopy, of the free ions are usually used in these "Orgel determinants"
for ions in weak fields.

Two schematic diagrams for the energy levels available to an
nd5 ion in a weak crystal field are shown in Figures (2.3) and (2.4)
Figure (2.3) shows the effect of a fixed octahedral field on the term

energies, both with and without term interactions being taken into

account. Figure (2.4) shows, the energy level diagram as a function
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of varying ratio of (DQ/B) where DQ = 6v30 Dq, for (C/B) = 5.5 and

B = 660 cm—l, i.e. a diagram appropriate for Mn®".

2.2.b THE STRONG OCTAHEDRAL CRYSTAL-FIELD CASE

In "strong-field" complexes, the d electron-electron inter-
action energy is small compared to the electrostatic interactions between
the transition metal-ion d-electrons and the ligands in the complex, i.e.
N 2

N
Vxﬂ, (?) > Z 2 f-_ )
1 =1 4,151 T

Il 12

i
In such complexes, therefore, the crystal field interaction is considered
to perturb the spherically symmetrized one-electron eigenfunctions
[+2>, 1+1>, [0>, [-1>, |-2> and corresponding eigenvalues of the isolated
transition-metal ion. These perturbed solutions are then themselves
finally perturbed by the d electron-electron interactions.

Calculations show that an octahedral crystal field in this way
separates the d-orbitals into two sets, tZg and eg, which have energies
-560 - 4Dq (or —560 - % A) and -560 + 6Dg (or -SEO + % A), respectively,
so the tZg and eg sets are separated by 10Dg or A. The eigenfunctions

corresponding to these two sets are as follows.z’z”(l’23

‘cZg eigenfunctions

E = 2(l+D+|-1) = B(ya)
iv2

n= Lden-l- = F(xe
2

g = L(l+D-]-2) = Fxy)

iv/2
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eg eigenfunction

o= loy = L(z?-42

V2
1 3 ,.2 2
v o= o=+ - =5 &9 (2.30)
vz /;

)

If a strong field complex contains m electrons in the t, set

of orbital and n electrons in the e set then it is said to have the

strong-field configuration, tr; e”. "As explained earlier each configur-

ation gives rise to a number of terms, which can be denoted by the
strong field term symbol ZS+1I'i in this case, which are eigenfunctions
of the free ion spherically symmetrized interactions and of the crystal
field interactions, but not necessarily of the Hamiltonian which includes
these plus the d electron-electron interactions. The possible strong
field terms that originate from a given configuration can be obtained
from group theoretical argumen‘ts4 by taking direct products of the
symmetry species of e and the symmetry species of trzn' It can be

shown, that the allowed terms for an nd5 ion in a strong field origin-

m
2

It should be noted that the general form of any term function in the

ating from the configuration t e™ are as listed in Table (2.6).3

strong field approximation has the form4

{tg’ (S'T') e (S"T") ST, MO

m

n
5 and e

where the irreducible representation T'' and T'" of the t

electrons respectively are coupled to give an irreducible representation

m

> and

I' for the term and the spin quantum numbers S' and S" of the t



Table (2.6)°
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Strong-field Total sum of
configuration Allowed terms degeneracy
numbers
t ’T, 6
t e ' 2A1+2A2+22E+22T1+4T1+22T2+4T2 60
t e’ ZZA1+4Al+6A1+2A2+4A2+32E+24E
+42T1+4T1+42T2+4T2 120
t2 3 2Al+2A2+22E+22T1+4T1+22T2+4T2 60
t2 e4 2T2 6
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e” electrons couple together to give spin quantum number S. d electron-
electron interactions then perturb these terms and formally mix all of

them together.

2.2.b.1 ELECTRONIC EIGENFUNCTIONS FOR AN nd5 ION IN A

STRONG CRYSTAL FIELD!

Inspection of Table (2.6) shows that the 6A1 term arises only
from configuration tg ez, it therefore follows that: electron-electron
interactions can not mix this term with any of the other (251) terms
allowed for nd5 configuration. It therefore follows that the wave
function corresponding to the 6Alg term of the nd5 ion is an octahedral

crystal field is given by20,25,26

6 L34 2,3 6 5
Alg : itzg ( Azg) e, ( Azg) Alg,E >
- 6 3 2 5 _ + + + + +
S A (g e3> = lenu (2.31)

where bracket [ ] stands for a Slater determinant, £,n,Z,u and Vv are
defined in equations (2.30) and the positive and negative signs refer
to the electronic spin quantum numbers m =+ % and -%—, respectively.

3

. . . . 4
Only the t e configuration gives rise to a A term and
Yy 2g ¢ g g 2¢g

its corresponding wave function is

4 3 ,4 2,3 4 3.- 4 3 2,3
A : , o= ,
2g ]tzg( AZg)eg( Alg) AZg 2) lAzg(t2 eg) 5 >
1 + + + + + + X
=‘/:{[EHCH]+[€HC\)]} (2.32)
2
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The t3 e2 configuration, also, gives rise to 4Alg and furthermore to

2g

4“E terms. Their corresponding wave functions are

4 3 4 2.3 4, 3.4
1 + + + + - + + + - 4
= —={Bgncuvl +Enzuv)
V30

-+ + + +

+ - + + + + + -
2(lEncu vl +[Encu v] o+ [£n§ YD} (2.33)

3 2. .23 15(2) 32 4g(e) 3
4'Eg s 5 CE e cCay ) B | = | (3 eg) 3

>

+ + - + 4+ -+ + + + + - + + 4+
lencuvl-[Enzuvl-1&gncuvll}

+ + + + - + 4+ + - 4+
{Encuv]l-[&ncu v]} (2.34a)
and

2,1 45 (b) 3 (b) 3
eg( Eg) o 5= |E (tzgeg) 50

+ + + * + 4+
{lencul  -T[&ngvll | (2.34b)

It can be shown that one of these 4Eg terms whose energy, relative to

the free ion ground state, is 10B+5C correlates with the free ion level

4G of Table (1.4). For this level o =/$_ and B =/%-. The other

4
E _ term whose relative energy is 17TB+5C, correlates with the free ion

level 4D and in this case of =/% and R=- %
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The other terms listed in Table (2.6) correlate with more than
one strong-field configuration. d electron-electron perturbation inter-
actions mix these terms together, i.e. d electron-electron repulsions

2S +1

cause terms of the same I‘i belonging to different configurations to

mix together leading to the so-called configuration-interactions which

will be considered shortly.

2.2.b.2 TEE ENERGY LEVELS OF AN nd5 ION IN A STRONG

CRYSTAL.FIELD

In the weak-field scheme, section 2.2.a, 4A1g and one of the
4Eg terms are progenies of 4G free ion term, the 4A2g term is a progeny
of the free ion “F and the second 4Eg term is a progeny of 4D. It
turns out that the energies of these terms in a weak crystal field, are

the same as those of the free ion terms from which they arise minus

560, as shown in Figures (2.3) and (2.4). Thus

./,

4 _podn(a)y o4y _ _ -
E( Alg) = E( Eg ) =E("G) - 5g; = 10A-25B+5C-5¢,
4 _ 4 L
E( AZg) = E(F) - 580 = 10A—13B+'ZC—5€0 (2.35)
E(‘e®)y= g(%D) - 5¢. = 10A-18B+5C-5¢.
g 0 0
However, in the strong-field case, the states 4A1g’ 4E(ga) , and 4E(gb)

have the same energy, 10B+5C measured from the ground state 6A1 .25
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There are three 4T terms belonging to the nd5 configuration.

g
As shown in Table (2.6), these are derived from t;lg(3Tlg)x eg(ZEg),
3,2 2,3 2 ,3 3,2 .
tzg( Tlg)x eg( AZg)’ and tzg( Tlg)xeg( Eg)° These basis wave

functions are given by the expressions “’1’ wz, and 1{)3 listed in (2.36)

.43 2., 4 3. bt
by = |5, CTy ) e, (FB) "Too3> = |Encvd
1.3 ,2 2,3 4 3
U, = | tzg( Tlg) eg( Azg) Tyg'3 >

4+ + + + ++ +
=ll€cuv>~l|ncuv>
VZ vZ

+ + t+ 4+

.23 2 4 3 =
by = [ 15, CTy ) e (CE) T35 = [n g u v (2.36)

with relative crystal field energies of -10 Dg, 0, and +10 Dg, respect-
ively. d electron-electron repulsion interactions mix these together
and it can be shown that the corresponding matrix elements are, for

example, V12 = Bv6 and V13 = -(4B+C) .4 Solutions to the appropriate

3x3 perturbation equation, then, give the wave functions and energy
levels of these 4TZg terms of the nd5 system, including both crystal

field interactions and configuration interactions.

2 2
lg’ TZg’ 1g

can be handled in a similar manner. The resulting sets of interaction

The energies of 4T

matrices for the nd5 ion in a strong octahedral field can be obtained
from, for example, reference 4, page 414; reference 27, page 767;

and reference 28, page 67.

A, ... etc. terms in Table (2.6),
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The energies of pure configurations for an nd5 ion in an
octahedral complex are listed in Table (2.7). These are the energies
that would be obtained if electron configuration interactions could be
neglected. The energies are given by [a(10Dqg)+bB+cC] and the atomic

ground state,és, energy is chosen as zero energy.lg’z3

It should be carefully noted that in strong crystal fields there
must be contribution from covalent bonding, i.e. in such complexes
d-electron orbitals must be somewhat distorted from those of free ion,
‘by covalent bonding between the central metal ion and the 1’1gands.25’26
To a first approximation only ¢ bonding needs to be considered in most
cases. Only the eg orbital set is then affected. One can then
substitute p and v with p.cos6 and v.cos6, respectively, where the
covalency parameter is (l—coszﬁ). When covalent effects are taken into
account, then the degeneracy of the energy levels may be partly
removed and the matrix elements of the electrostatic interactions now
must be written with modified B and C, i.e. Bn and Cn where

Bn = Bcos ' 6 and Cn = Ccos™ 6, respectively. For examplezs’26

3Eg( b, %)
tgg(zEg)e;(3A2g) t5,(*A, e ("B )
tgg(zEg)ez(-”Azg) 9B ,+3C ) +4B,+2C,, -2/3B,
tgg(‘lAzg)eg(lEg) -2/7B, 6B,+3C ,+8B ,+2C,

also



18,23

Table (2.7)
Configuration Term a b c
t2 21 -2, 15 10
2g 2
g
4 4
tg o T 1. 10 6
4
T, -1, 18 6
25 -1, 12 9
2g
3 2 6
1:2geg Alg 0. 0.0 .0
4
Ay 0. 10 5
4p(a) 0. 10 5
g
4T2 0. 13 5
g
4p(b) 0. 17 5
g
4T1 0. 19 7
g
4A2 0. 22 7
g
2 3 4
2% Tig 1. 10 6
4TZ 1. 18 6
g




Alg( G)
£ (*a. ye?(3A, ) = 10B, + 5C
8L fBaglCgt f2g’ T 2 2
where B,=B 00526 B =B cos46 C.=C cosze and C ,=C cos46
270 T4 70 * 2770 ’ 4770 :

A detailed dorrelation diagram showing how the free ion terms
of an nd5 ion split in crystal fields of varying strength is shown in
Figure (2.5) and the relative encrgies of the terms for a whole range of
ratios of (Dq/B) is shown in Figure (2.6). It should be noticed from
these diagrams, that the energy of the 2ng progeny of the free ion
term 21 is extremely sensitive to this ratio and that the plot of this
progeny's energy vs. (Dq/B) has a large negative slope. For very
strong crystal fields, in fact, the Zng term is the ground term of the
nd5 ijon in an octahedral environment. The energy of this 2TZg term
can be shown to be (10A-20B+10C) 04l0F620F2-40F4). The "promotional
energy", is defined as the difference in energy of the ground state of
the free ion compared with the ground state of the ion subjected to the
crystal field. For an nd> ion in a strong octahedral field this
promotional energy is (15B+10C) or (15F2+275F4). This is not the same
as the stabilization energy. Stabilization energy for an nd5 ion in a

strong octahedral crystal field is -20 Dq (or 2A).3’29’30

75
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2.2.c  THE"SPIN CROSS-OVER'POINT FOR AN nd’ ION IN AN

OCTAHEDRAL CRYSTAL FIELD

For small values of A,(10 Dq), the ground term of the nd5

ion in an octahedral complex is 6Alg' However, as A increases the
2T2g progeny of the 2I free ion term is progressively stabilized

relative to the 6A1g term, and in due course as A continues to increase
the energy of the Zng term falls below that of 6Alg' The value of A

at which the spin of the ground term changes, is called the "Spin cross-

over point",

At the "spin cross-over point", the energies of the high-spin

and low-spin terms are the same, therefore, from sections 2.2.a and

2.2.b

E("Alg) = E(Zng)

10A - 35B = 10A - 20B + 10C - 2A (2.37)

Hence, at the "spin cross-over point", the crystal field parameter, A,

and the free ion parameters B and C are related by

A = > B + 5C (2.38)

6

The relative fall of the ZTZg term relative to the A1g term is shown in

the left-hand side of Figure (2.5).
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The 6A1g term belongs to the configuration tggeg
3 4 2 /3 6
| tzg( Azg) ey ( Azg), Alg,Ms >

M.

whereas the 2ng term belongs to the tgg configuration | t5 2 s

2g’ TZg
The change in the ground state at the "spin cross-over point", therefore
involves taking two electrons out of the eg orbitals, placing them into
tZg orbitals, and inverting their spin orientations. The change in
electrostatic energy in this process, 15B+10C, may usefully be regarded

as a pairing energy and one-half of this, then, becomes the mean pairing

energy, I, when one of these electrons is transferred from eg to t

g
orbitals, therefore Il = 1—25B+5C, for an nd5 ion, i.e. I = A at the "spin
cross-over point": when A < I, the complex is in the high-spin state
6 3 2 . .

2 lg(tzgeg). when A > II, the complex is in the low-spin state,

ng(tgg) with one unpaired electron. I is a threshold value above which

A must lie in order to lower the spin state.

It is important to note that a quartet spin state can never be

the lowest state of an nd5 complex. The lowest quartet turns out to be
4 4 . . . . 4 -
Tlg term of the tdeg configuration, and its energy is E( Tlg)_IOA

25B+6C~-A. The mean energy of the Zng and 6A1g terms, listed in

(2.37), is

1 2 6 55
5 [E( ng) + E( Alg)] 10A——2—B+5C-A

4 5
E( Tlg) ?B_C
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Thus the 4T1g term can never be the ground term because one, at least,

of the 6Alg and Zng terms must lie —g-B+C or more below this lowest
quar’cet.4

The correlation diagram for the nd5 ion on going from the
free ion through the weak, intermediate, and the strong octahedral field
cases, is shown in Figure (2.5). It should be noted that the ion gains

an amount of energy of 2A (or 20 Dqg) on going from the high-spin

(low field) to the low-spin (high field) configuration.

2.3 THE TANABE-SUGANO DIAGRAM FOR AN nd5 ION IN AN

OCTAHEDRAL CRYSTAL FIELD

The energies of the terms of the nd5 ion as its environment
varies from the free-ion, section 1.2.c; to the weak-crystal field,
section 2.2.a.2; to the "cross-over point", section 2.2.c; and then to
the strong crystal field, section 2.2.b.2, can be summarized in the so-

L4427 1) this

called "Tanabe-Sugano diagram" shown in Figure (2.6).
diagram the term energies are plotted on the vertical coordinate, in units
of the interelectronic repulsion parameter, B, and the crystal field
strength is plotted along the horizontal coordinate in units of (Dq/B).

It should be noted that the usefulness of this diagram is restricted since
it requires two parameters B and C to describe the electronic repulsion.
Figure (2.6) is drawn for a specific ratio of (C/B) of 4.48 , however
the diagram is not very sensitive to this ratio.

In the Tanabe-Sugano diagram the zero energy is always taken

to be the energy of the lowest term, and since the ground term of the
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nd5 configuration changes, the diagram shows a discontinuity at the
"cross-over point", which takes the form of an increase in the slope of
term energies above the cross-over value of (Dq/B). The Zng progeny
of the free ion term 21 has a very large negative slope before (Dq/B)

= 2.99, i.e. (A/B) = 29.9. It therefore follows that the 6A1g progeny
of the free ion term 6S has a very large positive slope after (Dq/B)

= 2.99.

The Tanabe-Sugano diagram emphasizes the change in the
ground state from the high-spin 6Alg term of the Hund's rule tggeé
configuration to the low-spin ground state ZTZg term of the tZg configur-
ation in a strong octahedral crystal field. This cross-over plays a
crucial role in understanding the chemical stability, the thermodynamics,
the spectroscopy, and the magnetic properties of the nd5 ions. At the
"cross-over point" the high-spin and low-spin configurations are in
equilibrium, and small changes of A, or 10Dqg, can have a marked effect
on this equilibrium, shifting it in one direction or another. Small
changes in temperature, in pressure, in solvent interactions, or in
ligand interactions, or in all of these, can have quite dramatic effects
and can switch the configuration from a high to low spin configuration
and wvice versa. Furthermore, small changes in the environment of the
ion in the region of the "cross-over point" markedly effect the spatial
distribution of the five nd-electrons, and therefore markedly effect the
spatial properties of the optical, magnetic, catalytic, and chemical

properties of the nd5 complexes in this region.
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5
2.4 THE JAHN-TELLER EFFECT AND THE nd” IONS

The Tanabe-Sugano diagram can be used to predict whether
- or not the nd5 ion undergoes Jahn-Teller distortion.3l Van Vleck32
showed that ions in orbitally degenerate Tlg and ng ground states
are unstable in the symmetrical configuration, and that in octahedral
crystal fields, such ions should gain about 100 cm—1 of energy by

distorting the octahedron and thereby removing the electronic orbital
degeneracy. Ions in non-degenerate orbital states are, of course,

stable in the symmetrical configuration, the high-spin weak field ground

state, 6A , therefore does not undergo Jahn-Teller distortion, but the

Ig
ground state of the strong field complex, 2ng, must exhibit a Jahn-
Teller effect. More detailed considerations of the energetics and

distortions involved show that the high-spin nd5 complexes are relatively
stable compared to the low-spin r1d5 complexes towards oxidation-reduction
reactions.

2.5 COMPLEXES OF TEE 4d° ION, Ru>"

For the free 4d5 ion Ru3+, the Racah parameters, B and C,
are 929.21 cm © and 3744.9 cm !, Table (1.5), i.e. (C/B) = 4.03.
If these values are appropriate to a Ru3+ complex then the crystal field
parameter A at the high-spin + low-spin, "cross-over point" is
predicted to be 25,700 cm_l. However, with such a large positive
charge on the central metal ion, covalent effects ought to be allowed for,
and the values of B and C would then be rather smaller than those of

the free ion and values of Bn and Cn appropriate the complex should be




15
2

lowered to 743 cm—1 and 2995 cm_1 respectively, i.e. about 80% of the

really used in the relationship A = Bn + 5Cn, If Bn and Cn are

free ion values, then the A value at the "cross-over point" would be

" predicted to be 20,500 cm—la

The only high-spin, weak-field complex containing the Ru?)Jr
ion reported in the literature appears to be the molecular complex
ammonium pentachloronitrosyl ruthenium(III), NH4 [Ru(NO)CSLS],33

All other Ru3+ "octahedral complexes" appear to be low-spin
forms.34 The optical and magne‘tic35 properties of the red species
[RuC,Q,6]3— and [RuBr6]3_ show that these are low-spin tgg complexes,
so their ground states are ZTZg(tgg)’ and the lowest excited doublet
levels are 2Azg(’cggeg), and ZTlg(tggeg)’ respectively, The first
absorption band of [RuC,Q,é]3-, found at 19,200 cm-l, can therefore be
assigned to the transition 2T2g — Tlg’ AZg' Assuming the high
field limit to be wvalid, i.e. assuming pure tZg’ eg quantizations, this
energy difference should amount to 10Dq-3F2-20F4, or 10Dg-B-C:
cf. section 2.2.b.2. If F2=1OF4 is taken to be 1000 cm_1 (or TB=C 1is

taken to be 1000 cm_l) then these optical transitions predict a value of
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Dq of 2400 cm_l, i.e. A = 24,000 cm—l., The corresponding experimental

value for [RuBr6]3~ turns out to be 15,300 cm_l,

The optical transition energies for several other low-spin Ru3+

complexes are listed in Table (2.8).
It should be noted that the Tanabe-Sugano diagram, shown in

Figure (2.6), predicts the first spin-allowed doublet band to be at

18,000 cm—1 and the spin-forbidden quartet band 2T (t5 ) —= 4T 1

2g" 2g

1g{t2¢%)




Table (2.8)
Complex 2'I' - 2A 2T transition Reference
P 2g 2g” T1g
3_.

[RuC2,6] 19,200 35
[RuBr6]3‘ 15,300 35
*

Ru(acac) 3 19,600 36
*

Ru(bacac) 3 19,100 36
*

Ru(dbm)3 18,500 36
RuC QZASPhZ 20,000 37

*

methane.

acac = acetylacetone; bacac = benzoylacetone; dbm = dibenzoyl-
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to be at 11,800 cm ! for the parameters listed above for [RuC 26] 3_.

