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BSTR

Quantum Chromodynamics(Q.C.D) is considered as a very strong
candidate as a theory describing the strong interaction. However, it
has to give answers about the phenomena believed to occur in
nuclear matter such as the status of the bound states of the quarks in
the nucleus and the absence of free quarks from the final states of
the reactions. The possible deconfinement of the quarks(quark or
guark-gluon plasma) at high temperature or density or both, is also a
very important question which Q.C.D. faces and which involves the
study of thermodynamic aspects of Q.C.D. The production of very hot
and dense matter(quark-gluon plasma) in the laboratory may help us
understand the phenomena occuring in the Supernovae, neutron stars
and the early universe. The planned attempts to produce such an
environment on a mini-scale at CERN in the near future has made this
study even more important. Theoretical physicists are using different
models and methods to predict the events in the quark-gluon plasma.
One of the most promising method being used is Lattice gauge theory.
The finite temperature lattice Q.C.D. gives a strong signal of the
phase transition from ordinary hadron matter to quark-gluon plasma
at a critical temperature T_ =180 Mev which is unexpectedly very high

and finite density lattice Q.C.D.(quark number >0) can be considered
as a possibility for correcting this . This method requires the
determination of eigenvalues of a big sparse non-hermitian matrix
and its inversion.

The Lanczos algorithm has been found exact for obtaining the
eigenvalues of the large sparse matrices and for inverting them. We
develop the block Lanczos algorithm which gives an optimization in
computer time when inverting these matrices. The existing algorithm
employs only even-even and even-odd field interactions on a lattice.
An additional algorithm is given, using which, with the above
mentioned interactions, we can simultaneously use odd-odd and
odd-even interactions, which again gives a further optimization in
computer time, at least for small lattices. The application of block
inversion to the fermion matrix is discussed; the convergence at
small mass is comparable or better than the other existing methods.
Taking advantage of the block form of the Lanczos algorithm, other
numerical methods are brought together to update the blocks of the
lattice efficiently which makes larger lattices possible. Most of the
previous work at finite density has been done using the quenched
approximation (which means neglecting fermion internal loops in the
theory) . By the above mentioned techniques, we can calculate the part
of the fermion determinant necessary to include the internal fermion



loops. Having included the fermion loops, we calculate the chiral
condensate,<yy>, (which is an order parameter for signalling the
chiral phase) to explore Q.C.D at finite density, using the SU(2) and
SU(3) gauge groups on a 4% lattice. For SU(2) we use an analogy
between the expression for <yy> in terms of the small eigenvalues on
an infinite lattice and an electroestatic field. We also calculate
explicit values of the chiral condensate for two representations. With
all the parameters of the theory fixed, the critical chemical potential
for restoring chiral symmetry goes to zero as quark mass goes to
zero. As the critical chemical potential is expected to be propotional
to the two quark hadron mass in SU(2), this signifies a zero mass
baryonic state and this result is similar to the one obtained in the
guenched approximation. It is argued, that, in the case of SU(2), this
is not surprising. However, it would be a disaster if the corresponding
result(the three quark hadron mass) held for SU(3). For SU(3) finite
density calculations with internal fermion loops, the chiral
condensate is more difficult to calculate since it involves a complex
determinant. The resulting problems are described. We use mq=0.1 and

B=1.5, for our analysis .The chiral condensate appears to be in a zero
divided by zero indeterminant form in our region of interest. By means
of two independent methods for interpreting the chiral condensate,
we show that there could be a phase transition at u=0.5. However,

chiral symmetry seems to be restored at pu=1.0.



CHAPTER ONE

INTRODUCTION

1.1)- HISTORICAL INTRODUCTION:

Quantum chromodynamics (Q.C.D.) and the G-W-S electro- weak
model, are the successful quantum theories of the strong and
electro-weak interaction. In all attempts at further advancement in
these theories, a significant part of the dynamics is beyond the reach
of perturbation theory. For example, in the strong coupling regime of
Q.C.D., where the guarks are believed to be confined, the convergence
of the perturbation theory is too slow to be of much use if indeed
convergence exists. Only at very high momentum scales where the
running coupling constant becomes small (and perturbation theory is
applicable) can some predictions be made. For the strong coupling of
Q.C.D., the associated phenomena, such as confinement and chiral
symmetry breaking, it is necessary to have a non-perturbative
method. Coventional analytic techniques expand around some classical
solution and remain always essentially perturbative. Some
phenomenological models show a partial success in solving certain
non-perturbative aspects but there is a growing need Jior a
quantitative understanding of these theories from basic principles.

In June, 1974, K.G.Wilson{1} introduced a lattice regularization
of field theories and with the advent of new, powerful computers it
has become an efficient method for non-perturbative studies.

1.2)- PATH INTEGRALS IN LATTICE FORMALISM:

Path integrals were first introduced by Feynmann{2}. The
expectation value of an observable is given by its average over all the
classical field configurations weighted by the factor exp{iS/h} where

S is the action.
As an example of the use of the path integral in quantum field

theory, let us take a simple scalar field ¢(x) with a o* interaction
given by,

1 2

St =[l08)- ym’ - Leap (1)

|



The two point Green's function is given by,

<0000 >=7 [Dosw e T (1.2)

where Z is the partition function of the corresponding field theory
given by ,

Z= ID¢ e gl (1.3)

The integrals can be thought of as sums over all possible
configurations in the space-time of the field variables ¢(x).lt is
possible to calculate the free case (g=0) and then by means of
perturbation in powers of g to calculate the non-free case. The
individual terms involve divergent integrals and even after all
renormalization and regularization, the series diverges but gives
accurate answers for small g provided the high order terms are
ignored.

For large g , perturbation theory fails and we have to think
about some non-perturbative method. As mentioned earlier, the
lattice regularization introduced by Wilson provides an efficient tool
for non-perturbative calculations.

The expression eq.1.3, resembles the corresponding formula in
classical statistical physics for the partition function, apart from
the fact that the measure in it is complex. Moreover, the function
involved is very oscillatory and is very difficult to handle in a
numerical computation. Statistical physics already uses computer
simulations and it would be very helpful to use its techniques. The
Wick rotation is already familiar in field theory. It is the process of
replacing ix, by x, in eg.1.2 and 1.3. It moves the Minkowsky space to

Euclidean and as a consequence we will be working with imaginary
time. In principle we should be able to return to Minkowsky space by
analytic continuation. The Wick rotation transforms eq.1.3 into,

Z,=|Do P (1.4)

where Z_. and S; are respectively the path integral and the action in



3
Eclidean space. Note that in Euclidean space all the directions are on
the same footings. Eclidean quantum field theory can be treated as a
classical statistical system and this has opened the door for the
thermodynamical studies of Q.C.D.

1.2a)-PATH INTEGRALS AND LATTICE REGULARISATION:

In a quantum field theory, the dynamical variable (fields) are
labelled by the points of the four dimensional Euclidean space, so it is
very natural to approximate a volume of space-time by a four
dimensional hypercubic lattice of points x separated by a distance a
called the lattice spacing to obtain a discrete set of variables. The
lattice introduced in this way, not only defines the path integral
representation of the vacuum functional but gives an ultraviolet
regularization as well. We shall denote n_ as the number of points of

the lattice in each space direction while Ng in the time direction.

The scalar fields and spinors sit on the sites of the lattice
while the vector fields go to the links joining the sites. A 32x4 lattice
is shown in fig.1.1. The derivatives in the action are to be
approximated to a finite difference. For example,

8“ o[x] =

® |-

A,6,=T100+1)- 0()] (1.5)

where p=aj and p is the unit vector in the pu direction.

By defining the scalar fields on a lattice of finite number of
sites x; , they and their degrees of freedom have been reduced to a
finite number.We write any scalar field ¢(x ) on a site X as ¢. . The
path integral is transformed into a product of ordmary mtegrals on
each of the lattice sites,

ZE=j(nnd¢n) ¢ PStel (1.6)
The two point Green's function can be given as,

[x,d0) 0,067
J (rdo)e BS[¢]

<0, 0> = (1.7)



2
Fig.1.1 a 3 x4 lattice.



with the action,

-

1
SE=§.aZZ(Au¢i2)+-21-a4Z[m2¢f+g2¢§] (1.8)
ip 1

It is necessary to be able to return to the continuum theory by
taking the classical limit n_——> «, Ng——=> =, a---->0 with X =a n_,
T=a n, fixed. We also should be able to renormalize m and the coupling
constant by choosing functions of a such that the resulting
observables [the Green's functions, for example] converge to finite
quantities. It is by no means a trivial matter to prove that this

renormalization can be done consistently or that the resulting
continuum theory will have Lorentz invariance.

1.3)- THE WILSON ACTION:

In formulating Q.C.D. on the lattice, where the gauge group is

SU(3).,, » we want to keep as many symmetries as possible of the

continuum theory. For the Wilson action, which is a lattice version of
the pure Y-M continuum action, we would it like to be locally gauge
invariant. The fermion part of the continuum lagrangian can be
written in a naive discrete form which, by requiring local gauge
invariance shows how the gauge fields should be written.

The fermion part of the continuum lagrangian dendity can be
written as,

L =i¥(x) Y, ap‘}'(x) (1.9)

where ¥ (x) is a fermion field variable while Y, are the well-knov

y-matrices due to Dirac. . This lagrangian is invariant under the
global transformation,

¥(x) ----- >V ¥(x)
Y(x) > ¥(x) V' (1.10)

where V is some SU(N) matrix acting on quark field. Writing the
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derivative in eq.1.9 in a discrete form, the fermion and antifermion
fields do not refer to one point and local gauge invariance is lost,

Y(x+en,)-¥x—-€n,) n )W
32 B }+2 e (Y.n) ¥(x +€n )
€ n =1

C

(1.11)

L =i¥(x)7,{

In order to regain local gauge invariance, we place a connection
U(x,y) between ¥(x) and ¥(y), where y is a position infinitesimally
close to x. ¥ (x) U(xy) ¥ (y) is invariant under the local
transformation V(x) if the connection variable transforms as,

Uxy) ----- >V(x) U(x,y) V(y)" (1.12)
For some infinitesimally small path di, U can be written as,

U(x,x+dl) = 1+ i g A.dl = ¢'9 Ad (1.13)

where g is a bare coupling constant and A is given by the relation
A=A Ti (1.14)

where Aui are gauge fields while T' are the generators of the gauge
group. Under the transformation law of U, A must transforms as,

Ap----> V(x) Au(x) V-ix) + (1/ig) V(x) 8ll Vi(x) (1.15)
to
give gauge invariance of W(x) U(x,y) ¥({y).

On the lattice, the fermion fields are defined on the sites so
that the connection becomes the gauge variable which sits on the link
between the sites.

With this understanding we write a lattice approximation of
the pure Y-M continuum action and hope to be able to restore it in the
limit a---->0.

Different shapes of lattices can be used for different problems
(or for the same problem with the condition of universality that they
should not lead to different continuous field theories). For simplicity
we use a hypercubic lattice with only nearest neighbour interactions,
the building blocks of which are the link or gauge variable.

The simplest action for Wilson's SU(N) pure lattice gauge
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theory is the product of the link variables around a plaquette, which
is analogous to Wegner's plaquette variable in the Ising model.

e

S=-B 2 r {Uu(n) U (n+u) U:(n +V) U:(n) +C.C. } (1.16)

NTIRY

where p and v are unit vectors in the direction of p and vrespectively.
B is some constant to be determined. We have also used,

U = U
U_u(n+u) = Uu(n) Uu (n) (1.17)
n v,m-—> ntH g3
—U
<—U_ (4
< a >

we write the plaquette action as,

S!j;BZAtr(5+Q] | (1.18)
n,u,v

In SU(N) lattice gauge theory, the link variable are elements of
SU(N) group defined as,

Uu(n) = exp{ iagA} (1.19)

where g is the bare coupling constant. The plaquette action eq.1.15 is
invariant under the discrete kind of local transformation, (see eq.1.12)

U, (n) > G(n) U,(n) G'(n+p) (1.20)

where G(n) is an SU(N) rotation at site n. The total gauge action for
the whole lattice can be written as,



s {[]Ztr{&*m (1.21)
n.uﬁ,v ) N
ﬁ<\3 (1.22)

I
Starting from this action, expanding U in powers of A, and
taking the continuum limit a---->0, it is possible to show {6}, that,

1 4
L >Z'1%' wF F dx (1.23)

G

where,

F =0A-0A+[A ,A] (1.24)
T A TE TR T

and it is continuum action if we identify ,
. Two things should be noted; we have restored the O(4)
invariance of the ccntinuum action and the local invariance included

at the start ensures that we recover the standard covariant Fuv of Y-M
theory.

1.3b)- STRONG COUPLING EXPANSION AND CONFINEMENT:

Eq.1.15 represents the simplest form of the Wilson loop {1},
which, in its most general form, is the trace of a directed product of
the gauge link variables round an arbitrary closed loop and is a gauge
invariant construction. It is used as an order parameter in lattice
gauge theory ; that a parameter concerned with the phase structure of
the theory. Elitzur's theorem {3} forbids the possibility of any local
order parameter in lattice gauge theory but we can use gauge
invariant order parameters.

The strong coupling limit is very natural and simple in the
Lattice gauge theory. But it is very difficult to treat in the
perturbation theory. In this limit, the inverse coupling constant B of
eq.1.21 become very small and we can expand the Boltzmann factor in
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terms of B as explained below.Wilson proved in his original paper {1}
that, in this limit, confinement holds for Lattice quenched QCD.
Quenched QCD or the quenched approximation is described later in this
chapter but here it is sufficient to know that it involves ignoring the
dynamical fermions part of the action.
In this approximation, the Wilson loop is given as,

<W(U)> = % J' dU W(U) ¢ © (1.26)

Expanding the Boltzmann factor in terms of B we get the terms of the
series containing products of gauge elements multiplied by the Wilson
loop( which also consists of the gauge elements). From the integrals,

jdu U=0 (1.27)

J‘dU 1=1 (1.28)

+ 1
de Uij U, = (—I-l-) ail 851; (1.29)

eq.1.26 for a Wilson loop of size (RxT) comes out to be,{5,6},
<WRT)> o« ¢®*D (1.30)

and we can note an area law dependence.

