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IV

A B S T R A C T

Quantum Chromodynamics(Q.C.D) is considered as a very strong 
cand ida te  as a theory  describ ing  the strong interaction. However, it 
has to g ive answ ers  abou t the phenom ena  be lieved to occur in 
nuclear matter such as the status of the bound states of the quarks in 
the nucleus and the absence of free quarks from the final states of 
the  reactions. The poss ib le  d econ f in e m en t of the quarks (quark  or 
quark-g luon p lasma) at high tem perature or density  or both, is also a 
very  im portant quest ion  which Q.C.D. faces and which involves the 
study of therm odynam ic  aspects of Q.C.D. The production of very hot 
and dense m atte r(quark-g luon plasma) in the labora tory may help us 
understand the phenom ena occuring in the Supernovae, neutron stars 
and the early un iverse. The p lanned a ttem pts  to produce such an 
env ironm ent on a m ini-scale at CERN in the near future has made this 
s tudy even more im portant. Theoretica l phys ic is ts  are using d ifferent 
models and methods to predict the events in the quark-g luon plasma. 
One of the most promising method being used is Lattice gauge theory. 
The fin ite  te m p e ra tu re  lattice Q .C.D. g ives a strong signal of the 
phase trans it ion  from  ord inary hadron m atte r to quark-g luon plasma 
at a critical tem perature  Tc =180 Mev which is unexpected ly very high

and finite density  lattice Q .C .D.(quark number >0) can be considered 
as a poss ib i l i ty  fo r  co rrec t ing  th is  . Th is  m ethod requ ires  the 
de te rm ina t ion  of e igenva lues  of a big spa rse  non-he rm it ian  matrix 
and its inversion.

The Lanczos a lgorithm has been found exact for obtain ing the 
e igenva lues of the large sparse matrices and for inverting them. We 
deve lop  the block Lanczos a lgorithm  which g ives an optim ization in 
com pu te r time when inverting these matrices. The existing algorithm 
em ploys only even-even and even-odd fie ld in te ractions on a lattice. 
An a d d it io n a l a lg o r i th m  is g iven , us ing w h ich , w ith  the above 
m e n tion e d  in te rac t io n s , we can s im u lta n e o u s ly  use odd-odd  and 
odd-even  in te rac t ions , wh ich  again g ives a fu r th e r  op tim iza tion  in 
com pute r time, at least for small lattices. The app lica tion  of block 
invers ion  to the fe rm ion  matrix is d iscu sse d ; the convergence  at 
small mass is com parab le  or better than the other existing methods. 
Taking advantage of the b lock form of the Lanczos a lgorithm, other 
numerica l m ethods are brought together to update the blocks of the 
lattice e ff ic iently  which  makes larger lattices possib le. Most of the 
p rev ious w ork  at f in ite  density  has been done  using the quenched 
approx im ation  (which means neglecting ferm ion internal loops in the 
theory) . By the above mentioned techniques, we can calculate the part 
of the ferm ion de te rm inan t necessary to inc lude the internal fermion



loops. Having inc luded the fe rm ion  loops, we ca lcu la te  the chiral 
c o n d e n s a te ,< \ j / y > ,  (which is an order param eter for s ignalling the 
chira l phase) to explore Q .C.D  at f in ite  density, using the SU(2) and 
SU(3) gauge groups on a 44 lattice. For SU(2) we use an analogy 
between the expression for in terms of the small e igenvalues on
an in f in ite  la ttice  and an e le c t ro s ta t ic  f ie ld . We a lso  ca lcu la te  
exp lic it  va lues of the chira l condensa te  for two representations. With 
all the param eters of the theory  fixed, the critical chem ica l potential 
fo r  restoring chiral sym m etry  goes to zero as quark mass goes to 
zero. As the critical chem ica l poten tia l is expected to be propotional 
to the two quark hadron mass in SU(2), this s ignifies a zero mass 
ba ryon ic  state and this resu lt is s im ila r to the one ob ta ined in the 
quenched  approximation. It is argued, that, in the case of SU(2), this 
is not surprising. However, it would be a d isaster if the corresponding 
resu lt(the three quark hadron mass) held for SU(3). For SU(3) finite 
d e n s i ty  c a lc u la t io n s  w ith  in te rn a l  fe rm io n  loops , th e  ch ira l 
condensa te  is more d iff icu lt to ca lcu la te  since it involves a complex 
determ inant. The resulting problem s are described. We use rnq=0.1 and

(3=1.5, for our analysis .The chiral condensate  appears to be in a zero 
d iv ided by zero indeterm inant form  in our region of interest. By means 
of two independent m ethods fo r in te rpre ting  the ch ira l condensa te , 
we show that there could be a phase transition at \ i = 0 .5. H owever, 

chira l symmetry seems to be restored at p=1.0 .
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IN TR O D U C TIO N

1.1V HISTORICAL INTRODUCTION:

Q uantum  chromodynam ics (Q.C.D.) and the G-W-S electro- weak 
m ode l, a re  the success fu l q u a n tu m  theo r ies  of the  s trong  and 
e le c tro -w e ak  interaction. In all a ttem pts  at fu rther advancem ent in 
these  theories, a significant part of the dynamics is beyond the reach 
of perturbation theory. For exam ple , in the strong coupling regime of 
Q .C.D., where the quarks are believed to be confined, the convergence 
of the perturbation theory is too s low  to be of much use if indeed 
converg e nce  exists. Only at ve ry  high mom entum  scales w here  the 
running coupling  constant becom es small (and perturbation theory is 
applicab le) can some predictions be made. For the strong coupling of 
Q .C .D ., the associa ted phenom ena , such as con finem ent and chiral 
s y m m e try  b reak ing , it is n e c e ssa ry  to have a n o n -p e r tu rb a t ive  
method. Coventional analytic techn iques expand around some classical 
s o lu t io n  and  re m a in  a lw a y s  e s s e n t ia l ly  p e r tu rb a t iv e .  S om e  
pheno m e no lo g ica l models show  a partia l success in so lv ing  certain 
n o n -p e r tu rb a t iv e  a sp e c ts  bu t th e re  is a g ro w in g  need  fo r  a 
quan t ita t ive  understanding of these  theories from basic princ ip les.

In June, 1974, K .G .W ilson{1} introduced a lattice regularization 
of f ie ld  theories  and with the adven t of new, powerfu l com puters  it 
has become an efficient method for non-perturbative studies.

1.2V PATH INTEGRALS IN LATTICE FORMALISM:

Path in teg ra ls  w ere  f i rs t  in trodu ced  by F eyn m ann {2 }. The 
expecta tion value of an observab le  is given by its average over all the 
c lass ica l fie ld  con figu ra tions  w e igh ted  by the fac to r exp{iS /h} where 
S is the action.

As an example of the use of the path integral in quantum  field 
theory , let us take a s im ple  sca la r fie ld <>(x) with a <|>4 in te r a c t io n  

given by,

s M>(X)] =|[0<j>)2- J  m2 <j)2 -  ~  g V l d(j) (1.1)



The two point Green's function is given by,
2

< <|>(x) <j>(y) > = — J D<J> <t>(x) ({>(y) e1 S[<W/h (1 .2 )

where Z is the partition function of the corresponding field theory 
given by ,

The in tegrals can be thought of as sum s over all possible 
configurations in the space-tim e of the field variables <j>(x).lt is 
possible to calculate the free case (g=0 ) and then by means of 
perturbation in powers of g to calculate the non-free case. The 
individual term s involve d ivergent in tegrals and even after all 
renorm alization and regularization, the series diverges but gives 
accurate answers for small g provided the high order terms are 
ignored.

For large g , perturbation theory fails and we have to think 
about som e non-perturbative method. As m entioned earlier, the 
lattice regularization introduced by Wilson provides an efficient tool 
for non-perturbative calculations.

The expression eq.1.3, resembles the corresponding formula in 
classical statistical physics for the partition function, apart from 
the fact that the measure in it is complex. Moreover, the function 
involved is very oscillatory and is very difficult to handle in a 
num erical com putation. Statistical physics already uses computer 
simulations and it would be very helpful to use its techniques. The 
Wick rotation is already familiar in field theory. It is the process of 
replacing ixQ by x0 in eq.1.2 and 1.3. It moves the Minkowsky space to

Euclidean and as a consequence we will be working with imaginary 
time. In principle we should be able to return to Minkowsky space by 
analytic continuation. The Wick rotation transforms eq.1.3 into,

(1.3)

(1.4)

where Z £ and S E are respectively the path integral and the action in



3
Eclidean space. Note that in Euclidean space all the directions are on 
the sam e footings. Eclidean quantum field theory can be treated as a 
classical statistical system and this has opened the door for the 
thermodynamical studies of Q.C.D.

In a quantum field theory, the dynamical variable (fields) are 
labelled by the points of the four dimensional Euclidean space, so it is 
very natural to approximate a volum e of space-tim e by a four 
dimensional hypercubic lattice of points x separated by a distance a 
called the lattice spacing to obtain a discrete set of variables. The 
lattice introduced in this way, not only defines the path integral 
representation of the vacuum functional but gives an ultraviolet 
regularization as well. We shall denote no as the number of points of

the lattice in each space direction while np in the time direction.

The scalar fields and spinors sit on the sites of the lattice 
while the vector fields go to the l i nk s  joining the sites. A 32x4 lattice 
is shown in fig .1.1. The derivatives in the action are to be 
approxim ated to a finite difference. For example,

w here p = a ft and p is the unit vector in the \x d irection.
By defining the scalar fields on a lattice of finite number of 

sites x{ , they and their degrees of freedom have been reduced to a 
finite num ber.W e write any scalar field <f>(x) on a site x as <J>. . The 
path integral is transformed into a product of ordinary integrals on 
each of the lattice sites,

1.2aVPATH INTEGRALS AND LATTICE REGULARISATION;

a <t>[x]=-A <!>.=— [<|> (x + J I)-  4> (x.) ] (1.5)
ji a i a 1 1

(1.6)

The two point Green's function can be given as,

(1.7)



2
Fig.1.1 a 3 x4 lattice.
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with the action

It is necessary to be able to return to the continuum theory by 
taking the classical limit na > np > a -— >0 with X =a nc,

T=a nB fixed. W e also should be able to renormalize m and the coupling

constant by choosing functions of a such that the resulting
observables [the Green's functions, for exam ple] converge to finite 
quantities. It is by no means a trivial m atter to prove that this
renorm alization can be done consistently or that the resulting
continuum theory will have Lorentz invariance.

1.3)- THE W ILSON ACTION:

In formulating Q .C.D. on the lattice, where the gauge group is 
S U (3 )C0, > we want to keep as many symmetries as possible of the

continuum theory. For the Wilson action, which is a lattice version of 
the pure Y-M  continuum action, we would it like to be locally gauge 
invariant. The fermion part of the continuum lagrangian can be 
written in a naive discrete form which, by requiring local gauge 
invariance shows how the gauge fields should be written.

The fermion part of the continuum lagrangian dendity can be 
written as,

w here  'F (x ) is a fermion field variable while y are the well-knov
F

L = i Y(x) y a 'F(x) 
M- H

(1.9)

y-m atrices due to D irac .. 
global transform ation,

This lagrangian is invariant under the

'F(x) —-> V 'F (  x)

¥(x) — > ’i'(x) v 1 (1.10)

w here V is some SU (N ) matrix acting on quark field. Writing the



5
derivative in eq.1.9 in a discrete form, the fermion and antifermion 
fields do not refer to one point and local gauge invariance is lost,

T'Cx + e nB) - W(x -e  nB) ^  (yn ) ¥ (x  + e n )
L  = i 'I '(x )y  { ------------- 6- ---------------B } + 2 , i y ( x ) l i ^ —  2! (1.1 !)

0 2e n -1 2eO
In order to regain local gauge invariance, we place a connect ion  

U (x,y) between 'F(x) and 'F(y), where y is a position infinitesimally 

close to x. ¥  (x) U (x,y) 'F (y) is invariant under the local 
transformation V(x) if the connection variable transforms as,

U(x,y) ------ >V(x) U(x,y) V(y) '1 (1.12)

For some infinitesimally small path dl, U can be written as,

U(x,x+dl) = 1+ i g A.dl -  e ig Adl (1-13)

where g is a bare coupling constant and A is given by the relation

A = A' T' ( 1 1 4 )

w here A^‘ are gauge fields while T 1 are the generators of the gauge 

group. Under the transformation law of U, A must transforms as,

A ( i— > V(x) A ^x ) V '1(x) + (1/ig) V(x) ^  V -1(x) (1.15)

to
give gauge invariance of 'F(x) U(x,y) 'F(y).

On the lattice, the fermion fields are defined on the sites so 
that the connection becomes the gauge variable which sits on the link 
between the sites.

With this understanding we write a lattice approximation of 
the pure Y-M  continuum action and hope to be able to restore it in the 
lim it a — > 0 .

Different shapes of lattices can be used for different problems 
(or for the sam e problem with the condition of universality that they 
should not lead to different continuous field theories). For simplicity 
we use a hypercubic lattice with only nearest neighbour interactions, 
the building blocks of which are the link or gauge variable.

The sim plest action for Wilson's S U (N ) pure lattice gauge
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theory is the product of the link variables around a plaquette, which 
is analogous to Wegner's plaquette variable in the Ising model.

*■

S= -p  y .  tr{U  (n)U (n + n )U +(n + v )U +(n) + C.C. ) (1.16)
A A v r \L V

n,M-,v

where p and v are unit vectors in the direction of \x and v respectively, 
p is some constant to be determined. W e have also used,

U (n+n) = U t (n) = U '1(n) (1.17)

n U (n )-------> n + ll - «
. __________til.______________ . Fig-1-3

< U (n+Li)

<-----------------a ....................... ........>

we write the plaquette action as,

s= P X  tr [ Q  + O ]  ( 1 .18)
Li a « 

n ,y-,v

In SU(N) lattice gauge theory, the link variable are elements of 
SU(N) group defined as,

U^(n) = exp{ iagA} (1.19)

where g is the bare coupling constant. The plaquette action eq.1.15 is
invariant under the di scr et e  kind of local transformation, (see eq .1 .12)

i y n )  - - >  G(n) U^(n) G '1(n + n) (1-20)

where G(n) is an SU(N) rotation at site n. The total gauge action for
the whole lattice can be written as,



I
Starting from this action, expanding U in powers of A, and 

taking the continuum limit a -— > 0 , it is possible to show {6}, that,

tr F F d4x (1 .23 )

w h ere ,

F =3 A -a A + [ A , A ]
|xv v  n  p. v  p. v

(1.24)

and it is continuum action if we identify ,

P = 2 N /g 2 (1.25)

Two things should be noted; we have restored the 0 (4 )  
invariance of the continuum action and the local invariance included 
at the start ensures that we recover the standard covariant F̂ iv of Y-M  
theory.

1.3b)- STRONG COUPLING EXPANSION AND CONFINEMENT:

Eq.1.15 represents the simplest form of the Wilson loop {1}, 
which, in its most general form, is the trace of a directed product of 
the gauge link variables round an arbitrary closed loop and is a gauge 
invariant construction. It is used as an order param eter in lattice 
gauge theory ; that a parameter concerned with the phase structure of 
the theory. Elitzur's theorem {3} forbids the possibility of any local 
order param eter in lattice gauge theory but we can use gauge  
invariant order parameters.