2.6 SPIN-ORBIT COUPLING IN TRANSITION METAL-ION COMPLEXES

In complexes of the first series of transition elements, spin-
orbit coupling interactions, in general, are so small in comparison with
crystal field effects that, as already mentioned on page 47, and equations
(2.15) and (2.16), it may be neglected to a first approximation.

However, spin-orbit coupling in complexes of the second and third
transition-metal series are much larger than in the first series and
therefore, spin-orbit interactions then ought to be considered.

As in the case of the free ion, section 1.3; when spin-orbit
coupling is much larger than the crystal field splitting then the total
orbital angular momentum L, couples with the total spin angular momentum
S, to produce states which can be labelled by the total orbital angular
momentum guantum number, J°28

In the transition-metal ion series this extreme situation is
never encountered, but nevertheless to a first approximation the splitting
by spin-orbit coupling of the energy levels in a cubic crystal field may
be obtained by using Landé-type formulae similar to equations (1.47) and
(1.48), with a fictitious L-value, L', where L' = 1 for T1 or TZ states.
Al’ AZ’ and E states are not split by spin-orbit coupling. The contri-
bution of spin-orbit -.,Coupl'lng to the energies of Tl or T2 states is

then given by

EJ, =a[J'(J" + 1) - LY(L' + 1) - S(S + 1)] (2.39)
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where
= % A and J' = |L'+S]|, |L'+S-1[,....,|L-S|, and the constant

fr » . . ' .
a must be determined in each particular case.

2.6.a SPIN-ORBIT COUPLING IN COMPLEXES OF THE nd5 IONS

The effects of spin-orbit coupling on the eigenvalues and
eigenfunctions of, for example, the lowest 4T1g state, can be estimated in
the following way.21 As outlined in sections 2.2.a.1, 2.2.a.3, and
equations (2.29), basis wave functions for the states of this term,4T1g,

including the effect of term-interactions can be constructed from data

given in Table (2.3). Thus, for example, the basis wave function, not
including spin-orbit interactions, for the Tlg (1,%) is given by
b1, (1) = nte - 5P o (p) + 22D o (%)) (2.40)
E( 'P)-E E(F)-E

where E is the energy of the lowest root of the secular equations, and

N"2(1+OL'§D ) =1, and OLP = 4/——(1——513 , and = 2—/2Dq, .
E(‘p)-E E('F)-E

Similar wave functions can be constructed for the 4Tlg (0,2) and 4T1g

(-1,%—) basis functions, and these basis functions are then used in pertur-

bation calculations to compute the matrix elements of the spin-orbit inter-

5
action using the operator E V (i) of page 29. The 4T level is three-

1g

i=1

fold orbitally degenerate and four-fold spin degenerate, so that this
secular determinant is of the order 12x12. Diagonalization of this

’

problem 1 leads to the spin-orbit coupling energies which turn out to

be, cf. equation (2.39)
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. ESO = 3a(6-fold),
or = -2a(4-fold),
or = -5a(2-fold),
where
— ‘/5— n2
a =- FNZop g (2.4
2 4o _2 2 oy .
and £ = h f Rn 3 Z(r)r  dr, compare with equation (1.45).
0 3
It should be noted that the spin-orbit splitting of the 4T1g term depends
on both OL'F and £. Furthermore, since § in equation (2.41) is positive,

it follows that“a’ must be negative for an nd5 ion on an octahedral site
with positive Dg, and hence the six-fold levels, therefore, lie lowest in
that case. If Dqg is known then”a can be calculated. The twelve-fold
degeneracy of the lowest 4T1g level of Figures (2.3) and (2.4) is

therefore resolved by spin-orbit coupling into a sextet, a quartet, and

a doublet, as shown in Figure (2.7).

,___(2_2__ -5a
)
’
/
7
, -
,/
S aw L,
N4 ”
/ -~
/) -7
4 (12) 2.7
G S &0 M —
1g ~
~
~
~
~
~
~N
~
N
N (6)

3a
Figure (2.7)




88

By similar arguments it can be shown that spin-orbit inter-
actions split the energies of both the ZSHTl and ZS+1T2 terms into
three-levels with degeneracies (2S-1), (2S+1), and (2S+3), respectively.

The 6A1g ground state of the high spin nd5 configuration has
no orbital angular momentum. In principle spin-orbit coupling can mix
some of the excited states into this, and thence reinstate some orbital
angular momentum, but theoretical calculations show that, the effect is

38,39,40 Van Vleck and Penny,38 for example, have found

very small.
that it is necessary to go to higher order perturbations in order to
remove the spin six-fold degeneracy of the 6A1g term and this will be
considered in more detail in chapter three. Detailed calculations of the
energy levels of ndS configuration including the effect of spin-orbit

perturbations, for ions in cubic crystal fields can be found in references

41 and 42.

2.7 CRYSTAL FIELDS OF LOWER SYMMETRY

Many transition-ion complexes are not octahedral. It has
already been pointed out, even when six ligands are identical, several
factors can destroy their most regular arrangement around the central
metal-ion, and such complexes exhibit both optical and magnetic aniso-
tropy. Deviation from octahedral symmetry can often be treated as a
perturbation superimposed upon the higher symmetry, and the effects
of some of the most common distortion of the octahedral field will now be
considered. The correlation Table (2. 9),19 lists the relationships

between the irreducible representations of the different point group

symmetries.




Table (2.9) 19

n Td Dan C4v Cov 3
A A, Ay A, A, X
Ay A, By, B, A, ,
E E A By | ApB A A,

Ti T, Ayy By JE A,+B 4B JHE
T, T, B,y 'E, JHE A B 4B +E
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2.7.a THE nd~ ION IN A TETRAGONAL, OR ORTHORHOMBIC

CRYSTAL FIELD

Inspection of Table (2.9) shows that, except for 6A1g, the
symmetry species of the octahedral terms are altered by tetragonal
distortions. @ The Hamiltonian for an ion in a site possessing tetra-

gonal symmetry can be written in the form

5 5 5
. —) -
H - LV § v, Gy ] v 6 (2.42)
i=1 i=1 i=1
where VF and VSO have already been discussed in chapter one, and
section 2.6.a, respectively. The crystal field contribution can be

decomposed into two components

5 5 5
> _ oct o te >
iz,l Vx,Q(ri) = i:zl VxQ,(ri) + izl sz(ri) (2.43)

oct
where VxQ, (1_?) is the contribution from a perfect octahedral crystal

field that has already been discussed in length in sections 2.2.a
and 2.2.b,and V;ez(i?) is the tetragonal perturbation energy
operator. Provided V::Z(;) is large compared to VSo then, for

the moment, spin-orbit coupling effects in (2.42) can be neglected and
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Vti(;‘*) can be considered to perturb the states of the octahedral
crystal field. To first order the V}tjl does not distort the octahedral
orbitals, but only changes their energies.

The perturbation calculations can be carried out using either
the weak-field or strong-field wave functions. For tetragonal complexes,
the matrix elements of V}tj'(?) can be expanded out in the form listed
in Table (2.1), and are most easily evaluated using the operator
technique, described in reference 3, page 100.

For the more general complexes of lower point group symmetry,

i.e. for orthorhombic crystal fields, the non-cubic part of the crystal
25,26

field contribution to the Hamiltonian can be expanded to give

Ho - I v
w s L@ (2.49
i=1
where
5 te', >, _ f
/4;11 Vg () = 4, 17 4,07 Y4 0 / Ay, o (Yy %Y
¢ B, AT, Y, )Y + B, r (Y, Y, ) I(YD)
2,2 2,2 ~2,-2 4,2 4,2 “4,-2
(2.45)
and Bk o 2re suitable functions of R that satisfy the relationship
B .
_ __ 4m k,a
Ao T TERA k-1 IR (2.46)
R
(compare with equation 2.3). For tetragonal complexes B2 2:B4 2:0,
but these are different from zero for orthorhombic distortions. It can

be shown that the effects of tetragonal and orthorhombic distortions,

for example, the three orbital states 4A1g’ 4Eg, that originate from the




free ion 4G level can be summarized in the following statements:

(i) Neither tetragonal nor orthorhombic distortions affect the 4Alg

state.

4.(b
(ii) If the distortion is tetragonal then only the energy of E(g ) term,
cf. Table (2.3), is depressed.

4 (a)

(iii) For orthorhombic distortion the energy of only one of Eg or
4E(gb) is depressed.
The weak field ground state, 6A1g, is not affected by either tetragonal
39,41,43

or orthorhombic distortions.

If the spin-orbit coupling interactions in equations (2.42) is now
taken into account then it can be shown that there are no matrix
elements that connect basis functions within the manifolds 6Alg(é)S) and
{4A1g,4Eg}( 4G) .  Hence, in order to work out the effects of spin~orbit

coupling, second-order perturbation, or even high-order perturbationZS’

38,39,41 techniques must be used.

2.7.b THE nd5 ION IN A TRIGONAL CRYSTAL FIELD

When the octahedron is distorted along a trigonal axis, the
point group symmetry will be reduced from Oh to D3d’ D3, C3V or C3.
The symmetry species of the resultant levels are as listed in Table (2.9),

and the crystal field contribution to the energy of the complex can be

decomposed into its components.

3 > 5 oct 5 tri
-> ri
V . = \V4 . >
121 Xg/(rl) lz_l ) (1'1) +lzl sz(l"l) (2.47)
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where V::E(;) is the contribution from the trigonal perturbation. Equation
(2.47) can be recast in the normal way in terms of normalized spherical

. 24,43-45
harmonics,

and in this process the operators for trigonal symmetry,
" result in the introduction of the parameters DSIG, DQ, and DTAU, defined

by the relationships

Do = DSIG/V70 Dq:%/;()-DQ+61—O/%DTAU ,

= (3 L
Dt = (10)/;2 DTAU , (2.48)

where the crystal field parameters Do and DT are related to the radial

potential forms by

__ 1[5 ,4 2
Do = T‘I\/E < 5 /g’ﬂ'Bz,zri >
(2.49)
16 4
< T \/T—T B4,2 I‘i >
The parameters DSIG and DTAU reflect the trigonal component of the

electrostatic fields due to the presence of the ligands.

The energies for complexes D3 symmetry have been calc1.11ated,24

using representation of the Hamiltonian, shown in (2.42) i.e. using

4,46,47 |d5,J MJ >. These calculations

symmetry adapted basis functions,
can also be used for point group symmetries D3, D3d’ C3 and C3v by
making appropriate correlations of the irreducible representations of these

point groups. 19,47

The results of such calculations are shown schemati-
cally in Figures (2.8) and (2.9) and these should be compared with Figure
(2.4). Trigonal distortion splits the octahedral orbital triplet states, T,

in Figure (2.4), into an orbitally degenerate, E doublet plus an
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Al or an A2 orbital singlet: cf. Table (2.9). The energies of the
quartet spin T-states calculated for DTAU/(DSIG) = * 2 for varying
values of the ratio DSIG/B are shown in Figures (2.8) and (2.9).

. The following observations emerge from studies of the detailed

results of such calculations.24

(i) When [DTAU/DSIG| > 1, and when DTAU/DSIG = -15 or - T the

first excited 41’1(4(}) state always splits, so that the 4A‘2 component

is lower in energy if DTAU is positive, as in Figure (2.8).

However, the 4E component is lower in energy if DTAU is negative,

as in Figure (2.9). The relative ordering of the energies of
these components is reversed when DTAU/ DSIG = + Tlﬁ or + 3.

(ii) The splitting of the 4Al and 4E(4G) levels is largest for a given
parameter set when DTAU and DSIG have 6pposite signs and in

such cases the 4E state is always shifted to lower energy.

4

(iii) The energies of the 4A (4G) and A (4F) states are found to be
g 1 2

independent of the trigonal ligand field strength.

(iv) When higher order perturbation treatments are used, the splittings

of the 6

A1(6S) ground state of the nd5 system by a trigonal
distortion turn out to be a sensitive function of the sign and
magnitude of DTAU, but not of DSIG. Such splittings are

functions of DQ only, in so far as the DQ parameter is a function

of the energy of the first excited state relative to the ground state,

Calculationsqt8 show that spin-orbit coupling mixes only the
doublet states of the nd’ configuration into the ground state 6Al(6S).

Therefore, the zero-field-splitting calculations for complexes which have




trigonal symmetries may be restricted to the quartet and sextet manifold:

cf. chapter three.

2.7.¢c THE nd5 ION IN CRYSTAL FIELDS OF POINT GROUP SYMMETRIES

C and C

—4v PAY

The symmetry species of the terms that are obtained when an
_octahedral complex is perturbed by crystal field components of point
group symmetry C4v or sz are listed in Table (2.9), and complete
eigenfunctions for the nd5 energy levels of such complexes have been

49

computed using as a basis the 252|SLJMJ>kets. In these calculations

the crystal field Hamiltonian was written in the form

- ¥ 1 1
He = 1B (250
i,k,a
where B! the so-called "Wybourne parame‘cers”,50 are related to Dq,

k,a
_ 4 _ . . . .
for example, B4,O = B4,4 /—; = 21Dq. The coefficients Ck o 2re functions

of spherical harmonics.

Such calcula’cions49 show that the zero-field-splitting of the
high-spin ground state in C4v symmetry arises through spin-orbit and
crystal field mixing of the excited states, with non-zero L-values into
the ground state: cf. reference 50, chapter one. In the neighbourhood
of the cross-over limit, the splitting arises mainly through mixing of the
excited 4P states, but 4G states are also indirectly mixed as a result of

coupling between 4P and 4G components. The zero-field-splitting of

5/2

the 655/2 term is shown schematically, as a function of the values of the

Parameters B and B , in Figure (2.10).

4,0 4,4
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+ 5/2

Figure (2.10)

2.7.d THE nd? ION IN A TETRAHEDRAL CRYSTAL FIELD

Detailed calculations on nd5 ions in tetrahedral fields appear to
have been neglected in the literature. However, Curie et 31_.51 have
used the covalency parameters introduced by Koide, Pryce25 and
Pappalard026 and have reported calculations of the energy levels of nd5

ions in tetrahedral ligand fields.



- CHAPTER THREE -~

THE MAGNETIC PROPERTIES OF nd5 IONS IN

TRANSITION METAIL~-ION COMPLEXES
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3.1 MAGNETIC PROPERTIES OF ELECTRONS AND NUCLEI IN

COMPLEXES " %2:53759

Electrons, protons, and neutrons undergo various kinds of
closed-loop like motions, and the resultant angular momentum vector, J,
in units of h, associated with any of these particles can be decomposed

into its components, J_, J_, and J .
x’ Ty z
J- = J7J + J J + J7J (3.1)

along three mutually perpendicular directions x, y, and z. Some of
the quantum mechanical properties of angular momentum operators have
already been discussed in Chapters one and two. When a charged
particle has an angular momentum it possesses a permanent magnetic
dipole moment, and generally both orbital and spin angular momenta
contribute to the magnetic moment of an electron. Each of the indivi-
dual components of the magnetic moment is proportional to the magnitude
of the corresponding angular momentum, i.e. p = yJ, where Y is the
appropriate magnetogyric ratio of the motion in question. It can be
shown that y = gee/(ch), where g, is the appropriate Landé g-factor
and e = 1 or 2.00232 for electronic orbital and spin motions, respect-
ively. For a single electron in an isolated atom where the spin and
orbital angular momenta are coupled together, the total angular momentum

is

i = GG+ DI (3.2)



where j = |&+s], |2+s-1],..... ,|%2-s]|, and the g-factor is

- j(j+1) +s(s+1)-2(8%+1)
o0 b pUTHs ] (3.3)

In chemically interesting situations atoms are not isolated.
Then the electronic orbital motion is perturbed by the asymmetric electric
fields generated by the presence of neighbouring atoms. Such fields
tend to uncouple the spin and orbital angular momenta, and if the
electric fields are large then the orbital contribution to electronic angular
momentum is almost completely removed, and the g-factor then is very
nearly the spin-only value, 2.00232. 1In cases where the ground state
spin eigenfunction has only a second-order contribution from orbital

paramagnetism, the electronic magnetic moment may be written as

uo= _.geff vS(S + 1) eh/(2mc) (3.4)

" Bofs vS(S + 1) Be (3.5)
where Be is the electronic Bohr magneton, 0.92731 x 10_20 erg/Gauss,
the orbital contribution is taken into the effective g-factor, and the
magnetic moment is assumed to arise from the "spin" of the electron only.
Boff is a tensor.

The component of the electron's dipole moment along the

direction of an applied magnetic field, z, can be written in the form

W, (LZ + ZSZ) Be (3.62)

100
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or in more general terms

b, = -gJB

o M (3.6Db)
The z-component of angular momentum and therefore the values
allowed for b, are quantized. The magnetic contribution to the energy
of the electron, EH = M, H, is therefore quantized. The directing
influence of an applied magnetic field competes against the randomizing
thermal energy kT of the dipoles and the magnetization, M, i.e. the
magnetic moment per unit volume, and thence the volume susceptibility,

Xy of an assembly of electronic magnets can easily be calculated using
standard statistical mechanics techniques. Suppose that unit volume
contains N' similar ions, all with identical values of J, and that an atom
or ion in the state i has a moment component (uz)i in the field direction,

then

=
n

2 (uz)i x (the number of species whose energy is Ei)
i

g(uz)i x 3 Exp(-E,/KT) (3.7)

where f is the partition function for the assembly = X Exp(-Ei/ET), i.e.
i

M = }jN'(uz)i Exp(-Ei/ET)/[Z Exp(-E, /kT)] (3.8)
i i

Provided all atomic magnets have the same J value, this last expression

can be recast into the form
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N'g_ 8 I (M), Exp[(M)). x]
\ i} J e i J1 J1 (3.9)

f'l Exp[(MJ)i x]
i

. where x = gJBe H/KT.

This can now be expanded out using standard methods60 to give

M = N! u BJ(umH/ET) (3.10)

where Ry = gJBe J, and BJ(W_I) is known as the Brillouin function of

the variable ¥ and is given by

o, _ 2J+1 2J41 5 _ 1 Y

at all but the lowest temperatures and the highest fields,

gJMJBeH { kT and equation (3.10) becomes

~ 2 T
M ¥ N ue“BeH/(?)kT)

Thus, the volume susceptibility of the assembly of electronic magnets

Xv’ is

_ M _ 21/ At _ =
XV =g - N'Qutd(ﬁikT) = C/T

where C is the Curie constant. Hegs and the molar magnetic suscepti-

bility are connected by the relationship
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— . 2.1/2 !
Mgt (3k/N se) (X, T)

it

2.828 /XMT (3.12)

where N is Avogadro's number.

Magnetic interactions of an assembly of non-interacting ions in
thermal equilibrium can also be evaluated using standard perturbation
techniques. If diamagnetic terms are omitted, when carried through to

second order, this leads to

2
' lu |
n 2
E, = -uy; H g} En'Ej H® + ..... (3.13)
where unj = f lp; M, t,l)j dT is a matrix element of the permanent magnetic

dipole moment operator W, = (LZ + ZSZ) Be and is a measure of the
admixture of state n in the field-induced perturbation of L[}].. The value

of the z-axis component of the magnetic dipole moment in this state is

therefore,
SE I
< D= - x— = o, 4 _ s L. 3.14
Hnj oH i E En-Ej ( )

Arguments exactly analogous to those already presented then lead to

the relationship 60

2
lu | "H
L [Exp(-E/R/T)] (g + I' dip—)
» j J n n =i
M = ] (3.15)
T Exp(-E/KT)
]
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Nuclear magnetic behaviour can be described by sets of
equations analogous to the relations (3.2)-(3.5), but using &n and I

for the nuclear g-factor and nuclear spin quantum number, respectively.

3.2 THE MAGNETIC PROPERTIES OF nd5 SYSTEMS

3.2,a THE WEAK FIELD CASE

The ground term in a weak octahedral field, 6Alg, arising from
the free ion term 6S is an orbital singlet and consequently it has no
orbital angular momentum. Spin-orbit coupling therefore can not raise
the degeneracy of this term, and since there is no excited term with
the same multiplicity as the ground term there can be no second-order
mixing due to spin-orbit coupling, nor can there be any second-order
Zeeman effect.1 The magnetic dipole moment of the 6A1g term to this

degree of approximation is therefore simply due to the spin contribution

and

Mopp ¥ [45(S + 1)]1° electronic B.M.

(3.16)
= 5.92 electronic B.M.

This value of n is independent of temperature, i.e. there is no

eff
"temperature independent paramagnetism" contributing to the magnetic
moment of the 6A1g 1:erm.1’61
Experimentally, it can be shown that in fact the 6A term

1g

does split. Weak interactions arising from various sources can cause

this splitting, including higher-order spin-orbit interaction, particularly
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38,62

when combined with Jahn-Teller distortion. Spin-spin inter-

)

.6 . .
action, section 3.4.a, can also cause extremely small zero-field

splittings in a perfectly octahedral nd5 system.,

Axially distorted octahedral systems exhibit zero-field-splitting
and three Kramers' doublets then appear.52 The combined effects of
spin-orbit interaction and the low symmetry field then completely
dominate the spin-spin coupling in‘ceractions,41 and spin-orbit coupling
then mixes the free ion ground state 6S with 4P, section 1.3. Further-
more, in a complex which possesses less than cubic symmetry, spin-
orbit coupling to the ligand-field-split components of the 4P term removes
all but the Kramers' degeneracy of the ground term.

