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SUMMARY

In this study it was intended to study both the mathematical and experimental 

behaviour of skeletal frames and to examine the feasibility of using small scale 

models to predict the behaviour of prototype structures.

Mathematical analysis of both two and three dimensional structures was carried 

out. Computer programs were written using the relevant mathematical models and 

response of typical structures subjected to ground motions. For two dimensional 

frames both linear and nonlinear behaviour of structures was studied.For three 

dimensional structures to reduce the size of the eigenvalue problem, a technique 

known as Dynamic Condensation was incorporated.

To carry out the experimental study on small scale models, a small 

unidirectional shaking table was designed and constructed in the departmental 

workshop. Two small scale models were tested using this table. The natural 

frequencies for these models were obtained experimentally and their response to 

both harmonic and random vibrations was studied. Comparisons were made 

between the experimental values recorded and theoretical values obtained by using 

the computer programs.

The correspondence between experimental and analytical results was reasonably 

good for both the models. Experimental losses and distortions produced during 

fabrication procedures lead to experimental values being smaller than the 

corresponding theoretically computed values. It was not possible to induce 

nonlinear behaviour in either of the models due to the limited capabilities of the 

experimental equipment used.

From this study it can be concluded that the use of small scale models can be 

successfully used to predict the dynamic behaviour of simple prototype structures. 

It is however essential to accurately design and construct these models to 

represent the characteristics of the prototype being studied.



CHAPTER 1 INTRODUCTION

1 . 1  INTRODUCTION

The rapid advances that have been made in the methods for analysis of 

the dynamic response of structures since the advent of powerful computers are 

obvious. However, these achievements tend to obscure the fact that the 

analytical procedures, no matter how powerful, cannot lead to reliable estimates 

of the dynamic behaviour of a real structure unless the mathematical model 

truly represents the physical properties of the actual system. In general, the 

proof that a given analysis procedure is producing reliable results can only be 

obtained by comparison of the analytical predictions with the behaviour of a 

real structure subjected to dynamic loads i.e by correlation of analysis with 

experiment.

In most cases it is not feasible to perform dynamic tests on full scale 

structures. In the field of earthquake engineering, where a structure is 

subjected to random excitations at the base of the structure, it is essential to 

design the structures to enable them to dissipate the applied energy without 

sustaining major damage to the main load bearing structural elements. Other 

factors which have to be taken into consideration in the designing of 

earthquake resistant structures include the establishment of an adequate 

representation of the most severe earthquake motions that may possibly occur 

at the site. The response must be calculated taking account of interaction 

between the soil and the foundation and the participation of non structural 

elements.

The dynamic analysis theory of two and three dimensional skeletal frames 

is presented in chapters two and three. Computer programs were developed to 

give the response of framed structures subjected to ground accelerations and 

results produced for typical structures analysed are included. Studying the



response of small scale models subjected to simulated base motions in the

laboratory is a useful technique for understanding the behaviour of structural 

members undergoing rapid reversals in loading. The models should accurately 

represent the characterestics of the prototype structure. In practical structures it 

is essential that the inelastic behaviour of the structure be mobilised to make 

the design economical. Such considerations impose severe restrictions on the

possible choice of materials for model testing. Section 1.2.1 deals with the

choice of model materials in greater depth. The initial part of Chapter 4 is 

concerned with the relevent material properties which have to be taken into 

account when choosing a model material to simulate the properties of the

prototype material.

The dynamics of any structure is governed by an equilibrium balance of 

the time dependent forces acting on the structure. These forces are the inertia 

forces that are a function of the local mass and acceleration, the spring forces 

which are a function of the stiffness of the structure in the particular direction 

in which motion is occuring and the damping forces which are related to the 

material properties. The similtude requirements that govern the dynamic 

relationships between the model and prototype structure depends on the 

geometric and material properties and on the type of loading. The latter part 

of Chapter 4 contains the modelling laws which are suitable for the studying 

the response of models subjected to simulated seismic forces.

