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Sum m ary

Am orphous m aterials posses low tem perature  therm al properties which are 

different from those of crystalline materials but are common to a wide range of 

disordered materials. The low temperature heat capacity is larger than that of the 

corresponding crystalline material and below 1K has a linear term in temperature  

as well as the T^ term. In this temperature range the thermal conductivity is lower 

tha 1 that of the crystalline m aterial and proportional to T ^ . At tem peratures  

between 1 and 10K it is approximately constant. Below 1 K the behaviour of these 

materials can be understood in terms of the two level system model. However at 

higher tem peratures none of the various theories proposed to account for the 

observed behaviour have been confirmed experim entally . This is due to the 

insensitivity of m easurem ents like those of thermal conductivity to the exact form 

of the energy dependence of the phonon mean free path and to whether the scattering 

is e lastic  or ine lastic . Thus, to clarify the theoretica l p icture, a direct 

determination of the energy dependence of the phonon mean free path as a function of 

energy is required.

Energy resolved phonon scattering measurements were performed using a heat pulse 

technique. Two generators were deposited on one face of a sapphire crystal substrate 

and two phonon detectors were deposited on the opposite face. A thin film of glass was 

deposited under either one of the generators or one of the detectors. The phonon 

gen era to rs  w ere  thin film constantan  heaters  and the detectors  w ere  

superconducting tunnelling heterojunctions. The ratio of the currents generated in 

the detectors by the phonon fluxes with and without the glassy film were calculated 

at different biases. By comparing these to current ratios calculated from theoretical 

models the phonon mean free path as a function of energy could be deduced.

The results of these measurements led to the following conclusions.

Thin film constantan heaters produce a phonon spectrum which can be described by 

a simple acoustic mismatch theory. The phonon scattering in sputtered silicon 

dioxide is best explained by elastic scattering with a mean free path of 2.2p.m at 

1m eV and varying as E'®. This form of scattering fitted the data m easured from 

three samples. Two of these were under a detector and the third had been deposited 

under a phonon generator. However inelastic scattering cannot be ruled out. In



evaporated silicon monoxide evidence of two scattering mechanisms was observed. A 

strong, probably elastic, process which saturated as the phonon input power was 

increased. At higher powers this gives way to a w eaker process. A scattering 

m echanism  with a significant dwell tim e was observed in sputtered arsenic  

trisu lph ide .
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1.1 The Low Tem perature Specific Heat Capacity and Therm al Conductivity

The specific heat capacity and thermal conductivity were among the first low 

tem perature properties of amorphous materials to be m easured. Zeller and Pohl

(19 71 ) reported m easurem ents of these properties for severa l am orphous  

materials. The range of materials measured was extended by Stephens (1973) The 

results showed trends which appear to be characteristic of the amorphous state. 

These results are summarised below.

In all materials the specific heat capacity of the amorphous state is larger than that 

of the crystalline state. This can be seen in figure 1.1 which shows the specific heat 

capacity for both amorphous and crystalline silicon dioxide. There is also a linear 

term present in the amorphous specific heat which does not occur in the crystalline 

form .

Using the Debye model the specific heat capacity, C y ,  for an amorphous material 

would be expected to take the form:-

Cy = Cg T^ ( 1 . 1 )

where Cq  is calculated from the measured sound velocities. However, the observed 

temperature dependence of the specific heat capacity is of the form;-

C y  = c.j T + Cg T^ ( 1 . 2 )

w here Cg is larger than cq  typically by a factor of two to five. This T^ term

corresponds to Debye phonons. From their m easurem ents, Pohl et al. (1974) 

concluded that Debye phonons exist in glasses and are the main carriers of the heat. 

The T^ term is anomalously high and is thought to be due to large numbers of low 

frequency transverse acoustic phonons. These excess modes are characteristic of the 

amorphous state.

The linear term, c.|T, is found in all amorphous materials. Later m easurements by 

Lasjuanias et al. (1972 and 1975) showed that at very low tem peratures (T<0.1K)

1
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Figure 1.1 (a)The specific heat versus temperature and (b) C/T^ versus 

temperature of amorphous and crystalline silicon dioxide (from 

Zeller and Pohl (1971)).



this term was no longer linear. It took the form of where e was around 0.2.

Stephens (1976) found that by increasing the purity of the material this term can 

be reduced. However, it does not reduce to zero. This approximately linear term has 

been attributed to new states characteristic of amorphous systems and its possible 

origin will be discussed later in this chapter.

At low temperatures the thermal conductivity of the amorphous phase of a material 

is lower than that of the crystalline phase. Figure 1.2 shows the t h ^ a l  conductivity 

as a function of temperature for both amorphous and crystalline silicon dioxide. It is 

clear form this figure that the tem perature dependencies for the two thermal 

conductivities are different. Below 10K the thermal conductivity is proportional to 

and, therefore, increases with increasing temperature. It reaches a peak around 

10K then decreases as the temperature increases. The thermal conductivity for the 

amorphous material increases montonically with increasing tem perature. For all 

m aterials m easured there is a plateau around 10K (see figure 1 .3). Below this 

tem perature Zeller and Pohl found that the thermal conductivity varies as T " , n = 

1 .8 .

Zeller and Pohl also noted that the thermal conductivity of amorphous materials is 

almost independent of chemical composition. As can be seen in figure 1.3 there is 

very little difference in the thermal conductivity of different glasses. This would be 

u n derstandab le  if am orphous m ateria ls  had the low est possib le therm al 

conductivity. It could then be explained by the diffusion of vibrational energy from 

one atom to its neighbouring atoms. However vitgous silica does not have the lowest 

possible thermal conductivity. Zeller and Pohl (1971) showed that a crystal of 

potassium chloride doped with 0.1%  cyanide has a lower thermal conductivity than 

amorphous silicon dioxide at temperatures lower than 5K (see figure 1.2).

All amorphous materials so far investigated have similar features in their specific 

heat capacity and thermal conductivity. The specific heat capacities all have an 

approxim ately linear term. Their thermal conductivities are ail about the sam e  

order of magnitude, have a plateau around 10K and vary as T^, n = 1 .8-1 .9  below 

1K. These features are peculiar to amorphous materials. This leads to the conclusion 

that these features are consequences of the am orphous structure itself. By 

considering the amorphous structure it should be possible to produce a model which 

can explain them.
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Figure 1.3 The thermal conductivity of various thin film glasses (from Zeller 

and Pohl (1971)).



There have been several models suggested to explain this behaviour. The majority of 

these models involve the scattering of the phonons off the structure of the 

amorphous material. Examples of such models are those proposed by Chang and 

Jones (1962 ), Fulde and W agner (1971), Rosenstock (1 971),Takeno and Goda

(1972 ), Baltes (1973), W alton (1974 ), Morgan and Smith (1974) and Handrich 

(19 83 ). All of these models explain either the heat capacity or the thermal 

conductiv ity. A nother m odel suggested  by A nderson et a l. (19 72 ) and, 

independently, by Phillips (1972) can be used to explain both these properties. 

This model is based on a distribution of localised tunnelling levels. Although it has 

not been confirmed beyond all doubt the tunnelling model is the one best supported 

by the experimental evidence.

1.2 The Two-level Model

In a glass there should be atoms or groups of atoms that can sit in two or more 

equilibrium positions. The energy, E, of the atom or group of atoms will have two 

local minima which are separated by a barrier. The continuous random network of 

an amorphous material means that the distribution of atoms corresponding to one 

minimum is likely to be different from the distribution around the other. Therefore  

these two minima are likely to have different energies. Figure 1.4 shows the energy 

as a function of position along a line joining the two localised minima. At low 

temperatures only the two lowest energy states are important. Therm al excitation of 

the system is unimportant since, at these tem peratures, kT is much less than the 

barrier height. In order for the atom, or group of atoms, to transfer from one 

minimum to the other it must tunnel. It can be shown that these two states are 

separated by an energy e, where:-

e

where 5^ is the tunnelling energy, the energy associated with the coupling due to the

w avefunctions of the two states overlapping. 8 q is related to the tunnelling 

probability and is given by:-
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Figure 1.5 The scattering of a phonon by a two level system.
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Figure 1.6 The probability density of tunnelling states as a function of 5.



8g = -M ÜQ e'^ (1.4)

where

X = (2mVo/tr2)0.5 (1 . 5 )

and Û q is the frequency of oscillation of the tunelling entity in an individual well, m 

is the mass of the tunnelling entity, TÎ is Plank's constant divided by 2tc, V q is the 

height of the barrier between the two wells and r^ is the spatial separation of the 

two lowest energy states.

If there is sufficient coupling between the two minima an atom in the lowest energy 

state, the ground state of the system, can absorb a phonon of energy s and tunnel 

through the barrier to the other side of the double potential well. The system is now 

in the excited state. Later, when the system relaxes back to the ground state, a 

phonon of energy e is emitted. This process is shown in figure 1.5. This process 

produces two interesting results. Firstly, the scattering of the phonon by the system 

leads to thermal resistance. Secondly, the energy can be stored in the two level 

system and consequently it has a thermal capacity. Both these effects are time 

dependent.

The disorder is frozen into the glass when it is formed at a temperature Tg. So it is 

expected that the tunnelling systems have a range of asymmetry energies (5 values) 

up to the order of kTg = 5g. This is typically a few tens of meV. The energy splitting

between the two levels is equally likely to be positive or negative with respect to 

any particular direction, so the energy distribution must be sym m etrical about 

zero. Since we are restricting ourselves to low tem peratures, T = 1K , we are 

interested in those states for which 5 *  kT = 1 0 '^ eV  . So we are considering only 

states which lie in a small energy band around zero (see figure 1.6). It is expected 

that, for a symmetric distribution, the probability density, p(5), over this range of 

energies will be approxim ately constant. Due to norm alisation p(0) will be



approxim ately ôg’ ^

There is also likely to be a distribution of 5 q about which there is much less 

information. From equation (1.4) it is known that

8 o = 1 T Q o e - ^  ( 1 . 4 )

This together with equation (1.5) tells us that it is exponentially dependent on 

and rg. These variables will probably have a wide range of values. As an 

approximation it is generally assumed that there is a uniform distribution over the 

range of X from o to Xq. This combined with p(5) leads to an expression for the 

density of tunnelling states

The number of tunnelling states in the intervals dX around X and dS around 6 per unit 

volume is

n/(5gXo) d ô d^ ( 1 . 6 )

where n is the total number of tunnelling states per unit volume.

Since

e2 = 82 + 8q 2 (1 .3 )

we should consider the distribution of tunnelling states as a function of both 5 and 5q . 

However,in typical cases 5 is much larger than 5q and so we can consider the energy

splitting as a single variable e = S. So the density of state distribution, n(e), in this 

approximation is a constant and is given by

n(e) de = n^ de (1 .7 )

where



Hq = n . 5g*'' (1 .8)

This approximation is the two level system approximation.

Let us now consider the time dependent coupling of the tunnelling states to the 

thermal phonons. First it is necessary to calculate the transition probability for the 

spontaneous emission of a phonon by a two level system in the excited state, r .  Using 

the "Fermi Golden Rule" it can be shown that

r  = (2n )-''. m 2 E p v5)-1 (1 . 9 )

W here M is the deformation potential, v is the phonon velocity and p is the mass 

density per unit volume. Summing up for different polarizations gives

r,o , » a e 5  2 ( 1 . 10 )

where

a -  (2 n fi‘* p ) ‘ ' ' E  M;2 V|-5 ( 1 . 1 1 )

and where the sum is over modes i.

W e can now calculate how a population of tunnelling states all having the same

energy splittings 8 and 5q will behave when there is a change in tem perature.

Norm ally such a population will be in equilibrium  with the phonons. The  

probability of a transition from the excited state, 2, to the ground state, 1, per unit 

time is the probability of a spontaneous emission plus that of a stimulated emission,

r  + g^r. g^ is the thermal occupancy factor of the phonons of relevant lattice modes 

of energy e. It is given by



g *  = - 1)-^ ( 1 . 1 2 )

Similarly the probability for a transition from the ground state to the excited state 

isgcj>r.

Let N.j and N2  be the occupancy numbers of the ground and excited states

respectively. Using the calculated transition probabilities dynam ic equations  

describing the changes in the occupancy of the tunnelling states can be written

N-| = -g^jjPN^i + (g^ + 1 ) r N 2  = -N 2  (1-13)

W hen the states are in equilibrium with the phonon population there will be no

change in the occupancy number of either the excited state or the ground state. 

Therefore

= N2  = °  ( 1 . 1 4 )

So, from substituting equation (1 .14 ) into equation (1 .1 3 ), the equilibrium  

occupation numbers of the tunnelling states, N.|q and N 2 0 , are related by

N 2 q / * ^ 1 0  =  g<j) • (g<j) +  ( 1 - 1 5 )

If a deviation from equilibrium is generated we can write

N., = N . , 0  + N' e'^'^ ( 1 . 1 6 a )

S im ila r ly

Ng = Ngo - ( 1 . 1 6 b )

By differentiating equation (1 .16a) and equating this to equation (1 .13), with the 

expressions for N.j and N 2  substituted in, it can be shown that



t-1 = r (2g^ + 1) (1.17)

Substituting for g^, using equation (1 .11), gives

T 'I  = r  . coth (e /2kT ) ( 1 . 1 8 )

Using equations (1.4) and (1.10) we can rewrite equation (1.18)

T -l = a e  (M e ‘ 2^ coth (e /2kT ) ( 1 . 1 9 )

has a maximum value when X is a minimum. This occurs when 5q is a maximum  

and 6 is a minimum, i.e. 8q = e and 5 = 0. Therefore

Tm in'^ (E) = a coth (e /2kT ) ( 1 . 2 0 )

Since the term X is exponential most of the states which contribute to the population 

have much longer lifetimes than the minimum value.

To calculate the thermal capacity locked in the two level system let us first go back 

to equation (1.15)

N z o /N io  = 9 *  . (9 *  + 1)'^ ( 1 . 1 5 )

This can be expressed as the ratio of occupation probabilities

P20^^Pl0 “  ^ 2 0 ^ ^ 1 0  (1 "21 )

where p.|Q and pgg are the probabilities that the ground state and the excited state,

respectively, are occupied. Also, since the tunnelling system must be in either the 

ground state or the excited state.

8



p-|0 + P20  ^  ̂ ( ^ ' 2 2 )

From statistical mechanics we can write

p . , 0  .  (gE /k l + 1)-1 ( 1 . 2 3 a )

and

P 2 0  = (e^/kT  + i) -1  ( 1 . 2 3 b )

The energy, U, of the tunnelling state can be calculated

U = e/2 . P2 0  ■ 2 / 2  • p-j 0  ( 1 . 2 4 )

Substituting for p.j q and P2 0  using equations 1.23 a and b gives

U = -e/2 . tan h (e /2kT ) ( 1 . 2 5 )

From this the thermal capacity for one state, Cg, is given by

Cg = e2 (4kT2)-1  . sech2(e /2kT) ( 1 . 2 6 )

The distribution of tunnelling states is given by equation (1 .6 ). So the thermal 

capacity per unit volume, C y , is given by

fS j.^
Cy = g j  gj  ne2 (8gXg 4kT2)-1 sech2(e/2kT) d8 dX (1.27)

As the integral stands it does not take into account the time dependencies of the 

states.This is important since only the states with a lifetime, x, less than the time 

taken for a measurement , t, can respond and contribute to the thermal capacity, in 

crder to take this into account it is necessary to change the variables of integration



from S and X to e and x. This gives

C v(t)  = j  J n e2 (5g Xg 8kT2)-1  sech2(E/2kT) x
'^min

T-l (1 - tg,in/tr°-® *  dE (1 .28)

When this is integrated it produces

C v(t) = )t2 . n .(12 5 g  X g ) - \  k^T. In (66 .3  a (kT)^ t )  ( 1 . 2 9 )

The temperature dependence is dominated by the T term. However, the logarithmic 

term has some effect. By looking at the temperature power law

3 (ln C )/9 ( ln T )  = 1 + 3 /{ln (66.3  a {kT)^ t )) ( 1 . 3 0 )

and substituting in typical values for a ( = 2 0 0 | ie V '^ s '^ ), T  (=0.1 K) and t (=1s)

leads to a tem perature dependence of This is close to the temperature

dependence found by Lasjuanias et al. (1972) which was discussed in section 1.1. 

Equation (1.29) also shows a logarithmic dependence on time. This has led to the 

experim ental investigation into the time dependence of the thermal capacities of 

amorphous materials. The results of these experiments will be discussed in section 

1.4.

The thermal conductivity is not as easy to calculate. The resonant scattering of the 

phonons by the tunnelling states causes a reduction of the mean free path of the 

phonons and leads to a therm al resistivity. The finite lifetime effects of the 

tunnelling states and the different phonon modes make this effect difficult to analyse.

a
Looking at one polarisation, i, for equjion (1.12) the rate of "up processes" is given 

by

N i F; (So, e) g^ ( 1 . 3 1 )

This rate of "up processes" is equal to the rate of phonon absorption by the

10



tunnelling states.

Consider the phonons In the energy range de around the energy e. N.| Tj needs to be 

averaged over all the states In the energy range de around e. As before we wish to 

express this as a function of e and x. So the rate of "up processes" is written as

n (5g Xg)"^ . p .,(e ). { T C 0 t h ( e / 2 k T ) ) ‘ ' ' .g^ .d e .(2 T )‘ ''.(1  d t

( 1 . 3 2 )

= n p i(8 g  X g ) ' \  a; g^. de.^^J ^m in  ( 1 dt

( 1 . 3 3 )

The  integral in expression (1 .33) was found to be unity. So the rate of "up 

processes" is given by

n P i • (5g Xq)’ "* . a| e^ g^ de ( 1 . 3 4 )

The rate of absorption of phonons of energy e in the range de is

n ^ x ^  .d e  ( 1 . 3 5 )

where x^ is the phonon lifetime and n^ is the number of phonons per unit energy 

range in thermal equilibrium at temperature T

n«(, = g^ . (271  ̂ v^ fi)-1 (1 .3 6 )

Equating expressions (1 .34) and (1 .35) produces an equation for the "overall" 

phonon lifetime

= n P l  ( 5 g Xg ) - 1  . a j E^  g * . n ^ - 1  ( 1 . 3 7 )

11



Simplifying this expression gives

= n p.| { 5g Xq)"'! , 7t M j 2  g ( p v j 2 ) - 1  ( 1 . 3 8 )

This is obtained using equations (1.11)  and (1 .36) to substitute for a; and 

respectively .

It is necessary to m ake some approximations in order to estim ate the thermal 

conductivity. The first is that we use the dom inant phonon approxim ation. W e  

assume that the phonons with energies of 3 .8kT  dominate the thermal conductivity. 

Secondly, we assume that we can use a kinetic model of a phonon gas to calculate the 

thermal conductivity. From this we can write

K = 1/3 C V I ( 1 . 3 9 )

where C is the specific heat per unit volume in a phonon gas. This is proportional to 

T^ for Debye phonons. v is the mean velocity of the phonons in the gas and I is the 

mean free path of the dominant phonons. This equation can also be written as

K = 1/3 C v^ Xgff ( 1 . 4 0 )

This effective lifetime, Xg^f, is not the "overall" x^ which has been calculated above.

The phonon population needs to be randomised by the scattering. The absorption of a 

phonon followed by stimulated em ission does not do this. There is no net scattering 

in this process. To take account of this the "overall" lifetime needs to be corrected 

by a factor of the ratio of the spontaneous transition rate to the total transition rate. 