Also the potential V, required to seperate a fermion and an
antifermion, R distance apart for a period of time T is related to the
Wilson loop by the relation{4},

<WR,T)> o ¢ " ®*T (1.31)
so that,
V(R) o< R (1.32)

and we. have a linearly confining potential.



VR)=oR (1.33)

where the constant o is called the string tension.

1.4)- THE CONTINUUM LIMIT:

Putting a theory on a lattice is a regularization of the theory.
But this regularization has a temporary role since, at the end, it
should be removed and, in a renormalizable theory, final results
should not carry any trace of the regularization used.

In the case of lattice regularization, this is the process of
taking the continuum limit a---->0, but it is not a very simple
process.

<mmmmmmmmemee- 1fm e >
X X X X X X X X X X
<-a->

After regularization, the elementry interactions extend over a
distance of order of a . In strong interactions, events are correlated
over about 1fm. As a becomes small, 1fm corresponds to a large
number of lattice units which goes to infinity as a goes to zero.

.....................................

The final solution of the theory should have a non-zero correlation
over many lattice units. The main difficulty of the theory lies in
achieving a collective behaviour over this distance.

For simplicity, let us consider a theory without dimensionful
parameters. The only dimensional parameter available is the lattice
spacing a. Mass in this regularization can be written as,

1
m=— f (8,883 reeeene ) (1.34)
where g,, g,, G5, oot , are the dimensionless couplings of the theory.
in the limit a ----> 0, these go to the Ilimit
[« PREEEE« BN« FEEEEE '« PR , S0 that f(g,",8, srveeerens ) ---->0, to get a

finite mass prediction. The correlation length measured in terms of
lattice units,
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£~ (am). (1.35)

So the tuning procedure will be,

a-—>0
gy---->9gy

(1.36)
92"">92‘

where g1', g2', etc, are the critical points of the corresponding

statistical system. Near these critical points, there will be large
scale fluctuations which could break the underlying lattice structure
in ‘a Euclidean rotational symmetric continuum theory.

1.5)- SCALING:

A pure Y-M theory has a single dimensionless coupling constant
g and we know that g = g(a). In the continuum limit when
a ---->0, and g ---->g_(some critical g), we have to choose g  so that

all the physical predictions become independent of the lattice
spacing. Renormalization also requires that this critical point should
have scaling properties, i.e, all physical quantities should tend to
finite values in this limit. It means we are looking for the critical g

of a second order transition.

On the lattice, the only dimensionful parameter is the lattice
spacing a. All the observables on the lattice are measured as
dimensionless numbers. We can write the masses of two mesons as,

m_=mj/a (1.37)
m, = n/a (1.38)
where m and n are masses of the = and p mesons in lattice units

respectively.
In the scaling region we should have,
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m
l;‘- = —% = constant. (1.39)

For asymptotically free theories as g ---->0 the critical point is
B.,----> . The inverse of the coupling constant ,3, and a can be

combined to give a dimensionful lattice parameter, A, . ..by which

most physical quantities can be described.
The relation between Aice and Ays (MS stands for minimal

subtraction scheme of the continuum theory) permits us to write the
lattice predictions in the physical units.
For example,

lattice

=29 for SU(3)

A
MS {11} (1.40)
AMS =100 ~ 200 Mev

so that A, ... ~ SMev.
A, 1S @ physical quantity so that,

dA, . i
e = (1.41)

ST
Iif we write,
Aice = (172) A
then,
i L -=o (1.42)
a dg

where B(g) is the beta function of the renormalization group equation.
From the continuum theory,
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2
A=expl-—L51 (B gD (143
B,g

Remember that B=2Nc/gz. All the masses should behave similarly as a
function of B as eq.1.38 can be written as,

mn= C1 Alattice
m.= C2 A

or m=C,;m=f(B)
or n=C,A;n=1{p) (1.44)

lattice

If we are close to the continuum limit, where g(a)---->0 we
expect that masses will vary with B in the perturbative way eq.1.42.
This is called asymptotic scaling.

1.6)- MONTE CARLO SIMULATION:

The expectation value of any observable can be given as,

J TdU)Oe °

<0>= (1.45)

f d1du) esG

which involves a very high dimensional integral. If we evaluate this
integral directly, much effort is wasted on configurations with a
large action which do not contribute significantly. The idea of the
Monte Carlo (M.C.) method is to replace the computation of the
expectation value of O by an average over the gauge configuration U.
Here a configuration means a set of U matrices on all the links of the
lattice,

ZO {U}

<O>=— (1.46)
1

and we want only those configurations which are distributed
according to a Boltzmann distribution exp(-Sg).

This replacement of eq.1.45 by 1.46 involves the technique
importance sampling from statistical physics. It is a method which
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avoids the configurations with large actions, which do not contribute
to < O >. Thus, the centre of the problem is shifted towards the
techniques of generating configurations which are distributed
according to the Boltzmann weight.

Two algorithms using M.C. techniques are believed to be the
most important; namely (1) Metropolis and (2) Heat bath algorithms.
The Metropolis algorithm is more popular due to its simplicity of
application and we have used a modified form in our calculations.

in both these algorithms one begins with a random
configuration U, Then, a single variable is varied and a new

configuration Ui' is generated. If this new configuration obeys the

rules of the algorithm it is accepted and replaces the old one
otherwise it is rejected. One sweep through the lattice involves the
sampling of all variables. The aim of both the procedures is to
generate a gauge configuration U which is closer to an equilibrium
Boltzmann distribution. O(U,) is calculated for Ui' and its contribution

towards eq.1.46 is recorded. Next, the algorithm is applied to this
configuration U’ and a new statistically independent configuration U,

at thermal equilibrium is generated and its contribution towards
eq.1.46 is again recorded. This procedure is repeated many times and
< O > is calculated by virtue of eq.1.46.

Passage from one configuration U to U is controlled by the
transition matrix,

P(U > U)
with Z (U —-> U) = 1 (1.47)

One condition on P(U ----> U) is that it leaves an equilibrium
emsemble in equilibrium, i.e, the Boltzmann weight is its eigenvector,
so that,

D P(U > U) exp{-S(U)} = Y PU--> U) exp{-S(U)}
v exp(-S(U)]  (1.48)

As already mentioned, this stochastic change is produced by
changing one link variable and we get a new configuration. The
acceptance or rejection of this change depends upon the algorithm
being applied. Once a change is accepted or rejected, a next link
variable is selected for the change. The selection could be random but
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it is convient computationally to move through the lattice in an
orderly fashion. The Markovian chain can still be given as,

P (U ==> U) = P(U --=-> U);x P(U -—> U), x wooooe

Our aim is to define a stochastic sequence with the property that
after the statistical equilibrium is reached the probability of finding
any configuration is weighted by Boltzmann distribution exp{-S(U)}.

A sufficient but not necessary condition on each step of
algorithm s,

exp{-S(U)} x P(U ----> U) = exp{-S(U)} x P(U----> U) (1.49)

It can be proved that each step of a M.C. algorithm makes the
emsemble more closer to equilibrium {25}.

1.6a)-THE METROPOLIS ALGORITHM:{7}

We can begin with a cold or hot start. In the lattice gauge
theory, a hot start means a start with some random configuration of
the gauge group.

We start with some configuration U and make a new U by
changing a link variable.We accept this change as a trial change Ut
with a temporary (arbitrary) transition probability P(U ---->U'). The
change produced in the action, AS, is computed. If, AS < 0, it is
accepted, as this configuration is more inclined towards the
equilibrium. If AS > 0, a random number R, between 0 and 1 is
generated and if exp{-AS} 2 R it is accepted with probability R,
otherwise rejected. The detailed balanced condition eq.1.49 is
satisfied.

. 1
PU —->U) _ P >U)  expas) _ expi-as

P(U ->U) P (U--->U) 1 1
- exp{-S(U)} (1.50)
exp{-S(U)}

1.7)- FERMIONS ON THE LATTICE:

Putting fermions on the lattice requires the lattice equivalent
of the Dirac operator. A theorem exists which shows that it is
impossible to write a lattice Dirac operator which exhibits all the
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properties of its continuum counterpart. However, although it is
difficult to put fermion fields on the lattice, there are some schemes
around which are partially successful. We shall describe the most
important ones briefly.

1.7a)- THE NAIVE FERMIONS:

The complete action for the fermion fields coupled with gauge
fields can be written as,

Se=-J (V@ +A)y+my yrdx  (151)

At zero mass , this action shows partial invariance under the
substitution,

v >Y Y
7 >y, (1.52)
Yy —>-yy

This is chiral symmetry and it is broken by the mass term in the
action.
On a lattice, the fermion fields are defined at sites by

y(n) and y(n)
Under a local transformation analogous to eq.1.10,

w(n) ----->G(n) W(n)
J(n) ---->¥(n) G (n) (1.53)

the object y(n)y(n+u) is not gauge invariant, as discussed already. To
make it invariant, we introduce a gauge field U on the links between
the sites which tranforms (see eqgs.1.11 and 1.12) as,

U(n) -----> G(n) U(n) G'(n +p)

The fermion fields interact through these gauge fields or
gluons. The lattice action is,
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n

4
1 _ _
S=a 2 ( z = (@) yﬁ Umy(n + ) - Y@ y. U@ - 1) yin - ) ]+ m yn)y(n)
- 113
"

(1.54)

Rescaling by v > 212 332y, we get,

4
Sye = 2, ( 2 19 Y. () a4 - ) . UCn - 1) (o - )T+ 2ma )y

(1.55)
All we have done is a result of a replacement of the differential by a
symmetric difference.

>W(n+u)-\v(n-u)

0.
“W 2a

(1.56)

This is the naive fermion scheme.
Using a matrix notation, the action can be written as

S=-Y(M +2ma) y (1.57)

where M is the naive fermion matrix. It is anti-hermitian.

We choose a boundary condition for gauge fields to preserve a
discrete kind of translational symmetry. We shall use anti-periodic
boundary conditions for fermion fields to avoid zero modes.

Another thing notable is the effect of chiral symmetry on the
eigenvalues of M which come in the conjugate pairs.

My=ily

= M75w=—'ysM\y=-ixV5\p (1.57a)

1.7b)- SPECIES D LING:

The free continuum Dirac Green's function satisfies,
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(1,3,+m) Gylx - y) = 8(x-y) (1.58)

From eq.1.56 the corresponding lattice propagator, in our notation,
will become,

Z*y, {Gm+u,0)-G -y, 0)} +2ma G(n,0) = 5n.0 (1.59)
~ B

Putting the propagator equation on a hypercube of length L and
defining a Fourier transform by,

G(n,0) = Z exp( ig.n) é(q) (1.60)
{q)
with g = 2ri/L; i = 0,1, ........... riereeeanans L-1.This gives the propagator eq.,
1 ) . ~ ~ ) 1 .
3 2 Y- 2 [ exp{iq.(n+u} - exp{-iq.(n-w) }JG () +2ma G(q) Zcxp(lq.n) == exp(ig.n)
" H g {q) L (g
(1.61)

which gives,

2ma- Y iy.sing.
. ~ ' n
G(q) = ! - " (1.62)
L4{Zi y.sing.+2ma}  L*{(2ma)*+ 2 sin’q. )
TR - M

-

- E iy.sinq.
N ralT! 18
G(q) = —& (1.63)

L42 sin q.
- H
i

G(q) has a pole at }:u sing,, = 0.
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This happens not just when q, = (0,0,0,0,) but also when any

component of Q=" Thus there are 29 or 16 poles in 4 dimensions. It

seems to be describing 16 degenerate fermions per lattice site. This
is the doubling problem.

1.7c)- REMEDIES:
The lattice eq.1.55 preserves the chiral symmetry at the mass
m = 0 limit. The doubling problem is a characteristic of chiral

symmetry {16}, so we have two chioces,

1)- Either a non-chiral symmetric lattice regularization is defined
or,

2)- Doubling is expected { 8 }.

The procedure suggested by Wilson belongs to first category
while Kogut-Susskind (staggered) fermion scheme belongs to the
second. The Wilson fermion scheme gives an effective mass of order
1/a to the 15 unwanted flavours. The mass of the 16th can be
adjusted by varying a parameter in front of the action called the
hopping parameter.in this scheme, calculations become very
complicated and chirality is lost.

1.7d)- K 1- KIND FERMION HEME:

Consider a unitary transformation on a site n,

w(n) = T(n) x(n)
V() = x(n) T(n)

(1.64)
where T(n) =11 yriﬂ and T TT= 1.

Cop

M

Any site can be given as n = (n,, n,, ng, n,) where n; are the

co-ordinates of site n.
For the naive action with U = 1,

S= Y (§@)Y. [V +W-y@-]+2ma gy},  (1.65)
! m
n,u

under the above transformation,
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V() ¥(n) ------ > %(n) x(n) (1.66)

and eq.1.65 becomes,

KS — -
S= Znﬁ (0) F0) ( 2+ ) - x@ - 1) ) + 2ma £(0) x@) (1.67)
ot

where n, are the fermion signs which can be given as,

nll(n) _—_-1’ u:l
n{ N
=(-1) p=2 (1.68)
n.+n. N
=-n' °? n=3
n-+n.-+n-. R
=(_1)1 2 3 p=4

This action eq.1.67 is now diagonal in the Dirac indices. One
might attempt to consider only one and drop the other three. So it
becomes a one-component spinor field and four component quark
fields are constructed from it at different corners of the lattice. By
this trick, the number of quark fields is reduced to four which might
be interpreted as describing four different flavours {8}.

