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SUMMARY

Interest in analysing periodically switched linear networks has 

developed in response to the rapid development of sampled data 

communications systems. In particular, integrated circuit switched 

capacitor networks play an important part in modern analogue signal 

processing systems.

This thesis addresses the problem of developing techniques for 

analysing periodically switched linear networks in the time and 

frequency domains that are suited to computer implementation and 

therefore facilitate the development of efficient computer aided analysis 

tools for these networks.

Systems of large sparse complex linear equations arise in many 

network analysis problems and efficient techniques for solving these 

systems are crucial to the analysis methods developed in this thesis. 

By extending the concept of sparsity to include the type of the 

nonzero elements, very efficient solution and optimal ordering 

algorithms are developed.

A new method for computing the time domain response of linear 

networks is presented. The method is based on numerical inversion of 

the Laplace transform and polynomial approximation of the excitations. 

This high accuracy method is well suited to solving large stiff systems 

and is extremely efficient. The method is extended to periodically 

switched linear networks and provides the basis for frequency domain 

analysis.

A new frequency domain analysis method is presented that is orders 

of magnitude faster than existing techniques. This efficiency is 

achieved by developing a formulation such that AC analysis is not 

required, which allows the system to be solved as a discrete system. A 

special system compression reduces the solution of this discrete system 

to the solution of the network in one phase only. This solution step, 

which ordinarily requires 0 ( N 3) operations, is made more efficient by 

reducing the system to upper Hessenberg form in a preprocessing step, 

which then reduces the solution cost to 0 ( N 2) operations.
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CHAPTER ONE

INTRODUCTION

1.1) INTRODUCTION

Interest in analysing periodically switched linear networks developed in 

response to the rapid development of sampled data communications 

systems. These discrete time systems used switched linear filters in 

time division multiplex systems that used pulse amplitude modulation 

(PAM) or pulse code modulation (PCM) techniques. Before these 

developments the most widespread application of periodically switched 

networks was in modulators and demodulators for frequency translation 

in frequency division multiplex systems [1].

Today by far the most common application of periodically switched 

linear networks are switched capacitor (SC) networks. The use of SC 

networks has become widespread in recent years. The primary reasons 

for this popularity are that they can be fully integrated using MOS 

technology and are VLSI compatible. Recently interest has grown in 

gallium— arsenide (GaAs) implementations of SC circuits for high 

frequency applications. Other attractive properties of these networks 

are small chip area requirements, low power consumption and ease of 

achieving high precision (<0.5% ) filter specifications. As the state of 

the art has progressed, larger and more complex networks have been 

realised and the frequency of operation of the filters has been pushed 

into the megahertz range. Consequently applications have grown from 

audio frequency filtering to high frequency communications systems.

This thesis addresses the problem of developing techniques for 

analysing periodically switched linear systems in the time and 

frequency domains that are suited to computer implementation and 

therefore facilitate the development of efficient computer aided analysis 

tools for these networks. The analysis which is developed is applicable 

to arbitrary periodically switched linear networks although the 

techniques are intended primarily for the analysis of nonideal SC 

networks.
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The foundation for the exact analysis of periodically switched networks 

was given by Bennett [2]. His method, though exact, cannot be easily 

applied to general switched networks because it requires analytic time 

domain responses of the network variables and is therefore not easily 

implemented on a computer. A more efficient method was developed 

by Desoer [3] which used the successive approximation scheme for 

circuits with a very small ratio of switch closure time to switching 

period. This condition severely restricts the applicability of this 

approximate approach. Desoer developed an exact analysis [4] using 

the state space formulation similar to Bennett's approach and 

consequently also not suited to computer implementation. An entirely 

different approach based on a pole— zero description, together with the 

Fourier analysis, is given by Fettweiss [5]. This novel approach only 

considers networks with a single switch and therefore is of limited 

practical use. Sandberg [6] presented an approach to solve a more 

general class of time varying circuits which is similar to the approach 

of Desoer [4]. Sun and Frisch [7] extended these approaches to 

include an arbitrary number of switches based on the state space 

formulation.

The first major step in developing techniques suited to computer 

implementation was taken by Liou [8]. This state space based 

formulation gave explicit closed form solutions for both time and 

frequency domain solutions. The method is applicable to arbitrary 

circuit configurations with an exponentially modulated cisoidal input 

and can handle cases in which discontinuities in state variables occur 

at the switching instants. The method is however limited to systems 

with only two different periodic states, called phases. This method was 

generalised to include an arbitrary number of phases and arbitrary 

deterministic or stochastic inputs [1]. Unfortunately both these 

methods, though implemented in computer programs, are not efficient 

and are therefore limited to analysing small networks.

Many different methods of analysing SC filters have been proposed 

and a number actually implemented in computer programs [9]. The 

need for these CAD tools becomes more essential as the networks 

being designed grow in size and complexity. The majority of these 

programs are designed for the analysis of ideal SC networks, that is
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all switches are assumed to have infinite off— resistances and zero 

on— resistances and the amplifiers are assumed to have infinite 

bandwidth (modelled as ideal controlled sources). Because these ideal 

networks do not have any resistive elements, these networks can be 

very efficiently modelled using difference equations [9]. A number of 

very efficient programs that use a compaction process to reduce the 

size of these systems have been developed. These programs are 

capable of analysing very large networks with an arbitrary number of 

phases and circuit configuration [10], [11], [12]. These programs

provide a useful design facility for verifying and evaluating alternative 

design techniques. The facilities provided are usually a subset of time 

domain analysis, frequency domain analysis, sensitivity analysis, 

optimisation and symbolic analysis. However the overiding disadvantage 

of all these programs is that they fail to model real integrated 

networks accurately due to the assumption of ideal elements and 

therefore are used only as initial design aids.

When SC networks are implemented in integrated circuits (usually 

MOS technology) various imperfections occur. These imperfections are 

usually characterised as linear, nonlinear and statistical. Different 

analysis techniques are needed for these different imperfections.

The most common linear imperfections of SC networks are the 

parasitic capacitances associated with the switches, finite amplifier gain, 

switch resistances and finite amplifier gain bandwidth product [9], 

Design techniques have been developed that can overcome the effects 

of the parasitic capacitances, which are however dependent on high 

gain amplifiers, and in some cases, matching of the parasitic 

capacitances [13]. The effects of parasitic capacitances and finite 

amplifier gain can be modelled by the ideal analysis techniques.

The nonlinear imperfections of SC networks are the nonlinear 

characteristics of the switches and amplifiers. The most important 

effect in the amplifiers are finite slew— rate and amplifier limiting 

which can introduce distortion and limit the frequency of operation of 

the networks. The switches introduce signal dependent nonlinear 

distortion and also clock feedthrough distortion due to nonlinear 

coupling of the clock signals into the main signal path. To model
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these effects a nonlinear time domain analysis program and nonlinear 

models of the devices are required. Techniques for nonlinear time 

domain analysis are well developed and distortion products can be 

obtained using the FFT algorithm [14]. By taking into account the 

characteristics of SC networks, an efficient program for the time 

domain analysis of SC networks was developed, which includes a 

distortion analysis capability [15], [16]. However these programs require 

very large amounts of computation time and therefore are of use only 

in final design stages.

The statistical imperfections of SC networks are the noise sources 

associated with the switches and amplifiers. To simulate the noise 

response of a SC network a noise analysis program is needed that 

takes into account the noise sources, the resistive +><ne-constants 

(transient effects) and the noise spectrum foldover due to the sampling 

of the switches [9]. A number of approximate techniques have been 

proposed that are of varying applicability [9]. Two programs of 

general applicability have been developed, both based on nonideal 

frequency domain analysis techniques [17], [18], requiring a substantial 

amount of computation.

To accurately model the effects of arbitrary on and off switch 

resistances, finite amplifier gain bandwidth, amplifier input and output 

impedances, analysis methods are required that take into account the 

transient effects caused by these imperfections. These methods must be 

suited to computer implementation to provide designers with efficient 

tools for evaluating these effects and to help in the design of 

networks that circumvent these imperfections. The most useful tools 

are time and frequency domain analyses and multiparameter sensitivity 

analysis. Other tools may be needed depending on the application. In 

particular high frequency and low power consumption applications 

require special attention to finite amplifier gain bandwidth and switch 

on resistance values. These parameters need to be carefully calculated 

to optimise overall performance, which requires the use of optimisers 

in conjunction with the analysis programs. Recently attempts have 

been made to include some of these imperfections into the design 

process [19] and it is anticipated that future design methods will 

incorporate these resistive imperfections and other effects such as
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sinx/x droop into the SC networks. However the resistive tiwe-constants 

are not designable parameters as variations from chip to chip are very 

large, so Monte Carlo analysis and design centering tools will be 

required to provide a practical overall design procedure.

For a fto.videal analysis method to be usable within the context of 

Monte Carlo analysis, design centering or optimisation, the cost in 

terms of computation time must be low for both calculating the 

network response and the preprocessing required for the method. With 

the increasing use of large and complex networks, the analysis 

methods must be applicable to large networks, that is the method 

must be accurate and numerically stable even for large networks and 

the computation cost should increase modestly with increasing network 

size.

The non-ideal SC analysis methods that have been proposed to date do 

not meet these requirements. Even the formulations that are best 

suited to efficient computer implementation are inherently slow due to 

the need for AC analysis at each frequency point, in addition to the 

Z— domain analysis. The objective of this work was to overcome these 

limitations and develop a very fast method for analysing noi-ideal SC 

networks that could provide the basis for very efficient sensitivity and 

noise analysis and be efficiently used with an optimiser. This thesis 

presents the new approaches to time and frequency domain analysis of 

r»*n-ideal SC networks, formulated as general periodically switched 

linear networks. Central to these analyses is a new method for 

computing the time domain response of linear networks. This new 

method requires the development of efficient algorithms for computing 

the extended state transition matrix and excitation response vectors. 

The efficiency of these algorithms derives from a new approach 

developed for solving large sparse sets of complex linear equations.

All the above analyses are implemented in a computer program and 

extensive results on the performance of the algorithms are given.
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1.2) NOTES

The term 'flop' (floating point operation) is used extensively 

throughout this thesis. The definition of a flop was defined more 

precisely [20] to be the time required for a particular computer system 

to execute the FORTRAN statement

A( I , J )  = A ( I , J )  + T * A (I,K ) (1 .1 )

which involves one floating point multiplication, one floating point 

addition, a few subscript and index calculations and a few storage 

references. This definition of a flop is used throughout this thesis.

The network equations used in this work are formulated using the 

MNA approach [21] and an efficient row swapping algorithm that 

ensures a nonzero diagonal [22]. This formulation has many advantages 

[22], notably that it preserves the inherent sparsity in the network and 

allows the inclusion of voltage sources using topological values.

No typographical distinction is made between matrices, vectors and 

scalars. The usual conventions of capital and lowercase letters are 

used. Where a new quantity is introduced for the first time, it is 

explicitly stated whether the quantity is vector or scalar. Other 

notation that is used is introduced where needed.

All the algorithms discussed in this thesis were implemented in a 

FORTRAN 77 program called FOOLSCAP. This name was chosen as 

a play on the words Full Switched Capacitor Analysis Program. This 

program was implemented on a /*VAX II under VMS. All the results 

presented in this thesis were obtained from this implementation.

1.3) OUTLINE OF THE THESIS

Chapter One introduces the subject of periodically switched linear 

networks and discusses the computer aided analysis tools that are 

required for analysing them. General notation and terms that are used 

throughout the thesis are briefly discussed. The outline of the thesis is 

presented and areas of the work which are novel and original are 

highlighted.
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Chapter Two addresses the problem of solving sparse sets of complex 

linear equations and introduces the concept of domain types which is 

key to the efficient techniques developed to solve these equations. The 

interpretable code generation scheme and optimal ordering algorithms 

developed are discussed in detail and extensive practical results are 

used to compare the various algorithms and indicate the massive gains 

in efficiency made possible by these techniques.

Chapter Three is concerned with the efficient time domain solution of 

linear networks. The problem is formulated mathematically and the 

characteristics of the equations that make the solution difficult are 

discussed. The numerous methods that have been proposed to solve 

this problem are discussed in light of these difficulties and their 

suitability evaluated. A new approach to this problem is developed that 

makes use of the extended state transition matrix and polynomial 

approximations of the network excitations. Methods of calculating these 

matrices and approximations are presented and efficient computer 

implementation strategies are discussed. Finally the accuracy and 

stability of the new method is evaluated and the approach compared 

with other methods in terms of accuracy and efficiency.

Chapter Four considers the frequency domain analysis of periodically 

switched linear networks. Many different methods have been proposed 

and a number actually implemented in computer programs. The most 

important and successful approaches are discussed and compared on 

the basis of their limitations of generality and computational efficiency. 

A new method is developed to overcome the drawbacks of these 

methods, which requires the development of a number of different 

techniques. The time domain solution technique presented in Chapter 

Three is generalised to periodically switched linear networks. This 

solution is transformed to the Z— domain and a discrete system 

constructed. An efficient method for solving this discrete system is 

presented. The frequency analysis algorithm is presented, based on the 

solution of this discrete system. Finally the verification of the theory 

and its implementation in a computer program is discussed and the 

performance of the implemetation is compared with other methods.

7



Chapter Five is concerned with methods that can efficiently solve a 

particular form of complex linear equations that arises in the 

frequency domain analysis method presented in Chapter Four. Three 

approaches, the direct approach, the iterative approach and reduction 

to simpler forms are considered and discussed in detail. The 

performance of all three approaches is compared on the basis of 

results obtained from the implementation of the approaches in the 

frequency analysis program. Detailed comparisons of the three most 

effective methods are given and clearly show the substantial savings 

afforded by these techniques.

Finally the conclusions and suggestions for further work are presented 

in Chapter Six.



1.4) STATEMENT OF ORIGINALITY

The following most significant results of the research work presented 

in this thesis are, to the best of our knowledge, original:

— In Chapter 2, the introduction of the concept of domain types 

which extends the concept of sparsity from simply a zero/nonzero 

structure to include the type of the nonzero elements. The

development of methods for taking advantage of the domain type 

structure using interpretable code generation and an associated numeric 

interpreter. The three optimal ordering algorithms designed to take 

into account the domain type structure. The modification of the 

numeric interpretor to accumulate operation statistics, which is a very

useful symbolic tool for comparing different solution algorithms.

— In Chapter 3, the development of a time domain solution technique 

based on polynomial approximation of the excitations and numerical 

Laplace transform inversion. The derivation of polynomial

approximation formulas which calculate the coefficients of the 

polynomial explicitly. The technique used to calculate the extended 

state transition matrix and excitation response vectors, which makes 

optimal use of the sparsity of the matrices.

— In Chapter 4, the development of the overall frequency domain 

analysis method. The use of polynomial approximation of the 

excitations, which avoids the need for AC analysis at each frequency 

point. The derivation of the method for calculating the time domain 

response of periodically switched linear networks with arbitrary input.

— In Chapter 5, the extension of the Hessenberg approach to 

multiphase SC networks and incorporation into the block Gauss 

elimination solution method used to efficiently solve the discrete system 

in Chapter 4. The development of the tridiagonal approach and its 

application to multiphase SC networks.
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CHAPTER TWO

SOLVING SPARSE SETS OF COMPLEX LINEAR EQUATIONS

2.1) INTRODUCTION

Systems of large sparse linear equations arise in many numerical 

problems, notably network analysis and design. Sparse matrix

techniques have enabled the solution of large problems and provided 

the efficiency to make optimisation and Monte Carlo analysis of large 

networks feasible [1].

This chapter addresses the problem of developing techniques that can 

efficiently solve large sparse sets of complex linear equations. These 

equations arise in network analysis when analysing networks in the

complex frequency domain. Here the definition of a sparse matrix is

one in which advantage can be taken of the percentage, distribution 

and type of nonzero elements [1].

The problem then is the solution of the N x  N system of linear 

equations

Ax = b (2 .1 )

where matrix A and vectors x and b are in the complex domain.

The matrix A has an arbitrary zero/nonzero structure, where the

nonzero elements are real, complex or imaginary as arises in network 

analysis. Furthermore, with the widespread use of modern tableau 

equation formulation methods [2], the topological elements + 1  and —1

are also considered. The 'type' of an element refers to whether the

element is a topological, real, imaginary or complex.

The methods discussed here are all based on the direct LU

decomposition method of solving equation (2.1). This approach consists 

of factoring A into the product

A = LU (2 .2 )

of a lower triangular matrix L and an upper triangular matrix U, then

solving the triangular system

Ly = b (2 .3 )
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by forward elimination, and the triangular system

Ux = y (2 .4 )

by backsubstitution.

Sparse matrix methods gain their efficiency by avoiding redundant 

arithmetic operations in computing (2.2), (2.3) and (2.4). This is 

achieved by organising the computations such that access to and 

multiplication by zero valued elements are avoided. Similarly 

multiplication by a topological is replaced by an addition/subtraction. 

Although computational speed is the primary consideration and 

motivation, sparse methods also have an obvious benefit in storage 

requirements, in that only the nonzero elements (plus indexing 

information to access these elements) need be stored. These savings 

can be of importance for very large problems, though today computers 

with large main store and virtual memory operating systems are 

common and therefore storage is generally of secondary concern.

The solution of the triangular systems (2.3) and (2.4) by forward 

elimination and backsubstitution respectively, does not alter the sparsity 

structure of the L and U matrices and therefore the number of 

arithmetic operations involved is only dependent on the nonzeros in L 

and U. For this reason sparse methods generally concentrate primarily 

on the first stage of factoring A into LU. This problem involves three 

basic steps: reordering the equations based on sparsity and solution 

efficiency considerations, a symbolic stage that prepares data structures 

and information for the last step, the actual numeric factorisation.

In the applications mentioned above, the solution of equation (2.1) 

must be repeated many times, where the numerical values of A 

change (due to frequency variance or parameter changes), but the 

sparsity and type structure remain fixed. Steps one and two are done 

only once, while the third step (the solution process) is repeated many 

times.
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2.1.1) DOMAIN TYPES

Standard sparse methods only consider the zero/nonzero structure of 

the problem. However as mentioned previously by taking into account 

topological elements, further computational savings can be achieved [3]. 

The category of different elements was broadened by Hachtel [4], who 

pioneered the concept of 'variab ility' type. In this case the application 

was time domain optimisation of nonlinear networks, which has various 

levels of looping and the system (2.1) is solved at the innermost loop. 

The system thus has entries that are constant, topologicals, vary only 

with each optimisation step, each time— step or each nonlinear 

iteration. By taking advantage of these different variability types the 

scope of avoiding redundant arithmetic operations was extended to the 

various levels and achieved impressive savings [4].

In this work we consider complex equations which vary with frequency 

and therefore the matrix A has entries that are topologicals, constants 

or frequency dependent. To efficiently solve these kind of systems a 

new 'domain' type is introduced. The motivation for this domain type 

is best explained by means of example.

Consider the following fragment of code

Sum = Sum + A(47) X A(93) (2 .5 )

which is the most frequent operation in the numeric factorisation 

stage. Writing the complex values explicitly i.e.

A(47) = Re(47) + jlm (4 7 )

Sum = SumR + jSuml (2 .6 )

code fragment (2.5) becomes

SumR = SumR + Re(47) X Re(93) -  Im(47) X Im(93)

SumI = SumI + R e(47) X Im(93) + Im(47) X R e(93) (2 .7 )

which requires 4 additions/subtractions, 4 multiplications and 4 array 

accesses. Now consider the case where A(47) is real and A(93) is 

imaginary, i.e.
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A(47) = R e(47) 

A(93) = jIm (93) ( 2 .8 )

Code fragment (2.5) now reduces to

SumI = SumI + R e(47) X Im(93) (2 .9 )

which only requires 1 addition, 1 multiplication and 2 array accesses. 

Finally consider the case where A(47) is a topological of value + 1 , 

which then reduces (2.5) to

SumI = SumI + Im(93) (2 .1 0 )

Quite clearly dramatic savings can be achieved by taking advantage of 

the domain types, which are listed in Table 2.1.

Type 1 e lem en ts which a re +1
Type 2 e lem en ts which a re -1
Type 3 e lem en ts which a re r e a l  i . e .  x = a
Type 4 e lem en ts which a re im ag in a ry  i . e .  x = jb
Type 5 e lem en ts which a re com plex i . e .  x = a + jb

Table 2.1 Description of domain types

2.1.2) SYMBOLIC AND NUMERIC FACTORISATION

The three stages outlined above for factorising matrix A are discussed 

with an emphasis placed on methods that take advantage of the matrix 

type structure.

The first stage, reordering the equations, is independent of the other 

two stages and is therefore considered separately and discussed after 

the solution stages. The symbolic phase and the numeric factorisation 

phase, though two distinct steps, are intimately related and thus 

treated as one when discussing various approaches to the LU 

factorisation. Three standard approaches are identified [3], though 

there are many variants and hybrids of the methods. These approaches 

are: generated machine code (MC), looping index (LI) and generated 

interpretable code (IC).

The first approach, generated machine code, analyses the matrix

16



structure in the symbolic phase and generates a loop free code that 

implements the factorisation [6]. The third phase, numeric 

factorisation, then simply involves executing this code, which has the

advantage of being extremely fast since no testing or branching is 

performed and every variable is accessed directly. Another major 

advantage of the MC approach is the ease with which it can handle 

typed problems. The MC approach has been effectively used to solve 

variability typed problems [4], and could be easily adapted for domain 

type problems. However the MC approach has a number of important 

disadvantages. The first is that the compiled code can be very long 

[1], growing rapidly for large systems. The problem is even worse for 

complex equations [3]. Because the code is executed sequentially it 

does allow the code to be held in secondary store but this slows

execution substantially [1]. The second disadvantage is that for 

efficiency the code is often generated in machine code, which makes 

implementations machine dependent. The third disadvantage is that this 

code has to be translated into machine code (in the case of high level 

language or assembler implementations) and then linked to the rest of 

the application program, which can be quite slow and is again

machine dependent. For these reasons this approach was rejected as a 

viable method of handling domain types.