The zero-field-splitting of the ground term 6A1g under the

influence of a tetragonal field is shown in Figure (3.1). Griffith has

65

shown ~ that the zero-field-splitting parameter, D, in this figure, is

related to the spin~orbit coefficient gnﬁ, and the low symmetry splitting
of the 4P term by expression (3.17)

£ 1

R R (3.17)

(
5 E; E,

D =

where E1 and E2 refer to the energies of the 4A and 4E components of

2
the original 4‘P(4T1) term of the free ion, see Table (2.7).



106

Mg = i%
—
/
/
/
’
/
/
/
4
4
/
/
7/
/
’
; 4D
4
/
’
/
'
6 6A /
S 1g v/
e
\ ~
\ S~
\ S~
\ ‘\\ M = i-3-
\\ ~>~—ee S 2
\
\
\
\
\
\ 2D
\
\
\
\
h 1
\ —
\ b Ms = 1'5
F 3 s . - .
ree ion Oh'D4h pin o§b1t
coupling

Figure (3.1). Zero-field-splitting of the ground term 6A of

1g’
an nds ion, under the influence of a tetragonal

field and spin-orbit coupling



107

3.2.p0 THE STRONG FIELD CASE

3.2.b.1 SPLITTING BY SPIN-ORBIT COUPLING

In general, magnetic moments for complexes with T ground
states are obtained by summing the first- and second-order Zeeman
effects, i.e. the terms on the right-hand-side of equation (3.13),
outlined in section 3.1, over the states that arise after the terms have
been split by spin-orbit coupling. The effect of spin-orbit coupling on
T-terms can be obtained by operating with AL.S., equation (1.39) on
the appropriate wave functions given in section (2.6.a), or an
alternative procedure, that depends on the observation that there is a
correspondence between the wave functions of the T-terms and those of
free ion P-terms, can be used. Spin-orbit splittings of Zng terms can
be obtained by inverting those for the P-terms arising from the same

number of p-electrons as there are d-electrons, i.e.

2T (ndS,t5 ) = the inverse of 2P(p’)
2g 2g

The splittings of the 2TZg term of the nd":> configuration by spin-orbit

coupling is shown in Figure (3.2). The derivation of the diagram is

considered in more detail in section (3.2.b.2).
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3.2.b.2 ESTIMATION OF THE g-FACTOR, THE MOLAR MAGNETIC

SUSCEPTIBILITY, x, , AND THE MAGNETIC DIPOLE

OF THE °T. TERM

MOMENT, Bogse 20

If the free ion pn, P-terms, are used to estimate the first-
and second-order Zeeman effects for 2TZg terms in a cubic field then
the orbital angular momentum operator becomes —A'LZ, rather than LZ.
The minus sign allows for the inversion of the spin-orbit coupling
splitting on going from the pn to the tgg configuration, and Alis a
factor whose value lies between 1.0 at the strong field limit and 1.5 at
the weak field limit. The free ion expression, equation (3.3) can not

be used for the g-factor. Instead, this expression becomesl’4

g =1- 3 A +(2+A)[S(S+]) -2]/[25(T+D)] (3.18)

The coefficient of the second-order Zeeman effect, i.e. the coefficient

of H2 in equation (3.13), is given by

free ion P-term

1,2,
F = [(2+A")"/A] FJ’J+1

J,J+1 (3.19)

where the second-order Zeeman coefficient for the free ion is given by

FJ,J+1 = —(J+L+S+2) (-J+L+S) (J-L+S+1)

x  (J4L-S+1) 32 / [12(3+1)% A] (3.20)
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Equations (3.18)-(3-20) were used to obtain the results depicted on

Figure (3.2).

The g-values, the J-values, and the second-order Zeeman
coefficientsshown in Figure (3.2) can be substituted into equation (3.15)
to give the magnetization and thence the susceptibility of the Zng term

and it can be shown1 in this way that

|L+s |

— 2 _ _
B J=|LZ-S (g 7(J+1)(20+1) /(3KT-2F | _ +2F . )]Exp(-E /KT)
X =
N |L+s |, B
] (23+1) Exp(-E_/KT)
7=[e=s] (3.21)

The corresponding expressions for the magnetic dipole moment

of a ZTZg term turns out to be

Ll2 _ 8+[3)1/(kT)-8] Exp(-3A/(2kT)]
eff A(RT)[24Exp(=3)/(2KT)]

(3.22)

Kotani66 has considered in great detail the effects of varying
temperature and varying spin-orbit interaction on the effective magnetic
moment of the tgg configuration. His treatment assumed (i) that the
ligand field interactions are much greater than the mutual repulsions
between electrons in d-shells, (ii) that the electronic repulsions in turn
are larger than the spin-orbit coupling in the ion, (iii) that the ligand
field has perfect cubic symmetry, and (iv) that there are no inter-

actions between neighbouring paramagnetic ions, i.e. anti-ferromagnetic

and ferromagnetic interactions do not need to be taken into account.
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5

His calculations show that the effective magnetic moment for the tZg

configuration is markedly dependent on temperature and on the spin-

orbit interactions.

3.2.b.3 LOW SYMMETRY CRYSTAL FIELD COMPONENTS AND

MAGNETIC PROPERTIES OF nd5 IONS1

Ligand field components of lower than cubic symmetry lift
the orbital degeneracy of T-terms and markedly affect their magnetic
properties because they alter the arrangements of the energy levels
over which the ions are thermally distributed. It is difficult to discuss,
generally, the magnetic properties in the presence of such crystal fields
since they depend on the relative magnitude of the spin-orbit coupling
on the one hand and the low symmetry ligand field components on the
other, When the additional ligand field component is small in compari-
son with spin-orbit coupling then its effects on the earlier discussion
of the magnetic properties are small, but as the low symmetry ligand
field component becomes larger than the spin-orbit coupling interaction,
the effective magnetic moment of the 2T2g state tends towards the spin-
only value, and the temperature dependence tends to decrease. When
the low symmetry component of the crystal field becomes very large,
the magnetic moment becomes the spin-only value and it is then
independent of temperature. These effects occur because the low
symmetry field component further quenches the orbital angular
momentum by destroying the degeneracy of the Zng orbital set.
These effects of the low symmetry ligand component are shown in

Figure (3.3) in which Hofs is plotted as a function of lzT/ [M for
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of the t, orbitals, A" to the spin-orbit coupling
constant, A
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several ratios of the splitting of the 2TZg orbital energy levels, A', to

the spin-orbit coupling constant, A.

3.2.b.4 ELECTRON DELOCALIZATION AND MAGNETIC PROPERTIES

OF %T_ TERMS
2o

o

Whenever metal-ion orbitals mix with ligand orbitals to form
molecular orbitals belonging to the complex as a whole, then delocaliz-
ation of the d-electrons takes place, and it becomes necessary to take
account of the effective reduction of the orbital angular momentum of
the electrons. It is customary to suppose that the matrix elements of
the orbital angular momentum are reduced by the factor k' so that, for
example, the operator for orbital angular momentum in the z-direction
becomes k'LZ rather than Lz' k' is a number whose value is unity
when there is no delocalization, but it is in general somewhat less than
unity.

Electron delocalization in the tgg configuration has two major
effects. First, it brings the effective magnetic moment closer to the
spin-only value, since it causes additional quenching of the orbital
angular momentum. Second, it reduces the spin-orbit coupling constant
for the T-term below the value )\F of the free ion. The spin-orbit
coupling constant A, for the T-term in equation (3.22) becomes
A= k'XF. It has, already, been noted that introduction of the reduct-
ion factor, k', normally causes the effective magnetic moment, Hoggo to
be nearer to that of the spin-only value, however, care is needed
Because complete calculations show that in some cases, as shown in

Figure (3.4), this is not true.
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Figure (3.4).
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The effect of t2g electron delocalization on the

magnetic moment of the 2T2g term, A is negative.
A' /A = -10 means a highly distorted arrangement.
A is the spin-orbit coupling constant value which

is effective in the complexed metal ion
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3.2.3 SPIN FREE-SPIN PAIRED EQUILIBRIA (6A1g’x-?—\ ng) IN AN

nd® sysTEM!®7

In section 2.2.c, it was pointed out that for certain critical

ligand field values the cross-over point is reached in Figure (2.5), and
at this point there is a change in the ground term. In this case if the

energies of the two terms 6A and 2T g do not differ by more than kT

lg 2
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then their relative populations become of comparable magnitude, and vary

with temperature. The matrix element of the spin-orbit coupling
connecting these two terms is zero. The susceptibility in this case is
then the population-weighted average of the susceptibilities of the
individual terms and under these circumstances it can be shown that
the equilibrium susceptibility is given by

(zs'1 +1) Xyp * (zs'2 + 1) X, Exp(-Y)

Xy = (3.23)
M (28] + 1) + (28, + 1) Exp(-Y)

r . s o . . s
where S is the "fictitious spin" quantum number (in many instances

S' is the same as J and/or S),

E.,, and E_,
Sll 2 t
(251 + 1) and (ZS2 + 1), Xm1 and Xyz 2re the respective atomic

are the energies of the terms whose degeneracies are

susceptibilities of these terms and they themselves may, also, be

functions of temperature. In this case equation (3.23) becomes
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6 2
(A, ) T E -Y
‘- X 1g + X( Zg) xp(-Y) (3.20)
1 + Exp(-Y)

"~ where Xx( 2ng) is itself a function of temperature and may be introduced
into (3.24) as a calculated quantity or as an experimental result
obtained from a ng complex with similar ligand atoms surrounding the
same metal-ion, due allowance being made for the effects of electron

delocalization and low symmetry ligand field components.
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3.2.4 THE MAGNETIC PROPERTIES OF COMPLEXES OF Ru?’+

As already mentioned in section (2.5), NH4[RuNOCQ,5] appears
~ to be the only Ru3+ complex reported to contain high-spin Ru3+. Its
measured magnetic moment is 5.86 electron B.M. and this value does not

change when the temperature is al’cered.,33

All other reported34 magnetic measurements carried out on Ru3+
cubic complexes involve the low-spin 2TZg ground state for the 4d5 ion.
The effective magnetic moment for several low-spin nd5 ions, plotted vs.
kT/ |7\| is shown in Figure (3.5), and it should be noted once more that
these Hors values differ only slightly from the spin-only value, and,
furthermore, that they do not change very much with changing temper-
ature. It should also be noted that the spin-orbit coupling constant
for Ru3+, section 1.3, is so large that compounds containing Ru3+ appear
close to the extreme left-hand edge of this Figure.

Measurements of Hogf VS- temperature for KZRuCELS.HZO,

(NH4)2RuC5L 'HZO’ and for KZRuC52,5 are plotted in Figure (3.6).

5
Data for this last complex extrapolated back to T = 0 indicate an extra-
polated Hots of 0.85 electron B.M., indicating the presence of anti-
ferromagnetic metal-metal interactions in this compound.

A corresponding plot for the Ru4+ species KZRuC,Q,6 is also

given in Figure (3.6) for comparison.

Values of the spin-orbit coupling parameters, £4d’ obtained69
by fitting measured room temperature moments to Kotani's curve66 for
nds systems are listed in Table (3.1) for several trivalent ruthenium

complexes. These values are of the correct order of matnitude but it
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should be noted that this method for obtaining gnd values is inaccurate

since Hogs changes only slowly with kT/|& The data for

nd ! °
Ru(NH3)6C 23 in this Table is consistent with Figure (3.5) -

Table (3.1)
-1
mn m cm
eff eff €4d

Compound v4S(S+1) B.M.,80K B.M.,300K
Ru(NH3)6C2,3 1.73 1.85 2.13(2,10)* 1000
[Ru(NH3)6](NO3)3.3HZO 1.73 - 2.17 1100
KZRuCSLS.HZO 1.73 - 2.10 870
(NH4)RuCQ,5.H20 1,73 - 2.00 610
[RuDZCQ,Z]CIZ,O4 1.73 - 1.95 -

* calculated employing the spin-orbit coupling constant of the free-ion,
and ignoring electron delocalization and low-symmetry ligand field

components.

Since the magnetic moment of low-spin Ru3+ is very close to
the spin-only value, and since it varies only slightly over large ranges
of temperature, it follows that bulk magnetic measurements in these
complexes are too imprecise to provide much useful information about
electron delocalization and about low symmetry ligand field components -

in these systems.
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3.3 ADDITIONAL, WEAKER, CONTRIBUTIONS TO THE GENERAL

"THEORETICAL HAMILTONIAN®"

So far, this thesis has essentially been concerned with the
first three major contributions to the general "theoretical Hamiltonian",
equation (1.1). However, the following, weak, contributions also ought

to be taken into account.

(i) The Zeeman interaction, VZ. This arises from the interaction
between an applied magnetic field and the various magnetic moments of

electrons and nuclei. Spin moments contribute an amount

2.00232 Be H _Zsi - gNBN H.;I I.‘

i i i
(3.25)
= 2.00232 Be H.S - gNBN H Z'l' I‘l
i i
where BN is the nuclear Bohr magneton. Electronic orbital angular

momentum also interacts with a magnetic field and contributes an amount

2 2 2 2
8 H.Z R +——— H" £ (x° +7vy)) (3.26)
e . i 2 . i i
i 8mc i

to the Hamiltonian, where the xy-plane is perpendicular to H, and the
last term in (3.26) is usually very small compared to the first term and
usually can be neglected. Combining (3.25) and (3.26), then leads to

the form for total Zeeman interaction given in (3.27)

Z A

V_ = Be(L + 2.00232 S).H - gNBN H.}ill I1 (3.27)
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(ii) The electron-electron dipolar interaction, V This is the sum

SS*
of the interactions between pairs i, j of magnetic dipoles separated by a
distance Tijo and is given by

5

B 2 . .2 _ s
Vgg = (2.00232 8 )" } [zi].(si.sj) 3(si.ri].)(sj.rij)] Ty (3.28)

i>j

55,58

’

(iii) The electron spin-nuclear spin hyperfine interaction, VSI

which will be discussed in detail in the next chapter.

Other still weaker, interactions also contribute to the magnetic
properties of complex ions, including the nuclear quadrupole interaction,
VQ ~ 10_3 cm—l; the nuclear spin-orbit interaction, VIL’ which provides
second~-order contributions to the hyperfine interactions; nuclear spin-
nuclear spin dipolar interaction; and nuclear chemical-shift effects.

To obtain information, experimentally, about all these inter-
actions, it is necessary to turn to electron paramagnetic resonance

experiments, which are usually performed at temperatures at which only

energy levels less than 100 cm_1 above the ground state are occupied.



- CHAPTER FOUR -

ELECTRON PARAMAGNETIC RESONANCE OF nd5 IONS

IN TRANSITION METAL-ION COMPLEXES
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4.1 THE GENERAL SPIN-HAMILTONIAN

Abragam and Pryce?O showed that the complicated theoretical
Hamiltonian, including all the weak interactions mentioned in the last
chapter, could be recast into the form of the experimentally useful
so-called "spin-Hamiltonian". They distinguished between situations
involving an orbital singlet ground state on one hand and situations
involving orbitally degenerate ground states on the other. Their results,
carried through to second-order perturbation, for orbitally singlet
ground states, showed62 that in such cases the spin-Hamiltonian takes

the form

"HS = B, I H.g.S+I8D.S+ISAI+IILQI

- YBNZ H.I. - Z H.R.I. - Bz H.A.H (4.1)

where the sums are overall appropriate electron-electron and electron-
nuclear interactions. In equation (4.1), g is the g-tensor, whose
components in general differ from the "spin-only", value of 2.00232
because of the presence of orbital contributions from excited states.
(D) is the "zero-field-splitting" tensor, and the low symmetry ligand
field, spin-orbit coupling, and spin-spin interactions discussed in
section 3.2.a and equation (3.17) contribute to its components. The
(A) tensor characterizes the magnetic interactions between the unpaired
electrons and magnetic nuclei that give rise to the hyperfine structure

observed in e.p.r. spectra. The (Q) tensor describes the quadrupole

interactions. The fifth term on the right-hand side of equation (4.1)
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takes the nuclear Zeeman interactions into account. The sixth term is a
second order "electron-nuclear Zeeman" contribution where the tensor

(R) = ZQBe(A) and the ijth element of A is defined by

<OL;[n > nfL 0>
o= ! (4.2)
1 E- - E
n 0

where |0 is a ground state wave function and |n) is an excited state wave
function. The last two terms in equation (4.1) are only important in
problems involving magnetic susceptibility calculations, the last term being
responsible for temperature independent paramagnetism. These last two
terms are normally too small to be considered and the spin-Hamiltonian,

equation (4.1), becomes

Mg = 8, IH.gS+ISDS+IS.AI
+ L1.Q.I- YR IH.I (4.3)

The spin-Hamiltonian must possess the local symmetry properties
at the crystal site of the paramagnetic ion. When it is multiplied out, it

is quite easily shown that for axial symmetry, (4.3) takes the following form

a 21
HE=¢e8 oH,S,*8 B (H S +H S )+D[S;-35(S+D)]
- (4.4)
S-ZI(I+1)]-yB H.I .

+ASZIZ+B(SXIX+Syly)+Q[ 3

For an orthorhombic crystal field it becomes

—

o _ . 2
‘(HS - Be(gxxhxsx+gYYHYSY+gZZHzSz)+D[Sz §S(S+l)]

+E(S%-8%) +A ST +A SI +A SI (4.5
x "y XXX X yY VY zz"z z

+ QL -—I(I+1)] + Q' (I y) - Y8y H.1 ,
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where Q' is the "orthorhombic quadrupole parameter”., It should be
noted that, in general, the principal axes of the different tensors in
equation (4.3) do not coincide.

The electronic Zeeman interaction by itself produces (2S+1)
equally spaced, effective spin levels which lead to 2S allowed transitions
(AMS=11), that coincide at the same applied magnetic field H=hv/
(geffBe) giving off © 21.4178/HX, where H is in kilogauss and 1A is
the wavelength of the microwave radiation used in the electron para-
magnetic resonance experiment, in cm.

(g) is a tensor, so geff is usually different for different
directions of H. 8.¢f Possesses the symmetry properties of the ligand
field and for a general direction specified by the direction cosines,

%, m, and n with respect to the principal axes x,y,z of the g-tensor.
%
Bogs = & B tm g +n g ] (4.6)

The second term on the right-hand-side of equation (4.3) is
responsible for the fine structure observed in electron paramagnetic
resonance spectra and also for the initial splitting of the effective spin
levels when H=0.

The third term, S.A.I on the right-hand-side of equation
(4.3) is responsible for the hyperfine structure in electron paramagnetic
resonance, e.p.r. spectra. It splits each e.p.r. absorption line into
- (2I+1) hyperfine components. In general both isotropic, Fermi, inter-
action and anisotropic direct dipolar interaction contribute to the

elements of the hyperfine tensor (A). The isotropic, Fermi, inter-
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action

H

_ 8m
=3 8, 8y B, By 6 (') I.S, (4.7)

(where 6(r’n) is the Dirac delta function) arises from electrons in
orbitals possessing 0, or s-character, or from significant polarizations
of inner pair s-electrons near the nucleus by unpaired valence electrons.

The anisotropic contribution to (A) is due to direct magnetic
dipolar coupling between the magnetic moments of the electron and the
nucleus. If the magnetic field is very strong then the electron and
nuclear spin vectors, S and I, are effectively fully de-coupled and each
is quantized separately with respect to the applied field. If 8 is the
angle between the vector, r', joining the electron-nuclear dipoles and
the magnetic field vector then this direct dipole contribution becomes

3c0526 -1
‘Hdipole N geBegN BN <_r;g_->avl's , (4.8)

If the orbital containing the unpaired electron is spherically symmetric
or i‘f the orientation dependent term has a spherically symmetrical time
average, for example, as in the Brownian motion in fluid then this
direct dipole contribution to the elements of (A) tensor vanishes.

Direct dipolar interaction between the electronic orbital
magnetic moment and the nuclear magnetic moment also contributes to
the hyperfine coupling, but in transition-metal complexes such orbit-

nucleus interaction is too small to be considered.
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It should be noted that unpaired electrons in complexes can
also interact with magnetic nuclei in ligands. This interaction leads to
further splittings of each hyperfine line in electron paramagnetic reson-

ance spectrum and gives rise to so-called "superhyperfine coupling”.

4.2 THE ELECTRON PARAMAGNETIC RESONANCE PARAMETERS OF

HIGH SPIN, S = 5/2, nd5 IONS

As pointed out earlier, in section 3.2.a, in the 6A state, the

1
ground state of high spin octahedral and tetrahedral nd5 ions, the total
electronic angular momentum is zero, and so to first-order, neither
ligand field nor spin-orbit coupling interactions by themselves can remove
the six-fold spin degeneracy. It was also pointed out that spin-orbit
coupling interactions cause the 4Tl term to be mixed in with the ground
6A1 term to first order, cf. p.34. Although to first-order spin-orbit
coupling cannot remove the six-fold degeneracy of the ground state
nevertheless the six-fold degeneracy can be subdivided into a two-fold

degenerate pair of levels, I', and a four-fold degenerate quartet of

7
levels, FB’ of the same energy. As far back as 1934 Van Vleck and
Penny38 found that their calculations on nd® systems had to be extend-
ed to fifth-order in perturbation, involving simultaneously a ligand
field of cubic symmetry and spin-orbit coupling, before they were able
to remove this six-fold degeneracy. Their calculations enabled them

to introduce the Hamiltonian for a 655/2 ground state ion in a cubic

field in the following form
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- 1 1red.c4.c4.1 2 _
sz = 8B H. S5 a'lS, 48 +5 -2 5(S+1)(387435-1)]

+ AS.I - yB H.I (4.9)

where the second term on the right-hand-side arises as a result of
these higher order interactions. Van Vleck and Penny found that the
constant a' in equation (4.9) is given by
k'
a't —p———p (4.10)
E(P)~-E("S)

where K' is the ligand field matrix element, <nd[V:(;’t [nd>, A is in cm—l,
and 4P and 6S are terms of the free ion. In fact the second term on
the right-hand-side of equation (4.9) is an operator which is equivalent
to the potential term of the fourth degree with cubic symmetry that
satisfies Laplace's equation, i.e. x4 + y4 + z4 - %r4 of equation (2.9).

