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Sumary

This thesis describes the results of the author's
contribution to a collaborative research programme between the
Depar tment of Respiratory Medicine, Glasgow Royal Infirmary, and
the Department of Electronics and Electrical Engineering,
University of Glasgow. After the first six months of research,
it was decided that the project would be limited to demonstrating
the feasibility of developing a non-invasive examination system
for patients exposed to asbestos dusts. The development of this
system led to a growing interest in nearest neighbour (NN)
classification algorithms ard to the investigation of a number of

interesting problems in this area.

In particular, it is argued that when the size of the
prototype set is finite, a weighted k-NN rule may, in some cases,
has a smaller probability of error than an unweighted k-NN rule.
Analytical solutions to a simple example and experimental results

are presented to support this argument.

A new NN classification scheme is also described in
this thesis. Again a number of modifications for the case of a
finite prototype set are suggested, and experimental results are

given.

The remainder of the work in this thesis concerns the
development of the proposed non-invasive examination system which

uses lung sound as its input. Due to the complexity of the
v



proposed system amd the initial small data set, only part of the
system has been implemented. However, preliminary experimental
results on three groups of patients, namely (a) patients with
asbestosis, (b) patients who have exposed to asbestos dust, and
(c) healthy subjects, have shown that it is possible to
discriminate these three groups of patients. More extensive
studies are required before the system can be used in clinical

conditions. Suggestions for these continuing studies are made.
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Chapter 1: Introduction

1.1 A brief historical account of the lung sound research

Ever since Laennec (1819) invented his stethoscope,
lung sourd has been used as a diagnostic tool. Unfortunately, in
those earlier days, lung sounds were identified by a
proliferation of different terminologies which were subjective
and depended on the interpretations of individual physicians.
Therefore, as science and technology advanced, the stethoscope
was slowly replaced in importance by other non-invasive
investigative techniques, such as radiography and more recently
nuclear magnetic resonance imaging. Perhaps it was the work of
Forgacs (1978) in the 1960s and early 1970s, who stressed the
merit of a scientific approach, that stimulated a growing

interest in lurng sourd analysis in the mid-seventies.

It was at about this time that the lung sound research
programme also started in Glasgow University. It has been going
on for nearly ten years and is a collaboration between the
Department of Respiratory Medicine, Glasgow Royal Infirmary, and
the Department of Electronics and Electrical Engineering at the
University. McGhee (1978) designed a suitable transducer for
subsequent lung sound research. Urquhart et al (1981) and Banham
et al (1984) investigated the significance of low frequency lung
sound signals (0 to 50Hz). Four groups of patients were used in
their studies: (a) patients with asbestosis, (b) patients with

interstitial pulmonary oedema (IPO), (c) patients with

1



cryptogenic fibrosing alveolitis (CFA), and (d) healthy non-
smoking (or normal) subjects. The application of Urquhart's
(1980, 1982) new graph-theoretical clustering algorithms and the
Karhunen-Loeve transformation (Watanabe, 1965) has yielded three
slightly overlapping clusters, namely (a) patients with IPC, (b)
patients with fibrosis (asbestosis and CFA), and (c) normal
subjects. From this result, the authors concluded that lung

sound signals analysis may contribute to non-invasive diagnosis.

This thesis reports the recent research on nearest
neighbour classification (Luk and Macleod, 1986; Macleod, et al,
1987) and on lung sound signal analysis (Anderson et al, 1986).
The original aim of the project was to analyse lung sound
automatically by using pattern recognition and signal processing
techniques. However, after the first six months of research, a
decision was taken to limit the project to demonstrating the
feasibility of developing a non-invasive system that can
routinely be used to examine patients exposed to asbestos dusts,
using lung sound as its input. Further, it was hoped that the
proposed system could be able to distinguish between patients
with asbestosis and patients without. The development of this
system led to a growing interest in nearest neighbour (NN)
classification algorithms and to the investigation of a number of

interesting problems in this area.



1.2 A general introduction to pattern recognition and signal

Erocess;_.lgg'

In a sense, pattern recognition is being performed
daily by every individual. Every individual uses his/her five
senses to detect, interpret and learn about the surroundings.
Suppose for example that a person wants to find a bar of
chocolate that he/she knows is inside a room. That person will
use his/her eyes as a pair of visual input transducers to scan
that room. 1If, say, there is one bar of chocolate lying on a
table, it is up to the brain to segment that part of visual
information and then to identify that the object lying on the
table is a bar of chocolate. This example also demonstrates the
important of learning. That person must have been taught in the
past what a bar of chocolate looked like ard how it differed from
a table. He/she must also have the a priori knowledge that there

may be a bar of chocolate in that room.

Although it is not possible to imitate all human
recognition abilities completely, it is possible, nevertheless,
to perform some of these abilities artificially. Two approaches
are generally available in an artificial system: one, the
statistical (or decision-theoretical) approach, is based on
mathematical models (Devijver and Kittler, 1982; Duda and Hart,
1973; Fukunaga, 1972; Patrick, 1972); and the other, the
syntactic (or structural) approach ,is based on linguistic models
(Fu, 1974; Gonzalez and Thomason, 1978; Pavlidis, 1977). As in

the above example of human recognition, the operation of an
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artificial system can usually be divided into a learning and a
recognition phase. At the learning phase, the system will
attempt to generate and select a set of useful properties or
attributes from the information presented by a transducer. 1In
syntactic methods the attributes are the "primitives" which
together constitute the complete pattern. 1In statistical pattern
recognition, on the other hand, the properties are "featuresg”
which together form a different type of description of the
pattern and are treated as the components of a feature vector.
Learnirg algorithms, which can be supervised or unsupervised in
nature (Anderberg, 1973), can then be applied to study the
underlying relationships for these patterns, such as the class
membership of each pattern or the grammar that consitutes the
patterns. During the recognition phase, the selected features or
primitives from an input pattern will be identified as beionging
to one of the predetermined classes or families of grammars
respectively through the use of suitable classifiers (such as

those using the nearest neighbour type of algorithm).

Pattern recognition technigues have been applied to
numerous problems. These include character recognition, speech
processing, remote sensing, fault detection, medical signal
analysis and industrial inspection (Macleod, 1985). Some of
these applications have been reviewed in a book edited by Fu

(1982) .

Generally, some sort of signal preprocessing or

corditioning is required on the input signals. For example, it

4



may be necessary to remove high freguency noise from the lung
sourd signals by filtering. Other less trivial operations, such
as spectrum estimation, may also be reguired before the input
signal becomes usable by a pattern recognition system. On the
whole, the amount of signal preprocessing needed is dependent on

the type of application.

1.3 Aims of research

One of the aims of this project is to demonstrate the
feasibility of developing a non-invasive system that can
routinely be used to examine patients who have been exposed to
asbestos dusts, using lung sound as its input. In particular,
the system should be capable of discriminating patients with
asbestosis from those without. A modular approach was adopted at
the beginning of this project. The major modules in the proposed
system are shown in figure 1l.1. The data acguisition and
preprocessing module is essentially an interface between the
patient and the proposed system. 1In this case, the function of
this module is to acquire lung sound from a human chest wall and
then perform a number of computational operations, such as
digitization, so that a set of features can be generated for the
other modules to analyse. These features are regarded as being
elements of a multi-dimensional feature vector. The purpose of
the display module is to project these higher dimensional lung
sound data onto a lower dimensional (sub)space and, for example,
to plot the data as a point set in a plane. Physicians or para-

medical personnel could then interpret relationships in a set of
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lung sound data, and could decide whether these recordings were
consistent with asbestosis or nmot. This module was implemented
by using mapping algorithms, to the extent that off-line displays

can be produced on the GEC 4180 mini-computer.

The next module in the system is a classification
module which at this stage of development is implemented by using
the nearest neighbour type of algorithm. The knowledge of the
designer is limited to the amount of information available during
the design stage, and it is possible that this information is
insufficient to cope with unseen data or that some of it is
inaccurate. Therefore, if this module produces excessive error,
the knowledge within the system may be incomplete and hence it
may be necessary to "re-learn" some missing information by-
invoking the unsupervised learning ‘module. Furthermore, the
classifier can also be used to provide some very simple
information about the condition of a subject for the user, and
thus may assist physicians or para-medical personnel in reaching
a decision. The last module, the unsupervised learning module,
can be implemented by using clustering algorithms such as those
of Urguhart (1982). This module is used mainly for data
exploration. (Due to the small data set available, no

umnsupervised learning module was implemented in this project.)

The second aim is to investigate the finite sample
behaviour of nearest neighbour classification rules. 1In
particular, two nearest neighbour rules will be compared (Maclead

et al, 1987), and another new nearest neighbour classification

7



scheme will be investigated (Luk and Macleod, 1986).

1.4 Organisation of the thesis

The materials covered in this thesis are relevant to
research in both biomedical engineering and nearest neighbour
classification. A reader who is interested in the lung sound
research should read chapters 1 to 4 amd part of chapter 5, then
skip chapter 6, and continue to read the rest of the thesis. On
the other hand, if the reader is interested only in nearest

neighbour classification, only chapters 5 and 6 need be read.

Chapter 2 is primarily intended to provide the
background on both the material asbestos and the disease
asbestosis. Some background information is given on the basic
anatomy of the respiratory tract and lung sound. Similarly
chapters 3 and 4 are intended to provide brief background
knowledge on the signal preprocessing and mapping algorithms used

in the proposed system.

Chapter 5 presents a "more than usual textbook" review
on nearest neighbour (NN) classification. In particular, a
number of NN algorithms is reviewed. A brief summary of the

properties of NN classification is also presented.

Chapter 6 reports some new results in nearest neighbour
classification. The performances of two NN rules on a prototype

set of finite size are compared. Analytical solutions to a

8



simple example and experimental results are also presented to
support the argument., Finally, a new NN classification scheme is
described. Again a number of modifications for the case of a
finite prototype set are suggested, and experimental results are

given.

Chapter 7 describes the work on the proposed non-
invasive system. Each individual module is described in more
detail. Difficulties encountered during the research and

experimental results are also presented.

Finally, chapter 8 gives some general conclusions on
the whole research project ard also suggests some possible future

research.
1.5 Remarks

In this project, lung sounds from over 50 subjects have
been recorded over a period of eighteen months, with the help of
Dr. Anderson at Glasgow Royal Infirmary. For each recording,
several time consuming data transfer operations are required
before the lung sound signal can be used (for details see section
7.3). Furthermore, the resulting computer files are very large
and cannot all be simultaneously held on disc: hence to do
certain further experiments on the recorded data, some of these
transfer operations have to be repeated. The overall process is
very time-consuming, and any failure on any part of the eguipment

(e.g. on one of the three computers involved) leads to still

9



further delay. Consequently, the signals from only 15 subjects
have been used and analysed by the proposed system. The results
and conclusions presented in chapter 7 should therefore be

considered as preliminary.

Work to develop improved, faster data transfer

facilities is nmow in progress (Maclead amd Aitken, 1987).
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Chapter 2: Asbestos and Asbestosis

Summary

This chapter introduces the necessary biomedical
backgrourd for this thesis. The basic anatomy of the respiratory
tract is reviewed. The material asbestos is introduced and its
biomedical effects are outlined. The theory of the pathology of

asbestosis is described and diagnostic methods are reviewed.

2.1 Introduction

Ever since human beings developed the skill of
constructing and manufacturing tools from materials in their
environment, they have encountered a large number of materials
that are useful and, perhaps, essential for survival.
Unfortunately some of these materials may cause disease and one

such group of disorders, kmown as occupational lung diseases, is

caused by the inhalation of dusts or fumes or noxious substances
(Crofton and Douglas, 1975). This group of disorders may range
from minor ailments, such as irritation of the air passages by
ammonia, to chronic disabling diseases like asbestosis,
baritosis, siderosis and silicosis. Some of these diseases are
obstructive (i.e. a partial blockage of some of the airways) in
nature while others including asbestosis are restrictive (i.e.

lung volume is reduced but there is no airway obstruction).

One of these potentially hazardous dusts is formed by

14



asbestos fibres. As Paul Kotin put it in his foreward for

Selikoff and Lee's book (1978):

"Asbestos, a naturally occuring fibrous material, is a
startling example of a material at once uniquely useful,
because of its physical and chemical properties, and at the
same time potentially hazardous to man. Evidence linking
inhalation of asbestos fiber to the development of a group

of diseases is generating ever growing concern."

The hazardous nature of asbestos has been suspected for many
years. The annual report for 1898 in England (Woman Inspectors

of Factories, 1899) gave the following account:

"The evil effects of asbestos dust have also attracted my
attention, a microscopic examination of this material dust
which was made by HM Medical Inspector clearly revealed the
sharp, glass-like, jagged nature of the particles, and where
they are allowed to rise amd to remain suspended in the air
of a room, in any quantity, the effects have been found to

be injurious, as might have been expected."

Unfortunately, as with many other occupational lung disorders, it
took more than 30 years before the hazard of asbestos was finally
recognized and precautionary measures were introduced (Cooke,
1924; Cooke et al, 1927; Merewether and Price, 1930; Wood and
Gloyne, 1930). From there onward, numerous research papers and

extensive literature have been published covering the adverse

15




effects of asbestos and related products. It has become
increasingly difficult to write a full review or survey on either
asbestos or its related diseases. Therefore, the aim of this
chapter is to provide a very general background on asbestos and
on the disease asbestosis and its link with lung sound research.
For those readers who are unfamiliar with the respiratory system,
a brief description is given in the next section. It is then
fellowed, in section 2.3, by a summary on asbestos and its
related diseases. Section 2.4 will introduce some common
terminology used in lung sourd analysis ard discuss the various
possible lung sound generating mechanisms. Finally, in section

2.5, the disease asbestosis will be discussed.

2.2 Basic anatomy of the respiratory system

The main function of the respiratory system is to
provide a suitable medium for the exchange of oxgyen and carbon
dioxide between the circulatory system and the environment.
Roughly, the respiratory tract can be divided into (a) the upper
respiratory tract which comprises the nose, the paranasal
sinuses, the eustachian tube, the pharynx and the larynx, and (b)
the lower respiratory tract which includes all the conducting
airways and the respiratory air units or acini (Crofton and
Douglas, 1975; Parkes, 1982). The upper respiratory tract,
beside its many other physiological functions, is responsible for
filtering, warming amd humidifying the inspired air, arﬂ at the
same time together with the lower respiratory tract for

corducting air to and from the acini.

16




The conducting airways start with the trachea which
extends from the larynx and bifurcates into the left and right
main bronchi. The left main bronchus gives rise to 2 lobar
bronchi and the right gives rise to 3; which also are the
numbers of lobes in the left and right lungs. Each lobar
bronchus is further divided into many generations of segmental
bronchi and each segmental bronchus gives rise to a few
generations of bronchioles. The bronchi are characterized by the
presence of variable amounts of cartilage inside their muscular
wall, which is made up of blood vessels, connective tissues,
epithelium, lymphatic vessels, muscle tissues and other
specialized cells; whereas there 1s no cartilage in the
bronchioles. The last generation of bronchioles without any
alveoli attaching to its wall is known as the terminal
bronchioles. Each terminal bronchiole gives rise to a variable
number of acini which begins with one to three generations of
respiratory bronchioles (that is, bronchioles with alveoli
attached to their walls), which are further subdivided into a few
generations of alveolar ducts. Each alveolar duct is terminated
with two or more air sacs, each containing a number of alveoli
which are in close contact with the alveolar capillaries so as to
facilitate gaseous exchange. The average number of subdivisons
from the trachea to the alveoli is about 23 generations in human
beings. The acini, which constitute the lung tissues and
gaseous exchange tissues of the lung, together with the terminal
bronchioles are alternatively referred as the lung parenchyma

(Crofton and Douglas, 1975; Parkes, 1982).
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An alveolus has an average diameter of about 0.25 mm,
and there are about 200 to 600 million alveoli in human beings,

making a total of roughly 40 to 120 m2

of respiratory sur face.
The alveolar wall is made up of a number of specialized cells
responsible for (a) gaseous exchange, (b) disposal of inhaled
foreign material, and (c) immunological activity within the lung.
Figure 2.1 is a diagrammatic view of the inter face between an
alveolus and an alveolar capillary. The surface of the alveolus
is covered mainly by "type I" cells i.e. cells which are
extremely flat and thin to facilitate function (a); the rest of
the surface is occupied by one or more "type II" cells i.e. cells
which are capable of replacing an injured type I cell (a type I
cell is not capable of regenerating itself when damaged by, say,
an asbestos fibre - Spencer, 1985). Both these types of cells
are attached to an alveolar basement membrane. ‘Inside the
alveolus (i.e. in the alveolar lumen) are white blood cells

(leucocytes) of a particular kind called alveolar macrophages,

which play an important part in functions (b) and (c).

The capillary surface is made up of a layer of flat ard
thin capillary endothelial cells which are attached to an
endothelial basement membrane. At certain places between the
capillary and the alveolus, the basement membranes are in close
contact to provide a minimum barrier for gaseous diffusion
between the circulating capillary red blood cells (or
erythrocytes) and the alveolar gas content (Parkes, 1982).
Elsewhere between the two basement membranes is the interstitial

alveolar space (or septal space), which contains different types
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of interstitial cells (such as fibroblasts and another type of
leucocytes called lymphocytes), various types of fibres (for
example collagen fibres) and other substances (like fibronectin

and reticulin).

The whole lower repiratory tract, except part of the
upper trachea, is enclosed within the thoracic cavity which is
the space formed by the chest wall (composed of the ribs and
other tissues); whereas the lung parenchyma is completely
enclosed inside two pleural cavities with the left lung lying
within the left pleural cavity and the right lung inside the
right cavity. The wall of each pleural cavity is composed of two
layers of connective tissue, known as the visceral pleura and the
parietal pleura, which are joined together (or continuous) at
the root of the lung parenchyma. The space between the two
pleurae is filled with a thin film of lubricative fluid to
provide a frictionless surface between the lung parenchyma and

the thoracic cavity (Basmajian, 1982; Last, 1984).

2.3 Asbestos

2.3.1 Introduction

The "unquenchable” or "inextinguishable" material -
asbestos - has been used, whether by accident or by choice, for
many years. Asbestos was incorporated in Finnish pottery as
early as 2500 B.C. (Noro, 1968). Sporadic use and mining of

asbestos has also been reported in Africa, Asia and Europe long
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before the first commercial mining in Quebec (Canada) in 1879
(Selikoff and Lee, 1978). It is not surprising that, in those
early superstitious days, asbestos was sometimes misrecognised as
a kind of magical material from a mythical creature called the

salamander; it simply cannot be destroyed by household fire.

Asbestos has many desirable properties, such as its
mechanical strength and its ability to resist fire, acid and
alkali, making it a valuable industrial material for many
applications. Therefore, ever since the first mining in Canada,
the world production of asbestos has been steadily rising despite
the fact that the material may be harmful if not under sufficient
and effective hygiene control. This is because there is still no
suitable substitute for some of its applications. Figure 2.2
shows the world production of asbestos from the year 1960 to
1985. It can be seen that throughout this time the world
production of asbestos has increased although there is a tendency
to level off in the past few years. In the United Kingdom, on
the other hand, there has been a steady drop in imports of raw
asbestos ore in the past ten years (figure 2.3). This does not
necessarily reflect a decline in the use of asbestos. Rather, as
Crofton and Douglas (1975) put it, this may be due to other
industrial usages "which are not directly subject to statutory

regulations”.

2.3.2 Types and Applications

Asbestos is a common name for six different types of
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Figure 2.2 World production of asbestos (all types) between 1960
and 1985. (Data are kindly supplied by the United
States Department of the Interior, Bureau of Mines,

washington D.C.)
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naturally occuring mineral fibres of silicates. One of these
materials (chrysotile) is referred to as a serpentine asbestos,
and the other five (actinolite, amosite, anthophyllite,
crocidolite and tremolite) as amphibole asbestos. The
distinction between serpentine and amphibole asbestos deperds on
the light microscopic appearance which results from the crystal

structure (Michaels ard Chissick, 1979).

Chrysotile [3MgO.28102.2H20], also known as white
asbestos because its fibres are usually yellowish or greenish
white in colour, is mined mainly in Canada and Russia, and
accounts for over 90% of the world production. Its fibre tends
to be long, flexible, soft and very fine. It has good fire and
alkali resistance but is susceptible to attack by mineral acids.
Its applications include many asbestos-cement products for
building, insulation ard fire proofirng, asbestos-textile products
such as brake 1linings, clutch plates and fire protective
clothing, amd other asbestos-paper products such as filters for
many types of fluids (Michaels and Chissick, 1979; Parkes, 1982;

Selikoff ard Lee, 1978).

Crocidolite [NaFe(SiO3)2.FeSiO3.H20] or blue asbestos
is typically bluish in colour (Michaels and Chissick, 1979). It
is mined mainly in South Africa. Its fibre tends to be fine and
straight. Its good acid resistant property renders it extremely
useful in manufacturing asbestos-cement pressure pipes for
chemical plant and other asbestos-textile products where acid

resistancy is required. Crocidolite has been most commonly
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implicated in the development of asbestos related disease,
particularly mesothelioma. For this reason the importation of
raw crocidolite has therefore been banned in the United Kingdom
since 1970. Nevertheless, substantial quantities of this
material still remain in some old installations and may release

fibres into the surrounding air if they are damaged.

Amosite [(FeMg)SiO3] is usually pale brown in colour
and is often referred to as brown asbestos. It is mined only in
South Africa. 1Its fibre terds to be brittle, thick, straight and
very long. Its main application is in fire resistant products.
Anthophyllite [(MgFe)7.Si8022.(OH)2] fibre tends to be white in
colour. It is mined mainly in Italy. Like amosite,
anthophyllite fibre ternds to be brittle, straight and long but is
much thicker than amosite, chrysotile or crocidolite. It has
good fire and chemical resistance. Unfortunately its usage is
limited, and in the United Kingdom it is mainly used in friction
materials and in fillers amd reinforcement products (Health and

Safety Executive, 1979).

The other two types of amphibole asbestos, namely
actinolite [CaO.3(MgFe)O.4SiOZJ and tremolite
[CazMgSSieozz.(OH)z], are rarely used. Both fibres usually occur
as a contaminant in other asbestos fibres and in talc. A small

amount of tremolite is mined in Italy and in Japan.
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233 Fate and medical effects of the inhaled asbestos fibres

Most of the large airborne particles will be deposited
in the upper respiratory tract through interception by the nasal
hairs. Smaller airborne particles can be deposited in the lower
repiratory tract by three mechanisms:

(a) sedimentation, where a particle is deposited under the
influence of gravity,

(b) inertial impaction, where a particle is deposited near the
junction of a bifurcation in the airways because of its
high momentum, and

(c) diffusion, where a particle is deposited under the
influence of Brownian motion.

Both mechanisms (a) and (b) depend on the diameter and the
density of the particles (Morgan and Seaton, 1984). Other
factors that will generally affect the deposition of asbestos
fibres include (i) the possible co-existence of other diseases,
such as chronic bronchitis and (ii) minor variations of lung
physiology due to different ethnical origin, sex, age, height and
even weight. Particles deposited in the conducting airways will
be removed by mucociliary clearance (Morgan and Seaton, 1984}, a
process known as the "ciliary escalator" (Parkes, 1982), in which
a layer of mucus (secreted by "goblet cells", in the conducting
airways) is propelled slowly towards the larynx by the ciliated

epithelial cells also in the cormductirng airways.