Considering the transformation eq.1.64 in the matrix notation
and considering eq.1.57,

() T'() M T() x(n) = X(®) Mp x(n) (1.69)

where M, has four block matrices along its diagonal only. Its explicit
representation will be,

e ) r 1
MKS x1
M
I KS X
=X XXX, M 2 (1.70)
—_— X
X

w

Mgs

4
N ]

\ /
so that action for each component becomes,
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S H( M +2ma)y (1.71)

In the staggered fermion scheme flavour symmetry is explicitly
broken and it is hoped that it will be recovered in the continuum
limit. However chiral symmetry is recovered at m = 0.

1.7e)- THE EFFECTIVE ACTION;

The Monte Carlo method devised for the bosonic fields cannot
be wused for fermionic fields, because fermionic fields are
anti-commuting objects of a Grassmann algebra. The properties of

fermionic fields y's are,

(W, ¥,1=0,

(W v1={y,¥,}=0
(¥)?=(¥)*=0
J‘d\y\y=1,.[d\y=0

(1.72)

By the use of these properties and by using the quadratic form of
Q.C.D. fermion action , eq.1.71 becomes,

Ng4
S=- ) % Mg +2ma )y, (1.73)

i=1

We can calculate the partition function of Q.C.D.,

KS

_ +Sg
Z=jdx dydUe

Integrating over the fermion fields using eqs.1.72, this becomes,
Nf

Z= IdU e [ det My +2ma)]’ (1.74)

where Nf are number of flavours and it is clear that we can use the

effective action,
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1
S + — N log [ det (M ( + 2ma] (1.75)

eff.=SG 4
The two point Green's function satisfies the equation,
[ (M + 2ma) G]ij =8ij (1.76)

so that,

+ SKs

_ _ S
<Xin>=jdX ddexixjeG

Integrating over fermion fields again, this becomes,

1 1 S
=JdUZNf(MKS+2ma)ij e (1.77)
In particular,{ 9 },
_ N 1
<X x>=—3——<tr (Mg, +2ma) > (1.78)
n_ng 4

- FINI N

There is a straight forward way of introducing a finite
temperature in lattice gauge theory calculations{10}.The value of the
critical temperture,T_, for deconfinement is believed to be 180Mev

and is too high for current laboratory experiments. The decisive
element in the deconfinement of the quarks is the increase of colour
charge density, which is here achieved by an increase of temperature
resulting in particle production. Matter at high density can, however,
also be formed by compressing a system of many nucleons at low
temperature; this leads to a high density of baryons and hence also of
quarks.

The complete phase diagram of strongly interacting matter
must thus describe the phase structure as a function of the
temperature T and the baryonic number density ng or the

corresponding baryonic chemical potential p. A schematic view of a
possible phase diagram from hadron matter to a quark gluon plasma in
Q.C.D. , as function of T and p is shown in fig.1.5. The dotted area
between these two phases represents a sub-nuclear phase due to
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some phenomenon analogous to Cooper pair production in
superconducting material.

The introduction of a finite density has a problem associated
with defining the chemical potential on the lattice in a satisfactory
way. At p =0,

Z =tr {exp(-pH)} (1.79)
where B is the inverse temperature and H is the Hamiltonian of some
statistical system. With the introduction of the chemical potential, it
becomes,

Z = tr {exp[-B(H - uNp)]} (1.80)

with Ng denoting the operator for the overall baryon number.

For Q.C.D. at finite density we must introduce an extra term in
the time direction of the fermion part of the action in eq.1.51, which
has the form,

V(0. +A)Y+RYY. ¥ (1.81)
4 4 4
The energy density is defined as,

197 (1.82)
dp

where V is the spatial volume (of the lattice), while,

Ks

BS
z=jdidxeﬁ F (1.83)

where S_K$ is the fermion action, which is modified by the

introduction of chemical potential but can still be given by eq.1.81.

The energy density E, calculated by using the naive application
of egs.1.81, 1.82 and 1.83 is quadratically divergent in the continuum
limit and the appropriate form of the Kogut-Susskind fermion action
at finite density suggested {12} is,
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3
KS _ t
Sp2 (L A® 20 @ (U0 Ve wxe- il (q g
m

» 2A N, @[ V. ) g0+ )~ Ul - 5= 4 +2ma Y x o)

4 n

and we have used this form in our calculations.
We can write the action eq.1.84 in a matrix notation as before,

KS

Sp=-

X (M, +2ma)y (1.85)

For a zero mass quark, this becomes,
KS —
SF=_ pé Mcx (1 86)

where M_ is the fermion matrix with the chemical potential . It is an
(chncan) X (chnoxnﬁ) matrix where N_ is the number of colour

degrees of freedom. The chiral condensate can still be given by

eq.1.78.
The thermal average of an arbitrary operator O can be written

as,

SoraAMcX 4 g7y

<0> =-12—de dy dy O(U,x.x) e
After integrating over the fermion variables x and x, we get,

1 - Sg
- ;JdU OU) et M) e

JdU O (detM,) e
= (1.88)

SG
de(detMc)c
The calculation of (detM;) requires an enormous amount of
computation. In the quenched approximation (detM ) is set constant ,
so that,

- S
dU O(U)e °
<0> = (1.89)

quench S
JdU e’
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This approximation leaves out the internal quark loops.

1.9)- SOME PREVIOUS RESULTS AND SPECULATIONS:

It might be chance, but in the quenched approximation, at least,
convincing evidence has been found to show that the critical
temperatures for deconfinement and chiral symmetry restoration are
coincident. Most of the calculations so far have been done in the
quenched approximation as this theory is easy to simulate on a
computer but there is a problem since with a zero quark mass, the
chiral symmetry is restored at an arbitrary critical chemical
potential, u_, which is consistent with p =(1/2)m_, where m_ is the

pion mass, and is inconsistent with contemporary physic which
favours p_=(1/3)m,, where m, is the proton mass. Therefore, it is

necessary to examine the theory, including dynamical fermions, via
the fermion determinant, detM_. We call this the full or unquenched

theory and it is expected that this will smooth out the
pseudo-transition at half the pion mass.y24}

As indicated above, the expression for the chiral condensate
<xx> €q.1.78 at finite density in the full theory, demands the
calculation of the determinant and the inverse of the fermion matrix
and with the introduction of the chemical potential, the fermion
matrix Mc, becomes a non-hermitian matrix.

- QV !

In chapter 2, we modify the Lanczos algorithm for hermitian
matrice, to include non-hermitian matrices. We apply it to calculate
the eigenvalues of the large sparse matrices and their inverses. The
block Lanczos technique is developed to invert the blocks of the big
sparse general matrices with an optimization.

Chapter 3 contains the application of the biock
Lanczos(non-hermitian) method to the fermion matrix M_. A computer

method is described for the discrete derivative part of the fermion
action. A modified Metropolis algorithm is given and applied for fast
updating. This chapter also contains an algorithm for Mc'2 and an

additional algorithm to the block Lanczos algorithm to save computer
time.

The above mentioned techniques enable us to explore QCD at
finite density and for this, we have presented our results , using
SU(2) and SU(3) gauge groups, in chapter 4 and 5 respectively.
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At the end of the thesis, we describe the conclusion drawn
from our research work.

T

Quark-Gluon plasma

Hadron
matter

Fig.1.5
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CHAPTER 2

THE NON-HERMITIAN L AN A RITHM

2.1)- NEED FOR NON-HERMITIAN LANCZQS METHOQD:

As indicated earlier, the introduction of the chemical potential
causes the fermion matrix, for gauge groups SU(2) and SU(3) to
become non-hermitian. The fermion matrix for nearest neighbour
interactions only, is shown in fig.2.1 for a 42 |attice shown in
fig.2.1a. We have taken anti-periodic boundary conditions for the
fermion field on this lattice in (1 + 1) directions. A method, for
dealing with the non-hermitian matrices, is needed for the finite
density calculations. The hermitian Lanczos method{13} is modified
to include non-hermitian matrices and this method can be used to
diagonalise and invert a big sparse general matrix like the fermion
matrix.

2.2)- TRIDIAGONALIZATION OF AN ARBITRARY COMPLEX MATRIX:{1

The inclusion of non-hermitian matrices in Lanczos method
requires a similarity transformation, to produce a tridiagonal
symmetric matrix T from a general non-hermitian matrix H.

XTHX=T 2.1)
with,
@, B, 00 0 .. .)
By o B, 0 O
T= 2.2)
0 B, B0
. g
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Fig.2.1. Finite density fermion matrix(H/i), with anti-periodic
boundary conditions for ferimion fields. The matrix becomes
anti-hermitian at H=0
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Write X as a series of column vectors,

X= (x1, D ) (2.3)

H being a general matrix, may have eigenvalues which are complex and
the a's and B's can also be complex. We have the same Lanczos
equations as in the hermitian case,

Hx, =a,x,+ B, x, (2.4)

Hx =B % rogx +Bix (2.5)
We also need the matrix Y given by,

Y= HY=YT Y X=1 (2.6)

Y can also be written as a series of the column vectors,
Y = (Yo Vg ooeomee e ) (2.7)

The columns of Y can be calculated with the additional Lanczos
equations,

HTy1 =a, y,+ By, (2.8)
HYY, =B,y + o+ By, (2.9)
y) % =8, (2.10)

These are the Lanczos equations for the non-hermitian matrices,
which can be used recursively to calculate all the a's, B's, x's, and y's
starting by, choosing the x, and y, to be unit vectors and using the

bi-orthogonality relation eq.2.10, we get the a's,

(}ti=y;'LHxi (2.11)
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The B's come from ,

Bi xi+l = Hxi - aj xi - ﬁi-lxi-l = Xi (21 2)
* ) *
Bi yi+1 =H yi - a'i Yi - ﬁi-lyi-l= Yi (21 3)
so that,
B2=Y] X, (2.14)

egs.2.12 and 2.13 give recursion relations for x; , and Yi, 1

(2.15)

1+1

_ X _
X; —E’yi+1_

=2 |

This completes the definition of the method. Last equation is
automatically satisfied because we show that,

U=Hxy-By Xy -y Xy (2.16)
¥ * :
V=Hyy-By.; ¥n.1-Onn

are orthogonal to all the vectors and so must therefore be individually
equal to zero, so that,

2
By=V'u=0

The tridiagonal matrix T can, now, be diagonalised by some

standard method.
Another cause of the failure of the algorithm other than

rounding errors is that some B might be zero. This gives a division by
zero. Two things can cause this problem.
1)- If the first Lanczos vector x,(y,) is chosen to be orthogonal to
some eigenvector of H,
2)- If H has degenerate eigenvalues, a division by zero enters into
the calculations again.
The only solution is to choose the next x(y;) to be any unit

vector orthogonal to all previous ones and continue the calculation.
This requires a reference to previous vectors which would create a
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storage problem but as we never encountered such a situation we
ignore it.

One of the advantages of the Lanczos method over other
methods, is that it does not need to store the huge matrix H, even if
it has large number of zero elements. We require only 6 Lanczos
vectoys  at every step of the algorithm and require an equivalent
space for their storage. We also require a subroutine to multiply a
vector by H. All but the last four Lanczos vectors can be discarded
after each iteration.

2.3)- REORTHOGONALISATION:

When we apply the Lanczos method to large matrices, we find
By = 0, due to rounding errors. This is due to a loss of biorthogonality

between the first few Lanczos vectors and the last one. We cannot
ignore the errors becaues they build up exponentially and, no matter
what precision is used, we find this loss of biorthogonality between
the first Lanczos vectors x,(y,) and the one after the last iteration

x;(y;). The most straightforward way to overcome this problem is
reorthogonalisation. The newly calculated Lanczos vectors x(y;) can
be reorthogonalized against the previous vectors x’.(y‘.) by the
projection,

X, ----oe > X, - x(y. X,)

7 (2.17)
y1 """"" > yi - YJ(XJ )’,)
G=1toi-1)

on each step. Then provided we have not lost too much orthogonality,
the rounding errors will be reduced to a reasonable level. Usually this
does not need to be done after each iteration unless there are many
close eigenvalues. Unfortunately orthogonalisation slows down the
calculations and requires a large space for storing all the Lanczos
vectors and it is impractical to reorthogonalize for N > 1000.

2.4)- WITHOUT REORTHOGONALISATION:

Fortunately it is possible to use the Lanczos method without
reorthogonalisation and, consequently, we can deal with much larger
matrices. We allow the Lanczos algorithm to proceed beyond the Nth
iteration calculating new Lanczos vectors and a's and B's until we
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have done N iterations. The a's and B's now form a N xN tridiagonal
matrix 7 with N eigenvalues 'Z, from which we can sort out the

eigenvalues A, of H. It has been found empirically{13}, that if N is

sufficiently iarge then all the eigenvalues of H will converge as
eigenvalues of T.But T wili also have spunous eigenvalues, which are
not the eigenvalues of H. For large N, the fastly converging
eigenvalues (ghosts) of H will appear many times as eigenvalues of T.
These ghosts can be recognised as H is assumed to be non- degenerate.
The spurious eigenvalues of T can be recognised by comparing with
the eigenvalues of the tridiagonal matrix T formed from the first
(N 1) _iterations. The real eigenvalues of H will be the eigenvalues of
both 7 and T but T will have different spurious eigenvalues.