The use of shaking tables is a well established technique for the simulation 

of base excitation for model structures in the laboratory. The capability and 

performance characteristics of these tables vary depending largely on the 

equipment used to drive them. To enable the dynamic response of small scale 

models to be monitored, when subjected to ground motions, a unidirectional 

shaking table was built in the department workshop. Details of the design of 

the shaking table, its performance characteristics and data aquisition equipment 

used are presented in Chapter 5. A description of the models constructed,



experiments performed and comparisons of the experimental and theoretical 

results are also presented in this chapter . The final chapter (Chapter 6) deals 

with the conclusions drawn from this research work and recommendations for 

future enhancements which may possibly be carried out.

1.2 REVIEW OF PREVIOUS RESEARCH WORK

Research work carried out in the field of small scale modelling of 

structures subjected to dynamic loading can broadly be divided into three main 

sections

1) Materials suitable for modelling

2) Accurate modelling and fabrication

3) Case studies

A succint review of the work done in these fields is presented herein

1.2.1 Materials suitable for modelline

A model material should ideally demonstrate similarity of all material 

properties i.e the thermal and mechanical properties should be identical to 

those of the prototype material after the application of scaling laws. In 

practical modelling problems similarity is only required for those material 

properties which significantly affect the response of quantities of interest in the 

study. Within this section the suitability of modelling materials such as 

plastic,microconcrete and steel are reviewed.

In 1964 an investigation was made by Peerce and Davies(31) into materials 

suitable for modelling. Their study into the use of plastics as a modelling 

material is examined here. When using plastics as a modelling material, the 

different factors which were taken into consideration included the stress strain 

relationship between the prototype material and the model material, the



correspondence of Poisson's ratio of the two materials and ductility of the two 

materials.

For linear models of reinforced concrete structures subjected to static loading 

it was found that plastic models could adequately reflect the deflection 

characteristics of the original structure, since they exhibit a linear stress strain 

relationship and have a low modulus of elasticity. The mechanical properties of 

plastics were noted to have been affected by the rates at which stresses and 

strains were applied. It was shown that when the strain rate was increased

from 10— 5 / sec. to 10— 2 / sec., the tensile strength of a perspex specimen

tested at 20 °C increased by 50% and the modulus of elasticity increased by 

25%. This variation in properties is obviously not a problem for statically

loaded models in which loads are applied slowly but can lead to serious

inaccuracies in the interpretation of test results for dynamically loaded models.

Roll(3 3) studied the suitability of different materials for structural models. 

He performed static load tests on specimens made from both thermosetting

(e.g epoxies,polymers etc.) and thermoplastic (e.g acrylics,P.V.C etc.) plastics. 

The responses using both these types was found to be satisfactory for static

loading. Thermosetting plastics were found to display greater ductility and 

suggestions were made regarding the possibility of using it as a suitable model 

material for dynamically loaded models. However, the induced strain rate

effects due to dynamic loading were an important factor to be considered in 

the interpretation of test results obtained. A suggestion to scale the results

affected by the increase in yield strength was made.

In 1970, Carpenter et. a l.(8) investigated different materials which were 

being used as model materials for concrete structures. They too examined the 

suitability of plastics for elastic models of concrete structures. Thermoplastics, 

which have a modulus of elasticity of approximately 350 MPa and a Poisson's 

ratio of approximately 0.35, were found to be particularly suitable as the low 

modulus of elasticity resulted in producing measurable strains and deformations



on the application of relatively small loads. However, the fact that the

Poisson's ratio does not compare well with that of concrete (0 .15-0 .20) led to 

a conclusion that care must be taken in the interpretation of results where the 

Poisson's ratio may affect the results. Thermosetting plastics were found to be 

modelling shell models as curved surfaces with any desired thickness could be 

cast.