The strong coupling limit is very natural and simple in the 
Lattice gauge theory. But it is very difficult to treat in the 
perturbation theory. In this limit, the inverse coupling constant p of 
eq.1.21 become very small and we can expand the Boltzmann factor in
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terms of p as explained below.Wilson proved in his original paper {1} 
that, in this limit, confinem ent holds for Lattice quenched QCD. 
Quenched Q C D  or the quenched approximation is described later in this 
chapter but here it is sufficient to know that it involves ignoring the 
dynamical fermions part of the action.

In this approximation, the Wilson loop is given as,

<W(U)> = J  JdU W(U) e (1.26)

Expanding the Boltzmann factor in terms of p we get the terms of the 
series containing products of gauge elements multiplied by the Wilson 
loop( which also consists of the gauge elements). From the integrals,

JdU U = 0 (1.27)

JdU 1 = f  (1.28)

Jdu u,X=4)8̂ <i-29)
eq.1.26 for a Wilson loop of size (RxT) comes out to be,{5,6},

<W(R,T)>oc e'(RxT) (1.30)

and we can note an area law dependence.
Also the potential V, required to seperate a fermion and an

antifermion, R distance apart for a period of time T is related to the
Wilson loop by the relation{4},

<W(R,T)> oc e'V(R) x T (1.31)

so that,

V (R )o c r  (1.32)

and w e have a linearly confining potential.



V(R) = oR (1.33)

9

where the constant o is called the string tension.

^A)-  THE CONTINUUM LIMIT:

Putting a theory on a lattice is a regularization of the theory.
But this regularization has a temporary role since, at the end, it
should be removed and, in a renorm alizable theory, final results
should not carry any trace of the regularization used.

In the case of lattice regularization, this is the process of
taking the continuum limit a — >0 , but it is not a very simple
process.

 < ..........................  1 fm  ...................... >
x x x x x x x x x x
< -a ->

A fter regu larization , the elem entry interactions extend over a
distance of order of a . In strong interactions, events are correlated 
over about 1fm. As a becomes small, 1fm corresponds to a large 
number of lattice units which goes to infinity as a goes to zero.

 < ..................................1 f m ................................... >

The final solution of the theory should have a non-zero correlation 
over many lattice units. The main difficulty of the theory lies in 
achieving a collective behaviour over this distance.

For simplicity, let us consider a theory without dimensionful 
param eters. The only dimensional parameter available is the lattice 
spacing a. Mass in this regularization can be written as,

m = j f  ( Z v S v h '  ) (1 -3 4 )

where g r  g2, g3..............  are the dimensionless couplings of the theory.

In th e  lim it a — > 0 , th e s e  go to the  lim it
g r — > g 1‘ ,g2- — > g 2\ ............... so that.................... ................) - - > 0 , to get a

finite mass prediction. The correlation length measured in terms of 
lattice units,



(a m )'1.

So the tuning procedure will be,

10

(1.35)

a — > 0

9 r — > s r
(1 .3 6 )

g 2 >g2

....etc.........

w h ere  g ^ ,  g2\  etc, are the critical points of the corresponding

statistical system . Near these critical points, there will be large 
scale fluctuations which could break the underlying lattice structure 
in a Euclidean rotational symmetric continuum theory.

1.5).-. SCALING;

A pure Y-M theory has a single dimensionless coupling constant 
g and we know that g = g(a). In the continuum limit when
a — >0 , and g >g (some critical g), we have to choose g  ̂so thatC C
all the physical predictions becom e independent of the lattice
spacing. Renormalization also requires that this critical point should
have scaling properties, i.e, all physical quantities should tend to 
finite values in this limit. It means we are looking for the critical g„

V

of a second order transition.
On the lattice, the only dimensionful parameter is the lattice 

spacing a. All the observables on the lattice are m easured as 
dimensionless numbers. W e can write the masses of two mesons as,

mn = m/a (1.37)

mp = n/a (1.38)

where m and n are masses of the n an d  p mesons in lattice units 
resp ec tiv e ly .

In the scaling region we should have,
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constant (1.39)n m
P

For asymptotically free theories as g -— >0 the critical point is 
pc— > oo. jh e  inverse of the coupling constant ,p, and a can be

combined to give a dimensionful lattice parameter, A |attjce, by which

most physical quantities can be described.
The relation between A |attjce and A MS, (MS stands for minimal

subtraction scheme of the continuum theory) permits us to write the 
lattice predictions in the physical units.

For example,

lattice
for SU(3)

^MS
Ams = 100 ~ 200 Mev

{11} (1.40)

so that A, f . ~ 5Mev.lattice

A. . is a physical quantity so that,lattice

‘lattice

lattice (1.41)

If w e write

= <1/a> *lattice

then,

- — %+ P(g) (X/a) = 0 
a dg

(1.42)

w here p(g) is the beta function of the renormalization group equation. 
From the continuum theory,



Remember that p = 2 N c/g 2. All the masses should behave similarly as a 

function of p as eq.1.38 can be written as,

m n =  C 1 A i.„ ic e  or m = C,X ; m = f(P)

mp= C2 Alatlice or n = C2 X ; n = f(p) (1.44)

If we are close to the continuum limit, where g (a )— ->0 we
expect that masses will vary with p in the perturbative way eq.1.42. 
This is called asymptotic scaling.

1.6V MONTE CARLO SIMULATION:

The expectation value of any observable can be given as,

f  (IT dU) O e 
< 0 > = i  3—  (1.45)

J ( I I  dU)e °

which involves a very high dimensional integral. If we evaluate this 
integral directly, much effort is wasted on configurations with a 
large action which do not contribute significantly. The idea of the
M onte Carlo (M .C .) method is to replace the computation of the
expectation value of O by an average over the gauge configuration U. 
Here a configuration means a set of U matrices on all the links of the 
la tt ic e ,

Xo(U)
< 0 > = - i   (1.46)X*

i

and we w ant only those configurations which are distributed  
according to a Boltzmann distribution exp(-SG).

This replacem ent of eq .1 .45  by 1 .46 involves the technique 
impor tance  sampl ing  from statistical physics. It is a method which
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avoids the configurations with large actions, which do not contribute 
to < O >. Thus, the centre of the problem is shifted towards the 
techniques of generating configurations which are distributed  
according to the Boltzmann weight.

Two algorithms using M.C. techniques are believed to be the 
most important; namely (1) Metropolis and (2) Heat bath algorithms. 
The Metropolis algorithm is more popular due to its simplicity of 
application and we have used a modified form in our calculations.

In both these algorithm s one begins with a random  
co n fig u ra tio n  \JV Then, a single variable is varied and a new

configuration Uj' is generated. If this new configuration obeys the

rules of the algorithm it is a c c e p t e d  and replaces the old one 
otherwise it is r e j e c t e d .  One sweep through the lattice involves the 
sampling of all variables. The aim of both the procedures is to 
generate a gauge configuration U which is closer to an equilibrium  
Boltzmann distribution. 0(11') is calculated for Uj' and its contribution

towards eq.1.46 is recorded. Next, the algorithm is applied to this 
configuration Uj’ and a new statistically independent configuration Uj"

at therm al equilibrium is generated and its contribution towards 
eq.1 .46  is again recorded. This procedure is repeated many times and 
< O > is calculated by virtue of eq.1.46.

Passage from one configuration U to U' is controlled by the 
transition matrix,

P(U —  -> U )

with X  ( U — > U ) = 1 (1.47)
u’

One condition on P(U -— > U ) is that it leaves an equilibrium 
em sem ble in equilibrium, i.e, the Boltzmann weight is its eigenvector, 
so that,

X  P( u  — -> U ) exp{-S(U)} = X  p (U — > U) exp{-S(U)}
u  ̂ '

=exp{-S(U)} (1.48)

As already mentioned, this stochastic change is produced by 
changing one link variable and we get a new configuration. The  
acceptance or rejection of this change depends upon the algorithm  
being applied. Once a change is accepted or rejected, a next link 
variable is selected for the change. The selection could be random  but
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it is convient com putationally to move through the lattice in an 
orderly fashion. The Markovian chain can still be given as,

Ptot.(u - - >  u ') = p<u ” ">  u ')ix p(u “ “ > U')2 X ........

Our aim is to define a stochastic sequence with the property that 
after the statistical equilibrium is reached the probability of finding 
any configuration is weighted by Boltzmann distribution exp{-S(U)}.

A sufficient but not necessary condition on each step of
algorithm is,

exp{-S(U)} x P(U — -> U') = exp{-S(U)} x P(U'— > U) (1.49)

It can be proved that each step of a M.C. algorithm makes the 
emsemble more closer to equilibrium {25}.

1.6aVTHE METROPOLIS ALGORITHM:^ )

W e can begin with a cold or hot  start. In the lattice gauge 
theory, a hot start means a start with some random configuration of 
the gauge group.

W e start with some configuration U and make a new U' by 
changing a link variable.W e accept this change as a t r i a l  change U1 
with a temporary (arbitrary) transition probability P(U >U t). The
change produced in the action, AS, is computed. If, AS < 0, it is 
accepted , as this configuration is more inclined tow ards the 
equilibrium. If AS > 0, a random number R, between 0 and 1 is 

generated and if exp{-AS} > R it is accepted with probability R, 
otherwise rejected. The d e t a i l e d  ba lanced c ond i t io n  eq.1.49 is
s a tis fie d .

P(U — >u') _ P t(U — - >LJ) expf-A S) _ expf-A S)

P (lT  — >U) P (u‘— >U ) 1 1
_ e x p (-S (U )} /.j ^

exp{-S (U )}

1.7V FERMIONS ON THE LATTICE:

Putting fermions on the lattice requires the lattice equivalent 
of the Dirac operator. A theorem  exists which shows that it is 
impossible to write a lattice Dirac operator which exhibits all the
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properties of its continuum counterpart. However, although it is 
difficult to put fermion fields on the lattice, there are some schemes 
around which are partially successful. W e shall describe the most 
important ones briefly.

1.7a)- THE NAIVE FERMIONS:

The complete action for the fermion fields coupled with gauge 
fields can be written as,

Sp = -J { VfyOp + A^)) v  + m v  V) d4x (1.51)
At zero mass , this action shows partial invariance under the 

su b s titu tio n ,

¥  >Y5Y

\ j / ------------ >  -  Y  Y5 0 -5 2 )

xjj y -----> — \j7 \j/

This is chiral symmetry and it is broken by the mass term in the
action.

On a lattice, the fermion fields are defined at sites by 

\j/(n) and \|/(n)

Under a local transformation analogous to eq.1.10,

¥(n) >G(n) \|/(n)

Y(n)------ >y(n) G X(n) (1.53)

the object \j?(n)y(n+|i) is not gauge invariant, as discussed already. To 
m ake it invariant, we introduce a gauge field U on the links between 
the sites which tranforms (see eqs.1.11 and 1 .12) as,

U(n) — > G(n) U(n) G '1(n +p)

The fermion fields interact through these gauge fields or 
gluons. The lattice action is,
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4

s = a4 y  { y  •— [y(n) y. U(n)y(n + p) - y(n) Y* U(n - p) y(n - p) ] + m y(n)y(n)
^Tr Za ii it

(1.54)

Rescaling by y  > 2 1/2 a 3/2y , we get,

4
Snf = X  * X  t V(n) Y- U(n) v(n +n) - \j/(n) y. U(n - |i) \|/(n -[!)]  + 2ma \p(n)\K(n)}

„ - n H
i*

(1.55)
All we have done is a result of a replacement of the differential by a 

sym m etric difference.

y(n + p) - y(n - p) 
d . y  > ---------- ^ ----------  (1.56)

This is the naive fermion scheme.
Using a matrix notation, the action can be written as

S = - y( M + 2ma) y  (1.57)

where M is the naive fermion matrix. It is anti-hermitian.
W e choose a boundary condition for gauge fields to preserve a 

discrete kind of translational symmetry. W e shall use anti-periodic 
boundary conditions for fermion fields to avoid zero modes.

Another thing notable is the effect of chiral symmetry on the 
eigenvalues of M which come in the conjugate pairs.

M y  = i^ y

=> Mysy  = ~y5M y  = -i?iY5y  (1.57 a)

1.7b)-SPEC IES DOUBLING;

The free continuum Dirac Green's function satisfies,



( y d + m) GF(x - y) = 8(x - y) 
^ M"

(1.58)
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From eq .1 .56  the corresponding lattice propagator, in our notation, 
will becom e,

y ,  y* { G(n + p, 0) - G(n - |i, 0)} + 2ma G(n,0) = 5^0 (1 .59)

Putting the propagator equation on a hypercube of length L and 
defining a Fourier transform by,

G(n,0) = ^  exp( iq.n) G(q) (1.60)
(q)

with q = 2k \/L] i = 0 ,1 ........................   L-1.This gives the propagator eq.,

4  y* t exp{iq.(n+p} - exp{-iq.(n-|i)}]G (q) + 2ma G(q) ^exp(iq.n) = i^Texp(iq.n)
£ M W (q) L (q)

(1.61)

which gives,

2ma - ^  i y. sin q A 

G(q) = ---------------- 1------------------  i — H-------—  (1.62)
4 ' 4 2 ' 2

L { /  J y. sin q. + 2ma) L {(2ma) + /  , sin q . )
- M- M-
M- ^

Consider the case m = 0 ,

- Y  iy . sin q.
“  n m- 

G(q) = _ a --------------- (1.63)
L4^  sin q

G(q) has a pole at Y  sinqu = 0.
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This happens not just when q = (0 ,0 ,0 ,0 ,) but also when any 

component of q = n. Thus there are 2d or 16 poles in 4 dimensions. It

seem s to be describing 16 degenerate fermions per lattice site. This 
is the doubling problem.

1 .7c)- REMEDIES:
The lattice eq.1.55 preserves the chiral symmetry at the mass 

m = 0 limit. The doubling problem is a characteristic of chiral 
symmetry {16}, so we have two chioces,
1)- Either a non-chiral symmetric lattice regularization is defined 
or,

2)- Doubling is expected { 8 }.
The procedure suggested by Wilson belongs to first category 

w hile Kogut-Susskind (staggered) fermion scheme belongs to the 
second. The Wilson fermion scheme gives an effective mass of order 
1/a  to the 15 unwanted flavours. The mass of the 16th can be 
adjusted by varying a param eter in front of the action called the 
h o p p i n g  p a r a m e t e r . l n  this schem e, calculations becom e very 
complicated and chirality is lost.

1 .7dl- KOGUT-SUSSKIND FERMION SCHEM E:

Consider a unitary transformation on a site n,

V(n) = T(n)x(n) 64^

\j/(n) = x(n) T(n)

where T(n) = IT y /  and T T*= 1 .

Any site can be given as n = (n1t n2 , n3> n4) where r\. are the

co-ordinates of site n.
For the naive action with U = 1,

s = { ¥ (n ) K* [ Y(n + M) " V(n - H) ] + 2ma y  y  }, (1.65)
- M-

n ,\i

under the above transformation,
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y(n) \|/(n)------> x(n) %(n) (1.66)

and eq.1.65 becomes, 

ks
S = >  T). (n) x(n) { X(n +  p) - x(n - p) } + 2ma %(n) %(n) (1.67)

“  M- 
n ,\i

where ri are the f er mi on  signs which can be given as,

II n = i

n .