2.5)- MATRIX INVERSION:{13}

The Lanczos method can be used to invert a matrix column by
column and can be applied to both hermitian and non-hermitian
matrices. Considering eq.2.4 and using the Lanczos equations
iteratively, we can calculate H"x1 as a series,

-1
Hx, =cx +CX,+.oiiiiiiins (2.18)

After K iterations of the algorithm, we get K terms in the series for
H'x, with a remainder involving H'x, and H'x,_,,

1 -1 1
H'x =V +a Hxg+b H xp (2.19)

K
where Vg = Z C. X.
1 1

i=1

The next Lanczos eq.2.5 can be used to eliminate H"xK, giving,

which gives,
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thx =V +3_x +(b aK+1 H_l K+ 1 H-l
1Yk B K+1 T 0k~ a) Hoxy |- g Xk o2
K K K
(2.20)

This gives the following recursion relations,

Ve, =V +-Kx (2.21)

7~ N . N r ‘7

aK+1 K+1 1 aK

Bl(
- (2.22)
-B

b K+1 0 b

K+1 K
Q J . BK y L )

From eq.2.4 we get, as the first step of the'procedure,

H'x = —x,- B x, (2.23)

! o
o, 1

but this starting point is not unique, since it is equally possible to
start from the identity,

H'x =Hx (2.24)

combining s times eq.2.23 and r times eq.2.24 gives,

o . )
(r-—ls)H'1x1=--l-:---x1+rH1x1+sH1x2 (2.25)

1 1

so that we get the starting point,
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(2.26)

(2.27)

The coefficient r and s are to be determined at the end of the

calculations where they can be chosen

in such a way that the final

remainder is very small. The coefficients a, and b, are given by,

/ ( N
alJ r
= 1 II
o K
-1
bet T B S s
N ) 1 ~ 7/

where II, is the (2x2) matrix given by,

\

-
1 0

0 1

\ 7

and the recursion relation from eq.2.22,

( h
-aK+l 1
ﬁK
l—Il(+1=
-B
K+1 0
BK
L /

(2.28)

(2.29)

I (2.30)
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For the convergence we want,

........... >0 (2.31)

but this can only happen if I1,, ----> 0, but,

’
~ %4 lw
B.
- ! K-1 Bi ﬁ
det Hi—-ll('ll det =.l:11 - =K (2.32)
=l —B; .1 B P,
-_— 0
B;
N y

Therefore unless we have a B, equal to zero, we cannot have II,--->0.

r
However, if one eigenvalue of Oy is zero, we can take to be the

s
corresponding eigenvector and this will be sufficient to make the
remainder term small. Since we will not know r and s until the end,
we must compute VK as a linear combination of r and s,

¢
r

" o, (2.33)

L

G is a 2 component vector which is generated from following
relations,

_xl

0-1=(03—)

B, (2.34)

X
K+1 , O)H

K
Now if we proceed to calculate I, and o, from eqgs.2.29,2.30 and

GK +

1 =0k +( K
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2.34, we have the problem of rounding errors because one eigenvalue
of IT, converges to zero while the other grows large since the
determinant fluctuates around a constant value. This means that the
components of II, and o, Will grow large and the convergent part will
be lost in rounding errors since it is a difference of large
values.These errors can be avoided if we choose an unconventional
representation of IT, and o, which separates the convergent and

divergent parts. Let

{ b
Ag Yy Ag
o= (2.35)
K
By Yy B+t
N /
0 =(0,1)v +(1, Y ) Uy (2.36)

As one eigenvalue of II, converges to zero we will have t,--->0,
while A, ,B,,U, --->c. If we then choose,

r {.)

r Yk
= (2.37)
S -1
N A \ /
we will have,
. N 4 A
ay 0
_ 1 -0 (2.38)
a]
bK yK+B_ -tl(
L) L)

and
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V= v, - Hlx (2.39)

The recurrence relations for Iy, oy translate into the following
relations for y, t A By Vg Uy

U,=0
Yl =0
L =1 (2.40)
A1= 1
B1= Ox
1
V1= -l;—
1
¢ 3 3 ( b
K + 1 1 A
AK+1 BK K :
. (2.41)
-B
BK+1 BK+1 0 BK
\ J L K J \ /
k
Yk+1= %t % (2.42)
K+1
'BK+1
b= (2.43)
K+1
AK
UK+ 1= UK + B—KXK +1 (244)
x
Ve+r= Yy A Uk (2.45)
K+1

2.6)- NON-HERMITIAN BLOCK LANCZOS: {14}

A further improvement in the lattice fermion calculations can
be obtained by generalising the above inversion method for the
non-hermitian matrices to block lanczos in which the a's and B's are

replaced by small matrices. If we take the a's and B's as LxL small
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matrices, H is transformed into a band matrix of width (2L+1) while
the Lanczos vectors become NxL arrays(L < N). The a's are hermitian
and the B's are chosen to be triangular. With this method, any number
of rows can be inverted simultaneously with no increase in the

number of matrix by vector multiplications.

Consider the transformation,

HX=XT

and write the general

[

O R R
-@NQ v—-'<—!—

N

As mentioned above,
X so that,

HTy =yTT

The first two Lanczos equations can be written as,

(2.48)

Hxl =X,

triadiagonal form as,

/

for the general case, we generate the inverse of

o +x2[31

_ +
Hx=x; % ;+x0+x B

1

with the identity,

y. X. =0

(2.49)

(2.50)

Using the eq.2.47 and demanding that the a's to be hermitian, the

coupled equations analogous to egs.2.8 and 2.9 are written as,

1.
Hy =y, oty Y,

HT

(2.51)

Yo=Y, 133- pHY ety LY (2.92)
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And if we choose(for example,taking L = 3),

‘ N
B11 BIZ B
P=lo 8, B, (2.53)
0 O 333
N P4
r
Yll Y12 'Yl?]
‘Y:
0 Yy Yy (2.54)
0 0 733
with the condition,
Y, =B, (2.55)

we can calculate the elements of the B's and y's from the matrix
C,where C via eqs.2.48, 2.49,2.51 and 2.52, is,

C=0;,, ‘Yi)f(xi 1P +(2.56)

- Tl

In case of a hermitian H, we require only one set of the Lanczos
equations with,

-
I

Yo
and of course,
x| %, =8x1 (2.57)

where 1 is a unit matrix.

2.6b)- MATRIX INVERSION: (NON-HERMITIAN BLOCK LANCZOS):{14)
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There is no advantage in using the block Lanczos algorithm if
the problem is to calculate the eigenvalues of H. However, as
mentioned earlier, there is an advantage in calculating L rows of the
inverse at the same time and, provided L is not too large, the amount
of computation required is significantly less as compared to that
required to invert L rows one at a time.

We start with the Lanczos egs.2.48 and 2.49. The algorithm
proceeds in a way analogous to the L = 1 case {13}given above, except
that, we are dealing with the matrices, their ordering is very
important.Due to this,the representation of I, and o, of eq.2.35 and

2.36 is slightly different,

Ds‘1( A Yk

m, = (2.58)
BK BK Y ik
.

O = V(0,1) + (Lyg) Ug (2.59)

As a result,we get following modified recursion relations;

A =1
B, =0
y,=0
. (2.60)
1
Vi=-x,.B,
U=0
$o-1
Agy =By -,y (0 Ay (2.61)
§oo1
By =Pra ) Ax (2.62)
1
i1 = Yk bk Ak (2.63)
Foo1
U, = Ug + Xea (0 Ax (2.64)
1 ‘
Vier = Vi - Ukt ¥k (2.65)

and,

-1.-1 -1
Vi (Ygar +48;) - H'x, (2.66)
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It should be noted that the coefficients A,B,Y and t are LxL matrices
while U and V are NxL arrays. The condition on the convergence is
similar i.e, all the elements of t. should be zero at this point.
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CHAPTER 3
ANCZOS A RITHM AND THE FERMION MAT

3.1)- APPLICATION:

We have already discussed how efficient the Lanczos method is
for
i)- calculating eigenvalues which come from off-diagonal elements of
the triadiagonal matrix T and
ii)- inverting a general matrix such as,

H=iM

where M is a non-hermitian matrix. Now we shall explore how best we
can apply the Lanczos algorithm to this matrix for the eigenvalue
problem and for its inversion.

First we shall consider the eigenvalue problem of a
non-hermitian matrix and apply it to the fermion matrix M_ of eq.1.85.

For this we have to calculate the B's and y's of the Lanczos

egs.2.4,2.5,2.8 and 2.9. We can introduce a simplication into the
calculation if we note the odd-even structure of ‘M..

In the zero mass quark limit, we can write, (as in fig.2.1)

( A
0 M
M, = (3.1)
N 0
N P

Now if we choose the initial Lanczos vectors to be non-zero only on
even sites,

/
A
X
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then, by virtue of eq.2.4,

’ NN
0 VERES

a1=()/(\1,0) =0 (3.3)
GQ 0) KO/

so that all a's become zero. Also, from eq.2.5,

- A . 7 4 N
0 M| || |0
x,B, =Hx, = = (3.4)
A [ A A
N 0 0 N x,
N /7 N J k /

and half of each Lanczos vector becomes zero.

- N N

A
XK1 0

2K-17 s 2K~

A
0 X
L ) L XK

We can write Lanczos equations representing the even-odd structure
as,

A

N£1=£2 B, (3.6)
¢ A + A

MRy =Ry Yoxr * Xoxer Pk (3.7)
¢ A T A

N £2K+1= Ko Yox + X0 Boxa (3.8)

and
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MY, =4 (3.9)
A T

iy Yax = Yok 1 Boer + Faxa Yok - (3.10)

v t

Mr)l'\zxﬂ = Yok Bok *+ 9ak+2Vok1 - (3.11)

By this trick we avoid the calculation of a's and half of the Lanczos
vectors and this reduces the time of the computation by a half.

We can rewrite the above equations by denoting the even and
odd half x-vectors by B and W respectively while the even and odd
half y-vectors are R and G respectively.

7N ’ N
B. R.
1 1
X1 = Y91~
0 0
5 5 ¢
0 0
X5 = Y5 =
W, G,
\ L J

NB=W B (3.12)

M W; =B, 7;-1 +B,,1 By (3.13)

N Biu= W1 Yoy + Wiy By (3.14)
and

MiR = ©, v, (3.15)

ﬁGi =R, Byt + Rist¥y (3.16)

ﬁrRm: GiB;i + G iNin (3.17)

It is necessary to store only the two even Lanczos vectors B and R and
the two odd Lanczos vectors W and G between iterations. The Lanczos
method with or without blocking takes the same time for calculating
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the eigenvalues of the fermion matrix but an optimization is obtained
while inverting it by block Lanczos. The flow chart for the computer
simulation of the algorithm using above equations for calculating B's
and y's is shown in fig.3.1.

3.2)- PARALLEL COMPUTATION:

The inversion of big sparse matrices and the calculation of
their eigenvalues requires a large amount of computation and any
optimization in computer time and storage is very important. In this
section using the odd-even structure of the fermion matrix , we
describe a method for the parallel computation of the derivative part
of the fermion matrix M.. This method was initially described by

Gibbs{15} for the hermitian matrices.

i)- B,W,R and G are conveniently stored as two arrays,
e f_ S
B R

W G

b p—— e

f and h being 5 dimensional arrays in general; 4 for space - time
position and one for colour, representing a field on the sites of the
lattice. The multiplication of NB,and MW, is similar in structure to

M*Ri and NTGi so we shall take only the former case.

ii)- The gauge field is generally stored as a 7 dimensional array; 4 for
space-time position , 2 for the colour indices and 1 for direction. The
gauge link variables point in the positive space-time direction and
are stored, in the array, at the site at the negative end of the link.

.....................................

To change a gauge field into a fermion matrix element we
multiply with appropriate fermion sign and reverse the direction on
even sites by taking the hermitian conjugate so that all matrix

elements go from odd to even sites.

.......




START

] ]

B=Initial vector | R=initial vector
W=0 G=0
I T
N At
W=W + NB G=G + MR (a)
| 1)
- ‘ Consid?ring
W G=C(say) C=8y
al Subroutine to
i= 1 et elements of
Loop For i , N ang y from C
{ . |
W=W(B_)" G=G (v,.,)"
B = B(-vi.) R=R(-B..)
1 1
A at
B=B+MW R=R+NG
L |
- L Same as in
B R=C(say) (a) above.
1
— l
B=B(3,; ) R=R( v.: )"
W=W(- v} ) G=G(-B)
T 1
A At
W=W + NB G=G+MR
I |
v 1
1 Same as in
WG=C(say) (a) above
] .
Loop next i
|
STOP

Fig.3.1




44
This is the best representation for doing multiplication and should be
set up before starting the algorithm.
iii)- As shown flow chart fig.3.1, the operation of normalising the odd
~ vector and multiplying the even vector by (-B) on a vector or array
processor is best combined into one operation by multiplying f by and
array with (B') on the odd sites and (-B) on the even sites.
iv)- The matrix multiplication is a very complicated part of the
optimisation. It can best be viewed as operating on the field f with
the discrete form of the covariant Dirac operator,i.e., we numerically
differentiate the field. Each of the four space-time direction is taken
in turn, the odd part is differentiated and the result is added to the
even part. In order to do the multiplication simultaneously at each
site,we combine the multiplication for the forward and backward part
into one operation. A temporary field t with W on the odd sites is
constructed by moving w back from the even to the odd lattice sites
as shown in fig.3.2.

Then, t is multiplied by h' as shown in fig.3.3.

ot o oot ) ot ]
-1Ul W, 1U2w2 —1U3w2 1U4w3 -1U5w3 1U1w1

f ! ! ! ! ! fig.3.3

———— — ———

This vector is added to the vector obtained by moving it forward by
one lattice space, which gives, |

O . . S . U . . . U . . 4
—1U1w1+1U1wl 1U2w2-1U1w1 1U2w2-1U3 w, 1U4w3-1U3w2 1U4w3-1U5 W, 1U1w1—1U5v~3

{ 1 ! 1 i §

The result on the odd sites is ignored,

) ot ) . ) oot
1U2w2—1U1 W, iU 4w3-1U3w2 1U1w1-1U5 W,

b
—
b

! t ]

_——————
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The result can be added to the even vector b before proceeding to the
next direction.