The second approach, looping index, analyses both the initial and 

decomposed matrix structures in the symbolic phase and generates a 

data structure for holding the nonzero entries plus indexing 

information for efficiently accessing rows and columns of the matrix

[7]. The third phase then performs the numeric factorisation by using 

this indexing information to access elements involved in the elimination 

steps. The advantages of this approach are that it is readily

implemented in a high level language (and is therfore machine 

independent), the symbolic phase is significantly quicker than the MC 

approach and the information generated requires much less storage. It 

has the disadvantage of being much slower than the MC approach 

because of the looping and two levels of indirect addressing for 

accessing entries. However its main disadvantage is the difficulty of 

taking advantage of typed problems. These difficulties, discussed in [3], 

of handling variablilty types are even worse for the domain types and 

therefore this method was also rejected.
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The third approach, generated interpretable code, is similar to the MC 

approach in that it also generates a loop free code that implements 

the factorisation. It differs from MC in that this code is not a 

machine or high level code but is designed to be interpreted in the 

third phase by an interpretor that interprets the sequence of 

instructions and performs the numeric factorisation [8]. It shares with 

MC the advantage of being very fast, though it is slower because of 

the overheads of the interpretor and the indirect addressing of entries, 

and the ease of handling types problems. Although, as for MC, the 

code can grow quite large, this is less of a problem as the instructions 

are much shorter. In the case of complex equations this is an 

important advantage as the instructions are exactly the same length as 

for real instructions, whereas they are at least four times longer for 

MC [3]. Compared to the LI approach, IC still requires more storage 

but is significantly faster. Perhaps the only disadvantage of the IC 

approach is the need for an interpretor. Though it is relatively 

straightforward to implement, great care is needed to ensure that it 

executes efficiently. For utmost efficiency it is desirable to implement 

the interpretor in assembler, which has the disadvantage of being 

machine dependent, time— consuming and error prone. However well 

coded high level language implementations are perfectly adequate and 

have the advantage of being portable. Based on these considerations, 

the IC approach was selected to be used for solving the domain type 

problem.

This solution is presented in section 2.2, where the design of the 

interpretable instruction set and the efficient implementation of the 

code generation and interpretor are discussed. Results of this 

implementation are presented in section 2.4.

2.1.3) RE-ORDERING THE EQUATIONS

As mentioned previously the first step in solving the equations (2.1) is 

to re-order the equations. The objective of an ordering algorithm is to 

try and minimise the number of fills produced during the factorisation 

or to minimise the number of arithmetic operations for this 

factorisation. In general an algorithm that minimises the fill minimises 

the amount of computation for the factorisation, though the reverse is
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not necessarily true, as is shown in the results presented at the end 

of this chapter. Therefore the objective in this work is to specifically 

minimise the amount of computation, which is proportional to the 

execution speed of the solution process, which after all is what one

wants to minimise.

The algorithms for reordering the equations are generally called

optimal ordering algorithms, which is misleading because no known 

practical algorithm can ensure a global optimum ordering. This is 

because of the combinatorial explosion of the problem [1]. All 

practical algorithms are local methods in that they select at each step 

the pivot which has a minimum cost for the next pivot step. It has 

been shown [9], that no ordering based solely on local criteria can be 

guaranteed to produce a globally best ordering. The various algorithms 

differ essentially in the way they calculate these costs. The most 

widely used algorithms are the Markowitz [10] which attempts to 

minimise the number of multiplications and the minimal fill [11], [12] 

which attempts to minimise the amount of fill, though many others

have been suggested [1]. Most algorithms tacitly assume that numerical 

stability is not adversely affected by the reordering. In many problems 

this assumption is justified and in fact diagonally dominant matrices

allow the algorithms to restrict pivot selection to the diagonal, which 

makes the algorithms far more efficient than if a full pivot search

were used. In the context of network analysis, the formulation of the

equations is such that diagonal pivoting may be used and therefore the 

ordering algorithms presented here are restricted to diagonal pivot 

selection, though they are applicable to the more general case.

Even though many different methods have been proposed, only one 

has been specifically developed to handle typed matrices. This

algorithm, OPTORD [4], is based on the Markowitz algorithm and is 

applicable to variability type problems. The algorithm which uses 

weighted costs dependent on variability type attempts to re-order the 

equations to minimise the number of multiplications at each of the 

different variability levels. Though effective, this algorithm is not 

applicable to domain type problems. Therefore three new algorithms 

have been developed that take account of the domain type structure

of the matrices and attempt to minimise the arithmetic operations for
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the factorisation stage, assuming that this stage takes full advantage of 

the domain type structure. The algorithms are based on the 

Markowitz, minimal fill and a hybrid of the two algorithms and are 

presented in section 2.3. The efficient practical implementation of 

these algorithms is discussed and extensive comparisons with other 

approaches are presented in the results of section 2.4.

2.2) DOMAIN INTERPRETABLE CODE APPROACH

There are two algorithms that may be used to LU decompose the 

matrix A. The algorithms are equivalent in that they require the same 

number of arithmetic operations and produce the same factorisation. 

They differ only in the organisation of the factorisation steps. The 

first is the Gauss elimination method with row normalisation,

a, . = a. . /  a. , j =  k + 1 , . . , N
k j  k j  k k  J  ’ ’

a . . = a . . -  a . ,  X a. . i>j = k + 1 , . . , N ( 2 . 1 1 )
i j  i j  l k  k j  , J

and the second is the Crout method

J - l

eu -  a . j  -  £  * ikukj  *>J <2 1 2 >

i - 1

a . . -  L ^ . , u .  .
1J k= l J

u =   i<j  (2 . 13)
J a .  .

11

Because the two methods produce the same LU factors, the same

algorithms may be used to solve the triangular systems (2.3) and

(2.4). The system (2.3) is solved by forward elimination,

i - 1

b . -  I  2 . .y .
1 J - l  1 J  J

y =   ( 2 . 14)
2 ..

11

and the system (2.4) by backsubstitution,
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N

x = y -  I  u x (2 .1 5 )
j= i+ l  J J

The Gauss elimination method is most widely used with the looping 

index approach whilst the Crout method is most commonly used with 

the generated code approaches. There are a number of reasons why 

the Crout method is more suitable for code generation. They all 

derive from the fact that although the two solution methods require 

the identical number of arithmetic operations, the Crout method 

requires fewer accesses to the matrix as element values are only 

updated once, whereas the Gauss elimination method requires multiple 

updates. Therefore the amount of code generated by the Crout 

method is less than the Gauss elimination method. This fact also 

makes the updating of the type structure of the matrix much simpler 

for the Crout algorithm and it is therefore potentially faster. Another 

advantage of the Crout algorithm is that the inner loop form allows 

the accumulation to be implemented in higher precision arithmetic 

which can reduce roundoff errors. However in this application this 

higher precision was not required and therefore this factor was not 

considered in deciding between the two methods. The Crout algorithm 

was selected primarily because of its ease of implementation and 

because it facilitates the generation of very efficient code.

2.2.1) INTERPRETABLE CODE INSTRUCTION SET

A set of instructions must be developed that can implement the LU 

decomposition formulae (2.12) and (2.13) and the solution formulae 

(2.14) and (2.15). There are a number of requirements of such an 

instruction set. The first is that it must be able to handle all the 

domain types given in Table 2.1. The second is that the organisation 

of the instruction set should be reqular to make implementation of the 

code generation algorithms simple and efficient. The third requirement 

is that the instructions be simple so that they can be efficiently 

implemented in an interpretor with minimal overhead (for example no 

looping or multiple operations which require any testing or branching). 

A desirable feature, though not a strict requirement, is that the 

instruction set should be small, which makes the interpretor shorter 

and simpler.
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I n i t  i a l i s e

Sr
Sr
Sr
Sr
Sr
Sr

0
1
-1
Re (a ) 
0
Re (a )

Si
Si
Si
Si
Si
Si

0
0
0
0
Im(a)
Im(a)

In n e r  p ro d u c t

Sr = Sr - 1 7
Sr = Sr + 1 8
Sr = Sr - Re (a ) 9 i
Si = Si - Im(a) 10 a
Sr = Sr - Re (a ) Si = Si -  Im (a) 11 a
Sr = Sr + Re (a) 12 a
Si = Si + Im (a) 13 a
Sr = Sr + Re (a ) Si = Si + Im (a) 14 a
Sr = Sr - Re (a ) X Re (b) 15 a
Si = Si - Re (a ) X Im(b) 16 a
Sr = Sr - Re (a ) X Re (b)
Si = Si - Re (a ) X Im(b) 17 a
Sr = Sr + Im(a) X Im(b) 18 a
Sr = Sr + Im(a) X Im(b)
Si = Si - Im(a) X Re (b) 19 a
Sr = Sr - Re (a ) X Re (b) + Im (a) X Im(b)
Si = Si - Re (a ) X Im(b) -  Im (a) X R e(b) 20 a

N orm alise  and s to r e

Re (a ) = -S r 21
Im (a) = -S i 22
Re (a ) = -S r Im (a) = -S i 23
Re (a ) = Pr 24
Re (a ) = -P r 25
Re (a ) = Sr X Pr 26
Im (a) = Si X Pr 27
Re (a ) = Sr X Pr Im(a) = Si X P r 28
Im (a) = Pi 29
Im (a) = -P i 30
Im (a) = Sr X Pi 31
Re (a ) = -S i X Pi 32
Re (a ) = -S i X Pi Im(a) = Sr X Pi 33
Re (a ) = Pr Im(a) = Pi 34
Re (a ) = -P r Im(a) = -P i 35
Re (a ) = Sr X Pr Im(a) = Sr X Pi 36
Re (a ) = -S i X Pi Im(a) = Si X Pr 37
Re (a ) = Sr X P r - Si X Pi
Im(a) = Sr X Pi + Si X Pr 38

m ore . . .

T a b le  2 .2  In te rp re ta b le  co d e  in s tru c tio n  se t
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S to re

R e(a) = Sr 39
Im (a) = Si 40
R e(a) = Sr Im (a) = Si 41

P iv o t

P r = 1 /  Sr R e(a) = P r 42
Pi = -1 /  Si Im (a) = Pi 43
P r -  Sr /  (S r X Sr + Si X S i)
P i = -S i /  (S r X Sr + Si X S i)
R e(a ) = P r Im (a) = P i 44

Load

Sr = B r(a )  Si -  B i(a )  45 a
Sr = X r(a ) Si = X i(a )  46 a

C ross p ro d u ct

Sr = Sr -  X r(a) Si = Si -  X i(a) 47 a
Sr = Sr + X r(a) Si = Si + X i(a) 48 a
Sr = Sr -  R e(a) X X r(b)
Si -  Si -  R e(a) X X i(b ) 49 a b
Sr = Sr + Im(a) X X i(b )
Si = Si -  Im(a) X X r(b) 50 a b
Sr = Sr -  R e(a) X X r(b) + Im(a) X X i(b )
Si = Si -  R e(a) X X i(b ) -  Im(a) X X r(b) 51 a b

M u ltip ly  and s to r e

Xr (a ) = Sr Xi (a) = Si 52
Xr (a ) = -S r X i(a ) -----Si 53
Xr (a ) = Sr X Re (b)
Xi (a ) = Si X Re (b) 54 b
Xr (a ) = -S i X Im(b)
Xi (a ) = Sr X Im(b) 55 b
Xr (a ) = Sr X R e(b) -  Si X Im(b)
Xi (a ) = Sr X Im(b) + Si X Re (b) 56 b

R e tu rn  57

T a b le  2 .2  ( continued)
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An instruction set that meets these requirements was developed and is 

given in Table 2.2. The instruction set consists of 57 operations which 

includes the RETURN instruction. This set is therefore not small, 

though it is believed to be close to a minimal set that implements 

formulae (2.12) through (2.15) taking into account domain types.

The method by which this instruction set was constructed is now 

described. By analysing the Crout formulae (2.12) and (2.13) four 

different operations can be identified. They are:

1) i n i t i a l i s a t i o n  sum = a j j

2) in n e r  p ro d u c t sum = sum -  ajj^ X a ^ j

3) n o rm a lise  sum = sum /  a j j

4) s to r e  a j j  = sum

Considering the 5 domain types the initialisation operation is then 

implemented by instructions 1 through 6. Note that instruction 1 is 

introduced for the case where a fill is introduced and therefore the 

variables that accumulate the inner product are initialised to zero.

Next consider the inner product operation. There are 25 poss ible 

combinations of the domain types for a ^  and a^j, though about half 

of these are symmetric and therefore can use the same instruction. To 

meet the requirement of regularity these instructions are grouped 

systematically as is shown in Table 2.3. The negative signs in the 

table are for the symmetric operations and denote that the operands 

are reversed.

Looking at the normalise and store operations it is seen that the two 

operations can be combined into one step, which simplifies and 

reduces the size of the instruction set. However looking at formula 

(2.12) it is seen that a seperate store operation is still needed. 

Fortunately the instructions needed for this operation are a subset of 

the instructions for the combined normalise and store operation. This 

subset corresponds to the case where ajj =  1. Applying the domain 

types to these operations, 21 instructions are needed which are 

regularly grouped as is shown in Table 2.4. The instructions are 

described in Table 2.2 where the store operation is shown seperately
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for reasons of clarity. There are four null operations for the 

topologicals as no instructions are actually needed, only the type 

structure of the matrix need be updated. This updating procedure is 

discussed in the next section.

From the instruction set in Table 2.2 it is seen that there is a group 

of instructions for pivoting. This group was introduced as it is more 

efficient to hold the diagonal (the pivots) inverted for complex 

numbers, as then division by the pivot is implemented with at most 4 

multiplications (compared to 6 multiplications and 2 divisions).

A similar procedure to the above is used for the forward elimination 

(2.14) and the backsubstitution (2.15) formulae. Again 4 different 

operations can be identified, which are:

1) lo ad

2) c ro s s  p ro d u c t

3) n o rm a lise

4) s to r e

sum = Xj
sum = sum - a jj  X xj  

sum = sum /  aj j 
xj = sum

A compromise between ultimate efficiency and instruction set size was 

made when implementing these operations. This compromise concerns 

the allowable domain types for the vector x. If all domain types were 

allowed then 40 new instructions would be needed to implement the 

solution formulae. Now in practice it is found that generally the RHS 

vector (b) is complex and even if it contains a range of domain 

types, the solution vector x rapidly becomes overwhelmingly compex 

during the solution steps. Therefore it was decided to restrict the RHS 

vector to being type 5 (complex). Although the implementation of the 

formulae is not optimal, the difference is insignificant and in 

return a massive reduction in the number of instructions is obtained. 

Applying the techniques described above, 12 instructions are required 

to implement the 4 operations. These are instructions 45 through 56 

in Table 2.2.
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OPERAND B

1 2 3 4 5
0
p

1 7 8 -9 -10 -11

E
R

2 8 7 -12 -13 -14

A
N
D

3 9 12 15 16 17

4 10 13 -16 18 19

A 5 11 14 -17 -19 20

T a b le  2 .3  In n e r  p ro d u c t in s tru c tio n  lo o k u p  ta b le

OPERAND B

1 2 3 4 5

0
p

1 - - 24 29 34

E
D

2 - - 25 30 35

A
N
D

3 39 21 26 31 36

4 . 40 22 27 32 37

A 5 41 23 28 33 38

T a b le  2 .4  N o rm alise  a n d  s to re  in s tru c tio n  lo o k u p  ta b le

26



2.2.2) INTERPRETABLE CODE GENERATION

Having constructed the interpretable code instruction set, algorithms 

are required that will generate the code for a given sparse domain

matrix. Two sets of information are required for this code generation

process. The first is the type of each nonzero element and the second

is the address (or location) of these elements. Exactly how this

information is organised or what data structures are used to hold the 

information is not important to the functioning of the algorithm,

though it obviously has an impact on the efficiency of the algorithm 

as regards storage and speed. Usually the nonzero elements of the 

matrix are stored contiguously in a vector (or two vectors in the case 

of complex matrices) and the addresses then correspond to the 

position of the elements within these vectors.

The algorithm proceeds in the same manner that a numerical

implementation of the Crout algorithm does, except that instead of

performing the numeric operations, instructions are generated that 

implement these operations. Therefore efficient techniques for

implementing the Crout algorithm [13] may be used to reduce

searching and testing thereby speeding this part of the algorithm up.

The procedure for generating the appropriate instructions is simplified 

if lookup tables are used. This has the added benefits that the 

instruction set may then be easily modified and it is a very efficient 

method. The lookup table for the normalise and store operations has 

already been presented in Table 2 .4 . Given the two operands A and 

B, the appropriate instruction is found from the table and the 

addresses of A and B then complete the instruction. In the case of a 

negative instruction the addresses are reversed and obviously the 

positive valued instruction is generated.

As well as generating the instructions at each step of the Crout

algorithm, the type structure of the matrix must be updated. For this 

two lookup tables are used. The first gives the resultant type of a

multiplication operation and is shown in Table 2.5. The second, given 

in Table 2.6 is the resultant type after an additive operation.
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OPERAND B

1 2 3 4 5

0
p

1 1 2 3 4 5

E
R

2 2 1 3 4 5

A
N
D

3 3 3 3 4 5

4 4 4 4 3 5

A 5 5 5 5 5 5

T a b le  2 .5  R e su lta n t ty p e  a f te r  m u ltip lic a tio n

OPERAND B

0 1 2 3 4 5

0
p

1 1 3 3 3 5 5

E
p

2 2 3 3 3 5 5

A
N
D

3 3 3 3 3 5 5

4 4 5 5 5 5 5

A 5 5 5 5 5 5 5

T a b le  2 .6  R e su lta n t ty p e  a f te r  a d d itio n /su b tra c tio n
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At the initialisation of an inner product, the type of the summation is 

set to that of the element ay. As each inner product is formed, the 

type of the multiplication (from Table 2.5) is used to update the type 

of the summation (from Table 2.6). Similarly the type is updated 

when multiplied by the pivot and finally the matrix is updated with 

this new type when the store operation is generated.

Various other bookkeeping tasks are required for allocating fill and 

avoiding redundant loads and subsequent stores in the cases where 

elements are not altered by the factorisation. The code generation 

algorithms for the forward elimnation and backsubstitution formulae are 

developed using the above techniques, except they can be simplified 

because of the fixed type of the RHS.

The above algorithms have been implemented in the program 

FOOLSCAP using FORTRAN 77. The algorithms are designed in a 

modular fashion and the total length of code (including comments) is 

700 lines, which is a very modest size considering the complexity of 

the problem which they solve.

2.3) OPTIMAL ORDERING

The general aims of an optimal ordering algorithm have been 

discussed in the introduction. As mentioned in the introduction three 

new algorithms have been developed to take into account the domain 

type structure of the equations. All three algorithms assume that the 

equations will be solved using a method that takes advantage of the 

domain structure and therefore attempt to minimise the operations 

required by such methods. The performance of the algorithms when 

such methods are not used are discussed in the results section 2.4.

A common feature of all the algorithms is that the pivots are 

restricted to the diagonal which greatly simplifies the algorithms and 

therefore speeds up their execution. The search for a pivot along the 

diagonal may be done in either direction, forwards or in reverse. In 

this particular application it is known that the equation formulation 

method produces topologicals along the diagonal, which are ordered 

towards the bottom of the matrices [13]. Therefore better results are
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expected if the orderings are done in reverse order. This result was 

confirmed by numerous experiments and again the results are discussed 

in section 2.4.

2.3.1) DOMAIN MINIMAL MULTIPLICATION ALGORITHM

The aim of the domain minimal multiplication (MM) algorithm is to 

minimise the number of multiplications needed to implement the 

formulae (2.12) and (2.13) using domain type techniques. To take into 

account the domain types the multiplication costs are weighted

according to the actual number of multiplications needed to perform 

the multiplication of the two domain type operands. These 

multiplication costs are given in Table 2.7. The divisions required in 

the pivot step are considered as multiplications in forming the cost of 

the step.

This cost could be extended to include the number of 

additions/subtractions, but because multiplication operations require 

more time to execute they generally dominate the computation time. 

However a more accurate cost could be obtained by using a weighted 

cost of multiplications and additions, which is weighted according to 

their actual execution speeds. This extra sophistication was not tried

and indeed it is suspected that it would not produce better orderings 

because by minimising multiplications the number of additions are also 

minimised, which is confirmed by experimental results.

If the matrix does not have different domain types, then this

algorithm is identical to the Markowitz algorithm.

2.3.2) DOMAIN MINIMAL FILL ALGORITHM

The aim of this algorithm is to minimise the amount of fill produced 

when the formulae (2.12) and (2.13) are implemented using domain 

type techniques. This algorithm was developed primarily out of 

academic interest in comparing its performance with the ususal 

minimal fill (MF) algorithms. However, as in the case of the MF

algorithm for untyped matrices, a good MF ordering generally 

produces a good ordering in terms of the number of multiplications.
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To take into account the domain types, the concept of a fill has to 

be extended. Normally a fill is used to denote a zero element that 

becomes nonzero during the factorisation process. In the context of 

domain types, the two parts of a complex number (real and 

imaginary) are treated as seperate entities and therefore count as two 

locations which can be filled independently. Thus for example a real 

element has an imaginary part of zero and if it becomes complex 

then the imaginary part is treated as a fill.

So taking the above into consideration, the fill cost is then weighted 

accoring to the number of fills that are produced when the type of 

an element (operand B) is updated to a new value (operand A). 

These fill costs are given in Table 2.8. From the table it is evident 

that the topologicals are treated (from a fill point of view) as 

equivalent to a type 3 element. This is because they are in fact 

equivalent in terms of fill as defined above. Although this will have 

no impact on the performance of the algorithm in terms of fill, it is 

expected that in terms of multiplications this is a drawback, because 

of the failure to distinguish between topologicals and type 3 elements. 

This feature of the algorithm is clearly demonstrated in the results of 

section 2.4.

In the case where the matrix does not have different domain types, 

this algorithm is identical to the usual minimal fill algorithm.