The likelihood that an airborne fibre will deposit in

the corducting airways ard subsequent be removed by the "ciliary
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escalator" depends entirely on its diameter. It has been shown
(Timbell, 1965) that fibres with a diameter less than 3Jum are
unlikely to deposit in the conducting airways either by
sedimentation or by inertial impaction, amd hence have a higher
probability of depositing in an acinus, where clearance depends
on cellular mechanisms (see below) and not on the "ciliary

escalator" which terminates at the bronchiolar level.

Asbestos fibres which penetrate into an acinus and are
deposited there can be removed by
(a) a nonabsorptive process which involves phagocytosis of the
fibres by the alveolar macrophages and later the
migration of these leucocytes into the conducting airways
so that subsequently they can be removed by the "ciliary
escalator”, and
(b) an absorptive process which involves selective migration
of the asbestos fibres through the alveolar wall either
(i) via the capillary wall into the bloodstream from
which they are removed by other leucocytes in the
circulatory system, or
(ii) the alveolar interstitial space, from which they
are later removed by the lymphocytes via the
lymphatic vessels.
The amount of dust that each of these two clearance processes can
remove has a certain threshold. Above this threshold, the excess
fibres simply lie freely in the alveoli. Also, both the
absorptive and the nonabsorptive process are restricted by the

length and diameter of the fibres deposited. In section 2.5.1,
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it will be made clear that asbestosis is a result of excessive
immunological response in the acinus. (Other parts of the
respiratory tract can also be damaged by these inhaled asbestos
fibres. Here also, natural immunological responses will be

triggered to repair the damaged tissue.)

Two recent government reports (Health and Safety
Executive, 1979; Doll and Peto, 1985) have established that
prolonged exposure to a high "dose" of asbestos fibres may cause
(a) a number of benign conditions of the pleura such as pleural
effusions, diffuse pleural thickening and/or the formation of
pleural plaques; and/or (b) a number of possibly fatal diseases
such as asbestosis, lung cancer, mesothelioma and/or laryngeal
cancer. Other types of cancer (like gastro-intestinal cancer,
ovarian cancer and renal cancer) had been reported (Selikoff and
Lee, 1978). However, Doll and Peto (1985) were uncer tain about
the evidence reported so far and claimed that some of the
published medical cases may be due to misdiagnosis. The reports
also pointed out that smoking will aggravate fibrogenic
disorders, like asbestosis, but not necessarily carcinogenic
diseases. It has also established that amphibole asbestos is
more carcinogenic and fibrogenic than serpentine asbestos.
Crocidolite fibre has been single out as both carcinogenic and
fibrogenic even under a relatively short and low dose exposure;
this is partly due to its physical appearance: long and straight
with a small diameter. However the dose-response relationship,
which is a measure of the likelihood of occurence of a certain

disease with respect to the amount and/or duration of exposure to

28




fibres, is still not completely clarified for different types of
asbestos fibres. Doll and Peto (1985) also argued that the
current hygiene standard of 0.5 fibre per ml should be reduced to
0.25 fibre per ml to lower the expected risk of any ailments
caused by the exposure to asbestos fibres, especially chrysotile

fibres which account for over 80% of the imported asbestos.

2.3.4 Remarks: Difficulties in assessing quantitative effects of

asbestos and Dose-response relationships

The difficulties, and sometimes inabilities, in
assessing quantitatively the biomedical effects due to exposure
to asbestos fibres, as well as the dose-response relationships of
asbestos, stem from the following reasons:

(a) there exist more than one type of asbestos fibre, each
with different physical and chemical properties, and
hence different biomedical responses are toO be expected;

(b) the proportion of asbestos fibres having a specific
configuration will vary with the environment (for
example, in mines or in mills) in which the material is
being handled;

(c) the amount of asbestos contained varies with the type of
erd praduct and the asbestos may be contaminated by other
types of asbestos fibre which are more fibrogenic and
carcinogenic (for example commerical chrysotile is
usually contaminated by tremolite);

(d) the different methods and equipment that have been used by

different ocountries for estimating the amount of fibres
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present in a given environment render some published
results difficult to interpret; and
(e) asbestos-related disorders may be complicated by other

more fatal disorders, such as circulatory or renal

disorders.

24 Lung Sourd

Ever since Laennec invented the stethoscope in 1816 for
mediate auscultation (Kligfield, 1981), the different types of
lung sound heard from the chest have been used as a diagnostic
tool for many respiratory amd circulatory disorders. One of the
main drawbacks of this listening approach is that the diagnosis
is rather subjective and requires a lot of experience to
differentiate the different types of sound. In occupational lung
disorders, its importance is now generally replaced by radiology
and pulmonary function tests. Nevertheless, change in lung sound
is still an important clinical sign for some respiratory
disorders (Murphy and Holford, 1980). Indeed, with the help of
modern electronics ard computing facilities, lung sound may once
again be useful in medical research and in diagnosis (Anderson et
al, 1986; Murphy et al, 1977; Urquhart, et al, 1981). More
important, since this research project concentrates on using lung
sourd as the input signal for the proposed system for examinating
patients exposed to asbestos dusts, a brief review of the
different types of sound that can be heard over the chest is

necessary.
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Lung sound heard over the chest is usually divided into
breath sound which is always present during breathing and
adventitious (or added) sounds which are not normally present.
Breath sound is generally classified into normal or vesicular
breath sound and abnormal bronchial breath sounds (Forgacs et al,
1971). The former sound is louder in inspiration than in
expiration; whereas the later sounds are associated with the
consolidation of the lung tissue (so that the tissue becomes
airless between the chest wall and the conducting airways), the
transmitted sourd being much attenuated and filtered. Forgacs
(1978) suggested that breath sound is caused by a central
turbulence in the conducting airways and has a flat frequency

distribution between 200 and 2000 Hz.

Adventitious sounds, on the other hand, are abnormal
lurg sourds that usually occur in a number of lung disorders such
as asbestosis. They are generally divided into crackles (or
rales or crepitations) which are short explosive sounds and
wheezes (or rhonchi) which are continuous sounds with well
defined frequency characteristics (Bunin and Loudon, 1979;
Murphy, 1981). Forgacs (1978) suggested that crackles might be
caused by abrupt opening of small airways in the lung; while
wheezes are caused by a mechanism similar to that of "a reed in a
child's toy trumpet". Wheezes ard early inspiratory crackles are
usually associated with obstructive disorders while late
inspiratory crackles are usually associated with restrictive

diseases such as asbestosis (Nath and Capel, 1974).
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2.5 Asbestosis

2.5.1 Theory of the pathology of asbestosis

Asbestosis is a chronic fibrosing disorder caused by
inhalation of asbestos fibres. It belongs to a group of lung
disorders known as diffuse interstitial collagenous fibrosis,
i.,e. the excessive production of collagen fibres. 1Its
development is related to both duration and quantity of exposure
to the fibres. The disease usually takes 20 or more years to

develop after the initial exposure (Parkes, 1982).

It is now generally believed that the initial
pathological change of asbestosis, which is the derangement of
the alveolar structure, is the result of an alveolitis rather
than an interstitial fibrosis (Wagner, 1965). Alveolitis is a
disorder characterised by (a) a marked increase in the total
number of inflammatory and immune effector cells (such as
alveolar macrophages and lymphocytes) within the alveolar
structures; (b) a change in the relative proportion of one or
more effector cell populations; and (c¢) an activation of one or
more effector cell types, such as the presence of neutrophils
(another type of leucocyte) in the alveolar structure (Keogh and

Crystal, 1982),

The accumulation and the activation of these effector
cells will alter (or derange) the natural composition of the

alveolar structures and hence may affect the lung function by the
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loss of these functional alveolar-capillary units. To gquote
Keogh and Crystal (1982), "the specific effects of such physical
deformations on lung function is unknown, but they probably
influence critical mechanical processes involved in the
respiratory cycle". (In chapter 7, this may partly explain why
patients who have been exposed to asbestos but in whom asbestosis
has not developed form a separate group from patients with
asbestosis and from normal patients without any exposure to

asbestos.)

It has been shown (Crystal et al, 1981; Gadek et al,
1981) that the alveolitis in asbestosis is characterised by an
increase in the number of alveolar macrophages and a large number
of neutrophils. These neutrophils are extremely dangerous
because they will release a number of inflammatory mediators
(such as oxidants amd connective tissue specific proteases) that
can injure the parenchymal tissues (for example, both type I
cells and the basement membranes in the alveolus) amd disorganise
the content of the septal spaces. Gadek et al (1980) have
obtained evidence that the asbestos fibre stimulates the
alveolar macrophage to release a chemotactic factor which
attracts these neutrophils from the circulatory system. The
Vfuture development of the disease (and hence the probability that
a patient who has been exposed to asbestos will subsequently

develop asbestosis) depends on the intensity of the alveolitis.

Furthermore, the interaction between the asbestos fibre

and the alveolar macrophages also results in the release of a
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fibrogenic factor which causes proliferation of fibroblasts ard,
hence, an increase in the synthesis of collagen fibres. These
collagen fibres will form a fine network around the damaged
alveolus. If the disease is subsequently developed, the collagen
fibres will continue to expand into the alveolar ducts and the
surrounding tissues, and eventually link some of these separate

inflammatory units together (deShazo, 1982).

2.5.2 Diagnostic methods

Perhaps some of the most important clues for detecting
asbestosis come from the occupational history of a patient.
Having noted that a patient has been exposed to asbestos, a
medical practitioner can then look for the following symptoms
(Parkes, 1982):

(a) abnormal physical signs. The most important sign is
persistent, bilateral, basal late-inspiratory crackles.
Clubbing of fingers and toes, breathlessness, and
cyanosis may occur in some patients but are generally not
reliable signs;

(b) abnormalities in pulmonary function tests which show a
restrictive lung defect with reduced gas transfer, for
example, a decrease in carbon monoxide diffusing
capacity; ard

(c) radiographic abnormalities. This usually involves fine
reticular shadowirng at the lower lobes of the lung in the
chest X-ray. However, there is usually some disagreement

in the visual interpretation of the X-ray film.
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Lung biopsy, bronchioalveolar lavage, gallium-67 scanning and
other computerized tomography, amd blood serum tests can all be
added for especially difficult cases or as extra confirmatory

evidences.

It is important to note that none of these clinical
signs by itself is sufficient to indicate the existence of
asbestosis. The use of lung sound may therefore be a valuable
addition to the range of techniques available for examination of

patients exposed to asbestos dusts.

2.53 Remarks: prognosis and prevention

The progression of asbestosis depends very much on the
individual. Generally, the progression will be slow ard in some
cases the patient's condition may cease to deteriorate.
However, the corresponding risk of developing complications such
as lung cancers and other pulmonary disorders also increases for
these patients (Parkes, 1982). Fortunately, nowadays very few
people who have been exposed to asbestos dusts will develop
asbestosis because the better hygiene standards imposed in this

country will reduce the quantity of fibres inhaled.

Since there is mo krmown drug that can arrest or retard
the progress of asbestosis, prevention is the only answer for
employees who are working with asbestos or asbestos-related
products. The reports by the Health and Safety Executive (1979)
list a number of recommendations for storage and disposal of

o
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asbestos, conditions of a factory using asbestos and its
praducts, level of airborne dust within a factory, and individual
safety measures, which if satisfactory complied with, should

provide adequate protection for each individual employee.

36




References

[01] Anderson, K., Luk, A., Macleod, J.E.S. and Moran, F. (1986).

[02]

[03]

[04]

[05]

[06]

[07]

(o8]

(09]

"The application of pattern recognition and signal

processing techniques in the diagnosis of asbestosis".

Thorax, 41, 715.

Basmajian, J.V. (1982). Primary Anatomy (Eighth Edition),

Williams ard Wilkins, Baltimore.

Bunin, N.J. and Loudon, R.G. (1979). "Lung sound
terminology in case reports". Chest, 76, 690-692.

Cooke, W.E. (1924). "Fibrosis of the lungs due to

inhalation of asbestos dust". British Medical Journal II,

147.
Cooke, W.E., McDonald, S. and Oliver, T. (1927). "Pulmonary

asbestosis". British Medical Journal II, 1024-1027.

Crofton, J. and Douglas, 2. (1975). Respiratory Diseases

(Second Edition), Blackwell Scientific Publications,
Ox ford.

Crystal, R.G., Gadek, J.E., Ferrans, V.J., Fulmer, J.D.,
Line, B.R. and Hunninghake, G.W. (1981). "Interstitial
lung disease: current concepts of pathogenesis, staging and

therapy". The American Journal of Medicine, 70, 542-568.

deShazo, R.LC. (1982). "Current concepts about the

pathogenesis of silicosis and asbestosis”. The Journal of

Allergy and Clinical Immunology, 70, 41-49.

Doll, R. and Peto, J. (1985). Asbestos: Effects on Health

on exposure to asbestos, Health and Safety Commission, HM

Stationery Office, London.

37




[10] Forgacs, P. (1978). Lung Sounds, Bailliere Tindall, London.

11} Forgacs, P., Nathoo, A.R. and Richardson, H.D. (1971).
"Breath sounds". Thorax, 26, 288-295.

[12] Gadek, J.E., Hunninghake, G.W., Zimmerman, RL. and Crystal,
R.G. ('1980). "Regulation of the release of alveolar
macrophage-derived neutrophil chemotactic factor".

American Review of Respiratory Disease, 121, 723-733.

[13] Gadek, J.E., Hunninghake, G.W., Schoenberger, C.I., Fells,
G. and Crystal, RG. (1981). "Pulmonary asbestosis and
idiopathic pulmonary fibrosis: pathogenetic parallels”.
Chest, 80 (Supplement), 635-648S.

[14] Health and Safety Executive (1979). Asbestos: Final report

of the Advisory Committee, HM Stationery Office, London.

[15] Keogh, B.A. and Crystal, RG. (1982). "Alveolotis: the key
to the interstitial lung disorders (editorial)". Thorax,
37, 1-10.

[16] Kligfield, P. (198l1). "Laennec and the discovery of mediate

auscultation". The American Journal of Medicine, 70, 275-

278.

[17] Last, R.J. (1984). Anatomy: Regional and Applied (Seventh

Edition), Churchill Livingstone, Edinburgh.
[18] Merewether, E.R.A. and Price, C.V. (19230). Report on

Effects of Asbestos Dust on the Lungs and Dust Suppression

in the Asbestos Industry, HM Stationery Office, London.

[19] Michaels, L. and Chissick, S.S. (1979). Asbestos:

Properties, Applications, Hazards, 1, John Wiley and Son,

Bel fast.

38




[20]

[21]

[22]

(23]

[24]

[25]

Morgan, W.K.C. and Seaton, A. (1984). Occupational Lung

Diseases (Second Edition), W.B. Saunders Company,
Philadephia.

Murphy, R.L.H. (1981). "Auscultation of the lung: past
lessons, future possibilities". Thorax, 36, 99-107.
Murphy, R.L.H., Holford, S.K. and Knowler, W.C. (1977).
"Visual lung sound characterization by time-expanded

waveform analysis". The New England Journal of Medicine,

296, 968-971.
Murphy, R.L.H. and Holford, S.K. (1980). "Lung sounds".

Basics of RD, 8, (4), 1-6.

Nath, A.R. and Capel, L.H. (1974). "Inspiratory crackles -
early ard late". Thorax, 29, 223-227.

Noro, L. (1968). "Yant memorial lecture: occupational and
non-occupational asbestosis in Finland". American

s

Industrial Hygiene Association Journal, 29, 195-201.

Parkes, W.R. (1982). Occupational Lung Disorders (Second

Edition), Butterworths, London.

Selikoff, I.J. and Lee, D.H.K. (1978). Asbestos and

Disease, Academic Press, New York,

Spencer, H. (1985). Pathology of the lung (Fourth Edition),

Pergamon Press, Oxford.
Timbrell, V. (1965). "The inhalation of fibrous dusts".

Annals of the New York Academy of Sciences, 132, 255-273.

Urquhart, R.B., McGhee, J., Macleod, J.E.S., Banham, S.W.
and Moran, F. (1981). "The diagnostic value of pulmonary
sounds: a preliminary study by computer-aided analysis".

Computers in Biology and Medicine, 11, 129-139.

39




Preprocessing

This work was supported by the Croucher Foundation, Hong Korg.




Chapter 3: Preprocessing

Suxmxarz

In this chapter, the development of the Fourier
transform from its continuous forms to the discrete form is
briefly mentioned. The two main problems, those of aliasing and
leakage, with the discrete Fourier transform are discussed. OCne
of the applications of the Fourier transform is in estimating a
spectrum. This application is reviewed and the problem
associated with the variance of the estimation is outlined. This
leads to the development of weighted overlapped segment averaging
algorithms which reduce both the lezkage and the variance of the
estimate. Three of these algorithms, those of Welch, of Carter

ané Nuttall and of Yuen, are briefly described.

3.1 Introduction

In some very simple template matching applications, all
input measurements (or signals) can immediately be used for
identification purposes. However, in most practical situations,
some sort of preprocessing or conditioning will be required to
enable the input measurements to be usable by other operations.
This is necessary because the input measurements may be corrupted
by noise, distorted by the input transducer, and/or affected by
inter ference from other external sources. In other situations,
the number of input measurements may not be constant: an example

arises (assuming constant sampling rate) from the fact that the
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duration of a breath cycle will vary from individual to
individual or even from breath to breath for one individual. In
communications engineering, some of these contaminations can be
reduced by increasing the power of the source of the input
measurements or through the use of different modulation and
filtering techniques. Unfortunately, in lung sound analysis,
there is not much one can do: one cannot ask the patient to
breath harder and harder. Besides, if the patient breathes too
hard, additional adventitious sounds will be generated and
superimposed on the natural lung sourd (Forgacs, 1978). Thus, it
is clear that a lot of work has to be done at the "receiving" end
in lung sound analysis. To achieve this, ideally the coupling
between the chest wall and the input transducer should be
matched. Then, the input measurements have to be filtered to
remove the high freguency noise (section 3.2.4). Afterwards,
signal analysis technigues can be applied to detect possible
periodicities in the input measurements. Some of these
techniques can operate directly on the input measurements in the
time domain and are potentially useful, but in time domain
analysis it is often difficult to form suitable features for
further analysis. This study therefore concentrates on
freguency domain analysis. Spectrum estimation based on the
discrete Fourier transform (DFT) is one of the most commonly used
methods of frequercy domain analysis. Other spectrum estimation
technigques, such as the maximum entropy method, are described in

a review paper by Kay and Marple (1981).

In the next section, the Fourier transform and its
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discrete version will be reviewed briefly. The two major
problems, namely leakage and aliasing, associated with the DFT
will also be introduced. 1In section 3.3, spectrum estimation
based on the discrete Fourier transform will be discussed in
greater detail and the method known as weighted overlapped

segment averaging (WOSA) will be described.

3.2 Fourier Transform (FT)

3.2.1 Introduction

About a hundred and eighty years ago, Jean Baptiste
Joseph de Fourier proposed his famous Fourier analysis on any
arbitrarily shaped function. Essentially, his theorem can be
restated as: any arbitrary periodic function x(t) with a period
equal to T can be approximated by the Fourier series (Lynn,

1873) .

If x(t) is a non-periodic (or aperiodic) function, it
can be expressed in terms of the Fourier transform X(w). The

relevant equation pair is

[+

x(t)y = (1/21T)J X(w) exp(jwt) dw (1)
-0
where
o0
X(w) =J x(t) exp(-jwt) dt. (2)
-0

The Fourier transform X(w) is sometimes known as a frequency

density function. In addition, eguations (1) and (2) illustrate
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the dualism between the time domain and the frequency domain.
Equation (1) shows that a time varing function x(t) is composed
of an infinite orthogonal exponential series defined in the

frequency domain. The reverse is denoted in equation (2).

With the rapid advancement in digital computing
facilities in the past few decades, input measurements are now
usually stored and processed digitally. This led to the
development of the discrete Fourier transform (DFT) which is

suitable for sampled data or measurements.

3.2.2 Discrete Fourier Transform (DFT)

Assume that outside the region (-T/2, T/2) the function
x(t) is zero -and that x(t) is sampled n times within the region
[-T/2, T/2] at equal sampling intervals. Let Xogr Xpr eeer Xp g
be the n sampled measurements. The discrete version of the

Fourier transform (equations 1 and 2) can be defined as

n-1
X, = (T/n) E Xm exp(j2Tmk/n) (3)
m=0
and
n-1
- -3 4
X -me exp(-j2TMmk/n) (4)
m=0

where X. is the k-th Fourier coefficient of x(t) and k = 0,

k
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1, ..., (n - 1). Each of these Xk represents a certain component
(in the frequency domain) of the original sampled measurements
(in the time domain). Equation (3) is usually referred as the n-
point DFT and equation (4) is the corresponding n-point inverse
discrete Fourier transform (IDFT). Yuen and Fraser (1979) have
shown that given an n-point DFT of a function, a Fourier series
can always be reconstructed such that the function is exactly

recovered at the n sampling instants.

Sampling frequency is important when the DFT is used.
From the sampling theorem, the "sampling interval" At between

any two sampled measurements should be smaller than 1/2fm ’

ax

where fmax is the highest frequency of interest in a given
problem. Thus, the following relationships can be written

At = 1/n < 1728 or n>2f T (5)

max

Equation (4), if used directly to compute an n-point
DFT, requires n2 mutiplications, i.e. n mutiplications per X, - A
careful inspection of the exponential terms will reveal that the
same product xmexp(—jZTrmk/n) is formed many times for different
combination of m and k. This fact was noticed by Cooley and
Tukey (1965) who proposed the fast Fourier transform (FFT)
algorithm, which reduces such repetitive calculation of products
from n? to n log,n. The idea is to divide and reshuffle the
input measurements into a number of smaller subgroups, transform
each subgroup individually, and combine the results to produce

the DFT for the n sampled measurements. A number of verified FFT
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implementations have been published in a symposium entitled
"Programs for digital signal processing” which was edited by the

digital signal processing committee (1979).

3.2.3 Leakage

Leakage is an inherent problem with the discrete
Fourier transform. The finite number of sampled measurements in
the DFT means that the function x(t) is truncated abruptly at
some point in the time domain. This causes the k-th Fourier
coefficient (k =0, 1, 2, ..., n~ 1) in the frequency domain to
oscillate, i.e. the values of all xp, where p € (-00, 00) and
p # k, are in general affected. Hence Xk "leaks out" into the
neighbouring Fourier coefficients (Yuen and Fraser, 1979). Thus
if there is a peak at the k-th Fourier coefficient then, instead
of only one peak, a series of peaks of varying sizes will be
observed because of the leakage. It follows that two very close
peaks in the frequency domain may be masked by this leakage
effect. Unfortunately, leakage cannot be prevented; it can only
be reduced. Techniques to achieve this are known as windowing
techniques. Essentially windowing reduces the order of
discontinuity at the two ends (or boundaries) of the truncated
time function. Harris (1978) reviews various windows for the
DFT, such as the minimum 4-sample (or term) Blackman-Harris and
4-sample Kaiser-Bessel windows. (See also the paper by Nuttall,

1981.)
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3.2.4 Aliasing

Another important problem associated with DFT is
aliasing. This is due to inability to distimguish time functions
having high frequency components greater than fmax' In effect,
sampling causes these high freguency components to "fold back"
into (or overlap with) the low frequency components within the
range [0, fmax] (Lymn, 1973). Therefore the input signal has to
be filtered by a low pass filter to remove these high freguency
components (often due to the undesirable contaminations mentioned
in section 3.1), and then sampled at a frequency which must be

higher than 2fmax sc that the time function can be reconstructed

(section 3.2.2).