The effective phonon scattering lifetime is given by

^eff   ̂  ̂ - (9({> + 1)  ̂ (1 41 )

Substituting this into equation (1.38) gives

12



= n P i { 5g Xq ) ' ^  . e (fi . (g^ + 1)'1 ( 1 . 4 2 )

Taking the two statistical factors, p i and + 1) '^,  together

'^eff'^ -  ^  e ( fi pv|^)"^ ta n h (e /2 k T ) ( 1 . 4 3 )

Using this along with the dominant phonon approximation and the kinetic phonon gas 

model leads to

K a  C (e ta n h (e /2 k l)) ‘  ̂ ( 1 . 4 4 )

K a  T 3 . T ° . T ^  ( 1 . 4 5 )

In other words k is proportional to . As mentioned in section 1.1 the actual 

variation is a power slightly below 2. This can be obtained from more accurate  

calculations.

It is uncertain as to what the tunnelling entities are. The most wideiy studied glass 

has been silica therefore most suggestions have been made about the tunnelling 

states in this material. Jackie et al. (1976) suggested three possibilities, an oxygen 

atom moving transversely between two bonding silicon atoms, two potential minima 

for an oxygen atom along the bond direction or the rotation of an SiO^ tetrahedron.

Von Haum eder et al. (1980) and Raychaudhuri and Pohi (1982) suggest that it is a 

single oxygen atom which is tunnelling. From recent experim ental evidence (von 

Lohneysen et al. (1985), Buchenau (1985), Phillips (1985) and Dianoux et al. 

(19 86 )) rotation of S iO^ tetrahedra is thought more likely. How ever these  

experiments only provide indirect evidence on this question and are not conclusive.

Although the two level model can explain many of the therm al properties of 

amorphous materials it is not without problems. Calculations of n^ from the specific 

heat capacity produce a value which is an order of magnitude greater than that
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calculated from the thermal conductivity. This is possibly due to the thermal 

conductivity measurement being made over a short time compared to the specific 

heat. Only two level states with short time constants could participate in the 

m easurem ent of the therm al conductivity. Another possibility suggested by 

Hunklinger et al. (1975 ) and Black and Halperin (1977 ) is the existence of 

anom alous levels which have long coupling times with a narrow distribution 

function. These anom alous states would only participate in the specific heat 

m easurem ent. T he  existence of these states has not yet been confirm ed  

experim enta lly .

1.3 Ultrasonic properties of amorphous materials

The tunnelling model predicts an ultrasonic attenuation which saturates with 

increasing input acoustic power (Anderson et al. (1972), Jackie (1972), Jackie et 

al. (1976)). When a sound wave travels through a material with two level systems 

present energy is absorbed from it by the two level systems. In absorbing this 

energy the system goes from the ground state to the excited state. At low powers the 

attenuation is independent of the power. This is because the sound wave does not 

significantly affect the occupation numbers of the two level systems. At these phonon 

energies (*k T ) the occupation numbers of the upper and lower levels are 

approxim ately equal. High acoustic intensity generates  more exactly equal 

populations so that the probability of an up process is approximately equal to the 

probability of a stimulated down process. Energy is only lost by spontaneous  

processes at the same rate as before. Therefore, as the input power is increased the 

attenuation d ecreases . Hunklinger et al. ( 1972)  m easured the ultrasonic  

attenuation over five orders of magnitude of intensity and found this nonlinear 

effect. This was also found by Golding et a l.(1973). Further m easurem ents by 

Hunklinger et ai. (1973) showed that the low intensity absorption was proportional 

to co^/T and the saturated attenuation varied as T^ at low temperatures. This is in 

agreem ent with the predictions of the tunnelling m odel. Jackie et al. (1976) 

measured the attenuation up to a temperature of 100K and explained their results 

in terms of resonant tunnelling of two level systems and, at temperatures above 

50K , structural relaxation.
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Hunklinger et al. (1975) and Hunklinger and Riche (1975) m easured the variation 

in ultrasonic velocity at low input powers. It was found that the change in velocity

(Av) at the lowest temperatures measured was proportional to ln (T /T .|), where T.|

is som e reference tem perature less than T . At higher tem peratures Av was

proportional to - ln (T /T 2 ), again T 2  is a reference tem perature. The authors

explained this in terms of the interaction of the phonons with two level systems. At 

low tem peratures the phonon interaction is a resonant process causing the 

tunnelling of the entity in the system. At higher tem peratures it is a relaxation 

process which dominates the interaction. A similar variation of ultrasonic velocity 

was measured by Riche et ai. (1974) at higher pulse powers which saturated the 

absorption. This negligible effect of the saturation of the absorption on the velocity 

variation is to be expected. This is because a broad energy range of two level states 

contribute to the variation in the velocity and only a small part of this energy range 

will be saturated by the phonons.

Measurements of the ultrasonic attenuation and the variation of the acoustic velocity 

produce estimates of n^M^. When these estimates are used to calculate the thermal

conductivity of the material on which the measurements were made good agreement 

with the experim entally m easured values of the therm al conductivity is found. 

Another m easurem ent which links the acoustic and the therm al properties of 

amorphous materials is that performed by Golding, Graebner and Schütz (1976). 

They m easured the tem perature dependence of the mean free path of acoustic 

phonons in silica at lower temperatures than previously investigated. They were

able to attain the fîcû>kT regime and were, therefore, able to measure the resonant 

decay lengths of the phonons. From this measurement they calculated the thermal 

conductivity in agreement with the measured value.

Rhonon echoes have been detected in glasses (Golding and Graebner (1976) and 

G raebner and Golding (1979 )). They input two phonon pulses of the same  

frequency into the glass. On looking at the output they detected a third pulse a short 

time after the detection of the reflection of the input pulses. This third pulse was an 

echo which can be explained by the coherent emission of phonons by two level states 

associated with atomic tunnelling. This coherent emission was stimulated by the 

second pulse.
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Golding et ai. (1973) and, later, Graebner et ai. (1983) m easured the recovery 

time of the two level systems from saturation. To do this they used a two pulse 

technique, a strong pulse followed a variable time later by a w eak pulse. By 

measuring the attenuation of the second pulse a m easure of the recovery time is 

obtained. They observed a distribution of states with decay times ranging over at 

least a factor of ten as expected from the two level model. The decay times could be 

fitted with a distribution function that emphasises the slower asymmetric states.

Arnold and Hunklinger (1975) also perform ed a two pulse experim ent. In their 

experim ent the first pulse, P .|, was of high power and variable frequency. The

second pulse, P2 , was a low power, fixed frequency pulse. They swept through the

frequency range of and measured the attenuation of P 2 . They found a broad,

asymmetric minimum in the attenuation of P2  where the two pulse frequencies

were equal. The minimum was more pronounced when the input power of P-j was

increased. The broadness of the minimum indicated that the pulse P.| saturated a

wide range about its own nominal frequency i.e. that interactions between two level 

systems of similar frequency are strong. The authors were able to explain the 

width, asymmetry and temperature dependence of the minimum in terms of direct 

interaction between two level systems.

Results of ultrasonic measurements support the two level system model. Values of 

calculated from these measurements are consistent with the values obtained

from the thermal conductivity. Inconsistencies arise when the value of n^ calculated

from the ultrasonic measurements is compared with the value calculated from the 

specific heat. It is found that the specific heat produces a value that is about an 

order of magnitude larger than the value from the acoustic measurements, this is a 

similar result to that obtained when comparing n^ calculated from the thermal 

conductivity and the heat capacity (see section 1 .2 ).
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1 .4 The time dependent specific heat

One of the predictions of the tunnelling states model is that the specific heat has a 

time dependence at short times. This is caused by the tunnelling states taking a time 

X to come into equilibrium with the phonons. Equation (1.19) gives the distribution 

of X. If the time of measurement, t, is reduced then a reduced heat capacity should be 

observed since fewer states have sufficient time to interact with the phonons. From 

equation (1 .29) it can be seen that this time dependence is logarithmic for a 

uniform energy density of tunnelling states.

The first m easurements of the short time heat capacity found no evidence of the 

expected time dependence ( Goubau and Tait (1975) and Kummer et al. (1978)). 

Black (1978) noted that the measurements of Goubau and Tait (1975) appeared to 

be Inconsistent with measurements of the ultrasonic properties of glasses. Using the 

standard tunnelling model of Anderson et al. (1972) and Phillips (1972) and 

parameters of the tunnelling systems calculated from the ultrasonic measurements 

Black (1978) calculated both the long time and the short time specific heat of 

vitreous silica. In both cases the theoretical value of the specific heat was smaller 

than the experimental value. He then introduced anomalous tunnelling states which 

do not participate in phonon scattering, but only contribute to the specific heat. The 

theoretical value of the long time specific heat calculated using the standard and the 

anomalous tunnelling states agreed with the experimental value. However the short 

time theoretical value in this case was much smaller than that measured by Goubau 

and Tait (1975). More recent measurements by Meissner and Spitzmann (1981) 

and Loponen et al. (1982) have revealed a logarithmic time dependence of the 

specific heat capacity on a time scale of less than 100p.s.They found that the short 

time specific heat below 0.3K around 10ns was considerably smaller than the long 

time specific heat but larger than the Debye value. Above 0.3K around 10ps the heat 

capacity is beginning to be dominated by the contribution from the thermal phonons. 

Loponen et al. (1982) also measured the diffusivity of the samples and found that it 

did not reveal the reduction of the heat capacity which they observed around 1 0 ns. 

This result is consistent with the measurements of Kummer et al. (1978) who did 

not observe the time dependence when they measured the diffusivity of the sample.

Measurem ents with time scales of 50s to 6000s were performed by Zimmerman
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and W eber (1981) and on time scales of 10 to 1000s by Loponen et al. (1982) on 

amorphous silica. In both these m easurements the samples were heated to fixed 

tem peratures and maintained at these temperatures for several hours. They were 

then allowed to cool through a known thermal link to the temperature of a thermal 

bath. The cooling curves were compared to theoretical ones which took into account 

the contributions from the Debye phonons and the tunnelling states. The authors 

concluded that there was a time dependent contribution from tunnelling states as 

described by the models of Anderson et ai. (1972) and Phillips (1972). The 

calculated density of states was very similar to that calculated by Black (1978) 

from ultrasonic measurements.

The time dependent specific heat measurements have revealed a logarithmic time 

dependence. This is consistent with a tunnelling model based on a uniform density of 

two level systems.

1.5 The temperature range 1 to 1 0 K

The two level system model explains the thermal and ultrasonic properties of 

amorphous materials below IK . Taking relaxation into consideration it can also 

explain the ultrasonic data at temperatures up to 100K. However the situation for 

the thermal properties at temperatures between 1 and 10K is less clear. This is in 

the region of the plateau of the thermal conductivity and the peak in C/T^. Zeller and 

Pohl (1971) calculated from the thermal conductivity that the mean free path of

the phonons in this tem perature range varied approxim ately as co"^. As this 

frequency dependence is the same as that for Rayleigh scattering. The authors 

proposed an "isotopic scattering" model. The glass was represented by a crystal with 

every atom displaced and Rayleigh scattering taking place at each of these displaced 

atoms. Jones et ai. (1980) used light scattering data to calculate the strength of the 

Rayleigh scattering and found it to be too weak by almost two orders of magnitude. 

Zaitlin and Anderson (1975) used Walton's (1974) structure scattering model to 

explain their thermal conductivity data. However, Jackie et al. (1976) calculated 

the scattering strength to be less than that needed to explain the Zaitlin and Anderson 

(1975) data. Jones et al. (1978) attem pted to fit the plateau of the thermal 

conductivity of silica using a structure scattering model but similarly found that the
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structure scattering was not strong enough to explain the data. Recently Handrich 

(1983) used a structure scattering model to explain the thermal conductivity of 

amorphous materials at temperatures up to 20K. He found that this model explained 

the published experimental data.

An extension to the tunnelling model was proposed by Zaitlin and Anderson (1975). 

This involved introducing an extra quadratic term in the density of states. It is able 

to explain both the plateau in the thermal conductivity and the heat capacity in 

excess of the Debye contribution using parameters which are consistent with the 

acoustic data. This model has been used successfully by other authors (Smith et al. 

(1978) and Jones et al. (1978)) to explain their data. However, this extension of 

the tunnelling model is not altogether satisfactory. Jones et ai. (1978) criticise it 

on three points. First there is no natural cut off in the density of states, one has to 

be introduced arbitrarily. Secondly, when the total number of tunnelling states is 

integrated up it is only one order of magnitude less than the number of atoms which 

is unphysicai. Finally, the number of variables used in the model makes it easy to 

fit the data.

D ianoux et al. (1986 ) using inelastic neutron scattering found vibrational 

excitations in viteous silica over a wide frequency range above 150G H z. They  

identified these excitations as the coupled rotations of SKD^ tetrahedra and

determined their density of states. This measured density of states was then used to 

calculate the excess T^ term in the specific heat of vitreous silica and was found to 

agree with the published data. Below IK  the dominant contribution to the specific 

heat com es from the tunnelling term. The authors are unsure about how these 

vibrational excitations are related to the tunnelling states.

The thermal data in the temperature range 1 to 10K can be explained using both 

structure scattering models and an extension to the tunnelling model. Both these 

types of models have been criticised and there is no clear evidence to support one or 

the other. The data can be explained by any mechanism which gives a sufficiently 

rapid increase in the mean free path with phonon frequency.

19



1 . 6  Neutron irradiation, doping and annealing experiments

Two levei states are thought to be an intrinsic feature of the structure of amorphous 

solids. Experiments have been performed in which the structure of the amorphous 

material has been changed. The effect that this change has had on the two level states 

has been observed indirectly through the measurement of the thermal and acoustic 

properties of the material.

Smith et al. (1978) measured the heat capacity, thermal conductivity and variation 

in acoustic velocity for unirradiated and neutron irradiated silica. They found that 

the heat capacity decreased and the thermal conductivity and the variation of the 

phonon velocity Increased upon irradiation. Earlier m easurem ent of the thermal 

conductivity by Cohen (1958) produced similar results. These changes are not due 

to an increase in the atomic order of the materials. X-ray diffraction measurements  

by Bale et al. (1978) showed that neutron irradiation makes the structure less 

ordered. This rules out structure scattering as the cause of the anomalous thermal 

and acoustic properties of amorphous materials. Smith et al. (1978) calculated that 

all the changes they observed were consistent with about a 35%  decrease in the 

number of tunnelling states.

Investigations were carried out by Raychaudhuri and Pohl (1982) on the doping of 

nitrate and silica glasses with water, lithium and nitrite. They m easured the low 

temperature heat capacity of the doped glass and found that this property changed if 

the dopant changed the glass transition tem perature, Tg . The linear part of the

specific heat increased as the glass transition tem perature decreased. This 

observation is consistent with a density of two levei systems frozen into the glass 

varying as Tg’ ^ . This conclusion is supported by the studies of von Lohneysen et al.

(1985) on the effects of annealing on the low temperature properties of silica. They 

found a decrease in the heat capacity and an increase in the thermal conductivity 

when the glass was annealed. Both of these observations indicate a decrease in the 

density of tunnelling states. The higher the annealing tem perature the greater the

decrease in n^, i.e. n ^ -T g '^ . The authors also noted that the largest changes occurred

at the peak of C/T^ versus T (T -3K ) and at the plateau in the thermal conductivity 

which implies that these two features are linked. Their results agree with the
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theory developed by Cohen and Grest (1981) and the observations of Raychaudhuri 

and Pohl (1982). Both von Lohneysen et al. (1985) and Raychaudhuri and Pohl 

(1982) discuss the neutron irradiation experiments. They attribute the increase in 

thermal conductivity to an increase in the fictive temperature, T ,̂ of the glass. The

larger the neutron dose the larger the fictive tem perature. Von Lohneysen et ai. 

(1985) suggest that a possible mechanism leading to the decrease in the density of 

tunnelling states as Tg, Tg or T | increases is the increase in the mass density 

inhibiting the atomic motion in the material.

Measurem ents on amorphous selenium and a-Se.|.j^-Gej^ glasses (Duquesne and

Beilessa (1985b) and Jones et al. (1982)) indicate that as the rigidity of the 

network increases, as the Ge component is increased, the number of tunnelling 

states decreases. It is thought that the Ge links Se chains and makes the structure 

more rigid reducing the number of atoms that can tunnel. This effect is also found in 

amorphous polym ers. Matsumoto et al. (1979) m easured the low tem perature  

therm al and ultrasonic properties of two similar epoxies which differed in their 

crosslink densities. The epoxy with the greater crosslink appeared to have the lower 

density of tunnelling states.

1 .7  Dielectric properties

It has been noted that there is a similarity between the acoustic and dielectric 

properties of amorphous materials (Hunklinger and von Schickfus (1981 )). This 

has lead to the suggestion that the same mechanism is responsible for both dielectric 

and acoustic losses.

Von Schickfus et al. (1975) m easured the change in the dielectric constant of 

glasses as a function of temperature. He did this by measuring the change in the 

resosnant freq u .^y  of a microwave cavity containing a sam ple of the glass. A 

maximum in the velocity at 4K was observed. At temperatures less than 4K the 

change in the light velocity followed the same logarithmic dependence as the sound 

velocity. This behaviour could be explained in terms of the dipole moment associated 

with transitions within the tunnelling systems in analogy to the acoustic properties. 

A difference was found between the dipole moments of silica and borosilicate glasses.
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This suggests that the electrical dipole moment is more sensitive to differences in 

composition than the elastic dipole moment.

Mon et al. (1975) measured the infrared absorption of silica, germ ania and PMMA. 

They found that the absorption was dependent on both the temperature and the 

frequency. As the tem perature of the glass increased the absorption coefficient 

decreased. The authors explained this in terms of a thermal population dependence of 

a sim ple two level m odel. To explain deviations betw een their theory and 

measurements they introduced three level systems into their model. Calculation of 

the electric dipole moment from this experiment produced good agreement with von 

Schickfus et al. (1975).

The range of materials and measurements has been extended by other workers. These 

have produced similar results and conclusions (Hunklinger and von Schickfus 

( 1 9 8 1 ) ) .

1.8 Energy resolved phonon scattering experiments

It is unclear as to w hether the therm al conductivity betw een 1 and 1 0 K is 

determined by structure scattering or by scattering from a non-constant density of 

tunnelling states. Also very little is known about the details of the interaction 

between phonons and tunne lling states at high energies, in particular whether 

higher order phonon scattering processes are important. One way of throwing light 

on the problem is to investigate whether the phonon scattering processes are elastic 

or inelastic by using energy resolving phonon transducers.

Long et al. (1980) measured energy resolved phonon scattering in thin films. They 

investigated three materials; evaporated silicon monoxide, evaporated germanium  

and sputtered hydrogenated germanium. They observed that inelastic scattering 

processes dominated in the amorphous germanium films and elastic processes in the 

silicon monoxide film. They also found evidence for scattering events with 

significant dweil times. Measurements were made on amorphous evaporated silicon 

dioxide by Deitsche and Kinder (1979). In contrast to the results of Long et al. 

(1980) they interpreted their data as being due to inelastic scattering. The two 

experim ents  w ere very sim ilar. They both used superconducting tunnel
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heterojunctions as phonon detectors and thin amorphous films. There were some 

important differences. Long et ai. (1980) held their sam pies in vacuum and the 

film being investigated was deposited under the detector, whereas, Deitsche and 

Kinder (1979) had their samples in a liquid helium bath and the sample was under 

the heater. The implications of these differences will be discussed in chapter 6 .

This project was a continuation of the m easurements of Long et al. (1980). The 

first priority was to establish that the detectors and their energy resolution was as 

theory predicted and to establish the output of the thin film heaters used in the 

experim ent. The range of m aterials investigated was then extended and the 

differences between depositing the sample under the detectors and the heaters were 

investigated.
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2.1 Introduction

Superconducting tunnel junctions have been used as phonon generators and detectors 

since their introduction by Eisenmenger and Dayem  (1967). However, they were 

not used as phonon energy sensitive detectors until Dietsche (1978) introduced this 

technique. He used an aluminium, lead bismuth (0 .85:0 .15) tunnel junction. We  

decided to use these junctions as our detectors since they operate in the energy range 

of interest. For phonon generation we used one of two sources, either tin-tin 

superconducting tunnei junctions or constantan thin films. The tunnelling junctions 

were used because they emit a well known phonon energy spectrum (Berberich and 

Kinder (1981)) and using this spectrum we can check our matrix analysis scheme. 