2.3.3) DOMAIN HYBRID ALGORITHM

The aim of this algorithm is to minimise the number of 

multiplications needed to implement the formulae (2.12) and (2.13) 

using domain type techniques. This algorithm combines the domain 

minimal multiplication and minimal fill algorithms to try and achieve 

an even better algorithm.
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OPERAND B

1 2 3 4 5
0
p

1 0 0 0 0 0

E
R

2 0 0 0 0 0

A
N
D

3 0 0 1 1 2

4 0 0 1 1 2

A 5 0 0 2 2 4

T a b le  2 .7  M u ltip lic a tio n  co s t ta b le

OPERAND B

0 1 2 3 4 5

0
p

1 1 0 0 0 1 0

E
p

2 1 0 0 0 1 0

A
N
D

3 1 0 0 0 1 0

4 1 1 1 1 0 0

A 5 2 1 1 1 1 0

T a b le  2 .8  F ill co s t ta b le
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The motivation for this combination is provided by two features found 

in each of the algorithms respectively. It is found that even though 

the MM algorithm performs very well in terms of minimising 

multiplications, it produces more fill than one would expect. This 

property is discussed further in the results section. By combining the 

two algorithms it is hoped that the multiplication cost would still be 

kept low due to the MM algorithm, but the amount of fill would be 

reduced by the MF algorithm, thereby reducing the overall number of 

multiplications even further.

Similarly it is found that even though the MF algorithm performs very 

well in terms of minimising fill, it produces orderings which are 

clearly not optimal in terms of multiplications. One of the reasons for 

this has already been discussed. By combining the algorithms it is 

hoped that the MM algorithm would overcome this drawback.

To compute the cost of a pivot step, a weighted sum of the costs of 

the individual algorithms as outlined above is used. Experimental 

results conclusively showed that the best results were obtained when

equal weights were used. The performance of this hybrid algorithm is 

discussed in the results of section 2.4.

2.3.4) EFFICIENT IMPLEMENTATION STRATEGIES

It is crucial that an optimal ordering algorithm be efficiently

implemented because if it is poorly implemented then the time taken

to execute the algorithm can quite easily wipe out any benefit gained 

from using the algorithm.

All three algorithms are based on essentially the same Gauss

elimination form of algorithm and therefore share many common 

features. The first technique used is to take out the pivot row and 

put it into a compact form that can then be efficiently processed [13].

At the same time the cost of the row normalisation is calculated. This

technique can lead to substantial improvements in performance.

The second shortcut is to put a check inside the loop that

accumulates the costs of the pivot step and to exit if the partial cost
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exceeds the current minimal cost found so far. This technique then 

saves subsequent calculations which are redundant because it is already 

known that this pivot will be rejected, and can obviously save a lot of 

computation. To avoid processing elements that have already been 

processed and to speed up the search for candidate pivots, a list of 

remaining pivots is kept and only rows and columns corresponding to 

these pivots are considered. Although this technique necessitates an 

extra level of addressing, it avoids having to do any testing and 

therefore quickly recoups any loss of speed.

To update the type structure of the matrix, the lookup Table 2.6 is 

used. This updating step is time consuming and there does not appear 

to be any way of speeding it up. If a pivot of zero cost is found, the 

pivot is selected immmediately and therefore any subsequent processing 

is saved. Since such pivots will not alter the matrix in any way, no 

updating is necessary and therefore this stage is bypassed.

To calculate the cost of a pivot step for the minimal multiplication 

algorithm the cost of each domain multiplication is evaluated using 

Table 2.7. However this is very time consuming as nr x  nc such 

evaluations are required for each pivot, where n r and nc are the

number of nonzero elements in the row and column respectively. 

Inspecting Table 2.7 it is seen that the costs for a multiplication 

involving a type 5 element is double that for a type 3 or 4 element. 

This then suggests that individual evaluations are not needed, as the 

cost of multiplying the pivot row by a type 3 element can be

evaluated once and thus the costs for the other rows is simply equal 

to this cost for type 3 and 4 elements, or double this cost for type 5 

elements. This technique then only requires nr cost evaluations, which 

dramatically improves the efficiency of the algorithm.

Unfortunately this technique is not applicable to the minimal fill

algorithm and therefore individual fill cost evaluations are stil needed. 

A very clever technique for the untyped minimal fill algorithm was 

presented in [14]. This technique avoids having to re—evaluate all the 

individual fill costs for each pivot by retaining these costs and

updating the costs after a particular pivot has been selected. However 

this technique is not applicable to this algorithm because the
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domain fill costs cannot be updated in this way. The algorithm is 

therefore relatively slow. Because the hybrid algorithm is dependent on 

the minimal fill algorithm, it too suffers from this drawback and its

execution speed is therefore dominated by the speed of this algorithm.

2.4) RESULTS

To be able to quantitatively compare the various ordering algorithms 

and the effectiveness of the domain code generation method a means

of calculating the various operation costs is required. The interpretable 

code method provides a very attractive and simple solution to this 

problem. All that is required is to write a special interpretor program 

that instead of performing numeric operations accumulates statistics for 

the operations. This provides a very powerful tool for evaluating

different ordering and code generation algorithms. The interpretor

accumulates seperate totals for the number of multiplications, divisions, 

additions, subtractions, loads, stores and the various categories of fills.

In the following two sections, results are presented for a particular 

example matrix which is derived from the 9th order filter given in

Fig. 2.1 [2, p.142]. This example is typical of the intended application 

of the methods described here. This particular example was chosen as 

it is of medium size (35 X 35) and complexity and therefore achieves 

a balance between a trivial and overwhelmingly complex example. 

Although the results are presented using this one example, the general 

performance of the algorithms is also discussed as one example can

often be misleading.

2.4.1) OPTIMAL ORDERING

In the following comparisons, the statistics are accumulated assuming 

that full advantage is taken of the domain structure of the ordered 

matrices. For each algorithm a lot of detailed information is provided, 

so this information is briefly discussed. The type structure of the

matrix is given after it has been ordered, but before LU

decomposition. The dots indicate zero elements and the nonzero 

elements are indicated by their actual type numbers. Below this the 

statistics for the LU decomposition are given. The totals at the right
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are for the total number of multiplicative operations, additive 

operations and array accesses respectively. Below this the total statistics 

are given which include the LU decomposition, forward elimination 

and backsubstitution statistics. Therefore these totals are the total 

number of operations required for solving the equations and therefore 

are perhaps the best criteria for comparing the algorithms. Finally the 

fill statistics are presented in a table giving the number of fills for

each of the fill categories. The first total corresponds to the usual

nonzero fill that is used for comparative purposes [14].

The type structure of the orginal matrix corresponding to the network 

in Fig. 2.1 is given in Fig. 2.2 as well as the various other

information. This provides a basis for comparing to what extent the

ordering algorithms improve on these results. Looking at the type

structure of the matrix the grouping of topological 1 's along the

diagonal is clearly seen. This is due to the equation formulation

method used [13].

The results of the Markowitz algorithm are given in Fig. 2.3. From

these results it is clear that an ordering algorithm can provide

dramatic savings. Note how this algorithm orders all the singletons first 

and then the pivots with the lowest number of off diagonals next. 

Because this algorithm does not take advantage of the domain type

structure, a number of topologicals are ordered way down in the 

matrix. Although the total number of zero fills is very low, 8 type 1 

and 19 type 3 fills occur because domain types are not taken into 

account.

The results of the minimal fill algorithm are given in Fig. 2.4. The

number of fills are lower than the Markowitz (just), but the other

operations show a slight increase. Generally one would expect the MF 

algorithm to outperform the Markowitz algorithm but exceptions are 

not uncommon. Again one sees the effect on the fills of not taking 

type into account (particularly type 3).

The results of the domain minimal multiplication algorithm are given 

in Fig. 2.5. The first thing to note is how this algorithm orders all 

the toplogical 1 's first and thereby eliminates the possibility of type 1
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fills. Looking at the operation statistics, one sees a significant 

improvement over the two previous algorithms, particularly in the LU 

decomposition. Note the big reduction in the number of divisions, 

again due to the ordering of the topologicals. Looking at the fill 

information a surprising result is obtained. The zero fill produced by 

this algorithm is over double that of the other two, yet the number 

of operations is still significantly lower. This appears to be a general 

property of this algorithm, that is it orders to minim ise multiplications 

at the expense of fills. These extra fills do not seem to imply an 

increase in the number of operations. This feature only applies if 

domain types are taken into account for these operations. The case 

where domain types are not taken into account is discussed in the 

next section.

The results of the domain minimal fill algorithm are given in Fig. 

2.6. From the operation statistics one sees that this algorithm performs 

on a par with the Markowitz algorithm. However quite surprisingly it 

produces more zero fill than the untyped algorithms, but does reduce 

the type 3 fill. Compared to the domain MM algorithm this algorithm 

halves the fill, but in terms of operations the former algorithm is 

significantly better. It has been found that the two algorithms generally 

perform similarly, neither consistently outperforming the other, though 

as expected the MF always produces less fill. Inspecting the type 

structure one sees that the topologicals are not all ordered first, even 

though a domain algorithm is used. It is this feature that motivated 

the hybrid algorithm.

The results of the domain hybrid algorithm are given in Fig. 2.7. The 

results are virtually identical to the domain MM ordering, except that 

slightly fewer operations are needed for the solve stages. The influence 

of the domain MM algorithm is clearly seen by the ordering of the 

topologicals. In fact for this example the domain MF algorithm does 

not seem to have much influence. In general it has been found that 

the performance of the hybrid algorithm lies between the two 

algorithms, sometimes one algorithm influencing the ordering more 

than the other dependent on the domain structure of the matrix.
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The previous algorithms all search for pivots in the reverse direction 

for reasons discussed previously. To evaluate the effect on the 

algorithms of searching in the forward direction, the above evaluations 

were repeated with the algorithms operating in the forward mode. 

These results are presented in Figs. 2.8 to 2.12. From these results it 

is seen that this change does not have much influence on the domain 

or minimal fill algorithms, but has a strong influence on the 

Markowitz algorithm. Similar results for other examples seem to imply 

that the domain algorithms are more stable than the Markowitz 

algorithm (that is given the same matrix with a different ordering, the 

algorithms produce orderings that do not differ much from each 

other). This has important implications for applications in network 

analysis as it is desirable to have a method that is independant of the 

order in which the circuit nodes are numbered.

2.4.2) COMPARISON OF OVERALL METHOD

To evaluate the effectiveness of the domain interpretable code 

approach and its effectiveness together with the domain hybrid 

ordering, a number of tests were run. These evaluated particular 

orderings taking no types, topologicals or full domain types into 

account. For comparative purposes the statistics for the full matrix 

solution which does not take type into account are given in Fig. 2.13. 

Taking into account the sparsity structure of the matrix (but not the 

type structure) leads to a massive reduction in operations as shown in 

Fig. 2.14. The number of operations are even further reduced by the 

Markowitz algorithms, the results of which are given in Figs. 2.15 and 

2.16.

Comparing these results with the results obtained with full domain 

types taken into account (Figs. 2.2, 2.3 and 2.8) it is clear that the 

domain type approach leads to very large computational savings (in this 

case virtually halving the number of operations). Therefore the extra 

effort required in handling the domain types is more than justified by 

the significant savings that can be achieved.

The performance of the hybrid algorithm when no types are taken 

into account is given in Fig. 2.17. As expected this algorithm
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performs poorly (compared to the Markowitz algortithms) when domain 

types are not taken advantage of. This is because the domain ordering 

algorithms are specifically designed to work in conjunction with domain 

solution algorithms. The effect of taking topologicals into account is 

shown in Fig. 2.18. From these results it is seen that this step 

virtually halves the computation. However looking back to Fig. 2.7 

where full domain types are taken into account, one sees that these 

results are further reduced by a factor of 2. These results conclusively 

show the need for using domain solution methods with the domain
no t

ordering algorithms. In fact it is clear that if domain types a reA taken 

into account in the solution operations, the domain ordering algorithms 

are actually not to be recommended. Note that this is different to the 

case when the matrix itself is untyped, because then the domain 

algorithms are equivalent to their untyped counterparts and the 

solution phase is identical to the usual sparse matrix solution methods.

To compare the overall improvement using the domain techniques, 

Figs. 2.7 and 2.16 should be compared. The forward Markowitz 

ordering with no types taken into account is a fair representation of 

the typical performance of a general sparse matrix code. Comparing 

the statistics one sees that using the overall domain technique leads to 

about a factor of 3 saving in computation. This factor has been found 

to vary from 1 (where the problem is untyped) to as high as 10. 

Therefore it can be concluded that the domain type approach is a 

very effective method for problems that consist of domain types, but 

works equally well for untyped problems.
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 91 0 

1 1 
1 2 
1 3 
1 4  
1 5 1 6

2 0 2 1 
2 2 
2 3 
2 4  
2 5 2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

1 ...............................................
3 3 3 .  . . 3 ...................................................
. 3 3 3 ...................... 3 ....................................
. . 3 3 3 ..................................... 3 .................
. . . 3 3 3 ......................................................3
. . . .  3 5 .......................................................
. 3 .  . . . 5 4 .............................................................. 1 3 . 3 .........................
.......................3 3 3 ..........................................
.................. 3 . 3 1 ...........................................
 3 5 .......................................
. . 3 ..........................5 4

3 3

1 3 . 3 ........................................
................... 3 3 3 ....................................................................
...............3 . 3 1 .....................................................................
 3 5 ................................................................
................................. 5 4 ..........................................................
..................................... 1 3 . 3 ..............................................
..................................... 3 3 3 ..................................................
.................................3 . 3 1 ...................................................
 3 5 ..............................................
................................................... 5 4 .......................................
........................................................1 3 . 3 ............................
....................................................... 3 3 3 ................................
................................................... 3 . 3 1 ................................
 3 5 ............................
. . 3 3 3 ................................................... 1 .........................
4 5 3 ..............................................................1 .....................
.......................3 3 3 .......................................... 1 ..................
............... 4 5 3 ........................................................1 . . . .
.........................................3 3 3 .................................. 1 . . .
................................. 4 5 3 ............................................. 1 . .
........................................................... 3 3 3 ....................... 1 .
................................................... 4 5 3 .................................. 1

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 1196 
ADDITIONS 195
LOADS 1374

DIVISIONS 34
SUBTRACTIONS 906 
STORES 410

TOTAL 1230 
TOTAL 1101 
TOTAL 1784

TOTAL STATISTICS

MULTIPLICATIONS 1830 
ADDITIONS 320
LOADS 2079

DIVISIONS 34
SUBTRACTIONS 1381 
STORES 512

TOTAL 1864 
TOTAL 1701 
TOTAL 2591

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 24 0 0 0 0

4 0 0 0 0 0

5 148 4 0 12 4

TOTALS 172 4 0 12 4

Figure 2.2 Original ordering
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 gi o 

i  1 1 2 
1 3 
1 4  
1 5 
1 6 
1 7 1 81 9
2 0 2 1 
2 2 
2 3 
2 4  
2 5 2 6 
2 7 
2 82 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

1 . 
. 1 . 3 5 . 4

3 3 . 3 .
3 5 . 4
3 . 3 .

3 5 . 4
3 . 3 .

4 3  5 .  
. 3 . 3

...................3 3 3 .............................................................

...............3 3 1 .................................................................

...................3 . 1 3 .........................................................

...................... 4 . 5 3 ......................................................

. . . . 3 . . .  . 3 3 .  . . . 3 .................................

.....................................3 3 3 ...........................................

. 3 ..............................3 1 ..............................................

.....................................3 . 1 3 .......................................

........................................ 4 . 5 3 ...................................

................................. 3 .  . . 3 3 .  . . . 3 .................

....................................................... 3 3 3 .........................

. . 3 .............................................. 3.1 ..........................

....................................................... 3 . 1 3 .....................

...........................................................4 . 5 3 .................

......................................................3 . . .  3 3 3 . . . .
3 .................................................................... 3 3 3 . . .
............................................................................3 5 . 4 .
...................................................................................3 3 3
. . .  3 .................................................................... 3 1 .
............................................................................... 3 3 . 1

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 152 
ADDITIONS 24
LOADS 155

DIVISIONS 42 TOTAL
SUBTRACTIONS 63 TOTAL
STORES 101 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 326 
ADDITIONS 55
LOADS 362

DIVISIONS 42 TOTAL
SUBTRACTIONS 200 TOTAL
STORES 175 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 3 4 0 0 0

4 0 0 0 0 0

5 8 4 0 19 1

TOTALS 11 8 0 19 1

Figure 2.3 Markowitz ordering

194
87

256

368
255
537
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
5
6
7
8 
9

1 0 1 1 1 2 
1 3 
1 4  
1 5 
1 6 
1 7 
1 8
1 9
2 0 
2 1 
2 2 
2 3 
2 4  
2 5 2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

3 5 . 4
3 . 3 .

3 5 . 4
3 . 3 .

3 5 . 4  
3 . 3 . ,

4 . 3 5.3 3 .

...............3 3 3 .............................................................

. 3 . . .  3 1 ..............................................................

...............3 . 1 3 .........................................................

...................4 . 5 3 ......................................................
! ............................ 3 3 .  . . . 3 .................................

................................. 3 3 3 ...........................................

. . 3 ...................... 3 1 ...............................................

................................. 3 . 1 3 .......................................

.....................................4 . 5 3 ...................................

..............................3 .  . . 3 3 .  . . . 3 .................

................................................... 3 3 3 .........................

. . .  3 .....................................3 1 ............................

................................................... 3 . 1 3 .....................

.......................................................4 . 5 3 .................

................................................3 .  . . 3 3 3 . . . .
3 .................................................................3 3 3 . . .
........................................................................3 5 .  . 4
........................................................................... 3 1 3 .
............................................................................... 3 3 3
. . . .  3 .................................................................31

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 155 
ADDITIONS 25
LOADS 159

DIVISIONS 41 TOTAL
S UBTRACTIONS 6 7 TOTAL
STORES 100 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 343 
ADDITIONS 59
LOADS 382

DIVISIONS 41 TOTAL
SUBTRACTIONS 213 TOTAL
STORES 178 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 3 3 0 0 0

4 0 0 0 0 0

5 7 4 0 21 1

TOTALS 10 7 0 21 1

Figure 2.4 Minimal fill ordering

196
92

259

384
272
560
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
5
6
7
8 
91 0 1 1 

1 2 
1 3 
1 4  
1 5 
1 6 
1 7 
1 8
1 9
2 0 2 1 
2 2 
2 3 
2 4  
2 5 
2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

1 . .
. 1 .
. . 1 3 3

3 3

3 3

3 3 .
3 . 4
3 3 .

3 . 3 
3 3 .

3 . 3
3 3

3 . 3 
3 3 .

3 3 
3 .

3 3

5 3 
3 3

3 3 
3 .

5 3 . 
3 3 . 
. . 3

3 .

3 3 
3 .
. 4

. . . 53 . . . .  
3 . . 3 3 3  . . .
. . . .  3 3 . .  3
...................3 . .
.........................5 .
............... 3 . . 5

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 130 
ADDITIONS 17
LOADS 166

DIVISIONS 30 TOTAL
S UBTRACTIONS 68 TOTAL
STORES 74 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 298 
ADDITIONS 39
LOADS 382

DIVISIONS 30 TOTAL
SUBTRACTIONS 210 TOTAL
STORES 146 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 12 0 0 0 0

4 8 0 0 0 0

5 4 0 0 12 0

TOTALS 24 0 0 12 0

Figure 2.5 Domain minimal multiplication ordering

160
85

240

328
249
528
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

3 3 3 . . . .
4
5 .
6
7
8
9 

1 0
3 3 .

1 1
1 2 3 3 . .
1 3
1 4 3 3 . .
1 5
1 6 3 3 ...............
1 7
1 8
1 9
2 0
2 1
2 2 3 3 . . . .
2 3
2 4
2 5
2 6
2 7
2 8 . . . 3 . . .
2 9
3 0
3 1 . 4 5 3 . . .
3 2
3 3
3 4
3 5 3 3 .

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 152 
ADDITIONS 23
LOADS 157

DIVISIONS 41 TOTAL
S UBTRACTIONS 65 TOTAL
STORES 98 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 338 
ADDITIONS 51
LOADS 386

DIVISIONS 41 TOTAL
S UBTRACTIONS 213 TOTAL
STORES 176 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 4 4 0 0 0

4 0 0 0 0 0

5 9 4 0 13 1

TOTALS 13 8 0 13 1

Figure 2.6 Domain minimal fill ordering

193
88

255

379
264
562
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 91 0 1 1 

1 2 
1 3 
1 4  
1 5 
1 6 
1 7 
1 8
1 9
2 0 
2 1 
2 2 
2 3 
2 4  
2 5 2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3 
3

3 .
3 3

3 3 
3

3 3

3 3 
3 .

. 5 . 3 . . .  

. . 5 . . 3 .
3 3 . 3 . 3 .

.................................................................... 3 3 . 3 . 3 .

.......................... 4 ....................................................5 . 3

............................................................................3 3 . 3 3
3 ............................................................................... 3 3 3

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 130 
ADDITIONS 17
LOADS 166

DIVISIONS 30 TOTAL
S UBTRACTIONS 68 TOTAL
STORES 74 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 292 
ADDITIONS 38
LOADS 375

DIVISIONS 30 TOTAL
S UBTRACTIONS 207 TOTAL
STORES 144 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 12 0 0 0 0

4 8 0 0 0 0

5 4 0 0 12 0

TOTALS 24 0 0 12 0

Figure 2.7 Domain hybrid ordering

160
85

240

322
245
519
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 
91 0 1 1 1 2 

1 3 
1 4  
1 5 1 6 
1 7 
1 8
1 9
2 0 2 1 
2 2 
2 3 
2 4  
2 5 2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

1 .............................................. 4 3 5
• 1 .......................3 ........................

4  3 5

4  3 5 . .3 3 .
4 3 . 5

5 3 
3 3

5 . 4 . 3
3 3

3 3 3 .3 1 .
3 3 . 1  
3 . . .  3

5 . 4 . 3
3 3 3 . . 31 . 

. 3 3 . 1  
3 3 . . .  3 . 3 .

5 . 4 . 3
3 3 3 . . 31 . .  .3 3 .1 .  

3 3 . . .  3

. 3 3 3  
3 3 1 .  
. 3 . 1

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 206 
ADDITIONS 32
LOADS 198

DIVISIONS 42 TOTAL
SUBTRACTIONS 101 TOTAL
STORES 120 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 416 
ADDITIONS 71
LOADS 444

DIVISIONS 42 TOTAL
S UBTRACTIONS 260 TOTAL
STORES 202 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 0 4 0 0 0

4 0 0 0 0 0

5 19 4 0 16 4

TOTALS 19 8 0 16 4

Figure 2.8 Markowitz ordering (forward)

248
133
318

458
331
646
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 91 0 

1 1 
1 2 
1 3 
1 4  
1 5 
1 6 
1 7 1 8
1 9
2 0 2 1 
2 2 
2 3 
2 4  
2 5 2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

3 5 . 4

3 5 . 4

3 5 . 4 .
3 3

4 5 3

................................................3 3 3 .............................................................
 3 . . .  3 1 ..............................................................
................................................3 . 1 3 .........................................................
................................................... 4 . 5 3 .....................................................