For a finite density, we have to find a method to introduce the
chemical potential in the formalism. Considering the time direction,
we multiply the w vector on the odd sites by exp(-p) and the shifted
vector w by exp(n). The whole process of the differentiation is
performed as before. The result is,

. e T - . . 4 - . U -
M LM 'y H B K
1U2w2e 1U1“’1c 1U4w3e 1U3wze 1U1wle 1U5w3e

1 1 ! ! ! !

[N

!

Thus, we have constructed the derivative of the odd part in a
way which is most convenient for the array processing.

3.3)- APPLICATION OF THE BLOCK LANCZOS TO THE THEORY WITH
MASS:

3.3a)- EIGENVALUE PROBLEM:

With 2ma=0 and considering only nearest neighbour
interactions, the finite density fermion matrix takes the form,

A

0 M
H = (3.19)
| N 0

The characteristic equation gives,

det (H-AT) = |- MNI=0 (3.20)

N 2

Therefore it is possible to apply the Lanczos algorithm to fmﬁ to get
the squares of the eigenvalues of H. In the previous chapters we
calculated the B's and y's which translate into eigenvalues of the
fermion matrix. As mentioned earlier, that the eigenvalues of the
fermion matrix come in conjugate pairs which is a characteristic of
the chiral symmetry (see eq.1.57a). Now it can be confirmed by the
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even-odd block structure of the fermion matrix as below,

I/ ~ N ( A 4 N ( ~N / N
! v .' A :

0 Mt U 1§ 0 M ||U U

if ; § :7\, thgn =-

LA i ¢

| OJ v W N 01l-v RY
‘\ \ J N N . /

(3.21)

Now consider the fermion matrix with mass,

’ AN
2ma M
(3.22
e (3.22)
A
N 2ma
.
The characteristic equation becomes,
e A )
2ma- A M
det = O (334)
ICI 2ma - A
\ P

It means the theory is unchanged except that the eigenvalues will be
shifted by an amount 2ma. Therefore, we can apply the Lanczos
method to calculate the eigenvalues at several mass limits. As we
shall see a of eqs.2.48,2.49,2.51 and 2.52 can be used as a mass term.

3.3b)- INVERSION OF THE FERMION MATRIX WITH MASS:

We can prove that the B's(y's) and the Lanczos vectors x(y) are
independent of mass {14}. At zero mass, in the even-odd block
structure of the fermion matrix, all the a's of the block Lanczos
eqs.2.4,2.5,2.8 and 2.9 via eq.3.3 become zero, consequently T of eq.2.2
is a tridiagonal matrix with zeros along its diagonal. Considering the
fermion matrix, e€q.3.22,

and
x'HX=T (3.35)
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where T is T of eq.2.2, with 2mai terms along its diagonal. It is to be
noted that the a's are the diagonal elements of T when we do not use

the even-odd block structure. With this change, the block Lanczos
equations become,

Hx = x 2mai + x2B1 (3.36)
Hxi=xi-17§-l +x; 2mai +x;,B, (3.37)
H'y,=y,(2mai) +y,y, (3.38)

t L
Hy, =yi_1ﬁil +y,(2mai) +y._ v, (3.39)

INVERSION:

The algorithm described in section 2.6 can be immediately
applied to the fermion matrix,

H=i(M, +2ma)

but a term involving a division by mass gives a singularity at zero
mass in eq.2.63. In order to avoid this, and remembering that we are
utilizing the even-odd block structure, we use a slightly different
~representation of I1, and o, from that of eqs.2.58 and 2.59,

e ~
2 .
b1~ (2ma) Byy 1Yok 2mai B,y
oy 1= ‘ (3.40)
2mai Ay Yoy ‘ Ak
~ /
- N
2mai Ay Yox Ax
_ (3.41)
2K
2 )
| (2ma) B, Y« 2mai B,
N p

and



0=V, (2mai, 0) + U, (2mai Y, , 1)

6.42)
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If we take the B's and y's as small LxL matrices then the coefficients

A,B)Y and t are LxL matrices while U and V NxL arrays.
The method is carried out

in a similar fashion to that of

section 2.5 and 2.6. With these representations the factor 2mai
divides out explicitly. The extra advantage is that the coefficients

A,B,Y and t are real. The recurrence relations are as follows;

A=l (3.43)
y; =0 (3.44)
B, = (3.45)
t,=1 (3.46)
V=0 (3.47)
U=, B (3.48)

2 1 %
A= Agg g + (@ma) (Vor 1) By
14
Boy=-Box (ox.1) bk

11
Yok= Yax1 - Aok (og.1) bk

_ 11
t = Box Az 1Ak (ok1) bk

1 .
Uji= Upgy + X (g ) 2mai By

1 . 1 -1
Vo= Vor 1+ XoxBox 1tky + 2mal Upp Apy B e, (3.49)

and

so that

A= 'BzK("Y;()JfAzK
Boka= Box” (YQL)TAzx
Yok+17Y2k

b1 =hK

Vv

2K+~

v

2K+1~ ' 2K

U

-1 T
axe1= Uz + %o (ax ) Aok

(3.50)
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(1+@ma)y, B Vye,, = H'X (3.50a)

The condition on the convergence of the series is similar to
that for the algorithm described in section 2.6b,i.e., it will converge
to H'1x1 when all the elements of t,, . are equal to zero.

3.4)- LANCZOS UPDATING WITH FERMIONS: SU(2) CASE.

Simulating the theory with dynamical fermions is a quite hard
task. For this, we have to calculate the ratio of the determinants for
the configurations created by Metropolis algorithm and differing at
one link at each update. This requires much computation as compared
to the pure gauge field case where we need only the ratio of the
statistical weight. Therefore it is very important to optimize the
calculations as much as possible.

We want,
R=det(H+5H) (3.51)
det H
=det (1 +H'8H) (3.52)

When one link is altered, this change corresponds to a 4x4 block. If we
denote the corresponding 4x4 block H' as H' and 4x4 changed block
by 6H, then,

R =det (1 + H' 8H) (3.53)
B 7] " SH |
. s R
H 5 H ool 12
det <===>def L o] 109t {°
o 00 8]
%% 74 | [oF 1000
- L ] [ | FT ] [efolociold]
then eq,.3-53 becomes, _
oo [ ] 1. 000..
cio--. - [ v
s s 0, %
det + |44 | | Ldet 0 x| =det |4
001 v L s —
ERNE I 0 00 1.
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and as explained by fig.3.4 updating one link requires 4 rows ofthe H
and then a small 4x4 determinant.

In practice, we update the same link many times before moving
to a new link. This has the advantage that we do not need to calculate
fresh H' for every update because,

det (H+8H) det(1+H'SH) (3 54)

det (H+8H,)  det (1+H5H)

Of course, the probability of the system to reach the
equilibrium state is also increased. We shall call this as Modified
Metropolis algorithm and updating a link , as a hit. It is like a mini
heat bath. If the number of hits are increased to infinity, it becomes
the Heat bath algorithm{20}.

3.5)- LANCZOS ALGORITHM FOR UPDATING BY RANK ANNIHILATION;

The updating idea can be extended for a number of links at a
time. Consider 32 links of a hypercube. To calculate the ratio of the
determinants for any change to these links, we need a 32x32 block
corresponding to the 16 sites of the hypercube. By doing one
hypercube at a time we get a factor of four as compared to doing it
link by link. It is worthwhile to go to each for about five times (laps)
hitting each link about ten times per lap so that each link is brought
near to equilibrium before moving to the next hypercube. It is suitable
to take the B's and y's as 16x16 matrices because we first invert for
the 8 odd(even) sites of the hypercube and then take up the even(odd)
sites. All these improvements make larger lattices possible. The
Lanczos algorithm provides a technique for obtaining a 32x32 block of
the inverse corresponding to a hypercube.

Rank annihilation {14} can then be applied. Let H be the block of
the inverse of the fermion matrix corresponding to a hypercube.
Changing one link of the hypercube makes a change AH in the fermion
matrix with 8 non-zero elements, which we separate into 8
consecutive changes, one to each element,

AH=AH +AH, +........... + AH, (3.55)

Write each change in the form,
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AH=Ua V' (3.56)

Where a is the change to the element and U,V are the unit column
vectors which are zero in all elements but one. Then, if H'=Z, {14},

2=l +UaVvh! =g 1 + vav B}
=Z-ZUaV'Z+ZUaVi UaV'Z - .. (3.57)
=Z-ZUa(1-V'ZUa+..) V' Z
=Z-ZUa(1+V'ZU2)"'V'zZ

It can easily be/seen that this formula can be applied to update the
32x32 block of Z without knowing the rest of its elements.

The calculation can further be optimized by considering two
hypercubes at a time.

3.6)- LANCZOS METHOD FOR H?;

From above we know that the chiral order parameter can be
given by the following relation,

<y =L trM. +2ma)
NL

where N, is no. of lattice sites. The right hand side of €q.3.56 is
averaged over many configurations. The size of the matrix M_is NxN
where N=3N,. Above, we described the Lanczos method to obtain all
the eigenvalues of the matrix H = i(M_ + 2ma). In - terms of eigenvalues
of the M, 4 €q.3.56 becomes,

3 I
1y 1 3.58
VwEY & ~A+ 2ma (3.58)

The Lanczos diagonalisation provides all the eigenvalues of H
and hence the initial eigenvalues for detH and trH! at the beginning
of each sweep. Updating all the hypercubes of the lattice once is
called a sweep or an iteration. After each sweep, the changed
tr(H + A)"' can be calculated as follows;



wrH+A) '=oH + (change produced by updating during the sweep)

change = tr(H + A) " - uH = -r (HA( + H'A)™Y)
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and an algorithm for calculating the H™2 is required. This algorithm
can be obtained by differentiating the Lanczos algorithm giving the
eigenvalues of H'( from egs.3.43 to 3.50a) with respect to 2ma. The
following is the summary of the values of the variables required to

calculate H‘2x1.

Tl \V

AA -——dAl 0 -—dBl

17 d(2ma) 1" d(2ma)
dt dy

tt= ——— =0 i I
d(2ma) d(2ma)

v v, du,

vV, d(2ma) =0 uu, d(2ma)

For further iterations the even and odd values of these matrix

variables are given below;

2
AA2K=AA +mc BzK-1+ mec BBZK-I

2K-1

BB ¢BB,,

K™ 'f’zK
2 1
Yok = ¥¥ax 1~ ABog Ak by - Aok €tk

UU,=UU,, ,+ix +imx,, ¢ BB, ,

2k ¢ Baka

VV,, =VV

-1 X a1 -1
2K 2kt T %ok Box oy +1 U Boy ) b

) -1 2 -1
1 -1 AA
Hm( UU Ay Boy 1 s + Unk Aok Aok Bog 1kt Uk APy k1)

-1 -1
Uy = Bog(AA sk 1Agk C oy F Ak 1 AARAKC bk

Ay A ety ) (3.60)

and
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ABgy 1= -le(dAAZK

BB,y ,,;= BBy -dAA
YYak+17Y 2k Mok =tk
UU g 1= UUgg #39p d AA

\A \A

2K+1~ Y V2K

so that,

2 1,1 -1 2 -1
H X, =- TH{T @ mYyxa Bl +m yy2K+1'ﬁl )- W2K+1 }

where,
2 -1
T=(1-m yu,, b))
2ma =m
() =¢
() =d (3.61)
7)- K INV ION: A FURTHER OPTIMIZATION:

The non-hermitian block Lanczos method with mass requires
two sets of the equations (3.36 to 3.39). We used one set( 3.36 and
3.37) using the techniques of section 2.5 and 2.6, for the block
inversion of a big sparse matrix,a fermion matrix with mass, in
section 3.3b. This uses interations between even-even and even-odd
sites of the lattice and therefore produces even-even and even-odd
blocks of the inverse of the fermion matrix. A further optimization
can be obtained by writing the first Lanczos vector of the unused set
as a linear combination of all other Lanczos vectors of the set already
employed for the inversion,

.Mz

i
—

Y= ) xR (3.62)

11
1

K
H'Y,= H'lz xR, (3.63)

i
i=1

This provides the odd-odd and odd-even blocks of the inverse of the
fermion matrix in parallel with the even-even and even-odd blocks of
the inverse.

By using the 3.36 and 3.37, we can calculate right hand side of
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the €q.3.63 as a series as in section 2.5 and 2.6,

K
H' ) x Ro=cx, +ex,+. i, .. (3.64)
i=1

After K iterations of the Lanczos algorithm we construct K
terms in series with a remainder involving H'x, and H'x,  so that,

K
1}: -1
H x =Vg +H xKaK+H X

ka1 Pk (3.65)
i=1
with
VK= C:IXl + C2X2 & S
Increasing the range of summation past K gives,
K+1
-1 -1 -1
H inRi=VK+H X2 + H xK+1bK+H Xy 1R,y (3.66)

i=1

We shall use 2mai= o, = o, ,= o ,, c= (y7)" and 2ma=m (where

necessary) , in this section. As in section 2.5, we shall use eq.2.37 to
eliminate H'x, from €q.3.66 to get,

K+1
! R = H'
X Ry SVp T Xk O3~ O B Xgy 8 (3.67)

-1 -1 -1
-H x cag+ H XK+1bK +H XK+1RK+1

H
i=1
k+2 Pre1

Comparing egs. 3.65 and 3.67, we get,

Vi = Vit ¥k €8 (3.68)
- N Y ¢ N
aK+1 _aK+1c 1 RK+1
+ (3.69)
bk —Byi1 0f 10
\ 8 0 0 )




55

As in section 2.5, the starting point is not unique since we
could also begin with the identity,

H'x,R,=H' xR,  (3.70)

Adding eqs.3.36 and 3.70 after multiplying with r and s respectively
gives,

1 -1 -1
H'xR [r+as]=xRs+H xR r-H x,BR;s (3.71)

Comparing eq.3.71 with eq.3.65 gives the starting values,

vi=x Rs p (3.72)

a=Rr P (3.73)

b=-B,Rs P (3.74)
where

P=(r+oys !

