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Abstract

This thesis investigates how web search evaluation can be improved using historical interaction data.

Modern search engines combine offline and online evaluation approaches in a sequence of steps that a

tested change needs to pass through to be accepted as an improvement and subsequently deployed. We

refer to such a sequence of steps as an evaluation pipeline. In this thesis, we consider the evaluation

pipeline to contain three sequential steps: an offline evaluation step, an online evaluation scheduling

step, and an online evaluation step.

In this thesis we show that historical user interaction data can aid in improving the accuracy or

efficiency of each of the steps of the web search evaluation pipeline. As a result of these improvements,

the overall efficiency of the entire evaluation pipeline is increased.

Firstly, we investigate how user interaction data can be used to build accurate offline evaluation

methods for query auto-completion mechanisms. We propose a family of offline evaluation metrics for

query auto-completion that represents the effort the user has to spend in order to submit their query.

The parameters of our proposed metrics are trained against a set of user interactions recorded in the

search engine’s query logs. From our experimental study, we observe that our proposed metrics are

significantly more correlated with an online user satisfaction indicator than the metrics proposed in the

existing literature. Hence, fewer changes will pass the offline evaluation step to be rejected after the

online evaluation step. As a result, this would allow us to achieve a higher efficiency of the entire

evaluation pipeline.

Secondly, we state the problem of the optimised scheduling of online experiments. We tackle this

problem by considering a greedy scheduler that prioritises the evaluation queue according to the pre-

dicted likelihood of success of a particular experiment. This predictor is trained on a set of online ex-

periments, and uses a diverse set of features to represent an online experiment. Our study demonstrates

that a higher number of successful experiments per unit of time can be achieved by deploying such a

scheduler on the second step of the evaluation pipeline. Consequently, we argue that the efficiency of

the evaluation pipeline can be increased.
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Next, to improve the efficiency of the online evaluation step, we propose the Generalised Team

Draft interleaving framework. Generalised Team Draft considers both the interleaving policy (how

often a particular combination of results is shown) and click scoring (how important each click is) as

parameters in a data-driven optimisation of the interleaving sensitivity. Further, Generalised Team Draft

is applicable beyond domains with a list-based representation of results, i.e. in domains with a grid-based

representation, such as image search. Our study using datasets of interleaving experiments performed

both in document and image search domains demonstrates that Generalised Team Draft achieves the

highest sensitivity. A higher sensitivity indicates that the interleaving experiments can be deployed for a

shorter period of time or use a smaller sample of users. Importantly, Generalised Team Draft optimises

the interleaving parameters w.r.t. historical interaction data recorded in the interleaving experiments.

Finally, we propose to apply the sequential testing methods to reduce the mean deployment time for

the interleaving experiments. We adapt two sequential tests for the interleaving experimentation. We

demonstrate that one can achieve a significant decrease in experiment duration by using such sequential

testing methods. The highest efficiency is achieved by the sequential tests that adjust their stopping

thresholds using historical interaction data recorded in diagnostic experiments. Our further experimental

study demonstrates that cumulative gains in the online experimentation efficiency can be achieved by

combining the interleaving sensitivity optimisation approaches, including Generalised Team Draft, and

the sequential testing approaches.

Overall, the central contributions of this thesis are the proposed approaches to improve the accuracy

or efficiency of the steps of the evaluation pipeline: the offline evaluation frameworks for the query

auto-completion, an approach for the optimised scheduling of online experiments, a general framework

for the efficient online interleaving evaluation, and a sequential testing approach for the online search

evaluation.

The experiments in this thesis are based on massive real-life datasets obtained from Yandex, a lead-

ing commercial search engine. These experiments demonstrate the potential of the proposed approaches

to improve the efficiency of the evaluation pipeline.
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Chapter 1

Introduction

1.1 Introduction

The evaluation of search engines has always been a crucial part of Information Retrieval. Being equally

important in research and industry applications, evaluation is used both to assess the validity of scientific

hypotheses and to test improvements in commercial search engines.

Search evaluation has constantly evolved over time to reflect new applications and challenges. His-

torically, from the moment it was introduced in the 1960s, offline system-based evaluation methods1

(Cleverdon, 1967; Voorhees, 2002) became widely accepted due to their repeatability, reproducibility,

and interpretability. These methods form the foundation of evaluation initiatives such as the Text RE-

trieval Conference (TREC)2, the Cross-Language Evaluation Forum (CLEF)3, and the NII-NACSIS Test

Collection for IR Systems (NTCIR)4.

Despite being a highly successful tool, system-based methods are difficult to apply to evaluate

changes in some modern search applications, such as personalised search, or in the overall user search

experience.

Thus, between 2000 and 2010, new online evaluation methods started to attract attention. Indeed,

the modern major web search engines serve billions of queries per day. This scale of operation provides

the search engines with an affordable and convenient evaluation tool: the implicit feedback of their

users. In online experiments, such as A/B tests and interleaving, the users experience a modified version

of a search engine (Joachims, 2003; Kohavi et al., 2009). After that, the effects of the changes on

user behaviour are analysed. This evaluation process allows search engines to make informed decisions

about their progress even in the cases when the offline evaluation methods are hard to apply.

1In this thesis, we use system-based evaluation and offline evaluation interchangeably.
2http://trec.nist.gov/
3http://www.clef-initiative.eu/track/series
4http://research.nii.ac.jp/ntcir/index-en.html
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In turn, online evaluation methods have their limitations, too. They rely on implicit user feedback,

which can be noisy and difficult to interpret. Hence, each experiment requires a considerable number

of observations to make a statistically reliable conclusion. Usually, an online experiment spans a time

period of one week or more (Chapelle et al., 2012; Drutsa et al., 2015; Kohavi et al., 2012, 2013), and

requires up to several per cent of the search engine’s query traffic for each experiment (Kohavi et al.,

2012, 2013). These constraints considerably restrict the usefulness of the online evaluation methods.

We use the term evaluation pipeline to describe a sequence of steps that a tested change in a search

engine needs to pass through to be accepted as an improvement and subsequently deployed. An im-

portant requirement of an evaluation pipeline is its efficiency. Informally, we consider the evaluation

pipeline as more efficient, if a higher number of successful changes are obtained in a unit of time. We

consider that the evaluation pipeline involved in testing a new approach contains three steps: an offline

evaluation step (involving classical test collections and offline evaluation measures, to determine a priori

how effective the approach is), a scheduling step (to decide which approach should next be evaluated

using online experiments), and finally the online evaluation step (where online A/B and interleaving

experiments validate the user experience under the new approach). These steps are discussed in more

detail in Chapter 3.

How to use the existing evaluation methods to organise the evaluation pipeline, and how to make this

pipeline efficient without reducing its reliability, is an important scientific problem, which we approach

in this thesis. We study how the entire evaluation process, including offline and online steps, can be

organised, and investigate how these steps can be improved. In particular, we study how to make the

results of the offline evaluation better aligned with online evaluation. Further, we investigate how to

organise the online evaluation of the search engine’s changes and how to optimise the online experiments

so that the results are obtained faster.

The historical interaction logs of the search engine’s users are an invaluable source of data. Nu-

merous studies discuss how user interaction data can be used in various tasks, ranging from building

query auto-completion mechanisms (Bar-Yossef & Kraus, 2011) to contextualised ranking (Shokouhi

et al., 2013) and offline evaluation of personalised search results (Bennett et al., 2011; Kharitonov &

Serdyukov, 2012). In this thesis the historical user feedback data is the main tool for improving the

evaluation pipeline.

For instance, the historical interaction data can be used to build a model of the user’s interactions

with the query auto-completion mechanism. This model can be used to predict how the users will

interact with a new ranking of query completions, and, in turn, if this new ranking is better than the

one used earlier. As a result, this model can be used as a foundation for an offline metric that is highly
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correlated with the outcomes of online experiments, which evaluate new mechanisms by exposing them

to real users. Thus, a higher proportion of the ranking algorithms that have been fine-tuned to improve

the offline metric will demonstrate improved user satisfaction in the online experiments. As a result, the

efficiency of the evaluation pipeline increases.

In another example, the historical interaction data can be used to improve the sensitivity of the online

experiments (Chapelle et al., 2012; Yue et al., 2010). This can be achieved by adjusting the parameters

of the online experimentation method so that the confidence in the earlier performed experiments is

maximised. As a result, the convergence rate of future experiments can be increased. In turn, a higher

convergence rate implies that experiments can be deployed for a shorter period of time, thus improving

the efficiency of the evaluation pipeline.

The above two examples illustrate how the historical user interaction data can be leveraged to im-

prove the efficiency of the evaluation pipeline, and, as we discuss in Section 1.3, this idea is central to

this thesis.

In the remainder of this chapter we discuss the motivation for the work in this thesis, and present the

statement of this thesis and its contributions. We close this chapter with an overview of the structure of

this thesis.

1.2 Motivation

Modern commercial web search engines are extremely sophisticated systems, developed by thousands

of engineers. Making informed decisions while developing these systems is a non-trivial task. Indeed,

when working on such a scale, even tiny changes in the user search experience might have a considerable

impact on the search engine’s revenue and market share. For instance, it was reported that changes in

the colours of the result links can lead to millions of dollars of revenue gains due to users clicking on ads

more often.5 Changes in the search engine’s response time even smaller than 500 ms can badly affect

the user (Barreda-Ángeles et al., 2015; Kohavi et al., 2013). These examples highlight the necessity to

thoroughly evaluate the majority of the deployed changes to the search engine.

This gave rise to the data-centric culture popularised by Google6 (Tang et al., 2010) and Bing (Ko-

havi et al., 2013). Under this data-centric approach, all changes to the search engine are tested and

5http://www.lukew.com/ff/entry.asp?1025: “...Microsoft also tested multiple versions of blue for links in their
search results. A specific color of blue (#0044CC) drove $80-$100 million dollars a year increase over the light blue the design
team tried first”. This story is also reported in (Kohavi et al., 2014).

6“At Google, experimentation is practically a mantra” (Tang et al., 2010).
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1.3 Thesis Statement

all decisions are supported by observational data. A similar approach is widely used by other Internet

industry leaders such as Amazon7 and Netflix8.

The rise of this data-centric culture imposed considerable challenges on Information Retrieval eval-

uation methods. Indeed, when the scale and the speed of the search engine development increases, the

stream of changes to be evaluated grows as well. For instance, it was reported that the number of simul-

taneously deployed online experiments at Bing grew almost exponentially in time and reached the order

of several hundreds of experiments deployed at any given moment (Kohavi et al., 2013).

Under such a scenario, new requirements for the efficiency of the web search evaluation arise. In-

deed, the speed of the evaluation bounds the rate of the search engine’s evaluation: the faster a change

can be tested, the faster it can be deployed or rejected and returned for further development. From this

point of view, the evaluation efficiency becomes a competitive advantage on the search engine market.

At the same time it is crucial not to reduce the accuracy of the evaluation. Both a rejected improvement

and a deployed feature that does not improve users’ satisfaction could lead to high costs for a search

engine.

Overall, these observations lead us to the following question: how can the efficiency of the web

search evaluation pipeline be improved? This question is central to this thesis and in the next sections

we discuss our approach to address it.

1.3 Thesis Statement

This thesis states that historical user interaction data can aid in improving the accuracy or efficiency of

each of the steps of the web search evaluation pipeline. In particular, we hypothesise that user interaction

data can be used to devise novel offline metrics for the evaluation of query auto-completion mechanisms

that are aligned with the user online behaviour. Furthermore, we hypothesise that the scheduling of

the online experiments can be improved by using the historical click data. We also argue that user

interaction data can be leveraged to improve the efficiency of interleaving experiments, and extend their

applicability to new domains, such as image search. Finally, we hypothesise that the user interaction

data can be used to develop efficient statistical analysis procedures for the online experimentation, so

that the experiments can be stopped earlier, thus reducing the average duration of the experiments and

increasing their efficiency.

7http://ai.stanford.edu/˜ronnyk/emetricsAmazon.pdf
8http://techblog.netflix.com/2014/08/scaling-ab-testing-on-netflixcom-with_18.html
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1.4 Contributions

In this thesis, we firstly describe a search engine’s evaluation pipeline that combines both offline and

online evaluation in a single pipeline that is used for effective data-driven search engine evaluation.

We split this pipeline in several steps, including the offline step, the online experiment scheduling step,

and the online evaluation step. Each of these components has a considerable impact on the pipeline

efficiency. For each of these steps, we propose and evaluate novel approaches to improve or extend such

steps. Our proposed approaches are shown to improve the evaluation pipeline across three domains:

query auto-completions, document search, and image search. The main contributions of this thesis are:

Offline Evaluation We propose a family of offline query auto-completion metrics. These metrics

are based on a model of the user behaviour that is trained using historical user interaction data. We

experimentally demonstrate that these metrics are better aligned with the results of online experiments

than the previously used metrics.

Scheduling Scheduling is the second step of our considered evaluation pipeline. We propose to

improve its efficiency by addressing the problem of optimised scheduling of the online experiments.

More specifically, we compare the quality of the schedules produced by a set of offline and online

predictors of the experiment’s success, and their machine-learned combinations. Our study demonstrates

that a higher number of successful experiments per unit of time can be achieved by using a learning-to-

rank based combination of the studied predictors, thus increasing the evaluation efficiency.

Online Evaluation Our contributions to improving the efficiency of the online evaluation step are

three-fold. Firstly, we investigate how the sensitivity of the interleaving experiments can be improved.

We consider two approaches to address this problem. In the first approach, we propose to optimise the

interleaving sensitivity by selecting an appropriate per-query interleaving policy.

In the second approach, we develop the Generalised Team Draft interleaving framework, that gener-

alises the existing Team Draft algorithm to domains with a grid-based result representation (e.g. image

search) and combines several approaches for the sensitivity optimisation. Specifically, Generalised

Team Draft interleaving optimises how each click is weighted and how often each possible interleaved

result page is shown to achieve a higher sensitivity. Importantly, the parameter optimisation is performed

with respect to the historical online experimental data, containing a vast number of user interactions. In

addition, Generalised Team Draft uses a stratified outcome estimator that can also increase the inter-

leaving sensitivity in some cases.

In the third part of our contribution, we study the usefulness of the sequential statistical tests that

are capable of stopping online experiments when the collected data is sufficient to make reliable con-
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clusions for increasing the efficiency of interleaving online experiments. We propose two modifications

of the existing sequential tests that can be applied in the search evaluation scenario. We describe how

historical experimental data can be used to adjust the stopping thresholds for these tests. We perform an

evaluation study, assessing the usefulness of the sequential testing approach. Finally, we demonstrate

that the interleaving sensitivity optimisation approaches, such as Generalised Team Draft, and sequential

statistical testing can be combined together to achieve even higher efficiency gains.

The experiments conducted in this thesis are performed on real-life datasets obtained from Yandex,

one of the world’s major search engines. These datasets contain millions of user interactions. Some of

the datasets (e.g. the dataset used in Chapter 6) span almost a year worth of experiments deployed by

Yandex.

1.5 Origins of Material

The material in this thesis is based on a number of conference publications:

• Chapter 4: The offline machine-learned query auto-completion metrics we discuss in Chapter 4

were initially proposed in our SIGIR 2013 publication (Kharitonov et al., 2013b).

• Chapter 5: Our proposed framework to optimise the schedule of the queue of the online ex-

periments was initially published in SIGIR 2015 (Kharitonov, Macdonald, Serdyukov & Ounis,

2015b).

• Chapter 6: The interleaving sensitivity optimisation is discussed in two of our papers. The first

work (Kharitonov et al., 2013c) was published in CIKM 2013, and it discusses how the historical

clickthrough data can be used to improve the interleaving sensitivity (Section 6.3). The second

paper (Kharitonov, Macdonald, Serdyukov & Ounis, 2015a), published in CIKM 2015, introduces

our Generalised Team Draft interleaving framework. This framework is discussed in Section 6.4.

• Chapter 7: Our study of the sequential significance testing algorithms as a tool to increase the

efficiency of the online experimentation and our proposed sequential tests are based on the SIGIR

2015 publication9 (Kharitonov, Vorobyev, Macdonald, Serdyukov & Ounis, 2015).

Finally, the need for the image search-based interleaving algorithm (Chapter 6) was argued in the

Doctoral Consortium work (Kharitonov, 2014).
9This paper received the SIGIR 2015 Best Student Paper award.
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1.6 Thesis Outline

The remainder of this thesis is organised as follows:

• In Chapter 2 we introduce the background essential for this thesis. Specifically, we start with an

overview of the existing evaluation approaches: offline and online. We discuss the Cranfield eval-

uation paradigm and the variety of the existing offline evaluation metrics that have been used to

assess the performance of information retrieval systems in Section 2.2. In Section 2.3, we discuss

state-of-the-art existing online evaluation approaches, such as A/B testing and interleaving.

• In Chapter 3, we discuss a typical evaluation pipeline that combines the existing evaluation ap-

proaches in a single decision process. This discussion provides us with a roadmap to improving

the efficiency of the evaluation pipeline as a whole by improving its individual steps.

• Chapter 4 discusses how the offline evaluation step of the pipeline can be improved in the case

of the query auto-completion evaluation. We study how novel offline metrics for the query auto-

completion mechanisms can be constructed so that they are better aligned with the online be-

haviour of users.

• Chapter 5 investigates how the efficiency of the experimentation pipeline can be increased by the

improved scheduling of the queue of the online experiments. We discuss different approaches to

address this problem, and empirically compare them on a dataset of interleaving experiments.

• In Chapter 6, we study how the efficiency of the online evaluation experiments can be improved

by increasing the sensitivity of interleaving. We investigate two approaches to improve the in-

terleaving sensitivity. First, we discuss a possible click model-based approach to increasing the

interleaving sensitivity in Section 6.3, as well as its limitations. Further, in Section 6.4 we tackle

the same problem from a different perspective and address the limitations of our earlier approach.

Specifically, we investigate how an increased sensitivity can be achieved by combining machine-

learned credit assignment functions, result page-based stratification, and the interleaving policy

optimisation.

• Chapter 7 discusses how the sequential statistical tests can be used to improve the efficiency of

the online experimentation, and introduces our modification of the MaxSPRT sequential test for

interleaving.
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• In Chapter 8, we study how different approaches to improve the efficiency of the online evaluation

can be combined together. In this chapter we focus on evaluating the combined improvement

of the interleaving efficiency by jointly applying the sensitivity optimisation and the sequential

testing approaches.

• Chapter 9 closes this thesis by highlighting the contributions and the conclusions drawn from each

of the individual chapters. Finally, we discuss possible research directions for future work.
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Chapter 2

Background

2.1 Introduction

In this thesis we consider the problem of evaluation as a pairwise comparison problem: given two

systems, A and B, can we predict which of them is more likely to satisfy the users? These systems

might be two different search engines (e.g. Bing vs. Google), or two variants of the same system (e.g.

the current production system vs. the same system with the ranking algorithm changed). A variety

of approaches are used in Information Retrieval to address this problem. Since the 1960s, the offline

system-based evaluation approach gained popularity among Information Retrieval researchers due to its

convenience (e.g. it does not require a search system to have any users) and reproducibility. On the other

hand, the rise of the massively popular online search engines in the 2000s permitted progress beyond the

abstractions assumed by the offline approach, and directly measure satisfaction indicators by exposing

the search engine’s users to the tested changes.

In this chapter, we review both approaches. In Section 2.2, we discuss the system-based evaluation,

and in Section 2.3 we review the online evaluation approaches. We briefly compare offline and online

evaluation approaches in Section 2.4. In Section 2.5, we provide a focused review of the click models

used in this thesis. We conclude this chapter with Section 2.6.

Overall, it is almost impossible to provide an in-depth overview of all topics in modern web search

evaluation. Instead, in this chapter we aim to get a high-level overview of the web search evaluation

landscape. In each technical chapter of this thesis we will include a more specialised background sec-

tion, discussing the work that is related to this chapter specifically.
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2.2 Offline Evaluation

The foundation of the modern system-based evaluation was laid in the Cranfield experiment (Cleverdon,

1967; Voorhees, 2002). The original Cranfield experiment was designed to isolate the effectiveness of

the evaluated systems from all other variables and to evaluate it separately. The central concept of the

Cranfield evaluation paradigm is the test collection. Such a collection contains a set of documents, a

set of queries (often referred to as topics), and a set of relevance judgements for query-document pairs

(these judgements are also called labels).

Given a test collection, the evaluation is performed as follows. Firstly, for each query in the test

collection, the ranked lists of results are obtained from the evaluated systems. After that, each ranking is

associated with a score that represents a value of an effectiveness metric, such as MAP (Manning et al.,

2008), ERR (Chapelle et al., 2009) or nDCG (Järvelin & Kekäläinen, 2002). Usually, metrics favour

rankings with relevant documents closer to the top of the list and we discuss them in Section 2.2.1.

Selecting a set of queries for evaluation is not a trivial task. This set must reflect the actual stream

of queries for the evaluation to be meaningful, so usually real queries from the query stream are used.

The selected set of queries should be large enough to be able to differentiate the compared systems. At

the same time, the number of the queries used determines the amount of effort required to label the doc-

uments, hence the cost of building the test collection. Industrial test collections can contain thousands

of queries (Chapelle et al., 2009), while the TREC evaluation collections use 50 queries (Clarke et al.,

2009; Collins-Thompson et al., 2014). In order to achieve a higher discrimination rate between the com-

pared systems with the restricted number of queries, in TREC (Clarke et al., 2009; Collins-Thompson et

al., 2013) the used queries are selected to be less frequent and possibly more “difficult” for the evaluated

systems, hence more discriminative.

After a set of queries is selected, the next step is to judge the documents’ relevance w.r.t. the selected

queries. In large-scale applications, such as web document search, it is clearly impossible to label all

documents a search engine is aware of. For this reason, for each query, a set of documents to be labelled

is pre-filtered. This process is referred to as pooling (Sanderson, 2010; Sparck Jones & van Rijsbergen,

1975). In the simplest case, each query is submitted to all the evaluated systems, and their results are

retrieved. After that, the documents that are ranked in top-k results by at least one of the evaluated

systems are merged in a single set. For instance, in early TREC campaigns the union of the top-100

documents retrieved by the evaluated systems were judged for each topic (Sanderson, 2010). This form

of pooling assumes that if a document is not ranked high by any of the evaluated systems, it is unlikely

to be relevant.
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Instead of simply selecting top-k ranked documents, one can use more strategic pooling methods,

e.g. (Cormack et al., 1998; Moffat et al., 2007). For instance, Moffat et al. (2007) studied the pooling

strategies that adaptively change priority of a document in the labelling queue based on how useful it

would be to have it labelled. Notably, the estimate of a document’s usefulness changes when other

documents are labelled.

After the sets of queries and documents are established, the last step for building a test collection

is to obtain the relevance labels or judgements. The relevance judgements are usually obtained by the

relevance judges in a manual labelling process. In this process, each judge is presented with a query

and a document, and after examining them, produces a relevance label. This label reflects a degree of

relevance of the document w.r.t. this particular query.

Due to being manual labour, the labelling process tends to be expensive and time-consuming. The

judges can be trained professionals, as in TREC (Clarke et al., 2009), or participants of some crowd-

sourcing platform (Alonso et al., 2008). In both cases, the judges can be subjective and are prone

to errors. For instance, a judge can misinterpret the query “rio”, considering it to be related to the

animation film, while the user who submitted it was looking for information about the city. While one

might argue that subjectivity can be actually useful, as the tastes and query interpretations of the search

engine’s users can differ (Manning et al., 2008), search engines use some form of guidelines or training

for judges (Megorskaya et al., 2015). In particular, this can be required if the judgements have more

than two grades (discussed in Section 2.2.1), as used by search engines and TREC (Clarke et al., 2009;

Sanderson, 2010).

Measuring the quality of relevance labels is a hard task, since there usually are no true labels. Often,

inter-judge agreement is used as a proxy for such a quality. The kappa statistic is used to measure the

level of agreement (Manning et al., 2008). This statistic characterises how often the judges actually

agree in their labels in comparison with case when they agree solely by chance. In an alternative ap-

proach, Megorskaya et al. (2015) used labels produced by highly experienced judges as ground-truth

labels.

Once a test collection is built, it can be repeatedly used to evaluate new systems with little or no

additional cost. Moreover, the results that are obtained on the same test collection by independent

researchers can be meaningfully compared. These specifics explains the high popularity of the system-

based approach.

However, given a test collection, a question arises about how to measure the effectiveness of a search

engine. To address this question a variety of offline effectiveness metrics have been considered, and we

discuss them in more details in the next section.
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Table 2.1: Definitions of the quantities calculated for a retrieved list, (Cleverdon & Keen, 1966; Kent
et al., 1955; Sanderson, 2010). For instance, a is the number of relevant documents retrieved by the
evaluated system.

Relevant Not Relevant

Retrieved a b
Not Retrieved c d

2.2.1 Effectiveness Metrics

An offline effectiveness metric is used to numerically represent the quality of the ranking. Essen-

tially, the test collection in combination with an evaluation metric simulates users using a search system

(Sanderson, 2010). Since early search systems returned all documents that match the query, the eval-

uation measures matched this usage scenario (Sanderson, 2010). As a result, the effectiveness metrics

such as Precision and Recall were introduced (Kent et al., 1955) that rely on the binary relevance labels.

For a particular query, Precision is defined as a ratio of the relevant documents retrieved by a system

and the total number of documents retrieved. Similarly, Recall is defined as the fraction of the relevant

documents retrieved by the system. More formally, using the definitions from Table 2.1, Precision P (q)

and Recall R(q) for the query q can be computed as follows (Kent et al., 1955):

P (q) =
a

a+ b
, R(q) =

a

a+ c

Later, Van Rijsbergen (1974) proposed a metric that equates to one minus the weighted harmonic mean

of recall and precision. More often the weighted harmonic mean metric is used (Sanderson, 2010), and

it is referred to as F-measure. Several equivalent formulations of the F-measure metric exist (Croft et

al., 2010). For instance, it can be calculated as follows:

Fβ(q) = (1 + β2) · P (q) ·R(q)

β2 · P (q) +R(q)
(2.1)

In Equation (2.1), the parameter β specifies the relative importance of the Precision over recall. If β > 1,

then Fβ considers Precision to be more important. Sometimes, F0.5 and F2 metrics are used, however,

F1 is the most frequently used in the literature. Under F1 Precision and Recall are equally important.

The choice of the harmonic mean instead of the arithmetic mean allows F-measure to stronger pe-

nalise systems with low Recall or low Precision. Indeed, if a system has Recall equal to 1 and Precision

approaches 0, the arithmetic mean of these scores would be 0.5, while the harmonic mean is equal to

0. This intuition can be extended, as the harmonic mean of a finite set of positive numbers is always

smaller or equal than the arithmetic mean of the same set. As a result, if starting from a point where
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Precision and Recall are equal (and equal to their arithmetic and harmonic means), and increasing Re-

call (Precision) with Precision (Recall) fixed, we will observe that the harmonic mean grows slower and

remains closer to the starting point.

The above introduced metrics are defined for the evaluation of the Boolean retrieval systems that

only return a set of documents that they consider to be relevant. However, as ranked retrieval systems

developed (Sanderson, 2010), the need for their evaluation appeared.

At first, this need was addressed by measuring Precision at pre-specified Recall levels (e.g. 10%,

20%, ... , 90%) with some form of interpolation (Cleverdon & Keen, 1966). Clearly, in the context of

modern huge test collections10 and Internet search engines, it is not practical to assume that all relevant

documents can be known for every query in the test collection, thus it is hard to operate with the Recall

levels. Similarly, it is less likely that a user will examine a low-ranked result (e.g. placed on the 10th

page). For this reason, Precision at a fixed cut-off level n was introduced:11

P@n(q) =
a

n

The TREC evaluation campaign made the Precision at rank n, Mean Average Precision (MAP)

(Harman, 1994), R-precision (Harman, 1994), and Mean Reciprocal Rank (MRR) (Kantor & Voorhees,

1996) metrics popular. Along with providing standard test collections, TREC provided an implementa-

tion of various offline evaluation metrics in the form of the trec eval software, which is now considered

as a de-facto standard implementation of the metrics.12

Later, both industrial and academic researchers (Sanderson, 2010) started to use graded (non-binary)

relevance labels. At the moment, a five-point scale is typically used (Carterette & Jones, 2008; Chapelle

et al., 2011): {Perfect, Excellent, Good, Fair, Bad}. However, the above discussed metrics are not able

to fully leverage these relevance levels, and, as a result, this gave rise to the metrics such as Cumulated

Gain (CG), and Discounted Cumulated Gain (DCG) (Järvelin & Kekäläinen, 2000).

CG is defined as a sum of the relevance grades of the top n documents:

CG =

n∑
i=1

rel(i)

where rel(i) maps the relevance grade i to a numeric representation, e.g. Perfect is mapped to 5, Ex-

cellent corresponds to 4, etc. Discounted Cumulative Gain additionally penalises gains from relevant

10For instance, ClueWeb12 contains 733,019,372 English web pages, http://www.lemurproject.org/clueweb12.
php/.

11The cut-off level used varies depending on the result representation used. Usually, the cut-off level of 10 is used for web
document search.

12http://trec.nist.gov/trec_eval/
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2.2 Offline Evaluation

documents appearing later in the ranking, to some extent simulating the user’s attention model:

DCG = rel(1) +

n∑
i=2

rel(i)

log2(i)
(2.2)

Another variant of DCG is also commonly used:

DCG =

n∑
i=1

2rel(i) − 1

log2(i+ 1)
(2.3)

In contrast to Equation (2.2), the definition in Equation (2.3) emphasises retrieving highly relevant

documents. This form is used by some search engines (Croft et al., 2010).

A normalised version of DCG (nDCG) was also considered (Järvelin & Kekäläinen, 2002). The

motivation behind this metric is to balance the impact of different queries on the overall effectiveness

score. Indeed, some queries have numerous highly relevant results, and typically their DCG scores are

high. In contrast, some queries can only have few relevant documents, and it is impossible to gain a

high score for these queries. The nDCG metric balances these per-query scores by normalising them to

the score of the ideal ranking:

nDCG =
DCG

ideal DCG
, 0 ≤ nDCG ≤ 1

Later, Moffat & Zobel (2008) argued that the logarithmic decay used in the DCG-like metrics does

not perfectly model the user behaviour when examining a list of ranked documents, and proposed the

Rank Biased Precision (RBP) metric, which models the list examination process assuming a geometric

discount:

RBP = (1− p) ·
n∑
i=1

rel(i) · pi−1

with p denoting the probability that the user progresses to the next documents, and n is the considered

cut-off level. The value of the metric equates to the expected cumulative relevance of the results that

the user examines in the process where after each result the user stops with probability (1− p). Higher

values of p model a persistent user, and low values of p correspond to a less persistent user.

The geometric discount with p set to 0.7 closely approximates the position examination probabili-

ties (Chapelle et al., 2009). However, it totally ignores dependencies between the examination events.

Indeed, the examination of the second document is less likely to occur if the first document is highly

relevant and completely satisfies the user. Similarly, the user might be more likely to examine the

second result if the first is non-relevant. This effect is modelled in cascade-based models of clicking be-

haviour (Chapelle & Zhang, 2009; Craswell et al., 2008), which we discuss in more detail in Section 2.5.
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2.3 Online Evaluation

The cascade model proposed in (Craswell et al., 2008) was used as a foundation to the Expected Recip-

rocal Rank (ERR) metric (Chapelle et al., 2009). ERR and its modifications were the metric of choice

in the TREC Web Track evaluation campaign over several years (Collins-Thompson et al., 2013, 2014).

ERR is defined as an expectation of the reciprocal function φ(i) = 1
i at the position i where the

user stops their examination process. This position is calculated based on the cascade model which

is discussed in details in Section 2.5. Under this model, the user examines the result list from top

to bottom. A document in ith position satisfies the user with a probability Pi that depends on the

document’s relevance grade rel(i). Denoting the maximal relevance grade as relmax, this probability is

calculated as follows:

Pi =
2rel(i) − 1

2relmax
(2.4)

A satisfied user stops their search, otherwise they continue examining the result page. Having these

considerations in mind, we calculate the expectation of φ(i) as follows:

ERR =

n∑
i=1

1

i
· Pi

i−1∏
j=1

(1− Pj) (2.5)

ERR and RBP were among the first metrics that are explicitly build on top of the user behaviour mod-

elling ideas. This idea was further extended by Yilmaz et al. (2010) and Chuklin, Serdyukov & de Rijke

(2013).

Overall, the above focused review of offline evaluation in this chapter demonstrates that the recent

developments are concentrated on improving our understanding and increasingly accurate modelling of

the user interactions with the ranked result lists. This improved modelling results in better metrics: the

logarithmic decay in the DCG-based metrics is replaced with the geometric decay in RBP, the simple

user model used in RBP is replaced by an improved model in ERR, etc.

Our work in Chapter 4 continues this line of work, and leverages an improved modelling of user

interactions with query auto-completion mechanisms to build an evaluation metric that is aligned with

user behaviour.

2.3 Online Evaluation

Returning to the evaluation problem discussed in Section 2.1, we need to compare two systems, A and

B, to infer which of them is more likely to better satisfy the users. In the offline evaluation approach

discussed in Section 2.2, we use a test collection to simulate an operational setting of both alternatives

and measure their effectiveness by means of offline evaluation metrics. In contrast, in online evalua-

tion a direct observation is used: the users experience a modified version of the search engine and the
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changes in their behaviour (if any) are analysed. In this section, we consider the two most popular online

evaluation approaches: A/B testing (Section 2.3.1) and interleaving (Section 2.3.2).

A closely related concept to the evaluation efficiency is the sensitivity of online experiments. We

typically define the sensitivity as the ability to obtain experiment outcomes at a pre-specified confidence

level with as few observations as possible. A higher sensitivity implies higher efficiency of the online

evaluation, and can be considered as the convergence speed of the evaluation metric in an online eval-

uation experiment.13 It was demonstrated that interleaving evaluation is more sensitive than A/B tests

(Chapelle et al., 2012; Schuth et al., 2015).

2.3.1 A/B testing

The most straightforward way to infer if the users are going to like a new system is to deploy this

system and use it to serve the queries of a sample of users and observe changes in their behaviour. In

order to exclude a possibility of the changes occurring due to external factors (e.g. temporal changes

in the traffic), usually another random set of users is also observed. The queries of the users from the

latter group are served by the unchanged, production system. Assuming that these two groups of users

are samples from the same user population and the only difference in the search engine variants they are

using is due to the experimental change, it is safe to conclude that any statistically significant difference

in the user behaviour is due to the tested change.

In Information Retrieval, this method is referred to as an A/B test. However, similar controlled

randomised tests were used for a long time in the clinical trials practice. For this reason, the group of

the users that are served by the changed system are referred to as the treatment group, while the second

group is called the control group. These groups are denoted as B (treatment) and A (control).

To quantify the level of the users’ satisfaction with the tested systems, some online absolute metrics

are measured for the control and treatment groups. In the simplest case, the abandonment rate14 can be

used as such a metric (Radlinski et al., 2008). A variety of more elaborated metrics were studied in the

literature. In general, these absolute metrics can be divided in three groups.

The first group of absolute metrics operate on the level of a single search engine result page (SERP).

These metrics try to quantify the users satisfaction with the results by analysing their behaviour on the

result page. The abandonment rate, the mean reciprocal rank of the clicked results (Radlinski et al.,

2008), the time between submitting the query and the first click (Radlinski et al., 2008) are examples

13This concept is related to estimator efficiency used in statistics (Cramér, 1946).
14How often a result page is not clicked by a user.
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of the SERP-level metrics. The SERP-level metrics are among the most sensitive, however, the inter-

pretation of these metrics might be not straightforward. For instance, the treatment group having lower

abandonment rate can be a good sign (users find relevant results more often) and a bad sign (e.g. one of

the verticals15 stopped providing a satisfactory answer on the result page and users need to click on the

results).

The second group of absolute metrics proposed in the literature operates on the session level. The

pSwitch metric (Arkhipova et al., 2015) and the user search goal success predictor proposed by Hassan

et al. (2010) are examples of metrics from this group. These metrics analyse the user behaviour that

spans for an entire session and quantify how successful this session was. For instance, if a session ended

by the user switching to a competing search engine, then it is likely that the search engine did not satisfy

the user. On one hand, these metrics can be more interpretable than the SERP-level metrics. On the

other hand, these metrics are the outputs of session success classifiers, which are essentially machine-

learned black boxes. Moreover, these classifiers might require to be re-trained after some period of time,

as the characteristics of user behaviour change over time, e.g. when changes in UI occur.

The last group of metrics include the absolute metrics that quantify the user behaviour over a span of

many sessions. These metrics include sessions per user (Kohavi et al., 2012), absence time (Chakraborty

et al., 2014; Dupret & Lalmas, 2013), and some others (Drutsa et al., 2015). These metrics are a better

proxy to the quantities that are of direct interest for commercial search engines, such as the market share

or the time users spend on the service.

Once the metric of interest is fixed, it is calculated for both the control and the treatment groups.

In this thesis, the means of the absolute online metrics for alternatives A and B are denoted as µA and

µB . Due to the intrinsic random noise in user behaviour, the means of the selected metric are always

different in the control and treatment groups. Thus, a statistical significance test is used to determine if

the available data is sufficient to infer any preference over the tested alternatives A and B, as described

in Section 2.3.3.

2.3.2 Interleaving

In contrast to A/B tests, interleaving-based evaluation operates on the ranking list level. Thus it can

only be used to evaluate the relative quality of the rankers, and is not applicable to compare changes in

the user interface, for instance. Similarly to A/B testing, we denote these rankers as A (the production

system) and B (the tested alternative ranker).

15Some search engines incorporate results from specialised search services, called verticals, into their Web search result pages
(Arguello et al., 2009; Diaz, 2009). News and Images are examples of such verticals.
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Input: Rankings A = (a1, a2, ...) and B = (b1, b2, ...)
Output: Interleaved ranked list L
Initialised pointers to the results in rankings A and B
ka ← 0
kb ← 0
if ka == kb then

if A[ka + 1] /∈ L then
L← L+A[ka + 1]

end
ka ← ka + 1

else
if B[kb + 1] /∈ L then

L← L+B[kb + 1]
end
kb ← kb + 1

end
Algorithm 2.1: Balanced Interleaving algorithm used to interleave two result lists, introduced
by Joachims (2002). To avoid a systematic bias, Joachims (2002) proposed randomise the ranking
to start with. This algorithm provides steps for the case when interleaving starts with ranking A.

In an interleaving experiment, for every query a user submits both rankings from A and B are

obtained. After that these results are interleaved (i.e. mixed) in a randomised manner and shown to

the user. The clicks of the users are collected over a period of time (e.g. several days) and analysed

afterwards.

A variety of interleaving algorithms exist. The first interleaving algorithm, Balanced Interleav-

ing, was proposed by Joachims (2002). Later, Team Draft (Radlinski et al., 2008), Probabilistic Inter-

leave (Hofmann et al., 2011), Optimized Interleaving (Radlinski & Craswell, 2013), and their modifi-

cations were introduced. These methods differ in the way the interleaved result pages are generated and

how user click feedback is interpreted.

Under Balanced Interleaving (Joachims, 2002), the interleaved result page is built by running Al-

gorithm 2.1. Alternatives A and B are associated with pointers to the results, ka and kb, respectively.

These pointers iterate over the ranked results and are used to select the next result to be included in

the combined result list. This process guarantees that at each cut-off level the number of documents

contributed by A and B differ by at most 1. After the combined result page is generated, it is shown to

the user and the alternatives are attributed with clicks according to how many clicked documents each

of the alternative rankings retrieved in their top results. However, one can construct an example pair of

rankings (often called a breaking case) that illustrates that a randomly clicking user can induce a pref-

erence towards one of the alternatives (Radlinski et al., 2008). This indicates that Balanced Interleaving

might lead to biased evaluation in some cases.
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In contrast to Balanced Interleaving, Team Draft (Radlinski et al., 2008) behaves correctly under

the breaking case considered in (Radlinski et al., 2008). However, one can still construct an example

where Team Draft is biased (Chapelle et al., 2012; Hofmann et al., 2011). While it is not clear if these

query-level breaking cases can affect system-level comparisons, it is clearly better to avoid these biases.

In Optimised Interleaving proposed by Radlinski & Craswell (2013), a formal unbiasedness criterion is

introduced. This criterion requires that a user who clicks according to a specific random click model

should not create any preference in expectation. Using this criterion to guarantee absence of the biases,

Radlinski & Craswell (2013) proposed to optimise interleaving sensitivity by increasing the uncertainty

of the winner in a single interaction.

The core idea behind Probabilistic Interleaving (Hofmann et al., 2011) is to represent document

rankings as distributions over documents, with higher ranked documents having higher probability.

When building an interleaved result page, documents are sampled according to these distributions. Af-

ter the clicks are observed, the interleaving outcome is calculated by marginalising over all possible

sampling paths that lead to the same result list. This marginalised estimator increases interleaving sen-

sitivity. One of the specifics of Probabilistic Interleaving is that due to the random sampling of the

results it allows combined ranking lists to have top results different from the top results of the compared

systems. Indeed, even if both A and B have the result {https://www.facebook.com/} as the top result for

the query “facebook”, in the interleaved result page it can be placed on any position, even on the 10th,

with a non-zero probability.

Below we describe the Team Draft interleaving algorithm, which we use or build upon throughout

this thesis.16 In Team Draft, the process used to generate the interleaved ranked list from two ranked

lists mimics the process of splitting a set of players in two teams in a friendly football match. Firstly,

two captains are selected. After that, they select players for their teams in turns. In Team Draft, each

document corresponds to a player, and the rankings A and B represent the preference orders of the

captains. At each turn, a coin is tossed to select the captain who selects the players next. This captain

then selects their most preferred player among the players who were not included in the result list so far,

and adds this player to the interleaved result list. These turns are repeated until the entire interleaved

result page is built.

A formal description of the Team Draft interleaving algorithm is provided in Algorithm 2.2. In

Figure 2.1 we illustrate possible results of applying Algorithm 2.2 on result pages with four results.

Throughout this work, we refer to the set of the generated interleaved result pages as L. Since after each

16In most cases, except for Chapters 6 and 8, other interleaving algorithm can be used instead. However, we use Team Draft
due to the availability of a large dataset of Team Draft-based experiments, as this allows us to re-use real-world data in our
experiments.
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Figure 2.1: An illustration of the Team Draft interleaving algorithm on an example where result pages
contain four documents. Red and green bricks correspond to documents that are associated with “teams”
A and B, respectively.

coin toss in Algorithm 2.2 two documents are added to the interleaved list, n/2 coin tosses are needed

to generate an interleaved result page with n results. Consequently, if we are working with four results

per result page, there are 24/2 = 4 possible team assignments or combinations on the first result page

(each combination corresponds to a “colouring” in Figure 2.1). We also enumerate these combinations

as Li, L = {Li|i = 1, ...}. In the case of ten documents per result page, there are 32 possible team

combinations on the first result page, which can be enumerated as follows: L1 ← ababababab, L2 ←

ababababba, ... , L32 ← bababababa.

From Algorithm 2.2 it is clear that each possible team combination Li is generated with equal

probability 1
|L| . Further, the probability distribution used to define how often a particular result page

is shown to a user is called the interleaving policy. Throughout this thesis we denote the vector of

probabilities that specifies the interleaving policy as π, i.e. πi is the probability of showing the result

page Li. While Team Draft uses a uniform policy, other algorithms, such as Optimised Interleaving

(Radlinski & Craswell, 2013) and our proposed Generalised Team Draft (Chapter 6), use non-uniform

probabilities.

To proceed, we define an interaction to be the part of a user session that starts when a user sub-

mits a query and ends either when the user submits another query or ends their session and leaves the

search engine. In interleaving, scores of the alternatives are calculated by aggregating scores over all

interactions in the experiment.
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Input: Rankings A = (a1, a2, ...) and B = (b1, b2, ...)
Output: Interleaved ranking list L, TeamA, TeamB
The interleaved ranking
L← ()
while (∃i : A[i] /∈ L) ∧ (∃j : B[j] /∈ L) do

if (|TeamA| < |TeamB|) ∨ (|TeamA| = |TeamB| ∧ (RandomBit = 1)) then
Top result in A that is not included in L
k ← mini{i : A[i] /∈ L}
L← L+A[k]
Clicks on the added result will be credited to A
TeamA← TeamA ∪ {A[k]}

else
Top result in B that is not included in L
k ← mini{i : B[i] /∈ L}
L← L+B[k]
Clicks on the added result will be credited to B
TeamB ← TeamB ∪ {B[k]}

end
end

Algorithm 2.2: Team Draft algorithm used to interleave two result lists, as proposed by Radlinski et
al. (2008)

After an interleaved result page is generated, it is shown to the user. To derive what alternative (A or

B) the user preferred in an interaction, their clicks are analysed. How to interpret the user feedback in

an interleaving experiment is an active area of research, which we discuss in more details in Chapter 6.

In the simplest case, the analysis can be performed as follows. Firstly, each click in an interaction is

associated with a team (A or B) that contributed the document on the clicked position17. To get the

result of the experiments, the relative number of clicks is compared for both alternatives.

To formalise the analysis of interleaving experiments, we introduce the notation used in this thesis.

Firstly, we fix an interleaving scoring scheme S. This scoring scheme associates a score S(a) with an

interaction a. We assume that a positive score indicates that the alternative system B is preferred in this

interaction, and a negative score indicates that A is preferred. After running an experiment, the mean

score statistic ∆ is calculated:

∆ =
1

|A|
∑
a∈A

S(a) (2.6)

where A is a set of the user interactions in the experiment.

A variety of interleaving scoring schemes were considered in the literature, most of them are heuris-

tics (Chapelle et al., 2012), but a machine-learned scheme was also proposed (Yue et al., 2010). We

discuss them in more detail in Chapter 6. However, since interleaving experiments are also used in

17Note, that even each document can be included in the interleaved list only by one of the teams.
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Chapters 5, 7 & 8, we briefly review a widely used scoring scheme. This scheme is referred to as the

deduped binary scheme, and it was proposed by Radlinski & Craswell (2010) and modified in (Chapelle

et al., 2012). This name reflects the fact that this scheme both accounts for the duplicate results in A

and B, and has binary per-interaction outcomes.