II 1 (1 = 2

n - + n .

=  ( - l ) ! 2 H = 3
n . + n - + n .

=  ( - l ) ! 2 3
A

H = 4

(1.68)

This action eq.1.67 is now diagonal in the Dirac indices. One 
might attem pt to consider only one and drop the other three. So it 
becom es a one-com ponent spinor field and four com ponent quark 
fields are constructed from it at different corners of the lattice. By 
this trick, the number of quark fields is reduced to four which might 
be interpreted as describing four different flavours {8}.

Considering the transformation eq .1 .64  in the matrix notation 
and considering eq.1.57,

X(n) T (n) M T(n) %(n) = %(n) MD %(n) (1.69)

w here M D has four block matrices along its diagonal only. Its explicit 

representation will be,

5C, %2 X3 X4

M KS
M.KS

M KS
M KS

r \

h
Z3

X4
/ -

so that action for each component becomes,

(1 .7 0 )
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KS
S = - x (M „ -  + 2m a)x (1.71)KS

In the staggered fermion scheme flavour symmetry is explicitly 
broken and it is hoped that it will be recovered in the continuum 
limit. However chiral symmetry is recovered at m = 0.

1 .7eV THE EFFECTIVE ACTION:

The Monte Carlo method devised for the bosonic fields cannot 
be used for ferm ionic fie lds, because  fe rm ion ic  fields are 
anti-com muting objects of a Grassmann algebra. The properties of 
ferm ionic fields v 's  are,

{ Vi, V j } = 0 ,

{ v i,v j } = { V i.V j } = 0 (1 -7 2 )

( y .)2 = (\j/.)2 = 0

Jdy \|/ = 1, Jdy = 0

By the use of these properties and by using the quadratic form of 
Q .C .D . fermion action , eq.1.71 becomes,

Nj/4

S = ' X  ^KS + 2ma (1 *73)
i = 1

W e can calculate the part i t ion funct ion  of Q .C.D.,

KS „r _ s + sG
Z = J d% d% dU e

Integrating over the fermion fields using eqs.1 .72, this becomes,
Nf

Z = JdU e ° [ det (MKS + 2ma)]4 (1.74)

w here Nf are number of flavours and it is clear that we can use the 

effect ive action,



21

seff = SG + I  Nf log [ det (Mks + 2ma] (1.75)

The two point Green's function satisfies the equation,

[ ( M KS + 2ma)G]..=5ij (1.76)

so that,

f Sg + S-
<Xi Xj > = J  d% dU x- %■ e 

Integrating over fermion fields again, this becomes,

= J  dU I  Nf (M ^  + 2ma)j! e*  (1.77)

In particular^ 9 },

1 Nf i< X X > = ” - - - - - < tr (Mks + 2ma) > (1-78)n n 4 g p

Lfi}--ElNII,E PENSITY;

There  is a straight forward way of introducing a finite 
tem perature in lattice gauge theory calculations{10}.The value of the 
critical tem p ertu re ,T c , for deconfinement is believed to be 180Mev

and is too high for current laboratory experim ents. The decisive
elem ent in the deconfinement of the quarks is the increase of colour
charge density, which is here achieved by an increase of temperature 
resulting in particle production. Matter at high density can, however, 
also be formed by compressing a system of many nucleons at low
temperature; this leads to a high density of baryons and hence also of
quarks.

The com plete phase diagram of strongly interacting matter 
must thus describe the phase structure as a function of the
te m p e ra tu re  T and the baryonic num ber density  nB or the

corresponding baryonic chemical  potential p. A schematic view of a 
possible phase diagram from hadron matter to a quark gluon plasma in 
Q .C .D . , as function of T and p. is shown in fig .1.5. The dotted area 
between these two phases represents a sub-nuclear phase due to
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som e phenom enon analogous to C ooper pair production in 
superconducting material.

The introduction of a finite density has a problem associated 
with defining the chemical potential on the lattice in a satisfactory 
way. At |i = 0,

Z = tr {exp(-pH)} (1.79)

w here p is the inverse temperature and H is the Hamiltonian of some 
statistical system. With the introduction of the chemical potential, it 
becomes,

Z = tr {exp[-p(H - jxNB)]} (1.80)

with N b denoting the operator for the overall baryon number.

For Q .C .D . at finite density we must introduce an extra term in 
the time direction of the fermion part of the action in eq.1.51, which 
has the form,

Y ( 3 .  + A . ) y  + P Y Y -Y  (1*81)
4 4 4

The energy density is defined as,

- l i O n ? )  (1 82)

3P

where V  is the spatial volume (of the lattice), while,

* o s

Z = J d% d% e F (1.83)

w h e re  S f k s  is the fermion action, which is modified by the

introduction of chemical potential but can still be given by eq.1.81.
The energy density E, calculated by using the naive application 

of eqs.1 .81 , 1 .82 and 1.83 is quadratically divergent in the continuum 
limit and the appropriate form of the Kogut-Susskind fermion action 
at finite density suggested {12} is,
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3

s £  { £ x ( n )  V n) X(n + |i) ' K (n ' ^  X(n' R)1 (1 -84)
n ^

+ ^ X (n ) r |. (n) [ ê a LL (n) x(n + 4) - e“^  ut (n - 4) x(n - 4) +2ma ^X(n)x(n)}

and we have used this form in our calculations.
W e can write the action eq.1.84 in a matrix notation as before,

s! S . x ( M  +2ma)% (1.85)

For a zero mass quark, this becomes,

Sc=- x (1-86)

where Mc is the fermion matrix with the chemical potential . It is an 

(N  xn x n H) x (N xn x n Q) matrix where N is the number of colour' c o p 7 ' c a p '  c

degrees of freedom . The chiral condensate can still be given by 
eq.1.78.

The thermal average of an arbitrary operator O can be written
as,

< O > = I J  dU d* dx 0(U,X,Z) eS° + X ^  X (1.87)

After integrating over the fermion variables % and x, we get,

4J 
1

dU 6(XJ) (det Mc) e

dUO(detM)eS°
( 1 .88)

IdU (det M„) e"0
s,

c-,(

The calculation of (detM c) requires an enormous amount of 

computation. In the quenched a pp rox im at io n  (detMc) is set constant , 

so that,

f dU 0(U) e 
< O > ---------■— -----quenched r  sr

JdU e
(1.89)
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This approximation leaves out the internal quark loops.

BREYIOUS RESULTS AND SPECULATIONS:

It might be chance, but in the quenched approximation, at least, 
convincing evidence has been found to show that the critical 
tem peratures for deconfinement and chiral symmetry restoration are 
coincident. Most of the calculations so far have been done in the 
quenched approximation as this theory is easy to simulate on a 
com puter but there is a problem since with a zero quark mass, the 
chira l sym m etry is restored at an arb itrary critical chem ical 
potential, \i c , which is consistent with p.c= ( 1/ 2 )m 7i, where mn is the

pion mass, and is inconsistent with contem porary physic which 
favours jic =(1 /3 )m p , where mp is the proton mass. Therefore, it is

necessary to exam ine the theory, including dynamical fermions, via 
the fermion determinant, detMc. We call this the f u l l  or  unquenched

t h e o r y  and it is expected that this will sm ooth out the 
pseudo-transition at half the pion mass.\a.ij

As indicated above, the expression for the chiral condensate 
< X X >  e q .1 .78  at finite density in the full theory, dem ands the 
calculation of the determinant and the inverse of the fermion matrix 
and with the introduction of the chemical potential, the fermion
matrix Mc, becomes a non-hermitian matrix.

1.101- P V  E R VI EW....QF ,m,EJHESJS;

In chapter 2, we modify the Lanczos algorithm for hermitian 
m atrice, to include non-hermitian matrices. W e apply it to calculate 
the eigenvalues of the large sparse matrices and their inverses. The 
block Lanczos technique is developed to invert the blocks of the big 
sparse general matrices with an optimization.

C h a p te r  3 con ta in s  the a p p lic a tio n  of the  block
Lanczos(non-herm itian) method to the fermion matrix M c. A computer

method is described for the discrete derivative part of the fermion
action. A modified Metropolis algorithm is given and applied for fast 
updating. This chapter also contains an algorithm for Mc‘2 and an

additional algorithm to the block Lanczos algorithm to save computer 
tim e .

The above mentioned techniques enable us to explore QCD at 
finite density and for this, we have presented our results , using 
SU(2) and SU(3) gauge groups, in chapter 4 and 5 respectively.
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At the end of the thesis, we describe the conclusion drawn 

from our research work.
T

Quark-Gluon plasma

Hadron
m a tte r

F ig .1.5
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THE NON-HERMITIAN LANCZOS ALGORITHM

2.1V NEED FOR NON-HERMITIAN LANCZOS METHOD:

As indicated earlier, the introduction of the chemical potential 
causes the fermion matrix, for gauge groups S U (2 ) and SU(3) to 
becom e non-hermitian. The fermion matrix for nearest neighbour 
interactions only, is shown in fig .2.1 for a 4 2 lattice shown in 
fig .2 .1a. W e have taken anti-periodic boundary conditions for the 
fermion field on this lattice in (1 + 1) directions. A method, for 
dealing with the non-hermitian matrices, is needed for the finite 
density calculations. The hermitian Lanczos m ethod{13} is modified 
to include non-hermitian matrices and this method can be used to 
diagonalise and invert a big sparse general matrix like the fermion 
m atrix .

2.2V TRIDIAGONALIZATION OF AN ARBITRARY COMPLEX MATRIX:f13)

The inclusion of non-hermitian m atrices in Lanczos method 
requ ires  a sim ilarity transform ation, to produce a tridiagonal 
symmetric matrix T from a general non-hermitian matrix H.

X' 1 H X = T (2.1)

with,

/

T =

(Xj Pj 0 0 0 .

Pj <*2 P2 0 0 . 

0 P2 04 p3 0 .

N

(2.2)

/



-u »
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Fig.2 .1 . Finite density fermion m atrix(H /i), with anti-periodic 
boundary conditions for ferimion fields. The matrix becomes 
anti-herm itian at
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Write X as a series of column vectors,

X = (xv  x2, X3,  ) (2.3)

H being a general matrix, may have eigenvalues which are complex and 
the a 's  and P's can also be complex. W e have the same Lanczos 
equations as in the hermitian case,

HXj = oij Xj + Pj x2

H x. = p. , x. . + a. x. + p.x. .i * i - i  i - i  i i  r i i + i

W e also need the matrix Y given by,

Y = (X'1)’ , H* Y = Y T ’ , Y’ X= 1 (2.6)

Y can also be written as a series of the column vectors,

Y = (y1.y2, y3—  ...........................................) (2.7)

The columns of Y can be calculated with the additional Lanczos 
equations,

h +Yi = «* y j+ Pi y2

HV- = P* 1 Y- , + a* y. + P* y. . .J i “i - 1 i - 1 \ J \ “1^1 + 1
t  x y. x- = o. j y

These are the Lanczos equations for the non-hermitian matrices, 
which can be used recursively to calculate all the a's, (3's, x's, and y's 
starting by, choosing the x1 and y, to be unit vectors and using the

bi-orthogonality relation eq.2 .10 , we get the a 's ,

(2 .8)

(2.9)

(2 .10)

(2 .4 )

(2 .5 )

f
a. = y. H x.

1 J X 1
(2.11)
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The P's come from ,

(2 .12)

(2.13)

so that,

P? = Y +X.*1 I 1 (2.14)

eqs.2 .12  and 2.13 give recursion relations for xi+1 and yi + 1,

X.i + 1 (2.15)

This com pletes the definition of the m ethod. Last equation is 
autom atically satisfied because we show that,

are orthogonal to all the vectors and so must therefore be individually 
equal to zero, so that,

The tridiagonal matrix T can, now, be diagonalised by some 
standard method.

Another cause of the failure of the algorithm  other than 
rounding errors is that some p might be zero. This gives a division by 
zero. Two things can cause this problem.

1)- If the first Lanczos vector x ^ y ^  is chosen to be orthogonal to

some eigenvector of H,
2)- If H has degenerate eigenvalues, a division by zero enters into 

the calculations again.
The only solution is to choose the next Xj(yf) to be any unit

vector orthogonal to all previous ones and continue the calculation. 
This requires a reference to previous vectors which would create a

U  H x n  - pj^ j xN j - O n xn  

v  =  * *  yN ‘  Pn - 1 yN - 1 " ^  yN
(2 .16 )

p£-vfu=o
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storage problem but as we never encountered such a situation we 
ignore it.

O ne of the advantages of the Lanczos method over other 
methods, is that it does not need to store the huge matrix H, even if 
it has large number of zero elem ents. W e require only 6 Lanczos
yecto /S  at every step of the algorithm and require an equivalent
space for their storage. W e also require a subroutine to multiply a
vector by H. All but the last four Lanczos vectors can be discarded
after each iteration.

2,3)-,.REQRTHQSQNALISATIQN;

When we apply the Lanczos method to large matrices, we find 
pN ■*- 0, due to rounding errors. This is due to a loss of biorthogonality

between the first few Lanczos vectors and the last one. We cannot
ignore the errors becaues they build up exponentially and, no matter 
w hat precision is used, we find this loss of biorthogonality between 
the first Lanczos vectors x ^ y ^  and the one after the last iteration

x j(y j) . The most straightforward way to overcome this problem is

reorthogonalisation. The newly calculated Lanczos vectors x ^ )  can

be reorthogonalized against the previous vectors Xj(y.) by the

p ro jec tio n ,

y.  >y.-y.(x.y.)

(j = 1 to i-1)

on each step. Then provided we have not lost too much orthogonality, 
the rounding errors will be reduced to a reasonable level. Usually this 
does not need to be done after each iteration unless there are many 
close eigenvalues. Unfortunately orthogonalisation slows down the 
calculations and requires a large space for storing all the Lanczos 
vectors and it is impractical to reorthogonalize for N > 1000.

2.4)- W ITHOUT REORTHOGONALISATION:

Fortunately it is possible to use the Lanczos method without 
reorthogonalisation and, consequently, we can deal with much larger 
matrices. W e allow the Lanczos algorithm to proceed beyond the Nth 
iteration calculating new Lanczos vectors and a ’s and P’s until we
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have done N  iterations. The a's and p's now form a N xN tridiagonal 
matrix T with N eigenvalues X  from which we can sort out the

e igenvalues A,, of H. It has been found empirically{13}, that if N is

sufficiently large, then all the eigenvalues of H will converge as 
eigenvalues of T. But T will also have spurious eigenvalues, which are 
not the eigenvalues of H. For large N ,  the fastly converging  
eigenvalues (ghosts) of H will appear many times as eigenvalues of T. 
These ghosts can be recognised as H is assumed to be non-degenerate. 
The spurious eigenvalues of T can be recognised by comparing with 
the eigenvalues of the tridiagonal matrix T formed from the first 
(A M ) iterations. The real eigenvalues of H will be the eigenvalues of 
both T and T but T will have different spurious eigenvalues.