! .............................................................3 3 .  . . . 3 .................................
..................................................................3 3 3 ...........................................
..................................... 3 ........................ 3 1 ..............................................
..................................................................3 . 1 3 .......................................
..................................................................... 4 . 5 3 ...................................
.............................................................. 3 .  . . 3 3 .  . . . 3 .................
....................................................................................3 3 3 .........................
.........................................3 .......................................3 1 ............................
....................................................................................3 . 1 3 .....................
....................................................................................... 4 . 5 3 .................
................................................................................ 3 .  . . 3 3 3 . . . .
3 ................................................................................................. 3 3 3 . . .
........................................................................................................ 3 5 4 . .
............................................3 ............................................................... 1 3 .
................................................................................................................3 3 3
............................................................................................................ 3 . 3 1

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 155 
ADDITIONS 25
LOADS 159

DIVISIONS 41 TOTAL
S UBTRACTIONS 67 TOTAL
STORES 100 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 349 
ADDITIONS 60
LOADS 390

DIVISIONS 41 TOTAL
SUBTRACTIONS 214 TOTAL
STORES 182 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 3 3 0 0 0

4 0 0 0 0 0

5 7 4 0 21 1

TOTALS 10 7 0 21 1

Figure 2.9 Minimal fill ordering (forward)

196
92

259

390
274
572
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 
91 0 1 1 

1 2 
1 3

2 0 
2 1 
2 2 
2 3 
2 4  
2 5 
2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

1 • .
. 1 .
. . 1

3 3 
3 . •

3 3

3 3 
3 . :

3 3

3 3 
. 3

3 3 
. 3

3 3 .  
3 . 4

3 . 3 
3 4  .

3 3 . 
3 . 3

3 . 3 
3 3 .

3 3 
. 3
4  .

5 3 
3 3

3 3
4  . 
. 3

5 3 . . .
3 3 3 . .  
. 3 3 . 3  
. . . 3 . 
. . 3 . 5

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 130 
ADDITIONS 15
LOADS 171

DIVISIONS 29 TOTAL
S UBTRACTIONS 71 TOTAL
STORES 74 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 328 
ADDITIONS 40
LOADS 427

DIVISIONS 29 TOTAL
SUBTRACTIONS 230 TOTAL
STORES 158 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 14 0 0 0 0

4 7 0 0 0 0

5 5 0 0 9 0

TOTALS 26 0 0 9 0

Figure 2.10 Domain minimal multiplication ordering (forward)

159
86

245

357
270
585

49



TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 
91 0 1 1 

1 2 
1 3 
1 4  
1 5 1 6 
1 7 
1 8
1 9
2 0 
2 1 
2 2 
2 3 
2 4  
2 5 2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3 
3 4  
3 5

3 3 
3

3 3 
3

5 . 4

3 3

3 .
5 . 4

1 . 3 
. 5 .

3 3 
3 .

5 . 4
. . 3
4 5  .

3 3

3 3 
. 3

3 3

3 3 
3 .

3 3 
. 3

3 3 
3 .

. 1 3
4  . 5 1

3 3 
3 .

. . .  1 3 ..........................

. . 4 . 5 3 ......................

. . . . 3 3 .  . . 3 . . .
 1 ...................................13 . . . .
.....................4 . 5 3 . . .

......................................................... 3 .  . 3 3 3 . .
3 .................................................................... 3 3 3 .
........................................................................... 3 5 4
............................3 3 ................................................ 1
.......................... 3 ................................................ 3 .

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 152 
ADDITIONS 23
LOADS 160

DIVISIONS 41 TOTAL
S UBTRACTIONS 6 5 TOTAL
STORES 101 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 350 
ADDITIONS 56
LOADS 400

DIVISIONS 41 TOTAL
SUBTRACTIONS 216 TOTAL
STORES 185 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 4 4 0 0 0

4 0 0 0 0 0

5 9 4 0 16 1

TOTALS 13 8 0 16 1

Figure 2.11 Domain minimal fill ordering (forward)

193
88

261

391
272
585
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TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
5
6
7
8 
91 0 

1 1 
1 2 
1 3 
1 4  
1 5 1 6 
1 7 1 8
1 9
2 0 2 1 
2 2 
2 3 
2 4  
2 5 2 6 
2 7 
2 8
2 9
3 0 
3 1 
3 2 
3 3
3 4
3 5

1 .
. 1 3 3 

3
3 3 
3

3 3

3 3 
3 .

3 3

3 3 
3

3 3

3 3

3 3 
3 .

3 3 
. 3

3 3

........................................................ 3 3 .................... 3 ...................................

............................................................3 ........................5 ................................

........................................................................................... 5 . 3 .........................................................4 .................................. 5 3 .............

............................................................................................. 3 3 3 . 3 . . . .

................................................4 ....................................................5 3 . . . .

.....................................................................................................3 3 3 . 3 . .

.........................................4 .................................................................. 5 3 . .

............................................................................................................3 3 3 3 .
3 ................................................................................................................3 3 3
................................. 4 .................................................................................3 5

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 130 
ADDITIONS 17
LOADS 166

DIVISIONS 30 TOTAL
S UBTRACTIONS 68 TOTAL
STORES 74 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 298 
ADDITIONS 39
LOADS 384

DIVISIONS 30 TOTAL
S UBTRACTIONS 210 TOTAL
STORES 148 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 12 0 0 0 0

4 8 0 0 0 0

5 4 0 0 12 0

TOTALS 24 0 0 12 0

Figure 2.12 Domain hybrid ordering (forward)

160
85

240

328
249
532
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LU DECOMPOSITION STA TISTIC S

MULTIPLICATIONS 57190 
ADDITIONS 14315
LOADS 57122

DIVISIONS 70
SUBTRACTIONS 41650 
STORES 2382

TOTAL 57260 
TOTAL 55965 
TOTAL 59504

TOTAL STATISTICS

MULTIPLICATIONS 62090 
ADDITIONS 15540
LOADS 62022

DIVISIONS 70
SUBTRACTIONS 45255 
STORES 2520

TOTAL 62160 
TOTAL 60795 
TOTAL 64542

F ig u re  2 .1 3  S ta tis tic s  fo r  fu ll m a tr ix  (n o  ty p e s  ta k e n  in to  acco u n t)

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 1966 
ADDITIONS 509
LOADS 1814

DIVISIONS 70
SUBTRACTIONS 1302 
STORES 502

TOTAL 2036 
TOTAL 1811 
TOTAL 2316

TOTAL STATISTICS

MULTIPLICATIONS 2790 
ADDITIONS 715
LOADS 2618

DIVISIONS 70 TOTAL 2860
SUBTRACTIONS 1866 TOTAL 2581
STORES 604 TOTAL 3222

Figure 2.14 Statistics for original matrix (no types taken into
account)
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LU DECOMPOSITION STA TISTIC S

MULTIPLICATIONS 442 DIVISIONS 70 TOTAL 512
ADDITIONS 128 SUBTRACTIONS 171 TOTAL 299
LOADS 326 STORES 192 TOTAL 518

TOTAL STATISTICS

MULTIPLICATIONS 686 DIVISIONS 70 TOTAL 756
ADDITIONS 189 SUBTRACTIONS 346 TOTAL 535
LOADS 568 STORES 266 TOTAL 834

F ig u re  2 .1 5  S ta tis tic s  fo r  M arkow itz  o rd e r in g  (n o  ty p e s  ta k e n  in to

acco u n t)

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 502 DIVISIONS 70 TOTAL 572
ADDITIONS 143 SUBTRACTIONS 210 TOTAL 353
LOADS 372 STORES 206 TOTAL 578

TOTAL STATISTICS

MULTIPLICATIONS 790 DIVISIONS 70 TOTAL 860
ADDITIONS 215 SUBTRACTIONS 410 TOTAL 625
LOADS 658 STORES 288 TOTAL 946

Figure 2.16 Statistics for forward Markowitz ordering (no types
taken into account)
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LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 558 DIVISIONS 70 TOTAL 628
ADDITIONS 157 SUBTRACTIONS 242 TOTAL 399
LOADS 410 STORES 218 TOTAL 628

TOTAL STATISTICS

MULTIPLICATIONS 818 DIVISIONS 70 TOTAL 888
ADDITIONS 222 SUBTRACTIONS 433 TOTAL 655
LOADS 668 STORES 288 TOTAL 956

F ig u re  2 .1 7  S ta tis tic s  fo r  h y b rid  o rd e r in g  (n o  ty p e s  ta k e n  in to

acco u n t)

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 354 DIVISIONS 34 TOTAL 388
ADDITIONS 97 SUBTRACTIONS 200 TOTAL 297
LOADS 290 STORES 98 TOTAL 388

TOTAL STATISTICS

MULTIPLICATIONS 610 DIVISIONS 34 TOTAL 644
ADDITIONS 161 SUBTRACTIONS 390 TOTAL 551
LOADS 546 STORES 168 TOTAL 714

Figure 2.18 Statistics for hybrid ordering (topologicals taken into
account)
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CHAPTER THREE

TIME DOMAIN SOLUTION OF LINEAR NETWORKS

3.1) INTRODUCTION

This chapter considers the problem of calculating the time domain 

response of linear, lumped time invariant networks. Many methods of 

computing the time response of linear networks have been proposed 

[1]. but few have received widespread acceptance. This is because the 

problem poses great computational difficulties and few methods can 

provide accurate and reliable solutions whilst claiming to be 

computationally efficient. This introduction discusses the underlying 

difficulties in calculating the time response and methods that have 

been proposed to overcome them.

Using modern tableau equation formulation methods [2], a linear 

network is represented by the algebraic— differential system,

C x ( t )  + G x ( t )  = w(t )  x ( 0 )  = Xq ( 3 . 1 )

where x(t) is the unknown response vector 

w(t) is the excitation vector 

C and G are constant real matrices

Matrices C and G are generally sparse and therefore any method

striving for maximum efficiency has to be capable of taking advantage 

of this fact. Generally matrix C is singular and therefore equation

(3 .1) cannot be written in normal form, on which many methods 

depend. A state— space equation formulation method can be used

(which produces normal form equations), but then the simplicity of the 

tableau approaches and the sparsity of the equations is lost. Even in 

cases where matrix C is not singular, the formation of C— *G is not

desirable as again sparsity is lost because generally the inverse of a

sparse matrix is not sparse.

The problem then is to calculate the response vector x(t) at intervals 

(grid—points) over the time period of interest. These intervals need 

not necessarily be equal and the time difference between successive
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points is called the time— step. The analytic solution to equation

(3.1) is derived in section 3.2 but is not practical from a 

computational point of view as it involves a convolution which is 

difficult and computationally expensive to compute. Furthermore the 

convolution is time dependent and therefore needs to be re— evaluated 

at each time— step. However the analytic solution approach does 

provide the basis for a number of methods which are termed the 

inverse Laplace transform methods. These methods together with the 

most common approach to solving (3 .1), numerical integration 

methods, are discussed below and compared on the basis of certain 

requirements.

Two of the main requirements are accuracy and stability. Clearly it is 

desirable to have a method that can meet prescribed accuracy 

specifications, even better if this accuracy can be controlled. Generally 

most methods can improve accuracy by decreasing the solution 

step— size, increasing the order of the approximations used in the 

method, or both. However decreasing the step— size and increasing the 

order can dramatically increase the computation time of a method and 

therefore the trade— off between accuracy and computation time is 

probably the major criteria by which a method is judged, as it is this 

factor that determines whether a method is useful or not.

The requirement of stability is a requirement of reliability; that is if 

the system itself is stable, then the method must ensure a stable 

solution, irrespective of the step— size used. This definition of stability, 

called A— stability, was introduced by Dahlquist [3]. Many of the

methods discussed do not meet this requirement, but can still ensure 

stable solutions if the step— size is kept smaller than some constant

(which is determined by the characteristics of the system).

A major difficulty posed in solving equation (3.1) is when the system 

has a wide spread of eigenvalues, known as a 'stiff' system. This

situation commonly arises in linear networks due to parasitic elements 

and a large range of time—constants in the networks. Stiff systems 

pose numerical difficulties because the smallest eigenvalues (largest

tim e- constants) determine the dominant network response and thus 

the total length of time for which the solution must be calculated to
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characterise this response, but for many methods the largest eigenvalue 

(smallest time— constant) controls the maximum allowable step— size 

that insures numerical stability. So for example if there is a 1000 to 1 

ratio of largest to smallest time— constant, then a method that does 

not overcome this 'minimum time—constant barrier' [1], needs about 

1000 more time—steps to obtain the same solution as a method which 
does.

However, even methods that overcome this problem face further

difficulties. Dahlquist [3] has shown that the maximum order of an 

A—stable multistep integration method is 2, and that the trapezoidal 

method has the smallest error coefficient amongst all order 2 

A—stable methods. This maximum order of 2 severely limits the

accuracy of these methods as is shown in the comparison in section 

3.6.2 with SPICE2 [4], which uses the trapezoidal method. A novel 

method of order 2 has been proposed [5] that improves on the

efficiency of the trapezoidal method for very stiff problems, but 

nonetheless is limited by 2nd order accuracy.

To try and overcome this limitation, Gear relaxed the requirement of 

A—stability by introducing the concept of stiff stability [6], and 

showed that a set of methods up to order 6 are stiffly stable. In 

order to benefit from the higher accuracy avaliable, these methods, 

known as backward differentiation formulas (BDF), are implemented in 

a variable time— step, variable order scheme. An algorithm is then

needed that attempts to optimally select the step— size and order that 

maximises the accuracy whilst minimising the computation time. These 

methods have provided the basis for a number of successful 

'stiff—solver' packages, some of which have been specially modified to 

exploit any structure inherent in the system [7]. However in practice 

the higher order methods are not used [8] and therefore higher order 

methods are potentially far more efficient.

Compared to the above limitations of the numerical integration 

methods, the inverse Laplace transform methods have many advantages

[9]. These methods compute the inverse Laplace transform by 

evaluating the response of the system in the complex Laplace domain 

and using a quadrature formula. They are applicable to stiff systems,
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systems with multiple poles, are A— stable and equivalent to high 

order integration methods ( > 6). The method was first proposed for 

homogeneous systems [10], which though very efficient is of limited 

use. A method for nonhomogeneous systems was presented in [9] 

which uses the same method for numerical inversion of the Laplace

transform. The accuracy of these methods decreases with increasing

time, therefore a technique of 'resetting' the problem was developed 

in [9]. This technique effectively makes the method equivalent to 

numerical integration methods, though without their limitations. 

However the method as presented only allows for non— periodic 

excitations, which is a major limitation. Even though the method has 

very high order, it requires a number of evaluations of the system 

response in the frequency domain at each time— step, which makes the 

method less efficient than a well implemented BDF method [2],

A new approach based on the above methods is presented in this 

chapter. This method shares all the advantages of the inverse Laplace 

transform methods, but overcomes the limitations of non— periodic 

excitations and inefficiency. The method uses the inverse Laplace

transform and the stepping technique, hence the name Stepping

Inverse Laplace Transform (SILT) method. The method hinges on the 

use of polynomial approximations for the excitations and efficient 

techniques for evaluating the inverse Laplace transform, which are 

discussed in detail. The results of this method are then presented and 

the accuracy and stability are evaluated. The SILT method is then 

compared with other methods for accuracy and efficiency. Finally the 

extension of the method to periodically switched linear networks is 

discussed.
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3-2) STEPPING INVERSE LAPLACE TRANSFORM METHOD 

Taking the Laplace transform of equation (3.1),

and taking the inverse transform,

x ( t )  = P ( t )  C x (0 ) + L~ 1 { [sC  + G ]" 1W(s) } (3 .4 )

where P ( t )  = L~1{ [ sC + G ]"1}

henceforth called the extended state transition (EST) matrix.

Analytic methods continue one step further and write equation (3.4) 
as,

As discussed in the introduction, the major difficulty is then the

evaluation of the convolution in equation (3.5) which is

time—dependent and therefore renders this formulation impractical.

The approach developed here is to approximate the excitation w(t) in

equation (3.1) by a mth order polynomial

The motivation for this approach is that the inverse Laplace transform 

in equation (3.4) may then be readily computed. The approximation 

need not necessarily be a polynomial approximation. A rational 

polynomial or even trigonometric approximation could be used, as long 

as the inverse Laplace transform may be readily determined. The 

polynomial approximation was chosen because it has a well 

characterised approximation error and the inverse Laplace transform 

can be computed exactly.

(sC+ G) X(s)  = C XQ + W(s) ( 3 . 2 )

after re— arranging,

X(s)  = [sC + G 1{ C XQ + W(s) } (3 .3 )

t

x ( t ) = P( t )  C x(0)  + P ( r ) w(t -  r)  dt

0

( 3 . 5 )

m

( 3 . 6 )

giving the new system differential equation

m

x(0)  = XQ ( 3 . 7 )

61



Taking the Laplace transform of equation (3.7),

m i .
(sC+ G) X(s)  = C X_ + L

0 k+1k=0 s

after re—arranging,

m k >
X(s) -  [sc + C]’ 1 { c x0 + I >

k = 0  S

Taking the inverse Laplace transform,

( 3 . 8 )

(3 .9 )

m

x ( t ) = P ( t )  C x (0 ) + I  a , B . ( t )kBk ( t )  (3 .1 0 )
k=0

where BR( t )  = L ~ \  [sC + G] -1 }
s

henceforth called the excitation response (ER) matrix.

To evaluate the time response of x(t) for t e [0,T] the time axis is

divided into equal steps At, where t =  nAt.

From equation (3.10) we then have,

m

x(nA t) = P(nA t) C x (0 ) + Z a ,B .(n A t)  (3 .1 1 )
k=0

In lumped linear networks, time zero can be arbitarily selected by

taking into account the initial conditions of the network, which

effectively takes into account all previous history of the network, thus

m

x(nAt + At) = P (A t) C x(nA t) + I a" B (A t) (3 .1 2 )
k=0

where are the coefficients of the polynomial approximation of w(t) 

in the interval [nAt, nAt+ At].

Noting that P(At) and Bk(At) are independent of n (and therefore

constant), equation (3.12) gives the recurrence relation,

m

x ((n + l)A t)  = P x(nA t) + I a ”  B, (3 .1 3 )
k=0

where P = P(A t)C  and B^= B^(At)

Inspection of equation (3.13) shows that m + 2 m atrix-vector 

multiplications are required at each step. Normally the excitation
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vector has only a few nonzero entries (typically 1) and therefore only 

one column of the matrix is required, corresponding to each 

nonzero entry. The computation is then reduced to one matrix— vector 

multiplication and m+ 1 vector— scalar multiplications, which compares 

very favourably with other methods.

3.3) POLYNOMIAL APPROXIMATION

From equation (3.13), a procedure is required to determine the 

coefficients which determine the polynomials 

m

t e [n A t, (n + l)A t ] (3 .1 4 )P (m t )  -  I of t k
k=0

such that Pm(t) is a 'best fit' in some sense to w(t) in the specified 

interval. Depending on the definition of 'best fit' various polynomial

fitting procedures may be used, for example polynomial splines or

Chebychev polynomials. The method derived here is based on fitting

polynomials through the muequispaced points,

nA t, nAt+At/m, nAt+2At/m, ..............  nAt+At

such that they are exact at these points, that is,

« / k-At . . , kAt . . _ / o t c \P ( t  + ----- ) = w(t +   ) k = 0, . . . ,m (3 .1 5 )
m' m m

This approach has the advantage of being simpler to implement than 

the other methods as well as having a correspondence with numerical 

integration methods e.g. the trapezoidal method (m = l).

Define the divided differences

.in,
m m

= f  - f  n +m
. 1 .

rn-1 . 2 .

/ kAt x where f . = w(t + — — ) k m

f m-2 +

(3 .1 6 )

and |  j d e n o te s  th e  b inom ial c o e f f i c i e n t s  

Using the Newton—Gregory interpolation formula,



Writing equation (3.17) in compact notation and expanding the 
binomial terms,

m

p (t) -  Zm , _k=0
Ak f,

m k -1
Ak f.-  Z [ TT ( t - i h )  |  - j - 5  (3 .1 8 )

k=0 L j =Q J h^c!

Collecting terms in powers of t, equation (3.18) becomes

m m

P ( t )  m 1 [ 1 V f - ] 4M ) L i =0 k i l J hK
(3 .1 9 )

where 7^  are constants independent of h or t.

From equation (3.19) we then finally have

\  = L V f -
K i =0 k l 1

m

-  Z 7  w(nAt + )
i =0 k i

(3 .2 0 )

3.4) DETERMINING THE 7  COEFFICIENTS

The 7  coefficients can be computed by noting that there is a 

recurrence relationship

P ( t )  = P - ( t )  + D
m m-1 m

(3 .2 1 )

where D -  Mm ImJ Amf 0

so that the problem reduces to one of finding for Dm the coefficients 

of t in terms of f^.

Define coefficients b^ and p^ by

m

Amf 0 ”  ^  bk f kk- 0

ra

fc] - J 0 Pk k! (3 .2 2 )
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These coefficients are easily computed using the following algorithms.

t l  : = ( - l ) m
12 : = m

b 0 : = t l

FOR j := 1 TO m DO

t l = - t l  X t2  /

t 2 = t 2 -  1

END

= t l

(3 .2 3 )

Pm •“  1
FOR j  := m-1 DOWNTO 1 DO 

p j := ( 1 -m) x  p j + p j_ x 

END

(3 .2 4 )

The y  coefficients of order m are then obtained by adding the 

cross— product of the p^ and b^ coefficients to the y  coefficients of 

order m—1. If the y  coefficients are multiplied through by m! then 

the algorithms may be implemented using integer arithmetic. 

Combining the division by k! in equation (3.22) and the 

premultiplication of the coefficients by m!, the algorithm for 

calculating the y  coefficients is then,

t l  := m!