Under the deduped binary click scoring scheme, in each interaction the team (A or B) which got

more clicks is considered as a winner. A winner is assigned with a unit credit (i.e. 1). Importantly, if

both rankings A and B have identical top-k results, clicks on these results are ignored. Indeed, if top-k

results are identical, then after running Algorithm 2.2 the same results would form the first k results in

the interleaved result list. However, the teams of these results would vary depending on the results of

the coin tosses in Algorithm 2.2. Effectively, clicks on these results would be randomly assigned either

to A or to B. By assigning these clicks with zero credit, we integrate this zero-mean noise out. Finally,

interactions where both A and B obtained equal amounts of clicks are considered as ties, and they are

broken uniformly at random between A and B.

It is convenient to calculate the outcome of an experiment with the binary deduped scheme used as

suggested by Chapelle et al. (2012):

∆ =
winsB + 1

2 ties

winsA+ ties+ winsB
− 1

2
(2.7)

As in Equation (2.6), positive values of ∆ in Equation (2.7) indicate thatB outperformsA. How to infer

if these improvements are statistically significant, is discussed in the next section.

2.3.3 Statistical Testing in Online Evaluation

As a result of an online experiment, a dataset of observations is collected. The goal of the statistical

significance analysis is to infer if the difference observed between two systems in the experiment is due

to a random chance or if indeed it indicates the preference of the users.

Usually, the analysis is performed by comparing two mutually exclusive hypotheses. Informally,

the first hypothesis, referred to as the null hypothesis, states that there is no real difference between the

compared systems. Under the alternative hypothesis, the systems A and B differ. The formal definitions

of the tested hypotheses depend on the online evaluation method used and we discuss them below.

Before an experiment is started, the experimentation team decides on the acceptable level of statis-

tical significance, α. The typical values of α used are 0.05, 0.01, and 0.001. These values correspond

to 95%, 99%, and 99.9% confidence levels. Once the experiment is finished, the p-value statistic is

calculated using the obtained dataset. The p-value indicates the probability of obtaining the difference
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between systems at least as extreme as the one observed in the experiment assuming that the null hy-

pothesis H0 holds (i.e., if the systems are equally likely to satisfy the users). After that, the obtained

p-value is compared to the significance level α. If p-value is smaller than α, then the null hypothesis

H0 is rejected and it is concluded that the tested systems differ. Otherwise, it is concluded that based on

the experiment data it is impossible to reject H0 on the selected significance level.

From the above described procedure it is clear that the probability of rejecting the null hypothesis

when it holds is equal to α. Such an error is referred to as a Type I error. The opposite case — of

rejecting the alternative hypothesis when it holds — is denoted as a Type II error.

To formalise the compared hypotheses in the case of A/B testing, we assume that we are interested

in a fixed absolute online metric. Denoting the expected values of this metric of interest in the treatment

and control groups as µB and µA, the goal of the statistical significance analysis is to infer if these

means are different. Under the null hypothesis H0, the expected values of the metric on both groups of

users are equal:

H0 : µA = µB

Under the alternative hypothesis H1, these means are different:

H1 : µA 6= µB

In the case of interleaving-based online experiments, the compared hypotheses are formulated simi-

larly, with the absolute online metrics replaced by a relative online metric. An important difference with

A/B testing is that in interleaving there is only one sample of observations, as A and B are mixed within

each interaction. This allows interleaving to reduce between-user noise and, as a result, to achieve a

higher convergence rate (Schuth et al., 2015). Formally, the test is performed to compare the inter-

leaving mean score ∆ (Equation (2.6)) to zero (A and B are getting equal amounts of credits, but are

assigned with different signs):

H0 : ∆ = 0

The alternative hypothesis assumes that the mean score is not zero:

H1 : ∆ 6= 0

Sometimes, a binary scoring scheme is used, such as the deduped binary scheme (Section 2.3.2) which

assigns a binary score to each interaction, corresponding to the winning alternative (e.g. +1 if B wins

and −1 if A wins). Denoting by pB (pA) the probability of A (B) winning in an interaction, and

assuming that ties are broken between A and B uniformly, the hypotheses can be formulated as follows:

H0 : pA = pB = 0.5 H1 : pA 6= pB
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As a result, statistical tests that assume binary input can be used, such as binary sign test (Chapelle et

al., 2012).

2.4 Comparing Offline and Online Evaluation Approaches

After discussing offline and online evaluation approaches in Section 2.2 and 2.3, respectively, in the fol-

lowing we briefly overview their specifics in the form of a mutual comparison along several dimensions.

This allows the highlighting of the strong and weak aspects of these two approaches.

Data re-usability In the offline evaluation approach, once a test collection is built, it can be re-

peatedly used to evaluate effectiveness of ranking of new systems. It is possible that the judgements or

documents become outdated with time, hence a constant labelling process can be used to keep them up-

to-date. In contrast, the data obtained in online experiments cannot be re-used to substitute new online

experiments.18

Reproducibility Given exactly the same ranker and the same test collection, offline evaluation pro-

duces the same result. In online experimentation, several factors affect the reproducibility of the same

comparison. Firstly, the user’s needs evolve and change, e.g. according to the day of the week and

season. Secondly, in online evaluation, systems are not separated from the remaining world when

comparison if performed. For instance, during a typical two-week A/B test, several search engine’s

sub-systems can change, so that the same experiment repeated a week later theoretically might have a

different outcome.

Effects on users During offline evaluation experiments, no users are involved, so their search expe-

rience cannot be harmed. However, when a change that negatively affects the user search experience is

evaluated online, it can frustrate the users. Clearly, if a ranker with low effectiveness is evaluated in an

A/B test, the users in the treatment group of the test would get rankings served by this bad ranker. It is

possible that these users will not use this search engine again. This effect is less severe in the case of

interleaving, as the users obtain the result pages that always contain results from both rankers.

Evaluation efficiency and scalability Assuming that a test collection is available, in system-based

evaluation the experiment time is essentially bounded only by the search engine’s run-time efficiency,

thus the experiments are fast to be performed. In contrast, online experiments tend to last for days and

weeks. A typical A/B test is deployed for a time period that lasts for weeks (Chapelle et al., 2012;

Drutsa et al., 2015; Kohavi et al., 2013). Interleaving experiments tend to be shorter, typically lasting

18Some studies (Grotov et al., 2015; Li et al., 2015) aim to re-use historical interaction data so that new online experiments are
not required, but they are limited in their applicability (e.g. they cannot be used to evaluate changes in UI, or ranking with new
documents) and cannot be considered as online experiments.
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for several days, e.g. Chapelle et al. (2012) used interleaving experiments from Bing and Yahoo! that

are from two to five days long. We consider low evaluation efficiency to be one of the major problems

of the online evaluation, and a part of this thesis (Chapters 6, 7, and 8) is devoted to addressing it.

In addition, online evaluation is also limited by the bounded resources it uses. Indeed, in a shared-

control scenario, each A/B experiment is deployed for two weeks and takes up to 10% of the search

engine’s users as the treatment group (Kohavi et al., 2013) and 10% of the user population is used as

the shared control group. Hence, in such a configuration it is only possible to run up to 9 experiments

affecting ranking of the results in two weeks.19 Clearly, these restrictions limit the usefulness of online

evaluation. Apart from increasing evaluation efficiency, one can try to build a system that selects what

online experiments are worth deploying first. We discuss this approach in Chapter 5.

Evaluation effectiveness The state-of-the-art offline metrics used in system-based evaluation are

designed to model user’s satisfaction with the evaluated ranking. While some of these models are

elaborate (Chapelle et al., 2009; Chuklin, Serdyukov & de Rijke, 2013; Yilmaz et al., 2010), they only

tend to approximate the user behaviour. In online evaluation experiments, and in particular in A/B

tests, we directly observe how user behaviour changes after the system is changed. In that sense, online

experimentation has a higher potential than offline evaluation methods. However, the question of how to

choose an online evaluation metric such that it reliably represents the user’s satisfaction with the search

engine and is sensitive is an open problem (Section 2.3.1).

Applicability While system-based evaluation methods and interleaving can only be used to evaluate

the ranking effectiveness, A/B tests have a very broad area of applicability: an A/B test can be used

to assess the user satisfaction with a user interface (UI) change, the effectiveness of document ranking,

snippet or QAC quality. Further, so far interleaving evaluation was only reported to be used in the

document search domain. We hypothesise that it also can be applied to other domains with list-based

representation of the results, such as QAC or snippet evaluation, however, to the best of our knowledge

there are no studies published that support the validity of this hypothesis. In Chapter 6 we demonstrate

that interleaving methods can be extended to the domains with grid-based result representation, such as

image search.

Cost of operation The cost of building a large-scale test collection for offline evaluation can be sub-

stantial, as it requires obtaining relevance judgements, which is a labour-intensive process performed

by humans. On other hand, once the test collection is built, it can be repeatedly re-used. Online experi-

ments can be deployed at no direct cost, assuming that the corresponding infrastructure is implemented

19As we discuss in Section 3.4, a single user might participate in several experiments simultaneously, if these experiments affect
different “variables”, such as ranking and UI.
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and the market share is not lost due to testing low-quality changes.

Overall, from the comparison of the evaluation approaches in this section above and in Sections 2.2

and 2.3, we notice the both approaches are in fact very complimentary. For example, since offline

evaluation cannot harm the search engine’s users and can be performed fast and at no cost (provided the

test collection is available), we can use it extensively to filter changes that can damage the experience

of the search engine’s users. In other words, as running online evaluation is a long process potentially

affecting the users, we generally need to use offline experimentation to avoid these possible downsides.

In turn, as online experiments are the most direct way to predict the user’s reaction to a change in a search

engine, we might want to use it as often as possible; but as the online evaluation can harm the users and

its throughput is limited, we need to use the offline methods to ensure high quality of the experiments

that go to the online evaluation. All these observations motivate us to consider the evaluation pipeline,

a combination of the offline end online evaluation steps that are used sequentially to ensure that a search

engine makes fast and correct decisions when evaluating its improvements. In Chapter 3 we discuss the

model of the evaluation pipeline used in this thesis.

Before proceeding to discuss the evaluation pipeline, in the next section we overview some of the

important models of the user clicking behaviour. These models are tightly connected to offline effec-

tiveness metrics (Chapelle et al., 2009; Chuklin, Serdyukov & de Rijke, 2013; Yilmaz et al., 2010) and

are intertwined with our work in Chapters 4, 5, and 6.

2.5 Click Models

Since it was demonstrated that implicit user feedback can be effectively used for evaluating rankers

(Joachims, 2002, 2003), the problem of better understanding of the user’s clicking behaviour started to

attract researchers. Joachims et al. (2005) observed that the user clicking behaviour is informative, but

biased. The first type of bias Joachims et al. (2005) described is the trust bias: users trust their search

engine’s ranking ability and click on the first result even when it is less relevant than the second result.

The second type of bias is the quality bias: if the quality of the ranking decreases, the users start to click

on less relevant results. This indicates that the clicking behaviour is dependent on the overall quality

of the results. Hence, the implicit feedback can only provide relative preference information. Joachims

et al. (2005) also proposed several strategies to extract pairwise preferences from the user clicks, i.e. a

clicked document is likely to be more relevant than documents ranked higher but not clicked.

Later, a variety of user models were proposed that aim to account for these biases in the user feed-

back data (Chapelle & Zhang, 2009; Craswell et al., 2008; Dupret & Piwowarski, 2008; Dupret et al.,
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2007; Guo et al., 2009; Moffat & Zobel, 2008). An overview of some of the most representative click

models can be found in (Chuklin et al., 2015). Below we review two models that are most relevant to

our work, the cascade click model and the Dynamic Bayesian Network model.

The cascade model (Craswell et al., 2008) assumes that the user examines results from top to bottom,

sequentially. The top result is always examined. At each step, the user decides whether to move to the

next result or to click on the current. Once the user clicked, they never return to the result page; the user

continues examination until a result is clicked.

To formalise the model, we assume that a query and a result page is fixed, and introduce the fol-

lowing binary random variables. Eu indicates if the document u was examined, Cu denotes if u was

clicked, andAu denotes an event of the user finding the document u attractive. By ui we refer to the doc-

ument ranked on the ith position. Under this notation, the cascade model is described by the following

Equations (2.8a)-(2.8f) (Chuklin et al., 2015):

Cu = 1⇔ Eu = 1 and Au = 1 (2.8a)

P (Au) = αu (2.8b)

P (Eu1 = 1) = 1 (2.8c)

P (Eui
= 1|Eui−1

= 0) = 0 (2.8d)

P (Eui
= 1|Cui−1

= 1) = 0 (2.8e)

P (Eui
= 1|Cui−1

= 0, Eui−1
= 1) = 1 (2.8f)

Equations (2.8a)-(2.8f) state that: (2.8a) the user clicks on a results if and only if the results is

examined and attractive; (2.8b) the probability of attracting the user is the document’s parameter αu;

(2.8c) the top result is always examined; (2.8d) the results are examined sequentially from top to bottom;

(2.8e) the user stops examination after a click; (2.8f) the results are examined until the user clicks.

This model is relatively basic (e.g. it cannot model multi-click interactions), but it forms a foundation

for the ERR effectiveness metric (Chapelle et al., 2009) and provides a foundation to a number of other

click models, including the model of the user interactions with query auto-completion mechanisms we

propose in Chapter 4.

Dynamic Bayesian network model (DBN) proposed by Chapelle & Zhang (2009) is also based on

the cascade model. In contrast to the cascade model, under DBN the user might click several times,

and stops either if the clicked document satisfies them or if the user decides to abandon the search. To

model that, Chapelle & Zhang (2009) introduced another document parameter, su, that specifies the
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probability of satisfying the user after click. In addition, they introduce a constant probability (1−γ) of

user deciding to abandon the interaction. The DBN model is specified by the following Equations (2.9a)-

(2.9h):

Cu = 1⇔ Eu = 1 and Au = 1 (2.9a)

P (Au) = αu (2.9b)

P (Eu1
= 1) = 1 (2.9c)

P (Eui = 1|Eui−1 = 0) = 0 (2.9d)

P (Sui
= 1|Cui−1

= 1) = su (2.9e)

Cu = 0⇒ Su = 0 (2.9f)

P (Eui
= 1|Sui−1

= 1) = 0 (2.9g)

P (Eui = 1|Eui−1 = 1, Sui−1 = 0) = γ (2.9h)

Equations (2.9a)-(2.9h) closely resemble the specification of the cascade model in Equations (2.8a)-

(2.8f) with the following difference: (2.9e) after a click on the document u the user is satisfied with

the document-dependent probability su; (2.9f) only clicked documents can satisfy the user; (2.9g) a

satisfied user stops examination; (2.9h) if not satisfied, user continues examination with probability γ.

The query-document parameters are estimated by an EM-based procedure (Chapelle & Zhang, 2009).

An important modification of the DBN model is the simplified DBN model (sDBN). This model

assumes that the user always continues to examine the results, i.e. γ = 1. In that case, the last clicked

result satisfied the user. As a result, the model parameters can be estimated by a simpler procedure,

however, sDBN has predictive capabilities comparable to that of DBN (Chapelle & Zhang, 2009). We

provide the details of the parameter training procedure in Algorithm 2.3. We use this sDBN model in

Chapters 5 and 6.

2.6 Conclusion

In this chapter, we provided a high-level overview of the evaluation techniques and related topics.

We split the overview of the evaluation techniques in two parts, discussing offline evaluation in Sec-

tion 2.2 and online evaluation in Section 2.3. The area of offline evaluation (also referred to as system-

based evaluation), was actively developing since the 1960-s and has its roots in the Cranfield experi-

ment (Cleverdon, 1967; Voorhees, 2002). In contrast to offline evaluation, online evaluation methods
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Input: Set of user interactions A, Beta priors on the click model parameters: αa, αs, βa, βs
Output: The click model parameters for each document u: au, su
aNu ← 0; aDu ← 0
sNu ← 0; sDu ← 0
foreach interaction in A do

foreach result u above or on the last clicked position do
aDu ← aDu + 1

end
foreach clicked result u do

aNu ← aNu + 1, sDu ← sDu + 1
end
u← last clicked document in the current interaction
sNu ← sNu + 1

end
foreach u do

au ← aNu +αa

aDu +αa+βa
, su ← sNu +αs

sDu +αs+βs

end
Algorithm 2.3: Training the sDBN model, as described in (Chapelle & Zhang, 2009). Following
Chapelle & Zhang (2009), we use uniform Beta priors αa = αs = βa = βs = 1 throughout this
thesis.

attracted interest of the IR research community relatively recently, probably due to being increasingly

popular in the industrial setting.

Both offline and online evaluation approaches have their strong and weak sides. Indeed, offline

evaluation comparisons are easily reproducible and, given a test collection, are fast to be obtained.

However, there is a spectrum of possible changes (e.g. UI changes or personalised search) that are either

hard or impossible to evaluate offline at scale. In contrast, online experiments tend to be time-consuming

and require a part of the limited resource of user traffic, but they better reflect the needs of the users than

offline evaluation experiments.

As we discussed in Section 2.4, the offline and online evaluation approaches can be used in conjunc-

tion, so that the overall evaluation process leverages strong sides of the both approaches to guarantee a

fast and progressive development of a search engine. Combined, they form an evaluation pipeline that

we discuss in the next chapter.

In Section 2.5, we provided a focused review of the click models we use in this thesis, namely the

cascade click model and the Dynamic Bayesian Network click model. These models form a foundation

to some of our further work in Chapters 4, 5, and 6.

Before going into detailed discussion of the evaluation pipeline, we want to highlight that instead of

concentrating on a single part of this pipeline, in this thesis we aim to improve the evaluation pipeline

as a whole by improving its individual parts. We discuss the roadmap for achieving this in Section 3.5.
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Chapter 3

Evaluation pipeline

3.1 Introduction

As we discussed in Section 1.2, data-centric evaluation is an important tool that ensures progressive

development of search engines. We denoted by evaluation pipeline a combination of steps that are used

to assess the quality of the deployed changes. The evaluation pipeline specifies a typical life cycle of a

change from the moment it was developed to the moment a decision is made if the change is useful or

not. Further, either this change is accepted as successful and becomes a part of the production system

or is rejected, if it is proven not to be useful. Typically, web search evaluation is a multi-stage process.

An important requirement for the evaluation pipeline as a decision mechanism is its accuracy. In

other words, we require that changes that degrade the users’ search experience should be accepted as

rarely as possible. Another important requirement for the evaluation pipeline is efficiency. We define

efficiency as the ability to produce as many successful changes as possible in a unit of time. If, given a

fixed stream of changes, an evaluation pipeline produces twenty successful experiments in a week, we

consider it to be more efficient than one that produces only ten. A higher efficiency can be achieved

either by processing experiments faster, or by early rejecting experiments that are unlikely to be suc-

cessful. In this thesis, we investigate both possibilities.

As discussed later in Section 3.3, in a possible evaluation pipeline implementation, the majority of

the changes deployed by a search engine are often assessed not to harm the search engine’s users by

means of the rigorous, multi-stage testing. This implies that the efficiency of the evaluation pipeline

as a whole is one of the limiting factors of the search engine’s progress rate. Indeed, if evaluating a

single hypothesis takes more than two weeks, how long it will take to iterate over several unsuccessful

hypotheses before a successful one is found? The successful to unsuccessful experiments ratio was re-

ported to be relatively low in modern search engines, e.g. in 2009 in Bing two in three hypotheses tested
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in online experiments proved to be unsuccessful (Kohavi et al., 2009) and were rejected. Furthermore,

as search engines become increasingly advanced, improving them becomes harder and thus the ratio is

likely to decrease further in time.

To illustrate the evaluation pipeline, we start this chapter by Section 3.2, where we go through a

possible evaluation process for three example changes in the search engine. In the first change, a new

ranking feature is added to the ranking algorithm. In the second example, we follow the evaluation

of a change in the ranking of query auto-completions. Finally, in the third example, we evaluate a

change in the user interface. Based on these illustrative examples, in Section 3.3 we discuss a possible

implementation of the evaluation pipeline in a search engine. For the purposes of this thesis, a high-

level description of the pipeline is sufficient. In general, parts of the pipeline we discuss below can be

skipped in some cases (e.g. the offline evaluation step might be skipped in the evaluation of a change

in the user interface) or altered. Moreover, the steps themselves might be more sophisticated than we

describe in this chapter. For instance, in Section 3.4 we go a bit deeper in describing how elaborated an

online evaluation step can be.

However, the basic picture of the evaluation pipeline we describe in this chapter is sufficient for the

purposes of this work, and we describe all parts of the pipeline that are relevant to this thesis. Based

on this description, in Section 3.5 we discuss a roadmap for improving the efficiency of the evaluation

pipeline that we follow in this thesis. At the same time, while improving the evaluation pipeline’s

efficiency, we aim to maintain its accuracy level.

3.2 Three Evaluation Examples

We start by describing a possible evaluation scenario for three typical types of changes in a search

engine: a change in the learning to rank algorithm for the document search, a change in the ranking of

query auto-completions, and a change in the user interface.

Ranking algorithm Assume, we want to assess a hypothesis that states that adding a new ranking

feature in the ranker increases the quality of the ranking. Typically, this hypothesis would be assessed

as follows.

Firstly, the ranking algorithm, e.g. a LambdaMART (Burges, 2010) implementation, is trained twice

on a collection of the query-document pairs that are manually labelled by relevance judges: with and

without the tested ranking feature. This training is aimed to optimise a specific offline evaluation metric,

such as nDCG (Järvelin & Kekäläinen, 2002) or ERR (Chapelle et al., 2009). The training is performed

in a cross-validation setting. After the training is finished, we test a statistical hypothesis that assumes
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that the ranking algorithm with a new ranking feature has higher mean of the metric of interested. If the

mean value of the metric is indeed increased, and the improvement is accepted as sufficiently large and

statistically significant, the hypothesis proceeds to the next step.

In the next step, the trained model is deployed to a copy of the production system and is evaluated

offline. However, in contrast to the earlier evaluation, this time the change is evaluated in conjunction

with the remaining systems that comprise the search engine. Importantly, some of them might affect

the ranking of the results (e.g. a re-ranking system that promotes fresh results). After that, a hold-out

offline evaluation collection is used to assess the quality of the ranking. Once a statistically significant

improvement is achieved, the evaluation of the hypothesis proceeds to the next step, namely the online

experiments scheduling step.

Essentially, the above described steps are performed offline, in the system-based setup (Section 2.2),

without any need for real users. If the tested change improves, or, at least, does not degrade the offline

metrics, it is added to the online experimentation queue. In the case of the ranker change, the online

evaluation can be performed either by interleaving or by an A/B test. It might be the case that an

online experimentation slot (discussed in Section 3.4) is available so that the experiment is deployed

immediately to evaluate the ranker with the added feature. It is also possible that there are no available

slots, so the experiments are scheduled with some priority to be executed later.

After the online experiment is deployed for a fixed and pre-defined time period, e.g. a week, it is

terminated and a statistical analysis is performed to infer if there is a statistically significant difference

between the compared systems: if so, the new ranking feature is added to the ranking system.

QAC change The evaluation of a change in the ranking of query auto-completions (QAC) follows

a path similar to the one of a change in document ranking. Firstly, it is evaluated offline, against a set

of queries submitted by the search engine’s users earlier. If the quality of the ranking as measured by a

chosen offline evaluation metric is increased, the tested change proceeds to the online evaluation step.

The result representation typically used in QAC is similar to the representation used in document search

and, theoretically, interleaving can be used to compare the tested change to the QAC ranking used in

production. However, to the best of our knowledge, no studies validate or use interleaving in the QAC

domain. Thus, we assume that an A/B test is performed to evaluate the proposed change. Similar to

the previous example, the online evaluation experiment is either deployed immediately or is scheduled

to be deployed later. After the corresponding online experiment is finished, a statistical analysis test is

performed to infer if the difference between the absolute online metric20 of the proposed change and the

current system is statistically significant.

20Such a metric can measure, for instance, how often the QAC mechanism is used by the users.
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Importantly, in our document ranking and QAC examples, the chances of rejecting a tested change

in online experiments are higher, if the offline evaluation metrics used to tune and test the changes are

not aligned with the online metrics. How we plan to address that is discussed in Section 3.5.

UI change When evaluating a change in the user interface (UI), we are not capable of using the

system-based evaluation, as in such an evaluation we ignore the actual representation of the results.

As a result, the offline evaluation is either not performed at all, or is performed as a small-scale study

by asking a group of participants to compare two possible UI implementations side-by-side (Thomas

& Hawking, 2006). However, the online evaluation is still useful. Notably, an interleaving evaluation

experiment is not applicable here, as it is designed for the comparing two alternative rankings. As a

result, the evaluation can only be performed by an A/B test. In such a test, the current used UI is

compared with the changed UI. To test the hypothesis that the system with the changed user interface

better satisfies the users, a corresponding A/B experiment is added to the online experimentation queue.

If there is an available slot in the corresponding experimentation layer, the experiment is deployed.

Similarly to the earlier ranking evaluation example, the experiment is performed for a fixed time period,

usually for a week or two. After the experiment is stopped, the collected data is used to analyse if there

is a statistically significant difference in the user satisfaction with the compared systems.

3.3 Pipeline Structure

Based on the examples discussed in Section 3.2, we highlight the steps that a possible improvement in a

search engine passes by before it is accepted as a part of the search engine or it is rejected. These steps

essentially correspond to the parts of the evaluation pipeline which are discussed in Section 3.3.2.

3.3.1 An Improvement’s Life Cycle

Offline optimisation Often, a changed subsystem in the search engine has numerous parameters that are

optimised in a dedicated specific machine learning step. A classic example is a search engine’s ranking

algorithm, which is learned to optimise an offline metric on a labelled dataset. This process precedes

the evaluation process we concentrate on in this thesis.

Offline evaluation Once the parameters of the changed subsystem are optimised, its quality is evalu-

ated against a test dataset. For instance, in the case of a change in the ranking algorithm, its effectiveness

is assessed on a separate bucket of labelled queries. This offline evaluation step might differ from the

evaluation in the offline machine learning process as it evaluates the search engine as a whole. In our

ranking evaluation example, a new ranking algorithm is evaluated in conjunction with other parts of the

search engine that affect ranking, such as verticals.
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Online experiment scheduling Once the offline evaluation demonstrates that the tested change

does not degrade the offline quality metric, it proceeds to the online evaluation step. However, as

each online experiment consumes a part of the query traffic and might last for a considerable period of

time (e.g. a week), sometimes it can be impossible to deploy all the tested changes for online evaluation

simultaneously. As a result, a queue of the experiments is organised. In an extreme case, the experiments

might come to the queue faster than performed. As a result, the problem of selecting the most promising

experiments for future evaluation arises. For this reason, we consider a separate online evaluation

scheduling step where such a selection is performed.

Online evaluation In the online evaluation step, the quality of the tested change is assessed by

exposing the real users of the search engine to the tested change. This is performed usually by means of

an A/B test, or in an interleaving experiment, as discussed in Section 2.3. A part of the online evaluation

step is the statistical analysis of the obtained results (Section 2.3.3).

Deployment After assessing the quality of the tested change in an online experiment, it can be

accepted as successful and considered for future deployment. Otherwise, it can be considered for a

further improvement and re-evaluation. We consider this step not to be a part of the evaluation pipeline.

Reverse testing For a variety of reasons, one might wonder if an already deployed change (feature)

is still useful. For example, due to changes in the user needs or due to other new improvements in the

search engine, some features might become redundant. In that case, a reverse test can be used to assess

if it is indeed redundant. Such a test can be performed, for instance, by running an A/B test where one

of the alternatives is obtained by switching the deployed change off. In a sense, this step corresponds

to the same online evaluation step where the change tested just “turns off” an earlier deployed change.

Hence, we do not differentiate such a test from a regular evaluation experiment.

3.3.2 Structure of the Evaluation Pipeline

The structure of the evaluation pipeline we consider in this thesis reflects the life cycle of a change

described in Section 3.3.1. In Figure 3.3.2 we provide its schematic representation. This simple model

consists of three steps: offline evaluation, scheduling, and online evaluation steps. In the offline eval-

uation step the assessed change is tested to improve (or at least not to degrade) the offline evaluation

metrics. After that, this change proceeds to the scheduling step where it is arranged in the experi-

mentation queue according to how promising is this particular change. After the corresponding online

experiment is deployed, the user behaviour data representing the user’s satisfaction in the experiment is

collected. After the experiment is finished, the collected data is used to test the statistical significance

of the difference between the systems.
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Figure 3.1: A schematic model of an evaluation pipeline considered in this thesis.

Despite being a high-level schematic description of a search engine’s evaluation pipeline, this model

highlights how the overall efficiency of the evaluation pipeline can be improved. In the following, we

firstly discuss one of the existing approaches to increase the online evaluation scalability (Section 3.4).

After that, in Section 3.5 we discuss the roadmap for improving the efficiency of the evaluation pipeline

as a whole that we will follow in this thesis.

3.4 Overlapping Online Experiments

A straightforward way to improve the scalability and thus the efficiency of online evaluation is to allow

each user interaction to participate in several online experiments at the same time. However, a spe-

cial care is needed while designing such an evaluation system due to possible interferences between

the experiments. In an example discussed in (Tang et al., 2010), two user interface (UI) changes are

considered. The first change alters the parameter that specifies the colours of the document links, and

the second change modifies the parameter that controls the background colour of the result page. While

blue colour is a possible value for the both parameters, setting them both to blue would make the search

results unreadable and have catastrophic consequences to the users.

A possible solution is proposed by Tang et al. (2010) and its core idea is to organise online exper-

iments in a layered, overlapping structure. In order to achieve this, the set of controlled parameters is
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split in subsets, with subsets corresponding to experimentation layers. Each layer is used to run experi-

ments that alter user experience along one dimension, e.g. it is possible to have ranking, user interface,

query auto-completion, and snippet layers.

Such a system allows to use a single user interaction in several experiments, one per layer, while

avoiding experiments influencing each other. A similar approach was reported to be used in Bing (Ko-

havi, 2012).

In a possible implementation, the users can be represented by a cookie, and, by means of adding a

salted hashing of the cookies, they can be randomly split in 20 groups, for example. Each group contains

5% of users, and each A/B test experiment in a layer uses two groups of users, one for A and one for

B. Assuming that the control group (i.e. A) can be shared across the experiments, in this example it is

possible to run up to 19 experiments per layer simultaneously.

While the described multi-layer system increases the scalability of the evaluation pipeline, the prob-

lem of improving the evaluation efficiency remains. Indeed, in some layers of the evaluation more

experiments can be required than evaluated. For instance, in the ranking level it is relatively cheap to

devise an improvement by changing the parameters of the learning to rank algorithm. Moreover, the

evolution rate of the search engine is still hindered by the efficiency of the individual experiments. As a

result, the problem of achieving a higher efficiency in the single layer remains actual.

3.5 Roadmap for Improving the Evaluation Pipeline

How to improve the efficiency of the evaluation pipeline is the central question of this thesis. We

hypothesise that by using the historical interaction data, each step of the evaluation pipeline can be

improved so that the overall efficiency of the evaluation pipeline is increased. Specifically, we propose

the following roadmap to improve each step of the pipeline so that the efficiency of the pipeline as a

whole is increased:

1. To reduce the number of experiments that pass the offline evaluation step, but are rejected after the

online evaluation step, we propose to use machine-learned offline metrics that are optimised to be

better aligned with the online user preferences. This optimisation is performed on the historical

user interaction data. As a result, a better effectiveness as indicated by the offline metric is more

likely to imply a better effectiveness as measured in an online evaluation. Thus, less experiments

pass the offline step to be later rejected during online evaluation. We follow this idea and propose

offline evaluation framework for the query auto-completion domain in Chapter 4.
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2. In Chapter 5, we propose a machine-learned online experiment scheduler that aims to deploy only

the most promising experiments. In the situation when it is impossible to deploy all the scheduled

experiments simultaneously, the optimised scheduler can increase the overall evaluation pipeline

efficiency by reducing the number of unsuccessful experiments deployed for online evaluation,

thus allowing a better utilisation of the limited resource of the user sessions;

3. As the online evaluation is the most time-consuming step, reducing its duration can notably in-

crease the overall efficiency of the evaluation. We propose to achieve this reduction by both

improving the sensitivity of online evaluation (Chapter 6) and by improving the way the data

from online experiments is tested for statistical significance (Chapter 7). In Chapter 8, we argue

that both ways to increasing online evaluation efficiency can be used in combination and lead to

even higher gains in efficiency.

Overall, in this thesis we discuss how to improve each step of the evaluation pipeline so that the

overall efficiency of the pipeline is improved. At the same time, we control, where possible, that the

accuracy of the improved steps is not harmed.

3.6 Conclusions

In this chapter, we described a model of the typical evaluation pipeline used by commercial search

engines. We started with Section 3.2, where we followed the possible evaluation steps for three different

changes in search engines, namely a change in the document search ranking algorithm, a change in the

ranking of query auto-completions, and an improvement in the user interface. Based on these examples,

we presented a schematic model of the evaluation pipeline (Section 3.3). While this model is high-

level and parts of it can be more sophisticated than we described, as demonstrated by Section 3.4, it is

sufficient for the purposes of this work.

This model of the evaluation pipeline allowed us to introduce the roadmap for improving the eval-

uation process as a whole, and we discussed this roadmap in Section 3.5. According to this roadmap,

we consequently work on improving each step of the evaluation pipeline. In particular, in Chapter 4, we

work on improving the offline evaluation step. In Chapter 5, we improve the scheduling step. In Chap-

ters 6, 7, and 8, we discuss how the efficiency of the online evaluation step can be improved. Overall,

in each of these chapters, the historical user interaction data becomes an invaluable tool to improve the

evaluation process as a whole, thus supporting the statement of this thesis.
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Chapter 4

Framework for Offline Query
Auto-completion Evaluation

4.1 Introduction

This chapter is based on a publication (Kharitonov et al., 2013b) and studies the problem of offline

evaluation of query auto-completion mechanisms. The query auto-completion mechanism (QAC) within

a search engine is a tool aimed to help users to type less while submitting a query. In its most basic form,

the list of suggested queries is formed by listing queries that start with the user’s input as a prefix. A

typical QAC interface is represented in Figure 4.1.

In this chapter, we discuss how the offline evaluation step can be improved by using the historical

user interaction data. In particular, we investigate how the offline evaluation metrics can be improved

in a typical web search application, namely query auto-completion (QAC). Despite QAC being used by

all commercial search engines, QAC evaluation lacks a well founded offline evaluation metric that is

aligned with the online user preferences. As we will demonstrate below in this chapter (Section 4.9),

the previously existing metrics are only loosely aligned with online user behaviour. As a result, online

evaluation experiments that test changes in QAC are more likely to be rejected during online evaluation.

However, as discussed in Section 2.4, online experiments cost time and can annoy users if the tested

change degrades the user experience. Hence, building an offine metric that is aligned with online eval-

uation is an important task and it is the gap we aim to address in this chapter. This direction of work

corresponds to point one of the pipeline improving roadmap we outlines in Section 3.5.

A possible way to ensure the alignment is to design the metric on top of a realistic model of the user

behaviour. For evaluation in the web search domain, Expected Reciprocal Rank (ERR) (Chapelle et al.,

2009) and Expected Browsing Utility (EBU) (Yilmaz et al., 2010) are examples of user model-based
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Figure 4.1: A search engine’s interface with its query auto-completion mechanism suggesting a set of
queries. The suggested queries contain the user input as their prefix.

effectiveness metrics. We follow a similar approach, by building a realistic model of the user behaviour

and adjusting its parameters using historical interaction data to ensure a high alignment with the online

behaviour of the users. This approach supports the statement of this thesis (Section 1.3): indeed, by

re-using historical interaction data, we improve the efficiency of the evaluation pipeline as a whole.

In this chapter, we follow a similar approach. We propose a novel framework of the offline query

auto-completion effectiveness metrics, called Saved. This metric framework is parameterised by a model

of the user interaction with the query auto-completion mechanism and an effort function. The effort

function characterises the level of effort it takes the user to submit their query. To instantiate our pro-

posed framework, we consider several models of the user behaviour and two forms of the effort function.

Overall, we consider our contributions in this chapter to be as follows:

• We study the ways users interact with the query auto-completion mechanism, as it is observed in

the session logs, and propose a cascade model of the user behaviour;

• We propose a family of effectiveness metrics, called Saved, parametrised by a user model and

study several possible instantiations of these metrics;

• We perform a thorough experimental study of the considered user models and evaluation metrics

in comparison to the evaluation metrics used in the literature.

The remainder of this chapter is organised as follows. After reviewing some related work in Sec-

tion 4.2, we study how users interact with a query auto-completion mechanism and propose a user model

in Section 4.3. In Section 4.4, we introduce an algorithm to learn the parameters of the user model from
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the session log. Next, we briefly discuss the considered evaluation framework in Section 4.5. Further,

we introduce a novel family of evaluation metrics, called Saved, and discuss their connection to other

metrics used in Information Retrieval in Section 4.6. Section 4.7 describes a methodology we use to

compare the proposed user models and metrics. The dataset used in our experiments is presented in

Section 4.8. We report and discuss the experimental results in Section 4.9. We provide concluding

remarks in Section 4.10.

4.2 Related Work

Our work in this chapter is based on the earlier research in the following areas: the user model-based

evaluation metrics, the methods used to compare the effectiveness metrics, the models of user interac-

tion with query auto-completion mechanisms, and the metrics used to evaluate query auto-completion

mechanisms.

Models of the user search behaviour and their connection to the evaluation metrics gained a lot of

attention in the document search domain and inspired us to follow this direction in our work in the query

auto-completion evaluation. Thus, it is important to review the user model-based evaluation approach

(Section 4.2.1) and the models of the user behaviour considered in the QAC domain (Section 4.2.2).

Once a new metric is developed, the question arises about how to compare it to the variety of existing

metrics. This problem has also received some attention from the research community. We face the same

problem of assessing the quality of the query auto-completion metrics. Thus we review how metrics

evaluation is performed in Section 4.2.3. We finish the overview of the related work with the discussion

of the methods and metrics used in the evaluation of query auto-completions previously used in the

literature (Section 4.2.4).

4.2.1 User Model-inspired IR Metrics

One of the state-of-the-art web search evaluation metrics, Expected Reciprocal Rank (ERR), has a strong

relation with the cascade model of the user behaviour and is defined as part of the cascade-based family

of metrics (Chapelle et al., 2009). We discussed the cascade model in Section 2.5. This model assumes

that a user examines a list of ranked documents one-by-one, from top to bottom. After examining the

document in the ith position, either the user is satisfied and stops the examination process or continues

to the document in position i + 1. The probability of satisfying the user depends on the document’s

relevance. A cascade-based metric is defined as the expectation of a function φ(r), where r is the rank

where the user finds the document they were looking for. In case of ERR, the function φ(r) is specified

to be 1
r .
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An extension of ERR based on the cascade model with abandonment (Chapelle & Zhang, 2009)

was also discussed by Chapelle et al. (2009). Apart from being based on a different user model, this

extension leverages a different instantiation of the function φ(r), which is equal to 1 if the user finds a

satisfactory result, and 0 otherwise. As a result, the value of this metric is equal to the probability of the

user finding a relevant result as predicted by the underlying user model.

The Expected Browsing Utility (EBU) is another search effectiveness evaluation metric proposed

by Yilmaz et al. (2010), which is defined as the expected document utility a user “collects” while

examining a result list. At its basis, EBU uses a more sophisticated cascade user model that accounts

for snippet attractiveness.

The effectiveness metrics that we introduce resemble the cascade family of the web search effec-

tiveness metrics (Chapelle et al., 2009), but applied to the query auto-completion domain with different

user behaviour patterns.

A more recent work on user model-based evaluation metrics is (Chuklin, Serdyukov & de Rijke,

2013). In their work, Chuklin, Serdyukov & de Rijke (2013) classified the click model-based metrics

as effort- and utility-based metrics. The utility-based metrics can be represented as the expectation

of the utility of the clicked results under a specific click model. In contrast, the effort-based metrics

represent the expectation of an effort a user has to put before finding a satisfactory document. Based

on our proposed evaluation framework, we instantiate two metrics, pSaved and eSaved, that represent

the probability of satisfying a user and the expected relative number of characters a user can skip while

submitting their query. These two metrics can be considered as effort-based metrics in the definitions

suggested by Chuklin, Serdyukov & de Rijke (2013).

4.2.2 Modelling User Interaction with QAC

The first model of user interactions with query auto-completion mechanisms was proposed in our

work (Kharitonov et al., 2013b) and we discuss it in detail in Section 4.3. Under this model, the user

types their query in steps, character after character. After submitting a character, the user has a chance

to examine the list of the queries that QAC suggests. Each position is examined with some probability

that is a function of the position’s rank and the length of the already typed prefix. The interaction ends

either when the user selects a query from the list of suggested auto-completions or when the user finishes

typing their query.

In a later work, Mitra et al. (2014) investigated what interaction parameters might affect the user’s

decision to use the query auto-completion mechanism. In particular, they noticed that the probability

41



4.2 Related Work

of a user clicking on a query generated by QAC strongly depends on the rank of the suggested auto-

completion. Furthermore, some features such as the distance from the end of the word, the fraction

of the query typed, keyboard distance between the characters of the word also proved to be useful in

predicting the user’s attention.

In the first eye-tracking study of user interactions with QAC, Hofmann et al. (2014) observed that

the users tend to examine the top-ranked queries even when their effectiveness is not different from the

queries ranked lower. Thus, Hofmann et al. (2014) had confirmed the presence of a position bias in user

interactions with the query auto-completion mechanisms.

Later, a click model for query auto-completion interactions was proposed by Li et al. (2014). This

model differs from the model we consider in this chapter (Section 4.3) in several aspects. Firstly, it

assumes that the user examines the list of the suggested completions from top to bottom, i.e. all queries

ranked higher than an examined query are also examined. Next, the model proposed by Li et al. (2014)

explicitly models the “relevance” of the query auto-completions to the user’s need as a function of their

features (e.g. frequency, popularity within the same day), and the features of the user (e.g. gender, age).

While the model proposed by Li et al. (2014) is more general than the model we discuss in Sec-

tion 4.3, these differences are less important in the considered evaluation scenario of the query auto-

completions. Indeed, under the evaluation scenario we work with, the set of the user queries that are used

for the evaluation is fixed. After that, we evaluate how successful a particular query auto-completion

ranking system is at reducing the user’s effort to submit these queries. Under such a scenario, the mod-

elling of the relevance of the query auto-completion to the user’s need is not required, as it is assumed

that the user only needs to submit the target query, i.e. the query they actually submitted, with or without

help of the QAC mechanism.21 Similarly, once it is assumed that the user is only interested in submitting

their target query, the top-to-bottom examination process used in (Li et al., 2014) is not different from

the position-based examination used in Section 4.3: the probability of examining a particular position

can be represented as a sum of the probabilities the user decides to examine the list of auto-completions

a depth below or equal to this particular position.

Finally, the QAC offline evaluation framework we propose is general with respect to the underlying

user interaction model, and can benefit from using a more elaborated model of the user behaviour. In

this chapter we use the user interaction model that is introduced in Section 4.3 as a foundation for the

evaluation framework.
21While this assumption might be relaxed, this would require a labour-intensive labelling process. Moreover, it is unclear how

useful these judgements can be in the presence of highly personalised query auto-completions used by modern search engines (Bar-
Yossef & Kraus, 2011; Kharitonov et al., 2013a; Zhang et al., 2015).
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4.2.3 Comparing IR Metrics

Since the aim of the evaluation is to predict whether the retrieval system meets the user needs, it is

natural to require the values of evaluation metrics to be aligned with the user preferences. A considerable

effort was deployed to ensure that the metrics used in web search evaluation settings meet this criterion.

Moreover, this alignment is crucial to ensure the overall efficiency of the evaluation pipeline (Chapter 3),

as it affects how many changes proceed to the online evaluation step and are rejected after it. However,

there is no agreement in the way the user preferences should be obtained.

Some authors conducted online user-based studies to address this question. For instance, Radlinski

& Craswell (2010) studied the agreement between Cranfield-based measures such as MAP and nDCG

with results obtained from online user-based evaluation experiments. Sanderson et al. (2010) compared

the outcomes of a large-scale side-by-side evaluation of retrieval systems performed by the users of the

Mechanical Turk22 with a preference relation over these systems imposed by Cranfield-based measures

such as nDCG, MRR and Precision@10 as well as the diversity measures including α-nDCG (Clarke

et al., 2008), cluster recall and intent-aware precision.

ERR is supported in (Chapelle et al., 2009) by a series of experiments which demonstrate that

ERR shows better alignment with user behaviour in comparison with other widely used metrics. These

experiments fall into two different categories. Firstly, the authors demonstrate that across different

queries and possible rankings, ERR is better correlated with user click metrics such as search success

rate. Secondly, in a simulated experiment it was shown that the difference in ERR of two ranking

functions is better correlated with the difference in actual user preferences in comparison with other

metrics. Chapelle et al. (2011) used a similar approach to compare various metrics used to evaluate

diversified result set.

Similar ideas are used by Chuklin, Serdyukov & de Rijke (2013). In particular, they used the cor-

relation between the offline metrics and the outcomes of online experiments (both interleaving and A/B

tests) as a tool to evaluate the quality of the offline metrics.

The evaluation methodology we use in this chapter is influenced by the methods of Chapelle et al.

(2009), in that we compare the considered metrics in terms of their correlation with the user preferences

observed in historical query logs.

4.2.4 Query Auto-completion Evaluation

Shokouhi & Radinsky (2012) evaluated the quality of suggestions for a given prefix by the mean re-

ciprocal rank of the most popular results (MRR), and the Spearman correlation between the predicted

22Amazon Mechanical Turk (https://www.mturk.com/) is a crowdsourcing marketplace.
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and ground-truth ranks of the selected queries. These metrics were averaged over a set of test prefixes.

The MRR metric is also used in (Li et al., 2014; Mitra, 2015; Zhang et al., 2015). Considering an auto-

completion as relevant if it is top-ranked according to the ground-truth query frequencies, Strizhevskaya

et al. (2012) reported P@3, AP@3 and nDCG@3 averaged over the observed prefixes.