When the six-fold degeneracy is removed in the zero magnetic
field, the energies of the two-fold doublet, F7, and the four-fold
quartet, F8’ states are -2a' and +a' respec’cively.56 The four-fold
degenerate level may show a further splitting due to Jahn-Teller
dis‘cortion.s2 However, such zero-field-splitting for octahedral nd5
ions, S=5/2, is very small even in the solid state. An applied magnetic
field prizes the six-fold degeneracy apart and gives rise to spin energy
levels at * % gBeH, * % gBeH, and * % gBeH, and thence a single

isotropic electron paramagnetic resonance at g = 2 which is very easily

detected. 52
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Much later, Abragam and Pryce70 pointed out that spin-spin
coupling interaction can also contribute small amounts to the observed
separations of these levels but to first-order, only if the actual ground
term deviates from spherical symmetry. They introduced another zero-
field-splitting term of the form D{Si - —:3[— S(S+1) } into the spin-Hamiltonian
and suggested that it arises because small ligand-field components of
tetragonal and trigonal symmetries cause a slight distortion of the electron
distribution within the nd5 system. The spin-spin interaction energy
then depends on the spin orientation. They found that, to second-

2

order, interactions from this source contribute an amount D(Sz - ﬁ)’

cf. section 3.2.a, equation (3.17), to the spin-Hamiltonian, where

u(g? /)
D ¥ — (4.11)
E("D)-E("S)
where U = < 3d|UJ|4s >, U = ¢ fA 32%-r%), and E(°D) in the

energy of the D term arising from the excited {nd4(n+1)s] configuration.

For an nd5 ion in anaxially symmetric site, complete calculat-
ions show that other terms also contribute to the spin-Hamiltonian.

The most general spin-Hamiltonian, for the nd5 ions then becomes

Mo =g,,8.H,S, +gB (HS + H.S )

+

6 al[s +sy+s -% S(S+1)(35%+35-1) ]

F 4 2 2 2 2
+ c25[35 S) ~30S(S+1)S. +255. -65(5+1)+35°(5+1)°]
+D[s® -Lg(s+1)] +A ST +B(SI +S.1)
z 3 z'z X X vy
+ Q1% -L 1+ - vB. H.I : (4.12)
Z 3 N * :
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in this, the z-axis is the axis of distortion, and the terms in D and F
correspond to axial field components of the second and fourth degree,
respectively. When all the interactions are now taken into account, the
6A1 term is finally resolved into three Kramers' doublets, usually
separated by less than 1 cm—l, i.e. there are small zero-field-splittings.

3

On inserting the value S = %, equation (4.12) becomes

_ 1, /4 4 4 707 2 _ 35
1’{5 = gB H.S + z?2 (Sx + SY + SZ T ) + D(SZ 12)
7 4 95 .2 , 81 '
+ %F(SZ iz SZ + T_()_) + A S.I . (4.13)

The energy level diagram develops as shown in Figure (4.1).
Experimentally, g is isotropic and is very close to 2, and A is isotropic,
a' and D are usually very small and F is almost negligible. The final

energy levels are given by the relationships, (4.14), (4.15), and (4.16)

E,. = t%gsefn%) (4.14)
+2
5
2
E, = t3g8H- & (4.15)
+_
)
E, = + 3 gBH - ? (4.16)
2

It should be noted that because of the zero-field-splitting interactions
the transitions AMS = * 1, now no longer have identical energies, and
electron-electron interactions, fine interactions, cause five fine

structure components to be obtained in the electron paramagnetic
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h 4h + spin-orbit H >

Figure (4.1). Lowest enexgy levels for ndS ions in oh and D4h symmetry.

The effect of spin-orbit coupling and an applied magnetic

field is indicated, along with the e.p.r. transitions
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resonance spectrum. Naturally occurring ruthenium contains a number
of magnetic nuclear isotopes for which I = 5/2, so that in principle,
hyperfine interactions cause these five fine structure components to
split further giving rise in general to a complex electron paramagnetic

resonance spectrum pattern.

If the S = 5/2 ion lies in a site of orthorhombic symmetry or

lower, then the spin-Hamiltonian of equation (4.13) must be modified to

o _ 1, b 4.4 707
-HS - gBe(HXSX+HySy\LHzSz) tge (Sx+sy+sz 16"
2 35 2 .2
+ D(SZ - 1—2) + E(SX—Sy) + A(SXIX+Syly+SZIZ) (4.17)

where E is the orthorhombic splitting parameter. In many S = 5/2
systems the second and fifth terms on the right-hand-side of equation
(4.17) are small and in such cases the spin-Hamiltonian

HC = g8 H.5+DS? - § S(5+1)] + E(s2-82) (4.18)

2
y
then suffices. Many studies involving this spin-Hamiltonian have been

65,72-76 and energy level schemes derived and g-values

carried out,
measured. The results of these studies show that it is useful to
recognise three limiting situations for high spin, S = %, nd5 systems
and these three cases are summarized in Figure (4.2). In the first
limiting situation the zero-field-splitting parameters D and E are much

smaller than the magnetic field energy, gBeH and then the g-factor is

2 and the spectrum already described is obtained.



gBeH>>D,E

Figure (4.2).
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D>>gBeH,E E>>gBeH,D

g'=(0,0,10) =(0.61,9.7,0.86)

g'=(6,6,2) g'=(9.7,0.61,0.86)

g "(0 O 6) <|~(4 29

£AM

Energy levels and apparent g-values assuming that the
Zeeman term (left), the axial fine structure term
(centre), and the orthorhombic fine structure term
(right) are much larger than the other terms.

Spin-Hamiltonian, 492 = gBeH.s+DS§+E(Si—Si)
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When D>>gBeH, then the ground doublet is well separated
from the excited doublets so that if only those terms in the spin-
Hamiltonian that depend on Zeeman interactions are considered then the

Hamiltonian

5,
Hs & - g s

with six basis states, ]% , MS>, may be replaced by a new effective

spin-Hamiltonian with S' = %

1, _ |
Hs B = eypn,.s, + g8 (s, +HSY)
this has two basis states [% , MS>. It follows77—79 from
11 11 _ 51 51
(37 l8018H,S,133>=<z7[8BHS[53>
11 +.-; 11 _ 51 51
(T3 lEL BHS | 75> =< 35 g 8HS| 35

that glll = g2 and gi = 3g=~6 as noted on Figure (4.2).

A number of applications concerning the g' factor have
recently appeared80 in the literature for several nd5 ions doped into
ZrF4 glasses. Also several reviews concerning electron paramagnetic
resonance studies of high spin, S = 5/2, nd5 complexes have been

reported by Por1:e81 and Gatteschi.82
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4.3 THE ELECTRON PARAMAGNETIC RESONANCE PARAMETERS OF

LOW-SPIN, S = 1/2, nd> IONS

In the presence of a strong octahedral crystal field, the five
d-electrons in an nd5 ion occupy the three orbitally degenerate tZg_
orbitals leading to an S = % ground state whose spin—Hamﬂtonian52’58’62
can be written experimentally in the form (4.18)

_H = B.lg

+g H S +g, H S +A T S +A 1S +A 1S

1 XX x X °yyV Y X X vy 2272 2

2 (4.18)
In the octahedral limit the three tzg— orbitals are degenerate so that the
unpaired electron then possesses three-fold orbital degeneracy. The nd5

ion in that limit therefore has a strong orbital component in its magnetic
properties, which enables it te couple strongly with the vibrational modes
of both the complex and its lattice. In this limit, therefore, the g-factor
differs markedly from the spin-only value, 2.00232, electron spin-
relaxation times are very short and e.p.r. spectra are very broad, so
that very low temperatures are needed in order to study the e.p.r.
phenomena of these systems. These experimental observations essentially
still hold for axially distorted or even orthorhombically distorted "octa-

hedral" nd5

low-spin ions. Theoretical estimations relating spin-
Hamiltonian parameters to electron distributions in such complexes, were
carried out by Stevens,83 and then in more complete form by Bleaney
and O'Brien,84 and further extended by Griffith,4’85 Thornleys6 and

others,87 who all used the hole formalism in which the nd5 low-spin

.6 . . -
system is treated as a spherically symmetric tZg configuration containing



one positive hole, i.e. the nd5 system is formally equivalent to an nd

hole.

Theoretical studies of the g-tensors of low-spin nd5 systems
whose symmetries are lower than octahedral, and even tetragonal, have

4,81,82,84,88-107

been carried out by several authors, and their work

has been extended by Hill108 to incorporate effects of configuration

4 . .
e is mixed into

interactions, in which the excited state configuration tZ

the ground state configuration tg.

If an octahedron is compressed along its z-axis then the axial
contribution, A', to the crystal field interaction lowers the energy of the
dxy—orbital relative to the dXZ and dyz degenerate pair, and even this
degeneracy is removed by an orthorhombic contribution, V", to the octa-
hedral field. Often in tg complexes the crystal field parameters A', V"
and the spin-orbit coupling, gnl, are all of the same order of magnitude
so that rather than use basis function z{(xy), n(xz), and &(yz) in

perturbation calculations leading to spin-Hamiltonian parameters, linear

combinations of these of the form
[1> =—(/2l) In(xz)+&(yz)>, |-1> = /é— In(xz) - i&(yz)>, and ¢, T(xy),

are used instead as basis. When the five tg electrons are fed into these
orbitals, the following six basis orbital wave functions, eigenfunctions of
the free-ion and octahedral crystal field interactions, and of the form

2 . 108
I TZMSML> are obtained

136
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2. 1 + I 2. 1 - -2

|°T, 5 1> = 1> =-1-1¢2p ["T,=5 1> = [ = [1-1 ¢

[T, 5 0> = [g0= -1 -1 ¢p> ["T-5 0> = [gd= [1-1 5> (4.19)
2., 1 N 2 1 P

|°T, 5-1> = |-D= |1 -1 ¢ |"T,=5-1> = |-1>= |1 -1 >

Perturbation of these simultaneously by low symmetry components of the
ligand field interactions and the spin-orbit coupling leads to two identical

3 x 3 matrices

+ - +
[+1 > l cl> 1>
+
| £1> | 28'+(E_,/2) 0 v'i2
F 0 A £ IVZ
_+
| 1> v"/2 € o /v2 28'-(E,/2) ( 4.20)

It should be noted that, if the one-hole formalism is used then the
perturbation matrices that are then obtained, are the same as in (4.20)
but 2A' is subtracted from the elements containing it.

Diagonalization of the two identical matrices, (4.20), then leads
to eigenvalues and eigenfunctions of the free ion contribution, all the
crystal field contributions, and the spin-orbit contribution to the
Hamiltonian of the t5

2

of the 2T2 term is resolved into three well separated Kramers' doublets.

Eigenfunctions of each of these Kramers' doublets must

configuration. In this way the six-fold degeneracy

obviously94 have the form
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n - +

+ n 1t
v, =A [ 1>+B | >+C |-1>

* noo- n + noo=
v, =A[-1>-B | g >+C |1 (4.21)
1" " n I|2 "2 “2
where A , B, and C arerealand A " + B " +C ~ = 1. In the case
of axial symmetry c' = 0. The development of the energy level scheme

for these calculations is shown in Figure (4.3).

As shown in the last stage in the development of Figure (4.3),
the g-tensor components for the S = % system in the lowest Kramers'
doublet are obtained by carrying out a standard perturbation calculation
involving the Zeeman interaction VZ = BeH(geS + k'L), where k' is the
orbital reduction factor which takes account of covalent interactions in
the complex. Final results for the g-tensor components turn out to be
as shown in (4.22)

gxx - Z[ZA"C" B BHZ + /2K Bn(cn B A")],

Eyy —-2[2a"Cc" + B"% + /2K B"(A" + C")],

g =_2[AIIZ B BnZ + CnZ .

ZZ

n2 _ c"z)] (4.22)

k'(A
If configuration interactions, in which the tg( 1'I'Z)e and

tg( 3T2)e configurations are mixed in with the ground tg configuration,

are taken into account, then the orbital reduction factor is modified to

]
become K", where

12B

K" = (1 + =) k' (4,23)
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Figure (4.3).

2
E
g/ F—
’
/
/
10Dg (or A) -
” “
E ”"
-
- " At
E z” v N
P I
’ Seo L
~ "/ Ny
A E
’
2T‘\_‘L_/
\ ]
2 A
g \\
\
N
N\
\ P4
A Y
\ Eu ',’
2 N, -— e > - - —-—.f‘
A S~el
T L]
+ + —
oh A ‘Enz v H

Energy level diagram for the 2T2 term under the
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B is a Racah parameter and E is the average value of the d-d transition
energies.
Experimental determination of the principal components of the

g-tensor, when combined with the normalizing condition A"2+B "2+C"2=1

n

then leads to solutions for A", B", Cc", and K" and thence to the

*
analytical forms of the eigenfunctions Y, and Y, in (4.21). These in

their turn then enable the secular equations (4.24) 99,104

na _ n2

V"/(égnz)=—[(A"/2_ + B"y/3v2][C"/(C A"

) AN nosy l ] i n
A'IE o =ATI(B"Y2) - 5+ (BAT/CT(VI/6E )

B/E_, =A"I(B"YD ~($('IE, ) (4.24)

corresponding to (4.20) to be solved, and thence values of Al/gnl’
V"/gnﬂ" and E/Eng to be deduced from electron paramagnetic resonance
measurements. These electron paramagnetic resonance measurements
therefore lead to experimental determinations of the separations in the
energy level diagram on Figure (4.3).

It should be noted that paramagnetic resonance measurements
give only the magnitude of the principal components of the g-tensor.
They do not give the signs of these components, nor do they correlate

g1» 85 and g3 with By gyy’ and g,, If the complex possesses

three-fold or higher symmetry axes, however, the g,, component may

be assigned to the unique component of the measured g-tensor, and

then eight possible sign permutation combinations need to be (:onsidered,.85’91
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For an axially symmetric tFZJg complex, it can be shown?4’93’109’

110 that the expressions for the g-tensors, equation (4.22), become
11 1.3
_ 3(4 2 gnJL) _ A ¥ gnﬂ,
811 -1+ —x 8 ° 1+ — (4.25)

where X = [(A' - 2 £ 324+ 262 12, Elimination of the ratio 4A'/E

2 ’ng nf ° nl
yields the theoretical plotllo of the gy versus g; shown in the solid
curve in Figure (4.4). The experimental points shown for Ru3+ and

Ir4+ fit the theoretical curve quite well and in‘dicate, cf. expression (4.21),

that in these complexes the unpaired electron lies essentially in a metal
108
ion dXY orbital :Expressions (4.22) show that a positive 811 value

arises if B"2 > A”2 + C"2 + k' (A"2 - C"Z) i.e. the unpaired electron

lies in a metal-ion d orbital.
Xy

84,111,112

More complete analyses, which consider the hyper-

fine coupling tensor components Axx Avy’a'ndAzz also enable information
to be obtained about the mixing coefficients in equations (4.21). For

axial symmetry Axx = Ayy, and

o 16 n2 2V2 non n ng . n2
AL =P ls-(F)A " -(=)AB +k (A B 9]
- ol _ 15vV2, ,u_n N 112
Al =P [7 (-———7—)AB + kB 7] (4.26)

where the constant P" is

el
"

-3
2Y BBy <70 (4.27)
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0 Ir

-

Figure (4.4).

Experimental (e and o) and theoretical

(—) g-values for the configurations 4d5

and 5d5 in strong crystal fields of
approximately octahedral symmetry
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70,113 The poiar—

and k" is the so-called core-polarization constant.
jzation and direct contact contributions, the Fermi contribution, to the

hyperfine coupling can now be separated by means of the relationship

X" = - K e (4.28)
when " is the core-polarization hyperfine field per unit spin.ll3 For
most transition-metal ions in highly symmetrical environments, the main
contribution to x" comes from polarization of filled inner s-orbital
electrons by exchange interactions with unpaired electrons in d-orbitals

of the complex.114
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4.4 THE ELECTRON PARAMAGNETIC RESONANCE SPECTRA OF

5

THE nd” IONS NEAR TO THE "SPIN CROSS-OVER POINT

The magnetic properties of octahedral nd5 complexes in which
the crystal field is close to the high spin, 6A1g,4——’ low spin, 2ng,
cross-over point are very dependent on temperature, on pressure, and
on minor modifications to ligands, or to the crystal-lattice, or to solvent
effects..... etc., as already mentioned in section 2.2.c. In many ways
the situation is now very similar to that encountered in, for example,
proton exchange problems in nuclear magnetic resonance spectroscopy,
and essentially two kinds of cross-over situations can be visualized.

On either side of the cross-over point one of the spin-isomers
has a lower energy than the other, and in this situation thermal equili-
brium, which may or may not be rapid, is set up between the high-spin and
the low-spin states. In this case at any temperature the observed
magnetic properties are approximately the weighted average of the
corresponding high-spin and low-spin properties.4 In the other situat-
ion at the precise cross-over point the high-spin and low-spin forms have
identical energies and then a single "mixed-spin state" exists. The spin
state at this point is then some linear combination of all the possible
states for which S = 5/2 and S = 1/2, and the spin quantum number of

the complex is now no longer a good quantum number,,115
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4.4.a HIGH SPIN +— LOW-SPIN EQUILIBRIUM IN PLANAR nd5

COMPLEXES

The theoretical formulation of the behaviour of nd5 systems at,
and near to, the cross-over point were developed by Griffith.él’79
During the course of this work, he discussed the magnetic properties of
some of the planar nd5 complexes, such as the hydroxide, fluoride, and
a quo-complexes.

He assumed that in these complexes the d-orbitals are split by

the crystal field into four sets

E(dxz) = E(dyz) = 0 1
E(dxy)
- 4 (4.29)
E(d ;) = b
z

E( , ) = c

x2-y2 J

where 0< }; < ; Then in zero-field the eigenstates are

* 1
Vs lrp

* 5 3
Y, = al|i > +a2li 5> (4.30)
+ 5 -3
by = a2|i -2—> - a1|+ -2->

where ay and a, are real. These are then perturbed by the spin-
116

Hamiltonian, referred to the above energy zero of the form
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4
y

4 4, T2 7 4
= 1 1 1
.H ZBe(YleSx+Y1HySy+Y2HzSz)+a(sx+s +SZ)+bSZ+c:SZ (4.31)
where Y'l and Y’Z are coefficients, related to orbital reduction factor and
their values are approximately uni’cy.79 If the states (4.30) have energy
separations that are large compared with the interactions due to (4.31)

then the g-tensor components for the three Kramers' doublets turn out

to be

1 _ 1 1_ 1
gll - ZYZ’ gl - 6Yl:

2 2,2 2 _ 3 =
11 ~ ZIY'2(53-1'33~2) I’ gl - 817 le V5 |-alazi:

3 e 2 2
g1 = 21y2(5a2 3a)) | (4.32)

In a sufficiently strong crystal field g,; = 2y}, and g; = 6y’1,
Griffith assumed that for planar nd? complexes of haemoglobin,

1) . This

lbi is lowest for very large zero field splittings (at least 10 cm
very large zero-field-splitting might originate from admixtures of excited
configurations for which S = 5/2 (in particular [nd4( n+l)s] and
[nd4(n+1)p] by the intramolecular field) or from admixture of states of
nd5 having S = 3/2 by the field and the spin-orbit coupling interactions.
Griffith, also pointed out that the zero-field-splitting might arise from
partial delocalization of dyz and dXZ electrons into empty m-orbitals on
the ligand.

Experimental measurements carried out on the acidic ferri-

haemoglobin and the corresponding fluoride complexeslm’118

agreed with
this analysis and their e.p.r. spectra gave g1~ 5.90 and g1 ~ 2.5 with

Y'l = 0.98 and Y'Z < 1.25.
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It has already been pointed out, in section 2.2.c, that the

4T term of the free nd5 ion can never come lowest in energy in octa-

1g

hedral complexes. However, in D4 planar compounds, Griffith4 very
interestingly pointed out that near to their cross-over point, the 4T1

term of the t4e configuration can become the ground state for a range of

2
A (or 10Dq) wvalues. As shown in Figure(4.5), a D4 crystal field splits

the 4T1 term into a lower 4A2 and an upper 4E2 set of levels. These
7

are separated by vy C', where

c' = 'f-_Aj—

Viam 147

5 Ag (4.33)

The zero-field interactions then lead to Kramers' doublets E',Ms =t -%',

the lower of the two doublets, and E",Ms = * —3—,

To second-order perturbation, the energies of the two Kramers' doublets

the higher in energy.

turn out to be

2 2
6& €
1 4 1 nk ni
M_ =3*==E(| T, 50 = — - —
[ 2 12 S(E6 E4) Z(E2 E4)
(4.34)
2 2
4g 38
3 4 3 nf nl
M_ =+ = E(| T,-500) =- Sel .
S 2 1 2 5(E6 E4) Z(E‘.2 E4)
. 4 2 6
where E4, EZ’ and E6 are the energies of the Tl’ TZ’ and A1 terms,

respectively. It follows from (4.34) that the Ms = % %— doublet lies lower
in energy if Z(EZ—E4) > 5(E6—E4), and this condition is clearly satisfied
near the (6A1—4T1) cross-over point. It is not satisfied near the

( ) 1" 27 2) cross-over point,
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These results are shown schematically in Figure (4.6). The
ground doublet passes from being pure 6A1 through being nearly pure
4

Tl at the region of the diagram where E" passes below E', and finishes

'up as pure 2T This figure holds the clue to understanding the compli-

2

cated magnetic properties of these D, species.