The constantan thin films were used for the majority of the experiments since they 

emit a wide continuous band of phonon energies and are easy to manufacture.

2.2 D.C. electrical characteristics of superconducting tunnelling junctions

Figure 2 . 1  shows a density of states versus energy diagram for a junction between 

identical superconductors. The tunnelling processes are shown. At finite  

tem peratures there is a current due to the tunnelling of therm ally excited  

quasiparticles. This current is fairly constant with voltage after the initial rise and

is the dom inant current for voltages less than 2 A /e . The current due to the

pair-breaking process is zero below V = 2A /e . The tunnelling electron must have 

sufficient energy to reach an empty state above the gap, this is the lowest energy at 

which this occurs. This process produces a sharp rise in the tunnelling current at 

this voltage. At higher voltages there is a gradual approach to the normal state 

characteristic. These characteristics are shown in figure 2.2.

Figure 2.3 shows the density of states versus energy diagram and the tunnelling 

processes for an S^j-Sg type junction. These processes are similar to those occuring

in an S-S junction. Below a voltage of (A .j-A 2 )/e there is a tunnelling current due 

to therm ally excited quasiparticles in the aluminium. Quasiparticles of energy 

greater than a thershold value of A ^ -eV  can contribute to the tunnelling current.

24



a - quasiparticle tunnelling, b - tunnelling by pair breaking 

Figure 2.1 Energy diagram of and tunnelling in a symmetric superconducting 

tunnel junction.
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Figure 2.2 Schematic of d.c. electrical characteristics of a symmetric 

superconducting tunnel junction.
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a - quasiparticle tunnelling, b - tunnelling by pair breaking 

Figure 2.3 Energy diagram of and tunnelling in a superconducting heterojunction



This current increases at low voltages up to the singularity at (A ^ -A 2 )/e  then

decreases as the voltage is increased to (A ^ + A g V e . This is due to the thermally

excited quasiparticles in the aluminium being moved up from the singularity in the 

density of empty states just above the energy gap in the lead-bismuth. The current

increases again at V=(A^ fA g j /e  due to tunnelling by the pair breaking process.

These current voltage characteristics are shown in figure 2 .4  a. In this experiment 

a current biasing supply was used. The effect of this is that the junction switches at

constant current between the voltages of (A.| -A g V e  and (A . |+ A 2 )/e . The d.c.

electrical characteristics obtained from a current source are shown in figure 2.4b.

The junctions were operated as detectors in the region 0  < eV  < A.  ̂-A 2  so the

current voltage characteristics in this region should be considered in more detail. In 

this region the current is dom inated by the tunnelling of therm ally excited  

quasiparticles from the aluminium to the lead-bism uth. The reverse current of 

therm ally excited quasiparticles from the lead bismuth to the aluminium is 

negligible. The number of excited quasiparticles in a superconductor is proportional

to (e x p (A /k T ) + 1  ) ’ ^ . For lead bismuth at a temperature of 1K this has a value of 

^ 1 0 " ^  which is negligible com pared to that of aluminium (^ 1 0 "^ ). Following

from G iaever and M egerle (1961) it can be shown that the tunnelling current from 

aluminium to lead bismuth is given by

l = K I N 2 (E -eV ) f(E -eV ) N ^ fE ) [1-f(E )] dE  ( 2 . 1 )

W here Nj(E) is the BCS density of quasiparticle states in material i given by

N |(E ) = E /V (E 2 -A .2 )  ( 2 .2 )

and f(E) is the fermi distribution function given by

f(E) = (exp (E /kT ) + I)""* ( 2 .3 )
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Figure 2.4
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S c h e m a tic  of d .c . e lectrica l charac teris tics  of a  su p erco nd uctin g  

h etero junction ,

(a) vo ltag e  biasing source , (b) current b iasing sou rce



The junctions are used at temperatures below 1 K so all but the most significant 

fermi distribution functions can be approxim ated by zero. Equation (2 .1 ) now 

becomes

I = K. r N 2 (E -eV ) f(E -eV ) N ^(E) dE ( 2 .4 )

oo
= K. J No(E) f(E) N .(E + e V ) dE ( 2 .5 )

In the voltage range measured N 2 (E) is approximately constant. Substituting this 

into equation (2.5) along with the expressions for f(E) and (E+eV) gives

= K. N g (A .|-e V ). r  (exp (E /kT )+ 1 )''' x
' A i-e Vr

(E+eV) . (V ( (E + e V )2 -A .|2 )) -1  ( 2 .6 )

I = K . N g fA i-e V )  . V (A .|7ckT/2 ) . e x p ( (A .,-e V ) /k T )  ( 2 .7 )

Equation (2.7) is the expression used for the current in the junction in this range.

in practice there are contributions to the tunnelling current at V < (A .^ -A 2 )/e

other than those taken into account when deriving equation (2 .7 ). There is the

Josephson tunnelling current. This may reduced to a neglgible level by applying a 

magnetic field. If the oxide layer is incomplete a short is formed in parallel with the 

junction. This usually renders the junction useless. A third source of leakage  

current is a parallel superconducting-normal junction. This occurs when some of 

the PbBi alloy remains normal. It is unclear why this happens but it appears to be 

connected with surface roughness on the sapphire substrate. Figure 2.5 shows the 

density of states versus energy diagram for an S-N junction. The tunnelling current 

is dominated by the tunnelling of quasiparticles thermally excited to a voltage of

A /e . There is then a sharp rise in the current due to the pair-breaking process. The 

current-voltage characteristic is shown in figure 2 .6 . W hen an S-N junction is 

formed in parallel with an S 1 -S 2  junction the d.c. characteristic shown In figure
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F ig u re  2 .5

a  - q u a s ip a n ic le  tunnelling , b - tunnelling  by p a ir b reaking  

E n erg y  d iag ram  o f an d  tunnelling  in a  S -N  tu nn el junction.
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F igure 2 .6  S ch e m atic  of d .c . e lectrica l ch aracteris tics  o f a  S -N  tu nnel junction .
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Figure 2.7 Schematic of d.c. electrical characteristics of a superconducting 

heterojunction in parallel with a S-N junction.



2.7 is obtained. A correction for the perturbing effects of this excess contribution 

can be made and is discussed in section 2 .6 .

2.3 Superconducting tunnel junctions as phonon generators

The phonon emission spectrum of superconducting tunnel junctions has been 

thoroughly investigated and is well known (E isenm enger and Dynes (1967); 

Dayem , Miller and W iegand (1971); Berberich and Kinder (1972 )). It is for this 

reason that they were used to check our analysis scheme. Tin junctions were chosen 

because the energies of the emitted phonons match the energy range of our detectors.

There are two processes by which phonons are emitted by excited quasiparticles, 

relaxation and recombination. The quasiparticles are generated above the energy gap

by applying a voltage pulse (V > 2A /e). The energies (E) of these quasiparticles are 

in the range A  < E < eV-A  (see figure 2.8). Relaxation from a state with energy E-j 

to a state of energy E2  takes place with the emission of a phonon of energy E y E g .

Quasiparticles from higher energy states mainly relax into states just above the 

energy gap. This is because of the large number of empty states at this energy, a 

consequence of the singularity in the density of states.

From Long and Adkins (1973) the relaxation transition rate is proportional to 

E g  . V ( E g 2 -A ^ ) - ' '  . ( E i - E g ) 2  . ( l - A ^ /E ^ E g )  ( 2 .8 )

assuming the fermi function to be zero at the low temperature of our experiment.

A phonon of energy Ey+Eg, is emitted when a quasiparticle of energy E  ̂ recombines 

with a quasiparticle of energy Eg to give a Cooper pair.The recombination rate goes 

as

( E i  + E g )2  . ( U A ^ / E i E g )  ( 2 .9 )
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The calculations of Long and Adkins (1973) show that for superconducting tin at a 

temperature of IK  the quasiparticles of energy less than 1.2A  are more likely to 

recombine than relax.

Long (1973) calculated that a phonon of energy Q  > 2 A  will be reabsorbed in 

tunnel junctions whose thickness is much greater than the phonon mean free path. 

The quasiparticles which these phonons excite will relax and recombine emitting on 

average more than one phonon. Therefore very few phonons of energy greater than

2A  will be emitted due to this reabsororption.

Our experiments were performed at a tem perature around IK  using junctions of 

total thickness 400nm  (which is greater than the phonon m ean free path (W. 

Eisenm enger (1976 ))). The processes which occur in these junctions produce a

phonon spectrum which has a peak around 2 A  due to recombination and a continuous 

background of low energy "bremsstrahlung" phonons from the relaxation process.

The 2 A  peak will be shifted slightly higher in energy due to recombination

becoming dominant over relaxation at quasiparticle energies of about 1 .2 A . This is 

the type of spectrum measured by Berberich and Kinder (1981).

2.4 Aluminium - lead bismuth tunnel junctions as phonon detectors

A phonon, energy O, incident upon a superconductor can be absorbed in two ways. It 

can be absorbed by a quasiparticle which has been previously excited to an energy E 

above the gap. This is highly improbable since at the tem peratures of our 

experiment the density of excited quasiparticles is very small compared with that of 

Cooper pairs. The alternative is for the phonon to break a Cooper pair into two 

quasiparticles, one with energy E and one with energy Q-E. So phonons with energy 

lO incident upon a superconductor will produce a distribution of quasiparticles

between A  and Q -A . This distribution can be deduced as follows.

Bobetic (1964) calculated the energy dependence of the pair breaking phonon mean 

free path. His result for the ratio of the pair breaking absorption coefficient in the
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superconducting state to the absorption coefficient in the normal state at low 

tem peratures is

a g /a „  = Q - '' f ' ^ \ ( Q - E ) W [ ( E 2 - A 2 ) ( ( n - E ) 2 - A 2 ) ] - 1  x

(1 +A ^ /E (£ i-E )) . dE ( 2 . 1 0 )

Since ap is proportional to Q  we can deduce the energy dependence of Og. The phonon

mean free path for pair breaking is inversely proportional to «g. Also the transition

rate for this process varies directly as the phonon speed and inversely as the phonon 

mean free path. So the transition rate is proportional to

E . ( n - E ) .V [ ( E 2 . A 2 ) { ( Q - E ) 2 . A 2 ) ] - 1  x
A

(1+a 2/E(£2-E)) . dE ( 2 .1 1 )

This is the transition rate for pair breaking phonons of energy Q  producing  

quasiparticles anywhere between the energies A  and Q -A . Therefore the transition 

rate for a pair breaking phonon producing quasiparticles of energies E^and Eg (= 

Q-E-j )  is proportional to

(Ei  + E 2 ) . ( E i / V ( E i 2 . a 2 ) ) . ( E 2 / V ( E 2 2 - A 2 ) ) . ( 1 + a 2 / E i  E2 )

(2 . 1 2 )

This energy dependent transition rate determines the energy distribution of the 

quasiparticles. From it we can deduce an occupation probability distribution, 

h (Q ,E ), which gives the probability that a phonon of energy Q  will produce a 

quasiparticle of energy E. W e obtain

h(£i ,E)  = A ( 0 )  . E . ( a - E ) . V t ( E 2 - A ^ ) ( ( a . E ) 2 . A ^ ) ] - ' '  x

(1+a 2/E(£2-E)) ( 2 .1 3 )

where A(Q)  is a normalisation factor and is given by
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(̂a,E) . dE = 2 (2.14)

since each phonon produces two quasiparticles. 

By rearranging equation (2.13) we obtain

h (Q ,E ) = A (Q ) . (E .(0 -E )+ A ^ )  X

:2 _ A 2  \ / / r i _ c \ 2 _ A 2 \ i - 1V [(E ^ -A '= ') ( (a -E )^ -A ^ )] -^  ( 2 .1 5 )

Hence

A (Q ) = 1/2 .^J (E .(A -E )+ A '^ ) X

-V[(E2 . A ^ ) ( ( a . E ) 2 .A ^ )] - ' ' ( 2 .1 6 )

This integral has been calculated by Bobetic (1964) and takes the form

A (£2) = n  E V (1 - (2 A /£ 2 )2 )  ( 2 .1 7 )

where E is the elliptic integral of the second kind.

Assuming that the phonon energy is less than 2 A .j, A.j being the energy gap in the 

lead bismuth, then the only significant absorption of phonons will occur in the 

alum inium  since the aluminium energy gap, A g , is much sm aller than A.|

(A.j = 1 .56m eV and A 2 =0 .1 8 meV, typically). The density of occupied quasiparicle

states produced by this process is shown in figure 2 .9 . These quasiparicles will 

produce an extra non-thermal tunnelling current from the aluminium to the lead 

bismuth. If the junction is biased at a voltage V then only quasiparticles of energy

greater than or equal to the threshold energy Q q (=A.| -eV) will contribute to this

non-therm al tunnelling current. This region is crosshatched in figure 2 .9. We  

assume that the phonons which generate a quasiparticle in this region also generates 

a quasiparticle at the singularity above the aluminium gap. Therefore, the energy of 

the absorbed phonon is the sum of the energies of the two quasiparticles,
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A g + i^ A ^ -e V ). The number of quasiparticles contributing to the enhanced current 

is equal to the number of phonons with energy greater than or equal to the thershold 

energy of A^ + A 2 -eV  absorbed by the detector. W e have limited ourselves to the

bias range 0 ^ eV ^ . j - A g  so we can vary the measurement of the phonon enhanced

current through the phonon threshold energy range 2 A g to A .j+ A 2 .

2.5 Analysis of the phonon induced tunnelling current

W e need to calculate the effect that this phonon induced quasiparticie distribution, 

h (Q ,E ), has upon the tunnelling current, l(^)g), in order to be able to calculate the

energy distribution of the absorbed phonon flux from a series of tunnelling current 

readings at a range of bias values.In order to achieve this a matrix analysis 

technique was developed (Cattell et al. (1983)).

Assuming that all the states above the energy gap in the lead bismuth are empty we 

can write the tunnelling current as

l(Q o ) = K[vol]/e . J  n (E ).N i(E + e V ) .d E  (2 .1  8 )

where [vol] is the volume of the junction and n(E) is the number of quasiparticles 

excited at energy E in the aluminium per unit volume. W e need to know how the 

quasiparticie population responds to a phonon input. If we consider a single phonon 

input e n e r g y ,Q ,  we can write a d ifferentia l equation to describe the 

time-dependent behaviour of the quasiparticie population:

dn(E )/d t = G^h(E) + lp (^ :i).h (i2 .E )/[vo l] - n (E )/T^,(E ) ( 2 .1 9 )

where 0 .^ (5 )  is the rate of thermal excitation of quasiparticles from the gap region

per unit time, lp (Q ) is the absorbed phonon flux at energy Q  and T^|(E) is the 

thermal relaxation time. This equation neglects recombination and relaxation of
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quasiparticies to energy E from higher energies. The calculations of Long and Adkins 

(1973) show that for aluminium at a temperature of 0.83K , a typical temperature

for our experiments, the relaxation process dominates for E> 2 ,3 A 2 - Since we are

considering energies above this value then recombination is unlikely to have an 

important effect. The relaxation process will be considered later.

W e assume that the phonon flux is constant or varies very slowly compared to 

Tpj(E). For thermal equilibrium we can write G^|^(E) = ng(E) /t ^|(E). Substituting  

this into equation (2.19) we obtain

n(E) = no(E) + [ lp (Q ).h (Q ,E )  .t r | (E )] /[v o l]  ( 2 .2 0 )

Using this n(E) the tunnelling current, 1 (0^ ), can be calculated from equation

(2 .18).The  absolute value of T^|(E) is poorly known but its energy dependence is 

well understood (Tew ordt (1 9 6 2 )). It varies assym ptotically  as E’ ^ so the 

tunnelling current due to the absorbed phonons at a cut off Q q is dominated by

quasiparticies of energy E « Q q . The incident phonon beam contains a distribution of

energies so that the resultant quasiparticie distributions overlap. Hence the

tunnelling current is determ ined by all phonons of energy Q > Q q  + A 2 - By

combining equations (2 .18 ) and (2 .2 0 ) and dropping the therm al background 

current we obtain

AI(Qq) = 2 K/e . I ( I  L{n).h(n,E).dn ) x

y E ).N i(E + e V ).d E  ( 2 . 21 )

So far we have ignored the relaxation of quasiparticies into our detection range. As a 

first order correction to the quasiparticie distribution at energy E due to phonons of 

energy Cl the contribution from the first decay of quasiparticies from energy E’ to 

energy E is added to h(Q,E). Therefore we replace h(^),E) by a modified
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distribution, h '(^ ,E ), given by

h'(n,E) = h(n,E) + r'h(Q,E’).p(E,E').dE (2 .22)

where p(E ,E ’) is the normalised probability of decay from energy E' to energy E, 

calculated by Tewordt (1962). This correction is for a constant input of phonons of 

energy Q  but is a good approximation if the phonon input current varies slowly over

a time scale x^|(E).

In our experiment the data are collected at discrete bias intervals, Vj, which are 

separated by a constant interval e/e. Each detector voltage corresponds to a different 

cut off energy Q q | = A., -eVj.  The energy resolution is limited so we consider

phonons in the energy band O ^ j+A g  to O g j+ A g +e  together and assign them an

average energy 0 j=  Ü g j+ A 2 +e/2 . The distribution functions in this scheme have 

average values given by

H(Qi,E) = 1/e- J h(Q,E).d£i ( 2 . 2 3 )

and

_ _
H'(Qj,E) = H(Oj.E) + J H(Qj,E').p(E,E').dE' (2.24)

To com plete this approximation we divide the phonon input current lp (Q ) into 

discrete contributions Ipj at energies Oj. W e also need to assume that no phonons

that enter the junction have an energy greater than Q - j= A .|+ A 2 -e V + e /2 . W e can 

now rewrite equation (2 .2 1 ) as

A l ( n o i )  = x  A| j  Ipj ( 2 . 2 5 )

where the elements A y of the transfer matrix take the form
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Aj. = 2K/e . ^  J H'{Qj.E).tr|.N.,(E-eV).dE (2 .26 )

Apart from the constant factor of the junction conductance K the elements of A  

involve known functions and can be calculated.

In order to keep the analysis tractable we have neglected the reabsorption of 

phonons which have been produced by recom bination and relaxation of 

quasiparticies in the detector. If such a phonon were reabsorbed it would produce 

quasiparticies at an average energy of half the phonon energy. The energy of a

relaxation phonon would be Q -2A 2 and that of a recombination phonon would be

less < 4 .6 A g . Half of either of these energies is likely to be less than the threshold

energy of our measurements. This assumption is certainly true for high biases but 

may breakdown at low biases.

W e have assumed that no phonons of energy greater than A .j+A 2 -eV+e / 2  enter the

junction. If this is not the case then we overestimate the phonon current above

A .|+ A 2 -eV +e / 2  and this leads to a large negative contribution to the lower energy

phonon currents calculated. Also, we have ignored the recombination processes, this 

will lead to errors in the calculation of phonon currents at lower energies. These  

two effects will be discussed in more detail in section 4.3.

2.6 The effect of a parallel S-N junction

A parallel S-N short affects the detected signal markedly. The tunnelling current is 

derived from all the excited quasiparticies in the junction therefore it responds to 

all the phonons absorbed by the detector. If the S-N shorting resistance is large 

compared to the differential resistance of the S ^-S g  junction then the total signal

derived from the combined junction is insensitive to changes in the S-N current and 

therefore to changes in the total number of quasiparticies. At high biases the 

differential resistances of the S ^ -S 2  junction are very small so this condition is
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easy to fulfill. However, at low biases, 0 .3m V say, the signal from the S ^ -S g

junction due to high energy phonons is weak because of the short quasiparticie 

relaxation lifetim e. The signal from the two sources becom es com parable in 

magnitude at these biases and the phonon spectrum derived from the tunnelling 

current can be significantly distorted in the high energy range.