FOR k := 1 TO m DO

c a l c u l a t e  b^ c o e f f i c i e n t s  o f  o r d e r  k  

c a l c u l a t e  p^ c o e f f i c i e n t s  o f  o r d e r  k  

t l  := t l  /  k

FOR i := 1 TO k DO (3 .2 5 )

FOR j := 0 TO k DO

Y i j  : =  Y i j  +  p j  X b j  X t l  

END 

END 

END

The y  coefficients for orders 1 through 4 are given in Table 3.1.
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1 0

-1  1

2 0 0

1 - 2  1

6 0 0 0

1
6

-11 18 -9 2

6 -15 12 -3

-1 3 -3 1

24 0 0 0 0

-50 96 -72 32 -6

35 -104 114 -56 11

-10 36 -48 28 -6

1 -4 6 -4 1

T a b le  3.1 G am m a co effic ien ts  fo r  o rd e rs  1 to  4
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These tables have many interesting properties, two of which are 

discussed here. The first property is 

m

I  7  = 0 i = 1 . .m (3 .2 6 )
k=0 ik

that is (except for the first row) rows of the table sum to zero. This 

property is expected as given a constant excitation i.e. f ( p f |=  ...=  fm, 

the higher order terms for the polynomial approximation should be 

zero i.e. og =  0 for k > 0 .

The second property is 

m

Z 7  m* = 0 k = 0 . .m-1
i =0 ik  

m

1  7  m1 -  1 (3 .2 7 )
i - 0  im

This property is derived by evaluating equation (3.19) for t =  At,

which then evaluates to exactly fm , which is the exact result.

3.5) COMPUTING THE INVERSE LAPLACE TRANSFORM 

The SILT method presented in section 3.2 depends on having a

reliable, efficient and accurate method for computing the extended 

state transition matrix

P ( t )  = L~1{ [sC  + C ]" 1} (3 .2 8 )

and the excitation response matrices

Bk ( t )  -  L - ' {  [ sC + G ] - '  - j ^ T  > ( 3 - 2 9 )

In a review of methods for computing the matrix exponential [11], 

Moler and Van Loan describe the difficulty of finding reliable and 

efficient methods. Out of 19 different methods reviewed only one 

(scaling and squaring with diagonal Pade approximation) [12] is 

recommended as reliable. However most of the methods in the 

literature are unable to compute the extended state transition matrix 

where matrix C is singular, let alone the excitation response matrix.

The method developed here uses the I ^ n  approximant [13] and has 

been found to be both reliable and efficient. The use of the Ij^ n
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approximant to compute the matrix exponential was first reported in

[14]. Using the Iĵ in  approximant to compute the extended state 

transition matrix was first suggested in [15] and was successfully 

implemented, though in a different way to the method presented here.

The approach used here is based on the derivation in [9], which uses 

a numerical approximation of the Laplace Transform inversion integral
. C  +  j 0 0

V(t> '  2~T2 ttj
V (s) e St ds (3 .3 0 )

C -joo

The quadrature approximation is derived in [9] as

M

v(t )  -  I  I  K v<z. / t )  (3 .3 1 )
1 i -1  1 1

where K j and zj are tabulated complex constants. Various strategies 

may be used to derive the constants Kj and zv  the optimum set is 

derived from the Pade approximation of the exponential function. The 

ImN constants for M = l,..,1 0  are tabulated in [16]. A program for 

generating the constants to higher precision is presented in [17] and 

constants for various orders are tabulated in [2 , p .286].

Inspection of these tables reveals that for M even the constants occur 

in M/2 complex conjugate pairs. Therefore the computation required

can be halved by using

M/2

v ( t )  = i I Re [ 2K .V (z . / t )  ] (3 .3 2 )
i= l

Applying equation (3.32) to (3.28), we get the extended state

transition matrix approximation,

M/2

P ( t )  * I  Re [ 2K / t  [ z  / tC  + G ]"1 ] (3 .3 3 )
i -1

and applying (3.32) to (3.29), we get the excitation response matrix 

approximation,

M/ 2  2k / t  k '

Bk (t>  -  l  » [  / * <3 - 34>
K i= l ( z . / t )
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It has been shown [9] that the approximation (3.31) is exact for a 

polynomial of degree up to N + M + l. To achieve maximum accuracy, 

whilst avoiding roundoff error problems, M =10 and N= 8 were 

selected for the Ij^n  constants. Therefore equation (3.34) is exact for 

k= 0,..,19 , which is more than adequate for practical use.

3.5.1) EFFICIENT IMPLEMENTATION STRATEGIES

If equation (3.33) were implemented directly using full matrix 

techniques, it would require 2MN 3+ 2MN2 flops where N is the size 

of the matrices. This cost is obviously excessive and therefore sparse 

matrix techniques must be used.

An efficient method for computing the inverse of a sparse matrix was 

first suggested by Takahasi, et al., [18] and refined in [19]. However

this method has 3 drawbacks when used to implement equation (3.33).

The first is that it is still necessary to multiply the inverse by Kj 

(which requires 2MN2 flops) though the method can be easily adapted 

to absorb this factor, only requiring an extra 2MN flops. The second 

disadvantage is that the method cannot selectively compute columns of 

the inverse, which is required for evaluating equation (3.34). The third 

disadvantage is that the method is not suited to interpretive code 

generation and therefore cannot take advantage of domain types as 

presented in Chapter Two.

The method used in this work is based on the direct approach of 

computing the LU factorisation and then backsubstituting the unit 

vector to get a column of the inverse. This approach has the major

advantage that the methods developed in Chapter Two can be used to

perform the LU decomposition and backsubstitution, thus achieving 

near optimal efficiency. Furthermore the multiplication by Kj is 

achieved by multiplying the unit vector by Kj which does not require 

any multiplications, thus saving 2MN2 flops. Finally as the method 

computes a column at a time, only columns that are required need be 

calculated, leading to further savings.

The computational cost of the method is difficult to ascertain as it is 

dependant on the sparsity of the matrices in (3.33), which vary
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substantially from problem to problem. However timing results indicate 

that the method generally exhibits 0 (N 2) computational complexity.

The method used to compute equation (3.34) is similar to that 

described above, except for the method of including the factor

(zi/t) 1). Two different approaches are used. The first is to

combine this factor with Kj and proceed as above. The second

approach uses the result computed for k— 1 and divides this by zj/t,

giving the required result. The latter approach requires 4N flops

whereas the former depends on the number of flops required for the 

backsubstitution and is therefore problem dependant. The cheapest

method is then selected as the appropriate technique. In practice it is 

found that the first method is generally superior, though the difference 

between the two is insignificant compared to the overall cost of the 

method.

3.6) RESULTS

The SILT method was implemented in the computer program

FOOLSCAP, using 16 digit double precision arithmetic throughout. A 

number of different and independent tests were used to verify the

implemetation of the theory and determine the accuracy and stability 

of the method. These tests were carried out on a number of networks 

that differed in size, complexity and range of time—constants. In the 

following SILTm is used to denote the SILT method that uses a 

polynomial approximation of degree m.

3.6.1) ACCURACY AND STABILITY

The first test was to evaluate the accuracy of the extended state 

transition matrix approximation. This was done by evaluating the time 

response of the network from specified initial conditions and with no 

excitations. Where possible analytic solutions were used for comparison, 

otherwise SPICE2 was used. However it was soon found that the low 

accuracy of SPICE2 meant that these results could not be used for 

objective comparison, but rather subjective comparison i.e. visually 

inspecting that the responses compared favourably. The poor 

performance of SPICE2 is discussed in a later section. The tests 

quickly verified that the method is indeed very accurate (18th order)
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and efficient. To try and verify the order of the approximation, the 

tests were run with different step— sizes and the errors compared. 

However because of the high order, the change in accuracy is then 

proportional to the change in step—size raised to the power of 18, 

which is orders of magnitude change. In practice it was found that 

roundoff errors then dominate and are then the limiting factor of the 

maximum accuracy attainable. For most networks the accuracy attained 

is about 11 decimal places, though dropping to between 9 and 10 for 

large networks.

The second test was to evaluate the accuracy of the SILT method for 

polynomial excitations. The excitations used were degree 0 (step input) 

and degree 1 (ramp input). The results for these inputs should be 

exact (to within the 18th order approximation of the ER vectors). 

Again analytic solutions were used where available, otherwise SPICE2 

was used for subjective verification. The results again showed that 

roundoff errors dominate for small steps, limiting the maximum 

achievable accuracy to about 10 decimals. The method again proved to 

be highly accurate and efficient, in fact the step— size required for 

producing the plots of the responses always provided more than 

sufficient accuracy, therefore the computation time was not determined 

by accuracy considerations, but the number of points to produce a 

visually smooth curve!

For the case of a step input, the SILTO method is of sufficient order 

to provide the exact response and higher order methods are then 

superfluous as a£= 0 for k>0 (see equation 3.26). Similarly for a 

ramp input the SILT1 method provides the exact response and higher 

order methods are again superfluous as c$= 0 for k> 1. These two 

cases were tested in FOOLSCAP by printing out the ag, which 

verified the above, and by comparing the results using the higher 

order methods.

The third set of tests was to evaluate the accuracy of the SILT 

method for non-polynomial excitations using a sinusoidal input. In 

this case accuracy is controlled both by step-size and the order of 

the method. The Newton-Gregory interpolation formula has an error 

term of 0 (hm +1), and therefore we expect the error of the
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polynomial approximation in equation (3.12) to be 0((At/m)rn"1'  1). The 

first stage was to verify that the method did in fact work and that 

accuracy increased for increasing order and decreasing step— size. 

Again analytic solutions were used where available, otherwise SPICE2 

was used for subjective verification of the response. A further check 

that was found to be useful was to monitor the response at the input 

node. This response should be identical to the input excitation and 

therefore does not require an analytic solution or results from some 

other source. These tests verified the implementation of the SILT 

method and were found to be very accurate and efficient. As in 

previous tests, it was found that roundoff errors dominate for small 

step— sizes, but this was further complicated by the extra degree of 

freedom provided by the selection of different orders. For a fixed 

step— size it was found that for high order methods, roundoff errors 

become dominant and were found to grow without bound. The 

maximum order that was found to be reliable is order 10, though the 

results produced by order 10 and order 9 are generally 

indistinguishable. Therefore it is suggested that orders 0 through 9 be 

used in practice.

The second stage was to check the behaviour of the error as a 

function of step— size and order to see if the predicted patterns are 

obtained. An example of one of these tests is presented here. The 

network used is shown in Fig. 3.1, with a sinewave excitation of 

500Hz and zero initial conditions [2, p .142]. The methods are applied 

for one time— step only so that only the contributions from the 

excitations are evaluated and thus any possible roundoff errors from 

the EST matrix are excluded. Methods of order 1 through 5 were 

used for step-sizes of 0.5mS, 0.25mS and 0.125mS. The results of 

this experiment are given in Table 3.1.

From this table it is evident that the error decreases with decreasing 

step—size. To verify the order of the approximations, the ratio of 

successive errors are compared to the predicted ratio. Calculating the 

average for the two steps, we get for successive orders; 4.47 (4), 8.05

(8), 15.6 (16), 34.8 (32) and 66.4 (64). The numbers shown in 

brackets are the theoretical results. The agreement is very good and is 

typical of the results obtained for other networks. It is also evident
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from Table 3.1 that the error decreases with increasing order, however 

the ratio of decreases between successive orders do not conform to a 

regular pattern as in the case of decreasing step— size.

The final test was to test the method for numerical stability. The 

stability of the Laplace transform inversion formula (3.31) is proved in 

[2, pp.305— 306] for N= M— 1 and N= M— 2, therefore the SILT 

method for the homogeneous case is also stable. Ideally one would 

like to be able to rigourously prove that the SILT method is stable 

for the non— homogeneous case. This however is difficult and is left 

as an open problem. Therefore the stability had to be verified 

experimentally. The procedure to do this was as follows. For each 

network tested the step response was calculated. From this response 

the largest time— constant of the network can be estimated. The 

networks were then re— analysed using step— sizes larger than the 

estimated maximum time— constants. Although, as expected, accuracy 

deteriorated for these large step—sizes, stable responses were obtained 

in all cases. On the basis of these tests it is therefore conjectured 

that the SILT method is A— stable.
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ORDER

STEP—SIZE

5 X 10- 4 2 .5  X 10- 4 1 .2 5  X 10"4

1 2 .094  X 10" 1 3.873 X lO - 2 1.095 X lO "2

2 9.732 X 10"3 1.159 X lO "3 1.505 X 10"4

3 7.281 X 10"4 5 .454  X 10" 5 3.112 X 10" 6

4 3.753 X 10" 5 1.293 X 10"6 3 .194  X 10"8

5 6.071 X 10"8 4 .676 X 10"8 1 .574  X 10"8

T a b le  3.1 E r r o r  a f te r  o n e  s tep  fo r  d if fe re n t o rd e rs  a n d  s te p —sizes
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3.6.2) COMPARISON WITH OTHER METHODS

A major difficulty in comparing a number of methods is that generally 

methods are presented together with only one or two examples and 

computer programs implementing the methods are not available. Of 

the methods discussed in the introduction, the only program available 

for comparison is the trapezoidal method implemented in SPICE2. The 

general comments made about the methods in the introduction still 

hold, but cannot be experimentally compared with the SILT method.

The example used to compare SPICE2 and the SILT method is shown 

in Fig. 3.1. The response of this network to a sinewave of 1kHz was 

evaluated from 0 to 2mS. This response is shown in Fig. 3.2. The 

SILT1 method has the same order as SPICE2 and therefore these two 

methods were compared for step—sizes of 5 x  10“ ^, 5 x  1 0 " ^  and 

5 X 10— 7. The error of the two methods was evaluated at 40 points 

over the 2mS interval and are plotted in Figs. 3.3, 3.4 and 3.5. As 

can be seen from these results, the SILT1 method has a consistently 

smaller error and the error varies far more smoothly than is the case 

for SPICE2. The SILT method of orders 2 to 5 were then applied 

with a step—size of 5 X 10“  5. The error of these methods are 

shown in Fig. 3.5. The rapid reduction in error for increasing order 

is clearly shown in this graph. Even more impressive is that the 

SILT4 method has a smaller error than the SPICE2 method with a 

step—size 1000 times smaller. Therefore one expects the SILT 

methods to be vastly more efficient than SPICE2. This is in fact the

case as the run-tim es in Table 3.2 clearly show.

To be fair, SPICE2 does solve a set of linear equations at each 

grid— point, which could be avoided if the fact that a fixed step size 

was being used was taken into account. This however would only 

decrease the run—times by some factor (about 5 in this case), it

would not solve the problem of requiring step-size 1000 times smaller 

than the SILT4 method for similar accuracy. The SILT method is 

therefore seen to be a very efficient method, orders of magnitude

more efficient than SPICE2.
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METHOD STEP--SIZE MAX. ERROR CPU TIME

SPICE2 5 X 10“ 5 3.81 X 10"2 1 2 .1 3 s

SPICE2 5 X 10"6 4 .4 4 X 10~A 1 :0 3 .9 9 s

SPICE2 5 X 1 0 ~ 7 4 .86 X 10-8 6 :5 2 .6 2 s

SPICE2 5 X 10~8 2 .44 X 10-7 1 :0 4 :4 9 .7 3 s

SILT 1 5 X 10~5 8.51 X 10-3 2 .5 1 s

SILT 1 5 X 10-6 8 .55 X 10-5 6 .6 1 s

SILT 1 5 X 10-7 1 .17 X 10"8 4 7 .7 9 s

SILT 2 5 X lO"5 1.61 X 10"5 2 .5 5 s

SILT 3 5 X lO" 5 1 .55 X 10-8 2 .5 7 s

SILT 4 5 X l o -5 4 .0 0 X 10"9 2 .8 0 s

SILT 5 5 X 10“ 5 7.24 X 10-1 0 2 .82s

T a b le  3 .2  C o m p ariso n  o f  S PIC E 2 a n d  S IL T  m e th o d s
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3 -7) APPLICATION t o  p e r io d ic a l l y  s w it c h e d  n e t w o r k s

The SILT method developed can be applied to periodically switched 

linear networks by treating the network as a finite periodic sequence 

of networks, each unique switched state being treated as a different 

network. The final conditions of each network then determine the 

initial conditions for the next network in the sequence. The derivation 

of consistent initial conditions are discussed in detail in [20]. The 

generalisation of the SILT method to periodically switched networks is 

developed in Chapter Four, which then lays the basis for frequency 

domain analysis of these networks.

The SILT method for periodically switched linear networks was 

implemented in the computer program FOOLSCAP. To confirm the 

theory and verify that it had been implemented correctly in 

FOOLSCAP, comparisons were made with other computer programs 

designed to analyse switched— capacitor networks.

The first two programs, SCNAPIT [21], [22], [23] and SWITCAP [24],

assume that the network has ideal switches, infinite bandwidth

amplifiers and no resistors. Therefore the correct simulation of 

transient effects cannot be tested with these programs. Nonetheless 

they do provide a very useful test of the correct functioning of the 

switching mechanism and consistent formulation of initial conditions at 

each switching instant. Extensive comparisons with these two programs 

showed that the theory as implemented in FOOLSCAP provides a very 

efficient and accurate method for the computation of the tim e-dom ain 

response of periodically switched linear networks.

To test the correct simulation of transient effects in these networks, 

the computer program SCNAPNIT [25], [26] was used. This program

can deal with finite bandwidth amplifiers, resistors in the network and

nonideal switches. The switches, however, are modelled as nonlinear 

devices and therefore nonlinear switching effects are taken into 

account. Nevertheless by selecting parameters for the switches such 

that their behaviour is near ideal, comparisons could be made for the 

other transient effects due to nonideal amplifiers. These comparisons 

verified that FOOLSCAP correctly simulates these transient effects.

80



REFERENCES FOR CHAPTER THREE

F.H. Branin, "Computer methods of network analysis", Proc. 

IEEE, Vol. 55, No. 11, p p .l787-1801, Nov. 1967.

J. Vlach and K. Singhal, "Computer methods for circuit 

analysis and design", Van Nostrand Reinhold, 1983.

G. Dahlquist, "A special stability problem for linear multistep 

methods", B.I.T., Vol. 3, No. 1, pp .27-43 , 1963.

L.W. Nagel, "SPICE2 : A computer program to simulate 

semiconductor circuits", ERL Memo ERL-M 520, University of 

California, Berkeley, 1975.

F. Maloberti, "An efficient method for the numerical analysis 

of transients in linear dynamic circuits", IEEE Trans. CAS, 

Vol. C A S -32, No. 8 , pp.848-851, Aug. 1985.

C.W. Gear, "Simultaneous numerical solution of 

differential—algebraic equations", IEEE Trans. CT, Vol. 

CT—18, No. 1, pp.89-95 , Jan. 1971.

W. Enright, "On the efficient and reliable numerical solution 

of large linear systems of ODE's", IEEE Trans. Automatic

Control, Vol. AC—24, No. 6 , pp.905—908, Dec. 1979.

R.K. Brayton, F.G. Gustavson and G.D. Hachtel, "A new 

efficient algorithm for solving differential- algebraic systems

using implicit backward differentiation formulas", Proc. IEEE, 

Vol. 60, No. 1, pp.98—108, Jan. 1972.

K. Singhal and J. Vlach, "Computation of the time domain

response by numerical inversion of the Laplace transform", 

Journal of the Franklin Institute, Vol. 299, No. 2,

pp.109—126, Feb. 1975.

V. Zakian, "Solution of homogeneous ordinary linear



differential systems by numerical inversion of Laplace 

transforms", Electronic Letters, Vol. 7 , No. 18, pp.546-548,
Sep. 1971.

C.B. Moler and C. Van Loan, "Nineteen dubious ways to

compute the exponential of a matrix", SIAM Review, Vol. 20,

No. 4, pp.801— 836, Oct. 1978.

R.C. Ward, "Numerical computation of the matrix exponential 

with accuracy estimate", SIAM Journal of Numerical Analysis, 

Vol. 14, No. 4, pp.600-610, Sep. 1977.

V. Zakian, "Properties of the Ijypsj and JjyjN approximants and 

applications to numerical inversion of Laplace transforms and 

initial value problems", Journal Maths, and Appl., Vol. 50,

1975, pp.191— 222.

V. Zakian, "Rational approximants to the matrix exponential", 

Electronic Letters, Vol. 6 , No. 25, pp.814—815, Dec. 1970.

C.K. Pun and J.I. Sewell, "Symbolic analysis of ideal and 

nonideal switched capacitor networks", Proc. IEEE Int. Symp. 

on Circuits and Systems, pp.1165—1172, 1985.

V. Zakian and M.J. Edwards, "Tabulation of constants for full 

grade Ij^N approximants", Mathematics of Computation, Vol. 

32, No. 142, pp.519— 531, Apr. 1978.

K. Singhal and J. Vlach, "Program for numerical inversion of 

Laplace transforms", Electronic Letters, Vol.7, No.14, 

pp.413-415, July 1971.

K. Takahashi, J. Fagan and C. M o-Shing, "Formation of a 

sparse bus impedance matrix and its application to short circuit 

study", Proc. 8th PICA Conf., June 1973, Minneapolis, Minn.

A.m . Erisman and W.F. Tinney, "On computing certain 

elements of the inverse of a sparse matrix", Comm. ACM,



Vol. 18, No. 3, pp.177—179, Mar. 1975.

[20] A. Opal, J. Vlach and K. Singhal, "Time— domain analysis of 

switched networks", Proc. IEEE Int. Symp. on Circuits and 

Systems, May 1987, pp.60-63 .

[21] L.B. Wolovitz, "Improved techniques for time— domain analysis 

of switched capacitor networks", M.Sc. Thesis, University of 
Hull, 1986.

[22] A.D. Meakin, J.I. Sewell and L.B. Wolovitz, "Techniques for

improving the efficiency of analysis software for large 

switched— capacitor networks", Proc. 28th Midwest Symposium 

on Circuits and Systems, pp.390—393, Aug. 1985.

[23] L.B. Wolovitz and J.I. Sewell, "Advanced switched— capacitor

analysis software", Annual Report 1, Department Electronic 

Engineering, University of Hull, 1984.

[24] S.C. Fang, "Switcap users guide", Dept. Electrical Engineering, 

Columbia University, 1982.