4
Several authors have studied the thermal equilibrium between

49,119-127 Nishida and his coworkers

high-spin and low-spin systems.
have examined, (i) high spin, (ii) low spin, and (iii) complexes near to
the cross-over point of different nd5 systems with different point-group
symmetries. Their studies of the electron paramagnetic resonance spectra
of high-spin complexes cover the range 1000 { H { 3000 gauss. Spectra

of low-spin complexes are observed at 3000 gauss, spectra of complexes
‘near to the cross-over point have signals in the range 1000 { H { 2700
gauss, and at about 3000 gauss. For this last type of complex Nishida

et 2_1_1_. observed that as the temperature is lowered, the relative intensities
of the different absorption regions change dramatically, but their resonant
field values do not change. The intensities of the absorptions at about
3000 gauss are noticeably enhanced when the temperature is lowered.

The relative populations in the high and low spin forms can be obtained
from intensity measurements of these electron paramagnetic resonance
spectra,123 and such studies show that the population of the low-spin

ground state 2T increases as the temperature decreases. An upper limit

2

for the frequency of flipping between the high-spin and low-spin forms
can be obtained when distinct electron paramagnetic resonance signals are

observed for both the 6A1 and 2T species.

2
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Figure (4.6).

2
I,

> A (10Dg)

Schematic representation of the details of the

* 5
cross-over in planar D4, Oh nd complexes. At

the left-hand side of the diagram the term energies

are ordered as in octahedral, Oh complexes. Under
* ] L1}
the influence of D4 6A1 > E + 2E, 4A2(4T1) >

2
E' + E", and T, > E' + 2E



4.4.b "MIXED-SPIN" SYSTEMS

The theoretical treatments of mixed-spin systems were
. developed by Harris.115 He assumed that the wave function for any
mixed-spin system originating from the zero-field Kramers' doublets of
an nd5 configuration could be written as a linear combination of the
twelve sextet, quartet, and doublet terms, listed in Table (4.1). The
precise details of Harris's calculations are tortuous and complicated.
His pa\pers115 are 65 pages long and the reader is referred to them for
full details, Each of the two components of the zero-field doublets does
not mix with the other in the mixed-spin system, and Harris showed that

the two sets of 12 x 12 matrices each factorize into linear combinations
7
= Z a.. ¢.. (4.35)

involving the seven basis functions listed under the heading, "E' 7 x 7

matrix" shown in Table (4.1), and further linear combinations

X.. = ) a. ¢ (4.36)

Jlisted under the heading "E' 5 x 5 matrix" in the same Table.

The degeneracies of these twelve doubly degenerate linear
combinations split under an applied magnetic field, and calculations of
g-tensor components for each of the linear combinations, can then be

carried out using the general techniques described earlier.

151
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*
Table (4.1)

E" (7 x 7) matrix

E" o Engn
¢, ]MS 0> lsro, > [STD > IMS 0>
1 52 i °a, °A, -5/2 i
2 32 i °a, °A, 2 i
3 -3/2 0 r, ‘a, 3/2 0
4 3/2 1 4'1"1 g -3/2 -1
5 “1/2 -1 ', ‘g 1z 1
6 -2 1 ’T, %g /2 -1
7 12 0 °T, ’B, ~1/2 0

E' (5 x 5) matrix

E'ot E'B'
¢ Mg oy sTO, > STD,> Mg O
8 12 i °a, °a, “1/2
9 12 0 ', ‘A, “1/2 0
10 121 *, g 12 -1
11 32 -1 e g 32 1
12 “1/2 -1 ’T, 2 172 1

*The 24 basic states in this Table can be labelled by ]SI‘MSO >, where S
is the total spin of the state, Msis the z-component of the total spin, T
is the irreducible representation of the group to which they belong, and
© is the component of that representation. Complex components, 1, 0,

and ~1 were used for the three-fold degenerate Ti representations.
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Harris showed, for tetragonal complexes, that when the field
is parallel to the molecular z-axis then the gll—factor associated with

each of the seven lp.lj eigenfunctions of the E" states is

2 (4.37)

gll(E") = |—10a"2+6b"2+6c”2-7d"2+3e"2+4f"2—2g“
where a", b", c",....etc. are the coefficients a.l]., J = 1-7, in expression

(4.35). Similarly, for the five Xij eigenfunctions of the E' states, the

811 value is

g ,(E) = |-2hn2-2in2agnoggn? (4.38)

where h", i",....etc. are the coefficients ai]., j = 8-12, in expression
(4.36).

Harris also deduced that, for tetragonal complexes, the
corresponding expressions for perpendicular components of the g-tensors
are given by

gl(E") = ]2/§a"b"+2/§d”e"+/2_c"d"—/?f"g"+2g"2| (4.39)
for an electron in an E" state, and

gl(E') = |6h”2+4i"2+/§i"j"+2/§j"2,”I (4.40)

for an electron in an E’ state.



The magnitudes of the mixing coefficients (4.35) and (4.36)

depend on the precise details of the spin-mixing processes so that the

g-components of the mixed Kramers' doublets can vary over a wide range

of values. The g11 value of the twelve doublets range from 0 to 10.
As the tetragonal field parameter c', in equation (4.33),is

changed, mixing coefficients in (4.35) and (4.36) change, and so,

therefore, do the spin-mixed 811 and g1 values. Plots of Harris's 811

and g1 values for the lowest spin-mixed Kramers' doublet versus C' are

154

shown in Figures (4.7a) and (4.7b). These figures effectively show how

spin-mixing alters 11 and g1 values of this doublet. The value of

g1 3.30 at the low-spin end of Figure (4.7a), where c' = 2000 cm—l,
reflects the fact that in this region the ground state is a pure doublet
but contains some of the character of 2E and ZB states, i.e. the
coefficients f" and g" in equation (4.37) are large. The value of gy at
this region is 1.02 due to the last two terms in equation (4.39). When
C' increases, increasing mixing of the 6A1 (ii) state then takes place,
i.e, contribution from the terms in b" in expressions (4.37) and (4.39)

6Al (i%) value of 6,

then increases. ‘gll' then increases towards the
whereas the combined effects of changes in the values of a" and b" in

(4.39) cause the g1 value to diminish and approach the value of zero in

the limit for the pure 6A1 (i%) state. It should be noted that in the

spin-mixed region, Harris's calculations indicate that for the ground state

the g, value for a sextet-doublet spin-mixed state varies from 3 to 6

and g1 from 1 to zero. Harris's calculations also predict much larger

zero-field-splittings in the spin-mixed region than those that are encount-

ered for the corresponding high-spin compounds, and lower values than

encountered for the corresponding low-spin compounds.
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4.5 ELECTRON PARAMAGNETIC RESONANCE DATA FOR Ru3+

COMPLEXES

Electron paramagnetic resonance methods do not seem to have
been used to study the electronic structure of the only reported?’3 high-
spin Ru3+ complex, NH4[RuNOCR,5].

All e.p.r. studies of Ru3+ complexes, reported91’93’94’99‘105
in the literature are low-spin 4d5 systems, and therefore their e.p.r.
properties are covered by the theory in section 4.3. For some complexes
whose point group symmetries are lower than octahedral, for example,
some of the complexes with sulfur-chelates,94 B-d;iketones,98 oximes,100
or amines,102 the experimental data, when combined with the expressions

mentioned in (4.3) yield two acceptable solutions for the electron distri-

butions in the ground state.

. . . . . 1 N
(i) The hole is in the dxy orbital, Figure (4.3); and A /gnﬂ, is

large, i.e. A" D En&l’ corresponding to a "large distortion". This
solution requires ]gzz |<[gXX|, ’gyyl and g,, 18 positive, 8 x’ g’yy are
negative.

(ii) The hole is in a linear combination, ¥ l(d +id ) and A'/&
Xz vz ni
is small, corresponding to a "very small distortion". This solution

requires |g_|>|g

xx|’ [gyy] and 8,2 Bxx’ and gyy are all negative.

n u
, and C  for some

Table (4.2) shows the values of |g, |, ]gzl, lg5|,A",B
R'u3+ complexes. Table (4.3) shows the corresponding values of k',

Ai/gng, V"/gn,Q,’ and E/Enﬁ’ cf. section 4.3.
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Very few reported e.p.r. spectra of Ru3+ complexes show

hyperfine splitting patterns. However, an e.p.r. spectrum of an

101

oc—AQZO3 crystal, containing 0.01% Ru, enriched with 91% of Ru, does

" show hyperfine spli’ctingsB1 as illustrated in Figure (4.8a). Di Simone94

1

managed to prepare a small quantity of 01Ru(de‘tc)3 (detcz diethyldithio-

carbamate) from 97% 101Ru enriched RuCSL3.xHZO, and the 77K e.p.r.

spectrum of this complex exhibits the hyperfine splitting pattern due to

1OlRu, shown in Figure (4.8b). The six parallel components of the

spectrum, due to 101Ru, I =5/2, are clearly resolved. However, the
six perpendicular components are not. Di Simone has estimated that
Ay, = 38 £ 1 gauss and A, =21 * 3 gauss for this complex. Table (4.4)

lists hyperfine parameters for several complexes of Ru3+.

The free ion values133 of <r'—3> and " for the Ru3+ ion, of

6.5 and -8.5 a.u. respectively, are only consistent with the measured
A

A11 and Al values for Ru(detc)3 if B">>A", and the ratio of 11 <0,

A1

and the hole resides in the dXY orbital of the complex. These conclus-
ions are consistent with the presence of large low symmetry distortions
in this complex. The e.p.r. data yield an estimated <r'-3> value of 2.7
a.u. This represents a reduction of 60% from the corresponding value
of the Ru3+ ion, and indicates a considerable metal-ligand interaction.
Spin-orbit coupling values also depend direct1y134 on <r'_3>, hence the
estimated <r'_3> value indicates that the Eng value in this complex is
about 480 c:m_1 compared with the corresponding value of about 1250 cm—l
for the free ion. The negative value of k", Table (4.4), yields a value
of x" = + 3,84 a.u., and this positive polarization can only be obtained

if a very small amount of direct admixture of 5s and 4d orbitals, cf.



1 1 ] 1 i J
6950 7000 7050 7100 7150 7200

H—>

Figure (4.8a). Single crystal e.p.r. spectrum obtained from
1
a sample of a—AonB doped with 01Ru, enriched

to 91%, at 20.4°C

» H—>
250 gauss
. 101
Figure (4.8b). E.p.r. spectrum of Ru(detc)3 at 77K,
101

showing hyperfine splitting due to Ru

161
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p.143 is present in order to offset the relatively small effect of direct
polarization of the inner electron by the unpaired valence electron.

Mixing of this kind is also allowed in D, complexes and in most complexes

3
of low symmetry.
. 3+ 94
Thiol complexes of Ru~ turn out to be very covalent. In
them the unpaired electron is in a molecular orbital compounded from
ligand group orbitals and the metal ion 4dxy orbital. The reduced

values of <r'“3> and £ ., and the anisotropic covalent interactions, are
ni P

natural consequences of the electron delocalization in these complexes.



- CHAFTER FIVE -

THE REACTION OF SOLID "RUTHENIUM TRICHLORIDE",

RuC%,.xH, O, AND SOLID BENZOIN, Ph-CO-CHOH)Ph
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5.1 INTRODUCTION

Most of the e.p.r. work summarized in Table (4.2) involves poly-
crystalline studies. Very few highly detailed magnetically-dilute single-
crystal studies of Ru3+ complexes have been carried out, and for this
reason it was decided to examine the reactions of Ru3+ with several oxy-
chelates, and then with the corresponding thio-chelates. The oxy- and
thio-chelates listed in Table (4.2) mostly involve six-membered-ring
chelates and for this reason it was decided originally to concentrate
attention on five-membered-ring chelates, and therefore on derivatives of
benzoin and thiobenzoin.

Several attempts to prepare Ru3+—che1ates of benzoin and its
derivatives were made, using standard methods in which buffered solutions
of Ru3+ were refluxed with the ligands. The Ru3+ source used was

"ruthenium trichloride"”, RuC2 .XHZO, purchased from "Johnson-Matthey

3
Chemicals", These solution techniques surprisingly proved to be quite
unsuccessful and so eventually the solid RuC 23.xH20"and solid benzoin,
Ph-COCHOH-Ph, were finally intimately mixed and heated together. This
procedure caused obvious reactions to take place. After a great deal of
investigation at least some of the details of these reactions were eventually
unravelled. As it turned out, they certainly did not produce para-
magnetic Ru3+-chelates of the kind originally envisaged. Instead,

some rather complex solid state reactions took place, and these form the
subject matter of this chapter of this thesis. A mixture of techniques
was used in this work, including microanalysis, 1H and 13C nuclear

magnetic resonance spectroscopy, mass spectroscopy, infrared, visible-

ultra-violet spectroscopy, electron paramagnetic resonance spectroscopy
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and magnetic susceptibility measurements. These studies and their

results will now be considered.

5.2 THE SOLID STATE REACTION: THE EXPERIMENTAL

PROCEDURE

Benzoin (1l.4g), potassium bicarbonate (0.8g), and Johnson-
Matthey Chemicals "ruthenium trichloride", RuC%,.xH,0, (0.25g) were
intimately mixed and then heated carefully at 140°C under dry conditions
for 40 hours. The mixture was then cooled and the dark brown residue

washed with hot hexane in order to remove unreacted benzil that formed

in the reaction. The residue was then extracted with dichloromethane
giving an olive-green solution extract. Chloroform could also be used
for this extraction. The residue was then filtered off and rejected,

and the olive-green dichloromethane-extracted filtrate was then left to
allow the solvent to slowly evaporate away. The olive-green residue
remaining after this evaporation was then collected and purified by
recrystallization several times from dichloromethane.

A solution of the purified olive-green solid in dichloromethane
was then finally chromatographed using a column of neutral aluminium-
oxide D. The eluant was then collected and the dichloromethane solvent
evaporated to yield an olive-green solid which showed only one spot on
a t.l.c. plate.

The carbon and hydrogen content of this olive-green solid
was determined by microanalysts. The ruthenium content was estimated

spectrophotometrically as the yellow-orange 1, 10-phenanthrolenato
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+4
ruthenium(1I) complex,[Ru(CleSNz) 3],us'mg Ru(acac)3 as standard.135

The results listed in Table (5.1) are consistent with the empirical

formula RuC 56H4202' Corresponding calculated percentage compositions

based on this formula are also given in Table (5.1).

Table (5.1)

Microanalyses and spectrophotometric results obtained from

the olive-green compound, RuC. . H O

56"74272
Element Calculated ¢ Found %
C 79.33 80.8
H ’ 4,95 5.2
Ru 11.93 11.30
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5.3 THE PROTON MAGNETIC RESONANCE SPECTRUM OF

OLIVE-GREEN RuC 56§4292

A 90 MHz lH nuclear magnetic resonance spectrum obtained

from a solution of RuC O, in CDCSL3, recorded on a PERKIN-ELMER

5654202
spectrometer operating at room temperature, is shown in Figure (5.1).
An expanded form of the same spectrum is shown in Figure (5.2).

Except for minute amounts of impurities in the olefinic region,
in the range 5.24 6§ 5.5, and in the aliphatic region, at §® 1.3, the
only absorptions in this spectrum fall in the chemical shift range
6.4 £ § £ 8.4. Furtherrr;ore, this spectrum consists of sharp resonance
signals superimposed on top of a very broad background absorption.

Integration of the aromatic region of the spectrum enables it
to be subdivided into two main regions, whose relative intensities are
1:2.5, or any multiple of these values, for example 12:30. Alternatively
the spectrum can be described as consisting of a sharp region, decompo-
sable into two parts whose relative intensities are 1:1.5, the latter being
superimposed on a broad absorption of relative intensity 1, giving rise
to three regions whose relative intensites are 12:18:12.

The expanded lH n.m.r, spectrum in Figure (5.2) shows
these three sections of relative intensities 1:1.5:1 better, the first two
figures referring to the sharp region of the spectrum and the last to
the broad region.

Superimposed on the broad back-ground mentioned above is
the sharp resonance from CHC 3 in the CDC%, used as solvent, and

two additional sharp signals in the region 7 { 8§ ( 7.3 that may be
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assignable to highly conjugated olefinic residues.

The proton resonance spectrum shows that all protons in this
compound are aromatic, or are mainly aromatic along with some highly
conjugated olefinic protons. The sharp pattern in the spectrum,
consisting of the region of the relative intensities of 1:1.5, is exactly

the pattern expected for the five protons of six equivalent mono-

H
substituted phenyl residues 2 1 » whose theoretical spectrum is
constructed stepwise in 3H Hy Figure (5.3). Proton chemical
2 1

shifts and coupling constants extracted from this spectrum are listed in
Table (5.2). The broad underlying region of the 1y n.m.r. spectrum
must arise either from afurther twelve aromatic protons, or from further
aromatic protons and protons from a highly conjugated olefinic residue

that is attached to the aromatic rings.

Table (5.2)

lH chemical shifts and H-H coupling constants obtained from the

spectrum of the mono-substituted phenyl residue?1 @Y'
3
in RuC.,H,.0

56 74272 H, H.

1

1H Chemical shifts (§) H-—lH Coupling constants (Hz)

H1=Hl- 7.945 J12=J23 8.13
H2=H2| 7.530 J13 1,98
H 7.464

3
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7.464
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Figure (5.3)
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5.4 THE 13C NUCLEAR MAGNETIC RESONANCE SPECTRUM OF

OLIVE-GREEN RuC/H, .0,

13C-{lH}, partially decoupled 13C—{lH} and

Fully decoupled
fully coupled 13C nuclear magnetic resonance spectra of a solution of
this compound in CDC5L3, are shown in Figures (5.4), (5.5) and (5.6),
respectively; the spectra were recorded on a VARIAN 100 n.m.r.
spectrometer operating at 2516 MHz. These spectra show quite clearly
that carbonyl groups and aromatic groups, plus possibly highly
conjugated olefinic residues, only are present in this compound.

In the fully decoupled 13C—{llﬂl} spectrum shown on Figure (5.4),
the relative intensity of carbonyl carbon to other 13C signals turns out
to be 1:(28%*1), or 2:(56%*2). Although Overhauser effects can seriously
influence the equation of intensities with numbers of nuclei in such
spectra, nevertheless the ratio of 2:(56%2), when considered in conjunct-
ion with the microanalytical results, indicates that there are two carbonyl
residues and 54 other carbon atoms in this compound. Furthermore, on
Figure (5.6) the 13C carbonyl region consists of two peaks separated by
3.7 Hz which collapse into a single resonance in the 13C—{1H} decoupled
spectra on Figures (5.4) and (5.5). The two carbonyl carbons are
therefore equivalent, and each interacts weakly with one proton in the
molecule.

Figure (5.4) shows that four different types of carbon atoms
contribute to the aromatic region of the spectrum, and their relative
abundances are in the ratios 1:1:2:2. Furthermore, one of these is a

tertiary-carbon atom and all other carbons are attached to one hydrogen
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atom. An additional broad unresolved spectrum also underlies the
aromatic carbon region, and it may indicate the existence of other
_ aromatic 13C-atoms, or else additional highly conjugated olefinic carbon
atoms.

Figure (5.7) is an expanded version of the aromatic region of
the 13C n.m.r., spectrum of RuC56H4202, and Figure (5.8) shows how

it can be reconstructed from a superposition of the spectrum of equiva-

Hyy <
H; Y
Hy  “Hy

constants for the phenyl residues extracted from Figure (5.8) are listed

lent mono-substituted residues of the form

13C chemical shifts and 13C--lH coupling

in Table (5.3).

The microanalytical results, the 1I—I n.m.r, spectrum, and the

13C n.m.r. spectrum all indicate that the formula for this substance is

RuC56H4202. The magnetic resonance spectra show that the molecule

contains six effectively "equivalent" mono-substituted phenyl residues

whose magnetic resonance spectra are broadened for some reason or

another. The 13C n.m.r. spectrum reveals the presence of two

1 where yl is either a carbonyl group or is a conjugated

olefinic system, or is possibly another aromatic residue,

equivalent carbonyl groups in this compound. Furthermore, there are
no other functional groups present in the organic fragments in this

molecule. Both the 1

H and 1?’C n.m.r. spectra show that there are
additional aromatic, and possibly highly conjugated olefinic residues
present in this structure and that their spectra are broadened,

presumably by molecular motions at these sites in the molecule, which
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1 1
c3,c3 c2,c2
c4 Cl
/I \\ ," . \\
‘ Nt , AN
’// 3 ;':"'&?';(,I " “\\\
[ J( C4— H4) N J( c2- H2)‘
1
; J( c3- H3)

gt

J(

140 135 130 125
Figure (5.8)
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Table (5.3)
13 . . 131 .
C chemical shifts and "“C-"H coupling constants for the phenyl
Hp o My
residues ' (/ 3 ‘%c 'of RuC56H4202 compound
Y ]
VA z
H, H,
13 . . 13,1 .