To quantify the effect of the S-N short we need to estimate the change in the total 

quasiparticie number caused by the arrival of the phonon pulse. W e assume that the 

quasiparticie population remains thermal and that the change in the total number of 

quasiparticies is characterised by a change in the tem perature. W e estimate the 

change in temperature from the change in the aluminium gap which is measured at

the current onset at A ^ + A g . dA /dT is calculated from the Muhschlegel tabulation

(1959) of A /A q and T /T^ according to BCS theory. Using the tables of G.B.

Donaldson (private communication) we can calculate the current change expected at 

a fixed bias for the observed tem perature change. Donaldson's tables give the

relative current. I, as a function of A /k T  (=A) and eV /A  (=B). The S-N  short

current, Ig ^ ,  is given by

IgN  = K.A.i(A,B) ( 2 .2 7 )

where K is the conductance of the S-N junction. So the variation of lg;\j with 

temperature can be written as

K’ ^ d ls N /d T  = dA/dT . [I + A(3l/aA)B - B{d\/dB)p^] -

A.A /T . (91/3A)B  ( 2 .2 8 )

The expected voltage signal from the S-N short, V g ^ , for a measured gap change 5 is 

given by

V g N  = K|K-1 . dIgfg/dT] . [dA/dT]-'' .5  .Rgff ( 2 .2 9 )
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where is the effective resistance of the detection system which is discussed in

section 3.5. From a knowledge of 8 the S-N signal, Vg|sj can be estimated in a given

experimental situation, using equation (2 .29), and in principle subtracted from the 

detected voltage signal.

This calculation is subject to error resulting from the assum ptions made in 

perform ing it. Particularly susceptible to error is the assum ption that the 

quasiparticie distribution remains thermal when the phonon pulse arrives and, 

hence, that a temperature change can be calculated from the gap variation. So 

analysing the high energy phonon signal may be subject to large errors when there 

is a low resistance parallel S-N junction.

2.7 Constantan thin films as wideband phonon sources

For metallic thin films using the acoustic mismatch theory of Little (1959) we can 

w rite

W /A  = J t2 k 4 / I2 0 f i3  . [ e j / 0 j 2  + 2 e ,/c ,2 ] . ( 2 .3 0 )

where W  is the power dissapated in the heater, A is the area of contact between the 

heater and the substrate (5x10"^ in our experiments), T* is the equivalent heater

temperature and T q the base temperature, e^ and e  ̂are phonon emission coefficients

to the substrate and c^ and ĉ  are the phonon phase velocities. The subscripts 2 and t

refer to the longitudinal and transverse modes respectively. The following values 

were obtained by Herth and W eis (1970) for transmission from constantan to 

sap p h ire :-

0 2 = 0 .2 1 6 , e^=0.176, C 2 = 5 .2 4 k m s '^ , and c^= 2.64km s'^

Substituting these values into equation (2.30) we obtain

W  = 7 .52  X 10-5 . (T*^ - Tq '*) ( 2 .3 1 )
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W e are able to measure W and Tq and hence calculate T*.

It is well known that the number distribution of phonons emitted by such a heater, 

N(E), can then be calculated from

N (E) a  e 2 . (exp(E /kT*) - I ) ' '  ( 2 .3 2 )

The form of this distribution over the energy range of our detectors is shown in 

figure 2.10. This is the output expected from the acoustic mismatch model. Since we 

are dealing with phonon numbers the occupation number distribution is the correct 

function to use.

Frick et al. (1975) developed a model specifically for constantan heaters which are

thin films. In this model the heater was assumed to be weakly coupled to the

sapphire substrate. They derived the phonon output to be

Oq (E) = 7cAeQE/(2cQdh) x

entier(2Ed/c„h) .[f(E ,T*) - f (E ,T ° )]  ( 2 .3 3 )

where o is the polarisation of the phonon, and d is the heater thickness and 

entier(x) is the largest whole number not exceeding x. The form of this function is 

shown in figure 2 .11 . Their experimental results support this theory.'

In section 4.4  the measured phonon spectra^' are discussed and compared to these 

models.
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Figure 2.10 The output of a thin film constantan heater over the energy range of 

our detectors according to the acoustic mismatch theory.
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3.1 Introduction

The thin film samples were prepared by thermal evaporation and by radio frequency 

sputtering. They were then mounted onto an insert and put into a cryostat. This 

system was then cooled to liquid nitrogen temperature. The samples were stored at 

this temperature between experiments. When measurements were to be made the 

system was cooled to less than IK  using liquid helium. For the collection of the data 

a digital signal averaging technique was used.

In the next section of this chapter the thin film preparation will be described. The 

third section will discuss the cryostat and the cooling techniques. Finally the data 

acquisition system will be described.

3.2  Thin Film Preparation and Geometry

The heaters and the tunneling junctions were prepared by thermal evaporation. The 

silicon monoxide films were prepared by thermal evaporation. The silicon dioxide 

films and the arsenic trisulphlde films were deposited using r.f. sputtering.

The evaporator used for thermal evaporation is shown in figure 3 .1 . It had a 

stainless steel base with ports through which all the necessary electrical and water 

feedthroughs passed using ultra high vacuum techniques. The ports were sealed with 

copper gaskets to reduce outgasing which arises from conventioani 0-rings. On top 

was placed a glass cylinder. The top was a stainless steel plate. The seals between the 

glass and the stainless steel was made using viton gaskets with an "L" shaped cross 

section. The system was pumped by a diffusion pump with a water cooled baffle. This 

was backed by a two stage rotary pump. When samples were being prepared a liquid 

nitrogen cooled M eissner trap was used to reduce the pressure further. This 

condensed out reactive gases such as oxygen and water vapour. The Meissner trap 

was a coll of copper tubing which was supported from the top plate. The base 

pressure in the system was usually about 10 torr for the evaporation of the 

thin films.

The evaporator had been designed so that films of different m aterials can be 

deposited on different areas of' the substrate without the need to open the evaporator
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to air. The mask changing mechanism was based on a shaft seal supporting rotary 

and linear motion fixed to the top plate (see figure 3 .2). Parallel to the top plate 

were three stainless steel plates. The top stainless steel plate had six rectangular 

holes cut in it any one of which could hold the substrate and its holder. The middle 

stainless steel plate had six smaller holes in which could be placed the copper masks 

in their holders. There was a single hole on the bottom stainless steel plate . This 

single aperture was lined up beneath the desired mask by rotating the bottom plate. 

The plate w as then raised until the main locating pin passed through the 

corresponding hole In the middle plate. Both plates could then be rotated until the 

mask was lined up with the substrate. At this stage the plates were raised so that the 

locating pins were all in place and the mask was in contact with the substrate. The 

contact masking system was used in order to eliminate "shadowing" around the edges 

of the films.

There were five resistance heated boats arranged on an arc. The centres of the boats 

were the sam e distance from the central axis of the system as the apertures on the 

plates so the substrate and mask could be aligned directly above the boat which 

contained the material to be evaporated.

A water cooled quartz crystal which was used to monitor the thickness of the 

material deposited. When a mass, dm, is deposited on a quartz crystal undergoing 

sheer bulk oscillations the rate of change of the resonant frequency is given by

df/dm = -f^ /a h  ( 3 .1 )

where a is the area of the crystal exposed to the evaporating beam and h is a constant 

dependent on the type of crystal. Therefore from the change in the reso nant 

frequency of the crystal the amount of mass deposited on it could be calculated. The 

crystal was at the same height as the substrate on the central axis of the system so 

that the geometrical factor was the same no matter which source boat was used. It 

was initially calibrated by evaporating aluminium onto a substrate and comparing 

the thickness of the film with the change in the crystal's frequency of vibration. A 

constant check on the calibration was made by measuring the thicknesses of the thin 

films after the samples had been used. The thickness measurements were performed 

using an Angstromscope Multiple Beam Interferometer. The basic principle of the 

Angstromscope is that the film with Its layer of aluminium , which is used as a
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highly reflecting film, is placed into a wedge of glass (see figure 3 .3a ) and 

illuminated with monochromatic light. An interference pattern is formed (figure 

3.3b) due to the different path lengths of the light reflected from the aluminium and 

from the glass above. The spacing between the fringes is X/2, where X is the 

wavelength of the illuminating light. At the step between the substrate and the 

sample the fringes are offset. The thicknessof the sample, d, is given by

d = (offset/spacing) x (X /2) ( 3 .2 )

An accuracy of ±3nm is obtainable with the Angstromscope but the accuracy of the 

thickness was limited by variations across the samples.

The substrates used were sapphire single crystals in the shape of a cuboid 7mm x 

10mm X 10mm. The samples were deposited on the square faces with the heaters 

directly opposite the detectors. The square faces were cut perpendicular to the 

c-axis. The phonon signal was thus transmitted from the heater to the detector down 

the c-axis.

The order of deposition varied depending on whether the glassy film was to be under 

the heater or the detector. In the former case the glass was deposited first, in the 

later the heaters were first. The heaters were produced by evaporating constantan 

wire to produce a 15nm film of constantan on the substrate. Lead bismuth contacts 

( thickness 200nm  ) were then evaporated on top, the geometry being shown in 

figure 3 .4 . The lead bismuth was superconducting at the tem peratures the 

measurements were made so the resistive heating was restricted to a well defined 

area. After this had been completed the evaporator was opened up to air. The 

substrate was either mounted in the sputterer for the deposition of the glass or 

simply turned over in the evaporator to allow the detectors to be prepared.

The glass was deposited onto half the substrate face so that it was either under a 

heater or a detector (see figure 3.4). The silicon monoxide was prepared simply by 

evaporating powdered polycrystalline silicon monoxide in the evaporator. The 

arsenic trisulphide was sputtered onto the substrate using argon gas. For the 

sputtered silicon dioxide a mixture of 10:1 argon : oxygen mixture was used. This 

ratio was measured by the partial pressure of the gases which were mixed and
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stored in a reservoir. The atmosphere in the sputterer was sampled before and after 

sputtering using a V .G . 0 4  mass spectrometer to check for possible contaminant 

gasses. The thicknesses of these samples were m easured directly using the 

Angstromscope.

The detectors were always prepared last in order that they could be cooled as soon as 

possible to prevent "aging". If the sample was on the heater side of the substrate the 

sapphire surface was cleaned by oxygen ion bombardment. A layer of aluminium 

tOOnm thick was evaporated first. The mask was then changed to the one needed for 

the lead bismuth layer before oxidation. This was done to decrease the possibility of 

damaging the oxide layer between the two metals. The oxidation of the aluminium 

was achieved by exposing the surface to 10"  ̂ torr of oxygen which had been dried 

by passing it through silica gel. After ten minutes the oxygen was pumped out. When 

the system had returned to its base pressure the lead bismuth layer of 200nm  

thickness was deposited (for the geometry see figure 3.4). An alloy of 85%  lead and 

15%  bismuth was used in preference to lead. The scattering in the alloy reduces the 

anisotropy of the energy gap making it sharper than in pure lead. Therefore the 

phonon energy values are better defined in the alloy than in lead.

Once this final evaporation was completed the sample was removed from the 

evaporator and mounted in the insert. To do this first the sapphire substrate was 

bolted into its copper holder with a solution of bostik glue in acetone. This thin layer 

of glue improved the thermal contact between the sample holder and the substrate. 

The electrical connections to the heaters and the detectors were made with pressed 

indium contacts. Small dots of indium were pressed onto the contact areas of the thin 

films. This ruptured the oxide layers on the aluminium, tin and lead bismuth. 

Tinned copper wires were then pressed into the indium. Finally indium was pressed 

on top. This provided a superconducting contact between the wires and the thin 

films. The sample and holder were then bolted onto a copper block on the insert, 

again with a layer of glue. Again the function of the glue was to improve the thermal 

contact between the sample holder and the insert. The other ends of the wires were 

soldered onto contact pins on the insert. A can was bolted onto the insert to cover the 

sample. The seal between the can and the insert was made with indium and had to be 

leak tight to superfluid helium. The insert was then placed in the cryostat and 

cooled.
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The superconducting phonon generators were also prepared in the evaporator. The 

first stage was to evaporate on a 200nm layer of tin. It was found that simply 

exposing the surface of the tin to oxygen did not produce a complete oxide barrier. A 

good barrier was formed when a discharge current was passed through the oxygen 

so that the tin surface was bombarded with oxygen ions . The thickness of the 

barrier depended upon the pressure of the oxygen. The oxidation was monitored by 

the quartz crystal. After a time the frequency remained steady indicating that the 

oxidation process had stopped. It was found that a pressure of 0.3 torr and a 

discharge time of 20 minutes produced a satisfactory oxide layer. The evaporator 

was again evacuated and a second layer of tin (thickness 200nm ) was evaporated 

across the first in the same configuration as the detectors. As before the detectors 

were prepared last since the Sn-SnO-Sn junctions appeared to take longer to "age" 

thetn the AI-AIO-PbBi detectors.

3.3 The Cryogenic System

In this experiment the scattering of phonons of energy between 0.34 meV and 1.74 

m eV was being investigated. It was therefore necessary to reduce the number of 

thermal phonons of this energy present in the sam ple. This was achieved by 

reducing the tem perature of the samples to below 1K. There were two cryostat 

systems used. They were basically of the same design. The first was a helium 4 

cryostat which had been used by Cattell (1980). This was used for two of the 

samples discussed in this thesis, samples C9 and C l 0. A helium 3 cryostat was used 

for the rest of the experim ents. This system was capable of achieving lower 

tem peratures and had better thermal stability. The insert for holding the samples 

was the same in both cases.

The cryostats had two dewars, a stainless steel one inside which was suspended a 

glass one. The stainless steel dewar was filled with liquid nitrogen to provide the 

initial stage of cooling. While there was a sample in the cryostat it was not allowed 

to empty, this prevented the sample from "aging". The liquid helium and the insert 

were put into the glass dewar.

The insert was designed to hold the sample so that the heaters and the detectors were 

exposed to a vacuum and to earth thermally the substrate so that the heat deposited
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in the substrate during the measurements was removed (figure 3 .5 ). This was 

preferred to putting the samples into a bath of liquid helium which would have 

reduced the phonon signal due to significant phonon losses into the liquid helium at 

both the heaters and the detectors. The insert was placed in the cryostat and left to 

cool overnight. The can was pumped out during this time. It was also pumped out 

when it returned to liquid nitrogen temperature after each cooling to liquid helium 

temperatures. This was done to ensure that no gaseous helium which would conduct 

heat from the outer helium bath to the sample collected in the can. The can had three 

inlets for wires. One for the heaters, one for the detectors and one for the d.c. 

signals. The wires were guided to the inlets in separate copper nickel tubes to sheild 

them from one another. These tubes were open to allow the liquid helium to circulate 

freely around the wires and cool them.

A two stage cooling system was used. The dewar was filled so that the bottom of the 

insert was submerged in liquid helium. The system took about three hours to cool 

from liquid nitrogen to liquid helium tem perature. A rotary pump was used to 

reduce the vapour pressure above the liquid helium. This reduced the temperature 

of the system to about 1.2K. In the middle of the insert was a space which was 

connected to a reservoir of helium gas. In the first cryostat this was helium 4, in 

the second the gas used was helium 3. As the insert cooled the helium gas was allowed 

to condense in this space. When the outer bath had been cooled to its minimum 

temperature the insert was then isolated from the reservoir. This space formed a 

smaller, inner helium bath which was thermally connected to the sample holder 

through a copper block. This bath was then pumped using a diffusion pump. This 

reduced the vapour pressure in the inner bath and therefore the temperature was 

also reduced. For helium 3 the vapour pressure is higher at a given temperature  

than for helium 4. Therefore the helium 3 cryostat could attain lower temperatures 

than the helium 4 cryostat when using diffusion pumps with similar pumping 

speeds. The helium 4 gas from this bath was exhausted to the atmosphere. However, 

due to consideration of cost, the helium 3 cryostat had a closed system for this bath 

and the exhaust gas from this was pumped back into the reservoir. A small heater 

was located at the top of the inner bath this was used to evaporate the superfluid 

helium 4 film which crept up the walls of the inner bath and into the pumping line. 

By evaporating this film the heat conduction into the bath was reduced. This heater 

was not used for the helium 3 cryostat since helium 3 does not become superfluid 

above 3mK. The inner bath was connected to the outer bath with a graphite link.
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Graphite has a reasonable thermal conductivity at higher tem peratures. This 

enabled the inner bath to cool faster from liquid nitrogen tem peratures than it 

would by radiation alone. The thermal conductivity of graphite decreases with 

tem perature. At the tem perature of the experim ent graphite is effectively an 

insulator.The helium 4 system could attain temperatures at the sample of between 

0.9K and 1 .OK. The helium 3 cryostat cooled the samples to around 0.8K. The 

temperature was measured in two ways. First there was a solid state germanium  

thermometer fixed to the copper block. A constant current was supplied to it and the 

voltage across it was measured. This therm om eter had been calibrated by the 

m anufacturers. The detectors themselves acted as therm om eters which was in 

intimate thermal contact with the sample. In chapter 2 it was shown that their d.c. 

current voltage characteristics are dependent on their tem perature. Both systems 

could maintain their base temperatures for about twelve hours before the level of 

the helium in the outer bath had dropped below the top of the vacuum space around 

the sample.

3.4 Generation of the Phonon Pulses

The phonon pulses were generated by passing a current pulse through the thin film 

metal heaters. To produce the current a Phillips PM 5712 pulse generator was used. 

The pulse passed through a 50Q  attenuator so that the power being fed into the 

heaters could be varied. The attenuator could reduce the signal over the range OdB to 

lOOdB in steps of 1dB. The pulse was then changed from single ended to balanced by 

passing it through a pulse transformer the design for which cam e from Ruthroff 

(1959). The balanced signal minimised the capacitive pickup from the pulse on 

other parts of the system as the signal was transmitted to the heaters. The 

transmission lines were twisted pairs of 38 gauge copper wire. Despite this the 

electromagnetic pickup of the generating pulse on the detector transmission lines 

was about an order of magnitude larger than the detected signal. To reduce the size of 

this pickup the current in the heaters was driven in one direction for half the time 

then it was reversed. It was decided to do this by using two pieces of twin cable of 

equal length. One was connected in the usual manner the other had the connection to 

one set of pins reversed. This had the effect of changing the sign of the 

electromagnetic pickup and cancelling it out. The phonon signal had the same sign 

and therefore added up. This was used in preference to changing the polarity of the
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signal emitted by the pulse generator. It had been observed that the positive and 

negative pulses emitted from the generator were not exactly symmetrical.

The pulse length used was between 10OnS and SOOnS at a repetition rate of around 

30kHz. the rise and fall time of the pulse was 4nS. The pulse height was 1V and was 

attenuated by values between OdB and 15dB.

3.5 The Detection System

A schematic diagram of the detection system is shown in figure 3 .6. The detectors 

were biased using a constant current source. The voltage signal was then measured 

over 10(iS around the initiating pulse at different values of the biasing voltage using 

a signal averaging technique.

The circuit that supplied the current to the detectors is shown in figure 3.7. It used 

two 9V batteries as its voltage supply in order to eliminate the possibility of mains 

pickup on the sample. The maximum current it could supply was 10mA at which the 

output impedance was 1 kD.

The signals from the detector were around 1p.V. This was fed differentially into the 

front end of a Tektronix 7623A oscilliscope. The oscilliscope was used with a 7A13 

differential comparitor. The signal was differentially amplified by the oscilliscope 

and taken out via a single ended output at the back of the scope. The oscilliscope gave 

voltage amplification by a factor of 25. The next stage was to amplify the signal 

further using a Hewlett Packard 461A amplifier. This had a gain of 100. The 

bandwidth of the oscilliscope was 55 MHz and the input effective noise resistance 

was 2 0 0 .  Therefore the Johnson noise was about 5 |iV . This was increased by 

amplifier noise and the signal was well buried in noise. In order to retrieve the 

signal it was necessary to do some signal averaging.