Unfortunately, as mentioned in section 3.2.3, leakage
cannot be prevented. Thus, even if it is possible to filter away
all the higher freguency components actually present in x(t),
there are still some high freguency components due to leakage
(which can produce both the low and the high frequency
components). Therefore, a good window is necessary to reduce the
leakage and hence reduce this comkbined effect of leakage and
aliasing. Leakage is thus one reason why in pratice the sampling
frequency must usually be considerably greater than the

theoretical minimum of meax (Yuen and Fraser, 1979).
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3.3 Spectrum Estimation

3.3.1 Introduction

One of the many applications of the Fourier transform
is in spectrum estimation (i.e. estimation of the power at
particular frequencies). Spectra are of great importance in many
fields includirg quantum mechanics and the study of the internal
structures of different elements as well as pattern recognition.
Their usefulness in pattern recognition, stems from the ease
with which features can be generated from a spectrum and has led
to their use in a number of applications such as speech
recognition (Fu, 1982). Robinson (1983) in his book (appendix 9,
pages 345-407) h@s given an excellent historical perspective of
pioneering work in spectrum estimation and related topics. As
mentioned in section 3.1, only spectrum estimation technigues
that are based on the discrete Fourier transform will be reviewed

here,

It must however be mentioned that Fourier analysis is
only one of several methods of spectrum estimation (Kay and
Marple, 1981). One other very commonly used spectrum estimation
technique is the maximum entropy method (MEM), introduced by John
Burg in 1967 (Robinson, 1983), which is based on extrapolating a
segment of a krmown autocorrelation function (section 3.3.2.1) so
that the entropy in the time domain is maximized. Interested
readers can refer to a book edited by Smith and Grandy (1985)

which gives a collection of very useful papers on this subject
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and its applications. The MEM technique was investigated by
Urguhart (1983) in relation to lung sounds. However his
preliminary study indicated that it is very difficult to select
the right model order, as is essential in MEM (Kay and Marple,

1981) .

3.3.2 Spectrum estimation based on the Fourier transform

33.2.1 The continuous case

The total energy of an aperiodic function x(t) is
related to its Fourier transform X(w) by Parseval's energy

theorem which states that
. o0

J |x<t>lzdt=j | (w12 aw (6)
-00 )

where IX(w)l 2 - S(w) is sometimes referred to as the energy
spectral density and I.lis the absolute operator. Equation (6)
states that the total energy of the time domain signal is equal
to the total energy in the freguency domain (Kay and Marrple,

1981) .

For a periodic function x(t) with a per iod egual to T,
the (power) spectrum P(w) (sometimes referred as the

periodogram) of x(t) can be found by

P(w) = lim E { a/7) s(w) 1. )
T e=> OO
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Another indirect way of finding the spectrum of x(t), related
with the autocorrelation function rxx('[‘) = { x(t +1:)x*(t) }

(where * is the conjugate operator), is given by the Wiener-

Khinchin relations

&
P(W) =J r.x(T)exp(-jwt) dt (8)
-0
ard

-]
Lx(T) =L P(W) exp(jwT) aT. 9)

3.3.2.2 The discrete case

Until Cooley and Tukey (1965) proposed their fast
Fourier transform algorithm, the estimated spectrum 1;((.0) was
usually found by using the discrete version of the Wiener-
Khinchin relations because of the inherent n2 product computation
in the DFT. Again, x(t) is assumed to be defined over [-T/2,

T/2] (section 3.2.2). The discrete version is sometime known as

the Blackman-Tukey algorithm and can be written as

p1
P, = (l/T)Z L)) exp(-j2 Trmk/n) (10)
m=0

~

where p < n-1 and the autocorrelation function r(m) is estimated
as
n-m-1

;(m) = (1/n) E X
q___o

*

I 1)
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where X (k =0, 1, ..., n - 1) is the sampled measurment as

defined in section 3.2.2.

Since Cooley and Tukey introduced the FFT, spectra have
usually been estimated using the direct method which can be

written as

~

p,= a/m lx, %= a/mlix |2 (14)
where " " is the modulus operator.

One of the main problem associated with the above two
estimation methods is the variance of the estimated spectrum. It
has been shown (Yuen and Fraser, 1979, pages 72-73) that the

variance can be as much as P(W) itself. One way of reducing the

variance 1is to window the sampled measurements before the
estimation. Another method of reducing the variance is known as
weighted overlapped segment averaging which is more suitable when
there is a large number of sampled measurements and will be

introduced in the next section.

3.3.3 Weighted Overlapped Segment Averaging Spectral Estimation

This method can be viewed as a development of an idea
due to Welch (1967), who proposed a spectrum estimation method
which reduces the variance of the estimated spectrum and is
extremely useful for large numbers of input measurements. His

idea is to divide the n sampled measurements into p segments,
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window each segment by a linear window (such as the minimum 4-
sample Blackman—Harris window mentioned in section 3.2.3), and
finally average the magnitude-square of the p segments to produce
an averaged spectrum. Both spectral leakage and variance are
thereby reduced because of the windowing operation and the

averaging operation respectively.

Welch's idea was considerable extended by Carter,
Nuttall and Yuen in a series of papers (Yuen, 1977; Yuen, 1978;
Yuen, 1979; Nuttall and Carter, 1980; Carter and Nuttall, 1980;
Yuen, 1983). The essential difference between the algorithms of
Carter and Nuttall and of Yuen is in whether the segments should
be overlapped ard windowed prior to being transformed into the
frequency domain by the FFT method. ILater in chapter 7, it will
be shown experimentally that for the lung sound data, both
methods produced very similar results. Since both methods will
be deployed in chapter 7, a brief outline of both methods is

given in the following two paragraphs.

Yuen's algorithm (1983) is very similar to Welch's.
Essentially his method is to divide the n sampled measurements
into p non-overlapping segments, Fourier transform each segment,
average the squared magnitudes of the p transformed segments, and
finally apply a quadratic (or lag) window to the averaged

Spectrum.

The algorithm proposed by Carter and Nuttall (1980) is

more complicated but is claimed by the authors to produce
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slightly better results than Yuen's method (Yuen, 1983) for
processes with "large dynamic range" spectra. Their idea is to
divide the n sampled measurements into q overlapped segments,
window each overlapped segment using a linear (or tapering)
window (such as the minimum 4-sample Blackman-Barris window),
Fourier transform each windowed segment ard average the squared
magnitudes of the g transformed segments. This averaged spectrum
is then transformed back into a lag domain via the FFT (eguation
13), multiplied by a lag window and then returned to the
frequency domain by another FFT operation (equation 14). (Note
that the last three steps are essentially the Blackman-Tukey

method of calculating the spectrum).

3.4 Remarks

One thing worth mentioning at this stage is that the
weighted overlapped segment averaging (WOSA) technigues enable a
large number of input measurements, say n', in the time domain to
be compressed into a relatively smaller number of measurements,
say n, in the frequency domain. This data compression technigue
is very useful in the lung sound signal analysis described in

chapter 7.

Other advantages of using the WOSA technigues when the
number of input measurements n is large are (a) the possibility
of reducing computation time and (b) the amount of main storage,
provided the number of segments p is less than the square-root of

n (Welch, 1967). Furthermore, Welch (1967) has shown that a

)
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small reduction in variance can be achieved when overlapping is
used in the WOSA methods. It has also been shown (Nuttall and
Carter, 1980; Nuttall, 1981) that the amount of overlapping is
dependent on the particular window employed in the WOSA
algorithms., Finally, the guestion of whether linear or quadratic
windowing should be used is largely academic. Nevertheless,
Mathews and Youn (1984) have shown that both linear amd quadratic
windowing in the WOSA methods provide asymptotically the same
leakage suppression, under the assumption that segments

relatively far apart are uncorrelated.
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Chapter 4: Mapping

Summary

Mapping techniques are briefly surveyed in this
chapter. In particular, four commonly used linear mapping
algorithms, those of Karhunen-Loeve, of Kittler-Young, of Fisher
and of Fukunaga-Mantock are introduced. Modifications to the
Fukunaga-Mantock transformation are described. The difficulties

in choosirg the best linear transformation is also outlined.

4.1 Introduction

In chapter 3, it has been shown that a datum comprising
a variable number n" of input measurements (in the time domain)
can be preprocessed (e.g. using the WCSA technique described in
section 3.3.3) to form a datum with a fixed number n' of
transformed measurements (in the frequency domain). In some
applications, these n' transformed measurements can readily be
interpretated and be used as features for, say, a discrimination
(or classification) task. However, in some problems (including
the one investigated in this thesis), although these transformed
measurements are meaningful, the dimensionality n' of the datum
is still too large for practical pattern recognition. Therefore,
it is sensible to somehow compress or reduce the dimensionality
of the data from an n'-space to an n-dimensional (sub)space
(where n < n') without losing too much information. It is

certainly very useful if the dimensionality n of the compressed
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data is less than or equal to 3 so that the original set of N n'-
dimensional data could be displayed in some conventional device,
such as a visual display unit or a plotter, for subsequent
interpretation such as analysis or classification of the set of

data.

Two principal families of methods, namely feature
selection and feature extraction, are available for reducing the
dimensionality of data. In feature selection a subset comprising
n of the original n' measurements is selected in such a way that
the redundant or less useful measurements can be discarded
without a significant loss in the original information. Very
often feature selection is achieved by optimising a criterion
function that is related to classification error. Such criterion
functions can be based on probabilistic distance measures (for
example Mahalanobis distance), dependence measures or Euclidean
distance. Global optimisation by exhaustive search is rarely
feasible if n' is large, because the criterion function has to be
evaluated (2') times. For this reason, many suboptimal "top
down" and "bottom up" approaches have been proposed which involve
much less computation. Devijver and Kittler (1982) give an
intensive treatment on this subject and it will not be discussed

further in this chapter.

In feature extraction, on the other hand, all the n'
measurements are utilized and a new transformed space is formed
through the use of some transformation operations. A subset of n

variables in the transformed space is then extracted or chosen
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(Kittler, 1975; Urquhart, 1983). Let x be a random n'-
dimensional feature vector (here it is assumed that all the n'
measurements are taken as features). A feature extraction

algorithm then consists of a mapping or a transformation F, where

y = F(x) (1)

such that the resulting transformed random feature vector y will
be of lower dimensionality than x. There are a number of mapping
techniques which can achieve this goal. Mapping is usually
dependent on the optimization of a certain criterion function H
such as the entropy of a system. Some mapping techniques are
linear while others are nonlinear: within each category, some of
the algorithms are iterative while others are non-iterative.
Iterative algorithms involve iterative optimization ‘of a
criterion function which compares high and low dimensional
representations of the data. In non-iterative mapping, on the
other hard, the form of F can usually be calculated directly arnd

will therefore be unigue. See the review by Urquhart (1983).

Non-iterative nonlinear mappings may have a rather
complicated form for the mapping function F and, in some cases,
may require a complete knowledge of the underlying distributions
of each measurement (Young and Calvert, 1974, pages 255-258).
These mappings are therefore rarely used in any application. On
the other hand, the form of F in some iterative nonlinear
mappings may not be possible to determine explicity. One example

is Sammon's nonlinear mapping algorithm (1969). There are a
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number of variants of this method (Calvert and Young, 1969;
Kruskal, 1971; Urquhart, 1983; Wang, 1983). Unfortunately, these
methods deperd on the choice of the initial configuration of the
subspace, and it is necessary to perform the whole mapping
procedure from the beginning every time a new feature vector
becomes available. Conseguently, these methods will not be of
particular use for the proposed system. They will however remain
as a useful research tool for analysing the structure of a data

set.

For non-iterative linear mapping algorithms, eguation

(1) may be rewritten as

where T is the transpose operator. The mapping matrix U can
usually be evaluated, and its evaluation is usually less
computationally demanding than any of the above mentioned data
reduction methods. Therefore, these algorithms are often
employed in many different applications (Fukunaga and Koontz,
1970; Kulikowski, 1970; Sammon, 1970). Because of their

importance, a brief review is presented in section 4.2.

4.2 Linear Mapping

4.2J Introduction

Linear mapping has been the subject of research and
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application for a number of decades in various disciplines, such
as statistics, communication theory and pattern recognition. In
essence, it is an expansion of the random vector x in terms of
the eigenvectors of a matrix R, that is the transformation matrix
U is formed from n eigenvectors uj (3 =1, 2, ..., n), each of
dimensionality n', of R (usually associated with the n largest

eigenvalues Aj). Each of the n eigenvectors is usually

normalized so that its magnitude is unity, i.e. “uj l =1, and
the eigenvectors are made uncorrelated, i.e. u?uj = 1 and uEu. =

0 where k ¥ j (i.e. the n eigenvectors are orthonormal to each
other). This matrix R can be a between class scatter matrix (or
class conditional between class matrix) SB or a within class
scatter matrix (or class-corditional covariance matrix) SW or a
total scatter (i.e. covariance) matrix ST or a combkination of
them. Let X be a prototype sample (where i = 1, 2, ..., Nand N
= number of prototype samples available) and let xg be a
prototype sample from class wq (where p=1, 2, ..oy Nq, q=1,
2, vy C, Nq = number of prototype samples in class wq and ¢ =

number of classes) both of dimemsionality n'. Then the three

scatter matrices can be estimated as:

= 3
Sp = S5 + Sy (3a)
1 N
= Z{xi - m}{x; - m}” (3b)
N-1 i=1
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S =Zp(wq){m - m}{m_ - m7

q q 4)

c p(w

N
Sy =y —— Z{x - m e - m )" ©)

=] N_ -1 1
g= 9 P=
m = estimated total mean
1 N
=X
i
N i=1

mq = estimated mean for class wq

e
€
I

g estimated a priori probability of class wq

N_ / N.
g/

The following subsections will introduce some commonly used

linear mapping algorithms. (The derivation of the following

transformation will not be shown but can be found in Devijver and

Kittler, 1982, chapter 9, or in the original papers).
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4.2.2 Karhunen-Loeve (K-L) transformation

This is perhaps one of the most commonly used linear
mapping algorithms and is also referred as the principal
components transformation. In the generalised version of Chien
and Fu (1968) the algorithm assumes that the prototype samples
have been normalized so that the estimated total mean is a zero
vector, i.e. m = 0. The transformation matrix U is then
constructed using the n uncorrelated eigenvectors of R = SW
associated with the n largest eigenvalues of Sw, i.e.

T

U = [ul, Ugr eees un] (6)

W
It has been shown (Gower, 1966) that these uncorrelated (or

where u, is associated with the j-th largest eigenvalues of S

orthonormal) eigenvectors define a coordinate system that 1is
optimal in the least square sense. It is of interest to note
that the coordinate axes with the largest variances are selected
by the K-L transformation, which thus also maximizes the amount
of information retained in the lower dimensional space (Devijver
and Kittler, 1982). A number of variations of the K-L
transformation are possible, for instance, instead of using SW,
the n uncorrelated eigenvectors can be derived from the matrix

ST .
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4.2.3 Kittler-Young (K-Y) transformation

Kittler and Young (1973) noticed that the most
significant information for classification purposes is usually
contained in the matrix SB rather than Sw or ST. They proposed
an algorithm which will optimally compress the class mean
information. To achieve this, both the between-class ard within-

class scatter matrices are prewhitened by a prewhitening matrix B

such that

T - T = at

B SWB =71 = ; )]
and

T —

R SBB = SB' (8)

where I is the identity ﬁlatrix ard Sé and %'V are respectively the
between-class and within-class scatter matrix after the
prewhitening operation. In this prewhitening space, s;q is
uncorrelated and with unit variance. It will therefore be
invariant under any orthonormal transformation. The authors have
shown that the prewhitening matrix is obtained from the n'
uncorrelated eigenvectors ul (a = 1, 2, ..., n") and the

eigenvalues ?\a‘] of S, and is given by

B = U'_/\_'—l/z 9)

where
T
U = [uir uz'r ceoy ul"]']
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0, 0 weey AL .

The transformation matrix U is then formed from B and the
uncorrelated eigenvectors gj (J=1, 2, .., nandn=c- 1) of
sé (equation 8). Note that only (¢ - 1) non-zero eigenvalues
exist because of the singularity of the matrix SB. Thus, U is

given by

(an}
]

BG = U\ % 10)

where

(99, 90 wer 9 = 1yl

Thus, this algorithm compresses the mean information into a
feature space of dimensionality (c - 1). (It is worth noting
that Babu (1972) obtained the same equation as in equation 10
when applying a probabilistic distance measure on feature

selection.)

4.2.4 Fisher (F-S) transformation

Fisher (1936) proposed an algorithm to construct the
transformation matrix U by using the (c - 1) uncorrelated
eigenvectors u; (=1, 2, .., c - 1) associated with the (c -

1) non-zero eigenvalues of R = Sv'q'lSB. (Again, only ¢ - 1 non-
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zero eigenvalues exist because of the singularity of SB.)

When there are only two classes (c = 2), only one non-
zero eigenvalue exists, and hence only U, can be obtained by the
F-S transformation. Sammon (1970) proposed finding a second
vector (say u, to simplify the notation) from the first
derivative of R (with respect to u,) such that it is orthogonal

to u;. uy and u, are given by the following equations

vy = ST A (11a)
AT A
u, = o, syt - 5,112 | A (11b)
ATisRA
b o

where [l=[ml - m2] and &, and 0(2 are normalization constant

1
such that both uy ard u, are unit vector. The Sammon's proposed
method would define an "optimal discriminant plane". Note that
it is not necessary to calculate the between-class scatter
matrix. Sammon's algorithm was extended by Foley and Sammon
(1975), who have used a similar approach as Sammon to recursively
derive n orthogonal eigenvectors, which they refer as "optimal
discriminant vectors". However, Longstaff (1985) has pointed out
that if the decision surface at the higher dimensional space of
the data is a curved hyperplane, the data will not project
uniquely on the Fisher axis. He proposed to find the second

"radius" vector by transforming the data to a spherical symmetry

in the subspace normal to Fisher's first axis.
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4.2.5 Fukunaga-Mantock (F—-M) transformation

The singularity problem of the between-class scatter
matrix SB is overcome by Fukunaga and Mantock (1983), who have
constructed a nonparametric form SBk of sB which is guaranteed to

be of full rank. The two class case can be written as

2 1,.2.,,.2 2, 2.7
+ (1/N)§:wp(xp mk(xp))(xp mk(xp)) (13)

where mi(xg) is the mean vector of the k nearest neighbours of x2
that belong to class wa (a=1,2, g=1,2 and a # g), and wp is a
weighting function. The definition used by Funkunaga and Mantock

for the weighting function is

: h . g 1 h . g 2
min { dl(xp z,) dz(xp z,) }
w = (14)
P h 1 h 2
q _ q _
dl(xp zk) + dz(xp zk)

where dg(xg - zi) is the distance between xg and its k-th nearest

neighbour zi from class wa in the Minkowski metric of order h.

The author now proposes a modification to equation (14)

because the weighting function suggested by Fukunaga and Mantock
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(1983) is intended to deemphasize prototype samples far away from
the classification boundary. Suppose xg belongs to class Wy in
figure 4.1 and is close to the k nearest neighbour mean vector of
class Wy then in equation (14) dtl](xg - zi) will be small. 1If
equation (14) is used as the weighting function, (xg - mi(xg)) in
equation (13) will be small and deemphasized because of the

minimum operator in equation (14).

Now suppose xg is an "outlier" far away from both

classes. In this case, both the distances d?(xg - zb

z}f) will have similarly large values and the sample will be

h g _
and dl(xp

emphasized by the weighting function in equation (14). Moreover

qg_ _a
(xp mk(

The resulting S

xg)) will be large for both classes in equation (13).
Bk<matrix may therefore be dominated by these
outliers, particularly if the number of prototype samples is
small, and hence a subspace with poor class separation may be
found. From this simple example, it is clear that egquation (14)
does not achieve the goal set out by Fukunaga and Mantock. To

handle this undesirable property of equation (14), one way is to

use a maximum operator in egquation (14).

The author also proposes that the distance from sample

x? to the mean of the k-nearest neighbours belonging to class

Wy m?(xg) (a # q), rather than the distance to just one point

namely the k-th nearest neighbour zi as in equation (14), should
be used in the weighting function. This is desirable because

(a) equation (13) is primarily concerned with the separability

between x2 and the local mean vectors of the other
P
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Figure 4.1 2 visual interpretation of the weighting function

suggested in equation (15) in the text. XS is the
p th element in class mq to be considered. mi(xg)
arc mi{xg} are the loczl mean vectors of classes w.i
and w, respectively. In the above diagram, k is

equal toc 3. z? is the f-th nearest neighbour of xg

in class w_.
[=]
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classes (c.f. sections 4.2.3 and 4.2.4), and

(b) short and Fukunaga (1981) have shown that m?(xg) is an
important parameter of the weighting function in the
optimal local distance measure for nearest neighbour

classification in a finite sample set.

Therefore, the new weighting function can be written as

hoa__1._g h g _ 2. g
max { dl(xp mk(xp)), <'32(xp mk(xp)) }
W =f' : ) + ¥ (15)
g _ g h g _ 2.9
dl(xp mk(xp)) + dz(xp mk(xp))

where ﬁ and ¥ are two real constants. When }= 1.0 and ¥ =
0.0, the weighting function wé has a range between 0.5 to 1.0.
(The range can be altered by using the two constants. For
example when_ﬁ = 1.0 and 1=-0.5, WI'J has a range similar to
equation 14.) Near the decision boundary it has values close to
0.5. As we move further away from the bourdary amd approach the
vicinity of the centres of the two clusters (assuming, for
simplicity, unimodal distributions for the two classes), WI‘J
increases towards 1.0 then decreases slowly after the cluster
centre is passed, tending towards 0.5 again at all outlying
points. Isometric plots of wp and wI') are shown in figures 4.2
and 4.3 for a data set comprising two subsets (classes) in two
dimensions, each subset being uniformly distributed in a sguare
region, one on either side of the decision boundary (by symmetry,
only half of the decision region of one of the subsets need be

shown). The noisiness of wp compared with wE') may be due to the
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Figure 4.2 Isometric plot of the original weighting function wp
(equation 14) due to Fukunaga and Mantock (1983) for
a set comprising two subsets (classes) in 2
dimensions. Each subset is uniformly distributed in
a square region. The two sguares lie symmetrically
one on each side of the decision boundary and the
distribution is roughly symmetrical about a line
joining the centres of the squares: hence only half
of the region on one side of the decision boundary is
represented. The square containing this subset is

bounded by the lines Xy = 0.5, x; = 1.5 and Xy =

+ 0.5.
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Figure 4.3 Isometric plot of the propbsed weighted function wF')
(equation 15) for the same data set as in figure 4.2.

73




use of zi alone in equation (14) rather than the mean mi(xq) as
p

in equation (15).