Bar-Yossef & Kraus (2011) used a session log-based approach for evaluation, which aimed to em-

ulate user experience. From a session in the log, they extracted the user’s context and the submitted

query. After that, the suggestions are filtered to have the first character of the query as a prefix and

ranked according to the user’s context. The quality of the ranking is assessed as a reciprocal rank of

the user’s query in this ranked list of suggestions, weighted by the number of completions available for

the prefix. They reported the weighted mean reciprocal rank (wMRR) averaged over the query-context

pairs.

Duan & Hsu (2011) used the minimal number of key presses the user has to make in order to issue

the target search query (Minimal Keystrokes, MKS) to evaluate query corrections. This metric evaluates

the effectiveness of the QAC mechanism with respect to the user who always selects the optimal way of

submitting a query.

As we can see from the related work, the query auto-completion effectiveness metrics used in the lit-

erature are not specifically designed to reflect user satisfaction nor has their suitability been empirically

shown. We address this gap in the context of query auto-completion mechanisms by firstly modelling

the user behaviour in Section 4.3 and devising an effectiveness metric upon it later in Section 4.6.

In the next section, we introduce our proposed model of the user’s interactions with the query auto-

completion mechanism.

4.3 User Model

The interface usually used to present query auto-completion (Figure 4.1) leads to the following process

of users’ interaction with the query auto-completion mechanism. Let us suppose that a user is going

to submit a query q to a search engine. After typing each character, the list of auto-completions is

changed to match the updated input and the user has a chance to examine the list before typing the next

character. The user examines the query in the jth position with some probability or skips it. If the

query q is suggested by the system and examined by the user, they select it from the list and that ends

the interaction with the query auto-completion mechanism. In the worst case, the user types the entire

query q manually.
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Figure 4.2: Graphical model of the user behaviour. Grey circles correspond to latent variables.

In order to build a user model upon this interaction schema, we assume that the user’s behaviour

satisfies the Markovian assumption, i.e. that given the user’s current state, all of the future user’s actions

are independent from their earlier behaviour. The Markovian assumption is often used in web search

behaviour models, e.g. the cascade model (Craswell et al., 2008) describes the user’s clicking behaviour

as a Markov process.

The underlying graphical model is depicted in Figure 4.2. Denoting the prefix of the query q of

length i as q[1..i] and the query suggested on position j after submitting q[1..i] as qij , we introduce the

following binary random variables used in the graphical model:

• Ni: equals 1 if the ith character of the query q is submitted, and 0 otherwise;

• Eij : equals 1 if the query suggested on position j for the prefix q[1..i] (qij) is examined, and 0

otherwise;

• Sij : equals 1 if the user is satisfied with qij after submitting q[1..i], and 0 otherwise.

The model can be described using the following system of equations in terms of the random variables

introduced above:

N1 = 1 (4.1a)

Ni = 0⇒ Nk = 0, k = (i+ 1)...|q| (4.1b)

Ni = 0⇒ ∀j Eij = 0 (4.1c)

P (Eij |Ni = 1) = f(i, j) (4.1d)
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Eij = 0⇒ Sij = 0 (4.2e)

Sij = 1⇔ Eij = 1, qij = q (4.2f)

∃j : Sij = 1⇒ Ni+1 = 0 (4.2g)

∀j Sij = 0, i < |q| ⇒ Ni+1 = 1 (4.2h)

|q| = i, ∀j Sij = 0⇒ Ni+1 = 0 (4.2i)

Indeed, the above equations describe the following constraints on the model: The first character

is always submitted (4.1a); Characters are submitted sequentially (4.1b); Only the suggestions for the

submitted prefixes can be examined (4.1c); The probability of examining the query suggested in the jth

position is a function of its position j and the length of the submitted prefix i (4.1d); A non-examined

auto-completion cannot satisfy the user (4.2e); Examination of the query q is necessary and sufficient for

the user to be satisfied, i.e. after examining the query q the user is always satisfied (4.2f)23; A satisfied

user stops interaction with the query auto-completion mechanism (4.2g); An unsatisfied user types the

query until its end (4.2h) & (4.2i).

In the model described above, we do not specify the exact form of dependence of examination

probabilities denoted as a function f(i, j). Varying the form of this dependence we can obtain different

user models. For instance, the following functions can be considered:

1. The user always examines all the suggested queries: f1(i, j) = 1;

2. The examination probability depends only on position j and decays under reciprocal frr(i, j) =

1/(j + 1) or logarithmic flog(i, j) = 1/ log2(j + 2) laws24;

3. The examination probability depends only on the position: f il (i, j) = Aj ;

4. The examination probability depends not only on the position, but also on the prefix length:

fdl (i, j) = Bij ;

The functions f il (i, j) and fdl (i, j) depend on parameters, Aj and Bij , respectively. Instead of using

heuristic functions such as frr(i, j) or flog(i, j), these parameters can be learned to obtain a model that

23We do not explicitly model the event of the query being seen, but not selected from the suggestions list by the user. In a such
event, the query is also considered as non-examined. This does not influence the generality of our proposed model.

24The logarithmic and reciprocal rank decays are used in DCG (Järvelin & Kekäläinen, 2002) and MRR document search
metrics, respectively. We shift both functions so that they start on the second rank position for two reasons: 1) the resulting
probabilities are closer to those observed in our query log; 2) we avoid singularities in the user model evaluation in Section 4.7.1:
without the shifting the model would consider it impossible for the user not to examine the first position, although it happens in
the dataset.
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Input: A: a set of interactions with QAC used
Output: Examination probabilities Aj , Bij
Initialise ∀i, j Acj = 0, Asj = 0, Bcij = 0, Bsij = 0

foreach a ∈ A do
foreach i ∈ 1..|q(a)|, j do

if qij(a) = q(a) and qij(a) not clicked then
Asj ← Asj + 1
Bsij ← Bsij + 1

end
if qij(a) = q(a) and qij(a) clicked then

Acj ← Acj + 1
Bcij ← Bcij + 1

end
end

end
foreach j do

Aj ←
Ac

j

Ac
j+A

s
j

end
foreach i, j do

Bij ←
Bc

ij

Bc
ij+B

s
ij

end
Algorithm 4.1: Learning the prefix length-independent Aj and the prefix length-dependent Bij prob-
abilities of examination of a query suggestion presented on position j for a prefix of length i.

better reflects the user behaviour. In the following, we discuss an algorithm to adjust these parameters

to the user behaviour observed in a session log.

The proposed model of the user behaviour is related to the cascade model (Craswell et al., 2008) of

the user’s search click behaviour. Indeed, the user continues to type their query if and only if they are

not satisfied with the current suggested queries. On the other hand, the process of examination of the

list of query auto-completions resembles that considered in the position-based user models (Craswell et

al., 2008).

4.4 Learning the Model Parameters

Let us consider a QAC interaction with a query q submitted by selecting it from the list of queries

suggested to a prefix q[1..l] on position k. Before the interaction stopped, the following random events

took place. The user skipped the query q each time it was suggested for a prefix shorter than l. The

probability of this is equal to the following expression:

Pskip =

l∏
i=1

1−
∑
j

I(q = qij)P (Eij)

 (4.3)
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where I(q = qij) equals 1 if the query q was suggested on position j for the prefix q[1..i], and 0

otherwise. Further, the user examined the kth suggested query for prefix q[1..l]. Thus, the likelihood of

the entire interaction a is:

L(a) =

l∏
i=1

1−
∑
j

I(q = qij)P (Eij)

P (Elk) (4.4)

By l(a) we denote the length of the prefix typed in an interaction a. Substituting P (Eij) with f(i, j)

the log-likelihood of a set of interactions A can be represented in the following form:

L̂ =
∑
a∈A

l(a)∑
i=1

∑
j

log
[
(1− I(qij = q)f(i, j))

1−Sij · f(i, j)Sij

]
(4.5)

The log-likelihood expressed in Equation (4.5) can be maximised with respect to the function f

to find maximum likelihood estimates (MLE) of its parameters. P (Eij) are Bernoulli distributed ran-

dom variables with their probabilities of success (i.e. examination probability) determined by the prefix

length-independent f il or the prefix length-dependent fdl functions, discussed in the previous section.

We can find the estimates of their parameters, Aj and Bij , using the maximum likelihood principle, as

described in Algorithm 4.1, which resembles the learning process for obtaining the parameters of the

cascade model (Craswell et al., 2008).

The functions f il and fdl with parameters Aj and Bij , respectively, optimised on a training part of a

dataset described in Section 4.8 are reported in Table 4.1. We additionally report values of frr and flog

for comparison. When calculating the prefix length-dependent examination probability function fdl we

assume that the examination probabilities for prefixes longer than six characters become independent

from the prefix length.

Based on an analysis of Table 4.1, the following conclusions can be made. Firstly, the probability of

examination Eij shows considerable dependence on the prefix length i: for shorter prefixes, the users

tend to examine the suggested queries more carefully. For instance, the probability of examination of

the first position changes from fdl (1, 1) = 0.50 for prefixes of length 1 to fdl (6, 1) = 0.20 in case of

prefixes of length 6. Another observation is that the probabilities of examination for a fixed position

become almost equal for prefixes of length five and six, e.g. fdl (5, 1) = 0.19 ≈ fdl (6, 1) = 0.20 and

fdl (5, 10) = 0.14 ≈ fdl (6, 10) = 0.15. This observation justifies our decision to model the examination

probabilities as being independent from the prefix length for longer inputs.

Even if one considers the approximation of the probabilities of examination to be independent from

the prefix length, the resulting probabilities estimated from the query logs (the function f il ) are different
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Table 4.1: Probability of examination. frr(i, j), flog(i, j) and f il (i, j) correspond to the prefix length-
independent logarithmic, reciprocal, and learned examination probabilities, respectively. fdl (i, j) de-
notes the prefix length-dependent probabilities of length i, as learned from the query log.

Query rank, j
1 2 3 4 5 6 7 8 9 10

frr(·, j) 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10 0.09
flog(·, j) 0.63 0.50 0.43 0.39 0.36 0.33 0.32 0.30 0.29 0.28

f il (·, j) 0.21 0.19 0.17 0.16 0.15 0.14 0.14 0.14 0.14 0.13

fdl (1, j) 0.50 0.28 0.23 0.26 0.20 0.17 0.18 0.17 0.15 0.15
fdl (2, j) 0.46 0.25 0.26 0.23 0.19 0.17 0.16 0.16 0.15 0.12
fdl (3, j) 0.21 0.19 0.17 0.16 0.15 0.14 0.14 0.13 0.13 0.12
fdl (4, j) 0.23 0.22 0.19 0.18 0.16 0.16 0.15 0.15 0.15 0.14
fdl (5, j) 0.19 0.20 0.17 0.16 0.15 0.15 0.15 0.15 0.15 0.14
fdl (6, j) 0.20 0.21 0.19 0.19 0.17 0.16 0.16 0.15 0.16 0.15
fdl (7, j)...fdl (∞, j) 0.14 0.16 0.15 0.14 0.13 0.13 0.13 0.13 0.13 0.12

from the one imposed by the position discount functions often considered in other domains of Informa-

tion Retrieval: the first two positions have considerably lower chances to be examined (f il (1, 1) = 0.21)

than it is predicted by the flog (flog(1, 1) = 0.63) or frr (frr(1, 1) = 0.5) functions. Also, it is notice-

able that the reciprocal rank function decays with the suggestion rank faster than the examination prob-

abilities learned from the user behaviour in the session log (frr(1, 10) = 0.09 while f il (1, 10) = 0.13).

We have introduced the user model, its possible instantiations and the algorithm to learn their pa-

rameters from the session log. Before defining the proposed user model-based effectiveness metrics in

Section 4.6, we firstly describe the evaluation framework we are working within and which we define in

Section 4.5.

4.5 Offline Evaluation of Query Auto-completion Mechanism

Before defining new effectiveness metrics for the query auto-completion evaluation we need to discuss

our evaluation framework used to evaluate a query auto-completion mechanism. We use the same query

log-based approach as used in (Bar-Yossef & Kraus, 2011). In this section, we discuss the evaluation

scenario imposed by the framework, its restrictions and how it compares to the experimental method-

ologies used in the query auto-completion literature, discussed in Section 4.2.4.

In the case of the query auto-completion domain, the offline evaluation approach implies the follow-

ing evaluation algorithm. Given a query auto-completion mechanism with a ranking function r and a

log of queries Q, the evaluation is performed in three steps. At the first step, the process of submitting
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a query q ∈ Q is simulated as if a user typed it. For each prefix q[1..i], all of the possible candidate

suggestions are ranked according to the ranking function r, i.e. the simulated user is presented with

a ranked list of suggestions r(q[1..i]). Considering q as the target query, i.e. the only query the user

wants to submit, this simulated output is used to estimate the effectiveness metric. Finally, the metric is

averaged over all simulated interactions.

In order to perform such an evaluation, a query log is needed. However, we consider this requirement

as not restrictive in the query auto-completion effectiveness assessment, since query auto-completion

mechanisms are often built upon the query log mining (Bar-Yossef & Kraus, 2011).

We believe that this approach is sufficiently general to cover several interesting evaluation scenarios,

e.g. the minimal dataset required to evaluate the query auto-completion mechanism includes only queries

(and possibly their frequencies). In the more advanced setting, the same methodology is suitable to

evaluate personalised ranking algorithms by associating each session with its context (Bar-Yossef &

Kraus, 2011; Kharitonov et al., 2013a; Shokouhi & Radinsky, 2012; Strizhevskaya et al., 2012) or the

user’s long-term profile. It is also noticeable that this evaluation scenario generalises other approaches

to evaluate query auto-completion mechanisms discussed in the literature (Section 4.2.4). For instance,

in (Shokouhi & Radinsky, 2012; Strizhevskaya et al., 2012) the test sets of prefixes are sampled and

the considered systems are evaluated by assessing how good the most popular prefix completion was

ranked having this prefix as the user input. It is possible to consider their methodology as a special case

of the evaluation approach used in this chapter. Indeed, considering the set of popular queries for all the

test prefixes, one can generate simulated sessions with users submitting these prefixes and measuring

the system effectiveness afterwards.

Finally, we want to highlight that this evaluation scenario is akin to the one used in the Cranfield

paradigm (Section 2.2), as it abstracts the ranker from other systems and model the user’s interaction

with the system.

Guided by this evaluation scenario, in the next section we introduce novel evaluation metrics for

query auto-completions.

4.6 Proposed Metrics

The effort-based metrics (Chuklin, Serdyukov & de Rijke, 2013) and the cascade-based metrics (Chapelle

et al., 2009) are defined as the expectation of an effort25 function at the position the user finds the result

25In (Chapelle et al., 2009) such a function is referred to as an utility function, however, to avoid confusion with the utility-
based metrics considered in a more recent work (Chuklin, Serdyukov & de Rijke, 2013) we adopt the terminology from (Chuklin,
Serdyukov & de Rijke, 2013).
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they are looking for. In order to generalise this definition to the query auto-completion evaluation, let us

recall the notation previously used in Section 4.3.

We denote the query to be submitted as q and its length as |q|. A prefix of q of length i is referred

to as q[1..i]. Eij is a binary variable equal to 1 if a query suggestion for the prefix q[1..i] ranked in the

jth position is examined by the user, Sij is a binary variable representing if the user was satisfied with

the jth suggestion shown for the prefix q[1..i]. qij denotes a suggested query ranked on position j after

submitting q[1..i]. We denote the effort function as U(i, j).

Using this notation, we can adapt the notion of the effort-based metric V (q) to the query auto-

completion evaluation:

V (q) =

|q|∑
i=1

∑
j

U(i, j)P (Sij = 1) (4.6)

where
∑
j P (Sij = 1) equals to the probability to stop immediately after submitting q[1..i]. P (Sij)

represents the probability to stop immediately after submitting q[1..i] (Section 4.3), and it depends on

the positions where the query q is suggested and the examination probabilities (Table 4.1).

The question arises how to choose the effort function U(i, j). In the simplest case, one can define

the effort function to be the unity constant. Given such an effort function, the metric equates to the

probability of the user using the query auto-completion mechanism. We refer to this metric as pSaved,

and it is formally defined as follows:

pSaved(q) =

|q|∑
i=1

∑
j

P (Sij = 1) (4.7)

A similar utility function was used in (Chapelle et al., 2009) to build the modification of ERR based on

the cascade model with abandonment. Since the pSaved metric represents the probability of satisfying

the user, its values are non-negative and below or equal to 1.

A more complicated function U(i, j) might decrease if it takes the user more effort26 to find a

satisfactory result and thus it can be considered as a formalisation of the amount of the effort the user can

avoid due to the retrieval system under consideration. In the case of a query auto-completion mechanism,

the user’s effort can naturally be represented as the number of characters (keypresses) the user has to type

to submit their query to the system. Supported by this intuition, we propose the metric eSaved, which is

defined as the expected ratio of characters a user can skip inputting until their query is submitted. The

query can be submitted either by selecting it from the suggested list of queries or by fully entering the

26The effort function used in ERR degrades as the user examines more retrieved results.
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query. Formally, eSaved can be calculated using the following expression:

eSaved(q) =

|q|∑
i=1

(
1− i

|q|

)∑
j

P (Sij = 1) (4.8)

where U(i, j) =
(

1− i
|q|

)
is the effort function.

Both proposed metrics, pSaved and eSaved are parameterised by the user model, which defines

the probability of the user satisfaction P (Sij = 1). In the user model proposed in Section 4.3, this

probability is defined by Equations (4.1d), (4.2e) and (4.2f). The user is satisfied with a suggested query

qij , only if it is the target query (qij = q) and if it is also examined (Eij = 1):

Sij = 1⇔ Eij = 1, qij = q

In turn, the examination probability is determined by the user attention function f(i, j). Using the defini-

tion of the proposed metrics, we can calculate them by Algorithm 4.2. Efficient, linear-time approaches

to calculate the Saved metrics on sets of queries were proposed in (Loptev et al., 2014).

In order to get an additional insight into the difference between the proposed metrics, pSaved and

eSaved, we re-group Equation (4.8) in the following form:

eSaved(q) =

|q|∑
i=1

∑
j

P (Sij = 1)−
|q|∑
i=1

i

|q|
∑
j

P (Sij = 1) (4.9)

Comparing (4.7) and (4.9) we notice that eSaved equals to pSaved minus the expected part of the

query the user needs to type to submit query q. As a result, eSaved additionally stratifies queries with

equal chances to satisfy the user, according to the relative length of the query the user needs to type.

This ability of eSaved to leverage this additional “dimension” to assess the QAC ranking functions

can be particularly useful for longer queries where its utility function has a wide spectrum of values.

We believe that improvements in the query auto-completions for longer queries have a high influence

on the user experience. Indeed, when submitting a long query, the auto-completion mechanism can save

greater effort for the user than in the case of a short query.

In this section, we proposed two novel metrics to evaluate the effectiveness of the query auto-

completion mechanisms. However, it is unclear how one can compare QAC effectiveness metrics and

in the next section we discuss this issue.

4.7 Experimental Methodology

Our empirical study has the following goals. The first goal is to investigate how the user model instanti-

ations introduced in Section 4.3 compare to each other in terms of fitness to the observed user behaviour
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Input: Query q; lists of query auto-completions qij for each prefix q[1..i]; effort function U(i, j);
user attention function f(i, j).

Output: The value of the metric for a query q, V (q).
// The value of the metric
V (q)← 0
// The probability that the user was not satisfied so far
pcont ← 1
foreach i ∈ 1..|q| do

//is q suggested among the auto-completions?
if ∃j : qij = q then

V (q)← V (q) + pcont · f(i, j) · U(i, j)
pcont ← pcont · (1− f(i, j))

end
end

Algorithm 4.2: Calculating the value of a metric from the Saved family.

in the data. Each of these user models induces a corresponding metric of the Saved family and the

question arises how well these metrics are aligned with the user behaviour data. It is also important to

compare the proposed metrics with the ones previously used in the literature. We formulate these goals

as three research questions (RQ):

RQ4.1 Which of the considered examination probability functions frr, flog , f il , and fdl better “explain”

the user behaviour observed in the data?

RQ4.2 How do our proposed Saved metrics compare to the metrics used in the literature?

RQ4.3 Which metrics can be recommended for the evaluation of the QAC mechanisms?

In order to answer these questions we use the methodology described below. In Section 4.7.1, we

discuss how we compare the considered user models. In Section 4.9.2, we discuss how to evaluate the

considered metrics. We discuss the baseline metrics used in the literature in Section 4.7.3.

4.7.1 User Model Evaluation

The effectiveness of the user models is often studied by means of measuring the log-likelihood on the

test data, e.g. (Chuklin et al., 2015; Zhang et al., 2011). The log-likelihood is defined as the average

log probability of the events observed in the test dataset according to the probabilistic model under

consideration.

Let a be an interaction from a dataset of QAC interactions A, q(a) denotes the query submitted by the

user in the interaction a and Cia is a binary indicator representing if the user’s interaction with the QAC

mechanism ended (i.e. no additional characters were typed) after submitting the prefix q(a)[1..i]. By
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definition, C |q(a)|a = 1 if the user typed the entire query. Again, l(a) denotes the number of characters

submitted during the interaction a.

In the case of the query auto-completion, the log-likelihood of the user model measures how well

this model predicts a prefix which the user typed before submitting the query. More formally, the log-

likelihood of the model on the session with the submitted query q is defined in the following way:

L(a) =

l(a)∑
i=1

[
P (Cia) log2 P (Cia) + (1− Cia) log2(1− P (Cia))

]
The overall log-likelihood is calculated as the average of the session likelihoods:

LL(A) =
1

|A|
∑
a∈A

L(a)

Another measure widely used to evaluate the performance of click models is the average perplexity

for top ten positions (Dupret & Piwowarski, 2008). However, since the queries differ in their length and

the number of auto-completions available, the perplexity becomes less intuitive in the considered case.

4.7.2 Metrics Evaluation

As we discussed in our roadmap for improving the evaluation pipeline in Section 3.5, our goal in im-

proving the offline evaluation step is to increase its alignment with the outcomes of the online evaluation

step. This alignment ensures that more online experiments would be successful, thus increasing the ef-

ficiency of the evaluation pipeline as a whole. Consequently, it is reasonable to compare the considered

metrics in terms of their correlation with the online preferences of users.

A similar evaluation methodology was used in (Chapelle et al., 2009; Chuklin, Serdyukov & de

Rijke, 2013; Markov et al., 2014). This methodology is aimed to show how good the tested metrics

are aligned with the online user satisfaction indicators. Chapelle et al. (2009) considered different click

measures as indicators of the user interest, such as the search abandonment rate, the position of the first

click and others. We believe that the query auto-completion mechanism can be considered as useful and

successful in a particular session if the user used it to submit their query. Thus we use the QAC usage

frequency (how often the query auto-completion mechanism is used by users to submit their queries)

as a ground-truth indicator of the user satisfaction. In the following, we refer to this value as success

rate (S). In general, other indicators of user satisfaction can be considered. The indicator selected might

influence the evaluation result and should be chosen in agreement with the QAC performance indicators.

We use S as it is readily available in the query logs, widely used as a metric in document search A/B

experiments27 and is easy to interpret in the context of QAC.
27In document search, this metric is typically called click-through rate, it is the opposite of the abandonment rate metric,

discussed in Section 2.2.
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Due to various personalisation algorithms, geographical contextualisation features, drifts in query

popularity and changes in auto-completion mechanism, the positions where the target query is presented

can vary. By configuration cwe denote a unique tuple of the query q and the sequence of positions where

q is suggested in the list of query auto-completions while q is typed. This sequence has length of |q|. If

for a particular prefix length the query is ranked below 10th position it is considered as not demonstrated.

When building a configuration such an event is encoded by a sentinel value.

The considered metric evaluation method is performed in two steps. Firstly, given a dataset of user

interactions one can calculate the values of the considered metrics for each configuration observed by

a user. On the other hand, for each configuration shown to the users the average value of the success

rate can be estimated. In the next step, the correlation between these two values across configurations is

calculated. In this chapter, we use weighted correlation proposed by Chapelle et al. (2009) and also used

in (Chuklin, Schuth, Hofmann, Serdyukov & de Rijke, 2013; Chuklin, Serdyukov & de Rijke, 2013;

Markov et al., 2014). This weighted correlation is akin to the standard Pearson correlation of online and

offline metrics across configurations. However, each configuration is additionally weighted according to

its frequency in the query stream. This weighting allows the correlation to reflect the relative importance

of the queries (Chapelle et al., 2009) and reduces the effects of the noise in estimates of the success rate

for the rare queries.

By N we denote the total number of configurations, ni denotes the number of interactions with ith

configuration in the dataset. Mi is the value of the offline evaluation metric M calculated on for the ith

configuration, and the mean of the online satisfaction indicator S is denoted by Si. Then the weighted

correlation between M and S is defined as follows:

C(M,S) =

∑N
i=1 ni(Mi − m̄)(Si − s̄)√∑N

i=1 ni(Mi − m̄)2
√∑N

i=1 ni(Si − s̄)2
(4.10)

where m̄ and s̄ are weighted means of the tested offline metric and the online indicator:

m̄ =
1∑N
i=1 ni

N∑
i=1

niMi, s̄ =
1∑N
i=1 ni

N∑
i=1

niSi

As discussed by Chapelle et al. (2009), this approach has one possible drawback. Indeed, the corre-

lation measures the alignment of the metrics with the user satisfaction across configurations and queries,

i.e. it also measures how useful the metric is to compare the effectiveness of different queries. However,

in a real-life scenario, the primary goal of a metric is to compare different ranking functions of query

auto-completions given a fixed set of queries. Therefore, another metric’s feature is essential: if, given a

fixed set of queries one ranking algorithm outperforms its counterpart in terms of the considered metric,
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does this necessarily imply that the first algorithm has higher user satisfaction once deployed? There

is a possibility that a particular metric can exhibit a poor performance when comparing effectiveness

across queries but still exhibits a good alignment with the user satisfaction from the ranking function

comparison perspective.

In order to study the metric quality from the latter point of view, we perform an experiment similar

to one proposed in (Chapelle et al., 2009), which simulates a scenario of an A/B test-based comparison

of ranking functions r1 and r2. This simulation is performed according to Algorithm 4.3. The idea

behind the algorithm is as follows. For each query with at least two configurations in the session log,

configurations c1 and c2 are randomly sampled. These configurations and the corresponding sessions

are associated with two simulated ranking functions, r1 and r2, as if all sessions with c1 and c2 shown

to the users were served by ranking algorithms r1 and r2, respectively. After that, the average values

of the considered metric M and the user satisfaction indicator S are calculated for both systems. We

additionally weight the values of the metrics to reflect the actual distribution of the queries in A/B test.

This weighting ensures that (a) the relative importance of the queries is preserved in our simulation, and

(b) each query has equal impact on both simulated alternatives r1 and r2. After iterating over all queries

in the dataset, we calculate the differences of the user satisfaction indicators S1−S2 and the effectiveness

metric values M1 −M2 for r1 and r2. By repeating this simulation, we generate a set comparisons of

pairs of systems. Finally, we calculate the correlation between the differences in the offline metric and

the differences in satisfaction indicator. Higher correlation implies better agreement between offline and

online metrics when comparing different rankings when the query stream is fixed and it is the alignment

we want to increase to improve the efficiency of the evaluation pipeline (Section 3.5).

Overall, in this section we discussed two possible ways to quantify the agreement between an offline

effectiveness metric and an online satisfaction indicator, namely weighted correlation (Equation 4.10)

and A/B test simulation (Algorithm 4.3).

After discussing how to compare offline metrics, in the next section we discuss the baseline QAC

effectiveness metrics we use in our study in this chapter.

4.7.3 Baseline Metrics

In our evaluation study, we use the following baseline offline QAC evaluation metrics used in the liter-

ature:

MRR-n is a metric which is defined as the reciprocal rank of the submitted query q after submitting

the first n characters of the query. For queries shorter than n characters we define MRR-n to be equal to

MRR-|q|. Ranks higher than 10 are considered to be infinitely large (i.e., MRR-1 and MRR-3 are equal
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Input: Q: a dataset of queries
Output: Correlation between the QAC success rate S and an effectiveness metric M
foreach i ∈ 1..1000 do

Simulating two search engines, r1 and r2
Initialise online and offline metrics counters
S1 ← 0, S2 ← 0
M1 ← 0,M2 ← 0
foreach query q ∈ Q do

Cq ← set of configurations of q
Initialise the total number of interactions in simulated systems
n← 0
if |Cq| ≥ 2 then

c1, c2 ← two random configurations from Cq
Assign c1 to a simulated system r1, c2 to a simulated system r2.
Weight the values of the offline metric M according to the query frequency freq(q).
M1 ←M1 +M(c1) · freq(q)
M2 ←M2 +M(c2) · freq(q)
Weight the mean of success rates S(c1) and S(c2) for configurations c1 and c2.
S1 ← S1 + S(c1) · freq(q)
S2 ← S2 + S(c2) · freq(q)
Update the number of interactions
n← n+ freq(q)

end
end
Compute the mean values of M and S:
M1 ← 1

nM1, M2 ← 1
nM2

S1 ← 1
nS1, S2 ← 1

nS2

end
Return Pearson correlation between differences in M1 −M2 and S1 − S2 for all simulated pairs

of r1 and r2
Algorithm 4.3: Algorithm used to measure the correlation of the difference in an offline effectiveness
metric M with the differences in online user satisfaction indicator S in simulated A/B tests.

to 0 if the submitted query is ranked on positions below 10). The MRR metric is used in (Shokouhi &

Radinsky, 2012), as discussed in Section 4.5.

By wMRR-n we denote a modification of MRR-n weighted by the number of suggestions available

for the corresponding query prefix, as used by Bar-Yossef & Kraus (2011). Such a weighting is aimed

to promote systems that perform better in “hard” cases, where a lot of candidate queries are available.

negMKS Minimal Keystrokes (MKS) is a metric proposed by Duan & Hsu (2011) to evaluate the

query misspelling correction algorithms, which is defined as the minimal number of keystrokes a user

has to perform in order to submit the query. The minimum is calculated among all possible interactions:

the user can type the query’s next character or can select the query from the list of suggested auto-

completions using arrow keys. Despite the fact that it was proposed to evaluate misspelling correction
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Table 4.2: QAC dataset statistics.
Sessions Unique configuration Unique queries Mean length, characters Median length Mean terms Median terms

6.1M 3.8M 3.3M 26.4 24.0 3.3 4.0

algorithms, MKS can also be used to evaluate query auto-completions. By definition, a better system

should have lower MKS, thus the correlation between the user satisfaction indicator and MKS should

be negative. Hence, to ensure the uniformity of the results and make their comparison more intuitive,

we use the negative of MKS as a metric. We denote it as negMKS.

4.8 Dataset

Before discussing the experimental results in the next section, we shortly describe the dataset used in

chapter. The dataset was randomly sampled from a log of queries submitted to Yandex. The search

sessions were performed by users from Ukraine, a country with two languages, Russian and Ukrainian,

widely spoken.28 The dataset spans two consecutive workdays in January 2013. In order to reduce noise

in our evaluation, we applied the following filtering procedure to the dataset. Firstly, we do not con-

sider sessions with misspelled queries29, leaving the adaptation of the proposed models to misspelled

queries as a direction of future work. We also removed sessions where users selected a query from the

suggested list and edited it afterwards since it is unclear if the query auto-completion mechanism was

useful in these sessions. All queries were normalised to the lower case, since the character capitalisa-

tion is typically ignored by query auto-completion mechanisms. Finally, only query sessions with the

query auto-completions shown were sampled. We report the descriptive dataset statistics in Table 4.2.

The length of the query auto-completions lists was restricted by the deployed query auto-completions

mechanism to be no longer than 10.

The sessions from the first day were used to estimate the user model parameters discussed in Sec-

tion 4.3, while the evaluation of the models and the effectiveness metrics comparison were performed

on the subset of sessions performed on the second day.

4.9 Results and Discussion

We split our evaluation experiments into two parts. Firstly, we discuss the experimental evaluation of

the user models (Section 4.9.1). After that, we report the results of the effectiveness metrics evaluation

28We believe that results we report in this chapter generalise across different languages. However, we leave the experimental
verification of this assumption as future work.

29We consider a query as misspelled if a proprietary spelling correction algorithm replaced the submitted query with an auto-
corrected one. In our experimental study, such queries formed about 10% of the initial dataset.
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Table 4.3: Log-likelihood of the user models parameterised by different examination probability func-
tions. A higher log-likelihood (i.e. a lower absolute value of log-likelihood) corresponds to a better fit to
the data. In each row, the function that demonstrates the statistically significantly highest log-likelihood
(paired t-test, p < 0.001) is labelled with4.

Query length frr flog f il fdl

> 0 -2.15 -2.73 -1.82 -1.764
1 - 10 -1.66 -2.05 -1.45 -1.324
11-20 -2.26 -2.78 -1.93 -1.854
21-30 -2.33 -2.95 -1.95 -1.944
> 30 -2.21 -2.97 -1.82 -1.814

(Section 4.9.2).

4.9.1 User Model Evaluation

The results of the user model evaluation on the test dataset are reported in Table 4.3. We report the

log-likelihood of the models with the following functions determining the probability of examination

of the query auto-completions discussed in Section 4.3: frr, flog , f il and fdl . The first three functions

correspond to the probability examination functions which are independent from the prefix length, while

the last one is the prefix length-dependent. The parameters of f il and f ld are learned from the train dataset

by means of Algorithm 4.1. We report the log-likelihood scores for different groups of queries according

to their length. The values labelled by4 correspond to functions that perform statistically significantly

better than others in the same row.

As seen from Table 4.3, the models with the probabilities of examination learned from the query log

(f il and fdl ) exhibit a better fit than the models parameterised by the heuristic functions on every subset

of queries considered. In particular, these results answer RQ4.1: fdl shows the best fitness to the whole

dataset.

Overall, we conclude that adjusting the model parameters to the user behaviour in the session log

leads to statistically significant improvements in the model’s ability to “explain” the data in the dataset.

The question now is whether this improvement leads the user model-based effectiveness metrics to have

a higher alignment with the user preferences. We study this question in the next section.

4.9.2 Metrics Evaluation

To report the results of the metric evaluation experiments, we use the following notation. pSaved(f)

corresponds to a metric of the pSaved family, parameterised by function f , e.g. pSaved(f il ) is a metric

obtained by assuming the model of user behaviour with probabilities of examination determined by
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Table 4.4: Weighted correlation of the effectiveness metrics with the QAC success rate. In each column
4 denotes the values that statistically significantly outperform other in the same column (p < 0.01,
bootstrap test). In bold are the highest values in the corresponding columns.

Query length
> 0 1...10 11...20 21...30 > 30

MRR-1 0.371 0.636 0.438 0.305 0.270
MRR-3 0.456 0.692 0.549 0.431 0.389

wMRR-1 0.290 0.428 0.343 0.234 0.216
wMRR-3 0.352 0.420 0.415 0.334 0.310

negMKS 0.524 0.482 0.728 0.836 0.778

eSaved(frr) 0.863 0.828 0.818 0.875 0.921
eSaved(flog) 0.873 0.8324 0.835 0.888 0.929
eSaved(f il ) 0.852 0.824 0.815 0.868 0.917
eSaved(fdl ) 0.836 0.804 0.781 0.849 0.908

pSaved(frr) 0.881 0.779 0.838 0.922 0.969
pSaved(flog) 0.865 0.731 0.827 0.919 0.969
pSaved(f il ) 0.9044 0.822 0.861 0.930 0.970
pSaved(fdl ) 0.904 0.814 0.8654 0.9314 0.9714

function f il . Similarly, eSaved(frr) is the eSaved metric parameterised by frr. MRR-1 and MRR-3

(wMRR-1 and wMRR-3) are instantiations of the MRR (wMRR) baseline metric. negMKS denotes the

negative of the Minimal Keystrokes metric. These metrics are discussed above in Section 4.7.3.

In Table 4.4, we report the weighted correlation (Equation 4.10) of the effectiveness metrics with

the query auto-completion success rate across different configurations. We also report the correlation

for queries of different length. In order to do this, the queries are split into four bins according to their

length: less than 10 characters long; from 10 to 20 characters; from 20 to 30, and a set of queries longer

than 30 characters. In addition, we report the correlation on the entire test dataset (length > 0).

On analysing Table 4.4, we observe that all eight combinations of the proposed metrics (pSaved

and eSaved) and considered examination probability functions (frr, flog, f il , and fdl ) perform better

than the baseline metrics (MRR, negMKS, and wMRR) on each considered subset of queries (p ≤ 0.01).

Comparing pSaved and eSaved we see that the pSaved metric is better correlated with the success

rate. Moreover, this observation holds for both machine-learned functions f : pSaved(f il ) outperforms

eSaved(f il ) and pSaved(fdl ) outperforms eSaved(fdl ) (p ≤ 0.01). Considering the pSaved metric,

we notice that both machine-learned functions, f il and fdl lead to metrics that is much better aligned

with the user preferences than metrics induced by heuristic functions frr and flog in each query bin

(p < 0.01).
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Table 4.5: Correlation of the difference in effectiveness metrics with the difference in the QAC success
rate in the simulated A/B tests (Algorithm 4.3). In bold are the highest values in the corresponding
columns.

Query length
> 0 1...10 11...20 21...30 > 30

MRR-1 0.460 0.465 0.449 0.439 0.436
MRR-3 0.559 0.562 0.420 0.541 0.539

wMRR-1 0.413 0.415 0.407 0.393 0.391
wMRR-3 0.471 0.478 0.348 0.458 0.456

negMKS 0.784 0.769 0.746 0.791 0.776

eSaved(frr) 0.805 0.793 0.732 0.798 0.791
eSaved(flog) 0.810 0.798 0.739 0.803 0.795
eSaved(f il ) 0.806 0.793 0.731 0.800 0.791
eSaved(fdl ) 0.803 0.790 0.745 0.797 0.789

pSaved(frr) 0.792 0.777 0.699 0.783 0.773
pSaved(flog) 0.794 0.778 0.700 0.784 0.773
pSaved(f il ) 0.807 0.793 0.723 0.798 0.789
pSaved(fdl ) 0.820 0.806 0.754 0.813 0.804

The experiments reported in Table 4.4 highlights that among the studied metrics, pSaved is the most

suitable metric to compare the effectiveness of the query auto-completion mechanism across queries and

configurations. The pSavedmetric parameterised with the prefix length-independent examination prob-

ability function f il achieves the highest weighted correlation among the studied metrics when the entire

dataset is considered. However, fdl performs only marginally worse (the difference is approximately

5 · 10−4). In three out of four bins of queries, pSaved metrics achieve higher correlation than eSaved

metrics. Only for shorter queries with length between 1 and 10 characters, eSaved(flog) achieves the

highest correlation.

Next, the negMKS demonstrated the highest alignment among the considered baselines. This is

intuitive, as negMKS takes into account the quality of the query ranking across all possible prefixes,

unlike other baselines. We observe that the weighted variants wMRR of the MRR metrics perform worse

than un-weighted variants. This can be explained by the fact that the number of available query auto-

completions for a particular prefix have little connection with the user experience. Consequently, this

additional weighting adds noise and reduces the correlation level.

In Table 4.5, we report the correlation of the difference in effectiveness metrics with the difference

in QAC success rate, measured simulated A/B experiments performed by Algorithm 4.3. Similarly to

Table 4.4, we split the queries into bins according to their length.
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From Table 4.5, we again observe that the proposed effectiveness metrics outperform the baseline

metrics when the entire dataset is considered (pSaved(fdl ) outperforms MRR, negMKS, and wMRR,

p < 0.05). However, in contrast to the previous experiment, there is no statistically significant differ-

ence between the eSaved and pSaved metrics. The pSaved metric parameterised by fdl demonstrates

the highest overall correlation. Bearing in mind that in terms of the weighted correlation (Table 4.4)

it was the second best metric after pSaved(f il ) and their difference in these two experiments is only

marginal, we conclude that the pSaved metrics instantiated with machine-learned examination proba-

bility functions f il and fdl can be considered as the recommended metrics for the QAC evaluation.

Similarly to Table 4.4, negMKS proved to be the strongest baseline in Table 4.5. Indeed, for the

queries longer than 20 characters its performance is close to performance of the Saved metrics and is

not statistically significantly different.

Overall, the above comparisons of our proposed and the baseline metrics allows us to answer the

last two research questions, RQ4.2 and RQ4.3. Indeed, in both experiments we observed that our

proposed metrics achieved the highest agreement with the online satisfaction indicator, success rate

(RQ4.2). Next, the pSaved metrics instantiated with machine-learned examination probabilities f il and

fdl demonstrated the highest scores in both evaluation scenarios we considered (weighted correlation,

Table 4.4, and A/B tests simulation, Table 4.5). This answers RQ4.3.

Overall, our experimental results suggest that the proposed metrics are better aligned with the user

behaviour observed in the session log than other metrics considered, supporting the user model-based

approach to build an effectiveness metric as being promising. Finally, the pSaved metric is shown to be

the most suitable metric to compare QAC ranking performances both across queries and when the set of

queries is fixed.

4.10 Conclusions

In this chapter, we discussed a model of the user interactions with the query auto-completion mecha-

nisms. We described a machine learning approach to adapt the model parameters to the user behaviour

observed in a session log. Using the described model, we introduced two user model-based evaluation

metrics, pSaved and eSaved. The first metric, pSaved is defined as a probability of using a query

auto-completion mechanism while submitting a query. eSaved equates to the normalised amount of

keypresses a user can avoid due to the deployed query auto-completion mechanism.

Our empirical study in Section 4.9 using a session log encapsulating 6.1M sessions demonstrated

that the proposed metrics show the best alignment with the user preferences exhibited in the session log.
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The pSaved metric instantiated by the machine-learned prefix length-dependent examination probability

function fdl achieves the weighted correlation level of 0.904 (Table 4.4) and correlation of 0.820 in an

experiments simulating online A/B tests (Table 4.5). A close performance can be achieved by parame-

terising pSaved metric by the prefix-independent examination probability function f il . We believe these

two metrics can be recommended for the QAC evaluation.

Our results indicate that a higher alignment with the online evaluation metrics, such as success

rate, can be achieved by using pSaved metrics. The highest alignment is achieved when the proposed

metric is instantiated by the user behaviour models that are trained on the historical interaction data,

thus supporting the statement of this thesis.

In turn, an improved alignment results in a higher agreement between offline and online steps of the

evaluation pipeline (Section 3.1), thus increasing the overall effectiveness of the pipeline. This improve-

ment forms the first step of the roadmap in Section 3.5. In the next chapter, we consider a complimentary

approach for improving the evaluation pipeline efficiency. Specifically, assuming that the resource of the

user interactions is limited, we propose to build a scheduler that prioritises experiments that are likely

to be successful.
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Chapter 5

Optimised Scheduling of Online
Experiments

5.1 Introduction

In Chapter 4 we discussed how the efficiency of the evaluation pipeline can be improved by making

offline evaluation better aligned with the online preferences of the users. Such improvements guarantee

that the developed changes are less likely to be rejected in the online evaluation step and thus the overall

efficiency of the evaluation pipeline is increased. In turn, this allows the search engine to evolve faster.

Our work in Chapter 4 corresponds to the first point of the roadmap for improving the evaluation pipeline

that we discussed in Section 3.5.

In this chapter, we proceed to the next point of this roadmap and our goal is to develop a scheduler

that is capable of prioritising online experiments such that experiments that are likely to be successful

are deployed earlier. This chapter is based on a publication (Kharitonov, Macdonald, Serdyukov &

Ounis, 2015b).

Further, an experiment where the tested change (we denote the changed system as B) is shown

to improve a considered metric with respect to the baseline system (denoted as A) is referred to as a

successful experiment. A scheduler that prioritises potentially successful experiments will increase the

efficiency of the evaluation pipeline. Indeed, since the number of experiments grows with the intensity

of the search engine development (Kohavi et al., 2013), after some point, these experiments need to

“compete” for a limited resource of user interactions available to the search engine. These observations

lead us to the idea of optimising the order of the online experiments: we need to order the queue of the

experiments so that the most promising experiments are performed first. Indeed, the earlier a successful

comparison is performed, the earlier the corresponding change will be deployed. In an extreme case,
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when the experiments are arriving faster than they could be processed, it is also beneficial to schedule

only the promising experiments, without spending resources on the less promising ones.

To build the optimised scheduler, we re-use the historical interaction data in two ways. Firstly, we

train the scheduler on the earlier deployed online experiments. Secondly, we use a click model that is

trained on the historical interaction data as a predictor of the experiment’s success. Hence, our work

in this chapter supports the statement of this thesis (Section 1.3): we use historical interaction data to

improve the evaluation pipeline efficiency.

In this chapter, we concentrate on the effectiveness-related experiments, where the changes that af-

fect the ranking of the results are tested. Such experiments are the most numerous in the experimentation

practice at Yandex, thus they form a class of experiments where scheduling can be useful. We start with

describing the assumptions we make about the way online experiments are performed. We propose to

reduce the problem of the optimal scheduling of such experiments to a learning-to-rank problem, where

examples used for learning are formed from the historical interaction data, generated from experiments

performed earlier. We describe a rich feature representation of the online experiments, used in the ma-

chine learning step. Finally, we perform a thorough evaluation study of the efficiency of the resulting

scheduling algorithms. The contributions of this chapter are three-fold:

• We formulate the problem of the optimal scheduling of online experiments;

• We propose to reduce the problem of the optimal scheduling of the experiments to a learning-to-

rank problem;

• We evaluate the proposed scheduling algorithms over a large and representative dataset of online

experiments.

The remainder of this chapter is organised as follows. After discussing the related work in Section 5.2,

we review the assumptions we make to formalise the scheduling problem in Section 5.3. In Section 5.4

we discuss how the scheduling problem can be reduced to a learning-to-rank machine learning problem.

In Section 5.5 we discuss the dataset we use in our evaluation study. The evaluation methodology is

described in Section 5.6. The evaluation results we obtained are discussed in Section 5.7. We conclude

this chapter in Section 5.8.

5.2 Related Work

Our work in this chapter relates to the existing research in improving the efficiency of online experi-

mentation and shares the same goal: to make the online experimentation pipeline more efficient.
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An approach to improve the scalability of the online evaluation was proposed by Tang et al. (2010),

and we discussed it in Section 3.4. The central ideal of their approach is to allow each user interaction to

participate in several online experiments, assuming that these experiments change independent variables

(e.g. user interface and ranking). Even in the highly-scalable multi-layer evaluation framework proposed

by Tang et al. (2010), in some layers (e.g. the ranking layer) we might want to run the most promising

experiments earlier or the experiments might arrive faster than they could be processed. As a result, the

problem of the optimal scheduling of these experiments is still an issue. We consider an approach that

is complementary to the one of Tang et al. (2010): assuming that only a part of the experiments can be

successful, we propose to schedule the queue of the experiments so that more successful experiments

are performed first.