The Lanczos method can be used to invert a matrix column by 
column and can be applied to both hermitian and non-hermitian 
m atrices. Considering eq .2 .4  and using the Lanczos equations  
iteratively, we can calculate H_1x 1 as a series,

After K iterations of the algorithm, we get K terms in the series for 
H '1x 1 with a remainder involving H‘1x K and H’1xK+1,

The next Lanczos eq.2.5 can be used to eliminate H '1x K, giving,

£ 53- M A I R IX. JM^EBSlQbL{ 13}

(2 .18)

(2.19)

where V,
i = 1

which gives,



This gives the following recursion relations,

v  = v  + —  xK + l K o XK + 1
K

and the remainder coefficients,

(2 .21)

+£

—

b „K +1
J

- a
K + 1

P-K

K + 1

P
0

K

s,

■k

bK v *

(2 .22)

From eq.2.4 we get, as the first step of the procedure,

(2.23)H 1 Xj = —  Xj - —  H 1 x2
« i (Xj

but this starting point is not unique, since it is equally possible to 
start from the identity,

H '1 Xj = H 1 Xj (2 .2 4 )

combining s times eq.2.23 and r times eq.2.24 gives,

a
( r - - i s) H 1 x, = - — x. + r H x .  + s H \

p , p.

-l r-i (2.25)

so that we get the starting point,
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v i  =  -

-  P.r — -  s

p,

(2.26)

and,
✓ V.

al

1

r

r -  — s

P.
bl s

\  / v /

(2.27)

The coefficient r and s are to be determ ined at the end of the 
calculations where they can be chosen in such a way that the final 
remainder is very small. The coefficients ak and bk are given by,

f  n f  s.

aK

I n

r

a
r — -s

K

b ̂ sK
s p * •v /

(2.28)

where n K is the (2x2) matrix given by,

N

n =i

i o

o 1

and the recursion relation from eq.2 .22 ,

-a .K + 1

PK

n

(2.29)

n
K + l K

“ P*K + 1

PK

(2.30)



33

For the convergence we want,

<  V,

aK

->0 (2.31)

but this can only happen if n K ----> 0 , but,

K-l
det n = fl det

K i=l

-  a.i  + 1

Pi

—P u i

Pi
0

K" ‘ Pi + 1 = -^ .  (2 .3 2 )= n
i - 1 p p

Therefore unless we have a pK equal to zero, we cannot have n K— >0 .

However, if one eigenvalue of n K is zero, we can take to be the

corresponding eigenvector and this will be sufficient to make the 
remainder term small. Since we will not know r and s until the end, 
we must compute VK as a linear combination of r and s,

V K = ' a K

S

(2 .3 3 )

o K is a 2 com ponent vector which is generated from following 

re la tio n s ,

a  = ( 0 , - ^ - )
Pi

a K +1 =  °K  +   ̂ °   ̂^

(2 .3 4 )

P K
K

Now if we proceed to calculate n K and a K from eqs.2.29,2.30 and
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2.34, we have the problem of rounding errors because one eigenvalue
of n K converges to zero while the other grows large since the

determinant fluctuates around a constant value. This means that the 
components of nK and a K will grow large and the convergent part will

be lost in rounding errors since it is a d ifference of large
values.These errors can be avoided if we choose an unconventional 
representation of nK and oK which separates the convergent and

divergent parts. Let

a k  y k  a k

n =
K

BK Y K BK + lK

(2 .35)

gk = ( 0, 1 ) v v  + (1,Yv )UK K K (2.36)

As one eigenvalue of nK converges to zero we will have tK— >0, 

while A k ,B k ,U k If we then choose,

r r yK

s
>

-i
k. 4

we will have,

»K
f \ 

0

1 -> o (2.38)

'’ k

s.

a
_tK

k. *

•

and



The recurrence relations for n K, o K translate into the following 

relations for yK tK ,AK ,BK ,VK ,UK

Uj = 0 

Y i = 0

«i = 1

A f >  

B,= 0
J

v i= ~

(2 .4 0 )

lK+1

BK+l

-OC-K + 1

K

-PK+l

K

"I

a k

b k

/
£k

 ̂ /

K+l
-B

*K + 1
K+l

A K 
A K+1

K
U K + 1“  U K +  B Xk  +1K

heV = V  uK + 1 K A K+l 
K+l

(2 .4 1 )

(2.42)

(2.43)

(2 .44 )

(2 .4 5 )

2.6)-  NON-HERMITIAN BLOCK LANCZOS: (14)

A further improvement in the lattice fermion calculations can 
be obtained by generalising the above inversion method for the 
non-hermitian matrices to block lanczos  in which the a ’s and P’s are 

replaced by small matrices. If we take the a 's  and p's as LxL small
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matrices, H is transformed into a band matrix of width (2L+1) while 
the Lanczos vectors become NxL arrays(L < N). The a ’s are hermitian 

and the (3's are chosen to be triangular. With this method, any number 
of rows can be inverted simultaneously with no increase in the 
number of matrix by vector multiplications.

Consider the transformation,

H X = X T (2.46)

and write the general triadiagonal form as,

T =

t
Y
1

a
2

P.

0 0

0

a

0

0

0

As mentioned above, for the general case, we generate the inverse of 
X so that,

Hf y = y Tt (2.47)

The first two Lanczos equations can be written as,

Hx. = x .a  + x0B 1 1 1 2*1 (2 .48 )

Hx.= x. -Y? . +x.a. + x. .B.i i - 1 *i - 1 i i  i + i* i (2 .4 9 )

with the identity,

y. x. = 6 
1 J ;;

(2.50)

Using the eq.2.47 and demanding that the a 's  to be hermitian, the 
coupled equations analogous to eqs.2.8 and 2.9 are written as,

H y ^ y jC c  + yjYj (2.51)

H + y 2 =  y; . iP l -1  +  y i « i  +  y i + i^ i <2 -5 2 )
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And if we choose(for example,taking L = 3),

\ i Pu
p = 0 *23 (2 .5 3 )

0 0 P*33
/

f
y*11 y12

N
Y13

Y= 0 Y22 Y*23 (2 .54 )

0 0 Y33

with the condition,

(2.55)

we can calculate the elements of the p’s and Ys from the matrix 
C,where C via eqs.2.48, 2.49,2.51 and 2.52, is,

c = (yi + 1Yi) (xi + 1Pi) (2.56)

2.6a)- HERMITIAN BLOCK LANCZOS:

In case of a hermitian H, we require only one set of the Lanczos 
equations with,

Pi =  Tp

and of course,

x. x. = 5 . x 1 i j y (2.57)

w here 1 is a unit matrix.

2.6b)- MATRIX INVERSION: (NON-HERMITIAN BLOCK LANCZOS):(14)
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There is no advantage in using the block Lanczos algorithm if 

the problem is to calculate the eigenvalues of H. H ow ever, as 
mentioned earlier, there is an advantage in calculating L rows of the 
inverse at the same time and, provided L is not too large, the amount 
of computation required is significantly less as com pared to that 
required to invert L rows one at a time.

W e start with the Lanczos eqs.2.48 and 2 .49 . The algorithm  
proceeds in a way analogous to the L = 1 case {13}given above, except 
that, we are dealing with the matrices, their ordering is very  
im portant.Due to this,the representation of n K and <?K of eq .2 .35 and

2 .3 6  is slightly different,

A,K a k >k

n (2 .58 )K
BK

oK = VK(0,l) + (l,yK)U K (2 .59 )

As a  result,we get following modified recursion relations;

B. = 0

(2.60)

IL = 0

A K+1 ~  B K '  °K+1 ^  A  K 

B K+1 =  "Pk+1 <?k> A k  

^K+l = yK + *K AK+1 

^K +l =  +  XK+1^K^ A K

(2 .6 1 )

(2.62)

(2.63)

(2.64)

V K+1 “  V K " ^ K + lk  XK+1
(2.65)

and,

^ H’lx i ( 2 - 6 6 )
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It should be noted that the coefficients A,B,Y and t are LxL matrices 
while U and V are NxL arrays. The condition on the convergence is 
similar i.e, all the elements of tK should be zero at this point.
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CHAPTER
BLOCK LANCZOS ALGORITHM AND THE FERMION MATRIX  

3.1 H APPLICATION;

We have already discussed how efficient the Lanczos method is
for
i)- calculating eigenvalues which come from off-diagonal elem ents of 
the triadiagonal matrix T and
ii)- inverting a general matrix such as,

H = i M

where M is a non-hermitian matrix. Now we shall explore how best we 
can apply the Lanczos algorithm to this matrix for the eigenvalue  
problem and for its inversion.

First we shall consider the e ig e n v a lu e  problem  of a 
non-hermitian matrix and apply it to the fermion matrix M c of eq.1.85.

For this we have to calculate the p ’s and y's of the Lanczos  
eq s .2 .4 ,2 .5 ,2 .8  and 2 .9 . W e can introduce a sim plication into the 
calculation if we note the odd-even structure of M .c

In the zero mass quark limit, we can write, (as in fig.2.1)

M =c

0

A

N 0

(3 .1)

Now if we choose the initial Lanczos vectors to be non-zero only on 
even sites, /  \

A

0
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then, by virtue of eq.2.4,

cxj = (X j, 0)

0

f t

$

0 0

= 0 (3 .3 )

so that all a 's  become zero. Also, from eq.2.5,

x2Pi = Hxt =

0

A

N

A
M 0

A  A

Nx,

(3 .4 )

and half of each Lanczos vector becomes zero.

X2K-1

x ' 'I f  s
A

X2K-1 0

X2K

A
0 X2K

k  /* k /

(3-5)

W e can write Lanczos equations representing the even-odd structure 
as,

A A
N X j = x 2 P j

M  x2K = X2K1 y2K j + x2K+1 p2K

N  X2K+1= X2K. ^2K +  X2K+2 p2K+l

(3 .6 )

(3 .7 )

(3 .8 )

and
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^ 1  = ^ 1  (3.9)

= y2K-l ^2k-l +  ^2K+1^2K (3.10)

^ y2K+l = ^2K ^2K + ^2K+2̂ 2K+1 (3 -11 )

By this trick we avoid the calculation of a 's  and half of the Lanczos 
vectors and this reduces the time of the computation by a half.

W e can rewrite the above equations by denoting the even and 
odd half x-vectors by B and W respectively while the even and odd 
half y-vectors are R and G respectively.

/  N f N
B.i

y2i-r

R.i
o

0
> < > <

0

y2i=

0

W.i G.i
v J

The Lanczos equations become,

N B 1= Wi pi (3.12)

+B i+1 p2i (3.13)

NB i+1=W iY; + W .+1p2i+1 (3.14)

and

G, Y, (3.15)

^ G ,  =  R i P L  + R w ^ i  (3 -16 )

(3-17)

It is necessary to store only the two even Lanczos vectors B and R and 
the two odd Lanczos vectors W and G between iterations. The Lanczos 
method with or without blocking takes the sam e time for calculating



the eigenvalues of the fermion matrix but an optimization is obtained 
while inverting it by block Lanczos. The flow chart for the computer 
simulation of the algorithm using above equations for calculating p's 
and y’s is shown in fig.3 .1 .

3.2)- PARALLEL COMPUTATION-

The inversion of big sparse matrices and the calculation of 
their eigenvalues requires a large amount of computation and any 
optimization in computer time and storage is very important. In this 
section using the odd-even structure of the fermion matrix , we 
describe a method for the parallel computation of the derivative part 
of the fermion matrix Mc. This method was initially described by

Gibbs{15} for the hermitian matrices.
i)- B ,W ,R and G are conveniently stored as two arrays,

■■■

B R

f= h=

W G

f and h being 5 dimensional arrays in general; 4 for space - time 
position and one for colour, representing a field on the sites of the 
lattice. The multiplication of N B jand MWj is similar in structure to

M t R j and Nf Gj so we shall take only the former case.

ii)- The gauge field is generally stored as a 7 dimensional array; 4 for 
space-tim e position , 2 for the colour indices and 1 for direction. The 
gauge link variables point in the positive space-tim e direction and 
are stored, in the array, at the site at the negative end of the link.

<-U 1 <-u2 <-u3 <-u4 <-u5

To change a gauge field into a fermion matrix elem ent we 
multiply with appropriate fermion sign and reverse the direction on 
even sites by taking the hermitian conjugate so that all matrix 
elements go from odd to even sites.



START

STOP

W G=C(say)

B R=C(say)

B = B + MW

WG=C(say)

Loop next i

A +
G=G +MRW=W + NB

R = R + NG

W =W  + NB
/ v t

G=G + MR

B=lnitial vector 

W =0
R=initial vector 

G=0

Loop For i= 1, N

Same as in 
(a) above.

Same as in 
(a) above.

Subroutine to
get elements of 
p and y fro m  C

Considering

Fig.3.1
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This is the best representation for doing multiplication and should be 
set up before starting the algorithm.
iii)- As shown flow chart fig.3.1, the operation of normalising the odd 
vector and multiplying the even vector by (-p) on a vector or array 
processor is best combined into one operation by multiplying f by and 
array with (P '1) on the odd sites and (-P) on the even sites.
iv)- The matrix multiplication is a very com plicated part of the 
optimisation. It can best be viewed as operating on the field f with 
the discrete form of the covariant Dirac operator,i.e., we numerically 
differentiate the field. Each of the four space-time direction is taken 
in turn, the odd part is differentiated and the result is added to the 
even part. In order to do the multiplication simultaneously at each 
site,we combine the multiplication for the forward and backward part 
into one operation. A temporary field t with W on the odd sites is 
constructed by moving w back from the even to the odd lattice sites 
as shown in fig.3 .2 .

f  Wj bj W2 b2 W3 b3

t Wj w2 w2 w3 W3 w x fig. 3.2

t.______ i____ x ________ L______ I_____ 1______ L

Then, t is multiplied by hf as shown in fig.3.3.

X X X

- iUj  Wj iU2w 2 -1U 3W2 iU4w3 “iU3w3 iUjWj

I  1_________ ]____ j________ |  ] fig. 3.3

This vector is added to the vector obtained by moving it forward by 
one lattice space, which gives,

-| x 4« J* 4*
- iU 'Wj+ iU jWj  iUjjW^iUjWj iU 2w2- iU 3 w 2 iU4w 3- iU3w2 iU4w3- iU 5 w3 iU 1w 1- iU5w 3 

L_________ _„i___________ J___________ 1__________ j___________ i_

The result on the odd sites is ignored,

iU2w2-iU |Wl iU4w3-iU3w2 iUjWj-iuJwj 

L________L J________J_______JL______ I_________ J
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The result can be added to the even vector b before proceeding to the 
next direction.

For a finite density, we have to find a method to introduce the 
chem ical potential in the formalism. Considering the time direction, 
we multiply the w vector on the odd sites by exp(-ji) and the shifted 

vector w by exp (p ). The whole process of the differentiation is 
performed as before. The result is,

iU^w^-iUJw.e  ̂ iU.w-e^-iU^w0e  ̂ ilLw  e^-iU^w-e ^2 2  1 1  4 3  3 2  1 1  5 3
I _________ J_________   J ________ J_________|__________ J

Thus, we have constructed the derivative of the odd part in a 
way which is most convenient for the array processing.