The coefficients r and s are to be determined at the end of the
calculations where they can be chosen in such a way that the final
remainder is very small. Write,

= KK R1 P+ pK (375)

where if the size of the a's and B's is LxL, the 2Lx2L matrix T, can be
calculated from the recurrence relations,



56

(1 0
m, = _ (3.76)
0 -B
L Y.
Tk = Mga IEK (3'77)
while p, from,
0 RK+I
Py = » Pga Mg Pxt (3.78)
0 0 ‘
where - N
Ok © 1
nK+1 =
'5K+1 ¢ 0
\ /

For the convergence of the series, we require,

a 0
- (8.79)

This would happen for any choice of the initial condition if n, —0 . But

r N
~a’K+1 ¢ 1

K-1
det Ty = I I det
i=1

By © 0
. /

K-1
=T cer By, ) since e =)

i=1
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_ detf,  det BK—] detf

.........

det y;r(_l det YI(-Z dety,

so that n,—0, only if one of the detp =0 or one of dety’, ,== and we
cannot have m,— 0. However if one eigenvalue of n, tends to
r

zero we can take R, to be the corresponding eigenvector and this
s ,
will suffice to make the remainder term small. In this condition Pk
RK+1
will also become small if —0. Since we do not know r and s
0

until the end we must compute Vg as a linear combination,

T

=6, R P +f (3.80)

with the initial conditions,
6,=(0,x),f =0 (3.81)

Putting the values of V,1 and v, from eq.3.80 in €q.3.68, we get,

N

T . T
0. R, P+, =0 R, P+x,.,ca, (3.82)
s s
giving,
fre =ft (xg, €0 0)pg (3.83)
Oy = Ot (g1 €+ 0) M (3.84)

Comparing eqs.3.40 and 3.76 for n, and, 3.42 and 3.81 for o, gives the
initial  values,



A;=B,, B=0, t=1

y,=0, Us=x, V=0 (3.85)
Starting from,

iy = n
2K+1—n2K+1 2K

and using the values of n,, ., and m,x from eq.3.40 and 3.41 we get,

d N 4 T -~ ~
imB,, "ok 1 A
Ak Bk 0 imB,y
L / L J \ /
Yoke1 = Yok
bie1 = bk (3.86)

Using only even values of K, eq.3.84 becomes,

Ci1 = Ot (Kpgiy €5 0) ok (3.87)
and we get,
Upk1= Unk + Xgk41 € Ak (3.88)
Voka = Vax (3.89)

With the initial conditions 3.78 on p, we can write,

/. N X r ~
imBoy 0
Poka1 ™ Eaxar T (3.90)
A2K+1 h2K+1
L J < /
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rA2K ) /hzx
Pox = Ex t (3.91)
imB2K 0
L/ ()
and
Pake1 = Mokt Pak (3.92)

Putting the values of p,, . and p,, from 3.90 and 3.91 in 3.92 we get,

1
Bok+1= 8k " Boka Chyk (3.93)
1
hye1= [-Poksr © + Ag i Bokar €1 hok (3.94)
Writing,
foke1™ Uaka1 8ake1 T Wakan (3.95)

and using eq.3.83, we get,
W2K+1 =Wy + Xok41 € Mo - Uni i B4y - B (3:96)
For the even variables AB, . . . ., we start from,
Tk = Mok Tok-1

and a similar algorithm gives their values. The values of even and odd
variables can be summarised as :-

e N ' N - ~
mB,, ., “og i1 1 Ax
- c 0 imB

A2K+1 BzK +1 K

N J N\ / N y



Yok+1 = Y2k
bk+ = bk

Upk 1= Ugk + Xog41 € Aoy

Vo1 = Yok

1

Bk Shx

Ek+1~ B2k
h c+A. B

2k+1B2k41 €11

ake1= LBk 2K

Woker = Wok * X1 € Moy - Ung 1 (81 ~ 831
and

2
Ay =m dB, +A

2K 2K-1

Bk = 'ﬁzx d By,

1
Yok =VYox.1 - Ax by,

1
b = Box Agk1Ak d bk
UZK = U2K-1 +1m Xox d BzK_1

. q
Vox= Voxg Hm Uy Ajped ity + X0 d ity

| 1 1
Bok™= Box .1 %y Aok Ghog y + A Ry

1 1 1 .-l
By = Boxl Ay Agiy Bog i qim Agy Royl

Wok= Wor 1 - Upkl 8 - 85x1]

with d=y! )"

For the ‘inverse, from eq.3.80, we can write,

-1
R (r+oc2Ks) +U2K &x

(3.97)

+ W2K

(3.98)

(3.99)
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where we have used value of f,  from eq.3.95. Putting values of

Upi:80 Wy from egs.3.98 and choosing,
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we get,
-1 -1
Vo = Wor + Vi Ry (1+oc2K ) S HY, (3.100)

This algorithm is restricted in its applicability as rounding
errors can spoil its convergence. We have restricted its use to
calculations on small lattices where convergence is ensured.
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CHAPTER 4

SU(2) FINITE DENSITY

41)- MATTER FIELD AND CHIRAL SYMMETRY

In this chapter and chapter 5, we mean <Y x> of eq.1.78 by
writing <y y> and have used H to represent the fermion matrix with
chemical potential, unless otherwise explicitly shown.

Comtemporary physics believes that in the normal nuclear
matter, the binding forces between quarks increase with the distance
separation, making it impossible to split hadrons into individual
quarks. Using this picture of hadrons, strong interaction
thermodynamics has shown the limit for confinement of quarks. At
high density, temperature or both, the quarks become free and in this
limit matter can be thought of a quark or quark-gluon plasma. This
reflects a phase change from one form of matter to another.

‘ Mott transition for electrons provides a natural analogue of the
deconfinement of quarks. At high density, the Coulomb's potential
which binds the electrons to the ions is partially screened by the
presence of other charges and become much shorter range. At
sufficiently high density, the resulting Debye screening radius
becomes less than the atomic binding radius so that electrons can no
longer feel the binding force to the ions and are set free. At this
point,a change of phase takes place; the insulating matter becomes
electrically conductive. In Q.C.D, where the gauge group is SU(3)__. .

deconfinement of the quarks is the analogue of the Mott transition for
electrons, where the Coulomb's potential is partially screened by
colour charges{17}.-

The electric conductivity of electrons has the form,

o~ € (4.1)

where E is the ionization energy and T is temperature. In the ideal
situation, ¢, Vvanishes at low temperature for insulators but becomes

non-zero with an increase in the temperature, density or both, as such
insulator becomes conductor. Above the Mott transiton, o, is

significantly non-zero but, even below this point, thermal ionization
can produce some conduction electrons making o, small but non-zero.

The colour conductivity of strongly interacting matter{17},
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which is a Q.C.D. analogue of o_ , is produced by free colour charges

and constitutes a rather natural signal for the deconfinement
transition. It becomes non-zero for a quark-gluon plasma while it
vanishes in hadron matter. The Q.C.D. analogue of the production of
locally conduction electron is the formation of quark-antiquark pairs.
If we try to separate a quark from a given hadron the linearly
confining potential will rise with the separation until it reaches the
value of the mass of the lowest qq state. At this point, the production
of an additional hadron could be possible. This might be expected to
give{18},

o ~e T (4.2)

where m,, is the mass of the qq state mentioned above. For T=0, o _=0.
If m, =oc, so that we are in the quenched approximation and dealing
with the pure gluon fields, then,

\>0 T>T

Our ultimate goal is to introduce matter fields into the theory,
so that the colour conductivity and some of the other order
parameters described below do not remain very useful. This becomes
our reason to find a suitable order parameter for distinguishing the
phases of the theory.

4.2)- ORDER PARAMETERS:

From the above discussion, the use of invariant order
parameters in lattice gauge theory is quite obvious and these can be
used to distinguish different phases of the theory. For example, the
energy density E, of eq.1.82 can be used as an order parameter. The
choice of a particular order parameter depends upon the nature and
kind of the problem.

Pure gauge lattice action eq.1.16, possesses a global symmetry
under the centre Z,, of the SU(N) gauge group . The specific state, in

which, the system finds itself may spontaneously break this
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symmetry just as the ordered phase of the Ising model breaks the Z,

symmetry of its Hamiltonian. We are, therefore, looking for the gauge
theory analogue of spontaneous magnetisation. It is given by average
of the Polyakov loops {19},

N
- 1
L) =gt H Uy o (4.3)
T=

consisting of the product of all the gauge group elements,U's in the
time direction, taken at a given spatial site x. Since S is invariant

under the Z, transformation, the average Polyakov loop taken over the

lattice and all configurations gets a factor exp{2rrni/N}, with 0<r<1
and serves as an indicator for spontaneous symmetry breaking. It is
zero for Z, symmetric state and non-zero if symmetry is broken. If L

measures the free energy F of a static quark, then {19},
i
L~e’ (4.4)
In the confinement phase,
F=oo and L=0 (4.5)
while in the deconfinement regime,
F =finite  and L#0 (4.6)

4.3)- THEORY WITH MATTER FIELDS:

With the introduction of the matter fields(light quarks) into
the theory, the full lattice action,

(4.7)

S = Sgauge fields + Sfermions

no longer respects the symmetry of the centre, Z,. The average

Polyakov loop L remains finite at finite temperature, density or both
in the presence of matter fields. The distinction between the
confinement and deconfinement regimes becomes more qualitative
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and we have to look for another order parameter . The failure of
colour conductivity as an order parameter, in the presence of matter
fields has been discussed above.

For the full theory, it has already been noted, that in the
massless limit, the free Q.C.D. Lagrangian (eq.1.55) is invariant under
the chiral transformation (eq.1.52).But, even in the zero mass quark
limit, the chiral invariance may be broken spontaneously. This would
correspond to the spontaneous generation of an effective mass for the
guarks and this is analogous to the effective mass of an electron in a
conductor as compared to its mass in the vacuum. In the confinement
phase, the chiral symmetry is indeed broken so that the u and d quarks
have an effective mass of about 300Mev. In the deconfinement plasma,
chiral symmetry is again restored (via the mechanism proposed by
Kogut et al{12}). Thus the transition from the confined to deconfined
phase is signalled by chiral symmetry. The order parameter for chiral
symmetry is the chiral condensate given by eq.1.78. It may well be the
however that with the global Z,, symmetry broken by the introduction

of light quarks, the chiral transition becomes the basic mechanism
which makes deconfinement a genuine transition{18}. As we are to
introduce fermions in the theory, the chiral condensate has been found
to be a very useful order parameter and we have used it for signalling
different phases.

4.4)- DYNAMICAL FERMIONS AT FINITE BARYON DENSITY:

Recently many calculations have explained the phase diagram of
SU(N) Q.C.D. at finite temperature and density. At zero chemical
potential, there is a clear signal for a phase transition with a critical
temperature. There are problems, however, at the other extreme
where the effect of the finite density on the thermodynamics of zero
temperature has to be considered. The standard ideas present the
following scenario at T=0. Let us consider a state with a non-zero
fermion number which has the lowest energy per quark. The chemical
potential u is a source of quarks for such a state and p_ is the

threshold for producing quarks.

In the infinite lattice limit, at T=0 and p < u_, all the physical
observables such as <yy>, agree with their values at u=0. As soon as
we approach p_, thermodynamic processes start and quarks are added
to the system, increasing the density. At large values of u, we expect

the restoration of chiral symmetry and that this will be related to
the mass of the proton via the chemical potential, for SU(3), by, {12},
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n =%MP (4.8)

However, the above picture does not fit the numerical results
obtained in the strong coupling limit of Lattice Q.C.D. in Ref.{21}. The
results of this reference are mainly in the quenched approximation,
but it notes that the results for the SU(2) gauge group for quenched
and unquenched theories differ only in the size of error bars. For

SU(3), some results have been presented for a few values of p and me,

using the full theory with the complex Langevin algorithm and these
so far agree with the quenched theory. The conclusions drawn from
this reference can be summarized as below:-

1)- At a fixed quark mass, the chiral condensate <yy> is constant and
then goes to zero (i.e, it is restored) with increasing u.

2)- As the quark mass m, is decreased, p decreases and at the zero

mass quark limit, chiral symmetry is restored for some arbitrary u>0,
which signifies a zero mass baryonic state.
3)- As a result, u_ has been related to the pion mass by the following

relation, (for mq-->0),

1
uc = Emn (49)

because the pion mass goes to zero while the mass of a baryonic state
is expected to stay constant as the quark mass goes to zero. Hence the
mass of a baryonic state can be given as, (3/2)m_.

The relation of p_ to m_ is not a surprise{22}, but the

production of a zero mass baryonic state is really puzzling. The
reference suggests that the possible sources of error might be as
follows:- 1)- Small size lattices -(Finite size effects)

2)- Big fermion bare masses.

3)- The strong coupling limit of QCD.

4)- The quenched approximation.