Two properties of plastics were noted to cause most problems in model

tests; first the time dependent behaviour and second, the low thermal 

conductivity. The time dependent behaviour primarily affects the test procedure, 

while the low thermal conductivity affects fabrication when heat is used and 

instrumentation when electrical resistance strain gauges are used. The time 

dependent behaviour is apparent as creep, or continued deformation with time, 

when the material is subjected to a constant stress. To overcome this problem 

the variation of the modulus of elasticity with time has to be determined after

which the material can be treated as linearly elastic and therefore is suitable

for purposes of elastic modelling.

Due to the fact that creep is an important factor in the interpretation of 

results using plastic models, the authors arrived at the conclusion that such

models would be unsuitable for dynamic loading due to the time dependent

nature of the loading, and also the materials inability to give a true 

representation of the behaviour of concrete structure, in terms of displacements 

and deformations produced by such loading.

Several researchers have investigated the modelling of small scale reinforced 

concrete structures in the inelastic range. The difficulties when analysing 

reinforced concrete structures, lie essentially in the nature of the material. 

Reinforced concrete, being a three component material consisting of a 

framework of aggregates, the cement matrix and steel bars as reinforcement, is 

essentially a non-isotropic and non-homogeneous material. Therefore, for

modelling of concrete structures subjected to inelastic deformation, it is not



possible to use anything but "concrete like" materials such as cement mortar, 

gypsum mortar or microconcrete. While the static behaviour of microconcrete 

models has been studied extensively, the research conducted into the dynamic 

behaviour of such models is limited.

In 1977 Chowdhury and White ( 1 °) studied the reliability of 1 / 1 0  scale 

reinforced concrete models for predicting frame behaviour under severe 

reversing lateral loads. The prototype study into the seismic resistance of 

reinforced concrete beam column joint was carried out by Hanson and 

Conner(18) in 1967. The authors found that successful small scale modelling of 

the behaviour of reinforced concrete structures loaded to failure depended 

primarily upon the properties of the model materials. Though geometric and 

load similitude requirements are easy to achieve, the attainment of proper 

model materials was found to be difficult task.

It was found impractical to attempt to reproduce all the prototype material 

properties such as the failure criteria of concrete, tensile properties of the 

reinforcement, the effects of repeated and reversing loads on material strengths 

and stiffnesses and the bond between the steel and concrete. The authors 

chose to model the following properties

a) Uniaxial compressive strength of concrete

b) Split cylinder tensile strength of concrete

c) Yield strength of steel

d) Post yield characteristics of steel

e) Ultimate bond strength

The model concrete using similar materials and mixes as the prototype was

found to have similar stress strain curves as that of the prototype concretes.

The tensile strength of the model concrete was found to be higher than 

normal prototype values but not significant to produce problems in scaling. 

Considerable effort was involved in modelling the reinforcing steel. 

Commercially available deformed wires of 2.87 and 4.04 mm. diameter were



used. To simulate the bond characteristics of the prototype reinforcement, the 

wires had four lines of rectangular patterns embossed into the surface at 6 

mm. spacing. Because of the cold working involved in the embossing process, 

the wires did not have a well defined yield point and various heat treatment 

procedures were adopted to achieve a suitable yield point. These involved, full 

annealing at about 870 °C, with slow cooling through the critical range which 

produced very low yield points, normalising by heating the steel to 

approximately 965 °C and then cooling in air which resulted in higher yield 

strength and lower ductility than full annealing, and process annealing at 

480—650 °C which achieved proper model steel yield points. Heat treatment of 

model steel should be done under closely controlled conditions using a single 

furnace with temperature control of ±3°C.

For all models tested the yield strength of the steel was found to be 6%

lower than that of the prototype and the applied loads had to be scaled 

accordingly. In some models the concrete strengths were found to vary 

considerably with the design value and this fact was taken into account in the 

interpretation of the results.