3.3V  APPLICATION OF THE BLOCK LANCZOS TO THE TH EO R Y WITH  

MAS.S:

3.3aV EIGENVALUE PROBLEM:

W ith 2m a= 0  and considering only n eares t neighbour 
interactions, the finite density fermion matrix takes the form,

0
A

M

H (3-19)
A

N 0

The characteristic equation gives,

A

M

det (H-M) = = l * 2
A A

M N I = 0 (3.20)
A

N

A ^
Therefore it is possible to apply the Lanczos algorithm to MN to get 
the squares of the eigenvalues of H. In the previous chapters we 
calculated the p's and y's which translate into eigenvalues of the 
ferm ion matrix. As mentioned earlier, that the eigenvalues of the 
fermion matrix come in conjugate pairs which is a characteristic of 
the chiral symmetry (see eq.1.57a). Now it can be confirmed by the



46
even-odd block structure of the fermion matrix as below,

! o
if !

A

N

A

M

0

N (  N (

U u
= x then*

V VIJ k ) J L

0

A

N

A

M

0

/

U
=-x

u

-V -V
) V  > L *

(3 .21 )

Now consider the fermion matrix with mass,

H =

2ma

A

N

A

M

2ma

(3 .22 )

The characteristic equation becomes,

det

2ma - X

A

N

A

M

2ma - X

=  0 (3.34)

It means the theory is unchanged except that the eigenvalues will be 
shifted by an amount 2m a. Therefore, we can apply the Lanczos 
method to calculate the eigenvalues at several mass limits. As we 
shall see a  of eqs.2.48,2.49,2.51 and 2.52 can be used as a mass term.

3.3b)- INVERSION OF THE FERMION MATRIX WITH MASS:

W e can prove that the p's(y's) and the Lanczos vectors x(y) are 
independent of mass {14}. At zero mass, in the even-odd block 
structure of the fermion matrix, all the a 's  of the block Lanczos 
eqs.2 .4 ,2 .5 ,2 .8 and 2.9 via eq.3.3 become zero, consequently T of eq.2.2 
is a tridiagonal matrix with zeros along its diagonal. Considering the 
fermion matrix, eq.3.22,

and

X '1 H X  = T (3.35)
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where T is T of eq.2 .2 , with 2mai terms along its diagonal. It is to be 
noted that the a's are the diagonal elements of T when we do not use 
the even-odd block structure. With this change, the block Lanczos 
equations become,

HXj= Xj2mai + {3 36 )

^ i = ^ i i i + ^ 2mai + xi+iP, (3 .37)

H'y,=y1(2mai)t + y27j (3 .38)

HV; = y i. i P it i  + yj(2mai)+ + y ^  (3-39)

INVERSION:

The algorithm described in section 2.6 can be immediately  
applied to the fermion matrix,

H = i (MC + 2ma)

but a term involving a division by mass gives a singularity at zero 
mass in eq.2.63. In order to avoid this, and remembering that we are 
utilizing the even-odd block structure, we use a slightly different 
representation of n K and oK from that of eqs.2.58 and 2.59,

n 2K-i

t2K.f  (2ma)

2mai

n =
2K

2mai a 2K Yzr

l 2 K  (2ma) B2K Y 2K

V

2K

2mai B2K-1

2K-1

2mai B2K

/

(3 .4 0 )

(3.41)

and
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oK= VK(2mai, 0) + UK (2mai YR , 1) @ .42)

If we take the p's and y's as small LxL matrices then the coefficients 
A,B,Y  and t are LxL matrices while U and V NxL arrays.

The method is carried out in a sim ilar fashion to that of 
section 2 .5  and 2 .6 . With these representations the factor 2mai 
divides out explicitly. The extra advantage is that the coefficients 
A ,B ,Y  and t are real. The recurrence relations are as follows;

V I (3.43)
y,=o (3.44)
Bj=0 (3.45)

l. = 1 (3.46)

v1=0 (3.47)

U]='xr P,'
(3.48)

A 2K= A 2K-1 + (2ma) ^ 2K-P f W i  

B2K= " P2K ^2K-1) *2K-1 

y2K= y2K-l ‘ A 2K ^2K-1^ *2K-1 

*2K = P2KA 2K-1A 2K^2K-1^ l2K-l

^2K= ^2K-1 + X2K ^2K-1  ̂ ^ma* B2K-1

^2K= ^2K-1+ ^ K ^ K -l^ K -l + ^mai ^2KA 2K^2K-lt2K-l ^  *^9)

and

A 2K+1= 'P2K^2K^ A 2K 

B2K+1= B2K_ ^2K^ A 2K 

y2K+l=y2K 

l2K+l=t2K

^2K+1= V 2K

U 2K+1= U 2K + X2K+1^2K^ A 2K (3 .5 0 )

so that



(1 + (2ma)2y2K+] p,1) 1 V 2K+1 -> H ’x, ( 3  50a)
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The condition on the convergence of the series is similar to 
that for the algorithm described in section 2 .6b,i.e., it will converge 
to H '1x 1 when all the elements of t2K+1 are equal to zero.

3.4V LANCZOS UPDATING WITH FERMIONS: SU(2) CASE.

Simulating the theory with dynamical fermions is a quite hard 
task. For this, we have to calculate the ratio of the determinants for 
the configurations created by Metropolis algorithm and differing at 
one link at each update. This requires much computation as compared 
to the pure gauge field case where we need only the ratio of the 
statistical weight. Therefore it is very important to optim ize the 
calculations as much as possible.

W e want,

det(H + 6 H) (3 .51)
detH

= det ( 1 + H^SH) (3.52)

W hen one link is altered, this change corresponds to a 4x4 block. If we 
denote the corresponding 4x4 block H ' 1 as H '1 and 4x4 changed block 
by 6H, then,

R = det (1 + H ' 1 8 H)

det
H 5 H

< = ==>det

H

(3.53)

5H

I

w.

1
0 01 0  o Ol o
o 0  o W: 0
o e o o
0 oo o
o OO 0
o o o 0
o_ 0 o o o _0

then . 5* becomes,

det

i  o o--- 

c i O--•

0 O 1 - . ■
=det

1 0 0 0 .........

0
)))/ ./ /  /  •■
/ / / ; / ,

0
=det

0 0 0 1 ........

Fig.3.4
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and as explained by fig.3.4 updating one link requires 4 rows ofthe H ' 1 
and then a small 4x4 determinant.

In practice, we update the same link many times before moving 
to a new link. This has the advantage that we do not need to calculate 
fresh H '1 for every update because,

det ( H + 8h ) det (1 + H"'5H.)
----------------- L_ = ____________ L  (3 -54 )
det ( H + S ty  det ( 1 + H45H2)

Of course, the probability of the system to reach the 
equilibrium state is also increased. W e shall call this as Modified 
Metropolis algorithm and updating a link , as a h i t .  It is like a m i n i  
heat  bath.  If the number of hits are increased to infinity, it becomes 
the Heat bath algorithm{20}.

3.5V LANCZOS ALGORITHM FOR UPDATING BY RANK ANNIHILATION:
THE SU(2) CASE:

The updating idea can be extended for a number of links at a 
time. Consider 32 links of a hypercube. To calculate the ratio of the 
determinants for any change to these links, we need a 32x32 block 
corresponding to the 16 sites of the hypercube. By doing one 
hypercube at a time we get a factor of four as compared to doing it 
link by link. It is worthwhile to go to each for about five times ( laps)  
hi t t i ng  each link about ten times per lap so that each link is brought
near to equilibrium before moving to the next hypercube. It is suitable
to take the P's and y's as 16x16 matrices because we first invert for 
the 8 odd(even) sites of the hypercube and then take up the even(odd) 
sites. All these improvements make larger lattices possible. The 
Lanczos algorithm provides a technique for obtaining a 32x32 block of 
the inverse corresponding to a hypercube.

Rank annihilation {14} can then be applied. Let H be the block of 
the inverse of the fermion matrix corresponding to a hypercube. 
Changing one link of the hypercube makes a change AH in the fermion 
m atrix with 8 non-zero elem ents, which we sep ara te  into 8 
consecutive changes, one to each element,

AH = AHj + AH2 + .................... + AHg (3.55)

Write each change in the form,
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AH.= U a V *  (3.56)

W here a is the change to the element and U,V are the unit column 
vectors which are zero in all elements but one. Then, if H '1=Z, {14},

Z* (H + U a v V  = H ' 1 (1 + UaVf H"1)"1

= z  - Z UaVf Z + Z UaVf UaV+Z - .....  (3 .57 )

= Z - ZUa (1 - V+ Z Ua + ....) V f Z 

=Z - Z Ua (1 +V+Z U a)"1 VfZ

It can easily be seen that this formula can be applied to update the 
32x32 block of Z without knowing the rest of its elements.

The calculation can further be optim ized by considering two 
hypercubes at a time.

3.6V LANCZOS METHOD FOR H~2:

From above we know that the chiral order param eter can be 
given by the following relation,

<\j/ \j/> = tr (Mc + 2ma)
L

w here N L is no. of lattice sites. The right hand side of eq .3 .56  is 

averaged over many configurations. The size of the matrix Mcis NxN

where N = 3 N L. Above, we described the Lanczos method to obtain all 

the eigenvalues of the matrix H = i(Mc + 2m a). In terms of eigenvalues 

of the M ks eq.3.56 becomes,

< ¥ ¥ > = 7 7  Z  . 1 . —  (3-58)
N v -A, + 2ma 

K K

The Lanczos diagonalisation provides all the eigenvalues of H
and hence the initial eigenvalues for detH and trH ' 1 at the beginning
of each sweep. Updating all the hypercubes of the lattice once is 
called a sweep or an iteration. After each sweep, the changed 
tr(H + a )-1 can be calculated as follows;
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tr(H + A) *= tr H 1 + (change produced by updating during the sweep) 

change = tr(H + A) '1 - trH_1= -tr (Ha(1 + H^A)*1)

and an algorithm for calculating the H '2 is required. This algorithm  
can be obtained by differentiating the Lanczos algorithm giving the 
eigenvalues of H '1( from eqs.3.43 to 3.50a) with respect to 2ma. The 
following is the summary of the values of the variables required to 
calculate H '2x r

INIT IAL VALUES

dA.
A A -  1

i d(2ma)
dtj

ttl d(2ma) 

dViYV _------ L_
1 d(2ma)

=  0

=  0

dB.
T5T3 _  _______ 1

i d(2ma)

yy d?i
1 d(2ma)

dU.
UU =------ —

i d(2ma)

(3 .59)

For further iterations the even and odd values of these matrix 
variables are given below;

AA‘2K=A A 2K-l+m C ®2K-1+ m C ®®2K-1

BB2K" P2KCBB2K-1

^ 2 K  yy2K-l' A A 2K A 2KC *2K-1 " A 2K C tt2K-l 

^ 2 K =^ 2 K -1 + * X2K C B2K-1 + *m X2K C ®®2K-1

^ 2 K  = V V 2K-1 + X2K ^2K-1 tl2K-l + i U 2KA 2K ^2K-1 h . K - 1

+irn( UU2KA2K P2̂ _j t2 K + U2K A2K AA2K P2K-it2K-l +U2KA2KP2K-ltt2K-P
-2 -1

,-1 ,-1
2K “  P2K^A A 2K-1A 2KC l2K-l + A 2K-1A A 2KA 2KC l2K-l

-1
‘2K-r l2K+An„  ,A~^ c tt2K ^ (3.60)

and
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A A 2K+1 = ’ ^2Kd A A 2K

BB2K+1 = BB2K '  dA A 2K

y^2K+l=y2K» tl2K+l=tt2K’ V V 2K+1= V V 2K

U U 2K+1= U U 2K +X2K+1 d ^ 2 K

so that,

H 2x, = - T 1 { T 1 (2 m y2K+1 P,' + m’y y ^ . p ; 1)- V V 2K+, , 

w h ere ,

T = ( i -  m2y2K+1 p;1)

2ma = m

^ 2K-l^ = c

(Y i ) f = d (3.61)

3.71- BLOCK INVERSION: A FURTHER OPTIMIZATION:

The non-hermitian block Lanczos method with mass requires 
two sets of the equations (3.36 to 3.39). W e used one set( 3 .36 and 
3 .37 ) using the techniques of section 2 .5  and 2 .6 , for the block 
inversion of a big sparse m atrix,a fermion matrix with mass, in 
section 3.3b. This uses interations between even-even and even-odd 
sites of the lattice and therefore produces even-even and even-odd  
blocks of the inverse of the fermion matrix. A further optimization 
can be obtained by writing the first Lanczos vector of the unused set 
as a linear combination of all other Lanczos vectors of the set already 
employed for the inversion,

K

Y,= Z xiR i (3-82)
i=l

K
H'1Y,= H 1̂  x.R. (3.63)

i=l

This provides the odd-odd and odd-even blocks of the inverse of the 
fermion matrix in parallel with the even-even and even-odd blocks of 
the inverse.

By using the 3.36 and 3.37, we can calculate right hand side of
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K

H  ' X  xi Ri =  cix i + C2X2 + .......................  (3 -6 4 )
i=l

After K iterations of the Lanczos algorithm we construct K 
terms in series with a remainder involving H '1x K and H '1x K+1so that,

K
H 1 x.R. = vK + H"1 XK aK + H_1xK+1 bK (3.65)

i=l

w ith
VK= CjXj + C2X2 +

Increasing the range of summation past K gives,

K+l

H 1 X  x, R, = VK + H ' lxKaK +  H  ’ XK+1 bK + H ' !x K+1R K+1 (3 '6 6 >
i=l

W e shall use 2mai= a K = a K+1= a K_v  c= (yKt )_1 and 2ma=m (where

necessary) , in this section. As in section 2.5, we shall use eq.2.37 to 
elim inate H '1xK from eq.3.66 to get,

H
K+l

’ X x, r ,=
i=l

VK + XK+1 C aK " CXK+1 H  XK+lCaK (3 .6 7 )

‘ H  XK+2 Pk +1 c aK + H  XK+lbK + H  XK+1RK+1

Comparing eqs. 3.65 and 3.67, we get,

VK+1 VK + XK+1 C aK

K+l

K+l

-a cK+l

-P k+i c

V

N f  V

1

+
Rk+i

0 0

/

(3.68)

(3.69)
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As in section 2 .5 , the starting point is not unique since we 
could also begin with the identity,

H '^ j Rj = H' 1 Xj Rj (3.70)

Adding eqs.3 .36  and 3.70 after multiplying with r and s respectively 
gives,

H ^ jR j [ r + cXjS] = XjRjS + H ^ R j  r - H 1 x2 PjRjS (3.71)

Comparing eq.3.71 with eq.3.65 gives the starting values,

V j =  Xj RjS p

aj= RjT P

bi= -Px RjS P

(3.72)

(3.73)

(3.74)

w here

P = (r + s )-l

The coefficients r and s are to be determined at the end of the 
calculations where they can be chosen in such a way that the final 
remainder is very small. Write,

S  S.

aK r

II
* J

O

o
r

* s

p + Pk (3.75)

where if the size of the a's  and P's is LxL, the 2Lx2L matrix tzk can be 

calculated from the recurrence relations,
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* 1 “
0 Pi

(3.76)