An important step in our approach is to predict how likely a particular experiment is to be successful.

Hofmann, Whiteson & de Rijke (2012) proposed to estimate the interleaving comparison outcomes by

treating historical user sessions as comparison events between tested alternatives. In a recent work, Li

et al. (2015) proposed to leverage historical click data and natural variance in the search engine’s result

pages to predict the results of A/B tests.

In this chapter, we also use historical click data to predict the interleaving experiment outcome.

However, there are considerable differences with the above discussed work (Hofmann, Whiteson & de

Rijke, 2012; Li et al., 2015). Indeed, predicting an outcome of an experiment is just one of the steps

of our proposed experiment scheduling approach. Moreover, the historical click data forms only a part

of the features we use in our study: we additionally consider features that are based on the offline

effectiveness-based evaluation, and online exploration.

Radlinski & Craswell (2010) studied the agreement between the offline evaluation metrics, such as

nDCG@n or Precision@n, and the results of interleaving experiments. Their work is related to our

research in this chapter, since they demonstrated that some metrics, such as nDCG@n, have a statisti-

cally significant correlation with the outcomes of interleaving experiments. This fact implies that offline

evaluation metrics can be useful in predicting the interleaving experiment results. A similar experiment

was performed by Chapelle et al. (2012), who measured the correlation betweenDCG@5 and the abso-

lute online metrics used in A/B tests. However, since the agreements reported in (Chapelle et al., 2012;

Radlinski & Craswell, 2010) are not perfect, the following question arises: Can a better prediction be

achieved by using other features apart from the search result effectiveness? In our evaluation study in

Section 5.7 we address this question. Further, Radlinski & Craswell (2010) performed their study on

a dataset containing three experiments with major changes, and two experiments with minor improve-

ments. However, major changes are likely to be rare in modern commercial search engines. In contrast,
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we use a dataset, containing 82 real-life interleaving experiments, performed by a commercial search

engine as part of its development. Thus, we argue that our study uses more a representative dataset.

As it can be seen from the above discussed literature, our work presented in this chapter finds a

solid foundation in the earlier research and goes further in that we (a) state the problem of scheduling

of online experiments (b) propose to use different offline and online predictors of experiment’s success.

5.3 Scheduling Assumptions

We have discussed how the online evaluation is performed above in Section 2.3. In this section we state

three assumptions about the way that the online experimentation queue operates, so that it becomes

possible to formalise the scheduling problem. These assumptions specify the environment where our

proposed scheduler operates. We specify three assumptions, as discussed below:

A1 The upper bound of the user interactions available for each experiment (the experiment’s budget)

is pre-defined and equal to T .

In practice, usually the part of the query stream used for a single experiment is fixed and set to several

percent (Kohavi et al., 2013). At the same time, the size of the query traffic of a search engine is

influenced by various factors, including the time of the day, the day of the week, and the season of the

year. However, we assume that the experiments are deployed long enough that the per-day variations of

traffic are averaged out, while the seasonal variations are smooth enough not to influence the size of the

traffic while experiments are performed. This can be achieved by fixing the duration of the experiments

to be of a size of a week or two (Kohavi et al., 2013). This assumption is realistic and allows us to

simplify the schedule planning and evaluation steps.

A2 Once an experiment is started, it is never interrupted.

After an experiment is started it is never stopped (such an interruption is referred to as preemption

(Leung, 2004)) until one of the two outcomes is achieved: one of the alternatives (A or B) wins the

comparison, or the experiment’s budget T is entirely exhausted. In some setups, experiments might stop

before the budget is exhausted by applying a form of sequential testing (Chapter 7). In order to simplify

the scheduling, we assume that such an early stopping scheme is not applied.

Under this assumption, a currently running experiment is never stopped, even if a new experiment

comes to the queue and it turns out to be more promising. Although this restriction can result in a sub-

optimal use of the user interactions, this assumption ensures some desired properties of the experiments.

First, it is generally accepted to deploy online experiments for an integer number of weeks of continuous
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time, so that every week day is represented in the experimental data (Kohavi et al., 2013). Thus the

situation where a 7 day experiment is started on Monday, stopped on Tuesday, and continued next

Monday is not desirable as not each day of the week is covered. Secondly, this assumption makes the

whole online evaluation predictable and understandable, which is an important property of a production-

level system.

As new experiments continually arrive in the queue, it is possible that an old experiment will not

be executed for a long time, i.e. it starves. The question arises as how to handle this case: should we

prioritise old experiments over new ones? In this chapter, we work with the following assumption:

A3 It is acceptable for some experiments to starve. The experiments should “compete equally” no

matter how long ago they arrived in the queue.

This assumption simplifies modelling the queue and makes the scheduling algorithm easy to under-

stand and predict. To alleviate the consequences of infinite starving in a real-life production setting,

the scheduling algorithm can be accompanied by a manually handled queue. Experiments that are es-

sential to be deployed despite the predictions of the scheduler can be deployed in this manual queue, if

necessary.

The task of the scheduler we study is to sort the queue of the experiments, so that the number of

successful experiments performed under the limited number of the user interactions is maximised. When

studying this task, the exact implementation of the experimentation queue does not play an important

role. We only require A1-A3 to hold. For instance, two experiments can run in parallel for two weeks,

using 5% of the user interaction stream each, or the first experiment can be deployed for a week on

10% of the traffic, followed by the second experiment. From the scheduling point of view, we do not

differentiate between these two cases.

Finally, we note that the described assumptions are very practical: we only assume that experiments

typically have a similar number of interactions, are not interrupted, and should be scheduled according

to how promising they are.

5.4 Optimising the Schedule

In this section, we firstly formulate the problem of optimised scheduling (Section 5.4.1), using the

assumptions discussed in Section 5.3. Since this formulation relies on feature-based machine learning,

in Section 5.4.2 we describe the feature representation of the online experiments we use. Finally, in

Section 5.4.3 we describe our approach to reduce the scheduling problem to a learning-to-rank problem.
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5.4.1 Scheduling Model

The aim of the scheduler is to maximise the number of successful experiments performed. We firstly

define “the probability of success” P (e) for an experiment e ∈ E. This quantity can be informally

considered to represent the frequency of the experiment’s success (B winning A), if it was repeatedly

deployed. Given a fixed schedule S, the expected number of successful experiments is then equal to

O =

|E|∑
i=1

P (S(i))I

 i∑
j=1

TS(j) ≤ T ∗
 (5.1)

where T ∗ is the total number of user interactions available for the experimentation, TS(j) is the number

of interactions used for the jth experiment in the schedule (S(j)), and I(·) is the indicator function.

To optimise the number of successful experiments, we use a greedy, shortest job first-like, scheduling

algorithm. This algorithm prioritises the interleaving experiments such that the experiments that are

ranked higher are expected to be likely more successful. Overall, the greedy scheduling algorithm

can be organised as follows. Suppose, a set of the experiments E0 is available in the queue, currently

ordered according to schedule S0 = {eS0(1), ..., eS0(|E0|)}. Importantly, the queue is ordered so that if

an experiment ei is ranked earlier in the schedule than another ej , then this necessarily implies that the

first experiment ei has a higher probability of being successful. Denoting the position of the experiment

e in the queue S as S−1(e), this requirement can be formalised as follows:

S−10 (ei) < S−10 (ej)⇒ P (ei) ≥ P (ej) (5.2)

In the next step, a set of new experiments Enew arrives in the queue: E1 = E0

⋃
Enew. After that, for

each new experiment e, the estimate of its probability of success P (e) is calculated. A new schedule

S1 is obtained by sorting the full set of experiments E1 so that Equation (5.2) holds. Once a currently

running experiment finishes, the firstly scheduled experiment (S(1), with the highest value of P (e)) is

deployed.

Under the assumptions A1-A3 this algorithm is optimal provided that the probabilities of experiment

success P (e) are available, i.e. it maximises Equation (5.1).

To run this greedy algorithm, a procedure to estimate the probability of an experiment’s success is

required. To build such an algorithm, we propose to use a learning-to-rank approach, as the prioritisation

of experiments is akin to the problem of ranking. Moreover, the learning-to-rank approach allows us

to transparently use heterogeneous features to represent an experiment. Next, we discuss the feature

representation (Section 5.4.2) and the machine learning algorithms (Section 5.4.3) used in our work.
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5.4.2 Features

We divide our features into three groups: effectiveness-based features, click model-based features, and

the online exploration features. All of these features characterise a particular pair of compared systems

A and B.

Effectiveness-based group (12 features) The commonly accepted way to evaluate the difference

between two ranking algorithms is to assess their quality within the offline evaluation paradigm. Under

this paradigm, a set of previously labelled queries are submitted to both alternatives. After retrieving the

search result lists (SERPs), they are intersected with the available document labels. Finally, the quality

of the ranking is represented by one of the offline metrics, such as Precision@n, ERR@n (Chapelle

et al., 2009), DCG@n (Järvelin & Kekäläinen, 2002).

As the online metrics naturally reflect the relative importance of queries in the query stream, we

weight the offline metrics according to the query frequencies. These frequencies we calculated using

the same dataset that was used to calculate the click model-based features discussed below. This dataset

contains interactions that preceded all of the experiments that we used in our evaluation study. The

effectiveness-based features were calculated using the top 50 most frequent queries.

To get a effectiveness-based feature representation of the experiments, we vary the cut-off depth and

the way the unlabelled documents are treated while calculating these metrics. We calculate the average

values of the metrics for both alternatives, while considering non-labelled documents as non-relevant.

Next, we calculate the averages of the same metrics only for queries where both alternatives (A and

B) have all top-N documents labelled. This procedure was applied to Precision@1, Precision@3,

ERR@3, DCG@3, ERR@5, and DCG@5 metrics. To get a feature representation for an experiment

e from the averages of the metrics, we calculate the differences between the averaged values over the

queries of the metrics for both alternatives tested in the experiment (e.g. the difference between the

averaged values of Precision@1 of alternatives A and B is a feature). Thus each experiment is as-

sociated with (Precision@1, Precision@3, ERR@3, DCG@3, ERR@5, DCG@5) × (unlabelled

documents are treated as non-relevant, or the corresponding pairs of SERPs are ignored) = 6× 2 = 12

effectiveness-based features.

Click model-based group (3 features) The relevance judges can misinterpret queries and misun-

derstand the user’s intention. A possible way to address this is to use implicit feedback from the real

users. In this chapter, we use pre-trained user click models to predict how users will behave once they

are presented with a result page from A or B. Specifically, we train a simplified Dynamic Bayesian

Network (sDBN) (Chapelle & Zhang, 2009) click model using a separate part of the dataset. We dis-

cussed this model above in Section 2.5. Under this model, for a fixed query, each document u has two
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Input: Parameters of the click model, au, su; the result page R, the cut-off level k
Output: The probability of the user’s satisfaction with R, Psat
Pdsat is the probability of the user’s dissatisfaction
Pdsat ← 1
for r ← 1 to min(k, |R|) do

u is the document on the rth position
u← R(r)
Update the probability of dissatisfaction
Pdsat ← Pdsat · (1− ausu)

end
Psat ← 1− Pdsat
Algorithm 5.1: Calculating the probability of the user’s satisfaction with the result page R.

Input: Parameters of the click model, au, su; the set of interleaved result lists, L, the cut-off
level k.

Output: The expected difference D in the number of clicks obtained by alternatives A and B.
Pe(r) denotes the probability of examining the rth position
Pe(1)← 1
foreach Li ∈ L do

for r ← 1 to min(k, |Li|) do
u is the document on the rth position
u← Li(r)
Update the expected difference
D ← D + πiPe(r)au(I[r from A]− I[r from B])
Probability of examining the next document
Pe(r + 1)← Pe(r) (1− ausu)

end
end

Algorithm 5.2: Calculating the expected difference in clicks obtained by A and B in an interleaving
comparison.

parameters: the probability of the user clicking on the document if it was examined (attractiveness) au,

and the probability that the document will satisfy the user, if it was clicked, su. These parameters are

calculated by Algorithm 2.3 (Section 2.5).

After that, we use this pre-trained click model to calculate the following features. First, we calculate

the difference in the probabilities of the user satisfaction (as defined by the sDBN model) by the result

pages of A and B (Algorithm 5.1). We calculate the value of this difference for two cut-off levels,

considering three and five top-ranked results from both alternatives. We use only the top-ranked results,

as they are likely to have sufficient click data in the logs. Second, we calculate the expected difference

in the number of clicks for alternatives A and B in the interleaving experiment (Algorithm 5.2).

In Algorithms 5.1 & 5.2 we use the notation introduced in Section 2.3.2: the set of interleaved result

lists generated for the query is denoted as L, and the probability of showing the interleaved result list Li

to the users is πi.
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To calculate the expected difference in the number of clicks for a particular result page Li, Algo-

rithm 5.2 iterates over the results from top to bottom and maintains a variable Pe(r) that equates to the

probability of the user examining the result u at rank r. Assuming that the user examined the result

u, they click on u with probability au and contribute a positive score if u belongs to the team A and

negative otherwise. The expectation over the set of result pages L is achieved by weighting the per-page

scores with the interleaving policy π.

Online exploration group (1 feature) A completely different approach to gain useful information

about an experiment e is to perform a preliminary deployment for a short period of time. After this, we

calculate a feature representing the outcome of this preliminary experiment (Section 2.3, Equation (2.7)).

To calculate this feature in our model, we sample a pre-defined number of user interactions from the

experiment data. As the number of interactions sampled can greatly influence the prediction quality (i.e.

if we sample sufficiently enough interactions while doing exploration we might not need the experiment

itself), in our empirical study we vary this number to gain additional insights into the relative usefulness

of this feature. This exploration step is akin to the pure exploration step in the ε-first greedy algorithms

for the multi-armed bandit problems (Sutton & Barto, 1998; Tran-Thanh et al., 2010). Indeed, given a

set of experiments (“arms”), we need to identify which of them is more likely to be successful. However,

we cannot use more advanced bandit algorithms, as interrupting experiments might have consequences

we want to avoid (A2).

Feature aggregation After calculating the effectiveness-based and click model-based features, we

additionally aggregate them by averaging over four groups according to the query length measured by

the number of space-separated terms: (1) all queries, (2) queries of length of 1, (3) queries of length

of 2, (4) queries of length of 3 and longer. The exploration feature is not included in this aggregation

step. Our intuition behind this feature aggregation step is that it allows the machine-learned algorithm

to detect cohorts of queries where the main change in the experiment occurs. For instance, if major

relevance changes are observed in the group of long queries, which are likely to be rare, the click

model-based features can be less useful. As a result of this aggregation, each interleaving experiment

e ∈ E is represented as a point in a space of (12 + 3) · 4 + 1 = 61 features.

Different sets of features might be useful in different scenarios. For instance, in some interleaving

experiments, such as those that test changes in the personalisation algorithms, the personalised relevance

labels might be unavailable. In contrast, the exploration-based feature can be valuable in this case. On

the other hand, the click model-based features can be less useful for the experiments where only the

ranking of the long-tail queries is affected. We argue that combining all these groups of features can

improve the performance.
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Limitations The features we consider allow us to build a fine-grained representation of the candidate

experiments. However, some of these features have a limited applicability. Indeed, effectiveness-based

features assume that relevance labels can be provided, but that might be not always possible, e.g. in

the case of personalised ranking. Further, the usefulness of the click model-based features is restricted

to the experiments where historical click information is available, hence these features might be less

useful in the experiments with mostly ranking of the tail (low frequency) queries changed. In contrast,

the online exploration feature can be used universally across all types of the interleaving experiments.

5.4.3 Learning Framework

To apply a greedy scheduling algorithm, we need to estimate the experiments’ probability of success.

We consider this problem as a ranking problem, and further discuss pointwise and pairwise learning-to-

rank approaches to it.

Pointwise A simple approach to predict the experiment’s probability of being successful is to train

a classifier that discriminates successful experiments from others. We associate experiments with one

of the two classes {0, 1}: y(e) = I[B � A]. Informally, the experiments for which B statistically

significantly outperforms A are considered as instances of the positive class 1. All other experiments,

including those where no statistically significant difference between A and B was found, belong to the

negative class 0. In the second step, we train a machine learning algorithm to predict the class of the

considered experiment. We use two popular methods to build such a binary classifier. First, we use

logistic regression with L1 regularisation implemented in the scikit-learn30 package (Pedregosa et al.,

2011). The regularisation parameter is tuned by a ten-fold cross-validation on the training set. Second,

we use the gradient boosted trees algorithm provided in the GBM package for R (Ridgeway, 2004). The

parameters (e.g. number of trees) are tuned through cross-validation.

Pairwise In the pointwise approach all positive examples are treated equally. However, in some of

the experiments, the difference between the alternatives is bigger. With everything else being equal, it

is better to deploy such experiments earlier, as the corresponding search engine’s improvement is larger.

This idea is naturally represented by the pairwise learning-to-rank paradigm. We firstly define a set P of

pairs of experiments (ei, ej) ∈ E× E such that the outcome of the first experiment in the pair is higher

than that of the outcome of the second experiment. P formulated as follows:

P = {(ei, ej) : ∆(ei) > ∆(ej), ei, ej ∈ E}

where ∆ is defined in Equation (2.6) (Section 2.3.2, page 21).

30http://scikit-learn.org
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Table 5.1: Descriptive statistics of the dataset.

#Exp B wins A Impressions: Min Median Mean Max Total

82 31 178K 1M 2M 39M 174M

We use the GBM (Ridgeway, 2004) package for R to find a function that minimises the number of

misordered pairs. As an alternative pairwise ranker we use RankingSVM (Joachims, 2002).

5.5 Dataset

Before discussing the experimental study in the next section, we briefly describe the dataset used in this

chapter. This dataset consists of the subset of the interleaving experiments performed by Yandex during

a five week period in Spring 2014. It contains 82 interleaving experiments, 31 of which were successful

(the alternative B outperformed A statistically significantly, p < 0.05). The experiments test changes

in the non-personalised ranking of the search engine. On average, the interleaving experiments were

deployed for 10 days.

Salient statistics of the dataset are provided in Table 5.1. The number of interactions per experiment

varies, as each experiment was selected to be deployed for time periods of different length, or for

different shares of the query stream. The interleaving experiments were performed using the Team

Draft interleaving method with the deduped binary scoring scheme, as described in Section 2.3.2 (page

22). The parameters of the sDBN model (Chapelle & Zhang, 2009) used for calculating the click model-

based features (Section 5.4.2) are estimated using a separate query log sample from a two-week period.

All experiments in the dataset were deployed after this period. All online experiments were deployed

on the Russian market.

5.6 Evaluation Methodology

Since our proposed scheduling algorithm relies on predicting the outcomes of the online experiments,

we split our evaluation study in two steps: (1) evaluating the experiment outcome prediction, (2) evalu-

ating the quality of the schedules obtained by our proposed scheduling algorithms. We formulate three

research questions that we aim to address:

RQ5.1 Is it possible to predict the outcomes of the online experiments using the pre-experimental data

only, so that the quality of the predictions is improved in comparison with the random order?
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RQ5.2 What are the best performing prediction algorithms? How do the proposed features compare to

each other?

RQ5.3 How do the learned approaches compare in terms of the quality of the schedules they generate?

As we will discuss in Section 5.6.4, the random order we compare to in RQ5.1 is not an artificial

baseline, instead it reflects the stochastic order of the experiments arriving to the experimentation queue

if no scheduling is performed. In other words, we consider the performance of the randomised order

to be similar to the performance of an unoptimised schedule. Notably, each of the groups of features,

discussed in Section 5.4.2, can be considered as a simple predictor of the experiment outcome. Indeed,

the experiments in the queue can be ordered according to their DCG scores, or the experiment outcome

prediction, based on the click modelling, or based on the results of the exploration step. To obtain addi-

tional insights into the relative importance of the features, we additionally investigate the performance

of the schedulers that sort experiments according to separate features.

5.6.1 Prediction quality

Since our goal is to schedule the successful experiments with a higher priority, it is natural to measure

the quality of the schedule ranking as the fraction of the correctly ordered pairs of the experiments. In an

ideal ranking, the successful experiments (B � A) are deployed first. Moreover, it is natural to require

the successful experiments with higher difference between A and B to be scheduled earlier. This idea

can be represented by the Area Under Curve (AUC) quality metric of a classifier S separating successful

experiments from unsuccessful ones (Ling et al., 2003).

We firstly define the set of pairs of experiments R = {(ei,1, ei,2)}i that are used in the evaluation.

This set contains all the pairs of experiments such that at least one of the experiments has the alternative

B winning the comparison with p ≤ 0.05 and the relative scores of B are different when compared

across experiments. We impose the first requirement as we are not interested in evaluating how good a

particular scheduling algorithm is at ranking unsuccessful experiments. The AUC metric AUC(S) of a

schedule S can be calculated using the following expression:

AUC(S) =

∑
e1,e2∈R

I
[(
S−1(e1)− S−1(e2)

)
(∆(e1)−∆(e2)) < 0

]
|R|

(5.3)

5.6.2 Evaluating the Schedule

While the AUC measure as defined in the previous section is intuitive, it evaluates the quality of the

predictions only, not the quality of the resulting schedule. However, there is a noteworthy difference.
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Indeed, the AUC metric reflects a scenario where there are enough resources (user impressions) to de-

ploy all the required experiments, but an approach to deploy the promising experiments first is needed.

However, a scenario when one cannot deploy all the available experiments due to restricted resources is

possible. In this case, AUC is less suitable, as it also measures the quality of the ranking of the experi-

ments that cannot be deployed. Thus, we propose to measure the quality of the scheduling algorithm as

the number of the successful experiments it can fit in the number of available user interactions.

Consider a schedule S, representing the order of the experiments to be run, S = {eS(1), eS(2)..., eS(|E|)}.

Ideally, the schedule should allow us to run and finish as many experiments where B wins, as possible.

At the same time, we have a limited number of the user interactions that can be used in the experi-

ments, denoted as budget T ∗. Thus, we are interested in minimising the following measure, similar to

Equation (5.1):

Q(S) =
∑

i=1..|S|

I[B(e) � A(e)] · I

 i∑
j=1

T (ei) ≤ T ∗
 (5.4)

Q(S) measures the number of experiments with B winning the comparison (I[B(e) � A(e)]), under

the limited number of user interactions T ∗, as only the experiments that are performed before T ∗ is

reached
(∑i

j=1 T (ei) ≤ T ∗
)

can contribute to Q(S). Notably, the metric Q(S) can be considered as

a generalisation of Precision@R. Indeed, if the number of interactions available for each experiment

T (ei) = T = const is large enough for any experiment to have a definite outcome, then Q(S) ≈

Precision@R, where R = T∗

n .

5.6.3 Statistical Methodology

To evaluate the quality of a schedule S, we perform a bootstrap estimation of the metric valuesAUC(S)

and Q(S) using the dataset described in the previous section. This estimation is performed in several

steps. First, we select the experiment that S schedules to run first, S(1). After that, we compare the

number of the interactions required to perform the experiment T to the available limit T ∗. If the required

number is less than T ∗, we continue, and stop otherwise. From the available dataset of user interactions

for the experiment S(1), we sample the user interactions. After that, we proceed to the next scheduled

experiment, S(2). Again, we sample the user interactions. We proceed, until the limit T ∗ is reached,

and calculate the value of Q(S) according to Equation (5.4). We repeat this described procedure N

times and, as a result, it provides us with the bootstrapped estimates of the performance of the tested

scheduler.
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Input: Number of user interactions available for an experiment T ; the total number of available
user interactions T ∗; a set of experiments E

Output: Estimated values of AUC(S) and Q(S).
A← 0 ; Q← 0
foreach train, test← RandomStratifiedSplit(E, nSplits = 10) do

Train the ranker: C ← fit(train)
Greedily schedule the test experiments:
S ← predict(C, test)
Update the AUC estimate:
A← A+AUC(S)
Initialise the estimate of Q for the current split:
Qi ← 0
Calculate the bootstrapping estimate Qi:
while i < N do

The remaining experimentation budget:
T̂ ← T ∗

Starting with the first experiment:
j ← 1
while j < |S| and T̂ > 0 do

Sample T sessions from experiment S(j)
data← sample(S(j))
Check if the experiment is successful, based on data:
if B � A then

Qi ← Qi + 1
end
Reduce the budget by the number of sampled sessions and proceed to the next

experiment:
T̂ = T̂ − T ; j ← j + 1

end
end
Q← Q+ 1

NQi
end
Calculate averages of the metrics across the splits:
Q(S)← 1

nSplitsQ, AUC(S)← 1
nSplitsA

Algorithm 5.3: The bootstrap-based evaluation protocol.
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Further, as the machine learning-based approaches require separated testing and training set, we

repeat the described quality estimation algorithm with the train-test split varied. Each split is obtained

by randomly selecting 10% of the experiments in the dataset as a test set, with the remaining experiments

used for training. The splits are performed in a stratified manner, so that the distribution of the successful

experiments is the same in training and test sets. The evaluation algorithm is formally described in

Algorithm 5.3.

We ensure that the total number of user impressions used in the evaluation is equal for all evaluated

schedulers. If a scheduler performs an exploration step, we subtract the number of sessions used for

exploration from the overall experimentation budget T ∗.

5.6.4 Baselines

Random The first baseline we consider assigns a random order to the online experiments. Since ex-

periments arrive stochastically to the queue, we believe that the performance of this baseline is a good

indicator of the average performance of the un-prioritised schedule that never re-arranges the incoming

experiments. In other words, this baseline is not an artificial one, but instead it reflects the performance

of the real-world schedules. As the work we presented in this chapter is the first to address the problem

of the online experiment scheduling optimisation, more elaborate baselines do not exist.

UpperBound The UpperBound scheduler provides us with an upper bound on the possible scheduler

performance. In case of the interleaving experiments, UpperBound sorts the experiments in the queue

according to the values ∆(e) of the experiment’s outcome (Equation (2.6)). This baseline uses the data

produced by the experiment, which is unavailable before the experiment was performed.

5.7 Results and Discussion

We use the following notation in this section. The UpperBound, and Random baseline schedulers are

denoted as UB and Rnd, respectively. The schedulers based on the pointwise predictors, logistic re-

gression and GBM, are referred to as LR, and LGBM, respectively. The schedulers based on pairwise

RankingSVM and GBM, are denoted as SVM and PGBM, respectively. Finally, the schedulers based on

the single DCG3, ERR3, and Explore features are referred to as DCG, ERR, and Explore. When calcu-

lating the effectiveness metrics used in the effectiveness-based schedulers DCG and ERR, we consider

unlabelled results as non-relevant.

CM denotes the scheduler that ranks experiments according to the click model-based feature, which

calculates the expected difference in the number of clicks A and B will obtain in the interleaving experi-
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Table 5.2: Performance of the scheduling algorithms, measured by AUC on the dataset of interleaving
experiments. The values in bold are the highest in the corresponding row, excluding UB. The values
denoted by 4 statistically significantly outperform other values in the same row (except for UB, p <
0.05).

#sample

Rnd CM DCG ERR UB
– 0.51 0.77 0.77 0.74 1.0

Explore LR SVM LGBM PGBM
0 – 0.76 0.72 0.834 0.81
0.01 · T ∗ 0.62 0.76 0.73 0.834 0.81
0.02 · T ∗ 0.70 0.77 0.74 0.83 0.82
0.05 · T ∗ 0.77 0.77 0.74 0.83 0.82
0.10 · T ∗ 0.83 0.78 0.75 0.85 0.84
0.20 · T ∗ 0.88 0.79 0.77 0.86 0.86

ment. We include it as it resembles the interleaving experiment outcome prediction feature used further

in Section 6.3 and thus it is interesting to compare to it.

We use the Wilcoxon test to compare the performance of the schedulers (excluding UpperBound).

5.7.1 Prediction Quality

In Table 5.2, we report the results of our evaluation of the quality of the experiment outcome prediction

algorithms, measured on the dataset of the interleaving experiments. The quality is measured by AUC,

and the measurement is performed by Algorithm 5.3. The values in denoted with4 statistically signif-

icantly outperform other values in the same row/exploration step size (p < 0.05). We set the number

of user interactions T ∗ available for running all experiments such that each experiment in the test parts

of the dataset is deployed for 105 interactions. The number of user interactions used in the exploration

step is varied, we report it in the corresponding cells (#sample). We measure the size of exploration

step as a fraction of the total number of available impressions T ∗. For instance, if #sample = 0.05 · T ∗,

then a scheduler uses 0.05 · T ∗ interactions for exploration. These interactions are uniformly divided

among the test experiments. For fairness, we ensure that the same number of impressions is used for

each schedule evaluation step, whether the evaluated scheduler uses exploration or not.

From the top parts of Table 5.2, we firstly notice that the baselines demonstrate their expected

behaviour. Indeed, the UB scheduler achieves the highest performance possible (1.0), and Rnd has an

AUC close to 0.5, indicating that under a random permutation, the probability of the correct ordering

of the pair of experiments is equal to the probability of the inverse ordering. Next, we notice that the

effectiveness-based experiment outcome predictors, ERR and DCG, as well as the click model-based

79



5.7 Results and Discussion

CM perform better than the randomised baseline. However, the AUC scores of DCG, ERR, and CM

schedulers (e.g. 0.77, 0.74, and 0.77, respectively, Table 5.2) are far from 1. This implies that there

is a considerable room for improvement. Indeed, on examination of the performance of the machine-

learned schedulers that do not perform exploration (bottom part of Table 5.2, #sample = 0), we observe

that these schedulers (e.g. LR 0.76, LGBM 0.83, and PGBM 0.81) can achieve a performance higher

than that of the Random scheduler and of the schedulers based on individual non-exploratory features

(DCG, ERR, and CM). Next, the AUC score of the LGBM scheduler is 8% better than that of the best

of the schedulers that are based on a single feature (DCG, 0.83 vs. 0.77, p < 0.01), and considerably

better than that of the Random scheduler (0.83 vs. 0.51, p < 0.01).

These observations allows us to answer RQ5.1: it is possible to outperform the random scheduler in

the task of predicting the experiment outcome by combining different features in the machine learned

schedulers, such as LGBM.

As the number of the user interactions available for exploration grows, the performance of the

exploration-based scheduler Explore: on the interleaving experiments dataset, its AUC score starts from

0.62 when 0.01 ·T ∗ interactions are used, and increases up to 0.88 when 0.20 ·T ∗ interactions are used.

Interestingly, the machine-learned schedulers demonstrate a comparable performance when little or

no exploration is used. Indeed, LGBM achieves an AUC of 0.83 when exploration is not used, which is

comparable to the score of Explore using 0.10 · T ∗ interactions for exploration (Table 5.2, 0.83). This

indicates that the use of the machine-learned algorithms can considerably reduce the number of user

interactions used in the exploration step.

On comparing the machine-learned schedulers, we note that more advanced LGBM & PGBM sched-

ulers achieve higher scores than LR and SVM. This relation holds for all sizes of the exploration step

(#sample) we consider.

These observations allow us to answer RQ5.2. LGBM outperforms other schedulers, and it improves

over the best effectiveness-based scheduler DCG by a margin of 8%.

5.7.2 Evaluating the Schedule

In Table 5.3, we report our results obtained when evaluating the quality Q(S) of the scheduling algo-

rithms. To get additional insights into the performance of the scheduling algorithms, we vary the total

number of user interactions available for the experimentation T ∗, T ∗ ∈ {3·105, 4.5·105}. In both cases,

after the scheduler ranks the experiments in the test set, we deploy the three31 experiments ranked first

for evaluation. The user interactions left after performing the exploration step are split for these three

31We believe this is a reasonable choice, as in each cross validation split the test set contains less than 10 experiments.
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Table 5.3: The quality of the scheduling algorithms measured byQ(S) on the dataset of the interleaving
experiments. The values denoted by 4 outperform other in the same scenario (T , #sample), p < 0.05
(except for UB). In bold are the highest metric values (except for UB) in the corresponding scenario.

#sample T ∗ = 3 · 105 T ∗ = 4.5 · 105

Rnd CM DCG ERR UB Rnd CM DCG ERR UB
- 0.60 1.994 1.04 1.20 2.42 0.58 2.204 1.37 1.42 2.70

Explore LR SVM LGBM PGBM Explore LR SVM LGBM PGBM
0 - 1.14 1.45 1.93 2.174 - 1.39 1.71 2.28 2.564
0.01 · T ∗ 0.78 1.14 1.44 1.87 2.184 0.85 1.37 1.73 2.35 2.544
0.02 · T ∗ 0.89 1.13 1.44 1.90 2.134 1.00 1.39 1.69 2.32 2.544
0.05 · T ∗ 1.06 1.12 1.34 1.91 2.104 1.26 1.44 1.69 2.30 2.504
0.10 · T ∗ 1.18 1.04 1.35 1.81 2.024 1.45 1.36 1.87 2.30 2.504
0.20 · T ∗ 1.31 0.94 1.20 1.57 1.834 1.68 1.26 1.71 2.19 2.464

experiments uniformly, e.g. the non-exploratory schedulers, such as ERR, run these three most promis-

ing experiments for 105 and 1.5 · 105 interactions. The interactions used for exploration are distributed

among the test experiments uniformly.

First, we note that the performance of the Random scheduler is considerably lower than the upper

bound (e.g. 0.60 vs. 2.42, T ∗ = 3 · 105). This indicates that the quality of a random, un-scheduled

queue can be markedly improved. Next, we observe that the effectiveness-based schedulers, DCG

and ERR, outperform the random baseline by a considerable margin (e.g. ERR 1.42 vs. 0.58, 144%

improvement, p < 0.01, T ∗ = 4.5 · 105). Consequently, one can get an improved scheduling quality

even by simply sorting the queue of the experiments by the effectiveness scores obtained in the offline

evaluation. DCG performs slightly worse than ERR (e.g. 1.37 vs. 1.42, T ∗ = 4.5·105). Interestingly, CM

demonstrates the highest performance among the schedulers that do not use exploration and machine

learning, and outperforms ERR by a considerable margin (e.g. 1.99 vs. 1.20, T ∗ = 3 · 105). Notably, by

performing a short exploration step where only 0.01 · T ∗ interactions are used, up to 47% improvement

might be obtained in comparison with the un-scheduled (Random) baseline (Explore 0.85 vs. Rnd 0.58,

T ∗ = 4.5 · 105, p < 0.01). This can be extremely useful in the cases where no relevance judgements are

available, such as for the evaluation of the personalised ranking algorithms.

The effectiveness-based schedulers are markedly outperformed by the machine-learned scheduling

algorithms. The best-performing algorithm, PGBM, outperforms the best effectiveness-based scheduler

ERR, by 81% (2.17 vs. 1.20, T ∗ = 3 · 105, no exploration) and 80% (2.56 vs. 1.42, T ∗ = 4.5 · 105, no

exploration). Moreover, PGBM outperforms Random by 262% (T ∗ = 3·105) and 342% (T ∗ = 4.5·105).

The quality of the schedule generated by the Explore scheduler grows as the number of the user

interactions used for exploration grows (0.78, 0.89, 1.06, 1.18, 1.31) for the exploration sample sizes of
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T ∗ · {0.01, 0.02, 0.05, 0.10, 0.20}, (left part of Table 5.3). The score of 1.31 corresponds to an improve-

ment of 144% with respect to Rnd. However, when the machine-learned schedulers are considered (e.g.,

PGBM) the increased exploration actually harms the performance of the scheduler, as interactions are

spent on exploration, instead of being spent on running the experiments. The same effect is observed on

the right part of Table 5.3.

On comparing the results with T ∗ varied (left and right parts of Table 5.3, T ∗ is the total number of

user interactions available for experimentation) we notice that as T ∗ increases, the values of the Q(S)

metric increase for all tested schedulers. In particular, the upper bound of the scheduling performance

grows from 2.42 to 2.70. This result is intuitive: as we fixed the number of experiments we are at-

tempting to deploy, more user interactions are available for running an experiment, and thus some of the

experiments “become” successful.

To obtain an additional insight into the behaviour of the schedulers, we vary the overall number of

user interactions available to the experimentation queue (T ) in a pre-defined set T ∗ = m · 105,m ∈

{1, ..., 6}, and measure the quality Q(S) of the resulting schedules. At each step, we try to deploy

m experiments scheduled first for evaluation. We report the results in Figure 5.1. From Figure 5.1

we observe that in all situations Rnd is dominated by other schedulers, including the effectiveness-

based scheduler ERR. Explore with #sample = 0.10 · T ∗ demonstrates a performance similar to ERR.

Interestingly, CM outperforms both ERR and Explore by a considerable margin, and is close to PGBM

that uses exploration. In each situation PGBM with no exploration demonstrates the best performance.

We now can answer RQ5.3. The machine-learned schedulers demonstrate the best performance:

LGBM outperforms the random baseline by 342% maximum, and the closest effectiveness-based sched-

uler, ERR, by up to 81%. In turn, by using the ERR scheduler, an improvement of 144% over the

un-scheduled queue can be obtained. Finally, by performing an exploration step using 0.20 · T user

interactions, Explore improves over the baseline by up to 190% on the interleaving dataset.

Our evaluation study allowed us to answer all of the stated research questions. Our obtained results

suggest that the random (“natural”) order of the experiment schedule can be improved by the greedy

scheduling algorithm. A considerable improvement can be achieved when the greedy scheduling al-

gorithm uses effectiveness measurements (ERR and DCG), or the pre-experimental click data (CM). A

further improvement is observed on the interleaving dataset when the greedy scheduling algorithm was

used with the predictions from PGBM. Finally, Explore demonstrated a good performance, which can

be important for a practical application, as it does not require document labels and pre-experimental

click data.
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Figure 5.1: Quality Q(S) of the best schedulers as the number of the user sessions available grows,
measured on the interleaving dataset.
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5.8 Conclusions

In this chapter, we stated the problem of the optimal scheduling of the online experiments. In Sec-

tion 5.3, we described three assumptions we make about the online experimentation and formulated the

optimal scheduling problem. Next, we introduced a greedy scheduling algorithm that ranks experiments

according to their predicted probability of success. This algorithm allowed us to reduce the scheduling

problem to a learning-to-rank problem. We studied pointwise and pairwise formulations of this learning-

to-rank problem. To obtain a feature representation of the experiments, we considered relevance-based,

click model-based, and exploration features. Finally, we performed a thorough evaluation study, exam-

ining how our proposed approaches compare to each other and to the baselines in terms of the prediction

quality and the quality of the resulting schedules.

Our findings suggest that our proposed machine-learned schedule optimisation algorithms outper-

forms the randomised, “natural” schedule by up to 342% (Table 5.3, T ∗ = 4.5·105) when the number of

the successful experiments performed under a limited number of available user interactions is measured.

We also showed that a simple scheduler that ranks experiments according to their ranking effectiveness

can achieve a smaller, but still a considerable improvement over the “natural” random baseline (up

to 144%, Table 5.3, T ∗ = 4.5 · 105). Our study also suggests that an exploration-based scheduler
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can achieve a considerable improvement over an unoptimised schedule (190% improvement, Table 5.3,

T ∗ = 4.5 · 105). Notably, this can be applied for experiments where neither relevance judgements,

nor historical click data is available. Similarly, it can be used to schedule experiments in the query

auto-completion experimentation layer.

Overall, in this chapter we discussed how to build an online experimentation queue scheduler. This

work addresses the second point in our roadmap for increasing the efficiency of the evaluation pipeline

in Section 3.5. Indeed, our proposed scheduler deploys the most promising experiments first, hence it

ensures a better utilisation of the limited resource of the user interactions w.r.t. the number of obtained

successful experiments. Thus the scheduling has a direct impact on the efficiency of the entire evaluation

pipeline, as it allows the search engine to deploy more successful experiments per unit of time in contrast

to the case when the experiments are sorted “naturally” in a random manner. Online experiments tend

to last for several days at least (Chapelle et al., 2012; Drutsa et al., 2015; Kohavi et al., 2013), hence the

cost of deploying an unsuccessful experiment instead of a successful one is relatively high, as it delays

the evolution of the search engine. By using our proposed scheduler, the frequency of such events can

be reduced.

Our work in this chapter supports the statement of this thesis. Indeed, the historical interaction

data is both used as the training data for our proposed scheduler (in the form of the already performed

experiments), and is used to generate click model-based features, that are used by the scheduler to

predict if an experiment is likely to be successful. Hence, our work in this chapter illustrates how

historical interaction data can be re-used to improve the efficiency of the evaluation pipeline.

In this chapter we increased the efficiency of the evaluation pipeline by reducing the number of

deployed unsuccessful experiments. Another approach for improving the evaluation pipeline efficiency

is to reduce the duration of online experiments, both successful and not. This can be achieved by

increasing the sensitivity of online evaluation methods and in the next chapter we discuss this approach.
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Chapter 6

Improving Sensitivity of Interleaving
Experiments

6.1 Introduction

In Chapter 4 we aimed to increase the efficiency of the evaluation pipeline (Chapter 3) by improving

the alignment of the offline evaluation metrics with the online satisfaction indicators. After that, in

Chapter 5, we discussed how to optimise the scheduling of online experiments so that online experiments

that are likely to be successful are deployed first, and hence the efficiency of the evaluation pipeline is

increased.

The online evaluation step is the most time-consuming step: a typical A/B experiment is deployed

for a period of one or two weeks (Chapelle et al., 2012; Drutsa et al., 2015; Kohavi et al., 2012, 2013;

Schuth et al., 2015), and a typical length of interleaving experiments reported in the literature is up

to five days (Chapelle et al., 2012; Schuth et al., 2015). Consequently, even if we only deploy online

experiments that are likely to be successful (e.g. by implementing our work in Chapter 4 and 5), it

will still take days or weeks for each experiment to complete the evaluation, therefore considerably

restricting the speed of search engine’s development. It can be argued that improvements in the online

evaluation efficiency would have the strongest impact on the overall evaluation efficiency. Motivated

by this observation, in this and the following Chapters 7 & 8, we aim to increase the efficiency of the

evaluation pipeline by reducing the duration of the online evaluation step.

When comparing two web document search ranking functions, interleaving was found to be faster to

obtain the comparison outcome than an A/B test (Chapelle et al., 2012; Schuth et al., 2015). A variety

of methods were proposed to further reduce the duration of interleaving experiments by improving the

interleaving sensitivity.32 Roughly, research in the existing literature can be divided into two areas:
32In Chapter 2, we defined sensitivity as ability to obtain a reliable comparison outcome with few observations.
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optimisation of the click credit assignment (Chapelle et al., 2012; Radlinski & Craswell, 2010; Yue

et al., 2010) (i.e. how important a particular click is); and optimisation of the probability of showing

of interleaved result pages, or the interleaving policy (how often a particular interleaved result page is

shown) (Radlinski & Craswell, 2013).

In this chapter, we discuss two approaches to improve the interleaving sensitivity. First, in Sec-

tion 6.3, we discuss a click model-based approach to increase the interleaving sensitivity by means of the

interleaving policy optimisation which was proposed in a publication (Kharitonov et al., 2013c). How-

ever, such an approach has considerable limitations, and after discussing them, we propose to address

these limitations by introducing the Generalised Team Draft interleaving framework. In contrast to the

click model-based approach, Generalised Team Draft combines the policy optimisation with the click

weight optimisation. Generalised Team Draft was introduced in (Kharitonov, Macdonald, Serdyukov

& Ounis, 2015a). Both these approaches rely on re-using historical interaction data to optimise their

parameters and increase interleaving sensitivity, hence they support the statement of this thesis (Sec-

tion 1.3).

The Generalised Team Draft framework generalises the existing research in two aspects. First, we

consider both the interleaving policy and the credit assignment function as parameters to optimise in

our framework. As a result, our framework has a higher flexibility that can be used to achieve a higher

sensitivity. Second, we formulate our framework to be general w.r.t. the actual presentation of the result

pages, so that it can be applied for domains such as image search, where a grid-based presentation is

used (see Figure 6.1 for an example). In contrast, the existing studies concentrate only on the document

search domain.

An important property of an interleaving algorithm is its unbiasedness. Informally, we refer to an

interleaving algorithm as biased, if its outcome is systematically shifter towards one the systems. Such

a bias should be avoided as it introduces errors in the evaluation. As a part of our proposed Generalised

Team Draft, we describe a formal criterion that interleaving policy and click feature representation must

satisfy so that the interleaving evaluation is unbiased. This requirement can be applied in domains with

the grid-based result representation.

In contrast, the current research in the interleaving policy optimisation (e.g. (Radlinski & Craswell,

2013)) explicitly relies on the list-based representation to formulate the unbiasedness criteria. Radlinski

& Craswell (2013) consider a model of a randomly clicking user who uniformly selects the examination

depth and then clicks on results among the examined. Such a formulation does not generalise to the

grid-based result representation.
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Figure 6.1: Image search result page as an example of the grid-based representation.

In this chapter, we introduce a stratified estimator of the interleaving experiment outcome which

stratifies the interleaving interactions according to the teams of the results shown on the result pages.

Under our proposed stratified estimator, the scores for each possible team combination are calculated

independently and are combined after that. As a result of this procedure, the inter-strata variance is

eliminated, thus increasing the interleaving sensitivity. In addition, this stratification simplifies the

optimisation of the parameters performed by Generalised Team Draft.

By developing the Generalised Team Draft framework, we increase the evaluation pipeline efficiency

from two perspectives. Firstly, interleaving comparisons are introduced in search domains with grid-

based result representation, thus allowing faster evaluation of the system’s effectiveness in domains such

as image search. Secondly, our proposed framework improves the sensitivity of the interleaving methods

both in domains with list- and grid-based representation, thus allowing interleaving experiments to be

deployed on a less volume of the search traffic or for a smaller number of weeks. As we will further

demonstrate in Chapter 8, when combined with improved statistical testing methods, Generalised Team

Draft reduces the mean deployment time. Clearly, such a reduction will have a strong impact on the

evaluation pipeline efficiency, as it reduces the time spent on its most time-consuming online evaluation

step.

