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SUMMARY

This thesis presents an experimental and theoretical study of the ultimate strength 

of shear wall— floor slab junctions reinforced for flexure and shear subjected to

monotonic and reversed cyclic loading.

The experiments were done on reinforced concrete models designed to represent 

the local stress state at the junctions. The floor slabs were approximately one

m eter square and 100 to 150 mm thick. The slab was cast monolithic with a short 

height of the wall. In all fifteen models were tested. Eleven models had a

rectangular shear wall, while the remaining four had a T— section shearwall. The 

main param eters investigated were:

a. Shear reinforcement

b. Ratio of (moment / shear) due to "wind

c. Length of the wall— slab junction

d. Ratio of Flange width of wall / Bay width of slab

e. Ratio of (moment / shear) due to gravity load

f. Strength and stiffness degradation due to cyclic loading.

A theoretical investigation was conducted using a specially developed three

dimensional nonlinear finite element programme. The twenty node isoparametric 

brick element was adopted. Nonlinear effects due to the yielding of steel, cracking 

and crushing of concrete were included. The current constitutive laws for cyclic 

loading behaviour of concrete was investigated.

Finally, in order to assist the designers, em pirical formulae have been developed to 

calculate the ultimate strength of junctions without shear reinforcement subjected to 

monotonic loading only. If the designer discovers that the joint is not capable of 

resisting the design loads, then it is suggested to use shear reinforcement according 

to BS 8110 in the slab in the form of closed vertical stirrup, where the shear 

stress exceeds allowable concrete shear stress.
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NO TA TIO NS

Symbols used in the text are defined where they appear. For convenience, a 

summary of those symbols is presented below chapterwise.

CHAPTER -  TWO

A C r o s s  s e c t i o n a l  a r e a  o f  t h e  wa l l

ACp Area  o f  c r i t i c a l  c r o s s  s e c t i o n  f o r  s h e a r

punch  i ng f a  i 1u r e

As Area  o f  s t e e l  r e i n f o r c e m e n t .

Aw C r o s s  s e c t i o n a l  a r e a  o f  v e r t i c a l  s t i r r u p .
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1

CHAPTER ONE 

INTRODUCTION

1.1 Shear Wall Structures

A popular form of high rise structure, especially for hotel and apartment use, 

is a slab— coupled shear wall structure. The reason for this is economy resulting 

from reduced floor heights and simplified formwork. From the constructional and 

architectural view points, it is relatively easy to make the final structure 

aesthetically pleasing.

Figure 1.1(a) shows a pictorial view of a shear wall structure and Figure

1.1(b) shows a typical (idealised) floor plan of an apartment building in which 

self— contained units are arranged side by side along the length of the building. 

This arrangem ent naturally results in parallel assemblies of division walls running 

perpendicular to the face of the building, with intersecting longitudinal walls along 

the corridor and facade. The cross— walls are employed not only as division walls 

but also as load bearing walls. The longitudinal corridor and facade walls are 

provided with openings for access to the living areas and balconies and for window 

framing. If they are also designed to be load bearing, these longitudinal walls act 

effectively as flanges for the primary cross— walls. In addition to its use as

structural partition walls, shear walls are used to enclose lift shafts and stair wells 

to form partially open box structures which act as strong points in the building. 

Thus, in practice, shear walls of various shapes such as planar, flanged or

box—shaped, may be coupled together in cross—wall structures (Figure 1.2).

1.2 Behaviour of Shearwall subjected to Lateral Load

In designing tall buildings, special considerations must be given to provide

sufficient stiffness in all directions against lateral loads. The lateral loads may 

arise due to wind, earthquake or perhaps even blast effect. When subjected to



( a )  P e r s p e c t i v e  v i ew  o f  a  s h e a r  w a l l  b u i l d i n g .

i i i 
i i l l

(b)  P l a n  o f  a  t y p i c a l  s h e a r  w a l l  b u i l d i n g .

F i g u r e  ( 1 . 1 )

I 1 1 T L L J  □  
i t  i i n  r u
F i g u r e  ( 1 . 2 )  : D i f f e r e n t  w a l l  c o n f i g u r a t i o n s .
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lateral forces, the shear wall is dominated by its flexural behaviour and shearing 

effects are insignificant. The shear walls resist the lateral loads on the structure by 

rigid frame action, with floor slabs acting as girders and shear walls acting as 

columns. Apart from stress considerations, attention has to be given to vibrations

and lateral sway of the building to ensure the comfort of the occupants.

1.3 Purpose of This Study

When a shear wall structure is subjected to gravity and lateral loads, 

substantial bending moment, twisting moment and shear force are transferred at the 

slab— wall junction. Previous work has been concerned with the study of slab— wall 

junction when only 'flexural' reinforcement has been used. To the author's

knowledge, no information is available on the strength of connection when shear 

reinforcement is used in addition to 'flexural' reinforcement. During an earthquake, 

the slab— wall junctions of a shear wall structure will be subjected to repeated 

reversals of loads. This may lead to a shear failure in the slab around the wall,

due to degradation of shear strength. There is a lack of information on the

behaviour and performance of slab— wall junctions under seismic loading conditions. 

The object of the work, reported in this thesis are:

a) Conduct an experimental and theoretical study of the influence of shear 

reinforcement on the strength of slab— wall junction. The basic aim is to develop a

general design procedure for the slab— coupled shear wall structures including check

for shear strength and design for shear steel using BS 8110 rule. 'Large scale' 

reinforced concrete models will be tested under monotonic loading to failure. A 

three dimensional non— linear finite element method is used for theoretical study.

b) Some cyclic load test on models to get more informations on the deformations 

that may safely occur and the deterioration of load— carrying capacity of wall— slab 

connections subjected to seismic type loading. Parallel theoretical work will be

conducted to investigate the relevance of the current constitutive laws for cyclic 

loading behaviour of concrete.
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CHAPTER TW O 

LITERATURE REVIEW 

2.1 G eneral

The structural analysis and design of a slab-coupled  shear wall system can be 

conveniently performed using the techniques developed for beam— coupled shear 

wall systems provided the effective width of the slab can be established. In a

coupled— wall system, the stresses are not uniform across the width of the slab. In 

order to design the slab safely, it is necessary to know the magnitude and 

distribution of the stresses developed through the coupling action. It is also essential 

to determ ine accurately the interactive forces developed at the slab— wall junction.

In this chapter, a brief critical review of previous experimental and analytical 

research work done in the following fields is given:

a) Analysis of shear wall structures to determine the stresses due to lateral loads

b) Effective stiffness of slabs coupling shear walls

c) Design of slab— wall junction using shear reinforcement

2.2 Analysis of Shear Wall

The analysis of uniform walls pierced with regular sets of similar openings i.e. 

coupled shear walls, has attracted several investigators. A simplified analysis has

been produced by assuming that the discrete system of connections, formed by

lintel beams or floor slabs as shown in Figure (2.1), may be replaced by an

equivalent continuous medium, as shown in Figure (2.2). By assuming that the 

axially rigid lintel beams have a point of contraflexure at mid—span, the behaviour 

of the system can be defined by a single second order differential equation. A

general closed form solution of the problem can be obtained.

Using the above simplified approach, Rosman(l) fjrst deriVed solutions for a 

wall with one or two symmetric bands of openings, with various conditions of



A1 A 2
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F i g u r e  ( 2 . 1 )  : A t y p i c a l  s h e a r  w a l l  w i t h  o p e n i n g s .

F i g u r e  ( 2 . 2 )  : S h e a r  w a l l  w i t h  i d e a l i z e d  c o n t i n u o u s  

c o n n e c t i o n  o f  l a m i n a e .
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support at the lower end (piers on rigid basement, on separate foundations, and on 

various forms of column supports). Deformations due to bending moment and

normal forces in the walls and flexural and shear deformations in the connecting 

beam were also taken into account. The axial force in the walls was chosen as 

the statically redundant function. So, if q is the shear force related to the unit 

length, the axial force in the wall is

x
q . d x  ( 2 . 1 )

0

where x is the abscissa, measured from the top of the wall as shown in Figure 

(2.2). Making use of certain simplifying assumptions, the governing differential

equation takes the form

d 2T / d x 2 -  a 2T =  -  yx  (2.2)

A direct mathematical solution of above equation can be obtained for any

loading case. Equations (2.3) and (2.4) show the general solutions of above 

differential equation for the case of concentrated lateral load at the top and 

uniformly distributed lateral load respectively.

T =  C 1 sinh ax — ( 7  / a 2) x (2.3)

T =  C , sinh ax — (2/3/a4)(cosh ax — 1) -+- (/3/a2) x 2 (2.4)

The co— efficients a , /3 and 7  depend on the load and the geometrical 

properties of the shear wall. Once the value of T is known, the shear force and 

bending moment in the connecting beams can be easily calculated using equilibrium 

considerations.

2.3 Effective W idth of Floor Slabs

The aforementioned theory in section (2.2) is concerned with shear walls

interconnected by beams only. The structural analysis and design of a slab— coupled
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shear wall system may readily be performed using existing techniques of beam - 

coupled shear wall structures, provided that the equivalent width of the slab which 

acts effectively as a wide coupling beam, or its corresponding structural stiffness, 

can be assessed.

The effective width of slabs coupling walls of different shapes was investigated 

theoretically by Tso and M ahm oud i) and Coull and Wong(^). T h e y ( 3 )  produced 

design curves suitable for use in an engineering office. The curves generally show 

the variation of the effective slab width or stiffness with different geometrical 

param eters. Typical nondimensional design curves for the effective width of slab 

between plane shear walls and T —section coupled walls, are shown in Figure (2.3).

2.4 Design of Slab— Wall Junction

The region of a slab in the vicinity of a support could fail in shear by 

developing a failure surface in the form of a truncated cone or pyramid. This type 

of failure, called a 'punching shear failure', is usually the source of collapse of 

flat slab and slab— coupled shear wall structures. Design of this region of slab is 

therefore of param ount importance. Comprehensive test data and reliable design 

criteria exist to estimate shear strength of slabs at interior slab— column junctions 

loaded by reasonably concentric loads. In contrast, limited experimental results are 

available regarding shear strength of slabs at exterior column junctions and shear 

wall junctions. Failures at slab to column connections in the 1964 Alaska, 1967 

Venezuela, 1971 San Fernando and 1985 Mexico earthquakes have shown the need 

for caution in the calculation of shear strength at slab to column connections under 

cyclic loading condition. In recent years, some form of shear reinforcement is used 

in the slab to increase the punching shear strength of the connection. But detailed 

design methods are not available for proportioning shear reinforcement around the 

slab— column connections where both shear and moment are transferred.

In the following, m ajor publications on the shear strength of slab— column



8

v/x
0-1

0 2
OS 0-3

04
05
06 
0 7 
0 0

06

0  4

0 2

0  4 0 6
UX

Figure ( 2 . 3 - a )  : Des ign curves  for  e f f e c t i v e  width  

o f  s l a b  (p lanar w a l l s ) .

z/y-o-75
1-0

OS

OS

04

02

02 0 4UX

Figure ( 2 . 3 - b )  : Design curves  for  e f f e c t i v e  s la b  width  

(Flanged w a l1) .



9

connection with or without shear reinforcement, transferring both shear and moment 

or shear only to columns will be critically reviewed. This will be followed by an 

examination of the work on shear wall — slab junction.

2.4.1 Strength of Slab— Column Connections with Shear

Reinforcem ent Transferring Shear only.

A large number of tests have been carried out on slabs with shear 

reinforcement subjected to shearing action only i.e. when the load is considered to 

be applied without eccentricity with respect to the critical section of the slab. 

These tests have led to several semiemperical design procedures. An extensive 

review of the available data concerning the shearing strength of slabs with shear 

reinforcement in the form of structural steel sections, bent up bars, stirrups,

prefabricated wire cages etc. was made by Hawkins(^). He concluded that for slabs

with properly detailed bent up bars or stirrups and transferring shear only, the 

shear capacity equals the lesser of the following strengths:

(a) the shear strength for a slab without shear reinforcement calculated on the 

basis of ACI Code 318—71 for a critical section located d/2 beyond the end 

of the stirrups or the bend in the bent— up bars, where d is the effective

depth of the slab

(b) half the shear capacity for a slab without shear reinforcement for a critical 

section at a distance d/2  from the column perimeter plus the vertical

component of the yield strength of the shear reinforcement intersected by a 

crack inclined at 45 degrees to the horizontal.

It was apparent from the observed behaviours of tested specimens that 

adequate anchorage for the shear reinforcement is essential to obtain sufficient 

ductility. Shear reinforcement, where needed, must extend to a distance of at least

1.5 d from the column perim eter. Bars must be bent down within a distance 0.5 d 

of the column at an angle not less than 30^ to the horizontal. The maximum
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spacing between vertical stirrups should be 0.5  d.

2 .4 .2  Shear Strength of Slabs with Moments Transferred to columns.

The state of knowledge about the strength of co lum n- slab connections 

transferring moments, that increase monotonically to failure, has been summarized 

by ACI— ASCE Committee 426(5). Available methods for predicting the ultimate 

strength of such connections can be divided into four groups :

(1) Analysis based on a linear variation in shear stress,

(2) Analysis based on thin plate theory

(3) Beam analogies, and

(4) Finite Element based procedures

For comparison, a summary of the essential features of the four methods is 

presented here. Much less research has been done on defining the stiffness of 

connections transferring moment than on defining their strength. Available 

information is limited to either elastic definitions of stiffness or the beam type 

model developed by Hawkins(^).

2.4.2.1 Linear Variation in Shear Stress Methods

The ACI Code 318 and Commentary (2) specify the use of a linear variation 

in shear stress approach for predicting the limiting shear capacity of connections 

transferring shear and moment. This procedure was first proposed as a working 

stress method by Di Stasio and Van Buren(^) in 1960. Figure (2.4) shows the 

model proposed by them. They divided the resisting mechanism of the connection 

into two parts. As shown in Figure (2.4—b), one part was an uniform shear field 

that resisted the shear force. The other part was a linear shear field, Figure 

(2.4—c), which resisted the torsion part of the applied bending moment. This 

approach was subsequently utilised by Moe(^), and Hanson and Hanson (^®) whose 

procedure was first incorporated into the ACI Building Code in 1963 and carried 

over essentially unchanged into ACI Codes 318—71, 318—77 and 318—83.
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For an interior slab—to—column connection, as shown in Figure (2.4—a), it is 

assumed in this approach that around the column periphery, at some distance from 

it, there exists a pseudo-critical section. ACI Code specifies this critical perimeter 

at a distance d/2  from the column periphery, where d is the effective depth of the 

slab. The resultant forces acting on this perim eter is due to the axial force and 

bending moment in column. The axial force, V, is transmitted to the column by 

uniform shear along the perim eter as shown in Figure (2.4—b). The resultant

moment , M, in column is transferred partly by bending of slab (normal frame

action) and partly by linear shear stress distribution (torsion) at the perimeter as 

shown in Figure (2.4—c). Therefore, the maximum shear stress according to Figure 

(2.4—d) will be

VAB =  vshear vtorsion

=  V / A c p  +  K . M  C a b / J  ( 2 . 5 )

where A^p =  area of the critical perimeter

J  =  a property of the critical perim eter analogous to the polar moment

of inertia.

K.M =  is the fraction of the total moment, M, transferred by torsion, and

Ca b  =  *s distance from the centre of rotation to the section AB.

ACI Code 318—83 specifies that the fraction , K, of the total moment M, 

transferred by shear across the critical perimeter is given by

1
K -  1 - ---------------------------------------------------- ( 2 . 6 )

1 + 2 /3  y<C, + d ) / ( c 2 + d)

where C , ,  C 2 =  dimensions of the column as shown in Figure 2.4.

The remaining fraction of unbalanced moment (1—K).M must be transferred

by reinforcement within lines 1.5h, where h is the slab thickness on either side of 

the column. For ACI Code 318—83 the maximum value of shear stress is limited 

to vc =  0 .17 (1+ 2 / ^ 5) Tfcu N /m m 2 (2.7)
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but not greater than 0.33 A ^ u N / mm 2. R^s is the ratio of long side to short side 

of a rectangular column and fcu is the cube crushing strength of concrete.

The moment— shear interaction relationship predicted by the ACI Code 

procedure is shown in Figure (2.5) for an interior column connection. Ordinate, 

V/VG, are ratios of the direct shear transferred to the column to the capacity of 

the section for shear transfer only. Abscissa, K.M/MQ, are ratios of the moment 

transferred by shear to the same capacity for moment transfer only. VQ and MQ 

are calculated from equations (2 .8) :

Line ab on Figure (2.5) represents the condition for which the maximum shear 

stress is limited to vc . Diagrams on Figure (2.5) indicate idealized shear stress 

distributions for different points along line ab. Line cd represents the possible

limitation imposed by the flexural reinforcement which must transfer the moment

(1 -  K).M.

The geometric properties of the connection and the concrete strength are the 

factors dictating the position of the line ab. The amount of reinforcement within

lines 1 .5h either side of the column affects only the position of line cd. Test 

results (5) indicate a behaviour not far from that idealization. Hawkins et. e l.(6) 

have shown that measured ultimate shear strengths of the specimens, when

converted to the shear stress lie along curve such as amn,  for a 21 N/mm 2 (3000 

psi) concrete. That curve lies progressively further outside the envelope acd as the

reinforcement ratio within lines 1.5h either side of the column increases above

0.8% . The reverse is true as ratios decrease below 0.8%.

Regan(H) proposed a simple modified linear shear stress approach which was

incorporated in the British Code CP 11 oO 2) ancj carried over with slight

modification into BS 8110^^). The British Code BS 8110 specifies the critical

V0  ~  vc*Acp 

Mo “  Vc-J /C AB

(2 .8-  a)

(2 .8 -  b)
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section at a distance 1.5d from the column perimeter and it has square corners

whether the column is square or circular. The treatment of moment transfer

accounted in this code is also different from that in ACI Code. The bending

moment is assumed to be carried entirely by uneven shear along the critical

perim eter. In the presence of unbalanced moment, M, the effective shear stress at

the critical perim eter of internal column connection is taken as:

1 .5  M
v e f f  "  <V/Ac p ) ( 1 + ------------  ) ( 2 . 9 )

V X,

where X, is the length of the side of perimeter considered parallel to the axis of 

bending. According to Figure (2.4) X, is equal to (C 2-+-3d). The maximum value 

of shear stress for British Code BS 8110 is limited to

vc =  0 .27(fcu) i/3 (iooA s/bd)l/3 (400/d)1/4 / y m (2.10)

where values of (lOOAs/bd) are calculated for widths equal to those of the column

plus 1 .5d of slab to either side of it. Further 0.15 ^ (lOOAs/bd) ^ 3.0 and (400/d)

^ 1 and <ym is the partial factor of safety. For the purpose of making comparisons 

between the shear strengths predicted by Codes of practice, equations (2.5) and 

(2.9) can be written in the form of design equations as follows:

^ •ACp . d
Vd,ACI "  v c .Acp /  [ 1 + M/Vd ( -------------------- ) ] ( 2 . 11 )

J

1 . 5  d
v d,BS “  v c .A /  [ 1 + M/Vd ( ---------- ) ] ( 2 . 12 )

where permissible maximum shear stress, vc , is given by equation (2.7) for ACI 

Code and by equation (2.10) for British Code. Although the design equations look 

different from one another, the shear strength predictions is not widely different as 

is evident from Figures (2.15) to (2.28). The maximum variation from one another
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is within 15%. The effect of various parameters e.g. C , / C 2 ratio (i.e. ratio of side 

lengths of column) , C/d ratio (i.e. ratio of side length of column to the effective 

depth of slab), M/Vd ratio , compressive strength of concrete, percentage of 

flexural steel etc. on ultimate shear strength predicted by above design equations

will be discussed in details in section 2.4.4.

2 .4.2.2 Thin Plate Methods

Methods of analysis based on elastic thin plate theory have been proposed by 

Mast et alO ^.lS ) w hile such approaches assume linear behaviour, they allow also 

consideration of the effects of dimensions and boundary conditions for the plate as 

well as different aspect ratio for the column. The loading and boundary conditions

of the flat plate used by Mast is shown in Figure (2.6). Shear and moment

distribution predicted for the above plate at a section 0.05 L, where L is the span, 

are compared in Figure (2.7) with the distributions appropriate for equation (2.5). 

Mast's distribution both transverse and parallel to the direction of the applied 

moment, are markedly non— linear. One can see that the flexural moments Mx are 

much higher as calculated from equation (2.5) than given by thin plate method and 

the contribution of the torsional moments MyX is underestimated by the straight- 

line shear distribution hypothesis (where the combined effect of qy and M ^  is only 

shown in Figure 2.7—a).

Mast found that in contrast, to the assumptions made in the ACI Code 

318—71 formulation, the relative participation of the torsional, flexural and shear 

stresses to moment transfer varied with the shape and size of the column and the 

dimensions and boundary conditions for the plate. He also found that the stresses 

computed by his theory and the values predicted by equation (2.5) was in good 

agreement for columns in which the C 2 face, transverse to the direction of the 

applied moment, was wider than the C , face, parallel to the direction of 

moment. The stresses were in poor agreement for columns in which the C 1 face 

was wider than C 2.
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Long (16,17) developed an elastic—partially plastic method of analysis. They 

idealized the problem as an a x i-  symmetric s lab - column specimen spanning 

between lines of contraflexure and having a column radius equal to 0.6  times the 

side length of a square column. Radial and tangential moments for moment transfer 

were obtained by superposing solutions for shear loading only and moment loading 

only. Account was taken of the changes in moment caused by cracking around the 

column perim eter. Stresses computed from these moments were limited to 

appropriate ultimate values. There were three governing criteria. First, the stress in 

the compression zone adjacent to the column could reach the strength of the 

concrete in biaxial compression prior to yielding of the reinforcement. Second, 

shear effects could cause the octahedral stress on an inclined plane passing through 

the slab— column junction to reach the limiting stress predicted by an octahedral 

stress criterion for f a i lu r e ^ ) .  This limiting stress could be reached prior to or 

after the radial moment reached its yield value. Third, the strength could be 

governed by failure of the concrete in biaxial compression after both the radial and 

tangential moments reached their yield values. Correction factors were applied for 

support conditions and dowel effects. Their procedure gave good predictions of the 

strengths measured by M oe(l^) and poorer agreement with the strengths measured 

by Hanson and H anson(H ). He attributed the lack of agreement in the later case 

to differences in boundary conditions for the test specimens and the analytical 

model.

In his study, Y a m a z a k i ( ^ )  used an incremental procedure to extend finite 

element plate bending analysis into the inelastic range. He concluded that capacities 

of slab— column connections transferring moment could not be determined by 

extrapolating results predicted by elastic finite element analysis. Because, in the 

inelastic range, there is considerable redistribution of moments and shears between 

the column faces as the stiffness of each face changes with loading. He found that 

the ACI 318—71 procedure provides a realistic measure of shear stresses on the 

front column face but underestimates shear stress on the side column face. He also
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found significant influences on ultimate capacity of the twisting moment and of 

bond slip of the reinforcing bars passing through the column.

The nature of the punching failure in slabs does not require the flexural 

capacity of the slabs to be exhausted. In other words, complete redistribution of 

stresses in the slab in the post— elastic stage may not occur prior to punching. This 

means that adopting the elastic theory to estimate punching failure load may not 

be unreasonable.

2.4.2.3 Beam Analogy

In ACI Code, it is assumed that moment is transferred to a column by a 

combination of flexure and torsion and shear stresses at the column interface. The 

ACI method ignores the influence of slab reinforcements at the side faces but 

compensates for this by making the width of the slab effective for moment 

transfer, ( C ^ S h ) ,  greater than that for shear transfer, ( C ^ d ) .  Kanoh(20), for 

example, showed in his tests that the moment which can be transferred by torsion, 

when converted into a torsional shear stress by the full plastic formula, equals 

about 9.8 N /m m 2 (1400 psi). This means that the ultimate torsional shear stress of 

slabs tested in that m anner is much larger than that specified by ACI 318—71 

Code for beams which ranges from 2 to 5 N /m m 2 (280 to 700 psi). The main 

difference between the ACI Code method and beam analogies exists in the 

treatm ent of torsional effects at the side faces of column. Many investigators have 

proposed beam type analogies to predict the strength of connections transferring 

moments. The accuracy of such procedures is improved as the number of test 

results is increased. In general, it has been found that beam analogies give better 

agreement with test data than the ACI Code method. Further, beam analogies 

predict that for all conditions, the capacity of a connection can be increased up to 

a certain point, by increasing the reinforcement ratio in the region of the 

connection. Such an approach is very useful to a designer who might otherwise be 

forced to alter the geometry of his structure.
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The analogy proposed by H a w k in s^ )  for interior column connection is shown 

in Figure (2.8). The slab is assumed to be attached to the column through front 

and back flexural beams F , and F 2 and side face torsional beams T 1 and T 2. 

Each beam is presumed capable of developing at its junction with the column the 

ultimate bending moment, torque and shear forces and the combinations of these 

quantities predicted by the ACI Code. The ultimate strength combinations of the 

model are based on a limiting value of 0.67,/f^, in N /m m 2 for the maximum

torsional stress that can be applied without shear and the limiting value of 0.83,/F^, 

in N / mm 2 for the maximum shear stress that can be provided without torsion. In 

the analysis of a given slab— column connection using the strength equations, it is 

assumed that some redistribution of actions between critical faces can occur. For

the case of an interior slab— column connection transferring unbalanced bending 

moment in one direction, the suggested beam analogy^*) results in the eight

possible limiting strength combinations shown in Figure (2.9—a). These various 

combinations arise because of the possibility that the deformations at failure are 

insufficient to permit the simultaneous development of the ultimate capacities of all 

beam sections. Two possible modes of failures were considered. The first 

"moment— torsion" involves failure on all four column faces. This mode places a 

limit on the moment transferred to the column rather than limiting the shear. The 

ultimate torsional strength is reached on side faces AC and BD at the same time 

the flexural strength is reached on faces AB and CD (cases 1, 2 and 3). The

second mode, referred to as 'shear— torsion' requires failure on three faces only. 

This mode dominates when the shear transferred is significant. For moderate values 

of shear the ultimate torsional strength is reached on the side faces and the 

ultimate shear strength on face AB (cases 4 , 5 and 6). For high shears the 

ultimate shear strength is also reached on the face CD (cases 7 and 8). For an 

edge connection transferring unbalanced bending moment in one direction, the 

number of possible limiting strength combinations is two, as shown in Figure 

( 2 .9 - b). For a corner connection transferring unbalanced bending moment in two
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directions, the number of possible limiting strength combinations is three, as shown 

in Figure ( 2 .9 - c). For the limiting combinations shown in Figures (2.9) the arrows 

indicate development of the limiting capacity in bending, shear or combined shear 

and torsion. W here moments or shears are not indicated on a given face, their 

values are taken as those required for static equilibrium of the applied forces on 

the connection.

The eight possible limiting strength combinations shown in Figure (2.9— a) for 

interior connections makes the application of that procedure relatively difficult 

because of the large number of failure cases to be considered. A simpler beam 

analogy has been developed by Park and Islam (^). They, in fact, assumed that,

case 6 of Figure (2.9— a) is the critical limiting case. That assumption provides a 

lower bound to the moment capacity and presumes considerable ductility in

bending, torsion and shear. In the case of connections with shear reinforcement it 

was shown by Hawkins^*) that if the total shear strength is assumed to be made 

from concrete and shear steel, then the contribution from concrete is only half its 

theoretically calculated strength. Park and Islam(22) also allowed 50% reduction in

accordance with the previous findings in the concrete shear resisting mechanism to 

the strength of slab— column connections with shear reinforcement. The unbalanced 

moment strengths calculated by this simplified beam analogy have been shown to

be 33% conservative when compared with test resu lts(^ ). Better agreement (5% 

conservatism) was reported when 50% reduction in the concrete shear resisting 

mechanism was ignored.

2.4.2.4 Finite Elem ent Based Procedures

The strength of slab-colum n connections can be more accurately assessed by 

finite element procedure. A two dimensional plate bending layered finite element 

computer program was used by M em on(^) to analyse elongated edge column— slab 

connection. The predicted ultimate loads were in general higher than the 

experimental load. Later, E lnounu(^) developed a three dimensional finite element
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method for nonlinear stress analysis of reinforced concrete structures. The computer 

programme was used to predict the ultimate loads of rectangular and flanged shear 

wall— floor slab connections with or without shear reinforcement. The results 

showed good agreement with the experimental values. The detailed description of 

the finite element method will be given in chapter four.

2.4.2.5 Summary

From the sub— sections of 2.4.2, it appears that extensive work has been 

done to study the transfer of moments and shears from flat slabs to columns. 

Basically, three methods to estimate the strength of the slab— column connections 

were used, viz. theory of linear variation in shear stress, elastic theory of plates, 

and beam analogies. Although em pirical, the first method (ie., theory of linear 

variation in shear stress) was of wider acceptability for practical design purposes. 

This is reflected in the recommendations of the current codes of practice. Although 

the other two methods were implemented by some investigators, they lead to rather 

difficult design equations. Due to the development of the high— speed digital 

computers, finite element method is also used in the analysis/design of 

slab— column connections.

2.4.3 Design of Flat Slabs for Punching Shear Using 

Shear Reinforcement

When the punching resistance of a given connection is inadequate, the design 

can be improved in the following ways :

(1) By increasing the concrete strength.

The codes of practice assume that punching resistance is equal to the nth 

root of concrete strength. BS 8110, ACI and CEB assume that n =  1/3, 1/2 and 

2/3 respectively. Further BS 8110 limits fcu > 40 N / mm 2. Figures (2.24) to (2.27) 

show the effect of variation of concrete strength on punching shear resistance.
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(2) By increasing the quantity o f  flexural reinforcement

Flexural reinforcement influence punching resistance in so many ways. An 

increase of flexural steel increases the depth of the compression zone and thus the

area of uncracked concrete available to support shear. It reduces the widths of

cracks, thus improving the transfer of forces by aggregate interlock, and also 

provides an increased dowel action. Viewed in terms of a failure mechanism

involving a vertical displacement at an inclined fracture surface, an increase of 

reinforcement enhances the restraint available in the plane of the slab.

(3) By increasing the e f f ect i ve  size o f  the column . either by enlarging the whole 

column or by adding a capital.

(4) By increasing the thickness o f  the slab, either throughout the panels in

question or locally by the introduction of a drop panel.

(5) By providing shear reinforcement.

In many circumstances, the use of shear reinforcement is the most attractive 

solution. If shear reinforcement is placed in the slab, apart from flexural failure, 

the following modes of failure shown in Figure (2.10) are possible :

(a) Punching on a surface crossed by shear reinforcement.

(b) Punching outside the reinforced zone.

(c) Punching between the innermost reinforcement and the column faces.

(d) Wide— beam shear failure.

Numerous tests have been carried out to evaluate the punching shear strength 

of slabs where the moment transfer is zero. In recent years, a significant amount 

of test data has also become available for the case where both shear and moment 

are transferred. Shear reinforcement in the form of stirrups, bent— up bars, shear 

combs or structural shearhead etc., has been used in the slab to avoid punching 

shear failure and to increase the ductility of the connection. Several theories have 

been put forward to predict the strengths observed in these tests.
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Islam and P a r k ( 2 5 »2 6 )  conducted tests on eight h a lf-  scale models of 

reinforced concrete interior flat plate square column specimens under combined 

gravity and seismic type loading. Shear reinforcement and slow cyclic loading were 

considered in some of the models. The test specimens were designed to assess the 

effect of various types of shear reinforcement on the strength and ductility of

slab— column connections in the presence of shear and unbalanced moment. They 

reported that slab— column connections without any shear reinforcement had little 

ductility, and failure occured suddenly by diagonal tension cracking and splitting on 

the top of the slab along the bars on the critical side of the column. The use of 

closed stirrups resulted in a more ductile behaviour at large deflections when bent 

up bars or structural steel shearheads(2^) were used as shear reinforcement. The

success of the closed stirrups in producing a relatively ductile connection can be 

attributed not only to the stirrups providing torsional and flexural shear resistance

at large deformations, but also to the stirrups holding the top and bottom slab

reinforcement together in the vicinity of the column. This holding action prevented 

the top slab bars from splitting off the cover concrete, and prevented the slab 

from moving down the column on the critical side. They c o n c l u d e d ^ 2 ^ )  that the 

ACI 318—71 approach for strength of slab column connections without shear 

reinforcement is safe but in some cases it is extremely conservative, and that a 

better indication of the strength may be obtained from the beam analogy^22)

proposed by them.

Rangan and HalK22*2^) carried out tests on four half scale models of edge 

panels of a flat plate floor. In a recent paper(2^), with the aid of a physical

model, Rangan explained the behaviour of the slab and the punching shear failure 

mechanism. A punching shear failure is initiated either by the failure of the slab 

at the side face of the critical section in combined torsion and shear or by the

failure of the slab at the front face (and the back face if any) in shear (cases 4 

to 8 in Figure ( 2 .9 - a). Based on the observations obtained from tests, Rangan 

derived expressions for the calculation of punching shear strength of reinforced
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concrete slabs in the presence of an unbalanced bending moment. The expressions 

cover flat plate floors with or without edge beams as well as slabs with or without 

shear reinforcement. The following recommendations were made by him(29) for the 

design of slabs without edge beams against punching shear failure. The equations 

suggested by him are arranged in the form of design equations.

a. W here unbalanced moment, M, transferred to the column centre is zero (see 

Figure 2.4), the design shear strength is taken as

Vd=  0.7 vc Acp (2.13)

where vc is defined in equation (2 .7) and

A^p is the area of critical perimeter at a distance d/2  from 

the column face.

b. Where there are no beams at the side faces of the column parallel to the

direction of M and where M is less than or equal to M0, given by equation 

(2.15), the moment transfer is considered to be adequate. The design shear

strength in this case shall be taken as

u
Vd -  0 .7  v c A /  [ 1 + M/Vd (--------- )]  ( 2 . 14 )

8 b x

M0 -  8 d ( b i / u  ) ( 0 . 7  vc Acp -  V ) ( 2 . 15 )

where V =  shear force transferred to the column centre

u =  length of critical shear perimeter,

=  2(Cj +  C2+ 2d) (See Figure 2.4)

bj =  width of critical perimeter measured parallel to the direction of M.

=  ( q  +  d)

c. When M is greater than M0 , the moment transfer is considered to be large 

and the slab width equal to b j , shall be provided with shear reinforcement.

d. Where shear reinforcements are required, they recommended closed ties as

shear reinforcement and the spacing, s, of closed ties shall not exceed the
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lesser of h and 300 mm, where h is the thickness of the slab.

The punching shear strength predicted by the above design equations were 

compared with 88 available test results of slabs containing corner, edge and interior 

columns. The average ratio of test strength to calculated strength was 1.60, with a 

coefficient of variation of 25 percent. The design equations appear to be rather 

o v e r-  conservative. The reasons put forward by him(2^) for the conservative

predictions are some factors such as, average ratio of tensile reinforcement provided 

in the slab, depth of slab, boundary restraint and size of the column etc. which

have not been taken into consideration in the design equation (2.14)

After testing 40 concrete slabs containing corner, edge and interior columns

with the object of investigating the interaction of shear and unbalanced moment at

the slab— column connection, Regan(30) proposed an approach to calculate the 

punching shear stresses referred to a realistic failure surface. Although emperical, 

the proposed treatm ent of punching differs from that of current codes of practice 

in that the area of concrete by which the punching force is divided to give a 

nominal stress is approximately that of the true failure surface and not the product 

of the slab depth and a notional 'critical perim eter'. Figure (2.11) illustrates the 

surfaces considered and gives expressions for the surface area, ACp, in common 

circumstances.

At an internal slab— column connection subjected to eccentric loading, the 

punching strength in a dense concrete slab without shear reinforcement in the form 

of design equation is(^O) ;

1 .5  d
vd -  v c Acn /  I 1 + M/ Vd < , I ( 2 . 1 6 )

/ t S l + l d )  (C2+2d)
where,

vc =  0.13 Ksc (fcu ) 1/3 (100As/bd)1/3 (300/d)1/4 (2.17)

Ksc =  1.15 (4x x Column area) / (Column perimeter)2
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He considered the eccentricity of load (M/V) in both x and y directions in 

equation (2.16). At edge and corner columns, the design ultimate punching 

resistance was approximated by the following equations:

1 .5  d
^ d , e d g e  v c ^c p  /  C 1-25  + M/Vd ( -------------- ) ]  ( 2 . 18 )

(C + 2d)

^ d , c o r n e r  “  ^ . 8  v c ^c p  ( 2 . 19 )

where the appropriate ACp values are as indicated by Figure (2.11), and values of

(lOOAs/bd) are calculated for widths equal to those of the columns plus 2.5d of

slab at each face, e and C refer to the load eccentricity and column width parallel 

to the slab edge.

Figure (2.12) shows a comparison between calculated punching strength and

relevent test data from his w o r k ( ^ O )  and other published results for internal

slab—column connections under concentric load. It can be seen from Figure (2.12) 

that the expression proposed for concentric loading is practically a lower bound to 

the test results. Figure (2.13) presents a comparison between equation (2.16) and 

test results from the CIRIA work and other published results for slabs with overall 

depths in the range 75 to 175 mm. The agreement between the predicted punching 

strength and experimental failure load is fairly good.

A relatively new form of shear reinforcement, known as "shear combs", is

used to increase the punching resistance of reinforced concrete slabs. The 

commonest sort of comb is a unit of reinforcement comprising a number of 

vertical studs anchored at one end by enlarged heads and at the other by welded 

connections to a common 'rail' or steel plate. The units are arranged around a

column, frequently in a radial pattern.

The first use of individual bar shear reinforcement with end anchorage was 

reported by G h a li(^ ) who made tests on slab—column connections with the slabs

strengthened by prestressed bolts. This was followed by further w o r k ( 3 2 , 3 3 )  usjng
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short off— cuts of steel I— sections as shear reinforcement. In the paper(33) they 

concluded that for the test specimens with a reinforcement ratio of 1.0  percent or 

more, this special shear reinforcement increased significantly both the strength and 

ductility of the connection. Most of the shear elements had yielded extensively thus 

demonstrating efficient anchorage. Using stud as shear reinforcement for flat 

concrete plates, as shown in Figure (2.14), M okhtar(34) found that a smaller 

amount of flexural and shear reinforcement is required than using closed stirrups as 

shear reinforcement. This is because for efficient anchorage, the stirrups must 

enclose the flexural reinforcement and the concrete cover specified by the codes 

must be measured above the stirrups and not the flexural steel. With shear studs, 

the top of the anchor plates can be located at the same level as the top of the 

uppermost flexural reinforcement and the cover is measured from that level. The 

other advantages of the studs are:

i) they are easy to install, even in thin slabs,

ii) they do not interfere with flexural reinforcement,

The test s e r i e s ^ 4 )  confirm the previous r e s u l t s ( 3 2 , 3 3 )  that the use of shear 

stud reinforcement greatly increases the ultimate strength and the ductility of the 

slab— column connections. R e g a n ( ^ 5 )  in a paper reviewed all the information 

available on shear combs and the criteria for their design in the context of current 

knowledge of punching and proposed a method of design using shear combs to 

prevent punching failure of slabs.

Hawkins et aK3^,37) reported results and analysis of tests to failure conducted 

on more than 80 full— scale slab— column subassemblages simulating conditions 

associated with the transfer of moments between flat plates and interior, edge and 

corner columns. Several parameters were considered in the experiments, viz. slab 

thickness, concrete strength, concrete type, integral beam stirrup reinforcement, 

flexural reinforcement pattern and ratio of reinforcement, column rectangularity and 

the ratio of moment transferred to the column to the shear. It was found(^7) that
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with adequate amounts of properly distributed and proportioned shear reinforcement 

e lasto - plastic behaviour can be obtained. Test results also showed that shear

reinforcement increases the cracked section stiffness. They developed an ultimate 

strength procedure for interior and exterior column— slab connections based on 

beam analogy. The slab framing into each column face was idealized as beams 

running in two directions at right angles. The ultimate capacity of the connection 

was obtained by summing the ultimate bending moment, torsional moment and 

shear forces of the beams, as discussed in section 2.4.2.3. It was c o n c l u d e d ^ )  

that the ACI Code 318— 77 provisions for determining the strength of slab to

interior column connections transferring moment are reasonable for design. The 

strength predictions are conservative when the value of the reinforcement ratio, p, 

within lines 1.5 slab thickness on either side of the column exceeds 0.8% . That 

conservatism increases as p value increases and the warning of impending failure 

decreases. They added that the provision may be non— conservative for p value less 

than 0 .8% , but the flexural capacity of the reinforcement in the column region 

then controls and significant deformations occur before any punching failure.

2.4.4 Comparative Study of Different Design Equations

Punching shear failure is a subject on which there is no consensus on a 

theoretical level and there are rather wide divergencies between different empirical 

treatments. Code recommendations are also em pirical and expressed in terms of 

purely nominal shear stresses. Codes differ in the definitions of critical perimeters, 

and in the expressions used to define the limiting value of the shear stress, vc. In 

this section, the variation in the prediction of ultimate shear strength by different

design equations, varying one parameter in those design equations and keeping all

other constant, will be studied (see table 2.1 for details). Four design equations, 

(2 .11), (2 .12), (2.14) and (2.16) have been considered in this comparative study. 

The materials safety factor was assumed to be unity in the design equations. Limits 

on the ranges of parameters covered by the Code formulae have been ignored, but
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this has litlle effect on the comparisons.

From Figure (2.15) it is clear that M/Vd ratio, varying from 1.0 to 4.0 , has 

no effect on the ultimate shear strength. The variation in ultimate shear strength 

by different design equations is due to other parameters which are assumed a 

certain constant value in this study. The maximum variation is within 15%.

An increase in C/d ratio (the ratio of the side length of the column to the 

effective depth of the slab) results in an increase in punching shear strength, as 

shown in Figures (2.16) to (2.19). The rate of increase in shear strength due to 

increase in C/d ratio is highest in ACI Code equation (2.11), but the predicted 

strength is not always greater than the strength predicted by British Code. However 

as d increases the strength prediction by ACI becomes greater than that predicted 

by BS 8110. The shear strength predicted by design equations (2.14) and (2.16) are 

roughly similar over the range of C/d variation.

The curves predicted by the design equations and showing the effect of Cj / C2 

ratio (the ratio of the side lengths of the column) on the ultimate punching shear 

strength are presented in Figures (2.20) to (2.23). Generally the predicted shear 

strength by ACI and Rangan are similar. Regan generally predicts much lower 

values than others.

Figures (2.24) to (2.27) show the effect of compressive strength of concrete 

on punching shear strength for different effective depth of slab. ACI and Rangan 

predict the same strength, whereas strengths predicted by equations BS 8110 and 

Regan differ by a constant amount. British Code predicts around 15% higher 

strength than ACI for smaller depth of slab, but it predicts slightly lower strength 

than ACI for higher 'd ' values and concrete strength greater than 45 N/mm^.

Figure (2.28) shows the effect of percentage of steel, p , on punching shear 

strength. Percentage of steel has no effect on ACI Code equation (2.11) and 

equation (2.14) proposed by Rangan. British Code predicts lower strength than ACI
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TABLE (2 .n

F i gures Main parameters Other parameters
stud ied kept constant

2 .15 M /  Vd
p -  1 .0  ; f cu -  40 N/mm̂  
C^/C2  -  1 .25  ; d -  250 mm 
C2/ d  -  1.25

2.16  
t o 

2.19

C2 /d  r a t io  
for d -  100, 150, 
200 and 250 mm

p -  1 .0  ; f cu -  40 N/mm̂  
M/Vd -  1 .0  ; OL/C2 -  1 .0

2 .20
to

2.23

Ci/C2  rat i 0  

for d -  100, 150,  
200 and 250 mm

p -  1 .0  ; f cu -  40 N/mm̂  
M/Vd -  1 .0  ; C2/d  -  1 .0

2 . 24 
t o 

2.27

r1 cu
for d = 100, 150,  
200 and 250 mm

p = 1 .0  ; C 1 / C 2 =  1.25  
M/Vd = 1 . 0 ;  C2/d  = 1 . 2 5

2.28 P
f cu -  40 N/mm̂  ; d -  200 mm 
M/Vd -  1 .0  ; C2/ d  = 1 . 2 5  
c l / c 2 “ 1-0

500
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FIGURE (2. 15) ,  CURVES SHOVING THE EFFECT OF H/VD RATIO ON THE PUNCHING SHEAR 

STRENGTH ,FCU=40N/mm2 ,  C2/D=>1. 2 5 , C i /C 2 -1 . 2 5 , D=200MM, ROV=1. 0

d =  200mm
BS 8110 

ACI, Rangan 

Regan

_ l 2 _

M

- e  ACI 318  (Eq. 2 .1 1 )

♦ ...............«■ BS 8110 (Eq. 2 .1 2 )

m -------------a  RANGAN (Eq. 2 .1 4 )
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i> ACI
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for p less than 0.8% and higher strength for p greater than 0.8% . This limit may 

vary for different column shapes, concrete strength and effective depth of slab. The 

values predicted by equations (2.16) and (2.12) proposed by Regan and British 

Code again differ by a constant amount with Regan predicting lower values. 