C-Chemical shifts (ppm) C-"H Coupling constants (Hz)
C1 132.9 CZ—H2 161.02
C2= S 128.9 C3—H3 159.01
C3=C3| 129.7 C4—H4 169.07
C4 134.8 Cl—H2=C1—H2| 8.05

CZ-H3=C21-H3| 8.05
C3-H2=C3—H4

8.05
C3|-H2|=C3I—H4

10.06

C4-H3=C4—H3|
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are slow on the magnetic resonance time scales. These broadened
regions involve 12 protons and 18 carbons. The broadened region may
therefore be due to two additional phenyl residues plus another six
carbons which would need to be highly conjugated in order to fall into

the aromatic region of 130 n.m.r. spectrum.

5.5 THE INFRARED SPECTRUM OF OLIVE-GREEN RuC56}_{4292

The infrared spectrum of solid RuC 202’ in a KBr disc,

5654
is shown in Figure (5.9) and the wavenumbers and the assignments of
the peaks in this Figure are listed in Table (5.4); this spectrum was

recorded on a PERKIN-ELMER 580 infrared spectrometer.

Figure (5.10) is a line diagram of the superimposed infrared

136 136a

absorptions expected for, (i) a carbonyl residue,

136b

(ii) a mono-

136¢

substituted phenyl residue, (iii) an olefinic residue;

acetylenic residue.l36d When the composite line spectrum in Figure

and (iv) an

(5.10) is compared with the experimental spectrum shown in Figure

(5.9) then the following points become obvious.

I - This compound contains two carbonyl residues which are not quite
equivalent in the solid.  This follows because two very strong
absorptions, at 1660 cm_l and 1680 cm_l are observed in the C=0 stretch
region, whereas only one strong sharp absorption is observed at 645
cm—l, the region assigned to the O=C-C bending vibrational mode(s).
The high intensity of the band at 645 cm ! is caused either by a

relatively large change in the electric dipole moment during the vibration,

or by mixing with in-phase, out-of-plane ring bending modes.
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Table (5.4)

Infrared data, in wavenumber, of RuC_,H, O, complex

56 4272

182

band, cm-1

Assignment

3060(m),3030(vw),3010(vw)
2960(vw),2930(m), 2860(vw)

2000(w),1975(w),1940(w)
1915(w) ,1820(w) ,1780(w)

1720

1680(vs), 1660(vs)
1615(vw),1595(vs), 1580(s)
1505(m)

1490(m), 1450(vs)
1400(w,br)

1325(m), 1315(vw),1290(m)
1250(vw),1215(vs)

1178(s),1165(w)

1100(m)

1073(s),1025(m)

1000(s)
970(w,br), 940(m),875(vs),
850(vw),795(s),765(m,br),
720(vs)

697(vs),680(s)

mono-substituted aromatic
aliphatic C-H stretching

aromatic overtone and combination
bands or summation bands of X

coordinated C=C stretching

C=0 stretching

aromatic C=C quadrant stretching
coordinated aliphatic C=C

aromatic C=C semicircle stretching
aliphatic C-C-H bending

ring-C vibrational mode

C-H in-plane and ring deformation
+ C-C stretching

C-0O stretching
_H
c-C in-plane bending + ring-
semicircle stretching + C-C stretch-
ing

ring deformation

_H
out-of-plane C-C bending, five
adjacent H-waging + conjugation

_H
out-of-plane C-C
bending

in-phase

[contd.]



Table (5.4) contd.

band, cm Assignment
¢
645(vs),618(w),595(w) c/c\‘ bendin
, , \ /O g

580(w),570(w),540(w,br)

468(m) ,460(vw),420(w)
335(m), 275(s)

Ru-C, Ru-ring stretching

ring deformation

s = strong; w = weak;

vw I very weak; br = broad.

= medium; vs = very strong;

183
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II - Most of the other peaks in the observed i.r. spectrum arise from
well-documented absorptions that are characteristic of mono-substituted
phenyl residues. Absorptions that can be so assigned are denoted by
(#) in Figure (5.9). Infrared absorption peaks within the range
3000 L o £ 3100 cm ! arise from C-H stretching vibrations of these mono-
substituted phenyl residues, and this region of the spectrum indicates
that Ru056H4202 contains several such residues. This deduction is
consistent with the observation that within the region 1750 £ o £ 2000
cm_1 there appear to be two sets of four peaks of the kind normally
observed as "summation bands" associated with a mono-substituted phenyl
residue, again implying the presence of two major types, at least, of
mono-substituted phenyl residue in this compound.

When all the i.r. absorptions assigned to C=0, C=C-C=0, and
to @—Y are subtracted from Figure (5.9) then the peaks labelled (*)
remain, and when attention is focussed on these then the following

deductions emerge.

(i) Absorptions in the range 2860 { o £ 2960 cm—l are assigned to

aliphatic and conjugated olefinic C-H stretching modes of vibration.

(ii) The peak at 1720 cm_l, and the nearby shoulder, may indicate

Ph Ph
the presence of coordinated diphenylacetylene Nc=c”

in this
compound. The C=C stretching vibration in Ru free
diphenylacetylene is found at 1945 cm-l, and this absorption shifts to
lower frequency when the triple bond is coordinated to a transition-

metal ion. The triple bond is then effectively reduced to a double bond,

and the (.E=9 absorption is then found between 1700 \<\ o £ 1800 cm_l.137’138
M
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(iii) The band of medium intensity in Figure (5.9) at 1505 cm-1 is
assigned to a C=C residue, or to a conjugated C=C residue, coordinated
‘té ruthenium, C i C. A free olefinic C=C stretching mode absorbs at
(1640+50) cm"1 Ru whereas stretching modes of C=C residues coordina-
ted to a transition-metal ion are known to absorb in the range

1500 £ o § 1565 cm_l.136’137’139’140

(iv) The weak i.r. absorption at 1400 crn—1 confirms the presence of an
H

’
aliphatic C-H residue: the absorption is ascribed to an aliphatic C - C

bending mode of vibration.

(v) Weak bands at 580, 570, and 540 c:m_1 in Figure (5.9) must come
from metal~-ligand modes of vibration. They imply that several kinds of

ligands are present in this compound.



5.6 THE ELECTRON IMPACT MASS SPECTRUM OF OLIVE-GREEN

RuCqeHy20;

The microanalytical results, the lH and 13C nuclear magnetic
resonance spectra, and the infrared spectrum of this compound are all

consistent, in that they show that its ligands contain,
(1) two carbonyl residues,

(ii) at least six, and possibly eight, mono-substituted phenyl residues,
and
(iii) a further six additional carbon atoms which must be aromatic or

else must form part of an extended conjugated system.

There also appear to be some aliphatic protons in this substance. The
infrared spectrum of this compound is also consistent with the presence
of an acetylenic and a conjugated olefinic residue in this molecule, and
both of these must be coordinated to the metal ion. Furthermore, .the
infrared spectrum shows that the carbonyl residues are not coordinated
to the ruthenium ion.

The mass spectrum cracking pattern, recorded on a KRATOS
MS12 mass spectrometer, is shown in Table (5.5). It enables a number of
molecular fragments to be identified and when all the bits and pieces of
the jigsaw puzzle are put together, the structure of this complex is

deduced to be

187
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The peak of highest mass number in Table (5.5) belongs to

the fragment [RuC42H3202]+, for which the ratio m/e = 670. This
fragment loses its ruthenium atom to give {[C42H3002] + 2H}+,
m/e = 566 * 2 and this can fragment by four possible routes. As shown

in Figures (5.11) and (5.12), the first route, (I), starts with the loss
of [PhCO]+ to give a relatively intense peak in the spectrum that arises
from {[C7H50] + 2H}+, m/e = 105 * 2, and another much less abundant

peak due to {[C 0] + 2H}", m/e = 461 * 2, This last fragment

35t 25
then decomposes further, as shown in Figure (5.11), to produce
]+ 2HY, m/e = 178 * 2,

{[c ] + 2H}, m/e=356 * 2, and {[C

2820 14710
respectively. This last fragment is identified as [PhCCPh] i

The decomposition pattern of diphenylacetylene is well documen-
ted in the literature,141 and it is known that inside the mass spectro-

meter it decomposes to yield the following fragments, [CIZH8]+’

+ _ eq. + _ . +
m/e = 152; [C7H5] , m/e = 89; [C6H4] , mle = 76; [C5H3] s

m/e = 63; [C4H3]+, m/e = 51. The mass spectrum of the olive-green

RuC56H4202, Table (5.5), shows the presence of all of these fragments
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as relatively intense bands at ratios m/e = 178 * 2 (Parent PhCCPh)
and at 152 * 2, 89 + 2, 77 * 2, 63 * 2, and 51 * 2, respectively.

The second most intense peak of the mass spectrum of the olive-green
RuC56H4202, is found at m/e=77 * 2, and the third most intense peak
at 51 + 2. The fragment {[C7H50] * 2H}+, m/e = 105 * 2 decomposes

to give, m/e = 89 * 2 and this in its turn decomposes to give first

{[C6H5] + 2H}+, m/e = 77 £ 2, and then {[C4H3] + 2H}+, m/e = 51 * 2.142

The second decomposition route available to {[C 02] + 24},

42130
m/e = 566 * 2, route (II) in Figures (5.11) and (5.12) gives rise to two

fragments {[C 0] + 2H}+, m/e = 372 £ 2, and {[C 0] * 2H}+,

2820 14710

m/e = 194 + 2. The first of these loses [PhCO]" to give {[C 1x2H}",

2115
m/e = 267 * 2, and then {[C14H10] + 2H}+, m/e=178 * 2 which fragments
further, as already described. The second fragment m/e=194 % 2,

produces {[C7H50] + 2H }+, m/e =105 * 2, which fragments as described

above.

The mass spectrum of RuC56H4202 has a relatively intense
peak that is assigned to a fragment {[C ,H 0, * 2H}', m/e=210 * 2.
It is believed that this is produced by a skeletal-rearrangement involving

the fragment {[C 02] * 2H}+, m/e=566 * 2, as shown in route (III)

42H30
on Figures (5.11) and (5.12), which then fragments to produce

{{c 1 + 2}, m/e = 356 * 2 and {PhCOCOPh] *+ 2H}', m/e = 210 * 2.

28520
This last fragment is essentially an ion of benzil, or of a reduced benzil

and both of these are known to undergo a skeletal—rearrangemen‘c142

inside the mass spectrometer {[C13H90] * 2H}+, m/e = 181 * 2;
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{[C13H9] + 2H}, m/e = 165 * 2; and{[C 2H] , m/e = 152 * 2, this

8] -
last being the biphenylene radical.l42 This decomposition route is a minor
one for the olive-green solid, but nevertheless it is there, and it is
. important in providing information about its structure. Other investigat-
ors showed142 that the protons that are lost in the last step of this process
come specifically from the ortho positions of the mono-substituted phenyl
ring systems. The second fragment {'[CZSHZO] + 2H}, m/e = 356 * 2 that
is produced in route (III) fragments, as already described above.

The fourth decomposition mechanism available for breaking-down

{[C ] + ZH} , m/e = 566 * 2, route (IV) in Figures (5.11) and

42 30

(5.12) involves a further skeletal-rearrangement that produces the "dimeric"

I+
1]
+

{[Cc 2H}+, m/e

{{c

0] 388 * 2 which fragments to form "monomeric"

28H20
0] + 2H}', m/e

14 10 194 * 2 which then breaks down, as already

described above. The "dimeric" fragment, m/e = 388 * 2 also gives rise

to {[C 0] + 2H}', m/e = 283 * 2, by loss of [PhCO]", and further

21 15

decomposition of this fragment then gives rise to two fragments,

m/e = 105

i+

2 and m/e = 178 * 2, or another fragment {[C14 100] + 20},
m/e = 194 * 2 by loss of [PhCO] . This then fragments, by loss of a
phenyl group to give {[C H O] +2H}', mle = 117 + 2. By cleavage of a
phenyl group the fragment {[C28 200 5] % 2}, m/e = 388 * 2 gives rise
to another fragment {[C28 15O] + 28} , m/e = 311 + 2, which also
produces fragments, m/e = 194 * 2, and m/e = 117 * 2,

The microanalysis results, the 1H and 13C nuclear magnetic
resonance spectra, the infrared spectrum and the electron impact mass

spectrum of the olive-green RuC56 42 o are all consistent with the
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assignment of the molecular structure

to this compound. It should be understood that the additional two
hydrogen atoms in this formula belong to the several tautomeric forms
of the ligand [HZPhCO(CPh)4COPh]. This formula accounts for the
weak sharp OH and C-O peaks observed in the infrared spectrum of the
solid R“C56H4202’ Figure (5.9), provided that in the solid the tauto-

meric equilibrium

Ph  Ph Ph_ Ph
Ph hoo= Ph

LAeh ph 5 \en ph
N e

Ph

0 OH

is very much over to the left~-hand-side in favour of the diketone form.
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5.7 THE MAGNETIC PROPERTIES OF OLIVE-GREEN RuC56§4292

The mass differences observed in a Gouy susceptibility
- experiment carried out on solid R“056H4202 and corresponding mass
changes for the standard, mercury tetrathiocyanato cobalt(II),
HgCo(SCN)4, are listed in Table (5.6). The apparatus was checked
by determining the magnetic susceptibility of solid ferrous ammonium
sulphate hexahydrate, FeSO4(NH4) ZSO4°6H20’ and was found to be in
perfect working order.

As shown in Table (5.6), a small negative mass change is
observed for powdered RuC_,H,,O,, and this was used to calculate the

56 74272’
gram susceptibility of this compound by means of the relationship (5.1)

(0, - w,) m
2 0 1, (5.1)

Xgp = Xgp 1 m,

(w1 - wo)

where, Xgl is the gram susceptibility of standard, i.e. HgCo(SCN)4,

3 .
5654202
0 is the change in weight of the empty sample tube on applying a

= 16.44 x 10_6; ng is the gram susceptibility of the sample RucC
W
magnetic field; wy is the corresponding change in weight of the sample
tube plus solid HgCo(SCN)4; w, is the change in weight of the sample

tube plus solid RuC 202, and my and m, are the masses of solid

5674 2
I-IgCo(SCN)4 and solid RuC56H4202, respectively, that were used in the
experiment. Substitution of the data in Table (5.6) into equation (5.1)

gives for the gram susceptibility of solid RuC56H4202 a value

- = . -7
ng = 4,08 x 10
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Table (5.6)

Magnetic susceptibility measurements of Ru056H4202, at

room temperature

Sample Weight of sample in gram Weight of sample in gram
i=0.0 amp i=0.8 amp
Empty tube 1- 1.7752 1.7752
2 - 1.7753 1.7752
HgCo(SCN)4 1- 2.7658 2.7767
2 - 2.7656 2.7766
3 - 2.7655 2.7766
RuC56H4202 1- 2.1376 2.1375
2 - 2.1382 2.1381
3 - 2.1384 2.1383
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The molar susceptibility of RuC56H4202, molecular weight = 847, is

therefore
Xy = -3.46 x 1074

With the balance available for the Gouy experiment masses can be
measured to * 0.0001g and therefore the limit of error in the measure-

ment of Xy is * 6.92 x 10-4-

The molar diamagnetic susceptibility of RL1C356H4202 can also

be calculated using Pascal's additivity law. Use of the following values

143-145

for the Pascal's constants of the listed electrons,

Inner shell: C(lsz) -0.15 x 10_6
0(1s%) 0.08 x 10°°
) 2 -6
Lone-pair: O{sp~} -1.73 x 10
T electrons: c=C ~3.42 x 10°°
Cc=0 ~3.05 x 10°°
3 3 -6
Bonds: C{sp"}-C{sp~'} -3.10 x 10
C{spz}—C{spZ} ~2.60 x 107°
Clsp FH -4.05 x 10°°
C{sp%}-0{sp°} ~2.55 x 10°°
Metal: Ru . ~20 x 10°°

4

yields an estimated X:: value of -5.07 x 10~ for the structural formula
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The experimental and theoretical values of the molar suscepti-
bilities Xy and Xﬁ, respectively are in excellent agreement and therefore
this substance must be diamagnetic. It therefore follows that either the
ruthenium ion in this complex is paramagnetic and the paramagnetism is
exactly internally compensated, an unlikely event especially at surfaces,
or the complex is diamagnetic and the ruthenium ion in it, is in the +2
oxidation state with the electronic configuration [Kr] 4d6, or the
ruthenium ion is in zero oxidation state with the electronic configuration

[Kr] 4d8, both of which are diamagnetic.

The silent e.p.r. responses obtained when solid and liquid
(chloroform:toluene=60:40) samples of Ru056H4202 were examined at
295K and at 77K in a Decca e.p.r. spectrometer, over a wide range of

field, confirm that this compound is diamagnetic.



5.8 THE VISIBLE-ULTRAVIOLET SPECTRUM OF OLIVE-GREEN

RuCgeHg20;

The visible-ultraviolet spectrum of a solution of RquéH‘MO2
in dichloromethane, recorded on a PYE-UNICAM SP800 spectrometer is
shown in Figure (5.13). The measurements were carried out in a 1 cm
cell and it should be noted that the olive-green solution was diluted
10-fold in recording the ultraviolet region of the spectrum, compared
to measurements carried out in the visible region. Wavelengths, wave-
numbers, and assignment of the peaks in Figure (5.13) are listed in
Table (5.7).

The visible region of the spectrum in Figure (5.13) is very
similar to the corresponding spectrum observed by Jérgensen35 in his
work on Ru(II)-chloride and for this reason it is believed that in olive-
green RuC_,H, O, the ruthenium ion is in the +2 rather than in the

56774272

zero oxidation state.

200

The symmetry species of the octahedral group, Oh, c:orrelate]‘9

with the symmetry species of the group C2 as shown in Figure (5.14)

°n 2

A — s A
1g

A — % A
2g

Eg —— 2A
Tlg —» A+2B

T — A+2B
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Table (5.7)

Visible-ultraviolet data for RuC.,H,.O

56 74272
in CHZC,Q2 solution
A{nm) olcm 1) Description Assignment
650 15,385 very broad lA(lAlg) > lB,(lA,lB)(lTlg)
330 30,300 shoulder ' 1A(1Alg) -> 1A,lB,lB(lTZg)
255 39,215 sharp charge-transfer
236 42,370 shoulder charge-transfer




€2
1A,1B’1B(1T2
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1y lg(lp
- 18
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Figure (5.14)
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and Orgel156 and Basolo and coworkers157 showed that the energy level
diagram and spin-allowed transition for nd6 transition-metal complexes
correlate as shown in this same Figure.

Jérgensen in his work on the complex present in Ru(II)-
chloride35 reported a maximum between 660-710 nm and a shoulder
between 568-578 nm in the visible absorption spectrum of this substance.
These two bands have been assigned3 to transitions I,
lAl(lAlg) > 1B(1T1g), and II, lAl(lAlg > a, 1B(1T1g). The
visible region in Figure (5.13) shows a very broad absorption covering
the range 600 nm (16,600 cm_l)—740 nm (13,500 cm-l) which might well
in fact be composed of two overlapping bands arising from the transitions
I and II of Figure (5.14).

The ultraviolet region of the spectrum of the complex in Ru(II)-
chloride furthermore has a shoulder covering the range 370-385 nm which

has been assigned3 to transition III, 1A(lAlg) -> 1A,lB,lB(szg), in

3,146,147
at

Figure (5.14). This transition has also been reported
o > 30,000 cm_1 (A < 335 nm), in several nd6 transition metal complexes.
The shoulder at ® 330 nm (o % 30,300 cm_l) observed in the spectrum
shown in Figure (5.13) may therefore be assigned also to transition III.

The visible and near ultraviolet spectrum of RUC56H4202 is
consistent with the conclusion that the ruthenium ion in this complex is
in the +2 rather than in the zero oxidation state. The much more

_l -
intense peaks at 255 nm (39,215 cm 7) and at 236 nm (42,370 cm 1

) in
the ultraviolet region of the spectrum of Ru056H4202 are assigned to a

charge transfer transition within the complex.
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All the experimental results cited in this thesis consistently add

up to indicate that the solid RuC consists of a tautomeric mixture

5654202
of the structures [A]-[F], shown in Figure (5.15). Additional
.structures, valence isomeric structures, in which the central ruthenium
ion's valence fluctuates between Ru(0) and Ru(II) might also contribute.
Structure [A] contributes by far the greatest amount to the structure of

the solid RuC 56H4202 and proton exchange occurs at an intermediate
1

rate in the "H and 13C n.m.r. time scales thereby broadening the

resonances of the olefinic carbons, two of the phenyl residues and the
\C/Ph
7 \H
phenyl residues attached to the olefinic carbons equivalent. The phenyl
13

two protons. The tautomeric exchange must tend to make the

residues that give rise to the broadened region of the lH and 7C n.m.r,
spectrum must therefore be the phenyl groups in the coordinated
acetylinic fragment of the molecule or they must belong to the two COPh

l3(3 n.m.r.

residues. Since the olefinic carbon atoms give rise to a broad
absorption, it is probable that it is the two COPh phenyl residues that

are lost in the broadened region of the n.m.r. spectra.
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5.9 THE REACTION MECHANISMS INVOLVED IN THE FORMATION

OF OLIVE-GREEN RuC.H,.0,

Anhydrous ruthenium chloride is known to exist in at least

two forms, o-RuCR, and B-RuC2 Magnetic susceptibility measurements

3 3
show that o-RuC 52,3 is antiferromagnetic below 13K and 8-RuC 52.3 below
~ 600K. In the a-form, the chloride ions form a lattice with slightly
distorted, dense cubic close packing, and the ruthenium ions occupy

148 The other

two-thirds of the octahedral sites of alternate layers.
alternate layers of octahedral sites are empty. The X-ray powder pattern
and its infrared spectrum indicate that, in B-RuC 23 linear chains of
ruthenium ions lie in distorted octahedrons of chloride ions forming

149

-RuC 9,3—RuC23—RuC,Q3- units in the chain.