Overall the results obtained indicated a reasonable agreement between the 

model and prototype studies for all models and only one model showed close 

conformity of results. This study highlights the complications involved in the 

manufacture of small scale reinforced concrete models subjected to nonlinear 

deformations and the large degree of variation in the properties of different 

specimens made using the same model materials.

Another aspect of importance in the use of microconcrete in dynamically 

loaded models is the effect of strain rate on the compressive strength of 

concrete. Sabnis et a l(34) examined this effect by studying the results of tests

done on 44 specimens. A series of 50 X 100 mm. cylinders of microconcrete

with a mix of water—cement—sand ratio of 0.9:1:4.5 was tested at increasing 

strain rates in uniaxial compression. The 44 specimens were tested at four



rates of strain ranging from 10 5 to 10“  2/sec. Fig. 1 - 1  shows the

comparison of the effect of strain rates on the compressive strength of 

microconcrete and ordinary concrete, and clearly shows the sensitivity of 

microconcrete to strain rate effects. The results of a similar study on the 

effect of strain rates on model reinforcement is shown in Fig. 1—2. However, 

since the increase in yield stress at higher strain rates is very similar to that 

of the prototype reinforcement, its effect is neglected in microconcrete models 

with reinforcement. The authors concluded that the effect of strain rate is 

particularly significant in models encountering continual reversal of stresse, and 

hence should be taken account of when analysing the results.

Despite the extensive use of steel in structural design the number of model 

studies performed on steel structures is very small compared to the number of 

tests conducted on reinforced concrete structures. This is mainly because steel 

being a homogeneous material, its properties in the linear and nonlinear range 

are well understood, and several full scale tests on the behaviour of steel 

connections have been performed thus providing a well defined picture of the 

behaviour of steel structures in general.

Krawinkler et a l(20) made a thorough study of suitable model materials for 

steel structures. They examined the use of plastics as a model material, but 

ruled out their use because of the low elastic modulii and the high Poisson's 

ratio which they possess compared to steel. One of the conclusions made was 

that because of the specific nature of the stress strain diagram of structural 

steel, non ferrous materials were unsuitable as modelling materials.

Among the ferrous materials the most obvious choice, structural steel itself, 

was examined for its suitability as a model material. The identical shapes of 

the stress strain diagrams of the model and prototype materials, and the ability 

to closely simulate prototype connections make structural steel, within certain 

limitations, the best suited material for models of steel structures. The effect 

of higher strain rates caused by dynamic loading, which leads to an increase in



strength in the model material is a factor of considerable importance. When 

this effect is quantitatively known for the selected length and time scale it is 

relatively simple to account for by modifying the gravity loads and dynamic 

input.

In 1966 Nagaraja et a l(2S) performed a study on strain rate effects on the 

yield strength of structural steel. The emperical formula derived using the yield 

stress obtained at a strain rate e =  2 X 10“  4 / sec. as the normalising value 

is

ory/(o -y )2X1o- 4  = ° - 923 + 0 .703  e ° - 28 (1 .1 )

The effect of strain rates is discussed in greater detail in Chapter 4.

Krawinkler et al also examined the suitability of copper alloys such as brass 

and phosphor bronze. Even though certain material properties such as stress 

strain curves and Poisson's ratio compare well to those of structural steel, but 

other features such as weldability and cyclic behaviour (hysteresis loops) etc. 

render their use very limited.

From this study by Krawinkler et al. it can be deduced that structural steel 

is the most suitable modelling material for steel structures. Its ease of 

availability, simplicity of fabrication, material properties compatibility between 

the model and prototype, and low price display the advantages in using it as a 

modelling material.

1.2.2 Accurate modelling and fabrication o f structures

In any evaluation of structural models, the importance of accurate 

modelling and fabrication must be given prominent attention. The factors 

affecting model accuracy include model material properties, scaling laws, 

fabrication accuracy, loading techniques, measurement methods and 

interpretation of results. The aspect of model material properties and scaling 

laws are dealt with in greater depth in Chapter 4. Since this study is primarily 

concerned with the behaviour of frames subjected to dynamic loading, the



fabrication techniques for plastics, which are suitable only for statically loaded 

models, will not be examined.