[25] L.B. Wolovitz and J.I. Sewell, "Efficient computer techniques

for the exact analysis of all nonideal effects of 

switched-capacitor networks in the tim e-dom ain", Proc. IEEE 

Int. Symp. on Circuits and Systems, pp.373-376, May 1986.

[26] L.B. Wolovitz and J.I. Sewell, "Advanced switched-capacitor

analysis software", Final Report, Dept. Electronic Engineering, 

University of Hull, 1985.

83



CHAPTER FOTTR

FREQUENCY DOMAIN ANALYSIS OF PERIODICALLY 

SWITCHED LINEAR NETWORKS.

4.1) INTRODUCTION

This chapter considers the problem of calculating the frequency 

response of periodically switched linear networks. The methods 

developed are applicable to general switched networks, but the 

methods were developed specifically for switched capacitor networks. 

The derivations are perfectly general as no assumptions are made 

about the type or characteristics of the networks.

Many different methods for calculating the frequency response have 

been proposed and a number actually implemented in computer 

programs [1]. However because of the difficulty of the problem, many 

have limitations on applicability or other considerable drawbacks. 

Consequently no method or program developed to date has received 

widespread acceptance, unlike the situation for ideal switched capacitor 

analysis programs and techniques.

The main linear imperfections of switched capacitor networks are the 

parasitic capacitances, finite amplifier gain, switch resistances and finite 

amplifier gain bandwidth products [1]. The first two imperfections can 

be modelled by ideal analysis programs, but different techniques are 

required to take into account the transient effects caused by the latter 

two imperfections.

A number of techniques have been developed to model the effects of 

amplifier finite gain bandwidth product. One approach is to use the 

equivalent circuit approach and then use continuous time frequency 

analysis (AC) programs [2]. However this approach suffers from the 

general limitations of the equivalent circuit method [1], the main 

limitation being that the method is only applicable to 2 phase 50% 

duty cycle networks. The second approach is to include the analytic 

solution of the time domain response of single pole amplifiers in the 

analytic solution of the ideal SC network in which the amplifier is
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embedded. Because this analysis is done by hand, it is extremely 

difficult to extend the method beyond 2nd order networks. Indeed all 

the methods presented to date are limited to 2 phase 2nd order 

filters. The results obtained using this approach are quite good [3], [4] 

and are particularly useful for obtaining insight into the behaviour of 

these networks. The third approach, which allows computer 

implementation, was to derive an admittance matrix in the Z — domain 

for the amplifier poles [5], [6]. This admittance matrix is then 

imbedded in a definite nodal admittance matrix formulation for ideal 

SC networks. However this approach models the imperfections due to 

the amplifier approximately and is limited to 2 phase networks.

To include the effects of finite switch resistances, as well as nonideal 

amplifiers, the behaviour of the networks has to be modelled in 

general by differential difference equations. The exact time domain 

solution of these type of systems was first obtained in [7]. Closed 

form frequency domain solution for cisoidal input were also derived. 

The method is based on the state space formulation which makes 

general computer implementation difficult and inefficient. The method 

is also limited to 2 phase networks. This approach was generalised for 

multi— phase networks and arbitrary deterministic inputs [8], However 

this algorithm is also based on the state space approach and therefore 

not compatible with traditional CAD tools. A computer algorithm was 

presented in [9] which is equivalent to this approach and allows a 

simpler implementation. However this method is still very complicated 

and does not appear to be very efficient. Another state space based 

method is presented in [10]. This method uses intricate manipulations 

to derive the state space forms from nodal equations and is limited to 

2 phase networks. The method also assumes that the input signal is 

sampled and held in each phase and therefore does not consider the 

effects of continuous input-output coupling. However this method is 

of interest as it uses a similarity transformation to reduce the 

computation at each frequency point to 0 ( n 2) operations. A similar 

approach is developed in Chapter Five and is applied to the frequency 

analysis method developed in this chapter.

A number of MNA based methods have been developed which 

overcome the problems of equation formulation encountered with the
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state space approaches. The first method to use the MNA formulation

[11], is based on the generalisation of the method presented in [8]. 

This approach is orientated to computer implementation and uses 

many of the efficient methods developed for ideal SC analysis. The 

major drawback of this approach is the poor method used to evaluate 

the extended state transition matrix. Two methods were proposed. The 

first assumes that all transients in the network have died out at the 

end of each time— slot, which is invalid for many networks, especially 

high frequency networks. The second method uses a very dubious and 

low accuracy technique which cannot be considered to give reliable 

results. A method based on the above MNA formulation, but 

overcoming the problem of accurately determining the extended state 

transition matrix, was presented in [12], This approach derives the 

transfer function of the network in the S and Z domains in a 

symbolic form. These symbolic polynomials may then be used to 

evaluate the frequency response and have been used for evaluating the 

noise response [13]. The main drawback of this approach is that it is 

very slow, mainly due to the method of deriving the symbolic 

polynomials. It also suffers from inaccuracy for large networks. A 

method using the same extended state transition matrix evaluation 

method and using the theory developed in [11] was presented in [14]. 

This method suffers the same drawback as the method in [11], namely 

that AC analyses are required in each clock phase at each frequency 

point, which makes the method very slow. To try and overcome this 

problem, a novel method was presented in [15], which also uses the 

MNA formulation. This approach, instead of tackling the complete 

spectral analysis, restricts the method to solving the discrete system 

associated with a nonideal SC network. However an inefficient and 

inaccurate method is used for calculating the transition matrices. The 

advantage of this approach is that it allows a very efficient technique 

developed for ideal SC analysis [16] to be used. This technique is also 

used to great effect in the method developed in this chapter.

The method developed in this chapter is an attempt to overcome the 

problems of the previous methods. This approach uses the MNA 

formulation and the accurate and reliable method presented in Chapter 

Three for calculating the extended state transition matrices. To avoid 

the computation of AC responses at each frequency point, the time
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domain method developed in Chapter Three is used as the basis for 

the frequency domain method. This approach leads to a discrete 

system similar to that derived in [15] which can be very efficiently 

solved, except that the restriction of sampled and held inputs is not 

required and therefore full spectral analysis is possible.

Finally the results of this method are compared with other techniques 

to verify the theory and implementation. The performance of the 

algorithm is also compared with these other techniques to evaluate 

whether the efficiency of the method meets the requirements for use 

in a productive CAD environment.

4.2) DEFINITIONS

Consider a periodically switched linear network controlled by clock 

signals ^ (t)  with a common switching period T, i.e.

^>j(t+T) = y9j ( t )  U t , i (4 .1 )

where ^  is the state of clock i, either on or off.

Each period T is partitioned into N time—slots,

I , = ( nT+cr. nT+o.] k =  1 , . . , N  (4 . 2 )n , k  k - 1 ’ k

such that the clock signals (and therefore the network) does not vary 

in i k. Here k denotes the kth tim e- slot. As seen from Fig. 4.1 

these tim e-slots are not necessarily of equal duration. The switching 

frequency is defined as,
2ir

0) =  ~s T
( 4 . 3 )

Other important definitions from the figure are

o

II 0

T

Tk " *1 k -1
(4 . 4 )

Define the signals

Vk ( t )  -  v ( t )  t 6 I n k

v  k ( t >  -  v k (n T +<rk . 1 + t )  0  ^  t  ^
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n,N

N-l

nT+o-̂  = nT nT+o\ N-l

F ig u re  4.1 D efin itions fo r  a  N - s i o t  sw itched  lin e a r  n e tw o rk
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* v <nT+<rk “Tk+ t ) ( 4 . 5 )

Vk (nT+ffk ) "  v(nT+<7k ) -  ( 4 . 6)

That is vn k̂(t) are functions of time, whilst vk(nT+ (rk) are sequences 
of values at the instants just prior to switching.

Define the Z— transform

\ ( nT+\ ) z  n = VR(z)  k -  1 . . . . N - 1

-nI v (nT)z “ -  V (z) (4 .7 )
n=0 w

and therefore

00 00

I  vN(nT+ffN)z~n -  I vN(nT+T)z'n -  zV (z )  (4 .8 )
n=0 n==0

4.3) TIME DOMAIN ANALYSIS

In each time—slot In>k of the nth switching period [nT ,(n+l)T ] a 

periodically switched linear network can be represented by the system 

differential equation

Ck V k (t> + Gk Vn , k ( t )  -  wn , k ( t )  k ^ - 9 )

where wn k(t) is the vector of excitations

vn k^) *s tke vector unknown system variables 
Ck and Gk are constant matrices

In the following, the range of subscripts for k (k =  1,..,N) is

dropped for brevity but is assumed throughout unless otherwise stated.

Using the approach developed in Chapter Three we approximate the 

excitations by mth order polynomials
m

»n k ( t )  « I  an k t ‘ (4 .1 0 )
n ’k i -0  ’

where d f  k are the coefficients of the polynomial approximations of
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wk(t) in the interval In Substituting the approximation (4 .10) in the 

system (4.9) gives the new system differential equation

m

Ck Vn , k ( t )  + Gk Vn , k ( t )  = ^  a "  k ** ( 4 ‘n )
i =0 ,K

Following the steps in Chapter Three, the solution of equation (4 .11) 
is,

m

Vn , k ( t )  "  Pk ( t )  Ck vk - l< nT+<rk - l ) + J  “ " ,k  Bi , k ( t )  ( 4 1 2 )

where pk ( t )  ■ L~ ' (  [ s c k + Gk r ' >  ( 4 . i 3 )

Bi . k ( t )  “  L~ ' (  [ sCk + Ck l " 1- TTl) <4 -14>
S

vk _ i ( nT+ak - l )  a re  t îe i n i t i a l  c o n d i t i o n s

The sequence v ^ - i(nT+ 1) which are the initial conditions of the

system for interval In>k are by definition the final states of the system

for interval In_  j k- Therefore a recurrence relation giving the 

sequence of final states of the system within each time— slot is 

obtained by substituting t = in equation (4.12),

m

vk (nT+V  "  pk vk - i (nT+V i ) + . ^n “ " ,k  Bi , k  ( 4 -15)1=0

where Pk = C ( 4 .16)

Bi , k -  Bi , k ( V  <4 - 17>

This recurrence relationship is similar to equation (3.13) derived for 

nonswitched linear systems in Chapter Three, except that in this case 

the time—steps are not necessarily equal. Thus the same efficient 

computational techniques may be used to evaluate (4.15). This formula 

only provides solutions of the system (4.11) at the switching instants, 

which for many applications gives sufficient information. However if 

intermediate results are required, for example to observe transients 

within each tim e-slot, then the tim e-slots may be subdivided into 

equal subintervals and (4.15) modified to take these subintervals into 

account. This approach provides a technique for efficiently evaluating 

the time domain response of periodically switched linear systems 

described in Chapter Three.
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As in Chapter Three a procedure is required to determine the 
coefficients a p k. Defining

Tk
hk =  H  ( 4 .18)

f £ , k  = wn , k (^ hk> <4 *19>

and applying equation (3 .20), gives

k = i 0 f " , k  <4 -20>

4.4) COMPUTING THE INVERSE LAPLACE TRANSFORM

The formula (4.15) requires the matrices Pk, given by equation (4.16), 

and the vectors B ^ ,  given by the equation (4.17). Using the 

definition of the extended state transition matrix (4.13) and applying 

the approximation (3.33) gives,

M/2

w  - E Re 1 2Ki/rk [ v v * + ck r 1] (4.2D1=1

Similarly applying the excitation response approximation (3.34) to the 

definition (4.14) gives,

M / 2  2 K  / t  i  '

-  I  Re t r r ^ 1 b / 7kc k + Gk r 1 ] (4 . 22)
J - l  ( z j / Tk )

The efficient implementation strategies discussed in section 3.5.1 are 

equally applicable to these approximations. In this case because the 

calculations are repeated for each slot, the benefits of the sparse

matrix methods of Chapter Two are even greater.

4.5) Z-DOM AIN ANALYSIS

To obtain the Z—domain series of final states Vjj(z) for l ^ l , . . ^ ,  we 

need to take the Z - transform of equation (4.15) and solve for Vk(z).

The Z - transform of (4.15) is,

V z) “  Pk Vk - l <z) + EWk (z) ( 4 ' 23>
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where

<» m

» k (z)  -  I  [ I  a« B. ] z - “  (4 . 24)
n=0 i =0 ,K 1,R

To evaluate IW k(z), substitute equations (4.19) and (4.20), which

05 m m

<z) -  I  [ I  < I y.V k(«h.)) B. ] z ‘ n
n- 0  1=0 j8-0  n ,k  k 1 »k

(4 .25)

From definition (4.15) this becomes,

00 m m
a r .*k(z) -  I  [ I  ( I  7 f l , W k ( n T - * r k + < h k - T k ) )  B f f c ]  z ' "

n=0 i -0  j8=0 K k k k 1>k ( 4 .26)

And finally applying definition (4.6) and using the shifting theorem,

m m
HZ (z )  -  I  B ( I  z ^ hk -rk)/T  J (4 27)

K i _0 1,K t - 0 K

The system (4.23) can be represented in matrix form as,

I - z “ 1P, V,(Z) i w , ( z )

- p 2 1 V2 (z)

-

I W 2 ( z )

~PN 1 zVN(z) . . zIWN(z) .

nation (4.28) can be rewritten to remove the factor

r *P, as,

J -Pi V, (z) IW, (z)

- P 2 I V2 (z)

=

IW2 (z)

- pN < i  J V„(z) J zIWN(z) .

(4 . 28)

(4 .29)

This modification which puts the variable z  into the bottom right 

Stihmatfix of the system matrix is necessary for the efficient solution 

method developed In the next section.
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4 -6) SOLVING THE DISCRETE SYSTEM

A substantial amount of frequency independent preprocessing can be 

performed in solving equation (4.29). The approach used is based on 

the approach developed in [16] for ideal SC networks. Firstly all the 

Pjc are frequency independant and therefore are pre— computed using 

equation (4.21) and stored. Similarly the Bj ^ in equation (4.14) are 

independent of frequency and are pre— computed using equation (4 .22) 

and stored.

Performing a block Gaussian elimination on equation (4.29),

N

( z l  -  E) VN(z) -  I Ek IWk (z)  (4 .3 0 )
k=l

where E = P / ^  • . . P ^  (4-. 31)

Ek -
PNPN - 1 " '  Pk+1
I k -  N (4 .3 2 )

Matrices E and E^ are frequency independ nt and are only computed

once prior to frequency analysis. The multiplication by E^ can be

distributed over the summation in the excitation IWj^z) as a

preprocessing step, giving,

m m

DyP(z) = I f k I T e i V 20 *(*hk~Tk)/T (4,33)
k i =0 ’ 5=0

where F . k = ( 4 *34)

Equation (4.30) then reduces to
N

(z l  - E) V (z) = I Bv£(z) ( 4 . 35)
N k- l  k

which can be very efficiently solved for V ^ z )  using methods

presented in Chapter Five. The solutions for Vj^z) for k = l , . . , N - l  

are then obtained by block backsubstitution,

V1 (z) = P-l VN(z) + LW1 (z)

V z) "  pk V i (z) + Iwk (z) k = 2> • • ’N_1 ( 4 -36)
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4.7) FREQUENCY ANALYSTS

To solve the discrete system (4.29) for a particular frequency a), 
substitute,

jCi)T
z “  e ( 4 . 37)

Closely following the development in [16], applying Poisson's formula 
to EWk(z)^ gives

00 m m

BIT (eJ"T) - I [ I  ( I  7 W (nT+ff +«h -r )) B ] e‘Jn“T
n=0 i=0 5=0 i , k

oo m m

- i  I  [ I  B. I
n=0 i =0 5=0 S (4 .38)

Consider a complex exponential input signal of frequency o>0

w(t )  = e * ^ 1 ( 4 . 39)

which has a Fourier transform

Now
W(o>) = 2ir 5(o)-o) ) (4 . 40)o

W(c»)-no)s ) = 2x 5(a)-coo-na)s ) (4 .4 1 )

so IW j^eJ0̂ )  consists of an infinite number of - terms occuring at 

frequencies

o) = o) + no) (4 . 42)o s

Now it is shown in [16] that,

I W(u-nu ) e J ( “ ' n“ s><rk -  2* eJ“»CTk (4 . 43)
n-0  S

which is independent of n. Applying this result to equation (4.38) 

gives,
m m

a  ( e j “ oT) .  2 r  I  B I  y  ( 4 . 44)
k T i=0 ’ 5=0

With input frequency co0 an infinite number of output frequencies

co = Ci) + no) (4 .45)o s

are defined. However as noted above the discrete system (4.29) need

1* e.<juatior* (t+.lk)
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only be solved once for o>0 as the solution is independent of n. 

However switched linear networks are not discrete systems so window 

functions have to be used to obtain the frequency domain response of 

the systems [17]. Applying the window functions to the output signals 

and taking into account the sinx/x sampling effect and possibly unequal 

time—slots, the frequency response of the system is given by [16],

N

S = I D, V ,(e jil,°T) ( 4 . 46)n k . n  k v Jk=l

-  j ^ k - 1  _ -3<*rk
where Dk , n  "  ------------] 3 f -------------  k * N <4 -47)

D.. -  eJ“»T
-jw o'N -l _ - J ^ N

( 4 . 48)N,n jo)T

The individual phase responses Vj^eJ^07) are obtained for input 

frequency o>0 by substituting equation (4.44) into (4.29) and using 

(4.35) and (4.36) to solve the system.

The overall algorithm for frequency domain analysis is then,

A Preprocessing independent o f  frequency and n

1) Formulate the matrices Gk and Ck and the vectors Wk

2) Calculate Pk matrices using equation (4.16) and (4.21)

3) Calculate Bj k vectors using equation (4.22) for i =  0,..,m

4) Calculate matrix E using equation (4.31)

5) Calculate F* k vectors using equation (4.34) for i =  0,..,m

B Frequency analysis independent o f  n

1) Prepare matrix (eia)oTI — E)
2) Build RHS of equation (4.35) using equation (4.33)

3) Solve equation (4.35) for VN(ejwoT)

4) Calculate V ^eJ^07) using equation (4.36)

C Spectral analysis
1) For selected n calculate weights Dk n  using equations (4.47)

and (4.48)
2) Calculate Sn using equation (4.46)

(4.49)
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4.8) RESULTS

The theory developed above was implemented in the program 

FOOLSCAP, using 16 digit double precision arithmetic throughout. To 

verily the implementation of the theory and determine the efficiency 

of the approach presented, the program was compared with a number 

of switched capacitor analysis programs. The programs which were

available and which were used are the ideal SC analysis programs

SWITCAP [18] and SCNAPIF [14], and the nonideal SC analysis

program SCNAPNIF [14]. The ideal analysis programs have been

independently verified and both agree exactly with one another. The 

nonideal program SCNAPNIF has been verified by comparison with the 

program SCNAP3 [12].

A number of papers describing various nonideal SC analysis techniques 

that give worked examples were also used. Many of these papers also 

compare their results with experimental measurements which provides 

another useful source for verification.

All the programs were implemented on a /xVAX II under VMS and 

are written in FORTRAN. All the run statistics given are for these 

implementations.

4.8.1) VERIFICATION

The first step of the verification process was to perform a comparison 

with the ideal SC analysis programs. Because these programs do not 

take switch resistances into account, it is necessary for comparison 

with FOOLSCAP to set the switch resistances to values such that their 

effect is negligible. In general there is no unique set of on/off values 

which is suitable as the sensitivities of the various networks to the 

switch values vary from network to network. However 'on' resistances 

(Ron) of 1 ohm and ’off' resistances (Roff) of 1010 ohms proved in 

general to be satisfactory. A bit of experimentation with slightly 

perturbed values was used to quickly ascertain whether these values 

were suitable. If not then higher/lower values were tried until a

suitable set was found.
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The results from FOOLSCAP generally agreed with the other programs 

to between 2 and 6 decimal places. For a few examples it was found 

that small constant differences in the passband of the filters were 

obtained, with good agreement in the stopband. The cause of this 

could not be ascertained and therefore it is not known whether this is 

a real characteristic of the filters or due to inaccuracies in the 

program. However the nonideal analysis program SCNAPNIF showed 

similar behaviour, so it seems unlikely that the problem is due to 

inaccuracies (unless of course this program suffers from the same 

inaccuracy). Given the above results it was concluded that the theory 

as implemented is correct, at least for very small Ron and large Roff.

The second step of the verification process was to compare the results 

from FOOLSCAP for networks where the effects of switch Ron/Roff 

and finite amplifier gain— bandwidth are taken into account. The 

program SCNAPNIF was used for comparison. Generally the agreement 

between the two programs was very good, between 2 and 5 decimal 

places. Better agreement is unlikely to be obtained as the two 

programs use different methods for calculating the extended state 

transition matrix (besides the fact that very different approaches are 

used overall). Comparisons of the EST matrices showed that on 

average about 5 figure agreement is obtained.

The third set of tests carried out were comparisons with results

presented in the literature for nonideal SC networks. In all cases the 

results are presented in graphical form so that exact numerical 

comparison is not possible. However the graphs provide a good visual 

check of whether the correct trends are obtained, for example peaking 

at passband edges or shifting of centre frequency. Two hand analytical 

methods were presented in [3], [4] and both compare their results 

with experimental measurements. The results obtained from

FOOLSCAP agreed very well with these measurements. Unfortunately 

both papers considered only 2nd order bandpass filters, which limits 

the degree to which the program is tested for accuracy. The other

comparisons were obtained from papers describing other analysis 

methods [9], [10], [11], [15] of which two also had experimental 

comparisons. Again, unfortunately, all but one considered 2nd order 

bandpass filters, the other network considered was a 6th order
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bandpass filter. The results obtained from FOOLSCAP compared very 
well with these results.

Considering the above results it is concluded that the theory as 

implemented in FOOLSCAP is able to correctly analyse nonideal SC 

networks taking into account all linear imperfections.

4.8.2) PERFORMANCE

To compare the performance of FOOLSCAP with the other analysis 

programs, the programs were used to analyse a number of example 

networks. The examples used, given in Table 4.1, were selected to 

cover a broad range of network size, order, complexity and number of 

clock phases. The statistics for FOOLSCAP, SCNAPIF, SWITCAP and 

SCNAPNIF are presented in Tables 4.2, 4.3, 4.4 and 4.5 respectively.