There is no doubt that in oc—RuC!?,3 and in B—RuCQ3, the
oxidation state of the ruthenium ion is +3, and it seemed surprising
that "commercial ruthenium(III)-chloride", RuC 23.XHZO, did not form
paramagnetic Ru(IIl)-chelates with suitable ligands. It was not until
the work described in this chapter of this thesis was almost complete,
that it was realized that "commercial ruthenium(III)-chloride", "hydrated
ruthenium(III)-chloride", "soluble ruthenium(III)-chloride" and
"RuC 23.xHZO" are all snynonyms for a heterogeneous and ill-defined
mixture of ruthenium complexes of variable oxidation-state, of oxochloro-
and hydroxochloro-, monomeric and polymeric substances, that even
frequently contain nitrosyl derivatives. It was belatedly realized that

it is not correct to regard "commercial ruthenium(IlI)-chloride" as a

direct source of Ru(III) ions. Indeed it turns out that the average
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oxidation-state of this material is closer to Ru(IV) than it is to Ru(III),

and the main constituent of "commercial ruthenium(III)-chloride" is

RuIV(OH)CQ,3,34’150 or some polymeric form of this.

This then provides the clue to possible reaction mechanisms
for the formation of olive-green RuC56H4202, when solids ”RuC’L?).xH2
KI—ICO3 and benzoin are all heated together. It is chemically reasonable

Oll’

to visualize that a benzoin chelate of Ru(IV) is first formed

Rum(OH)C13+Ph_co_cH(OH)_Ph KHCO,

heat

4

heat

4+ Ph_CO_CO-Ph
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The intense-inductive influence of the Ru(IV) ion causes electrons to
flow towards it. The C-H proton of the benzoin ligand ionizes off,
benzoin is oxidized to benzil, and Ru(IV) is reduced to Ru(II). Large
‘amounts of benzil are in fact isolated from the products of this reaction.
Alternatively, electron withdrawal by the Ru(IV) ion weakens

a neighbouring C-0O bond which undergoes homolysis to produce an

aliphatic radical PhCOCHPh

e

H/ N\ Ph

(3)

In a third possible decomposition route the intense-inductive

influence of the Ru(IV) ion, acting in the resonance isomeric form (2)
Ph Ph
causes two C-O bonds to break thereby forming the biradical ~c =¢”

(2) +— —

Ph, .

(6) ; +
PR/




This biradical can then stabilize to diphenylacetylene, or it can undergo
some kind of "template reaction", with two equivalents of PhCOCHPh to

form

The diphenylacetylene and species (7) being the ligands present in the

olive-green Ru056H4202, i.e.

+ 2H

210
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Commercial "RuCSZ,3.xHZO'1 i.e. the Ru(IV) ion, might be a
useful reagent for oxidizing hydroxyketones to diketones, or as a reagent
for converting these compounds into corresponding acetylene derivatives,
or possibly as a reagent for converting hydroxyketones into olefins and

their polymers.



- CHAPTER SIX -

BIS[u-THIO(1,2-DIPHENYLETHANEDITHIONE) -

RUTHENIUM(II,III) ]
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6.1 INTRODUCTION

Chelates, in which the sulphur atom acts as a donor, were
- used as far back as the early 1930's as analytical reagents for various
metal ions. Such compounds were then neglected for a while, but in
the last few years a renaissance of interest in them has taken place.
For several reasons, there has been an enormous upsurge of interest in
the chemistry of sulphur complexes of the transition metal-ions.
Sulphur-chelates are encountered in bioclogical-inorganic
chemistry, and model complexes analogous to biological systems contain-
ing transition metal-sulphur bonds are now of great interest.
Transition-metal chelates containing sulphur have proved to be useful
in synthesizing organometallics. Metal-sulphur svystems are of wide
interest, ranging from academic synthetic studies on one extreme, to
large scale industrial processes on the other. Transition metal-sulphur
complexes are used as highly specific analytical reagents, as chromato-
graphic supports, as polymerization catalysts, as catalytic inhibitors, as

oxidation catalysts, and as semiconductors.bl’152

A very extensive literature on ruthenium-sulphur chemistry
exists,34 but even so, very little attention has been paid to ruthenium
1,2-dithiolene complexes. Schrauzer and his co-workers have
repor‘ced153 a blue-green complex, (m.p. 225°C), which they first
formulated as Ru(SZCZPhZ)Z and then reformulated. as Ru(SZCZPh2)3,
though the compound has been poorly characterized. Their compound

was prepared by allowing ruthenium(III)-chloride to react with the

thiophosphoric ester of stilbenedithiol,[6-A]. When this work was
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repeated by the author of this thesis, by allowing commercial

"RuC 23.xH20" to react with [6-A], prepared by the reaction of benzoin
with P4510, a very impure, viscous, blue-green product was obtained.
Extracting with dichloromethane, and then allowing the solvent to
evaporate from the dichloromethane filtrate, produced a beautiful intense-
blue-coloured lacquer, indicating that a polymerization reaction had taken
place. The same reaction appears to take place when ruthenium(III)-
chloride is used instead of the commercial"RuC 23.XHZO". However,
reaction of [6-A] with a greenish-blue solution of ruthenium(II)-chloride
in ethanol, using the procedure described later, produced as one of

the products of reaction a black solid which, as shown later, turned

out to be bis[u-thio(1,2-diphenylethanedithione)ruthenium(II,III)],

RuSz(SZCZPhZ)Z. This is analogous to the sulphur-bridged complexes

of iron(III)154 and copper(I)155 already reported in the literature.
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6.2 PREPARATION OF Ru,S,(S,C,Ph,),

Commercial"RuC L3 xHZO' (Johnson-Matthey Chemicals Limited)
(0.56g), was dissolved in absolute ethanol (30 ml), then refluxed until the
"original dark-brown colour turned greenish-blue.

Benzoin (1.5g) was mixed with PLIS10 (1.5g), and the mixture
suspended in xylene (60 ml), refluxed for 2 hours and then cooled to room
temperature and filtered.

The amber filtrate was added, dropwise with stirring, to the
greenish-blue solution of ruthenium(II)-chloride. The resultant mixture
was then reluxed for 2 hours. During this period the greenish-blue colour
turned black. The solution was then cooled and left overnight, then
filtered, and the black precipitate was collected. The yield of the black
solid was poor but it was improved by adding methanol. The black solid
was then dried under vacuum for 24 hours.

Microanalytical results for this black powder are listed in Table
(6.1) and compared with corresponding data based on the formula
RUZSZ(SZCZPhZ)Z'

6.3 THE INFRARED SPECTRUM OF BLACK RuZS (SZCZPhZ)Z

The infrared spectrum, KBr disc, of the black compound

RuZSZ(SZCZPhZ)Z’ recorded on a PERKIN-ELMER 983 infrared spectrometer,
is shown in Figure (6.1). Wavenumbers and functional group assignments

with prominent peaks of this spectrum are listed in Table (6.2).

Absorptions that are characteristic of mono-substituted phenyl
and aliphatic C-H residues in the infrared spectrum of this compound are
denoted by (#) in Figure (6.1). These bands have already been assigned

in detail in section (5.5).
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Table (6.1)

Microanalytical results for the black powder,

RuZS2 ( SZCZPhZ)Z

o)

Element- RuZSZ(SZC 2th) 2 Experimental %

required %

C 44.80 44.40
H 2.66 2.59
S 25.60 25.49
*

Ru 26.88 26.19

%
Ruthenium was estimated spectrophotometrically as tris-1,10-

4
phenanthrolenato-ruthenium(II}, [Ru( C 12H 8N2) ;, using Ruf(acac) 3

as standard. 135
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Table (6.2)

Infrared data, in wavenumbers, of the sulfur-bridged

dimeric complex RuZSZ(SZCZPhZ)Z

Band (c:m_1

)

Assignment

3060(m),3030(vw)
2980(w),2930(w), 2860(vw)

1960(w),1890(w),1800(w)

1592(m), 1575(m)

1490(m) , 1440(s)

1420(m)

1390(m)
1310(w),1280(m),1250(m)

1170(w),1160(s)

1100(w)

1075(m}),1030(s),1010(m)

960(s)

915(w)
880(m)

840(w),760(m),747(s)

aromatic C-H stretching
aliphatic C-H stretching

aromatic overtone and combination
bands

aromatic C=C "quadrant stretching"

aromatic C=C "semicircle stretching"
H
e

aliphatic C-C bending

V(C==-C) ’BZu
ring-C vibrational mode

C-H in-plane bending + C-C
stretching

ring-C vibrational mode + v(C----S),
B3u

_H
C-C in-plane bending + ring-
semicircle stretching + C-C stretching

ring-C vibrational mode + v(Cz=:-S),
BZ
“ H

e
out-of-plane C-C bending

wW(C===-_8), B3u ;

out-of-plane C-C g "bending




Table (6.2) contd.
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Band (cm 1

)

Assignment

695(vs)

640(m) ,610(m),527(m)
500(w)

450(vw)

405(vw)

365(m)

J

in-phase, out-of-plane

ring-bending

V(Ru-S), B 2u

v(Ru-5), B3u

V(Ru-S), BZu

§(C-C-Ph), out-of-plane bending,

B

3u
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Figure (6.1) is consistent with the presence of bis-1,2-

Ph /Ph

dithiolene residue C-C , in this compound. Literature

',’ ) R R
151 S WOON s
. studies indicate that C-C residues characteristically

-1 s s -1

absorb at ~ 1400 cm °, v C=—=C; .+ 1110 cm ~, v C==S; and
S

~ 860 cm~1, v R—C~i/:

Metal-sulphur stretching frequencies, are reported to occur in

the region 490-300 cm ', 121152

Bis-1, 2-dithiolene complexes always
exhibit a number of medium and weak bands in the 500-350 (:m--1 region
of the infrared spectrum. Earlier work carried out by Schrauzer and
Mayweg,156 assigned two of these bands between 435-310 cm—l to metal-
sulphur stretching modes. However, normal coordinate analyses carried
out by Siiman and Fresco,157 and isotropic substitution studies carried
out by Schléfpher and Nakamot0,158 show that, bands in this range
should not be attributed to metal-sulphur stretching modes, but on the
other hand, they may be assigned to out-of-plane bending modes of the

Ph
7 157,158

C-C residues. These same authors place the asymmetric

stretching vibrations of the metal-sulphur residues in these complexes at
475, 408 and 454 cm~l respectively, where the first two of these belong

to the BZu vibrational species and the last belongs to the in-plane mode,

B3u° The motions of the atoms in these vibrational modes of bis-dithio-

lene complexes are shown in Figure (6.2).
Although the infrared spectrum by itself does not lead directly
to the full molecular structure of RuZSZ(SZCZPhZ)Z' evidence to be

presented later indicates that this compound is a sulphur-bridged



dimeric complex of ruthenium. If it is assumed that this complex has
D2h symmetry and that the phenyl groups can be replaced by approp-
riate heavy point masses then the only in-plane infrared active modes
of the bis-1,2-dithiolene-metal residues have BZu and B3u symmetry, as
shown in Figure (6.2). In Figure (6.1), the absorption at 1390 cm_1
is assigned to a B2u mode involving vibration of the C=—==C) residues.
The absorption peak at 960 cm_l is also assigned to a BZu mode involv-
ing coupling of the (C==S) + (C - Ph) residues: this gives a strong
absorption band in the infrared spectrum. Mixed asymmetric bending
vibrational modes that belong to B3u represen‘tations,ls7 and involve
vibration of the (C===S) + (C - Ph) and (C===S) residues are believed
to be responsible for the weak band at 1100 crn_1 and for the medium
band at 880 cm_1 respectively, as shown in Figure (6.1).

158

Following Schlapfer and Nakamoto, the band of medium

intensity at 365 cm-l, in Figure (6.1), is assigned to the out-of-plane
Ph
7~ -
bending mode of the C-C residues. The bands at 500 and 405 cm

are attributed to ruthenium-sulphur B stretching modes of vibration,

Zu

whereas the band at 450 cm_1 is assigned to a ruthenium-sulphur B3u

vibrational mode.

220

1
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DZhEVh(3C2,30,i)

Figqure (6.2). B2u and B3u modes of vibration of Ru2SZ(S2C2Ph2)2’

Do symmetry



222

6.4 THE ELECTRON IMPACT MASS SPECTRUM OF BLACK

Ru,S,(5,C,Ph,)

The mass spectrum of the black solid RuZSZ(SZCZPh was

2)2
recorded on a KRATOS MS12 mass spectrometer. The results are shown
in Table (6.3) and line diagrams showing the decomposition pathways and
the important peaks in the mass spectrum, are shown in Figures (6.3)
and (6.4).

Because of decomposition within the mass spectrometer, the
parent ion [RuZSZ(SZCZPh2)2]+ is not observed. However, the spectrum

is essentially completely accounted for, on the basis of the decomposition

patterns derived from ions of the following fragments.

Ph Ph
(i) Tetraphenyl thiophene, [6-B], (TPT), / \ , [C
h S

+
28H2051
m/e = 388, P Ph
Ph Ph
.. ) . N 7 +
(ii) The chelating ligand, [6-C], /C_—g\ + 2H, {[C14H1082]12H} R
ASI‘ \\S

m/e = 242 * 2,

In addition there are less intense peaks in the mass spectrum of this

black dimer which can be identified with

s. Ph

(iii) Ru/ . [C.,H..S.Rul’, m/e = 345
N 1471172
57 Pn

S
(iv) Ru/ >

S

Ru, [SZRu2]+, mle = 268

(v) [RuS]', m/e = 134,
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and with (vi) the isotopes of ruthenium itself.

The decomposition pattern from fragment [6-B], above, must
. arise from an ion of (TPT) rather than from an ion derived from the

open-chain structure

Ph Ph Ph Ph

[
s-c-c-c-c ,

m/e = 388. This follows because the open-chain structure would give

rise to a fragment

Ph Ph Ph Ph

I R

c-c-Cc-¢ ,

m/e = 356, which is not present in the mass spectrum of the black

RuZSZ(SZCZPhZ)Z’ Table (6.3). The formation of the (TPT) ion on

heating metal-ion complexes containing the dithiol chelating ligand [6-C],

159,160

above, has already been reported by other authors. Furthermore,

the mass spectrum of the (TPT) ion itself has already been reported,161

and the decomposition pattern of the (TPT) fragment obtained from black

solid RuZSZ(SZCZPhZ)Z is almost identical with the fragmentation pattern

159-161

reported in the literature, , except that the ion at m/e = 344,

corresponding to loss of HZS from the (TPT) fragment was not observed
in the breakdown pattern of the solid RuZSZ(SZCZPhZ)Z'

The (TPT) ion, [6-B], decomposes in several ways, as shown

in Schemes [I]-[IV] below, and Figures (6.3) and (6.4).



Scheme [I] starts with the following fragmentation

+
Ph

[
—— > [Ph-C-C-Ph]’ + [S-C-C-Ph]

s] +2H}, {{c 1+28}, {{C s1+2H1},

{[c

28520 1410 1410
m/e = 388 + 2 m/e = 178%2 m/e = 2102

Two major fragments at m/e = 210 * 2 and m/e = 178 * 2, are produced,
the peak at m/e = 178 * 2 being the most intense peak in the mass
spectrum of the black solid RuZSZ(SZCZPhZ)Z’ and the peak at

m/e = 210 * 2 being the next most intense. The successive fragment-

ations of these two fragments are shown in Figures (6.3) and (6.4).

Breakdown of the (TPT) fragment, [6-B], can also take place

as shown in Scheme [II], Figures (6.3) and (6.4), which starts with

— s> [Ph-C-C-Ph]" + [Ph-C /C—Ph]+

{[CZSHZOS]iZH}+ {lC H  lx2H} {(C, H, S1*2H}"

m/e = 388%2 m/e = 178+2 m/e = 210

and these fragments then break down further as shown in Scheme [II],
Figures (6.3) and (6.4). Break-down products of the fragments

obtained for Schemes [I] and [II] are almost identical.

228
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In Scheme [III],

the first step in the fragmentation pattern is
+ — 1+
Ph Ph
\ / .
-~ C —C + [Ph-C-S]
C —Ph
{[C,gH , S1*2H)" {(C gH 1t HY {[CHS1+2m}"

m/e = 388%2 m/e = 267+1

m/e = 121*2

The decomposition of these fragments produced in this manner are, also,
shown in Figures (6.3) and (6.4)

In Scheme [IV], exocyclic Ph-C bonds are cleaved to produce
several dephenylated products

Ph Ph ] I~ Ph [+ B BE
/7 N\ |— 1| / N\ |—| / \ |-
Ph S Ph Ph S Ph Ph S Ph
S —_ e - — -
+
{[c28 205] *+ou}? {[CZZHISS]iZH} [c16 10S]
m/e = 388%2 m/e = 311+2 m/e = 234
+
/7 \|
S
+
[C4HZS]
m/e = 82

which then decompose in turn to give several smaller fragments as shown

in Figure (6.3), all of which are identified



Similarly, decomposition of fragment [6~-C]; Ph-C(S)-C(S)Ph,

{[C14Hyg

SZ]iZH}+, mle = 244 *+ 2;

can also follow one or other of the

several routes shown in Figures (6.3) and (6.4), and in Scheme [V]

" below

s s
o,
[Ph-C-C]*

+
{[CSHSSZ]iZH}

m/e = 165+2

S S
N
{Ph-C-C-Ph]

{tc 1x2u}”

1471052

mle = 242+2

l

S
|
[Ph-C]"

+
{[C7HSS]12H}

m/e = 121*2

[Ph-C-C-Ph]"

{[C, H, lz2H}

148

m/e = 178+2

Scheme [V]

S

I +
[Ph-C~C-Ph]

{Ic si+2H}"

14810

m/e = 2102
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the resultant fragment-ions, then decompose into further smaller fragments,

as shown in Figures (6.3) and (6.4), all of which are observed in the

mass spectrum of the black solid RuZSZ(SZCZPhZ)Z’ Table (6.3).
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These fragmentation patterns when combined with the fragments

S Ph
d \\\
u ) , Ru - S and Ru all add up to the

bridged structure

Ph g

< \ s~ “\ 7

/ \

[6-D]

for the black compound, RuZ’SZ(SZCZPhZ)Z’ modified by the additional
presence of at least a reasonable amount of analogous species containing

extra hydrogen atoms, showing that at least some

H
s i _Ph

S
N 7 N
u\ /Ru
\S/ S *~ s P

[6-E]

is present. It seems that this substance is a mixed valence compound
containing both Ru(II) and Ru(IIl) in planar environments, and may
involve several mixed valence isomers of ruthenium, and several proton
tautomers, in which electrons and protons can meander from one molecule
to another in the solid. This aspect of the structure will be again
considered later when the electron paramagnetic resonance spectra of the

black solid are considered.
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6.5  THE MAGNETIC SUSCEPTIBILITY OF BLACK Ru,S,(S,C,Ph)),

The magnetic susceptibility of the black solid RuZSZ(SZCZPhZ)Z
. was measured using the Gouy method: HgCo( SCN)4 was used as
standard, and the apparatus was tested using a solid sample of ferrous

ammonium sulphate hexahydrate, FeSO4(NH 804.61-120. The results

4)2
of these measurements, Table 6.4, show that no change in mass was

detected when a solid sample of RuZSZ(SZCZPh was weighed in a

2)2
magnetic field: the susceptibility balance was capable of detecting a
mass difference of > 0.0001g.

The susceptibility measurements imply either, (i) that the black
solid RuZSZ(SZCZPhZ)Z is  paramagnetic, and the paramagnetic and
diamagnetic contributions to the susceptibility cancel each other, OR
(ii) that this solid is diamagnetic, and the balance is not sensitive enough
to detect any mass change in either direction.

143-145

Pascal's constants give the following predicted molar

diamagnetic susceptibility for the black dimer RuZSZ(SZCZPhZ)Z

D
XM

—[Z(SZCZPhZ) + 2S + 2Ru]

—[2(15ox10'6) + 2(15%10°°%) + 2(20x10'6)]

= - 370 x 10°°

Therefore, if interpretation (i) is valid, the paramagnetic molar suscepti-

bility for this dimer (molecular weight = 750) is equal to +370 x 10.-6.