From the above description and as illustrated in
figures 4.2 and 4.3, the new weighting function WE; will not only
deemphasize samples near to the decision boundary but will also
deemphasize all outliers. It will therefore reduce the danger

that outliers may dominate the SBk matrix.

Figures 4.4 and 4.5 are displays obtained by the F-M
transformation using respectively wp and ‘f) on a three class, 9%
dimensional real data set (with 50 samples per class) extracted
from eddy current signals from flaws in heat-exchanger tubing
(Macleod, 1982; Macfarlane, 1987). It can be seen that the
weighting function in equation (15) has given a better output
display ard fewer misclassification. Macfarlane has found that
this subspace achieves better class separation than the K-L and
K-Y transformations. See also chapter 7 for an application of

this weighting function to results from the lung sound data.

4.2.6 Remarks

The above four sections have introduced four of the
most commonly used linear mapping algorithms. Many variations of
these algorithms exist (Urquhart, 1983). The real problem is to
select which algorithm to use. Unfortunately, none of the
algorithms is universally applicable to all data sets. A

classical example is the transformed subspace obtained by K-L and
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classes of 9-dimencional data, each with 50 samples.
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K-Y transformation on two parallel ellipses as in figure 4.6.
The K-L transformation will select u; as the best axis for
mapping because the variance along u, is the greatest. However,
this axis cannot discriminate between the two classes at all. On
the other hand, the K-~Y transformation will select u, for
mapping, which in this example is the axis that will provide
maximum discrimination. Thus, it is clear that each of these
mapping algorithms will only be suitable for certain types (or
structures) of data. Without a priori knowledge of a given data
set, the best strategy is to experiment with different mapping
algorithms and select the one that provides the best output
display (i.e. the subspace with the best separability or
discrimination between different classes). A good example can be
found in chapter 7 when the high dimensional lung sound data is
mapped, by different linear mapping algorithms, onto a 1owér

dimensional space.

Another problem associated with mapping in general is
the variability of the transformation matrix. As the
transformation matrix is derived from the estimated scatter
matrix (section 4.2.1), it follows that the variance of the
transformation matrix is proportional to that of the estimated

scatter matrix. By deriving a prediction criterion Q from an

estimated scatter matrix with a gaussian distributed data set,

Kalayeh and Landgrebe (1983) have shown that

var(Q = 2n' / @ - 1) a6

7




rd

X

Figure 4.6 A classical example to show the deficency of the K-L
transformation. The two ellipses each represent a
class of samples and the data set 1is adequately
represented in & two dimensional space with axis X
ard X5 The transformed space 1s represented- by the
new coordinate axes u, and us,. The K-L
transformation will select u, as the best axis

whereas the K-Y transformation will select U,
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where var(.) is the variance operator. Thus, the variance of the
estimated scatter matrix is related to the dimensionality n'
prior to transformation and the number N of (training) samples
used to estimate it. Figure 4.7 is a plot of var (6) versus N at
three different values of n'. Thus, a large number of samples is
required for a small value of var ((5). For a dimensionality of 20
(as in our lurng sourd analysis), figure 4.7 indicates that it may

require between 100 to 200 samples (per class) to estimate the

scatter matrix.
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Figure 4.7 A graph of the variance of Q, var(Q), versus the

number of samples N at three different values of
dimensionality n' of an estimated scatter matrix with

& gaussian distributed data set.
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Chapter 5: Nearest Neighbour Classificaton

Summary

This chapter presents a survey on the various nearest
neighbour classification algorithms. Some of the interesting

properties of NN classification are also briefly discussed.

5.]. Introduction

In chapter 4, linear mapping technigues have been
briefly reviewed. These various algorithms provide the users a
power ful tool to visualize a higher dimensional data set (such as
the 20-dimensional lurg sound data). The interpretation of the
lower dimensional data can then be achieved (a) by the users own
subjective judgement or (b) by other objective means. In certain
applications, subjective judgements by the users are often more
desirable, e.g. a physician will always prefer to base his/her
decision(s) upon his/her own experience. Nevertheless, if
objective criteria are available, these may assist his/her
decision. One of these objective means is nearest neighbour (NN)
classification (Cover and Hart, 1967). The basic idea behind this
technique is that data which fall close together in a space of

any dimensionality are likely to belong to the same class.

This chapter attempts to provide a survey of various
nearest neighbour classification algorithms. A more in-depth

survey of the algorithms is given than is possible in most of the
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textbooks in pattern recognition. However, emphasis will be on
the algorithms themselves rather than on the theoretical aspects
(such as the convergence) of the algorithms. This does not imply
that the theoretical aspects are of lesser importance. In fact,
an algorithm without a careful theoretical analysis will always
be prone to different unexpected errors. Nevertheless, it is not
the intention of this review to go through all the
mathematical/statistical analysis of each of the algorithms. A
brief summary of some of the interesting theoretical properties
of NN classification will be given at the end of the review.
Interested readers are recommended to refer back to the original
papers and standard textbooks on pattern recognition for the full

analysis.
The nearest neighbour algorithms are surveyed in the
next section. Some of the interesting properties of NN

classification are briefly discussed in section 5.3.

5.2. A review of nearest neighbour classification

5.2.1 Introduction

Nearest Neighbour (NN) classification was first
proposed ard developed by Fix and Hodges (1951,1952) and later by
Cover and Hart (1967). The popularity of NN classifiers within
the communities of pattern recognition and industry stems from
the fact that (in comparison with, for example, iteratively-

trained classifiers) they are very simple in both implementation
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and use and (in comparison with parametric classifiers) they do
not require prior krowledge of the underlying distributions of
the data. Furthermore, it is intuitively appealing because a
reasonable assumption is that samples very close together in
feature space are likely to belong to the same class (or category
or group) (Nilsson, 1965; Cover and Hart, 1967). Unfortunately,
the disadvantage of this method is that it does require a large
number of classified or labelled (and hopefully correct and
independent identically distributed) prototype (or training)
samples (or prototypes) to be available at the actual time of
classification. This implies that a substantial amount of memory
is required to store the prototypes ard imposes a heavy penalty
in the computation of the set of nearest neighbours.
Furthermore, the probability of error for the NN rules is always
greater than or equalA to the Rayesian (minimum) error (Devijver

ard Kittler, 1982).

Before presenting the various NN classification
algorithms, some notations are introduced. Each sample is
represented as a vector x in an n-dimensional feature space. Let
Sy={ (%) 81) s (X510 ©,)s weus (xN,eN)} be the set of N classified
prototypes, where 6, (i=1,2,..,N) is a reference or "true"
class label assigned by the designer to the prototype sample X,.
Each label can be assigned to any of the c classes &,, Wor ees
W.. Also it is assumed that Sx is defined over a suitable
measurement space, such as the Fuclidean space. Within the set

Syr let Ny/ Ny, ...y N_ be the number of prototypes belonging to

classes W w

17 gr eer W respectively, with
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C

v =Y,
=1
Let S(k)={(x(1), ©(1)), (x(2), ©(2)), eer (x(k), B(k))} be the
set of k (k > 1) nearest neighbours (from SN) of a test (or
unknown) sample x such that x(j) (3=1,2,...,k) is the j-th
nearest neighbour to x, where ©(j) is the class label of x(3).
The class membership of the test sample x is denoted as ©.
Finally, let rq (=1,2,...,¢) be the number of nearest neighbours

from class wq within the set S(k), with

C

=qu_

g=1

In tr;e next section, a number of NN classification
algorithms will be introduced. When the size of Sn is large,
considerable time is needed to compute the set of nearest
neighbour S(k). Two approaches have been proposed to reduce this
computation. One of them is to reduce the number of prototypes
by selecting a representative subset from Sy The other
alternative is to shorten the searching time for each nearest
neighbour in the set S(k), which usually involves some reordering
of the set Sy A more comprehensive review of the two approaches

has been presented in an internal report by Luk (1987).
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5.2.2 Nearest neighbour classification algorithms

5.2.2.] Introduction

The nearest neighbour (NN) classification algorithms
proposed throughout the past three de‘cades can be grouped into
three categories, namely:

(a) those NN rules which use a voting system for making a
decision;
(b) those NN rules which employ a distance-related measurement
to make a decision; ard
(c) those NN rules which are based on the non-parametric
estimation of the class comditional probability density
functions in the Bayesian classification rule (Devijver
Aand Kittler, 1982).
In the following subsections, these three categories of NN
algorithms will be introduced and some of their relationships
with other NN algorithms will be described. (It must be
emphasised that the third category is described only for the sake

of completeness in this survey.)

5.2.2.2 Algorithms that use a voting system

5.2.2.2.1 k-nearest neighbour classification rule

The (traditional or classical) k-NN classification rule
(Fix and Hodges, 1951,1952; Cover and Hart, 1967) (where k > 1)

assigns a test sample x to that class w, (say) which receives

88




the majority of votes from its k nearest neighbours. If
indecision has occured (for example due to ties between two or
more classes), it can be resolved arbitrarily or by other means.

Formally this rule can be defined by

w(k) = 9 (1)
resolved arbitrarily or by other

means if indecision has occured

\

where L:)(k) indicates that the decision depends on the value of
k. Many interesting properties of this algorithm have been
e%amined by various researchers. However, these will be deferred
to later sections so that the reader can have a better overview

of all the other proposed algorithms.

5.2.2.2.2 (k,Q)-nearest neighbour classification rule

Hellman (1970) and Tomek (1976) independently suggested
the "k-NN rule with a reject option" (i.e. the (k,1)-NN rule) for
a two class problem. Generalised to the multiclass problem, the
rule may be stated thus: a test sample X is assigned to class
provided W, receives at least 4 votes (where & > rk/c.l).
Otherwise, x is placed in the "rejected" class W, Thus, the
Parameter Q serves as a rejection index. Ties can again be

resolved arbitrarily or by other means, or samples with tied

89



votes can be placed in the reject class. Formally, the decision

rule can be defined by

c

w4 if ri_>_1 and r; = mex rj
j=1

W(K) = ﬁ (2)

(...)0 otherwise.

If 4 = rk/c.l, equations (2) becomes the k-NN rule (section

5.2.2.2.1).

5.2.2.2.3 (k,8:)-nearest neighbour classification rule

This rule was proposed by Devijver (1977) and is a
generalization of the (k,8)-NN rule (section 5.2.2.2.2). It
assigns a test sample X to class wi if the number of majority
votes from that class is at least SLi (where ‘li > rk/c-:-l). The
parameters {.Q.i, i=1,2,...c} are specified by the user.
Otherwise, x is placed in the "reject” class W,. (Ties can be
dealt with as mentioned in section 5.2.2.2.1.) Formally, this

rule can be defined by

w otherwise.
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It is clear that if 9-1 = QL (i=1,2,...,0), equations (3) are
identical to eguations (2). Also, comparing equations (2) and
(3) with equations (1) indicates the philosophy behind using a
reject class: a rejection may in some way reduce the cost of a
wrong decision. It is also clear from equations (2) and (3) that
one method of resolving indecision is simply not to make any

decision, i.e. to place the test sample into class wo.

5.2.2.3 Algorithms that use distance-related measurement

5.2.2.3.1 k—-th nearest neighbour classification rule

This algorithm was proposed by Goldstein (1972) for a
two class problem. Let di(k) be the distance between the test
sample x and its k-th nearest neighbour from class w;. Ina
form generalized to the multiclass problem, the algorithm can be

stated as follows:

c

3=1
Wk) = 4 (4)
resolved arbitrarily or by other

means if indecision has occured

\

that is, the test sample x is assigned by equations (4) to the
class W having the smallest distance between X and its k-th NN

from class W,. Note that in equations (4) (and the subsequent
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NN algorithms) indecision could only occur if the measurement
space is discrete or a certain maximum limit has been imposed on
di(k) (or other distance-related measurements). It has been
shown (Patrick and Fischer, 1970; Goldstein, 1972) that if the
measurement space is continuous, egquations (4) are equivalent to

a v-NN rule (where v=ck) provided the v-NN rule produces no ties.

5.2.2.3.2 k—means nearest neighbour classification rule

The k-means NN rule was proposed by Rabiner et al
(1979). Let ai(k) be the averaged distance of the k nearest

neighbours from class W, of a test sample x, i.e.

k
ai(k) = (1/k) Z 4;(a
ag=1

The rule then assigns x to the class with the smallest averaged

distance. Formally, it is defined as

Ww(k) = < (5)
resolved arbitrarily or by other

means if indecision has occured.

.

5.2.2.3.3 Distance-weighted NN classification rule

1976) has suggested that nearest neighbours
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closest to the test sample x should be weighted most heavily. He
has proposed the use of a weight which decreases with increasing
sample-to-neighbour distance. Iet d(j) be the distance between X

and its j-th NN x(j). Dudani defines the weight w(j) for the j-

th NN as
,
d(k) = d(3)
d(j)#d(1)
d(k) - d()
w(j) =% (6)
1 d(j)=d4(1).

The distance-weighted k-NN classification rule then assigns x to

class w, with the largest total weight -Ji’ i.e.,

- C
wi if Ji = max q
a1
Wk) = < (7)

resolved arbitrarily or by other

L means if indecision has occured
where

k
Vi =Y worrtie ), o))
31
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1 i 00) = w,

0 £ 00) # w,
(the function I{ e(j),wi} is krown as the indicator function).

Before continuing to the next distance-related NN
classification algorithms, it is worth noting that the weight
defined in equations (6) will not improve the per formance of
equations (7) (in terms of averaged probability of errors for a
finite set of prototype samples) when compared with the k-NN
classification rule defined in eguations (1) (Bailey and Jain,
1978; Morin and Raeside, 1981; Macleod et al, 1987). Moreover,
Bailey and Jain (1978) have also shown that the asymptotic
performance (i.e., the performance when the number of prototypes
approaches infinity) of the k-NN classification rule is at least
as good as that of any weighted rule. The topics in this
paragraph are discussed further in section 6.2, where some new

results are presented.

5.2.2.3.4 Dasarathy's NN classification rule

Very often, information initially available to the
designer of a pattern recognition system is insufficient to
account for the future environment. In a medical problem, for
€xample, a new lung disorder caused by an ideopathic agent may
arise. In order to identify the possible existence of one or

more such undefined classes, Dasarathy (1976) has proposed the
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inclusion of a "near enough" parameter Ai in the nearest

neighbour classification rule. This parameter can be defined as

the maximum nearest neighbour distance determined over the set of

all prototypes belonging to class L.)i, i.e.

Ai =  max { min di(x.,x) }

] P
xjewi xpewi

where di(x ,xp) denotes the distance between two class a.)i

3
prototypes xj ard xp. On includirg this "near enough" parameter,

the k-th nearest neighbour classification rule (section

5.2.2.3.1) can be rewritten as

C
W, if d;(k) = min ds(k) <A;
3=1

wo otherwise.

N

Any test samples that fails the "near enough" criteria in
equations (8) will be discarded into a "rejected" class W, (as
in section 5.2.2.2.2). This set of discarded test samples can
then be subjected to further analysis by other techniques (such
as those mapping algorithms that have already been discussed in
chapter 4, or the graph-theorical algorithms developed by
Urquhart, 1983). This permits evolution of new classes as and
when deemed necessary by the designer(s) of the pattern

recognition system.
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5.2.2.4 Algorithms that are based on nonparametric estimation

5.2.2.4.1 Introduction

The above mentioned NN algorithms are constructed using
some rather ad hoc criteria (or what Dasarathy and Sheela, 1977,
refer to as "abstractions"), such as the different voting
mechanisms employed in subsection 5.2.2.2. These algorithms are
ad hoc because their derivations are not based on any rigorous
statistical/mathematical theorems. In this subsection, the
derivations of the algorithms are based on the Bayesian decision
rule (Devijver and Kittler, 1982), and hence the algorithms have
a better statistical/mathematical foundation. One disadvantage
of the following algorithms (contrast section 5.2.1) is that the
a priori probability Pi that a test sample x comes from class w;
(where i=1,2,...c) is assumed to be known and the class
conditional probability density function p(x wi) at the test
samples x is assumed fixed and continuous but of unknown form.
(Note that Pi is also assumed to be available in other
classification algorithms.) Iet Ljy be a loss (or cost) function
(that is the cost of making a wrong decision when the test sample
x is assigned to class w; when it is actually drawn from class

wj). If p(x ‘wi) is known, the Bayesian decision rule will

assign x to class w; if

fo) C

Z Ligp(x|w;py = min Z Lg5P(x | @525 ©)

j=1 1kgee 371
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Therefore, the aim of the following algorithms is to find an
estimate £>(x |wi) which is nonparametric and distribution-free
(i.e. independent of the underlying probability density function)
and which is based on the nearest-neighbour concept, of the
class conditional probability density function p(xlwi). The

estimate is to be consistent i.e. p(xiwi) is to approach

p(x (.oi) with probability 1.

3.2.2.4.2 Loftsgaarden and Quesenberry's classification rule

Loftsgaarden and Quesenberry (1965) have proposed a
non-parametric method of estimating the class conditional
probability density function which can be used for
classification. As in Goldstein's (1972) k-th nearest neighbour
classification rule, the distance d'i(k) between the test sample x
and the k-th nearest neighbour from class wi is calculated. The
volume of the hypersphere with radius d,(k) and centre x is then

given by

2244, (k)"

¢dl(k) )

n] (n/2)

(where | is the gamma function with parameter n/2). These

authors' estimator can then be written as
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p(xjw,.) = { 1. (10)

i BFa. (k)

i
Replacing the class conditional probability density function in
equation (9) by the estimated function given in equation (10)

yields the required classification rule.

5.2.2.4.2 Generalized k-nearest neighbour classification rule

Patrick and Fischer (1970) generalized the result of
Loftsgaarden and Quesenberry (1965) by introducing the concept of
a distribution-free tolerance region into equation (10). (For
different methods of constructing a tolerance region, refer to
the papers by Wilks (1941), ’Tukey (1947), Kemperman (1956), and
Fraser and Guttman (1956).) Essentially, the N, prototypes from
class w, are processed to form tolerance regions (say using
Tukey's construction technique) which partition the measurement
space. To each of these tolerance regions, an index will be
assigned. Let Ei be the index of the tolerance region for class
wy which contains the test sample x. If x happens to be on the
boundary between tolerance regions, the smaller index will be
chosen. The class conditional probability density function can

then be estimated as

Be; 1

p(xfwy = { 2 ()
N, +1 Bs.
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where ﬁei is the number of prototypes involved in constructing
a tolerance region ¢i and ¢51 is the volume of that tolerance
region. Again, the decision rule is obtained by replacing

p(x|w;) in equation (9) by equation (11).

It is easy to observe (Patrick and Fischer, 1970) that
if a spherical tolerance region is used in the above estimate
(i.e., a set of all points inside the hypersphere centered at x,
which contains k - 1 class w, prototypes inside, one prototype
sample on the surface (which is not in the tolerance region), and
the rest of the Ni - k prototypes outside), equation (11) becomes
the estimated class conditional probability density function used

by Loftsgaarden and Quesenberry (1965).

On the other hand, it has been shown (Patrick and

Fischer, 1970) for a two-class problem, the decision rule with
E(xlwi) given in equation (11) is equivalent to both the k-th-NN
and k-NN classification rule if the following conditions are met.
They are

(a) a spherical tolerance region is used in equation (1l1),

(b) 'BE’ = PE: = k in equation (11),

(c) a 0-1 loss function is used in equation (9), and

(d) Py/P, = (Ny + 1)/, + 1) in equation (9).

5.2.2.5. Remarks: choice of NN algorithm

With the possible exception of the third category

(section 5.2.2.4), all the above algorithms are easy to implement
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and to use. The choice of algorithm is problem/data dependent.
In certain problems, the simple k-NN classification rule may be
better than the rest of the algorithms. On the other hand, some
problems would prefer a rejection to a wrong decision, and in
these circumstances the (k,)-NN or (k,ﬁ.i)—NN rule may be
preferable. Particular rules may be suitable for particular
problems: Rabiner et al (1979), for example, claim that their
rule is best suited for the speech recognition problem they were
tackling. However, if the designer is uncertain about the
sufficiency of his initial information, Dasarathy's NN
classification rule may look more attractive. When more
information about the data is available, such as the a priori
probability, the application of Patrick and Fischer's algorithm
may be more appropriate. On the whole, the best strategy seems
to be to experiment with each algorithm and to fimd the one that

best suits the problem as well as its associated environment.

5.3 Properties of nearest neighbour classification rules

5.3.1 Introduction

Three factors have to be considered in selecting and
evaluating a classification rule (Penrod, 1976). They are
(a) the cost of implementation (development) and use,
(b) finite sample performance, and

(c) infinite sample performance.

Factor (a) has been addressed throughout the previous
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sections and will not be considered further. 1In short, this
factor depends on the actual problem. The finite sample
performance, factor (b), of a rule with a particular data set
which is currently available is even more important. Without the
knowledge of the underlying probability density functions (class
conditional or unconditional) of the prototype samples and/or the
a prior probabilities, the smallest possible probability of error
or minimal risk, i.e. the Bayes risk E*, is unknown to a
designer. Thus, even if the data set is quite large, there is no
way to know how well the selected rule will perform. 1In fact,
even though the rule should do reasonably well in the large
sample case, its performance with the data set available may be
unacceptably bad if either the inherent risk of the data set is
high or simply the data set is not large enough. Since this is
by itself a major research area, the discussion will be deferred
to the next chapter where such a problem will be considered for a
single class of nearest neighbour rules, namely weighted nearest

neighbour rules (Dudani, 1976; Macleod et al, 1987).

In this section, a brief discussion is given of the
theoretical results for nearest neighbour classification rules
when the number of prototypes is infinite. These include
convergence, asymptotic bounds, consistency and the rate of

convergence.

5.3.2 Convergence of MN classification rules

Given an infinite prototype set, both the unconditional
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probability density function (pdf) of the nearest neighbours and
their respective a posteriori probabilities approach the
unconditional pdf p(x) of the test sample x and its a posteriori
probability p(wil X) (sometimes also denoted as "Li(x) or simply
‘q_i, where i= 1, 2, ...,c) respectively (Devijver and Kittler,
1982; Peterson, 1970). This fact is basic to theoretical studies
on convergence of NN classification rules when the number of

prototypes tends to infinity.

Let ek(x) be the finite sample, conditional probability
of error of a NN classificaton rule given the test sample x and

the set S(k) of k nearest neighbours (where S(k)C.SN), i.e.