Equation (2.16) predicts approximately 12% lower strength than equation (2.12) for 

different percentage of steel.

2.4.5 Code Rules For Shear Reinforcement

The Code provisions for evaluating shear strength of slabs with moments 

transferred to the columns was discussed in section 2.4.2. In the following 

sub— sections code rules for the use of shear reinforcement in the slab around the 

connection will be discussed.

2.4.5.1 British Code : BS 8110

No shear reinforcement is required when the shear stress v is less than vc,

calculated by equation (2.10). When v exceeds vc , shear reinforcement should be

provided in slabs over 200 mm deep to increase the shear resistance in accordance 

with the following equation :

(v  -  v c ) u d
Z Aw s i no ^    (2 .2 0 )

f yw

where u =  critical shear perimeter, 2(C\ + C2+  6d),

fyw =  characteristic strength of shear reinforcement 

Aw =  area of two legs of the link

a  = angle between the shear reinforcement and the plane of the slab

In equation (2.20), (v — vc) should not be taken less than 0.4 N/mm^. The 

shear reinforcement should be distributed evenly around the zone on at least two 

perimeters. The spacing around the perimeter should not exceed 1.5d. In assessing 

the reinforcement required, shear reinforcement within the zone provided to 

reinforce other zones may be taken into account.
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The zone immediately adjacent to the column (i.e ., the zone whose inner

perim eter touches the column and whose outer perimeter is 1 .5d from the column)

is checked first. If this zone does not require reinforcement then no further checks 

are required. If shear reinforcement is required, then successive zones are checked

as shown in Figure (2.29), until a zone is reached which does not require

reinforcement.

The maximum shear for which a slab— column connection may be designed is 

limited by the requirement that the nominal shear stress, v, should not exceed a 

design value equal to 0.8 or 5 N/mm^, whichever is less.

2.4.5.2 American Code : ACI 318—77 and 318—83

In ACI Codes 318—77 and 318—83, sec. 11.12.1.4, it is specified that 

maximum shear stress due to factored shear forces and moments shall not exceed 

vc , where vc is defined in equation (2.7) and be not greater than 0.337fcu. For 

slabs with shear reinforcement, the shear stress, v , on any column face must not 

exceed the larger of the values given by equations (2.7) and (2.21).

fc fy w
-  +  ------------1—  ( 2 . 2 1 )

u s

In other words, the amount of shear reinforcement needed to increase the shear 

resistance against punching type of failure is

Aw (vn vc / 2 )  u
    ( 2 . 2 2 )
S f y w

where AwfyW =  yield strength of stirrups crossing a potential inclined crack 

extending at 45 degrees from the compressive surface of the slab 

and a perimeter located d/2 closer to the loaded area than the 

critical section under consideration.

u =  perimeter of critical section under consideration

=  2 (C ]+ C 2+ 2d), according to Figure (2.4)
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zones .  A t y p i c a l  f a i l u r e  zone (zone 3) i s  shown shaded together  with the

not iona l  f a i l u r e  a s s o c i a t e d  with  the zone.

Figure ( 2 .2 9 )  : Punching shear zones according to BS 8110.
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s =  spacings of stirups in direction perpendicular to perimeter of 

critical section

2.4.6 Strength of Slab— Column Connections Under Reversed 

Cyclic Loading.

Tsuboi and K a w a g u c h i(3 8 )  studied experimentally the behaviour of flat slabs 

under repeated monotonic loadings. Their 1000mm square and 300mm thick slabs 

contained centrally located 200mm. square column stubs. Monotonically increasing 

and reverse cyclic loadings were applied through the column stub while two 

opposite slab edges were supported and the other two edges left free. Three of the 

nine specimens were made of plain mortar and the other six slabs had varied 

distribution of reinforcement, the total amount of which was same in all the six 

specimens. They found that(38) the distribution of longitudinal reinforcement 

affected the punching shear resistance around the column and repeated load 

reduced the punching shear resistance. The concept of effective width was found to 

be useful for the practical design of flat slabs and from test results they obtained 

the effective width to be equal to 0.58 to 0.61 of the side dimension of the square 

slabs in the elastic state.

None of their specimens contained any form of shear reinforcement. They did 

not propose any theoretical procedure for calculating the ultimate strength of 

slab— column connections.

Four of the eight specimens, tested by Islam and Park(^5), were subjected to 

several cycles of bending moment reversals. The loading cycle used for specimens 

is shown in Figures (2.30) and (2.31). This loading sequence was not intended to 

simulate any particular earthquake but it was rather regulated by the edge 

displacements to generate elastic and post—elastic loading history. Edge 

displacements imposed on the specimens with shear reinforcement were considerably 

larger than those used for the specimen without shear reinforcement. Static cyclic 

loading was used by them(25) because of the convenience of applying that type of
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loading. The use of slow reversals of load to represent dynamic loading was 

thought to be conservative because the strength of concrete and steel increases with 

increasing rates of strain due to work— hardening. It was found that the load

carrying capacity with cyclic loading deteriorated by about 5 0 %  at final cycle but

that was accompanied by very large cyclic deformations. The series of tests showed 

that flat— plate column junctions reinforced with shearheads and closed stirrups as 

shear reinforcement behave in a satisfactory manner as earthquake resistant

connections.

Hawkins et. a l ( 3 9 , 4 0 )  conducted tests on ten full scale models. Specimen

dimensions were chosen so as to permit a realistic examination of the behaviour of 

slab— column connections under constant dead load coupled with reversed cyclic 

lateral loads. Five out of ten specimens contained integral beam stirrup

reinforcement. The main variables in Reference ( 4 0 )  were the amount and

distribution of the flexural reinforcement and the size, spacing, detailing and length 

of the closed stirrup reinforcement. From the test results of specimens containing 

shear r e i n f o r c e m e n t ^ ^ )  ancj compared with the results of tests on similar specimens 

without shear reinforcem ent^^), the following beneficial effects of providing 

properly designed and detailed integral beam stirrup reinforcement are reported :

(a) an increase in the ductility of the connection at ultimate load,

(b) an increase in the energy absorption of the connection,

(c) an increase in the strength particularly for low reinforcement ratios, and

(d) a change in the hysteretic behaviour of connections with low reinforcement

ratios from a shear to a moment type of energy dissipation mechanism,

In order for the stirrups to be fully effective, they suggested that the stirrups 

must be detailed such that

(i) they are closed hoops with a longitudinal reinforcing bar in each corner,

(ii) they are anchored by 45® standard bends around one or more longitudinal

bars, and
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(iii) they extend far enough out from the column face into each column strip so 

that the wide beam shear force Vn on the shear periphery shown in Figure (2.32) 

does not result in a shear stress Vn/bd exceeding 0.537?^ where f'c is expressed

in N / m m ^  and that perimeter does not approach closer than 1.5h to the column

perim eter, where h is the overall thickness of the slab. For reversed cyclic loading 

they(40) concluded that both the ACI procedure and the Beam analogy are slightly 

nonconservative for evaluating the ultimate strength of connections for low 

reinforcement ratios (reinforcement ratios less than about 0.8% ).

2.4.7 Analytical Model for Cyclic loading Behaviour

of Slab— Column Connections

The seismic analysis of reinforced concrete structures requires a realistic 

conceptual model which recognizes the continually varying stiffness and 

energy—absorbing characteristics of the structures. To set up an analytical model in 

a form appropriate for seismic analysis, the hysteresis loops must be defined for 

cyclic force— displacement relationships. The variations which occur in the

relationship with load level and history must be considered in detail. Since there 

are many possible alternatives at each point in the loading history, it is not 

convenient to provide a continuous description of the moment— rotation curve.

Therefore, a series of rules were first proposed by Takeda et. aK^l) for 

constructing the moment curvature curve for load reversals.

The rules given for loading and unloading for different conditions are shown

in Figure (2.33). The Takeda model has a bilinear envelope which allows for only 

one stiffness value prior to yield. Further, the Takeda model assumes equal yield 

moments and stiffness for positive and negative moments. The Takeda model was 

later modified by Akiyama and H a w k i n s ( ^ )  so that the envelope could recognize

both uncracked and cracked stiffness prior to yielding, as well as different yield 

moments and cracked section stiffness for positive and negative moments. The

Takeda results were developed for beam sections. The modified unloading —
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reloading rules of the Takeda model was used to predict cyclic loading results of 

s lab-co lum n connections. The details of the cyclic loading rules can be found in 

References (6) and (41).

The seismic response characteristics of slab— column connections^) was 

predicted by a tw o-dim ensional beam analogy model, using the modified 

unloading— reloading rules of the Takeda model. The model was calibrated through 

comparisons with the experimental results for nine interior column— slab 

subassemblages tested at the University of Washington. Average ratio of the 

predicted moment transfer capacity to the test results is shown in Table (2.2). 

Predictions are very good for the series without shear reinforcement and 

comparatively good for the series with shear reinforcement. The stiffness predicted 

for test specimens were compared with the test results as characterized by the 

relation between the slab's edge deformation and the applied lateral load. The 

stiffness prediction was in comparatively good agreement with test results.

2.4.8 Shear and Moment Transfer From Slabs to Shear Walls

Schwaighofer and C o llin s (4 2 )  reported one adhoc test on a pair of one— third 

scale reinforced concrete shearwalls coupled by a slab. The layout of the model is 

shown in Figure (2.34). It represents three pairs of planar coupled shearwalls. 

Lateral loading was simulated by applying relative displacements in the longitudinal 

direction of the walls by means of six hydraulic jacks as shown in Figure (2.35). 

From the observations and results obtained from the test, th ey (^ ) recommended 

that the shear force transferred from wall to wall by the coupling slab at punching

shear failure of the slab may be assumed to act uniformly over a specified critical

section. Thus, the ultimate shear force Vu, Figure (2.36—a) is given by assuming a 

uniform ultimate shear stress of 0.33,/Fc N/mm^ acting over the U— shaped critical 

section at d/2 from the faces of the wall so that the three faces of the U are of

approximately the same length, where d is the effective depth of the slab. The

assumed critical section is shown in Figure (2.36—b). The design equation for
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TABLE 2.2

No. o f  
t e s t s

Type o f  
s la b -c o lu m n  
c o n n e c t io n

S h e a r  
re  i n fo rc e m e n t 

u sed

p r e d i c t e d  moment t r a n s f e r  
c a p a c i t y /  Te s t  r e s u l t s

mean s t a n d a r d  
d e v i a t  i on

7 I n t e r i o r No 1 . 0 0 0 .07

8 I n t e r i o r Yes 1 . 12 0 .07

2 E x t e r i o r :  moment 

p a r a l l e l  t o  t he  edge

No 0 . 9 9 0. 06

3 E x t e r i o r :  moment 

p a r a l l e l  t o  t h e  edge

Yes 1 . 07 0 . 05

3 E x t e r i o r :  moment 

normal  t o  t h e  edge

No 1 . 00 0 . 09

5 E x t e r i o r :  moment 

normal  t o  t h e  edge

Yes 1 . 0 3 0 . 07

3 c o r n e r No 0 . 99 0 . 07

2 c o r n e r Yes 0 . 91 0 . 00
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ultimate shear force is given by

Vu =  (o.33 Tfcu) (3(tw-+- d)d} (2.23)

where tw is the thickness of the wall. Based on these assumptions, their calculated 

failure load was about 80% of the experimental one. The flexural strength of the 

coupling slab was suggested to be predicted by using a slab width equals to the

corridor opening plus the wall thickness because beyond that, insignificant values of
£

strains in the rinforcement were recorded. No shear reinforcement was used in the
A.

test specimen.

In a recent study, M e m o n ( 2 3 )  conducted tests on fourteen 'large scale' models 

of reinforced concrete plane shearwall— slab junction and E lnounu(^) tested 

sixteen 'large scale' models of flanged shearwall—slab junction. None of t h e i r ( 2 3 , 2 4 )  

models contained any form of shear reinforcement. The model represents part of a 

floor plan (the shaded area in Figure ( 2 . 3 7 ) ) .  Since they were interested in the 

local behaviour of the slab— wall junction, the exact boundary conditions of the 

real structure were disregarded in the models adopted in their study. The wall 

which extended above and below the slab level was clamped to the floor of the 

laboratory in a manner which will be described later in this thesis. Both gravity 

(super imposed) loads and lateral (wind) loads were considered. The lateral loads 

were simulated by a prescribed uniform displacement along the transverse edge of 

the slab. The final failure in the case of all the models was brittle.

Observing the location of failure surface of the models, critical perimeter 

shown in Figure (2.38) was suggested. Adopting the ACI 318—77 approach of 

allowable shear strength in concrete (i.e ., vc =  0.33,/f^c) the estimated failure load 

was 25% conservative as compared with the experimental one. Comparing his 

experimental results with other approaches, Memon showed that Coull and 

W o n g (4 3 ) * s elastic analysis based approach yields underestimation of the strength 

while Schwaighofer and Collins' a p p r o a c h ( ^ 2 )  is unconservative in some cases. A 

two dimensional plate bending layered finite element computer programme was used
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for theoretical analysis. The predicted ultimate loads were in general 36% higher

than the experimental load. Later, a 3— D nonlinear finite element programme

specially written for the purposed4) was used to carryout the theoretical studies.

The results^44) showed good agreement (average Vcai/Vexp =  1.04, S.D =  0.13)

with the experimental values.

Only T— section shear walls with flanges along the corridor were considered by 

E ln o u n u (^ 4 ) .  The major parameters included were : wall flange width, bay width 

ratio, gravity load/lateral load ratio, web length of wall and flexural reinforcement 

ratio. The final failure in the case of all the models except those which failed in 

flexure was brittle. Nonlinear three dimensional stress analysis, using the finite 

element method as described in chapter four was used for theoretical investigation. 

The twenty node isoparametric brick element was employed. The nonlinear response 

caused by concrete cracking, nonlinear triaxial stress— strain relations, and the 

yielding of steel reinforcement was investigated. In general good agreement was 

obtained between the experimental and theoretical values for deflections and strains. 

It was shown(23) that the theoretical analysis by nonlinear finite element method is 

capable of predicting to good accuracy the ultimate loads and the general behaviour 

of the shearwall— floor slab junction.

Finally, based on the results of the study, a critical section as shown in

Figure (2.39) was suggested. The properties of the critical section were clearly

defined. Adopting the ACI 318—83 approach of allowable shear strength in 

concrete (i.e ., vc=  0.337f^c) the estimated failure load was 6% conservative as

compared with the experimental one. No partial safety factors were incorporated in

the failure load calculation and he concluded that the proposed method can be 

used safely with the relevant safety factors.

2.5 General Discussion

A wide range of experimental and theoretical investigations have been
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conducted on flat plate structures. When flat plates have been tested to

destruction^), it has been found that shear conditions at the s la b -to -c o lu m n

connection, rather than flexural conditions, have generally controlled the system's 

ultimate strength. Further, tests of flat slab structures have shown that unless shear

reinforcement is provided at a slab— column connection the combination of

excessive unbalanced moments and high shear forces invariably cause punching 

failure. Incorporating shear reinforcement in a slab—column connection substantially 

improves the connection's ductility and eliminates punching failure. It has been 

found that only integral beam stirrup reinforcement ensured satisfactory performance 

for reversed cyclic loading.

The analysis of the coupled shear wall type structures has also been

thoroughly investigated. In slab— coupled shear walls, it was shown that both the 

gravity load and wind load have to be finally transmitted to the walls at the

wall—slab junction. The junction is therefore very heavily stressed and is a critical 

region as far as punching failure is concerned. Codes of practice have dealt with

such a problem for slab— exterior column connections. The validity of such 

information for the case of walls is questionable for the reason that the wall has a 

much greater width than the column, thus it is capable of resisting much greater 

torsional and shear stresses.

Experimental as well as theoretical work have been reported on slab— wall 

junctions for shear walls with and without flanges. The results of prior

investigations demonstrate that it is difficult to avoid brittle failure in the slab 

without using any form of shear reinforcement in the slab. To the best of the 

author's knowledge, no experimental and theoretical work have been done on 

slab— wall junctions for shear walls using shear reinforcement in the slab. In 

addition, very little is known about the seismic resistance of shear wall to slab 

junction, which needs to be examined in respect of ductility available at the 

junctions and loss in load— carrying capacity due to reversal of applied loadings. It 

is for this reason that the present work reported in this thesis was undertaken.
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CHAPTER THREE 

DESIGN O F REINFORCED CONCRETE SLABS

3.1 Introduction

There are a number of possible approaches to the analysis and design of 

reinforced concrete slab systems. The various approaches available are elastic 

theory, limit analysis theory and modifications to them. Such methods can be used 

to analyze a given slab system to determine either the stresses in the slabs and the 

supporting system or the load— carrying capacity. The methods can also be used to 

determine the distribution of moments and shears to allow the reinforcing steel and 

concrete sections to be designed. The philosophy behind different approaches is to 

find a suitable slab design method such that,

(a) the slabs can sustain all loads and deformations liable to occur during 

construction, with an appropriate degree of safety,

(b) they can perform their intended functions adequately, in service, and

(c) they can possess an appropriate factor of safety against failure.

3.2 Theory of Elasticity in Slab Design

Classical elastic theory of analysis applies to slabs which are sufficiently thin

for shear deformations to be insignificant and sufficiently thick for in— plane forces

to be unimportant. The distribution of moments and shears found by elastic theory 

is such that :

(1) The equilibrium conditions are satisfied at every point in the slab.

(2) The boundary conditions are complied with, and

(3) Stress is proportional to strain; that is, bending moments are proportional to

curvature.

The governing equation is a fourth— order partial differential equation in terms
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of the deflection of the slab at general point (x,y) on the slab, the loading on the 

slab, and the flexural rigidities of the slab section. The solution of the equation 

gives the distributions of bending and torsional moments and shear forces 

throughout the slab.

3.3 Theory of Plasticity in Slab Design

This theory recognizes that because of plasticity, redistribution of moments and 

shears away from the elastic distribution can occur before the ultimate load is 

reached. Any solution to the ultimate load has to satisfy the following conditions of 

classical plasticity which assumes unlimited ductility :

1 — The Equilibrium Condition : The internal stresses must be in equilibrium with

the externally applied loads

2 — The Yield Condition : The yield criteria defining the strength of the slab

sections must nowhere be exceeded.

3 — The Mechanism Condition : Under the ultimate load, sufficient plastic regions

must exist to transform the structure into a mechanism.

If conditions (1) and (2) are satisfied we get a lower—bound solution. While 

on the other hand, if condition (3) is used in conjunction with virtual work, then 

we get an upper— bound solution.

3.4 The Yield Criterion

The yield condition defines the combination of stresses necessary to cause 

plastic flow at a point. Consider the slab element shown in Figure (3.1) under the 

moment field Mx, My and MXy. The sign convention adopted here is such that all 

moments acting on the element are positive as shown in the Figure. The following 

simplifying assumptions are made in order to derive the yield criterion in terms of 

three moment components :

1. The concrete is assumed to have a zero tensile strength.
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2. Bar diameters are small in comparison with slab depth, and that they can

carry stresses only in their original direction. Accordingly, kinking of bars 

across a yield line is not considered.

3. The slab element is lightly reinforced, so that compression failure are not

permissible and only ductile failures are allowed. This is necessary for moment 

redistribution, so that the slab elements can reach their ultimate strength at

sufficient number of sections, to convert the slab into a mechanism.

4. Membrane forces do not exist. It is acknowledged that the co— existance of

such forces with flexural fields on the slab elements, will considerably effect

the resisting moment of the slab element — depending on whether they are 

compressive or tensile and the restrained existing at the boundary of the slab.

For simplicity, the reinforcement in the element is assumed to lie parallel to

the element sides as shown in Figure (3.2). The element may be reinforced on the

top and bottom surfaces.

The basic idea is that, if at any point in the slab element (Figure 3.2), a

line with a normal n and direction t is examined, then the normal moment Mn

must not exceed the value M*n , where M*n is the moment of resistance that the

reinforcement in the slab could develope in direction n. This is therefore a normal 

moment criterion.

Taking the normal to the yield line at an angle 0 to the x—axis and

considering the equilibrium of the element shown in Figure (3.3), we shall have

Mn — Mx c o s 2 0 + My s i n 2 0 -  MXy s in20 (3 .1)

Mt = Mx s i n 2 0 + My c o s 2 0 - MXy s in20 (3 .2)

Mnt -  1/2 (Mx -  My) s in20 + Mxy c o s 2 0 (3 .3)

The normal moment Mn should be compared with the resisting moment M n. This

resisting moment at the yield line can be expressed assuming that both x and y

steel is at yield, as follows :
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y

Figure ( 3 . 1 )  : A ty p ic a l  s la b  under moment f i e l d .

Mxy

M,

Figure ( 3 . 2 )  : A ty p ic a l  s l a b  element with  orthogonal  

re in forcem ent .
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Figure ( 3 . 3 )  : Equil ibr ium o f  a s la b  element under appl ied  

moment f i e l d .
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M n =  M x cosz 6 +  M y sin^fl (3.4)

where M*x =  moment of resistance in x— direction.

M y =  moment of resistance in y— direction.

The value of M*n must always be greater than Mn , hence

(M*n -  Mn) =  0 (3.5)

Substituting (3.1) and (3.4) in (3.5) we have

(M*x — Mx)cos^(? •+■ (M*y — My)sin^0 •+■ MXySin20 =  0 (3.6)

dividing by cos^0

(M*x — Mx) •+• (M*y — My) tan^fl -+- 2 MXy ta n 0 =  0 (3.7)

At the yield line, the left hand side of equation (3.7) will be minimum. 

Differentiating with respect to tan0, we have

2(M*y -  My) ta n 0 -+- 2 Mxy = 0 (3.8)

then

tan 0 =  -  Mxy/(M *y -  My) (3.9)

Substituting ta n 0 in equation (3.7) and rearranging

(M*x -  Mx) (M*y -  My) =  M2xy (3.10)

This equation is the yield criterion for orthotropically reinforced concrete slabs. 

This is often called Wood— Armer(45,46) yjgj^ criterion.

3.5 Direct Design Method

Progress in Computer aided design (CAD) methods demand the development 

of design procedures well backed by experimental evidence and amenable to

automatic design with the minimum intervention by the designer. The currently

adopted code rule based design procedures are not sufficiently general. On the 

other hand procedures based on Yield— line analysis or Hillerborg's Strip method, 

which although general procedures for the design of slabs, are not sufficiently CAD 

oriented. With the widespread availability of finite element programmes, it is 

possible to design slabs at ultimate load using elastic stress fields in conjunction 

with the Wood—Armer yield criteria for slabs (equation 3.10). This method called
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'direct design m ethod' was suggested by Wood(45) and extended by Armer(46) and 

later applied and tested by Hago(47) and Laila(4 7 _ a ). The steps involved are as 

follows:

i) the elastic distribution of moments at ultimate load is determined by the finite

element method.

ii) Using the moment triad (M x,My,MXy) thus obtained, the design moments are

calculated so as to satisfy the yield criterion of equation (3.10 ).

iii) Flexural steel area is then calculated to resist the corresponding ultimate 

design moments M*x and M*y.

The method satisfies the fundamental requirements of equilibrium, yield and 

mechanism conditions at ultimate collapse as dictated by classical plasticity theory as 

follows :

3.5.1 The Equilibrium Condition

To satisfy this condition, the elastic stresses must be in equilibrium with 

external loads. Since the distribution of stresses in this method is found using finite 

element method which is derived from equilibrium equations, this condition is 

automatically satisfied. Owing to its simplicity and versatility, the method can be 

applied to any type of slab problem with any edge condition.

3.5.2 The Yield Condition

Having got Mx , My , MXy we have to derive M*x and M*y so as not to 

violate the yield condition as given by equation (3.10). This can be done as 

follows

i )  i f  M*y -  0 th e n  M*x = Mx - M2xy/My

i i )  i f  M*x = 0 th e n  M*y = My -  M2xy/Mx

i i i )  i f  M*x and M*y not eq u a l to  z e ro ;

we need  to  f in d  minimum o f  (M*X + M*y) = f
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From e q u a t io n  (3 .1 0 )  : M*y -  M2xy/(M *x -  Mx ) + My

f  "  [M*x + (M2 xy /(M %  -  Mx ) )  + My ] ( 3 .1 1 - a )

For minimum o r  maximum o f  1 f 1 ; d ( f ) /d M * x — 0 

i . e .  , 1 -  M2 xy/ ( (M*x -  Mx ) 2 -  0

o r  (M*x -  Mx ) -  ± | Mxy | ( 3 .1 1 -b )

For minimum o f  ' f ' ; 3 2 f / d 2M*x -  + ve

o r  M2 Xy / ( M*x -  Mx ) 3 > 0; o r  (M*x -  Mx ) > 0 

T ak ing  p o s i t i v e  s ig n  from  e q u a t io n  ( 3 .1 1 - b ) ,  we have 

M x  “  Mx “  I M x y  I

M*x -  Mx + I Mxy I ( 3 .1 1 - c )

From e q u a t io n  ( 3 .1 0 ) ,

M*y -  My + I Mxy I (3 .1 2 )

For p o s i t i v e  moment f i e l d s ;

M * x  “  0 w h e n  M x  - - - - - -  I M x y  I

M*y -  0 when My -------  | Mxy |

b o th  M*x and  M*y -  0 when Mx . My — M2xy

3.5.3 Rules for Placing Orthogonal Reinforcement

3.5.3.1 Bottom Steel

(a )  Compute th e  norm al d e s ig n  moments

M* «= 11 X Mx + 1 Mxy | (3 .13)

M* =y My + 1 Mxy | (3 .14)

i f  M*x < 0 th e n

M* -y My - (M2 xy/Mx ) w ith  M*x -  0 (3 .15)

i f  M*y < 0 th e n

IIX
*

Mx - (M2 xy/My ) w ith  M*y = 0 (3 .16)

still in (3.15) and (3.16) one gets a negative sign, then put such normal

moment equal to zero, i.e., no reinforcement is required.

(c) If both M*x and M*y are negative, then no bottom steel is required.
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3.S.3.2 Too Steel

(a) Compute the normal moments

M*x “ Mx - 1 Mxy | (3 .1 7 )

M*y “ My " 1 Mxy | (3 .1 8 )

i f  m* x > 0 th e n

M* -n y My - (M2xy/Mx ) w ith  M*x -  0 (3 .1 9 )

i f  M*y > 0 t hen

M*x “ Mx " (M2xy/ My) w ith  M*y -  0 (3 .2 0 )

still in (3.19) and (3.20) one gets a positive sign, then put such normal

moment equal to zero, i.e ., no reinforcement is required.

(c) If both M*x and M*y are positive, then no top steel is required.

Figures (3.4) to (3.6) give a detailed picture of these rules. For general use, 

the diagrams are sketched in a nondimensional form. The designer, after 

establishing the point (M x/| MXy |, My/| MXy j) on the diagram, can easily know 

which equation to use to get the required design normal moments. Bottom steel 

equations are given in Figure (3.4), while those for top steel in Figure (3.5). 

Figure (3.6) shows the two branches of the yield hyperbola and indicates the 

directions of the steel to be provided at any point. (Primed moments refer to top 

steel).

A two dimensional finite element computer programme based on this direct 

design approach was used to calculate the flexural reinforcement needed in the 

slab. The flow chart is shown in Figure (3.7).

3.5.4 The Mechanism Condition

Becuse the necessary resistance is made equal to the calculated stress at every 

point in the slab, it is anticipated that all slab parts will attain their ultimate 

strength under the design load. Accordingly with minimum amount of redistribution, 

every point will yield at the design load, thus converting the slab into a
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F ig u re

F ig u re  (3 .

" M y /K y l

Mx/|Mxyl

M*x = 0
M*x = Mx ~  M2xy/My

M j, = 0 M v = 0

Mx. My — M2xy

( 3 .4 )  : D es ig n  e q u a t io n s  f o r  b o tto m  s t e e l .

M V -  Mx  -  ^  x y /My

i* i __

M*y -  My -  M2xv/M,

) : D esig n  e q u a tio n s  f o r  to p  s t e e l .
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Figure ( 3 . 6 )  : Reinforcement required for a given  

moment t r ia d .
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mechanism. Be^Lise of the fact that minimum redistribution is needed to achieve 

collapse by this method, the demand for ductility which depends on the difference 

between the first and last yield in the structure as normally emphasized by the

theory of plasticity will obviously drop.

3.6 Design of Slabs in Experim ental Models

3.6.1 General

It has been mentioned earlier that one of the aims of the present work is to 

study the strength of wall— slab connection using shear reinforcement in the slab. 

The slab flexural and shear reinforcement are believed to be a major parameter

affecting the strength of the connection. Therefore, a rational method for the 

design of slab reinforcement of experimental models is presented here.

3.6.2 Analysis of tall buildings

Before going into the detailed design aspects , it may be useful to analyse 

some tall buildings to study the effect of different geometrical dimensions on the 

maximum value of vertical shear force applied on the coupling slabs due to lateral

loads (termed here as Maximum wind shear). A typical plan of such building is

shown in Figure (3.8).

It was assumed that the building were to be erected in Glasgow area with 

maximum basic wind speed of 51 meter per second (according to the 

recommendations of CP3(^8) ). From this speed, the equivalent static wind loading 

is calculated. Assuming the wind pressure to be constant with height, the maximum 

wind shear Vw, induced in most highly stressed slab was calculated by the 

continuous connection method making use of the recommendations of Coull and 

Wong(3) for the effective slab width (see Figures (2.3— a) and (2.3— b)). A slab 

thickness of 230 mm, and a floor to floor height of 3m were adopted to analyse 

all the structures as 25 storeys high buildings with rectangular shear wall. The



Figure ( 3 . 8 )  : F loor-p lan  o f  a t y p ic a l  shear wall

s t  r u c tu r e .
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other dimensions of the structures e.g. w all- web length, bay width, corridor width 

etc. were varied, one at a time and keeping others constant to study the effect of 

each param eter on the maximum "wind" shear value. Figure (3.9) shows that the
ii . e

corresponding maximum wind shear per unit bay width increases with the increase 

of bay width (Y); while the effect of wall—web length (W) is inversely proportional 

to the maximum wind shear as shown in Figure (3.10). Figures (3.11) and (3.12) 

show the effect of corridor opening width (L) and flange width (Z) on the 

maximum wind shear per unit bay width. From Figures (3.9) to (3.11), it is found
| f  ^

that the values of the maximum wind shear per unit bay width ranges from about 

16 to 32 KN depending on the geometry. Commonly encountered archietectural 

layouts of apartm ent buildings lead to bay sizes of 5—10 meters and widths of 

buildings between 10 to 20 meters. Therefore an average value of about 200 KN 

was taken into consideration in designing most of the models.

3.6.3 Procedure Adopted for the design of a Typical Model

Since the present study is a problem of local failure around the slab— wall 

junction, no great care is exercised to make the models conform to the laws of 

geometrical similitude. With reference to the plan shown in Figure (3.8), the model 

was chosen by isolating a wall and a portion of the slab (the shaded part). 

Therefore, a typical model was as shown in Figure (3.13) in which the lateral load 

will be simulated by a uniform displacement of the edge AB.

A two dimensional finite element computer programme for linear plate bending 

analysis has been used for the design of model slabs. For this purpose, use was 

made of symmetry so that only one half of the slab needs to be discretized using 

the finite element mesh shown in Figure (3.14). The boundary conditions used are 

as follows :

if w =  translation in z—direction (normal to the paper)

dw/dx =  rotation about y—axis ;

3w/3y =  rotation about x— axis ;
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(a)  Rectangular shear wall  s t r u c tu r e .

(b) Flanged shear wall s t r u c tu r e .

Figure (3 .1 3 )  : Typical model p e r s p e c t iv e .
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then all nodes along line 'd e ' will have w =  dw/3x =  dw/dy =  0 ; and all

nodes along line 'ae ' will have dw/dx =  0. Since we are interested in the local 

behaviour of the slab—wall junction, the violation of the boundary conditions of 

the real structure (which is discussed later in section 6.1.3) has minor importance.

A prescribed displacement, w, of all nodes along line 'ab ' simulates lateral 

loading. Gravity loads were distributed on all nodes along line 'be '. For the design

M "lateral loads, the maximum wind shear was known but its distribution along line 

'ab ' which produced uniform displacement was needed. The distribution was 

obtained by imposing a unit prescribed displacement along line 'ab '. The

corresponding reactions represented the required distribution which was then
1/ ('

adjusted to match the value of the maximum wind shear. Figures (3.15) and (3.16) 

show the lateral load distribution pattern for a typical rectangular and flanged shear 

wall structure.

At the centre of each element, the computer programme provided the moment
ft

triad (Mx, My, MXy) and shear forces (Q x> Qy) due to combined wind and gravity 

loadings. Using the moment triad, the values of the design moments M x , M y 

were evaluated according to the rules given in section (3.5.3) . Flexural steel 

required to resist these design moments at ultimate conditions was calculated using 

the recommendations of BS8110 with materials safety factors assumed to be unity.

The finite element programme results in a variable reinforcement pattern like

the one given in Figure (3.17). The amounts of steel given at any point are per

unit length. Two methods can be used to replace the distributed steel areas by 

discrete bars:

(a) If the variation of the distributed steel areas is not severe from one sampling

point to another within the element, those areas can be averaged over a

certain width. The total steel area is then obtained by multiplying the average 

value by the corresponding width and hence can be replaced by one bar of
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an equivalent sectional area.

(b) Over a certain width, the design can be based on the maximum value of the 

distributed steel areas. Total steel area needed over such a width can thus be 

obtained by multiplying by the corresponding width.

For the type of meshes (see Figure 3.14) used in the programme, the 

reinforcement in the sampling points was approximately constant within the 

element. Accordingly, the design was based on averaging the distributed steel areas 

of the sampling points for each element. This reduced the problem to one of 

providing discrete bars in parallel strips, each covering the width of one element. 

Along the strips, the elements adjacent to the wall required in general more steel 

than others. The required steel quantities along transverse direction at the edge of 

the wall were maintained at a constant value throughout the slab, because the

small dimensions of model slabs make it impractical to vary the bar diameter. The 

main longitudinal bars required at the edge of the wall were also provided at the 

constant value along corridor area but they were curtailed at the back of the slab 

after a certain length beyond the nose of the wall. In trying to achieve a 

reinforcement distribution close to that required by the elastic analysis, and at the 

same time to comply with the code regulations, the total steel (flexural) volume 

provided is in general much more than what is required. Figure (3.18) gives a

comparison between the theoretical steel needed and that provided in each element 

of a typical model tested in this investigation. The allowable concrete shear stress 

,vc , for every element was calculated taking into consideration the required flexural 

steel area and concrete strength, fcu. If the shear stress v obtained from Q x or

Qy, exceeds vc , shear reinforcement was calculated using following equation of

BS8110 :
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where

fyW =  characteristic strength of shear steel >425 N/mm^

Aw =  cross sectional area of two legs of closed stirrup, 

b =  width of the element

s =  spacing of the stirrup



CHAPTER FOUR

THE FINITE ELEMENT METHOD

4.1 Introduction

In recent years, the finite element method is firmly established as the most

powerful general method for structural analysis and has provided engineers with a 

design tool of very wide applicability. In the case of reinforced concrete cracking,

tension stiffening, nonlinear multiaxial material properties, complex interface

behaviour, creep, shrinkage and other effects were previously ignored or treated in 

a very approximate manner. All those parameters can now be considered rationally 

by the finite element method.

The application of the finite element method to nonlinear problems is 

associated with a considerable increase in numerical work as compared with linear 

problems. However, development in the last two decades have ensured that high

speed digital computers which meet this need are now available.

In this chapter, an approach for three dimensional nonlinear finite element 

analysis of reinforced concrete is presented. The theoretical results and their 

comparisons with the models which were tested in the present study will be shown 

in chapter seven.

4.2. Finite Element Formulation

As the main procedure of the finite element method is now well 

d o c u m e n te d (4 9 ,5 0 ) no attempt will be made to describe it in detail. But in order 

to define terms for the sake of completeness a brief review of the method will be 

presented instead.

4-2-1 Discretisation bv Finite Element

The finite element method started as an extension of the stiffness method of
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analysis of skeletal structures and was applied to two -  and three -  dimensional 

problems in structural mechanics. However, unlike skeletal structures, there are no 

well- defined joints where equilibrium of forces can be established. So the 

continuum is divided into a series of elements of arbitrary shapes which are 

connected at a finite number of points known as nodal points. This process is 

known as discretisation.

For structural applications, one convenient method of obtaining the governing 

equilibrium equations is by minimizing the total potential energy of the system. The 

total potential energy, ir, can be expressed as :

where [a] and [ c] are the stress and strain vectors respectively, [ 5] the 

displacements at any point, [p] the body force per unit volume and [q] the applied

surface tractions. Integrations are carried over the volume 'V ' of the structure and

loaded surface area 'S '.

The first term on the right hand side of equation (4.1) represents the internal

strain energy and the second and third terms are respectively the work 

contributions of the body forces and distributed surface loads.

In the finite element displacement method, the displacement is assumed to 

have unknown values only at the nodal points so that the variation within any 

element is described in terms of the nodal values by means of interpolation 

functions. Thus

where [N] is the set of interpolation functions termed as shape functions and [ S6] 

is the vector of nodal displacements of the element. The strains within the element 

can be expressed in terms of the element nodal displacements as

1 (4 .1 )

[ 6] = [N] [fiej (4.2)

[e] = [B] [66] (4.3)
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where [B] is the strain matrix generally composed of derivatives of shape functions. 

Finally, the stress may be related to the strains by use of an elasticity matrix [D] 

as follows

M  =  [D] [e] (4.4)

Provided that no singularities exist in the integrands of the functional, the total

potential energy of the continuum will be the sum of the energy contributions of

the individual elements. Thus

7T =  I  Ve (4.5)

where re represents the total potential of element 'e ' which, using equation (4.1), 

can be written as

"  I  [B]T [D1 [B] [5e) dV '

[„  m T [N)T [p] dV -  I [ je ]T  [N]T [q] ds (4 .6 )J V g  J  S e

where Ve is the element volume and Se the loaded element surface area. 

Performance of minimisation for element 'e ' with respect to the nodal displacement 

[5e] for the element results in

5 6*

where

f F e

-  L  ([B ]T [D ](B )) [« e ]dV -  f [N]T[p]dV -  |  [N jT [q]ds
JVe J v e J i,e

= [Ke ] [ 5e ] -  [Fe ] (4 .7 )

-  \ V W J  [P ]dv  + J s [N]t [q ]d s  (4 .8 )

are the equivalent nodal forces, and

[X0 ] -  L  [B]T [ D ]  [B] (4 -9 )
J ve

is termed the 'element stiffness matrix'. The summation of the terms in equation 

(4.7) over all the elements, when equated to zero, results in a system of 

equilibrium equations for the complete continuum. These equations are then solved 

by any standard technique to yield the nodal displacements. The strains and

therefore the stresses within each element can be calculated from the displacements
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using equations (4.3) and (4.4).

4 .2 . 2  E l e m e n t  T y p e

The selection of the element type is always related to the type of problems to 

be solved. As three dimensional nonlinear analysis is the prime concern of the 

analytical portion of this study, the 20—noded isoparametric brick element^49), as

illustrated in Figure (4.1), is used throughout this work to represent concrete.

Reinforcing steel is simulated by bars embeded inside the concrete element at their 

actual locations in the structure without imposing any restrictions on the mesh 

choice. The mathematical derivations of these bars can be found in Reference 

(24,56).

This element was chosen to consider the effect of the six stress components

crx, (Ty, <j z , t Xy, ry Z, t zx (Figure 4.2) and in particular the vertical shear stress

components TyZ and r zx which are vital for predicting shear failure of slab— wall

junction. Each nodal point has three degrees of freedom, viz.,

translation in x— direction = u,

translation in y— direction =  v, and

translation in z— direction =  w.

Each element has its own local spatial coordinate system (£ ,17, f) (Figure 4.1), with 

the origin at the centre of element such that each local coordinate ranges from 

“ 1 to + 1  only.

4-2.3 Shape Functions

Shape functions are interpolation functions which describe the variation within

the element of the displacement in terms of the nodal displacement

U ] = I  [Nj]  [ 6 j ]  <4 - 10)
i = l

where Nj is the shape function at the i— th node at which the nodal displacement
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(a) Local c o o r d in a te s (b) C a r te s ia n  c o o rd in a te s

Figure ( 4 .1 )  : 20-Noded isoparametric brick element
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Figure (4 .2 )  : Cartes ian s t r e s s  components



93

is S j.

The efficiency of any particular element type will depend on how well the 

shape functions are capable of representing the true displacement field. The 

isoparametric family are a group of elements in which the shape functions are used 

to define the geometry as well as the displacement field. This leads to reduced

computational effort and efficiency. The isoparametric elements are better known

for their accuracy and versatility over simpler type of elements. Moreover a

considerable saving of computer effort is obtained, even though a complex element 

requires more time to formulate. This is because it requires fewer elements 

compared with more simple elements.

For three dimensional applications, the displacements field at a particular local 

coordinate (£ ,77, f) are u($,rj,f), v(£ ,77,T), w(^,rj,f) and are defined using three 

displacements degrees of freedom U j ,  V j ,  W j  at each of the twenty nodes and a

quadratic interpolation scheme.

The coordinate values x (£ ,77, f), y(£,Tj, f) and z(£,77,i") at any point (£ ,77, T) 

within the element may be defined by the expressions :

20
x ( £ , t j , 0  = £ Nj ( £ , 7 7 , 0  . Xj

i - 1

20
y ( £ , 77, 0  = I  n,  ( £ , 7 7 , 0  . yj  (4 .1 1 )

i ” 1

20
z(£,T7 , 0  -  E Nj ( £ , 77 ,0  . z 7

i - 1

and where (xj,yj,zj) are the coordinates of node *i* and Nj(£,77,T) are three 

dimensional quadratic shape functions. In the present work, such shape functions of

each of the twenty nodes were obtained from reference(^) as follows :

For c o rn e r  nodes £ j = ± l  777 = ± 1  f j  -  ± 1

Ni ( M , 0  =  i  ( l + £ £ 7 ) ( 1 + 77777) ( 1 + i T j ) ( £ £ i +  V V i  +  ^ i  -  2 > ( 4 - 1 2 )
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For m id-side node £ j - ± 0  ijj -  ± 1 fj — ± 1

N j( £ . r i ,0  -  \  ( i - £ 2 ) d + > j> i i ) ( i+ r r i ) (4 .1 3 )

For m id-side node -  ± 1 rj j « ± 0 -  ± 1

(4 .1 4 )

For m id-side node — ± 1 ij| — ± 1 i"j — ± 0

Ni(£.i).n -  I (i+££i) ( i+nm>( l —f2) (4 .1 5 )

Each of the twenty shape function has a value of unity at the node to which it is 

related and zero at other nodes.

To calculate the displacements i") , v(£,Tj,f) and w(£,ij,f) at any point

within the element, expressions similar to (4.10) may be written as follows :

w(f ,V , O  -  E N j . W(
1 -1

4.2.4 Strain Matrix

In three dimensional linear analysis, the strain — displacement relationship 

from theory of elasticity may be written as :

20
u(£ , 17, O -  £ Nj (£ , n ,  D  - uj 

1=1

20
v ( £  , 1 7 ,  O  -  I  N j  ( £ , * ? ,  O  .  V j (4 .16)

20

€x = du/dx

cy -  a v /d y

fz — 3w/3z

7xy *“ ^u/dy + dv/dx 

7 yZ = a v /d z  + aw /ay  

Tzx = aw /ax  + a u /a z

(4 .1 7 )
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in which ex, e y , e z  are the normal strain components and y x y , y y z , y z x  are the 

shear strain components. Equations (4.17) may be written in matrix form as 

follows:

[ * ]

6 X a/ax 0 0

fy 0 a /a y 0

ez 0 0 a/az

Txy a / a y a/ax 0

7yz 0 a/az a /a y

7zx a /az 0 a/ax

(4 .18 )

using the finite element idealisation we can write

€ ] =
20

I
1=1

d N j/d x  

0 

0

dN i/d y

0

3Nj/3z

0

3N i/3y

0

a N j/a x

0

0

B N j / B z

0

dNj/az aNj/ay

o a N j/a x

(4 .1 9 )

or simply

20
[ 6 ] = I  [B{ ] [ SO 

i= 1
(4 .20 )

where [Bj] is the 6x3 strain matrix in equation (4.19) which contains the cartesian 

derivatives of the shape functions. Since the shape functions Nj are defined in 

terms of the local coordinates of the element ( £ , t j , f )  a transformation from local 

to global coordinates is required to obtain the [B] matrix in equation (4.19). This 

is done through the well known Jacobian matrix which is written as

( 4 . 2 1 )

ax/a£ dy/^S az/3£

J ] = Bx/ dr j dy /Br] Bz/Brj

ax/a  f ay/a r az/a  f
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th u s

[ J 1

20
I

i - 1

3N<O N :  3N: O N ;

s f - * *  s p - y j  s r 1 -2 !