Overall, the contributions in this chapter are four-fold:

• We study a user model-based approach to increase the interleaving sensitivity;

• Next, we propose a principled, data-driven Generalised Team Draft framework that addresses

weaknesses of our previous approach and overcomes the limitations of the approaches proposed
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in the literature. Generalised Team Draft achieves sensitive interleaving by combining the strat-

ification, the interleaving policy optimisation, and the credit function learning. Moreover, it can

be applied in domains with the list-based and the grid-based result presentations;

• We propose sufficient conditions that the click feature representation and the interleaving policy

need to satisfy so that the Generalised Team Draft interleaving remains unbiased;

• We perform a large-scale evaluation study of Generalised Team Draft, using two datasets that

contain document and image search online experiments.

The remainder of this chapter is organised as follows. In Section 6.2 we discuss the related work.

In Section 6.3 we describe our initial approach to improving interleaving sensitivity and discuss its

limitations. Further, in Section 6.4 we define the Generalised Team Draft interleaving framework and

discuss some of its aspects in Section 6.5. Our proposed stratification technique, and how to optimise

the interleaving parameters, is discussed in Sections 6.6 and 6.7, respectively. We discuss the datasets

we use in our experimental study in Section 6.8. In Section 6.9 we describe the instantiations of our

framework for the web document search and for the image search domains. The evaluation scenario we

use are described in Section 6.10. We discuss our obtained results in Section 6.11. We conclude this

chapter in Section 6.12.

6.2 Related Work

Since the introduction of the first interleaving method, Balanced Interleaving (Joachims, 2002, 2003),

several other interleaving methods were proposed, including Team Draft (Radlinski et al., 2008), Prob-

abilistic Interleaving (Hofmann et al., 2011), and Optimised Interleaving (Radlinski & Craswell, 2013).

An important characteristic of an interleaving method is its sensitivity, i.e. its ability to obtain a reliable

experiment outcome with as few user interactions as possible. The problem of increasing the sensitiv-

ity of an interleaving method has attracted a considerable attention from the research community, and

below we review the most relevant work in this area.

We split this review in two parts: in Section 6.2.1 we discuss the approaches proposed to improve

the interleaving sensitivity by optimising the click aggregation schemes, and in Section 6.2.2 we discuss

how a higher sensitivity can be achieved by controlling the interleaving policy.
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6.2.1 Click Score Optimisation

Yue et al. (2010) proposed a method to learn a more sensitive credit assignment function for the Team

Draft interleaving experiments. Later, this approach was also discussed by Chapelle et al. (2012). In-

formally, the core idea of Yue et al. (2010) is to learn how to weight user clicks in the interleaving

comparisons so that the confidence in the already performed experiments is maximised. As a result,

new interleaving experiments will achieve the required level of confidence in their outcomes with fewer

user interactions, i.e. the interleaving method will have a higher sensitivity. Yue et al. refer to this learn-

ing problem as an “inverse” hypothesis test: given user interaction data for the comparisons with known

outcomes, one learns a credit assignment function that maximises the power of the test statistic in these

comparisons.

Our work on Generalised Team Draft in this chapter is based on the ideas of Yue et al. (2010), and

aims to overcome two shortcomings of their approach. First, it is not straightforwardly clear what kind

of features and weighting functions are allowed so that no biases are introduced when learning the credit

assignment function. It is possible to build an example of the click feature representation that makes

the credit function learning process prone to biases (Section 6.5). In our work, we propose a formal

unbiasedness requirement that ensures that a feature-based credit assignment function is not biased.

Moreover, we propose a restricted family of the click features that allows us to make this requirement

easy to operate in practice.

Second, Yue et al. (2010) assume that the interleaving policy (the probabilities of showing the differ-

ent interleaved result pages) is fixed. In this chapter we consider the interleaving policy as an optimised

parameter. In the user model-based interleaving optimisation approach, the interleaving policy is op-

timised w.r.t. a user model trained on the historical interaction data. In Generalised Team Draft, we

optimise both the interleaving policy and the credit assignment function directly on the historical inter-

action data, recorded in the experiments.

One of the approaches to improve the interleaving sensitivity we discuss is stratification, a simple

yet effective technique that has its roots in the Monte-Carlo stratified sampling methods (Asmussen &

Glynn, 2007; Robert & Casella, 2009). Its application for online A/B tests was studied in (Deng et al.,

2013), but has not previously been considered in the context of interleaving.

6.2.2 Interleaving Policy Optimisation

Radlinski & Craswell (2013) proposed the Optimised Interleaving framework, which specifies a set of

requirements that an interleaving method has to meet so that (a) its results are not biased, (b) it is sensi-

tive, and (c) the users are not too frustrated by the poor relevance of the top results in the interleaved re-

89



6.2 Related Work

sults pages. However, Optimised Interleaving has some limitations, which we aim to overcome. Firstly,

it is formulated specifically with a particular web document search user model in mind, and the inter-

leaving policy optimisation it performs is formulated with respect to a click model that is specific for

the list-based result presentation. This hinders extending the interleaving approaches to other domains.

Furthermore, the unbiasedness criterion proposed by Radlinski & Craswell (2013) uses a model of

a randomly clicking user that makes it hard to combine with click weighting schemes that depend on

click features. As an illustration, consider a scenario where the score of a click is a linear combination

of its dwell time and the position of the clicked result. In order to apply the unbiasedness criterion

used in Optimised Interleaving, one would need to specify a model of a randomly clicking user that has

a realistic joint distribution of the clicked positions and dwell times. As the number of features used

to represent a click grows, specifying such a distribution might become a prohibitive task. Finally, in

Optimised Interleaving, the interleaving policy is optimised in a data-free manner.

In our study of the user model-based interleaving policy optimisation in Section 6.3, we address

the last limitation. Specifically, we argue that an improved sensitivity can be obtained if a data-centric

optimisation of interleaving policy is performed. However, this approach is still limited by the document

search domain and simple scoring schemes, and requires a sophisticated run-time system.

Thus, in Section 6.4 we further propose the Generalised Team Draft framework, which is built upon

Optimised Interleaving, but addresses all the discussed limitations. Firstly, it specifies a generalised

unbiasedness requirement that can be applied for the grid-based result pages. Second, Generalised Team

Draft performs a joint data-driven optimisation of the interleaving policy and the credit assignment

function. Further, its performance can be evaluated using a set of historical experiments, available

to each search engine that uses Team Draft-based interleaving experiments, in contrast to Optimised

Interleaving, which uses different result list pages. Finally, Generalised Team Draft relies on the actual

distribution of the click features observed in the historical interaction data, thus no modelling of the

joint distribution of the click features is required.

Chuklin, Schuth, Hofmann, Serdyukov & de Rijke (2013) proposed an interleaving method that

goes beyond the classic “ten blue links” web document presentation and deals with the vertical results

(e.g. News, Images, Finance) incorporated in the main web search result page. However, the challenges

that Chuklin et al. address (e.g., ensuring that in the interleaved result page the vertical results are still

grouped) are quite different from the problems faced when developing an interleaving mechanism for

a new domain, e.g. image search. In the latter case, one needs to decide how to specify the credit

assignment function, or how to select the interleaving policy. To the best of our knowledge, our work is

the first to address the problem of interleaving in a domain with the grid-based result presentation.
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Overall, our Generalised Team Draft framework finds a solid foundation in the research discussed

above, but it also addresses several shortcomings of the earlier approaches (Radlinski & Craswell, 2013;

Yue et al., 2010). We introduce our framework in Section 6.4. However, before that, we discuss how a

user model-based approach can be used to increase the interleaving sensitivity.

6.3 User Model-based Sensitivity Optimisation

In Section 2.3.2 (page 20) we defined an interleaving policy π as a vector with its components πi

defining how often a particular combination of teams Li is demonstrated to the users. In this section,

we hypothesise that organising the interleaving policy in such a way that the combinations Li that are

unlikely to contribute to the interleaving score (Equation (2.6), page 21) are shown as rarely as possible,

should improve the ability to derive reliable conclusions with less impressions. In other words, with the

total number of user interactions in an interleaved experiment being fixed, the interleaved result pages

that often lead to ties33 should be shown less frequently in comparison with those that witness a contrast

between A and B.

In Section 6.3.1, we study how this goal can be achieved based on the Optimised Interleaving frame-

work proposed by Radlinski & Craswell (2013), initially assuming that information about the future user

behaviour is available at the start of the experiment. We will relax this assumption in Section 6.3.2 by

proposing a user model-based approach to calculate estimates of the used statistics.

6.3.1 Optimisation

As introduced in Section 2.3.2, the outcome of an interleaving experiment is represented as the mean

score over all interactions:

∆ =
1

|A|
∑
a∈A

S(a) (6.1)

where A is the set of the user interactions in the experiment and S(a) is the score assigned to an indi-

vidual interaction a.

Using definitions from Section 2.3.2 and denoting the set of interactions with the ith team combina-

tion demonstrated to the users as Ai, we can re-write Equation (6.1) as follows:

∆ =
1

|A|
∑
i

∑
a∈Ai

S(a) =
∑
i

∑
a∈Ai

S(a)

|A|
=
∑
i

πi · S̄i (6.2)

33For instance, the result pages that do not attract clicks or often have similar credits assigned to both alternatives.
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where S̄i is the mean score obtained by interactions with the ith team combination:

S̄i =
1

|Ai|
∑
a∈Ai

S(a) (6.3)

Intuitively, with the total number of impressions |A| fixed, higher absolute values of ∆ correspond

to higher contrast between A and B, and lead to the ability to determine the experiment outcome with

higher reliability. Thus, let us consider a simple upper bound on the absolute value of ∆:

|∆| =

∣∣∣∣∣∑
i

πiS̄i

∣∣∣∣∣ ≤∑
i

πi
∣∣S̄i∣∣ (6.4)

Indeed, the absolute value of ∆ is bounded by the product of the experiment policy and the statistics

of the interleaved results lists |Si|. This quantity is related to the contribution that the impressions with

the team combination Li make to the difference (6.1), as we discussed earlier. This bound also provides

us with an idea how the experiment policy can be adjusted before starting the experiment. Despite the

fact that a higher upper bound does not necessary imply a higher value of ∆, in this section we argue

that controlling πi, so that the upper bound increases, leads to higher sensitivity of the interleaving.

Intuitively, this idea can be expressed as follows: with everything else being equal, it is generally better

not to show a result list Li with a low value of |S̄i|. In the following, we assume that for each query we

can predict a vector µ, such that its components approximate S̄i, i.e. µi ≈ |S̄i|. How to obtain such a

vector is discussed in Section 6.3.2.

As discussed above, our goal is to adjust the policyπ so that the upper bound (6.4) increases. In order

to achieve that, we leverage the Optimised Interleaving framework (Radlinski & Craswell, 2013), which

can be used to optimise the interleaving experiment properties without introducing biases. In particular,

Radlinski & Craswell (2013) define a criterion of the unbiased interleaving policy: the expected credit

from a randomly clicking user should be zero.

To formalise this requirement, we assume that the score of the interaction a is obtained under the

deduped binary scheme (Section 2.3.2), i.e. it is equal to the sign of the difference between the number

of clicks c on results from teamB andA. This scheme assumes that clicks on top d positions are ignored

if the top d results in A and B coincide.

For the sake of convenience, we introduce an indicator function Ti(p), that equates to +1 (−1) if a

result on position p of the result page Li comes from the team B (A):

Ti(p) = −I [Li(p) ∈ TeamA] + I [Li(p) ∈ TeamB] (6.5)
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Further, by p(c) we denote the position of the click c. Then, the score S(a) of an interation a with an

interleaved result page i demonstrated to the user, can be found as follows:

S(a) = sign

(∑
c∈a

Ti(p(c))

)
(6.6)

Using this notation, we can formalise the unbiasedness requirement (Radlinski & Craswell, 2013)

that the set of interleaved result lists L and the interleaving policy π have to meet:

∀k
|L|∑
i=1

πi · sign

(
k∑
p=1

Ti(p)

)
= 0 (6.7)

Assuming that µ is known and combining Equations (6.4) and (6.7) we formulate our optimisation

problem as follows:

µTπ → max (6.8a)

∀k
|L|∑
i=1

πi · sign

(
k∑
p=1

Ti(p)

)
= 0 (6.8b)

∑
i

πi = 1 (6.8c)

∀i πi ≥ 0 (6.8d)

Indeed, the solution of the optimisation problem stated by the set of Equations (6.8) maximises the

upper bound of the experiment’s outcome |∆| (6.8a), meets the unbiasedness condition (6.8b) proposed

by Radlinski & Craswell (2013), and represents a valid distribution (6.8c & 6.8d). We argue that setting

the interleaving experiment policy to the solution of the linear optimisation problem (6.8) leads to a

higher sensitivity of the experiment.

Since the components of µ are predicted, this can cause undesired noise to the solution. Indeed, a

small variation in µi might result in the linear programming problem (6.8) having a completely different

solution. In order to reduce this noise, we introduce a regularisation term to the optimisation objective

(6.8a) that adds a penalty to solutions that diverge too far from the uniform policy πU .34 Thus, we

replace objective (6.8a) with the following expression:

µTπ − α(π − πU )T (π − πU )→ max (6.8a*)

where α is a non-negative scalar parameter. With α being zero, (6.8a*) reduces to (6.8a), while large

values of α force the solution to be the uniform vector. In the latter case, the policy optimisation

34In the experimental part of this paper, we work with the Team Draft-based set of interleaved result lists L, so πU is a feasible
solution of the optimisation problem (6.8).
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is ignored and all team combinations are demonstrated to the users with equal probabilities and the

solution of (6.8) becomes the Team Draft interleaving with the deduped binary credit scheme. On the

other hand, with α = 0 the optimal solution of (6.8) is completely defined by possibly noisy estimates

of µ. In this section, we consider α to be the same for all queries. However, it can be used to controlled

to reflect our confidence in the quality of predictions for each query. In the next section, we discuss how

the estimates of µ are obtained.

6.3.2 Using the Historical Interaction Data

The general idea behind predicting the parameters µ of the optimisation problem (6.8) is the following.

Having observed a massive click log representing the users’ behaviour, we can train a generative model

of the user click patterns. Once the click model with the pre-trained parameters is available, it can be

used to model how users will behave once the result page is modified. A variety of generative click

models have been proposed so far, (Chapelle & Zhang, 2009; Chuklin et al., 2015; Craswell et al.,

2008; Dupret & Piwowarski, 2008; Guo et al., 2009). In this section, we use a simple yet effective

modification of the Dynamic Bayesian Network, Simplified DBN (sDBN)35, proposed by Chapelle &

Zhang (2009). We have discussed this model in Section 2.5 and applied it to predict the user’s clicking

behaviour in Chapter 5.

Recall that the sDBN model assumes that a user examines the result list from top to bottom. After

examining a document u, the user either finds it attractive with probability au and clicks on it, or

continues to the next document. After clicking on a document, the user is satisfied with probability su

and stops the examination process. Thus, for a fixed query, the model has two parameters per document

u: attractiveness au and the probability of satisfying the user su. These parameters are learned from

a click log by means of Algorithm 2.3 (Section 2.5, page 29). This learning procedure imposes Beta

priors on the model parameters and following Chapelle & Zhang (2009) we set them to 1, i.e. αa =

αs = βa = βs = 1.

After training the model parameters it can be used to predict µ. According to our definition, µi

equates to the absolute value of the mean score obtained for a particular combination of teams on a

result page. Under the sDBN model, this quantity can be calculated by means of Algorithm 6.1.

6.3.3 Qualitative Study

In the following, we use an offline evaluation approach to compare our proposed user model-based

sensitivity to the standard Team Draft algorithm. Our study uses two datasets obtained from Yandex.

35We have also tried the Dependent Click Model Guo et al. (2009) and found it to perform worse.
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Input: Parameters of the click model, au, su; set of interleaved result lists, L
Output: Vector of the optimisation objective (6.8a*) parameters µ
//Pe(p) denotes the probability of examining the position p
Pe(1)← 1
foreach Li ∈ L do

for p← 1 to |Li| do
u← Li(p) // u is the document on the position p
Expected credit from the position p
µi ← µi + Pe(p)Ti(p)au
Probability of examining the next document
Pe(p+ 1)← Pe(p) (1− ausu)

end
µi ← |µi|

end
Algorithm 6.1: Estimating µ with the pre-trained sDBN click model.

The first datasets represents the pre-experimental user behaviour and is used to train the click model

parameters. It is further referred to as the user modelling dataset. The second dataset contains six

interleaving experiments. We refer to it as to the experimental dataset. In order to simulate a real-

life scenario, the datasets are sampled over consequent non-overlapping time periods, with the user

modelling dataset preceding the experimental dataset.

In order to collect the user modelling dataset, we apply the following filtering: firstly, we exclude all

sessions that are affected by any online experiment, as that might result into a bias in the evaluation of the

ability of the click model to predict the parameter µ; we remove all sessions with no documents clicked,

as well as sessions with more than ten results examined since those can introduce an additional noise to

the sDBN model. In order to balance the dataset size, the freshness of the click model parameters and

the dataset sparseness, we use the following strategy: for the top 100 most frequent queries we collect

the users’ click behaviour over a period of week; for the rest of the queries we collect user behaviour

data from the eight previous weeks as well. All queries are normalised to lowercase. The same user

modelling dataset is used in all experiments.

The interleaving experiments are sampled from the query log, starting from the day after the click

modelling dataset time span ended. The experimental data represents the users’ click behaviour recorded

while performing six (E1...E6) Team Draft-based interleaving experiments in April-May, 2013. In order

to reduce variance in the offline evaluation, for a particular interleaving experiment, we keep only those

queries that have every possible combination of teams shown to the users at least once.

Next, in order to avoid sparsity, we consider only the top six results in each result list. To further

reduce noise, we exclude queries with results that are examined less than two times in the user modelling

dataset. Queries with equal result lists for both A and B are removed as non-informative under the
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Table 6.1: Experimental datasets statistics.

Name #queries #impressions #CM sessions winner

E1 1,311 181,981 3,682,895 A
E2 524 82,008 2,771,280 B
E3 468 119,287 3,198,372 A
E4 1,502 109,596 5,691,939 A
E5 1,255 52,314 2,045,122 A
E6 279 9,175 1,100,874 B

deduped credit assignment. The total number of user sessions used to train the click model parameters

for queries in the experimental dataset is referred to as the click modelling sessions (CM sessions). We

present the statistics on the whole dataset in Table 6.1. In the experiments considered, the A ranking

function represents the production search system, while B corresponds to the experimental ranking.

Winners are defined as a result of Team Draft on the considered interleaving dataset (bootstrap test,

p ≤ 0.05).

In this section, we use bootstrap sampling to estimate the probability of obtaining the correct

(ground-truth) experiment outcome provided a fixed number of user impressions sampled (Chapelle

et al., 2012). More specifically, we vary the number of interaction sampled. On each step, we sample

with replacement a specified number of interactions from the experimental data 1000 times, so that the

distribution of the team combinations specified by the optimised interleaving policy equates to π. In

turn, π is determined by solving the optimisation problem (6.8). The frequency of the errors under such

a sampling procedure is related to the level of confidence under the bootstrap test. A higher confidence

with the same amount of observations indicate a higher level of sensitivity.

A visual representation of the bootstrapping sampling outcomes is presented in Figure 6.2. The

plots correspond to experiments from E1 to E6, and each plot represents the probability of obtaining an

incorrect experiment outcome after considering a particular number of impressions. We present results

that correspond to Team Draft (i.e. α → ∞) and the solution of the optimisation problem (6.8) with

α ∈ {0.0, 0.5}. The deduped credit aggregation scheme is used. We notice that the proposed algorithm

outperforms Team Draft in most of the experiments, and by varying α it is possible to control the opti-

misation risk: with α = 0 the proposed algorithm demonstrates high sensitivity gains in E3, E4, E5, E6

but underperforms in E2 with respect to Team Draft. On the contrary, with α = 0.5 the maximum loss

is almost negligible (E1) while there are still significant improvements in E3, E4, E5, E6 and a slight

improvement in E2.

Overall, these results suggest that the historical user behaviour information can be used to improve
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Figure 6.2: Comparison of the interleaving methods sensitivity. TD denotes Team Draft, UB-0.0 and
UB-0.5 correspond to interleaving optimised with respect to historical user behaviour with α equal to
0.0 and 0.5, respectively. The deduped binary credit aggregation scheme is considered.

the sensitivity of the interleaving algorithms. Our small-scale experiments demonstrated that the pro-

posed interleaving algorithm, which adjusts the interleaving policy according to the solution of the op-

timisation problem (6.8), has generally a higher sensitivity than Team Draft. Moreover, by controlling

the algorithm’s regularisation parameter α we can control the variance in the sensitivity gains.

However, the user model-based approach discussed in this section has considerable limitations. In

the next section we discuss these limitations and in Section 6.4 we introduce the Generalised Team Draft

framework which can overcome these limitations.

6.3.4 Discussion and Limitations

From our qualitative study in Section 6.3.3, we observe that our proposed user model-based approach

for the interleaving sensitivity optimisation supports the statement of this thesis (Section 1.3). Indeed,

by using the sDBN click model trained on historical interaction data, we are capable of increasing

interleaving sensitivity, thus improving the efficiency of the whole evaluation pipeline (Chapter 3), as it

allows interleaving experiments to be deployed for a shorter time. This direction of work corresponds

to the third point of our proposed pipeline for improving the evaluation pipeline (Section 3.5).

Some limitations of the approach discussed in Section 6.3 come from the fact that it relies on the user

model-based modelling. Indeed, in order to determine the optimal interleaving policy, the optimisation
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problem (6.8) needs to be solved for each submitted query. This implies that (a) the parameters µ need

to be calculated in runtime (b) thus, click model parameters au and su need to be stored and accessed

in run-time. Moreover, due to the heavy-tail character of the query distribution, the caching of results

might be not effective.

Because of the use of the click models, we restricted the sensitivity optimisation approach to the do-

mains where generative click models were proposed. At the same time, very few models were discussed

in domains where results are not mere links arranged in a ranking list, such as image or video search.

Another problem is that the click model parameters can be estimated only for the queries that were

submitted earlier. Consequently, the optimisation problem (6.8) makes only sense for queries with

available click data. Thus the optimisation can be performed only for relatively frequent, head queries

and necessarily the interleaving for the remaining queries has to be performed by the baseline Team

Draft algorithm. As a result, the sensitivity of interleaving might be uneven for top frequent and long-

tail queries, resulting in across-query biases.

Finally, since we rely on the existing click models, we are restricted in the way a click can be

represented. Indeed, assume we want to alter the weight of the click depending on its dwell time or

the user action after the click. Under the above discussed click model-based approach, to calculate the

parameter µ (Section 6.3.1) and specify the unbiasedness requirement (6.8b), we need to use a click

model that realistically models the joint distribution of the click parameters (e.g. dwell time and the user

actions on the clicked page). This constraint is very restrictive, as most of the existing click models only

predict the fact of click, but not its parameters.

A possible approach to address that is to leverage the user behaviour data directly, without relying

on the trained click models. In the remainder of this chapter we discuss the Generalised Team Draft

interleaving framework that uses this direct approach. We argue and show that it addresses all the

aforementioned concerns and, at the same time, achieves an increased interleaving sensitivity.

6.4 Generalised Team Draft Interleaving

The works of Yue et al. (2010) and Radlinski & Craswell (2013) on sensitivity optimisation based on

credit assignment and policy optimisation, discussed in Section 6.2, lay the foundation for our Gener-

alised Team Draft framework. However, our framework has significant differences from these works

in that our proposed framework performs a joint optimisation of the interleaving policy and the credit

assignment function, while Yue et al. and Radlinski and Craswell optimise only one of these parame-

ters. Further, our framework can be applied for search domains with grid-based result pages. Below, we
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introduce a formal requirement that a feature-based credit assignment function, the click feature repre-

sentation, and the interleaving policy have to meet for the interleaving to be unbiased, regardless of the

actual result representation. In contrast, Yue et al. do not discuss possible biases that can emerge due

to feature-based learning, and Radlinski and Craswell only discuss feature-less credit assignment rules.

By addressing the above discussed gaps, we build a sensitive interleaving framework that generalises

the approaches proposed by Yue et al. (2010) and Radlinski & Craswell (2013).

Generalised Team Draft optimises the interleaving parameters on the level of the entire experiments,

with their query distributions being representative of the whole query stream. As a result, the possibility

of arising any inter-query bias is low, in contrast to the case of the query-level optimisation we discussed

in Section 6.3.

In our framework, we consider the result pages that are obtained by applying the Team Draft mixing

algorithm to the lists of the results of the underlying rankers A and B, sorted according to their rele-

vance. The Team Draft mixing algorithm was proposed by Radlinski et al. (2008) and is described in

Algorithm 2.2 (page 21) in Chapter 2. The exact mapping of the sorted result list into a result page is

domain-specific (the list-based for document search, or the grid-based for image search, illustrated in

Figure 6.3). Assuming that under this mapping the results ranked higher in the ranked list are mapped

into positions with higher examination probability, mixing the sorted result lists of the rankers A and B

according to Team Draft will result in a result page that cannot be more frustrating for the users than

both the result pages generated from outputs of A and B. Due to this assumption we avoid the necessity

of specifying the mixing algorithm for each possible domain-specific presentation, and can work with

the underlying ranker output, which is always list-wise in practice. Apart from that, relying on the Team

Draft-based result pages allows us to re-use a large-scale dataset of the experiments collected by an

existing search engine for our evaluation study (Section 6.11).

Recall that the Team Draft mixing algorithm (Section 2.3.2, Algorithm 2.2, page 21) builds the

interleaved result list in steps. At each step, both teams A and B contribute one result each to the

combined list. Each team contributes the result that it ranks highest among those that are not in the

combined list. However, the team that contributes first at each step is decided by a coin toss. For

instance, as there are usually 10 results on a document search result page, 5 coin tosses are required to

build it. Thus, there are exactly 25 = 32 different combinations of the result teams on a result page36.

We define Generalised Team Draft by stating four framework components (F1-F4), two require-

ments the components must satisfy (R1 and R2), and an optimisation objective that is used to adjust the

framework components (O1).

36They can be enumerated as ababababab, ababababba, abababbaab, ..., bababababa.
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Figure 6.3: A possible left-to-right/top-to-bottom mapping illustrated on four interleaved ranked lists.
This mapping maps the ranked lists to their corresponding 2D grid-based domain-specific representa-
tions. This mapping is used in our experiments with image search.

Now we can define the first component of our Generalised Team Draft framework:

F1 The set {(Li, Ti)}li=1 of the pairs of the interleaved result pages Li ∈ L and their corresponding

combinations of the result teams Ti ∈ T. The result pages L are obtained by applying Algo-

rithm 2.2 (Section 2.3.2, page 21) to the sorted outputs of the rankers A and B. Further, these

interleaved ranked lists are mapped to their domain-specific representation. As in Equation (6.5),

we define Ti(p) to be equal to 1 (−1) if the team of the result on position p of the interleaved list

that produced Li is B (A);

It is possible that some pairs (Li, Ti) contain identical result pages Li, despite that the team combina-

tions Ti associated with them are different (e.g. if A and B produce identical result lists). We consider

such pairs to be different.

Following Radlinski & Craswell (2013), we explicitly define the interleaving policy as a parameter

of the framework:

F2 An interleaving policy π ∈ Rl is a vector that determines the probability of using a particular

team combination when building an interleaved result page: πi = P (Ti);

Under our framework, the interleaving policy is the same for all queries and interleaving experiments.

Informally, it can be considered as a distribution over the random seeds that can be used to “initialise”

the coin used in Team Draft (Algorithm 2.2, page 21).
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6.4 Generalised Team Draft Interleaving

From (Yue et al., 2010) we adopt the feature representation of the user’s click φ(·) and the form of

the credit assignment function S:

F3 A function φ(·) that maps a user click c on an interleaved result page to its feature vector repre-

sentation φ(c) ∈ Rn. We also define an auxiliary indicator T (c) that equates to 1 (−1) if the team

of the clicked result is B (A);

F4 A scoring rule, S = S(a;w) =
∑
c∈a T (c) · wTφ(c) that maps a sequence of clicks in the

interaction a to the score of the alternative B. The vector w is a parameter, w ∈ Rn.

After running an experiment e, the score statistic ∆(e) can be calculated:

∆(e) =
1

|A|
∑
a∈A

S(a;w) (6.11)

where A is a set of the user interactions in the experiment e. If ∆(e) is statistically significantly above

zero, it is concluded that B outperforms A in the experiment e, as discussed in Chapter 2 (Section 2.3).

To ensure that the interleaving is unbiased, Radlinski & Craswell (2013) suggested the following

criterion for the document search scenario: a randomly clicking user should not create any preference

between A and B. To formalise this idea, they considered a user who (a) samples the number of the

considered top results k randomly and (b) clicks uniformly at random on η results from the top-k results.

This formulation explicitly relies on a list-based presentation. Furthermore, in our case the formalisation

is even more challenging as the credit S(a;w) is a function itself, since some feature representations

might be prone to biases (we discuss this further in Section 6.5). We propose the following generalisation

of the unbiasedness criterion from (Radlinski & Craswell, 2013):

R1 For any fixed sequence of clicks, the expectation of the total credit over the all pairs (Li, Ti) of

the interleaved pages Li and distributions of teams Ti should be zero. Denoting the length of the

sequence as J , the positions clicked as p1, p2, ..., pJ , and their corresponding click features as

φ1, φ2, ..., φJ we formalise this requirement as follows:

∀J, ∀{(pj , φj)}Jj=1

∑
i

πi ·
∑
j

Ti(pj) ·wTφj = 0

Due to the linearity of the expectation, R1 is sufficient to guarantee the absence of the preferences for

any randomised combination of the click sequences. Informally, this guarantees that a user who specifies

an arbitrary interaction scenario that does not depend on the presented documents (e.g., “click on the

first position, sample the dwell time uniformly from [0, 30], click on the third result, ...”) will not create

any preference for A or B in expectation.

Next, we require the policy π to be a valid distribution:
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6.5 Unbiasedness Requirement

R2 ∀i πi ≥ 0;
∑
i πi = 1

Among all of the possible combinations of {π,w} that satisfy R1 and R2, we want to select the

combination that maximises the interleaving sensitivity. Based on (Yue et al., 2010), we use a dissim-

ilarity measure D between the compared alternatives in a set of historical experiments E as a proxy

for the sensitivity in future experiments. Indeed, the more dissimilar the alternatives are, the easier

it is to differentiate them. Hence, we formulate the optimisation objective O1 that specifies how the

interleaving parameters are optimised in Generalised Team Draft:

O1 The optimal combination of parameters π and w should maximise the dissimilarity D over a set

of experiments E:

π,w = arg max
π′,w′

D(E,π′,w′)

This ends the framework description. In the next section, we discuss the requirement R1 in more detail.

6.5 Unbiasedness Requirement

The motivation behind R1 is to ensure that a user who clicks according to a fixed pattern that does not

depend on the results shown would not provide any preference for A or B. Clearly, if R1 is not satisfied,

a certain bias towards one of the alternatives might appear.

We can consider R1 from a game-theoretic perspective. Indeed, let us consider two parties: (1) a

malicious user who targets to introduce a bias in the interleaving algorithm, e.g. convince us that A is

better than B if it is not the case, and (2) an interleaving algorithm. The user is asked to provide a

possibly randomised click sequence without knowing what result pages are going to be shown them as

a result for their query. At the same time, the algorithm is asked to select an interleaving policy without

knowing what click sequence the user had selected. The algorithm’s goal in this game is to select an

interleaving policy such that under the user’s clicking sequence no preference is inferred in expectation.

Indeed, the user selects how to click without knowing the results, so there cannot be any real preference.

R1 formalises the criterion the policy must meet so that the algorithm achieves its goal.

To illustrate how such a bias might arise, let us consider the following “toy” example. Let us assume

that the feature representation vector φ(c) is a two-dimensional vector, with its first component φ1(c)

being equal to 1 if the clicked result is from A, and zero otherwise. Similarly, φ2(c) is equal to 1 if

a click c is performed on a result from B. Suppose we fix the interleaving policy to be uniform, and

learn the vector of weights w based on the dataset of experiments. It is possible that, as a result of the

learning, the weights of the features will obtain different values, e.g. if the learning dataset has more
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6.5 Unbiasedness Requirement

experiments withA winning. This results in poor generalisation capabilities and biased interleaving. By

considering a user who always clicks on the first position, we notice that in our toy example R1 requires

w1 to be equal to w2.

We simplify R1 by using a restricted family of features. Namely, we use click features that do

not depend on the result page37 Li. By restricting the set of possible features, we achieve an intuitive

antisymmetry property: after swapping A and B (“renaming” A to B, and B to A), the experiment

outcome ∆(e) will only change its sign, but not its absolute value (which is violated in our toy example).

Furthermore, the following Lemma 1 shows the conditions that are sufficient to satisfy R1 if we restrict

the used features:

Lemma 1 For a feature representation φ, and a policy π to satisfy R1, it is sufficient that:

• φ is independent from Li;

• For each position p on the result page, the probability of observing a result from A must be equal

to the probability of observing a result from B: ∀p
∑
i πi · Ti(p) = 0.

Proof. First, using the independence of φ from Li, we re-write R1 as follows:∑
j

wTφj ·
∑
i

πi · Ti(pj) = 0 (6.12)

A straightforward way to satisfy Equation (6.12) is to select π such that the expectation of Ti is zero for

every position p:

∀p
∑
i

πi · Ti(p) = 0 (6.13)

�

Lemma 1 provides us with a convenient approach to satisfy R1 while optimising the interleaving

parameters. Indeed, once we use only the features that are independent from the particular interleaved

result pages shown, whether R1 is satisfied or not depends only on the interleaving policy. In that case,

R1 reduces to the following equality constraint:

Rπ = 0 (6.14)

where R ∈ Rm×l is a matrix with its element Rji equal to the team Ti(j) (1 and −1 for B and A,

correspondingly) of the result shown on the jth position of the interleaved result page Li.

37The features cannot depend on the clicked result, its team, and its position in the original result lists of A and B. In contrast,
the features can depend on the properties of the clicks itself (e.g. the position of the click, its dwell time) and the total number of
clicks.
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Equation (6.14) gives an intuition how the optimisation of the interleaving policy can be performed:

the number of independent38 equality constraints grows linearly as m/2 with the number of positions

m, but the number of different team combinations T and thus the dimensionality of the policy vector π

grows exponentially as 2m/2. As a result, some “degrees of freedom” appear that can be used to find a

sensitive yet unbiased policy. This intuition is similar to the one behind the optimisation in Optimised

Interleaving (Radlinski & Craswell, 2013).

6.6 Stratified Scoring

In Section 6.4, the experiment outcome is calculated as a sample mean of the scores of the individual

interactions ∆(e), Equation (6.11). This approach is similar to the one used previously in the literature

(Chapelle et al., 2012; Joachims, 2003; Radlinski & Craswell, 2013; Radlinski et al., 2008). Instead, we

propose to use a stratified estimate ∆s(e), where the stratification is performed according to the combi-

nation of the teams on the result pages shown to the users (possible team combinations are enumerated

as ababababab, ..., bababababa). As in Section 6.3.1, by Ai we denote the set of the user interactions

where the combination of the teams on the result page shown is Ti. Using this notation, our proposed

stratified estimate can be estimated as follows:

∆s(e) =
∑
i

πi ·
1

|Ai|
∑
a∈Ai

S(a;w) (6.15)

Both the stratified estimate ∆s(e) and the sample mean ∆(e) have the same expected values, but the

variance of ∆s(e) can be lower and, consequently, it has higher sensitivity. Indeed, denoting the number

of interactions in the experiment e as N , the variance and the expectation of the interaction score S

among the sessions in the ith stratum as vari[S] and Ei[S], and applying the law of total variance, we

obtain:

var [∆(e)] =

∑
i πi · vari[S] +

∑
i πi(Ei[S]−

∑
i πi · Ei[S])2

N

≥ 1

N

∑
i

πi · vari[S] = var [∆s(e)]
(6.16)

Since the frequency of Ti is determined by πi, the probability of each stratum is known and fixed before

starting an interleaving experiment.

As can be seen from Equation (6.16), the stratification reduces the variance only when the inner-

strata means Ei[S] are different from the overall mean
∑
i πi · Ei[S]. In our proposed approach of

38As discussed in F1 (Section 6.4, page 100), our framework relies on the Team Draft mixing algorithm. Due to its specifics, if
Equation (6.13) holds for a position 2k and a policy π, it also holds for the position 2k + 1 and π (k = 0, 1, ...).
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Equation (6.15), the stratification is performed according to the teams of the results on a result page Ti.

In the case of the document search, Ti is a strong indicator of the outcome of a single comparison, as it

specifies, for instance, if the click on the first result is counted in favour of A or B.

The stratification alone can improve the sensitivity of the interleaving experiments in some cases

(see Section 6.11). Moreover, as we will discuss in Section 6.7, the use of the stratified outcome ∆s

considerably simplifies the optimisation of the interleaving parameters.

Finally, we notice that it is incorrect to ignore interactions without clicks in combination with the

stratified estimator (6.15), while such an approach is sometimes used in combination with the non-

stratified interleaving outcome (Equation (6.11)) and the binomial sign test, e.g. (Chapelle et al., 2012).

Indeed, if interactions with the top-ranked result from B are rarely clicked, the experiment result should

favour A. However, the stratified estimator (6.15) would compensate this, thus adding a bias to the

evaluation results. Hence, to make the evaluation set-ups uniform, we do not ignore interactions with

clicks in evaluation set-ups, where Generalised Team Draft is studied (in this chapter and in Chapter 8).

6.7 Optimisation of the Parameters

To specify an instantiation of our proposed interleaving framework, we need to specify the interleaving

policy π, the feature representationφ(c), and the vector of weightsw. The feature representation can be

domain-specific, e.g. image search result page typically have more results, so more features can be used

to encode the positions. However, our proposed approach to determine the vector of weights w and the

interleaving policy π are the same irrespective of the domain. We adopt a data-centric approach (Yue

et al., 2010) to select π and w and select them to maximise the sensitivity on the previously collected

data.

We assume that a dataset E of interleaving experiments is available, so that for each experiment in

this dataset the user interactions are recorded, and the experiment outcome is known. Such a dataset

can be obtained from running interleaving experiments by a search engine (e.g., Team Draft-based

experiments) and selecting the experiments with a high confidence in the outcome (Chapelle et al.,

2012; Yue et al., 2010) or by deploying “data collection” experiments where B is obtained by manually

degrading A, and all possible combinations of the result lists and the team combinations are shown to

the users with the uniform policy. We discuss these two approaches in more detail in Section 6.9.

To simplify the notation, without any loss in generality, we further assume that in all experiments

e ∈ E the alternative B outperformed A so that ∆s(e) is positive. If it is not the case in a particular

experiment, A and B can be swapped for that experiment.
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As stated in the sensitivity optimisation objective O1, we want to find the values of parameters π

and w that maximise the dissimilarity between A and B over the available experiments and satisfy

constraints R1 and R2. Since the sensitivity of the interleaving does not depend on the scaling of w, to

make the optimisation problem well-posed, we additionally constrainw to have the unit norm. Overall,

this results in a general optimisation problem of the following form:

π,w = arg max
π′,w′

D(E,π′,w′) s.t. R1, R2, ‖w′‖2 = 1

Further, we discuss two ways to specify the idea of dissimilarity, proposed in (Yue et al., 2010): the

mean score and the z-score dissimilarities.

Mean score We start with the simplest case, when dissimilarity is calculated as the mean value of

the stratified score:

Dm(E,π, S) =
1

|E|
∑
e∈E

∑
i

πi
1

|Ae,i|
∑

c∈a,a∈Ae,i

T (c) ·wTφ(c) (6.17)

where Ae,i is the set of user interactions with the team combination Ti demonstrated.

Further, we introduce a matrix X with its columns corresponding to the individual features, and

rows corresponding to the strata, so that the element Xkr is equal to the mean value of the rth feature

φr in the kth stratum:

Xkr =
1

|E|
∑
e∈E

1

|Ae,k|
∑

c∈a,a∈Ae,k

T (c) · φr(c)

Using the introduced notation, the optimisation objective can be re-written as follows:

Dm(E,π,w) = πTXw

Thus, we are looking for π,w that maximise the following Equation:

π′,w′ = arg maxπ,w
[
πTXw

]
s.t. R1, R2, ‖w‖2 = 1

(6.18)

Finally, we notice that if we set π to be the uniform policy, the solution of the optimisation prob-

lem (6.18) becomes similar to the solution of the corresponding case in (Yue et al., 2010): w lies on the

unit sphere ‖w‖2 = 1 and maximises the dot product πTX ·w, so w = πTX
‖πTX‖2

. The difference is in

the way X is calculated, as the scores are stratified in our case.

Z-score The second way to specify the level of dissimilarity between A and B proposed in (Yue

et al., 2010) is to measure the z-score statistic. Informally, this measures how the distance between A

and B is far from zero in terms of the variance of this distance. In contrast to Yue et al. (2010), we

do not combine all experiments in a single artificial experiment, but optimise the mean z-score over
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the set of experiments. To equalise the contribution of each experiment in the optimisation objective,

we normalise the z-scores by dividing them by
√
N , where N is the number of interactions in an

experiment. This normalised z-score indicates the rate of convergence of the experiment’s outcome, i.e.

it is a characteristic that reflects the interleaving sensitivity.

For a single experiment e, the normalised z-score can be calculated as follows:

Dz(e,π,w) =
1√
N

∆s(e)√
var [∆s(e)]

(6.19)

As in the case of the mean score dissimilarity, we introduce a matrix X with its elements equal to the

per-stratum means of the individual features:

Xkr =
1

|Ae,k|
∑

c∈a,a∈Ae,k

T (c) · φr(c)

Again, the score ∆s(e) can be found as πTXw. Due to the stratified representation of the score, the

variance of ∆s(e) breaks down to a weighted sum of the per-stratum variances39:

var [∆s(e)] =
1

N

∑
i

πi · vari [S] =
1

N

∑
i

πi ·wTZiw

where N is the number of interactions in e, and Zi is the covariance matrix of the interaction scores∑
c∈a T (c) · φ(c) for the ith stratum:

Zi =
∑
a∈Ae,i

1

|Ae,i|

(∑
c∈a

T (c)φ(c)− φi

)(∑
c∈a

T (c)φ(c)− φi

)T
(6.20)

and φi is the mean feature vector for the ith stratum:

φi =
1

|Ae,i|
∑

c∈a,a∈Ae,i

T (c) · φ(c)

Overall, we obtain the following optimisation problem:

π′,w′ = arg maxπ,w
∑
e∈E

πTXew√
wT (

∑
i πi·Ze

i )w

s.t. R1, R2, ‖w‖2 = 1
(6.21)

where Xe and Zei are per-stratum means of the features and covariance matrix calculated for the exper-

iment e.

The use of stratification considerably simplifies the form of the optimisation problem (6.21). Indeed,

to calculate the variance of ∆s(e) in the denominator of Equation (6.19) we used the right part of the

inequality (6.16). In the non-stratified case, the variance is represented by the left part of (6.16). The

39We assume that they have converged to their true values.

107



6.8 Datasets

Table 6.2: Datasets statistics.
Domain # exp. A � B mean # interactions median # interactions

Document 145 84 450K 279K
Image 5 5 38K 34K

latter case is harder for the optimisation due to additional mutual dependencies of the variables (e.g. the

variance becomes a third-order polynomial w.r.t. π, while it is linear in the stratified case).

In contrast to the case considered by Yue et al., there is no closed-form solution to the problems

(6.18) and (6.21) (due to the additional variable π, the requirements R1 and R2, and the summation

over all experiments). Instead, we optimise (6.18) and (6.21) numerically, using the Sequential Least

SQuares Programming (SLSQP) routine implemented in scipy40 (Jones et al., 2016). As an initial

approximation, we use the uniform policy and the solution of the corresponding problem in (Yue et al.,

2010).

6.8 Datasets

In our evaluation study we use two datasets: a dataset of Team Draft-based document search online

experiments performed by Yandex, and a dataset of preliminary interleaving experiments performed on

the image search service of the same company. We discuss them in more detail below.

Document search We build the dataset of the Team Draft-based online experiments as follows.

First, we randomly sample a set of 336 interleaving experiments performed by Yandex in the period

from January to November, 2014. These experiments test changes in the search ranking algorithm that

were developed as a part of the search engine’s evolution. The experiments also differ by country, and

the geographical region they are deployed on. From these experiments we selected 145 experiments

where the winner (A or B) is determined with a high level of confidence, p ≤ 0.01 (binomial sign test,

deduped click weighting scheme (Chapelle et al., 2012)).

Overall, we believe that our dataset of document search interleaving experiments is one of the largest

used in the literature. For instance, the dataset used by Schuth et al. (2015) contained 38 interleaving

experiments, and 23 interleaving experiments were used in (Chapelle et al., 2012). We will use the same

dataset of interleaving experiments in Chapter 7 to assess the sequential testing approaches.

Image search In contrast to the web document search case, a representative set of online interleaving

experiments is not available to us. Instead, we take five “data collection” experiments. In each of these

40http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.fmin_
slsqp.html
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6.9 Instantiation

experiments, the evaluated ranker B is obtained by degrading A in a controlled manner. After that,

the corresponding “comparison” of A and B is deployed. In these “experiments” the interleaved result

pages are obtained by interleaving the ranked lists returned byA andB, as discussed in Section 6.4, and

showing them with the uniform policy (i.e. applying Team Draft). The following modifications of the

production ranker to generate the alternative system B were used:

• swapping the results ranked as 1..15 with the results ranked 16..30;

• random permutation of the top-ranked results;

• promoting results with a low resolution;

• setting an important subset of the ranking features to zero;

• randomly ignoring some subsets of the search index.

As a result, we obtained a dataset of image search experiments, which can be used to adjust the inter-

leaving parameters w and π, as discussed in Section 6.7. While the modifications used are severe and

might make the difference between the tested systems easy to detect, this is the only dataset available for

us. Further, as our work in this chapter is the first to study the application of interleaving in the image

search domain, a more representative dataset was never discussed in the literature.

We provide descriptive statistics of both datasets in Table 6.2.

6.9 Instantiation

As discussed in Section 6.7, what changes for different domains is the feature representation of the

clicks (φ(c)). Further we describe what features we use in our experimental study. All features we use

are independent from the result page presented, so they meet the requirements of Lemma 1.

Document search features For each click in a user interaction, we calculate a set of 24 features,

split into four families: Rank-based, Dwell time-based, Order-based, and Linear score-based features.