ék(x) —pr{ 0% W [x, s(k) }

C
=Zpr{ 0=, wrw |xsmK) (12)

i=1

where @ and (@ are as defined in sections 5.2.1 and 5.2.2.2.1
respectively. Since all the observations (i.e. the prototype
samples and the test samples) are assumed to be independent and
identically distributed (section 5.2.1), equation (12) can be

rewritten as

C ~
S =Y prie=o; |xeries @ |sw)

i=
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c
=Zﬂi(X)Pr{‘*’9’ W, ~S(k) } (13)

i=1

where Pr{ (:’ ¥ wil S(k) } depends on the a posteriori
probabilities of the k nearest neighbours. The problem of the
convergence of a nearest neighbour rule is to show that ;k(x)
approaches a constant as the number of prototype samples N
increases. Cover and Hart (1967) have shown that the expected
value of ;k(x) converges to a constant Ek as N approaches
infinity under the conditions that the class conditional and

unconditional pdf's of the test sample x are continuous, i.e.

they have shown that

lim E { &y (x) } —> E, in probability (14)
N == o0

where E is the expectation operator. The constant E is known as
the average asymptotic error probability or simply the error rate
of the k-NN classificaton rule. Wagner (1971) and Penrod (1976)
have pointed out that the result in egquation (14) is important if
a designer has a large number of very large data sets. What a
designer really would like to know is what happens to a
particular NN rule when a prototype set approaches infinite size.
Fortunately, Wagner (1971) and Fritz (1975) have shown that
equation (14) aiso holds even without the expectation operator,

i.e.
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lim ek(x) o ek(x) in probability (15)
N == 00

under the same conditions as in Cover and Hart, where the
constant ek(x) is the conditional asymptotic probability of error
of the classification rule. Stone (1977) and Devroye (1981) have
further relaxed these conditions to (a) that p(x) is distributed
in a separable metric space (or non-atomic space) and (b) that
qi(x) is almost everywhere continuous (i.e. it is decomposable

into a continuous component plus a series of mass points).

5.3.3 Asymptotic bounds for NN classification rules

Cover (1968) in his classical study of nearest
neighbour classification rules gave the following bounds for the

constants E in the multiclass case as:

K
* *
for k=1, E 5E1_<_2E, and (16a)
*
for k > 1, E <E <E + (I/KE . (16b)

k

Gyorfi and Gyorfi (1978) tightened the bounds in expression (16b)

for k > 1, ' <E <E + (VI/RE. (16¢)

When only two classes aré involved, Cover and Hart

(1967) and Devijver (1979) further tightened the bounds for odd k

in expressions (16) to
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for k = 1, E < * *
or =1, _EISZE 1l1-E) (17a)

* *
for k>1andkodd, E' <E <E + (\/l/k"fT)El (17b)

where k' is the largest integer of k/2. The case when k is even
does not enter into expressions (17) because it has been shown

(Devijver and Kittler, 1982) that

By3 = By (18)

where j=1, 2, ....

On the other hand, Devijver (1979) has also shown that
the average asymptotic error probabilities Ek,ﬂ. and Ek,li (where
i=1, 2, ..., c) for the (k,%)-NN and (k,li)-NN classification
rules are always less than or equal to the Bayes risk E,‘r , except
when { or li is equal to k' (i.e. without rejection). 1In that
case, it is similar to Epr that is it is always greater than or

*
egual to E . Thus,

*
= 19
B OF Bg SE S B B, (13)

with § > k' and .Q,i > k'. Equation (19) also indicates that the
use of a reject option in (k,1)-NN and (k,li)—NN classification
rules may reduce the average probability of misclassification
below that of the Bayes risk, a very desirable property for the

two types of rules.
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5.3.4 Consistency and rate of convergence of NN classification

Devroye and Wagner (1980) showed that if (a) k => oo
and (2) k/N —> 0 as N —> 00, then using the inequalities of
Stone (1977),

Ek -—> E in probability as N = oo. (20)

That is, the NN classification rule is Bayes risk consistent if
conditions (a) and (b) are satisfied. With additional
restrictions and by using a recursive algorithm, Krzyzak and

Pawlak (1984) have also shown that
ek(x) —_— e*(x) in probability as N —> o0 (21)

where e*(x) is the Bayes risk given the test sample x (or
conditional Bayes risk). Again, equation (21) shows that the
conditional asymptotic probability of error is conditional Bayes

risk consistent.

If both conditions (a) and (b) are satisfied, Gyorfi
(1981) has shown that the rate of convergence of such a NN
classification rule is N 1/(2+ D/a) yhere a > 0. However, if
these conditions are not satified, Gyorfi (1978) and Fritz (1975)
have shown that the k-NN classification rules (k > 1) have an
exponential rate of convergence which depends on the number of
prototype samples N, the dimensionality n and the underlying

distributions of the prototype samples.

106



References

[01]

(02]

(03]

[04]

{05]

[06]

[07]

[08]

Bailey, T. and Jain, A.K. (1978). "A note on distance-

weighted k-nearest neighbour rules". IEEE Trans. on

Systems, Man, and Cybernetics, SMC-8, 311-313.

Cover, T.M. (1968). "Estimation by the nearest neighbour

rule". IEEE Trans. on Information Theory, IT-14, 50-55.

Cover, T.M. and Hart, P.E. (1967). "Nearest neighbour

pattern classification". IEEE Trans. on Information

Theory, IT-13, 21-27,

Dasarathy, B.V. (1976). "Is your nearest neighbour near

enough a neighbour". Proceedings of the first

International Conference on Information Sciences and

Systems, Patras, Greece, August, 1976, 114-117.
Dasarathy, B.V. and Sheela, B.V. (1977). "Visiting nearest
neighbours: a survey of nearest neighbour classification

techniques". Proceedings of the International Conference on

Cybernetics and Society, May, 1977, 630-636.

Devijver, P.A. (1977). "Reconnaissance des formes par la
m&thode des plus proches voisins". Doctoral Dissertation,
University of Paris VI.

Devijver, P.A. (1979). "New error bounds with the nearest

neighbour rule". IEEE Trans. on information Theory, IT-25,

749-753.

Devijver, P.A. and Kittler, J. (1982). Pattern Recognition:

A Statistical Approach. Prentice-Hall International,

London.

107




[09] Devroye, L.P. and Wagner, T.J. (1980). "Distribution-free
consistency results in nonparametric discr imination and

regression function estimation". The Annals of Statistics,

8, 231-239.
[10] Devroye, L.P. (1981). "On the inequality of Cover and Hart

in nearest neighbour discrimination". IEEE Trans. on

Pattern Analysis and Machine Intelligence, PAMI-3, 75-78.

[11] Dudani, S.A. (1976). "The distance-weighted k-nearest

neighbour rule". IEEE Trans. on Systems, Man, and

Cybernetics, SMC-6, 325-327.

[12] Fix, E. and Hodges, J.L. (1951). "Discriminatory analysis,
nonparametric discrimination". Project 21-49-004, Report
No. 4. USAF School of Aviation Medicine, Randolph Field,
Texas, February 1951.

(13} Fix, E. and Hodges, J.L. (1952). "Discriminatory analysis,
small sample performance". Project 21-49-004, Report No.
11. USAF School of Aviation Medicine, Randoclph Field,
Texas, August 1952,

[14] Fraser, D.A.S. and Guttman, I. (1956). "Tolerance regions".

Annals of Mathematical Statistics, 27, 162-179.

[15] Fritz, J. (1975). "Distribution-free exponential error
bourd for nearest neighbour pattern classification". IEEE

Trans. on Information Theory, IT-21, 552-557.

[16] Goldstein, M. (1972). "kn—nearest neighbour

classification". IEEE Trans. on Information Theory, IT-18,

627-630.

108




[17]

(18]

[19]

[21]

[22]

Gyorfi, L. (1978). "On the rate of convergence of nearest

neighbour rules". IEEE Trans. on Information Theory,

IT-24, 509-512.

Gyorfi, L. (198l). "The rate of convergence of k -NN
n

regression estimates and classification rules". IEEE

Trans. on Information Theory, IT-27, 362-364.

Gyorfi, L. and Gyorfi, Z. (1978). "An upper bound on the
asymptotic error probability of the k-nearest neighbour

rule for multiple classes". IEEE Trans. on Information

Theory, IT-24, 512-514.

Hellman, M.E. (1970). "The nearest neighbour classification

rule with a reject option". IEEE Trans. on Systems,

Science and Cybernetics, SSC-6, 179-185.

Kemperman, J.H.B. (1956). "Generalized Tolerance Limits".

Annals of Mathematical Statistics, 27, 180-186.

Krzyzak, A. and Pawlak, M. (1984). "Distribution-free
consistency of a nonparametric kernel regression estimate

and classification". IEEE Trans. on Information Theory,

IT-30, 78-8l.
Loftsgaarden, D.O. and Quesenberry, C.P. (1965). "A
nonparametr ic estimate of a multivariate density function".

Annals of Mathematical Statistics, 36, 1049-1051.

Luk, A. (1987). "Nearest neighbour classification".
Internal Report, University of Glasgow.

Macleod, J.E.S., Luk, A. and Titterington, D.M. (1987). "A
re-examination of the distance weighted k-MN classification

rule". IEEE Tran. on Systems, Man, and Cybernetics, to be

published.

109




[26]

[27]

[28]

[29]

(31]

[32]

(33]

[34]

Morin, R.L. and Raeside, D.E. (1981). "a reappraisal of

distance-weighted k-nearest neighbour classification for

pattern recognition with missing data". IEEE Trans. on

Systems, Man, and Cybernetics, SMC-11, 241-243.

Nilsson, N.J. (1965). Learning Machines. McGraw-Hill, New

York.
Patrick, E.A. and Fischer, F.P. II. (1970). "A generalized

k-nearest neighbour rule". Information and Control, 16,

128-152.

Penrod, C.S. (1976). "Nonparametric estimation with local
rules". Ph.D. dissertation, University of Texas at Austin.
Peterson, D.W. (1970). "Some convergence properties of a

nearest neighbour rule". IEEE Trans. on Information

Theory, IT-16, 26-31.

Rabiner, L.R., Levinson, S.E., Rosenberg, A.E. and Wilpon,
J.G. (1979). "Speaker-independent recognition of isclated

words using clustering techniques". IEEE Trans. on

Acoustics, Speech, and Signal Processing, ASSP-27, 336-349.

Stone, C.J. (1977). "Consistent nonparametric regression".

The Annals of Statistics, 5, 595-645.

Tomek, I. (1976). "A generalization of the k-NN rule".

IEEE Trans. on Systems, Man, and Cybernetics, SMC-6, 121-

126.
Tukey, J.W. (1947). "Nonparametric estimation II.
Statistically eguivalent blocks amd tolerance regions - the

continuous case". Annals of Mathematical Statistics, 18,

529-539.

110




[35] Urquhart, R.E. (1983). "Some new techniques for pattern
recognition research and lung sound signal analysis".
Ph.D. thesis, University of Glasgow.

[36] Wagner, T.J. (1971). "Convergence of the nearest neighbour

rule". IEEE Trans. on Information Theory, IT-17, 566-571.

[37] Wilks, S.S. (1941). "Determination of samples sizes for

setting tolerance limits". Annals of Mathematical

Statistics, 12, 91-96.

111




Some new results in nearest neighbour classification

(The author would like to express his thanks to Professor D.M.
Titterington, to Dr. J.E.S. Macleod, and to the referees of two
of the author's publications cited herein, for their helpful
advice and comments during the preparation of this chapter; and
to Dr. D.J. Hand for helpful discussion during the presentation
of a paper in the British Pattern Recognition Association Third

International Conference, St. Andrews, 25-27 September, 1985.)

This work was supported by the Croucher Foundation, Hong Korg.




Some new results in nearest neighbour classification

Summary

This chapter presents some of the recent results on
nearest neighbour classification. 1In particular, the finite
per formance of the weighted k-NN rule is compared with that of
the traditional k-NN rule. Macleod et al (1987) have shown that
a weighted rule may in some cases achieve a lower finite,
conditional probability of error than the unweighted rule when
the size of the prototype set is finite. This conclusion was
confirmed by solving analytically a particular simple problem ard
by experimental results using a generalised form of Dudani's

weighting function.

An alternative nearest neighbour classification scheme
is also introduced. Using a finite set of gaussian data, its
finite behaviour is examined. Modifications to reduce rejections

are suggested.

6.1 Introduction

This chapter is divided into two parts. The first part
addresses the guestion left over from chapter 5, namely, the
finite sample performance (i.e. the per formance when the size of
the prototype set is finite) of a nearest neighbour classifier
(section 5.4.1). As this is a very difficult problem, only one

type of NN classification algorithm, viz the weighted k-NN rule

112



(section 5.2.2.3.3), will be examined in the next section
(section 6.2). As mentioned in section 5.2.2.3.3, Bailey and Jain
(1978) have proved that the asymptotic conditional probability of
error ek(x) of the unweighted k-NN rule (section 5.2.2.2.1) for a
test sample x is lower than that of any weighted k-NN rule. In
section 6.2, this conclusion is reconsidered for the case when
the size of the prototype set is finite. 1In particular,
equations for the finite, conditional probability of error ;k(x)
of x are developed. It is then argued that a weighted rule may
in some cases achieve a lower ék(x) than the unweighted rule.
This conclusion is confirmed by analytically solving a particular
simple problem and, as an illustration, experimental results

obtained using a generalised form of Dudani's weighting function

(1976) are also presented.

The second part (section 6.3) of this chapter
introduces a new type of NN algorithm. Essentially, the nearest
neighbours in S(k) are examined sequentially in order of
increasing distance from the unknown sample x until a specified
majority m of votes in favour of some pattern class over its
nearest rival occurs. Again, experiments with a finite number of
normally distributed prototype samples are described. As with
the (k,Q) or (k,.li) NN classification rules, rejection increases
as m increases. Therefore, modifications to reduce the
probability of rejection are also suggested in section 6.3.
Experiments are given to illustrate the results of these

modifications.
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6.2 Finite-sample performance of weighted k-mN classification

rules

6.2.1. Introduction

In many pattern classification problems, a set of
classified prototype samples (not necessarily completely correct)
and an additional set of test samples are available. Many
classical statistical pattern recognition techniques can be
applied. One of these techniques is the k-nearest neighbour (NN)
classification rule introduced in section 5.2.2.2.1. Another
intuitively appealing idea, due to Dudani (1976), is that a
prototype sample closest to an unclassified test sample should be
weighted most heavily. Dudani proposed the use of a weight which
increases as the diétance between the test sample and its nearest

neighbours decreases.

It has however been shown by Bailey and Jain (1978)
that the conditional asymptotic probability of error ek(x) of the
traditional unweighted k-NN rule (i.e. its performance assuming
an infinite set of prototype samples) is better than that of any
weighted k-NN rule. This conclusion is not disputed. In the same
paper, Bailey and Jain also present the results of an experiment
in which a k-NN rule gives a lower finite, average frequency of
misclassification than a distance-weighted k-NN rule using
Dudani's weighting function. Similar results were obtained by
Morin and Raeside (1981). These results would terd to imply that

the above conclusion for the conditional asymptotic probability
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of error may also apply when the number of prototype samples is
finite. However from experimental results in three recent
papers, one can gather evidence suggesting that it does not
apply. PBrown and Koplowitz (1979) used a NN rule weighted
according to the numbers of samples in the respective pattern
classes and obtained better performance than from the unweighted
rule on a finite prototype set. Keller et al (1985) proposed a
fuzzy k-NN rule which can be considered as another weighted rule
(weighting in this case being based on fuzzy logic); for a finite
number of prototype samples, these workers' rule also performed
better than the unweighted rule. Most interestingly of all from
the present viewpoint, Fukunaga and Flick (1985) (in a paper on
NN methods of Bayes risk estimation) used both distance-weighted
and unweighted distance measures and obtained lower

classification error rates when using the weighted measures.

The first aim of section 6.2 is to show that the

following hypothesis is not generally applicable:

Hypothesis 1 That the error rate of the unweighted k-NN rule is

lower than that of any weighted k-NN rule even when the number

of prototype samples is finite.

In section 6.2.2 the basic differences between the cases of
finite and infinite prototype sets are discussed, expressions for
the conditional probability of error of a test sample are
developed, and it is argued intuitively that under certain

~

conditions a weighted rule may achieve a lower e, (X
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wnweighted rule. In section 6.2.3, a particular example (2-NN, 1
dimension, 2 classes, 2 prototype samples per class, particular
class conditional probability density functions) is solved. It
is shown analytically, for this particular case, that a suitably
weighted NN rule gives a lower finite, expected (or average)
probability of error (i.e. E{ éz(x) } with the expectation
taking over all possible values of x) than the corresponding
unweighted rule for any prototype set (subject to the above
restrictions) generated from the specified pdf's. This example
may be regarded as confirming analytically what was shown or
suggested experimentally for the problems studied in the above
three cited references. It may also be regarded as a counter-

example to Hypothesis 1.

The second aim of this section is to investigate
Bypothesis 1 experimentally. It is shown in this section that
the higher average frequency of misclassification observed by
Bailey and Jain and by Morin and Raeside in the case of distance-
weighted k-NN classification is dve not to any inherent general
property of weighted k-NN rules but rather to the particular
weighting function used, that of Dudani (1976). In section 6.2.4
a generalised version of Dudani's rule is proposed and
experimental results are presented to show that in some cases a
lower finite, average freguency of misclassification can be

achieved when using the weighted measure.

116




6.2.2. Classification error of nearest npeighbour rules when the

number of prototype samples is finite

For the sake of simplicity, a two-class problem is
considered. Formally, let SN be a set of N classified prototype
samples { (%, ©4), (X5, 05) 1 woes (X0 © ) } where 9-1 is the
label of the prototype sample X and may be assigned to either
class 0.)1 or class 0.)2. Let x be the unclassified test sample
and (x(3), B (i)) be the j-th nearest neighbour (j=1, 2, ..., k)

to x.

The conditional asymptotic probability of error ek(x)
of the k-NN rule for a test sample x can be expressed in terms of
the a posteriori probabilities of the two classes w, and w,.

For r=1,2,...,

r-1

2r- 2r-3-1
€pr-1(¥) = M () Z(r )Ql 3

=0

l 2r- l
. 0, X>Z(2‘ HERLE IS

ﬂl<X>Z(” n e

(it s o
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where rli(x), i=1,2 is the a posteriori probability of class wi’
SZr is the set of 2r nearest neighbours, ard

g is an error function due to the resolution of ties (which

may or may not depend on Sop+ For generality of

notation, g is denoted by g(Szr) in the above equation).

(c.f. Devijver and Kittler, 1982, page 77).

When the number of prototype samples is finite, the
above equations do not hold in general because the a posteriori
probability of wi given the j-th nearest neighbour x(j) for any
j=1,2,...,k will not in general equal the a posteriori
probability of W given the test sample x. Thus, following
Fukunaga and Flick (1985), the a posteriori probability of wi

given x(j) has to be expressed as

N+, =1 (2a)
Ny (x(3) = Nyx + by (2b)
M,xG) = N, + by (20)

where hj is the amount of "distortion" (or deviation) between the
a posteriori probabilities of x(j) and x (hereafter, hj will be

referred to as finite distortion). In the following development,

for clarity, the positive sign in equation (2b) is arbitrarily
chosen. With the help of equations (2), the finite, conditional
probability of error of the test sample x for a finite prototype

set can be rewritten in the following way. For r=l;2se..,
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2r-1

\ = @n@
ezr_l(x) - e2r—l(x) +ZArq hZ?—l

ag=1

e, (X) = e, (%) + Z B0 4 (g(s, ) - g(s, )}

(3a)

(3k)

In equations (3), h(q) denotes the average of all g-

k

fold products involving different factors drawn from {hp :

p=1,2,...,k}. For instance,

k

(1) _ -12:

hk =k hp’
=l

=3
~
I

k-1 k
k\-1
k '(2) ZZ Bghr

=1 t=ptl

- k
(k) _ '"'
hk = hp.
Pl

(@ .
Also in eqguations (3), {Aéq)} and {Br } are functions

of ﬂl(x) and le(x), independent of the {hp}. The fact that, in

general, BY) = 0, is noted by Fukunaga and Flick (1985).
r
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To go further, the tie breaking mechanism has to be
specified in detail. (Note that, in Fukunaga and Flick's results
ties were "rejected" from consideration.) Suppose, for instance,

that ties are broken at random. Then, for r=1,2,...,

2r r r
ats,) = w2 2) nfmnim.

In this case, it turns out that

e, (X) = e, (X). @

The result in eguation (4) is established by the same argument as
in Devijver and Kittler (1982), p.101 for the expected values,
averaged over X.

It does not follow, however, that ezr(x) = e2r—1(x)’
although interesting relationships do appear. The following

conjecture was suggested by Titterington (Macleod et al, 1987):

) (@
Copoq (X)) = ey (%) +ZAr horq (5a)
ag=1
. 2r-1 —_—
ezr(x) = e2r-l(x) +ZA](:q)hg) (56)
ag=1

As yet, there is no general proof of this result,
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although it is easy to check that the coefficient of h(2r)
2r

equation (5b) is indeed zero. It is less easy but possible to

in

confirm that the important first-order terms in equations (5) do
match (Macleod et al, 1987). Titterington (Macleod et al, 1987)
has pointed out the fpllowing interesting statistical conclusions
from equations (5):
(a) If "E" denotes expectation over the distortions {hp} and if
the prototype set is very large,then
Eézr(") = Eézr—l(’"'
(b) If ties are broken at random and not simply rejected as
Fukunaga amd Flick (1985), then éZI(x) does contain first-
order terms in the distortion.

~

(c) e2r(x) and e (x) differ in moments of higher order than

2r-1
first.

From the above equations, it is clear that these finite
disteortions {hp: p=1, 2, ..., k} will in general affect the
finite, conditional probability of error of the k-NN rule
whenever a finite set of prototype samples is used. If a
weighting function is carefully constructed, the a posteriori
probability of wi given the j-th nearest neighbour x(j) may be
altered so that the finite distortion hj will be reduced. This
is equivalent to the replacement of hj in equations (2b) and (2¢)
by a new variable h, where bl < hy. On substituting this set of
variables {hI‘D: p=1, 2, ..., k} into equations (5) it is not
difficult to see, that for a finite number of prototype samples,
the finite, conditional probability of error of the sample X may

be less with a weighted rule than with the unweighted rule.
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Section 6.2.3 we examine el(x) ard ez(x) in more detail
for a particular example. As we shall see, the 1-NN rule is

often equivalent to a weighted 2-NN rule, so that the compar ison

~ ~

between e1 (x) and e2 (x) has implications as a comparison between
unweighted amd weighted 2-NN rules. From the above formulae, the

differential effect in distortion is dictated by the difference

and hz(lj =

in the properties of h = (l/2)(h1 + h2).

1

6.2.3. A simple example

It is possible to develop expressions for the error
probabilities for a finite set of prototypes in terms of
integrals of pdf's. However evaluation of these integrals will
be feasible only if highly simplified models for the pdf's are
assumed. In this section an analytical calculation of the
finite, expected error probabilities for one particular, highly
simplified example is presented. BHere, the expectation operation

will be taken over all the possible values of a test sample x.

Recalling egquation (13) from section 5.2.4.2 and the
fact that when ties are resolved (i.e. when no rejections are
allowed), probability of error = 1 - probability of correct
classification, the finite, conditional probability of error can

be written as

C

e (x) =1 —Zni(x)Pr{ W = wil sk }. (6)

i=1
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The expectation of equation (6) gives the finite, expected error

probability and is given by

C

E{ & (x) }o=1- Z f[i(x)Pr{w= W, | sk)}p(x)dx (7)

i=1

where p(x) is the mixture (or unconditional) pdf of x and ¢ is
the number of classes. Using Bayes rule equation (7) can also be

written as

C

E {ex }=1- Zfi(X)Pr{“3 =, | S(k)}r.dx (8)
i=1

where fi(x) is the class-conditional pdf of x and 'n'i is the a
priori probability of class w;. It is possible to specify the a
posteriori probabilities and the mixture pdf of x and then to
calculate a solution for equation (7). However p(x) is related
to the class-conditional pdf's and the a priori probabilities,
and it is easier to specify fi(x) and "ITi. Thus, it is easier to
compute a solution for E{ ék(x) } using egquation (8) than with
equation (7). Furthermore, the second term on the right-hand
side of equation (8) (and equation 7) is the finite, expected
probability of correct classification. Thus, the problem reduces
to finding the analytical solutions for the finite, expected

probability of correct classification for the weighted and

unweighted k-NN rules.