But, since the paramagnetic moment is defined by, equation (3.12),
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Tl para .
upara /(3k/N Be)()(M )T electronic Bohr magnetons

48.555 iara electronic Bohr magnetons at

T =295 K
it follows that the paramagnetic moment for the black solid
RuZSZ(SZCZPhZ)Z is

| = 48.555 \/370 X 10—6 electronic Bohr magnetons per

H para
= 0.9340 molecule

It, therefore, follows that the number of unpaired electrons, n', in this

dimer can be determined from

]u ]_’\./.. \/n'(n' + 2) electronic Bohr magnetons
para

0.9340 =./n'(n' + 2)

and hence

n' = 0.37 electrons

This implies the presence of 0.37 unpaired electrons per formula unit
RuZSZ(SZCZPhZ)Z’ i.e. an average of one unpaired electron for every
2.7 dimers of this black solid. The susceptibility results are consistent

with the presence of ~% of



Ph
ool X
[6-D]
and -~ %’—of
Ph S Ph
/S\ 11/\ g S
\ / \ / BN
Ph $”} Ph
[6-E]

The alternative interpretation, (ii), of the susceptibility
results, implies that the black dimer is diamagnetic and that
D l -6

= 370 x 10

in this case ngzl is, therefore,

370 x 107 /750

IXg2]

0.4933 x 10-6 per gram

Using this value and the data of Table (6.4), then substituted into
equation (5.1) gives the expected weight change for the black solid
Ru S (S C th)2 to be -5.90 x lO_Sg. This mass change is too small

to be detected on the balance used in the Gouy experiment.

It therefore follows that the results obtained from the Gouy
experiment are not conclusive. The black dimer may be paramagnetic,

or it may not be. The susceptibility experiment can not distinguish.
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A careful electron paramagnetic resonance experiment in which the
number of unpaired electrons can be counted, is needed to determine
(a) if the substance is paramagnetic or not, and (b) if so, how many
unpaired electrons are associated with each formula unit

Ru S (S C th)2

However, the susceptibility experiment does show that each

formula weight Ru (S2 2th)2 could possess between zero and 0.37

unpaired electrons.

6.6 THE X-BAND ELECTRON PARAMAGNETIC RESONANCE

SPECTRA OF BLACK Ru252_2_2_1’_12__

The X-band electron paramagnetic resonance spectra of the
black solid, at 295K and 77K, and of a solution in chloroform:toluene,
(60:40), at 77K, were recorded on a Decca e.p.r. spectrometer. These
spectra are shown in Figures (6.5), (6.6), and (6.7).

Spectra obtained from the solid itself are characteristic of
those expected from an electron in an axially symmetric environment.

In such a situation, where S = % and the axis of symmetry of the para-

magnetic complex lies at an angle § with respect to the applied field, H,

then the resonance field is given by58

o
]

th/(gBe)

hv,_/[8 (gllcos e+g sin%0) ] (6.1)
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where g is the effective g-factor for the system, and Vo is the spectro-
meter's microwave frequency. In powders and in frozen solutions the
paramagnetic complexes are randomly oriented and so absorb over a
range of magnetic fields. The lineshape for the overall absorption curve
can then be determined in the following way.51’162’163
For a random distribution, the fraction of complexes that lie
between 8 and 6+d6 is d(cosf), so if dX is the fraction of complexes

whose symmetry axes lie in the interval d6, and give rise to resonance

field values lying within the field interval dH, then

dX = A(H)dH = d(cosH) (6.2)
therefore
A(H) = ‘—iifi—‘f{ﬂ (6.3)

and this represents the normalised line shape function, which describes
the absorption intensity, as a function of magnetic field, provided the
transition probability does not depend on 6.

Recasting of equation (6.1) followed by substitution into (6. 3)

gives

3

a() = -(g2-g) ™ 1A Egd w8 H T (6.0)

This function is plotted as the solid line in Figure (6.8). It peaks at

H =. h\)ol(nge) and has a sharp cut-off at H = h\)O/(gHBe).



H—>»

Figure (6.8)

Equation (6.4) assumes that the absorption of microwave
radiation by the paramagnetic complex is infinitely sharp. When broad-
ening effects arising from interaction with nearest neighbours are taken
into account, this function must be multiplied by a suitable Gaussian
function to give the observed absorption curve, the dashed curve in
Figure (6.8). The analytical form of the broadened curve is given by

equation (6.5)

1

A(H) = 1dH (6.5)

_ szH“ A(H)Exp[-(H'-H)%(28%)~
H =Hl

where the width of each individual component line is controlled by the

broadening parameter B. The effect of B is to broaden the lines in the

absorption spectrum so that the resonance centered at H contributes to

the absorption at H', an amount given by A(H)dHY(H'-H) where Y(H'-H)

241



is the Gaussian lineshape function. The broadened absorption spectrum,
equation (6.5), is plotted in the dashed curve in Figure (6.8) and its

first derivative is given in Figure (6.9).

1 o
dA(H") A\
dH ' \
/ \
/ \
/l \
Pl \
e’ \
f‘
\ _-—’-—-‘ ’_,—‘-"
’ A ’
N ’
Hl \\ / i
/
v H
' 11
vy
‘““  H—»>

Figure (6.9)

The theoretical first derivative e.p.r. absorption spectrum in
Figure (6.9) is quite similar to the derivative e.p.r. absorption spectra
obtained from the black solid RuZSZ(SZCZPhZ)Z’ shown in Figures (6.5),
(6.6), and (6.7). Electron exchange almost certainly takes place in the
solid samples, Figures (6.5) and (6.6), but nevertheless on comparison
of the two spectra with the frozen spectrum, Figure (6.7), it is obvious
that the solid spectra (6.5) and (6.6) are broadened forms of spectrum
(6.7). Spectrum (6.7), its integrated absorption spectrum and the
unbroadened spectrum from which the latter is derived are shown in
Figure (6.10). This comes from one electron in an axially symmetric
orbital interacting anisotropically with one nucleus, I = %— Its spin-

Hamiltonian parameters are shown in Table (6.5).
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Table (6.5)

Spin-Hamiltonian parameters for the black dimer

RuZSZ(SZCZPhZ) 2
€11 gl All,Gauss Al,Gauss
1.9974 2.0275 19.44 9.52

The hyperfine coupling observed in the frozen e.p.r. spectrum

of the black solid RuZSZ(SZCZPhZ) Figure (6.7), and as shown in the

2’
reconstructed diagram, Figure (6.10), can not be due to magnetic
99

ruthenium nuclei. There are two magnetic isotopes of ruthenium, "‘Ru
(natural abundance = 12.7%, I = —g—, u =-0.63 nuclear Bohr magnetons),
and 101Ru (natural abundance = 17.1%, I = %, u = -0.69 nuclear Bohr

magnetons). These nuclei would each split the e.p.r. spectrum into
six peaks, for each orientation of a crystal in a magnetic field.

The e.p.r. spectra of the black dimer show that there is no
detectable interaction of the unpaired electron with ruthenium nuclei.
The spin Hamiltonian, however, is very similar to those obtained from

Re(SZCZPh for which gy = 2.0376, g, = 2.0182, g3 = 1.9963, and

2)3
in which the unpaired electron has been shown to be entirely delocalized
over the ligands.164 Furthermore, the observed g-tensor components
for RuZSz(SZCZPhZ)2 are quite different from the values that are
observed when the unpaired electron is essentially localized on a

ruthenium(III) ion. 91,93,94,99,100,103-105, 134‘
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The e.p.r. spectra of this dimer indicate that the unpaired
electron is in an axially symmetric orbital delocalized over the ligands.

Such spectra would be expected from structure [6-E], see sections (6.4)

and (6.5),

Ph
\Run/ \R ¥ I
s/ \ Ph

Ph
[6-E1]
Very Intermolecular electron
fast and proton transfer
Ph S Ph

= X
\R IH/\\Ru /
~
Ph | S \S/ \ -

[6-E2]

in which the unpaired electron lies in an axially symmetric orbital and
interacts with one proton.

Figures (6.5), (6.6), (6.7), and (6.10) confirm the presence
of unpaired electrons in the black dimer RuZSZ(S C th)2 In order to
obtain information about the number of unpaired electrons associated with
each formula unit, it is necessary to compare, carefully, the intensity of

the e.p.r. absorption signal with that obtained from a suitable standard.

Bis-(acetylacetonato)copper(1I), Cu(acac)z, was used as
standard in estimating the spin concentration in the black powder,

Ru S (S C Ph ) The e.p.r. spectra of these compounds have similar
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linewidths and lineshapes. In the spectrometer, care was taken to
ensure that the Klystron power supply and signal levels, modulation
amplitudes and sweep rates were identical, whilst recording spectra of
these two compounds. The same spectrosil sample tube was filled to
the same extent for each measurement, and care was also taken to
position the sample tube in the same region of the cavity for all
measurements. Under these conditions, the obtained results are listed

in Table (6.6). These data indicate that, the number of moles of
_0.0135 5

Cu(acac:)2 = 56184 - 5.1617 x 10 °. Hence the number of molecules of
Cu(acac)2 in the species examined, = (5.1617 x 10-5) x (6.022 x 1023)

31.0842 x 1018 molecules

31.0842 x 1018 unpaired electrons in the species, Cu(acac)z,
examined.

Similarly, the number of RuZSZ(SZCZPhZ)Z in the species examined

= 13. 085 x 1018 molecules.

The number of unpaired electrons in species, RuZSZ(SZCZPh examined

2)2’

the number of unpaired electrons in species, Cu(acac)z, examined

weight of area under the curve, RuZSZ(SZCZPhZ)Z

x weight of area under the curve, Cu(acac)2

18 0.1817
(31.0842 x 1077) x > 579

2.1462 x 1018 unpaired electrons.

Therefore, the number of unpaired electrons per molecule of

18
Ru,S,(5,C Ph,) , - 2.1462 x 1018
13.085 x 10

= 0.164 unpaired electron
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Table (6.6)
* * %k
Cu(acac)2 RuZSZ(SZCZPhZ)Z
Weight of sample, in gram 0.0135 0.0163
Weight of area under the curve, 2.5795 0.1817
at recorder gain=0.5V, in gram

*
Molecular weight 261.54;

ok
Molecular weight = 750.14



i.e. There is one unpaired electron for every 6.097 molecules of the

black dimer RUZSZ( SZC 2th) 2

Hence, spin counting measurements using this e.p.r.

show that about 5/6 of the substance examined must have the,

diamagnetic, structure [6-D]

Ph Ph
\ / I /
/ \ / Mg

o Ph

[6-D]

and about 1/6 is the paramagnetic species, [6-E]

Ph

IS\R II/ \ IH/S

h

/\/\

[6-E]

technique
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6.7 THE HIGH RESOLUTION PROTON MAGNETIC RESONANCE

SPECTRUM OF BLACK Ru,S,(S,C,Ph),

A 100 MHz 'H nuclear magnetic resonance spectrum of a

solution of RuZSZ(SZCZPh in CDC 52,3, recorded on a VARIAN 100 MHz

2)2
n.m.r. spectrometer, at 298K, is shown in Figure (6.11). It consists
of three broad regions centred at § = 7.29, 4.26, and 1.32 of relative
intensities 20:2:3 respectively. The low-field region of the spectrum,
apart from broadening of the sharp structure, normally expected, is that
of standard aromatic resonances in a diamagnetic system. When taken in
conjunction with the other evidence already presented for this black
dimeric substance, RuZSZ(SZCZPhZ)Z’ the two broad regions at § ¥ 4,26

and § ¥ 1.32 are assigned to the meta- and, ortho-plus para-, protons

(relative intensities 2:3) of phenyl residues.

The intensity ratios indicate that, 0.20 of the sample is para-
magnetic and 0.80 is diamagnetic. @ This compares reasonably favourably
with the relative proportion 0.164:0.836 obtained from the e.p.r. estimates
already considered. The average of the e.p.r. and n.m.r. results, lead
to an estimate of 0.18 of the black dimer, RuZSZ(SZCZPhZ)Z’ is in the

paramagnetic form, [6-E]

Ph S S S
=z \Run/ \Rum/ A
~ SN S/ \S

Ph S H Ph

Ph
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and 0.82 in the diamagnetic form, [6-D]

Ph S < o Ph
2N VAN '
u Ru
Y /R / N\
Ph S S S Ph

Furthermore, the relative intensities of the peaks in 1Ir-I n.m.r.
spectrum of the black dimer RuZSZ(SZCZPhZ)Z show that on the n.m.r.
time scale, the two halves of the paramagnetic form, [6-E], are effect-
ively equivalent, i.e. on the n.m.r. time scale, there is a rapid intra-
molecular electron transfer in the mixed valence paramagnetic form,

[6-E]. A simultaneous proton transfer might also take place, i.e.

Ph Ph
/S\Run/s\Rum/s\

~ 7 NS N

b S S S
H

(2 forms)

Ph

Intramolecular electron
transfer and proton
transfer
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Ph S S Ph
= \RuHI \Ru:[I A (2 forms)

S h
PhH

The 1H n.m.r. spectrum of the diamagnetic form, [6-D], is
also broad, implying that, intermolecular electron transfer between the

diamagnetic, [6-D], and paramagnetic, [6-E], species

Ph S S S Ph
% \Run/ \Run/ o
N~
o N s Ph
Ph S
Intermolecular electron
(+e) transfer (-e)
-yt + H*
Ph Ph
S S S
Z Ruu/ \ ]11/ N
Ph S H Ph

possibly with simultaneous proton transfer, also takes place, but at a

slower rate than the intramolecular electron transfer process.

It should be noted that the 1H n.m.r. spectrum of the black
RuZSZ(SZCZPhZ)Z is also further consistent with the results obtained
from the e.p.r. spectra of this dimer, in that, it shows that there is

very extensive delocalization of the unpaired electron onto the ligands.
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6.8 THE VISIBLE-ULTRAVIOLET SPECTRUM OF BLACK

Ru,S 2(_§ 29 2&2_)_2

The visible-ultraviolet spectrum of a solution of RuZSZ(SZCZPhZ)Z
in dichloromethane, recorded on a PYE-UNICAM SP 800 spectrometer is
shown in Figure (6.12). The measurements were carried out in a 5 mm
cell and the black solution was diluted 10-fold in recording the u.v.
region of the spectrum, compared to measurements carried out in the
visible region. Wavelengths, wavenumbers, and assignments of the
peaks in Figure (6.12) are listed in Table (6.7).

The visible region of the spectrum in Figure (6.12) is very
similar to the observed spectrum of the olive-green, RuC56H4202,

Figure (5.13). This observation is consistent with the other evidence,
presented in this chapter, in that the dominant ruthenium ion in this
black dimer, RuZSZ(SZCZPhZ)Z’ is ruthenium(II) rather than ruthenium(III).

The symmetry species of the octahedral group, O correla’ce19

h’
with the symmetry species of the group DZh’ as shown in Figure (6.13)

h 2h
1 5
(t; e Jm—— oo e e, —1 1 1 1

28 28°g — B, *'B, +B, ( ng)
1 5 e e e — 1 1 1 1
Tlg(tzgeg) =B, + B2g+ B, ( Tlg)

Ij|I

1 6 1, 1

A, (t, ) —— = = «-------- LA (A

lg( 2g g( 1g)

Figure (6.13)
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6.9 The d-ELECTRON DISTRIBUTION IN BLACK Ru2§2(_§29221r_12)_2

The black dimer, RuZSZ(SZCZPhZ)Z’

has the nearly planar
. structure shown in Figure (6.14). Y

Wit
) //ﬂ)ﬁ //%//////////

v

LI
////7//////5/// Al

Figure (6.14)

The plane of the molecule is the xz-plane, the y-direction being at right
angles to this plane, in a right-handed sense. It is assumed that the
sulphur ligand atoms are sp2 hybridized, the three c-orbitals lying in
the xz-plane, one o-orbital in each sulphur of the SC(Ph)C(Ph)S pointing
towards the neighbouring ruthenium ions, and two sp2 o-hybrides of each
central sulphur pointing towards the neighbouring ruthenium ions. The
axes of the 3pY orbitals in each sulphur are parallel to the y-axis of the
coordination framework.

The d-electron distribution in the black dimer, RuZSZ(SZCZPhZ)Z’
can be considered in three stages; in the first stage the ordering of
the d-orbital energies for each of the ruthenium ions in the dimer are
deduced, then the interaction of these orbitals with ligand orbitals and
with orbitals on the neighbouring ruthenium ion can be considered in the

second stage, and in the third stage electrons are fed into the resultant

energy levels scheme,
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In the first stage, a simple crystal field analysis for

S Figure (6.15),

ZRuSZCZPhZ'

Y

e

U——— 7

s~ \g

Figure (6.15)

Ph

predicts the relative d-orbital energies for each ruthenium ion in this
substance to be as shown in Figure (6.16a).

The effect of covalent overlap of the d-orbitals in Figure (6.16a)
with the ligand orbitals and with orbitals on the neighbouring ruthenium ion

can be considered individually, in the second stage, in the following manner:

(1) 4d ; orbital . The lobes of this orbital, of the central ruthenium ion,
point directly at the four sulphur ligand atoms as shown in Figure (6.15).
4dXZ is therefore strongly involved in o-bonding with the four sulphur sp2
hybrids from the ligands, each containing two electrons. Allowing for o
covalent bonding, therefore the energy of 4dXz orbital, in Figure (6.16a),
increases markedly. The 4dXZ orbital can not take part in Tbonding with
the ligands: it has the wrong symmetry. Weak dTr—dTT overlap; i.e. weak
4dxz_4dxz m-bonding with the neighbouring ruthenium ion can have only

a slight effect on the energy of the 4dxz orbital in Figure (6.16a) since

the bridging sulphur atoms intervene.

(ii) 4d 2 orbital. The energy of the 4d 2 orbital is only slightly’
influenced by weak o-bonding with the sulphur ligands. This orbital

can not take part in m™-bonding with the ligands. However, the lobes
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ru?t, 2a° rRu-Y,4a

(a) (b)

Figure (6.16) BAn energy level diagram showing the relative
orders of the 4d-orbitals of Ru(II),III);

(a) at the first stage of the analyses,

(b) when the effects of covalent bonding in

the black dimer Ru282(52C2Ph2)2 is taken into

account
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of the 4dz2 orbitals on the neighbouring ruthenium ions point directly
towards each other, and this 4d22—4d22 o-bonding must lower the energy
of the 4dzz orbital in Figure (6.16a). However, the metal ion separation
must lie between 2.6 and 3.32\, therefore the overlap integral between
these two 4dZ2 orbitals is small and though the overlap will reduce the

energy of the 4dzz orbital in Figure (6.16a), it will not lower it too much.

(iii) gyz orbital. The 4dyz orbital on each ruthenium ion can not take
part in o-bonding with the ligands but it does take part in weak side-
ways T-bonding with the 3pY orbitals of the neighbouring sulphur atoms.
The 4dyz orbitals on the ruthenium ions take part in dﬂ_d‘rr bondi;lg,
however, again because of the largish separation of the metal ions the
net effect of covalent bonding on the 4dyz will lower its energy only

slightly in the energy level diagram in Figure (6.16a).

(iv) éc—lxy orbital. The 4dXY orbital on each ruthenium ion can not take
part in o-bonding, but it can take part in weak side-ways mbonding with
the ligand 3p_ orbitals. 4d__-4d §-bonding with the neighbouring

Yy Xy Xy
ruthenium ion must be so weak that it is concluded that the relative
energy of the ruthenium 4dxy orbital is as it is in the energy level

diagram, Figure (6.16a).

(v) i@xz_yz orbital. This orbital on each ruthenium ion can take part
in weak o-bonding, but it can not take part in T-bonding with the ligands.
4dx2-y2 S§-bonding with the neighbouring ruthenium ion is expected to

be very weak, again due to the relative large separation between the two
ruthenium ions. It therefore follows that the 4dx2-y2 orb‘ital on the

ruthenium ions must have the relative energy shown in Figure (6.16a).
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In the third stage, it is concluded that when allowance is made
for covalent bonding with the ligands and with the orbitals of the
neighbouring ruthenium ions in the dimer, the d-orbitals energies have
the relative orders shown in Figure (6.16b), compared to Figure (6.16a).
Therefore the unpaired electron in the black dimer, RuZSZ(SZCZPhZ)Z’
lies in the 4dyz orbital of the ruthenium(III) ions. (4dyz-4dyz)
m-bonding with the neighbouring ruthenium(II) ion enables an easy
electron exchange

2+ 3+

Ru?t + Ru’’ == Ru’* + Ru?¥

to take place. T7-bonding of the ruthenium 4dyz orbitals to the ligands
enables delocalization of the unpaired electron onto the ligands to be
easily effected. It is therefore concluded from this qualitative analysis
that on a time average basis the unpaired electron is in a molecular
orbital encompassing the whole framework of the molecule involving the
m-frames of the ligands and the 4dyz orbitals on each of the two ruthenium
ions. This accounts qualitatively for the e.p.r. and 1H n.m.r, results,
and it is probable that the electron delocalization is also accompanied by
a slower hydrogen atom delocalization of the extra hydrogen atom too.
The unpaired electron essentially migrates over the whole molecular
plane, the y-direction is therefore the unique axial direction, i.e. the
parallel direction in the e.p.r. experiment, and the xz-plane is the

perpendicular plane for this purpose.
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