We report these features along with their descriptions in Table 6.3. Generally, these features are similar

to those used by Yue et al. (2010).

Image search features The click features we use for image search interleaving are similar to the

features used for document search. We exclude some rank-based features, as they are not meaningful for

the two-dimensional result presentation (e.g. feature #11 assumes that the users tend to examine results

in a rank-wise order). The full list of features used for the image search click representation is provided

in Table 6.4.
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Table 6.3: Click features for document search.
Feature family id Description

Rank-based Transformations of the click’s rank,
normalised by the number of clicks

1-10 position indicators, fi = I{rank = i}
11 rank
12

√
rank

13 log(rank)
14 I{rank > 4}
15 I{rank > d}, where d is the number of

identical results in the tops of A and B

Dwell time-based Indicators of the dwell time (seconds),
normalised by the number of clicks

16 I{dwell ≤ 30}
17 I{dwell ∈ (30, 60]}
18 I{dwell ∈ (60, 90]}
19 I{dwell ∈ (90, 120]}
20 I{dwell > 120}

Order-based Indicators of the click’s position
in the interaction

21 is the click first
22 is the click last

Linear score-based after applying the scoring rule F4, these
features represent the (normalised) number

of clicks the results from B received

23 f23 = 1
24 f24 = 1/n, where n is the total number of clicks
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Stratification In the document search scenario, we stratify the estimate of the experiment outcome

according to the teams of the results on the first result page. This gives us 210/2 = 32 strata. The same

strata are used for the policy optimisation: the policy specifies the probability of using a specific team

combination to generate the first interleaved result page. The remaining pages are generated using the

standard Team Draft procedure, and it can be shown that the interleaving is unbiased in terms of R1 in

that case.

In the case of image search, the stratification is less straightforward. Indeed, the stratification ac-

cording to the teams of the top 30 results on the first result page, will yield 230/2 = 32768 strata. On

one hand, according to Equation (6.16), using more fine-grained strata results in equal or lower variance.

On the other hand, to run the optimisation discussed in Section 6.7, we need to estimate the per-stratum

means and covariances of the features. This results in a trade-off between an increased sensitivity due to

more fine-grained stratification and a higher error of the optimisation with unreliable parameters. Thus

we performed the search for the optimal number of top results to be used in stratification as a part of the

training process, as discussed in Section 6.10.3.

6.10 Experimental Methodology

In our evaluation study, we aim to answer the following research questions:

RQ6.1 Is our Generalised Team Draft framework more sensitive than the baselines on the document and

image search data?

RQ6.2 What aspects of the sensitivity optimisation (stratification, credit assignment and policy optimi-

sation) contribute most to the increased sensitivity?

To answer these questions, we firstly describe the baselines we use in Section 6.10.1. After that,

we introduce the metric we use in Section 6.10.2. Finally, we describe the evaluation methodology in

Section 6.10.3.

6.10.1 Baselines

In our study, we compare the sensitivity of our proposed Generalised Team Draft framework (Sec-

tion 6.4) to the Team Draft algorithm with the credit assignment functions varied. We consider credit

assignment functions of two types: the heuristic click weighting schemes that are applicable for Team

Draft and considered in (Chapelle et al., 2012), and the learned scoring functions trained according to

the approach in (Yue et al., 2010). All these baselines are non-stratified.
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Linear In the simplest scoring scheme, we calculate the difference in the number of clicks on the

results from A and B:

S(a;w) =
∑
c∈a

T (c)

Normalised Linear In the Normalised Linear scheme, the score of B in a particular interaction is

normalised by the number of clicks in this interaction:

S(a;w) =
1

|a|
∑
c∈a

T (c)

Binary Another approach to aggregate clicks in a single impression is to assign a unit credit to the

alternative that received more clicks:

S(a;w) = sign

(∑
c∈a

T (c)

)

Deduped Binary In the web document search scenario, it is often assumed that the users examine

result lists from top to bottom. In that case, if the top k documents are identical both in A and B, all

the interleaved lists have the same top k results, too. Thus, clicks on these top k results add a zero

mean additive noise to the difference between the number of clicks A and B receive. A useful trick is

to ignore such clicks. We combine this approach with the binary aggregation scheme:

S(a;w) = sign

(∑
c∈a

Td(c)

)

where Td(·) is a modified team indicator function, equal to zero if the click is performed on one of the

top results, identical for A and B, and equal to T (·) otherwise. The deduped binary scheme is one of

the most sensitive schemes in the literature (Chapelle et al., 2012).

Learned-mean, Learned-z In contrast to the above discussed credit assignment functions that are

based on intuitive considerations, Learned-mean and Learned-z are machine-learned credit assignment

functions that are based on the approach in (Yue et al., 2010). These baselines use the same feature

representations as our proposed interleaving framework. However, the optimisation of the interleaving

policy is not performed, and it is fixed to be constant and uniform (as in Team Draft). Learned-mean

selects the vector of weightsw such that the differences betweenA andB are maximised, and Learned-

z maximises the z-score objective. These objectives are close to the objectives we use in Section 6.7,

but they assume a non-stratified experiment outcome and the uniform policy.

It would be interesting to compare Generalised Team Draft to the Optimised Interleaving frame-

work (Radlinski & Craswell, 2013). However, Optimised Interleaving relies on considerably larger sets

of interleaved result pages, thus the datasets of Team Draft-based interleaving experiments cannot be
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Table 6.4: Click features for image search.

Feature family id Description

Rank-based Transformations of the click’s rank,
normalised by the number of clicks

1-30 position indicators, fi = I{rank = i}
31 I{rank > d}, where d is the number of

identical results in the tops of A and B

Dwell time-based Indicators of the dwell time (seconds),
normalised by the number of clicks

32 I{dwell ≤ 30}
33 I{dwell ∈ (30, 60]}
34 I{dwell ∈ (60, 90]}
35 I{dwell ∈ (90, 120]}
36 I{dwell > 120}

Order-based Indicators of the click’s position
in the interaction

37 is the click first
38 is the click last

Linear score-based after applying the scoring rule F4, these
features represent the (normalised) number

of clicks the results from B received

39 f48 = 1
40 f49 = 1/n, where n is the total number of clicks

re-used to evaluate its performance. An alternative approach is to leverage the natural variation of the

search engine’s rankings as a source of the result pages, as used in (Radlinski & Craswell, 2013). How-

ever, in this case, the evaluation is performed on a query level, and it is restricted to be based on the

head queries only. Overall, this might lead to a less representative study.

6.10.2 Evaluation Metric

In this chapter, we use the z-score metric that is used to measure the interleaving sensitivity on the

historical data (Chapelle et al., 2012). z-score indicates the confidence of the evaluated method in

the experiment outcome, thus it serves as a proxy to measure the sensitivity of the method: a higher

confidence indicates a higher sensitivity.

Assuming that ∆s(e) is normally distributed41 and using the notation introduced above, we define

41This assumption holds when πi · N is large enough for all i with πi > 0, as ∆s(e) is a weighted sum of approximately
normally distributed per-stratum sample means, thus it is normally distributed.
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the z-score statistic on the data of the experiment e as follows:

Z =
∆s(e)√
var[∆s(e)]

=
∆s(e)√∑
i πi · vari[S]

√
N (6.22)

To calculate the z-score statistic for an interleaving method with a non-uniform policy on data obtained

from an experiment with the uniform policy, we use the per-stratum sample estimates of the expectation

Ei[S] and the variance vari[S] (Equation (6.16)), calculated on the experimental data, and the policy

specified by the interleaving method.

The value of (6.22) indicates how far the score ∆s(e) deviates from zero, measured by its standard

deviation. Thus it indicates the confidence level of the experiment outcome and can be mapped into a p-

value (under the null hypothesis the true value of ∆s(e) is 0). For instance, Z of 1.96 (2.58) corresponds

to the two-sided p-value of 0.05 (0.01).

In the case of the non-stratified estimate ∆(e), z-score is calculated similarly:

Z =
∆(e)√
var[∆(e)]

=
∆(e)√
var[S]

√
N (6.23)

For each interleaving experiment, we calculated the relative z-score by dividing the outcome’s z-score

by the z-score of the Team Draft method with the linear click weighting scheme. The relative z-score

ze has an intuitive interpretation (Chapelle et al., 2012): the corresponding interleaving method needs

z2e less interactions in the same experiment e than the Team Draft algorithm with the linear weighting

scheme to achieve the same level of confidence.

6.10.3 Experimental Methodology

In our evaluation on the document search dataset, we use 25-fold cross-validation42: in each split, 24
25

of the interleaving experiments are used for optimisation, and the rest are used to evaluate the resulting

sensitivity. The same splits are used for all the approaches that run optimisation (our proposed frame-

work with two types of dissimilarity, and the Learned-mean and Learned-z baselines). In each split,

we measure the relative z-scores of an interleaving method on the experiments in the test set. For each

interleaving method, we report the overall mean and the median relative z-scores collected across all

folds. We use the paired t-test on the absolute values of the non-normalised z-scores when testing the

statistical significance of the performance differences.

In the case of image search, due to the smaller dataset, we replace the 25-fold cross-valuation with

the leave-one-out procedure: one experiment is used for evaluation, while the others are used for train-

ing. Further, within a training step, we additionally run a nested 2-fold cross-validation procedure on
42We use a high number of splits, due to the high number of optimised parameters (e.g. in the document search there are 32

(policy π) + 24 (weightsw) = 56 parameters and these parameters are optimised on a relatively small dataset (145 experiments).
At the same time, the dataset we use is larger than any dataset of interleaving experiments used in the existing literature.
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Table 6.5: Relative z-scores the interleaving outcomes for document search. The scores of the interleav-
ing method with the highest sensitivity (p < 0.001, Wilcoxon test) are denoted by4.

Non-stratified Stratified

Linear NLinear Binary Deduped Lm Lz Linear NLinear Binary Deduped Lsm Lsz Fm Fz

Mean 1.00 1.03 1.10 2.33 1.35 2.36 1.05 1.11 1.18 2.33 1.38 2.36 1.38 2.524
Median 1.00 0.92 0.97 1.98 1.22 2.09 1.04 0.99 1.04 1.98 1.23 2.09 1.23 2.154

the training set to find the optimal number of the result teams to be considered in stratification: we

progressively increased k and evaluated the performance of our proposed method when teams of the top

2k are used for the stratification. The search is stopped when the performance degrades. In most folds

the optimal k is found to be equal to 3 (i.e., the top 6 results are used for the stratification).

6.11 Results and Discussion

In this section, we use the following notation. Linear, Normalised Linear, Binary, and Deduped Binary

weighting schemes correspond to Linear, NLinear, Binary, and Deduped, respectively. Lm and Lz

indicate the Learned-mean and Learned-z baselines, respectively. The instantiations of our proposed

framework are referred to as Fm and Fz , when the optimisation is performed to maximise the mean

difference (6.18) and the z-score (6.21) objectives, respectively.

As we are interested in evaluating the effects of the stratification and the effects of the joint optimisa-

tion individually, we additionally measure the performance of the baselines when the stratified outcome

∆s(e) is calculated. The stratified modifications of the interleaving methods Lm and Lz are denoted as

Lsm and Lsz . Lsm and Lsz use the stratified objectives we proposed in Section 6.7, and are close to our

Generalised Team Draft framework with the interleaving policy fixed to be uniform.

In our experiments on both document and image search datasets, all of the studied interleaving meth-

ods correctly determined the preference for A or B, hence we conclude that the preferences obtained

from Generalised Team Draft are in agreement with the preferences inferred from Team Draft.

6.11.1 Document Search

In Table 6.5 we report the results of the evaluation procedure discussed in Section 6.10.3 applied for

the web document search data. In the left part of Table 6.5 (Non-stratified group), we report the mean

and median relative z-scores for the baselines with no stratification applied. In the right part (Stratified

group), we report the performance of our proposed framework as well as that of the baselines with the

stratification applied.
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On analysing the results of the non-stratified baselines, reported in the left part of Table 6.5, we no-

tice that their relative performance is generally in line with the results reported in (Chapelle et al., 2012).

Indeed, the deduped binary scheme with its median relative z-score of 1.98 considerably outperforms

other considered heuristic schemes: Linear (1.0), Normalised Linear (0.92), and Binary (0.97); simi-

larly, Lz (2.09) outperforms Lm (1.22). Overall, the baseline scoring schemes can be ordered according

to the mean relative z-scores as follows: Linear ≺ NLinear ≺ Binary ≺ Deduped ≺ Lz .

On comparing the relative z-scores of Linear, NLinear, Binary, and Deduped with and without the

stratification applied (left vs. right parts of Table 6.5), we observe that in some cases the stratification

greatly increases the interleaving sensitivity. For instance, the mean and the median relative z-scores of

Binary grow from 1.10 and 0.97 to 1.18 and 1.04, respectively. Noticeable improvements are obtained

for all of the heuristic baseline schemes, except for Deduped, where the improvement is small. Interest-

ingly, an improvement is also observed for Lm: its stratified modification Lsm exhibits a mean relative

z-score of 1.38, while Lm has a mean z-score of 1.35.

In all cases, the credit assignment function that optimises the mean difference between A and B

performs worse than the credit assignment functions learned to maximise the z-score. For instance, Lsz

demonstrates considerably higher median relative confidence than Lsm (2.09 vs. 1.23).

By additionally performing the interleaving policy optimisation, Fz achieves a noticeable sensitivity

gain in comparison with the stratified Lsz (medians: Fz , 2.15 vs. Lz , 2.09; means: 2.52 vs. 2.36). Fz

also achieves the highest overall sensitivity, with the median relative z-score of 2.15 and the mean z-

score of 2.52. This implies that an interleaving experiment that uses the interleaving method Fz requires

2.152 = 4.62 times less user interactions (in median) than the non-stratified Team Draft with the linear

scoring to achieve the same level of confidence. In comparison with the best performing baseline, Lz ,

it requires
(
2.15
2.09

)2
= 1.06 times less data to achieve the same level of confidence (in median). The

corresponding improvement in the mean relative z-score is 2.52
2.36 = 1.07.

Overall, our observations allow us to answer the stated research questions RQ6.1 and RQ6.2. Our

proposed Generalised Team Draft demonstrates the highest sensitivity in the case of document search

(median relative z-score, Fz 2.15 vs. Lz 2.09; mean relative z-score Fz 2.52 vs. 2.36 Lz). To answer

RQ6.2, we notice that the highest sensitivity gains are achieved by the click scoring optimisation (e.g.

Lz 2.09 vs. Deduped 1.98, median relative z-score) and the policy optimisation (Fz 2.15 vs. Lsz 2.09,

median relative z-score).
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Figure 6.4: The probability that an interleaving method disagrees with the true preference, depending
on the size of the sample. The document search dataset.

6.11.2 Visualisation

We illustrate the relative performance of the studied interleaving methods on the document search

dataset using the following procedure. We select one experiment to be used as a test experiment, and use

the remaining experiments to optimise the interleaving parameters. Further, we estimate the probability

that an interleaving method disagrees with the ground truth preference in the test experiment by obtain-

ing 5,000 samples of N user interactions. We varied N in (500, ..., 104). For the baseline methods, N

interactions are obtained by sampling from the experiment’s interactions with replacement (bootstrap

sampling). For Fz , the sample is obtained by firstly allocating N interactions to the strata according

to a multinomial distribution specified by the policy π, and further sampling from the individual strata

(with replacement). The outcome is calculated using the stratified estimate ∆e. This sampling process

simulates the case of policy π to be applied in a real-life scenario. A higher error probability indicates

lower sensitivity and it is related to the outcome’s p-value under the bootstrap test.

In Figure 6.4, we report the obtained error probabilities. From Figure 6.4 we observe that the

optimisation-based methods (Fz and Lz) dramatically increase the interleaving sensitivity and outper-

form the Binary baseline. For instance, the probability error of 0.1 is achieved by Fz with 2,000 inter-

actions, but Binary requires more than 10,000 interactions to achieve the same level of error. Adding
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Table 6.6: Features with the highest weights, document search.

Feature id, i 15 23 8 2 22

Description Deduped score Unormalised score Rank = 8? Rank = 2? Last click?

Weight, wi 0.97 0.09 0.08 -0.07 0.06

stratification to the Binary baseline allows us to reduce the probability of error. The deduped binary

baseline performs considerably better than Binary and achieves performance close to the one of Lz .

Among the methods that use optimisation, Fz consistently demonstrates lower probability of error than

Lz . For instance, when 4, 000 interactions are used, Fz has the probability of error approximately equal

to 0.03, while Lz makes an error in more than 0.05 of the samples. Overall, these observations are in

line with results reported in Table 6.5. However, this illustration is also important as it does not rely on

the z-score statistic.

6.11.3 Analysis of the Learned Parameters

In Table 6.6 we report the five features with highest absolute values of components of the weight vector

w when trained on the whole dataset. From Table 6.6 we observe that the highest weight is paid to

the deduped score feature that represents the deduped binary scoring scheme, the strongest heuristic

baseline according to our experiments. Considerably less weight is assigned to the linear score feature

(Linear baseline). Interestingly, the clicks on the first position are slightly penalised due to a negative

score, indicating that these clicks might be less meaningful due to the positions bias.43

In Table 6.7 we report the optimised interleaving policy learned by our proposed interleaving frame-

work on the entire dataset of the document search interleaving experiments. Clearly, the resulting policy

satisfies the requirement specified by Lemma 1 (the probabilities of observing a and b are equal for each

position). Since the optimisation objective stated in Equation (6.21) is essentially a linear programming

problem w.r.t. the interleaving policy, the optimum is in a vertex of the feasible region, so the support

of optimal policy distribution (i.e. the set of team combinations that have non-zero probability of being

demonstrated) would use few team combinations.44 This consideration holds in our case, as only two

team combinations have non-zero probabilities of being demonstrated.

Finally, in these combinations teams A and B are strictly alternating in positions, thus the optimal

policy is somewhat intuitively reasonable.

43The users trust the search engine and tend to click on the top ranked results even if they do not look useful (Craswell et al.,
2008).

44This effect is also discussed in Section 6.3 and in (Kharitonov et al., 2013c). In case of a small training dataset, it might be
harmful and can be avoided by adding a quadratic penalisation term, as in Equation (6.8a*), page 93.
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Table 6.7: The optimal interleaving policy, learned on the document search dataset.

Team combination Probability

a,b,a,b,a,b,a,b,a,b 0.5

b,a,b,a,b,a,b,a,b,a 0.5

Table 6.8: Relative z-scores of the interleaving outcomes for image search. The scores of the interleav-
ing method with the highest sensitivity (p < 0.05, Wilcoxon test) are denoted by4.

Non-stratified Stratified

Linear NLinear Binary Deduped Lm Lz Linear NLinear Binary Deduped Lsm Lsz Fm Fz

Mean 1.00 1.03 1.05 1.17 1.11 1.17 1.00 1.03 1.05 1.17 1.11 1.18 1.14 1.214
Median 1.00 0.98 1.02 1.11 1.08 1.16 1.00 0.98 1.03 1.11 1.08 1.16 1.14 1.184

6.11.4 Image Search

In Table 6.8 we report the results of the evaluation for the case of image search. Generally, we observe

that the results are similar to the document search case. The machine-learned interleaving methods that

optimise the z-score objective (Lz , Lsz , and Fz) outperform both the methods with the heuristic credit

assignment (Linear, NLinear, Binary, and Deduped) and the methods that optimise the mean difference,

namely Lm, Lsm and Fm.

However, in contrast to the document search experiments, the sensitivity gains due to stratification

are less noticeable on the image search data. A possible explanation is that the differences of the means

of the strata are smaller than in the case of the document search. Indeed, if the users tend to examine

most of the results (which is easier for images than for document snippets) and click more, then the

teams of the first results are not such a strong indicator of the total credit in an interaction, as in the case

of document search. Interestingly, Deduped is sensitive in image search, too.

The overall highest performance (p < 0.05) is achieved by our proposed framework with the z-score-

based optimisation objective (Fz , mean relative z-score 1.21, median 1.18). This value of the metric

implies that our proposed Generalised Team Draft framework requires 1.182 = 1.39 less data (median)

than the Linear baseline to achieve the same level of confidence. In comparison to the best-performing

baseline Lz , the corresponding decrease is ( 1.18
1.16 )2 = 1.03 in median. However, the difference of the

means is higher (Lz , 1.18 vs. Fz , 1.21). A possible explanation for the smaller improvements is that the

degradations used in our image search dataset are relatively strong and easy to detect, thus it is harder

to achieve a high level of improvement over the baselines.

These observations allow us to answer the stated research questions, RQ6.1 and RQ6.2, in the case

of image search. Indeed, our proposed Generalised Team Draft achieves the highest sensitivity (RQ6.1).
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The gains from the stratification are almost not noticeable (e.g. Lsz 1.18 vs. Lz 1.17, mean relative

z-score), while the weight optimisation (Lz 1.16 vs. Deduped 1.11, median z-score) and the policy

optimisation (Fz 1.21 vs. Lsz 1.18, median z-score) contribute more (RQ6.2).

6.11.5 Summary

Our evaluation study in Section 6.11 allows us to answer the research questions we stated in Sec-

tion 6.10. Our proposed framework achieves the highest sensitivity on both the document search and the

image search datasets (RQ6.1). On the document search data, the non-stratified optimised interleaving

method Lz (median 2.09 and mean 2.36 z-scores) outperforms the best non-learned baselines (Deduped

Binary, median 1.98 and mean 2.33). Further, our proposed Fz additionally performs the policy opti-

misation and achieves the highest median relative confidence level (median of 2.15 and mean 2.52). In

contrast, on the image search data the improvements are relatively smaller. However, gains in the sen-

sitivity are still obtained by the credit assignment learning (Lz , 1.16 vs. Deduped, 1.11) and the policy

optimisation (Fz , 1.18 vs. Lsz , 1.16).

In many cases, stratification improves performance (e.g. the median z-scores of Binary grow from

0.97 to 1.04, Table 6.5). In other cases, the improvements are relatively small (Lm has its median score

of 1.23 in contrast to Lsm with median of 1.22, Table 6.5).

These observations answer RQ6.2: the credit assignment and the policy optimisation increase the

interleaving sensitivity on both datasets; our proposed stratification has higher impact on the interleaving

sensitivity in the document search than in the image search domain.

6.12 Conclusion

In this chapter we addressed the important problem of improving the interleaving sensitivity which has

a direct effect on the evaluation efficiency: given an evaluation method with a higher sensitivity, one can

deploy online experiments for a shorter period of time.

We started with discussing a user model-based approach that optimises interleaving policy so that

the sensitivity is increased on the per-query level. In a small-scale qualitative study we observed that

this approach can be fruitful. However, it has considerable limitations, particularly from the practical

application point of view. These considerations led us to develop a superior interleaving framework,

Generalised Team Draft, which also uses historical interaction data in the form of experimental datasets,

but overcomes the limitations of the user model-based approach.

Generalised Team Draft generalises the research in the exiting literature in two aspects. First, it

achieves an increased sensitivity by performing a joint optimisation of the credit assignment function
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and the interleaving policy. Second, it is formulated to be general with respect to the way the results

are presented, thus it can be applied in the domains with the grid-based representation, such as image

search. Further, to simplify the optimisation procedure, we proposed to use a stratified estimate of the

experiment outcome (Section 6.6). This stratification is useful on its own, as in some cases it reduces the

variance of the experiment outcome and thus increases the sensitivity. Finally, we proposed a generalised

unbiasedness requirement R1 (Section 6.4) that the feature-based credit assignment and the interleaving

policy have to meet for the interleaving to be unbiased.

In our evaluation study, we used two datasets of the Team Draft-based experiments obtained from

Yandex. The first dataset contains 145 interleaving experiments performed in the document search

domain, and the second dataset contains 5 “data collection” experiments deployed for image search. In

our study, we demonstrated that our proposed Generalised Team Draft framework achieves the highest

sensitivity on both datasets. Specifically, we observe that Generalised Team Draft requires up to 1.06

times (median) less data than the top-performing baseline on the document search dataset (Table 6.5:

Fz 2.15 vs. Lz 2.09), and up to 1.03 times (median) less data on the image search dataset (Table 6.8: Fz

1.18 vs. Lz 1.16).

Overall, our study in this chapter follows the roadmap for improving the efficiency of the evaluation

pipeline we described in Section 3.5. Indeed, in this chapter we discussed how the interleaving sensi-

tivity can be improved (a) by using user model-based interleaving policy optimisation or (b) by using

Generalised Team Draft, which performs a joint optimisation of interleaving policy and the click scoring

scheme. An increased interleaving sensitivity allows a search engine deploy online experiments for a

shorter period of time, thus increasing the efficiency of the evaluation pipeline.

At the same time, both the click model-based approach (Section 6.3) and Generalised Team Draft

(Section 6.4) optimise interleaving parameters against a dataset of historical interaction data. Indeed, in

the user model-based approach we used historical interaction data to train a click model that was used

in the optimisation process. Generalised Team Draft adjusts the interleaving parameters to achieve a

highest sensitivity on a set of historical experimental data. Hence, we conclude that our study in this

chapter supports the statement of this thesis (Section 1.3): by re-using historical interaction data, we

increase the efficiency of the evaluation pipeline.

In the next chapter, we discuss how the efficiency of the interleaving experiments can be improved

by using sequential statistical tests. We demonstrate that such tests can stop online experiments ear-

lier (on average) and hence increase the efficiency of the evaluation pipeline. After that, in Chapter 8,

we demonstrate that in fact the sensitivity optimisation methods discussed in this chapter can be com-
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bined with sequential testing methods and this combination can result in even higher gains in evaluation

efficiency.
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Chapter 7

Sequential Testing for Early Stopping
of Interleaving Experiments

7.1 Introduction

As discussed in Section 2.4, each online experiment, performed by means of A/B testing or interleaving,

typically lasts for a considerable time period, usually about a week or two. As a result, the efficiency of

the evaluation pipeline is bounded by the efficiency of the online evaluation step. This limitation was

addressed earlier, primarily by optimising the sensitivity of the online evaluation methods (Chapter 6).

However, the possibility to reduce the duration of the interleaving experiments by appropriate use of

sequential hypothesis testing procedures has not been studied in the literature. Such testing procedures

perform interim stops during an experiment and decide if the experiment should be continued or a

decision can be made based on the already observed data. In this chapter, we aim to close this gap

and we will show that such testing procedures can significantly reduce the mean deployment time of

interleaving experiments. We demonstrate that by modifying two sequential testing procedures to make

them applicable for interleaving, we obtain a considerable improvement in the average time an online

experiment takes. This chapter is based on a publication (Kharitonov, Vorobyev, Macdonald, Serdyukov

& Ounis, 2015).

We study a modification of the O’Brien & Fleming repeated significance test (O’Brien & Fleming,

1979), and several possible modifications of the MaxSPRT test proposed by Kulldorff et al. (2011).

From our experimental study in Section 7.6, we will observe that the highest efficiency is achieved by

a MaxSPRT-based test with its stopping threshold adjusted on a set of historical online experiments

where a search system is compared to itself (A/A experiments). Consequently, in this chapter we

demonstrate that by using historical interaction data we achieve an improvement in the efficiency of the
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evaluation pipeline, hence our work in this chapter supports the statement of this thesis (Section 1.3)

and corresponds to the third point of our roadmap for improving the evaluation pipeline, discussed in

Section 3.5.

Overall, the contributions of this chapter are two-fold:

• We propose several sequential testing methods that reflect the distributions of the data generated

in interleaving experiments, and describe how to adjust their stopping thresholds based on query

log data;

• We perform an extensive evaluation study of the performance of our proposed methods using a

real-life dataset of interleaving experiments.

The remainder of this chapter is organised as follows. In Section 7.2 we discuss the related work. In

Section 7.3 we introduce methods for performing sequential statistical analysis for interleaving experi-

ments. A dataset used in our empirical study is described in Section 7.4. Our evaluation methodology

and the results we obtained are described in Sections 7.5 and 7.6, respectively. We conclude this chapter

and discuss future work in Section 7.7.

7.2 Related Work

Our work in this chapter is closely related to two areas of research. The first area is concentrated on

developing approaches to speed up the existing online evaluation methods, which has been discussed

in details in Section 6.2. However, all these approaches share the same statistical testing scenario,

discussed in Section 2.3. In this scenario, an online evaluation experiment is deployed. After running

this experiment for a pre-defined period of time (e.g. a week), the experiment is stopped. Next, some

form of statistical test, such as the binomial test in the case of interleaving, is performed on the collected

user interaction data to infer if a statistically significant difference between the tested alternatives was

observed.

Importantly, in this scenario, each experiment is deployed for a period of time that is fixed before

the experiment starts. However, it is likely that some experiments will compare highly contrasting

alternatives, and in such cases it should be possible to stop the experiment early and still be able to

reliably detect user preferences between the compared alternatives. The sequential analysis methods

allow us to do that, and they form the second related area of research.

Sequential statistical testing appeared to address the demands of the military testing during World

War II, resulting in Wald’s sequential probability ratio test (SPRT) (Wald, 1945). This test performs an
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analysis in steps. At each step, a new data point is considered, and the decision is taken if the observed

data is enough to make a reliable conclusion about the considered hypotheses and the experiment should

be finished, or more measurements are required.

Despite its simplicity, SPRT was shown (Wald & Wolfowitz, 1948) to be optimal when comparing

two simple alternatives. Further research was conducted to improve the SPRT-based methods in a variety

of directions. For instance, the 2-SPRT test was proposed to minimise the expected sample size at a

specified parameter when discriminating hypotheses H0 : θ = θ0 against H1 : θ = θ1 > θ0 (Bartroff

et al., 2012). Another SPRT-based test that can be used to test against a complex hypothesis, MaxSPRT

(Kulldorff et al., 2011), was proposed for the post-approval drug safety surveillance. These tests can be

applied when the parameters of the alternative hypothesis are not known before running the experiment.

A similar problem arises while running online experiments. Indeed, in interleaving experiments the

null hypothesis can be specified (both evaluated algorithms are equally likely to win in a particular

user session), but the difference between the evaluated algorithms is hard to estimate before running an

experiment.

As an alternative to the SPRT-based tests, “repeated significance tests” (RST) were proposed. As

conventional single-sample tests are often used in clinical trials, the motivation behind RST is to apply

them repeatedly during the trial. These tests evolved into a group sequential RST (Pocock, 1977),

where the data is accumulated between tests. Further, a group sequential testing procedure that had a

better performance was proposed in (O’Brien & Fleming, 1979). These methods became popular within

clinical trials, as the sequential procedures reduce the time the participants are exposed to ineffective or

harmful treatments.

Thereafter, the group sequential testing approach was intensively developed. Wang & Tsiatis (1987)

suggested a parametric family of tests, which generalises both Pocock and O’Brien & Fleming tests,

and can be optimised to be nearly optimal w.r.t. a fixed expected difference between the alternatives.

Another improvement was proposed in (Lan & DeMets, 1983), which accounts for some specifics of

the clinical trials: the number of subjects available between interim stops is not known in advance and

can vary greatly.

Johari et al. (2015) considered sequential tests in A/B testing scenario. They introduced the notion

of always valid p-values that provide valid statistical inference whenever an experiment is stopped.

Further, Johari et al. (2015) proposed the mixture sequential probability ratio test and demonstrated

how their results can be extended to account for the case of multiple testing.

Overall, sequential testing is a highly developed discipline, and a variety of tests that differ by their

properties and assumptions was proposed. Review can be found in (Bartroff et al., 2012; Siegmund,

125



7.3 Sequential Testing for Interleaving

1985). Due to their properties, we select the O’Brien & Fleming and MaxSPRT tests as a foundation

for our study in this chapter. These tests are very practical, as they do not require any prior assumptions

about the expected effect size or its boundaries. The O’Brien & Fleming test can be interpreted as a re-

peated standard Pearson’s chi-square test with progressive stopping thresholds, so that the last threshold

is close to the one test scenario, which is very appealing from the practical perspective. Similarly, the

MaxSPRT-based tests do not require any pre-experimental knowledge, and their decisions are extremely

transparent.

Finally, to the best of our knowledge, the work of Kohavi et al. (2013) is the only one that mentions

the use of sequential testing procedures in online web search evaluation. In their work, Kohavi et al.

reports that the O’Brien & Fleming test is used in Bing to abort A/B experiments early when a severe

degradation in metrics is observed. In contrast, we propose modifications of the MaxSPRT tests for

interleaving, and modify the O’Brien & Fleming test for the interleaving evaluation. Moreover, we

perform a thorough evaluation of the usefulness of the considered tests.

7.3 Sequential Testing for Interleaving

As we discussed in Chapter 6, several approaches to aggregate the user clicks into a credit obtained by

A (the baseline system) and B (the tested system) were proposed (Chapelle et al., 2012; Radlinski &

Craswell, 2010; Yue et al., 2010). In this chapter, we experiment with the binary aggregation scheme;

experimental study with more advanced schemes, including the ones considered in Chapter 6, are per-

formed in Chapter 8. Under the binary scheme, in each interaction, the alternative with the most results

clicked receives a unit credit and is referred to as the winner. If in a session both A and B obtained an

equal number of clicks, the session is considered as a tie. This scheme is similar to the binary deduped

scheme considered in Section 2.3, but the clicks on identical top results are not ignored.

In order to make session outcomes binary, ties are broken randomly and sessions with no clicks are

ignored (Chapelle et al., 2012). Let us denote a variable ∆ that represents the probability of B winning

over A (i.e. getting more clicks) in a session with a click. After running an experiment, an estimate ∆̂

of ∆ can be calculated:

∆̂ =
wB + 1

2 t

wA + t+ wB
(7.1)

where wB and wA denote the number of interactions where B and A win, respectively; t is the number

of ties.

The goal of the statistical analysis methods we discuss in Section 7.3 is to compare two statistical

hypotheses, H0 (A and B are equally likely to win a particular impression) and H1 (the chances to win
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differ):

H0 : ∆ =
1

2
, H1 : ∆ 6= 1

2
(7.2)

In this section, we introduce the sequential testing procedures we consider in this chapter. We start

by describing the procedures applicable for interleaving experiments: O’Brien & Fleming’s sequential

test, modified for interleaving (OBF-I), and the MaxSPRT test.

7.3.1 OBF-I Interleaving Test

Initially, the O’Brien & Fleming’s sequential test described in (O’Brien & Fleming, 1979) was formu-

lated for clinical trials that compare two treatments on two different groups of participants. In contrast,

in interleaving experiments only one group of users is used. Below we describe our adaptation OBF-I

of the OBF test to the case of interleaving experiments.

In general, the test operates as follows. Firstly, the number of interim stops is specified. At these

stops, the accumulated experimental results are analysed, and a decision is made if the experiments can

be stopped or should be continued for further analysis. The interim stops can be specified in terms of

the number of events that take place between them. For instance, the analysis can be performed every

10,000 interactions and there are up to 10 interim stops.

However, the interaction number-based formulation is not convenient in a web search set-up. Indeed,

it is hard to predict the exact numbers of interactions that can take place during, e.g. a week. Instead,

throughout this chapter, we use time-based stops. In other words, we assume that each experiment is

constrained by a maximal time period it can be deployed for and interim stops are performed according

to the time spent from the previous stop. For instance, an experiment can be deployed for up to a week

and interim stops are performed every 24 hours. Such a set-up is very practical and easy to operate

for practitioners. However, it also causes challenges for the sequential testing, as the number of events

between interim stops might vary.

Assume that the number of possible stops, where a sequential test is allowed to analyse accumulated

data and make a decision, is set to N . Let us introduce a random variable x that is equal to 1 (−1) if B

(A) wins the comparison in an interaction, and 0 if a tie is observed. By xj we denote the realisation of x

observed in the jth interaction. Further, we denote the number of interactions between the (i− 1)th and

ith stops as Ki. Under the null hypothesis, the probabilities of winning a comparison in an interaction

for A and B are equal. Thus, according to the central limit theorem, the normalised mean Ri of the

realisations xj observed between the (i−1)th and ith stops approaches the standard normal distribution
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as Ki grows:

Ri =
(x1 + ..+ xKi

)

(Ki ·D[x])
1
2

∼ N(0, 1) (7.3)

where D[x] is an estimate of the variance of x.

Further, we denote the total number of interactions that occurred before the ith stop as Ti (Ti =∑
j<iKj), and the accumulated number of comparisons won by A (B) before the ith stop as wAi (wBi ).

Assuming that the number of the interactions occurring between the stops is approximately the same

and equal to K, we define the accumulated statistic Oi = ( 1√
i

∑i
1Rj)

2. Since
∑i

1Rj is a sum of

variables that are distributed according to N(0, 1), their scaled sum 1√
i

∑i
1Rj also has the standard

normal distribution. Thus, as a square of a standard normal variable, Oi is distributed according to the

chi-squared distribution with one degree of freedom:

Oi =

 1√
i

i∑
j=1

Rj

2

=
(wBi − wAi )2

iK ·D[x]
=

(wBi − wAi )2

Ti ·D[x]
∼ χ2(1) (7.4)

The estimate of the variance D[x] of the outcome variable x is:

D[x] =
1

Ti − 1

Ti∑
j=1

(xj − x̄)2, x̄ =
wBi − wAi

Ti
(7.5)

A progressive decision criterion proposed by O’Brien & Fleming (1979) is defined as follows: at the ith

stop, Oi is compared to a threshold 1
i Ô that decreases at each stop (Ô depends on the number of stops

and required Type I error). This ensures an intuitive requirement that to terminate an experiment earlier,

one needs to have a higher confidence in H1.

In an equivalent, but more convenient formulation, at each stop, a statistic i · Oi can be considered,

and compared to a single fixed threshold Ō. Once i · Oi exceeds Ō, the experiment is terminated, and

H1 is accepted. To infer the experiment outcome, the difference between wAi and wBi is used (i.e. if

wBi > wAi then B � A). If at the last stop N · ON still does not reach Ō then the hypothesis H0 is

accepted.

For the cases of small numbers of stops (less or equal to 5), the values of the threshold Ō can be

found in Table 1 in (O’Brien & Fleming, 1979). Since in our experiments we use a higher number of

stops, we briefly review how the threshold can be obtained from running Monte-Carlo simulations. The

general idea is to replace Ri with random numbers generated from N(0, 1), and adjust Ō so that the test

will detect a difference in the α (required Type I error level) fraction of the generated tests. Formally,

to perform one iteration of the simulation, we sample N (N is the required number of stops) random

numbers from the standard normal distribution (U1, ..., UN ∼ N(0, 1)), and calculate the maximum
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square of their partial sums U2
m = max(U2

1 , (U1 + U2)2, ..., (U1 + ... + UN )2). We collect these

maximums over 10,000 simulations. Finally, we select a value that corresponds to (1−α) percentile of

these maximums.

A possible heuristic is to replace the estimate of the variance D[x] with its upper bound 1.45 While

this substitution might increase the time required for Oi to achieve the threshold Ō, it also makes the

decision rule even simpler: at each stop i, a normalised square of the difference between the wins of A

and B is multiplied by the number of the current stop and compared to the threshold Ō. We refer to a

rule with this heuristic applied as OBF-I*.

Before proceeding to the second family of tests proposed in Section 7.3.2, we want to stress two

observations. Firstly, while we formulate the OBF-I and OBF-I* tests for binary-distributed outcomes,

they can be naturally adopted for testing that the mean of non-binary outcomes is zero. This can be

achieved by using non-binary observations46 xj in Equation (7.3). Secondly, it is important that both

OBF-I and OBF-I* assume that the number of sessions performed between stops is large enough so that

the central limit theorem can be applied.

7.3.2 MaxSPRT-based Test

At the core of the SPRT family of tests (Kulldorff et al., 2011; Wald, 1945) is the likelihood ratio

statistic. Informally, this statistic equates to the likelihood of the observed data under the alternative

hypothesis H1 divided by the likelihood of the data under H0. Once this ratio becomes big enough, H0

can be rejected. To formalise this idea, we use the same notation as in Section 7.3.1. By Ti we denote

the total number of sessions before the ith stop, wAi (wBi ), and ti are the numbers of sessions where A

(B) wins, and the number of sessions with ties, respectively. Further, by mi we denote our estimate of

the number of comparisons won by B after breaking the ties:

mi = wBi +
1

2
ti

Under this notation, the logarithm of the likelihood statistic can be specified as follows:

Li = log
pmi
1 (1− p1)Ti−mi

pmi
0 (1− p0)Ti−mi

(7.6)

where p0 and p1 are probabilities of B winning in a comparison in an interaction under H0 and H1,

respectively. Under the null hypothesis, the alternatives are equally likely to win, so p0 equals 1
2 .

45A unit variance is achieved if on each tie a coin is tossed and a unit credit is assigned to a random alternative. However, this
might be a good approximation since for a tie to occur at least two results must be clicked, which happens rarely.

46We discussed some of the possible non-binary metrics in Chapter 6, e.g. Generalised Team Draft (Section 6.4) assigns clicks
with real-valued scores.
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Input: Type I error tolerance α, a set of A/A experiments Q.
Output: L̄ threshold.
The vector of the ratio values observed in experiments
Ls← ∅
Iterate over experiments
foreach e ∈ Q do

Iterate over interactions in e
Lm ← 0
foreach i ∈ 1..|e| do

Ti ← wBi + ti + wAi , mi ← wBi + 1
2 ti

Find the max. likelihood estimate p̂i1 of p1
p̂i1 ← 1

Ti

[
wBi + 1

2 ti
]

Li ← log
(p̂i1)

mi (1−p̂i1)
Ti−mi

p
mi
0 (1−p0)Ti−mi

Update the maximum value of Lm for the current experiment
Lm ← max(Lm, Li)

end
Ls← Ls

⋃
{Lm}

end
Retrieve the (1− α) percentile
Ls← sorted(Ls)
L̄← Ls[|Ls| · (1− α)]
Algorithm 7.1: Learning the L̄ threshold for MaxSPRT from a dataset of A/A experiments.

However, it is hard to specify p1 before actually running the experiment. An intuitive idea is to replace p1

with the maximum likelihood estimate p̂i1, based on the experimental data observed before the ith stop.

Informally, by estimating p̂i1 we chooseH1 that is the most likely to be accepted in comparison withH0.

This idea was proposed and studied by Kulldorff et al. (2011) for the Poisson and Binomial distributions,

and resulted in a test called MaxSPRT. Under our notation, the maximum likelihood estimate of p1 at

the ith step is:

p̂i1 =
1

Ti

(
wBi +

1

2
ti

)
At each stop, p̂i1 is estimated, and is used to substitute p1 in Li (Equation (7.6)). After that, Li is

compared to a pre-defined threshold L̄. If Li ≥ L̄, then the experiment is stopped, and H1 is accepted.

If p̂i1 >
1
2 (p̂i1 <

1
2 ) then it is inferred that B � A (A � B). If Li < L̄, the experiment is continued. H0

is accepted if the experiment reaches a pre-defined maximum length, without achieving L̄.

To specify the threshold L̄, the Monte-Carlo method was used in (Kulldorff et al., 2011), where

a series of Binomial samples were generated. However, as we will further discuss in Section 7.6, in

the case of the interleaving experiments where the ties are interpreted according to Equation (7.1), this

Monte-Carlo threshold adjustment is suboptimal, as it generates data with variance higher than observed

in experiments.
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Instead, we propose to train the threshold L̄ on a set of experiments where a system is compared with

itself. As we will discuss further in Section 7.4, such experiments are referred to as A/A experiments.

Intuitively, a statistical test with Type I error set to α should detect differences in A/A experiments

with the probability α. Using this idea, we adjust the threshold L̄ so that L̄ exceeds all values of Li in

(1− α) of the A/A experiments. A formal description of the optimisation of the threshold can be found

in Algorithm 7.1.

Further, the MaxSPRT test where the threshold L̄ is trained using Monte-Carlo simulations is de-

noted as MaxSPRT-I-MC. The test where the threshold L̄ is trained using the A/A comparisons is

referred to as MaxSPRT-I-AA.

The above proposed tests, namely MaxSPRT-I-MC and MaxSPRT-I-AA, are designed for the binary-

distributed metrics, i.e. it is supposed that in each event a binary outcome is observed. However, as we

have seen in Chapter 6, some of the click aggregation schemes are not binary (e.g. the machine-learned

scoring schemes that assign real-valued weights to the click features, proposed in Section 6.4). Thus,

we additionally introduce the MaxSPRT-I-AA-N test that can be used in conjunction with non-binary

metrics.

The design of MaxSPRT-I-AA-N combines ideas from the MaxSPRT-I-AA and OBF-I tests. Firstly,

with each outcome we associate a score, x. In general, x can be a real-valued variable, but in case of

the binary credit assignment scheme we consider it to take values in {−1, 0, 1}, corresponding to A

winning, a tie, or B winning in an interaction, respectively. This encoding is the same as in the OBF-I

test (Equation (7.3)).

Assuming that the central limit theorem can be applied47, the sample mean x̄ is normally distributed.

Under the null hypothesis, it is distributed as a normal variable with zero mean and some variance σ2.

Under the alternative hypothesis, it is distributed with some mean µ and variance σ2.

The SPRT statistics on the ith stop is the log-likelihood ratio of these two hypotheses, just as in

Equation (7.6):

Li = log
φ(x̄i;µi;σ

2
i )

φ(x̄i; 0;σ2
i )

(7.7)

where x̄i denotes the mean of the metric before the ith stop and φ(x;µ;σ2) is the probability density

function of the normal distribution N(µ, σ2). Since both the mean µ and σ2 are not known, we use their

maximum likelihood estimates at the ith stop instead:

µ̂i = x̄i; σ̂2
i =

1

Ti
D[x]; D[x] =

1

Ti − 1

Ti∑
j=1

(
xj − x̄i

)2
(7.8)

47In particular, it is required that a sufficiently large sample of observations is collected before applying the test.
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Again, Ti denotes the total number of observations occurred before the ith stop. The stopping thresholds

on the Li statistics are trained on a set of A/A experiments, similarly to the MaxSPRT-I-AA test.

The MaxSPRT tests assume that the data points arrive one-by-one, which might be impractical in

modern large-scale web search engines. Indeed, an infrastructure is needed that is capable of providing

a near real-time stream of individual comparisons. It might be easier to implement the data delivery

in batches, e.g. each batch of data corresponding to an hour or a day of the user activity. Since the

discussed tests can be applied to analyse batch data by simply considering the aggregated values of the

variables such as wAi , wBi , and x̄, our experiments are performed in the batch scenario, as we discuss

further in Section 7.5.