3N: 3Ni 3N{
5ij ' x * 5 ^ -  y i 5 ^ z i

3NiON :  3N j  O N :
5 ^ X 1  s r ^ y i  ST1 -

3N i

3Nj z :

the inverse of the jacobian matrix will be

51
3x 3x

3 f
3x

[ J ]
-1 3Nj

57
3Nj
5y

3 f
57

3Nj
3z

3Ni
3z

3 f
3z

Therefore the cartesian derivatives are given by

3Nf
3x

55UW

3Nj
dy

- i j i ' 1
3Nj
5 7

3Nj
3 z

3N:
J f

4-2.5 Stress — Strain Relationship

For linear analysis of uncracked concrete, and in the abscence of 

stresses and strains, the stress— strain relationship may be written in the form

M  = [D] [<]

where [D] is the elasticity matrix which takes the form

( 4 . 2 2 )

( 4 . 2 3 )

-24)

initial

(4.25)
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fD, E
lUJ (1+r) ( l - 2 r )

Symmetry

V

( 1 - r )
0 0 0

V

( 1 - r )
0 0 0

1 0 0 0
( 1 - 2 . )
2(1- ,- ) 0 0

( 1- 2 ,-)
2 ( 1 - 1') 0

( 1 - 2 .-)
2 ( 1 - 0

(4 .2 6 )

where *E’ is the Young's modulus of elasticity and v is Poission's ratio. The 

concrete nonlinearity as considered in this work is only the material nonlinearity 

and all changes in material properties enter through the changes in elasticity matrix

[D], This will be discussed later in section 4.4.4.3.

4.2.6 Numerical Integration

Analytical integration of equation (4.9) is impossible. Therefore some form of 

numerical integration must be resorted to. In this study Gauss— Legendre quadrature 

rules have been used exclusively because of their higher efficiency over other forms 

of quadrature. For n sampling points they can integrate exactly a polynomial f(£)

of degree (2n— 1). Also they are suitable for isoparametric elements because the

range of these integration rules are ±1 on element boundaries. A 3x3x3 Gauss rule 

was used for monitoring nonlinear behaviour especially cracking, as shown in Figure 

(4.3), although 2x2x2 and 4x4x4 are also available.

4-2-7 Principal Stresses. Magnitudes and Directions

The evaluation of principal stresses and their respective directions in the global 

cartesian system of axes is important for the determination of the occurance and 

orientation of cracking in concrete. The solution of the resulting set of linear 

equations yields the nodal displacements and hence the strains. The strains are used
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to obtain the stresses at each sampling point in the structure. From equation

(4.25), there are six cartesian stress components at each Gauss point that can be 

evaluated, namely:

[<t] =  [ °x ay °z  Txy Tyz Tzx 1 (4-27)

The values of the principal stresses, <rj, can be obtained by solving the following 

cubic e q u a tio n ^ )

a.3 _  ,1<ri2 + i2<Ti -  r3 =  0 (4.28)

in which I j ,  I2 , I3 are the stress invariants, which may be expressed as follows:

If =  <JX + <Ty +■ <rz (4.29)

12 =  [<rxa y °y°z T^xy T^yz T^zxl (4.30)

13 =  determinant of the stress tensor

(4 .3 1 )

The principal directions which determine the principal planes can be expressed by

their respective direction cosines such that:

£} = cos 0xj; mj =  cos 8y\\ nj =  cos 8x\ (4-32)

Thus the direction cosines of <jj are m j, n j;  those for 0 2  are #2» m2* n2

and those for 03 are £3 , m3 , 03 .

The method to evaluate these direction cosines is explained in details 

elsewhere(Sl) and is briefly presented here. Denoting

cr„-<r i
(4 .33)

^x Txy Tzx

Tyx <Jy Tyz

Tzx Tz y Nb

A « ay  a i Tzy
B -  -

Txy Tzy
C -

TXy

Tyz ° z _(Ti r xz ffz _fr i Txz Tyz

it can be shown that the three direction cosines can be expressed as :

e_L m;
B

n i
C

( 4 . 34 )
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where K is a non— zero constant to be determined. The subsidiary trigonometric 

condition:

£j2  +  mi2  +  nj2  =  1 (4 .3 5 )

determines K as :

K -      (4.36)
7 A2+ B2+ C2

then =  A. K; mj =  B. K and nj =  C. K (4.37)

4.3 Simulation of Steel Reinforcement

In modelling reinforced concrete by finite element methods, at least the 

following three alternative representations of the reinforcement have been used:

(a) distributed

(b) discrete

(c) embedded

For a distributed representation (Figure (4.4—a), the steel is assumed to be 

distributed over the concrete element, with a particular orientation angle. A

composite concrete reinforcement constitutive relation need to be used in this case. 

To derive such a relation, perfect bond must be assumed between the concrete and 

steel(52*53).

A discrete representation of the reinforcement, using one— dimensional elements 

(Figure 4.4— b), has been widely used(^). Axial force members are assumed to be 

pin connected with three degrees of freedom at the nodal points. The 

one— dimensional reinforcement element is superimposed on a three— dimensional 

finite element mesh representing concrete. The approach is simple and it is

possible to account for possible displacement of the reinforcement with respect to

the surrounding concrete. A serious disadvantage, however, is that the location of

steel often dictates the concrete mesh. This may result in slender elements, where 

the reinforcing bars are too close together, violating the concept of aspect ratio of
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4x4x4 ru les  fo l low the same order

^  ^  J
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the element being close to unity as far as possible.

An embedded representation (Figure 4 . 4 - c) may be used in connection with 

higher order isoparametric concrete elements. The reinforcing bar is considered to 

be an axial member built into the isoparametric element such that its displacements 

are consistent with those of the element. Perfect bond is used in the original 

equations. The concept of embedding isoparametric elements with reinforcing bars 

was first suggested for plane stress, plane strain and axisymmetric a n a l y s i s ( ^ 4 , 5 5 )  It 

allows an isoparametric element to cover a large volume whilst including the finer 

detail of reinforcement. Indeed the reinforcing steel can be in its exact position 

without imposing any restrictions on mesh choice.

In this study, reinforcing bars are embedded in the 20— noded isoparametric 

brick element used for concrete. The basic two— dimensional theoretical 

f o r m u l a t i o n ( 5 4 , 5 5 )  w a s  e x t e n d e d ( 5 6 )  in a similar fashion for the three— dimensional 

case. The derivation requires that bars are restricted to lie along the local 

coordinate lines of the basic element as shown in figure ( 4 . 5 ) .  The details of the 

theoretical derivation of bar element stiffness can be found e l s e w h e r e ( 2 4 , 5 6 )

4.4 Mathematical Modelling of Concrete

4.4.1 Introduction

A reliable prediction of the behaviour of reinforced concrete requires a 

knowledge of the behaviour of concrete in its elastic and inelastic coupled with a 

knowledge of the reinforcing steel behaviour. Although the steel behaviour is better 

defined and generally agreed upon, concrete behaviour shows considerable statistical 

scatter. Furthermore, the bond between concrete and the reinforcing steel is also 

not well defined.

Now— a— days more and more experimental knowledge is becoming available 

regarding the deformational behaviour and strength properties of concrete under
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various loading s y s t e m s ( 5 7  >58,59) Having obtained such experimental data, it must 

be transformed into sets of mathematical formulae, adequately describing the basic 

characteristics to be of real use to reinforced concrete analysts. These mathematical 

formulae are normally called "constitutive equations" or sometimes, "constitutive 

models" for concrete. In recent years a lot of work have been carried out on this 

front, resulting in different m o d e l s ( 6 0 , 6 1  , 6 2 , 6 3 , 6 4 )  being offered for the description 

of the behaviour of concrete under different stress states. These can be broadly 

grouped as: (1) uniaxial and equivalent uniaxial models; (2) linear elastic—fracture 

models; ( 3 )  nonlinear elastic and variable models; ( 4 )  elastic perfectly 

plastic—fracture models; (5) elastic strain hardening plastic and fracture models and

(6) endochronic theory of plasticity for behaviour of concrete. Chen and Ting(65) 

have critically evaluated these models, within the context of their use in the 

numerical analysis of concrete structures. A good summary is also given by

C h e n (6 6 ) .

No one mathematical model can completely describe the complex behaviour of 

real materials under all conditions. Each material model is aimed at a certain class 

of phenomena and captures their essential features and disregards what is 

considered to be of minor importance in that class of applications. The power of 

modern computers have ensured that more sophisticated and complex, but 

reasonably "accurate" constitutive laws can be incorporated into theoretical models 

without much difficulty. One such set of laws, used in this work to model concrete 

compressive triaxial behaviour, is due to Kotsovos et al(^7 *f>8). The features of the 

model will be discussed later.

As cracking of concrete is probably the major cause of nonlinearity in most 

reinforced concrete structures, a separate three dimensional cracking model is 

developed and incorporated in the finite element programme. This will be dealt in 

section (4.4.4). Particular attention is paid to proper modelling of shear transfer 

across a cracked concrete surface. A biaxial stress— strain law is used for
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reinforcing steel. Full bond is assumed between concrete and steel.

4.4.2 Kotsovos' Constitutive Laws for Concrete

Recently a comprehensive p r o g r a m m e ^  , 6 8 , 6 9 , 7 0 )  Qf investigation into the 

behaviour of concrete under complex states of stress was carried out at the 

Imperial College, London. The testing techniques used to obtain these data have 

been validated by comparing them with those obtained in an international 

co— operative programme of research into the effect of testing techniques and 

apparatus upon the behaviour of c o n c r e t e ^ ) .  After analyzing the results, Kotsovos 

et e l ( 6 7 , 6 8 )  provided mathematical expressions for deformational as well as strength 

properties of concrete suitable for use in nonlinear computer based methods to 

analyze concrete structures. These expressions were successfully implemented in the 

computer program by E l n o u n u ( 2 4 )  and subsequently used in the present work. A 

brief description of the model will be given in the following sections. References 

( 2 4 , 6 7 , 6 8 , 6 9 , 7 0 )  give detailed description with verification of the model against 

experimental results.

4.4.2.1 State of Stress at a point

For the construction of the constitutive equations for concrete, the geometrical 

representation of the stress state at a point is very useful. Since the stress tensor 

crjj has six independent components, it is of course possible to consider these

components as positioinal co— ordinates in a six— dimensional space. However it is 

too difficult to deal with. The simplest alternative is to take the three principal

stresses o-j, 0 2 , 03 such that a\ ^ 02  -  a3 as co-ordinates and represent the 

stress state at a point in the three— dimensional stress space. This orthogonal

co-ordinate system (r\, 0 2 * 03 can be transformed into a cylindrical co-ordinate

system q, r, 0 and the two systems are related by the following equations:

q = (o^ + a 2 + ° 3 ) /

r = [ (o^ -  0 2 >2+ (^ 2  -  0 3 )^+ (03  -  o t ) ^ ] ® -5 /  S5 (4 .3 8 )
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cos 6 -  1 /76  ( (o r  + 02  “ 2^ 3 > /r )

The variables 'q ' and 'r ' define the hydrostatic and deviatoric components 

respectively, of a stress state, whereas the variable ' 0 ' defines the direction of the 

deviatoric component on the octahedral plane as shown in Figure (4.6) and varies 

from

0 = 0°  for a\ =  02 >  a3

0 = 60® for > (?2 =

The hydrostatic and deviatoric components can also be expressed in terms of the 

normal (tfoct) and shear ( r oct) octahedral stresses which are defined as follows

o"i + o  2 + o  3
O o c t ------------------------------  q /^ 5  (4 .39 )

3

To c t “  1/ 3 f  (<*1 ~ o2 ) 2+ (o’2 " o3) 2+ (<t3 -  o r ) 2 -  r / / 3

Similarly, the normal ( coct) and shear (7oct) octahedral strains are defined as 
follows:

r 1 + T2+ T3
Toct “

3

Toct “  [ ( t \ - T 2 ) 2+ ( t '2 “t 3 ) 2+ ( r 3 -Tl ) 2 ] ° ‘ 5 /  3 (4 .40 )

where q ,  ej, €3 are the principal strains.

The mathematical formulae reported here for the deformational and strength 

properties are applicable to a range of concretes with uniaxial cylinder compressive 

strength (f£) varying from about 15 to 65 N/mm2.

For the deformational properties, use has been made of the secant bulk (Kj) 

and secant shear (Gs) moduli which are expressed as follows
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(a)

devia toric

plane

(*)

F ig u re  ( 4 .6 ) Cylindrical  coordinate system
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°oct

3 coct

(4.41)
Toct

Gs “  ----------
^Toct

4.4.2.2 Deformational Properties

The deformational behaviour of concrete under increasing stress can be

completely described (67) by the relationships between:

(a) hydrostatic stress, <roct and volumetric strain, eQb;

(b) deviatoric stress, r oct, and deviatoric strain, 7oct; and

(c) deviatoric stress, r oct and volumetric strain, eocj.

(Note that for metals, eoc| is not effected by r oct but this may not be so for

other materials.)

The ooct — c0b and r oct — Yoct relationships can be described by the

mechanical properties of the model(67) as follows:

_   1_____________
K0 b-1 f c

1 + a  ( ^ £ l )
1 c

C<

1 + 2 (b 1 )b A-2b (b-1)A ( ^ L )
* /■>

for ^ 1 .  < 2 . 0

(4.42)

— for ± 2 .0
-1 f c

G0 d -1
1 + C (IfiCL)

I />

(4.43)

where KQ and GQ (in KN/mm^) are the initial values of the moduli Kg and Gs ;

and A, b, C, d are parameters which depend on the material properties such that

K0 = 11.0 + 0.0032 f 'c 2

CQ = 9.224 + 0.136 f̂ . + 3.296 x 10"15 r 'c (8.273)
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0 .5 1 6  f o r  ^ 31 .7  N/mm2 , o r

0 .5 1 6
fo r  f^  > 31.7  N/nun2

1 .0  + 0 .0 0 2 7 ( f^  -  3 1 .7 ) 2 -397 

b = 2 .0  + 1 .81  x 10” 8 f^  (4 .4 6 1 )

(4 .4 4 )
C -  3 .573  fo r  f i  4. 31 .7  N/mm2 , o r

3 .573
fo r  f^  > 3 1 .7  N/mm2

1 .0  + 0 .0134  ( f ^  - 3 1 .7 ) 1 -414 

2 .12  + 0 .0183  f^. fo r  f^  > 3 1 .7  N/mm2 

2 .7  f o r  f '  ^ 3 1 . 7  N/mm2

In order to evaluate^7) the effect of internal stresses on deformation, use is 

made of the artificial concept that the volume strain (i.e. eoci) under deviatoric 

stress is due to the hydrostatic component of such stresses, <7jn t. Since

^int — 3 ^s eod (4-45)

the 7 o c t  — e o c j relationship was e x p r e s s e d ^ 7 )  in a nondimensionalised form as

follows:

< M n t/fi “  M ( r o c t /  f^>d l (4 .46 )

where M —   (4 .47 )
1 + d 2 (* o c t /  f i >d3

4 .0
and k =     (4 .47 )

1 .0  + 1 .087  (f* - 1 5 .0 ) 0 -23

di = 1 .0  fo r  f i  ^ 31 .7  N/mm2 , or

-  0 .3124  + 0 .0217  f^ fo r  f .̂ > 3 1 .7  N/mm2
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d 2 -  0 . 2 2 2  + 0 .01086 -  0 . 0 0 0 1 2 2 f ^ 2

( 4 . 48 )
(I3 — -  2 .415  fo r  f ,̂ ^ 3 1 .7  N/mm2 , o r

-  -  3 .5308 + 0 .0352 fo r  f^ > 31.7 N/mm2

The hydrostatic component ajnt is equivalent to three principal stresses, = 

(T2  ~  a3 ~  a int» and its effect on deformation, eocj, will be the deformational 

response of the model under these principal stresses.

Equations (4.42) and (4.43) when used with equation (4.41), the resulting 

value of eoct (in 4.41) will be eQh, thus the total octahedral normal strain will 

be

eoct =  coh + eod (4.49)

4.4.2.3 Strength Properties of Concrete

The strength of concrete under multiaxial stresses is a function of the state of 

stress consisting of six components. Based on an analysis of strength data, 

K otsovos^) derived mathematical expressions to describe the strength properties of 

concrete under biaxial or triaxial stress states which can be presented as follows:

r o e  is the value of r o c t  at the ultimate strength level for 6 = 0  degree;

t oc is the value of r oct at the ultimate strength level for 6 = 60 degrees;

the value of r oct at the ultimate strength level for any values of 6 such that 0 ^

0 £ 60 degrees may be given by the following expression:

2 r o c (To c -To e ) c o s ^+To c ( 2 r o e -Toc) [4 ( 7o c - r o e )c o s 2 (,+5 r o e -4 r ocTo e ] ° ' 5 
r o f = —----------------------------------------------------------------- —----------------------    (4 .50 )

4 ( t oc  " r o e ) c o s 2 ° + ( Toc  " 2r o e ) 2

This expression describes on the deviatoric plane a smooth convex curve with 

tangents perpendicular to the directions of r o e  and r o c  at 6 = 0 and 0 = 60 

degrees respectively (see Figure 4.7).
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If isotropic material behaviour is assumed, equation (4.50) may be used to 

define a six-fo ld  symmetric (about the space diagonal) ultimate strength surface, 

provided the variations of r oe and r oc with (roct are established (Figure 4.7).

Figure (4.8) shows the normalized (with respect to the uniaxial cylinder 

compressive strength, f'c) combinations of octahedral stresses at the ultimate 

strength level obtained from triaxial tests(68). The envelopes in this figure are 

considered^8) to describe adequately the strength of most concretes likely to be 

encountered in practice. A mathematical description of the above strength envelopes 

was obtained^8) as follows

To c / f ' c  = 0.944 [((7o c t / f ' c )  + 0 . 05 ] 0 ■ 724
(4.51)

ro e / f ' c “ ° - 633 [ (Ooct /f , c ) + 0 .0 5 ]0 -857

Equation (4.51) represents two open ended convex envelopes whose slope tends

to become equal to that of the space diagonal as <70Ct tends to infinity. These

expressions together with equation (4.50) are used in this work to define an 

ultimate strength surface which conforms with generally accepted^7) shape 

requirements such as six— fold symmetry, convexity with respect to the space 

diagonal, and open ended shape which tends to become cylindrical as <roct tends to 

infinity.

4.4.3 Failure Criteria of Concrete

4.4.3.1 Introduction

Criteria such as yielding, initiation of cracking, load—carrying capacity, and 

extent of deformation are generally used to define failure. But failure is defined in

this study as the ultimate load— carrying capacity of a test specimen or a concrete

material element. In general, concrete failures can be divided into two types:

tensile type and compressive type. Tensile type and compressive type of failures are 

generally characterised by brittleness and ductility, respectively. With respect to the
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present definition of failure, tensile type of failure is defined by the formation of 

major cracks and the loss of the tensile strength normal to the crack direction. In 

the case of compressive type of failure, many small cracks develop and the

concrete element loses its strength completely.

4 .4 .3.2 Concrete Compressive Failure Criteria

In this work, it is assumed that concrete suffers a crushing type of failure if:

(a) the. failure surface presented in section (4.4.2.3) is violated, or

(b) the maximum principal compressive strain is greater than a specified value

(which is taken as 0.0035 according to BS 8110)

Condition (a) holds for isotropic (uncracked) concrete material, and it is found

that condition (b) will never be satisfied prior to condition (a) as long as the

material is isotropic. But when a crack exists, condition (a) is not applicable; thus 

only condition (b) holds.

After crushing, the current stresses drop abruptly to zero and the concrete is 

assumed to lose its resistance completely against further deformation. Therefore the 

rigidity matrix [D] will be zero.

4.4.3.3 Concrete Tensile Failure Criteria

In this study it is assumed that concrete will suffer a cracking type of failure

if:

(a) the failure surface presented in section (4.4.2.3) is violated, or

(b) the maximum tensile principal stress exceeds a specified value. A value equals

fj/2 , is approximately the value on the failure surface(^) for uniaxial tensile

stress state.

Condition (a) holds for isotropic (uncracked) concrete material. Under

multiaxial stress state, condition (b) will never be satisfied prior to condition (a) as

long as the material is uncracked. When at least one crack exists at any point due
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to condition (a), only condition (b) is applicable to check against a second or a 

third crack.

Once a crack has formed, the tensile stress across the crack drops abruptly to 

zero and the resistance of the material against further deformation normal to the 

crack direction is reduced to zero. However, material parallel to the crack is 

assumed to carry stress according to the uniaxial or biaxial conditions prevailing 

parallel to the crack. Further details of cracks handling will be discussed later in 

this chapter.

4.4.4 Modelling of Concrete Cracking

4.4.4.1 Introduction

The tensile weakness of concrete results in cracking which is regarded as a 

major factor contributing to the nonlinear behaviour of reinforced concrete 

structures. Early studies on modelling of reinforced concrete nonlinear behaviour 

resulted in two methods of representing the cracking of concrete. The first 

approach, termed discrete crack represen tation^), uses a predefined discrete crack 

system. The major drawbacks of this procedure, however, are that the topology of 

the structure has to be continuously altered as cracking progresses and that a 

previous knowledge of the crack pattern might be necessary. There is also a lack 

of generality in the possible crack directions as these are dictated by element 

boundaries rather than the resulting principal stresses or strains.

The second approach, known as the smeared crack m odeK ^’72,73)^ assumes 

the cracked concrete remains a continuum. This implies that an infinite number of 

parallel cracks occur at a specific point if a certain cracking criterion is satisfied. 

By using the smeared cracking approach the problem of changing the topology of 

the structure with crack propagation is overcome. Moreover the initiation, 

orientation and propagation of cracks at the sampling points are automatically 

generated resulting in complete generality. Figure (4.9) illustrates both cracking 

models as applied to two dimensional analysis.
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( i i )'-Smeared cracking model

Figure (4 .9 )  : Discrete  and smeared cracking models
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The selection of which cracking model to use depends largely upon the 

purpose of the finite element study undertaken and the nature of the output 

desired^72). Generally, if overall load-displacement behaviour, without regard to

local stresses and 'realistic' crack patterns is desired, the smeared crack 

representation is probably the best choice. If, on the other hand, detailed local 

behaviour is of prime importance, adaptations of the discrete cracking model is 

useful. The element type, size and grid pattern have significant effects on both 

models. The smeared crack approach is the most commonly used because it is easy 

to implement. Further details on this aspect can be found e l s e w h e r e ( 5 5 , 6 5 )

In this study the overall structural behaviour is of particular importance. 

Furthermore, the efficient 20— noded isoparametric brick element is used to 

represent concrete with embedded bars to simulate the reinforcing steel at its 

exact locations in the structure. Therefore, the smeared crack simulation is adopted.

4.4.4.2 Smeared Cracking Model

The main feature of the present cracking model may be summarized as

follows:

i) cracking in one, two or three directions is allowed

ii) cracks are allowed to open or close during the load increment

iii) no tension stiffening but shear retention is allowed.

iv) variable crack direction is allowed.

(a) Fixed Crack Direction Analysis:

In this analysis, in the three dimensional stress spaces; c l, cr2, c3; cracks 

might occur normal to any of the principal stresses (Figure 4.10). It is quite 

possible for any point to be cracked in more than one direction. Up to three 

cracks at a point are allowed in this analysis provided that they are orthogonal to 

one another. Once a crack occurs, its direction in the cartesian xyz space is fixed 

and retained as such in all subsequent loading. In this method, matrix [D] is
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(a) Crack in  d i r e c t i o n  1

s t r e s s  a f f e c t e d
by c r a c k i n g .  ----------^ -----y  ° 3
( o n l y  n orm al  s t r e s s  

i s  s e t  t o  z e r o ) .

(b) Crack in direct ion 2

(c)  crack in direct ion 3

Figure (4 .10)  : Types o f  cracks in concrete
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modified such that the modulus of elasticity 'E ' of the concrete is reduced to zero 

in the direction normal to the crack. Further, a reduced shear modulus 'G* is 

assumed on the cracked plane to account for the aggregate interlocking. Because of 

the fact that shear stress is allowed to act at the cracked surfaces, this procedure 

allows tensile stress to built up on surface other than the crack direction.

(b) No Tension Analysis

In this analysis, the principal stresses are evaluated from the current state of 

stress, (j|j, in every iteration and if they are found tensile, are brought back to 

zero. No modification in the material stiffness matrix is involved in this type of 

analysis. In addition, the method accords with the assumption normally made in 

design of not relying on the tensile strength of concrete.

(c) Closins and Qpenine o f  Cracks

In order to improve the realism of the present cracking model, the possibility 

of crack closing is considered. This behaviour may take place due to the

redistribution of stresses during an iteration or upon further loading. In the present 

work, the possibility of cracking of any sampling point is re— examined within each 

iteration until the numerical solution converges within the permissible convergence. 

After convergence, the direction of any cracking is fixed and orthotopic behaviour 

is assumed as explained before.

The fictitious principal strain normal to the crack direction is monitored to

assess the state of the cracks in the cracked concrete. If this strain has a negative 

value, then the crack is assumed to be closed and the modulus of elasticity normal

to the crack is restored back to initial value 'E \  However, the poisson effect is

ignored.

(d) Variable Crack Direction

Because of the fact that shear stress is allowed on the cracked planes, for 

later stages of loading, the principal stress direction changes from the previous one. 

Gupta and Akbar (74) reported in the analysis of reinforced concrete that, the
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direction of the initial and final cracks do not coincide. In this analysis, instead of 

fixing the direction of the first crack once it develops, the crack direction is 

monitored for every iteration in every increment. If the crack rotates by more than 

+ 10% from its previous direction, that direction is changed and the new correct 

direction is fixed, until the direction again changes by ± 10% in further iterations.

In chapter seven, a full incremental nonlinear analysis will be performed to 

study critically different methods of analysis.

4 .4 .4 .3 Rigidity Matrix for Fixed Crack Analysis

It has been reported earlier in this work that the triaxial rigidity matrix for 

uncracked isotropic concrete is

[D] E ( l - 0
( 1+0 ( 1 - 2 0

( 1 - 0  ( l - o
V

Symmet ry

( l - o  
1 0

( 1 - 2 0
2 ( 1 - 0

( 1 ^ 2 0  0 
2 ( 1 - 0

( 1 - 2 0
2 ( 1 - 0

(4.52)

In principal stress space, and with reference to the adopted cracking criterion, if 

the concrete is cracked in direction 1 (Figure 4.10—a) the rigidity matrix will be

I Dc 1 1

0

d22

Symmet ry

0 0 0 0

d23 0 0 0

d33 0 0 0

0C 0 0

°55 0

(3G

(4.53)



119

where Djj are the corresponding values in the [D] matrix and 0 is the shear 

retention factor, 0 £ 0 4, 1. Shear retention factor will be dealt with in section 

4.4.5. 'G ' is the shear modulus of the material; its value will be the value

obtained from the constitutive laws prior to cracking.

If the concrete is said to be cracked in direction 2 (Figure 4 .1 0 -b), the

rigidity matrix will be

DU  0 d13 0 0 0

0 0 0 0 0

d33 0 0 0
[ Dc ] 2 “ Symmet ry (4 .54 )

0G 0 0

0G 0

d 66

and if it is said to be cracked in direction 3 (Figure 4.10- c) the rigidity matrix

will be

D11 d 12 0 0 0 0

d 22 0 0 0 0

0 0 0 0
[ Dr  ] q - (4 .55 )
L C  J 0 Symmet ry

d44 0 0

0 C 0

0G

Depending on the stress situation, cracks may occur in more than one direction at 

a single Gauss point. In this case combinations between [Dc]j, [Dc]2, and [Dc]3 

may be necessary as follows:

If craced in direction 1 and direction 2, then D matrix is given by



1 2 0

0 0 0 0 0

0 0 0 0 0

d33 0 0 0

Symmet ry
PC 0 0

PC 0

PC

If craced in direction 2 and direction 3, then D matrix is given by

D n  0 0 0 0 0

0 0 0 0 0

0 0 0 0

[ Dc 1 2 ,3 — Symmetry PC 0 0

PC 0

PC

If craced in direction 3 and direction 1 . then D matrix is given by

0 0 0 0 0 0

d 22 0 0 0 0

0 0 0 0

t Dc ] 3 , 1 Symmet ry (3C 0 0

PC 0

PG

(4 .57 )

(4 .58 )

and finally if cracked in all three principal directions it is assumed 

cracked point is incapable of resisting any stress. Therefore

(4.59)
[ Del! f2f3 = [°1

Depending on the number of cracks which occur at a Gauss point at a p
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level of loading, the appropriate rigidity matrix will be evaluated at that Gauss 

point and for simplifying the discussion it will be merely termed hereafter as [D J 

and used in the evaluation of the stiffness matrix.

The rigidity matrix [Dc] is defined with respect to the directions of principal 

stresses at the Gauss point under consideration. To enable its use in the global x,

y, z space, a process of transformation must follow using the procedure described

in reference^50) as follows:

[ Dc Ix.y.z =  ( T f ]T [ Dc ] [ T e ] (4.60)

where [T e] is the transformation matrix for strain tensor which takes the following

form:

* 12 M l m l n l M l

£ 22 n 2 ^
^ 2m2 m 2n 2 o 2£2

^ 32 m 3 2 n 32 ^ 3m3 m 3n3 n 3^3

2£ i #2 2m 3m 2 2n l n2 (Q. 3m 2+ 62m 3 ) ( m 3n 2+ m 2n 3 ) ( n i ^ 2+ n 2^ 3 )

2^ i ^ 3 2m 2m 3 2n 2n 3 ( j G 2m 3+ j G 3m 2 ) ( m 2n 3+ m 3n 2 ) ( o 2£ 3+ o 3 £ 2 )

2£ 3 £ i 211131113 2 n 3 n i ( £ 31113+ £ 31113) ( 111303+ 111303) ( 03^ 3+ 03^ 3 )

where £3 , m3 , nj are the direction cosines of the first principal stress; £2, m2» n 2

are those for the second principal stress; and £3 , m3 , n3 are for the third

principal stress.

The three principal directions are orthogonal to each other. This may be

assured by satisfying the following set of equations^!)

M 2 + m 3 m 2 + n l n 2 -  0

£  2 £  3 + m 2 m 3 + n 2 n 3 =  0 ( 4

M l + m 3 m 3 + n 3 n l =  0

The three principal directions at a point can vary during loading before
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cracking is initiated, but they are fixed if at least two cracks exist at that point. 

One crack fixes only one principal direction but constraints the other two to be 

perpendicular to the crack.

The process described earlier in section (4.2.7) for the calculation of the

principal stresses in three dimensional analysis applies to the case when the 

direction of one or more principal stress is not constrained. Once a crack occurs 

due to any principal stress, say oq, this stress will be set to zero and the crack

plane must be perpendicular to the direction of this principal stress. In subsequent 

load cycles, the direction of crack will be fixed and a two dimensional analysis on 

the crack plane will be followed to evaluate the values and directions of the other 

two principal stresses (in fact they will not be principal stresses due to the fact 

that shear stresses will exist also as in Figure 4.10). Section (4.5.6) explains the

procedure followed for this purpose.

If the material cracks in two directions, all the principal directions will be

fixed, and the values of the 'offending' principal stresses will be set to zero.

4.4.5 Modelling of Shear Transfer Across Cracks

4.4.5.1 Introduction

After cracking of concrete two main mechanisms develop through which shear 

is transferred from the weak cracked section to the surrounding sound concrete; 

namely (1) aggregate interlocking on the two adjacent surfaces and (2) dowel action 

of any reinforcing bars crossing these cracks. The two mechanisms are interrelated 

and several factors govern their relative contribution towards the total shear 

transferred. The main known factors are: (1) crack spacing, (2) presence or 

otherwise of reinforcement crossing the cracks, (3) bar size, (4) total number of 

bars crossing, (5) bar orientation relative to the crack direction, (6) aggregate size 

and roughness, (7) concrete strength, (8) crack width and (9) mode of failure.
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The mechanisms of shear transfer have been investigated experimentally and 

consequently several analytical expressions have been suggested. In the finite 

element modelling, however, these expressions cannot be directly used. In the

smeared cracking approach the shear transfer is modelled through the so-called

"shear retention factor", (3, which varies between 0 and 1 and is defined as:

(3 = G '/G  (4.63)

where G ' is the reduced shear modulus for cracked concrete and G is the shear

modulus for the uncracked concrete. Many investigators have used a constant value 

for 13(52 ,55 ,75 ,76 )̂  the value of which was normally determined by trying several 

reduction factors and finally choosing the value that gave predictions closest to the 

experimental results of the problem in question. Others used a gradually decreasing 

value for /3 (77,78) ̂  following either linear or nonlinear curves. In both cases it 

seems that the shear retention factor has been used more as a numerical device to 

obtain good results to match experimental data than as a real physical 

phenomenon. This seems inevitable because of the following reasons: (1) the actual 

contribution of the shear transfer mechanisms, i.e., aggregate interlocking and dowel

action is not precisely known yet, (2) more experimental data and also a

unification of existing data is needed, (3) even if all that is done, the treatment of 

shear transfer with all its components is still uncertain to produce a single finite 

element model to suit all stress states at one stroke. Because of the variation of 

the reinforced concrete behaviour under different loading conditions, (4) the shear

transfer is interrelated with the other aspects of nonlinear behaviour of reinforced

concrete such as tension stiffening and bond— slip behaviour and (5) in nonlinear 

finite element analysis numerical factors, e.g., convergence tolerance, maximum

number of iterations, increment size etc., also affect results obtained using whatever 

shear retention model is used(^^).

4.4.5.2 Shear Retention Factor Used in This Work

To achieve the aim of incorporating a realistic shear retention factor to model
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shear transfer across cracked concrete, the following nonlinear relationship based on 

the average of the three principal strains at any cracked point is used.

/3 =  1 for fm <  eto (for uncracked concrete)

@ = 0.25 rto/ em for em ^ q Q (4.64)

where 0 is the shear retention factor; em is the average of the three principal

strains at a cracked point; and eto is the cracking tensile strain which was taken 

as 0.0001. The above relationship seems more realistic than a constant factor 

because the physical contact between the two faces of the cracked planes weakens 

at larger crack widths, thus decreasing the aggregate interlocking forces. The above 

equation (4.64) is a modified version of equation (4.65) proposed originally by 

Al— Mahadi(77) for two dimensional analysis.

0 = 1  for q  <  ct0 (for uncracked concrete)

0 =  0.4 eto/ q  for q  ^ q Q (4.65)

where q  is the maximum principal tensile strain and q Q is the cracking tensile

strain which was taken as 0 .0002 .

In the present work, irrespective of the number of cracks at a single Gauss 

point one shear retention factor is used for all the cracks at that point. The

equation (4.65) which contains maximum principal tensile strain only was modified 

to reflect the effect of all the three principal strains.

4.5 Nonlinear Method of Solution

4.5.1 Introduction

A nonlinear structural problem must obey the basic laws of continuum

mechanics, i.e., equilibrium, compatibility, and the constitutive relations of the 

material. Displacement compatibility is automatically satisfied in the displacement 

finite element technique. Common nodes between elements ensure continuity and
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compatibility of displacements along element boundaries, and polynomial shape 

functions ensure continuity and single valued displacements internally. Therefore it 

becomes necessary only to enforce that the nonlinear constitutive relations are 

correctly satisfied whilst at the same time preserving the equilibrium of the 

structure.

There can be several causes of nonlinear behaviour in a structure, which can 

be divided into three categories:

1) Material nonlinearity

2) Geometric nonlinearity

3) Mixed material and geometric nonlinearity

Stress— strain relations are a major source of nonlinearity. These can vary from 

short— term nonlinear relationships between stress and strain such as plasticity, 

cracking, nonlinear elasticity, etc. to time—dependent effects such as creep and 

shrinkage.

Only nonlinearity caused by short— term nonlinear behaviour of concrete and 

steel is considered in this study. These include the tensile cracking of concrete, the 

nonlinear stress— strain relations of concrete, and the yielding and work— hardening 

of steel. Details of the laws representing these behaviour have been discussed 

earlier in this chapter.

A nonlinear solution is obtained by solving a series of linear problems such 

that the appropriate nonlinear conditions are satisfied at any stage to a specified 

degree of accuracy. This technique is required because contrary to linear equations, 

there is no general method which uniquely solves nonlinear equations. In fact it is 

usually impossible to obtain the explicit form of these equations in the first place. 

One way of achieving this goal is to ensure that at any loading stage, the solution 

results in stresses consistent with the displacement field and satisfying the given 

constitutive equations. These stresses will be statically equivalent to a set of internal 

nodal forces which should be in equilibrium with the externally applied loads. In
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general, these equivalent nodal forces are not equal and the differences between 

the external and internal forces are termed "residual forces". These residuals must 

be removed by repeatedly applying them on the structure until an acceptable 

tolerance is achieved.

4,5.2 Numerical Techniques for Nonlinear Analysis

The solution of nonlinear problems by the finite element method are usually 

attempted by one of the following three basic techniques:

a) Incremental (step— wise procedure)

b) Iterative (Newton methods)

c) Incremental—Iterative (mixed procedure)

where the nonlinearity occurs in the stiffness matrix [K] which, in the case of 

short— term behaviour of reinforced concrete, is a function of nonlinear material 

properties.

The general method of each method is similar. For problems where only the 

material behaviour is nonlinear, as in our case, the relationship between stress and 

strain is assumed to be of the form:

The element stiffness matrix is a function of the material properties and can be 

written as:

The external nodal forces [R] are related to the nodal displacements [5] through 

the element stiffness and can be expressed by:

f ( <r, e ) =  0 (4.66)

[K] =  K ( a , r ) (4.67)

[R] =  [K] [6] (4.68)

which on inversion becomes:

or

[ 6] =  [K]—1 [R]

[S ]  =  [K  (tr. e ) ] -  1 [R ]

(4.69)

(4.70)
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This derivation illustrates the basic nonlinear relationship between [5] and [R], due 

to the influence of the material laws on [K].

Equation (4.70) is sloved by successive linear approximations. The three 

methods mentioned above are now briefly discussed. Further details are given in 

R eferen ces^  ,77,79)

4.5.2.1 Incremental Method

The basis of the incremental method is the subdivision of the total applied 

load vector into smaller increments, which do not necessarily need to be equal. 

During each load increment, Equation (4.69) is assumed to be linear, i.e., a fixed 

value of [K] is assumed using material data existing at the end of the previous 

increment. Nodal displacements can be obtained for each increment and these are 

added to the previously accumulated displacements. The process is repeated until 

the total load is reached. No account is taken of the force redistribution during the 

application of the incremental load (i.e., no iteration process exists to restore

equilibrium).

The accuracy of the incremental method can be improved by using small 

increment size, but this results in increased computational effort. The mid— point 

Runge- Kutta scheme is a modification of the incremental method which utilizes

the additional computational effort, where two cycles of analysis are performed for 

each load increment. The first step is to apply half the load increment and to

calculate new stiffness corresponding to the total stresses at this value. These 

stiffnesses are then utilized to compute an approximation for the full load

increment.

4-5.2.2 Iterative Method

In this method, the full load is applied in one increment. Stresses are 

evaluated at that load according to the material law. Then the equivalent nodal
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forces are computed using these stresses. These may not be in equilibrium with the 

externally applied loads. The unbalanced nodal forces [ F J ,  i.e., the difference 

between the external and internal forces, is calculated. These unbalanced forces are 

then used to compute an additional increment of displacement, and hence new 

stresses, which give a new set of equivalent nodal forces. This process is repeated 

until equilibrium is approximated to some acceptable degree. When this stage is 

reached the total displacement is taken as the sum of the accumulated 

displacements from each iteration.

4.5.2.3 Mixed Method (Incremental— Iterative!

The mixed method utilizes a combination of the incremental and iterative 

schemes. In this case the load is applied in increments, but after each increment 

successive iterations are performed until equilibrium is achieved to the acceptable 

level of accuracy. Because the mixed method combines the advantages of both the 

incremental and iterative procedures and tends to minimize the disadvantages of 

each(80), the method is widely used. The additional computational effort is justified 

by the fact that the iterative part of the procedure permits one to assess the

'quality' of the approximate equilibrium at each stage. Further discussions on the

merits and demerits of each technique can be found in refe ren ces '^ ,50,80)

4.5.2.'4 Methods Used in This Work

A modified version of the mixed procedure is used in the present work. The 

modified "Newton— Raphson" approach is used to evaluate the stiffnesses. The 

stiffnesses are evaluated using a secant rigidity matrix; and it was found that 

varying the stiffness at the second iteration in each increment results in the

cheapest" solution. For the calculation of the unbalanced nodal forces, a 

modification of the initial stress method is used, termed the method of "Residual 

Forces" (73,76,81) ^he  basjc technique is that, at any stage, a load system

equivalent to the total stress level is evaluated and checked against the applied
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loading system. The difference between the two will result in a set of residuals 

that are a measure of lack of equilibrium. These residuals are then applied to the 

structure to restore equilibrium. The process is then repeatedly continued to 

dissipate the out— of— balance forces (or the residuals) to a sufficiently small value. 

Thus for equilibrium it is required that:

where [<r] are the actual stresses depending on the constitutive law being used, [R] 

is external load vector, [Fu] the residual forces.

4.5.3 Convergence Criteria

4.5.3.1 General

Since the main purpose of the iteration process is the redistribution of the 

out- of— balance residual forces, a reliable convergence criterion must be used to 

monitor the convergence to equilibrium state and terminate the iterative process 

when the desired accuracy has been achieved. The accuracy is specified by the user 

through what is called "convergence tolerances" (Ref.49,73,76,81). These 

convergence tolerances are quantitative values that determine the accuracy of 

equilibrium acceptable to the user. The convergence tolerances must be realistic. If 

they are too 'loose', inaccuracy may result, if they are too 'tight', much expensive 

effort is spent to obtain needless accuracy.

One possible method of checking convergence is to compare each individual 

nodal value (displacement) with the corresponding value obtained on the previous 

iteration^!). Then, provided that this change is negligibly small for all nodal 

points, convergence can be deemed to have occured. This local checking is 

expensive. Therefore a check based on some global norm is preferable. The 

convergence criteria can be based on various quantities; either directly on the 

unbalanced forces, indirectly on displacements, on energy changes or on changes in 

stress values.

[ R ] -  0 (4.71)
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Three types of convergence criteria have been in common use for structural 

analysis, namely:

(a) Force convergence criterion

(5) Displacement convergence criterion

(c) Energy convergence criterion

Each of the three alternatives has its merits, and the selection of a suitable 

one depends on many factors. In the displacement criterion inconsistencies in units 

(e.g., displacements and rotations) may occur and must be avoided. The same 

holds true for force criterion (i.e., inconsistencies of force and moment units).

Although the use of a combination of displacement and force criterion may seem 

ideal and has been recommended by some investigators (82,83) ̂ the equilibrium of 

forces is sometimes difficult to achieve even when iterative displacements are 

converging within 'tight' tolerances. This is particularly true for reinforced concrete 

structures when cracking of concrete usually makes it very difficult to achieve 

equilibrium because large residual forces are released.

This observation is supplemented by the findings of Cope and Rao(^^), in 

their study on the monitoring indices for nonlinear analysis of reinforced concrete. 

However, the rate of convergence depends on the method used in the solution

(e.g., constant or variable stiffness). It is also required to specify a maximum 

number of iterations, irrespective of the state of convergence. The maximum

number of iterations may influence the predicted shape of the load— deflection

curve, but it is an important safeguard against unlimited and often unnecessary 

cycles of full solution.

An energy convergence criterion has been used by Cope and Rao^'O, where 

they found that a convergence tolerance of 1—2.5% was appropriate to yield 

acceptable results in an analysis of reinforced concrete skew slabs. However, 

whatever criterion is chosen, care must be taken to avoid spending much effort
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trying to obtain the unattainable and perhaps needless accuracy. Special attention 

must be given to the cracking stage when large forces are suddenly released into 

the system.

4.5.3.2 Convergence Criterion Used in This Work

In this study, the convergence process is based on a force convergence 

criterion. Because it is a direct measure of equilibrium between the internal and 

external forces. A global approach is adopted, where convergence is monitored 

using norms as follows:

where N is the total number of nodal points in the system, r denotes the iteration 

number, Fuj is the residual force at node i and Ri is the total external applied

load at node i.

This criterion states that the convergence occurs if the norm of the residual

forces becomes less than a specified tolerance times the norm of the total applied

forces.

4-5.4 Analysis Termination Criterion

The program must have some means of detecting the collapse of the structure. 

The failure of the structure takes place when no further loading can be sustained. 

A maximum deflection can be used as a criterion to stop the analysis at

failure(^5) empirical expression can be used to detect maximum deflection, but 

obviously this needs great care and no one expression can fit all situations.

The maximum iterations can also be used. When a specified number of

N 2 0.5

x 100  ̂ Toler (4.72)
N 2 0.5
E ( R j)
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iterations has been performed without achieving convergence, the structure is 

deemed to have failed and the failure load can then be estimated. It must be 

mentioned here that this criterion is not always sufficient to indicate the failure of 

the structure. Since it can be satisfied while the solution is slowly converging when 

severe discontinuity occurs due to extensive cracking or in the event of large 

displacements. It may also occur when large load increments are used or very tight 

convergence tolerances are specified. However, if realistic maximum number of 

iterations (which may be expensive) is used and the solution continues not to 

converge, for a number of load increments, then this can be a realistic indication 

of failure.