Breen(6) performed a general study into fabrication of reinforced concrete 

models. For reinforced concrete models, the fabrication techniques used follow 

the fabrication procedures used in the prototypes. The major element in

fabrication of such models is the development of a reduced scale concrete or

microconcrete which will reproduce the important mechanical characteristics of 

the prototype.

For the manufacture of microconcrete the materials used are the same as 

for the prototype concrete. The maximum size of the model aggregate is 

normally established from the minimum member thickness in the model. To

decrease laboratory time requirements the use of Rapid hardening Portland 

cement is recommended. The author suggests the use of perspex or plexiglass 

as the most suitable formwork material for model concrete since

1) Its transparency facilitates placement, visual inspection of the 

reinforcement and subsequently of the microconcrete.

2) No releasing agent is required as the concrete does not adhere 

to it.

3) It does not absorb water from the mixture and joints can be

adequately sealed.

Placement of microconcrete generally requires good vibration for proper 

compaction. Small members may be cast on a vibrating table or if the 

dimension of the section permits, a poker vibrator operating at reduced power 

may be used. For the curing of concrete, it has been suggested that the 

formwork be left in place as a moisture barrier by spraying the exposed 

surfaces with a membrane curing compound and then covering it with curing 

blankets.

For reinforcement in the models round steel wires or rods, deformed wires



or deformed bars may be used. Reinforcement cages are usually prepared by 

tying small wire or by spot welding. While using spot welding, proper

precaution should be taken to avoid excess heat input at the joint. This is 

particularly important for welded cages with closely spaced wires.

Litle and Foster ( 2 2) undertook a project to fabricate small scale steel 

models. They studied the fabrication of small scale I sections by milling bars. 

In these models both welded and bolted joints were used. The use of bolting 

was found to be limited mainly because the drilling of the sections substantially 

reduced the effective area of the member and the bolts used had to be very 

small to achieve geometric similitude. Since the use of such small bolts were 

impractical normal size bolts were considered, but this was only suitable for 

relatively larger sections. Welding was widely used but the operation required 

great skill and, to minimise distortions caused by concentrated heating,

intermittent welds were used wherever possible. The main drawback in the 

modelling of steel structures is the amount of machining required to produce 

small scale sections. Since this process may induce initial stresses partially due 

to heat generated by the machining procedures, it is essential to have a 

cooling fluid which must be used.

Sabnis et a l / 34) have examined the different aspects of modelling, a brief 

description of the various techniques and instrumentation required is presented 

next. In dynamic tests of small scale structures, the aims are to examine the 

free vibration of the model initially and secondly to study the behaviour of the 

model when subjected to forced vibration. Free vibration measurements can be

accomplished, in some cases by pulling on the structure, then releasing quickly

and measuring the free motions of the structure. Most laboratory vibration tests 

to study free vibrations are achieved by forcing the structure to vibrate in one 

of its natural modes. This is normally accomplished by the use of mechanical



or electromagnetic oscillators or by placing the model on a shaking table. To 

study the forced vibration the models are fixed on a shaking table and 

subjected to the required type of base motion.

The data which is normally required from dynamic modelling studies is a 

measure of the displacements and accelerations at different positions in the 

structure. For the measurement of displacements linear variable differential 

transformers (LVDT's), which are mounted on a rigid frame, which is 

unaffacted by the input motions, are positioned against appropriate positions of 

the structure. The output produced a LVDT is a change in current induced by 

the movement of the model against a spring loaded shaft. This current can be 

related to the displacement of the model at the specific position.

Accelerometers are used to measure the acceleration at any particular 

position in the model. The accelerometers are attached to the model itself and 

any variable movement in the direction of their major axis induces changes in 

current, which are conditioned and continously recorded.