It is worth remarking that, even in the example below,
the calculation (see below) of the finite expected probability of
correct classification from the assumed probability density

functions is very complicated and tedious.

The examEle

Again a two-class one-dimensional problem with a finite
number of prototype samples is considered: specifically, the

prototype set S, i1s assumed to have four elements, two from each

N
class. The a priori class probabilities for the test sample are
"ﬂ'l and ']Tz with ']Tl + "‘Tz = 1, and particular class-conditional
probability density functions (namely those defined in equations
9 and 10, below) are assumed. B2 weighted 2-NN rule is compared
with the corresponding unweighted one, 2 being the least number
of nearest neighbours which allows the use of a weighted rule.
For this example, it will be shown that there exists a weighted
2-NN rule which will achieve a higher finite, expected
probability of correct classification than the (unweighted) k-NN
rule. Since this conclusion applies for any set of prototype
samples (two per class) that could be generated from the
particular class-conditional pdf's assumed, we have in this way
shown analytically by counter-example that Hypothesis 1 is not
generally applicable.

To further simplify the notation, let a and b be the

first and secord nearest neighbours respectively (i.e. &=x(1) and

the

b=x(2)) and let w. and ) be the corresponding weights for
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first ard the secord nearest neighbour, respectively, such that
’

Wy > Wo. Further, let fl(x) and fz(x) be the class-conditional

probability density functions for class wl and class W

2

respectively and let them take the following simple forms (see

figure 6.1)

(3/4)( 1 - x%) x|< 1
£ =9 9)
O .
L otherwise
ard
f
3/4)(1- (x-1%)  |x-1]<1
fz(X) =4 (10)
L 0 otherwise.

Let Fl(x) and Fz(x) be the corresponding class—conditionai
cumulative distribution functions. From table 6.1 it is obvious
that the weighted 2-NN rule provides the same decision as the
unweighted 1-NN rule (note that, again, ties are resolved
randomly). The problem can be broken down into two subproblems:
the first one is to evaluate the finite, expected probability
PlNN of correct classification for the 1-NN rule, which in this
particular example is also the equivalent finite, expected

Probability of correct classification for the weighted 2-NN

Pronn
rule, and the second one is to evaluate the finite, expected

Probability PN of correct classification of the unweighted 2-NN

fule. It is required to show, therefore, that Py > Py

Note that, although the test sample x is allowed to
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Table 6.1 Decision table for the weighted 2-NN rule,

—

unweighted
2-NN rule and unweighted 1-NN rule

Class membership of Decision of the
nearest neighbour
Unweighted| Weighted | Unweighted
a=x(1l)] b=x(2) J1-NN rule |2-NN rule| 2-NN rule
Case A 1 1 1 1 1
Case B 1 9 1 1 *
Case C 2 1 2 2 *

Note * denotes ties condition has occurred. Ties were resolved

randamly.
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come from either class W, or class W,, the structure of the

prototype set (namely four samples, two from each ciass) will be

taken as fixed.

First subproblem: evaluating PlNN

It is obvious from table 6.1 that PlNN is equal to the
average, welighted with respect to the a priori class
probabilities "lTl and "ITZ for the test sample x, of the
probability PAl’ that, given that the test sample comes from
class wl, then its nearest neighbour a is also from class wl

and the corresponding probability associated with class w..

1 2
The former probability can be evaluated as follows.

Consider all possible choices x for the position of the
new observation, X (figure 6.1). The probability that X lies

within a particular small interval (x, x+dx) is

P( x < X < x+dx )zfl(x)dx. (11)

Let y be the absolute value of the distance between x and its
nearest neighbour a. If the neighbour is to belong to class wl,
one of the two prototype samples which belong to class W 1 must
be within a small range dy near either x+y oL X-¥. The
probability of this is

2{fl(X+y)dy + fl(x—y)dy}. (12)
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The factor of 2 is present because the nearest neighbour could be
either of the 2 prototype samples which belongs to class wl.
The other class wl sample is outside the interval (x~y,x+y), as

are the two class Cdz samples, which gives the following factors
towards the probability PAl:

{1 - Fy(xty) + Fj(x-y)H1 - F)(xty) + Fz(x-y)}z. (13)

In orinciple, PAl can be obtained by multiplying expressions
(11), (12) and (13) together and integrating over x and vy.
However, the problem is complicated by the fact that fj(x) =0
(j=1,2) outside finite intervals. It is therefore necessary to
split the range of x into four subranges, i.e. -1 < x £ -1/2,
~1/2 <x<0, 0<x<1/2and 1/2 < x {1 (see figure 6.1). When
X 1s in the rénge -1 < x < -1/2, then y is in the range
0 <y<1l-x. On splitting this range of y up into three
subintervals, namely 0 < y < l+x, 1#x < y < =x and -x <y < 1-x,
one sees that

(i) aty=1+x, x-y = -1, so Fl(x-y) is zero,

(ii) until y = -x, 1 = F,(x+y) + F)(x-y) = 1, and

(iii) for y > 1+x, the nearest neighbour has to be at x+y.

Bearing in mind these and other considerations, one can
write the contribution of the range -1 < X < -1/2 to the

robabil;
probability PAl as

2[%["™e, (0 L€ (eby) +£; (x-y) ] [1-F (oty) 48y (xy) Ay
-4 0
+2[ B[ £ 0 (xby) [1-F (x+y)1dydx

-1 Vi
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-‘/2 {=x
+ 2L f_x f1 (x) f1 (x+y) [l—Fl (x+y)] [I‘FZ(X+Y)]2dydx.

Bv similar arguments, the contributions from the other three

subranges of x can be written as

0 ro%
ZLIJO £, (x) (£ (x+y) +£, (x-y)] [1~Fl(x+y)+F1 (x-y) ] dydx
0 (14X
+ ZLJ” fl(x)[fl(x+y)+fl(x—y)] [l—Fl(x+y)+Fl(x—y)]
[1-F, (x+y) ] ayax
+ 2[ L f (x) £ (x+y)[l-F (x+y)] [1 ~F2(x+y)]2dydx
+ f,y”f, £, x) ffl(X+y)+fl(x-y)][l-Fl(X+y)+Fl(x-y)]
[1F, (x+y)+F, (x-y) ] “dydx
/
+ f’f f (x) [f (x+y)+f (x-y)]1 [1-F 1 (V) 4F (x-y)]
[1-F, (x+y)] dydx
Y rex
+ 2};2_!.” fl (%) fl {x-y) F1 (x-y) [l—FZ(x+y)] 2dydx
+2 ,/lf’o”‘ £ () (£} (xy)+£ (x-) ] [1-F; (x49)+F (x-y)]
[1-F , (x+y) 4., (x-y) ] “dydx
+2 ff' x £ 0 £ (x=9)F (x-y) [1- F2(X+y)+F2(X-y)]zdde

+ (+x - (x+ 2d iX.
2}}2[ £1(%) £] (x-y) F) (x-y) [1-F , (x+y) ] “dyd
Computation of the above twelve intearals gives P,y = 78.05%.

The probability PD1 of obtaining both x and a from

class W, can be fourd by similar methods and, by symmetry, the
$ame numerical solution can be obtained. Thus the finite,

Xpected probability of correct classification for the 1-NN and

the weighted 2-MN rules is

- = 78.058%.
= ’ITlpAl + ‘]TZPDI
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Second subproblem: evaluating PZNN

PZNN is equal to the average of the four cases listed
in table 6.1: the probability PA2 that, given that the test
sample x comes from class “"1' its two nearest neighbours a and b

are also from class (a)l; the corresponding probability PD2

associated with class w2; the probability Py, that, given that x
comes from class “"1' its nearest neiahbour a comes from class

(,..)1, whilst its second nearest neighbour b comes from class wz;
and the probability PC2 which has the same description as PBZ

except that the classifications of a and b are reversed.

Pao

first problem. Let z be the absolute value of the difference

can be evaluated using the same method as in the

between the distances of the test sample from its two nearest
neighbours a and b. Expressions (11) and (12) still hold.
Expression (13) has to be modified into the following two

expressions of probability

{fl(x+y+z) + £, (x-y-2)}dz

1
and

{1 - F,_(x+y+z) + F2(X—y—2)}2-

o

i into
Again, the ranges of x, a and b have to be split 1n

) . found: it
subintervals. Thus an expression for PA2 can be

] i tion of
Involves twenty-four integrals (see apperdix 6.A). Evalua

these integrals gives P,. = 53.64%.

A2
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Similarly, by symmetry, PDZ = 53.64%. P and P

B2 Cc2
correspord to situvations where ties can occur. Suppose that, in

this case, the decision is made for class wl or class w2 at

random. Then

an = TMiPaz * TPy + (1/2) (T +T,) Py +P. )

PAZ + (1/2) (PB2+PC2)

N

Pyy* (1/2)(1-P, )

(53.64 + 23.68)%

77.32%.

With reference to the above inequality, note that if

then PEZ denotes the probability of having a test sample from
class wl for which'the two nearest neighbours in the prototype
data are both from class (02.

Compar ing the solution of the first subproblem with

that of the second subproblem, it is obvious that

P

Puaw & Pun’ > Powne

Hence, for this simple example, it has been shown for any set of
Prototype samples (two per class) generated from the assumed
class-conditional pdf's that there exists a weighted k-NN rule

which will perform bovter in terme of correct clsssification than
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the traditional (unweighted) k-NN rule when the number of

prototype samples is finite,

6.2.4. A generalisation of Dudani's weighting function

For j < k, let dj be the distance (which can be defined
by any suitable distance metric) between the j-th nearest
neighbour and an unclassified sample x. Dudani (1976) defines

the weight wj for the j-th nearest neighbour as

-
dk - dj
- dk 7 d1
dk - dl
wj =< . (16)
Ll 4, = dl

(see section 5.2.2.3.3). The distance-weighted k-NN
classification rule assigns a label © (for the unclassified test

sample x) to that class with the largest total weight.

The weighting function in equations (16) effectively
removes the k-th nearest neighbour from participating in the k-\N
classification. This is because if dj = 4, in equations (16),
then we = 0. Let E, be the average asymptotic error probability
of the k-NN rule. It has been shown (Devijver and Kittler, 1982)

Therefore, from the above arguments and those in

e-weighted K-NN

that Ek < Ek—l'

section 6.2.2, one would expect that the distanc

iti k-NN rule
rule would not classify better than the traditional
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with ties resolved by some means

Equations (16) are therefore modified to

(
d. - d.
(dg dJ)+x(dS_dl)

ds;e'dl

w. =%
17

where
d_ is the distance between the test sample x and its s-th
nearest neighbour x(s) (s=k, k+1, ...), and

C is a positive constant.

It is obvious that when ds =d, and &€ =0, equations (17) become
the original weighting function proposed by Dudani. Since there
are many possible versions of equations (17), only the following
three special cases will be experimented with in this section.

(Case 1) when @& = 0 and x(s) depends on the value of k, i.e.

s = pk where p=2,3,.... The first two values of p

(i.e. p= 2 and p = 3) were investigated;

(Case 2) when & = 0 and s # k and s does not depend on the

value of k. Two such examples have been

experimented with, je. s =Nand s = (N/c), where

again N = total number of prototype samples, and

c = number of classes;

(Case 3) when s = k and &Cvaries. Again, two such examples
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were investigated. namely, with @& = 1.0 and

@ = 2.0.

The experiment

The new experiment that has been conducted was similar
to that described by Dudeni (1976) but used the weighting
functions of eguations (17). The sample set was a three-class
bivariate data set generated by a ramdom number generator using
NAG routines on a GEC 4180 computer. 3000 test samples were
generated. The experiment was performed six times on this same
set of test samples, each time with an independently generated
set of 150 prototype samples, 50 from each class. Figures 6.2 to
6.7 show the six sets of 150 prototype samples used for the
experiment. For each of the above three special cases, the
sample-based finite, average freguency of misclassification ?e or
simply averaged probability of error (as estimated by a simple
error counting method) over the six runs is plotted against the
number of neighbours k used for classification. The results are
shown in figures 6.8 to 6.10. For comparison purposes, the
correspording averaged probability of error estimated by the same
Method (a) for the k-NN rule with c-class ties broken randomly by
simulating a toss of a c-faced fair die, and (b) for Dudani's

distance-weighted k-NN rule, are also shown in the figures.

Although the above three special Cases are selected in

i e
a rather ad hoc manner, figures 6.8 to 6.10 Show that in som

; i i has
Cases Dudani's rule with the modified distance weighting
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performed better than the unweighted k- rule, for example when

k > 10 in figures 6.8 to 6.10. The worst performance of all is
from Dudani's unmodified rule. It must be emphasized that
although only the average plots were shown, the same observation
(i.e. in some cases Dudani's rule with modified distance
weighting has performed better than the unweighted k-NN rule) was

noted in each run.

Figure 6.11 illustrates the effect of varying & (with
s = k in equations 17) from 0.2 to 4.0 for three values of k
(namely, k = 3, 5 and 16) on one of the prototype sets (the sixth
prototype set, figure 6.7) used in the above experiment. It can
be seen that as & increases from 0.2 to 4.0, the (finite sample)
estimated probability of error I;e decreases and then eventually
levels off at different values of & for different values of k.

Again, in some cases (namely k = 5 and 16) the weighted k-NN rule

gives a lower frequency of misclassification than the unweighted

k-NN rule.

These results are further exper imental confirmation, 1n

addition to three references cited in section 6.2.1, that

Hypothesis 1 is not generally applicable. Indeed, in the

experiment the weighted rule (modified pudani) has sometimes out-

i ' f
performed the unweighted rule even with a ratio (number ©

Prototype samples per class) / (dimensionality) as large as 25 -

i.. with a prototype set which would be considered effectively

ifi ign. Thus
"infinite" for many purposes in classifier design

i " fini mple
Hypothesis 1 may not apply even for "fairly large finite samp
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sets.

6.2.5. Discussion

Although in section 6.2.3 only a 2-class one-
dimensional problem has been considered, the arguments can in
principle be extended to higher dimensions. The extension to the
multiclass problem will be more difficult and is beyond the scope
of this thesis. This example can be regarded as illustrating how
the equations in section 6.2.2 apply to a particular case. It
can also be regarded as a counter-example to the hypothesis that
the conclusion of Bailey and Jain for the conditional, asymptotic
probability of error also applies when the prototype set is

finite.

The following conclusions were arrived at in discussion
with Professor Titterington. The asymptotic comparisons between

two types of weighted k-NN rule have not been investigated.

However, this is achieved by Bailey and Jain (1978) for the case

where one of the weightings is special, namely, the unweighted

rule. A natural approach would be to follow the argument of

Bailey and Jain as far as their equation (9), put where their "m

ivi i i he next
and "t" now refer to nontrivial weightings. HOWever t

i hat
stage of the argument in their paper then fails. It seemst

] i tial
even asymptotic comparisons will require at least par

isti s-conditional
specification of characteristics such as the clas

i i ry to
densities £, and £, and, consequently, it will be necessary

i in section 6.2.3.
Wndertake numerical work on the lines of that in
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6.3 An alternative nearest neighbour classification scheme

6.3.1. Introduction

This section introduces a nearest neighbour
classification scheme (Luk ard Macleod, 1986) which is somewhat
different from those surveyed in section 5.2.1. The basic idea
will be described in the next section. As in the (k,4)-NN and
(k,li)-NN rules, rejection arises naturally from the basic idea
when the size of the prototype set is finite, Methads to reduce
the probability of rejection are suggested in sections 6.3.4 and
6.3.6. Experiments on gaussian data are corducted to demonstrate

the results of these modifications.

6.3.2. Proposed classification scheme

Let the set of N ordered nearest neighbours of a test
sample x be defined over a suitable measurement, such as the
Euclidean metric. This effectively maps a higher dimensional
Space to a ore dimensional space. The proposed classification
Scheme is to examine the nearest neighbours one at a time in

: X ~ votes &.
order of 1ncreasir~9 distance from Xx until the number of i

for class ), (i=1,2,...,c, c = number of classes) has exceeded
i

[ g . (7 i
the number of votes O,j for the nearest "rival" class w 3 j# i,

j i i the
3=1,2,...,0) by a majority m, where m > 1. At this point

roposed
algorithm stops and x is assigned to class w,- The propo

it will
fule is the same as the 1-NN rule whenm =1. Form >1,1

i until a
Continue to search the ordered set of nearest neighbours
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decision w(m), which depends on m, is made. It differs from the
(kyfl ;) -NN rule (section 5.2.2.2.3) in that (for m > 1) both k and
Qi are variable. Formally, for an infinite set of samples, the

rule can be defined as
w(m) = w if (ll_n'j)lm' Vj#l, i,j:llzl...'c' mzl (18

The convergence property of the rule, like that of the
k-NN rule (section 5.2.4), is guaranteed if h => oo and h/N ~> 0

as N -> oo, where

c

h = )
25
=l

(Rasically, it is necessary to show that none of the h nearest
neighbours fall outside a hypersphere of radius E as the number
of prototype samples approaches infinity. Then the a posteriori

probability of the nearest neighbours will approach the a

posteriori probability of the test cample x. It then follows that

the finite sample. conditional probability of error em(x) of the

ich is the
proposed rule will converge to a constant, say E. which 1

average asymptotic error probablllty of the proposed rule. T

i i n be
Proof is similar to Devroye, 1981, and a simpler version ca

found in Devijver and Kitter, 1982, page72-74).

s the prototype set SN is finite

0id the "curse of

In practical si tuation

and to ensure a small value of h/N (i.e. to av

1 subset can pe searched, say

finite sample size") only a smal

ijver and
(k < N), of the N classified prototypes (Devijve
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Kittler, 1982, page 108). Obviously, we can "reject” the test
sample x if the algorithm has searched th

rough kma nearest
neighbours without finding the requisite clear majority of votes
in favour of any class. Thus equation (18) can be rewritten as

/

i,j=1,2,.a.,C, m Z 1,

C
Z,Q < kmax (19a)
=1

(O

(m 'kmax) = ﬁ

Lwo otherwise (19b)
where wo is the class of rejected samples and CS(m,kmaX)
indicates that the decision depends on both m and k. .. It is
spparent that the value m should be small in order to prevent
excessive rejection in eguations (19). Since equations (19)
rather than equation (18) would have to be used in all practical
situations, the name "(m,kmax)—-nearest neighbour classification
rle" is suggested for the proposed method. A SImPlE exper iment
to investigate the effect(s) on finite probability of error (or
frequency of misclassification) Pg and finite probability of

rejection p_ at different valves of m & Ky is now described.

. . " i be
(For simplicity, the word "finite in both P, and By will

. - i e
dropped in subsequent sections: 1t will be obvious from th

content when "finite" is implied.)
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6.3.3. First experiment

The same three classes of 2-dimensional Gaussian data
as used in the experiment in section 6.2.4 is employed. Again,
the data set comprised 150 prototype samples (50 samples from
each class) and 3000 test samples. The test samples were
classified

(a) by the (m,kmax)—NN rule with various valves of m and km H
(b) by the k-NN rule with various values of k. for compar ison;
(c) also for comparison, by the (k,2)-NN rule with various

values of k and with Q = rk/c-l+ 1 = s (say) for each k
value; and

(d) again by the (k,8)-NN rule with various values of & for

k = 15 (referred to as the "(15,4)-NN rule").

The error probability and the rejection probability
were estimated by simple counting of the errors (rejections),
le. the estimates were respectively lge = N, / N -N) and l;r =
N, / N, where N = total number of test ssmples, N = number of
rejected samples, and N, = number of errors for accepted samples
(Note that 1;e is the estimate of the error probability for
accepted samples). Figures 6.12 and 6.13 show respectively Pe

and Pr against m at different values of kmax' Py ard P for the

k-NN rule, the (k,s)-NN rule and the (15,8)-NN rule are also
shown in figures 6.12 and 6.13; for the k-NN rule as used here,

all rejections are due to ties for maximum number of votes.
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6.3.4. Remarks on the first experiment

From the above experiment it is clear that with the

proposed method, for any value of kmax' P_ decreases as m

~

increases and P increases rapidly with m. 3 comparison with the
k-NN and (k,L)-NN rules is desirable. Figure 6.12 shows that for

the data set used, by a suitable choice of m and km the

~

ax'’
proposed scheme can be made to have a smaller Pe than is

achievable with the k-NN rule with any value of k studied.
Usually, this improvement is at the cost of a larger I;r' although
figure 6.13 shows that ];r for the proposed method can be kept (by
suitable choice of m ard Knax' TO levels that would probably be
acceptable (provided m is not too large). Over a small range of

A A

- i ' i 1 P_ was
values of m and kmax’ in this experiment, P as well as o

actually smaller than with the k-NN rule (edq. kmax=50’ m=5).

Thus in applications where a large reject rate is
tolerable, the proposed rule may have an advantage over the k-IN
tvle in sllowing use of the error-rejection tradeoff. However
since rules of the (k,Q)-NN family have a similar advantage, it

ls desirable to compare the (m,k__ )-NN rule with these rules.

Specifically. comparisons between the (15,4)-NN and (m,15)-NN

-NN rules, are
rules, and between the (m,k . )-NN and (k,s)-NN ’

' i ignifi tter
instructive, Neither rule can be claimed significantly be

i is to be
than the other under all circumstances, and which one 1

ication.
Preferred in a given application would depend on the appli

. the data set
Assuming similar statistical properties to those of

figures 6.12 and 6.13 show that the
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(m/kp o) "NN rule would allow more flexible use of the error-
rejection tradeoff in designing a classifier (see the large
vertical spacing of the points for the (15,)-NN rules in the two
figures). 1In this context it should be noted that although the
(m,kmax)—NN rule will tend to be computationally slightlv more
costly than the k-NN and (k,Q)-NN rules, the increase in cost
will be fairly small because of the overhead incurred in
calculating and sorting the interpoint distances. No particular
effort was made to investigate computation times systematically
or to optimise the algorithms used, but it may be of some
interest that & typical increase in CPU time was around 5% when
compared with the k-NN and (k,Q)-NN rules. However, see Luk
(1987) for alternative methads of reducing the time for searching

the - nearest neighbours.

A

Figure 6.14 is a plot of the estimate Por of the total

ro ili = - P ) when both rejections and
probability P, = P+ P ) J

misclassifications are regarded as errors. For each value of

k__ studied, P, for the proposed methad shows a minimum with
max v P

respect to m, the value of Pet at this minimum decreasing with

~

Increasing k__ . The increase of P, from this minimum value as
max

M decreases is due to misclassifications and the increases as m

A~

i - ; -NN rule is
Increases is due to rejections. P  for the k-NN

~

. : k,S —_
Iepresented by the solid line in figure 6.14. Pet for the (k,s)

W rule is not shown, because for all values of k this rule gave

value as did the k-WN rule. Viewed from

~

at leas
ast as large a Pet

i i he best
this standpoint there is little difference in t

R k-NN rule: however
Performance available from the (“"kmax) w and
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the main advantage of the proposec rule is not in this overall
per formance but in the use it allows to be made of the error-

rejection tradeoff.