In this study, however, the growth of iterative displacements is used to detect 

failure. This is coupled with a search through the diagonal terms of the stiffness 

matrix to detect zero or negative values, in which case the analysis is terminated. 

It was found that negative or zero pivots were always associated with very large

displacements at or immediately beyond the failure loads and always occured after 

2—3 unconverged (sometimes diverged) increments. This was also associated with 

severe cracking, yielding and eventually crushing situations.

4.5.5 The Frontal Solution Technique

In the nonlinear stress analysis using finite elements, researchers are now more

interested in using elements with higher degrees of freedom. This inevitably results 

in a large set of simultaneous equations to be solved repeatedly, thus creating high 

demand for computer storage.

The three main solution strategies for large equation systems are bandsolvers, 

partitioning methods, and frontal solutions. In this work a version of the frontal 

solution, originally introduced by Irons(^) an(j later modified by Hinton and

Owen(87)t js usecj ^he majn feature of the frontal solution technique is that, it 

assembles the equations and eliminates the variables at the same time. This means
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that the total stiffness matrix of the structure is never formed as such, since the

reduced equations corresponding to the eliminated variables are stored in core in a 

temporary array called a buffer area(81). As soon as this array is full, the 

information is then transferred to disc. This process results in a considerable 

efficiency in the way core storage is handled. Thus much valuable computer time is 

saved through proper housekeeping. The saving due to the use of buffer area may 

amount to about 50% compared with the use of ordinary backing disc s to re d ) . 

Another important feature of the frontal technique is that, in contrast to a band 

solver, node numbering is irrelevant and it is the element numbering that

m atters^). Because in a band solver the storage allocation is determined by the 

order in which the nodes are presented for assembly, while in the front solver the

storage is determined by the order in which the elements are presented. Further

details about the frontal method can be found in references(76 ,81 ,87)

4.5.6 Computations Procedure for Fixed Crack Analysis

Consider the analysis at a particular iteration i. The displacements are 

calculated according to equation (4.70) using the appropriate rigidity matrix 

t^lx,y,z-

(1) For every stress sampling point, evaluate the incremental values of strains [Aej]

and stresses [Acq] using the appropriate rigidity matrix [D ]x ,y,z-

(2) Check whether the sampling point under consideration has suffered from a 

compressive crushing situation in any of the previous load cycles, if so step

(8) will be executed.

(3) Check whether this stress sampling point has suffered from a tensile cracking

situation in any of the previous load cycles, if so step (7) will be executed.

(4) Using the stress— strain relationships described in the concrete material law, 

evaluate the total actual stresses in concrete [<q] which correspond to the
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linearly calculated total strains.

[ o-j ] = [ o" i-l ] + [ D.x , y , z

(5) Check for concrete compressive failure criteria violation. If violated, all the 

stress components at this Gauss point will be set to zero in this iteration and 

in all the subsequent load cycles: [trj] =  0 .0 ; also the components of

thejrigidity matrix will be set to zero for stiffness calculations in all the 

subsequent load cycles.

(6) Check for concrete tensile failure criteria. If violated a crack will occur, thus a

new rigidity matrix [Dc]x>y,z formulated according to the number and

directions of the cracks.

(7) If previously cracked in one direction, it is required to check for further 

cracking as follows:

(a) for the previous load cycle, the principal stresses crj; a 3

direction cosines ( m j, nj ); ( 0.2, rn2 , n2 ) and ( 03, m3, n3 ). These

directions are termed here as x ', y', z ' as shown in Figure (4.11).

(b) In the present load cycle, these direction cosines which were obtained

from the previous load cycle were used in stiffness calculation to evaluate the 

new stress vector [a] with regard to the appropriate rigidity matrix [Dc].

(c) Now for principal stress calculation in cracked material, the new stress 

vector [a] will be transformed from x, y, z space to [a'] in x \  y \  z' space 

by

M  =  [Tff]. [<T]
(4.73)
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where [T^] is the transformation matrix for stress vector(50) which takes the 

following form:

H i2 21113̂ * lml ml nl nl* l

h22 m22 n22 *2m2 m2n2 n2*2

h32 m32 n32 * 3m3 m3n3 n3*3

[T„-] -
*1*2 11131112 nl n2 (̂ 31112+̂ 21113) (m3n2+m2n3 ) (n3^2+n2^3 )

*1*3 m2ni3 n2n3 (£2m3+-23m2) (m2n3+ni3n2 ) (112*3+03*2)

*3*1 m3ml n3nl (£3m3+£3m3) (m3n3+m3n3 ) ( n3*l+ ni*3)

The new transformed stress tensor, [o'] will be (see Figure 4.11)

[a'] = [ <r’x a a' y u z _ I _ 17 xy 7 yz r '  1T 7 zx i (4.

and for the instance of a crack caused by the value of <r'x will be set to zero 

(o'! = cr*x) , and to evaluate the new values of cr'2  and c ' 3 we are dealing with a 

two dimensional problem of which the active stress components are Oy, o 'x, TyZ,

thus

o' 2 , <r' 3
(Ty +  C T Z J Oy ~ <̂ z

+ ( r y z >2 (4.76)

ta n  2ct
2 T *

(4.77)

where a is the angle by which the directions of <r'2» <r'3  deviated from y \  z' 

axes in the event of a crack caused by 03 (Figure 4.12)

(d) Having got the angle a, and knowing the direction cosines of x \  y \  z 

axes with respect to the global x, y, z space, we need to calculate the 

direction cosines of a '2 ’, 0^3 which are (£ '2* m'2» n '2). (^*3* m 3* n>3)’ suc^
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F ig u re  (4 .1 1 )  : P r in c ip a l  s t r e s s e s  in  g lo b a l a x e s .

< f .
3

Figure (4 .1 2 )  : The a n g l e  o f  th e  new p r i n c i p a l  s t r e s s  d i r e c t i o n
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that their plane remains perpendicular to the already fixed direction of 

which caused the crack in our example. This can be done as follows:

if [cr*] = [A] [a]

and [cr”] =  [C] [a '] (4.78)

then [a"] =  [C] [A] [a]

where [A] and [C] are the appropriate transformation matrices. The product

[C] [A] will contain all the required direction cosines of the new principal

stresses contained in [a"].

(e) These nine values of direction cosines will be the ones to be used in the 

next load cycle for stiffness and new stress vector calculations; and the values 

of the principal stresses 0^2 . cr' 3 will be used to check against the cracking

criterion because a\ was set to zero (in this example). If the cracking 

criterion is violated further cracks will occur and the appropriate rigidity

matrix [Dc] must be used.

(8) Evaluate the equivalent nodal forces contributed by concrete element

[ ^ i J c o n c  =  J v  f  ®  t  a i  J

(9) Add the equivalent nodal forces contributed by concrete element to those 

contributed by steel reinforcement to get the total equivalent nodal forces

of the element, [Pj]

[Pj] = [Pj]conc +  f^ilsteel

(10) Check for convergence.
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CHAPTER FIVE 

TEST SETUP, MATERIALS AND INSTRUMENTATION

5.1 Introduction

This chapter describes in detail the experimental s e t-u p  which was designed 

and constructed to study the strength and behaviour of a series of reinforced 

concrete shearwall— floor slab connections under monotonic and reverse cyclic 

loading. The experimental work is divided into three test series, viz. (a) 

preliminary test series, which consisted of three models (PS1 to PS3), (b) main test 

series which consisted of nine models (MS4 to MSI 2), and (c) reverse cyclic 

loading test series comprising three models (MRS13 to MRS15). The detailed 

description of these models and their behaviour during loading will be described in 

chapters six and eight. In this chapter the materials used for the construction of 

the models and their properties are described. The instruments employed for 

measurements of the various quantities during the tests, as well as the test 

procedure, are also explained.

5.2 Experimental Setup

The test specimens consisted of either rectangular or flanged shear wall

supporting a horizontal slab. The overall shape of a typical model from both the 

groups is shown in Figure (5.1). A three dimensional steel test—rig was designed 

and constructed to hold the model in position for a maximum wind load of about 

400 KN applied in both vertically up and downward direction. The supporting

system and the loading rig used for testing the models under both gravity and 

lateral wind load will be discussed in the following sections.

Supporting Arrangement

When wind load was applied in downward direction along the line 'AB* of the

slab (See Figure 5 .1), a steel stand assisted in resisting the rotation of the model



139

a)  R e c t a n g u l a r  s h e a r  w a l l .

'G HA

b) F la n g e d  s h e a r  w a l l .

Figure (5 .1 )  ; I s o m e tr ic  v iew  o f  t y p ic a l  m odels.
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as shown in Figure 5.2. The model had a vertical hole in the wall. Through this

hole the model was clamped to the "strong floor" using a 12 mm prestressing

strand with a force of 2 KN.

During the testing of the fifth model, when applied lateral load was higher 

than the design load, the model started to rotate at front edge of the wall 'EF'

(see Figure 5.1). It was found very difficult to resist the rigid body movement of 

the model using one prestressing strand. To avoid rotation and the large rigid body 

movement, two vertical holes were provided in the wall of the rest of the models 

and they were clamped to the floor of the laboratory using two prestressing strand 

as shown in Figure (5.3).

For reverse cyclic loading series, when lateral load was applied in upward

direction, the model started to rotate at the back edge of the wall 'GH ' (Figure

5.1) and the previous supporting system was found ineffective in resisting the 

upward rigid body movement of the model. The wall at the back started crushing 

due to the concentration of the stresses along line GH. Another hollow beam 

section was designed and the model was held down by that transverse beam using 

three 15 mm high strength prestressing strand. Figure (5.4) shows the supporting 

arrangement used for the models of cyclic loading series.

5-2.2 Loading Arrangement

5.2.2.1 Gravity Load

Gravity load was applied through two beams placed on the edge of the slab 

parallel to the web of the wall as shown in Figures (5.5) and (5.6—a). The load

was applied to each side of the model by tightening the nuts on two rods. One

end of the rod was anchored to the floor of the laboratory and the other end to 

the top beam (resting on the slab). 50 KN load cells, one for each bar were used 

to monitor the applied gravity load.



141

|« -  MO —*)

r = u

^ I k -  550 J" 625 ------ *|200

370 s t e e l  s ta n d  
v (.60x60x10

p r e s t r e s s i n g

s t r a n d HRS150x150*10700

SLAB
800

270

mwvvfjJwrmnrrjTnr*

F igu re  ( 5 .2 )  : S u p p o r tin g  a rrangem en t fo r  m odels 

PS1 to  MSS.
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Figure (5 .3 )  : Photograph showing support ing  arrangement 

for models MS6 to MS12.

Figure (5 .4 )  : Photograph showing support ing arrangement 

for reverse c y c l in g  models.
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S.2.2.2 Lateral Load

In this investigation, the lateral load is simulated by a uniform displacement of 

the edge of the slab ('A B ' in Figure 5.1). This was achieved for the models, 

loaded monotonically to failure, by means of a loading frame which consisted of 

tw o 150 x 150 x 10 mm square hollow sections, strengthened by welding 12 mm 

thick plates. The upper beam rested on the edge of the slab while the lower beam 

was supported from upper beam by means of two threaded steel rods of 35 mm 

diameter mild steel, one on each side of the beams, as shown in Figures (5.5) and 

(5.6—b). The frame was pulled down by a manually operated hydraulic jack of 500 

KN capacity using a steel rod of 50 mm diameter. The upper end of which was 

fixed to the lower beam at its centre. Photograph (5.7—a) shows this arrangement.

For the models which were tested for reverse cyclic loading, the downward 

and upward load was applied by a slightly modified loading frame as shown in 

Figure (5.7—b). An additional steel tubular portal frame was designed and 

constructed to carry the downward (pushing) reaction of the hydraulic jack when 

the frame was pulled up by another additional steel rod of 50 mm diameter. The 

lower end of this rod was fixed to the top beam at its centre. Both the top and 

bottom beams were placed on the slab edge by means of plaster and connected to 

each other by the same two rods of 35 mm diameter. For lateral stability, the 

portal frame was supported by two inclined steel sections at the two edges of the 

vertical post. Two 500 KN load cells, one at the bottom of the 'strong' floor and 

the other at top of portal frame, were used to measure the amount of wind load 

applied to the model.

^•2.3 Installation of Specimen

This involved the following steps:

(a) For reverse cyclic loading, placing the steel tubular portal frame in position

and anchoring to the laboratory floor.



Lateral  load

Figure (5 .5 )  : Typical model with loading beams.
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Wall

Small load cells
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Figure (5 .6 -b )  : Loading arrangement for models,  

(g ra v i ty  load alone)
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Figure (5 .7 -a )  : Photograph showing loading arrangement for 

models PS1 to MS12

Figure (5 .7 -b )  : Photograph showing loading arrangement for 

reverse  c y c l i c  models.
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(b) Placing the model with the help of plaster in marked position of the 'strong 

floor' and checking the leveling by spirit level.

(c) Anchoring the wall using the steel stand.

(d) For reverse cyclic loading series, placing the transverse beam perpendicular to 

the steel stand and tightening the additional prestressing strands.

(e) Placing the top and bottom lateral loading beams on the slab edge of corridor

opening with the help of plaster and two 35 mm threaded steel rods.

(f) Placing the 50 mm diameter steel rod vertically up through the strong floor in

position and connecting with the bottom loading beam.

(g) For reverse cyclic loading, connecting similar vertical steel rod passing through

the portal frame with the top loading beam.

(h) Placing the load cells and the hydraulic jacks through each vertical rod and

then nuts are tightened.

(i) Placing the gravity load beams on both sides and the four 12 mm diameter

steel rods with nuts and load cells for gravity loading.

(k) Placing the steel angle frame with dial gauges in appropriate position.

(1) Connecting the load cells, transducers and strain gauges to the data logger for 

continuous measurements of the various quantities.

5.3 Materials Used

5.3.1 Concrete

The concrete mix consisted of rapid hardening portland cement, 10 mm

uncrushed gravels and zone 2 Hyndford sand. The coarse and fine aggregate used

in the concrete mix were obtained from Lanarkshire. A mix proportion of

1.1.48:2.6 was used for an average cube strength of 40 N/mm2  at 7 days. After

having mixed these materials for about two minutes in a dry state, water was 

added such that the water cement ratio was 0.48. Six 100 mm cubes and at least 

four 150 mm x 300 mm cylinders were cast with each specimen. The cubes were 

used to determine the cube strength, two cylinders for the split tensile strength and
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remaining cylinders to determine the concrete Young's modulus (and the stress- 

strain curve) and the cylinder compressive strength. A typical stress— strain curve of 

concrete is shown in Figure (5.8).

5.3.2 Reinforcing Steel

High yield deformed, hot rolled and cold twisted, bars of diameter 6 , 8 , 10 

and 12 mm were used as reinforcement. Random samples were cut from the 

batches of steel bars for all the different diameters and were tested in Tinus Olsen 

Universal Class A testing machine, fitted with a S— type electronic extensometer. 

Tests were carried out in accordance with the manufacturer's instruction manual. 

Typical stress— strain curves for each diameter as obtained from the testing machine 

are presented in Figures (5.10) to (5.13). Since the yield point for all the bars was 

not well defined (see Figures (5.10) to (5.13)), the yield stress of the bar was 

taken as the stress at which a line parallel to the initial slope of the curve from 

0.2% proof strain intersects the curve. The yield strain was taken as the strain at 

which the straight line portion, when extended, intersects with the yield stress as 

illustrated in Figure (5.9). The mean value of three specimens from each diameter 

are presented in table (5 .1).

Table (5.1) Properties of Steel Reinforcement

Bar s iz e  Y ie ld  S t r e s s Y ie ld  S t r a i n  Young's modulus

N/mm^

6 570 0.002817 204.8

8 477 0 .002425 202.8

10 523 0 .002536 211.0

12 531 0.002499 212.9
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Figure (5 .8 )  : Typical s t r e s s - s t r a i n  curve for concrete.
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Figure (5 .9 )  : D e f in i t i o n s  o f  y i e l d  s t r e s s  and s tra in  

o f  s t e e l  reinforcement.
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gure (5 .13)  : Typical s t r e s s - s t r a i n  curve for a bar 

o f  12 mm diameter.
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5.4 in s t r u m e n t a t io n .

All the models were instrumented to measure the loads, deflections and 

strains. Models of reverse cyclic loading test series were additionally instrumented to 

measure the rotation of the slab with respect to the wall.

5.4.1 Measurement of the Applied Loads

The total applied lateral load was monitored by means of a compression load 

cell of 500 KN capacity for models PS1 to MSI2. An additional load cell of same 

capacity was used for reverse cyclic models MRS13 to MRS15. Gravity loads were 

monitored by four 50 KN capacity load cells attached to each of the four bars 

used for gravity loading (Figure 5.5).

5.4.2 Measurement of Vertical Displacements

Deflections were measured at various points of the slab as shown in Figure 

(5.14) by means of electrical displacement transducers. A supporting frame of 

'Handy Angles' was made and the transducers were fixed to it at the required 

points by using clamp brackets. To facilitate recording of results, linear voltage 

displacement transducers (LVDT) were used in conjunction with an automatic data 

storing and processing data logger, which recorded directly the displacement in mm 

to an accuracy of 0.01 mm. The average deflection along the line of contraflexure 

(line AB in Figure 5.14—a) was considered for lateral load—deflection relationships; 

while other readings of deflection were taken mainly to monitor the variation of 

deflection along the line of contraflexure.

In addition three dial gauges reading to 0.01 mm were also installed in the 

front of the slab to cross check the accuracy of the transducer measurements. 

Upward / downward deflections at the back and along the wall were also measured 

by dial gauges to allow for necessary corrections of slab deflections due to rigid 

body rotation.



154

80

h  »“ ?----------- 1— +150 i / 2 - 150 Y/2 -1 5 0  150

75

*-75

L/ 2

£ — + 7 -------------1-7--------------- 1— 5
150 Y /2-150  Y /2-150 150

(a) Models under monotonic loading

7 5

w - 7 5

L / 2

I— I---------- 1----------- 1--------- 1— I
75 Y/2-225 300 Y/2-225 75

(b) Models under reversed c y c l i c  loading

figure (5 .14)  : Location o f  displacement transducers



155

5 4.3 Potation of the Slab Relative to the Wall

For reverse cyclic loading models, the rotation of the slab relative to the wall

was measured at one slab thickness from the slab by two transducers, (one above

and one below the slab- wall connection) mounted on two steel plates attached to

the slab as shown in Figure (5.15). From an external supply, both transducers 

were supplied 1 volt across resistor 'ab '. Terminal c of the transducers were then 

connected across the voltage input terminal of the Orion Data Logger. As the 

resistors are linear, the initial voltage across the terminal reads zero. During 

loading, when the wall rotates, the point c on each terminal moves on resistor 

'ab'. This causes a voltage change (in milivolt) at Data Logger input. The voltage

A -was converted to read displacement in milimeter by multiplying by calibration factor
A.

of 59.9434.

5.4.4 Measurement of Strains

Electrical resistance strain gauges were used to measure the tensile strain in 

steel and surface compressive strain on the concrete. The compressive strains were 

measured on the bottom of the slab along a section passing through the slab near 

the inner edge of wall. Strains in wall at certain sections were also measured. The 

location of these points in the slab and wall of a typical model is shown in Figure 

(5.16). The strain gauges used for concrete were 10 mm long with the elongation 

capacity of ± 6% and a gauge factor of 2.04 at a temperature of 75® F. Their 

internal resistance was 120 ± 0.3 % ohms. Depending on the availability, two 

different types of strain gauges, namely student EA.0.6.2401Z—120 and Jurvis 

Cu45Ni, were used on the steel bars. All strain gauges were connected to a linear 

voltage processing data logger (Type Orion A), which directly recorded the strains 

at each point for each load increment.

5-4-5 Crack Width

Crack width was measured by means of a hand held crack width microscope
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measuring to 0.05 mm. The selection of the crack for measurement was based on 

the most dominant cracks at the nose of the rectangular wall models and at the

inner flange— tip of the T— section wall in the case of flanged models.

5.5 Preparation of Specimens and Test Procedure

5.5.1 Strain Gauging

The first step towards specimen preparation was the fabrication of 

reinforcement and mounting of the steel strain gauges at the selected positions on 

the reinforcing bar. For fixing strain gauges on steel, the bar surface at the 

required location was filed and smoothened with sand paper. Care was taken not to 

remove considerable area of steel during the operation. The surface was then 

treated with M— prep neutralizer to remove dirt and grease(®^). To cement the 

strain gauge and terminal strip to the bar, M— bond 200 adhesive was employed. 

For gauge protection against moisture and mechanical damage during casting etc., 

protective coating white M— coat D and epoxy resin were applied on the gauge and 

terminal. A final resistance check was carried out by voltmeter for each strain 

gauge.

5.5.2 Formwork and Reinforcement Cage

The formwork needed for fabrication was made from 18 mm thick coated

plywood sheet and 50 x 50 mm timber battens were used to reinforce the 

corners. To achieve flexibility and reuse of the formwork for more than one 

specimen, slab dimensions were adjusted on a 1500 x 1500 mm plywood sheet. All 

formwork was oiled for easy removal. Wall reinforcement cage was properly 

positioned first in the formwork and then the slab reinforcing cage was placed

inside the wall reinforcement and formwork ready for casting. 15 mm concrete 

cover was maintained on top and bottom surface of the slab, using plastic cover 

spacers.
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5.5.3 lasting and Curing

Casting was normally done in six to eight batches of concrete, depending on 

the size of the model. In order to prevent the downward drift of fresh concrete 

in the upper portion of the wall towards the slab, the slab and the lower portion 

of wall were cast first and after a break of about three hours, the upper portion 

of wall was cast. Care was taken to ensure bonding of the two mixes and

collection of control specimens (cubes and cylinders) from both batches. The 

specimen was compacted using 12 mm internal poker vibrator. The cubes and

cylinders were compacted by means of a vibrating table. The steel rods used for

providing holes in the wall and slab were removed at the end of the day.

After casting, the model and the control cubes and cylinders were cured under 

damp hessian for the first three days. The specimen was then removed from the

formwork for final curing under laborartory conditions until the time of testing.

5.5.4 Demec Gauges and Electrical Resistance Strain 

Gauges on Concrete Surface

The specimen was painted white in order to enable clear tracing of cracks. 

Demec gauges were glued to the top concrete surface using Araldite. On the

bottom compressive side (except for models MRS13 to MRS15) concrete strain 

gauges were fixed at marked position as shown in Figure (5.17). For fixing the

strain gauges, the concrete surface was firstly cleaned and made smooth by

grinding, using a grinding stone and then smoothened by a fine emery paper. 

Carbon tetrachloride was used to remove the grease and dirt. A thin coating of 

Adhesive and Hardener mixture was applied to the cleaned surface and the strain 

gauge was stuck on it by firmly pressing with the thumb for about two minutes. 

After a few hours, the wires were soldered to the gauges and terminals. 

Protective coating (white M—Coat D) was then applied to the strain gauges. The

specimen was then installed in position ready for testing (section 5.2).
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5.5.5 Tfrst Procedure

Initial zero load readings were taken of all load cells, transducers, and strain 

gauges for each model before starting the test. In all models gravity loads were 

applied in the first five equal increments and then lateral load was applied in 10 

KN increments. The gravity load was constantly monitored and maintained at its 

ultimate value as far as practicable while lateral load was applied. The reason for 

the adjustment is that the deflection of the slab due to lateral load alters gravity 

load. Therefore gravity loads were readjusted to the desired values after each 

lateral load application. Care was taken to see that the applied load was not 

causing any eccentricity and consequent twisting of the model. Loading was

continued until failure was noted by either a continuous drop of applied load value 

or a sudden fall of that value combined by a physically noticeable failure.

For models of reverse cyclic loadings, gravity load was applied first and then 

a downward load was applied in increments to the cantilever slab and the relative 

rotation between the wall and cantilever slab was measured by transducers. From 

a plot of the load versus the rotation and load versus the steel strain, the yield

rotation, 0y, was calculated. After this initial loading, the downward load was

released and the cantilever slab was reloaded in the upward direction. The cycles 

of loading as discussed in chapter eight, was maintained until the model failed in 

the same way as for monotonic loading.

During loading, crack propagation was closely monitored and traced on the 

slab. The corresponding load increment was recorded on the top surface at the tip 

of each crack. The total duration of a test for monotonic loading averaged between 

b to 8 hours depending on the total number of load increments applied. For

reverse cyclic loading, the test was continued over several days.
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CHAPTER SIX 

EXPERIMENTAL STUDY

6.1 Introduction

In this chapter, details of twelve ’large scale' reinforced concrete models tested 

u n d e r  monotonic loading condition are reported. Nine models had a slab connected 

to a rectangular shearwall, while the remaining three had a T— section shearwall,

as shown in Figures (6.1) and (6.2) respectively. Detailed description of another

three models tested under reversed cyclic loading condition will be reported in 

chapter eight.

It was stated in chapter two, that when load is transferred between slab and 

column, either as a result of lateral loadings or unbalanced gravity loadings, 

conditions at the slab to column connection are critical for determining the strength 

and stiffness of flat—slab structure. A typical wall—slab junction acted upon by 

shear and moment due to wind and gravity loads is shown in Figure (6.3). The

shear force due to Jwind load acts along the line of contraflexure (which is

approximately the centre line of the corridor opening), while the critical section for 

moment passes through the slab at the inner edge of the wall (see Figure (6.3)). 

This region around the shear wall — floor slab connection is the area of interest 

in this study.

Since the distribution of shear due to "wind loads, as discussed in chapter two, 

is not uniform, this shear will hereafter be referred to as uneven shear and the 

moments due to wind load will be called unbalanced moments. Unbalanced moment 

results from unequal consecutive slab spans, uneven loading of adjacent bays, edge 

column and in the case of slab— column structures due to lateral load.

6 1 1  Object of Tests

The object of the experimental study is to improve the shear strength and
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ductility of the slab wall junctions, using various type of shear reinforcement, 

when they are subjected to different combinations of lateral (wind) and vertical 

(gravity) loads. There is a lack of information on the behaviour and performance 

of shear wall-slab connections under seismic loading conditions. Some cyclic load 

tests were conducted to get informations on the deformations that may safely occur 

and the deterioration of load-carrying capacity of shear wall-floor slab 

connections. It was intended to study the behaviour of every models in terms of :

a) Load— deflection relationship.

b) Strain distribution in steel and concrete around the wall

c) Strain distribution in stirrup.

d) Crack pattern and crack propagation.

e) Ultimate load.

f) Modes of failure and failure characteristics.

6.1.2 Parameters of Study

To investigate the effectiveness of various type of shear reinforcement in 

preventing the brittle failure due to shear before failure by yielding of the most of 

the flexural reinforcement, preliminary tests were conducted on three models. The 

test results showed that vertical stirrups enclosing the top and bottom longitudinal 

reinforcement are effective in increasing the ductility and strength of the wall— slab 

junction.

The rest of the experimental models (which contained closed vertical stirrups 

as shear reinforcements) were devoted to investigate the effect of the following 

geometrical parameters (see Figure 6.2):

1) W all-web length, (W)

2) Wall— flange width, (Z)

3) Corridor opening width, (L)

4) Bay width of connecting slab, (Y)
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5) Ratio of total gravity load to'wind" load, (Vg/V^) and

6) Ratio of moment due to gravity load to shear due to gravity load (M /V )
8 6

The range of parameters were so chosen that the nondimensional structural 

parametric ratios would cover the practical range of tall buildings. In addition to 

the above, three models were tested under reverse cyclic loading conditions.

6.1.3 Boundary Conditions and Overall dimensions of models

The area of interest is the local stresses around the junction and therefore it 

is not important to duplicate all the boundary conditions of the structure. In the 

real structure of Figure (6.4), the boundary conditions for gravity load require zero

rotations around Y—axis at edges 'ab ' and 'cd' i,e., no slope, torsion and shear

force along edges 'ab ' and 'cd ' and zero rotations around X—axis at edge 'ad' 

i.e., no slope, torsion and shear force — only moment will exist at edge 'ad' (see

Figure 6.5). At the same time the boundary conditions for lateral load require zero

11 ilrotations around Y—axis at edges *ab\ 'cd*, and 'da' i.e., the wind loading causes 

slope, torsion and shear force but no moment along the line of contraflexure 'ad' 

as shown in Figure (6 .6). These requirements are not satisfied during testing of the 

models of Figures (6.1) and (6 .2). Only a portion of the floor plan which is 

shown shaded in Figure (6.4), with all the edges free as shown in Figure (6.3), 

was chosen for this study.

No great care was taken to make the models conform to the laws of 

geometrical similitude. The slab and wall thickness were maintained nearly equal to 

the prototype dimensions, to avoid size effect on the shear capacity and failure 

criteria of the slab. The overall slab width, corridor width, flange width etc. were 

fixed to study the parameters of section 6.1.2. Other dimensions were dictated by 

the location of the anchoring holes in the strong floor of the laboratory. Since our 

•nvestigation was concerned with the local effect (punching) around the wall- 'slab 

junction — the violation of uniform scaling down of the dimensions is unlikely to
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V1-uneven  sh e a r  due 
to  l a t e r a l  loads
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Figure ( 6.3 ) : An isometric view o f  a typ ica l  model with 
shears due to la ter a l  and gravi ty  loads

Figure ( 6 .4  ) : Plan o f  a typ ica l  s t r u c t u r e
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affect the structural behaviour of the model.

6.2 Test Programme

The experimental program may be divided into three parts :

i) Preliminary Test Series (or PS Series):

This series contains three models. The object was to find suitable form of

shear reinforcement that can be used in the slab and to explore the design 

procedure for the shear steel in such a way that the final failure of the model will 

be flexural.

ii) Main Test Series (or MS Series):

This series contains nine models. The object of this series was to verify the 

validity of the design procedure as described in details in section 3.6. No 

systematic exploration of the parameters governing the problem was carried out in 

this series. On the otherhand, representative models from the previous test 

series(23,24) were chosen and tested after redesigning them with shear 

reinforcement.

Reverse Cyclic Loading Series (or MRS Series):

This series contains three models. They were designed to study the effect of

repeated and reversed lateral loading due to wind forces, earthquake etc. on the

behaviour and strength of wall— slab connection. The detailed description of the

models of this series will be described in chapter eight.

Table (6 .1) shows the geometrical dimensions of the models and Table (6 .2) 

shows the grouping of the models to study various parameters. All the models were 

tested for combined wind and gravity loading. Gravity loads were applied in the 

first five equal increments. After this the lateral load was applied in 10 KN 

increments. The deflection due to lateral load affects gravity load values. Therefore 

gravity loads were adjusted to the desired values after each lateral load application.
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TABLE (6 .1 )  '• Di mens i on o f  model s  ( i n  mil  i me t e r )

model

no

wa 1 1 

web

wa 1 1 

f 1ange

wa 1 1 

t hi ckness

s 1 ab 

cant i 1 ever

s 1 ab 

wi dth
s 1 ab 

thickness

PS1 900 125 125 450 1000 150

PS2 900 125 125 450 1000 150

PS 3 900 125 125 450 1000 150

MS4 400 125 125 475 1000 150

MS 5 400 125 125 595 1000 150

MS 6 600 125 125 355 1000 150

MS 7 600 125 125 475 1000 150

MS8 600 125 125 475 1000 150

MS 9 600 125 125 475 1440 150

MS10 700 300 100 300 1000 100

MS 11 700 200 100 300 1000 100

MS12 700 400 100 300 1000 100

MRS 13 700 300 100 300 1000 100

MRS 14 600 125 125 475 1000 150

MRS15 600 125 125 355 1.000 150

TABLE ( 6 .2 )  G rouping  o f  m odels

Parameters in v o lv e d M odels in  th e  group

Wall leng th MS4 and MS7

Wind moment /W in d  s h e a r  r a t i o MS5, MS6 and MS7

Gravity /W in d  lo ad  r a t i o MS7 and MS8

Gravity moment /  G ra v ity  s h e a r  r a t i o MS7 and MS9

Flange w idth MS10, MSll and MS12

Reverse c y c l ic  lo a d in g MRS13, MRS14 and MRS15
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All the measured displacements along the centre of the corridor opening were 

c o r r e c te d  for rigid body rotations of the models and the wall deformation from the 

dial gauge readings taken at 3 to 4 positions along the wall as shown in Figures 

(6.7) and (6 .8). The deflection at front edge due to rigid body rotation was 

c a lc u la te d  and deducted from the measured transducer displacements. The correction 

against wall deformation was calculated using the following procedure.

It is assumed that along a vertical line, the strains are constant in the wall. 

However variation of strain at a horizontal section is linear. Therefore referring to 

Figure (6.9) :

( c i  -  c 2 ) H

0 ---------------------
B

where e] and c2 are the measured strains in the walls at points (1) and (2). and 

H and B are as shown in Figure (6.9).

Then correction =  0 . 1 ^ .  (6.1)

where Lc is as shown in Figure (6.9).

The various experimental data on the behaviour of the models and the results are

presented for each model in the following order:

i) Sketches showing shape and dimensions of the model,

ii) Reinforcement details,

iii) Load—deflection curve,

iv) Distribution of strains, and

v) Crack pattern.

AH fifteen models reported in this thesis were designed using direct design 

approach explained in chapter t  h r  ee  ̂assuming cube crushing strength of concrete 

equaH to 40 N/mm^. But the actual cube strength of concrete, feu, on the day

each model was tested was different as shown in Table (6.3). So the design load is 

normalised by multiplying it by a multiplication factor (fcu/40)^^. Therefore, the

design lateral load, referred anywhere in this thesis, means normalized design
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TABLE (6 .3 )  : P r o p e r t i e s  o f  C o n c re te  f o r  Each Model

Model no No. o f  

days

f1 cu 
N/mm^

h
N/mm^

E

KN/mm^

PS1 21 4 2 .9 3 .54 .

PS2 11 4 0 .5 2 .91 -

PS3 12 4 2 .2 3 .08 -

MSA 14 4 3 .9 2 .87 22.4

MS 5 10 33 .1 3 .01 20.5

MS 6 23 51 .6 3 .14 -

MS 7 35 56 .5 3 .29 2 2 . 2

MS 8 33 6 8 . 0 3 .18 22.4

MS 9 21 64 .5 2 .9 0 19.7

MS10 20 5 7 .5 3 .48 19.7

MS11 25 4 7 .7 - -

MS12 15 5 0 .3 3 .36 2 2 . 0

MRS13 27 4 7 .2 2 .79 -

MRS14 16 4 5 .8 3 .12 19.0

MRS15 19 5 1 .0 2 .9 7 19.3

>
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lateral load (i.e., design load corrected for actual cube strength of concrete), 

g 3 Preliminary Test Series — PS Series

6.3.1 Model PS1

Having decided to use shear reinforcement in the slab, Memon's(23) model 

'MU' was chosen as the basis of experimental work. The plan of the model is 

shown in Figure (6.10). The reinforcement used in the wall and in the slab was 

exactly same as 'MT1 ’ as shown in Figures (6.11) and (6.12) respectively, except 

for shear reinforcement used in the slab, shown in Figure (6.13). The slab was 

designed for an ultimate unbalanced moment due to wind of 85 KN-?n along the 

critical section for flexure and the moment induced along the sides of the walls 

due to gravity load of 34.84 KN. Using M em on's(^) recommendation for critical 

section, as discussed in section 2.4.7, the ultimate shear strength of the wall—slab 

connection was calculated. The shear strength, Vu, was found to be less than 

design lateral load, V^, indicating the necessity of using shear steel around the 

critical section. Using the recommendations of Britsh code of practice BS 8110, the 

shear steel was obtained from equation (6 .2) with material safety factor taken as 

unity.

f yw

where = area of shear steel needed around critical section

ŷw = yield strength of shear steel

The form of shear steel, shown in Figure (6.13) was chosen. This type of shear

steel facilitates easier placement of the shear steel in the slab by insertion from

lop, after all flexural reinforcements are in place. Figure (6.14) shows the location 

of shear steel in this model.

M m i o u r  o f  t h e  M n H o l

No hairline cracks were detected after the application of the total gravity load.
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At about 23.5% of design lateral load, two cracks parallel to the wall were 

o b se rv e d  as shown in Figure (6 .1 5 -a). As the loading progressed, a new crack 

perpendicular to the wall was observed at a load of 37.5% of design lateral load 

as  shown in Figure (6.15—b). Further loading caused cracks to spread around the 

wall-slab junction at various angles with the wall. These cracks starting from the 

wall-slab junction were limited to within 300 mm length of the wall from its 

nose, beyond that length no cracks were found originating from the junction. The 

cracks did not widen to any measurable extent. Failure took place suddenly along 

the inner edge of the loading beam at a lateral load of 219.3 KN (i.e., 102.0% of 

the design load) implying that it was a local failure of the slab. The crack pattern 

on the tension side of the slab after failure is shown in Figure (6.16). Due to the 

difficulty in observing cracks on the compressive side of the slab during testing, 

only the final crack pattern was obtained as shown in Figure (6.17). The diagonal 

cracks starting from the loading beam on the sides of the slab are clearly visible in 

photograph of Figure (6.18). Figure (6.19) shows the experimental load—deflection 

curve. Note that on the vertical axis, the ratio of the applied loads to the 

normalised design lateral load of the slab is plotted. Figures (6.20) shows the 

curves for tensile strains in steel bars in windward direction. The steel bar at the 

centre of the slab passing through the wall yielded first at 84.6% of design load.

All other bars also yielded just before the failure. Figure (6.22) and (6.23) show

the curves for tensile strains in transverse and shear steel. The curves for

compressive strains on the bottom surface of the slab (the dotted line of the wall

•n the model plan indicates that the compressive side is shown) are shown in 

Figures (6.24) and (6.26). The variation of the concrete strain in windward 

direction along transverse section at different stages of loading is shown in Figure 

(6.25). The compressive strain on the wall at two points just underneath the slab 

is plotted and shown in Figure (6.26—a). This strain in wall was used to calculate 

the correction against the wall deformation for edge deflection of the slab, as 

mentioned in section 6.2. The exact locations of all the strain gauges used in the
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(a) a t  2 3 .5  % < (b ) a t  3 7 .5  %

Figure ( 6.15 ) : Cracks i n i t i a t i o n  during t e s t i n g  of  model PS1 at 
d i f f e r e n t  percentages  o f  des ign la tera l  load

F igu re  ( 6 .1 6  ) : C rack  p a t t e r n  on th e  t e n s i l e  s id e  o f  th e  
s l a b  o f  model PS1
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M O D E L  N O.  1 
V / L  =  0 - 1 6 4  
N 0 - OF  S T I R U P =  11 
B O T M .  F A I L .  S U R F .

Figure ( 6.17 ) : Bottom f a i l u r e  surface o f  model PS1

Figure ( 6.18 ) : Side view o f  model PS1 a f t e r  fa i lu r e
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0.9

0.6

0.3

0.0
0 . 30.2

DEFLECTION/THICKNESS OF SLABU50MM)
0.0

FIGURE (6.19) LOAD-DEFLECT I  ON CURVE FOR MODEL P S  I
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FIGURE (6.20) ,  TENSILE STRAIN IN  STEEL IN  VINDVARO DIRECTION ALONG 

TRANSVERSE SECTION IN  THE SLAB OF MODEL PS)
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FIGURE (6.21) ,  VARIATION OF STRAIN  IN  STEEL IN  VINDVARO DIRECTION ALONG 

WAHSVERSE SECTION AT DIFFERENT STAGES OF LOADING IN  THE S U B  OF MODEL PS)
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For exact locations 
of strain gauges 
see figure (6.27)
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ao. 0.0

s t r a i n  /  y i s l d  s t r a i n  (0 .002536)

FIGURE (6.22) TENSILE STRAIN IN  STEEL IN  TRANSVERSE DIRECTION IN  

THE SLAB OF MODEL P S!
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FlGmE (6‘23) STRAIN IN  SHEAR STEEL AT DIFFERENT LOCATIONS

IN  THE S U B  OF MODEL P S!
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P2

0.9

For exact locations 
of strain gauges 
see figure (6.27)
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(6.24) COMPRESSIVE STRAIN IN  CONCRETE IN  VINDVARO DIRECTION IN  

THE SLAB OF MODEL P S)
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For exact locations 
of strain gauges 
see figure (6.27)
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FIGURE 16.261 COMPRESSIVE STRAIN  IN  CONCRETE IN  TRANSVERSE DIRECTION IN  

THE SLAB OF MODEL PS!
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FIGURE (6.27) : Exact loca t ion s  o f  s t r a in  gauges in the slab of  model 
PS1 as shown in Figures (6 .2 0 ) ,  (6 .22) ,  (6 .23 ) ,  (6.24)  
and (6 .26)
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slab of this model are shown in Figure (6.27).

6 12 Model PS2

Local failure occured in the slab of the previous model PS1. The average 

shear stress in concrete slab along the loading beam was very high

(219300/1000*125 -  1.75 N/mm2) and no shear steel was provided in any area of 

the slab except the critical section to take care of the excess shear stress. That 

may be the reason for local failure of the slab. It was decided to test another

model similar to PS1 but for a lower design (both lateral and gravity) load. To 

ensure proper anchorage of the flexural rinforcement — the slab was also extended 

150 mm beyond the outer edge of the loading beam. The shear reinforcement 

around the critical section was calculated using the same procedure as described in 

section 6.3.1 and the same type (Figure 6.13) of shear steel was provided. To

avoid local failure along the inner edge of the loading beam, additional shear steel

was provided in the corridor area of the slab to take care of stress in excess of

allowable concrete shear stress. The plan of this model is shown in Figure (6.28)

and Figure (6.29) shows the location of shear steel in the slab. The same wall

reinforcement as shown in Figure (6.11) was used. The arrangement of flexural 

reinforcement used in the slab is shown in Figure (6.30).

Behaviour o f  t h e  M o d e l

Like model PS1, no hairline crack appeared after the application of total 

gravity load (18 KN). At a lateral load of 13.0% of the design load, two cracks 

perpendicular to the inner edge of the wall were first observed as shown in Figure 

(6.31 —a). On further loading, more cracks appeared in the same fashion and at

40/o the design load, new cracks parallel to the wind loaded edge appeared as 

shown in Figure (6 .3 1 -b). Cracks radiated from the side of the wall at various 

angles at different loading stages until the slab failed suddenly. The ultimate failure 

occured along the inner edge of the loading beam at a load of 159.0 KN (106%
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(a) a t  13 % (b) a t  40 %

Figure ( 6 .31 ) Cracks i n i t i a t i o n  during t e s t in g  of  model PS2 at 
d i f f e r e n t  percentages o f  design la teral  load
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FIGURE to-32* LOAD-DEFLECT ION CURVE FOR MODEL P S2
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of the design load). Photographs showing crack pattern of this model after failure 

are shown in Figures (6.33—a) and (6.33—b). The non-dim ensional lateral load 

versus slab deflection is shown in Figure (6.32). Curves for strain distribution are 

shown in Figures (6.34) to (6.39). The exact locations of all the strain gauges used 

in the slab of this model are shown in Figure (6.40).

Along the critical section parallel to the wall, up to approximately 48% of the 

design load, the measured strain at point PI in Figure (6.38) was equal to that of 

the other points P2 (mid point) and P3 (edge point). Afterwards, the rate of 

increase of strain at point PI decreased with the increase of load upto 60% of 

design load. After that the strain at central point PI started decreasing and 

reached below the strain at 48% of design load. When the applied wind load was 

nearly equal to the ultimate load, the strain at point PI was 32% of that at point 

P2 and 40% of that at point P3. This effect was noticed to a certain extent in 

model PS1 as well but it was not so pronounced. This behaviour of the measured 

strain in concrete at the bottom of the slab at point PI was also reported by 

Memon(23) The theoretical analysis did not show any decrease in concrete strain 

at point P| in the slab of model PS2 as the loading progressed (see figure (7.69)).