7.4 Dataset

In our evaluation study we use a dataset of interleaving experiments obtained from Yandex. For diag-

nostic purposes, it is useful for a search engine to deploy a constantly running online experiment that

compares the current production system with itself ((Kohavi et al., 2012), Section 2). Further, we refer

to such an experiment as an A/A comparison. Since we know that the alternatives are equal in this com-

parison, we want the statistical testing procedure to rarely find statistical differences in this evaluation

(i.e. H0 should be rejected about 1% of the time, when testing is performed on a p < 0.01 significance

level).

Another source of the experiments are the regular experiments that are deployed to evaluate new

search engine improvements. In our evaluation study, we compare the sequential testing approach to

a standard scenario, where experiments are deployed for an integer number of weeks. To increase the

size of the dataset, we consider the case of the experiments that last for one week. However, as the

experiments differ in the expected effect size (detecting smaller differences between A and B require

more observations), they also vary in their duration. For this reason, we restrict each experiment to its

first 7 days. The ground-truth outcomes used in our evaluation are calculated using the full experimental

data. However, the one-step baseline binomial test uses the same 7-day restricted experimental data as

is provided for the evaluated sequential tests.

In our dataset, we include data from two interleaving-based A/A experiments in 2014. These two

experiments were deployed in two different countries, and contain 108 non-intersecting week-long peri-

ods. Further, we sample 336 real-life interleaving experiments that were deployed to evaluate changes in

the ranking algorithms. These experiments are the same experiments that were used in Chapter 6, Sec-

tion 6.8. Among these experiments, we select 109 experiments that lasted for not less than a week and

132



7.5 Experimental Methodology

have a statistically significant outcome, calculated over the full duration of these experiments (binary

credit scheme, p < 0.01, binomial test). Among these experiments,B outperformsA in 48 experiments.

7.5 Experimental Methodology

The aim of our evaluation experiments is to determine if the sequential tests proposed in Section 7.3 are

accurate and increase the evaluation efficiency by decreasing the average time the experiments have to

be deployed to get a reliable outcome. We formulate our research questions as follows:

RQ7.1 Is it possible to reduce the deployment time of interleaving experiments by applying the proposed

sequential tests?

RQ7.2 Which of the proposed sequential tests achieves the shortest deployment time?

In this section, we discuss the methodology we use to answer these research questions. We split this

discussion in two sections. In Section 7.5.1 we introduce the quality metrics we use in our evaluation.

Section 7.5.2 describes the evaluation protocol we use.

7.5.1 Metrics

We use six metrics to represent the performance of a sequential test. Our first metric, Type I error,

represents the probability of a statistical test rejecting the null hypothesis H0 when it holds:

α = P (H1 accepted |H0 holds)

Generally, we want the Type I error to be low, as each experiment wrongly accepted as successful might

result in expensive development, wastes both human and computational resources without improving

the search engine.

The second metric we consider is Type II error, which measures the probability of accepting the

null hypothesis when it does not hold:

β = P (H0 accepted |H1 holds)

High values of β indicate that non-equal alternatives A and B are frequently accepted as equal, and this

could result in ignoring opportunities to improve a search engine.

The Type II error metric defined as above does not penalise cases when the null hypothesis is

correctly rejected, but the preference is inferred incorrectly (e.g. A � B is accepted when in reality
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B � A)48. Thus we introduce two one-sided accuracy metrics, AccA�B and AccB�A:

AccA�B = P (accepted that A � B|A � B)
AccB�A = P (accepted that B � A|B � A)

These metrics are related to the Type II error, however they additionally account for the above discussed

cases of the incorrectly inferred preferences.

Mean deployment time, E(T ). This metric is defined as the mean time the experiment is deployed

before a sequential testing procedure stops. For the non-sequential one-step test that we use (namely,

binomial sign test), the value of this metric is set to the experiment length. For convenience, we measure

this metric in days. Generally, it might be more important to stop an experiment where A � B than an

experiment where B � A, as in the former case the user experience is degraded. Thus we additionally

consider two time-related metrics, which measure the expected duration of the experiments where A �

B and B � A. We denote these metrics as E(T |A � B) and E(T |B � A).

Mean relative number of sessions, E( NN0
). The last metric we use represents the relative number

of search interactions required until the experiment is stopped, averaged over all experiments in the

dataset. In other words, if an experiment contains N0 sessions (after restricting to its first 7 days), and

the sequential testing procedure stops an experiment after observing only N sessions, the value of the

metric is equal to N
N0

on this experiment.

In our evaluation study, for each sequential testing procedure we fix the Type I error probability

and the maximum deployment time to be the same. Under these constraints, the baseline one-step

approach achieves the minimum Type II error level among all possible rules, as it always “sees” the full

experimental data before making a decision. Thus, our goal is to find a sequential testing procedure that

reduces the mean deployment time for the experiments in our dataset as much as possible, while having

its Type II error level close to the baseline approach.

7.5.2 Evaluation Protocol

The A/A experiments, which compare a system with itself are a perfect source of the data to calculate

the Type I error probability (i.e. probability of finding a difference when there is none). Indeed, in the

A/A experiments, the null hypothesisH0 definitely holds. Thus, any event where a statistical test detects

a difference between the tested alternatives in an A/A experiment, is a Type I error.

Using this observation, we apply the following scheme to measure the Type I error probability for

a statistical test. First, we split each of the available A/A experiments in non-overlapping week-long

smaller experiments. In the cross-validation process, these parts are split in the training and test sets.

48This situation arises since our tests have effectively three outcomes: A � B, B � A, and B is not different from A.
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The training set is used for learning the stopping thresholds, and the test set is used for calculating the

Type I error probability. This probability is calculated as the relative number of experiments where

the testing procedure detects a difference between the two compared systems. The initial splitting is

repeated in the cross-validation process. We use 25-fold cross-validation.49

In the evaluated tests, we set the tolerances for the Type I error to be 0.05. Generally, we want to

experiment with lower tolerance values, as this closer resembles the requirements for real experiments.

These tolerance levels should be higher than the p-values we use to infer the ground-truth labels, so that

the measurements are meaningful. In turn, using low p-values when obtaining the ground-truth labels

significantly reduces the sizes of the datasets. Thus we believe that the selected values are reasonable.

To calculate the remaining metrics (Type II error, AccA�B , AccB�A, E(T ), E( NN0
)), we use the

experiments that compare real-life changes in a search engine. As ground-truth labels (A � B or

B � A), we use the results of the binomial test (p < 0.01).

An alternative approach to calculate Type II errors for both interleaving-based statistical tests is

to use a set of experiments, where the tested alternative B is specifically degraded with respect to A.

This degradation might be achieved for instance by swapping the documents ranked at the first and the

second positions, degrading the quality of snippets, or using an inferior ranking algorithm. The dataset

of interleaving experiments for the image search we used in Chapter 6 (Section 6.8) is an example of a

dataset that was obtained by applying this approach.

However, building a big dataset of experiments, where the user experience is specifically degraded in

different ways, can be unrealistic, since the user experience is deliberately harmed in such experiments.

Another concern is that such manually devised degradations cannot be considered as a representative

sample of the real-life experiments.

In our evaluation study, we vary the number of the stops used: the stops are performed each day

(i.e. 7 stops) and every hour (i.e. 7 · 24 = 168 stops). While the MaxSPRT-I tests can even be applied

at the per-interaction level, we consider scenarios with more stops as impractical for several reasons.

Firstly, in the case of the SPRT-based tests the gains cannot be more than the period between two stops

due to the design of the test (i.e. more than an hour when comparing cases with stops every hour and

per-interaction stops for MaxSPRT-I).50 On the other hand, to enable frequent testing, one would need

to build an elaborated near real-time data delivery system. This is particularly hard, since the data needs

49Under the 25-fold cross-validation, 103 A/A experiments (out of 108 available) are used for learning the stopping threshold
(Algorithm 7.1). This stopping threshold is set to be 1 − α percentile of the SPRT statistic observed on the training set of A/A
experiments. Since we set α equal to 0.05, the threshold is determined by 5 experiments with highest values of the SPRT statistic.
If a lower number of splits was used, the threshold would be determined by a smaller number of experiments, e.g. in a 5-fold
cross-validation only one experiment with the most extreme value of the SPRT statistic would determine the stopping threshold.
Clearly, this might result in a high level of noise due to outliers and by using a relatively high number of folds we avoid this.

50This observation is also supported by our preliminary experiments.
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Table 7.1: The quality metrics of the considered tests, measured on the dataset of interleaving experi-
ments (binary scheme). The groups of values marked with 4 are not statistically different from each
other and outperform other values in the corresponding columns, p < 0.01 (paired t-test across folds).
The metric values in bold are the best in the corresponding columns.

Test # stops Type I Type II AccB�A AccA�B E(T |B � A), days E(T |A � B) E(T ) E( NN0
)

Binomial 1 0.026 0.0184 0.964 1.004 7.00 7.00 7.00 1.00

OBF-I* 7 0.034 0.055 0.90 0.98 3.77 3.70 3.73 0.53
OBF-I 7 0.060 0.037 0.92 1.00 3.65 3.49 3.56 0.50
MaxSPRT-I-MC 7 0.000 0.131 0.85 0.88 3.75 3.55 3.64 0.52
MaxSPRT-I-AA-N 7 0.010 0.110 0.88 0.90 3.47 3.28 3.36 0.48
MaxSPRT-I-AA 7 0.000 0.110 0.88 0.90 3.47 3.28 3.37 0.48

OBF-I* 7 · 24 0.024 0.0184 0.964 1.004 2.94 2.73 2.82 0.39
OBF-I 7 · 24 0.058 0.0184 0.964 1.004 2.75 2.58 2.66 0.37
MaxSPRT-I-MC 7 · 24 0.016 0.087 0.89 0.92 2.29 1.97 2.11 0.29
MaxSPRT-I-AA-N 7 · 24 0.052 0.051 0.92 0.96 1.914 1.744 1.824 0.254
MaxSPRT-I-AA 7 · 24 0.052 0.046 0.92 0.97 1.924 1.744 1.824 0.254

to be cleaned from click spam bots and the online experiments typically generate massive data streams.

Finally, the O’Brien & Fleming-based test relies on the central limit theorem, hence it requires that

sufficiently many interactions occur between stops.

7.6 Results

In this section we discuss the results of our evaluation study (Section 7.6.1) and we perform a visualisa-

tion of the decisions of the best-performing test in Section 7.6.2, so as to illustrate its behaviour.

7.6.1 Test Evaluation

Recall that by OBF-I we denote the adaptation of the O’Brien & Fleming test which we discussed in

Section 7.3, while OBF-I* denotes the simplified modification of OBF-I that approximates the variance

by the unity. MaxSPRT-I-MC is the MaxSPRT test with its L̄ threshold trained by the Monte-Carlo

approach. In contrast, MaxSPRT-I-AA corresponds to the MaxSPRT test with its L̄ threshold trained

on the dataset of A/A experiments by Algorithm 7.1. Binomial denotes a one-step testing procedure

that runs the Binomial test at the end of an interleaving experiment. The five sequential tests we eval-

uate (OBF-I, OBF-I*, MaxSPRT-I-MC, MaxSPRT-I-AA, and MaxSPRT-I-AA-N) were introduced in

Section 7.3. The metrics we use to evaluate these tests are defined in Section 6.10.2.

In Table 7.1, we report the results of the evaluation of the sequential testing rules on the dataset of

the interleaving experiments. The case of 7 stops corresponds to the scenario where interim stops are

performed every 24 hours, and 7 · 24 indicate the scenario where interim analysis is performed every

hour.
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On analysing these results we firstly notice that the Type I error levels measured for all the considered

testing rules are close to the tolerance level we set in the threshold learning process (Section 7.3), namely

0.05. The observed deviations might be caused by the limited size of the dataset we use.

Further, on analysing the Type II error metric reported in Table 7.1, we notice that the values of

this metric are close within each family of the tests: in the range of 0.02 − 0.05 for the OBF-I-based

tests and in the range of 0.05 − 0.11 for the MaxSPRT-based tests. The highest level of Type II errors

is demonstrated by the MaxSPRT-I-MC test (0.131 and 0.087, for the cases with 7 and 7 · 24 stops,

respectively). In Table 7.1, the lowest Type II error level (0.018) is achieved by the OBF-I* and OBF-I

tests in the scenario with 7 · 24 stops. Similarly, they demonstrate the highest AccA�B and AccB�A

metrics. In particular, the AccB�A metric of 0.96 and the AccA�B of 1.00 are achieved when 7 · 24

stops are used.

As can be seen from Table 7.1, all the evaluated sequential tests achieve considerable improvements

over the standard 7-day scenario and this observation answers RQ7.1. Among the tests that use 7 stops,

on average, OBF-I* stops the experiments later than other tests (e.g. 3.73 OBF-I* vs. 3.37 MaxSPRT-I,

7 stops). The shortest mean time (3.36) is demonstrated by the MaxSPRT-I-AA-N test.

On comparing the scenarios with 7 and with 7 · 24 stops, we firstly notice that the MaxSPRT-I-MC,

MaxSPRT-I-AA, and MaxSPRT-I-AA-N tests greatly benefit from using additional stops. Indeed, the

mean time is reduced for the MaxSPRT-I-MC test from 3.64 to 2.11. Similarly, MaxSPRT-I-AA and

MaxSPRT-I-AA-N have improved their mean experiment running time from 3.37 and 3.36, respectively,

to 1.82, and achieved the best performance. This behaviour is intuitive: with more stops available, there

is more potential to stop earlier.

The OBF-I and OBF-I* tests demonstrate smaller improvements. For instance, OBF-I increased the

mean deployment time from 3.56 to 2.66.

From Table 7.1, we observe that MaxSPRT-I-AA and MaxSPRT-AA-N have the shortest mean de-

ployment time, both among the tests with 7 stops (3.37 and 3.36, respectively), and among the tests

with 7 · 24 stops (1.82). When 7 stops are used, OBF-I has a relatively close performance (3.56), but

underperforms in the case of 7 · 24 stops. Overall, MaxSPRT-I-AA and MaxSPRT-AA-N have almost

identical results, except for the Type II error and Accuracy metrics in the case of 7 · 24 stops. It is

generally expected that MaxSPRT-AA-N performs slightly worse, as it uses a somewhat coarse normal

approximation to the data. However, the same approximation allows it to handle non-binary interaction

outcomes.

An interesting observation is that the difference in the mean deployment times for OBF-I and OBF-

I* are relatively close (not more than 0.17 days or 4 hours in the scenario with 7 stops). However, the
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difference between MaxSPRT-I-AA and MaxSPRT-I-MC is bigger (0.29 days ≈ 7 hours maximum). In

all scenarios MaxSPRT-I-AA outperforms MaxSPRT-I-MC, indicating that replacing the Monte-Carlo

threshold estimate with the threshold learned from the A/A tests improves the test’s performance.

We also observe that the relative improvements measures by the E(T ) metric are well aligned with

the improvements measured by the E( NN0
) metric (e.g. MaxSPRT-I-AA with 7 · 24 stops reduces the

mean deployment time by 74%, and uses only 0.25 of the available sessions).

We conclude that in the case of interleaving, the MaxSPRT-I-AA and MaxSPRT-I-AA-N tests with

7 · 24 stops achieve the smallest deployment time and this observation answers RQ7.2. In comparison

to the standard 7-day scenario, the improvement corresponds to 74% increase in the efficiency (1.82 vs.

7.00 days).

7.6.2 Visualisation

We illustrate the best-performing MaxSPRT-I-AA test as follows. First, we sample a random subset

of experiments, including experiments with A outperforming B (according to the ground-truth labels),

B outperforming A, and A/A experiments. Second, for each of these experiments, at each stop i we

calculate the log-likelihood ratio Li multiplied by the sign of the current estimate of difference between

A and B. More specifically, we multiply the log-likelihood (Equation (7.6)) by the sign of the current

estimate of (p̂i1 − 1
2 ):

sign

(
p̂i1 −

1

2

)
· Li (7.9)

By definition, the absolute value of Equation (7.9) is equal to the log-likelihood ratio Li, and its sign

indicate which system tends to be better according to the observed data (e.g. if (7.9) is positive, then

B � A, and vice-versa). As a result, whenever the value of Equation (7.9) leaves the corresponding

interval [−L̄,+L̄], the experiment is terminated and a decision is made (e.g. B � A if the upper

boundary is touched).

We report our obtained results in Figure 7.1. The green and red lines correspond to the experiments

that are labelled as B � A and A � B according to the ground-truth labels. The black lines correspond

to the sampled A/A experiments. The horizontal dashed lines indicate the boundaries of the intervals

[−L̄,+L̄].

From Figure 7.1 we observe that despite some fluctuations, the likelihood ratios for the sampled A/A

experiments are well within the boundaries of the decision interval at each of the stops. Next, for most

of the interleaving experiments withA outperformingB, the statistic (7.9) falls towards the lower bound

(−L̄). In contrast, several experiments with B � A have their statistic reaching the wrong boundary.
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Figure 7.1: Illustration of the MaxSPRT-I-AA test, binary scheme. Green and red lines correspond to
the experiments with B � A and A � B ground-truth labels, respectively. Black lines correspond to
A/A experiments. The horizontal dashed lines denote the threshold values for accepting B � A (green)
and A � B (red).

These cases result in decreasing the AccB�A value. This observation agrees with the results reported

in Table 7.1. Indeed, the AccB�A metric values are lower than AccA�B in every row of these tables.

Thus, in a random sample it is more likely to meet errors of wrongly rejecting B � A than the opposite

case of rejecting A � B.

Overall, from our experiments we observe that by using sequential testing procedures considerable

gains can be obtained in the mean time experiments are deployed and this observation answers RQ7.1.

At the same time, we notice that this improvement is obtained without significant degradations in other

metrics, such as Type I, Type II errors, AccA�B , and AccB�A. A reduction in the execution time of

74% can be achieved by using the MaxSPRT-I-AA and MaxSPRT-I-AA-N tests with 7 · 24 stops, and

this is the shortest mean deployment time we observed in our experiments in this section. This answers

RQ7.2.

7.7 Conclusions

In this chapter we addressed an important problem of increasing the efficiency of the online evaluation

experiments. In particular, we studied how sequential testing procedures can be adapted to reduce the
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time online evaluation experiments require. These procedures are designed so that they can stop online

experiments when the observed data is sufficient to make a reliable conclusion about the experiment’s

outcome.

We proposed a modification of the O’Brien & Fleming group sequential test that can be applied to

interleaving evaluation. Further, we described an approach to improve the MaxSPRT test’s performance

by adjusting its stopping threshold on the dataset of A/A experiments.

In our evaluation study we used the same dataset as used in Chapter 6. Of note, our dataset consists

of 109 experiments lasting at least 7 days long and have a statistically significant difference between A

and B, which is larger than other datasets used in the existing literature. Our study demonstrates that by

using the sequential testing procedures, a marked reduction in the duration of the experiments can be

achieved, without significant losses in other metrics, such as Type I and Type II error probabilities. The

maximal reduction in the mean deployment time over a standard 7 day one-stop scenario on the dataset

of interleaving experiments reaches 74% by using the MaxSPRT-I-AA and MaxSPRT-I-AA-N tests,

that examine the experiment data every hour. Clearly, such an improvement might have a considerable

impact on the evaluation pipeline efficiency.

This improvement can be illustrated as follows. If each experiment is deployed for 7 days, 109

experiments in our dataset will require 7 · 109 = 763 experiment-days of evaluation. Assuming the

deployment time can be reduced by 74%, these experiments can be evaluated in approximately 200

days. Roughly, this indicates that we are able to evaluate three datasets of interleaving experiments of

the same size in the same time period.

Overall, we notice that our work in this chapter support the statement of this thesis (Section 1.3). In-

deed, by using historical interaction data recorded in A/A experiments, we build sequential tests that are

capable of stopping online interleaving experiments earlier and thus increasing the evaluation pipeline

efficiency. This work corresponds to the third point of the our roadmap for improving the evaluation

pipeline, discussed in Section 3.5.

In this chapter we discussed how sequential testing procedures can be applied in the online evalua-

tion to reduce the duration of the online experiments. In Chapter 6, we proposed the Generalised Team

Draft framework that optimises interleaving sensitivity so that experiments can be deployed for a shorter

time period. Both these approaches aim to improve the efficiency of the online evaluation step, and in

the next chapter we demonstrate that these two approaches are complimentary and can be used in con-

junction. Furthermore, we demonstrate that by using them in combination even higher improvements in

the online efficiency can be achieved.
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Chapter 8

Early Stopping of Sensitive
Interleaving Experiments

8.1 Introduction

In Section 2.4, we noted that the online evaluation step is one of the most time-consuming steps, as

online experiments typically take a period lasting from several days up to several weeks. Hence, im-

proving the efficiency of the online evaluation step would have a dramatic influence on the efficiency of

the entire evaluation pipeline.

Previously, we addressed the problem of increasing the interleaving efficiency from two perspec-

tives. In Chapter 6, we proposed the Generalised Team Draft framework that increases the interleaving

sensitivity by a data-driven optimisation of the interleaving policy (how often a particular interleaved

result page is shown) and the click weighting scheme (how important each click is). In Chapter 7,

we discussed how sequential testing procedures can be used to reduce the average duration of online

experiments by stopping them earlier.

Both these approaches used historical interaction data to optimise the parameters of interleaving

and sequential tests, and achieved marked improvements in the evaluation pipeline efficiency, thus sup-

porting the statement of this thesis (Section 1.3). A further question therefore arises: can these two

approaches be combined together in a single evaluation mechanism such that cumulative improvements

in the efficiency of the online evaluation through interleaving can be achieved? In this chapter we aim

to experimentally answer this question.

From our experimental study of the sensitive interleaving schemes in Section 6.11, we observed

that the highest sensitivity is achieved by the interleaving algorithms which assign real-valued scores

to the user clicks, such as Generalised Team Draft, defined in Section 6.4. In Chapter 7, we studied
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two families of sequential tests for interleaving, described in detail in Section 7.3: (a) tests based on

the O’Brien & Fleming test (O’Brien & Fleming, 1979), i.e. OBF-I and OBF-I*, and (b) tests based on

the MaxSPRT test (Kulldorff et al., 2011), i.e. MaxSPRT-I-MC, MaxSPRT-I-AA, MaxSPRT-I-AA-N.

Among these tests, OBF-I and MaxSPRT-I-AA-N achieve the shortest mean deployment time in the

corresponding families51 and can handle real-valued scores for user clicks. Hence, to reduce the number

of possible combinations of scoring schemes and sequential tests while keeping the most interesting

ones, in this chapter we restrict our study to these two sequential tests.

The chapter is organised as follows. We start with Section 8.2, where we discuss how our pro-

posed sequential tests can be adopted to leverage the stratified interleaving outcome estimator used in

Generalised Team Draft. In Section 8.3, we introduce the dataset used in this chapter. In Section 8.4

we describe the experimental methodology we use. The obtained results are reported and discussed in

Section 8.5. In Section 8.6 we provide concluding remarks.

8.2 Stratified Sequential Testing

The Generalised Team Draft framework proposed in Chapter 6 (Section 6.4) assumes that the interleav-

ing outcomes are stratified w.r.t. team combinations shown to the users. In order to meet this expectation,

we need to adapt the statistical testing procedures used to test the significance of the observations.

The core sample statistics controlled by both the OBF-I and MaxSPRT-I-AA-N tests are the mean

score and the score variance statistics. Assuming that the stratified estimator we proposed in Section 6.6

(Equation (6.15), page 104) is used, we change how these statistics are calculated. The stratified mean

score is calculated as a weighted combination of per-strata means:

∆̂s =
∑
i

πi ·
1

|Ai|
∑
a∈Ai

S(a) (8.1)

Again, i iterates from 1 to 32, enumerating all allowed team combinations on the first page of ten results

from ababababab to bababababa; Ai is the set of interactions with the ith team combination shown to

the users; πi is the probability of showing the ith team combination; S(a) is the score associated for

the interaction a. For example, S(a) can be calculated as defined by the Generalised Team Draft in

Section 6.4.

The sequential testing procedures we study operate with the accumulated scores aggregated between

stops. We denote the mean score of the interactions in the ith stratum, performed before the jth stop, as

51MaxSPRT-I-AA-N and MaxSPRT-I-AA with 7 · 24 stops demonstrate the shortest mean deployment time among all studied
tests (see Table 7.1, page 136).
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x̄ji , calculated as follows:

x̄ji =
1

|Aji |

∑
a∈Aj

i

S(a) (8.2)

where Aji is the set of user interactions that took place before the jth stop and has the ith team combi-

nation demonstrated to the users.

Under this notation, at the jth stop, the mean stratified score can be found as follows:

∆j
s =

∑
i

πi · x̄ji (8.3)

The variance of the stratified estimator ∆j
s calculated at the jth stop is:

D[∆j
s] =

∑
i

π2
i ·D[x̄ji ] =

∑
i

π2
i

N j
i

·Dj
i [x] =

1

N j

∑
i

πi ·Dj
i [x] (8.4)

where N j
i = |Aji | is the number of interactions in the ith stratum before the jth stop, and N j is the

total number of interactions that occurred before the jth stop. Similarly, Dj
i [x] is the variance of the

outcomes within the ith strata, calculated based on observations before the jth stop:

Dj
i =

1

N j
i − 1

∑
a∈Aj

i

(
S(a)− x̄ji

)2
(8.5)

Having Equations (8.3) and (8.4) in mind, we can specify the sequential testing criteria for the OBF-I

and for the MaxSPRT-I-AA-N tests.

OBF-I At the jth stop, the OBF-I test statistic can be calculated as follows:

Oj = j ·
(
∆j
s

)2
D[∆j

s]
= j ·N j

(∑
i πi · x̄

j
i

)2
∑
i πi ·D

j
i [x]

(8.6)

Again, just as in the “vanilla” OBF-I, theOj statistic is compared to a fixed threshold, Ō. This threshold

is learned by means of Monte-Carlo simulations, as described in Section 7.3.1.

MaxSPRT-I-AA-N Similarly, the stratified MaxSPRT statistic used in the MaxSPRT-I-AA-N test is

calculated as follows:

Li = log
φ(∆j

s; ∆j
s, D[∆j

s])

φ(∆j
s; 0, D[∆j

s])
(8.7)

where the current stratified mean score ∆j
s and its varianceD[∆j

s] are defined in Equations (8.3) & (8.4),

respectively. The function φ(x;µ, σ2) is the probability density function of the normal distribution with

some mean µ and variance σ2. We set the stopping threshold L̄ on Lj by the training procedure on the

A/A experiments, as described by Algorithm 7.1 in Section 7.3.2.

As we discussed earlier in Section 6.6, it is incorrect to ignore interactions without clicks in com-

bination with the stratified estimator Equation (8.3). To keep the experimental setup uniform for all
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Table 8.1: Datasets statistics.
# exp. A � B mean # interactions median # interaction

131 66 593K 328K

combinations of scoring schemes and sequential tests, in this chapter we do not ignore the interactions

without clicks, and assign them with the zero score S(a).

8.3 Dataset

As a foundation for our experimental study in this chapter, we used the same 336 real-life Team Draft

interleaving experiments that were used in Chapters 6 and 7. To alleviate the consequences of the

down-sampling evaluation scenario we use in this chapter (discussed in Section 8.4.2.1) that reduces

the number of experiments with statistically significant outcome, we added 42 interleaving experiments

that were performed in 2015, after the span of the earlier used dataset was finished. From these 378

experiments, we selected 131 experiments that were deployed for at least a week and have a statistically

significant difference between A and B (deduped binary click scheme, binomial sign test, p < 0.01).

The descriptive statistics of the dataset are provided in Table 8.1.

Next, we used the data from two interleaving-based A/A experiments deployed in 2014. These

two experiments were deployed in two different countries, and contain 108 non-intersecting week-long

periods. These are the same A/A interleaving experiments that were described in Section 7.4 and were

used to adjust the stopping thresholds of the MaxSPRT-I tests and to evaluate the Type I errors in

Chapter 7.

8.4 Experimental Methodology

In Chapter 6 (Section 6.11), we compared the sensitivity of seven interleaving scoring schemes. Five of

these schemes are heuristic schemes, and two schemes optimise their parameters against a set of earlier

performed interleaving experiments. We observed that these machine-learned schemes are more sensi-

tive. In particular, Generalised Team Draft demonstrated the highest sensitivity in our study. Further, in

Chapter 7, we studied sequential tests that come from two families: the tests based on the O’Brien &

Fleming test (O’Brien & Fleming, 1979), and those based on the MaxSPRT test (Kulldorff et al., 2011).

From our experiments in Section 7.6, we observed that the MaxSPRT-based tests achieved the shortest

mean deployment time.
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In this chapter we aim to understand if these two approaches to improve the interleaving efficiency

can be combined together to achieve even further gains in efficiency. We split the broad question stated

earlier in this chapter in Section 8.1 in three more specific research questions that we aim to answer:

RQ8.1 How does the sensitivity of the interleaving scoring scheme influence the mean deployment time,

if we fix a sequential test?

RQ8.2 With an interleaving scoring scheme fixed, how do the sequential tests compare in terms of the

mean deployment time?

RQ8.3 Which of the combinations of the interleaving scoring schemes and sequential tests is the most

efficient (i.e. achieves the shortest mean deployment time)?

To answer these questions, we firstly review the metrics we use in Section 8.4.1. In Section 8.4.2 we

discuss the evaluation protocol.

8.4.1 Metrics

In this chapter we adopt the metrics from Chapter 7 (Section 7.5.1). To recap, these metrics are the

following:

1. Type I error probability,

2. Type II error probability,

3. Accuracy metrics AccAB and AccBA,

4. Mean deployment time, E(T ).

By definition, Type I error measures how often a particular combination of the statistical test and the

scoring scheme finds a difference when there is none. In contrast, the Type II error probability denotes

how often a particular combination cannot find such a difference when one is present. The AccAB and

AccBA metrics reflect the ratio of the experiments with the correctly detected preference relation (e.g.

each time theA � B preference is correctly detected, theAccAB metric is increased). Finally, the mean

deployment time represents an average time an experiment is deployed for, and directly measures the

efficiency of the online evaluation step of the evaluation pipeline (Chapter 3, Section 3.3). In Chapter 7,

we also used the E( NN0
) metric that represents the mean ratio of the experiment interactions observed

before the experiment was stopped. In this chapter we exclude it, since our experiments in Chapter 7

demonstrated that it is highly correlated with the mean deployment time metric.
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Clearly, the mean deployment time metric is strongly related to the efficiency of the online evaluation

step. A smaller deployment time implies that more online experiments can be deployed in a unit of time,

thus directly indicating a higher efficiency. Like in Chapter 7, our goal in the online evaluation efficiency

optimisation is to achieve the shortest deployment time possible while preserving reasonable levels of

Type I and Type II errors.

8.4.2 Evaluation Protocol

The Team Draft modifications we have studied in Chapter 6 can be split in two groups. The modifica-

tions in the first group use the default uniform interleaving policy, so that each possible team combi-

nation is equally likely, and only the click weights are changed (Section 6.10.1). In the second group,

the interleaving policy is an optimised parameter and, in general, an arbitrary multinomial distribu-

tion subject to the unbiasedness constraint (Section 6.4, requirement R1) can be used as a policy. The

Generalised Team Draft interleaving framework we proposed in Chapter 6 falls in the second group.

Since only a dataset of interleaving experiments that were performed under the uniform policy is

available to us, we split our experimental evaluation in two major steps. In the first step, we perform

an evaluation study using the Team Draft modifications that assume the uniform policy. We discuss

how such an evaluation can be performed in Section 8.4.2.1. In the second step, we study how the

combinations of the sequential tests with Generalised Team Draft compare with the combinations of

the sequential tests with the best-performing scoring scheme from the first step. Since the available

experiments were performed under the uniform policy, a fair comparison of the combinations of Gen-

eralised Team Draft with sequential tests against the combinations with Team Draft modifications that

use uniform policy is a hard task. We discuss how it can be performed in Section 8.4.2.2.

8.4.2.1 Uniform Policy Evaluation

Both sensitive scoring schemes introduced in Chapter 6 (e.g. Generalised Team Draft, Section 6.4) and

sequential testing procedures from Chapter 7 (Section 7.3) can learn their parameters from the data.

For instance, the scoring scheme Lz , introduced by Yue et al. (2010), optimises the scoring scheme

parameters against the labelled (A � B or B � A) dataset of experiments. In turn, the MaxSPRT-I-

AA-N test optimises its stopping threshold on a dataset of A/A experiments so that the required Type I

error level is met. Clearly, this stopping threshold depends on the actual distribution of the interactions

scores defined by the underlying scoring scheme, thus it depends on the scoring scheme learned.

To resolve this dependency, we perform these training procedures sequentially. First, we optimise

the scoring scheme using a training set of interleaving experiments. Next, we adjust the stopping thresh-
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Input: A set of scoring schemes C and a set of statistical tests T to be evaluated; a set of
interleaving experiments EAB and A/A experiments EAA; the required Type I error level
α.

Output: Quality metrics: TypeI and Type II error levels, mean deployment time Time; accuracy
metrics AccAB and AccBA.

A cross-validation loop over the interleaving experiments used to optimise interleaving sensitivity
for EtrainAB ,EtestAB ← CrossV alidate(data = EAB , folds = 15) do

for c ∈ C do

We optimise the scoring scheme c based on the training subset of the experiments EtrainAB

c.train(trainExp)

We split A/A experiments to optimise the stopping thresholds of the statistical tests using
EtrainAA , and to measure the Type I error levels using EtestAA

for EtrainAA ,EtestAA ← CrossV alidate(data = EAA, folds = 15) do
Get the per-interactions scores according to the optimised scoring scheme c
EtrainAA ← c.apply(EtrainAA )
EtestAA ← c.apply(EtestAA )

Adjusting the stopping thresholds on the A/A experiments
for t ∈ T do

t.train(EtrainAA , α)
TypeI, TypeII, AccAB, AccBA, Time← CalcMetrics(EtestAB , EtestAA , t)

end
end

end
return (TypeI, TypeII, AccAB, AccBA, Time) averaged over all cross-validation splits

end
Algorithm 8.1: Evaluating the combination of the interleaving sensitivity optimisation methods and
sequential testing procedures.

old for the sequential test using the distribution of the scores generated by this pre-trained scoring

scheme on a training set of A/A experiments. The hold-out test sets of experiments are then used to

evaluate the performance of the combination of the sequential test and the scoring scheme.

We report this evaluation procedure more formally in Algorithm 8.1. Algorithm 8.1 uses two nested

cross-validation loops. The first cross-validation loop splits the set of experiments EAB in two parts that

are used to train the scoring scheme and to evaluate the Type II, AccAB, AccBA, E(T ) metrics. The

second cross-validation loop splits the set of A/A experiments EAA so that the training part is used to

adjust the stopping threshold, while the second part is used to evaluate the Type I error metric.

8.4.2.2 Non-uniform Policy Evaluation

To illustrate the problems we face when evaluating an interleaving algorithm with a non-uniform policy

using a dataset of the experiments performed under the uniform policy, let us consider the following
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Input: A set of experiment interactions A performed under the uniform policy; the target policy
πn.

Output: Two down-sampled experiments of equal size with the uniform and target policies: Au,
An.

By N we denote the number of interactions in the experiment after the down-sampling. The
pseudo code below guarantees that N is the maximal number such that there are at least πni ·N
interactions for each stratum to sample from
N ← |A|
for i = 1..32 do

Ni ← |Ai|
if πni > 0 then

N ← min(N,Ni/π
n
i )

end
end

The down-sampled experiment with the uniform policy is obtained by simply sampling N
interactions
Au ← UniformSample(from = A, count = N)

The down-sampled experiment with the non-uniform policy is obtained by sampling strata
separately such that the ith strata contains πni ·N interactions

for i = 1..32 do
Ani ← UniformSample(from = Ai, count = πni ·N)

end
An ←

⋃
iAni

Algorithm 8.2: Down-sampling an interleaving experiment. As a result of running this algorithm, two
equal-sized interleaving experiments are generated, one of them contains interactions sampled under
the uniform policy, and the second contains the interactions under the target policy.

example. Assume we have an experiment that contains a set of user interactions A performed under the

uniform policy. Once we want to use these interactions to simulate an experiment with a non-uniform

policy πn that has non-zero probabilities only for two team combinations T1 and T32 (e.g. the policy

obtained by Generalised Team Draft in Section 6.11.3 when trained on the full dataset), we cannot re-

use all sessions where one of the remaining 30 team combinations was demonstrated. In other words,

only 2 · 1
32 of the data can be used, thus effectively reducing the size of each experiment in the dataset

down to 1
16 of its original size. After such a down-sampling, a two-week long experiment will have

less interactions than a single-day experiment without down-sampling. In order to compare Generalised

Team Draft to other Team Draft modifications fairly, we need to ensure that for each of the experiments

used in the evaluation, all scoring schemes (with either a uniform or a non-uniform policy) use the same

number of interactions. We use two different evaluation scenarios to guarantee that.

Down-sampling To illustrate the first scenario, consider the above discussed example of compar-

ing two policies, the uniform policy πu = 1
32 (1, 1, ..., 1)T , and the non-uniform policy πn with two
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non-zero elements, T1 and T32, πn = 1
2 (1, 0, ..., 0, 1)T . Given an experiment52 associated with a set of

interactions A, we can obtain an experiment “performed” under πn by selecting a subset of interactions

An ⊂ A in such a way that this subset has equal number of interactions with team combinations L1 and

L32 (|An1 | = |An32|), and no other team combinations present. Similarly, we can generate an experiment

with the uniform policy by selecting a subset of interactions Au ⊂ A such that each team combina-

tion is equally represented in Au (|Au1 | = |Au2 | = ...). To ensure fair comparison between generated

experiments, we need to guarantee that we obtain experiments of equal number of interactions. This

requirement can be expressed as follows:

|Au| = |An| (8.8)

At the same time, for each of the resulting experiments, the frequency of the team combinations must

follow the corresponding policy:

∀i :
|Aui |
|Au|

= πui ,
|Ani |
|An|

= πni (8.9)

Finally, as we re-use interactions from the original experiment (i.e. Aui ⊂ Ai and Ani ⊂ Ai), for each

possible result page, there must be enough interactions to select from. Hence, the following inequalities

must be satisfied:

∀i : |Aui | = πui · |Au| ≤ |Ai|, |Ani | = πni · |An| ≤ |Ai| (8.10)

Overall, our goal is to select two sets of interactions Au and An from the initial set A such that

(a) the conditions specified by Equations (8.8)-(8.10) are met, (b) Au and An have the highest possible

cardinality, as this allows us to achieve a higher statistical significance of the outcomes of the resulting

experiments.

Algorithm 8.2 describes how these goals can be achieved. In the first lines, Algorithm 8.2 finds

the number of interactions in the sub-sampled experiment with a non-uniform policy, N = |An|. This

number N should satisfy the condition specified by Equation (8.10): for the ith team combination with

the non-zero probability πi there should be enough interactions Ai with ith team combination in the

source experiment to sample from, i.e. |Ai| ≥ N · πi. After N is determined, we proceed to down-

sampling the resulting experiments. To build an experiment with the uniform policy and N interactions,

we uniformly at random select N interactions from the source experiment and obtain a sample Au. The

experiment with a non-uniform policy πn is obtained by samplingN ·πni interactions from each stratum

Ai. Since we selected N such that |Ai| ≥ N · πi for all strata i, it is guaranteed that we always have

sufficient interactions to sample from.
52We assume that during this experiment all possible team combinations were shown to the users.

149



8.4 Experimental Methodology

The resulting evaluation procedure only slightly differs from the one used in the case of uniform

policy that is described in Algorithm 8.1. The only modification is that in the outer cross-validation

loop that splits EAB , Generalised Team Draft is always trained first. The optimised interleaving policy

it finds is then used to down-sample all experiments used further: the testing set EtestAB and all A/A

experiments EAA. Such a process ensures that all combinations are trained and tested using an equal

number of interactions. In order to reduce the additional randomness due to the down-sampling, we

repeat it 16 times for each combinations of splits of EAB and EAA and average the values of the metrics.

Simulation To motivate the second evaluation scenario, remember that at the jth interim stop, both

MaxSPRT-based test and O’Brien & Fleming test make a decision relying on the following statistics:

per-strata mean scores x̄ji , per-strata variances Dj
i [x], and the number of interactions occurred in each

strata N j
i (Section 8.2, Equations (8.3)-(8.7)).

Suppose that we are comparing Generalised Team Draft to another scoring scheme that assumes

the uniform policy, both in combination with the same sequential test. Under the second scenario, when

calculating the test statistics for the sequential tests (Equations (8.7) & (8.6)), we use the per-strata mean

scores and the per-strata variances calculated using the full experimental data (i.e. they are equal for

all interim stops). However, we vary the number of sessions occurred (N j =
∑
iN

j
i ) and set it to be

equal for the compared interleaving methods. At each interim stop, Nj is set to the same value as in

the down-sampling scenario, by running Algorithm 8.2. In other words, in the simulation scenario, for

each scoring scheme we fix the mean and variance to their converged values and only vary the number

of interactions observed before the current stop.

On one hand, such a simulation favours the scoring scheme with the uniform policy, as its mean

and covariance matrix are calculated using a larger amount of data. On the other hand, assuming that

the means and the variances of both scoring schemes converge at the end of the experiment, such an

evaluation allows us to measure the improvements in the sensitivity in terms of the stopping times under

a particular sequential test and addresses the problems caused by down-sampling.

Overall, we note that such a measurement is clearly a simulation as it removes some intrinsic noise

from the test statistics obtained on early stops and uses information from the “future” of the experiment.

In this scenario, we use a modification of the MaxSPRT-I-AA-N test that is trained by using Monte-

Carlo simulations, very similar to the OBF-I test (Section 7.3.1), as training the stopping thresholds of

MaxSPRT-I-AA-N on such simulated data is not reasonable. We refer to this test as MaxSPRT-I-MC-N.

To summarise, in this section, we discussed two approaches to compare Generalised Team Draft

with a non-uniform policy against other Team Draft modifications that assume the uniform interleaving

policy, in combinations with sequential testing procedures. The first approach relies on down-sampling
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each experiment in the dataset into two smaller experiments with equal number of interactions, such

that one of them has the uniform distribution of the team combinations, and the second one has the

distribution specified by Generalised Team Draft. Under the second approach, we set the mean and the

variance of the interaction scores for both schemes, and vary the number of interactions N j observed

before the jth stop of the sequential test. This number is equal to the number of interactions we would

obtain before the jth stop after down-sampling.

8.5 Results

In this section, we adopt the notation used before in Chapter 6 (Section 6.11) and in Chapter 7 (Sec-

tion 7.6). By Binary, Linear, and Deduped we denote the heuristic interleaving scoring schemes that are

studied in Chapter 6 and are defined in Section 6.10.1. By Lz we denote the machine-learned click scor-

ing scheme that optimises z-score (Yue et al., 2010). This scoring scheme was used also in Chapter 6

and defined in Section 6.10.1.

Similarly, Fz denotes the Generalised Team Draft variant that optimises z-score. In contrast to

Generalised Team Draft, Lz assumes a uniform interleaving policy and does not use stratification. While

training both Lz and Fz we use the 24-dimensional click feature representation as used in Chapter 6

(Table 6.3, page 110).

The OBF-I and MaxSPRT-I-AA-N sequential tests were firstly introduced in Sections 7.3.1 and

7.3.2, respectively. Their stratified modifications, which can be used in combination with Generalised

Team Draft are described in Section 8.2. Throughout this section, we use the same parameters for the

sequential tests in Chapter 7. We set the required Type I error level to α = 0.05. All sequential tests are

allowed to stop experiments every hour, so that up to 7 · 24 = 168 stops are performed.

We split the discussion of the experimental results in two parts. In Section 8.5.1 we discuss our ex-

periments under the uniform policy, and these experiments are performed according to the methodology

discussed in Section 8.4.2.1. In Section 8.5.2, we proceed to the experiments with a non-uniform policy,

as described in Section 8.4.2.2.

8.5.1 Uniform Policy

In Table 8.2 we report the evaluation results for the interleaving scoring schemes that assume the uniform

Team Draft policy. First, we notice that the measured Type I errors are roughly equal to the one we set

(0.05) for most of the used combinations of the scoring schemes and sequential tests. Next, we observe

that the Type II errors are considerably reduced when more sensitive schemes are used (e.g. Type II

error of the MaxSPRT-I-AA-N test is reduced from 0.13 to 0.02 when the Linear scheme is replaced by
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Table 8.2: The quality metrics of the scoring scheme-test combinations that assume the uniform inter-
leaving policy, measured on the dataset of interleaving experiments. 4 denotes a result that outperforms
others in the same column (Wilcoxon test, p < 0.01). In bold are the best metric values in each column.

Scoring scheme Test Type I Type II AccB�A AccA�B E(T ), days

Linear
OBF-I 0.06 0.04 0.92 0.97 2.85
MaxSPRT-I-AA-N 0.06 0.13 0.88 0.81 2.43

Binary
OBF-I 0.08 0.03 0.95 0.97 2.70
MaxSPRT-I-AA-N 0.06 0.09 0.91 0.86 2.07

Deduped
OBF-I 0.08 0.00 0.97 0.98 1.44
MaxSPRT-I-AA-N 0.06 0.01 0.97 0.97 0.85

Lz
OBF-I 0.06 0.00 0.95 0.98 1.40
MaxSPRT-I-AA-N 0.06 0.02 0.95 0.98 0.834

the Lz scoring scheme). Generally, we notice that the OBF-I test has lower Type II errors and higher

accuracy than MaxSPRT-I-A-NN for all considered scoring schemes. However, this effect is achieved at

the expense of longer deployment times. Indeed, for all the scoring schemes used, the MaxSPRT-based

test stops earlier than OBF-I. For instance, when the Linear scoring scheme is used, MaxSPRT-I-AA-N

stops, on average, after 2.43 days, while OBF-I stops after 2.85 days. Similarly, when Deduped scheme

is used, MaxSPRT-I-AA-N stops after 0.85 days when OBF-I stops after 1.44 days.