From the results it is seen that in terms of storage requirements 

FOOLSCAP compares favourably with the other programs. For larger 

networks the storage requirements are fairly high but present no 

problem for most minicomputers. Comparing the FOOLSCAP 

run-  times with those of SCNAPIF, it is seen that FOOLSCAP is 

about twice as slow as SCNAPIF, though the difference between the 

two reduces as the network size increases. However the time required 

for preprocessing for FOOLSCAP is very much greater than that for 

SCNAPIF. Similarly comparing the results with SWITCAP, it is seen 

that FOOLSCAP is approximately twice as fast as SWITCAP. This is 

quite remarkable considering that FOOLSCAP performs a full nonideal 

analysis whilst SWITCAP only performs an ideal analysis. The 

preprocessing times for FOOLSCAP are comparable for smaller 

networks, but the preprocessing times for FOOLSCAP increase more 

rapidly than those for SWITCAP for larger networks.

Comparing the results of FOOLSCAP with the nonideal analysis 

program SCNAPNIF, it is seen that FOOLSCAP is as much as 200 

times faster. The preprocessing times also show a speedup of about 

10. The main contributory factors to this speedup is the efficient 

solution method developed in Chapter Five, but the block solution of 

the system also contributes significantly. Another important factor is
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that SCNAPNIF performs an AC analysis for each phase at each 

frequency point, which is not required by FOOLSCAP. The speedup 

in preprocessing is mostly due to the highly efficient solution method 

developed in Chapter Two.

To graphically illustrate the relative performances of the programs 

which were compared, the run— times per frequency point for 2 phase 

networks are given in Fig. 4.2. From this graph it is seen that the 

run time for SCNAPNIF increases dramatically for larger networks, 

whereas FOOLSCAP increases apace with the ideal analysis programs. 

To obtain an overall comparison of efficiency it is necessary to 

compare the total time required for a typical analysis run, which 

includes preprocessing time. Therefore the run times for 2 phase 

networks which include the total preprocessing time and the time 

required for 150 frequency points are given in Fig. 4.3. From this 

graph it is seen that the same observations as above apply and 

FOOLSCAP clearly performs very favourably compared to the ideal 

analysis programs and is significantly better than the nonideal analysis 

program.
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1

2

3

4

5

6

7

8

9

10

11

12

DESCRIPTION

5 th  o r de r  e l l i p t i c  lowpass f i l t e r  [19]

6 th  o r de r  Chebyschev bandpass f i l t e r  [19]

2nd or de r  bandpass f i l t e r ,  Q = 20 [20]

5 t h  o r der  e l l i p t i c  lowpass f i l t e r  [21]

11 th  or der  e l l i p t i c  lowpass f i l t e r  [2 1 ]

7t h  o r der  Chebyschev lowpass f i l t e r  [22]

3rd o r der  e l l i p t i c  lowpass f i l t e r  [22]

15th or der  e l l i p t i c  lowpass,  l ea p f r o g  de s i gn  [23]

15th o r der  e l l i p t i c  lowpass,  LUD de s i gn  [23]

6 t h  o r de r  e l l i p t i c  bandpass f i l t e r  [24]

SPFT e l l i p t i c  bandpass f i l t e r  sys tem [24] 

18th o r der  e l l i p t i c  bandpass f i l t e r  [25]

Table 4.1 Examples used for comparison
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FOOLSCAP RUN STATISTICS

EXAMPLE
NO.

NODES
NO.

SLOTS
PRE-Pr.
( secs )

TIME/PT
(secs )

STORAGE
(words)

1 22 2 4.25 0.075 12288

2 28 2 5.55 0.114 16890

3 11 2 1.14 0.034 3664

4 20 4 5.26 0.092 11032

5 41 4 22.7 0.320 39944

6 30 6 12.4 0.234 27002

7 12 12 4.82 0.099 8520

8 70 2 47.4 0.701 94564

9 69 2 47.6 0.679 95210

10 27 2 6.21 0.104 17184

11 86 36 14:52 13.44 824944

12 77 5 93.4 1.512 145854

Table 4.2 Statistics for FOOLSCAP
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SCNAPIF RUN STATISTICS

EXAMPLE
NO.

NODES
NO.

SLOTS
PRE-Pr.
( secs )

TIME/PT
( se c s )

STORAGE
(words)

1 22 2 0.61 0.042 50217

2 28 2 0.64 0.046 51849

3 11 2 0.37 0.027 48020

4 20 4 0.80 0.063 49941

5 41 4 1.94 0.161 57162

6 30 6 1.32 0.137 53276

7 12 12 1 .6 6 0.336 50429

8 70 2 1.93 0.169 74369

9 69 2 2.33 0.237 74415

10 27 2 0.77 0.050 51794

11 86 36 1:43 17.48 456383

12 77 5 5.88 1.156 410674

Table 4.3 Statistics for SCNAPIF
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1

2

3

4

5

6

7

8

9

10

11

12

SWITCAP RUN STATISTICS

NO.
NODES

22

28

11

20

41

30

12

70

69

27

86

77

NO.
SLOTS

12

36

PRE-Pr
(secs)

5.51

6.14

2.53

24.6

25.9

7.50

TIME/PT
(secs)

0.219

0.207

0.108

1.135

1.621

0.279

Table 4.4 Statistics for SWITCAP
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SCNAPNIF RUN STATISTICS

EXAMPLE
NO.

NODES
NO.

SLOTS
PRE-Pr.
( secs )

TIME/PT
(secs )

STORAGE
(words)

1 22 2 31.3 3.288 27760

2 28 2 35.7 5.367 39682

3 11 2 4.82 0.549 7590

4 20 4 41.7 4.244 27317

5 41 4 4:25 28.65 100489

6 30 6 2:21 18.32 71070

7 12 12 33.5 6.281 32561

8 70 2 7:15 74.54 233532

9 69 2 6:17 74.11 230217

10 27 2 47.3 5.407 41221

11 86 36 - - -

12 77 5 21:48 3:36 368254

Table 4.5 Statistics for SCNAPNIF
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CHAPTER FTVK 

EFFICIENT METHODS FOR SOLVING (zI - E ) x =  b

5.1) INTRODUCTION

This chapter is concerned with methods that can be used to efficiently 
solve the system of equations

(z l - E)x = b (5 .1 )
where z  is a complex scalar

E is a constant, real N x N matrix and is full

x and b are complex vectors.

Matrices of this form commonly arise in frequency response 

calculations [1], and in particular the formulation developed in Chapter 

Four, which requires the solution of equation (4.35). In frequency 

response calculations the frequency variable z  is varied over the 

desired range and equations of the form (5.1) have to be solved 

repeatedly. The matrix E is constant (independent of z) and the 

known RHS vector b can be frequency dependent or independent as 

both cases are considered.

From these characteristics of the problem a number of methods are 

explored that attempt to take advantage of these characteristics and 

thereby reduce the overall amount of computation to solve (5.1) over 

a range of values of z.

The first approach considered is the direct method of solving equation

(5.1). This approach uses the LU decomposition methods discussed in 

Chapter Two. These methods have the distinct advantage that they are 

reliable, accurate and easy to implement. However the major drawback 

is that the solution requires 0 (N 3) flops and cannot take advantage of 

the fact that matrix E is real, which necessitates the use of complex 

arithmetic throughout. Although computationally expensive, these 

methods do provide reliable solutions against which other methods can

be compared.

The second approach is to use iterative methods for solving equation
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(5.1). The motivation for this approach is that these methods require 

0 ( N 2) flops per iteration and can take advantage of the fact that 

matrix E is real. Another advantage of this approach is that the

solution of (5.1) for a particular frequency can be used as the starting 

guess for the iterations at another frequency. Now in a frequency

sweep successive solutions generally do not vary greatly so the ability 

to use previous information can dramatically reduce the number of 

iterations. The last advantage of this approach is that because the

methods iteratively construct better approximations to the exact

solution the amount of computation is in proportion to the desired

accuracy. Therefore in cases where full machine accuracy is not

required this approach is able to reduce the number of iterations even 

further. From the above it is clear that this approach is competitive, 

provided that the number of iterations can be kept very low, certainly 

much less than N and ideally constant (independent of N). The major 

drawback of this approach is that the methods are not always

convergent or converge very slowly.

The third approach considered is to first transform equation (5.1) to a 

simpler form where a direct method of solution requires significantly 

less computation, for example 0 (N 2) or O(N) flops. This 

transformation is only performed once, is independent of frequency 

and requires 0 (N 3) flops. Because the transformation only involves 

transforming matrix E, real arithmetic may be used. The major 

advantages of this approach are that it reduces the computation to 

0 ( N 2) flops for each solution of equation (5.1) and may be 

implemented to provide reliable and accurate solutions. The only 

drawbacks are perhaps the 0 (N 3) flops required for the initial

transformation and the reliability of one of the methods presented (the 

most efficient one).

To highlight the performance of these different approaches, results are 

presented from an actual implementation of the different methods in 

an analysis program. The application considered is the solution of 

equation (4.35) which is crucial for the efficient frequency analysis 

method presented in Chapter Four. The necessary modifications to the 

algorithm (4.49) are presented and the results clearly show the 

enormous gains in efficiency from the most efficient methods.
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5.2) DIRECT METHODS

The direct method of solving equation (5.1) is to form the complex 
matrix

A = zI " E (5 .2 )
and then factor A into a product of triangular matrices

A = LU (5 .3 )
The solution is then obtained by solving the triangular systems using

forward elimination and backsubstitution. As discussed in Chapter Two

there are two methods of obtaining the LU factors, the Crout and

Gauss elimination methods. Because the matrix E is full, sparse matrix 

techniques are not applicable and full algorithms are used. Both these 

methods are unable to exploit the fact that matrix E is real and that 

only the diagonal of matrix A is complex. In fact the L and U 

matrices obtained are both complex and therefore complex arithmetic 

has to be used throughout, which effectively quadruples the number of

multiplications compared to the case where the matrices are real.

5.2.1) CROUT METHOD

The Crout method produces successive elements of the L and U 

matrices using the formulae

J - l
4 . . -  a . . -  I  ZiuUui i>J <5 -4 )

i j  U  k==1 lk

i - 1

a . . -  L £ . i ,
i j  k=1 lk kJ

Ui j
i <j  ( 5 . 5 )

a . .11

This method has the advantage that the inner products in the 

formulae may be accumulated in extra precision to avoid roundoff 

errors [2], In general the method provides accurate solutions, but 

suffers from instability for ill-conditioned matrices. To overcome this 

partial pivoting may be used whereby at each pivot step the element 

of largest magnitude in the pivot column is selected as the pivot. This 

process ensures that the growth of errors is bounded [2], To further
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increase the reliability of the solution, iterative refinement may be 

used to reduce any potential errors in the solution down to the
machine precision of the computer [3].

The Crout method with partial pivoting, extra precision accumulation 

and iterative refinement is implemented in the NAG library routine 

F04ADF [4]. A library routine was used as this provides a thoroughly 

tested and reliable method for obtaining solutions, which are accurate 

to machine precision. The disadvantage of this approach is that it is

slow, requiring 4/3N3 flops for the LU decomposition, 2N2 flops for

the solution steps and 4N2 flops for each iterative refinement step.

The overheads for partial pivoting and extra precision accumulation 

are quite considerable. However as this method is only used to

provide reference solutions and not for production use, the speed is

not important.

5.2.2) GAUSS ELIMINATION

The Gauss elimination method produces the L and U factors by

organising the computations in a different way to the Crout method,

though the Gauss elimination method with row normalisation produces 

the same LU factors as the Crout method. The kth step of this

method is,
a, . = a. . /  a, . i = k+1, . . , N

k i ki ' kk

a . .  -  a . .  -  a . ,  x a i , j  -  k + l , . .  ,N (5 .6 )
i j  i j  l k  k j

This method was implemented without partial pivoting or iterative 

refinement to investigate the stability of the method when applied to 

matrices that typically arise from equation (4.35). It was found that 

the solutions obtained by this method compared exactly with those 

obtained by the NAG routine F04ADF. Therefore it was concluded 

that for this specific application partial pivoting and iterative

refinement are not needed and this method could be used as a 

reliable reference. Although this method was typically at least twice as 

fast as the library routine (because there is much less overhead), the 

method still requires 0(N3) flops and becomes impractical for large

matrices.
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5.3) ITERATIVE METHODS

These methods attempt to solve equation (5.1) by successively 

producing better approximations to the exact solution from an initial 

guess. The main motivation for this approach is that each iteration 

generally only requires 0 (N 2) flops and therefore if the number of 

iterations can be kept low (prefably constant) then an overall 0 (N 2) 

method is obtained. This approach has a number of advantages over 

the direct approach. The first is that the direct approach modifies the 

matrix and therefore an extra copy of the original matrix must be 

kept, whereas the iterative methods do not alter the matrix and 

therefore save this extra storage. The direct methods cannot exploit 

the information given by the solution in a nearby frequency point 

whereas the iterative approach can use these solutions as initial 

guesses. Finally the direct approach does not allow computational 

effort to be reduced when the desired accuracy is lower than the 

machine precision related accuracy, whereas the iterative approach has 

control over the accuracy. For this particular application the iterative 

approach has a further advantage as it allows the structure of the 

matrix (real with complex diagonal) to be exploited.

Two iterative methods are discussed, the first is the Gauss— Seidel 

(GS) method and the second is the Least-Squares Approach (LSA).

5.3.1) GAUSS-SEIDEL METHOD

The Gauss-Seidel method is perhaps the most well known iterative 

method as it is easy to implement and is quite effective for certain 

classes of matrices. The method is described by the algorithm

REPEAT

FOR i := 1 TO N DO

i -1  N

bi ai j x xj L a u x xj1 j - i  J J j= i+1
X.  =

1 a i i

END
UNTIL converged

( 5 . 7 )
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The convergence criteria is usually 

n+1 n
x i “ x i < to le r a n c e  i = 1 , . . , N  (5 .8 )

where xj1 is the value of xj at the nth iteration.

Applying algorithm (5.7) to equation (5.1), it is seen that a4j in (5.7) 

is replaced by ejj and ay = z — ey. Therefore this algorithm can 

take advantage of the fact that matrix E is real and thereby halve the 

amount of computation. To further improve efficiency the values bj/ay 

may be precomputed and stored in a temporary vector and the 

division by ay replaced by multiplication by its inverse l/(z  — ey), 

which again may be precomputed and stored. Taking these savings 

into account, each full iteration requires 2N 2 flops. So provided that 

the method converges rapidly, it is potentially very efficient.

It can be shown [5, p.73] that a sufficient condition for the method 

to converge is that the matrix is diagonally dominant, i.e.

N

| a . . |  > I  | a  | i -  1 , . . , N  (5 .9 )
j= l J

It was conjectured that the matrices arising from equation (4.35) 

would be diagonally dominant as the modulus of z  is equal to 1 and 

the elements of matrix E are generally bounded by 1. However actual 

tests for diagonal dominance showed in fact that the matrices are not 

diagonally dominant. However condition (5.9) is a sufficient condition 

for convergence and not a necessary one and therefore the GS 

method could still prove to converge. Unfortunately tests verified that 

the GS method diverges for the systems of the form (5.1) which are 

derived from equation (4.35) and therefore is not suited to solving 

these equations.

5.3.2) I .HAST SQUARES APPROACH

The least squares approach [6] has the distinct advantage over the GS 

method of being globally convergent, though convergence can 

sometimes be very slow. Before presenting the algorithm, some 

notation must be defined. Let a(i) denote the ith column of matrix A
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and define the norm of the column a^) as the Euclidean length

a(i)Ta(i)>

N

" a ( i )  " 2 " ^ a i i  ( 5 - 10 )
j - 1  J

The LSA constructs successive approximations to the least squares 

solution of the matrix equation such that the norm of the error is 

reduced at each iteration and is therefore guaranteed to converge. The 
algorithm is,

y/ = b -  Ax 

REPEAT

FOR i := 1 TO N DO

x. -  x . + a  (5 .1 1 )

f  -  ol X

END

UNTIL converged

The convergence criteria (5.8) is used, except in this case the number

of iterations was limited to N (as then the algorithm requires 0 ( N 3)

flops and ceases to be of any benefit). As in the case of the GS

method this algorithm can also take advantage of the fact that matrix 

E is real, though not quite as effectively as the GS method. Another 

slight disadvantage is that the vector ^ and scalar a. are complex

which doubles the amount of computation. The computation of the 

norms ||a (i) ||2 can be precomputed and the reciprocals stored, which 

leads to significant savings. A further saving is possible as all the

elements in a column a(k) are real (and therefore independent of 

frequency) except for the diagonal elements ( z -  ejj). Thus the partial 

sums excluding the diagonal elements may be computed before

frequency analysis, which saves N 2 flops for each solution. Taking

these savings into account, each full iteration requires approximately

4N 2 flops.
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The algorithm was implemented and tested on matrices which were 

known to converge rapidly and was found to perform very well. 

However when the algorithm was applied to the matrices arising from 

equation (4.35) it was found that the algorithm never converged within 

N iterations (in fact was still wildely out after N iterations). Therefore 

this algorithm too was found to be ineffective for solving equation 

(4.35) and therefore the iterative approach had to be abandoned.

5.4) REDUCTION TO SIMPLER FORMS

The objective of this approach is to transform equation (5.1) into a 

form such that the resulting system may be efficiently and accurately 

solved. The two methods considered both depend on finding similarity 

transformations of matrix E,

H = T"1ET (5 .1 2 )

such that H is of a form which greatly simplifies the direct LU 

solution process and thereby dramatically reduces the computational 

cost. The requirement of such a transformation is that the matrix 

(z l— H) retains the form of H, so that the transformation need only 

be done once, independent of the frequency variable z. Two such 

transformations are considered, the first reduces E to upper 

Hessenberg form and the second to tridiagonal form. The application 

of the Hessenberg approach to frequency analysis of linear systems was 

suggested in [1] and was applied to SC frequency analysis in [9] . The 

method has been very effectively applied to the solution of large 

systems of linear ordinary differential equations [7].

5.4.1) HESSENBERG APPROACH

An upper Hessenberg matrix H is defined as

h . .= 0 j  < i -1  i = 1 , . . , N (5 .1 3 )
i j

A general matrix E can always be reduced to Hessenberg form by 

stabilised elementary transformations [2],

H = T"1P "1EPT (5 .1 4 )

where T is a triangular transformation matrix and 

P is a permutation matrix.

116



The transformation matrix T and Hessenberg matrix H can be 

determined in approximately 5/6N 3 flops using real arithmetic 

throughout. A direct method analogous to the Crout method may be 

used which allows extra precision accumulation of inner products, the 

kth step of the direct method is [8],

N i-1

h . , = e . 1 +  1  e .  , x  t  . .  -  l  t . . x  h  i  =  1 ,  . . , k + l
l k  i k  . ! , i i j  i k  . ,  i j  j k  ’ / c

j = k + l  J J j = l  J J ( 5 .1 5 )

N k
e +  l  e . . X t  1  t . . X  h

lk j=k+l1J Jk j_l ‘J Jk
t .i , k+1 (5 .1 6 )

k+ 1 , k i -  k + 2 , . . , N

To avoid numerical instability the pivot h ^  i ^  is selected as the 

maximum of le ^ l  for i =  k + l , . . ,N  and the respective rows and 

columns interchanged. The algorithm determines the matrices in the 

following form,

X X X X

X X X X

X X X X

X X X X

PT

1

0 1 

0 X 1  

0 X X 1

PT

1

0 1 

0 X 1  

0 X X 1

H

X X X

X X X

X X X

X X

where blank entries are zero. In a practical implementation the 

triangular matrix PT is stored in the zero portion of the Hessenberg 

matrix as the unity diagonal and first column need not be stored. 

This then allows the algorithm to be performed inplace and no extra 

storage is needed.

PT(zI -  T_1P "1EPT)T“ 1P 1x = b

Applying the stabilised elementary transformation to equation (5.1),

(5 .1 7 )

which may be written in a simplified form as,

( z l  -  H)y -  bP

where H = T P EPT 

v = T"1P "1x

(5 .1 8 )

bP = T~1P '1b
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Inspecting equation (5.18) one sees that this transformation satisfies the 

requirement that (z \— H) is upper Hessenberg. To form the 

preprocessed vector bP, the inverse of T is not actually calculated as 

the equivalent operation is accurately and efficiently obtained by the 

process of backsubstitution using matrix T. If vector b is independent 

of z , then this need only be done once prior to frequency analysis 

and requires approximately N 2 flops.

Equation (5.18) is solved using the direct approach discussed in section 

5.2. By taking advantage of the structure of the Hessenberg matrix, 

both in terms of zero/nonzero and real/complex structure, the 

computation is reduced from 4/3N 3 flops to 2N 2 flops. The forward 

elimination and backsubstitution steps together require approximately 

2N 2 flops. Finally the required solution x is determined by multiplying 

y by the transformation matrix which requires a further N 2 flops. The 

total solution process then requires approximately 5N 2 flops which is a 

dramatic improvement over the direct approach.

To ensure numerical stability partial pivoting may be used in the LU 

decomposition process, which because of the structure of the 

Hessenberg matrix only requires the comparison of two elements (the 

diagonal and the element below it) and is therefore not too costly. 

Similarly iterative refinement may be used to improve the accuracy of 

the solution.

The simplified Gauss elimination algorithm was implemented without 

partial pivoting and iterative refinement and the solutions were found 

to agree exactly with those for the full approach. Therefore the extra 

safeguard for stability is not needed for this particular application. The 

Hessenberg method is therefore seen to be a very efficient method 

that is reliable and accurate.

5.4.2) TRIDIAGONAL APPROACH

The tridiagonal approach is an attempt to improve on the efficiency 

of the Hessenberg method. The motivation for this approach is that a

tridiagonal matrix T, defined as,
t «  0 j < i -1 , j> i+ l  i = l , . . , N  (5 .1 9 )

i j
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may be LU decomposed in O(N) flops and a tridiagonal system solved 

in O(N) flops.

It can be shown, [2, p .396] that a lower Hessenberg matrix can 

be reduced to tridiagonal form by a similarity transform,

T -  Q_1 HT Q (5 .2 0 )

This transform is identical to the transformation of a general matrix 

to Hessenberg form, except that stabilisation is not allowed as this 

destroys the structure of the matrix. Therefore the same algorithms 

may be used by transposing all operations on the matrices, and may 

also be implemented inplace.