6.3.3 Model PS3

Though punching type of shear failure was avoided around the junction, both 

models PS1 and PS2 failed locally along the edge of the lateral loading beam. Use 

of shear reinforcement in the corridor area in model PS2 did not help to change 

the type of failure. It was felt, however, to understand the actual shear stress 

distribution at different sections of the slab (windward and transverse) due to lateral 

loading and then design the shear steel in a systematic fashion as dictated by the 

state of stress. For that purpose, the standard computer programme 'FLA SH '(^) 

ms used for the grillage analysis of the slab. The slab was discretized into 126 

finite, straight prismatic beam elements as shown in Figure (6.41). The width of 

Individual beam was chosen as half the distance between the centre— line of each
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(a) On the t e n s i l e  s ide

(b) On the compressive side

Figure ( 6.33 ) : Photographs showing the crack pattern on 
the s lab  o f  model PS2
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For exact locations 
of strain gauges 
see figure (6.40)
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(6.3.1V .  TENSILE STRAIN IN  STEEL IN  VINDVARO DIRECTION ALONG

TRANSVERSE SECTION IN  THE SLAB OF MODEL P S2
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see figure (6.40)
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FIGURE <6.36) .  TENSILE STRAIN  IN  STEEL IN  TRANSVERSE DIRECTION IN

THE SLAB OF MODEL PS2
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see figure (6.40)
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FIGURE (6.39-m) ,  COMPRESSIVE STRAIN IN  CONCRETE IN  TRANSVERSE DIRECTION IN

THE S U B  OF MODEL P S2
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525 !00 160

(a )  S t r a i n  gauges in  F ig u re  (6 .3 4 )

~ P3 
-  P2

-P1

535 4-
525 *150*91

(b) Strain gauges in  F ig u re  (6 .3 6 )  (c )  S t r a i n  gauges in  F ig u re  (6 .3 7 )
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~ P 2
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(d) S train gauges in  F ig u re  (6 .3 8 )  (e )  S t r a i n  gauges in  F ig u re  (6 .3 9 )

(6.40) : Exact  l o c a t i o n s  o f  s t r a i n  gauges  in  the  s l a b  o f  model 
PS2 as  shown in  F i g u r e s  ( 6 . 3 4 ) ,  ( 6 . 3 6 ) ,  ( 6 . 3 7 ) ,  ( 6 . 3 8 )  
and ( 6 . 3 9 )
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member. The gross inertia of the concrete slab (ignoring reinforcement) and gross 

cross-sectional area were used in the analysis. Elastic distribution of design lateral 

load along the line of contraflexure was obtained using finite element method and 

it was applied at the nodes of line 'ab ' as shown in Figure (6.41). The gravity 

load was uniformly distributed along line 'be ' of Figure (6.41). The shear force, 

torsion and moments were obtained at each end of the beam due to combined 

wind and gravity load. The shear stress, v, at any cross-section in a beam was 

calculated from

b d

where V is shear force due to ultimate load

b is the breadth of the beam section

d is the effective depth of slab.

The shear stress at the tip of the wall, due to stress concentration, was found 

very high — sometimes more than twice the maximum allowable shear stress value. 

The torsional stress was also higher than the allowable stress value. To resist both 

shear and torsional stresses it was decided to use two— leg vertical closed stirrup as 

shear reinforcement and the amount of shear reinforcement was calculated from the 

equation:

V
v - (6 .3 )

A,lw b (v -  vc )
(6 .4 )

s f.yw

where Aw =  cross— sectional area of two legs of vertical stirrup

b =  width of the beam in consideration

s =  spacing of stirrup along beam 

vc =  allowable shear stress in concrete 

fyw = characteristic strength of the shear steel ^ 425 N/mm^
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To ensure the anchorage of the stirrup, nominal bottom reinforcement of

diameter 8mm was provided. The plan and dimension of this model was identical 

to that of model PS2. The top and bottom reinforcement pattern in the slab are 

shown in Figures (6.42—a) and (6.42—b). This reinforcement was designed to resist

flexural stresses exerted by 155 KN lateral load and 18 KN gravity load.

Behaviour o f  the Model

At about 27% of the design lateral load, a number of cracks were observed 

around the wall as shown in Figure (6.43—a). In the next increment of load, at

about 33% of design lateral load, the crack perpendicular to the wall at an

average distance of 75mm from the inner edge of the wall became prominent and 

it was extended towards the free edge of the slab as shown in Figure (6.43—b). 

On further loading, the previous cracks widened further and more new cracks

appeared. Large deflection of the slab was observed at about 90% of design load,

implying the flexural nature of the behaviour as clear from photograph (6.45— b) 

and from the load—deflection curve as shown in Figure (6.44). Failure took

place gradually at ultimate load of 175.0 KN (i.e., 113% of design load) at which 

deflection increased considerably, and it was clear that it was a ductile failure. 

Figure (6.46) shows the photograph of bottom failure surface. The strain

distribution in steel and concrete is shown in Figures (6.47) to (6.51). Yielding of

steel in windward direction started at about 70% of design lateral load. The exact 

locations of all the strain gauges used in the slab of this model are shown in

Figure (6.52).

At failure load, all the steel (both transverse and longitudinal) around junction 

reached their yield strength and some of them were strained more than twice the 

yield strain.

6*3.4 Comparisons and Discussions

From Figure (6.53) which compares the load— deflection curves for all the
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(a) at 27 % (b) at 33 %

Figure ( 6.43 ) : Cracks i n i t i a t i o n  during t e s t i n g  o f  model PS3 at 
d i f f e r e n t  percentages o f  des ign la te r a l  load
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(a) On the t e n s i l e  s ide

(b) Side view showing the excess ive  d e f l e c t io n

Figure ( 6.45 ) : Photographs showing the crack pattern on 
the s lab  o f  model PS3



Figure ( 6.46 ) : Photograph showing the bottom 
surface o f  model PS3
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see figure (6.52)
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(6.47) i TENSILE STRAIN IN STEEL IN VINDVARD DIRECTION ALONG

TRANSVERSE SECTION IN THE SLAB OF MODEL PS3
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FIGURE (6.49) .  TENSILE STRAIN IN  STEEL IN  TRANSVERSE DIRECTION IN  
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three models of preliminary test series, it can be observed that these curves closely 

follow each other, though model PS3 shows slightly higher stiffness. The ductile 

b e h a v io u r  is clear in the curve for PS3, in contrast to the brittle type of failure as 

a p p a re n t  from curves for models PS1 and PS2. This is due to the fact that, the 

vertical closed stirrup was provided throughout the slab of model PS3 in order to 

take care of shear stress in excess of allowable concrete shear stress, vc .

Failure took place at 102%, 106% and 113% of design load for models PS1, 

PS2 and PS3 respectively. At failure, the ultimate load dropped suddenly for

models PS1 and PS2, accompanied by the crushing of large area of concrete on 

the compressive side (see Figures (6.17) and (6.18) for PS1 and (6.33—b) for 

PS2). However the ultimate load was found to decrease slowly for model PS3, 

accompanied by large deflection of the slab without crushing of concrete on the 

compressive side (see Figure (6.46)).

As can be seen from Figure (6.21) of model PS1, the curves showing the 

variation of tensile strain in steel from free edge to centre of the slab, became

steeper with the increase of load till the load reached 60% of its design load. The 

rate of increase of strain at every point remained fairly constant afterwards. As is 

apparent from Figure (6.35), the measured strain at point PI of model PS2 was 

maximum and it increased with load more than others as the load increased until 

failure. A different behaviour was noticed for model PS3 (Figure 6.48), where the 

strain at point PI was higher than the point P3 until 90% of design load but near 

failure the strain at point PI was smaller than the neighbouring point P3.

From figures (6.25), (6.39) and (6.52), where the variation of compressive 

strain along transverse critical section is shown at different stages of loading, it can 

k  seen that the models PS1 and PS2 were behaved similarly but model PS3 was 

very djfferent. At ultimate failure load, the maximum strain in the compressive side 

of the slab was 48% of yield strain (0.0035) at point P3 for model PS1; 25% of

y>eld strain at point P2 for model PS2 and 57% of yield strain at point P2 for
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model P S 3 .

The closed vertical stirrup used in the slab of model PS3 started to carry load 

at about 30% of design load, when the cracks appeared on the tensile surface of 

the model. This behaviour was not noticed in the type of shear steel (Figure 

6.13) used in the slab of models PS1 and PS2. One stirrup in model PS1 started 

to carry load from the very begining of lateral load and other two were strained at 

about 23% of design load. One stirrup in model PS2 was found strained at about 

25% of design load and the other two at about 55% of design load, whereas first 

crack appeared at about 13% of design load. The steel strains measured on closed 

vertical stirrups indicated their effectiveness in carrying load at the onset of 

concrete cracking.

The concept of providing shear reinforcement only around the critical section 

was found unsatisfactory in models PS1 and PS2 to make the wall— slab connection 

ductile. However, the shear steel in the form of closed vertical stirrup provided in 

the slab of model PS3 in a fashion as dictated by the state of stress resulted the 

connection very ductile. That is why, it was decided to use shear reinforcement in 

the form of closed verical stirrup in rest of the models.

64 MAIN TEST SERIES -  MS Series:

As stated before, the object of this series was to verify the validity of the 

design procedure adopted and described in details in section 3.6. For that reason, 

no systematic exploration of the parameters governing the problem was carried out 

In this series. On the otherhand, nine representative models, MS4 to MSI2, from 

toe previous test series(23>24) were chosen and tested after redesigning them with 

shear reinforcement. Model PS3 indicated the need for using closed form of 

vertical stirrups and this was adopted in all the models of this test series. As 

determined by the position of the stirrups, longitudinal steel was provided in the 

compression face to ensure proper anchoring of the stirrup. In practice, since steel 

*ill have to be provided on both faces of the slab to cater for the reversibility of



213

wind forces, there is no need to provide a separate layer of bars for anchoring 

purposes. In the following subsections, the details of the models tested in this 

series will be discussed.

5 41 Model MS4 to study the effect of wall— web length

This model was chosen to study the effect of wall web length. This is similar 

to model MT3(23) except the use of closed vertical stirrups in the slab. The plan 

of the model is shown in Figure (6.54). The length of the slab in connection 

with the wall was 400mm, whereas total length of wall was kept 600mm because of 

the requirement of the supporting and testing arrangement of the model. The 

flexural steel reinforcement in the slab was redesigned, using the procedure 

explained in chapter three, to resist a lateral load equals 220.0 KN as well as an 

ultimate gravity load of 18.0 KN. Figures (6.56—a) and (6.56—b) show the 

reinforcement details. Total flexural steel area (excluding shear steel) provided in 

this slab is about 86% of that of the model MT3. Besides, some longitudinal bars 

were curtailed at the back of the slab to match with the calculated steel area. The 

reinforcement provided in the wall as shown in Figure (6.55), was exactly similar 

to that of the model MT3(23)-

Behaviour o f  t h e  M o d e l

A number of cracks were observed at a lateral load equal to 18% of the 

design load. Most of them were parallel to the inner edge of the wall as shown in 

Figure (6.57—a). This was particularly true at the corridor area of the slab. On 

further loading, these cracks extended towards the free edge of the slab and some 

new 'torsional' cracks (those cracks which occurred behind the nose of the wall) 

radiated from the wall— slab junction at various angles. The shear cracks in the 

ŝ b at the back of the model appeared at a load of 37% of design lateral load as 

shown in Figure (6 .5 7 -b). The wall started cracking at 42% of design load and a 

number of cracks appeared at the nose of the wall. On further loading, shear
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crack at the back widened and failure took place suddenly at a lateral load equals

190.4 KN (86.5% of the design load). The photographs showing the crack pattern

of the model after failure are presented in Figures (6.60) to (6.61). Figure (6.58) 

shows the non— dimensional load— deflection curve. The other experimental data are

shown in Figures (6.62) to (6.66). The exact locations of all the strain gauges used

in the slab of this model are shown in Figure (6.67).

A number of cracks were noticed in the wall. The rear end of the top

surface of the shear wall was found crushing against the supporting beam and the 

front edge of the bottom surface of the shear wall was found crushing against the 

'strong — floor' of the laboratory (see Figure (6.59)). This may be one of the 

reasons for the early failure of the whole structure, although the shear crack at the 

back of the slab was the main cause of failure. The reinforcement distribution

(equally spaced) in the wall was insufficient. In real structure, reinforcements in the 

shear wall are usually concentrated at two ends, to get longer lever arm and hence 

more resisting forces. So it was decided to increase the amount of wall

reinforcement in the next model and concentrate them towards the edge with

additional stirrups to hold them together.

6.4.2 Models to study the effect of corridor opening width

The magnitude of the unbalanced moments has a very pronounced effect on 

the overall strength of connection. Models MS5, MS6 and MS7 were chosen from 

previous test s e r i e s ( ^ 3 )  investigate the effect of the variation in the ratio of

unbalanced moment due to wind load, to uneven shear due to wind load Vg. 

This ratio is varied by changing the width of corridor opening. For each model of 

this group half corridor opening width (L/2) is shown in Table (6.4). The

reinforcement ratio which appears in Table (6.4) is for those bars in windward

direction within 1.5d on either side of the wall (where d is the effective depth of 

the slab)



218

Table ( 6 . 4 )  : Models to  s t u d y  the  e f f e c t  o f  c o r r i d o r  
o p en in g  w id th

Model Hal f  o f  
corr  i dor  

openi  ng 
width

L
(mm)

Bay 
wi dt h

Y

(mm)

Norma 1i sed  
des  i gn 

wind s h ea r

VI

(KN)

Des i gn 
wi nd 

moment

Ml

(KN)

Gravi t 
1 oad

Vg

(KN)

y Moment R e i f o r c e  
due to  ment 
g r a v i t y  r a t i o

Mg

(KN.M) (%)

MS 5 520 1000 155 8 0 .6 18 7 .9  1 .67

MS 6 280 1000 330 9 2 .4 18 7 .9  1 .67

MS 7 400 1000 240 9 6 .0 18 7 .9  1 .67

Table ( 6 . 5 ) Models to  s t u d y  the  e f f e c t o f  f l a n e e  width

Model FIange Bay Normali sed Des ign Gravi t y Moment R e i f o r c e

width w id th des  ign wi nd 1 oad due t o  ment r a t i o

wind sh e a r moment grav i  t y

Z Y v* Vg Mg (%)

mm mm KN KN.M KN KN.M

MS10 300 1000 220 6 0 .5 20 4 .5  2 .23

MS11 200 1000 215 5 9 .0 20 4 .5  2.51

MS12 400 1000 215 5 9 .0 20 4 .5  2 .14
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Figure (6.60—a) : Photograph  showing th e  appearance o f
f i r s t  c r a c k  in  th e  s l a b  o f  model MS4

Figure (6.60—b) : P h o to g rap h  show ing th e  back  f a i l u r e
s u r f a c e  o f  model MS4
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6.4.2.1 Model MSS

The plan of this model is shown in Figure (6.68). The amount of total wall 

reinforcement was 34% more than that of model MS4 and the bars were 

concentrated at the two edges of the wall as shown in Figure (6.69). The flexural 

steel reinforcement in the slab was designed to resist a lateral load equals 155.0

KN as well as an ultimate gravity load of 18.0 KN. The amount of steel required 

in the area just around the wall— slab connection was used throughout the slab in 

this model. No curtailment of the longitudinal bars was done at the back of the 

slab. The amount of reinforcement was more than that required in other parts of

the slab. The shear reinforcement in the form of closed vertical stirrup was

provided in the slab where the shear stress exceeded allowable concrete shear

stress. Figures (6.70— a) and (6.70— b) show the top and bottom reinforcement 

layout along with the arrangement of shear reinforcement in the slab. To ensure 

the proper anchorage of the stirrup, nominal bottom reinforcement was provided at 

the bottom of the slab. This model is similar to model MT6(^3) which was 

designed and tested for the same load but without using any shear reinforcement in 

the slab.

Behaviour o f  the Model

A number of cracks parallel to loaded edge appeared on the top surface of 

the slab at a lateral load of 21% of design load as shown in Figure (6.71—a). In 

the next load increment i.e., at 28% of design load, more new cracks were 

observed as shown in Figure (6.71—b). The cracks were generally normal to the

inner edge of the wall and also to the side of the wall with some cracks inclined

to the wall. The shear crack in the slab at the back of the model was observed at

about 89% of design load. The crack parallel to the loaded beam and at a

distance about 60mm from the nose of the wall widened more than 1.0 mm and 

excessive deflections occurred at loads equal to the design load, implying the 

ductile nature of behaviour. On further loading, the rigid body movement of the
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model started increasing out of control and total movement was very large. The 

prestressed wire was tightened as much as possible to bring the wall in contact

with the floor of the laboratory. The torsional (inclined) cracks which were 

extended towards the back of the model became very wide and prominent and the

width of shear crack at the back was more than 3.0 mm at about 120% of design

load. Finallly the structure failed at a lateral load of 203.0 KN (i.e., 130% of

design load). The photographs showing the crack pattern of the model after failure 

are presented in Figure (6.73). The nondimensional load—deflection curve is shown 

in Figure (6.72). The results of other experimental data are shown in Figures 

(6.74) to (6.79). Figure (6.80) shows the exact locations of all the strain gauges 

used in the slab of this model.

The amount of steel required in the area just around the wall— slab connection 

was used throughout the slab in this model. No curtailment of the longitudinal bars 

was done at the back of the slab. The amount of reinforcement was more than 

that required in other parts of the slab. Therefore, once the reinforcement at the 

connection yielded, a great deal of stress redistribution took place towards the sides 

of the wall. That is why, some reinforcement at wall— slab connection of this 

model though yielded at 73% of design load, the model was capable of carrying 

upto 130% of design load. Slightly more shear steel was also provided in the 

model. The main reason behind using same steel throughout the slab in this model 

was the early failure of model MS4 at 86.5% of design lateral load.

6-4.2.2 Model MS6

Due to problems encountered in model MS5 due to rigid body rotation, two 

prestressing strands were used to anchor the wall to the floor. To allow the 

modification of the clamping arrangement, the wall length in this model was 

increased from 600 mm to 1100 mm but the length of the slab attached to the

was kept the same at 600 mm. The plan of this model is shown in Figure 

(6.81). Wall reinforcement is shown in Figure (6.82).
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(a) at 21 % (b) at 28 %

Figure ( 6.71 ) : Cracks i n i t i a t i o n  during t e s t in g  o f  model MS5 at 
d if fe r e n t  percentages o f  design  la ter a l  load
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(a )  On th e  t e n s i l e  s i d e

(b) On th e co m p r e s s i v e  s i d e

figure ( 6 . 7 3  ) : Photograp hs showing th e  cr a ck  p a t t e r n  on 
th e  s l a b  o f  model MS5
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(6 .7 8 )
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A two dimensional, finite element, computer programme for linear plate 

bending analysis was used for the design of flexural reinforcement while for the 

design of shear reinforcement in slabs, computer programme "FLASH" was used 

for the models PS3 to MSS. The model MS6 and the rest of the models were 

analysed and designed using a finite element program as an elastic plate fixed 

along the junction with the wall and subjected to the appropriate loads and 

boundary conditions prevailing in the experiment. 8 -  noded isoparametric element 

and 2 x 2  Gauss rule was used for both shear and bending terms. At the centre 

of each element, the computer program provided the moment triad (Mx, My, Mxy) 

and shear forces (Qx and Q y) due to combined wind and gravity loadings. The 

moment triad was used to calculate the appropriate design moments in two 

orthogonal directions using the Wood— A r m e r ( 4 5 , 4 6 )  equations. The shear stress for 

the element was obtained by dividing the force by the element length and its 

effective depth. The necessary amount of steel (both flexural and shear) was 

calculated using the procedure as laid down in the British Code of Practice for 

reinforced concrete BS 8110 with materials safety factors assumed to be unity.

The flexural and shear reinforcement in the slab was designed to resist a 

lateral load equals 330 KN and an ultimate gravity load of 18.0 KN. Figures 

(6.83—a) and (6.83—b) show the required reinforcement pattern.

Behaviour o f  the Model

Cracks were observed for the first time on the top surface of the slab at a 

lateral load 20% of design load as shown in Figure (6.84—a). All the cracks 

started from the tip of the wall. Two of them, originating from the wall, were 

inclined towards the sides. On further loading, earlier cracks widened and 

extended a little and were joined by new crack. The applied lateral load at failure 

was 343 KN (104% of design lateral load). The photographs showing the crack 

pattern of this model after failure are presented in Figure (6.86). The wind 

load—displacement curve of the model is shown in Figure (6.85). Figure (6.87)
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(a) at 20 % (b) at 27 %

Figure ( 6.84 ) : Cracks in i t i a t io n  during te s t in g  of model MS6 at 
d ifferen t  percentages o f  design la tera l load
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th e  s l a b  o f  model MS6
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(6 .87)  » TENSILE STRAIN IN  STEEL IN  VINDVARD DIRECTION ALONG 

TRANSVERSE SECTION IN  THE S U B  OF MODEL MS6
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FIGURE (6 .86 ) .  VARIATION OF STRAIN IN  STEEL IN  VINDVARD DIRECTION ALONG

TRANSVERSE SECTION AT DIFFERENT STAGES OF LOADING IN  THE S U B  OF MODEL HS6
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shows the tensile strain in steel in windward direction where yielding started at a 

lateral load 56% of the design load. The strains in steel in transverse direction at

different locations in the slab is shown in Figure (6.89) from where it is clear that

all the steel yielded before failure of the structure. The tensile strain in closed 

vertical stirrups as shown in Figure (6.90) shows that they were stressed to the 

full. The compressive strain on the bottom surface of slab in Figure (6.91) is 

generally very small near the tip of the wall (at point PI) and free edge (at point 

P3). The strain is reasonably high at point P2 midway between the wall and the 

free edge.

6.4.2.3 Model MS7

The plan of the model and the reinforcement used in the wall are shown in 

Figures (6.93) and (6.94). This model was similar to model MS4 except the length 

of the slab attached to the wall which was increased from 400 mm to 600 mm 

and the length of the wall itself which was increased from 600 mm to 1000 mm 

for modified supporting arrangement. The model MS7 was designed and tested to 

avoid punching shear failure and early crushing of wall which occurred during the 

testing of model MS4. The slab of the model was designed to resist 240.0 KN of 

lateral load and 18.0 KN of gravity load. The reinforcement pattern (both flexural 

and shear) in the slab is shown in Figure (6.95).

Behaviour o f  the Model

No cracks were found after the ultimate gravity load was fully applied. At 

20% of design load, two cracks around the nose of the wall were observed. One 

of them, as shown in Figure (6.96— a), was perpendicular to the wall and the 

other originating from wall-  tip extended in to the corridor area. On further 

loading, at about 30% of design load, the cracks spreaded in the slab as shown in 

Figure (6 .9 6 -b). The overall crack pattern is similar to model MS6. Failure took 

place at a lateral load of 262.0 KN (109% of design load). The crack pattern on
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the tensile surface of the slab with the apparent failure line (heavily marked) is shown

in Figure (6.98). The crushing pattern on the bottom compressive side of the slab

after removing the broken pieces is shown in Figure (6.99). The load-deflection 

relationship is shown in Figure (6.97). The tensile strains in steel in windward and 

transverse directions are shown in Figures (6.100) and (6.102) respectively. The 

deflection and strain readings indicate the ductile behaviour of the slab. The closed 

vertical stirrups started straining at about 30% of the design load and Figure (6.103) 

shows the tensile strain in shear steel where nearly 90% of them yielded before

failure of the model. The compressive strain in concrete is shown in Figure (6.104),

while Figure (6.106) shows the vertical strain in wall near the nose.

6.4.2.4 Comparisons and Discussions

Figure (6.107) shows the lateral load—displacement curves for all the models of 

this series. These curves show that model MS5 with maximum corridor width suffered 

more displacements than MS6 and MS7 at approximately similar percentages of design 

load. All the three models MS5, MS6 and MS7 failed in a ductile manner at 130%, 

104% and 109% of design load respectively. In all cases, large deflection and yielding 

of all steels in windward and transverse direction around the junction was noticed. 

The reason for the higher failure load for model MS5 was due to the use of same 

amount of flexural reinforcement all over the slab. The 'exact' reinforcement areas 

which are required to resist the design loads were used to predict theoretically the 

ultimate failure load for model MS5 using the computer programme. It was found that 

for the 'exact' reinforcement the theoretical failure load equals the design load, and 

for the 'actual' reinforcement used in the slab it has been shown in chapter seven 

that the theoretical failure load is 1.3 times the design load. The steel in windward 

direction passing through the wall started yielding at 74%, 56% and 71% of design 

load for models MS5, MS6 and MS7 respectively. The steel bars passing through the 

wall in model MS6 were yielded earlier than the adjacent steel bars resulting a large 

difference in the strain with the neighbouring bars (see Figure (6 .88)). In models MS5 

and MS7 the load-strain  curves of the adjacent steel bars closely followed that of
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Figure ( 6.98 ) : Photograph showing the crack pattern and fa i lure
surface on the t e n s i l e  s ide of  the slab of  model MS7
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Figure ( 6.99 ) : Bottom fa i lu r e  surface of  model MS7
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CRITICAL SECTION AT DIFFERENT STAGES OF LOADING IN  THE SLAB OF MODEL MS?
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steel bar passing through the wall (see Figure (6.74) for MSS and Figure (6.100) for 

MS7). On the compressive side of the slab, the failure line started from the nose of 

the wall and failure by crushing was similar for all the models (see Figures (6 .73) for 

MSS, (6 .86) for MS6 and (6.99) for MS7). The compressive strain on the bottom 

surface of the slab at central point PI was found to decrease in all the models near 

the ultimate load. This unloading behaviour at point PI was found in models MS5, 

MS6 and MS7 at 90%, 66% and 83% of design load respectively. At failure load, the 

maximum strain in the compressive side of the slab was more than yield strain of

concrete (about 116%) at point P2 for model MS5, about 70% of yield strain 

(— 0.0035) at point P2 for model MS6 and 75% of yield strain for model MS7 at the 

same point P2.

The sirrups started to carry load at about 40% of design load for model MS5, 

although it was expected to strain at earlier load. The sirrups in models MS6 and

MS7 started to carry load at the load when cracks appeared on the slab of those 

models. The nondimensional load versus strain curves for closed vertical stirrups of

models MS6 and MS7 show nonlinear behaviour after cracking of concrete. Most of

the stirrups reached their yield strain at failure of the models.

6.4.3 Model MS8 to study the effect of gravity load

This model was intended to study the effect of the ratio Vg/Vg, where Vg is the 

ultimate gravity load on slab and is the design lateral load. This model is similar

to the previous model MS7 except that the intensity of gravity load was three times

of MS7. The model was designed to resist lateral and gravity load, equal to 255.0 KN 

and 54.0 KN respectively. Gravity load was applied in first five increments of 10.8 

KN and the lateral load was applied in equal increments of 10 KN upto failure. The

plan of the model and the reinforcement used in the wall was similar to those of

model MS7 as shown in Figures (6.93) and (6.94). The reinforcement used in the slab 

is shown in Figure (6.108).
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nohnviour o f  the Model

No cracks were observed due to gravity load until the ultimate?#!vity load of

54.0 KN was applied. At this stage two long cracks parallel to the wall appeared and

extended upto the far end of slab as in Figure (6 .109-a). Another small crack

parallel to the wall also appeared on one side but no similar crack was visible at that

stage on the other side. At a lateral load of 9% of the design load, two cracks were

observed at the nose of the wall, extending towards the corridor area as shown in

Figure (6 .1 0 9 -b). As loading progressed, cracks developed from the nose of the wall

in such a way that they were, in general, parallel to the loading beam in the corridor 

area. Some of the cracks, originating from the wall, extended to the end of slab

being parallel to the lateral loading edge. The other cracks originating from the back 

of the wall, terminated at the rear end of the slab being parallel to the wall. Failure 

took place gradually at a lateral load of 280 KN (110.0% of design load). Failure of 

this model was ductile as can be seen from the load— deflection curve shown in

Figure (6.110).

Tensile strains in steel in windward direction at different locations along a section 

perpendicular to the wall are shown in Figure (6.111). Yielding of steel in this

direction was first observed at a lateral load 64% of design load. All other 

experimental test data concerning strains are shown in Figures (6.113) to (6.115). In 

all these figures, strains at zero lateral load are due to gravity load alone. All the

longitudinal, transverse and shear steels where strain gauges were fixed, yielded before 

the failure took place. The variation of compressive strain in concrete (See Figure 

(6.115—a)) shows a different behaviour from the previous models. The compressive 

strains in the previous models were maximum at the inner edge of the wall (point 

PI) than other points (P2 and P3) at early stages of loading and showed unloading 

behaviour at point PI at later stage of loading. But the compressive strain in this

model at point PI (inner edge of the wall) was minimum than points ? 2  and P3 

from the begining and showed the unloading behaviour at about 85% of design load 

and unlike previous models the strain was found incrasing at ultimate load. The crack
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(a) Due to ult imate at a lateral  load
grav i ty  load only 19 % of the design load

Figure ( 6.109 ) : Cracks i n i t i a t i o n  during te s t in g  of  model MS8 at
d i f fere n t  percentages o f  design lateral  load
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FIGURE (6.1 10) , LOAD-DEFLECT ION CURVE FOR MODEL MSB
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0.6

0 .3

P2

P3

0.0
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»  TENSILE STRAIN IN STEEL IN VINDVARD DIRECTION ALONG 

TRANSVERSE SECTION IN THE SUB OF MODEL HS8

FIGURE (6.111)
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FIGURE (6 .112) , VARIATION OF STRAIN IN  STEEL IN  VINDVARD DIRECTION ALONG

TRANSVERSE SECTION A T DIFFERENT STAGES OF LOADING IN  THE S U B  OF MOOEL HS8
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FIGURE (6.113) i TENSILE STRAIN IN STEEL IN TRANSVERSE DIRECTION IN

THE SLAB OF MODEL MSB
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FIGURE (6 .1 1 4 )  f  T E N SILE  S T R A IN  I N  CLOSED VERTICAL STIRU P A T  DIFFERENT LOCATIONS

IN  THE S U B  OF MODEL MSB



267

§>
■g

+ - - - +  P2 

a - - *  P3 

P4

P2

0 .9

For exact locations 
of strain gauges 
see figure (6.116)

0.6

0 .3

0.00.0 0.2 0.*
• t r a i n  /  Max im um s t r a i n  (-0.0035)

0.6 O.Bitri

FIGURE (6.115) ,  COMPRESSIVE STRAIN IN  CONCRETE IN  VINDVARD DIRECTION IN  

THE SLAB OF MODEL MSB

109 % loadO.B

102 %0.6

0.4 80 %

60 %

0.2

30 %

0.0 400200-200

FIGURE <6.1 JS-m) t VARIATION OF COMPRESSIVE STRAIN IN  CONCRETE ALONG TRANSVERSE

CRITICAL SECTION AT DIFFERENT STAGES OF LOADING IN  THE SLAB OF MODEL MSS



4?? 7-5 1125

x

268

inĉi

43 7-5
10 0 0

525 100 175

(a) S t r a in  gauges in  F igu re  (6 .111 )
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(b) S tra in  gauges in  F ig u re  (6 .1 1 3 ) (c )  S t r a in  gauges in  F igu re  (6 .114)

h
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(d) S t r a in  gauges in  F ig u re  (6 .115)

FIGURE (6 .1 1 6 )  : E xact lo c a t io n s  o f s t r a i n  gauges in  th e  s la b  o f model
MS8 as shown in  F ig u re s  (6 .1 1 1 ) , (6 .1 1 3 ) , (6 .11  )
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(a) Before removing the broken p ieces

M O D E L  N O - 8  
T O P  F A I L U R E  S U R F A C E  
F A I L E D  A T  2 8 0  K N .

(b) After  removing the broken pieces

igure ( 6.117 ) : Crack pattern on the t e n s i l e  surface of  
the s lab  o f  model MS8



M O D E L  N O - 8
BOT- F A I L U R E  SURFACE 
FA I L E D  AT 2 8 0  KN.

Figure ( 6.118 ) : Bottom fa i lu r e  surface o f  model MS8
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pattern of this model after failure is shown in Figures (6.117) and (6.118).

6 .4.4 Model MS9 to study the effect of Bav width

This model was tested to study the effect of change in bay width of slab on the 

strength of connection. The change in the bay width of a slab causes a change in the 

structural parametric ratio L/Y (where Y is the bay width and L is the corridor 

opening width) and change in the ratio Mg/Vg (where Mg is the moment due to 

gravity load and Vg is the shear due to gravity load). The plan of this model as 

shown in Figure (6.119) is similar to that of model MS7 except that the bay width 

is increased from 1000 mm to 1440 mm. The plan of the model is exactly similar to 

that of model M T8^3) and subjected to almost same combination of lateral and 

gravity load. The flexural and shear reinforcements are shown in Figures (6.121—a) 

and (6.121—b). The reinforcement used in the wall is shown in Figure (6.120). The 

lateral load— dispalacement curve for the model is shown in Figure (6.123). The 

other experimental data are shown in Figures (6.124) to (6.129). The total gravity 

load applied to this model was same as that of MS7 and MT8 (i.e, 18 KN).

Behaviour o f  the Model

The first crack appeared at a load of 16% of design lateral load in addition to 

full gravity load, as shown in Figure (6.122—a). In the next load increment, the crack 

increased in length and new cracks appeared on the surface. More cracks appeared on 

right side of the slab than on the left side. On further loading, more new cracks, 

originating from wall— slab connection, extended all over the slab equally on both 

sides. It is interesting to note that no cracks were visible under the lateral loading 

beam over a central strip of 400 mm. This type of crack pattern was found in the 

models with flanged shear walls. Photographs showing the crack pattern of this model 

are presented in Figures (6.130) to (6.132). The failure load for this model was 247 

KN (99% of design load).
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(a) at 16.2 % (b) at 20.4 %

Figure ( 6.122 ) : Cracks i n i t i a t i o n  during t e s t in g  o f  model MS9 at 
d if f ere n t  percentages o f  design lateral  load
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 ©■

- For exact locations — 
of strain gauges 
see figure (6.129)

0 .6

0 .3

P3

0.0

s t r a i n  /  y i e l d  s t r a i n  (0.002499)

(6 .124) ,  TENSILE STRAIN IN  STEEL IN  VINDVARD DIRECTION ALONG 

TRANSVERSE SECTION IN  THE S U B  OF MODEL HS9
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F IG W e (6 .1 2 5 )  ,  VA RIATIO N  OF S T R A IN  IN  STEEL IN  VINDVARD DIRECTION ALONG

TRANSVERSE SECTION A T DIFFERENT STAGES OF LOADING IN  THE S U B  OF MODEL MS9
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FIGURE (6.126) ,  TENSILE STRAIN IN  STEEL IN  TRANSVERSE DIRECTION IN  

THE SLAB OF MODEL MS9
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P2    — *
0 .9

F o r  e x a c t  lo c a t io n s  
o f  s tr a in  g a u g e s  
s e e  f ig u r e  ( 6 .1 2 9 )
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(6 .128) .  COMPRESSIVE STRAIN IN  CONCRETE IN  VINDVARO DIRECTION IN  

THE SLAB OF MODEL MSP
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(a) Strain gauges in Figure (6.124)
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(b) Strain gauges in Figure (6.126)

-  P1-  p2 
P4 p5

P5 -  -  P6
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(c) S t r a i n  gauges  in  Figure (6.127)

P1 P2 P4

720 150 150 200

(d) Strain gauges in Figure (6.128)

i f U/V cl ah of model FIGURE (6.129) : Exact lo ca tio n s  o f  s t r a in gauges n  ̂ 127)
MS9 as shown In Figures (6 .124), (6 .126),  i b . u n  
and (6 .128)
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M O D E L  N O -  9  
T O P  F A I L U R E  S U R F A C E  
F A I L E D  A T  2 4 7  K N .

(a) Before removing the broken pieces

(b) After  removing the broken pieces

Figure ( 6.130 ) : Crack pattern on the t e n s i l e  surface of  
the s lab  of  model MS9
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M O D E L  N O .  9  
BUT. F A I L U R E  S U R F A C E  
F A I L E D  AT 2 4 ?  KN

Bottom fa i lu r e  surface of  model MS9

M O D E L  N O  9  
D E S I G N  L O A D  2 I 2 - 5 K N  
F A I L E D  A T  2 4 ?  K N

Figure ( 6.132 ) : Side view of model MS9 showing the
excess ive  d e f l e c t io n  at fa i lure
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6 .4 .5  M o d e ls  t o  S t u d y  t h e  E f f e c t  o f  F la n g e  W id th

It was shown by EInounu(24) in his test series that the flange enhances the

punching shear resistance o f the w a ll-s la b  connection. Models MS10, MS11 and M SI2 

were chosen from  previous test series(24) to investigate the effect o f flange width ratio 

(Z/Y) adopting the values for flange width (Z) as shown in Table (6 .5). In the 

previous test series(24) , sam e am ount o f reinforcem ent was used in all slabs of the 

models. This tim e, each  m odel was designed separately and the required amount of 

both flexural and shear reinforcem ent was provided in the slab. The reinforcement 

ratio which appears in T able (6 .5 ) is for those bars in windward direction (i.e .,

parallel to the web) within 1.5d on either side o f flange (where d is the effective

depth of the slab).

6 .4 .5 .1  M o d e l  M S 1 0

The dim ensions o f  the m odel is shown in Figure (6 .133), wall reinforcement in 

Figure (6.134) and slab reinforcem ent pattern in Figures (6 .135—a) and (6.135—b).

B e h a v i o u r  o f  t h e  M o d e l

No crack was observed after the ultimate gravity load was applied. At a lateral 

load of 23% o f the design load, a number of cracks around the flange appeared as 

shown in Figure (6 .1 3 6 — a). As the loading progressed, they were joined by others 

until at a lateral load 32% o f the design load, two long cracks appeared parallel to

web as in Figure (6 .1 3 6 — b). O n further loading, the crack parallel to flange at a

distance 60 mm from  its tip, extended to the end o f the slab and more new cracks

appeared until failure took place at a lateral load o f 209 KN (95% of design load). 

The crack pattern after failure is shown in Figures (6.138) and (6.139), and the 

lateral load—displacem ent relationship in Figure (6 .137). The strains in steel bars in

windward direction (Figure 6 .140) indicate that the first yielding occurred at a lateral 

load 74% of design load. Figure (6.142) shows the tensile strains in windward 

direction at different points along a bar running parallel to web, while Figure (6.143)
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( 6.133 ) : Plan and dimensions o f  model MS10
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Ftgure (6 .134  ) : A h or iz onta l  s e c t i o n  In the wall o f  model 
MS10 showing the r e i n fo r c in g  d e t a i l s
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(a) at 23 %

'NT

(b) at 32 %

Figure ( 6.136 ) Cracks in i t i a t io n  during te s t in g  o f  model MS10 at 
d if fe r e n t  percentages o f  design la tera l load
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FIGURE (6 .137} ,  LDAD-DEFLBCTJON CURVE FOR MODEL MS 10
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(a) Before removing the broken pieces

(b) After removing the broken pieces

igure ( 6.138 ) : Crack pattern on the t e n s i l e  surface of  
the slab of  model MS10
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FIGURE (6. HO) * TENSILE STRAIN IN STEEL IN VINDVARD DIRECTION ALONG

TRANSVERSE SECTION IN THE SUB OF MODEL MS10
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(6 .146) ,  COMPRESSIVE STRAIN IN  CONCRETE IN  VINDVARD DIRECTION IN  

THE SLAB OF MODEL MS 10
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FIGURE (6 .147) ,  VARIATION OF COMPRESSIVE STRAIN IN  CONCRETE ALONG TRANSVERSE

CRITICAL SECTION A T DIFFERENT STAGES OF LOADING IN  THE S U B  OF MODEL MS 10
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shows the tensile strain in transverse direction in steel bars. Figure (6.146) shows the 

compressive strains on  slab and vertical strains on flange just at the front end are 

shown in Figure (6 .1 4 5 ). In all these figures strains at zero lateral load are due to 

gravity load alone.

6 .4 .5 .2  M o d e l  M S 1 1

The plan o f  this m odel is shown in Figure (6 .150), wall reinforcement in Figure 

(6.151) and reinforcem ent pattern in the slab in Figures ( 6 .1 5 2 - a) and ( 6 .1 5 2 - b).

B e h a v i o u r  o f  t h e  M o d e l

During the application o f gravity load, cracks around the flange were initiated at 

a load equals 16 KN (80%  of the ultimate gravity load) as shown in Figure

(6.153—a). A fter the ultim ate gravity load was applied, no new cracks appeared. As 

the lateral loading progressed, a few  new  cracks were observed until 37% of design 

load at which stage long cracks parallel to web and som e new cracks were observed 

as shown in Figure (6 .1 5 3 —b). W hen the load approached failure, many cracks were 

observed as shown in Figure (6 .165). Some were in the corridor area parallel to 

flange and som e were at the back o f the slab, behind the flange and parallel to web. 

Failure took place at a lateral load equals 219 KN (102% of design load).

The load d eflection  curve in Figure (6.154) shows the ductile behaviour of the

slab. Tensile and com pressive strains in windward direction at locations along a section 

parallel to flange are shown in Figures (6.155) and (6.162) respectively. Yielding of 

steel in windward direction was first observed at a lateral load 71% of design load. 

Tensile and com pressive strains in windward direction at locations along a section 

parallel to web are shown in Figures (6.157) and (6.163) respectively. Tensile strains

of steel in transverse direction are shown in Figure (6.158) and strains on closed 

vertical stirrups are shown in Figure (6 .159). Vertical strains on flange just underneath 

the slab are shown in Figure (6 .160). The crack pattern after failure is shown in 

Figures (6 .165) and (6 .1 6 6 ).
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(a) at 80 % o f  u ltim ate  
g ra v ity  load ( and 
zero la te r a l  load )

(b) at a lateral load 37 % 
o f  design load

Figure ( 6.153 ) : Cracks in i t i a t io n  during te s t in g  o f  model MS11 at
d if fe r e n t  percentages o f  design la tera l load
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FIGURE (6. 154) .  LOAD-DEFLECT ION CURVE FOR MODEL MSI 1
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see figure (6.164)
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:IGURE (6 .155) .  TENSILE STRAIN IN  STEEL IN  VINDVARD DIRECTION ALONG 

TRANSVERSE SECTION IN  THE SLAB OF MODEL MS) 1
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FIGURE (6 .156) .  VARIATION OF STRAIN IN  STEEL IN  VINDVARD DIRECTION ALONG

TRANSVBtSE SECTION A T D IFFERENT STAGES OF LOADING IN  THE SLAB OF MODEL MS11
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FIGURE (6 .157) .  TENSILE STRAIN IN  STEEL IN  VINDVARD DIRECTION ALONG A BAR 

RUNNING PARALLEL TO VEB IN  THE S U B  OF MODEL MS 11
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T “

P2

0 .9

For exact locations 
of strain gauges 
see figure (6.164)

0.6

“ Pi
0 .3

♦  --» P2

0.0
■ tr a in  /  y i a l d  s t r a i n  (0.002499)



302

§>
-8

1.2

P2

0 .9

For exact locations 
of strain gauges 
see figure (6 .164)

0.6

0 .3

* . . .■ * ■  P2 

P3
♦— ♦ P4

0.0
0 .50.0 1 .0 1 .5 2.0

• t r a i n  /  y i e l d  s t r a i n  (0 .002617) 

FIGURE (6 .159) ,  STRAIN IN  CLOSED VERTICAL STIRUP AT DIFFERENT LOCATIONS 

IN  THE S U B  OF MODEL MSI 1
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FIGURE (6 .1 6 3 -a) « VARIATION OF COMPRESSIVE STRAIN IN  CONCRETE ALONG A SECTION
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(a) Before removing the broken p ie c e s

(b) A fter  removing the broken p ie c e s

Figure ( 6 .165  ) : Crack p a ttern  on the t e n s i l e  su r face  o f  
the s la b  o f  model MS11

1
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(a) On the compressive side

(b) On the back surface  

Figure ( 6.166 ) : Crack pattern on the s lab  o f  model MS11
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6.4.5.3 Model MSI2

The plan o f  this m odel is shown in figure (6 .167 ). Wall reinforcem ent is shown 

in Figure (6 .168) and the reinforcem ent pattern in slab is shown in Figure (6 .169).

Behaviour o f  t h e  M o d e l

No cracks were observed after the ultimate gravity load was fully applied. Two 

cracks as shown in Figure ( 6 . 1 7 0 - a) were first observed at a lateral load 19% of the

design load. O n further loading, these cracks extended and more new cracks

developed in the corridor area parallel and normal to the flange until the load was

37% of the design load. T h e crack pattern was as shown in Figure (6 .170—b). On

further loading, m ore cracks appeared until failure took place at a lateral load o f 235 

KN (109% of design load). T h e crack pattern after failure is shown in Figures (6.172) 

and (6.173) and the lateral load—displacem ent relationship in Figure (6 .171). The  

strains in steel bars in windward direction (Figure 6 .174) indicate that . the first 

yielding occurred at a lateral load o f about 80% o f design load. The other 

experimental data are shown in Figures (6 .175) to (6 .183).

6 .4 .5 .4  Com parisons and D iscussions

Figure (6 .184) shows the lateral load — deflection curves for the m odels of this

series. These curves sh ow  that m odel MS11 with minimum flange width suffered more

displacements than m odels M S10 and MSI 2 at approximately similar percentage of  

design load indicating, as is to be expected , an increase in stiffness with increase of

flange width. All the three m odels M S10, MS11 and MS12 failed in a ductile manner 

at 95%, 102% and 109% o f design lateral load. Steel in windward direction yielded at 

74%, 71% ancj go% o f  design load respectively.

Considering the crack patterns in Figures (6.138) for MS10, (6 .165) for MS11 

and (6.172) for M S I2, it can be said in general that very few  cracks existed on the 

tensile side o f slab in the area within the flange boundaries which is a 'dead' area. 