From our earlier results in Table 6.5 (Section 6.11, page 115), it can be seen that the following

ordering w.r.t. the scoring scheme sensitivity can be established: Linear ≺ Binary ≺ Deduped ≺ Lz .

From Table 8.2 we observe the same ordering. Indeed, for any statistical test used, the experiments are

deployed for the longest time when the Linear scoring scheme is used. Due to the higher sensitivity,

experiments are stopped earlier if Binary is used. The fastest stopping times for both the OBF-I and

MaxSPRT-I-AA-N tests are observed in the case of Lz , and these times are slightly smaller than the

times observed for the Deduped scoring scheme. This is in agreement with Table 6.5 where the obtained

sensitivity values for Lz and Deduped are close (mean z-scores are 2.33 and 2.36 for Deduped and Lz ,

respectively.)

Interestingly, the results reported in Table 8.2 for the combinations of the sequential tests with the

Binary scheme are close to those reported in Chapter 7 (Table 7.1, page 136), where the same scheme

is used. Indeed, the mean deployment times in the case of the OBF-I test reported are 2.70 (Table 8.2)

and 2.66 (Table 7.1). The mean deployment times for the MaxSPRT-I-AA-N test are 2.07 (Table 8.2)
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and 1.82 (Table 7.1). The observed differences are due to the variations in the experimental set-ups used

in this chapter and in Chapter 7: (a) unlike Chapter 7, in this chapter interactions without clicks are not

ignored, as this is incorrect in the case of interleaving with stratification, and (b) we use a slightly larger

dataset in this chapter.

Overall, the results we obtained are in line with the experiments we report in our sensitivity op-

timisation study in Section 6.11 (Table 6.5, page 115) and our sequential testing study in Section 7.6

(Table 7.1, page 136). Indeed, we observed that MaxSPRT-I-AA-N exhibits a shorter deployment time,

and more sensitive scoring schemes reduce the deployment times further. Moreover, the shortest mean

deployment time is obtained when the most efficient MaxSPRT-I-AA-N test is used in combination

with the most sensitive baseline scoring scheme, Lz , and allows to stop the interleaving experiments in

our dataset after 0.83 days (20 hours), which corresponds to a 88% reduction in the deployment time

in comparison with the standard week-long period. These observations allow us to answer RQ8.1 and

RQ8.2. Indeed, with a sequential test fixed, increasing interleaving sensitivity reduces the mean de-

ployment time. Similarly, with a scoring scheme fixed, MaxSPRT-I-AA-N achieves shorter deployment

times than OBF-I.

8.5.2 Non-uniform Policy

Simulation In Table 8.3 we report the results we obtained in the evaluation experiments based on the

simulation scenario (Section 8.4.2.2). From Table 8.3 we firstly notice that for all considered combina-

tions of the Team Draft modifications and sequential tests, the Type I errors are well within the target

upper bound of 0.05. Next, generally the Type II errors are higher than in previous experiments using the

full experimental data (Table 8.2). In particular, the lowest level of 0.13 is achieved by the combination

of Lz and Fz with the MaxSPRT-I-MC-N test and it is considerably higher than that in Table 8.3, where

the combination of OBF-I and Lz has no Type II errors. This difference is caused by the decrease of the

number of sessions.

Further, we observe that in Table 8.3 the accuracy metrics AccBA and AccAB have close values for all

the considered combinations. In contrast, the expected deployment time metric E(T ) changes consider-

ably. Indeed, for each of the considered scoring schemes, the OBF-I test demonstrates markedly longer

deployment times than MaxSPRT-I-MC-N, with differences of order 1.2 days (approximately 30 hours).

On the other hand, for both OBF-I and MaxSPRT-I-MC-N using a more sensitive interleaving modifi-

cation results in a lower deployment time. For instance, in the case of the OBF-I test, the deployment

times for the Lz and Fz Team Draft modifications are equal to 3.75, and 3.61, respectively. The smallest

value E(T ) among the combinations with OBF-I is achieved in combination with Fz (p < 0.01). A

153



8.5 Results

Table 8.3: The quality metrics of the considered scoring scheme/test combinations, measured on the
dataset of interleaving experiments. These results are obtained by running the simulation-based evalu-
ation scenario (Section 8.4). 4 denotes a result that outperforms others in the same column (Wilcoxon
test, p < 0.05). In bold are the best metric values in each column.

Scoring scheme Test Type I Type II AccB�A AccA�B E(T ), days

Lz
OBF-I 0.00 0.15 0.88 0.82 3.75
MaxSPRT-I-MC-N 0.00 0.13 0.88 0.87 2.48

Fz
OBF-I 0.03 0.18 0.86 0.87 3.61
MaxSPRT-I-MC-N 0.05 0.13 0.86 0.87 2.374

similar behaviour is observed for the MaxSPRT-I-MC-N test. The smallest value of E(T ) is achieved

by the combination of Fz and MaxSPRT-I-MC-N (p < 0.05, Wilcoxon test).

Overall, we observe the same behaviour as in Section 8.5.1: with a sequential test fixed, more sensi-

tive scoring schemes achieve shorter mean deployment times; with a scoring scheme fixed, MaxSPRT-

I-AA-N stops the experiments earlier than OBF-I. These two observations further answer RQ8.1 and

RQ8.2.

Down-sampling In Table 8.4 we report the results for the experiments with the evaluation based on

down-sampling, as discussed in Section 8.4.2.2. To reduce the effects of smaller datasets and noise due

to sampling, we experiment in a scenario with daily stops, so that each test performs 7 interim stops.

This allows a sufficient number of observations to be collected before the first stop after the down-

sampling. Further, due to down-sampling, one of the long-term A/A experiments we use ceases to have

reasonable amount of data, so we exclude it. To alleviate this, we use all the remaining 54 week-long

A/A tests to train the stopping thresholds, and do not measure Type I errors.53

Again, from Table 8.4 we observe that the typical stopping times differ from the ones reported in

Table 8.2, the main cause being that each experiment is down-sampled and has up to 16 times less data.

Further, we notice that for both scoring schemes Lz and Fz , the MaxSPRT-I-AA-N test stops ex-

periments earlier than OBF-I and these differences are statistically significant for both scoring schemes

(p < 0.01, Wilcoxon test). This is in agreement with the results obtained in Table 8.2. For instance, in

the case of the Lz scoring, OBF-I terminates an experiment after 4.16 days on average, while MaxSPRT-

I-AA-N stops after 3.45 days.

53An alternative approach would be to increase the number of cross-validation folds, so that we would have enough A/A data
to adjust the stopping thresholds and to measure Type I errors. However, the down-sampling set-up is extremely computationally
intensive and takes over a week in a highly parallel implementation. Hence, running it in e.g. 25-fold cross-validation loop would
take several months. At the same time, across numerous experiments in Chapter 7 and in this section, we observed that Type I
errors are always below or close to the required level α. Thus, we decided not to measure it in the down-sampling scenario.
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Table 8.4: The quality metrics of the considered scoring scheme/test combinations, measured on the
dataset of interleaving experiments. These results are obtained by running the down-sampling scenario
(Section 8.4). In bold are the best metric values in each column. 4 denotes a result that outperforms
others in the same column (Wilcoxon test, p < 0.05)

Scoring scheme Test Type II AccB�A AccA�B E(T ), days

Lz
OBF-I 0.18 0.78 0.83 4.16
MaxSPRT-I-AA-N 0.02 0.79 0.80 3.46

Fz
OBF-I 0.14 0.864 0.86 3.91
MaxSPRT-I-AA-N 0.02 0.78 0.80 3.38

At the same time, both MaxSPRT-I-AA-N and OBF-I stop the experiments earlier when Fz is used

in comparison with the Lz scoring. In case of the OBF-I test, the deployment time is reduced from

4.16 days to 3.91 (6 hour reduction), and this difference is statistically significant (p < 0.05, Wilcoxon

test). In the case of MaxSPRT-I-AA-N, the improvement is from 3.46 days to 3.38 (a reduction of

approximately 2 hours). This observation is in line with our findings in Table 8.3, where we observed

that Fz tends to stop earlier.

Overall, our observations from the experiments in the down-sampling scenario allow us to answer

the stated research questions. With a sequential test fixed, using a more sensitive interleaving scheme

(Generalised Team Draft Fz vs. Lz) results in a shorter deployment time (RQ8.1). Similarly, when

the scoring scheme is fixed, by using MaxSPRT-I-AA-N instead of OBF-I we increase the interleaving

efficiency (RQ8.2). Moreover, these observations hold in all evaluation experiments in this section.

Finally, now we are also able to answer RQ8.3. In the experiments in Section 8.5.1 (Table 8.2),

we observed that the combination of Lz with MaxSPRT-I-AA-N achieves the shortest deployment time

(0.83 days) among the combinations with the uniform policy. In our two following comparisons (Ta-

bles 8.3 and 8.4), we observed that the Generalised Team Draft combined with the MaxSPRT-I-based

test demonstrates deployment times shorter than those of Lz combined with the same test. This answer

the last research question RQ8.3: the combination of Generalised Team Draft and MaxSPRT-based test

achieves the highest efficiency.

8.6 Conclusions

In this chapter our goal was to investigate if our previously proposed approaches to improve interleaving

efficiency can be combined. The core of the sensitivity optimisation approach is the joint data-driven
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optimisation of the interleaving scoring scheme and the interleaving policy. This approach is represented

by our proposed Generalised Team Draft interleaving and was discussed in Chapter 6. In the second

approach, we applied sequential tests that are able to stop the interleaving experiments early, once the

observed data is sufficient to make a reliable outcome. This approach was discussed in Chapter 7.

In order to combine these two approaches, we started by adapting the sequential tests to the stratified

outcome estimators used by Generalised Team Draft. In the next step, we investigated the efficiency of

the four interleaving scoring schemes that assume the uniform interleaving policy in combination with

the sequential testing procedures. Next, we selected the most sensitive scoring scheme, and compared

it to Generalised Team Draft, varying the sequential test used. Since Generalised Team Draft generally

uses a non-uniform policy, directly comparing it to the scoring schemes with the uniform interleav-

ing policy is a hard task, as we only have a dataset of uniform-policy experiments. To perform this

comparison, we followed two evaluation scenarios: simulation-based and down-sampling.

From our experiments we observed that the MaxSPRT-I-AA-N test, on average, stops the interleav-

ing experiments earlier than the OBF-I test for all scoring schemes considered. By using MaxSPRT-I-

AA-N in combination with the most sensitive scoring scheme with the uniform policy, proposed by Yue

et al. (2010), the mean deployment time over our set of experiments can be reduced to 20 hours (Ta-

ble 8.2). This corresponds to a 88% reduction in the deployment time in comparison with the standard

7-day scenario.

In further experiments we demonstrated that Generalised Team Draft achieves a shorter mean de-

ployment time in combinations with both OBF-I and the MaxSPRT-based test than the machine-learned

scoring scheme from (Yue et al., 2010). Among the combinations of Generalised Team Draft and the

machine-learned scoring scheme from (Yue et al., 2010) with the OBF- and MaxSPRT-based tests, we

observed that the combination of Generalised Team Draft and MaxSPRT-based tests achieved the short-

est deployment time. This observation holds both in the simulation (Table 8.3, MaxSPRT-I-AA-N and

Generalised Team Draft 2.37 days vs. MaxSPRT-I-AA-N and Lz 2.48 days, the second-based perfor-

mance) and in the down-sampling (Table 8.4, MaxSPRT-I-AA-N and Generalised Team Draft 3.59 days

vs. MaxSPRT-I-AA-N and Lz 3.71 days, the second-best performance) scenarios.

Overall, our study allowed to answer the question stated in Section 8.1. Indeed, we observed that the

sensitivity optimisation and the sequential testing approaches can be effectively combined and produce

a cumulative improvement in the evaluation efficiency. In this chapter we demonstrated that by relying

on the historical interaction data recorded in online experiments, we can simultaneously optimise the

interleaving parameters using the Generalised Team Draft framework (Chapter 6), adjust the stopping

thresholds for the sequential tests (Chapter 7) and achieve considerable improvements in the online
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evaluation efficiency. Hence, these results support the statement of this thesis (Section 1.3). Our work

in this chapter closes the last point of the roadmap for improving the efficiency of the evaluation pipeline

that we outlined in Section 3.5. In the next chapter, we conclude this thesis.
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Chapter 9

Conclusions and Future Work

With the growth in the scale of operation of the modern commercial search engines and the rise of the

data-centric evaluation culture (Tang et al., 2010), requirements for search engine evaluation pipelines

evolved considerably over the past years. In particular, efficiency and scalability are becoming increas-

ingly important (Kohavi et al., 2009; Tang et al., 2010), with the number of performed online evaluation

experiments quickly rising over time (Kohavi et al., 2013).

In this thesis, we studied how the evaluation pipeline for a web search engine can be improved

by re-using historical interaction data that is routinely collected by search engines. In particular, we

split a typical evaluation pipeline into three consecutive steps: offline evaluation, online experiment

scheduling, and online evaluation. After that we discussed how each of these steps can be improved.

Our goal in improving the offline evaluation step (Chapter 4) was to develop offline evaluation

methods that are highly aligned with online user satisfaction indicators. Such an alignment would result

in less experiments being deployed and rejected by the later steps of the evaluation pipeline. In order

to achieve this, we proposed offline user model-based evaluation metrics for query auto-completion

mechanisms. We proposed to train the underlying models against datasets of historical interaction data,

thus allowing the models to accurately reflect the online user behaviour.

In Chapter 5, we discussed how the online scheduling step can be improved, so that more successful

experiments are deployed in a unit of time. Clearly, this goal has a direct connection to the efficiency of

the evaluation pipeline. Indeed, the optimised scheduling prioritises the promising experiments, so that

the limited resource of user interactions is spent strategically.

Further, in Chapters 6, 7, and 8, we concentrated on improving the efficiency of the online evaluation

step. We approached this task from two distinct perspectives. Firstly, we worked on increasing the sen-

sitivity of online evaluation experiments and extending their applicability to new domains. Specifically,
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we proposed the Generalised Team Draft interleaving framework (Chapter 6) that increases the sensitiv-

ity of interleaving experiments by a joint optimisation of the interleaving parameters. Generalised Team

Draft also extends the applicability of the sensitive interleaving methods to domains with grid-based

representation, e.g. image search. Secondly, we discussed how sequential statistical tests (Chapter 7)

can be used to increase the efficiency of the online evaluation by stopping online experiments when the

collected data is sufficient to make a reliable conclusion.

Throughout this work, we thoroughly evaluated each of the improved steps. Moreover, we empiri-

cally demonstrated that the improvements of the last two steps (interleaving sensitivity and sequential

testing) can be combined together (Chapter 8). As a result, even higher gains in the interleaving effi-

ciency can be achieved.

In the remainder of this chapter we review the contributions of this thesis in Section 9.1 and discuss

its conclusions in Section 9.2. We conclude this chapter in Section 9.3 with a discussion of possible

directions of future work that can stem from this thesis.

9.1 Summary of Contributions

The main contributions of this thesis are the following:

A family of offline query auto-completion evaluation metrics In Chapter 4, we concentrated on

improving the offline evaluation step for query auto-completion (QAC) mechanisms. We proposed a

family of offline metrics for the evaluation of the query auto-completion mechanisms, Saved, and two

metrics of this family, pSaved and eSaved. The pSaved metric predicts the probability of the user using

the query auto-completions mechanism, and eSaved reflects the expected ratio of the keypresses the

QAC mechanism saves the user from typing. We experimented with instantiations of these metrics

that are based on the model of the user interactions proposed in Section 4.3. This model is trained on

historical interaction data and aims to reflect the patterns of the user’s QAC examination behaviour.

Optimised scheduling of online experiments In Chapter 5, we stated the problem of the optimal

scheduling of the online experiments. Next, we introduced a greedy scheduling algorithm that ranks

experiments according to their predicted probability of success. This algorithm allowed us to reduce

the scheduling problem to a learning-to-rank problem. We experimented with a diverse set of features

that can be used to train the learning-to-rank model using historical experimentation data, and evalu-

ated several scheduling strategies based on simple features, e.g. effectiveness metrics and exploratory

deployment outcomes.
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Sensitive and general interleaving framework In Chapter 6, we addressed an important problem

of improving the interleaving sensitivity. We started with introducing a user model-based approach for

increasing the interleaving sensitivity on a per-query level (Section 6.3). After discussing the limitations

of this initial approach, we proposed the Generalised Team Draft interleaving framework that overcomes

these limitations and generalises the existing research in two aspects (Section 6.4). First, it achieves an

increased sensitivity by performing a joint optimisation of the click credit assignment function and

the interleaving policy on the historical interaction data. Second, it is formulated to be general with

respect to the manner the results are presented, thus it can be applied in domains with a grid-based

representation, such as image search. A part of this generalisation is a new unbiasedness criterion, that

can be applied for grid-based domains and machine-learned click scoring schemes. Finally, we proposed

to use a stratified estimate of the experiment outcome, as it both simplifies the optimisation problem and

increases sensitivity in some cases (Section 6.6).

Sequential tests for online evaluation In Chapter 7, we continued to work on the efficiency of

the online experiments, as it is the most time-consuming step of the evaluation pipeline (Chapter 3).

In particular, we studied how sequential testing procedures can be adapted to reduce the time online

evaluation experiments require. These procedures are designed so that they can stop online experiments

when the observed data is sufficient to make a reliable conclusion about the experiment’s outcome. In

Section 7.3 we proposed a modification of the O’Brien & Fleming group sequential test (OBF) that can

be applied to an interleaving evaluation. Further, we described the MaxSPRT-based tests that adjust

their stopping thresholds w.r.t. to a dataset of historical interaction data obtained from A/A experiments.

Combination of the sensitivity optimisation and sequential testing methods In Chapter 8, we

investigated how the approaches to improve the interleaving efficiency we discussed earlier (sensitivity

optimisation, Chapter 6, and sequential testing, Chapter 7) can be combined. In order to combine these

two approaches, we started by adapting the sequential tests to the stratified outcome estimators used

by Generalised Team Draft. In the next step, we investigated the efficiency of the interleaving scoring

schemes that assume the uniform interleaving policy in combination with our proposed sequential test-

ing procedures. Next, we selected the most sensitive scoring scheme, and compared it to Generalised

Team Draft, by varying the sequential test used.

9.2 Summary of Conclusions

In this section, we summarise the conclusions of the individual chapters of this thesis. These conclusions

support the statement of the thesis as formulated in Section 1.3 and demonstrate that the historical
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interaction data can be re-used to improve each of the individual steps of the evaluation pipeline.

Offline evaluation metrics for QAC In Chapter 4.9.2 we compared our proposed pSaved and

eSaved metrics for the query auto-completion evaluation to the existing query auto-completion metrics.

We experimented in two evaluation scenarios. We evaluated the weighted correlation of the proposed

metrics with the online query auto-completion click-through rate. In the second scenario, we used his-

torical interaction data to simulate A/B tests.

Our experiments in Section 4.9 demonstrated that our proposed metrics achieve significantly higher

correlation with the online success rate metric than the existing offline metrics. In particular, the pSaved

metric instantiated with the prefix-independent model of user examination behaviour (f il , Section 4.3)

achieved the weighted correlation level of 0.904 with the success rate indicator (Table 4.4). In the

series of A/B test simulation experiments reported in Table 4.5, the differences in the pSaved metric

combined with the prefix length-dependent examination function fdl achieved the highest correlation

with the differences in the success rate (0.820).

Optimised scheduling of online experiments Our findings in Section 5.7 suggest that our pro-

posed machine-learned schedule optimisation algorithms outperform the “natural” (randomised) sched-

ule when the number of the successful experiments performed under a limited number of available

user interactions is measured. More specifically, we demonstrated that an experiment scheduling algo-

rithm based on the gradient boosted regression trees (PGBM) that combines various features achieved

the highest scheduling quality. Indeed, PGBM achieves an AUC of 0.86 (Table 5.2) in discriminating

successful interleaving experiments from unsuccessful ones. PGBM outperforms other algorithms in

the task of deploying the maximum number of successful experiments under the contained number of

interactions (Table 5.3).

Our study also showed that a simple scheduler that ranks experiments according to their ranking

effectiveness can achieve a smaller, but still a marked improvement over the “natural” random baseline.

Interestingly, we observed that the scheduling algorithm that ranks interleaving experiments according to

the outcomes of the preliminary short deployments can improve the scheduling efficiency dramatically

in comparison with the natural stochastic ordering of the experiment queue (e.g. 80% improvement

when 5% of the experimental budged is used for the exploration, left part of Table 5.3).

Generalised Team Draft framework In our evaluation study in Section 6.11, we compared our

proposed Generalised Team Draft interleaving framework to the existing state-of-the-art baselines. This

study was performed in both the document and image search domains. In this study, we demonstrated
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that our proposed framework achieves the highest sensitivity on both datasets, outperforming the heuris-

tic (Chapelle et al., 2012) and machine-learned (Yue et al., 2010) baselines.

In particular, our experiments demonstrated that on the document search interleaving dataset, Gen-

eralised Team Draft achieves the median relative z-score of 2.15 while the best performing baseline

proposed by Yue et al. (2010) has the median relative z-score of 2.09 (Table 6.5). Similarly, Generalised

Team Draft proved to be more sensitive in our experiments on the image search dataset (Table 6.8, me-

dian relative z-score 1.18). Furthermore, the stratified outcome estimator that we proposed allowed us to

increase the sensitivity of the baseline scoring schemes in some cases. For instance, the Binary scoring

scheme increased its median relative z-score from 0.98 to 1.04 (Table 6.5). However, in the case of the

Deduped baseline scoring scheme the stratification did not increase sensitivity.

Sequential testing for online experimentation In our evaluation study we experimented with se-

quential testing methods in the context of interleaving experimentation (Section 7.6.1).

Our study demonstrated that by using our proposed sequential tests, a marked reduction in the dura-

tion of the interleaving experiments can be achieved, without significant losses in other metrics, such as

the Type I and Type II error probabilities. Further, we observed that the MaxSPRT-based tests demon-

strated the shortest mean deployment times, in comparison to the OBF-based tests. From our results it

follows that by training the stopping thresholds on a dataset of A/A comparisons we can improve the

performance of the MaxSPRT-based tests.

Specifically, from our experimental study in Section 7.6, we observed that the MaxSPRT-based

tests that adjust their stopping thresholds using A/A experiments, MaxSPRT-I-AA and MaxSPRT-I-

AA-N, achieve the shortest mean deployment time (1.82 days, 74% improvement over the typical 7-day

scenario, Table 7.1) without significantly degrading other metrics.

Combining sensitivity optimisation and sequential testing Our study in Chapter 8 demonstrated

that by combining the interleaving sensitivity optimisation (Chapter 6) and sequential testing (Chap-

ter 7), one can achieve cumulative gains in the interleaving efficiency.

From our experimental results in Section 8.5, we firstly observed that by using increasingly sen-

sitive interleaving scoring schemes with a sequential test fixed, one can achieve progressively higher

efficiency. Similarly, for each of the considered scoring schemes, the MaxSPRT-based tests demon-

strated shorter mean deployment times than the OBF-I test. In particular, among various combinations

with the interleaving scoring schemes that use the uniform interleaving policy, the combination of the

MaxSPRT-I-AA-N test and the machine-learned scoring scheme Lz (Yue et al., 2010) achieves the high-
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est efficiency. This combination, on average, stops the experiments after 20 hours (Table 8.2), which

corresponds to a 88% reduction in the deployment time in comparison with the standard 7-day scenario.

To further compare Lz to Generalised Team Draft, we used two evaluation scenarios, which are

required as Generalised Team Draft uses a non-uniform interleaving policy, while only a dataset with the

uniform-policy experiments is available to us. In both scenarios, Generalised Team Draft outperforms

Lz when both combinations with the OBF-I and MaxSPRT-based tests are considered (Table 8.3 and

8.4). For instance, in the down-sampling scenario reported in Table 8.4, the combination of Generalised

Team Draft with OBF-I achieves the mean deployment time of 3.91 days, while the combination of Lz

and OBF-I stops the experiments after 4.16 days.

Summary Overall, our experiments support the statement of this thesis. Indeed, by using historical

interaction data, (a) we increased the agreement between offline and online metrics, so that less unsuc-

cessful experiments would proceed to the later evaluation stages, (b) we optimised the scheduling of the

online experiments, so that under limited budget only the likely successful online experiments would

be deployed, (c) we improved the sensitivity of the interleaving experiments, so that each experiment

can be deployed for a shorter time, and (d) we optimised stopping thresholds of the sequential testing

procedures, so that interleaving experiment are stopped earlier, on average. Finally, we have demon-

strated that improvements in interleaving sensitivity and advanced sequential testing add up so that the

efficiency of the pipeline as a whole is increased. Each of these improvements results in an increased

efficiency of the evaluation pipeline as a whole, allowing search engines to progress at a higher rate.

9.3 Directions for Future Work

The web search evaluation as an area of research has both a rich history and a bright future. Our work in

this thesis is merely an attempt to address some of the existing gaps. Further in this section, we discuss

some of the future research directions that remain open and can build upon our work.

Interleaving and A/B testing In this thesis, we adopted a very practical, data-driven approach to

improving interleaving, primarily by optimising the scoring scheme and interleaving policy. A major

downside of this approach is that it does not allow us to get in-depth insights about the inner structure of

interleaving as a method, its trade-offs and limitations. For instance, it is clear that by inserting results

obtained from an experimental ranker we might degrade the users’ search experience. How can we

reduce this risk, and how could that affect the interleaving sensitivity? How can we control the trade-off

between the sensitivity and this risk, and how one can define an optimum point?
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Moreover, what are the ground-truth decisions newly developed interleaving methods should agree

with? It is known that click-based interleaving scores can be biased (Hofmann, Behr & Radlinski,

2012) and some effort has been applied to make the interleaving outcomes consistent with interaction-

level A/B test metrics (Schuth et al., 2015). However, the interaction-level metrics can contradict each

other, they are not always interpretable, and it is not clear if they can be considered as the ultimate

ground-truth. Hence, a better ground-truth is needed.

We believe that one of the possible approaches to understand interleaving better is to re-design

interleaving from the beginning, based on an axiomatic approach. Assuming that the users behave

according to a particular click model, that we fix a particular level of the risk we are willing to accept,

and specify the ground-truth metric — what interleaving method would we come up with? Radlinski &

Craswell (2013) made an important step in that direction and it was further developed in our Generalised

Team Draft framework (Chapter 6), but we believe there is much more to do. The central idea of this

thesis — re-using the historical interaction data to improve the evaluation methods — can play an

important role in evaluating such an interleaving method and optimising its parameters.

Another important direction of research, that can build on top of our work and that of Yue et al.

(2010), is the sensitive machine-learned online metrics. So far we only scratched the surface of this

direction in Chapter 6. Indeed, the nature of the user’s interaction with the search engine is intrinsically

sequential and multi-faceted. To build a powerful online evaluation metric, one would need to model

not only the user’s clicks, but also the mouse movements, interactions with query auto-completions,

queries, etc. This model might analyse the user’s behaviour spanning over numerous sessions and even

the whole history of the user’s interactions with the search engine. However, how can one guarantee the

unbiasedness of such a metric, in interleaving and A/B tests? One the other hand, if one is able to build

such a rich model of the user’s online behaviour, in a plausible scenario it can also be used to simulate

users offline and form a foundation to an offline quality metric. These questions might be approached

by using sequence learners such as recurrent neural networks in the spirit of Borisov et al. (2016), but

this direction clearly needs a further in-depth investigation.

Pipeline optimisation In this thesis, we optimised the steps of the evaluation pipeline independently,

optimising each step while assuming that others are fixed. However, the steps are inter-dependent. To

illustrate this, recall that the online evaluation step is performed for the ranking changes that (a) are

optimised against an offline evaluation metric, and (b) do not decrease the ranking quality in an offline

evaluation. Clearly, this filtering determines the space of possible ranking changes that are evaluated

in the later stages, in particular during the online evaluation step. For instance, if the offline evaluation
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metric or the learning-to-rank target starts to favour attractive, but possibly not relevant results, this

would affect the optimal online evaluation metric, as it would need to account for this change.

Ideally, all the steps of the pipeline need to be optimised simultaneously, in a single optimisation

process with the aim to increase efficiency and reduce the number of errors. In some sense, this thesis

discusses a “coordinate-wise descent” in the space of “parameters” of the evaluation pipeline, which is

not necessary the ideal approach. However, such a task appears to be tremendously involved, particularly

from the data collection perspective and represents a significant challenge.

Overall, a significant number of important research questions remain open in the area of web search

evaluation and we believe they should be tackled in future studies, possibly relying on our work in this

thesis as a foundation.
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Järvelin, K. & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Trans-

actions on Information Systems. 2.2, 2.2.1, 3.2, 24, 5.4.2

Joachims, T. (2002). Optimizing search engines using clickthrough data. In ‘Proceedings of the 8th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining’. 2.1, 2.3.2, 2.5,

5.4.3, 6.2

Joachims, T. (2003). Evaluating retrieval performance using clickthrough data. In ‘Text Mining’. Phys-

ica/Springer Verlag. 1.1, 2.5, 6.2, 6.6

Joachims, T., Granka, L., Pan, B., Hembrooke, H. & Gay, G. (2005). Accurately interpreting click-

through data as implicit feedback. In ‘Proceedings of the 28th International ACM SIGIR Conference

on Research and Development in Information Retrieval’. 2.5

Johari, R., Pekelis, L. & Walsh, D. J. (2015). Always valid inference: Bringing sequential analysis to

A/B testing. arXiv preprint arXiv:1512.04922. 7.2

Jones, E., Oliphant, T. & Peterson, P. (2016). SciPy: Open source scientific tools for Python, 2001–.

URL http://www. scipy. org. 6.7

Kantor, P. B. & Voorhees, E. M. (1996). Report on the TREC-5 Confusion Track. In ‘Proceedings of

the 5th Text REtrieval Conference’. 2.2.1

170



BIBLIOGRAPHY

Kent, A., Berry, M. M., Luehrs, F. U. & Perry, J. W. (1955). Machine literature searching viii. oper-

ational criteria for designing information retrieval systems. American documentation 6(2), 93–101.

(document), 2.1, 2.2.1

Kharitonov, E. (2014). Improving offline and online web search evaluation by modelling the user be-

haviour. In ‘Proceedings of the 37th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval’. 1.5

Kharitonov, E. & Serdyukov, P. (2012). Demographic context in web search re-ranking. In ‘Proceedings

of the 21st ACM International Conference on Information and Knowledge Management’. 1.1

Kharitonov, E., Macdonald, C., Serdyukov, P. & Ounis, I. (2013a). Intent models for contextualising

and diversifying query suggestions. In ‘Proceedings of the 22nd ACM International Conference on

Information and Knowledge Management’. 21, 4.5

Kharitonov, E., Macdonald, C., Serdyukov, P. & Ounis, I. (2013b). User model-based metrics for offline

query suggestion evaluation. In ‘Proceedings of the 36th International ACM SIGIR Conference on

Research and Development in Information Retrieval’. 1.5, 4.1, 4.2.2

Kharitonov, E., Macdonald, C., Serdyukov, P. & Ounis, I. (2013c). Using historical click data to increase

interleaving sensitivity. In ‘Proceedings of the 22nd ACM International Conference on Information

and Knowledge Management’. 1.5, 6.1, 44

Kharitonov, E., Macdonald, C., Serdyukov, P. & Ounis, I. (2015a). Generalized Team Draft interleaving.

In ‘Proceedings of the 24th ACM International Conference on Information and Knowledge Manage-

ment’. 1.5, 6.1

Kharitonov, E., Macdonald, C., Serdyukov, P. & Ounis, I. (2015b). Optimised scheduling of online

experiments. In ‘Proceedings of the 38th International ACM SIGIR Conference on Research and

Development in Information Retrieval’. 1.5, 5.1

Kharitonov, E., Vorobyev, A., Macdonald, C., Serdyukov, P. & Ounis, I. (2015). Sequential testing for

early stopping of online experiments. In ‘Proceedings of the 38th International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval’. 1.5, 7.1

Kohavi, R. (2012). Online controlled experiments: introduction, learnings, and humbling statistics. In

‘Proceedings of the 6th ACM Conference on Recommender systems’. 3.4

171



BIBLIOGRAPHY

Kohavi, R., Crook, T., Longbotham, R., Frasca, B., Henne, R., Ferres, J. L. & Melamed, T. (2009).

Online experimentation at microsoft. Data Mining Case Studies p. 11. 1.1, 3.1, 9

Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker, T. & Xu, Y. (2012). Trustworthy online con-

trolled experiments: Five puzzling outcomes explained. In ‘Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining’. 1.1, 2.3.1, 6.1, 7.4

Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y. & Pohlmann, N. (2013). Online controlled ex-

periments at large scale. In ‘Proceedings of the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining’. 1.1, 1.2, 2.4, 5.1, 5.3, 5.3, 5.8, 6.1, 7.2, 9

Kohavi, R., Deng, A., Longbotham, R. & Xu, Y. (2014). Seven rules of thumb for web site experi-

menters. In ‘Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining’. 5

Kulldorff, M., Davis, R. L., Kolczak, M., Lewis, E., Lieu, T. & Platt, R. (2011). A maximized sequential

probability ratio test for drug and vaccine safety surveillance. Sequential Analysis 30(1), 58–78. 7.1,

7.2, 7.3.2, 7.3.2, 7.3.2, 8.1, 8.4

Lan, K. G. & DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials. Biometrika

70(3), 659–663. 7.2

Leung, J. Y. (2004). Handbook of scheduling: algorithms, models, and performance analysis. CRC

Press. 5.3

Li, L., Kim, J. Y. & Zitouni, I. (2015). Toward predicting the outcome of an A/B experiment for search

relevance. In ‘Proceedings of the 8th ACM International Conference on Web Search and Data Min-

ing’. 18, 5.2

Li, Y., Dong, A., Wang, H., Deng, H., Chang, Y. & Zhai, C. (2014). A two-dimensional click model

for query auto-completion. In ‘Proceedings of the 37th International ACM SIGIR Conference on

Research and Development in Information Retrieval’. 4.2.2, 4.2.4

Ling, C. X., Huang, J. & Zhang, H. (2003). Auc: a statistically consistent and more discriminating

measure than accuracy. In ‘The 12th International Joint Conference on Artificial Intelligence’. 5.6.1

Loptev, A., Selugina, A. & Starikovskaya, T. (2014). Simple and efficient string algorithms for query

suggestion metrics computation. In ‘Proceeding of the 21st International Symposium on String Pro-

cessing and Information Retrieval’. 4.6

172



BIBLIOGRAPHY

Manning, C. D., Raghavan, P. & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge

University Press. 2.2

Markov, I., Kharitonov, E., Nikulin, V., Serdyukov, P., de Rijke, M. & Crestani, F. (2014). Vertical-aware

click model-based effectiveness metrics. In ‘Proceedings of the 23rd ACM International Conference

on Information and Knowledge Management’. 4.7.2

Megorskaya, O., Kukushkin, V. & Serdyukov, P. (2015). On the relation between assessor’s agreement

and accuracy in gamified relevance assessment. In ‘Proceedings of the 38th International ACM SIGIR

Conference on Research and Development in Information Retrieval’. 2.2

Mitra, B. (2015). Exploring session context using distributed representations of queries and reformula-

tions. In ‘Proceedings of the 38th International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval’. 4.2.4

Mitra, B., Shokouhi, M., Radlinski, F. & Hofmann, K. (2014). On user interactions with query auto-

completion. In ‘Proceedings of the 37th international ACM SIGIR Conference on Research and De-

velopment in Information Retrieval’. 4.2.2

Moffat, A. & Zobel, J. (2008). Rank-biased precision for measurement of retrieval effectiveness. ACM

Transactions on Information Systems. 2.2.1, 2.5

Moffat, A., Webber, W. & Zobel, J. (2007). Strategic system comparisons via targeted relevance judg-

ments. In ‘Proceedings of the 30th International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval’. 2.2

O’Brien, P. C. & Fleming, T. R. (1979). A multiple testing procedure for clinical trials. Biometrics. 7.1,

7.2, 7.3.1, 7.3.1, 8.1, 8.4

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-

hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,

M. & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research 12, 2825–2830. 5.4.3

Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika

64(2), 191–199. 7.2

173



BIBLIOGRAPHY

Radlinski, F. & Craswell, N. (2010). Comparing the sensitivity of information retrieval metrics. In ‘Pro-

ceedings of the 33rd International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval’. 2.3.2, 4.2.3, 5.2, 6.1, 7.3

Radlinski, F. & Craswell, N. (2013). Optimized interleaving for online retrieval evaluation. In ‘Proceed-

ings of the 6th ACM International Conference on Web Search and Data Mining’. 2.3.2, 2.3.2, 2.3.2,

6.1, 6.2, 6.2.2, 6.3, 6.3.1, 6.3.1, 6.3.1, 6.4, 6.4, 6.4, 6.5, 6.6, 6.10.1, 9.3

Radlinski, F., Kurup, M. & Joachims, T. (2008). How does clickthrough data reflect retrieval quality?.

In ‘Proceedings of the 17th ACM Conference on Information and Knowledge management’. 2.3.1,

2.3.2, 2.3.2, 2.2, 6.2, 6.4, 6.6

Ridgeway, G. (2004). The gbm package. R Foundation for Statistical Computing, Vienna, Austria. 5.4.3

Robert, C. P. & Casella, G. (2009). Introducing Monte Carlo Methods with R (Use R). 1st edn. Springer-

Verlag. Berlin, Heidelberg. 6.2.1

Sanderson, M. (2010). Test collection based evaluation of information retrieval systems. Now Publish-

ers. (document), 2.2, 2.1, 2.2.1, 2.2.1, 2.2.1

Sanderson, M., Paramita, M. L., Clough, P. & Kanoulas, E. (2010). Do user preferences and evaluation

measures line up?. In ‘Proceedings of the 33rd International ACM SIGIR Conference on Research

and Development in Information Retrieval’. 4.2.3

Schuth, A., Hofmann, K. & Radlinski, F. (2015). Predicting search satisfaction metrics with interleaved

comparisons. In ‘Proceedings of the 38th International ACM SIGIR Conference on Research and

Development in Information Retrieval’. 2.3, 2.3.3, 6.1, 6.8, 9.3

Shokouhi, M. & Radinsky, K. (2012). Time-sensitive query auto-completion. In ‘Proceedings of the

35th International ACM SIGIR Conference on Research and Development in Information Retrieval’.

4.2.4, 4.5, 4.7.3

Shokouhi, M., White, R. W., Bennett, P. & Radlinski, F. (2013). Fighting search engine amnesia:

Reranking repeated results. In ‘Proceedings of the 36th International ACM SIGIR Conference on

Research and Development in Information Retrieval’. 1.1

Siegmund, D. (1985). Sequential analysis: tests and confidence intervals. Springer. 7.2

174



BIBLIOGRAPHY

Sparck Jones, K. & van Rijsbergen, C. J. (1975). Report on the need for and provision of an “ideal”

Information Retrieval test collection. Technical Report 5266. Computer Laboratory, University of

Cambridge. 2.2

Strizhevskaya, A., Baytin, A., Galinskaya, I. & Serdyukov, P. (2012). Actualization of query suggestions

using query logs. In ‘Proceedings of the 21st International Conference on World Wide Web’. 4.2.4,

4.5

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press. 5.4.2

Tang, D., Agarwal, A., O’Brien, D. & Meyer, M. (2010). Overlapping experiment infrastructure: More,

better, faster experimentation. In ‘Proceedings of the 16th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining’. 1.2, 6, 3.4, 5.2, 9

Thomas, P. & Hawking, D. (2006). Evaluation by comparing result sets in context. In ‘Proceedings of

the 15th ACM International Conference on Information and Knowledge Management’. 3.2

Tran-Thanh, L., Chapman, A., Munoz De Cote Flores Luna, J. E., Rogers, A. & Jennings, N. R. (2010).

Epsilon–first policies for budget–limited multi-armed bandits. In ‘The 24th AAAI Conference on

Artificial Intelligence’. 5.4.2

Van Rijsbergen, C. J. (1974). Foundation of evaluation. Journal of Documentation 30(4), 365–373. 2.2.1

Voorhees, E. (2002). The philosophy of information retrieval evaluation. In C. Peters, M. Braschler,

J. Gonzalo & M. Kluck, eds, ‘Evaluation of Cross-Language Information Retrieval Systems’. Vol.

2406 of Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp. 355–370. 1.1, 2.2, 2.6

Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Statist. 16(2), 117–186. 7.2, 7.3.2

Wald, A. & Wolfowitz, J. (1948). Optimum character of the sequential probability ratio test. The Annals

of Mathematical Statistics pp. 326–339. 7.2

Wang, S. K. & Tsiatis, A. A. (1987). Approximately optimal one-parameter boundaries for group se-

quential trials. Biometrics. 7.2

Yilmaz, E., Shokouhi, M., Craswell, N. & Robertson, S. (2010). Expected browsing utility for web

search evaluation. In ‘Proceedings of the 19th ACM International Conference on Information and

Knowledge Management’. 2.2.1, 2.4, 4.1, 4.2.1

175



BIBLIOGRAPHY

Yue, Y., Gao, Y., Chapelle, O., Zhang, Y. & Joachims, T. (2010). Learning more powerful test statistics

for click-based retrieval evaluation. In ‘Proceedings of the 33rd International ACM SIGIR Conference

on Research and Development in Information Retrieval’. 1.1, 2.3.2, 6.1, 6.2.1, 6.2.2, 6.4, 6.4, 6.4,

6.7, 6.7, 6.7, 6.9, 6.10.1, 7.3, 8.4.2.1, 8.5, 8.6, 9.2, 9.3

Zhang, A., Goyal, A., Kong, W., Deng, H., Dong, A., Chang, Y., Gunter, C. A. & Han, J. (2015).

adaQAC: Adaptive query auto-completion via implicit negative feedback. In ‘Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in Information Retrieval’. 21,

4.2.4

Zhang, Y., Chen, W., Wang, D. & Yang, Q. (2011). User-click modeling for understanding and pre-

dicting search-behavior. In ‘Proceedings of the 17th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining’. 4.7.1

176


	Abstract
	Acknowledgements
	1 Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Thesis Statement
	1.4 Contributions
	1.5 Origins of Material
	1.6 Thesis Outline

	2 Background
	2.1 Introduction
	2.2 Offline Evaluation
	2.2.1 Effectiveness Metrics

	2.3 Online Evaluation
	2.3.1 A/B testing
	2.3.2 Interleaving
	2.3.3 Statistical Testing in Online Evaluation

	2.4 Comparing Offline and Online Evaluation Approaches
	2.5 Click Models
	2.6 Conclusion

	3 Evaluation pipeline
	3.1 Introduction
	3.2 Three Evaluation Examples
	3.3 Pipeline Structure
	3.3.1 An Improvement's Life Cycle
	3.3.2 Structure of the Evaluation Pipeline

	3.4 Overlapping Online Experiments
	3.5 Roadmap for Improving the Evaluation Pipeline
	3.6 Conclusions

	4 Framework for Offline Query Auto-completion Evaluation
	4.1 Introduction
	4.2 Related Work
	4.2.1 User Model-inspired IR Metrics
	4.2.2 Modelling User Interaction with QAC
	4.2.3 Comparing IR Metrics
	4.2.4 Query Auto-completion Evaluation

	4.3 User Model
	4.4 Learning the Model Parameters
	4.5 Offline Evaluation of Query Auto-completion Mechanism
	4.6 Proposed Metrics
	4.7 Experimental Methodology
	4.7.1 User Model Evaluation
	4.7.2 Metrics Evaluation
	4.7.3 Baseline Metrics

	4.8 Dataset
	4.9 Results and Discussion
	4.9.1 User Model Evaluation
	4.9.2 Metrics Evaluation

	4.10 Conclusions

	5 Optimised Scheduling of Online Experiments
	5.1 Introduction
	5.2 Related Work
	5.3 Scheduling Assumptions
	5.4 Optimising the Schedule
	5.4.1 Scheduling Model
	5.4.2 Features
	5.4.3 Learning Framework

	5.5 Dataset
	5.6 Evaluation Methodology
	5.6.1 Prediction quality
	5.6.2 Evaluating the Schedule
	5.6.3 Statistical Methodology
	5.6.4 Baselines

	5.7 Results and Discussion
	5.7.1 Prediction Quality
	5.7.2 Evaluating the Schedule

	5.8 Conclusions

	6 Improving Sensitivity of Interleaving Experiments
	6.1 Introduction
	6.2 Related Work
	6.2.1 Click Score Optimisation
	6.2.2 Interleaving Policy Optimisation

	6.3 User Model-based Sensitivity Optimisation
	6.3.1 Optimisation
	6.3.2 Using the Historical Interaction Data
	6.3.3 Qualitative Study
	6.3.4 Discussion and Limitations

	6.4 Generalised Team Draft Interleaving
	6.5 Unbiasedness Requirement
	6.6 Stratified Scoring
	6.7 Optimisation of the Parameters
	6.8 Datasets
	6.9 Instantiation
	6.10 Experimental Methodology
	6.10.1 Baselines
	6.10.2 Evaluation Metric
	6.10.3 Experimental Methodology

	6.11 Results and Discussion
	6.11.1 Document Search
	6.11.2 Visualisation
	6.11.3 Analysis of the Learned Parameters
	6.11.4 Image Search
	6.11.5 Summary

	6.12 Conclusion

	7 Sequential Testing for Early Stopping of Interleaving Experiments
	7.1 Introduction
	7.2 Related Work
	7.3 Sequential Testing for Interleaving
	7.3.1 OBF-I Interleaving Test
	7.3.2 MaxSPRT-based Test

	7.4 Dataset
	7.5 Experimental Methodology
	7.5.1 Metrics
	7.5.2 Evaluation Protocol

	7.6 Results
	7.6.1 Test Evaluation
	7.6.2 Visualisation

	7.7 Conclusions

	8 Early Stopping of Sensitive Interleaving Experiments
	8.1 Introduction
	8.2 Stratified Sequential Testing
	8.3 Dataset
	8.4 Experimental Methodology
	8.4.1 Metrics
	8.4.2 Evaluation Protocol

	8.5 Results
	8.5.1 Uniform Policy
	8.5.2 Non-uniform Policy

	8.6 Conclusions

	9 Conclusions and Future Work
	9.1 Summary of Contributions
	9.2 Summary of Conclusions
	9.3 Directions for Future Work

	References