There are two ways of performing signal averaging. It can be done either by 

averaging the signal over some RC time constant or by digitising it and averaging 

numerically. In this experiment a combination of the two methods was used. A 

boxcar detector was used to slow the signal down to a frequency suitable for 

digitising using relatively cheap ADCs. The digital system was designed by Dr. A. M.
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MacLeod and was built in the department under his supervision (MacLeod and Long 

1982). The amplified signal was passed into a Brookdeal 9415 linear gate. This 

sampled the input for a time t at a time T-| after a reference pulse supplied by the

pulse generator. The reference pulse was emitted a fixed time before the pulse sent 

to the heaters. The value of t was controlled by a Brookdeal 9425 scan delay 

generator. It also controlled the range of possible T^ values, 0 to 10|iS. The value

of T.| within this range was set by the output of the xramp on the digital acquisition 

system. This system was designed to collect 1024 data points so it needs 1024  

values of T-|. This produced a value of lOnS for t which provided the necessary

resolution. At first T.] was set to zero. For the next N pulses the signal was sampled 

at this time and the result was added to channel 1 in the digital acquisition system's 

m emory. T.| was then increased by 1/1024 of its maximum value (10 /1024 ^ S ).

The next N pulses were then sampled at the new value of T^ then digitised and added 

to channel 2 of the memory. This process was repeated until the maximum value of 

T-| was reached. T.| was reset to zero and the procedure was repeated M times. Both

M and N were controlled by switches on the data acqusition system. The digitised 

signal was recorded on cassette tape to be transferred onto floppy disk for analysis 

using a Motorola Exorset microcomputer.

The detection system was designed to detect and amplify the voltage pulses from the 

junctions. The quantity of interest in this experiment is the phonon current and this 

is related to the change in the electron current through the junctions caused by the 

phonon pulse. Therefore the relationship between the current and voltage pulses 

needed to be known. Figure 3 .7  shows the equivalent circuit of the amplifier input.

R q is the output of the bias supply, is the lead resistance and Rj is the input

impedance of the amplifier. The d.c. current through , I, and the voltage across, V, 

the junction are related by:-

V q = {I + V /(R j + 2 R ^ )}(R q + 2R%) + V (3.3)

A similar equation can be written for the enhanced tunneling current, I', and the 

voltage, V , when a phonon pulse has been absorbed by the junction. By subtracting
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these two equations it is found that:-

{Ai- + A V V (R j + 2 R ĵ )} (R q + 2R&)  + A V =  0 ( 3 . 4 )

where A!' =1' - I and A V  = V  - V.

Rearranging this equation gives:-

AVV A l' = -Rout ( 3 . 5 )

where

Rout = ("i + 2R&)'^ + (Rq + 2R%)'1 ( 3 . 6 )

This represents the load line applied to the junction externally. Figure 3.9 shows 

the l-V characteristics of the junction with and without the phonon pulse. It is 

assum ed that the curves are parallel since the heat pulse induces a very small

change in the temperature. The quantity of interest is A l, the measured quantity is 

A V . From figure 3.9 it can be seen that:-

A l = A l' - A V / S R  ( 3 . 7 )

where 5R is the differential resistance of the junction at this voltage. Substituting

for A l' using equation (3.5) gives

A V  = - Al (1/SR + 1/Roui)'^ (3 .8 )

Therefore the voltage pulse across Rj, AVj, is given by:-

A V j = - R| A l . (R| + 2 R g ) - 1 .  (1/5R  + 1 /R o u t)'^  ( 3 . 9 )
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This equation can be simplified by assuming that R ^ « R |,  R ^ « R q and R j« R g . This is

reasonable since typical values of R^, R; and Rq are 1^1, 2QQ and respectively. 

Equation (3.9) can be rewritten

AVj = - A l .  (1/5R + 1/Rj) (3 .10 )

Therefore to obtain the excess tunnelling current the voltage pulse needs to be 

m ultiplied by ( 1/5R + 1 / R j ) .  This quantity was referred to as the effective  

resistance, Rgff .  After this operation had been com pleted the matrix analysis 

described in section 2.5 was performed.
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4.1 Introduction

In chapter 2 the theory of ideal tunnel junctions as wideband phonon detectors was 

discussed and a matrix analysis scheme based on this theory was outlined. Using 

these methods the phonon spectra from thin film constantan heaters are analysed 

here. At high energies these spectra are expected to have a thermal form (section 

2.7) and, therefore, can be used to test the analysis schem e and study its 

limitations. The anaiysis scheme is also applied to the output phonon spectrum of 

tunnel junction generators. The theory of tunnel junctions as phonon generators was 

also discussed in chapter 2.

The data used here were measured without an amorphous film betweeen the phonon 

generators and detectors. Due to phonon focussing effects (Taylor et al. (1971)) the 

analysis is limited to phonons transmitted straight through the sapphire crystal 

along the c-axis. In an anisotropic material, such as a sapphire crystal, the 

probability of propagation depends on the direction of propagation and on the mode of 

the propagating wave. This effect is called phonon focussing. In this experiment 

symmetric focussing effects on two sets of waves travelling across the crystal from 

the generators to the detectors are desired. The reason for this is that the analysis 

technique involves comparing the phonon signals from the two detectors. Symmetric 

focussing effects are found for waves travelling along the c-axis of a sapphire 

crysta l.

4 .2  The d.c. characteristics of the AI-PbBi junctions

Figure 2.4b shows a schematic of the ideal current - voltage characteristics for the 

superconducting heterojunctions used in our experimental set-up. In figures 4.1 

and 4.2  the current- voltage characteristics obtained in this experiment are shown. 

Both exhibit a current which is in excess of the ideal current. This excess current 

is particularly noticeable at low biases. Its magnitude varied from sample to 

sample. It was smallest for the junction of figure 4 .1. The excess current generally 

has the form of the current - voltage characteristics of a junction between a 

superconducting metal with the gap of aluminium and a normal metal. This has lead 

to the suggestion that some of the lead-bismuth alloy remains normal opposite an 

unaffected region of superconducting aluminium even at the low temperatures of the
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experiment. The reason for this is unclear. The preparation techniques used for the 

junctions in each sample were standardised as nearly as possible. As previously 

stated, it is supected that surface scratches on the sapphire substrate may be the 

cause. In order to remove the aluminium deposited in manufacturing earlier 

junctions from the sapphire it was necessary to polish the substrate with jewellers' 

rouge. This left comparitively large scratches on the surface of the sapphire. It was 

noticed that if a sapphire crystal was used more than once without finer polishing 

the excess current increased in magnitude. It was also noticed under the same  

conditions that a superconducting short was likely to appear in the characteristics. 

After several samples had been deposited and cleaned off in succession, junctions 

could not be produced, only superconducting shorts were obtained. The aluminium 

layer deposited was 100nm thick. It is thought that the surface scratches may have 

caused the surface of the aluminium to be uneven. This could lead to the aluminium 

not oxidising properly which could produce a superconducting short in parallel with 

the junction. If the area of the short were large enough, it would dominate the 

junction characteristics. The Josephson effect was also found in the junctions but 

this was simply removed by applying a magnetic field in the oxide plane.

From the current - voltage characteristics several quantities that were needed for 

the analysis of the data were deduced. First the superconducting gaps for both the

lead-bism uth, A .|, and the aluminium, A 2 , superconducting films were measured.

This was simply done by looking at the region where the current remains constant 

while the voltage increases (under current bias). The voltage range over which this

happens is A.j - Ag to A., + Ag (see section 2.2). The lead-bismuth gap varied

from sam ple to sam ple. This was probably due to slightly different bismuth 

contents. The range of values observed was from 1 .52m eV  to 1 .59m eV. The  

aluminium gap showed a temperature dependence which can be explained by the fact 

that the temperatures used in the experiment were relatively close to the transition 

tem perature of the aluminium particularly for the early experiments performed in 

the helium 4 cryostat. This made it necessary to check the aluminium gap for each 

set of data collected. Its range of values was between 0.11m eV and 0.18m eV. When 

using the helium 3 cryostat, which worked at lower temperatures and had better 

thermal stability, the aluminium gap was usually 0.17m eV or 0.18m eV, close to Its 

zero temperature value. This was the case for most of the data presented in this
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thesis. The gap values were needed in order to calculate the eleven by eleven matrix 

to be used in the matrix analysis (see section 2.5). This calculation was performed 

for each set of junctions used. A typical matrix is shown in table 4.1.

The tem perature of the junction was also deduced from its characteristics under 

many different experimental conditions. Equation (2.7) describes the temperature  

dependence of the junction current at temperatures less than 1K and voltages such

that eV < ( A.J- A g )

I = K N g ( A i  - eV). V( A .|7tkT /2) . exp-(( A . , -e V ) /k T )  ( 2 .7 )

w here

N 2 ( - eV) = ( A ^ -e V ) .[V ( (  A ^ - e V ) 2 .  A g ^ ) ] - !  ( 4 .1 )

So a graph of ln(l/N 2 ) versus V should be a straight line of gradient e/kT. Values of 

current and voltage were obtained from the d.c. characteristics and N 2  values were 

calculated using equation (4.1). Graphs of In (I/N 2 ) versus V were drawn for each

experimental run. Such a graph is shown in figure 4 .3 . The current and voltage 

values were taken at high biases in order to minimise the effect of any excess 

current present in the junction. The temperature of the junction was taken to be the 

sample temperature since the sample, the junctions and the heaters were in good 

thermal contact with the substrate. It was found that the junction temperature was 

about 0.2K to 0.4K higher than the temperature of the germanium resistor. This is 

to be expected as the germanium thermometer was in closer thermal contact with 

the helium coolant than the sapphire crystal. This temperature difference did not 

change significantly when a heat pulse was applied. It was found that the 

tem perature of the germanium thermometer closely followed the temperature of 

the junctlons.The germanium thermometer was used to monitor the changes in 

temperatureduring the measurement of the data.

The m easured tem perature was substituted into equation (2 .7 ) along with 

corresponding values of current and voltage in order to calculate the resistance of
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Figure4.3 Graph of ln{l/N2 ) versus voltage at high bias voltage for the detector 

in sample C10.



the junction (R = K '^). This was not measured from the junction characteristics at 

high voltages since the films were driven normal by the self heating caused by the 

current through the junctions. The values obtained ranged from 2 m ii to 3 0 m ^ . It 

was necessary to know these for comparison of data from different junctions, this 

procedure will be discussed in more detail in chapter 5.

The spectra collected from the junctions are the voltage changes across the junction 

as it is subject to a changing phonon flux. These spectra are measured as a function 

of time at different voltage biases. From section 2 .4  it is known that it is the 

changes in the junction current that are related to the phonon currents incident on 

the junction. In section 3.5 the relationship between the measured voltage changes 

and the junction current changes was derived:-

A V [ =  - A l . (1/ÔR + 1/R:) ( 3 .8

Rj is the terminating resistance at the input of the oscilliscope and was set at 2 0 ().

5R  is the differential resistance of the junction. As can be seen from the d.c. 

characteristics (figures 4.1 and 4.2) the differential resistance of the junction 

varied with the biasing voltage. To obtain the most accurate value of the differential 

resistance it was necessary to employ a number of methods. The method used 

depended on the quality of the junction being examined.

For ideal junctions the differential resistance can be obtained by differentiating 

equation (2.7) with respect to V. This gives

a i / a v  = KNg V( A 2 j t /2 kT). exp-(( A 2 -e V ) /k T )  ( 4 .2 )

Note that this ignores the voltage dependence of N2 . This introduces a negligible

error since this dependence is small compared to the exponential term. By taking 

the reciprocal of this equation the differential resistance can be calculated at 

different voltages for an ideal junction.

None of the junctions manufactured was completely devoid of leakage currents. For
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the junctions in sample C10 (figure 4.1) a graph of ln(l/N 2 ) versus V is shown in

figure 4 .4 . This graph is linear from V=0.6m V  upwards indicating that this 

junction was dominated by the tunnelling current in this voltage range. So the 

differential resistance is given to a good approximation by equation (4.2) for these 

voltages. Between 0.3m V and 0.6m V the current does not increase exponentially as 

predicted by equation (2.7). However it increased too rapidly for a good fit to a 

polynomial in V to be obtained. In order to calculate the differential resistances in 

this interval the change in the current was m easured over a voltage range of 

0.01 mV around the bias of interest. As the differential resistances at these biases 

were large (of the order of hundreds of ohms) the error in these measurements had 

an insignificant effect on the effective detector resistances which were dominated 

by the terminating resistances at the input of the oscilliscope (Rj).

This method was not suitable for junctions with a large superconducting-normal 

contribution to the current. It was found that at low biases the current varied  

sufficiently slowly with voltage for a polynomial function to be fitted to it. It was 

found that one polynomial could be fitted up to 0.75m V and another between 0.75m V  

and 1 .05mV.' The differential resistances were calculated from the derivatives of the 

polynomials. The current above this voltage varied too rapidly for a good polynomial 

fit to be obtained. For the voltage range 1 .OOmV to 1 .30m V the methods employed 

for sam ple C IO  were used. The linearity of a graph of ln (l/N 2 ) versus V 

determined which method was relevant at each bias.

In order to establish the quality of the junction it was necessary to measure the 

resistance of the S-N junction, Rgj ĵ. This was done by measuring the resistance of

the characteristics at low bias. The S-N and S-S junctions were in parallel with one 

another and at low biases the differential resistance of the S-S junction was very 

large. The junction resistance at low bias was therefore dominated by Rgjsg . This is 

confirmed by the linearity of the junction characteristics at low biases (see figure 

4 .2). The ratio R s g /R g N  gave an indication of how good the junction was. If this

ratio was of the order of 10"^ or less it was found that no correction was needed for 

the S-N leakage current in parallel with the S-S junction.
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4.3 The phonon spectra obtained from the AI-PbBi junctions

As discussed in chapter 2 the phonon pulse enhances the tunnelling current through 

the junction. In this experiment the effect this phonon enhanced current had on the 

voltage across the junction was measured at biases of 0.1 OmV intervals between 

O.SOmV and I.SOmV. A typical voltage signal pulse is shown in figure 4.5. This was 

taken at a bias voltage of 1 .20m V using the junction whose characteristics are 

shown in figure 4 .1. The phonons were generated by a 250ns pulse of power 

4.9m W  supplied to a constantan thin film heater. The voltage pulse measured using a 

junction with a large superconducting-norm al current contribution was not 

discernibly different. The electromagnetic pickup has been suppressed as described 

in section 3.4.

The first phonons arrive 0.65 ±  0.025p,s after the start of the generating pulse. 

These are the longitudinal phonons. This gives the velocity of these phonons as 10.8 

±  0 .4 k m s '^ . The transverse phonons start to arrive 1.15 ±  0 .02 5 |is  after the 

start of the generating pulse. Their velocity calculated from this measurement is 

6.1 ±  0 .2km s '^ . These measured values compare well with the calculated values of 

l l . lO k m s '^  for longitudinal phonons and 6.04km s’  ̂ for transverse phonons along 

the c-axis of sapphire (Weis (1972)).

The voltage spectra were first converted into current spectra by dividing them by 

the calculated effective resistances. The matrix inversion was then performed using

the appropriate Ay matrix which had been previously calculated. This produced a

series  of spectra  of phonon current against tim e at average  energies

â j= ( A . j -e V j)+ A 2 + e /2  where V j=1.4-0.1j (section2.5). By sampling the spectra

at a particular time a phonon energy spectrum can be produced for that time. The 

signal at the transverse phonon peak was found to be the most useful in constructing 

such a spectrum since this was always found to be the largest signal in the time 

resolved spectra. In figure 4.6 is shown an energy spectrum of the phonon currents 

at the transverse peak taken from the junction shown in figure 4.1. The signal was 

obtained using a 250ns pulse of power 4.9m W  supplied to the heater.

There are several sources of error in such a phonon spectrum. At high energies the
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voltage signai from the junction is small and there is a significant error in this 

signal due to noise. The currents were calculated from the measured voltage signals 

using the d ifferential resistances. Therefore, any error in the d ifferential 

resistance will cause an error In the calculated electron current. Errors in the 

differential resistance arise from the measurement of the quantity itself and from 

variations in the temperature during the collection of a spectrum. The temperature 

of the germanium resistor was constantly monitored and if it changed by more than 

0.005K  while acquiring one voltage spectrum the data were rejected. A typical 

tem perature drift was 0.001 K. Both these random errors are amplified by the 

matrix analysis schem e resulting in larger errors in the phonon currents. 

Calculations using the matrix analysis with data which had an x% error have shown 

that the error in the results was 4x%.

At low energy the calculated spectrum is negative. This is probably due to the 

neglect of recombination of quasiparticles in the matrix analysis scheme. The only 

process of decay of non-thermal quasiparticles that has been taken into account is 

relaxation. However, near the gap edge recombination is the more important 

process. The lowest energy current from the junction is measured near the gap edge 

and has a contribution from quasiparticles generated by high energy phonons which 

have relaxed from higher energies. This has been taken into account. However, this 

current is decreased by the recombination of quasiparticles, this process has been 

neglected. Therefore the contribution to the quasiparticle current at the gap edge due 

to high energy phonons is overestimated. When this overestim ated current is 

subtracted from the measured current it can lead to an apparantly negative signal.

The large signal in the top channel of figure 4.6 has two possible sources. There 

could be a contribution from phonons with energies well above that of the top 

channel. All these phonons contribute to the current in the top channel but the 

higher energy contribution is not subtracted since its magnitude is unknown and 

cannot be measured. Therefore the phonon current at this energy is overestimated. A 

S-N  leakage current would also produce an anomalously large signal in the top 

channel. It would be measured along with the phonon enhanced current thus 

overestimating the phonon current. It is likely that both these effects contribute to 

the large top channel phonon current in figure 4.6.

The phonon energy spectrum shown in figure 4.7 was calculated from data measured
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Figure 4.7 Phonon current versus energy measured from sample C16. Input 

pulse duration=250ns, input pulse power=5.5mW.



using the junction whose d.c. characteristics are shown in figure 4.2, As before the 

pulse width was 250ns, the pulse power was 5.5m W . The difference in the power 

was due to differing heater resistances. It can be seen that the high energy signal is 

relatively much larger than that in figure 4.6. This second spectrum was calculated 

from enhanced tunnelling currents measured at bias voltages from 0 .30m V to 

1 .30m V inclusive. There is the possibility that the phonons incident on these 

junctions had energies higher than that measured by these junctions. Later in this 

chapter it will be shown that this effect is too small to account for such a large 

signal at high energies as found in figure 4.7. Although this possibility cannot be 

ignored completely. It can be seen by comparing figures 4.1 and 4.2  that the S-N 

leakage current is larger for the junction used in the m easurement of the data in 

figure 4 .7  as compared to that of figure 4.6. Therefore a larger contribution to the 

top channel signal from the S-N leakage current should be expected.

Attempts were made to correct for the superconducting-normal excess current. In 

chapter 2 an expression for the voltage due to this current was derived

V s N  = K [K -''.d lsN /d T ]. (d A /d T r 'I .a .R e ,,  ( 2 .2 9 )

The change in the aluminium gap, 6, during the phonon pulse was measured from the 

time resolved voltage spectrum taken at a bias voltage of ( A .|+  A g l/e . Using 

equation (2.29) the were calculated for the transverse phonon peak. These

were then subtracted from the relevant signal voltages which have been measured 

from the time resolved voltage spectra. These adjusted voltages were analysed using 

the matrix technique. The phonon energy spectrum thus produced is shown in figure 

4.8. It can be seen that the overall signal is decreased particularly at high energies. 

This is to be expected since the superconducting-normal signal has a relatively 

larger effect on the smaller high energy signal. This correction appears to have 

produced a reasonable result in this case. In many other cases, however, with larger 

leakage currents more serious problems arose. In some cases the calculated  

superconducting-normal voltages were larger than the measured voltages. In other 

cases the correction left a spectrum in which almost all the phonon currents were 

negative. This implies that this simple form for the leakage current change in the
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Figure 4.8 Phonon current versus energy calculated from the signal from sample 

C16 corrected for S-N contribution. Input pulse duration=250ns, 

input pulse power=5.5mW.



junctions based on thermal equilibrium principles is inadequate. Therefore, this 

correction could not be applied. This gave further reason for neglecting data from 

junctions with large leakage currents.