In the corridor area, m ore cracks parallel to flange occured with the increase in
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Figure ( 6.167 ) : Plan and dimensions of  model MS12
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Figure (6.168 ) : A horizontal  sec t ion  in the wall of  model 
MS12 showing the reinforcing d e ta i l s
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§ure (6.169-a) : Arrangement o f  top reinforcing bars including closed  
v e r t i c a l  s t irrup in the slab o f  model MS12
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(a) at 19 % (b) at 37 %

Figure ( 6.170 ) : Cracks i n i t i a t i o n  during t e s t i n g  o f  model MS12 at
d i f f ere n t  percentages o f  design la tera l  load
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FIGURE (6. 171) ,  LOAD-DEFLECT ION CURVE FOR MODEL MSI 2
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(a)  Before removing the broken p ie c e s

(b) A f ter  removing the broken p ie c e s

figure ( 6 .172  ) : Crack p a t tern  on the t e n s i l e  sur face  o f
the s la b  o f  model MS12
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(b) On the back surface  

Figure ( 6.173 ) : Crack pattern  on the s lab  o f  model MS12
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FIGURE (6 .176) .  TENSILE STRAIN IN  STEEL IN  VINDVARD DIRECTION IN

THE SLAB OF MODEL M SI2

P2
r"

0 .9

For exact locations 
of strain gauges 
see figure (6.183)

0.6

0 .3

92

0.0

•tra m  /  yield atrain (0.002536)

FIGURE (6 .1 7 ? )  .  T E N SILE  S T R A IN  I N  STEEL I N  TRANSVERSE D IRECTION IN

THE S U B  OF MOOEL M S12



317

P2

0 .9

For exact locations 
of strain gauges 
see figure (6.183)

0 .3

P2

* - • «  P3

0.00.0 0 .5 1.0 2.01 .5
• t r a i n  /  y i a l d  s t r a i n  (0 .002617)  
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MS12 as shown in  F ig u re s  (6 .1 7 4 ) ,  ( 6 .1 7 6 ) , (6 .1 7 7 ) , 
(6 .1 7 8 ) ,  (6 .1 8 0 )  and (6 .1 8 2 )
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flange width. The final failure line on the top tensile surface changes considerably as 

the width of the flange increases. On the compressive side of slab it is noticed that 

in all models, the failure lines behind flange are inclined to the web. The 

compressive strain in concrete in windward direction at the centre of the slab (point 

PI) showed unloading in all the models of this series near the ultimate failure load 

like the models with rectangular shear walls. The variation in compressive strain in 

concrete along a section parallel to web is shown in Figures (6.149), (6.164) and 

(6.183). All these figures show maximum strain (about 60% of yield strain) at the tip 

of the flange and negligible strain at the back of the flange even at failure load. All 

the models will be more critically analysed in the following section.

6.5 Discussion and Analysis of Test Results

6.5.1 Ultimate Failure Load

As stated earlier in section 6.2, the actual cube strength of concrete on the 

day each model was tlted was different from the cube strength assumed in the design 

of the model. In an effort to make a comparison of ultimate loads of various models 

with the corresponding design lateral loads, the design loads of the models are 

corrected for the actual cube strength of concrete. This is done as follows :

British Code BS 8110 relates the allowable shear stress in concrete slabs with the 

cylinder crushing strength of concrete by the relation :

vc = 0.79(100As/bd)1/3(f'c/25)1/3(400/d)1/4 / Ym N/mm2 

where f'c is the cylinder crushing strength of concrete and Ym *s Par *̂a  ̂ safety 

factor.

Since shear strength of slab-  wall junction is a function of vc and provided all 

other parameters are same, then the design loads are related by

Vd2 f (v C2)

Vd , f (v Ci>

f (v C2)
o r Vd2  --------------- . vd i

f ( v c l )
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This formula is used to find the normalised design lateral load, using the actual 

cube strength of concrete. In table (6.6) the corrected design loads are compared with 

the experimental failure load for all the models. The first two preliminary models PS1 

and PS2 failed locally along the loaded edge beam. The model MS4 failed in shear 

which was initiated by the early crushing of wall itself. All other models failed in 

flexure accompanied by considerable amount of steel yielding around the connection. 

Model MS5 failed at much higher load than the design lateral load. The reason for 

this is discussed in section (6.4.2.1).

The mean ratio of experimental failur load, Vexp to design lateral load, Vdesjgn 

is 1.07 with standard deviation equals 0.09 for all 12 models tested monotonically. But 

if we neglect the results of models PS1, PS2 and MS4 and consider other models 

which failed in flexure, the ratio increases to 1.08 with the co—efficient of variation 

equals to 0.10. From the above, it can be said that the adopted design procedure is 

capable of resisting the ultimate design strength of wall — slab connections for all the 

range of parameters tested in this study.

6.5.2 Load — Deflection Relationship

Figures (6.53), (6.58), (6.107), (6.110), (6.123) and (6.184) show the 

non— dimensionalized curves of lateral load versus slab deflection for all twelve models 

tested under monotonic loading. For discussion purposes and to analyse them critically, 

each curve will be idealized in the manner as shown in Figure (6.185). The slope of 

the initial linear part of the load — displacement curve 'oc' is the pre—cracking

stiffness (Kq) and the displacement at the end of this part is termed as 'displacement 

at cracking 5c r '. The point 'c ' on the curve is roughly an indication for the first

apperance of torsional cracks (i.e. those cracks occured on slab area behind the flange 

for models with flanges and on the back side of the slab behind the nose of the wall 

for models with rectangular shear walls). After cracking of concrete, the first part of 

the nonlinear curve is approximated by a straight line 'ey' and the slope of this part

will be called 'cracked section stiffness Kcr'. The point 'y' on the curve is roughly an
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T ab le  (6 .6 )  : Com parisons o f  d es ig n  l a t e r a l  load w ith 
the  experim en ta l f a i l u r e  load

Mode 1
Norma 1i sed  
d e s ig n  lo ad

^des i gn 
KN

E xperim ental 
f a i l u r e  load

Vvexp
KN

Vvexp 

^des i
F a i lu re  

gn mode
Main v a r ia b le s

PS1 215 .0 219.0 1 .02 Local

PS 2 1 5 0 .0 159.0 1.06 Local Shear s te e l

PS 3 1 55 .0 175.0 1.13 F le x u ra l

MS4 2 2 0 .0 190.4 0 .87 Shear Wall web leng th  
67% o f MS7

MS 5 1 55 .0 203.0 1.31 F le x u ra l
C o rrid o r opening 
w idth

MS 6 330 .0 343.0 1.04 II
280mm fo r MS5 
400mm fo r  MS6

MS 7 2 40 .0 262.0 1.09 It 520mm fo r  MS7

MS 8 2 5 5 .0 280.0 1 .10 Yt G rav ity  load 
3 t imes o f  MS7

MS 9 2 50 .0 247.0 0.99 «1 Bay w idth 
1.44 t imes o f  MS7

MS10 2 2 0 .0 209.0 0 .95 ft Flange w idth 

300mm fo r MS10
MS 11 2 1 5 .0 219.0 1.02 It 200mm fo r  MS11 

400mm fo r  MS12

MS 12 2 1 5 .0 235.0 1.09 tt

mean — 1.07

S.D. -  0 .09
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indication for the first yielding in flexural reinforcement. The portion 'yf' 

terminates at punching or excessive deflections and portion 'fe' indicates the model 

failure.

Following this process, Figures (6.186) and (6.187) show the idealized curves 

from which table (6.7) was calculated. Because every model had a different cube 

strength, it was assumed for comparison purposes a inear relationship between fcu 

and stiffness. Thus modified values of stiffness pertaining to fcu=40 N/mm2 are 

shown in brackets. These values are plotted against the corridor opening width and 

flange width in Figures (6.188) and (6.189). Examination of the figures reveals

i) a decrase in stiffness of the structure with an increase of corridor opening width 

by the relation

K0 -  40 .3 4 8  + 9388.7 /  L

Kc r  -  14166 .0  (L )" 1 -0571 (6 .5 )

where L is the corridor opening width.

ii) an incrase in stiffness with the increase of flange width (Z) by the relation

K0 -  0 .19432  (Z )1 -0532

Kc r  -  1 .0651 ( z ) 0 -56328 ( 6 -6)

As was expected, the stiffness decreased with the increase of gravity load and with 

the increase of bay width. The table (6.7) shows that the ratio of the post- to 

pre— cracking stiffness ranges betwen 27% to 50% for the models of main test 

series.

6.5.3 Ductility of Wall — Slab Connection

The ratio of edge displacement at ultimate load to the edge displacement 

at first yield in the main reinforcing bar can be used as a measure of ductility. 

This ratio is similar in concept to the ductility factor which is used in reinforced
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T ab le (6 .7 )  : Pre - and P o s t-  C rack ine  S t if fn o c c  „ n
th e models

Mode 1 f1 cu 

N/mm^

P re -c ra c k in g  Cracked 
s t i f f n e s s  s e c t io n

s t  i f fn e s s

K0 KCj- 
KN/mm KN/mm

Kc r
100 Main v a r ia b le s

*o

PS1 4 2 .9 53 .5 18.9
(5 0 .0 ) (17 .6 ) 35.2

PS2 4 0 .5 65 .3 11.92 Shear s te e l
(6 4 .5 ) (11 .8 ) 18.3

PS 3 4 2 .2 6 7 .4 18.0
(6 4 .0 ) (1 7 .1 ) 26.7

MS4 4 3 .9 63 .8 19.6 Wall web leng th
(5 8 .0 ) (17 .9 ) 30.8 67% o f  MS7

MS 5 33 .1 4 9 .0 16.0 C o rrid o r  opening
(5 9 .0 ) (19 .3 ) 32.7 w idth

MS 6 5 1 .6 95 .7 47.8 280mm fo r MS5
(7 4 .2 ) (37 .0 ) 49 .9 400mm fo r  MS6

520mm fo r  MS7
MS 7 5 6 .5 88 .9 34.8

(6 2 .9 ) (24 .6 ) 39.1

MS 8 6 8 .0 85 .3 29.6 G rav ity  load
(5 0 .2 ) (1 7 .4 ) 34.7 3 t imes o f MS7

MS 9 64 .5 96 .5 27.9 Bay width
(6 0 .0 ) (17 .3 ) 28.8 1 .44  t imes o f MS7

MS10 5 7 .5 114.8 38.3 Flange w idth
(8 0 .0 ) (26 .6 ) 33.2

300mm fo r  -MS10
MS11 4 7 .7 61 .0 25.0 200mm fo r  MS11

(5 1 .2 ) (2 1 .0 ) 41 .0 400mm fo r  MS12

MS 12 5 0 .3 133 .6 39.0
(1 0 6 .0 ) (3 1 .0 ) 29.2

------------- -
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concrete frames and defined as the ratio of lateral deflection at ultimate load to 

lateral deflection at first yield load. Table (6.8) lists the edge displacement

corresponding to the first yielding of steel and the edge displacement at ultimate 

load. From the table it is apparent that the model PS3 with closed vertical stirrup 

as shear reinforcement shows the greatest amount of ductility compared to the 

models PS1 and PS2 with the type of shear steel in Figure (6.13). This is why, all 

the rest of the models were tested using closed vertical stirrup as shear

reinforcement. The range of ductility measured by the ratio of edge displacements

is 2.23 — 2.79 for models with T—section shear walls and 4 — 11 for models 

with rectangular shear walls. The lower ratio for the models with T— section shear 

walls is due to the fact that the concentration of stress near the nose is not as 

serious as in the case of rectangular walls.

6.5.4 Strains in Flexural Steel

The load versus steel strain curves for all the models tested in this study

are given in sections 6.3 and 6.4. The general behaviour can be described as

trilinear consisting of

(a) Behaviour before cracking,

(b) Behaviour after cracking,

(c) Behaviour after yielding of steel,

Before the development of the first crack, very little strain was normally

observed in the reinforcing steel and the load— strain relationship is linear. At this

load level, applied loading on the model is resisted mainly by concrete, hence the

steel is inactive.

After cracking, a gradual increase in strain was observed in the steel bars

both in windward and transverse direction and the load— strain curve remains linear

until yield.

After yielding, a rapid increase was recorded in strain with little increase of
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T ab le  ( 6 .8 )  : D u c t i l i t y  c a lc u la t io n  fo r  tho m nrt.i.

Mode 1
^yi e 1 d

mm

*u

mm

Duct i 1i ty  
«u

Main v a r ia b le s
^ y ie ld

PS1 6 .6 12.1 1 .84

PS2 6 .1 10 .4 1.71 Shear s te e l

PS 3 3 .5 28 .8 8 .23

MS4 4 .0 17 .3 4 .32 Wall web leng th  
67% o f  MS7

MS 5 5 .8 26 .9 4 .64 C o rrid o r opening 
w idth

MS 6 2 .8 11 .3 4 .04 280mm fo r  MS5 
400mm fo r  MS6 
520mm fo r MS7

MS7 3 .5 28 .8 8.23

MS 8 3 .75 31 .2 8.32 G rav ity  load 
3t imes o f MS7

MS9 1 .97 2 2 .4 11.37 Bay w idth 
1 .44 t imes o f MS7

MS10 3 .8 10.6 2.79 Flange w idth 

300mm fo r  MS10
MS11 5 .7 12.7 2.23 200mm fo r MS11 

400mm fo r  MS12

MS12 3 .8 9 .7 2.53
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load before failure. At this load stage, the load — strain curve is nonlinear and is 

almost flat. This represents the development of plastic strains. At ultimate load,

most of the tension steel around the junction had yielded.

Table (6.9) shows the lateral load as a percentage of the design load at which 

steel in windward direction yielded. The load at first yield of steel took place 

outside the serviceability limit load (0.625 X design load) in all the models except 

models MS6 (with small corridor opening width) and MS9 (with large bay width) 

which is 55% and 40% of design load respectively. The average load at first yield 

of steel of the models of main test series is equal to 66% of design load with the 

co—efficient of variation of 0.11. This value is slightly higher than the service load 

of 0.625 X design load. The average load for the models of MS series at first

yield of steel in transverse direction is equal to 0.88 X design load

An increase in bay width of about 44% shows experimentally a decrease in 

yield load of about 43%. An increase in corridor width results an increased yield 

load and an increase in gravity load causes a decrease in yield load, but they are 

not so significant.

Lateral load at which steel bars in windward direction yielded in the corridor 

area can be used to evaluate the amount of unbalanced moment which is directly 

transferred by flexure. This can be done following the provision of BS 8110 for 

singly reinforced rectangular section under flexure (neglecting the contribution of 

bottom bar which was used to ensure anchorage of the stirrup only). According to 

figure (6.190) : let

b = width of the section

d = effective depth of tension reinforcement

fcu = cube crushing strength of concrete

fy = yield strength of steel

Ag = total area of tension reinforcement
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Table (6 .9 )  : L a te r a l  load  a t which s tp p l y ie ld in g  was f i r s t
o b se rv e d . V|_ y as a r a t i o  o f thp dp c icrn
l a t e r a l  lo ad . V

Mode 1
(^L .Y . /  ^ d e s ig n  ^  100)

Main V ariab les’ d e s ig n
Longi tu d in a l  

Kn S te e l
T ran sv e rse

S te e l

PS1 215 .0 84 .6 -

PS2 150 .0 86 .0 94.8 Shear s te e l

PS 3 155 .0 71 .4 93.7

MS4 220 .0 63 .2 79.5 Wall web leng th  
67% o f MS7

MS 5 155 .0 73 .8 111.9 C o rrid o r opening 
w idth

MS 6 330 .0 55 .2 77.9 280mm fo r  MS5 
400mm fo r MS6 
520mm fo r MS7

MS7 240 .0 71 .0 94.9

MS8 255 .0 64 .1 78.7 G rav ity  load 
3 t imes o f MS7

MS 9 250 .0 4 0 .3 64 .9 Bay width 
1 .44 t imes o f MS7

MS10 220 .0 7 4 .3 93.2 Flange width 

300mm fo r  MS10
MS 11 215 .0 70 .6 85.6 200mm fo r MS11 

400mm fo r MS12

MS 12 215 .0 7 9 .4 107.9
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x = depth of concrete rectangular stress block

Mf = ultimate flexural capacity of a slab section of width ‘b’

After removing the partial safety factors, we can write 

fyAs = 0.67 fcu b (0.9x)

and

Mf = fy Ag ( d -  0.45x ) (6 8)

= 0.67 fcu b (0.9x) (d -  0.45x) (6.9)

For discussion purposes, it may not be unreasonable to consider a width 'b ' equal 

to

b =  tw +  d for models with rectangular walls, and 

b =  Z d for models with T— section walls 

where tw is the thickness of the wall and Z is the width of the flange.

Within this width, all the steel did not yield at one time. Using the recorded 

stress of steel within this width, at the onset of first yielding of any steel bar, the 

above equations will take the form 

N
E As i  f s i  “  0 .6 7  f cu b ( 0 .9x)

i-1
N

Mf  = I  As i  f s i  (d - 0 .45x)
i-1

-  0 .6 7  f cu b ( 0 .9x) (d -0 .45x )

where N is the number of steel bar within the width equal to 'b '

Agj is the area of individual steel bar 

fsj is the recorded stress in that bar 

The total applied (exparimental) unbalanced moment M0, at the onset of steel 

yielding may be calculated from

Mo =  VL y . L/2 <6-10)

where VL is the lateral load at which steel yielding was first observed and L/2 is

the half of the corridor opening width. The ratio of the calculated flexural moment
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to the total applied unbalanced moment (M^/Mq) is shown in table (6 .10).

The American Code provides a formula for the fraction of the unbalanced 

moment to be transferred directly by flexure, t j ,  in case of slab-column 

connection as given in equation (6 .11):

1
7f  -  ---------------- ; ■1    ■ ( 6. 11)

1 + 2 /3  S(C i+ d) (C2+d)

where =  column dimension in the direction of unbalanced moment

C2 =  column dimension measured transverse to the direction of unbalanced 
moment

To apply this for the models without flanges, the factor yf, may be calculated 

using wall thicknes, tw as C2 and wall—web length, W as C\. To apply the

above formula for the models with flanges, it may not be unreasonable to use 

flange dimensions as Cj and C2 (see Figure (6.191)). In table (6.10), the ratios of 

calculated flexral moment to the total unbalanced moment (Mf/M0) are compared 

with the factor yf.

It appears from the table that the factor, y$ results in slight underestimation 

of the moment transferred for models of small corridor opening width, when the 

full length of shear wall is used as Cj in the calculation of 7 f. For larger bay 

width, equation (6.11) proposed in ACI Code, calculates approximately 36% less 

moment actually transferred in flexure. In other words, the full wall— web length is 

not effective in resisting the unbalanced moment when corridor opening width is 

very small ( L <  6.0d ) or bay width is very large. For the models with flanges,

it appears that 7  ̂ results in a slight overestimation of the moment transferred by

flexure, when equivalent column is represented by flange only. In other words, 

some portion of web needs to be included as part of the column.

6.5.5 Effectiveness of shear reinforcement

The closed vertical stirrups and their arrangement in the slab of models PS3



T ab le  (6 .1 0 )  : Moments t r a n s f e r r e d  bv fle x u re  fn r 
th e  models o f  main t e s t  s e fre s

Mode 1 Mo Mf
Mf 7 f

eqn (6 .1 1 )
7 f

Main v a r ia b le s
Mo Mf  /  M0

MS4 5 6 .0 2 7 .8 0 .5 0 0 .53 1.06 Wall web length  
67% o f MS7

MS 5 5 7 .5 2 8 .0 0 .49 0.53 1.08 C orrido r opening 
w idth

MS 6 5 3 .4 3 1 .0 0 .58 0 .48 0.83 280mm fo r MS5 
400mm fo r  MS6 
520mm fo r  MS7

MS7 64 .3 3 0 .8 0 .48 0 .48 1.00

MS 8 6 4 .4 3 1 .5 0 .49 0.48 0.98 G rav ity  load 
3 t imes o f MS7

MS 9 4 0 .8 30 .6 0 .75 0.48 0 .64 Bay width 
1.44 t imes o f MS7

MS10 4 5 .0 27 .8 0 .62 0 .68 1.10 Flange width 

300mm fo r MS10
MS 11 4 1 .7 .2 3 .5 0 .5 6 0 .65 1.16 200mm fo r  MS11 

400mm fo r MS12

MS12 4 7 .0 2 9 .6 0 .63 0.71 1.13

Mo “ T o ta l e x p e rim e n ta l unbalanced  moment a t the 
o n se t o f  s t e e l  y ie ld in g

Mf — U ltim a te  f l e x u r a l  c a p a c i ty  o f  a s la b  s e c t io n  a t a 
d i s ta n c e  d /2  on e i t h e r  s id e  o f w all o r flange

d — e f f e c t i v e  d e p th  o f  te n s io n  re in fo rcem en t

7 f “  a f r a c t i o n  o f  u n b a lan ced  moment assumed
to  be t r a n s f e r r e d  by f le x u re  (see  eqn 6 .11)
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Figure (6.190) : Singly reinforced rectangular section 

under flexure

Figure (6.191)
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to MSI2 were found most effective in resisting punching shear failure (brittle type). 

In all the cases except model MS4, there was no shear failure in the slab and 

'large* ductility was available at the floor slab- shear wall junction. Most of the 

stirrups around the junction had yielded in most of the models. To check how far 

this arrangement of stirrup was effective, the efficiency of closed vertical stirrups, X 

used in the slab of models PS3 to MSI2 was calculated, in line with the current

American Code of practice, using the following equation (6.12) :

(Vexp -  1/2VC) X 100
X --------------------------------------  (6 .12)

A fnsv  • 1yw

where

VeXp = experimental failure load of the model

Vc =  shear strength of the junction without stirrup using ACI Code

Agy = total area of shear steel within the critical perimeter (according to

ACI Code 318-83) 

fyW =  characteristic yield strength of stirrup ^ 425 N/mm^

Table (6.11) lists the shear strength of the junction calculated by ACI Code 

318—83 formula without considering the area of closed vertical stirrup within the 

critical perimeter and percentage of efficiency of shear steel. If all the stirrups

within the critical perimeter yielded at failure load, then the stirrups will be called

100% efficient, provided the shear strength calculations by the ACI Code formulae 

are valid for the models tested in this study. The efficiency of the stirrups used in 

the models tested in this study, ranges from 51% to 98%. The mean for all 10 

models PS3 to MSI 2 is 71% with a standard deviation of 0.12.

6.6 Comparison of Tested Models with the Models without 

Shear Reinforcement^ )

6-6.1 Ultimate failure load

For the purpose of making comparison, the dimensions of the models tested
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T ab le  (6 .1 1 )  : E f f ic ie n c y  o f  c lo se d  v e r t i c a l  s t i r r n p c  for- 
th e  models o f  main t e s t  s e r ie s  acm rH fnp 
to  ACI Code 318 - 83

Model
E x p e rim en ta l Shear s t r e n g th  

f a i l u r e  o f  ju n c t io n  
lo ad  w ith o u t s t i r r u p

Ve xp
KN KN

T otal 
a re a  o f  

sh ea r 
s te e l

mm̂

E f f ic i

X
E qn .(6

ency
Main

v a r ia b le s
• 12)

PS 3 175 82 453 70% Shear s te e l

MS4 191 87 685 51% Wall web length  
67% o f MS7

MS5 203 63 685 59% C o rrid o r opening 
w idth

MS 6 

MS 7

343

262

161

136

629

585

98%

78%

280mm fo r  MS5 
400mm fo r MS6 
520mm fo r MS7

MS 8 280 150 585 82% G rav ity  load 
3 t imes o f MS7

MS 9 247 146 585 70% Bay width 
1.44 t imes o f MS7

MS10 209 252 283 69% Flange width

MS11 219 192 396 73%
300mm fo r MS10 
200mm fo r MS11 
400mm fo r MSI2

MS12 235 262 396 62%
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this study were kept exactly similar to those of models in Reference (23) which 

were tested without using any shear steel in the slab. In the case of the specimens 

without shear reinforcement, the cube strength of concrete, fcu, varied from 32 

N/mm2 to 50 N/mm2 and the yield stress of slab reinforcing bar ranges from 512 

N/mm2 to 573 N/mm2. In the specimens with the shear reinforcement, the range 

of fcu was from 33 N/mm2 to 68 N/mm2 and that of fy was from 478 N/mm2 to 

571 N/mm2. The theoretical design load for both models with or without shear 

reinforcrment are normalised for the actual cube strength of concrete using the

procedure discussed in section 6.5.1.

The normalised design lateral load and experimental failure load for both 

type of specimens and percentage of strength improved due to shear reinforcement 

are tabulated in Table (6.12). The values within brackets are for the specimens 

without shear steeK23). The provision of shear steel has increased the mean

strength of the junction by approximately 41% with standard deviation of 0.30. 

The improvement of ultimate strength is remarkable for models MS5 and MS6

(about 87% and 79% respectively) where corridor opening width is increased and 

decreased by 30% respectively from model MS7. The reinforcement ratio which

appears in table (6.12) is for all the bars within entire slab width in windward

direction.

Due to the variation in the material strengths fcu and fy in each test model, 

it is not exactly possible to determine the extent of increase in the strength

experimentally. The influence of the variation of concrete strength has been taken 

into account in the normalisation of design lateral load. The yield stress of bars

and their total amount has a marked influence on the strength of the connection 

as the flexural capacity of the slab depends largely on those values. Since the 

range of fy in the specimens with shear reinforcement was lower than those for 

specimens without shear reinforcement, it can be concluded that the extent of

increase in the strength of the floor slab- shear wall connections will be somewhat
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larger than what can be gauged from experimental results for all the models 

except model MS5. Model MSS had more flexural steel than its counterpart model 

MT6 and hence the improvement in strength will be lower than that listed in 

Table (6.12).

6.6.2 Load — Deflection Relationship

In Figures (6.192) and (6.193) the nondimensional curves showing lateral load 

versus specimens edge displacement are compared for models with and without 

shear reinforcement and having the same amount of flexural reinforcement. The 

load- displacement curves indicate very little ductility for the specimens without 

shear reinforcement. The use of shear reinforcement in the slab has markedly 

improved the ductility of every models as evident from Figures (6.192) and (6.193). 

But the use of shear reinforcement in the models did not change the stiffness of 

the structure. The slight variation in the stiffness may be due to the variation in 

the material properties of the models.

6.6.3 Strains

Tensile strains in steel in both windward and transverse direction in the slab 

of models with shear steel are compared with those of models without shear steel 

in Figures (6.194) to (6.201). The benifit of using shear reinforcement in the slab 

is readily apparent from the above figures. The reinforcing steel bars have not 

even yielded in the models without shear steel. Whereas, some of the bars in 

longitudinal direction in the models with shear steel reached more than three times 

yield strain before failure. This shows the considerable redistribution of stresses in 

the adjacent steel bars, causing delay in the ultimate collapse near the junction. 

Compressive strains in concrete on the bottom surface of the slab of models with 

shear steel are compared with their counterpatrs for models without shear steel in 

Figures (6.202) to (6.207). The maximum utilisation of concrete strength is 

apparent in models where shear steel has been used in the slab.
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T able (6 .1 2 )  : im provem ent o f  u ltim a te  s tr e n g th  rine to  shPar 
r e in fo rc e m e n t , V alues w ithout b ra c k e ts  a re  fo r 
th e  specim ens w ith  sh ear s te e l  and those w ith in  
b ra c k e ts  a re  fo r  the  specim ens w ithout sh ear s tpp l

Mode 1 
No

P e rc e n ta g e  
o f  f l e x u r a l  

r e i n f o r 
cement

Norma 1i sed  
des i gn 
lo ad
^des ign 

KN

E xperim ental 
f a i l u r e  

load
Vvexp

KN

Vvexp

^ d esig n

% o f s tr e n g th  
in c reased  due 

to  shear 
s te e  1

PS1 1 .29 215 219 1.02

(MT1) (1 .2 9 ) (207) (175) (0 .8 5 ) 20.0

MS4 1 .12 220 191 0.87

(MT3) (1 .2 9 ) (218) (154) (0 .7 1 ) 22.5

MS 5 1 .35 155 203 1.31

(MT6) (1 .2 9 ) (152) (106) (0 .7 0 ) 87.1

MS 6 1 .29 330 343 1.04

(MT7) (1 .2 9 ) (309) (178) (0 .5 8 ) 79.3

MS 7 1 .29 240 262 1.09

(MT2) (1 .2 9 ) (229) (193) (0 .8 4 ) 25.0

MS 8 1 .29 255 280 1.10

(MT4) (1 .2 9 ) (200) (193) (0 .9 7 ) 13.4

MS 9 0 .8 3 250 247 0.99

(MT8) (1 .0 7 ) (197) (164) (0 .83 ) 19.3
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•B WITH SHEAR REINFORCEMENT

-*■ WITHOUT SHEAR REINFORCB©<1

PS1 MS4 MS5 MS6

0.9

0 .6

0.3

0.0
0 - 1 S DEFLECTION/THICKNESS OF SLABM50MM)

FIGURE (6 .192) .  LOAD-DEFLECT I  ON CURVES COMPARING SPECIMENS PSJ,  HS4, MSS mnd 

MS6 VITH SHEAR REINFORCEMENT VITH THE SPECIMENS VITHOUT SHEAR REINFORCEMENT

MS 7 MS8 MS9

0.9

0.3

WITH SHEAR REINFORCB1ENT

WITHOUT SHEAR REINFORCO®*'

0-1 5 DEFLECTION/THICKNESS OF SLABU50HM)

FIGURE (6 .193) ,  LOAD-DEFLECT ION CURVES COMPARING SPECIMENS MS7, MSB mnd HS9 

VITH SHEAR REINFORCEMENT VITH THE SPECIMENS VITHOUT SHEAR REINFORCEMENT
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i
0

S,

■8

-O VITH SHEAR REINFORCEMENT

VITHOUT SHEAR REINFORCBCNT

0.9

0 .6

0.3

0.0
3-0 ■ tr a in  /  y i« ld  • t r a in  (0.002499)

FIGURE (6 .194) # COMPARISON OF TENSILE STRAIN IN  STEEL IN  VINDVARD DIRECTION 

IN  THE SLAB OF MODEL MSS VITH THAT OF MODEL 'MT6'

9

§>■
•8
s

-© VITH SHEAR REINFORCBtENT (KS6)

VITHOUT SHEAR REINFORCEHBIT 0(77)

0.9

0.3

0.0

■ tr a in  /  y ia ld  a tr a in  (0.002499)

FIGURE <6.195) .  COMPARISON OF TEN SILE ST R A IN  IN  STEEL IN  VINDVARD

D IRECTION IN  THE SLA B OF MODEL MS6 VITH THAT OF MODEL 'M T T
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O  WITH SHEAR REINF0RCB1ENT MSO

♦ WITHOUT SHEAR REINFORCEMENT <MT4)

0.6

O.S

0.0

■ tr a in  /  y ia ld  • t r a in  (0.002499)

FIGURE (6. \96) • COMPARISON OF TENSILE STRAIN IN STEEL IN VINDVARD DIRECTION

IN THE SLAB OF MODEL MSB VITH THAT OF MODEL 'HTV

-c WITH SHEAR REINFORCEMENT WS9)

WITHOUT SHEAR REINFORCEH0TT <MT«

0.9

0.6

0.3

f 0 .0 _________________I____________ .___ -L------ -------------  —
II 7
-< -----------------  *-| a tr a m  /  y ia ld  a tr a in  (0.002499)

FIGURE (6.197) i  COMPARISON OF TENSILE STRAIN IN STEEL IN VINDVARD DIRECTION

IN  THE SLA B  OF MODEL MS9 VITH THAT OF MODEL 'M TS'
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s
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-® WITH SHEAR REINFORCBOfT tS

WITHOUT SHEAR REINF0RCBCN1

0.?

0.6

“P10.3

0.0
20 s t r a in  /  y ia ld  s t r a in  (0.002499)

FIGURE (6.198) . COMPARISON OF TENSILE STRAIN IN STEEL IN TRANSVERSE DIRECTION 

IN THE SUB OF MODEL MSS VITH THAT OF MODEL 'MT6'

£

o  WITH SHEAR REINFORCEMENT 0 S

WITHOUT SHEAR REINFORCBOfi

0.9

0.3

0.0

2-0
s t r a in  /  y ia ld  a tr a in  (0.002499)

FIGURE (6. 199) .  COMPARISON OF TENSILE STR A IN  IN  STEEL IN  TRANSVERSE DIRECTION

IN  THE S U B  OF MODEL MS6 VITH THAT OF MODEL 'M TT'
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-® WITH SHEAR REINFORCEHBJT MSS)

♦ WITHOUT SHEAR REINFORCEHBfT (HT4)

0.9

0.6

" P 1

0.3

0 .0

• t r a in  /  y ia ld  s t r a in  (0.002499)

FIGURE (6 .200) .  COMPARISON OF TENSILE STRAIN IN  STEEL IN  TRANSVERSE DIRECTION

IN  THE S U B  OF MODEL MSB VITH THAT OF MODEL 'M TV

-* VITH SHEAR REINFORCEMENT 0 S

VITHOUT SHEAR REINFORCBOT

0.9

_P1

0.3

r o.o ------------------ 1---------------- - i----------------- --------- ------------
t  2*0

s t r a in  /  y ia ld  s t r a in  (0.002499)

FIGURE (6 .201) ,  COMPARISON OF TENSILE STRAIN IN  STEEL IN  TRANSVERSE DIRECTION

IN  THE S U B  OF MODEL MS9 VITH THAT OF MODEL 'M T S '
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I«*
9

fc
-S

-® WITH SHEAR REINFORCEHBfT PSD

♦ WITHOUT SHEAR REINFORCEHBfT MTU

0.9

0.6

0.3

0.0

0- 5 • t r a in  /  maximum s t r a in  (-0 .0035)

FIGURE (6 .2 0 2 ) ,  COMPARISON OF COMPRESSIVE STRAIN IN  CONCRETE IN  VINDVARD

DIRECTION IN  THE S U B  OF MODEL PS] VITH THAT OF MODEL 'M TV

-e WITH SHEAR REINFORCBIBtT OtSA)

+ WITHOUT SHEAR REINFORCBENT (NTS)

0.9

0.6

P1 P2 ^0.3

0.0

itr a in  (-0 .0035)• t r a in  /

FIGURE (6 .2 0 5 )  ,  COMPARISON OF COMPRESSIVE STR A IN  IN  CONCRETE IN  VINDVARD

D IRECTIO N I N  THE S U B  OF MODEL MS4 VITH THAT OF MOOEL 'M TS'
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-® WITH SHEAR REINFORCEHBfT «tS9

♦ winorr shear reinforcement mt&j

0.9

0.6

o.s

0.0

• t r a m  /  m x i • t r a in  (-0 .0035)

FIGURE (6 .2 0 4 )  » COMPARISON OF COMPRESSIVE STRAIN IN  CONCRETE IN  VINDVARD

DIRECTION IN  THE SLAB OF MODEL MSS VITH THAT OF MODEL 'H T6'

«  VITH SHEAR REINFORCBOfT MS6J

WITHOUT SHEAR REINFORCEHBfT (NT7)

0.9

0 .6

O.S

0.0
1-0

■ tra in  (-0 .0035)■ tr a m  /

FIGURE (6 .2 0 5 )  ,  COMPARISON OF COMPRESSIVE STR AIN  IN  CONCRETE IN  VINDVARD

D IRECTION IN  THE SLAB OF MODE. MS6 VITH THAT OF MODEL 'M T r
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-® WITH SHEAR REINFORCWBfT §07)

♦ WITHOUT SHEAR REINFORCBENT HT2J

0.9

0.0

• t r a in  / • t r a m  (-0 .0035)

FIGURE <6.2061 • COMPARISON OF COMPRESSIVE STRAIN IN  CONCRETE IN  VINDVARD

DIRECTION IN  THE S U B  OF MODEL MS7 VITH THAT OF MODEL ' MT,2 '

J

-C VITH SHEAR REINFORCEMENT MSO

WITHOUT SHEAR REIWWCEHENT tfTA)

O.S

0.0

• t r a m  (-0 .0035)• t r a in  /

FIGURE (6.207) ,  COMPARISON OF COMPRESSIVE STRAIN IN CONCRETE IN VlfCVARO

DIRECTION IN  THE S U B  OF MODEL MSB VITH THAT OF MODEL 'MT4'
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CHAPTER SEVEN 

THEORETICAL INVESTIGATION

7.1 Introduction

In chapter four, the computer programme used for the nonlinear finite 

element analysis of reinforced concrete structure was described. In this chapter the 

nonlinear program is used to carry out the theoretical analysis of the experimental 

models described in chapter six. The object of this theoretical analysis is :

(a) to build confidence in the accuracy of the results obtained from the three 

dimensional finite element program. This can be achieved by comparing the 

theoretical strains, deflections and failure loads with their experimental values.

(b) to obtain a better understanding of stress redistribution and progressive failure 

of concrete and steel. The redistribution of vertical shear stress components at 

different stages of loading might assist to understand progressive punching 

shear failure.

7.2 Nonlinear Analysis

The parameters which have an effect on the numerical solution can be

summarised as follows:

(a) Mesh size

(b) Tension stiffening

(c) Tensile strength of concrete

(d) Angle of crack

(e) Shear retention factor of cracked concrete

(f) The norm of convergence tolerance

The influences of some of the above parameters on numerical solution was 

thoroughly investigated by Elnounu(24) to analyze his experimental models.
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All the analysis were carried out using the fixed crack analysis. Six, eight and 

twelve elements mesh which have 210, 267 and 366 degrees of freedom respectively 

were used for convergence study. A linear analysis was carried out for the three 

meshes of Figure (7.1). The average displacement of the nodes on edge EF versus 

the number of degrees of freedom is plotted in Figure (7.2). The displacement 

increases about 21% when mesh is refined from six to eight elements but there is 

only 4.5% change in displacement from eight to twelve elements. Nonlinear 

analyses were also carried out on model MS7 and it was found that the mesh size 

has insignificant effect on the strains upto the yield point, but it has a considerable 

effect on the failure load which decreases about 20% when mesh is refined from

six to twelve elements. Keeping in mind cost of computation, the eight element 

mesh was adopted for acceptable accuracy. But twelve elements mesh were used in 

model MS9 because of large bay width and in model MS11 because of small flange 

width.

In the present work, a ceiling of 20 iterations per increment was found

sufficient to get convergence using a 10% convergence tolerance for residual forces. 

Adopting a more accurate tolerance did not show much difference in the behaviour 

other than increasing the computation cost. Tension stiffening was ignored. The 

high convergence tolerance with no— tension stiffening model has a considerable 

advantage over the tension stiffening model in that it requires far less iterations to 

keep the residual forces within the tolerance and hence less computer time.

Using the eight elements mesh of Figure (7.1), several nonlinear analysis were 

carried out for model MS7, using constant value of shear retention factor, Beta. 

Some of the results are presented in Figures (7.3) to (7.7). It is clear from those 

figures that the strains are not affected by the various values of 'Beta upto the 

yield point of the steel; but the failure load is always higher than the experimental

value. Elnounu(24) proposed the following equation (7.1) for shear retention factor

for the analysis of slab coupled to flanged shear walls.
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2

(a) Using six element*

s la b  th ic k n e s s

-H

(b) Ifeing eight

s la b  th ic k n e s s

Figure (7.1) : Finite element mesh with boundary conditions.
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Figure (7.1) : Finite element mesh with boundary conditions.
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FIGURE (7 .2 )  .  EFFECT OF MESH S IZ E  ON LINEAR DISPLACEMENT AT A LATBiAL 

LOAD EQUALS THE DESIGN LATBiAL LOAD
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0.15.

0 . 0 5

/  /

Experimental

0.8

Bata -  0.0S
0.4

Beta -  0.15

Bata -0 .25

0.0

DEFLECTION/THICKNESS OF SLABdSOMH)

FIGURE (7 .5 ) ,  EFFECT OF SHEAR RETENTION FACTOR, BETA,  ON THE LOAD-

DEFLECT ION RELATIONSHIP OF MODEL MS7 (Uming 8 •Immmntm mmrnh)

1 . 2
0  =  0 . 2 5 -----------

0  =  0 . 1 5  

Experimental 
0  =  0 . 0 5

0.9

0 .6

0.3

P1P2

0.0
3- 0

 s t r a in  /  yiald s t r a in  (0.002499)

FIGURE (7 .4 ) ,  EFFECT OF SHEAR RETENTION FACTOR, BETA, ON TENSILE STRAIN IN  

STEEL IN  VINDVARD DIRECTION IN  THE SLAB OF MODEL 'M S r
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  EXPERlMBfTAL
  Bata -  O.OS
  Beta m 0 .IS
   Bata -  0.25

1.2

0.9

0 . 6

-P1
- p 2

0.3

0.0
2 0 ■ tr a in  /  y ia ld  a tr a in  (0.002536)

FIGURE 17.51 . EFFECT OF SHEAR RETENTION FACTORBETA ., ON THE TENSILE STRAIN 

IN  STEEL IN  TRANSVERSE DIRECTION IN  THE S U B  OF MODEL 'M S7'
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EXPtRIMEKTAL 
Bata .  0.05 
Bata -  0.1S 
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-P1
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„ I a tr a in  /  y i • Ld a tr a in  (0.0028171 

FIGURE ( 7 .6J ,  EFFECT OF SHEAR RETENTION FACTOR, BETA,  ON THE TENSILE STRAIN 

IN  CLOSED VERTICAL STIRRUPS IN  THE S U B  OF MODEL 'MS7 '



where em is the average of the three principal strains at a cracked point, and 

eto is the cracking tensile strain which was taken as 0.0001. When equation (7.1)

was used to analyse the slab coupled with rectangular shear walls, the theoretical

failure load was found to be higher than the experimental one. To find a general 

relationship between the shear retention factor and Z/tw (the ratio of flange width 

to wall—web thickness), several nonlinear analysis were performed, varying Z/tw 

from 1.0 to 4.0 and using Cj equal to 0.25, 0.50, 0.75 and 1.0 in the following 

equations:

Cl
(3 — for  em  ̂ eto

em/ f to
( 7 . 2 )

0 -  1 . 0  for  em ^ eto

From the ratio of Vexp/Vtj,eo, as shown in Figure (7.8), it was very difficult to

express C | as a function of Z/tw. To be on the safe side, equations (7.2) with Cj 

= 0.25 were used in all the analyses presented in the rest of this chapter. This 

value gives the 'best' results for all values of Z/tw.

7.3 Procedure adopted for the analysis

For reasons of economy, only one half of the symmetric model was 

considered. In order to minimize the number of elements, the wall was assumed to 

have a zero thickness. To study the effect of wall thickness in the theoretical 

analysis, a nonlinear analysis was carried out on model MS7 using the twelve 

elements mesh. The results are presented in Figure (7.9) for load—deflection 

relationship and in Figures (7.10) to (7.13) for strains. When compared with the 

results of zero wall thickness (of eight elements mesh) the analysis (when the wall
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   experimental
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  Bata -  0. IS
  Bata -  0.25

1.2

0 .9

O.S

P1 P2

0.0
a tr a in  /  m x ia u n  a tr a in  (-0 .0035)

FIGURE (7 .7 )  » EFFECT OF SHEAR RETENTION FACTOR, BETA, ON COMPRESSIVE STRAIN 

IN  CONCRETE IN  VINDVARD DIRECTION IN  THE S U B  OF MODEL ' MS7'
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^  Z/tw -  3 .0  

_  Z/tw -  4 .0
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. . .  Z/tw -  2 .0
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FIGURE (7 .8 ) ,  CURVES TO GET A REUTIONSHIP BETVEEN THE CONSTANT Cl USB) IN  

EON. (7 .2 )  AND Z / t v  (Z-FLANGE VIDTH, tw-VALL THICKNESS)



359

Without wall thickness
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Considering wall thickness

0.9

0.3 WITHOUT WALL THICKNESS

CONSIDERING WALL THICKNESS

0.0
0-1 DEFLECTION/THICKNESS OF SLABU50MM)

FIGURE (7 .9 ) .  EFFECT OF VALL THICKNESS ON LATERAL LOAD-DISPLACEHENT RELATIONS 

OF MODEL MS7

WITHOUT WALL THICKNESS
CONSIDERING WALL THICKNESS

Experimental

Considering wall thickness
0.9

0.3

o.o
3 0

•tra in  /  yi«ld «tr«in (0.002499)

FIGURE (7 .1 0 )  t  EFFECT OF VALL THICKNESS ON TENSILE STR A IN  IN  STEEL

IN  VINDVARD DIRECTION IN  THE S U B  OF MODEL MS7
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FIGURE (7 .1 1 )  » EFFECT OF VALL THICKNESS ON TENSILE STRAIN IN  STEEL IN  

TRANSVERSE DIRECTION IN  THE SLAB OF MODEL MS7
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FIGURE (7.12) . EFFECT OF VALL THICKNESS ON TBISILE STRAIN IN CLOSED

VERTICAL STIRRUP IN THE SLAB OF MODEL MS7
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FIGURE (7. T3) # EFFECT OF VALL THICKNESS ON COMPRESSIVE STRAIN IN  CONCRETE 

IN  VINDVARD DIRECTION IN  THE S U B  OF MODEL MS7
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FIGURE (7 .14 )  ,  EFFECT OF SEQUENCE OF GRAVITY AND UTERAL LOADING IN  CONTRAST 

OF PROPORTIONAL LOADING ON UTERAL LOAD-DISPUC&ENT REUTIONS OF MOOB. 'H S r
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thickness is included) shows that the ultimate load of the structure is slightly lower 

and the stiffness is slightly higher. The prediction of local behaviour is improved as 

is evident from strain readings in steel and concrete at the points around the wall. 