Consider the stabilised elementary transformation of a general matrix 

E to upper Hessenberg form

H = R"1P_1EPR (5 .2 1 )

Transposing equation (5.20) gives,

T T T -1T -  Q H(Q ) (5 .2 2 )

For notational simplicity the cumbersome (Q ^)— * is replaced by 

Q“  T. Substituting equation (5.21) into (5.22) gives the transformation 

of a general matrix E to tridiagonal form,

T T -1 -1 -TT -  Q R P EPRQ (5 .2 3 )

Applying this transformation to equation (5.1) gives,

PRQ"T ( z l  -  QTR"1P“1EPRQ"T) QTR"1P "1x = b (5 .2 4 )

which may be written in the simplified form,

( z l  -  TT)y  -  bp (5 .2 5 )

T -1 -1 
w here y ■ Q R P x

bP -  QTR"1P“ 1b

The transpose of a tridiagonal matrix is still tridiagonal, so this 

reduction to tridiagonal form satisfies the requirement that ( z I - T T) is 

tridiagonal. The transformation matrix QT and tridiagonal matrix TT 

can be determined in approximately 1/6N 3 flops, so the total cost of
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transforming a general matrix to tridiagonal form is then N 3 flops.

The elementary transformation algorithm presented in [2] is then

modified to work on the transposed Hessenberg matrix H ^.

The kth step of the algorithm is,

FOR i := k+2 TO N DO

qk + l , i = e k i /  ek ,k + l

su b tra ct  j x  row (k+1) from row i

add <1̂ +1 j x column i to  column (k + l)

END ( 5 . 2 6 )

Because stabilisation is not allowed, the method is potentially unstable 

and therefore accuracy cannot be guaranteed, though the use of 

double precision arithmetic can improve the accuracy. If the pivot 

ek,k+-1 zero then the algorithm fails as no row or column 

interchanges are allowed. In practice this problem has not been 

encountered for the many examples tested, but unfortunately this is 

not a guarantee that such a matrix will not occur.

The algorithm determines the matrices Q t  and T t  in the following 

form,

■ 1 0 0 0 ' ' X X ' X X ■ 1 0 0 0 '

1 X X X X X X X X 1 X X

1 X X X X X
as

X X X 1 X

1 _ X X X X X X 1

where blank entries are zero. As in the Hessenberg case, the matrix 

q t  may be stored in the upper zero portion of the matrix T T as the 

unity diagonal and first row need not be stored.

Equation (5.25) may be solved using Gauss elimination. In this case 

the algorithm reduces dramatically and only requires 7N flops for the 

LU decomposition and 8N flops for the forward elimination and 

backsubstitution, giving a total of 15N flops. Partial pivoting may be 

used and is even simpler to implement than the Hessenberg case, as 

only two comparisons are required and only 3 elements per row are
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swapped. Finally the required solution x is obtained by backsubstitution 

of y with QT and then multiplying this result by PR which requires a 

total of 2N 2 flops. Therefore it is seen that even though the solution

of the tridiagonal system only requires O(N) flops, the inverse

transformation of the results still requires 0 ( N 2) flops and thus any 

possible transformation method will always require 0 ( N 2) flops. The 

total tridiagonal method therefore requires approximately 2N 2 flops, 

which is believed to be the lowest cost attainable.

The tridiagonal method was implemented and tested on a large

number of examples. It was found that for matrices of up to about 

order 60 the tridiagonal method without partial pivoting produced 

results which agreed exactly with the full LU methods. However for 

larger matrices instability sometimes occurred (though not always and 

some large matrices were successfully solved) and inaccurate results 

were obtained. Partial pivoting did not affect these inaccuracies and it 

was therefore concluded that the instability is introduced in the 

reduction to tridiagonal form. Unfortunately nothing can be done to

eliminate this problem, except perhaps using extra precision arithmetic, 

which would be very costly and is still not guaranteed. Therefore the 

tridiagonal method cannot be unconditionally recommended and so the 

Hessenberg method, though 2 \  times slower, is the preferred method.

5.5) APPLICATION AND RESULTS

All three above approaches were implemented in the program 

FOOLSCAP as part of the frequency analysis presented in Chapter 

Four. The frequency analysis algorithm (4.49) has to be slightly 

modified to include the Hessenberg and tridiagonal methods. The 

modified algorithm for the Hessenberg method is,

A Preprocessing independent o f  frequency and n

1) Formulate the matrices and C^ and the vectors

2) Calculate P^ matrices using equation (4.16) and (4.21)

3) Calculate Bj ^ vectors using equation (4.22) for i =  0 ,..,m

4) Calculate matrix E using equation (4.31)

5) Calculate F̂  ^ vectors using equation (4.34) for i =  0 ,..,m

6) Transform matrix E to upper Hessenberg form H using
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equation (5.14)

7) Transform vectors F j>k and Bj ^ using equation (5.18)

B Frequency analysis independent o f  n

1) Prepare matrix ( e l ^ ^ i  — h )

2) Build RHS of equation (4.35) using equation (4.33)

3) Solve equation (4.35) for V ^ e J ^ 0̂ )  using the Hessenberg

method
4) Calculate Vk(ei^oT) using equation (4.36)

C Spectral analysis

1) For selected n calculate weights Dk n using equations (4.47)

and (4.48)

2) Calculate Sn using equation (4.46)

Similarly for the tridiagonal method the modified algorithm is,

A Preprocessing independent o f  frequency and n

1) Formulate the matrices Gk and Ck and the vectors Wk

2) Calculate Pk matrices using equation (4.16) and (4.21)

3) Calculate B^k vectors using equation (4.22) for i =  0 ,..,m

4) Calculate matrix E using equation (4.31)

5) Calculate Fj>k vectors using equation (4.34) for i =  0 ,..,m

6) Transform matrix E to tridiagonal form T ^  using equation

(5.23)

7) Transform vectors F^k and B jk using equation (5.25)

B Frequency analysis independent of n

1) Prepare matrix (ei C00̂ I  — T*)

2) Build MHS of equation (4.35) using equation (4.33)

3) Solve equation (4.35) for VN(eia)oT) using the tridiagonal

method

4) Calculate Vk(eJOJoT) using equation (4.36)

C Spectral analysis
1) Fpr selected n calculate weights Dk n  using equations (4.47)

and (4,48)

2) Calculate Sn using equation (4.46)
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The theoretical costs of the three different methods are determined 

and compared to actual timings obtained for a number of typical

applications, given in Table 5.1. Apart from the preprocessing steps, 

the different methods differ only in the time required for solving the 

last slot as all the other slots are obtained by backsubstitution which

requires a total of 2(M—1)N2 flops, where M is the number of slots.

The LU decomposition method requires approximately 4/3N 3 flops for 

the LU decomposition which swamps the 0 ( N 2) flops required for the 

solution. The results of this method are given in Table 5.2. A graph 

of the CPU time required per frequency point for 2 phase networks is 

shown in Fig. 5.1. From this graph the N 3 dependence is clearly seen 

and the enormous benefit of the other methods is apparent.

The Hessenberg method requires a total of 5N 2 flops, and so for a 2 

phase network the total is 7N 2 flops per frequency point. This 

dramatic saving over the LU method is clearly seen from the results 

in Table 5.3. The small increase in preprocessing time is for the

extra processing required for the reduction to Hessenberg form (5/6N3 

flops) and the preprocessing of the excitation vectors (M N 2 flops). 

The N 2 dependence of the Hessenberg method is shown in Fig. 5.1.

The tridiagonal method requires a total of 2N 2 flops, and so for a 2 

phase network the total is 4N 2 flops per frequency point, which is 

just slightly over half that required for the Hessenberg method. This 

result is verified in the results of Table 5.4. There is a slight increase 

in preprocessing time compared to the Hessenberg method, which 

accounts for the reduction to tridiagonal form (1/6N 3 flops) and the 

preprocessing of the excitation vectors (M N2 flops). The N 2 

dependence of the tridiagonal method and the improvement over the 

Hessenberg method is shown in Fig. 5.1.

From these results it is evident that the Hessenberg and tridiagonal 

methods can reap enormous savings compared to the full LU method, 

especially for large networks. Even though the tridiagonal method is 

faster than the Hessenberg method, the latter is recommended as it is 

thoroughly reliable even for large networks.
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Figure 5.1 Comparison of execution speed of various methods
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DESCRIPTION

1 5 th  o rd e r  e l l i p t i c  low pass f i l t e r  [10]

2 6 th  o rd e r  C hebyschev ban d p ass  f i l t e r  [10]

3 2nd o rd e r  ban d p ass  f i l t e r ,  Q = 20 [11]

4 5 th  o rd e r  e l l i p t i c  low pass f i l t e r  [12]

5 1 1 th  o rd e r  e l l i p t i c  low pass f i l t e r  [12]

6 7 th  o rd e r  C hebyschev low pass f i l t e r  [13]

7 3 rd  o rd e r  e l l i p t i c  low pass f i l t e r  [13]

8 1 5 th  o rd e r  e l l i p t i c  lo w p ass, le a p f ro g  d e s ig n  [14]

9 1 5 th  o rd e r  e l l i p t i c  low p ass, LUD d e s ig n  [14]

10 6 th  o rd e r  e l l i p t i c  ban d p ass  f i l t e r  [15]

Table 5.1 Examples used for comparison
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EXAMPLE
NO.

NODES
NO.

SLOTS
P R E -P r. 
( s e c s )

TIME/PT
( s e c s )

STORAGE
(w ords)

1 22 2 4 .0 5 0 .2 5 9 12288

2 28 2 5 .1 3 0 .5 2 7 16890

3 11 2 1 .1 4 0 .0 5 4 3664

4 20 4 5 .1 0 0 .2 3 0 11032

5 41 4 2 2 .6 1 .819 39944

6 30 6 11 .8 0 .6 8 8 27002

7 12 12 4 .7 6 0 .1 2 8 8520

8 70 2 4 0 .6 8 .168 94564

9 69 2 4 1 .1 7 .871 95210

10 27 2 5 .7 9 0 .471 17184

Table 5.2 Run statistics (LU method)
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EXAMPLE
NO.

NODES
NO.

SLOTS
PR E -P r. 
( s e c s )

TIME/PT
( s e c s )

STORAGE
(w ords)

1 22 2 4 . 25 0 .0 7 5 12288

2 28 2 5 .5 5 0 .1 1 4 16890

3 11 2 1 .1 4 0 .0 3 4 3664

4 20 4 5. 26 0. 092 11032

5 41 4 22. 7 0 . 320 39944

6 30 6 12 . 4 0 . 234 27002

7 12 12 4 . 82 0. 099 8520

8 70 2 4 7 . 4 0 .701 94564

9 69 2 47 . 6 0 . 679 95210

10 27 2 6. 21 0 .1 0 4 17184

Table 5.3 Run statistics (Hessenberg method)

127



EXAMPLE
NO.

NODES
NO.

SLOTS
PR E -P r. 
( s e c s )

TIME/PT
( s e c s )

STORAGE
(w ords)

1 22 2 4 . 37 0. 052 12288

2 28 2 5. 76 0 . 070 16890

3 11 2 1. 22 0 . 024 3664

4 20 4 5. 37 0. 072 11032

5 41 4 23. 5 0. 231 39944

6 30 6 12. 8 0 .1 8 9 27002

7 12 12 4 . 98 0. 093 8520

8 70 2 49 . 0 0 . 390 94564

9 69 2 49 . 5 0 .381 95210

10 27 2 6. 46 0. 067 17184

Table 5.4 Run statistics (Tridiagonal method)
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CHAPTER SIX

CONCLUSION

6.1) CONCLUSIONS

This thesis has addressed the problem of developing techniques for 

analysing periodically switched linear networks in the time and

frequency domains that are suited to computer implementation. The

motivation for this work, which was discussed in Chapter 1, was the 

increasingly widespread use of switched capacitor networks and the 

corresponding growing need for computer aided analysis tools capable 

of efficiently analysing SC networks taking nonideal effects into

account.

Very fast methods for the time and frequency domain analysis of

periodically switched linear networks were developed and implemented 

in a computer program. The per point computation cost of these 

methods is 0 ( N 2) flops, which allows very large networks to be 

successfully analysed. It was demonstrated that these methods are 

orders of magnitude faster than existing nonideal analysis programs. 

This performance is due to the way in which the problem was 

formulated, the analysis methods used and the techniques developed to 

implement this analysis in a practical computer program. The thesis

was divided into chapters each of which covers aspects of this work 

which are central to the overall efficient algorithms which were 

developed.

Chapter 2 addressed the problem of solving large sparse sets of 

complex linear equations. The concept of sparsity was extended to 

include the type of the nonzero elements, called domain types. This 

concept of domain types provided the key to the efficient approach 

developed to solve these equations. This approach used an 

interpretable code generation scheme capable of taking advantage of 

the domain type structure of the matrix. Three new optimal ordering 

algorithms were presented and were extensively compared with other 

ordering algorithms. The very substantial savings that can be achieved 

using domain type interpretable code generation in conjunction with a
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domain type ordering algorithm was demonstrated.

Chapter 3 was concerned with the efficient time domain solution of 

linear networks with arbitrary inputs. A new approach based on the 

analytic solution, which uses numerical Laplace transform inversion and 

polynomial approximation of the excitations, was developed. The 

motivation for using polynomial approximations was to avoid the

convolution in the analytic solution, which would otherwise be required 

for an arbitrary input. A new formula for polynomial approximation 

which calculates the coefficients of the polynomial explicitly was

developed. An efficient technique for evaluating the numerical inverse 

Laplace transforms needed to calculate the extended state transition 

matrix and excitation response vectors was developed that makes 

optimal use of the sparsity of the matrices using the approach

developed in Chapter 2.

Extensive results demonstrated that the time domain method is 

A— stable and is equivalent to high order numerical integration

methods (which are not A—stable). The method is well suited to 

solving large stiff networks, which frequently arise in network analysis, 

and in particular SC networks with the large spread in resistance 

values associated with the 'on ' and 'off' switches. This method was 

shown to be extremely efficient and orders of magnitude faster than 

numerical integration methods.

Chapter 4 presented the development of efficient time and frequency 

domain analysis methods for periodically switched linear networks. The 

time domain method of Chapter 3 was successfully generalised to 

periodically switched linear networks. This solution provided the basis 

for a very efficient technique for computing the time domain response 

of nonideal SC networks. The efficiency of the frequency domain 

method derives from three key aspects of the algorithm. The first is 

that the method, based on the time domain solution, uses polynomial 

approximation of the excitations, which avoids the need for AC 

analysis at each frequency point. This formulation enables the network 

to be modelled as a discrete system. A special system compression 

algorithm reduces the solution of this discrete system to the solution 

of the network in one slot only. This algorithm ensures that the
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computational cost of the overall method increases linearly with the 

number of slots. The third key aspect is the method used to solve the 

compressed system. The cost of this solution, which is 0 ( N 3) flops 

using standard techniques, was dramatically reduced to 0 ( N 2) flops by 

using the Hessenberg method, presented in Chapter 5.

The detailed steps taken to verify the analysis methods and their 

implementation in a computer program were discussed. The

performance of this implementation was compared with other methods. 

These results showed that the frequency domain analysis method is as 

accurate as the other analysis methods, yet is orders of magnitude 

faster and is capable of analysing very large networks, which the other 

methods fail to correctly analyse. This efficient method provides the 

basis for efficient sensitivity, noise and optimisation analyses.

Chapter 5 was concerned with methods for efficiently solving the 

complex linear equations derived from the compressed system produced 

by the frequency analysis method. Three different approaches were 

investigated and discussed in detail. The iterative approach was

rejected because the methods either failed to converge or converged 

very slowly. The direct LU decomposition methods were found to be 

very accurate and reliable, but require 0 ( N 3) flops for each solution, 

which makes the solution of large matrices impractical. The reduction 

to simpler form approach proved to be very effective in transforming 

the cost of each solution to 0 ( N 2) flops. The Hessenberg method was 

found to be numerically stable and very reliable, even for large 

matrices. The tridiagonal method, though 2£ times faster than the 

Hessenberg method, was found to be unstable for large matrices and

was therefore rejected. The frequency domain algorithms were 

modified to include the Hessenberg and tridiagonal solution methods. 

Detailed comparisons of these methods and the direct approach clearly 

showed the substantial savings that can be achieved by the reduction 

to simpler form methods and that they are crucially important in

transforming the per point computation cost of the frequency domain 

analysis method from 0 ( N 3) flops to 0 ( N 2) flops.
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6.2) SUGGESTIONS OF FURTHER WORK

The application of the adjoint method to the frequency domain 

analysis method presented in this thesis would provide the basis for 

efficient sensitivity calculations, which in turn provides the basis for 

efficient optimisation, group delay and group delay sensitivity 

calculations. The adjoint technique provides a convenient and efficient 

means of simultaneously determining the transfer functions from every 

node of the network to the output [1], which then provides the basis 

for efficient noise analysis. Due to the sampled data nature of SC 

networks, high frequency noise is aliased into the baseband and 

therefore this noise foldover effect must be taken into account [2],

[3]. The analysis method presented in Chapter 4 is well suited to this 

calculation as the frequency domain response may be calculated 

independently of n (the frequency band number). The aliasing effects 

are taken into account in a simple post processing step and therefore 

many frequency bands may be evaluated at very little extra cost.

The adjoint method requires the solution of the transpose of the 

discrete system used for frequency domain analysis. The block Gauss 

elimination algorithm for solving this discrete system may be adapted 

to efficiently solve the transpose system [4]. The Hessenberg method 

will have to be similarly extended to provide the efficient solution of 

the transposed system.

The sensitivity analysis requires the calculation of the sensitivities of 

the extended state transition matrices and excitation response vectors. 

These calculations could be efficiently performed by using the adjoint 

method in conjunction with the numerical inverse Laplace transform 

approximation. These sensitivities are frequency independent and may 

therefore be calculated in the preprocessing phase.

Three years ago it was not contemplated that the speed of a nonideal 

analysis program could be reduced as dramatically as has been 

demonstrated in this thesis. Further dramatic savings could be achieved 

by applying a compaction process [5] to reduce the size of the 

discrete system. This compaction process, also known as pivotal 

condensation, has been very effectively applied to the time and
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frequency domain analysis of ideal SC networks [1], [6]. Pivotal

condensation is applicable to the formulation presented in this thesis 

because the formulation does not use an AC analysis at each

frequency point (unlike all the other nonideal analysis methods), and 

therefore the RHS vector may be compacted in a frequency 

independent step. This compaction process could reduce the system 

down to one row per slot corresponding to each output of interest, 

for all but the last slot. This slot cannot be reduced because of the 

frequency dependent diagonal in the matrix. This process would then 

reduce the overall computation cost to approximately 5N 2 flops, the 

cost of solving the last slot using the Hessenberg method. The

compaction algorithm would be of particular benefit for networks with 

many time— slots, particularly if the outputs are only sampled at a few 

slots, which would enable the intermediate slots to be effectively 

eliminated from the calculations.

Polynomial symbolic analysis can be used to provide additional insight 

into the behaviour of SC networks. Transfer functions can be 

produced as H(z) in the ideal case and H(s,z) in the nonideal case

[7]. These polynomials have been used for frequency response and 

noise calculations [3]. For the formulation presented in this thesis, the 

transfer functions are functions only of z and therefore the complete 

nonideal response is given by H(z). This is in contrast to other

formulations which require transfer functions in terms of z and the 

continuous frequency variable s. The exact interpretation of the 

symbolic transfer function H(z) will require further investigation and

could have interesting application in deriving Z— domain equivalent 

circuit models of nonideal SC components. A number of different 

symbolic forms are possible, which require different methods for 

computing them. The polynomial interpolation method [8] can be used 

to determine the coefficients of the transfer function, and root finding 

procedures used to find the poles and zeroes. However this approach 

suffers from accuracy problems for bandpass and high— Q networks. 

An alternative approach is to use the QZ algorithm [9] to determine 

the eigenvalues of the system directly. This algorithm has the 

advantage that it is numerically stable and is well suited to this 

application as the first step of the algorithm is to transform the 

system to upper Hessenberg form, which is already done as part of
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the preprocessing for the Hessenberg solution method. This algorithm 

provides a quick and accurate method for computing the poles and 

zeroes of the network. If required, the coefficients of the transfer 

function polynomials can be obtained from the pole/zero information.

Further theoretical work is required to prove the A— stability of the 

time domain solution method presented in Chapter 3. A thorough 

error analysis of the algorithm is desirable to study the effects of 

truncation errors and the propogation of roundoff errors. A detailed 

study of the accuracy of the inverse Laplace transform approximation 

used for the calculation of the extended state transition matrix and 

excitation response vectors would be useful for obtaining strict bounds 

on the error of the time domain method.

Other forms of approximation of the excitations could possibly provide 

a more efficient or more accurate method, though perhaps at the 

expense of the simplicity and ease of implementation of the 

polynomial method. In particular a trigonometric approximation would 

appear to be attractive for the special case of sinusoidal input as the 

approximation would be exact and would only require one term. This 

approximation could then have important implications for the frequency 

domain analysis method which uses sinusoidal excitations.

The computation of the extended state transition matrices and 

excitation response vectors using the Im N approximant is a relatively 

costly process. It is unlikely that the efficiency of the present 

algorithm could be improved much, therefore to significantly reduce 

this computation other techniques could be investigated. The techniques 

would be required to be numerically stable and able to handle large 

stiff systems. Iterative methods or methods that can tradeoff speed and 

accuracy would be of particular interest because sensitivity studies of 

the influence of the approximations on the time and frequency domain 

algorithms would allow the accuracy of the approximations to be 

controlled, which could significantly reduce the computation cost.

Finally, with the increasing availability and use of vector and parallel 

processors, the implementation of the time and frequency domain 

algorithms on these processors could be considered. These algorithms
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are highly suited to vectorisation as almost all calculations are vector 

operations. The algorithms also have a high degree of parallelism, 

which could be exploited on a parallel processor. The only part of 

the algorithms which use strictly serial and scalar computations is the 

sparse matrix computations used in the calculation of the extended 

state transition matrices and excitation response vectors. Further 

investigation would be required to establish whether vectorised full 

matrix algorithms could be implemented that are faster than the scalar 

sparse matrix algorithms.
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