A possible method of reducing the often high rejection

rate of the (m,k__ )-NN classification rule would be to invoke

max

the k-NN rule as a second stage to give a final decision

wim,k ,k) whenever the (m,kmax)—NN rule gives a rejection.

max

Equations (1Y) for the finite sample set case would then be

rewritten as

(

w; if (.li-lj)z_m,v ¥ i,

1,351,2,0e0C, m > 1,

C
Z lp < Koox (20a)
=l
W(m 'Kmax'k) = < )
W(k) otherwise {20k}

\.

where c:)(k) denotes the decision made by the k-NN rule

(rejections still outstanding could be resolved by other means or

left unresolved, according to the application). If our objective

. . j i i i guation
is simply to reduce the rejection in equatlons (19), equ )

(20b) can be implemented as a k-NN rule with a reject option

(i.e. a (k,L)-NN rule with § = k' = I—k/c-l, section 5.2.2.2.2).

Mgain, the rejection in the k-MN rule is due ties between two

. i w being used
Or more classes. However since the k-NN rule 1s no g

. cos i fficult to
on samples that are in some intultive sense difficu
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classify, it is not obvious that the error probability associated
with the use of eguation (20b) would be better than random. This
is especially important at large values of m, where the (m,kmax)-
NN rule has a huge reject rate. A second experiment was
therefore performed to investigate the effect(s) of using such a
second stage on the probability of error and probability of
rejection at different valuves of m and knax under a fixed value

of k (which is not necessary the optimal value for a particular

prototype set).

6.3.5. Second Experiment

The first experiment (section 6.3.3) was repeated with
k fixed as 15 in equation (20b). Those rejections (all due to
ties) still outstanding after equation (20b) was applied were
left as rejections (constrast section 6.3.7, below). The
probability of error and the probability of rejection were
estimated using similar technigues to those mentioned in section

©.3.3 and were defined as

2
"

estimate of probability of error for samples accepted
by the (m,kmax)~NN rule or (failing which) by the
15-NN rule (with a reject option)

Neb

. 1
N Nr
ard
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o
1

r estimate of probability of rejection (i.e. samples

rejected by equation 20a and still rejected by the
15-NN rule)

'
Nr

where N{, number of samples rejected by equation (20a) and the

15-NN rule (with reject option), amd
Neb = number of samples accepted by equation (20a) or the

15-NN rule, but misclassified.

Figure 6.15 and 6.16 show respectively Pe’ and Pr' against m at

different values of kmax' Pe and Pr for the traditional k-NN
rule (with k varied from 1 to 20) are also shown (s0lid lines in

figure 6.15 and 6.16).

6.3.6 Remarks on the second experiment

It can be seen from the second experiment that for both

values of kma Pr' at first increases and Pé decreases with

XI
increasing m. Both P; and Pé gradually level off at larger
values of m, depending on the values of k and kmax used. It is
also necessary to point out that the value of k (= 15) used in
equation (20b) is suboptimal for this set of data (figure 6.15).
A more careful examination of figure 6.16 will reveal that for

this data set PL{ is significantly less than P of the k-NN rule

over most of the range of values of m studied. Furthermore, at
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some of these values of m and kmax’ the proposed method has
achieved a smaller value of I;é than the smallest value (which is
when k = 18) for the k-NN rule (although the actual difference is
less than 0.4% and so0 it is not statistically very meaningful for
the number of test samples used in the experiment).
Nevertheless, this suggests that the performance (in term of the
probability of error) of the proposed scheme depends heavily on
the selection of the values for the parameters m, k and km in

ax
equations (20).

Having illustrated by the above experiment that the
combined effect of the (m,kmax)—NN rule and k-NN rule with a
reject option could achieve a slightly smaller Pé when the size

of the prototype set S, is finite, it is also interesting to

N
examine the case when no rejection is permitted. In that case,
the secord stage of eguations (20) could be implemented as a k-NN
rule with all the outstanding rejections resolved arbitrarily.
Again the probability of error would be of interest because this
probability is associated with the errors contributed by the k-NN
rule ard the arbitration process for the outstanding rejections.
Obviously, for this data set, if the error probability with
equation (20b) has the value around (c - 1)/c = 2/3 expected when
the decision between classes is made randomly (Devijver and
Kittler, 1982, page 28), the use of the second stage will be no
better than a simple random assignment of class membership for
the samples rejected by equation (20a). A third experiment was
therefore performed with the aim of studying error probabilities

when equations (20a) and (20b) are used with outstanding
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rejections resolved arbitrarily.

6.3.7. Third Experiment

The same data set as in section 6.3.3 was classified
using equations (20a) and (20b). 1In equation (20b), k was again
taken as 15. 1In contrast to the second experiment (section
6.3.5) rejections still left outstanding by eguation (20b) were
resolved arbitrarily by using a random number generator to
simulate a c-faced fair die. Since the random number generator
was non-repeatable, the test was conducted 10 times and the
results were averaged. The results are shown in figures 6.17 ard
6.18 in the form of plots against m (for different values of
kmax) of the mean values 13t ard 515 (over 10 tests} of the error

probabilities P, and P defined as follows:

t 157

>

P, = estimate of probability of error for all samples
Net
N

P15 = estimate of probability of error associated with

the use of the 15-NN classification rule

Net - Nea

ITE et —————

Ny
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]

where now Net total number of errors

N

it

eg = humber of errors for samples accepted by the

(m,kmax)-NN classification rule

Z
]

r number of samples rejected by the (m,kmax)—NN

classification rule

Note that the definition of Nr is not essentially changed: all
rejections in both experiments are due to the (m,kp ) "NN rule.
As before, N is the total number of test samples. In figure

6.17, B, for the traditional k-MN rule with rejections resolved

t
arbitrarily as above is plotted versus k for comparison (solid

line).

6.3.8. Remarks on the third experiment

When equations (20a) and (20b) are used with kmax = 50
and with outstanding rejections resolved by the above arbitrary
procedure, figure 6.17 shows that by a suitable choice of the

parameter m it is possible with this data set for the (m/k_ _ k)-

max
NN rule to achieve a smaller P, than the k-NN rule (for which the
appropriate value for comparison is that with the same value of k

as used in equation 20b viz k = 15; note however that this value
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is suboptimal). The improvement is small but can be significant:
the best improvement in this experiment was at m = 10, where Ft
was approximately 32.5% as against 34% with the 15-NN rule (the
95% confidence limits in figure 6.17 are at + 0.5%). This
conclusion applies only if enough samples are permitted to be

searched: using k = 15 yields no improvement on the

max
traditional k-NN rule (figure 6.17).

When m is large and the rejection by equation (20a) is
consequently huge (figure 6.13), the value of 'ﬁt is largely
controlled by k. Hence a minimum in a plot of total error rate
versus m is to be expected: such a minimum is observed in figure

6.17 at m = 10 for kmax = 50.

In figure 6.18, for Koax = 50 §15 at the larger values
of m decreases to about 42% as compared with the value 2/3
expected. Thus the use of the 15-NN rule on this data set to
classify samples rejected by the (m,kmax)—NN rule has given an
error rate which is better than random on these difficult-to-
classify samples, in spite of the arbitrary resolution of

rejections still left outstanding by the 15-NN rule.

The shape of the plot for k.. = 50 in figure 6.18 for
smaller values of m can be interpreted as follows: (a) for m =1
and m = 2 there are no rejections by equation (20a) ard Py is by
definition zero; (b) for intermediate values there are relatively
few rejections by eguation (20a) (e.g. for m=3 only 3 of the 3000

test samples were rejected - see figure 6.18) and P,g is no
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longer a statistically valid estimate.

6.3.9. Discussion

The behaviour of the proposed nearest neighbour
classification rule, the (m,kmax)-NN rule, has been investigated
in three experiments on a Gaussian data set comprising 150
prototype samples and 3000 test samples. For this data set, the
first experiment has shown that the proposed scheme can give a
lower error probability than the k-NN classification rule but
tends to give a higher rejection probability. The rejection
probability can become very high in some circumstances but can be
kept down by suitable choice of the parameters m and kmax to
levels that are probably acceptable. The first experiment has
also indicated that the proposed method can be used to complement
the (k,2)-NN rule because of the difference in the rejection
probability. It is suggested that the proposed rule, in spite of
its probably larger computational cost, could be useful in
applications where a low error probability is essential and a

somewhat large rejection rate is tolerable, and where the (k,)-

NN rule cannot achieve the necessary tolerable rejection rate,

The secord arnd third experiment have shown that lower
finite probability of error can in some cases be achieved when
the k-NN rule is used to classify the samples rejected by the

(m )-NN rule than when the k-NN rule is used alone. The

’kmax
reduction may not be significant, but it is accompanied by a

significant reduction in rejection probability (where
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applicable).

Several other questions have been left open in this
section. Firstly, what are the asymptotic per formance and the
rate of convergence of equation (18) compared with the k-NN and
(k,L)-NN classification rules? Secondly, what is the actual
relationship between the misclassification rate of the proposed
scheme and the Bayes risk (or error)? Thirdly, how is one to
determine an optimal choice of the parameters m and kmax? These

difficult questions will be left for future research.
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Appendix 6.A: Expression used to evaluate P,
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Chapter 7: Lung sound analysis

(a possible non-invasive examination system)

Summary

This chapter describes in detail each of the
implementable modules developed at this stage, and brings
together all results relevant to the proposed non-invasive
examination system for patients exposed to asbestos dusts.
Problems associated with the implementation of the respective

modules are discussed.

7.1 Introduction

It-has been mentioned in section 2.5.2 that one of the
most important abnormal physical signs of asbestosis in a patient
is the existence of persistent, bilateral, basal late-inspiratory
fine crackles. However, auscultation using a binaural
stethoscope is a rather subjective exercise. 1In fact, it has
been shown (Ertel, et al., 1966b) that each type of stethoscope
has its own freguency response: some types will attentuate the
higher frequencies while others will attentuate the lower
frequencies. Worse still Ertel, et al. (1966a) have demonstrated
that age and some ear disorders, like presbycusis, will affect
hearing through a stethoscope. In addition there is always some
variations in response for different physicians. It is not
surprising that auscultation (with a stethoscope) was slowly

replaced in importance as advances were made in other diagnostic
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tools such as radiography and more recently nuclear magnetic

resonance imaging.

However, all this does not necessarily imply that Iung
sourd itself is not useful. It merely indicates that a suitable
transducer should be used to acquire the lung sound signals and
that objective techniques are reqguired to analyse and intepret
the acguired signals. As pointed out in section 2.5.2, for a
non-invasive system for routine examination of patients exposed
to asbestos dusts (possibly deployed by para-medical personnel),

lung sound seems to be a useful carndidate.

The overall structure for the proposed non-invasive
system has been introduced in section 1.3 (see also figure 1.1).
Each.individual module, with the exception of the unsupervised
learning module, will be described in more detail in this
chapter. As noted earlier in chapter 1, cone of aims of the
unsupervised learning module is to detect any new information in
a given environment when the classification module give rises to
excessive errors; ard as such, it has been deliberately left out
at this stage of the development because there is an insuffient
number of asbestosis patients. In chapter 8 a brief discussion
of this undeveloped module will be given in relation to possible

future research work.

The layout of this chapter is similar to the
organisation of the system itself. The theory relevent to this

part of the thesis have been introduced in chapters 2, 3, 4 and
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5, and hence only experimental results are presented in this
chapter. A very brief summary of the corditions of the subjects
used in this study is given in section 7.2. The data acquisition
module and the prepocessing and features generating module are
respectively discussed in sections 7.3 and 7.4. Experimental
results from the mapping module are given in section 7.5. 1In
section 7.6, the classification module will be described. This

chapter ends with a few concluding remarks in section 7.7.

7.2 Conditions of the subjects

Three groups (or classes) of male subjects are used in
this study: 5 patients with asbestosis; 5 patients who are known
to have been exposed to asbestos fibres but who have not (yet)
developed any known asbestos-related ailment (referred to as
exposed subjects) ; and 5 healthy non-smoking persons (normal
subjects). All asbestosis patients have established abnormal
physical signs and abnormalities in both their chest x-ray film
ard their pulmonary functional tests (section 2.5.2). Also worth
noting is that during the course of this project one of the

exposed patients died from a cardiac disorder.

7.3 Data Acquisition: the equipment and the procedure

Sounds heard at a chest wall have been transmitted
through a number of media: the lung parenchyma, the pleural
cavity and the thoracic cavity (section 2.2). Ideally, the

acoustic impedance of a transducer should match that of the chest
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so that the transmitted sounds will be a maximum (Hueter and
Bolt, 1955). Unfortunately, the impedance is not a constant at
different locations on the chest nor is it the same for different
individuals. Further, the elastic properties of the lung
parenchyma and other connective tissues may not necessar ily
follow the simple linear Hooke's law (which states that restoring
force is proportional to displacement) for a vibrating system.
For instance, the thermodynamic properties of a gas may change
considerably when the pressure becomes very high just before the
opening of an obstructed or restricted small airway. The problem
of turbulence and vorticity at the larger airways may add
additional complications to the computation of the impedance.
Consequently, there is still no known satisfactory model or

method to determine the impedance of the chest wall.

Howie (1981) and Tierney (1983) have done some
preliminary experiments to evaluate the acoustic impedance of the
chest. Their experiment centred on the assumption that table-
jelly has similar acoustic properties to human lung. However,
their studies have failed to take into account the impedance of
the thoracic cavity and the surrounding connective tissues.
Another more accurate estimation method is to determine the
impedance of the chest wall of a cadaver, but such an experiment

would raise ethical ard legal problems as well as technical ones.

For these reasons and also for compatiblilty with the
previous recordings, a transducer which was designed by McGhee

(1978), based on the work of Guard (1976), and was found to
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produce "reasonably usable output" (Urquhart, 1983) was used for
this study. It is an enclosure system with a General Radio
0.5-inch electret microphone (type 1962-9602) and a matched
preamplifier surrounded by a thick tube of aluminium. This tube
acts as a mechanical mass element which attentuates ambient sound
(acoustic interference and noise) reaching the microphone. The
head of this enclosure is fitted with a rigid Tufnol diaphragm
0.64mm thick to crudely match the impedance between the
microphone ard the chest wall. This improves the ability of the
microphone to detect sound from the chest and, at the same time,

reduces the interference recorded (Urquhart, 1983).

The microphone and the preamplifier have a -2dB
bardwidth from 5Hz to 20kHz (manufacturer's data) although this
is modified considerably by the aluminium tubing. Figure 7.1
shows the frequency response of the GR microphone and enclosure
in air (so0lid curve). The response of a standard Bruel and Kjaer
microphone (type 4134) is also shown for comparison (dotted
curve). PBoth microphones were tested under the same conditions,
ard both were calibrated against another standard Bruel ard Kjaer
microphone (type 4165). It can be seen that this enclosure
system has some rather irregular responses: (a) decreasing
attenuation from 20Hz to 2000Hz; (b) amplification within the
range of 3kHz to 6kHz; and (c) sharp attenuation at higher

frequencies.

The lung sound signals picked up by this enclosed

microphone system were recorded by a variable speed 4-channel
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recorder (Racal Store-4D) with the speed set at 30 inches per
second. Again the choice of the recording speed is mainly for
compatibility with the previous recordings done by Urquhart
(1983) so that the recordings may be reusable in this study. At
this speed it permits all frequencies between 0 to 10kHz to be

recorded (manufacturer's data).

All recording sessions were performed in one of the
consultation rooms of the Glasgow Royal Infirmary under the
supervision of an experience physician who has specialized in
respiratory disorders. Each subject was asked to remove all his
upper garments, to sit on a stool and to breath slighly harder
than normal through his mouth. (Again, this was largely
determined by the physician.) Auscultation with a stethoscope
was then performed at the lower (or basal) posterior part of the
chest near the ninth or tenth intercostal space prior to the
actual recording. After the physician had selected the site of
recording, the enclosed microphone system was held firmly with
both hards and gently pressed against that location. Throughout
the recording, the sound was continuously monitored by a Gould
15MEz oscilloscope to make sure that the recorded level was
acceptable. Around 10 breath cycles were recorded. The whole
recording was replayed (ard displayed on the same oscilloscope)
at a slightly slower speed and if there was no apparent serious
flaw (such as sudden movement of the hand which can cause a
lengthy and large deflection in the recorded signal), the
recording was accepted for further analysis; else the whole

procedure was repeated until the recording was acceptable.
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The transitions between inspiration and expiration were
recorded on a separate channel in the Racal Store-4D recorder.
At the beginning of this study, the transition was identified
using a thermistor mounted on a probe that was attached to a
headset worn by the subject. However because of difficulties
with the probe and for hygienic reasons, the breath transition
was finally identified manually by using a simple push button,
with inspirastion indicated by pressing the button and expiration

by releasing it.

After a recording sescsion, the tape was transferred
back to the University of Glasgow for further analysis. It was
discovered that in order to digitize the lung sound, the recorder
speed has to be reduced by a factor of 16 i.e. to 1.875 inches
per second in order to overcome software overheads in the data
logging programs (Campbell, 1983). The recorded signals were then
digitized (or sampled) by a 12-bit Micro Consultants analog-to-
digital converter with anti-aliasing filters under the control
of a small 8-bit Z80-based micro-computer (model SBC-100). Since
only inspirations are of interest in this study (section 7.1),
the whole digitization process was manually controlled with the
help of the breath transition signals and an oscilloscope. A
schematic diagram of the data acguisition module is shown in
figure 7.2. The digitized inspiration signals were permanently
stored on floppy diskettes and transferred to the GEC 4180
minicomputer for further analysis by using a dedicated file-
transferring SBC-200 microcomputer. Unfortunately, the GEC 4180

would not accept binary data without modifying it. Therefore,
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the whole transferring procedure has to include a binary-to-
hexadecimal conversion at the SBC-200 end ard a hexadecimal-to-
binary conversion (for storage efficiency) when the data finally

arrived at the GHC 4180.

The whole process was extremely time consuming. The
instrumentation tape recorder has to be transported back and
forth by van between the Glasgow Royal Infirmary (for recording)
ard the University (for playback and data logging). The data had
to be logged on the SBC-100 micro-computer under manual
supervision as described above, the floppy disc moved to the
SBC 200 for data transfer, the file translated from binary to
hexadecimal, the data transferred down-line to the GEC 4180 (with
further delays in the event of a fault on the SBC-200, the GEC
4180, or the line), and finally the data translated back to
binary. Moreover in view of the large size of the data files,
only about three could be held on GEC 4180 disc storage
simul taneously, and therefcre a new experiment involving the
whole data set necessitated repetition of all the above steps
from the data logging onwards. These cumbersome procedures
retarded progress on the project and had the effect that of the
50 sukbjects from whom recordings were obtained, the data from
only 15 could be analysed. The author understands that a more

efficient data acquisition system is now under development.
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7.4 Preprocessing and Feature Generation

7.4.1 Preprocessing: spectrum estimation

The lergth of the digitized inspiration signals varies
between 10k and 28k (of measurements) because the duration of
each inspiration varies (a) within an individual and (b) between
different subjects. Thus, it would be useful if these variable
lerngth data records could somehow be transformed into records of
fixed length. To do so, it may be necessary to transform these
data from one domain to another domain. The inherent cyclic
nature of respiration makes freguency domain analysis very
attractive. In this study, a datum with a variable number of
measurements in the time domain is transfomed into a datum with
fixed number of measurements in the frequency domain by weighted
overlapped segment averaging (WCSA) — section 3.3.3. More simple
estimation techniques which are based directly on the fast
Fourier transform (FFT) have been used by a number of researchers
(Murphy and Sorensen, 1973; Mori et al., 1978; Gavriely et al.,

1981; Urquhart et al., 1981).

It is worth pointing out here that another spectrum
estimation technique, the maximum entropy method (MEM), was
briefly investigated by Urquhart (1983). However, his
preliminary study indicated that it is very difficult to select
the right model order which is essential in MEM (Akaike, 1974;
Kay and Marple, 1981). Considering the variablity of each breath

cycle and the difficulty in finding the right model order, it is
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not surprising that relatively very few publications in lung

sound analysis are based on MEM or related technigques.

As pointed out in section 3.3.3 there are two methods
to implement WOSA, namely the algorithm due to Carter and Nuttall
(1980) ard that due to Yuen (1983). Both of these algorithms are
implemented in this study. In both methods, a 2048-point FFT is
used for each segment and the quadratic (or lag) window is a 5-
point Daniell window (Yuen and Fraser, 1979). 1In the algorithm
proposed by Carter ard Nuttall, each segment is 2k in size, with
a 50% overlapping between each segment. The degree of
overlapping is dictated by the window used with each segment
(Nuttall, 1981), and in this study is a minimum 4-sample
Blackman-Harris window. The averaged periodogram generated by
either method will contain 1024 points and have a resolu£ion of
about 4.69Hz. Figure 7.3 shows the averaged periodogram produced
by each algorithm for one of the asbestosis patients. It can be
seen that there is not much difference between the two
approaches. This may be attributed to the number of the
measurements taken for each inspiration. In the study by Carter
and Nuttall (1980), the slight difference between the two
approaches is given for data of comparatively short size and
large dynamic range. For this reason, the approach by Carter and

Nuttall was adopted for subsequent transformation.

Figure 7.4 illustrates a periodogram from one of the
exposed patients ard another ore from one of the normal subjects.

It can be seen that the asbestosis patient has a periodogram
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between 20Hz to 2000Hz than either the exposed or the normal
subject. Also worth notice is the small peak at around 3800Hz
for each of the three classes of subjects studied. This may be

due to the irregular response of the microphone rather than

related to the lung sound.

7.4.2 Feature generation

One of the most difficult parts of the design of a
pattern recognition system is the construction of the set of
features. Unlike the identification of the set of pattern
classes which is usually easy (for example in character
recognition, the set of characters is the set of classes), the
choice of features depends very much on the intuition of the
designer. (Of course, once the set .of features has been decided
on, there are many methods, for either selecting or extracting
the more useful ones.) 1In this study, once the inspiratory
signals have been digitized and transformed into the frequency
domain, the set of averaged periodograms can be considered as a
set of patterns. Following Urguhart (1983), the averaged
periodogram is divided into a number of freguency intervals, and
then a feature is generated from each freguency interval. 1In
this way the dimensionality is drastically reduced from 1024 to a

much smaller valuwe.

Also in their previous study, Urquhart et al. (1981)
have concentrated their analysis on frequencies between Z2Hz and_

400Hz. In particular they have indicated that frequencies below
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50Hz were of medical significance. Therefore, 6 frequency
intervals, and hence 6 features, were constructed between 2Hz and
S50Hz. Kraman (1983) suggested that sounds in that low frequncy
range probably originated from the chest muscle rather than from
the lung itself. Nevertheless, using only these 6 features,
Urquhart (1983) was able to distinguish beteen normal subjects
and a number of respiratory disorders, such as pulmonary oedema
and asbestosis. Thus whether or not Kraman's suggestion is
correct, Urquhart's results have established that lung sounds in
the low frequency range contain information that is useful in
distinguishing between lung conditions, whatever the mechanism by

which the sounds are generated.