As discussed above, phonons of higher energy than the top channel energy of the 

junctions are included in the signal measured in the top channel. This produces an 

erroneously high phonon current at the highest energy in the calculated spectrum. A 

calculation cannot be performed to correct for this effect since there is no 

information available about the higher energy phonons. However, we should be 

aware of this source of error and any possible effects It may have on the measured 

phonon energy spectrum. By considering the analysis technique it should be possible 

to obtain some information about the latter.The analysis technique involves the 

subtraction of a corrected high energy signal from the enhanced current at the next, 

higher, bias to produce the phonon current at the next energy. From chapter 2 the

enhanced tunnelling current in channel i, A I(QQj), is given by

A l(O g j)  = Z  A .. Ip: ( 2 .2 5 )
j=1 f

where Ipj is the phonon current at energy Qj.This leads to the lowest bias, highest 

energy, enhanced current

A K H q i ) = lp-| ( 4 .3 )

At the next bias the enhanced current is given by

AI(Qq2) = ^21 +*^22*P2 ( •̂' )̂

Using equation 4.3 this can be rewritten as

Ip 2  = [ A I(^2q 2) ■ -^21  ) -^ 2 2   ̂ ( 4 - 5 )
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So if Ip-) has been overestimated, such as when an the phonon flux contains phonons 

of energies greater than the top channel energy, then Ip 2  is underestimated. The

measured signal in the second top channel is less than its true value. The third 

enhanced current is

A I(Q o3) = *P1 *'■ *^ 3 3 *P 3  ( 4 .6 )

So the phonon current at this energy is given by

Ip3 = [ AI(ÜQ3) - Agglp2 - ' P 1 ^ ^ 3 s ”  ̂ (" -̂' )̂

Depending on the relative signs of A ^ ^  and A ^ ^  then Ip g  could either be

underestim ated or overestim ated. This effect can be present throughout the 

spectrum. From the results of the measurement of the output of the constantan 

heaters it is believed that this effect is small in this experiment. This is dicussed in 

the next section of this chapter.

4.4 The phonon spectrum emitted by the constantan heaters

In section 2.7 two theories about the output of constantan heaters were outlined, the 

acoustic mismatch theory for bulk constantan and the theory of Frick et al. (1975) 

for thin film constantan. These theories predicted very different spectra. Comparing 

the measured spectrum shown in figure 4.6 with the two theoretical spectra shown 

in figures 2.10 and 2.11 it can be seen that the form of the measured spectrum is 

closest to that produced by the theory of Little (1959). It does not show the form 

predicted and m easured by Frick et al (1975 ). Using equation (2 .31) the 

equ iva len t heater tem p eratu res ,T *, were calculated for all the experimental 

conditions. They varied between 1.67K and 4.04K . In their model Frick et al. 

(1975) assume that the frequency position of the spectral maximum is given by

W ien ’s law, i.e. h v ^ g ^ = 2 .8 k T . They also assume that the total radiation power
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follows the law of Stephan-Boltzmann. The output of thin film constantan heaters 

on sapphire was measured and found to fit a model in which the heater boundaries 

were weakly coupled. In this model the wavelength of the lowest energy phonon 

which can be emitted perpendicular to the interface is twice the heater thickness. 

This cut-off wavelength occurs at the spectral maximum. The heater temperature  

below which this effect would become significant can be estimated by equating the 

maximum in the spectral radiant energy curve (at 2.8kT) to the energy of the 

transverse phonons at the cut-off w avelength. For the heater used in this 

experim ent the calculation indicates that for a T greater than 1 .5K this model is 

invalid. So it should not be expected that the measured spectrum in this experiment 

follow the form predicted by Frick et al (19 75 ).In order to investigate the theory 

of Frick et al. (1975) it would be necessary to go down to lower Input powers so 

that the effective heater temperature would be less than 1.5K. In order to be able to 

detect such small signals reliably lower resistance detector junctions would be 

needed. No high quality junctions were produced at a lower resistance, they all had 

excess S-N  currents. So it was not possible to verify the Frick et al. (1975) 

theory.

As discussed in section 4.1 only the phonon spectra which have been transmitted 

perpendicularly to the heater-sapphire boundaries and down the c-axis of the 

sapphire crystal will be considered. The spectra were measured using sample C IO , 

the details of which are listed in table 4.2. Figures 4.9 to 4 .12 show phonon current 

spectra obtained from the transverse phonon peak at input puwers of 15.4m W , 

4 .9m W , 1 .54m W  and 0 .49m W  respectively. Figures 4 .13  to 4 .15  show the 

longitudinal peaks at the three corresponding higher powers. The signal at the 

longitudinal phonon peak is smaller than at the transverse phonon peak. The 

0.49m W  signal for the longitudinal phonons is very small and, therefore, subject to 

large errors, for this reason it has not been included. The heater equivalent 

tem perature was calculated for each of these powers. These were then used to 

calculate the corresponding theoretical spectra using the theory of Little (1959). 

The results of these calculations have been superimposed on the measured spectra as 

broken lines in figures 4.9 to 4.15. These have been fitted to the measured spectra 

by multiplying them by a correction factor. The correction factors used were the 

same for the transverse phonon spectra as were the correction factors for the 

longitudinal phonon spectra with the exception of the 15.4m W  spectra (figures 4.9 

and 4.13). These had a larger correction factor. The reason for this is unclear but it
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Aluminium thickness (nm) 200 ± 1 0

Lead bismuth thickness (nm) 200 ± 1 0

Junction normal resistance (R mO) 34 ±  2

Junction capacitance (nF) 33 ±  3

Rs n /R  1Q5

Table 4.2

Aluminium thickness (nm) 150 ±  5

Lead bismuth thickness (nm) 220 ±  20

Junction normal resistance (R m£2) 7 ±  1

Junction capacitance (nF) 20 ±  2

Rs n |/r  io 4

Table A 3
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Figure 4.9 Phonon current versus energy measured from sample C10,

transverse phonon signal. Input pulse duration=100ns, input pulse 

power=15.4mW.

 phonon current calculated from Little (1959),

  corrected for junction time constant.
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Figure 4.11 Phonon current versus energy measured from sample C l 0,

transverse phonon signal. Input pulse duratlon=500ns, input pulse 

power=1.54mW.

 phonon current calculated from Little (1959),

  corrected for junction time constant.
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Figure 4.12 Phonon current versus energy measured from sample C 10,

transverse phonon signal. Input pulse duration=500ns, input pulse 

power=0.49mW.

 phonon current calculated from Little (1959),

 corrected for junction time constant.
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Figure 4.13 Phonon current versus energy measured from sample C10,

longitudinal phonon signal. Input pulse duration=100ns, input pulse 

power=15.4mW.

 phonon current calculated from Little (1959),

 corrected for junction time constant.
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Figure 4 .14 Phonon current versus energy measured from sample C l 0,

longitudinal phonon signal. Input pulse duration=250ns, input pulse 

power=4.9mW ,

 phonon current calculated from Little (1959),

 corrected for junction time constant.
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Figure 4.15 Phonon current versus energy measured from sample C 10,

longitudinal phonon signal. Input pulse duration=500ns, input pulse 

power=1.54mW.

 phonon current calculated from Little (1959),

 corrected for junction time constant.



is suspected that it could have been due to the temperature in this experimental run 

being unusually high owing to the high mean power being dissipated in the crystal. 

The fit for the two lowest powers, 1.54m W  and 0.49m W , was reasonable. However, 

as the input power increased the fit became less good. The agreem ent at the two 

lowest powers suggested that this effect was not due to the difference in input 

powers but had other origins. It was noted that the current pulse supplied to the 

heater for the measurements at 1.54m W  and 0 .49m W  lasted 500ns. W hereas, the 

pulse duration was 100ns for the 15.4m W  data, and 250ns for the 4 .9m W  data. The  

fit appeared to deteriorate as the duration of the input pulse decreased. It was also 

noted that the agreem ent deteriorated as the phonon energy increased. This implied 

that the junction had a time constant that varied with bias and was significant 

compared to the pulse length.

In order to confirm this the junction capacitance was measured. A voltage pulse was 

applied across the detector junction of amplitude very much smaller than the energy

gap ( A.J + A 2 ). Using the detection system the voltage across the detector was

measured as a function of time. It was noticed that the voltage across the junction did 

not fall to zero immediately the pulse was removed. A graph of InV versus time was 

plotted. Figure 4 .16  shows such a graph for sam ple C IO . It was found to be a

straight line. It was assum ed that the voltage was proportional to (1-exp-(t/Tg))

where t^w as the RC time constant of the system, the capacitance being that of the

junction. The equivalent circuit is shown in figure 4 .17 . From this it can be seen  

that

R = (1 /R q + 1/Ry + 1/8R )•■* ( 4 . 8 )

Rq = 50Q  and R^ = 20Q. At the measurement voltage (eV« A .j- Ag) 6R was much 

larger than Rq and R^ and (4.8) simplifies to

R = (1 /R q + 1/Ry)-^ = 1 4 .3 0  ( 4 . 9 )

Using this value the junction capacitance was calculated. This varied between lOnF
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Figure 4.16 A graph of InV versus time for the detector in sample C 10.
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and 60nF. For sample C10 it was measured as 33 ±  3 nF.

The effective time constant as a function of bias was calculated using the calculated 

capacitance and the effective resistance. It was assumed that the phonon current at a 

particular energy was mainly derived from the signal from the corresponding bias

voltage. Therefore only a fraction (1-exp-(tg/T)) of the current will be developed  

during a pulse of length tg. The theoretical spectra were corrected for this. The

results are shown as solid lines in figures 4 .9  to 4 .15 . The correction had a larger 

effect at higher powers. This was expected since the pulse duration was shorter. 

Within each of the spectra there was only a small reduction in the theoretical 

signal, if any, at low energies. Again, this was expected since the effective  

resistances and, hence, the effective time constants were small at these energies. 

The correction produced a reasonable agreem ent between the theoretical ouput 

predicted by Little (1959) and the measured output of the constantan heaters used 

in this experim ent. From this agreem ent it can be concluded that there were very 

few  phonons emitted by the heaters that were above the energy range of the 

detectors.

In figures 4 .9 , 4 .10 , 4 .13  and 4 .14  there is a larger signal in the top energy  

channel than that predicted by theory. As discussed in section 4 .3  the origin of this 

large top channel signal is unclear. It was noted that the detectors could not be used 

at the lowest bias, 0 .30m V. The highest energy in the analysis schem e was set to 

zero. W hereas it can be seen from the graphs that the theory of Little (1959) 

predicts a measurable signal. This signal will indeed have been m easured but it will 

have been included in the next highest energy channel, that is the top channel of the 

m easured spectra, thus overestimating the size of this signal. This signal was about 

the sam e magnitude as the excess signal in the top channel which is an indication 

that it could be the main cause of the excess signal. To establish the origin of the 

excess signal it would be necessary to use detectors which respond down to lower 

bias voltages. W e were not able to manufacture such junctions.

Figures 4 .18  and 4.19 show the energy spectra obtained from sample C l 6 at powers 

of 5 .5m W  and 1 .75m W  respectively. The details of the constantan heater and the 

detector are shown in table 4 .3 . Superimposed on the m easured spectra are the
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Figure 4.18 Phonon current versus energy measured from sample C 16,

transverse phonon signal. Input pulse duration=250ns, input pulse 

power=5.5mW.

 phonon current calculated from Little (1959),

 corrected for junction time constant.
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Figure 4.19 Phonon current versus energy measured from sample C l 6,

transverse phonon signal. Input pulse duration=500ns, input pulse 

power=1.75mW.

 phonon current calculated from Little (1959),

 corrected for junction time constant.



theoretical spectra predicted by Little (1959). It can be seen that the excess signals 

in the top channels were relatively larger than in sample C IO . In this sam ple the 

excess signal cannot be explained using the theoretical signal at energies above the 

top channei. The excess signal was much larger than these theoretical signals. It is 

b e lie v e d  th a t this  e xc es s  s ig n a l w as  d e r iv e d  m a in ly  from  the  

superconducting-normal contribution to the junction, as explained in section 4.3 .

4 .5  The output of the Sn-Sn superconducting junctions

As discussed in chapter 2 the output of the Sn-Sn superconducting junctions is 

within the energy range of the AI-PbBi detectors. Several attempts were m ade to 

m easure this spectrum with very little success. Two sets of junctions had to be 

m anufactured, generators and detectors and it proved very difficult to obtain a 

sample in which both sets of junctions were usable. Only sam ple C9 was a limited 

success; details of the junctions in this sam ple are listed in table 4 .4 . The  

current-voltage characteristics of the Sn-Sn junctions are shown in figure 4 .20 . 

There was some evidence of a conduction path in parallel with the junction. This was 

probably caused by holes in the oxide layer. The effect was small and could be 

neglected as it would not affect the phonon output of the junctions greatly. The Sn-Sn 

junctions had a large resistance, 0 .5 0 ,  which m eant that in order to obtain a 

suitable output a large voltage pulse was needed. In these conditions the junctions act 

as thermal sources and the spectrum is not necessarily dominated by the gap edge 

phonons. An attempt at the measurement was made, an output voltage pulse from the 

pulse generator of 1 .20V and 500ns duration was applied to the generators and the 

spectrum shown in figure 4.21 was produced.

The effect of the detection system time constant has not been corrected for since the 

pulse was of 500ns duration this effect would be sm all. There  was a large 

superconducting-normal current present in the detector therefore the signal at the 

highest energy was likely to have been much larger than that em itted by the 

generators. Due to this only a qualitative comparison with theory was m ade. The

arrow in figure 4.21 indicates the energy of the 2 A  phonons, 1 .15m eV , emitted by 

the Sn-Sn generators. There is a peak in the measured spectrum around this energy. 

H ow ever, the rest of the spectrum is negative and shows no evidence of the 

"bremsstrahlung" effect (section 2 .3).
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■Qsnsrators 

Tin thickness

- lower electrode (nm) 200 ± 1 0

- upper electrode (nm) 200 ± 1 0

Junction normal resistance (Q) 0 ,48 ±  0.01

Detectors

Aluminium thickness (nm) 100 ±  10

Lead bismuth thickness (nm) 200 ± 1 0

Junction normal resistance (mQ) 30 ± 3

Rsfs/R 600

Table 4.4
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Figure 4 .20  The d.c. characteristics of the phonon generators in sample C9.
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Figure 4.21 Phonon current versus energy measured from sample C9.



This experim ent is of limited validity because of the poor quality of both the 

detectors and the generators. Also the possibility of self heating by the generators  

cannot be ignored. Ideally the experiment would have been repeated with better 

quality detectors and lower resistance generators, the output of which would be 

dominated by gap edge phonons, but the constraints of time prevented this.
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5.1 Introduction

In this chapter the data from the measurements on the glasses are presented and 

analysed. The original phonon matrix analysis schem e was not used, despite the 

success with it reported in chapter4. There were two main reasons for this. Firstly, 

the detectors were almost always non-ideal. Secondly the matrix analysis schem e  

had an amplifying effect on the random error of the measurements (see chapter 4). 

For these reasons the analysis scheme was reversed. The expected signal current 

ratio from the detectors under the influence of theoretical phonon currents with and 

without the glassy film was calculated. For the detector side experiment the phonon 

currents as a function of energy reaching the detector side of the substrate were  

calculated from the acoustic mismatch theory. The phonon scattering in the glass 

was taken into account by calculating the probability of loss from a given energy  

band using simple physical models. (These models are discussed in sections 5.2 and 

5 .3.) From this the phonon current as a function of energy reaching the detector on 

top of the glass can be calculated. Applying the matrix analysis in reverse produces 

the enhanced tunnelling current as a function of bias voltage caused by such a phonon 

flux being absorbed by the detector. This calculation is performed for the phonon 

current with and without the glass. The ratio of the theoretical enhanced tunnelling 

currents can then be calculated and compared to the ratio of the measured enhanced 

tunnelling currents. For the generator side the phonon current as a function of_ 

energy reaching the detector side without travelling through the glass is again given 

by the acoustic mismatch theory. For the heater on top of the glass it has been 

assum ed that phonons backscattered into the heater by the glass are reabsorbed by 

the heater. This has the effect of raising the effective heater tem perature and 

changing the energy distribution of the emitted phonon current. This new energy  

distribution was calculated. (This is discussed in sections 5 .2  and 5.3.) As in the 

detector side experiment the enhanced tunnelling currents as a function of bias in 

the detectors are calculated using the matrix analysis in reverse. The ratios of the 

theortical and measured enhanced tunnelling currents with and without the glass are 

com pared.This analysis schem e is discussed in the fourth section of this chapter. 

Only the silicon dioxide data has been analysed fully using this schem e. The other 

two sets of data were unsuitable for this type of analysis for various reasons.

The experiment was designed to use a comparison technique. For this reason there 

were two heaters symmetrically disposed opposite two detectors as described in
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chapter 3. There was a glass sample deposited under either one of the heaters or one 

of the detectors. This is shown in figure 5.1. It was decided to use the notation heater 

1 and detector 1 for the heater and detector involved in the phonons travelling 

straight across the substrate without travelling through the glass film (path 1). 

H eater 2 and detector 2 are involved in the phonons travelling straight through the 

substrate and through the glass (path 2). The signal in path 2 could be compared 

with the unaffected signal in path 1, with only the influence of the glassy film being 

important. As before the cross shoot signal, paths 3 and 4, is not analysed because of 

the uncertainty of the orientation of the sapphire crystal and therefore the 

uncertainty in the possible phonon focussing effects. For this reason also the signal 

after the onset of the sidewall peak (see figure 4.5) in the straight through data is 

not analysed as phonons arriving after this have not travelled straight along the 

c-axis of the sapphire crystal. In general the two heaters in each sam ple had 

resistances which were within one percent of each other, typically. The detectors 

w ere also very similar, typically within 10% , needing only a small correction for 

differences in the junction resistances. The arsenic trisulphide sam ples w ere the 

only exception to this. They will be discussed in the last section of this chapter.

5 .2  Elastic Scattering

The detector side experim ent is considered first. It was decided to use a one 

dimensional model for simplicity. Moving through the amorphous film is a forward 

phonon flux, p, and a backward moving flux, q. it is assumed that, on average , the 

scattering events reverse the direction of travel of half the phonons, the direction of 

the o ther half rem ains unchanged, for this situation d ifferentia l equations  

describing the steady state of p and q can be written

dp/dx = -p/2£ + q/2& (5.1a)

dq/dx = p/22 +q/22 (5 .1  b)

w here 2 is the elastic mean free path of the phonons. The boundary conditions  

appropriate to the experiment are as follows. There is an incident initial phonon 

flux, pQ, from one side of the film, at x=0. There are no phonons incident from the
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Figure 5.1 The possible paths between the heaters and the detectors.

p(x)

X

Figure 5.2 The variation of the forward moving phonon flux,p(x), and the 

backward flux, q(x). in an amorphous film of thickness d.



other side of the film, q(d) = 0 where d is the film thickness. This is because the 

detectors act as a sink for high energy phonons, absorbing the phonons incident 

upon them (Dietsche 1978). Under these circumstances the differential equations 

can be solved for the phonon fluxes transmitted through the film, p(d) and q(0),

p (d )/p o  = 1/(1 + d /2 2 ) (5 .2a)

q(0)/pg = d/2d . (1 + d/22)-'' (5.2b)

Note, p(d) + q(0) = p^. There are no phonons lost in the material as expected for

elastic scattering. This solution is shown in figure 5 .2 . q(0) is transm itted back

into the sapphire substrate and is effectively lost. If it does reappear at the

amorphous film it is at a much later time and is not measured.