KK+1 “ ^K+l \ (3.77)

while pK from,

Pi =

/  \ f  \

o

Pk+1 ~ %+! Pk +
R K+1

0 0
V /

(3 .78 )

w here ^ \  

C 1' CXK+1

■Pk + i  C 0
\  y

For the convergence of the series, we require,

/  V /  \

a K 0

—>

bK 0
\  )

(3.79)

This would happen for any choice of the initial condition if tik —>0 . But

K-l

det 7tK =  det
i=l

K-l
Pk+1 c 0  

v  y

=  P J  det (-pK+1 ( y j , ) 1 ) since c = ( y * ) '1
i=l
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_ detPK det PK_,

**■£_, def£ .2
dah
det y+

so th a t  7cK—>0 , only if one of th e  d e tp  =0  or one of d ety 't’K. 1=oo and we 

cannot have 0 . However if one eigenvalue of tzk tends to

zero we can take R

s

to be the corresponding eigenvector and this

will suffice to make the remainder term small. In this condition p

will also become small if
"r k+ i

0

K

->0. Since we do not know r and s

until the end we must compute vK as a linear combination,

VK °K  R 1

S

K (3.80)

with the initial conditions,

o 1 = ( 0, x2) , = 0 (3.81)

Putting the values of vK+1 and vK from eq.3.80 in eq.3 .68, we get,

°K+1 R 1

(  \
r r

P + fK+l ~  ° K  R 1

s s
I  J

P+xK+i caK (3 .8 2 )

giving,

*K+1 “  fK+  ̂XK+1 C ’ ®  ̂Pk 

a K+l= a K+ <XK+1 C ’ 0  ) \

(3.83)

(3.84)

Comparing eqs.3.40 and 3.76 for 7c1 and, 3.42 and 3.81 for a 1 gives the 

initial values,



A i = - P r  B j = 0 ,  t j = l

y = 0, U1=xr  V j=0 (3.85)
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Starting from,

7i =ri n
2K+1 2K+1 2K

and using the values of 7c2K+1 and 7u2K from eq.3.40 and 3.41 we get,

S  N S s  ^

im B 2K+l "a 2K+l 1 A 2K

A
2K+1 "P2K+I C 0 imB2K

\  /

y2K+l y2K

*2K+1 l2K (3.86)

Using only even values of K, eq.3.84 becomes,

a = a + (x~„ , c , 0 ) % 2K+1 2K v 2K+1 > 2K (3.87)

and we get,

U 2K+1“  U 2K + *2K+1 C A 2K

V = Vv 2K+1 2K

(3.88)

(3.89)

With the initial conditions 3.78 on p, we can write,

2K+1

S  V s  -s

im B 2KH 0

g2K+l +

A
2K+1 h2K+l

L  / < s

(3 .90)



and

^2K

S ’ “v f  >
A h2K

g2K +

2K

imB2K 0
k  J

(3.91)
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P =ri p2K+1 2K+1 *2K (3.92)

Putting the values of p2K+i anc* P2K *rom 3-90 anc* ^-91 ‘n we

&2K+1 &2K " B2K+1 C h2K
-1

h2K+l~ f "P2K+I C + A 2K+1B2K+1 C 1 h2K

(3 .93 )

(3.94)

W ritin g ,

(3.95)f2K+l U 2K+1 &2K+1 + W 2K+1

and using eq.3.83, we get,

W 2K+1 = W 2K + X2K+1 C h2K ‘ U 2K+l(g2K+l '  g2K̂  (3*96)

For the even variables A ,B    we start from,

K2K  Ti2K K 2 K - l

and a similar algorithm gives their values. The values of even and odd 
variables can be summarised as

im B2K+1

2K+1

-a,'2K+1

-P2K+1 C 0

2K

imB2K
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y2K+l y2K

h.K+1 = t2K

U 2K+1~ U 2K + X2K+1 C A 2K 

V = Vv 2K+1 2K

-1
g2K+l g2K “ B2K+1 C h2K

2K+1= [-P-2K+1 C + A 2K+1~2K+1b !  , c ] h2K

W 2K+1 W 2K + X2K+1 C h2K '  U 2K+l^g2K+l " g2K̂ (3.97)

and

A 2K m d B2K-1 + A 2K-1

B2K P’K' d B2K 2K-1

y2K y2K-l '  A 2K d *2K-1 

*2K = $ 2 K  A 2K-1A 2K d l2K-l 

U 2K = U 2K-l+ i m X 2Kd B 2K-l

^2K= V 2K-1 +im ^2K A 2Kd l2K-l + X2K d ^K-l 

g2K= g2K-l~ a 2K A 2K d h2K-l + A 2K R2K 

h2K = B2K̂  A 2K A 2K-1 B2K-1^2k-ldm A 2K ^2K  ̂

^ 2 K = W 2K-1 " U 2K̂  g2K " g2K-l^ (3.98)

with d = (y f ) 
v ,2K - r

- l

For the inverse, from eq.3.80, we can write,

V 2K ° 2 K  R i

/ \ 
r

s
\  /

-l
2K fc2K 2K (3.99)

w here we have used value of f2K from eq .3 .95 . Putting values of 

U2K,g2K,W 2K from eqs.3.98 and choosing,
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r = 1

s *m y2K R 1 + &2K 

&2K tt2K + R 1

we get,

V2K =  W 2K +  V 2K R 1 ^  +  a 2K H  Y j (3 .1 0 0 )

This algorithm is restricted in its applicability as rounding 
errors can spoil its convergence. W e have restricted its use to 
calculations on small lattices where convergence is ensured.
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C H A P T E R  4

3U (2 ) FINITE DENSITY

4.1V MATTER FIELD AND CHIRAL SYMMETRY:
In this chapter and chapter 5, we mean <x %> of eq .1 .78  by 

writing <\j7 \|f> and have used H to represent the fermion matrix with 
chemical potential, unless otherwise explicitly shown.

Com tem porary physics believes that in the normal nuclear 
matter, the binding forces between quarks increase with the distance 
separation, making it impossible to split hadrons into individual 
qu arks . Using this p icture of hadron s, strong in terac tio n  
thermodynamics has shown the limit for confinement of quarks. At 
high density, temperature or both, the quarks become free and in this 
limit matter can be thought of a quark or quark-gluon plasma. This 
reflects a phase change from one form of matter to another.

Mott transition for electrons provides a natural analogue of the 
deconfinem ent of quarks. At high density, the Coulom b’s potential 
which binds the electrons to the ions is partially screened by the 
presence of other charges and becom e much shorter range. At 
sufficiently high density, the resulting Debye screening radius  
becomes less than the atomic binding radius so that electrons can no 
longer feel the binding force to the ions and are set free. At this 
point,a change of phase takes place; the insulating matter becomes 
electrically conductive. In Q .C.D, where the gauge group is S U (3)colour,

deconfinement of the quarks is the analogue of the Mott transition for 
electrons, w here the Coulomb's potential is partially screened by 
colour charges{17).

The electric conductivity of electrons has the form,

J£

a ~ e T (4.1)e ' '

where E is the ionization energy and T is tem perature. In the ideal
situation, o Q vanishes at low temperature for insulators but becomes

non-zero with an increase in the temperature, density or both, as such 
insulator becom es conductor. Above the M ott transiton, o ise
significantly non-zero but, even below this point, thermal ionization
can produce some conduction electrons making a e small but non-zero.

The colour conductivity of strongly interacting m atter{17},
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which is a Q .C .D . analogue of o0 , is produced by free colour charges

and constitu tes a rather natural signal for the deconfinem ent 
transition. It becomes non-zero for a quark-gluon plasm a while it 
vanishes in hadron matter. The Q .C .D . analogue of the production of 
locally conduction electron is the formation of quark-antiquark pairs. 
If we try to separate a quark from a given hadron the linearly 
confining potential will rise with the separation until it reaches the 
value of the mass of the lowest qq state. At this point, the production 
of an additional hadron could be possible. This might be expected to 
g ive{ 18},

2T (4.2)

where mH is the mass of the qq state mentioned above. For T=0, a c= 0 . 

If mH = o o , so that we are in the quenched approximation and dealing 

with the pure gluon fields, then,

0 T < TC

C =< c '

^>0 T > T C

Our ultimate goal is to introduce matter fields into the theory, 
so that the colour conductivity and som e of the other order 
parameters described below do not remain very useful. This becomes 
our reason to find a suitable order param eter for distinguishing the 
phases of the theory.

4.2V ORDER PARAMETERS:

From the above discussion, the use of invariant order 
parameters in lattice gauge theory is quite obvious and these can be 
used to distinguish different phases of the theory. For exam ple, the 
energy density E, of eq.1.82 can be used as an order parameter. The 
choice of a particular order parameter depends upon the nature and 
kind of the problem.

Pure gauge lattice action eq.1.16, possesses a global symmetry 
under the centre Z N of the SU(N) gauge group . The specific state, in

which, the system finds itself may spontaneously break this
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symmetry just as the ordered phase of the Ising model breaks the Z 2

symmetry of its Hamiltonian. W e are, therefore, looking for the gauge 
theory analogue of spontaneous magnetisation. It is given by average  
of the Polyakov loops {19},

N

Lx( U ) = 4 t r T T u  (4.3)
X v N  X;t,t+1 '  }

T=1

consisting of the product of all the gauge group elem ents,U's in the 
time direction, taken at a given spatial site x. Since SG is invariant

under the Z N transformation, the average Polyakov loop taken over the

lattice and all configurations gets a factor exp{2 r7ti/N}, with 0 < r < 1 
and serves as an indicator for spontaneous symmetry breaking. It is 
zero for Z N symmetric state and non-zero if symmetry is broken. If L

measures the free energy F of a static quark, then {19},

-F

L ~ e T (4.4)

In the confinement phase,

F = oo and L = 0 (4.5)

while in the deconfinement regime,

F = finite and L * 0  (4.6)

4.3V TH EO R Y W ITH MATTER FIELDS;

W ith the introduction of the m atter fields(light quarks) into 
the theory, the full lattice action,

S = S r . + sf . (4.7)gauge fields fermions

no longer respects the symmetry of the centre, Z N . The average

Polyakov loop L remains finite at finite tem perature, density or both 
in the presen ce of m atter fields. The distinction betw een the  
confinem ent and deconfinem ent regim es becom es more qualitative
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and we have to look for another order param eter . The failure of 
colour conductivity as an order parameter, in the presence of matter 
fields has been discussed above.

For the full theory, it has already been noted, that in the 
massless limit, the free Q .C.D. Lagrangian (eq .1.55) is invariant under 
the chiral transformation (eq .1 .52 ).But, even in the zero mass quark 
limit, the chiral invariance may be broken spontaneously. This would 
correspond to the spontaneous generation of an e f fe c t iv e  mass for the 
quarks and this is analogous to the effective mass of an electron in a 
conductor as compared to its mass in the vacuum. In the confinement 
phase, the chiral symmetry is indeed broken so that the u and d quarks 
have an effective mass of about 300Mev. In the deconfinement plasma, 
chiral symmetry is again restored (via the m echanism proposed by 
Kogut et a!{12}). Thus the transition from the confined to deconfined 
phase is signalled by chiral symmetry. The order param eter for chiral 
symmetry is the chiral condensate given by eq.1.78. It may well be the 
however that with the global Z N symmetry broken by the introduction

of light quarks, the chiral transition becomes the basic mechanism  
which makes deconfinem ent a genuine transition! 18}. As we are to 
introduce fermions in the theory, the chiral condensate has been found 
to be a very useful order parameter and we have used it for signalling 
different phases.

4.4V DYNAMICAL FERMIONS AT FINITE BARYON DENSITY:

Recently many calculations have explained the phase diagram of 
SU (N ) Q .C .D . at finite tem perature and density. At zero chemical 
potential, there is a clear signal for a phase transition with a critical 
tem perature. There are problems, however, at the other extrem e  
where the effect of the finite density on the thermodynamics of zero 
tem perature has to be considered. The standard ideas present the 
following scenario at T=0. Let us consider a state with a non-zero 
fermion number which has the lowest energy per quark. The chemical 
potential p is a source of quarks for such a state and p c is the

threshold for producing quarks.
In the infinite lattice limit, at T=0 and p < pc, all the physical

observables such as <\ja |/>, agree with their values at p = 0. As soon as 

we approach pc, thermodynamic processes start and quarks are added

to the system, increasing the density. At large values of p, we expect 
the restoration of chiral symmetry and that this will be related to 
the mass of the proton via the chemical potential, for SU (3), by, {12},
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However, the above picture does not fit the numerical results 

obtained in the strong coupling limit of Lattice Q .C .D . in R ef.{21}. The 
results of this reference are mainly in the quenched approximation, 
but it notes that the results for the SU (2 ) gauge group for quenched 
and unquenched theories differ only in the size of error bars. For 
SU(3), some results have been presented for a few values of (i and m ,H
using the full theory with the complex Langevin algorithm and these 
so far agree with the quenched theory. The conclusions drawn from 
this reference can be summarized as below:-

1)- At a fixed quark mass, the chiral condensate <\jnjf> is constant and 

then goes to zero (i.e, it is restored) with increasing p.
2)- As the quark mass mq is decreased, jic decreases and at the zero

mass quark limit, chiral symmetry is restored for some arbitrary p > 0 , 
which signifies a zero mass baryonic state.
3)- As a result, ji has been related to the pion mass by the following

V

relation, (for m —> 0 ),M

^ c = 2 m*
(4.9)

because the pion mass goes to zero while the mass of a baryonic state 
is expected to stay constant as the quark mass goes to zero. Hence the 
mass of a baryonic state can be given as, (3/2)m7t.

The relation of \±c to mn is not a surprise{2 2 }, but the

production of a zero mass baryonic state is really puzzling. The 
reference suggests that the possible sources of error might be as 
follows:- 1)- Small size lattices -(Finite size effects)

2)- Big fermion bare masses.
3)- The strong coupling limit of QCD.
4)- The quenched approximation.

There are reasons to suspect the quenched approxim ation.In  
fact, G ibbs{23} via the eigenvalue distribution of the propagator 
matrix has shown that indeed a transition at half the pion mass in the 
quenched theory exists but above ^c= (1/ 2 )m n, the chiral condensate is

not exactly zero. There is a small residual condensate at mq=0, where

m q is the quark mass. He argued that there can be no deconfinement
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from confined phase at pi=0 at non-zero density in the quenched  
approxim ation since the behaviour of the Polyakov loops{19}, are  
unaffected by the chemical potential and yet it can be argued that 
there cannot be chiral symmetry restoration without deconfinem ent. 
He also used a 11(1) one dimensional model at finite density to 
illustrate his conclusions and argued that same would hold for high 
dimensions to prove that the quenched and unquenched theories;

a)- agree m > 2 Sinhpi
H

b)- disagree mq< 2 Sinhp

To calculate the chiral condensate on a fixed size lattice, we 
need to calculate the inverse of the fermion matrix as shown in 
eq .1 .78 . As given earlier, at zero chemical potential, the ferm ion  
matrix is anti-herm itian. For this reason, on a complex plane, the 
eigenvalues are expected to appear only along the imaginary axis. At 
n o n -ze ro  ch em ica l p o ten tia l, the ferm ion  m atrix  b eco m es  
non-herm itian  and the e igenvalues are distributed around the 
imaginary axis with a ±X symmetry, due to chiral symmetry (eq .1 .57a). 
As the fundam ental representation of S U (2 ) is pseudorea l, an 
additional symmetry x X ,  is also available for this gauge group.