As far as computing cost is concerned, analysis with zero wall thickness is 

preferred because of very insignificant effect on the overall behaviour of the model 

when the wall thickness is considered.

To duplicate the loading process used in the experiment, the following scheme 

was followed.

In the first instance, the elastic distribution of the corresponding wind load 

along the line of contraflexure, required for the prescribed uniform displacement of 

0.05 mm was obtained (See Figure 3.15). This distribution was assumed to remain 

unchanged in the nonlinear analysis. The wind load was thus load controlled. The 

gravity load was applied during the experiment in the first few increments during 

which no lateral load was applied. This sequence was duplicated in the theoretical 

analysis, incorporating the crack opening and closing facility in the programme. 

Gravity loads, which are applied on edge BDF in Figure (7.1), were assumed to 

be a uniformly distributed line load.

The sequence of gravity and lateral loading was not followed in the theoretical 

analysis reported in reference (24) and (44). Instead, proportional gravity and 

lateral loads were applied such that the ultimate gravity load was achieved together 

with the experimental lateral load at failure. That assumption did not greatly affect 

the overall behaviour of the models as evident from Figures (7.14) to (7.17). The 

failure load is slightly lower (around 5%) for proportional gravity and lateral 

loading. The local strain behaviour in concrete is improved at the tip of the wall, 

where early cracking usually occured, but may be closed at a later stage of 

loading. The sequence of loading in theoretical analysis has insignificant effect on 

tensile strain in steel upto the yield piont.

It was observed during the experiment that due to the presence of gravity
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EXPBRINENTAL 
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FIGURE (7. I S  .  EFFECT OF SEQUENCE OF GRAVITY AND LATERAL LOADING ON TENSILE 

STRAIN IN  VINWARD DIRECTION IN  THE S U B  OF MODEL 'M S7'
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loads, the displacement of the line of contraflexure (central line of corridor 

opening) did not remain constant. The difference, however, was not large even for 

model MS8 for which the intensity of gravity load was the highest. For this model, 

the displacement at corner point F (Figure 7.1) was approximately 1.2 times that 

at central point E. Results from the theoretical analysis exhibited similar behaviour 

for all the models except for models of flanged width series, viz. MS10, MS11 and 

MS12. Near the theoretical ultimate load, the displacement at edge F was 1.4, 1.17 

and 1.21 times that of central point E respectively.

7.4 Load Displacement Relationship

Curves comparing theoretical load— displacement relationship with their 

experimental counterpart for all the models are presented in Figures (7.18) to 

(7.23). In general it can be said that the load—deflection behaviour is predicted 

with reasonable accuracy, despite the fact that the predicted curves give slightly 

lower values of displacement than the experimental curve for the same applied 

load. This difference is considered insignificant because of the difficulties and 

scatter associated with reinforced concrete behaviour. The fixed crack analysis, used 

for this theoretical study, also shows a slightly stiffer load— deflection behaviour (see 

Figure (7.72)) than analysis assuming concrete as a No—tension material. The 

difference between the experimental and theoretical curves above 60% of design 

lateral load may be due to the following reasons:

(a) the nonlinear finite element theory does not take into consideration all the 

factors affecting reinforced concrete behaviour. Bond slip of reinforcement, for 

instance, is one of such factors; and it is believed that in the absence of 

bond slip effect, tensile strains in steel will be higher and deflections lower 

than what they should be when bond slip effect exists. As will be shown later 

in this chapter, theoretical tensile strains in steel do support this argument.

(b) Correction of experimental displacement at the line of contraflexure due to
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wind loading against wall deformation was assumed to be linearly proportional 

to Lc ( see Figure 6.9) but the variation of strain measured by the strain 

gauges attached to the wall was found not exactly linear. This may introduce 

some error in the experimental load—deflection curve.

7.5 Tensile Strain in Steel

Steel strain predictions are examined for both the longitudinal and transverse 

reinforcement. Care has been taken to choose the Gauss point for strain readings 

as near as possible to the location of strain gauges in the experiment. Strain in 

steel in the windward direction, (i.e., x—direction with reference to Figure (7.1)), 

is presented in Figures (7.24) to (7.35). In general, good agreement is shown at all 

points. In most of the models, theoretical strains show higher values than 

experimental one at position (at the tip of the wall). Very good agreement is 

found at point P2 and recorded experimental strain shows slightly higher values

than theoretical one at point P3 (along the edge of the slab).

Theoretical strains in steel in transverse direction, i.e., Y—direction with 

reference to Figure (7.1), are compared with their experimental values in Figures 

(7.36) to (7.47) for all the models. The Figures indicate that there is no great 

inconsistency in the predictions.

The lateral load at which steel yielding was first observed in theoretical 

analysis is shown in table (7 .1) for all the models tested under monotonic loading 

condition. The average theoretical load at first yield of steel in longitudinal 

direction for all the models of main test series is equal to 63% of design load 

with co—efficient of variation 0.12. This value is slightly lower than the average 

experimental load (66% of design load) at first yield of steel in windward 

direction. For the models MS4 to MS9 with plane shear walls, the theoretical 

average load at first yield of steel is 55% of design load (S.D. = 0.03) which is

lower than the serviceability limit load (0.625 x design load). The mean ratio of
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Table (7 .1 )  : C om parative s tu d y  o f  th e o r e t ic a l  and experim ental
l a t e r a l  load  a t which s te e l  y ie ld in g  was f i r s t  observed. 
VL .Yas 9 r a t i o  o f  the  design  la t e r a l  load . Vdocjg n

Mode 1 ^des i gn

VL. Y 

^des i gn

L o n g itu d in a l s te e l T ransverse  s te e l

Experi 
m ental

Theore 
t ic a l

EXP Experi 
m enta1

Theore EXP

THEO THEO

PS1 215 .0 0 .85 0.750 1.13 - - -

PS2 150 .0 0 .86 0.81 1.06 0.95 1.06 0.90

PS3 155 .0 0 .72 0.78 0.92 0.94 0.90 1.04

MS4 2 20 .0 0 .63 0 .58 1.10 0 .80 0.92 0.86

MS 5 155 .0 0 .7 4 0 .57 1.30 1.12 0.97 1.15

MS 6 330 .0 0 .5 5 0 .53 1.05 0.78 0.83 0.94

MS 7 240 .0 0 .71 0 .57 1.25 0.95 0 .84 1.13

MS 8 25 5 .0 0 .6 4 0.55 1.16 0.79 0.76 1.04

MS 9 250 .0 0 .41 0 .50 0 .80 0.65 0.73 0.89

MS10 2 20 .0 0 .7 4 0 .86 0 .86 0.93 0.87 1.07

MS 11 215 .0 0 .71 0 .68 1.04 0 .85 0.75 1.14

MS12 215 .0 0 .79 0 .79 1.00 1.08 0.82 1.31

mean -  0 .69 0 .66 1.05 0.89 0.86 1 .04

S.D. -  0 .12 0 .12 0 .14 0.13 0.10 0.13
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the experimental to the theoretical (VLy v design) is 1.05 with standard deviation 

0.14 for longitudinal steel bars. For transverse steel bars, the mean ratio is 1.045

with co—efficient of variation equals to 0.13.

Figures (7.48) to (7.58) show the comparison of steel strains for closed 

vertical stirrups for some of the models. Overall the agreement is reasonable.

In some of the Figures, the experimental strain in steel is not shown near the

ultimate failure load of the model (see curve for point P2 in Figure 7.31). This 

was because the strain gauge was damaged. On the other hand, some of the curves 

(both theoretical and experimental in Figure (7.30)) were intentionally stopped to 

avoid overlapping when it reached the limit of next vertical line, instead of 

continuing up to the ultimate failure load.
i

7.6 Compressive Strain in Concrete

Theoretical compressive strains in concrete in the windward direction are 

compared with their experimental counterparts in Figures (7.59) to (7.67). These 

theoretical strains are measured at sampling points located in the compressive side 

of the slab but at a small distance away from the extreme compressive fibre (in 

the case of 150 mm slab thickness, this distance was 17 mm) as illustrated in 

Figure (7.68). But as mentioned in chapter five, strain gauges in the experiments

were fixed on the extreme compressive fibre of the slab. Therefore it was expected

that the value of such experimental compressive strain measured at the surface will

be slightly higher than its theoretical counterpart. This is clear in most of the 

curves presented in Figures (7.59) to (7.67).

The theoretical values at the extreme fibre of the slab were extrapolated from 

the three strain values along the depth of the slab, assuming parabolic variation of 

strain. Figures (7.69) to (7.71) show the comparison between experimental, 

theoretical and extrapolated strain values. This shows that the proposed

element analysis predict the compressive strain satisfactorily.
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7.7 Ultimate Failure Load

During the experiment, failure of the wall-slab connection was assumed to 

have taken place when punching of slab took place or excessive deflection of slab 

• at the line of contraflexure (i.e., edge EF in Figure 7.1) was observed, 

accompanied by rapid decrease in lateral load. On the other hand, in theoretical 

analysis, the second definition which is gradual increase in deflections, can be easily 

detected as in Figure (7.20); while punching phenomenon can only be known from

the very sudden jump in deflection as in models PS1 and PS2 of Figure (7.18).

For all the models tested, the theoretical ultimate load (Vtheo) is compared

with the experimental ultimate load (Vexp) in table (7.2). During the test, model 

MS4 was failed in shear at the back of the slab at 86.6% of design lateral load 

due to early crushing of the wall, but the theoretical analysis shows flexural type 

of failure at 102% of design load. So, neglecting the result of this model, the 

mean ratio of (Vexj/^theo) is 1.0 and the standard deviation equals 0.07. From 

this Table, it can be said therefore that the proposed finite element analysis 

predicts the failure load satisfactorily.

It is interesting to note that not only the flexural type of failure was

successfully predicted (as in Figure 7.20 for models to study the effect of corridor 

opening width), but also the punching type (as in Figure 7.18 for models PS1 and 

PS2).

7.8 Concrete as No— Tension Material Analysis

To study the effect of tensile strength of concrete on the predicted behaviour 

of models, the incremental non— linear analysis were also performed for some of 

the models considering concrete as a No— tension material.

In the Fixed Crack analysis, the crack direction remains fixed and depends on 

the direction of the principal tensile stress at the loading state when the p p
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Table ( 7 .2 )  : Co m p ariso n  o f  f a i l u r e  loads p red ic ted  hy f in l ta  . 1 ____
method with the experimental Tall nr.  ----------------------

Mode 1 Main V a r ia b le s
E xper. 
f a i l u r e  
load  
Vvexp
KN

Theor. 
f a i lu r e  
load
^theo

KN

Vvexp

^theo

Type o f 
f a i lu r e

Exper. Theor.

PS1 219.0 200.0 1.10 local punching

PS2 S hear s t e e l 159.0 180.0 0.89 local punchi ng

PS 3 175.0 180.0 0.97 f le x u ra l Ini t ia te d  
by y ield ing 

o f s te e l

MS4
Wall web le n g th
67% o f  MS 7

190.4 220.0 0.87 Ini t ia te d  
by wa11
crush ing  & " 
f in ish e d  
by flex u re

MS 5 C o r r id o r  op en in g  
w id th

203.0 200.0 1.02 f le x u ra l It

MS6 

MS 7

280mm f o r  MS5 
400mm f o r  MS6 
520mm f o r  MS7

343.0

262.0

330.0

260.0

1.04

1.01

ft

II

II

It

MS 8 G ra v ity  lo ad  
3 t imes o f  MS7

280.0 280.0 1.00 II It

MS 9 Bay w id th  
1 .4 4  tim e s  o f  MS7

247.0 250.0 0.99 It It

MS 10 F lan g e  w id th 209.0 220.0 0.95 It tt

MS 11
300mm f o r  MS10 
200mm f o r  MS11 
400mm f o r  MS12

219.0 200.0 1.10 91 It

MS 12 235.0 230.0 1.02 It It

mean -* 1.00

S.D. -  0.07
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tensile stress equals the tensile strength of concete. In addition, if there are more 

than one crack, they are forced to be orthogonal. This procedure involves the 

modification of the material stiffness matrix to allow for orthotropic properties of 

concrete after the concrete has cracked. Because of the fact that due to the

aggregate interlock, shear stress is permitted on the cracked planes, there is a 

possibility of tensile stresses building up in directions other than the crack

directions. In reinforced concrete, the initial and final crack directions usually do

not coincide. So, the assumption of fixed crack directions may involve an error in 

the analysis.

In the No— Tension analysis, the principal tensile stress is brought back to 

zero at every stage of analysis. No modification in the material stiffness matrix is 

involved in this type of analysis, except when the steel yields. In addition the 

method accords with the assumption normally made in design of not relying on the 

tensile strength of concrete. As in fixed crack analysis, the convergence tolerance 

was taken as 10%. The maximum number of iterations was increased from 20 to

40. All other parameters which were tuned for fixed crack analysis were kept the

same for this analysis.

The fixed crack analysis and No— tension analysis results of Load— deflection, 

Load— steel stresses and Load— concrete compressive stresses are shown in Figures

(7.72) to (7.82) for some of the models. For No-tension analysis, Figure (7.72) 

shows that the ultimate loads were slightly higher than the loads obtained by fixed 

crack analysis for models MS6 and MS7 and for models MS4 and MSS were found 

to be exactly equal to that obtained from fixed crack analysis. Fixed crack analysis 

resulted in slightly stiffer load-deflection curve than that obtained for No-tension 

analysis.

There is no significant difference between the fixed crack and No tension

analysis results for the load— strain curves for steel in both the longitudinal and

transverse directions. Remarkable improvement can be noticed in the load strain
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curves for shear reinforcement (closed vertical stirrup) analysed by No-tension 

, analysis. The contour lines of vertical shear stresses which will be described in next 

section do support this lower theoretical strains in stirrups in No-tension analysis. 

This analysis shows better agreement for strains in stirrup with experimental results 

than fixed crack analysis. Figures (7.81) and (7.82) also show better agreement 

between experimental and N o- tension analysis for the compressive strain in 

concrete.

7.9 Distribution of Shear Stresses in the 

Post — Cracking Range

Shear stresses in slab play an important role in the strength of slab— wall 

connections. The vertical shear stress components (i.e. r yz and tzx ) are major 

factors to be considered in predicting the punching failure of the slab. One of the 

objectives which led to the development of a computer programme for three 

dimensional non— linear finite element analysis was to include the effect of shear 

stresses in the assesment of the failure of the junction.

To build confidence in the accuracy of the results obtained from the finite 

element programme, the distribution of vertical shear stresses tzx over the depth of 

the slab at different loading stages is presented in Figure (7.83) for model PS1. 

Sixteen element mesh with two elements along the depth were considered for that 

purpose. The figure shows more or less parabolic distribution of shear stress which 

was as expected.

For some of the models, contours of shear stress were considered to study 

’stress distribution pattern' around the wall— slab junction as the loading 

progressed. Contour lines of vertical shear stresses tzx and r yz at the Gauss points

in the compressive side of the slab (using eight element mesh with one element

along the depth) will be shown. Only half the slab will be shown as in Figure

(7.84), where the wall is represented by its centre line AC.
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lateral load 0.73 of design load.
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Contours of vertical shear stresses obtained by Fixed crack analysis and 

No-tension analysis are presented in Figures (7.85) to (7.94) for models MS6 and 

MS7. Contours are also plotted for model MS6 without considering the shear 

reinforcement in the slab as shown in Figure (7.84). Use of shear reinforcement in 

the slab changes only a little the distribution of shear stress as shown by contour 

lines from Figures (7.84) and (7.85). From these figures it is clear that the shear 

stress distribution pattern obtained by No-tension analysis is completely different 

from that obtained by fixed crack analysis. The magnitude of verical negative shear 

stress values in No— tension analysis contours are much lower than those values in 

fixed crack analysis contours. Contours of some positive shear stresses are found in 

No— tension analysis at the back of the slab, whereas no such lines were found in 

fixed crack analysis.

Observing the contour lines by fixed crack analysis of shear stress r zx in the
i
slab of model MS7 at the three loading stages, it is noticed that the area around 

the wall nose is found to be highly stressed, which is the critical area for punching 

failure. Contour lines of r zx plotted from No— tension analysis show that not only 

the wall nose is highly stressed but the stresses are redistributed all over the slab. 

The point of maximum positive shear stress r zx at the back of the slab, is found 

at a distance 2d beyond the nose of the wall at all stages of loading. The point of 

maximum negative shear stress is found in the corridor area at a distance 'd' from 

the nose of the wall at early stage of loading. At later stage of loading that point 

comes nearer to the nose of the wall at a distance only d/4.

To illustrate progressive redistribution of shear stress 7yZ arond the connection, 

contours of r yz obtained by fixed crack analysis are shown in Figures (7.93) and 

(7.94) at two different loading stages. The point of maximum negative shear stress 

at later loading stage is found to shift from the wall nose towards the slab edge to 

a point at a distance d/2 from the wall.
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7.10 Theoretical Crack Pattern and the Prnfm»c<f 

of Failure in Steel and Concrete

In order to compare the crack pattern obtained by theoretical analysis with 

the experimental one, cracks which occurred in those sampling points located in 

the tension side of the slab are used. Such crack pattern is obtained for models 

MS6 and MS7 and may be compared with the experimental one in Figures (7.95) 

and (7.96). Because only eight elements were used in theoretical analysis, the 

number of stress sampling points in the tensile region is not large; therefore the 

resulting crack pattern is crude. But inspite of this crudeness those cracks in 

Figures (7.95) and (7.96) may be compared satisfactorily with the experimental one.

It has been mentioned in chapter three that the direct design method requires 

that the steel in slab should yield at sufficient number of points with minimum 

amount of redistribution of stresses in slab thus converting it into a mechanism. In

all the models, local yielding of steel started from a point very close to the wall

nose. At ultimate loads in most of the models, the steel in the main direction 

along the transverse critical section yielded only in two out of four elements. 

Figure (7.97) shows step by step yielding of longitudinal steel in different elements 

of the slab of model MS7 as the loading progressed. From this figure it can be 

observed that the local yielding of the longitudinal steel near the inner edge of the 

wall started when the applied load was only 58% of the flexural design ultimate 

load. However the average strain in element No. 5 reached its yield value when 

the applied load was equal to 69% of deisgn load, while in element No. 6 steel 

yielded at 95% of design load. Figure (7.98) shows step by step yielding of

transverse steel in different elements of the slab of same model MS7 as the 

loading progressed. From those figures it can be concluded that some redistribution 

of streeses has taken place before steel in sufficient number of elements yielded. 

The reason of not yielding the steel of most of the elements even at ultimate

failure load was that the area of steel provided in those elements of the slab were
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(d) at fai lure

Figure (7.97) Step by step yie ld ing of  longitudinal s teel  in 
d i f f e r e n t  elements of  the slab of  model 'MS7' at 
d i f f e r e n t  percentages of design lateral  load.
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elements o f  the slab of  model 'MS7' at different  
percentages o f  design lateral load.
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higher than that required to resist the design lateral load (for example see figure 

(3.18)).

In order to observe the progress of failure of concrete in the slab, the

theoretical results from nonlinear fixed crack analysis were used. In the compressive 

side of the slab, the region surrounding a Gauss point fails when that gauss point 

suffers from a crushing situation. As the loading increases, crushing spreads out to 

other Gauss points in the slab. The sequence of this spreading indicates the 

progress of failure in concrete. The sequence of that spreading for models MS6, 

MSI2 and MS9 are presented in Figures (7.99) to (7.101) from which it is clear

that once the area near the wall fails; failure spreads quickly through the slab

indicating the collapse of the slab- wall junction. This progress of failure in

concrete can be used in chosing the critical section for the wall-slab connection.

7.11 Development of design equation for predicting Punching

shear strength of Shear wall — floor slab connections

7.11.1 General

As noted in chapter two, there is as yet no fully satisfactory and 

comprehensive theory of punching for slab— wall connections. The proposals made 

here are therefore empirical. The problem under investigation bears some 

resemblance to the strength of slab— edge column connections in flat slab

structures. The only difference arises from the length of the wall which is much

greater than the width of the corresponding column. Code recommendations on the 

calculation of punching strength of slab-column connections differ in regard to the 

distance from the column faces to the critical perimeter, and in the expression 

used to define the limiting value of the stress.

When the perimeter is drawn close to the column the corresponding stresses 

are very high. If the perimeter is moved outward, the stresses reduce. In BS 8110,

the critical section is defined as being at a distance equal to 1.5d, where d
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f igure (7 .99)  : Step by step fai lure in concrete in the compressive 
s ide  o f  the slab of  model 'MS6* at different  
percentages of  design lateral load.
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Theoret ical

(e) at fa i lure  Experimental

Sure (7 .100) : Step by step fa i lure in concrete in the compressive 
s ide o f  the slab of  model 'MS12' at different  
percentages o f  design lateral  load.
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effective depth of slab. In ACI 318-83, the critical perimeter is located at a

distance d/2 from the column faces.

The proposed method is, in fact, based on the shear criteria of failure in 

which punching is assumed to occur when the shear stress around a critical 

perimeter reaches a limiting value. The shear capacity is estimated from the 

product of three terms -  a critical area term, a critical shear stress term, and a 

moment transfer reduction factor.

In proposing the following design method for predicting the punching shear 

strength, the following considerations were kept in mind :

i) It should show consistent and accurate predictions in relation to the 

experimental data for all the models with and without flages with low standard 

deviation.

ii) It should be simple to use, rather than based on a sophisticated method of

analysis.

iii)It should be easily adaptable to cover the use of shear reinforcement (closed 

vertical stirrups).

7.11.2 Choice of critical punching shear area term

In the experimental investigation reported in References (23) and (24), it was 

shown that most of the models without shear reinforcement suffered brittle failure 

by punching shear but models with properly designed shear reinforcement suffered 

ductile failure as discussed in chapter six.

It was found from the experimental investigation that the critical perimeter for 

punching failure was at a distance d/2 in the corridor area from the inner edge of 

the wall, for both plane and flanged shear wall-floor slab connections. For models 

with plane shear walls, it was suggested that(73) the dimension Cj of critical
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section(see Figure (2.38)) parallel to the wall should be around 3.5 times the 

thickness of the wall for fully effective critical perimeter. For models with flanged

shear walls, the critical section behind the flanges extends at an acute angle to the

wall-  web. The extent up to which this section extends behind the flange was 

investigated both experimentally and theoretically by Elnounu (24). He found that 

this angle of inclination increases with the flange width.

Based on Elnounu's recommendation, a typical shape of the critical section is 

shown in Figure (7.102). The thickness of the wall is assumed as flange width for 

the models with plane walls. The properties of this section are:

Z =  flange width for models with T—section shear walls

=  equal to wall thickness for plane models 

tf =  flange thickness 

tw =  web thickness

W =  wall web length

d =  effective depth of tension reinforcement

p =  Z ■+■ d

q =  tf *+■ d/2

x/Z =  4.0 e — 0.465(Z/tw) (7.3)

x = distance behind flange up to which the critical section extends,

r =  length of inclined portion of the section

=  x2 ( p - t w)2/4 

q  =  [ q2 +  r(x+2q)]/[p+2(q+r)] (7‘4)

C2 = q + x - C i

where Cj , C2 determine the location of neutral axis 

bp =  length of critical perimeter

= p +  2(r+ q)

A(,p = area of critical perimeter

(7.5)
= d . bp
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424

J = similar to the polar moment of inertia

3xrq(C1- q ) ( c 1-2q/3)+2r2((C1-q)3+c,3)
- d q  [p C i + q ^ j - q /S )  + -------------------- i____________  1 q) 2 \  , ,  ,

o / , --------- ----  JSxCxq+rCq-q))

7.11.3 Choice of critical shear stress term

In the light of the study presented in chapter two, the shear stress value for 

critical section in Figure (7.102) was taken as :

where rectangularity factor, Rf =  (x+q)/p k 2.0 (see Figure (7.102))

To incorporate the effect of flexural reinforcement, it was assumed that an increase 

of every 0.5% in the ratio of flexural steel in the slab above 0.8%, the calculated 

value of vc should be increased by 0.05 N/mm^. Thus

where values of (lOOAs/bd) are calculated for width (z+3d) and 

0.8 ^ (lOOAs/bd) ^ 2.0

7.11.4 Choice of moment transfer reduction factor

Two approaches are usually adopted for punching shear capacity of slab — 

column connections transferring shear and unbalanced bending moment. The first 

approach calculates the increase in shear stress caused by moment transfer (e.g. 

ACI) and then compares it with the permissible shear value. The second approach

calculates the punching capacity for no moment transfer and then applies a

reduction factor (e.g. BS 8110). The first approach is followed in this study. The

net shear stress around the slab— wall junction is given by :

vc =  0.3 ( 1 +  2/Rf ) (fcu)l/3

vc = 0 .3(1+ 2/Rf) (fcu)1/3 + 0.1 (lOOAs/bd -0 .8 ) (7.7)

V K.M Ci (7.8)
c +

A,cp J
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where K — 1 -  --------------—
1 + 1 /2  JFf

Rf -  (x + q )/p

and all other terms are as defined in section 7.11.2. 

For the present study, M =  V L/2 . Therefore,

vc ^cp
v -  _______________vc (7 .9 )

2 ( j / q )

7.11.5 Performance of proposed method

Tables (7.3) and (7.4) compare the predicted punching capacities with the 

actual failure loads observed in the tests as reported in Reference (23) and (24). 

Despite the wide ranging nature of the tests, excellent agreement exists between 

the experimental and calculated values for the models with plane and flanged shear 

walls, with the average Vexp/Vcal ratio of 1.07 and 1.02 and co-efficient of 

correlation of 11.0% and 4.5% respectively. Keeping in mind that no partial safety 

factors were incorporated, it appears that the proposed method can be used safely 

with the relevant safety factors.

The figures presented in Table (7.5) also reveal that the proposed method 

to be more accurate and consistent in its predictions than either the British or the 

American Code or other proposed methods, when the shear wall is treated as an 

edge column.

7.11.6 Extension of Proposed method to cover the use

of shear reinforcement (closed vertical stirrup)

It was stated in chapter two that when shear reinforcement is placed in the 

slab, four different modes of failure (see Figure (2.10)) are possible in addition to 

flexure. When the fracture surface crosses at least some shear reinforcement, the
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Table  ( 7 . 3 )  : P r e d i c t e d  p u n ch in g  c a p a c i t i e s  f o r  the  models o f  p lane  

s h e a r  w a l l  -  f l o o r  s l a b  c o n n e c t io n s  in  R e f e r n c e ( 2 3 )

Model

E xperim en ta l 

f a i l u r e  load 
Vvexp

KN

C alcu la ted  

f a i lu r e  load

^cal
KN

vvexp

^cal

MT1 175.5 157.8 1.11

MT2 192.9 174.0 1.10

MT3 154.2 158.0 0.98

MT4 192.8 145.6 1.32

MT5 160.9 145.7 1.10

MT6 105.8 119.4 0.89

MT7 177.8 181.6 0.98

MT8 163.7 144'. 1 1.14

MT9 147.2 148.1 1.00

MT10 153.3 144.5 1.06

MT11 164.0 146.4 1.12

mean -  1 • 07

S.D. -  0.11 

range -  (0 .89  -  1.32)
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Table  ( 7 . ^ 0  : P r e d i c t e d  p u n ch in g  c a p a c i t i e s  f o r  t h e  models o f  f l anged 
s h e a r  w a l l  -  f l o o r  s l a b  c o n n e c t io n s  in R e f e r n c e ( 2 4 )

Mode 1

E xperim en ta l 
f a i l u r e  load 

Vvexp
KN

C alcu la ted  
f a i lu r e  load

^cal
KN

Vvexp

^cal

MSI 150 .0 149.3 1.00

MS 2 140.0 149.8 0.94

MS 3 150 .0 149.0 1.01

MS4 120 .0 128.9 0.93

MS 5 132 .0 130.7 -  1.01

MS 6 130.0 129.2 1.00

MC 140.0 132.9 1.05

MZ1 109.0 105.3 1.04

MZ2 160.0 146.2 1.09

MZ3 148.0 145.4 1.02

MW1 137.0 129.1 1.06

MCI 136.0 125.2 1.09

MG2 140.0 134.7 1.04

MG3 129 .0 129.0 1.00

mean * 1-02

S.D. -  0.05

range -  (0 .93 - 1.09)
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codes of practice recommended following equations to calculate the nominal

ultimate shear strength for a slab—column connection :

BS 8110 Vn =  Vc -f- Vs

ACI 318-83  Vn =  1/2 Vc + Vs 1Q̂

CEB / FIP Vn =  1.33 Vc

where Vc is the punching strength of an otherwise similar slab without shear

reinforcement and V«. is the vertical component of the sum of the forces in the

shear reinforcement at yield, assumed to work together with concrete. The abscence

of reliable data and the lack of information on the efficiency of the various

possible forms of shear reinforcement may be appreciated from the divergencies of 

recent codes.

For slabs with shear reinforcement, ACI Committee 426(5) recommended that 

the shear stress vn, on any column face must not exceed the larger of vc or (1/2 

vc + vs)-

Experimental observation during the test programmee revealed that an increase 

of about 40% in ultimate strength can be obtained by the use of shear

reinforcement in the slab. In addition, the failure mode can be changed from

brittle to ductile mode, using shear reinforcement in the slab.

It can be assumed that the presence of closed vertical stirrup has no effect in 

the critical shear perimeter term and moment transfer reduction factor. The 

allowable shear stress, vc, can be increased by 50% by the provision of closed

vertical stirrup as required in the slab. So, the punching shear strength of the 

shear wall -  floor slab connection with shear reinforcement in the slab can be 

calculated from :

V = 1.5 * V ^ h o u t shear steel (7-H)
The design equation (7.11) is applicable only to the models designed according

to the procedure given in chapter three of this thesis.

The predicted capacities obtained from equation (7.11) are presented in Table
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(7.7) where they compare very favourably with the experimental data. The average 

Vexp/VCal ratio of 1.02 and co—efficient of correlation of 9% confirm the simple 

changes proposed to cover the use of closed vertical stirrup. This has not led to 

any loss in the consistency and accuracy of the predictions.

The comparison with the British and American Code predictions summarised 

in Table (7.6) shows the method to give considerably more realistic estimates of

the punching capacity than either of the code methods.

7.11.7 Summary of the proposed method

In order to assist the designers, empirical formulae have been developed to 

calculate the ultimate shear strength of junctions for both plane and flanged shear 

wall models. If the designer discovers that the joint is not capable of resisting the 

design loads, then it is necessary to use shear reinforcement. The amount of shear 

reinforcement should be calculated and provided in the slab according to the 

procedure described in chapter three. For the junctions with shear reinforcement in

the slab, the ultimate shear strength can be taken as 1.5VC, where Vc is given by

equation (7.9).
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T ab le  ( 7 .5 )  : C om parison o f  prop osed  method (bv a u th o r) w ith  Code
m ethods and m ethods p rop osed  by o th e r s  fo r  th e m odels In 
R e fere n c e  (2 3 ) & (2 4 ) w ith o u t any sh ea r  r e in fo r c e m e n t.

P la n e  sh ea r  w a ll m odels F lan ged  sh ea r  w a ll m odels

Method mean Cv(%) Range mean Cv(%) Range
V exp /V cal V exp/V cal

B S  8 1 1 0 0 . 8 2 1 3 . 6 0 . 5 9 - 1 . 0 6 0 . 8 6 1 5 . 4 0

AC1 3 1 8 - 8 3 1 . 2 0 2 1 . 0 0 . 7 8 - 1 . 6 0 0 . 7 1 9 . 3 0

E l n o u n u ( 2 4 )
1 . 1 5 1 2 . 8 1 . 0 0 - 1 . 4 6 1 . 1 4 1 5 . 8 0

Memon ( 2 3 ) 1 . 3 5 1 5 . 0 1 . 2 0 - 1 . 7 0 not a p p lic a b le h ere

Regan ( 3 5 ) 1 . 7 0 1 9 . 1 1 . 4 3 - 2 . 1 4 not a p p l ic a b le h ere

E Q .  ( 7 . 9 ) 1 . 0 7 1 1 . 0 0 . 8 9 - 1 . 3 2 1 . 0 2 4 . 5 0 .

T ab le  ( 7 .6 )  : C om parison o f  p rop osed  method w i th  Code m ethods fo r  th e  
models  t e s t e d  in  t h i s  s t u d y ,  u s i n g  sh ea r  re in f o r c e m e n t  
in  the  s l a b .

Method mean Vexp /V c a i Cv (%) Range

EQ. (7.9-) 1 . 0 2 9 . 2 0 . 8 5  -  1 . 1 4

( V n - 1 . 5  Vc)

ACI 3 1 8-8 3 1 . 0 7 1 6 . 5 0 . 8 8  -  1 . 4 2

(Vn-^Vc+Vs)

BS 8110 1 . 6 1 2 4 . 5 1 . 3 0  -  2 . 0 7

(Vn-Vc+Vs)
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Table  ( 7 . 7 )  : P r e d i c t e d  punching c a p a c i t i e s  f o r  th e  s e r i e s  o f  models  
w i t h  sh ea r  r e in fo r cem en t  t e s t e d  in  t h i s  s tu d y .

Mode 1

Exper imental  
f a i l u r e  load  

V

C a l c u l a t e d  
f a i l u r e  load

^ ca l
KN

Vvexp
vexp
KN ^ ca l

MS4 1 9 0 . 4 2 2 5 . 0 0 . 8 5

MS 5 2 0 3 . 0 1 8 0 . 5 1 .1 3

MS 6 3 4 3 . 0 3 0 4 . 0 1 . 1 3

MS 7 2 6 2 . 0 2 6 1 . 5 1 . 0 0

MS 8 2 8 0 . 0 2 7 7 . 5 1 .0 1

MS 9 2 4 7 . 0 2 6 7 . 0 0 . 9 3

MS10 2 0 9 . 0 2 1 1 . 5 0 . 9 9

MS11 2 1 9 . 0 1 9 2 . 0 1 . 1 4

MS12 2 3 5 . 0 2 3 2 . 5 1 .0 1

mean -  1 . 0 2

S .D.  -  0 . 0 9

range — ( 0 . 8 5  -  1 . 1 4 )
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C H A P T E R  E IG H T  

C Y C L IC  L O A D I N G  B E H A V I O U R  O F  W A L L - S L A B  C O N N E C T IO N S

8 .1  I n t r o d u c t io n

Reliable information on strength, failure mode, ductility and energy absorption 

capacity of reinforced concrete structures is required for the design of important 

reinforced concrete structures such as nuclear containment structures and prestressed 

reactor pressure vessels, and shear wall building structures subjected to seismic 

loading conditions. Many tests (90,91,92,93) have been conducted in various 

countries on beam — column joints which were designed to respond inelastically 

to severe earthquake loads. Codified design procedures for such joints have been 

introduced only in the United S ta te s^ ) and New Z e a l a n d ^ ) .  Paulay and Park in 

their rep o rt(9 6 ) summarised the state of the art with respect to the behaviour and

design of reinforced concrete beam— column joints in ductile frames for earthquake

resistance design.

During an earthquake, there is a possibility of the slab— column connections 

failing and contributing significantly to the damage of flat— plate structures. The

test programme at the University of Washington (39,40) indicated that major 

damage can readily be avoided by the provision of carefully detailed stirrup 

reinforcement in the slab. From the literatures survey reported in chapter two, very 

little is known about the seismic resistance of shear wall — floor slab connections. 

The deterioration of the load carrying capacity due to reversal of loads and the 

ductility and the energy absorption that is available at such junctions require a 

close examination. In this chapter, results are reported of tests on three 'large 

scale' models MRS13, MRS14 and MRS15 which were tested under combined

gravity and reversed lateral loading, "simulating" earthquake effect. The detailed 

description of the material properties, test equipment and testing procedure used in 

these tests are given in chapter five.
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8.2 Experimental Programme on Cyclic Loading

8.2.1 Model MRS13

The plan and dimension of this model is shown in Figure (8.1). The

reinforcement used in the wall is shown in Figure (8.2). The slab of the model

was designed to resist 225.0 KN of lateral load acting in the downward direction

together with 18.0 KN of gravity load. Figure (8.3) shows the flexural 

reinforcement layout along with the arrangement of shear reinforcement in the slab. 

The shear reinforcement in the form of closed vertical stirrup was provided in the 

slab where the shear stress exceeded allowable concrete shear stress. The flexural 

reinforcement on both top and bottom faces were identical. This model is similar 

to the model MS10 which was designed for 220 KN of lateral load and tested 

under monotonic loading condition. The monotonic failure load of the model MS10 

was 209 KN.

A downward load was first applied in increments to the model and two 

transducers mounted on the slab (see Figure (5.15)) measured the relative rotation

between the wall and the cantilever slab. The lateral load versus steel strain curve 

is shown in Figure (8.3—a). The relative rotation of the slab at the onset of steel 

yielding as shown in Figure (8.3— b), is termed hereafter as "the yield rotation 

0y". The loading cycle used in testing the model, excluding the initial loading is 

shown in Figure (8.4). This loading sequence was not intended to simulate any 

particular earthquake but it was rather regulated by the rotation of the slab with 

respect to the wall to generate elastic and post— elastic loading history.

Static cyclic loading was used because of the convenience of applying this type 

of loading. The use of slow reversals of load to represent dynamic loading is 

thought to be conservative because the strength of concrete and steel increases with 

the increasing rates of strain.
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Figure (8.3-a) : Curve showing lateral load versus steel strain 
measured in the slab of model MRS13
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rotation of the slab of model MRS13
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Behaviour o f  the model

No crack was observed after the ultimate gravity load was applied. At a 

lateral load of 23% of design load, some cracks parallel to the flange were first 

observed on the top surface of the slab as shown in Figure ( 8 . 5 - a). On further 

loading, earlier cracks extended a little and some new cracks parallel to the flange 

appeared in the slab as shown in Figure (8.5— b). The final crack patterns of the 

top and bottom surface of the slab are shown in Figures (8.8) and (8.9). The 

crack pattern on the top surface is not much different from that of model MS10 

(see Figures (6.138) and (8.8) for comparisons) except for some additional cracks 

on model MRS13 which occurred when top surface was under compression due to 

upward loading. But the failure line (heavily marked) in this model is different 

from that of model MS10. Since the bottom surface was also under tension due to

upward loading, this surface was also extensively cracked like the top surface. The

crack pattern of the bottom surface is not exactly similar to that of top surface 

but overall similarities can be easily detected.

The load — rotation curve for the slab— wall junction obtained during the

loading cycles is shown in Figures (8.6) and (8.7). A lot of problems were 

encountered in supporting this model while loading in the upward direction. It was

found very difficult to apply load in upward direction, when the joint rotation was

even less than the yield rotation calculated for downward loading. The model

started to rotate at the back edge of the wall 'GH' (see Figure 5.1) and the

supporting system (Figure 5.3) was found ineffective in resisting the upward rigid 

body movement of the model. The wall at the back started crushing due to the

concentration of the stresses along line 'GH'. Another hollow beam section was 

designed and the model was held down by that transverse beam using three 15 mm 

high strength prestressing strand (Figure 5.4). In the 20th cycle, the model was 

loaded in the upward direction such that the joint rotation was twice the yield 

rotation and it was felt that no more upward loading is possible in this model. In
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FIGURE (8 .4 )  . LOADING CYCLES USED IN  TESTING MODEL MRS13

( a )  a t  23%  ( b )  a t  32%

F i g u r e  ( 8 . 5  ) : Cracks i n i t i a t i o n  dur i ng  t e s t i n g  o f  model MRS13 at
d i f f e r e n t  p e r c e n t a g e s  o f  d e s i g n  l a t e r a l  l o a d .
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1ST CYCLE TO GET TJELO ROTATION
9TH I  IOTH CYCLE ( 8/BY .  1.00 )

I3TH 8 HTH CYCLE (B/BT .  1.001
15TH I UTH CYCLE (6/BY .  1.50)

M o n o to n ic  fa i lu r e  lo a d
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}E (6 .6 )  , RELATIVE ROTATION BETVEEN SHEAR VALL AND FLOOR SLAB FOR MODEL 

MRS13 AT IN IT IA L  STAGES OF LOADING CYCLE
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FIGURE (8 .7 ) . RELATIVE ROTATION BETVEEN SHEAR VALL AND FLOOR SLAB FOR MODEL

Aff?5/3 AT FINAL STAGES OF LOADING CYCLE
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F i g u r e  ( 8 . 8 - a  ) : Crack  p a t t e r n  on the  top  s u r f a c e  o f  the
s l a b  o f  model MRS13

F ig u r e  ( 8 . 8 - b )  : Damage v i s i b l e  on t h e  t o p  s u r f a c e  o f  t h e  s l a b  d u r i n g
t e s t i n g  o f  model MRS13
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MODEL NO 13 
, AFTER 8 / 0 y=7

F i g u r e  ( 8 . 9 - a  ) : Crack  p a t t e r n  on the  bo t tom  s u r f a c e  o f  the
s l a b  o f  model MRS13

MODEL NO 13 
AFTER B / O y ^  1

F i g u r e  ( 8 . 9 - b )  : Damage v i s i b l e  on t h e  b o t t o m  s u r f a c e  o f  t h e  s l a b
d u r i n g  t e s t i n g  o f  model MRS13
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the 21st cycle, the model was loaded in downward direction and the relative 

rotation of the slab with respect to the wall was more than 7 times of yield 

rotation without the specimen failing. It was then decided to apply load again in 

upward direction and to our surprise, the relative rotation of the slab with respect

to the wall was also more than 7 times yield rotation. Though the specimen did

not fail, the test was stopped when the ductile behaviour of the joint was 

dem onstrated. Figures (8.10) and (8.11) show the tensile strain in steel in 

longitudinal and transverse direction under reversed cyclic loading condtions.

8.2.2 Model MRS14

The plan and dimension of the model is shown in Figure (8.12). The wall 

reinforcem ent is shown in Figure (8.13). The flexural steel reinforcement in the

slab was designed to resist a lateral load equals 220.0 KN as well as an ultimate 

gravity load of 18.0 KN. The shear reinforcement in the form of closed vertical 

stirrup was provided in the slab where the shear stress exceeded allowable concrete 

shear stress. Figure (8.14) shows the main reinforcement layout along with the 

arrangem ent of shear reinforcement in the slab. To cater for the reversibility of 

load, same reinforcem ent was provided at the bottom of the slab. This model is 

similar to the model MS7 which was designed for 240 KN of lateral load and 

tested under monotonic loading condition. The sequence of loading cycles used in

testing this model is shown in Figure (8.15). The model was loaded first in 

downward direction to determine the yield rotation.

Behaviour o f  the model

No cracks were found after the ultimate gravity load was fully applied. At 

23% of design load, two cracks around the nose of the wall were observed. On 

further loading, at about 36% of design load, the cracks spreaded in the slab as 

shown in Figure ( 8 .1 6 - b). The overall crack pattern of the top and bottom 

surface of the model are shown in Figures (8.17) and (8.18). Figures (8.19) and
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1ST CYCLE TO GET YIELD ROTATION 
15Tb t  16TH CYCLE (B/#y .  I.SJ 
1?TH t  20Tb CYCLE (6/By .  2.0) 
21 ST CYCLE (8/6y •  7.0)

Monotonic failure load

0.75

o.oo

oLO-0.75

5 2 5-1.50 0 4 6
IAIN /  YIELD STRAIN

FIGURE (8. 10) • TENSILE STRAIN IN  STEEL IN  LONGIITUDINAL DIRECTION UNDER REVERSE 

CYCLIC LOADING CONDITIONS IN  THE SLAB OF MODEL MRS 13

1ST CYCLE TO GET TIED ROTATION 

15Tb t  16Tb CYCLE (8/By .  1.5) 

19Tb 1 20Tb CYCLE (B/By .  2.0! 

21 ST CYCLE (6/By .  7.0)

Monotonic failure load

0.75

oocc-0.75

500
-1.50 0.80.4 0.6

STRAIN /  YIB.0 STRAIN
0.0

FIGURE (8. 11) • TENSILE STRAIN IN  STEEL IN TRANSV&SE DIRECTION LNDER REVERSE

CYCLIC LOADING CONDITIONS fN  THE SLAB OF MODEL MRS 13
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M O D E L  M R S 1 4

No of Cycles
-2

-10 0 2 3 5 7
CYCLES

10 116
NO. OF CYCLES

8 9 12 13

FIGURE (8. 15) . LOADING CYCLE USED IN  TESTING MODEl. MRS14

(b) at 36%

Figure ( 8 .16  ) : Cracks in i t i a t io n  during t e s t in g  of model MRS14
at d if fere n t  percentages of design la tera l load
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F i g u r e  ( 8 . 1 7 - a  ) : Crack  p a t t e r n  on the  top s u r f a c e  o f  the
s l a b  o f  model MRS14

F i g u r e  ( 8 . 1 7 - b )  : Damage v i s i b l e  on t h e  t o p  s u r f a c e  o f  th e  s l a b  d u r i n g
t e s t i n g  o f  model MRS14



4 4 8

F i g u r e  ( 8 . 1 8 - a  ) : Crack p a t t e r n  on the  bo t tom s u r f a c e  o f  the
s l a b  o f  model MRS14

F i g u r e  ( 8 . 1 8 - b )  : Damage v i s i b l e  on t h e  b o t t o m  s u r f a c e  o f  t h e  s l a b
d u r i n g  t e s t i n g  o f  model MRS14
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(8.20) show the load versus the relative rotation between the slab and the wall

measured by transducers mounted on the slab at a distance of 150 mm from the

face of the wall. The behaviour of steel on the top face of the slab under reverse 

cyclic loading condition is shown in Figures (8.21) to (8.23). The longitudinal bar 

passing through the wall was subjected to large strains. The bar at the edge of the 

slab was stressed very little.