In this study, the freguency between 4Hz and 2000Hz is
analysed because it has been shown (Benedetto et al., 1983) that
crackles in fibrosing diseases, like asbestosis and cryptogenic
(or idiopathic) fibrosing alveolitis, usually have some
significant high frequency components. Therefore, the range
between 0 and 2000Hz is divided egqually into 20 intervals, each
with a width of 200Hz. Hence a 20 dimensional feature vector can
be generated from each inspiration. For each frequency interval,
a feature is formed by averaging the estimated power (or the
components of the averaged periodogram) within that interval.
Furthermore, as Sayers (1975) has suggested, normalization is
useful for biological signals because it is usually the shape of
the spectrum rather than its actual magnitude that is
significant. Unfortunately, the most obvious normalization

procedure, that is dividing the average estimated power in each
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interval by the total power within 0 to 2000Hz, did not produce
the best result when some of the data were projected onto a two
dimensional space using the Kittler and Young transformation
(figure 7.5). After some trial and error experimentation, it was
found that, at least for this particular data set, the best
projection under the same transformation could be obtained by
dividing the log of the average estimated power in each frequency
interval by the log of the largest average estimated power
(figure 7.6). (This has the effect of raising each estimated
power to an index which is proportional to the inverse of the log
of the largest averaged estimated power.) Thus, this

normalization method is used in subsequent analysis.

7.5 Mapping

The above procedures obtain a 20-dimensional feature
vector for each inspiration. The purpose of the next stage of
the non-invasive system is to provide a user some visual aids.
One method of doing this is to project the 20 dimensional vectors
onto a 2 dimensional space through the application of one of the
linear mapping algorithms discussed in chapter 4. The idea is to
determine a mapping (or transformation) matrix U which optimizes
a certain criterion function and, at the same time, has a small
variance in the estimated scatter matrix (section 4.2.6).
Assuming that somehow the mapping matrix U has been determined
with sufficiently small variance, the user can then visually
interpret the projected data. For example, it may be possible,

with the help of the visual aid, to answer such guestions as
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Figure 7.5 A two-dimensional projection of 135 20—dimensional<
lung sound feature vectors using the K-Y
transformation. Each feature vector is normalized
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"Does the new inspiration belong to the normal class?" or "Are
there any relationships within the set of projected data?".
(Another practical application of this visual aid has been shown
in section 7.4 where different normalization techniques for the

feature vectors can be compared visually.)

Five linear mapping algorithms have been implemented in
this study: |
(a) Kittler-Young (K-Y) transformation (section 4.2.3),
(b) Rarhunen-Loeve (K-L) transformation (section 4.2.2),
(c) Fisher (F-S) transformation (section 4.2.4),
(d) Fukunaga-Mantock (F-M) transformation with the un-modified
weighting function (equation 14 in section 4.2.5), and
(e) F-M transformation with the modified weighting function
(equation 15 in section 4.2.5).
Figures 7.6 to 7.10 show the different 2-dimensional projections
achieved by using the above 5 methods for 135 20-dimensional lung
sourd feature vectors, 45 from each group of subjects studied.
It can be seen that the K-Y transformation provides the best 2-

dimenional projection for this particular set of data.

Furthermore, figure 7.6 shows that there are 3 slightly
overlapped clusters in the projection, each corresponding to one
group (or class) of the subjects studied. A greater overlapping
can also be seen between the exposed and the asbestosis patients.
(See Appendix 7.A for further comments on figure 7.6.) This is to
be expected because, as mentioned in section 2.5.1, the initial

pathological change of asbestosis is an alveolitis. The degree
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Figure 7.7 A two-dimensional projection of 135 20-dimensional
lung sound data using the K-L transformation.

Symbols as shown in figure 7.5.
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Figure 7.8 A two-dimensional projection of 135 20-dimensional
lung sound data using the F-§ transformation.

Symbols as shown in figure 7.5.
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Figure 7.9 2 two-dimensional projection of 135 20-dimensional

lung sound data using the F-M transformation with the
original weighting function. Symbols as shown in

figure 7.5.
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or intensity of the alveolitis will dictate the progress of the
disease, which varies from individual to individual. This
similar initial pathological change in the lung parenchyma may
account, in part, for the greater overlapping of the clusters

between the two classes.

Each component of the eigenvector (column of the
mapping matrix) can be considered as a weight for the
corresponding component in the feature vector. Thus each
component of the transformed feature vector is a linear weighted
sum of the original 20-dimensional feature vectors. Hence, the
relative importance of each component in the 20-dimensional
feature vector can be assessed by examinating the corresponding
component in the eigenvector. This also indicates the relative
importance of each frequency interval from which the feature is
generated. The components of each of the two eigenvectors formed
by the K-Y transformation are listed in table 7.1. Careful
inspection of these components suggested that both the high and
low frequency components are of importance. Anderson et al
(1986) point out that this may indicate that differences in

breath sounds as well as the presence of crackles are responsible

for the separation of the three groups in figure 7.6. It also

brings out the potential of this type of analysis technique.

It is also worth noticing, in figure 7.9, the effect of
outliers on the resulting projection when using the original F-M
transformation, i.e. method (d). This effect can be reduced by

using the modified weighting function suggested in section 4.2.5,
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Table 7.1 Components of the 2 eigenvectors formed by the K-Y

transformation.

Components First Eigenvector Secord Eigenvector

1 6.86 3.84
2 -0.57 4.89
3 8.39 -5.76
4 -3.90 -2.75
5 0.34 -3.65
(S -6.00 6.53
7 1.73 -1.10
8 -6.56 6.58
9 7.06 4.19
10 7.70 3.45
11 8.12 -12.18
12 -9.16 -1.28
13 -2.21. -2.05
14 4.67 2.19
15 -5.55 0.46
16 ~11.63 1.08
17 -1.94 8.95
18 7.79 -0.56
19 3.70 -0.66
20 2.21 -4.82
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as shown in figure 7.10.

7.6 Nearest Neighbour Classification

Section 7.5 has established that the mapping module can
provide the medical professionals with some useful visual
displays and, thus, also suggests the possibility of using such
displays in examinating patients, provided a suitable mapping
matrix has been found. 1In that case, the operator of the non-
invasive examination system can, through these displays,
determine whether a patient has asbestosis or not. (It must
again be emphasised that the proposed system should not be
considered as a replacement for other diagnostic tools. 1Its aim
is to provide a simple, routine, noninvasive and relatively
reliable indicator for asbestosis, thus off-loading some of the
unnecessary burden for the medical professionals and hopefully
enabling the physicians to pay more attention to those patients

who are suffering from the ailment.)

If the environment is perfectly known during the design
stage, these displays will probably be sufficient.
Unfortunately, the environment is usually only partially known to
the designer. Thus, when the system becomes operational, it may
be necessary to detect the new or changing environment (if such
information is available). One of the simplest ways is to use the
nearest neighbour (NN) classification rules. (Reasons for
preferring NN to other types of classification rules were

discussed in section 5.2.1.) Here, the classification scheme is
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used to indicate whether the existing information about the
system is sufficient of not. A simple indicator will be the
number of errors and/or rejections (if a reject option is used)
committed by the NN classification rule. However, when the
proposed system is commissioned, the new lung sound signals from
some new subjects (or using the terminology introduced in chapter
5, i.e. the test samples) will be unclassified (i.e. the operator
will not know to which group the new subject belongs). Thus it
is impossible to know whether a test sample has been classified
correctly or not. Nevertheless, the system that is proposed here
is off-line in nature. Therefore, it is possible to estimate the
average probability of error (or error rate) for a batch of test
samples (Fukunaga and Kessel, 1971). If the existing information
is inadequate, the average error rate should increase above a
threshold t, which is predefined by the designer. At that point,
some other mechanisms can be invoked to reveal the new
information, for example the data exploratory technique used by
Urgquhart (1983). Unsupervised learning algorithms can also be

used to reveal such information (chapter 8).

The first task in constructing this module is to select
a NN classification rule that will give the smallest expected
probability of error. Unfortunately, the number of classified
lung sound feature vectors (prototype samples) available in this
study is too small to permit the implementation of those methods
discussed in section 5.2.2.4. Although it is possible to
implement those discussed in sections 5.2.2.2, 5.2.2.3 and 6.3,

the small number of prototypes almost immediately precludes any
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sensible comparison between these algorithms (even if the leave-
one-out method is used to evaluate the probability of error,
Devijver and Kittler, 1982). Nevertheless, section 6.2 provides
an interesting theoretical study on two of the algorithms (i.e.
the k-NN rule, section 5.2.2.2.1, and the distance-weighted k-NN
rule, section 5.2.2.3.3). It has been shown in section 6.2.3 by
a simple numerical example that the distance-weighted k-NN rule
may have a slightly smaller expected probability of error than
the k-NN rule when the number of prototypes is finite. It is, of
course, possible to reduce the probability of error further by
removing some of the "bad" prototypes using editing algorithms
(see Luk, 1987). This is important because when the proposed
system becomes operational, it is very likely that all the
modules would be implemented in a dedicated microcomputer with
limited amount of memory. Therefore, the number of prototypes
that can be included will be limited. Furthermore, it is also
possible to speed up the searching process in the nearest
neighbour rule by implementing one of the algorithms surveyed in
Luk (1987). (The author would recommand an algorithm by Yunck,
1976, because it is simple and does not involve any
multiplication operations - possibly an important factor when

using a dedicated microcomputer without a specialized mathmatical

CO~Processor.)

The second task in constructing this module is to
estimate the averaged probability of error for a set of
unclassified test samples. This is in fact one of the most

difficult questions facing researchers in the field of NN
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classificaton. Most of the proposed solutions have been centred
on the relatively simple two-class problem. Nevertheless,
Devijver (1985) has recently suggested a method of finding an
unbiased estimate of the probability of error for the 1-NN rule
in a multiclass environment, which is based on the idea used by
Fukunaga and Kessel (1971). The concept is very simple because
it simply counts the number of nearest neighbours in each class.
Again, due to the small number of prototypes available in this
study, it is impossible to experiment with it on the lung sound
data. However an experiment has been conducted using 3 classes of
bivariate data similar to those described by Dudani (1976). In
this experiment, the prototype set consisted of 600 samples, 200
from each class; and there were 5 independently generated test
sets, each containing 3000 samples. The estimation was,
therefore, executed 5 times, each time with a different test set,
and the results were averaged. Figure 7.11 shows the averaged
probability of error versus the number of nearest neighbours used
for the estimation. It can be seen that this method does not

seem to converge as expected from the theoretical study by

Devijver (1985).

7.7 Remarks

In this study, the frequency range between 0 and 2000Hz
has been evenly divided into 20 intervals and a feature is
generated from each interval. A projection of the 3 classes of
data onto a 2-dimensional subspace was found not to exhibit

excessive interpenetration provided the K-Y transformation was
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used. However, it is felt that the present approach may have
deemphasized the lower frequency components, especially those
between 0 and 400Hz which from the previous study (Urquhart,
1983) have been shown to be relatively important. It is likely
that a finer division at the lower frequencies may yield some
useful features, which when combined with the features derived
from the higher frequencies, may provide a better display than
that in figure 7.6. This, however, will require further

investigation.

Another problem related with the mapping module is the
variance of the mapping matrix. As mentioned in section 4.2.5,
since the mapping matrix is a function of the estimated scatter
matrix (section 4.2.1), the variance of the mapping matrix is
proportional to the variance of the estimated scatter matrix; and
the variance of the estimated scatter matrix depends on the
number and the dimensionality of the prototypes that were used to
estimated it (figure 4.7). Thus it follows that the mapping
matrix also depends on these two variables. In this study, the
dimensionality of the feature vector is 20 and the number of
prototypes is only 135. It is therefore not surprising that the

mapping matrix in figure 7.6 may not work well with unseen data.

To see this effect, another 45 prototypes (15 from each
class of subjects) that have not been used in the above study,
were used. Figure 7.12 shows a 2 dimensional projection formed
by using the eigenvectors listed in table 7.1 for all 180 20-

dimensional lung sound feature vectors. It can be seen that
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Figure 7.12 A twec dimensional projection of 180 20-dimensional
lung sound data using the mapping matrix formed by
the 2 eigenvectors listed in table 7.1. Symbols as

shown in figure 7.5.

206



there is more overlapping between the three classes (compare
testing a classifier on the union of the training set and an
unseen data set). Thus, the mapping matrix formed by using the
eigenvectors listed in table 7.1 does not provide the best
separation between the classes. Figure 7.13 shows the new
transformed 2 dimensional space when K-Y transformation is
applied again on all 180 20-dimensional lung sound data. It can
be seen the whole projection has been rotated and better
separation between the three classes is achieved when compared

with figure 7.12.

One very important factor that has been neglected
during this study is the age difference between the normal
subjects and those asbestosis and exposed patients. All the
normal subjects are between 25 and 35, whereas those asbestosis
and exposed patients are between 50 and 70. Thus, the good
separability between normal subjects and those asbestosis and
exposed patients in figures 7.6 and 7.13 may, in part, due to

this age effect.
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Figure 7.13 A two dimensional projection of 180 20-dimensional

lung souné¢ data using the K-Y transformation.

symbols as shown in figure 7.5.
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Appendix 7.A: Further comments on figure 7.6

In figure 7.6, three slightly overlapped clusters are
observed. 1In that figure each point in the projected space
corresponds to an inspiration from one of the subjects studied.
Unfortunately, it is impossible to infer from that figure which
set of points originates from which subject. This is important
because a set of points from a particular one subject may form a
localized cluster inside one of the three main clusters observed
in figure 7.6, and hence the observed separability between the
three groups of subjects does not necessarily represent a natural
separation between the groups, but may be heavily influenced by

one or more subjects under study.

Figure 7.6 was therefore replotted in figure 7.14 with
different symbols representing different subjects: normal
subjects are identified by different upper case characters,
exposed subjects are denoted by lower case characters and
asbestosis patients are represented by Greek characters. It can
be seen that the characters representing different subjects are
quite widely spaced within their respective main clusters
although the asbestosis subjects tend to scatter ‘in a much wider
area than either exposed or normal subjects. Considerable
overlapping can be observed between two exposed subjects
(represented by lower case a and e) with two asbestosis subjects
(represented by the Greek characters § and € ). Thus it still
appears that separation is by disease class rather than by

individual, but again in view of the small numbers of patients

the results must be regarded as preliminary.
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sound feature vectors from figure 7.6 with
different symbols representing different subjects:
normal subjects are identified by different upper
case characters, exposed subjects are denoted by
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represented by various Greek characters.
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Chapter 8: Conclusions and suggestions for future research

8.1 General conclusions on the proposed non-invasive examination

System

Throughout the past three years of research, most of
the effort has been focused on the feasibility of developing a
non-invasive system that can routinely be used either by a
physician or by trained para-medical personnel to examine
patients who have exposed to asbestos dusts. At the begining of
this project, it was decided that the system should be divided
into a number of relatively independent modules. This has the
advantage of developing the most needed madule(s) initially, such
as the data acquisition and preprocessing module, and so forming
the backbone of the system. From this, other more sophisticated
periphery such as the classification and unsupervised learning
modules can be added whenever needed. This is particularly
significant when one consider the inevitable limited number of
patients available during this stage of development ard also the
demonstration nature of this project. Whenever possible, each
module would be implemented with a number of options so that the
user could select the desired alternative. For example, at the
preprocessing stage, the user would be allowed to select
different types of window other than the 4-term minimum Blackman-
Harris window used in the WOSA algorithm. The user oould, say,
select a 4-term minimum Kaiser-Bessel window (Harris, 1978).
This approach has the benefit of permitting the addition of some

special algorithms at a later stage of the development, or the
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re-adaptation of the existing algorithms for other special needs.

Cbviously, the most important question in this chapter
is to conclude whether it is possible to build the Froposed
system. It is the author's belief that such a system may be
possible to realise in the near future. The main item of
hardware would be a dedicated (transportable) microcomputer with
a hard-disk of suitable size (cost probably less than£1000).
The rest of the hardware cost will be for building a dedicated
transducer, an analog-to-digital converter with anti-aliasing
filter and possibly a display unit. On the whole, when the
system is fully realised, its hardware cost can be considered as

inexpensive.

Furthermore, from the results presented in chapter 7,
it can be seen that the mapping module itself is possibly
adequate, in most cases, for identifying patients with asbestosis
provided a suitable mapping matrix can be found in the future.
This matrix should give a small false negative and false positive
rate when the new samples are identified by the classification
module. It must be emphasized that the proposed system would not
be used to diagnose asbestosis. Its function is to indicate
whether other more troublesome and possibly invasive tests should
be used on an otherwise normal subject. Thus, the classification
module may also help to assist the decisions reached by a
physician or by para-medical personnel. 1In this case, the
decision given by the classification module will be extremely

simple. Essentially, the answers will be "yes", "no" and/or
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"don't know", depending on whether any reject option is used in
the decision. Sections 5.2.2 and 6.3 have provided some very
useful nearest neighbour types of algorithms for this
classification module. For the proposed system, the "don't know"
answer (or the use of reject option) can be used to reduce the
tfalse negative rate. For example, if the (k,li)—NN rule 1s used
(section 5.2.2.2.3), ﬁ.i for the non-asbestosis classes can be
adjusted to a value greater than rk/ﬂ, so that in order to be
identified as non-asbestosis, a test sample has to have more
neighbours in the non-asbestosis classes than in the asbestosis
class. 1In addition, when the system is being developed further,
the size of the prototype set will gradually increase. Thus, it
may be necessary to select a smaller but better prototype set
and/or to speed up the searching time for the set of nearest
neighbours. The algorithms surveyed by Luk (1987) may therefore

be useful.

The next guestion is whether the medical profession
would accept, in part or as a whole, the proposed system. It is
the author's opinion that it really depends on how one looks at
the system. If the system is treated only as a screening tool,
the author believes that it would be acceptable to the medical
profession, provided further developmental work and other fine
tuning is performed. If it is viewed as a medical research tool,
some of the modules in the system are certainly useful, such as
the mapping and classification modules: similar modules have been
used in the past to handle a number of medical-related problems

(Cox et al, 1972; Mendelson et al, 1973; Nagy, 1968). As a
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diagnostic aid, on the other hand, the system, at least in the
form now proposed, is less likely to be acceptable. Indeed, the
proposed system lacks the grace of the so called knowledge-based
systems (Friedland, 1985; Sutherland, 1986), which if properly

programmed can give not only a decision but also the reasons

behind a decision.

8.2 Conclusions on lung sound research

This project has made a contribution to lung sound
research. In particular, the mapping results in chapter 7 have
shown that it is possible to separate or discriminate asbestosis
patients from non-asbestosis subjects with a low error rate
simply by using lung sounds alone. In addition, it has also
shown that exposed patients could be separated from normal
subjects. This may partly due to the pathological changes as a
result of exposure to asbestos fibres in the exposed subjects ard
may, in part, also be due to the age difference between the two
groups. Another finding is that both the high and the low
frequency components of the averaged periodogram are important.
This may suggest that crackles play an important part in the
discrimination process (Anderson et al, 1986). This does not
contradict the previous study (Urquhart et al, 1981) which fourd
abnormality at the lower frequencies. In fact, as Kraman (1983)
has suggested, this may partly be contributed by the muscle
tissue. in the chest wall. Thus, the so called "lung sounds" may
actually be a combination of sounds generated in the lung, the

heart, and other connective tissues, making the interpretation of
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lung sounds extremely difficult (Anderson et al, 1987). However,
whatever the origin of these sounds, it is clear that they

contain useful discriminatory information (Urguhart, 1983).

8.3 Conclusions on nearest neighbour classification

This work has also made a contribution to nearest
neighbour (NN) classification. In section 6.2, it has been shown
that the error rate for the weighted k-NN rule (section
5.2.2.3.3) may be smaller than for the unweighted k-NN rule
(section 5.2.2.2.1) when the size of the prototype set is finite
(Macleod et al, 1987). This conclusion may be important when one
attempts to select which nearest neighbour algorithm to use in a
given application. In addition, Luk and Macleod (1986) have also
proposed ancother nearest neighbour classification scheme which is
slightly different from other NN classification rules surveyed in
section 5.2.2. Modifications, such as the addition of a reject
option, are needed when the size of the prototype set is finite,
They have suggested that the proposed rule may be useful in
applications where a lower error probability is essential and a
somewhat large rejection is tolerable, and when the (k,)-NN rule
cannot achieve the necessary tolerable rejection rat‘;e. The
non-invasive examination system, if used for preliminary
screening as suggested in section 8.1, might constitute a
possible application where false negatives are not desirable but

false positives may be tolerable.
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8.4 Suggestions for future research

One area that is certainly worth some more research
effort is in the missing module, i.e. the unsupervised learning
module. It is true that unsupervised learning has been around
for more than 30 years, yet integrating this technique into the
proposed system is by no mean simple. Perhaps, it is possible to
follow the same line of research as Dasarathy (1980). His
proposed system was capable of detecting a previously undetected
class. However, for the proposed non-invasive system, will the
problem be as simple as discovering the onset of a new
respiratory disease? Or, is it just a simple case of machine
malfunction? The problem is really what to look for when this

module is invoked.

It is the author's wish that the work on the proposed
non-invasive system can be continued because from chapter 7, it
can be seen that many modules are still in their infancy. The
research that has been performed up to now is really a one-off
demonstration work. As suggested in section 8.1, more
developmental work and fine tunings are needed before the system
can be declared as operational. Undoubtedly, a more user
friendly front-end is required. The author would certainly like
to see an icon-driven front-end which could be used together with

a "mouse" interface to drive the system starting from the data

acquisition module.

One look at the frequency response of the transducer
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used in this study will certainly suggest that a better one is
required in the future. It would obviously be useful to explore
different acoustic materials to fimd the best possible candidate
for acquiring lung sound signals. It would also be useful to
design a methad to estimate the acoustic impedance of the chest

wall. The most effective way would be to use cadavers.

It is also possible to develop new feature generation
algorithms. This certainly will have an important effect on the
subsequent projection in the mapping module, and hence on the
classification module as well. The main question is what sort of
features are needed ard how to generate them. Can some features
be generated from the time domain? Can the age, sex, weight,
height, and other physiological data be incorporated into the
feature generator? Again, the problem cannot be solved unless a
definite objective is set for the development. For example, is
the future system going to be a diagnostic aid or a screening
device or a medical research tool? If it is a diagnostic aid,
will it be more profitable to use the so called knowledge-based
approaches? These undoubedly should be retained as future

research.

Research into the possibility of using lung sound
signals to monitor the prognosis of a certain lung disorder is
also required. 1If for example a patient were examined on
successive occasions and it was fourd that the point (assuming a
mapping algorithm is used) representing his/her respiration was
moving closer towards the cluster formed by that lung disorder,
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this might be evidence for believing that the patient was
developing that lung disorder. Again, unless some work is
performed on this suggestion, it is not known whether the

proposal is feasible or not.

In nearest neighbour (NN) classification it would be
worth investigating the feasibility of using the proposed NN
rule (section 6.3) in editing. If so, how would it compare with
other editing algorithms? Some preliminary results (Luk and
Macleod, 1985) have suggested that the proposed classification
scheme (chapter 6, equations 19) can eliminate more prototypes in
one iteration and achieve nearly the same probability of error if
subsequent classification was performed by a 1-NN rule (Devijver
and Kittler, 1982). Since the reject option is used in that
implementation, it could also be worthwhile to study possible

relationships between rejection and editing.
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