This is not an exact solution to a complex situation, it is only an approximation. 

Strictly a three dim ensional calculation should be perform ed. How ever, in this

situation, it is difficult to do such a calculation. Very little is known about the

angular distribution of the incident phonon flux. W hereas Davison (1957) shows 

that, for thermal neutrons, the fraction of incident flux penetrating a slab in which 

scattering occurs depends on the angular distribution of the incoming particles. So it 

is difficult to find an analytic solution. Davison solves the slab problem in the case 

of isotropic illumination over a half space. The solution looks like equations 5.2  but 

has a factor of 3 /4  instead of 1/2. In the light of this it is felt that adopting the 

linear approxim ation (equations 5 .2) is justified in this experim ent. A more 

rigorous approach would not realise significantly more accurate results due to the 

error inherent in the experimental measurements. It must be rem em bered that any 

m ean free path derived using this approximation will have an uncertainty of the 

sam e order of magnitude as the mean free path itself.

Two other assumptions have been made. Firstly, no distinction has been made 

between the scattering of the different polarisations. This is discussed later in this 

chapter along with the silicon dioxide data. Secondly, steady state solutions have 

been used. This assumes that the time the phonon pulse takes to cross the amorpous 

film is small com pared to the exciting pulse length. It will be seen that this
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assumption is justified when the data is discussed later in this chapter.

If there is only elastic scattering in an amorphous film then the different phonon 

energies are decoupled from one another. The energy of a phonon does not change 

when it is scattered. It is therefore simple to derive from equation 5 .2a  the phonon 

transmittance for the amorphous film as a function of energy, P (E), by writing

P(E) = p(d)/Po = (1 + d /2 2 {E )  r '  (5 .3 )

This is equivalent to the ratio of the phonon current absorbed by the detector on the 

top of the amorphous film to that absobed by the detector directly on top of the 

substrate, R (E ). This ignores any difference in transmission coefficients between  

the two cases. However, the phonons being considered here have been transmitted 

along the c-axis of the sapphire. The phonons are incident perpendicular to the 

interfaces so the transmission coefficients are close to unity in both cases. 

Therefore this is a reasonable approximation. Figure 5 .3  shows P(E) as a function 

of energy, for the different energy dependencies of the mean free path with the mean 

free path at Im e V  being equal to 2.2pjn and a sample thickness of 0.91 |im . Above 

Im e V  the higher the energy dependence the faster P(E) decreases with energy , as 

expected. The dependence of P(E) on the magnitude of the mean free path at 1 meV is 

shown in figure 5.4 for 2 a  E"^. As the mean free path increases P(E) increases  

and becomes a much weaker function of energy.

The situation on the generator side is more complex. The analysis schem e has been 

developed specifically for the thin film heaters used in this project. In chapter 4 it 

was shown that these heaters emitted the broad band spectrum predicted by Little 

(1959 ). According to this theory the output power of the heaters per unit area, 

W /A , is given by:-

W /A  = 1/(8n2fi2).{Xa|/0|2}^ J E3dE/(exp(E/kTi ) -1  ) (5.4)

where aj are the transmission coefficients for the phonons of polarisation i from the

emitting film into the substrate. Since the scattering model does not take into 

account the different phonon polarisations the term involving the transmission
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coefficients and the phonon velocities is simplified using

S  a/Cj2 = 3o/ c2 (5.5)

where â  = 0 .18  and c = 3.05 kms'^ for constantan on sapphire (Weis 1972 ),

W hen there is a thin film of glass on top of the heater som e of the phonons are 

backscattered into the heater. If the same assumptions are made as when deriving 

the phonon output of the heaters, that the heaters are thick, then these phonons are 

reabsorbed. Thus the effective heater temperature increases. The phonons that reach 

the other side of the glass are transmitted into the substrate and effectively lost to 

the generator side. So the boundary conditions used in the elastic scattering model 

can be applied. Therefore, the calculation for the elastic scattering model can be 

used. The transmission coefffcient, 5 , is modified to a P . Using this in equation 5.4  

and taking into account that P is a function of energy gives

W /A  = 3 /(8 jt2 f ,3 ) .â /c ? ^ J ° ° P (E )E 3 d E /(e x p (E /k T 2 )  -1) ( 5 .6 )

w here T 2  is the increased effective heater tem perature. It must be rem em bered

that, again, this does not take into account the scattering at the different film 

interfaces. To do this the angular distribution of the phonons in the amorphous film 

would need to be known. The same power was put into the heater in both cases, with 

and without the glass on top of the heater. So the same power must be transmitted 

into the sapphire substrate in both cases since there is no other escape path for the 

phonons. By equating the right sides of equations 5.4 and 5.6 this condition is taken 

into account. Evaluating the integrals produces T 2 /T ^ .

The phonon current from the heater without the glass is

n ^ g (E ) = A . e 2 / (exp(EykTi) - 1) (5.7)

where A is a constant. The phonon current from the heater and the glass is given by
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n^(E) = A . P(E) e2 / (expfE^^Tg) - 1) (5.8)

Combining these two equations gives the transmission ratio

R(E) = P(E) . (exp(E/kT^) - 1 )/{exp(E /kÏ2) -1 )  (5.9)

Assuming that the phonons propagate to the detectors and are absorbed there in the 

sam e manner, this is the ratio of the phonon currents absorbed by the two detectors.

Figure 5 .5  shows the transmission ratio as a function of energy for elastic  

scattering in the generator side experiment with a sample of thickness 0 .49|im . The 

m ean free path at 1m eV used in the calculations was 2 .2 |im  and the energy  

dependence was varied as stated. It can be seen that the transmission ratio is greater 

than one at low energies. In the model the high energy phonons are more likely to be 

backsattered into the heater than the low energy phonons. So the low energy phonon 

current is enhanced resulting in a transmission ratio which is greater than one. The  

stronger the scattering the greater this enhancem ent. This is reflected in a greater 

low energy transmission ratio when the mean free path is a stronger function of 

energy. As in the detector side calculation R decreases more rapidly with energy 

when the scattering is stronger. The effect of varying the magnitude of the mean free 

path on R(E) is shown in figure 5 .6 . The smaller the mean free path the stronger 

the scattering. So R is larger at lower energies for the shorter mean free path and 

decreases faster with increasing energy.

5 .3  Inelastic Scattering

The situation for inelastic scattering is more com plex than that for elastic  

scattering. The most important process for a high energy phonon is the spontaneous 

process which splits it up into two phonons of lower energy. The energy of the two 

secondary phonons is determined by the scattering mechanism. In this case the 

scattering mechanism is unknown. The approximation is m ade that the incident 

phonon is split into two phonons of energy equal to half that of the incident phonon. 

Again this approximation does not give an exact answer but tells us what form of 

transmission ratio to expect. It is also assumed that one phonon is scattered forward

69



R(E
/

1 2 -

1 • 0 “

0 8 -

0 6 -

0 4 -

0 2 -

0 4 / t -
0 4

E(meV)
06 0 8 1 0  1 2  1-4

Figure 5.5 The transmission ratio as a function of energy for the generator side 
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and one backw ard. Scattering of the secondary phonon is neglected since the 

scattering mean free path is a strongly decreasing function of energy and thin glass 

films are being considered. So the mean free path of the secondary phonon is large 

com pared to the film thickness. Also ignored is the possibility of two low energy 

phonons combining to give a higher energy phonon, i.e. inverse three phonon 

processes. This model is of limited use. It would be no good if strong inelastic 

scattering were occuring throughout the whole energy range. It is only useful for 

the high energy tail of a spectrum such as that found in this experim ent. In these 

circumstances it is expected to give a good guide to the behaviour of the transmission 

ra tio .

As in the elastic scattering case there is a phonon flux with a thermal distribution 

characterised by T^ incident on one side of the glass. For random inelastic scattering 

the proportion of phonons penetrating a slab of m aterial of thickness d is 

exp (-d /£ (E )). It is necessary to take into account that the phonons of energy 2E are 

scattered to energy E and that half are scattered forwards and half backwards. So the 

phonons emerging from the other side of the material have an energy distribution

exp (-d /£ (E )) . E^ /  (exp (E /kT ^) - 1) +

(1 - e x p ( - d /2 (2 E ) ) )  . (2E )2  /  (e x p (2 E /k T i )-1) ( 5 .1 0 )

The first term represents the phonons of energy E which pass through the material 

without being scattered. The second term represents the phonons of energy 2E that 

are scattered down to energy E and continue through the material in the forward 

direction. Dividing 5 .10  by the input phonon flux produces the transmission ratio, 

R (E)

R(E) = exp (-d /£ (E )) + (1 - e xp (-d /£ (2 E ))) .

4 . (e x p (E y k T ^ )-1 )/{e x p (2 E /k T .,)-1 ) ( 5 . 1 1 )

Figure 5 .7  shows the calculated form of R(E) for different energy dependencies of 

the mean free path. In all cases, at low energies the transmission ratio increases to 

a peak which is greater than one. This is due to more phonons being scattered from 

energy 2E to energy E than being scattered from E to E/2. The higher the energy
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dependence of the mean free path the more pronounced is this peak and the faster the 

transmission ratio decreases with increasing energy. Figure 5 .8  is a graph of the 

transm ission ratio w here £ is proportional to for various values of £ at 

1 m eV .The sm aller the value of £ at I m e V  the larger the low energy value of the 

transmission ratio and the faster It decreases with energy.

For the generator side experiment the same assumptions are m ade as in the elastic 

case. Nam ely that the phonons which are transmitted through the glass into the 

substrate are lost to the heater side and those phonons which are backscattered are 

absorbed by the heater and change the heater tem perature. For the phonons of 

energy E the proportion of their energy which is transmitted through the glass into 

the substrate is give by

P(E) = e x p (-d /£ (E )) + 1/2{ 1 - exp (-d /£ (E ))  (5 .1 2 )

The first term is due to those phonons that travel through the glass without being 

scattered. The second term is due to the scattered phonons and takes into account that 

on scattering half the energy goes forward and half goes backward. Using this form 

of P(E) in equation 5.6  allows the raised effective heater tem perature, Tg , to be 

calculated. R(E) is then given by

R(E) = e xp (-d /£ (E )) . (exp(E /kT-| )-1  ) / ( e x p ( E / k T 2 ) - 1 )  +

( 1 - e x p ( - d / £ ( 2 E ) ) ) . 4 . ( e x p ( E / k T ^ ) - 1 ) / ( e x p ( E / k T 2 ) - 1 )  ( 5 . 1 3 )

Figure 5.9 shows R(E) for £=4.0 |im  at I m e V  with different energy dependencies of 

the mean free path. At low energies the transmission ratio is greater than one and is 

largest for the strong scattering. As the energy increases the stronger the scattering 

the faster the decrease in the transmssion ratio. Figure 5 .10  shows the dependence  

of the transmission ratio on the magnitude of the mean free path. The shorter the 

mean free path the stronger the scattering is. This produces a larger transmission 

ratio at low energy compared to the weaker scattering plus a more rapid decrease of 

the transmission ratio as energy increases.

So far it has been assumed that the secondary phonons have no correlation with the
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primary phonons. Although the wave vector is not an accurately defined param eter 

in a disordered material, at these frequencies the waves are expected to be close to 

plane waves. For a 3-phonon anharmonic process in a crystal the wave vector is 

conserved and the direction of the secondary phonons are correlated with that of the 

primary. It is possible to envisage a similar scattering process in an amorphous 

film in which case the energy composition of the phonon flux is affected but not its 

direction of propagation. The effect on the detector side experiment is to increase the 

second term of equation 5.11 by a factor of two. From figure 5.11 it can be seen that 

this produces an enhanced peak in the transmission ratio. In the generator side 

experim ent there are no phonons backscattered into the heater. So the effective 

heater tem perature is not increased, it remains at T ^ . Putting this into equation

5 .13  and increasing the second term by a factor of two produces a transmission 

ratio identical to that for the detector side under these conditions. So the generator 

side transmission ratio has the form shown in figure 5 .11 .

5 .4  The Modified Matrix Analysis Scheme

In the previous two sections of this chapter the transm ission ratio has been  

calculated for both elastic and inelastic scattering. This could be directly compared  

to the transmission ratio calculated from the phonon currents obtained from the 

experim ental data using the matrix analysis schem e. How ever, as previously  

discussed, the matrix analysis increases the error in the m easurem ents by a factor 

of approximately 4. Therefore any transmission ratios calcuiated from the data are 

subject to large errors. This renders the experim entally m easured transmission 

ratio difficult to interpret. For this reason it was decided to use the ratio of the 

electron current signals from the detectors, S.

In chapter 4 the phonon output of the heaters was established. The phonon current 

from the heater at discrete energies can be calculated. By multiplying these values 

by a calculated transmission ratio for the particular energy the possible phonon 

current of that energy emerging from the glass can be produced. These phonon 

currents can then be used to calculate the electron currents through tunnelling  

junctions absorbing such phonon fluxes using equation (2.25)
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= Si  = l ' A i j l p j  ( 2 . 2 5 :

From these the theoretical values of the current signal ratio, S, can be obtained as a 

function of bias.

As discussed in chapter 2 the electron current in the junctions at a particular bias,

V g , is determined by the phonons with energies from A.| + A g  - V g  upwards. So

the current signal ratio, 8 , has contributions from energies corresponding to the 

bias voltage upwards. At a particular bias the higher energy contributions have the 

effect of reducing the current signal ratio in comparison to the transmission ratio. 

This can be seen from figure 5.12 which shows both the transmission ratio and the 

current signal ratio for elastic scattering with a mean free path at Im e V  of 2.2p.m 

and varying as E‘ ®. At the highest energy they have the sam e value but at lower 

energies the current signal ratio is smaller.

5 .5  The silicon dioxide data

Three different silicon dioxide sam ples were successfully prepared. For two of 

them, sam ples C l 3 and 0 1 6 , the glass was on the detector side of the sapphire 

crystal. In the third, sample 0 1 2 , the glass was under one of the heaters. The details 

of these samples are shown in table 5.1.

Figure 5 .13  shows the voltage signal as a function of time for sample 0 1 6 . The top 

trace shows the signal without the glass between the heater and the detector. The  

lower trace shows the signal with the glass. As can be seen the pulse shapes of the 

two traces are similar, therefore no discernible time delay was caused by the glass. 

This allows the application of the anaiysis procedure developed earlier in this 

chapter.

Figure 5 .14 shows the current signal ratio data as a function of time, calculated 

from the data shown in figure 5 .13 . The points before the longitudinal phonon 

pulse have been omitted since these are mainly due to noise and fluctuate wildly. 

The onset of the various ballistic peaks are m arked on the figure. The
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Sample number C12 C13 C16

Sample thickness (jim) 0.49 ±0 .0 1  0.39 ± 0 .0 0 5  0.91 ±0 .01

Resistance of detector 1 (m(]) (R., ) 1.9 ± 0 .2  30 ± 3  11 ±  1

R 2 /R 1 0.95 ±0 .0 1  0.83 ± 0 .0 1  0.68 ±0 .01

R s n /^ S S  10"  ̂ 200 7000

Heater resistance (Q) 55.0 14.3 24.0

TABLE 5.1 The silicon dtoxide samples.

Sample number C IO

Sample thickness (jim) 0.59 ±  0.01

Resistance of detector 1 (mA) (R.j ) 32  ± 3

R2 /R 1 1.08 ±0.01

^SN/F*SS >10^

Heater resistance (Q) 17.6

TABLE 5.2 The silicon monoxide sample.
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transmittance remains relatively constant over the longitudinal and transverse  

peaks. This allows the calculation of the current signal ratio for the longitudinal 

and transverse phonon fluxes. After the multiple reflection signal it tends to unity 

indicating that the junctions are acting as thermometers monitoring the background 

tem perature of the crystal.

For the quantitative analysis it was decided to concentrate on the transverse phonon 

ballistic peak. This was the largest signal and therefore could be analysed with the 

greatest accuracy. The current signal ratio was averaged over the transverse peak. 

The position of this peak was determined from the measured data as shown in figure 

5 .13 . The experimental values of the current signal ratio were then compared to the 

theoretically calculated form. In the following figures the expermental values of the 

current signal ratio, S, are displayed as bars and the theoretical values are shown 

as curves.

The detector side experim ent is considered first. In figure 5 .15  the values of S 

calculated for the data from samples C13 and C16 are shown. Superimposed on these 

values are the theoretical curves for a mean free path of 1 .0|im at 1 m eV varying as 

E '^  , 2.2p.m varying as E’ ®. It can be seen that the stronger energy dependence fits 

the data better than the Rayleigh type (E"^) scattering. However, it was found that 

the index does not need to be exactly -6. This can be seen in figure 5 .16  which 

shows that E '^  and E '^  could also fit the data within experimental error. Therefore  

any value around -6 will do just as well. From figure 5 .17  it can be seen that a 

mean free path at 1m eV between 1.5|im and 3.0p.m give a reasonable fit to the data. 

This justifies the use of the simple model in the analysés since a more sophisticated 

model could not produce greater accuracy about the form of the scattering because of 

the error in the experimental measurements. So far only the highest heater input 

power data has been considered. The lower power data is more difficult to analyse 

since the signal is smaller and, therefore, more inaccurate. This is demonstrated in 

figure 5 .18  which shows the exprimental values of S for sample C IS  at lower input 

powers. It can be seen that at low biases that 8  is larger than the theoretically  

calculated value. This is due to the signal being so small that it is dominated by the 

superconducting-normal current. The ratio of these effects between the junctions is 

approxim ately one and therefore they lead to an artificially high value of S. At 

higher biases the data fits the E‘® scattering with a mean free path of 2 .2 |im  at 

Im e V  as before. At these biases the signal is larger and the effect of the
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superconducting-normal current is negligible. The data for sample C13 shows this 

problem  even more m arkedly. The junctions for this sam ple had a higher 

superconducting resistance than those in sam ple 16 therefore the tunneling current 

is smaller for the same phonon flux. The simple answer to this would have been to 

increase the input power. However, this would cause the crystal and, therefore, the 

junctions to heat up continously. Introducing errors in the m easurem ent as the 

change in the tunnelling current is more dependent on the background temperature  

at high tem peratures.

The experimental data can also be fitted with an inelastic scattering model. Figure 

5 .19  shows the high input heater power data of sam ples C l 3 and 0 1 6  with the 

theoretical S curves for inelastic scattering with an energy dependence of E"^. The 

fit to the data from sample 0 1 6  is as good as that for elastic scattering. For sample 

0 1 3  the fit is not quite so good, the theoretical values are consistently higher than 

the experim ental. Two phonons being scattered forward per inelastic scattering  

event appears to be very unlikely (figure 5 .20). This model produces values of S 

which are too large to fit the data.

In sam ple 0 1 2 , the generator side experim ent, the detector junctions had a low 

resistance (see table 5 .1). This enables one to analyse more than one input power. 

The comparison of the theoretical and experimental values of S are shown in figures 

5.21 to 5 .28. First the data has been compared to the elastic scattering models that 

fitted the detector side data (figures 5.21 to 5 .24 ). It was found that these models 

also fit this data. The fit is good at both heater input powers. The inelastic 

scattering models (figures 5 .25  to 5.28) also show a fairly good agreem ent with the 

data. Again the assumption that two phonons are scattered forward per scattering 

event (figures 5 .27  and 5.28) gives a poorer fit to the data compared to one phonon 

scattered forward per scattering event. However it should be noted that there is 

very little difference between the transmission ratios for elastic and inelastic  

scattering in the heater side experiment, and thus the generator side experiment is 

not good at distinguishing between elastic and inelastic scattering.