At zero density, the chiral condensate can be given as{13},

4.5)- EIGENVALUE DISTRIBUTION AT ZERO DENSITY:

<\|/ \j/> (4.10)

(4.11)

For large lattices,

<\|/\|/> (4.12)

where 2 ma is the quark mass(scaled) in the lattice units while p(^) is 

the normalized eigenvalue spectral density.
As 2m a — >0,
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<vj/\|/> ~p(0) (4.13)

and we require eigenvalues close to zero.

4.6)- SU i2) FINITE DENSITY RESULTS:J27)

For SU (3), the chiral order parameter can be given as,

< tr h V^ >
<\|/\|/> = ------- ;-------- (4.14)

<e1<!>>

For S U (2 ), <J>=0, so that the chiral condensate is real and 
p o s itiv e ,

< tr H'1 >
< ¥ ¥ >  = - <2> (4.15)

where,

< tr H_1> = JdU trH 1 (4.15a)

and via eq .eq .1 .74  and 1.77, detH is the contribution of the dynamical 
ferm ions to the effective action if this contribution is replaced by 
trH~1detH, eq .4 .15 becomes,

< V V >  = ----------------    (4.16)
< (tr H ) >

This representation for the condensate has a driving force which 
should have a weaker repulsion of the sm aller eigenvalues compared 
to that of eq .4 .15 . W e present results for both the driving forces.

4 .7 )- TH E FERM IO N W EIGHT IHI;

W e carried out calculations using the Lanczos algorithm for 
finite density with full theory for SU(2) gauge group at small quark 
masses to evaluate the chiral condensate on a 44 lattice. The length 
of the lattice in the time direction represents the inverse of the 
tem p era tu re{10}.W e used strong and interm ediate coupling for our
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calcu la tio ns .

To understand the behaviour of the chiral condensate in terms 
of the distribution of smaller eigenvalues of the fermion matrix, we 
present the following summary of the models from ref.{24}. W e show 
an analogy betw een the chiral condensate <\j?v> in terms of the 
eigenvalues of the fermion matrix for SU(2) and an electric field E 
arising from unit positive charges at (Xj.yj) where the ith eigenvalue

of the fermion matrix X = X j+  iyj and the electric field E = < \jn j/>  is

m easured at ((x=m  ),0), where m is the quark mass. However thisH M
analogy is only valid in case when we use e q .4 .1 5  as the
representation for the chiral condensate.

4.7a)- THE MODELS FOR THE CHIRAL CONDENSATE;

on a large lattice, the chiral condensate can be given as,

+oo

<v v> = Jd* Jdy p(X,y) — TT17 <4'17>
-OO ^

w here x and y represent the real and im aginary parts of the
eigenvaues of the p  part of the fermion matrix and p is the spectral
density.

Supposing that p is independent of y, so that p(x,y) = f(x),

<\|/ \f> = Jf(x) dx J  dy m +x+iy
(4.18)

then,

= jf(x )d x  (ny-x) |
dy

" J 1f(x) dx if x> - m

~  yf + H + x )2
=< (4 .1 9 )

f(x) dx i f  x< - m

CASE (a): EIGENVALUES FORM A UNIFORMLY POPULATED STRIP OF WIDTH 

2L:
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y

Fig.4.1

then f(x) = p = constant. Fig.4.1 represents the case. There are two 
possible situations; 

a(i)- L < mq

+L

<\j/ \ p  = p J dx it =2rcpL (4.20)
-L

a(ii)- -L < mq < L,

-m L

<vv> = p[ J -k dx + J n dx ] = 27cpm (4.21)
-L -m

Hence if the quark mass lies inside the uniformly populated strip, 
<W (m q=0)> = 0.

CASEfbV EIGENVALUES FORM TWO UNIFORMLY POPULATED SYMMETRIC  
STRIPS:

y

Fig.4 .2

Fig.4.2 is the pictorial representation of this case. There are
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three possible locations of the quark mass on the real axis. With a 
similar treatment as given above, we get,

b(i)- -L < m < Lw 1 q 1

b(ii)- l^cm  <L2, 

b(iii)- -L2>m q>L2,

<\j/ \j/> = 0 (4.22)

=2itp(mq-L} (4.23) 

=27Cp(L2~L1) (4.24)

4Jb)-TH E TW O  DIMENSIONAL ELECTROSTATIC MODEL:

The eigenvalues are considered as unit positive charges at 
(x.,y.) producing an electric field E on the real axis. W e  calculate

<\jh|/(x=mq! 0)> using Gauss' law,

where k is the unit vector along the outward normal perpendicular to 
the plane containing E and di in fig.4.3.

(O -  UNIFORMLY POPULATED SINGLE STRiP:(Fia.4.3)

As mentioned above, we consider that the quark mass could lie 
at different piaces on the real axis. W e make a Gaussian box of length 
2 m q(from -m q to mq) and finite height 2A as shown in fig.4.3. The

possible situations and the resulting electric field which can occur 
a re :-

(4.25)



72

y
» • ♦ - - - • * •

•>
‘ A* * • - «

It

I

dl

j

" m q -L -m k m „
q

L m
q

Fig

-_A ^
m •

m * *

c (i)- mq > L,

c (ii)- mq < L,

J2E dl =  4E A =  2itp (2A x 2L )

E  =  2 *p L  (4 .2 6 )

J  2E dl = 4E A = 2n Jp ds

-A

( 4 ^ 7 ,
2A

with f(A,m ) *  p. 2A.2m where f(A,mq) denote the number of the
eigenvalues inside the box.

(dl- TW O  SVMMFTRICAi STRIPS UNIFORMLY P Q P U LM E D l
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y

-m

Fig.4 .4

-A

Three possible Gaussian boxes for the location of mass on the
x-axis(real axis) discussed below are shown in the fig.4.4.

d ( i ) - 0 < m < Lr  E = 0 (4.28)

d(ii)- L1 < m q < L2

E _ *  f(A’ mq> (4.23a)
2A

d(iii)- mq > L2, E=2jtp(L2 - L ,) (4.29)

An analogy between cases (a,b) and (c,d) is obvious. An
immediate consequence, as can be noted from eqs.4.21 and 4.22, is
that <\jh|/(m)>, in the zero mass quark limit, is non-zero if and only if, 
there is an eigenvalue delta function on the imaginary axis and E will 
be non-zero.

Before dicussing the figures with eigenvalue distribution, the 
following points for these distributions should be noted:-
1)- As mentioned earlier, at zero chemical potential, the eigenvalues  
are expected to appear along the imaginary axis.



74

5{ Im X

Fig.4 .5

2)- For a finite lattice, such as 44 lattice, the effect of the chemical 
potential is felt much earlier than it would be for an infinite lattice 
discussed in section 4.4. In fact, it is immediate for a finite lattice. 
At non-zero chemical potential, with fixed quark mass, coupling 
constant and Nf=number of flavours, the eigenvalues move off the

imaginary axis perpendicularly and form a single strip as shown in 
fig.4.6. As noted earlier, the eigenvalues are distributed with ± X , X \  
symmetry round the imaginary axis.

Im X

★ ★

★ * ★ * ★
* *

:k itit it 
★ ★ ★

it it it it it 
it it it

• % % • w • •
•» * •  ̂ •

» <• %
¥ ¥ * ¥ ¥ ¥ * • « • % % - *
¥¥¥¥ ¥ ¥ ¥¥¥¥ ** • * « •

¥ ¥ ¥ . ♦ . Fi9-4-6 m ~
m — •

¥ ¥¥ ¥ ¥ ¥¥ ¥ • * • 
m •» Z  -  -

_ — •

Re

3 )- As we increase the chemical potential \x, the width of the strip 

increalses monotonicaily with it. At large \i, the e igenvalues form 
two uniform symmetries around the imaginary axis leaving the region 
around X=0, completely depleted of eigenvalues as shown fig.4.7.
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4 )- The inclusion of dynamical fermions means that the fermion 
determinant of eq .1.88 is included and can be given by,

Det (Mc + 2ma) = X? - (2ma)2] (4.30)

W henever an eigenvalue comes close to the location of the quark 
mass, the configuration containing such as eigenvalue is rejected by 
the Metropolis algorithm. Therefore, we might expect a gap to appear 
around the location of the quark mass on the real axis, when mass 
enters the strip of eigenvalues. W e call this the fermionic repulsion 
of the zero modes. Fig.4.28 shows such a situation at large p.
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* ¥¥ ¥ ¥ 
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¥ ¥¥¥ ¥
¥ ¥ ¥¥ ¥

Re

Fig.4.28
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With these expectations and observations, we proceed to 

discuss our results.
The eigenvalues of all the distributions presented, in this 

chapter are for the fermion matrix 2 (M c-m q).

For all the figures presented, the bare quark m ass,mq, is twice

the mass shown on each figure which is a consequence of the 
rescaling of section 1.7a. Fig.4 .8 and 4 .9 , show the eigenvalue  
distribution of the fermion matrix for the quark masses 0.1 and 
0.0125, at zero chemical potential, Nf =4 and p = 1 .7. The eigenvalues

only appear along the imaginary axis as expected.
For fig.4 .10, we have calculated explicitly <\j7\j/>  at increasing 

values of the chemicai potential at fixed mq=0.4, p=.5 and Nf=4. Later,

we shall compare the conclusion drawn from this plot, with the one 
drawn from eigenvalue distribution plots of the fermion matrix. In 
this figure chiral condensate decreases with an increase in jx and goes 

to zero or is restored at p=1.0 in lattice units. The phase transition is 

second order and it is very difficult to obtain the correct value of p c,

but it is approximately 0.4.
Figs.4.11 to 4 .18, show the eigenvalue distribution with 

increasing chemical potential. The values of the quark mass, (3 and Nf

are the same as for fig.4.10. The first thing to note in these figures is 
that the eigenvalue distribution is symmetric along the imaginary 
axis with no eigenvalue delta function on the imaginary axis.

- As previously mentioned, while using the analogy between  
and electrostatic field intensity E , it is assumed that quark mass 
lies on the real axis so that for fig.4.11, the quark mass is outside the 
strips. Using this analogy, when we make a Gaussian box of length 2mq

and some finite height, it contains some eigenvalues. According to 
case d(iii) of this section, <y\jr> = 0 , so that, chiral symmetry is
broken.

It can be seen that as we increase the chemical potential, the 
gap along the imaginary axis keeps on widening, while a gap also 
starts to appear along the real axis. The situation is unchanged until 
fig .4 .15 , where quark mass enters the strip.In this figure, the 
fermionic repulsion of zero modes is very prominent. The Gaussian  
box still contains eigenvalues and chiral symmetry is broken. In 
figs.4 .16 and 4.17 we can make Gaussian boxes free from eigenvalues 
but for f ig .4 .18 the signal is clear, the region around X=0  is 
completely free from eigenvalues and chiral symm etry is clearly

restored at p = 1 .0 .
The average plaquette is measure of the equilibrium state of
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the thermodynamic system{25}. Fig.4.19 gives a history of the chiral 
condensate and the Average plaquette, versus sweep number, where \x 
is altered after 5 or 10 sweeps. The system is in equilibrium since 
the Average plaquette is approximately constant and chiral symmetry 
is found to be restored at p = 1 .0 .

It is clear from the above discussion, that we can rely on the 
chiral symmetry signals given by the eigenvalue distribution of the 
fermion matrix.

To demonstrate the problem of the zero mass baryonic state 
mentioned earlier, we consider the chiral condensate as a function of 
the quark mass with the chemical potential, (3 and Nf fixed.

Fig.4.20 presents a history of explicitly calculated <\jnj/> and 
Average plaquette versus sweep number with a changing mq. This

figure is important in the sense that it is the first to indicate the 
problem. Later on, we shall confirm the result by the eigenvalue  
distribution graphs of the fermion matrix. The chemical potential, (3, 
and N f are fixed at the values, 0 .1 ,1.7 and 4 respectively. W e have

plotted <\j/\j/> at three different quark masses as shown in the figure. 
<\\f\\f> tends to vanish as the quark mass goes to zero,i.e., for all other 
parameters of the theory fixed,

<xj> vy> ____> o, as m —̂->0

This is a signal that p=0.1  will be sufficient to restore chiral
symmetry in the vanishing quark mass limit. In other words, an 
arbitrary p*=0 , may restore chiral symmetry in the zero mass quark 

l im it .
From above we know that the chiral character of the theory can 

also be signalled by the eigenvalue distributions of the fermion
matrix. Fig.4.21 to 4 .23, show the eigenvalue distribution for five 
superimposed configuration at quark mass [(1/2)m ] of 0.05, 0 .0125

and 0 .00625  with again fixed jj = 0.1, (3= 1.7 and N p  4, same as for

fig.4 .20 . In order to examine our results, we would like to discuss 
these figures individually. Again, we note that there is no eigenvalue  
delta function along the imaginary axis and the strips are symmetric 
around the imaginary axis.

As given above, fig.4.21 is a plot of the eigenvalues on a
complex plane at quark mass 0.1 in lattice units. The quark mass lies
outside the strip as schematically shown in the fig.4.21 a.
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Fig.4.21a

On making a Gaussian box of the length 2mq and some finite height,

some eigenvalues enter the box and chiral symmetry is broken, as 
discussed earlier. As the quark mass lies outside the strip, some  
eigenvalues are very close to the real axis.

In fig .4 .22 , quark mass 0 .0 2 5 0  lies inside the strip of 
eigenvalues. The fermion repulsion of the zero modes is clear near the 
location of the quark mass as schematically shown in fig.4.22a.

Fig.4.22 =

* * *

sf: jfc j}: jf: jz
— e*-----------
* *  •$. **  *

% %% %

4= * *

* * *

3̂ 4: jjcsf:
------------ e - —

* **  **
% :|c

* * *

Fig.4 .22a

One important thing to note is that the eigenvalues can approach the 
real axis between the positions of the quark mass.If we superimpose 
more and more configurations, the Gaussian box, according to case  
d(ii), may contain eigenvalues and chiral symmetry might still be 
broken. However, it should be noted that there are persistent gaps 
along the real and imaginary axis, whose growth will restore the 
chiral symmetry.

As schematically shown in fig.4 .23a, the quark mass mq has

moved further inside the strip towards the imaginary axis.



79

Fig.4 .23  s

* * * * 
* *

* ** * ★ ** *
* ★ * + * * * *

u
♦ * ¥¥

m
"V

¥ ¥ ¥ ¥
¥ ¥¥ ¥
¥ * * * 

¥ ¥
¥ ¥ ¥

¥ ¥
¥

Fig.4 .23a

W e can note that the gaps along the real and imaginary axis have 
grown. These gaps and the fermion repulsion of zero modes make the 
region near X=0, free from eigenvalues. We can make a Gaussian box 
containing no eigenvalues. The chiral symmetry is, presumably, 
restored according to eq.4.25.