There are reasons to suspect the quenched approximation.in
fact, Gibbs{23} via the eigenvalue distribution of the propagator
matrix has shown that indeed a ftransition at half the pion mass in the
quenched theory exists but above p =(1/2)m_, the chiral condensate is

not exactly zero. There is a small residual condensate at mq=0, where

m, is the quark mass. He argued that there can be no deconfinement
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from confined phase at p=0 at non-zero density in the quenched
approximation since the behaviour of the Polyakov loops{19}, are
unaffected by the chemical potential and yet it can be argued that
there cannot be chiral symmetry restoration without deconfinement.
He also used a U(1) one dimensional model at finite density to
illustrate his conclusions and argued that same would hold for high
dimensions to prove that the quenched and unquenched theories;

a)- agree mg> 2 Sinhpu
b)- disagree mg< 2 Sinhp
- El \Y T N

To calculate the chiral condensate on a fixed size lattice, we
need to calculate the inverse of the fermion matrix as shown in
eq.1.78. As given earlier, at zero chemical potential, the fermion
matrix is anti-hermitian. For this reason, on a complex plane, the
eigenvalues are expected to appear only along the imaginary axis. At
non-zero chemical potential, the fermion matrix becomes
non-hermitian and the eigenvalues are distributed around the
imaginary axis with a +iA symmetry, due to chiral symmetry (eq.1.57a).
As the fundamental representation of SU(2) is pseudoreal, an
additional symmetry A,A°, is also available for this gauge group.

At zero density, the chiral condensate can be given as{13},

— 1 1 1
~— ( + ) (4.10)
A K A +2ma -iA, +2ma

=2 2ma _ (4.11)

k ki + (Zma)2

For large lattices,
<y~ [ar 22200 (4.12)

where 2ma is the quark mass(scaled) in the lattice units while p(}) is

the normalized eigenvalue spectral density.
As 2ma --->0,
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<y y> ~p(0) (4.13)

and we require eigenvalues close to zero.

4.6)- SU(2) FINITE DENSITY RESULTS:(27)

For SU(3), the chiral order parameter can be given as,

Yy = (4.14)

For SU(2), ¢=0, so that the chiral condensate is real and
positive,

<wH'>
Yy = — (4.15)
where,
-1 1 Sem
<trH >=|dUtaH e - (4.153)

and via eq.eq.1.74 and 1.77, detH is the contribution of the dynamical
fermions to the effective action if this contribution is replaced by
trH-'detH, eq.4.15 becomes,

<y =—>— (4.16)
<trH) >

This representation for the condensate has a driving force which
should have a weaker repulsion of the smaller eigenvalues compared
to that of eq.4.15. We present results for both the driving forces.

4.7)- THE FERMION WEIGHT [H[:

We carried out calculations using the Lanczos algorithm for
finite density with full theory for SU(2) gauge group at small quark
masses to evaluate the chiral condensate on a 4* lattice. The length
of the lattice in the time direction represents the inverse of the
temperature{10}.We used strong and intermediate coupling for our
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calculations.

To understand the behaviour of the chiral condensate in terms
of the distribution of smaller eigenvalues of the fermion matrix, we
present the following summary of the models from ref.{24}. We show
an analogy between the chiral condensate <yy> in terms of the
eigenvalues of the fermion matrix for SU(2) and an electric field E
arising from unit positive charges at (x,y) where the ith eigenvalue

of the fermion matrix A=x + iy, and the electric field E = <yy> is
measured at ((x=mq),0), where m, is the quark mass. However this

analogy is only valid in case when we use eq.4.15 as the
representation for the chiral condensate.

- I N TE:
on a large lattice, the chiral condensate can be given as,

+00

b= fax [ay poy) = (4.17)

m +X +iy

where x and y represent the real and imaginary parts of the
eigenvaues of the J part of the fermion matrix and p is the spectral
density.

Supposing that p is independent of y, so that p(x,y) =f(x),

Gy = ff(x) dx J' dy mq+x+1y (4.18)
then,
ﬂJf(x) dx ifx>- m,
Jf(x) dx (rr;rx)j-—-—————— ‘% (4.19)
_ - ¥t (mq+x)
-7tJ’ f(x) dx if x<- m,

CASE(a): EIGENVALUES FORM A UNIFORMLY POPULATED STRIP OF WIDTH
2L:
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R
o I Fig.4.1

then f(x) = p = constant. Fig.4.1 represents the case. There are two
possible situations;

a(i) L< m,
+L
<Y y>=p de T =21pL (4.20)
L
a(ii)- -L< m, < L,
-m L
<\I/w>=p[f—ndx+jndx]=2npm (4.21)
-L -m

Hence if the quark mass lies inside the uniformly populated strip,
<W(mq=0)> =0.

- V : | Y POPULAT TRI
STRIPS:
y
T D S L ]--.]L
L2 - 1 1 . 2
s - - Fig.4.2

Fig.4.2 is the pictorial representation of this case. There are
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three possible locations of the quark mass on the real axis. With a
similar treatment as given above, we get,

b(i)- -L<m<L,, <fy>=0 (4.22)

b(i)}- L<m <L, =2mp(m L) (4.23)

biii)- -L,>m >L,, =2mp(L,-L,) (4.24)
- NS AT

The eigenvalues are considered as unit positive charges at
(x,,y;) producing an electric field E on the real axis. We calculate

<W(x=mq, 0)> using Gauss' law,

jE’. dr' x k = 2nfp ds (4.25)

where k is the unit vector along the outward normal perpendicular to
the plane containing E and di in fig.4.3.

(C)- UNIFORMLY POPULATED SINGLE STRIP:(Fig.4.3)

As mentioned above, we consider that the quark mass could lie
at different places on the real axis. We make a Gaussian box of length
qu(from -My to mq) and finite height 2A as shown in fig.4.3. The
possible situations and the resulting electric field which can occur
are:-
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y
T LA .
i
j
é X
-Mm -M m
al L Mg X Mg | L q
Fig.4.3
S A
| c(i)- m, 2 L,
_[25d1=4EA=2up(2Ax2L)
E =2npL (4.26)
ofi)- my < L,
+A
JZEdl=4EA=2quds
A
nf(Am,)
— (4.27)

E=
2A

with f(A,m g = p-28.2m where f(s,m_ ) denote the number of the

eigenvaiues inside the box.
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Three possible Gaussian boxes for the location of mass on the
x-axis(real axis) discussed below are shown in the fig.4.4.

d(i)- 0 < m, < Ly, E=0 (4.28)
d(i)- L, ¢ mg < L,
E:M (4.23a)
2A
diii)- m, > L,, E=2np(L, - L,) (4.29)

An analogy between cases (a,b) and (c,d) is obvious. An
immediate consequence, as can be noted from egs.4.21 and 4.22, is
that <yy(m)>, in the zero mass quark limit, is non-zero if and only if,
there is an eigenvalue delta function on the imaginary axis and E will

be non-zero.

Before dicussing the figures with eigenvalue distribution, the
following points for these distributions should be noted:-
1)- As mentioned earlier, at zero chemical potential, the eigenvalues

are expected to appear along the imaginary axis.
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-

ilm A
Fig.4.5
% Re A

2)- For a finite lattice, such as 4* lattice, the effect of the chemical
potential is felt much earlier than it would be for an infinite lattice
discussed in section 4.4. In fact, it is immediate for a finite lattice.
At non-zero chemical potential, with fixed quark mass, coupling
constant and N.=number of flavours, the eigenvalues move off the

imaginary axis perpendicularly and form a single strip as shown in
fig.4.6. As noted earlier, the eigenvalues are distributed with *A,A’,
symmetry round the imaginary axis.
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3)- As we increase the chemical potential p, the width of the strip
increalses monotonically with it. At large p, the eigenvalues form
two uniform symmetrics around the imaginary axis leaving the region
around A=0, completely depleted of eigenvalues as shown fig.4.7.
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4)- The inclusion of dynamical fermions means that the fermion
determinant of eq.1.88 is included and can be given by,

Det M, +2ma) = | J12? - 2ma’ (4.30)

Whenever an eigenvalue comes close to the location of the quark
mass, the configuration containing such as eigenvalue is rejected by
the Metropolis algorithm. Therefore, we might expect a gap to appear
around the location of the quark mass on the real axis, when mass
enters the strip of eigenvalues. We call this the fermionic repulsion
of the zero modes. Fig.4.28 shows such a situation at large L.
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With these expectations and observations, we proceed to
discuss our results.
The eigenvalues of all the distributions presented, in this
chapter are for the fermion matrix 2(Mc-mq).

For all the figures presented, the bare quark mass,m,, is twice
the mass shown on each figure which is a consequence of the
rescaling of section 1.7a. Fig.4.8 and 4.9, show the eigenvalue
distribution of the fermion matrix for the quark masses 0.1 and

0.0125, at zero chemical potential, N, =4 and B=1.7. The eigenvalues

only appear along the imaginary axis as expected.
For fig.4.10, we have calculated explicitly <yy> at increasing
values of the chemical potential at fixed mq=0.4, B=.5 and Nf=4. Later,

we shall compare the conclusion drawn from this plot, with the one
drawn from eigenvalue distribution plots of the fermion matrix. In
this figure chiral condensate decreases with an increase in p and goes
to zero or is restored at u=1.0 in lattice units. The phase transition is
second order and it is very difficult to obtain the correct value of p_,

but it is approximately 0.4.
Figs.4.11 to 4.18, show the eigenvalue distribution with

increasing chemical potential. The values of the quark mass, § and N,

are the same as for fig.4.10. The first thing to note in these figures is
that the eigenvalue distribution is symmetric along the imaginary
axis with no eigenvalue delta function on the imaginary axis.

As previously mentioned, while using the analogy between <yy>
and electrostatic field intensity E , it is assumed that quark mass
lies on the real axis so that for fig.4.11, the quark mass is outside the
strips. Using this analogy, when we make a Gaussian box of length 2mq

and some finite height, it contains some eigenvalues. According to
case d(iii) of this section, <yy> = E # 0, so that, chiral symmetry is
broken.

It can be seen that as we increase the chemical potential, the
gap along the imaginary axis keeps on widening, while a gap also
starts to appear along the real axis. The situation is unchanged until
fig.4.15, where quark mass enters the strip.In this figure, the
fermionic repulsion of zero modes is very prominent. The Gaussian
box still contains eigenvalues and chiral symmetry is broken. In
figs.4.16 and 4.17 we can make Gaussian boxes free from eigenvalues
but for fig.4.18 the signal is clear, the region around A=0 is
completely free from eigenvalues and chiral symmetry is clearly

restored at u=1.0.
The average plaquette is measure of the equilibrium state of
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the thermodynamic system{25}. Fig.4.19 gives a history of the chiral
condensate and the Average plaquette, versus sweep number, where p
is altered after 5 or 10 sweeps. The system is in equilibrium since
the Average plaquette is approximately constant and chiral symmetry
is found to be restored at p=1.0.

It is clear from the above discussion, that we can rely on the
chiral symmetry signals given by the eigenvalue distribution of the
fermion matrix.

To demonstrate the problem of the zero mass baryonic state
mentioned earlier, we consider the chiral condensate as a function of
the quark mass with the chemical potential, B and N, fixed.

Fig.4.20 presents a history of explicitly calculated <yy> and

Average plaquette versus sweep number with a changing mg- This

figure is important in the sense that it is the first to indicate the
problem. Later on, we shall confirm the result by the eigenvalue
distribution graphs of the fermion matrix. The chemical potential, B,
and N, are fixed at the values, 0.1,1.7 and 4 respectively. We have

plotted <yy> at three different quark masses as shown in the figure.
<yy> tends to vanish as the quark mass goes to zero,i.e., for all other
parameters of the theory fixed,

<Y y> ---->0, a8 m >0

This is a signal that u=0.1 will be sufficient to restore chiral
symmetry in the vanishing quark mass limit. In other words, an
arbitrary p=0, may restore chiral symmetry in the zero mass quark
limit.

From above we know that the chiral character of the theory can
also be signalled by the eigenvalue distributions of the fermion
matrix. Fig.4.21 to 4.23, show the eigenvalue distribution for five
superimposed configuration at quark mass [(1/2)mq] of 0.05, 0.0125

and 0.00625 with again fixed p= 0.1, B= 1.7 and Nf= 4, same as for

fig.4.20. In order to examine our results, we would like to discuss
these figures individually. Again, we note that there is no eigenvalue
delta function along the imaginary axis and the strips are symmetric
around the imaginary axis.

As given above, fig.4.21 is a plot of the eigenvalues on a
complex plane at quark mass 0.1 in lattice units. The quark mass lies
outside the strip as schematically shown in the fig.4.21a.
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On making a Gaussian box of the length 2mq and some finite height,

some eigenvalues enter the box and chiral symmetry is broken, as
discussed earlier. As the quark mass lies outside the strip, some
eigenvalues are very close to the real axis.

In fig.4.22, quark mass 0.0250 lies inside the strip of
eigenvalues. The fermion repulsion of the zero modes is clear near the
location of the quark mass as schematically shown in fig.4.22a

»s o 8 g * > - o * s
- 5 e 0

.
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*
*
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Fig4.22 = —

n

Fig.4.22a

One important thing to note is that the eigenvalues can approach the
real axis between the positions of the quark mass.If we superimpose
more and more configurations, the Gaussian box, according to case
d(ii), may contain eigenvalues and chiral symmetry might still be
broken. However, it should be noted that there are persistent gaps
along the real and imaginary axis, whose growth will restore the

chiral symmetry.
As schematically shown in fig.4.23a, the quark mass my has

moved further inside the strip towards the imaginary axis.
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We can note that the gaps along the real and imaginary axis have
grown. These gaps and the fermion repulsion of zero modes make the
region near A=0, free from eigenvalues. We can make a Gaussian box
containing no eigenvalues. The chiral symmetry is, presumably,
restored according to eq.4.25.
Before discussing the zero mass quark limit, the following

points should be noted:-

1)- The persistent gaps along the real and imaginary axis.

2)- The eigenvalue distributions do not seem to be changing

very much other than possibly fermionic repulsions as mq decreases

and enters the strip; It looks insensitive to a2 decreasing quark mass.

In the situation where the quark mass goes to zero with all the
parameters of the theory fixed at their values given above, due to the
gaps mentioned above, a Gaussian box would contain no eigenvalue as
shown in fig.4.24 and <yy> vanishes. It means that in the zero mass
quark limit, chiral symmetry will be restored for any arbitrary
chemical potential.
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For this fermionic weight, <yy> is given by eq.4.16 and as
mentioned earlier, it has a driving force which should have a weaker
repulsion for smaller eigenvalues.