8.2 .3  Model MRS15

The plan and dimension of the model is shown in Figure (8.24). The wall

reinforcement is shown in Figure (8.25). The flexural steel reinforcement in the

slab was designed to resist a lateral load equals 215.0 KN as well as an ultimate

gravity load of 18.0 KN. The shear reinforcement in the form of closed vertical

stirrup was provided in the slab where the shear stress exceeded allowable concrete 

shear stress. Figure (8.26) shows the main reinforcement layout along with the 

arrangement of shear reinforcement in the slab. To cater for the reversibility of 

load, same reinforcement was provided at the bottom of the slab. This model is 

similar in plan to model MS6 which was designed for 330.0 KN and tested under 

monotonic (only downward) loading condition. The sequence of loading cycles used 

in testing this model is shown in Figure (8.27).

Behaviour o f  the model

Cracks were observed for the first time on the top surface of the slab at a 

lateral load 28% of design load as shown in Figure (8.28—a). All the cracks

started from the tip of the wall. Two of them, originating from the wall were

inclined towards the sides. On further loading, earlier cracks widened and extended 

a little and were joined by new cracks. The photographs showing the crack pattern 

of this model at the end of last cycle are presented in Figures (8.29) and (8.30). 

Figures (8.31) and (8.32) show the load-rotation curves at initial and final stages 

of loading cycle. Figures (8.33) and (8.34) show the strain in steel in windward
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1ST CYCLE TO GET YIELD ROTATION 

3R0 t  4TH CYCLE (B/By .  2.0)

7TH I  BTH CYCLE IB/8y •  3.0)
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5in
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ROTATION/YIELD ROfATIDN 0 / 0

FIGURE (B. 19) , RELATIVE ROTATION BETWEEN SHEAR VALL AND Fl OOR SLAB FOP MODEL

MRS 14 AT IN IT IA L  STAGES OF LOADING CYCLE

PTH t  10TH CYCLE (6/By -  4-0)

Monotontc failure loadT1TH i  12TH CYCLE C9/0> « 6.0)

13TH CYCLE (6/B> » 6.0)
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0.00_ i
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-1.50 0.00
ROTATION/YIELD ROTATION 0 / 0

-7 .50

FIGURE to .20) , RELATIVE ROTATION BETVEEN SHEAR VALL AND FLOOR SLAB FOR MODEL 

m S U  AT FINAL STAGES OF LOADING CYCLE
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1ST t  8 0  CYCLE (6/By .  l.o)

3RD I 4TH CYCLE »/By .  2.0)

5TH t 6TW CYCLE (B/By .  8.0)
Monotontc failure load

0.75

0.00

-0 .75

S 2  5-1.50

STRAIN /  YIELD STRAIN

TENSILE STRAIN IN  LONGITUDINAL STEEL UNDER REVERSED CYCLIC

LOADING CONDITIONS IN  THE SLAB OF MODEL MRS 14

1ST I  2ND CYCLE (6 /By . 1 . 0 )
3RD t  4TH CYCLE (B/By -  2.0!
7TX t  BTH CYCLE (B/By > 5.0!
9TH I  10TH CYCLE (B/By .  4,0)
11TH t  12TH CYCLE (B/By -  6.0) 

. 15TH CYCLE (B/By .  B.O)

Monoton ic failure load

0.75

0.00

un
CNI

-1 .50 0.3 0.6 

STRAIN /  YIELD STRAIN
-0 .3 0.0

FIGURE (8 .2 2 )  » TENSILE STRAIN IN  STEEL IN  LONGITUDINAL DIRECTION UNDER REVERSE

CYCLIC LOADING CONDITIONS IN THE SLAB OF MODEL MRS 14
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1ST t 2ND CYCLE <8/8y .  1.0) 
7TH I  BTH CYCLE IB/By .  S. 0) 
9TW ft I0TH CYCLE IB/by .  4.0) 
11TW t 12TH CYCLE 18/By • 4.0)

Monotonic failure load

0.75

0.00

o
in
vO-0 .75

500
-1.50 0.90.0

STRAIN /  HELD STRAIN

FIGURE (B. 23) , TENSILE STRAIN IN  STEEL IN  TRANSVERSE DIRECTION UNDER REVERSE 

CYCLIC LOADING CONDITIONS IN  THE SLAB OF MODEL MRS14
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8 .24  ) : Plan and dimensions o f  model MRS15
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Figure ( 8 .25 ) : A horizontal sec t io n  in the wall o f  model 
MRS15 showing the re in forc ing  d e ta i l s
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M O D E L  M R S 1 5

No o f  Cycles

-10

- 1 2

NO. OF CYCLES

FIGURE (B .2? ) • LOADING CYClE USED IF  TESTING MODEL H RS'5

Figure ( 8 .28 ) : Cracks in i t i a t io n  during t e s t in g  of model MRS15
at d if feren t  percentages o f  design la tera l load
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F i g u r e  ( 8 . 2 9 - a  ) : Crack p a t t e r n  on the  top s u r f a c e  o f  the
s l a b  o f  model MRS15

F i g u r e  ( 8 . 2 9 - b )  : Damage v i s i b l e  on t h e  t o p  s u r f a c e  o f  t h e  s l a b  d u r i n g
t e s t i n g  o f  model MRS15
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F i g u r e  ( 8 .30  ) : Crack p a t t e r n  on the  bot tom s u r f a c e  o f  the
s l a b  o f  model MRS15
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1ST I 2ND CYCLE IS/9y « |.0)
3R0 » 4TH CYCLE (O/Oy .  2.0)
STH & 0TH CYCLE (0/Oy .  S. 01
TTVI I BTH CYCLE IB/By .  *.0)

Design lateral load
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0.00

-o.rs

-1 .50

W a t io n /y ie ld  ROTATION 6 / 8

FIGURE (8 .3 1 J ,  RELATIVE ROTATION BETVEEN SHEAR VALL AND FLOOR SLAB FOR MODE.

HRS15 AT IN ITIA L  STAGES OF LOADING CYCLE

Design lateral loadPTH t  10TH CYCLE (6/By -  5.0)

11TN t  12TH CYCLE (0/By -  6.0)

71STH HTH I  15TH CYCLE (G/By .  10,

o . r s

5o
IT

O•<o—I 0. 00
_j
<or
UJt-<_j

5
in
UJo

E
aa .

-1 .50

ROTATION/YIELD ROTATION 8 / 8 y

FIGURE (8 .3 2 )  ,  RELATIVE ROTATION BETVEEN SHEAR VALL AND FLOOR SLAB FOR MODEL 

MRS15 AT FINAL STAGES OF LOADING CTCLE
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1ST t  2ND CTCLE «8/8y -  1.0)
3RD I  ATM CTCLE tB/#y -  2.01
STH I  6TN CTCLE (I/Oy -  5.0)
TTH I  r m  CTCLE <8/8y .  4.0)
PTH & 1OTH CTCLE (8/By .  
11TH I  12TH CTCLE (8/8y i 
1STH, UTH t  15TH CYCLES

D e s ig n  la te r a l  lo a d

■r/i

0

500-2-1
Strain /  y ib _o strain*

CIGURE IB. 55) . TENSILE STRAIN IN STEEL UNDER REVERSE CTCLIC LOADING CONDITIONS 

IN THE SLAB OF HODEL MRS IS AT POINT PI (675.0,0.0)

1ST t  2ND CYCLE (8/6y - 1 . 0 )
3RD t  4TH CYCLE <B/6y -  2.0)
5TH t  6Th CYCLE CB/By -  3.0)
TTH t  6Th CYCLE (6/6y -  4.0)
9TH » 1 OTH CYCLE (6/By .  5.0)

Design lateral load

cn

65C

STRAIN /  YIELD STRAIN

FIGURE (8.34) • TENSILE STRAIN IN STEEL UNDER REVERSE CTCLIC LOADING CONDITIONS

IN  THE SLAB OF MODEL MRS 15  AT POINT P2 (675. 0, 1 5 0 .0 )
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1ST t  2ND CYCLE IB/By . 1 . 0 )
SRD I  4TH CYCLE IB/fly .  2.0)
5TW t  6TW CYCLE (B/By .  3.0)
nM  t  BTH CYCLE (8/By .  4.0)
PTH I  10TH CYCLE (6/By .  5.0)
11TH t  12TX CYCLE (B/by .  A.O) 
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STRAIN /  YIELD STRAIN

FIGURE (6.15) # TENSILE STRAIN IN  VERTICAL STIRRJP UNDER REVERSE CTCLIC LOADING

CONDITIONS IN  THE SLAB OF MODEL MRS15 AT POINT P3
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and transverse direction located on the top face of the slab and subjected to 

reverse cyclic loading.

8.2.4 Discussion and Analysis of Test Results

8.2.4.1 Criterion for adequate ductility

According to New Zealand Code of practice(95), the criterion for ductile 

structures or ability for a structure to dissipate energy requires that a specimen 

should be subjected to a displacement history of at least four complete load cycles, 

with a displacement amplitude in each direction of loading corresponding to an 

overall structural displacement ductility, =  + 4. It was concluded that(9 )̂ a

unit satisfying this criterion, is likely to perform satisfactorily in future buildings in 

New Zealand for which the expected maximum overall displacement ductility 

demand is of the order of 3 to 5. It was considered that four excursions, each 

corresponding to the expected maximum ductility demand in each direction of

loading during one seismic event, represent sufficiently severe conditions for a 

ductile unit. Figure (8.36—a) shows this displacement history involving four cycles 

to fifi =  ± 4 .  The imposed cumulative displacement ductility factor for these

loading cycles is 4 x 4 x 2 =  32 (Figure 8.36—b). This cumulative displacement

ductility factor as an index for the ductile unit should not be misused by evaluating 

it oh the basis of large number of displacement cycles to small ductilities.

The above criteria for ductile units are used here to asses the ductility of the 

models tested under reversed load. The relative rotation of the slab was monitored 

in the test instead of its edge displacement and the models MRS13, MRS14 and

MRS15 were subjected to a rotation history of several load cycles, with different 

rotation amplitudes 0/0y, in each direction of loading as shown in Figures (8.4), 

(8.15) and (8.27) respectively. It is seen from Figures (8 .3 6 -d), ( 8 .3 6 -e) and 

( 8 .3 6 - f) that the specifications implied by Figure (8 .3 6 -a) with a cumulative 

displacement/rotation ductility factor demand of 32 have been satisfied in the last
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load cycle for model MRS13, after 11 cycles for model MRS14 and after 10 cycles 

for model MRS15.

8 .2 .4 .2  Load carrying capacity under reversed load

To satisfy the performance criteria(95) at the end of any test satisfying

ductility criterion, the reduction of resistance of the component specimen due to

the inflicted damage should not exceed 30% of its design strength. Such a strength 

reduction of the component should not result in a strength reduction of more than 

20% in the entire structural system that is being considered. Figure (8.20) shows 

that the theoretical design strength of model MRS14 was approached but not 

exceeded during the test. At a rotational ductility facor, ^ = - 3 ,  (— ve sign 

indicates loading in upward direction) the maximum load carried by the model was 

210.6 KN (95% of the design load). At last load cycle when —6 , the applied 

load on the model was 171.9 KN (77% of design load). So the loss in load 

carrying capacity was 18% of the design load.

Figure (8.32) shows that the theoretical design strength of the model MRS15 

was exceeded during the test. During 11th cycle at /x̂  = + 6 , the model sustained 

peak loads which was about 17% higher than the design strength. The applied load

on the model at last load cycle at /xj =  + 1 0  was 218.4 KN (101% of design

load). The loss in strength was 16% of design load.

Figure (8.7) shows that the theoretical design strength of the model MRS13 

was exceeded in the last loading cycle where /xj =  ±7.5. Information about the

load carrying capacity is availabe only at =  ±2 and at =  ±7.5 due to the 

difficulties encountered in testing this model. Because of the insufficient information 

it is not possible to calculate the degradation of strength of this model.

8 .2 .4 .3  Stiffness degradation and damping coefficient

under reversed load

Seismic response parameter, stiffness of the structure was determined from
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lateral lo a d - slab rotation relationship as shown in Figure (8 .3 7 -a). The 

degradation in stiffness (secant) with cycling during the test is shown in Figure 

(8.38) for models MRS13 to MRS15. For model MRS13, the stiffness at last cycle 

was about 31% of the stiffness at first yield. For models MRS14 and MRS15, the 

ratio of the stiffness at last cycle to that at first yield was 25% and 30% 

respectively.

The damping coefficient, >̂, for each completed cycle was calculated from the 

following equation (8 .1) :

1 (Al + A j')
V  • --------------------  ( 8 . 1 )

2* (A2 + A2' )

where Aj , Aj , A2 and A2 are the areas as shown in Figure (8.37— b). 

Planimeter was used to measure accurately the above mentioned areas of every 

completed cycles of the tested models. Average of three measurements was

considered. Figure (8.39) shows the effect of number of cycles as well as rotational

ductility factor on the damping coefficients of all the models tested. An increase in

the damping coefficient with cycling means an increase in the energy absorption of 

the connection with cycling.

8.3 Constitutive Models for Cyclic Loading

8.3.1 " Introduction

Typical behaviour of plain concrete subjected to cyclic uniaxial compressive 

stress is illustrated in Figure (8.40). The degradation in both stiffness and strength 

with increasing number of applied cycles are shown. For each cycle of 

unloading-reloading, a hysteresis loop is observed. The area of this loop 

(representing energy dissipation) decreases with each successive cycle.

To realistically simulate cyclic response, the model should be capable of

accounting for strength degradation, stiffness degradation, and hysteric behaviour
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under load cycles. In recent years, considerable interest has developed concerning 

the multiaxial behaviour of concrete, especially under cyclic loading. This is due to 

the widespread application of critical reinforced and prestressed concrete structures 

in which the concrete is multiaxially loaded and in the recognition of the

importance of cyclic loads, such as those due to earthquakes or ocean storms. With 

the development of large digital computers and the advances in numerical

techniques, refined analysis of geometrically complex structures are now 

computationally feasible. However, the capability for numerical prediction of the

behaviour of such structures within the nonlinear regime is often limited by the

inadequacy of the material models. This is specially true in the presence of load

reversals and lour- cycle fatigue.

It is well known that, except at very low stress levels, unloading in concrete 

follows an entirely different path from that followed upon loading. When unloading 

to the initial state of stress, the strains are not recovered completely and a

permanent set o f strains (plastic strains) remains. The mathematical models for 

concrete proposed by Kotsovos et. el. (67,68) as described in details in chapter

four are suitable to monotonic loading and can not be applied directly to cyclic

loading conditions. In order to model concrete behaviour under cyclic loading 

conditions, the monotonic models were combined with a loading criterion which is 

formulated independently from the constitutive relations.

A biaxial orthotopic hypoelastic model was used by Darwin and Pecknold (97) 

for the analysis of planar reinforced concrete structures. A nonlinear stress— strain 

law for plain concrete under cyclic biaxial stresses was developed and incorporated 

into a finite element numerical solution programme. The concept of equivalent 

uniaxial strain" was introduced by them (97) to trace the deformation history and 

to control cyclic behaviour. The orthotropy axes were chosen to coincide with the 

current principal stress directions, and the strain— dependent tangent moduli were 

assumed to be functions of the principal stress ratio. Elwi and Murray
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generalised the constitutive model for three dimensional (axisymmetric) cases. The 

model has been used in different applications of finite element analyses to concrete 

structures. Quite good results have been obtained in most cases(^*^)* It is well 

known that there is a marked influence of hydrostatic pressure on the behaviour of 

concrete under triaxial stress states. These behaviours cannot be accounted for by 

the equivalent uniaxial approach. Thus the model has little validity in

three— dimensional situations. It is mainly applicable to planar problems such as

beams, panels, and thin shells where the stress state is predominantly biaxial.

However, applications of the incremental orthotropic models under general loading 

histories involving rotation of the principal stress directions have been subjected to 

strong criticism by Bazant (100) ̂  j^th on physical and theoretical grounds. Because 

of the orthotropic form of the model, the principal directions of the incremental 

stresses and strains coincide, and cross effects between incremental normal stresses 

and shear strains in the principal stress directions are neglected. No explicit

loading— unloading criteria are used in these models, so there is ambiguity in the 

definition of loading and unloading under general loading conditions. A strict 

loading in one principal stress axis may be accompanied by unloading in the other 

principal directions.

Fardis et. elX1®1) have proposed a simple time—independent, mathematical

model for cyclic behaviour of concrete under multiaxial stress conditions. An

essential feature of the model is a bounding surface in stress space, which is a 

function of cmax» *he maximum compressive strain experienced by the material to 

the present state. It was encouraged in the paperO ^) to implement their model in 

tw o - or three- dimensional nonlinear finite element programmes. A brief

description of this model is given in the folowing sections.

8 .3 .2  Cyclic Constitutive Law for Concrete proposed by Fardis et. el,(101)

A simple model was proposed by Fardis et. el. for the time independent

monotonic and cyclic behaviour of concrete. The model uses the concept of a
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"bounding surface" in stress space proposed earlier for metals by Dafalias and 

Popov 002)^ The stress point always lies inside or on the bounding surface, and 

its proximity to the latter determines the value of the tangent plastic modulus. This 

bounding surface shrinks in stress space as a function of 6max, the maximum 

principal compressive strain ever experienced by the material. Strain components 

are assumed to be entirely plastic and are computed by superposition of an 

isotropic component, proportional to the hydrostatic stress increment, and deviatoric 

and isotropic components, proportional to the octahedral shear stress increment. 

The plastic modulus for calculation of the latter strain components is a function of 

the distance of the stress point from the limit surface, measured along the direction 

of the current stress increment, and of emax. A brief description of the bounding 

surface and cyclic stress — strain law with its verification against available 

experimental results will be given in the following sections. The problems 

encountered in the implementation of this constitutive relationship into the finite 

element program will also be discussed.

8.3.2.1 Bounding Surface

A pivotal component of the model is a surface in stress space called bounding 

surface, which for given stress and strain history always encloses the current stress 

point. For monotonic, nearly proportional loading, the bounding surface is the usual 

failure surface (defined as the locus of stress points corresponding to ultimate 

strength) and is almost independent of the strain history. For complicated stress 

paths involving stress reversals, the bounding surface is a function of the strain 

history. This is clear from cyclic uniaxial data (103,104) (see Figure (8.40)) which 

shows that if following several loading-  unloading cycles the material reaches an 

axial strain larger than that at the peak of the monotonic stress strain curve, then 

upon subsequent reloading, failure occurs at a stress lower than the uniaxial 

compressive strength, f'c. Therefore, the bounding surface, which passes through 

the peak of this latter reloading branch, shrinks during inelastic deformation.
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Experimentally it was found that for cyclic loading, the strength of the 

material depends on the maximum principal compressive strain experienced by the 

material in the course of loading. This latter strain is denoted here by tmax, and 

is interpreted as the single memory parameter which reflects the effect of previous 

strain history on the limit surface. Ultrasonic measurements on cyclically loaded 

uniaxial specimens have shown also that emax is the most appropriate measure of 

load-  induced internal d a m a g e d F o r  these reasons, the bounding surface 0^1) 

was assumed to depend on emax and given by an equation of the form

F(°]j * emax) =  0 (8 .2)

For given emax, the bounding surface can be described in the three-dimensional

Haig— Westergaard principal stress space, and F(crjj, emax) can be considered as a 

function of stress invariants. The three invariants used are the first stress invariant 

Ij and the second and third deviatoric stress invariants J2 and J3 where:

II =  orjj (i =  1,2,3)

J2 =  Sjj . Sjj / 2 (i,j =  1,2,3) (8.3)

J3 =  Sjj . Sjk . Ski (i,j,k =  1,2,3)

where Sjj =  <rjj -  5jj .I i/3 =  the deviatoric stress tensor; and 6jj =  the

Kronecker delta. The three stress invariants Ij, J2 and J3 were selected because of

their geometrical meaning. The projection of the position vector of the stress point 

(oj ,02 ,03) onto the hydrostatic axis equals Ij/-/3, where as the distance of

(01,^2 ,03) from this latter axis =  72J2- Finally if the stress space is projected on 

the deviatoric plane, i! =  0 , the angle 0 between the projection of the position 

vector of (o i.o fi.o in ) and the projection of any tensile semiaxis is such that

- 3 7 3  J -}
3 (8 .4 )cos 3 0 = ---- ------- -

2 J 2 3/2
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After a trial and error procedure, the following equation was chosen for Ffcry, 

cmax) f ° r bounding surface^®!)

JT<1
f ' c  c o s ^ f l  c o s ^ 3 0  4  j -

( 5 . 3  +  c o s 3 6 ----------------- +    ) ---------y _ i _ i  3 5 i  ,  »  o'  v  x  i . i n . t m a x  U
* 1  2  3  7

7 7  + 0-3  <8 -5>I />

The above equation (8.5) for the bounding surface applies for combinations of (T\j 

and emax beyond the peak of the monotonic stress— strain curves, and corresponds 

to fictitiously high values of ultimate strength for pre-peak values of emax (see 

Figure 8.40—a). Therefore, it is meaningful to introduce an outerlimit to the 

bounding surface. This outer limit is selected to be the failure surface obtained in 

proportional or close to proportional monotonic loading. The monotonic failure 

surface, serving as an outer limit to the bounding surface in equation (8.5) is given 

by

( - 1 +  0 . 3 )  -  ( 1 2  +  1 1  C O S 3 0 ) 1 / 6  

f ’ „

yjo o yjo
0 . 7 ( ------------- )  +  1 . 8 5 ---- -----------

f' f'
( 8 . 6)

Therefore, for given cmax, the innermost of the two surfaces is considered as the 

bounding surface from which distances are measured.

8 .3 .2 .2  Incremental Stress—Strain Relation

As mentioned earlier, incremental strain components dfjj is assumed plastic in 

this model and decomposed into its deviatoric and volumetric parts

dqj = dejj + 6jj • defck ! 3 (k — 1,2,3) ( 8 . 7 )

in which d e ^  =  the volumetric strain increment; and 6  ̂ — the Kronecker delta. 

It was postulated that dejj is caused only by changes in the deviatoric stress tensor,
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Sjj and the volumetric portion of dejj is caused both by isotropic and by deviatoric 

stress increments.

The deviatoric part of the strain increment, dejj, is proportional to S j j .  The 

proportionality yields

de i j dYo
— —  “    ( 8 . 8 )

a i j  To

where the octahedral shear stress and shear strain are defined as t q =  1/3 S j j  .  S j j  

and 70=  1/3 ejj .ejj (i,j =  1,2,3). Assuming incremental linearity, we can write

dTo
d7 o ----------- ( 8 . 9 )

where the generalized shear modulus, H depends on Cjj and on the history of

strain only through d/dmax and emax, where 'd' is the distance of current stress 

point from the bounding surface (corresponding to compression failure for first 

loading or reloading and to tension failure for unloading) measured in stress space 

along the instantaneous loading direction and dmax is the value of d at the

begining of the current loading process (See Figure 8.41) or at the last stress

reversal. A stress reversal is defined as a change in sign of d r0. When d r0 =  

s km • dolcm 1 3 t o  (k«m =  1*2’3) 1)60011165 negative, we have unloading. When 

drQ becomes positive after being negative we have reloading. If d becomes less 

than any previously recorded value of d, denoted by dmjn, then loading beyond

that value of d is considered as first loading and not as reloading.

For first loading, H is expressed as

H -  16 f ' c ( ------------------------- ) 0 , 5 5  ( 8 . 1 0 - a )
dmax • cmax
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For unloading, H is equal to

d
16 f ' c ( ---------------------} 0.65

dmax • cmax
( 8 . 10-b)

For reloading, H is equal to

T d d 1
H -  3750 f fc e - 350emax | ( -----  ̂ Q 75 (    ̂ 2 j

dmax dmax J
( 8 . 10-c)

The portion of the volumetric strain increment dckk caused by the isotropic 

component of d q j, 6 dIj/3 is given by

d l l
dfkk,o -----------  ( 8 . 11)

3Kt

A simple expression for the tangent modulus Kt was given by

*o

l l  ( 8 . 12)
1 + -----

3f'

The initial value of was selected equal to 550 f'c. For cyclic loading, if dlj 

becomes negative (positive) from positive (negative), then we have unloading 

(reloading). On the basis of hydrostatic tests with unloading* Kt is set equal to K0 

during unloading and for reloading upto the maximum previous value of I j . If 

loading continues beyond this last maximum value, then Kt is obtained from 

equation (8 .12).

The remaining portion of dekk is associated with deviatoric strains. When 

crj j is far from the bounding surface, compaction (dekk >  0) follows, any increase 

in the octahedral shear strain (shear compaction); whereas when the stress point 

comes close to the bounding surface, an increase in y0 causes shear dilatancy 

(d 6kk <  0)- Assuming incremental linearity we can write



ekk,d “  Fcd <l70 (k =  1,2,3)
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(8.13)

On the basis of triaxial data with h  =  constant, the shear eompaction dilatancy 

factor, FC(j was selected as

^cd ( fm a x )^  (d/dmax — 0.1) (8.14)

Combining equations (8.7), (8.9), (8 .11) and (8.13) the incremental stress-strain 

relationship takes the form :

S i j  Fcd dr o d l 2
d e i j  “  < -----  + 6i j    )   + j   (8 .1 5 )

tq 3 H 9Kt

By expressing drc  as ^T0/do’jcm d o ^  (k,m =  1,2,3), equation (8.15) can be

written as :

1 s i j Fcd d l x
d e i j ---------------<   + 6 i j    > Skm d(7km + 6i j    ( 8 . 1 6 )

3Htq t q 3 9Kt

8 .3.2.3 Comparison with test results

Figure (8.42) compares the predictions of stress—strain curves by the proposed 

cyclic model to typical uniaxial test results. The overall agreement is very good. 

Since no experimental data are available on the behaviour of plain concrete under 

biaxial cyclic loading, the model is compared with the experimental monotonic 

stress— strain curves of Kupfer et e l.(^ ) for various combinations of biaxial 

compression in Figures (8.43) and (8.44). The part of the curve predicted by the 

model for first loading match the experimental curves in the major compressive 

and tensile direction with reasonable accuracy.
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8 3  2 A  Implementation of the F i n i t e  Fiement

The incremental stress -  strain relationship of equation (8.16) can be written 

in matrix form for finite element application as :

{ d e }  =  [ C ] { dor }

where matrix [ C ] is called the material compliance matrix. To formulate the 

compliance matrix from equation (8.16) the incremental stress was divided into 

three parts as follows :

s i j s km d(7km Fcds km dokm dIl
1 j -----------------r _ + 6 l J --------------  + 6i j    ( k , m -  1 , 2, 3)  (8.17)

3Hr0 2 9 H r0 J 9Kt

1st  part 2nd part 3rd part

Expanding the first part of equation (8.17) for k,m =  1,2,3, we can write

s i j
de i j  ( s l l doTl + s 22da22 + s 33do33 + s 12d(712 + s 23d(r23+ ^ l ^ l )

3Hr0 2

For triaxial stress conditions, the incremental strain can be related with 1st part of 

incremental stress as

dcl l d<ru

de22 d(T22

de33
-  [ c  ] r n

d033

d f 12 da12

de23 do-23

de31 <1(731
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where

[C ]  CD.
3Hr02

S11 s l l S 22 Sn S33 SU S12 SU S23 SU S31

s l l s 22 s 222 s 22s 33 s 22s 12 s 22s 23 s 22s 31

s l l s 33 s 33s 22 s 332 s 33s 12 s 33s 23 s 33s 31

s l l s 12 s 12s 22 s 12s 33 s 122 s 12s 23 s 12s 31

s l l s 23 s 23s 22 s 23s 33 s 23s 12 s 232 s l l s 31

s l l s 31 s 31s 22 s 31s 33 s 31s 12 s 31s 23 s 312

Similarly, by expanding the 2nd and 3rd parts of equation (8.17) for k,m =  1,2,3 

for triaxial stress conditions, the compliance matrix [ C ] (2) and £ c  ] (3) take 

the form :

[C ]  (2).
Fcd

9Ht(

and

[C ]  (3).
9 K,

S11 s 22 s 33 s 12 s 23 S31

S11 s 22 s 33 s 12 s 23 S31

S11 s 22 s 33 s 12 s 23 S31

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Unsymmetric

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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The compliance matrices formulated as above in three parts were added 

together. In the finite element displacement method, we need the inverse

relationship of equation (8.17) where incremental stresses are related to incremental 

strains by a matrix [ D ] i.e .,

{ do- } =  [ D ] { d€ } =  [ C J" 1 { de }

The total [ C ] matrix was inverted numerically by the standard routines of

inversion, e .g ., Partitioning method, Gauss — Jordan method, Gauss — elimination 

method (106) and using standard NAG subroutines F01AAF, F04AEF, F04JDF,

F04JGF etc. No unique solution was found for the above matrix. Drucker's 

material stability theory (107) postulates that a unique inverse of any constitutive 

relation should always be exist. That is, for any constitutive law {a|j} =  [D] { ejj} 

based on an assumed function for strain energy, a unique inverse relation {qj} =  

[D]— 1 {Ojj} should always be obtained. In the following, the analysis procedure is 

described with the help of a numerical example.

Let us consider, for example, the total compliance matrix calculated from the 

constitutive law for Element no. 1, Gauss point 1, of model MRS13

Total Compliance matrix [ C ] T

0 . 466E -05 0 . 893E-06 0 .512E -05  -0 .1 4 9 E -0 5  0 .1 2 5 E -0 5  -0 .2 7 8 E -0 6

0 . 102E -07 0 . 121E-04 -0 .1 4 6 E -0 5  0 .479E -05  -0 .4 0 0 E -0 5  0 .8 9 2 E -0 6

0 . 522E -05 -0 .4 6 6 E -0 6  0 .591E -05  -0 .2 2 5 E -0 5  0 .1 8 8 E -0 5  -0 .4 1 9 E -0 6

-0 .1 8 4 E -0 5  0 .4 4 4 E -0 5  -0 .2 6 0 E -0 5  0 .249E -05  -0 .2 0 8 E -0 5  0 .4 6 3 E -0 6

0 . 154E -05 - 0 . 371E-05 0 .217E -05  -0 .2 0 8 E -0 5  0 .1 7 4 E -0 5  -0 .3 8 7 E -0 6

-0 .3 4 3 E -0 6  0 .8 2 7 E -0 6  -0 .4 8 4 E -0 6  0 .46 3 E -0 6  -0 .3 8 7 E -0 6  0 .8 6 2 E -0 7

for incremental stress level in N/mm2 d a q  =  0.107, d<r22 -  0.440, do-33 "  

0.0664, d<r12 =  0.132, da23 = "0 .110 , dcr31 =  0.0246 and incremental strain
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d q 1= 0 .5 4 0 E -0 6 , d e22=  0 .7 2 7 E -05, d c33=  -  0 .2 7 5 E -06, d q 2=  0 .5 3 3 E - 05, 

d f23=  — 0.445E—05, d f3]=  0.992E— 06. The inverse of this matrix obtained by the 

partitioning method as shown below cannot be accepted as rigidity matrix for the 

recalculation of stresses ( which are found in N/mm2 d(Tq =  —208.95, d<r22 =  

— 16.46, da33 =  —85.41, d<q2 =  58.82, da23 =  —0.576, d<r3j =  —4.2) from 

the same above incremental strains.

Inverse of the total Compliance Matrix

0 . 173E+12 - 0 . 187E+11 -0 .1 5 4 E + 1 2  -0 .4 5 6 E + 0 7  0 .954E + 07  0 .371E + 08

- 0 .187E+11 0 . 202E+10 0 .166E +11 -0 .6 5 0 E + 0 7  -0 .4 8 7 E + 0 7  -0 .2 6 1 E + 0 8

- 0 .154E+12 0 .166E +11 0 .137E +12 0 .113E + 08  -0 .2 8 4 E + 0 7  -0 .5 3 2 E + 0 7

- 0 .563E+07 - 0 . 745E+07 0 .127E +08 0 .226E + 08  -0 .9 1 5 E + 0 6  -0 .5 0 6 E + 0 7

0 . 706E+06 - 0 . 234E+06 -0 .2 3 4 E + 0 7  0 .317E + 07  0 .439E + 08  0 .180E + 09

0 . 424E+07 - 0 . 139E+07 -0 .1 7 4 E + 0 8  0 .2 3 1 E + 0 4  0 .270E + 09  0 .121E + 10

The investigation has showed that the total compliance matrix [ C ] ^  is not 

symmetrical and this is due to the 2nd part of the incremental stress i.e. due to 

the contribution from [ C ]  (2). To make the compliance matrix symmetrical (which 

is true for most of the constitutive models), matrix [ C ]  (2) was modified as

S11 ~11-* S22 s l l * s 33 S12/ 2  s 2 3 / 2 s 3 l / 2

s l l *:122 s 22 - 2 2 +s 33 S12/ 2  S23 /2  S31/2

s1 1 ^ 3 2 s 22+ s 33 S33 S 12/2  S23/ 2  S31/2

s 12/ 2 S23/2  S3 3 /2  0 0 0

s 1 2 /2 s 2 3 / 2 s 3 3 / 2 0 0 0

s 1 2 / 2 s 2 3 / 2 s 3 3 / 2 0 0 0

[ C]  ( 2 >.
cd

9 H r
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With the modified form of [C ]  (2) , the total matrix [C ]  T ca lcu la ted  

for the same stress level and for the same sampling point. It was then tried to 

inverted, but no improvement was noticed from the results as shown below

Modified [ C ] T matrix

0 . 466E -05 0 .452E -06  0 .517E -05  -0 .1 6 7 E -0 5  0 .13 9 E -0 5  -0 .3 1 0 E -0 6

0 . 452E -06 0 .12 1 E -0 4  -0 .9 6 1 E -0 6  0 .462E -05  -0 .3 8 6 E -0 5  0 .86 0 E -0 6

0 . 517E -05 - 0 . 961E-06 0 .591E -05  -0 .2 4 3 E -0 5  0 .20 3 E -0 5  -0 .4 5 2 E -0 6

- 0 . 167E -05 0 . 462E-05 -0 .2 4 3 E -0 5  0 .249E -05  -0 .2 0 8 E -0 5  0 .46 3 E -0 6

0 . 139E -05 - 0 . 386E-05 0 .203E -05  -0 .2 0 8 E -0 5  0 .17 4 E -0 5  -0 .3 8 7 E -0 6

- 0 . 310E -06 0 . 860E-06 -0 .4 5 2 E -0 6  0 .463E -06  -0 .3 8 7 E -0 6  0 .862E -07

Inverse of the above modified matrix

0 . 921E+11 - 0 . 995E+10 -0.822E+11 -0.420E +05 0.157E+07 0.191E+07

- 0 . 995E+10 0 . 108E+10 0.888E+10 -0.187E +07 -0 .178E +06 -0 .352E +06

- 0 . 822E+11 0 . 888E+10 0.733E+11 0.193E+07 -0 .142E +07 -0 .419E +07

-0 .4 2 0 E + 0 5  - 0 . 187E+07 0.193E+07 -0.515E +07 -0 .126E +08 -0 .374E +03

0 . 157E+07 -0 .178E +06 -0.142E +07 -0 .126E +08 -0 .529E +07 0.437E+08

0 . 191E+07 - 0 . 352E+06 -0.419E +07 -0 .374E +03 0.437E+08 0.196E+09

For further study, the compliance matrix was formulated in the principal 

directions of Sjj. The principal strains ws&s related to the principal stresses by the 

matrix

0 1746687E-04 - 0 . 5406112E-05 - 0 . 1863791E-06

-0  5406112E-05 0 . 9299200E-05 0 . 5943371E-05

-0  1863791E-06 0 . 5943371E-05 0 .4544529E -05
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The above matrix inverted numerically by the partitioning method. The aj j 

term of the inverted matrix is shown below corresponding to a^j of original 

matrix, where 3 to 7 digits were considered after the decimal point

P IT  o f  o r i g i n a l  m a t r i x  o f  i n v e r t e d  m a t r i x

0 . 1746687E -04 0 . 2862996E+11

0 . 174669E -04 - 0 . 715747E+10

0 . 17467E -04 -0 .86749E +09

0 . 1747E -04 0.4585E+08

0 . 175E-04 0 . 465E+07

This large variation of aj \ has confirmed that the compliance matrix [ C ] T 

obtained from equation (8.16) proposed by Fardis et el.OOl) js nearjy singular.

8.3.3 Summary

At any stress level, the compliance matrix for the constitutive law proposed by 

Fardis et el. was found nearly singular. No unique inverse of the constitutive 

relation does exist, which violates Drucker's material stability theory. At this stage 

in the work, it was decided to abandon any further investigation due to lack of 

time.

Bazant and his co— workers have proposed a series of more sophisticated and 

very powerful constitutive models (108,109,110) f which in principle account for 

nonlinear cyclic behaviour. Among these models, the most successful in reproducing 

cyclic behaviour is the model in Reference 109. The incremental plasticity and 

fracturing (microcracking) theory combines the plastic stress decrements with the 

fracturing stress decrements, which reflect microcracking, and accounts for internal 

friction, pressure sensitivity, inelastic dilatancy due to microcracking, strain 

softening, degradation of elastic moduli due to microcracking, and the hydrostatic
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nonlinearity due to pore collapse. Failure envelopes are obtained from the 

constitutive law as a collection of the peak points of the stress— strain response 

curves. The jump— kinematic hardening allows for inelastic response during 

unloading, reloading and cyclic loading and, at the same time, it does not in itsef 

cause violation of Drucker's postulate. But the model requires a large number of 

functions and parameters obtained by a nonstandard, optimal—fitting technique. 

Since the model is incrementally linear, it will be easier to implement into the 

finite element programme. So the model in Reference 109 can be tried to 

incorporate into the standard computer programme as a subject of future 

investigation.
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C H A P T E R  N IN E  

C O N C L U S IO N S  A N D  R E C O M M E N D A T IO N S

9.1 Conclusions

From the experimental and theoretical investigations carried out in this thesis 

on the strength and stiffness of the Shear wall — floor slab connections with and 

without flanges and using shear reinforcement in the slab, the following conclusions 

can be drawn:

9.1.1 Use of Shear Reinforcement

1 ”  The mean strength of the junction with shear reinforcement has been

increased by approximately 41% over that of models without shear 

reinforcement.

2 — The use of shear reinforcement in the slab did not change the stiffness of

the structure but has markedly improved the ductility of every model as

evident from Figures (6.192) and (6.193).

3 — Following the recommendations of ACI Code 318—83 and using equation

(6.12), the efficiency of closed vertical stirrups ranges from 51% to 98% for 

all the models tested. The mean is 71% with S.D. 0.12.

4 -  Closed stirrups are suitable as shear reinforcement in earthquake-resistant

shear wall structures. They ensure that the wall— slab connection behaves in a 

ductile fashion when subjected to both monotonic and reverse cyclic loading 

conditions.

9.1.2 The Experimental Investigation

1 _  The strength of the connection may be evaluated following the procedure

proposed in section (7.11). The method is found to be quite safe and
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consistent when compared with test results (see tables (7 .5) and (7 .6)).

2 — The critical section for shear is located at a distance d/2 around the flange

(where d is the effective depth of tension reinforcement) but behind the flange 

it is inclined to the web as shown in Figure (7.102).

3 — Recommendations of ACI 318— 83 and BS 8110 for the prediction of the

strength of slab — edge column connections are unsuitable for estimating the 

strength of wall— slab connections, assuming shear wall as an edge column.

4 — The average ultimate load for all the models tested monotonically was 1.07

times design load with standard deviation equals 0.09. The adopted design 

procedure is capable of achieving the required strength of the connection.

5 — Steel did not yield within the service load (0.625 x design load) limit except

in models MS6 (with small corridor opening width) and MS9 (with large bay 

width). The average load at first yield of steel for all the models tested was 

66% of the design load.

6 — The degradation of strength due to damage was less than 20% of design

strength for all the models tested under reverse cyclic loading conditions.

7 -  The stiffness of the structure decreases when the corridor opening width

increases, following the relation Kq =  40.348 ■+■ 9388.7 / L and Kcr =

14166.0 (L)—1-0571; where Kq and Kcr are pre and post—cracking stiffness; 

L is the corridor opening width. The stiffness of the structure increases when 

flange width increases. This relationship obtained from the test results can be 

given by the equations K0 =  0.19432 (Z)^'0532 ancj =  1.0651

(2 )0.56328 where z  is the flange width of the wall. The ratio of the post to 

pre-cracking stiffness ranges between 27% to 50% for the models of main 

test series.

8 — The stiffness (secant) of the models at last load cycle (where rotational
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ductitlty factor, 6/0y > ± 7.0) was found 25 to 31% of the stiffness at first 

yield.

9 — The effect of the percentage of flexural reinforcement (p) on the strength of 

connection corresponds well with CPI 10. It assumes an increase in the value 

of critical shear stress of 0.05 N/mm2 for every increase of 0.5% of the ratio

of flexural reinforcement, when 2.0  ^ p ^ 0 .8 .

9.1.3 The Theoretical Analysis

1 — The three dimensional finite element analysis (described in chapter four) is

capable of providing a good prediction of the ultimate failure load and overall 

behaviour of the models under monotonic loading. The mean ratio of 

(^exp^ theo ) ôr twefv£ models tested under monotonic loading

conditions is 1.0 with standard deviation equals 0.07.

2 — The finite element mesh of Figure (7.1—b) which contained eight elements

can be used to analyse the experimental models. The further mesh refinement 

has little influence on the predicted behaviour, but has a great influence on 

the cost of analysis (the cost of analysis increases linearly with the increase in 

the number of elements).

3 — The ultimate failure loads are greatly affected by the value of the shear

retention factor. Equations (7.2) are recommended for the evaluation of this

factor as a function of strain for all types of models, with and without

flanges, with and without shear reinforcement in the slab.

4 -  Theoretical analysis considering wall thickness produced lower (around 5%)

failure loads, but it was ignored for economical reasons.

5 -  The ultimate strength and stiffness of the slab-wall connection obtained from

the analysis based on concrete as No Tension material were found almost 

identical to the strength and stiffness of the connections obtained from Fixed
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crack analysis. No-tension analysis reflected the design assumptions and helped 

to clarify some of the short— comings of Fixed crack analysis.

6 The assumption of proportional loading instead of the experimental sequence 

of gravity and lateral loading, used in theoretical analysis and reported in 

References (24) and (44), did not greatly affect the overall behaviour of the 

models.

7 — The cyclic constitutive law proposed by Fardis et el. (1^1) was found capable

of predicting the strength degradation, stiffness degradation and hysteric

behaviour of plain concrete under repeated loadings. Unfortunately, the 

proposed constitutive model was unsuitable for finite element work. Because, at 

any stress level, the material compliance matrix was found nearly singular. No 

unique inverse of the constitutive relation does exist, which violates the

Drucker's (107) material stability theory.

9.2 Suggestions for Further Research

9.2.1 Experimental Investigations

1 — Some more models should be tested under reversed cyclic loading conditions

varying the geometrical parameters like Corridor width, Bay width, Flange

width, W all-w eb length etc. to study the effect of those parameters on 

strength degradation, stiffness degradation and hysteric behaviour of slab-wall 

connections.

2 -  Closed vertical stirrups were used as shear reinforcement in the slab. Some

other form of shear reinforcement, for example, shear combs can be tried for 

efficient anchorage and easy installment. The recent paper by Regan(35) could

probably form the basis of this work.
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9.2.2 Modifications to the Program

1 — A somewhat long— term objective is the inclusion of suitable cyclic constitutive

model into the finite element program which can predict with reasonable 

accuracy the strength and stiffness degradation and the hysteric behaviour of

models tested under reversed cyclic loading conditions. The Constitutive model

proposed by Bazant (109) can tried to incorporate into the existing finite 

element computer program.

2 — The following additions to the present program may be useful :

a — The program requires a fully automatic mesh generator to be incorporated. 

This will considerably reduce time spent in data preparation.

b — The various plotting routines, which are now separate programs, can also be 

incorporated in the analysis program.

c — A scheme for the automatically load incrementing will be a useful inclusion 

for monitoring behaviour near ultimate conditions.

d -  As an alternative to the Newton- Raphson method, recent methods of 

nonlinear techniques such as arc— length methods may be used for economical 

and more efficient solution.
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