Before discussing the zero mass quark limit, the following 
points should be noted:-

1)- The persistent gaps along the real and imaginary axis.
2)- The eigenvalue distributions do not seem to be changing 

very much other than possibly fermionic repulsions as mq decreases

and enters the strip; It looks insensitive to a decreasing quark mass.
In the situation where the quark mass goes to zero with all the 

parameters of the theory fixed at their values given above, due to the 
gaps mentioned above, a Gaussian box would contain no eigenvalue as 
shown in fig.4.24 and <\j/y> vanishes. It means that in the zero mass 
quark limit, chiral symmetry will be restored for any arbitrary  
chemical potential.

Im

Fig.4 .24 Re X
v.*.:

4.8V THE FERMIONIP, WEIGHT T r H 1 detH:



80

For this fermionic weight, <\|/\j/> is given by eq.4.16 and as 
mentioned earlier, it has a driving force which should have a weaker 
repulsion for smaller eigenvalues.

The first thing to note in this case is that, the analogy between 
chiral condensate and electrostatic field can no longer be utilized but 
at least we can check the weaker fermionic repulsion of the zero 
modes predicted in section 4.7.

Figs.4 .25  and 4 .26 present eigenvalue distributions for this 
weight at two quark masses 0.1 and 0.0125. The values of p, Nf and ji,

are fixed at the same values used for figs.4 .21 and 4.23, which are 
their counterpart for the first representation of chiral condensate  
given by eq.4.28.

It can be seen that as the mass enters the strip in fig.4.26, the 
fermionic repulsion of zero modes is weaker and eigenvalues come 
very close to the location of the mass.

Fig.4.27 gives a history of the chiral condensate versus sweep 
num ber for this fermionic weight at the two masses used for 
figs.4 .25  and 4.26. Chiral symmetry seems to be restored at the 
smaller quark mass limit.

T a b le l ,  summarizes the differences in the calculated values of 
the chiral condensate for both the weights but the correct equilibrium 
results should be same for each weight. The error quoted is 
statistical. Presumably many more sweeps are required to attain true 
equilibrium measurement. However the difference in weights is 
reflected via these results for weight trH '1|H| as compared to that of 
|H|.

TABLE

< 'F 'P >

( 1 / 2 )mq |H| trH |H|

0.05 0.169±0.033 0.234±0 .027

0.0125 0.049±0.018 -

0.00625 0.014±0.002 0 .0315 ± 0 .0 1 0
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FINITE DENSITY USING SLO

5.1) - FINITE DENSITY Q.C.D.:

From the last chapter, we are, now, aware of the problem of the 

production of a zero mass baryonic state and the consequent relation 

of p c to the pion mass instead of the nucleon mass. One of the main 

sources of error, was claimed to be the use of the quenched  

approximation and in the last chapter, we used the SU(2 ) gauge group 

for the full theory, to calculate <\j7 \|/> at finite density. W e found 

results similar to those obtained by the quenched approximation. In 

fact, this is not unexpected, as S U (2 ) does not differentiate between  

a pion and a nucleon. Moreover, as mentioned earlier, the fundamental 
representation of SU(2) is pseudo-real and consequently, the fermion 

determinant is real and positive. As we use a real and positive 

quantity as a weight for carrying out Monte Carlo simulations for 

generating statistically independent and important configurations , 
there is no problem as for as the SU(2 ) gauge group is concerned. The 

quenched theory approximates the fermion determ inant with a 

constant quantity and it may be one of the reasons that the full and 

quenched SU(2) theory results are similar. The SU (2) group is useful 
in the sense, that it makes computor simulations easy but in fact the 

true group for QCD is the SU(3). As mentioned above, S U (2 ) is 

pseudo-real but SU(3) is not and as a result the SU(3) fermion 

determinant with non-zero \i is complex and the approximation of a 

complex quantity to a positive and real one by the quenched theory is 

somewhat awkward. Hopefully by including SU(3) determinant (taking 

up the full theory) the transition at | ic= ( 1/ 2 )m 7r, will be smoothed out 
and only the true transition at (1 /3 )m P , will remain.

Fig.5.1 has been taken from referenced 9} and it shows how the 

argument of the complex determinant changes with }i for a fixed gauge 

field configuration.lt clearly shows that it is not legitimate to ignore 

the complex phase.
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An arbitrary element U of SU(3) can be generated from 

Gell-Mann's eight X matrices via the relation,

U(£ > e ,  e ) = exp(ie X ) (5.1)1 2  8 a a

where the e's are the parameters of the group.

5.2)- MONTE CARLO SIMULATION WITH DYNAMICAL FERMIONS:

5, 2 a) - _ DISCUSSION AND RESULTS:

As a l r eady  ment ioned,  the we ight  with which the  

configurations via computor simulations are generated should be a 

real and positive quantity. The weight generally used for generating 

SU(3) configurations is,

W(U) = ldetHle (5.2)

W e write the complex phase explicitly and for SU (3) we 

therefore calculate,

. <tr H’V ^<4,x j/>  = J-------------------------------- (5 3)
<e >

As the complex conjugate  conf igurat ion has simi lar  

contribution, we can replace the expressions for the numerator and 

denominator in eq.5.3 by their real parts but it will be wiser to 

calculate the imaginery parts also since, if the imaginery parts are 

becoming smaller, it indicates that the Monte Carlo is working. As 

discussed earlier the penality of ignoring the complex phase is then 

to get the results similar to the quenched theory or of SU(2) of the

previous chapter.
Eq.5 .3 can be written as ,
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Re <e‘*>  < D E N >

The expectation value of an observable can be written as,

Xmax

< X > = X  xi = J x P (x) dx (5-5)
1 Xnun

w here p(x) is normalised distribution function. Now if,
1)- p(x) is a symmetric function of x ( =» xmax= -xmjn) then ,

<x> = 0 ........... (5.6)

2)- p(x) is an nuvsymmetric function of x then,

< x > *  0 ............(5.7)

There are four possible cases for the behaviour of <\{aj/ > .

1)- < N U M > -/->  0, but <D E N > > 0,.
It means that the distribution function corresponding to the 

numerator is antisymmetric. If <D EN > is exactly zero, the fluctuations 

in the complex phase will be random. But if <DEN> is small, the phase 

can be calculated after a lot of computation. According to Gibbs {23} 

analysis in this region, the mass is inside the strip of the eigenvalues 

and chiral symmetry might be broken.

2)- <N U M >— >0, < D E N > - /->  0.
Hopefully the system is in the chirally symmetric phase. The 

norm alized distribution function corresponding to denom inator is 

assymmetric.
3 )- < N U M > -/—>0, < D E N > -^ -> 0 .

The norm alized distribution function correspo nding  to
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num erator and denominator are antisym m etric. The Monte Carlo  

procedure will be working very well {23}.Now if it is so that there is 

a strong correlation between the numerator and denominator so that 
effect of phase of the determinant is exactly cancelled then we shall
retain the quenched or SU(2) full theory results.

4)- < NUM >— >0, < DEN >— >0.
The expression eq .5 .4  is in (0 /0 ) indeterm inant form. L' 

Hospital’s rule might be applicable,i.e,

<NUM>  ̂ <NUM>/
>2h k  <DEN> <DEN>/

but there is no clear method for implementing this scheme.

RESULTS

In all cases,measurements were taken during 5 sweeps at each
value of p. Runs were first perfomed at ji=0.3, for mq=0.1 and p =
1.5(strong coupling). At this value of p the quark mass lies outside 

the strip of eigenvalues and a very clear signal is obtained for <NUM >  

and <DEN>, both *  0. The distribution function for cos<}> is asymmetric 

strongly towards 1 and is shown fig.5.2. A clear measurement of <\j7 \}/> 

can be made and it is ~ 200 in lattice units, unchanged from its value 

at p=0.
The region of interest is where mq enters the strip. W e present 

the initial results at finite density using the SU(3) gauge group on 44 

lattice, with p = 0 .5 , m q = 0.1 , (both in lattice units) and p =1.5.
W e first take the successive average of the numerator

and denominator. Measurements were taken after each hypercube was 

updated, i.e, 32 measurements per sweep on a 4 4 lattice. These  

measurements were found to be uncorrelated.
Fig.5.3 shows a plot of <trM ‘1> as a function of successive 

m easurem ents. It rapidly becomes essentially constant ~ 75 and
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corresponds to the quenched measurement.

Fig.5.4 and 5.5 show the history of the knaginary parts of <NUM>  

and <D EN >. Note the fluctuations in each plot when only a small 
number of measurem ents are included. This reflects the fact that 
there are large fluctuations between each measurement. The plots are 

consistent with the imaginary parts going to zero but indicate that 
more measurements are required before a true equilibrated value for 

the condensate can be obtained (if that is possible).
W e have plotted the real parts of <NUM > and <DEN> in figs.5.6 

and 5.7. Again it is clear that more measurements are required but 
these plots are still consistent with tending to zero as more 

m easurem ents are included, if so, the corresponding distribution 

functions should be symmetric. Note, the quark mass is in the strip of 
eigenvalues (Fig.5.17). We are facing the situation of case 4 described 

above.
In fig.5.8 we show the history of the condensate. W e expect 

<\j7\|/> ~200  in the broken phase, whereas the quenched theory gives 

~ 75 . Hence there is no clear signal of the inclusion of fermion loops 

modifying the situation found in the quenched analysis.
However, these results can be altered by changing the sampling 

criterion or order. It is more meaningful to exam ine the distribution 

functions for <NUM > and <DEN>. These are shown in figs.5.9 to 5.18.
Fig.5.9 is a plot of p (sin<j>), normalised to 1 with p= 0 .5 ,i.e,

J  p(sin <j)) d(sin $) =1 with

Im<DEN> = J  x p(x) dx (5.9)

It is clearly trying, within statistical errors, to be symmetric, as is 

lm <NUM > plotted in fig.5.10. These plots are encouraging in that we 

require these expectation values to vanish. This is contrary to the 

analysis of re f.[26] which found no convincing evidence for their 

vanishing.
However, study of the real parts of <NU M > and <D EN > as shown
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in figs. 5.11 and 5.12, aiso shows very sym m etric distribution  

functions. This, together with the earlier analysis described above, is 

consistent with <NUM> and <DEN> each becoming very small or zero.
W e have repeated the above analysis at p=0 .9  as shown in 

fig .5 .1 8  with similar results. In this case the quark mass is just 
leaving the strip of eigenvalues and entering the cavity. One would 

expect that the condensate vanishes, but again one is left in an 

indeterminate conclusion. We encounter the same problem at p=0.4 as 

shown in fig.5.17.
Increasing  p further to 1.0 leads to the results shown in 

fig .5 .13  to 5.16. Here we see that the Monte Carlo procedure has 

worked. The distribution functions for lm <NUM> and lm <DEN> shown in 

figs.5 .13 and 5.14 are symmetric whereas the for Re<D EN>, fig.5.15 is 

clearly  antisymmetric, <cos<J>> * 0 .  The distribution for R e<N U M > is 

symmetric and hence the condensate is zero.
The picture we obtain is as sketched in fig.5.19.

m=0.1
strong coupling.

Fig.5.19

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

There is a clear evidence that a phase transition in the chiral 
condensate does exist with 0.3 < pc < 1.0. This statem ent is stronger 

than that obtained in the quenched approximation in that there is the 

c le a r possibility that the spurious transition in the quenched  

calculation can be removed via the inclusion of fermion loops.
During these simulations we also measured the eigenvalues of 

the fermion matrix at the end of each multilap sweep. From these
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m easu rem en ts  we can m ake the fo llow ing c o n je c tu re . In 

measurements of the phase transition at finite tem perature and p=0  

we have the theorem of Gauss. As described in chapter4 , the phase 

transition corresponds to the eigenvalues near the ReX axis moving 

away. W e conjecture that a similar mechanism will signal the onset 
of the phase transition at non-zero density. For mq outside the strip, 
the eigenvalues are evenly distributed close to Re{X) =0. Note, in 

F ig .5 .20  which sum m arizes the eigenvalues for 5 configurations  

superimposed (which is really only valid in the quenched analysis) 
there is a slight decrease in density around the origin of elliptical 
shape within approximately -0 .2  < Re X <0.2 , 0 < Ima. < 2.2. As ji 
increases to 0.8 we reach the situation shown in fig. 5.21 where there 

has been a clear shift around the mass. W e conjecture that this 

signals that the phase transition is at pc = 0 .5 .
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CONCLUSIONS:

Like the hermitian Lahczos method, the non-hermitian method 
has been found to be exact and is successful for calculating the 
eigenvalues of the fermion matrix and for inverting it. Since, with the 
introduction of the chemical potential, the fermion matrix becomes 
n o n -h e rm itia n , the non-herm itian  Lanczos m ethod becom es  
essen tia l.lt has shown excellent convergence and accuracy for
calcu lations with small quark m asses. W e sim ulated the finite 
density by including a chem ical potential p on a 44 lattice by 
multiplying the gauge links in the positive imaginary time direction 
by e^ and links in the opposite direction by e“^. The results from the 
finite density calculations for lattice Q CD using the SU (2) gauge 
group, with the effect of internal fermion loops taken into account by 
calculating the fermion determ inant, are very sim ilar to those  
previously done with quenched Q CD (w hich ignores the internal 
ferm ion loops) for the SU (2) and S U (3) gauge groups. As the 
fundam ental representation of SU(2) is pseudoreal and the fermion 
determ inant is real, this behaviour was expected. W e confirmed our 
results from two representations of the chiral condensate for SU(2). 
For this group, indeed, the chiral symmetry is restored at half the 
pion mass and as the quark mass goes to zero, the critical chemical 
potential which restores the chiral symmetry also goes to zero. It 
m eans that, the critical chemical potential for restoring the chiral 
sym m etry at zero mass quark is, again, found to be half the pion 
fnass .H ow ever this is not a disaster for S U (2) which does not 
differentiate between the pion and baryons.

The inclusion of the internal fermion loops in the finite density 
calculations, using the SU(3) gauge group, causes the fermion 
determinant to be complex and we have a problem in simulating it via 
the Monte Carlo method. Since the complex conjugate configurations 
have a similar contribution, we can take only the real parts of the 
numerator and denominator in the expression of <\jh{/>. The effect of 
the complex phase of the determinant has been taken into account. The 
plots showing the behaviour of <\j/\j/> as a naive ratio of sums are not 
reliable as the results can be changed by altering the sampling 
criterion or order. W e have in terpreted our results using the 
normalized distributed function and have presented initial results. We 
used quark mass, mq=0.1, coupling constant, (3=1.5 for our analysis.

Short runs at |i= 0 .3 , show that the chiral condensate, <\j7\j/>, is 
non-zero, i.e., chiral symmetry is broken. W e analysed the chiral 
condensate, via the normalised distribution function, at p = 0.5  and
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inferred with the help of results at |i=0.4  and 0.9, that the form of the 

chiral condensate in this range is not well determined. At ji= 1 .0, <\|A |/>, 

is found to be zero and hence chiral symmetry is restored, which 
implies that the phase transition lies between p=0.3 and 1.0. Also we 

have obtained eigenvalue distributions at |i=0 .5  and 1.0. At p = 0 .5 , 
there is a slight decrease in density around the origin with an 
elliptical shape. At p=1.0 , there is a clear shift around the mass. 
Though, this analysis is valid only for zero chemical potential at 
fin ite tem perature we make a conjecture that a sim ilar kind of 
mechanism may signal a chiral phase and that the slight decrease in 
density at p=0.5, signals that pc= 0 .5 .
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