The first thing to note in this case is that, the analogy between
chiral condensate and electrostatic field can no longer be utilized but
at least we can check the weaker fermionic repulsion of the zero
modes predicted in section 4.7.

Figs.4.25 and 4.26 present eigenvalue distributions for this
weight at two quark masses 0.1 and 0.0125. The values of B, N, and u,

are fixed at the same values used for figs.4.21 and 4.23, which are
their counterpart for the first representation of chiral condensate
given by eq.4.28.

It can be seen that as the mass enters the strip in fig.4.26, the
fermionic repulsion of zero modes is weaker and eigenvalues come
very close to the location of the mass.

Fig.4.27 gives a history of the chiral condensate versus sweep
number for this fermionic weight at the two masses used for
figs.4.25 and 4.26. Chiral symmetry seems to be restored at the
smaller quark mass limit.

Table1, summarizes the differences in the calculated values of
the chiral condensate for both the weights but the correct equilibrium
results should be same for each weight. The error quoted is
statistical. Presumably many more sweeps are required to attain true
equilibrium measurement. However the difference .in weights s
reflected via these results for weight trH"'|H| as compared to that of
[HI.

TABLE
<Y V¥>
(1/2)mq H| trH |H|
0.05 0.169+0.033 | 0.234+0.027
0.0125 0.049+0.018 -

0.00625 0.014+0.002 | 0.0315+£0.010
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CHAPTER 5

5.1) - FINITE DENSITY Q.C.D.:

From the last chapter, we are, now, aware of the problem of the
production of a zero mass baryonic state and the consequent relation
of u, to the pion mass instead of the nucleon mass. One of the main
sources of error, was claimed to be the use of the quenched
approximation and in the last chapter, we used the SU(2) gauge group
for the full theory, to calculate <y y> at finite density. We found
results similar to those obtained by the quenched approximation. In
fact, this is not unexpected, as SU(2) does not differentiate between
a pion and a nucleon. Moreover, as mentioned earlier, the fundamental
representation of SU(2) is pseudo-real and consequently, the fermion
determinant is real and positive. As we use a real and positive
quantity as a weight for carrying out Monte Carlo simulations for
generating statistically independent and important configurations |
there is no problem as for as the SU(2) gauge group is concerned. The
guenched theory approximates the fermion determinant with a
constant quantity and it may be one of the reasons that the full and
quenched SU(2) theory results are similar. The SU{(2) group is useful
in the sense, that it makes computor simulations easy but in fact the
true group for QCD is the SU(3). As mentioned above, SU(2) s
pseudo-real but SU(3) is not and as a result the SU(3) fermion
determinant with non-zero p is complex and the approximation of a
complex quantity to a positive and real one by the quenched theory is
somewhat awkward. Hopefully by including SU(3) determinant (taking
up the full theory) the transition at p.=(1/2)m_, will be smoothed out
and only the true transition at (1/3)mp , will remain.

Fig.5.1 has been taken from reference{19} and it shows how the
argument of the complex determinant changes with p for a fixed gauge
field configuration.lt clearly shows that it is not legitimate to ignore
the complex phase.
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An arbitrary element U of SU(3) can be generated from
Gell-Mann's eight A matrices via the relation,

Ue, €, ..o8) = exp(ie 1) (5.1)

where the e's are the parameters of the group.

2.2)- MONTE CARLOQ SIMULATION WITH DYNAMICAL FERMIONS:

- DI ION AN 1S:

As already mentioned, the weight with which the
configurations via computor simulations are generated should be a
real and positive quantity. The weight generally used for generating
SU(3) configurations is,

..[3 SG
W(U)=IdetHle (5.2)

We write the complex phase explicitly and for SU(3) we
therefore calculate,

-1 1
<r H'e¥>

<‘3“P>=L -
N %

(5.3)

As the complex conjugate configuration has similar
contribution, we can replace the expressions for the numerator and
denominator in eq.5.3 by their real parts but it will be wiser to
calculate the imaginery parts also since, if the imaginery parts are
becoming smaller, it indicates that the Monte Carlo is working. As
‘discussed earlier the penality of ignoring the complex phase is then
to get the results similar to the quenched theory or of SU(2) of the

previous chapter.
Eq.5.3 can be written as ,
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Re<tr H' > <NUM>

Re <ei¢> ’ < DEN>

<¥Y¥>= . (5.4)

The expectation value of an observable can be written as,

Xmax

<X>=]§ Z‘xi=-[xp(x)dx (5.5)

where p(x) is normalised distribution function. Now if,
1)- p(x) is a symmetric function of x ( = X ,,= X, then,

There are four possible cases for the behaviour of <yy>.

1)- <NUM>—~> 0, but <DEN>—-> 0,.

It means that the distribution function corresponding to the
numerator is antisymmetric. If <DEN> is exactly zero, the fluctuations
in the complex phase will be random. But if <DEN> is small, the phase
can be calculated after a lot of computation. According to Gibbs {23}
analysis in this region, the mass is inside the strip of the eigenvalues

and chiral symmetry might be broken.

2)- <NUM>——0, <DEN>——> 0.

Hopefully the system is in the chirally symmetric phase. The
normalized distribution function corresponding to denominator is
assymmetric.

3)- <NUM>——>0, <DEN>——>0.
The normalized distribution function corresponding to



84
numerator and denominator are antisymmetric. The Monte Carlo
procedure will be working very well {23}.Now if it is so that there is
a strong correlation between the numerator and denominator so that
effect of phase of the determinant is exactly cancelled then we shall
retain the quenched or SU(2) full theory results.

4)- < NUM >—>0, < DEN >—>0.
The expression eq.5.4 is in (0/0) indeterminant form. L'
Hospital's rule might be applicable,i.e,

<NUM> <NUM>/

Lt = (5.8)
o —>2nk <DEN> <DEN>/

but there is no clear method for implementing this scheme.

RESULTS

In all cases,measurements were taken during 5 sweeps at each
-value of pu. Runs were first perfomed at u=0.3, for mq=0.1 and B =
1.5(strong coupling). At this value of p the quark mass lies outside
the strip of eigenvalues and a very clear signal is obtained for <NUM>
and <DEN>, both # 0. The distribution function for cos¢ is asymmetric
strongly towards 1 and is shown fig.5.2. A clear measurement of <y y>
can be made and it is ~ 200 in lattice units, unchanged from its value
at u=0.

The region of interest is where m, enters the strip. We present
the initial results at finite density using the SU(3) gauge group on 4%
lattice, with p =0.5, my = 0.1, (both in lattice units) and B =1.5.

We - first take the successive average of the numerator
and denominator. Measurements were taken after each hypercube was
updated, i.e, 32 measurements per sweep on a 44 Jlattice. These
measurements were found to be uncorrelated.

Fig.5.3 shows a plot of <trM''> as a function of successive
measurements. It rapidly becomes essentially constant ~ 75 and
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corresponds to the quenched measurement.

Fig.5.4 and 5.5 show the history of the imaginary parts of <NUM>
and <DEN>. Note the fluctuations in each plot when only a small
number of measurements are included. This reflects the fact that
there are large fluctuations between each measurement. The plots are
consistent with the imaginary parts going to zero but indicate that
more measurements are required before a true equilibrated value for
the condensate can be obtained (if that is possible).

We have plotted the real parts of <NUM> and <DEN> in figs.5.6
and 5.7. Again it is clear that more measurements are required but
these plots are still consistent with tending to zero as more
measurements are included. If so, the corresponding distribution
functions should be symmetric. Note, the quark mass is in the strip of
eigenvalues (Fig.5.17). We are facing the situation of case 4 described
above.

In fig.5.8 we show the history of the condensate. We expect
<yy> ~200 in the broken phase, whereas the quenched theory gives
~75. Hence there is no clear signal of the inclusion of fermion loops
modifying the situation found in the quenched analysis.

However, these results can be altered by changing the sampling
criterion or order. It is more meaningful to examine the distribution
functions for <NUM> and <DEN>. These are shown in figs.5.9 to 5.18.

Fig.5.9 is a plot of p (sing), normalised to 1 with p= 0.5,i.e,

JP(Sin ¢) d(sin ¢) =1 with

Im<DEN> = j x p(x) dx (5.9)

It is clearly trying, within statistical errors, to be symmetric, as is
Im<NUM> plotted in fig.5.10. These plots are encouraging in that we
require these expectation values to vanish. This is contrary to the
analysis of ref.[26] which found no convincing evidence for their
vanishing.

However, study of the real parts of <NUM> and <DEN> as shown
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in figs. 5.11 and 5.12, also shows very symmetric distribution
functions. This, together with the earlier analysis described above, is
consistent with <NUM> and <DEN> each becoming very small or zero.

We have repeated the above analysis at u=0.9 as shown in
fig.5.18 with similar results. In this case the quark mass is -just
leaving the strip of eigenvalues and entering the cavity. One would
expect that the condensate vanishes, but again one is left in an
indeterminate conclusion. We encounter the same problem at p=0.4 as
shown in fig.5.17.

Increasing u further to 1.0 leads to the results shown in
fig.5.13 to 5.16. Here we see that the Monte Carlo procedure has
worked. The distribution functions for Im<NUM> and Im<DEN> shown in
figs.5.13 and 5.14 are symmetric whereas the for Re<DEN>, fig.5.15 is
clearly antisymmetric, <cos¢> #0. The distribution for Re<NUM> is
symmetric and hence the condensate is zero.

The picture we obtain is as sketched in fig.5.19.

1.0
m=0.1
strong coupling.
<CO0S¢ > : Fig.5.19

>

00 01 02 03 04 05 06 07 08 09 10

There is a clear evidence that a phase transition in the chiral
condensate does exist with 0.3 <pu_ < 1.0. This statement is stronger
than that obtained in the quenched approximation in that there is the
clear possibility that the spurious transition in the quenched
calculation can be removed via the inclusion of fermion loops.

During these simulations we also measured the eigenvalues of
the fermion matrix at the end of each multilap sweep. From these
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measurements we can make the following conjecture. In
measurements of the phase transition at finite temperature and p=0
we have the theorem of Gauss. As described in chapter4 , the phase
transition corresponds to the eigenvalues near the Rel axis moving
away. We conjecture that a similar mechanism will signal the onset
of the phase transition at non-zero density. For My outside the strip,
the eigenvalues are evenly distributed close to Re(A) =0. Note, in
Fig.5.20 which summarizes the eigenvalues for 5 configurations
superimposed (which is really only valid in the quenched analysis)
there is a slight decrease in density around the origin of elliptical
shape within approximately -0.2 < Re A <0.2, 0 <ImA < 22. As p
increases to 0.8 we reach the situation shown in fig. 5.21 where there
has been a clear shift around the mass. We conjecture that this
signals that the phase transition is at p,=0.5.
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CONCLUSIONS:

Like the hermitian Lanczos method, tﬁe non-hermitian method
has been found to be exact and is successful for calculating the
eigenvalues of the fermion matrix and for inverting it. Since, with the
introduction of the chemical potential, the fermion matrix becomes
non-hermitian, the non-hermitian Lanczos method becomes
essential.lt has shown excellent convergence and accuracy for
calculations with small quark masses. We simulated the finite
density by including a chemical potential p on a 4% lattice by
multiplying the gauge links in the positive imaginary time direction
by e" and links in the opposite direction by e™. The results from the
finite density calculations for lattice QCD using the SU(2) gauge
group, with the effect of internal fermion locops taken into account by
calculating the fermion determinant, are very similar to those
previously done with quenched QCD(which ignores the internal
fermion loops) for the SU(2) and SU(3) gauge groups. As the
fundamental representation of SU(2) is pseudoreal and the fermion
determinant is real, this behaviour was expected. We confirmed our
results from two representations of the chiral condensate for SU(2).
For this group, indeed, the chiral symmetry is restored at half the
pion mass and as the quark mass goes to zero, the critical chemical
potential which restores the chiral symmetry also goes to zero. It
means that, the critical chemical potential for restoring the chiral
symmetry at zero mass quark is, again, found to be half the pion
mass.However this is not a disaster for SU(2) which does not
differentiate between the pion and baryons.

The inclusion of the internal fermion loops in the finite density
calculations, using the SU(3) gauge group, causes the fermion
determinant to be complex and we have a problem in simulating it via
the Monte Carlo method. Since the complex conjugate configurations
have a similar contribution, we can take only the real parts of the
numerator and denominator in the expression of <yy>. The effect of
the complex phase of the determinant has been taken into account. The
plots showing the behaviour of <yy> as a naive ratio of sums are not
reliable as the results can be changed by altering the sampling
criterion or order. We have interpreted our results using the
normalized distributed function and have presented initial results. We
used quark mass, mq=0.1, coupling constant, Bp=1.5 for our analysis.

Short runs at p=0.3, show that the chiral condensate, <yy>, is
non-zero, i.e., chiral symmetry is broken. We analysed the chiral
condensate, via the normalised distributicn function, at p=0.5 and



89
inferred with the help of results at u=0.4 and 0.9, that the form of the
chiral condensate in this range is not well determined. At u=1.0, <yy>,
is found to be zero and hence chiral symmetry is restored, which
implies that the phase transition lies between u=0.3 and 1.0. Also we
have obtained eigenvalue distributions at u=0.5 and 1.0. At pu=0.5,
there is a slight decrease in density around the origin with an
elliptical shape. At p=1.0, there is a clear shift around the mass.
Though, this analysis is valid only for zero chemical potential at
finite temperature we make a conjecture that a similar kind of
mechanism may signal a chiral phase and that the slight decrease in
density at u=0.5, signals that p = 0.5.
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