All the experim ental data can be fitted for elastic scattering with an energy  

dependence of around E'® and a mean free path of around 2.2|im  at 1 meV. They can 

also be fitted with an inelastic scattering model with an E '^ dependence and a mean 

free path at Im e V  of about 5 .0  |im . The fit for the elastic scattering appears to be
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The theoretical values were calculated from elastic mean free paths of 
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Figure 5 .22 The transmittance data for sample C 12, p=6.29m W .

The theoretical values were calculated from elastic mean free paths of 

—   I.S E ’^jim -------------- 2 .2 E '^ |x m -------------------- S.OE'^jim
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Figure 5.23 The transmittance data for sample C 12, p=1.99m W .

The theoretical values were calculated from elastic mean free paths of

• — • — 2.2E ^|xm 2.2E ® | i m ----------------- 2 .2E '^ |im
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Figure 5.24 The transmittance data for sample C12, p=1.99m W .

The theoretical values were calculated from elastic mean free paths of

— • — - — 1.5E‘^p.m 2 ,2 E '® |im ------------------3 .0E ’ ®|im
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Figure 5.25 The transmittance data for sample C12, p=6.29m W .The theoretical 

values were calculated from inelastic mean free paths of 
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Figure 5.26 The transmittance data for sample C12, p=1.99m W .The theoretical 

values were calculated from inelastic mean free paths of 

 —  4 .0E ‘^|im ---------------  S.OE’^ j i m -----------------6.0E"^]im



0 8 -

0 6 "

02 -

Vg(mV)

Figure 5 .27  The transmittance data for sample C12, p=6.29m W .The theoretical 

values were calculated from inelastic mean free path of 5 .0E '^ |im

--------------------  one phonon scattered forward per scattering event

 —  two phonons scattered forward per scattering event
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Figure 5.28 The transmittance data for sample C 12, p=1.99m W .The theoretical 

values were calculated from inelastic mean free path of 5 .0E '^ |im

-------------------  one phonon scattered forward per scattering event

----------------- — two phonons scattered forward per scattering event



the best. However, it is impossible to rule out the inelastic scattering, because of 

the magnitude of the experim ental error and the uncertainties introduced by the 

analysis technique. The samples studied were of different thicknesses (Table 5.1) 

and can be fitted with the same scattering models. This suggests that the boundaries 

between the glass and the sapphire crystal and the evaporated films do not have a 

significant effect on the scattering, in accord with our assumptions.

The longitudinal pulse was much smaller than the transverse pulse so there were  

only two measurements with large enough signal to be analysed. Figure 5 .29  shows 

the transmittance for sample C l 6 at the highest heater Input power. This shows 

very similar behaviour to the transverse phonon signal. There is, however, some 

terjgus evidence of higher transmittance at low energy, though this is not conclusive. 

The signals in the highest energy channels were too small to recover.

The heater side sam ple, 0 1 2 , shows very different behaviour (figure 5 .30 ). The  

transm ittance is much higher at low energies and drops off more rapidly at high 

energies. This difference between the longitudinal and transverse phonons is not 

expected to be due to differences in the boundary transmission coefficients. The  

phonons being examined have been transmitted perpendicular to the boundaries and 

all the transm ission coefficients are expected to be close to unity. Also the 

longitudinal and transverse phonons in the glass are expected to couple to 

longitudinal and transverse modes, respectively, in the substrate. The output of the 

heaters is assum ed for phase space reasons to be mainly transverse phonons. 

Therefore the number of longitudinal phonons is small compared to the number of 

transverse in the glass. It would only need a small proportion of transverse  

phonons to scatter inelastically to longitudinal phonons to enhance the low energy 

longitudinal signal significantly. This is the most likely source of the extra  

longitudinal phonons.

5.6 The Silicon Monoxide Data

Measurements were performed on only one sample, C 10. The glass was under one of 

the heaters. The details of this sample are shown in table 5 .2 . The helium 4 

cryostat was used so the temperatures were slightly higher and less stable than for 

the other experiments. This was a particular problem for the higher input powers
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Figure 5.29 The transmittance data for C16, longitudinal phonons. p=5.53m W .
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Figure 5 .30 The transmittance data for C12, longitudinal phonons. p=6.29m W .



used and as a result some of the measurements were unsatisfactory. As before the 

cross shoot signal was not used since the orientation of the crystal around the 

c-axis was not known. This left three sets of data to be analysed.

This glass showed quite different scattering behaviour from the silicon dioxide glass. 

This is obvious from an examination of the voltage signal. Figure 5.31 shows the 

signal at a bias voltage of 0 .70m V and an input power of 1 .54m W  both with and 

without the glass. There is an enhancement of the signal in the presence of the glass 

which only occurs at low bias, high phonon energy. This is clear when the signal 

transmittance is plotted as a function of bias (figure 5.32) . At low bias S is greater 

than one and decreases as the bias increases. This suggests very strong elastic 

scattering, much stronger than that observed in the silicon dioxide sam ples. The  

back scattering into the heaters appears to substantially  increase their 

tem perature causing increased phonon output at high energies and an apparant 

depletion of the low energy signal. If the scattering were inelastic the signal at low 

energies would be expected to increase also. Figure 5 .33  shows the voltage signal at 

a bias of 0 .70m V and an input power of 4.87m W . The enhancem ent of the signal is 

still present but much w eaker than at the lower power. This is reflected in the 

signal transm ittance (figure 5 .34 ) which has sm aller values of S at low bias 

values. On increasing the power to 15.4m W  (figure 5.35) the effect of this elastic 

scattering becomes insignificant and a much weaker process dominates. This weaker 

scattering mechanism is thought to be inelastic however, since this was a generator 

side sam ple, the possibility that it is elastic cannot be ignored. In the previous 

section it was shown that it was difficult to differentiate betw een elastic and 

inelastic scattering of this magnitude on a heater side sam ple. Obviously a 

com parable detector side sample needs to be m easured and analysed using the 

current technique.

It is obvious that more than one mechanism is operating in this glass, this renders 

quantitative analysis difficult. Also only one measurement of the scattering has been 

made and the transmittance could be fitted to more than one pair of values of mean 

free path and energy dependence. For these reasons further discussion of this data, 

along with the measurements of other workers, is left until chapter 6.
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Figure 5.31 Sample C 10 voltage signal as a function of time for an input power of 

1.54m W  and bias voltage of 0.7mV. (a) without and (b) with the 

glassy film.
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Figure 5.32 The transmittance data for C10, p=1.54mW.
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Figure 5.33 Sample C 10 voltage signal as a function of time for an input power of 

4.87m W  and bias voltage of 0.7m V. (a) without and (b) with the 

glassy film
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Figure 5.34 The transmittance data for C10, p=4.87mW.
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Figure 5.35 The transmittance data for C10, p=15.4m W .



5.7  The Arsenic Trisulphide Data

Two samples of this glass were prepared, samples C18 and C20. The details can be 

seen in table 5.3. The data from these samples are of very limited use mainly due to 

the poor quality of the detectors.

C 18 was a detector side experim ent. The detectors had low resistances and, 

consequently, it was found to be impossible to maintain a stable bias voltage below  

0.7m V . There was also a short acting in parallel with the insulating layer which 

caused the voltage signal at the lowest usable biases to be negative. So only the data 

from a bias of 0.8m V upwards was meaningful. Therefore there was no high energy 

data available for this sampie. It is this "missing" energy range that cantains most 

information about the phonon scattering. It is very difficult to distinguish between  

different forms of scattering using only the low energy transmission ratio. From the 

measured spectra at high bias it can be seen that there is a time delay of the phonon 

signal that has passed through the glassy film (figure 5 .3 6 ). The delay is 

0 .14 ±0 .02 p s . Otherwise the pulse shape has not been changed significantly. From 

figure 5 .3 7  it can be seen that the time delay has changed the shape of the 

transmission ratio. Instead of being relatively constant over the transverse phonon 

pulse, as in the silicon dioxide measurem ent, S begins to increase sharply at the 

time of the transverse phonon peak in the signal without the glass and reaches a 

m axim um  after it. In these circum stances it is difficuit to calcu late a true 

transm ission ratio.

C20 was a heater side sample. The detectors had very different RsS'^^SN ^^lues. To 

correct for this difference it is necessary to use the technique of calculating as

described in section 2.6 which was shown in section 4.3 to be very inaccurate. It 

was not considered worthwhiie performing calcuiations to correct for this because  

of the unreliability of this correction and because of the lack of high energy data for 

quantitative analysis. One of the detectors had a short in parallel with it which 

produced a negative signal up to a bias of 0.6m V. Thus, as in sample C 18, only low 

energy data was available for analysis. Moreover the heaters were of very different 

resistances in this sample, presumably because of the difference in the underlying 

surface. This was compensated for by calculating the voltages that produced the same 

input power in each. In section 4.4 it was shown that the phonon output spectrum is
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Sample number C 18 C20

Sample thickness { \m )  2.2 ±0.2^'’ ) 0 .824 ±  0.006

Resistance of detector 1 (mQ) (R^ ) 2.9 ±  0.2 12 ±  1

R 2 /R 1 1.39 ±0 .0 1  1.08 ±0 .0 1

R sfs /R sS  1 200 700

Det. 2 200 3000

Heater resistance {Q) Htr. 1 23.2 430

Htr. 2 22.9 2000

TABLE 5.3 The arsenic trisulphide samples.

(1) The thickness of this sample was not measured. This thickness was calculated 

from the sputtering time and rate.



V

0 1 2 4

Figure 5.36 Sample C 18 voltage signal as a function of time and bias voltage of 

1.2mV. (a) without and (b) with the glassy film.

T - the transverse phonon peak.
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Figure 5 .37 The transmittance as a function of time for the data in figure 5.36. 

I  - the transverse phonon peak.



determ ined by the temperature of the heaters and this in turn is controlled by the 

input power. By ensuring that the input power to each heater was the sam e the 

phonon output spectra should be identical. Again a time delay in the phonon signal 

with the glass was observed (figure 5 .38). It was m easured to be 0.16±0.02p.s.

In both sam ples it was only possible to m easure the electron current through the 

junctions at high bias. Therefore there is only infromation for the low energy part 

of the spectra and very little information on the energy resolved scattering. There is 

also a time delay of the signal that has travelled through the glassy film. This time 

delay is about the same size for both the samples whereas the thicknesses differ by a 

factor of two. This delay also has an effect on the calculation of the transmission 

ratio. Not all the scattered phonons reach the detector simultaneously therefore any 

calculation of the transmission ratio will be an underestim ate. This causes the 

scattering strength to be overestim ated. Therefore the analysis technique in its 

present form is inadequate for the quantitative analysis of this data.

In this chapter we have discussed our measurements and their analysis. As stated in 

section 1.8 there have been other phonon scattering m easurem ents made in this 

tem perature range on silicon dioxide and silicon monoxide. In chapter 6 the results 

of the other measurements are compared to our results.
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Figure 5 .38 Sample C20 voltage signal as a function of time and bias voltage of 

1.2mV. (a) without and (b) with the glassy film.

T - the transverse phonon peak.
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6.1 Introduction

There have been very few measurements made on glasses of the energy resolved 

phonon scattering in the plateau region of the thermal conductivity. The results of 

these experim ents are not in total agreem ent. In this chapter we com pare our 

m easurem ents to others and discuss the possible reasons for the differences  

observed in the scattering.

6 .2  Silicon dioxide

It was shown in section 5.5 that the silicon dioxide data was best fitted by an elastic 

scattering mechanism with a phonon mean free path of 2.2|im  at 1 m eV and varying 

as E’ ®. However the possibility of inelastic scattering cannot be ignored, it was also 

shown that the data can be fitted with an inelastic scattering model. The only other 

phonon scattering measurements on silicon dioxide are those made by Deitsche and 

Kinder (1979). They fit their data using an inelastic model with a mean free path of

0 .71  p.m at Im e V  and proportional to E"^. As can be seen from figure 6.1 this 

scattering is too strong to fit our data. The scattering observed in our measurements 

is different from the scattering observed by Dietsche and Kinder (1979). This could 

be caused by differences between the two experiments. The glasses were grown by 

different methods. In our experiment the film was deposited by sputtering whereas  

Dietsche and Kinder (1979) evaporated their silicon dioxide. The difference in 

scattering strength betw een the two m easurem ents suggests that there is a 

difference at a microscopic level between films grown by sputtering and those 

grown by evaporation. Von Haum eder et al. (1980) have also noted that sputtered 

silicon dioxide shows slightly different acoustic properties from the bulk material. 

This difference in measurements suggests that care should be taken when comparing 

measurements made on silicon dioxide prepared by different methods.

In Dietsche and Kinder's experiment the glass was under the phonon generator which 

was a Sn-Sn tunnel junction and the samples were surrounded by liquid helium. The 

liquid helium provides an additional escape path for the phonons which are 

backscattered from the glass into the generators thus reducing the overall signal. It 

has also been shown that phonons reflected at an interface with liquid helium are 

detuned from their original energy (D ietsche and Kinder (19 76 )). This would
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Figure 6.1 The current transmission ratio for sample C 16.

input pulse duration = 250ns, input pulse power = S.SmW.

The curve is for the current transmission ratio calculated for 

inelastic scattering with a phonon mean free path of 0.71 p.m at 1 meV 

and varying as E"^ (as obtained by Dietsche and Kinder (1979)).



produce lower energy phonons similar to inelastic scattering in the glass. Dietsche 

and Kinder (1979) have ignored both these effects in the analysis of their data. In 

their third m easurem ent there was no covering of liquid helium , inelastic  

scattering was still observed. They noted that the recombination phonon output from 

the phonon generator was broader than expected. This broadening could be caused by 

inelastic scattering in the junction itself, the possibility of such events was 

discussed by Long and Adkins (1973). In this case elastic scattering in the glass 

followed by inelastic scattering in the junction is a possible explanation for their 

data.

Neither our meaasurem ents nor those of Dietsche and Kinder have determined with 

absolute certainty whether the scattering mechanism is elastic or inelastic. In order 

to do this further m easurem ents would need to be made. These are discussed in 

section 6 .5.

6 .3  Silicon Monoxide

In section 5 .6  it was shown that there are at least two different scattering  

m echanism s present in silicon monoxide. A stronger, probably elastic, one which 

dominates at low powers. This mechanism saturates and the scattering is dominated 

by a much weaker mechanism which is thought to be inelastic.

Long et al. (1980) measured the energy resolved phonon scattering in this material 

using the sam e experimental set-up with detector side samples. They fitted their 

data with elastic scattering with a mean free path of 0.5p.m at 0 .9m eV  and varying 

as E’ ^. The magnitude and energy dependence is similar to that found in evaporated 

silicon dioxide by Dietsche and Kinder (1979). In figures 6.2 to 6.4 both these 

models are compared to our data. Neither of them can be used to describe either of 

the scattering mechanisms present in this sample.

Figures 6.2 and 6.3 show the data collected at the two lower powers, 1 .5m W  and 

4 .9m W  respectively. Both these graphs show that at high energies the transmission 

ratio is greater than one. This is unlikely to be a detector effect since they were 

very good detectors, sample C IO  which was discussed in chapter 4, the S-N leakage 

current was very small. Even if this was not the case then the maximum value of
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transm ission ratio that this leakage current would produce is unity since the  

detectors were identical to within one percent. Using the theoretical model developed  

for the generator side experiments it was not found possible to find a scattering 

model which would fit this low power data. In section 5 .2  it was assumed that for 

generator side samples the backscattered phonons were reabsorbed by the heater. 

This raised the heater tem perature and increased the output of the low energy 

phonons by the heater. It is thought that with this strong scattering mechanism that 

this assumption is no longer valid. To establish the form of this scattering a detector 

side sample should be investigated.

The highest input power used in this measurement was 15.4m W . This data is shown 

in figure 6 .4 . As can be seen from the figure inelastic scattering with a mean free 

path of 1.0p,m at Im e V  varying as E‘ ^ fits the data. How ever this result is 

considered to be unreliable since the stronger scattering mechanism found at lower 

powers probably has a significant contribution to the energy resolved transmission 

ratio at this power. In order to estabish the correct form of this w eaker scattering 

it is necessary to go to higher input pulse powers.

It should be noted that only one sam ple of this glass was m easured. These  

m easurem ents were performed in the helium 4 cryostat which had a less stable 

background tem perature than the helium 3 cryostat therefore the systematic errors 

in the m easurem ents  are larger than for the silicon dioxide data . More  

m easurem ents should be performed on this glass in a helium 3 cryostat in order to 

verify these conclusions.

6 .4  Arsenic Trisulphide

Our attem pts to m easure the energy resolved phonon scattering in arsenic  

trisulphide were unsuccessful. The junctions manufactured for these two samples 

w ere am ong the poorest quality of those m ade during the duration of this 

experiment, it was noticed that for the detector side samples the two junctions were 

quite different. Also the heaters in the generator side sample had very different 

resistances. In all other samples the heaters were nearly identical, this was also 

true for the detectors. This suggests that the arsenic trisulphide causes  

contam ination of the layers evaporated on top of it. It would be necessary to
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manufacture more samples in order to verify this. If this is found to be the case then 

it will not be possible to investigate the phonon scattering in arsenic trisulphide 

using this particular experimental technique.

These prelim inary m easurem ents have shown however that at least some of the 

scattering has a time delay associated with it which is independent of the thickness 

of the glass. This indicates that there is a scattering m echanism in this material 

which has a significant dwell time. The existence of such slow scattering states is a 

prediction of the atomic tunnelling model. Their observation suggests that tunnelling 

states significantly contribute to the phonon scattering arsenic trisulphide.

6 .5  Further work

It has been shown in chapter 5 that with wideband phonon sources elastic and 

inealstic scattering mechanisms cannot be differentiated in a totally satisfactory  

m anner. The detector side experiments provided the most information about the 

scattering m echanism  but there was still som e doubt. In order to determ ine  

w h eth er or not there  is ine lastic  scattering  p resent in the m ateria l a 

monochromatic phonon source shouid be used in a detector side sampie held in a 

vacuum  (see section 6.2). Tunnel junctions can be used as a near monochromatic 

source of phonons. By biasing a tunnel junction at the gap edge and applying a small 

voltage pulse phonons of energy about twice the gap energy can be generated. By 

observing the energy distribution of the phonons transmitted through the glass 

elastic and inelastic scattering can easily be distinguished. Som e experiments using 

Sn-Sn tunnel junction generators were attempted (section 4.5). However it did not 

prove possible to m anufacture them with low enough resistance to obtain a 

detectable signal with our tim e-resolved experim ent for generator voltages less

than 4A . Therefore they could not be used with signal voltages in the region where 

the phonon output of the generators can be predicted.

It should be possible to investigate samples at lower phonon energies, corresponding 

to tem peratures below the plateau in the thermal conductivity-temperature curve, 

by using superconducting-norm al junctions which, in theory, have no lower limit 

to the detectable phonon energy. This would extend the range of energies over which
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information about the phonon scattering is known. It would reveal whether or not 

there is a change in the scattering mechanism between the region and the plateau 

in the thermal conductivity curve.

It was suggested by Phillips (1972) that an open structure is necessary for the 

existence of tunnelling systems. Therefore tunnelling states should not exist in four 

fold coordinated materials, such as amorphous silicon and germanium, since their 

networks are thought to be too tight for large atomic motions. By measuring the 

phonon scattering in these materials and comparing them to measurements on other 

m aterials som e insight into this suggestion may be gained. M easurem ents on 

amorphous germanium have been performed by Long et al. (1980). However, these 

m easurem ents are probably subject to errors caused by S-N leakage currents in the 

detectors. Further phonon scattering measurements should be made on these four 

fold coordinated materials.

The arsenic trisuiphide measurement had a scattered signal which was delayed in 

time. This data was not analysed quantitatively since there was only low energy data 

available. How ever, if this material is to be investigated thoroughly an analysis 

technique which deals with a delayed signal will need to be developed.
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