Accurate and reliable test results and their interpretation are absolutely 

essential to a successful model technique. A high degree of accuracy is 

completely dependent upon a detailed knowledge of the material properties. In 

order to guard against the loss of accuracy the equipment used for monitoring 

the experimental data should be calibrated. When interpreting an experimental 

result, it is advisable to compare it with some available theory. In case of 

difference between the two sets of results, provided that the theory is well 

established, an attempt should be made to check for any possibility of error in 

the measurement of the test results or in the modelling technique. If no error 

can be found in the experimental technique, the mathematical model must be 

carefully examined to see how it can be improved to account for the 

differences produced. It must however be emphasised that several experiments 

must be carried out to confirm the trend before altering the mathematical

model.



The above discussion emphasises the need for accuracy in modelling to

achieve valid comparisons between analytical and experimental studies.

1.2.3 Case studies

The use of shaking tables to obtain the seismic response of models has been 

widespread in the last few years particularly in Japan and the United States of 

America. Several researchers have used shaking tables for testing structural 

components such as piles used in nuclear power stations, beam column 

connections etc. The University of California, Berkely embarked upon a 

comprehensive model testing program in the 1970's using the extensive range 

of testing facilities which they possess.

Clough and Tang(1 3) studied the response of a three storey building frame 

(Fig. 1—3) which was considered to be the prototype. The structure was 

subjected to a series of different base inputs from the shaking table. Phase I 

of the study was related to the examination of the behaviour of structural 

joints which were underdesigned deliberately so that yielding would take place 

there. In the second phase these zones were strengthened by the addition of 

plates thereby forcing yielding to occur at the ends of the beams and columns. 

The structure was subjected to six types of ground motion, each applied at 

progressively increasing intensities. The N—S component of the 1940 

El— Centro earthquake was used as the input ground motion. The two input 

accelerations which were chosen to enable the various parameters in the elastic 

and inelastic ranges had peak intensities of 0.24 and 0.57g respectively (i.e 

about 74 percent and 175 percent of the actual earthquake intensity).

The main objective of this test program was to obtain experimental data on 

the actual earthquake performance of a steel frame structure so that the 

effectiveness of available analytical procedures could be tested. The test 

structure consisted of two parallel single bay, three storey moment resisting



frames which were seperated by a distance of 1.83m (6 ft.). The structural

elements used in the structure were standard rolled sections with a yield

strength of 316.5 N /m m 2. The structure was braced in the direction 

perpendicular to the base motion, in order to achieve vibrations predominantly 

in one direction. In order to provide a period of vibration in the range

appropriate to actual steel buildings, and also to apply a gravity load to the 

beams, blocks of concrete weighing about 3600 kg. (8000 lb) per floor were

attached to the structure. Because the beams were to play an important role 

in characterising the behaviour of a typical moment resistant frame, it was

important that their stiffness properties should not be affected by attaching the 

concrete blocks to them. Specially designed load transferring devices were 

mounted on top of each beam to serve this purpose.

The natural frequencies of the structure moving in the excitation axis

direction using analytical procedures were found to be 2.5, 8.9 and 17.9 Hz.

The lateral bracing system was made stiff enough so that the frequencies of

the transverse and torsional modes were higher than the second natural 

frequency and hence no significant response was expected in these other 

modes.

The instrumentation used in these tests was quite elaborate. Although in 

principle it would have been necessary to measure the behaviour of only one 

of the identical parallel frames, sufficient instrumentation on the second frame 

was included to verify the similarity obtained in the response. The 

instrumentation included strain gauges, LVDT's, potentiometers and 

accelerometers. Strain gauges were used to measure the strains in parts of the 

structure which were assumed to remain elastic even for the most severe 

response conceivable for the structure, from which the internal member forces 

at any desired section could be determined from these gauge readings.

Floor accelerations and displacements were measured using the transducers 

(LVDT's) and potentiomemters. Both these measurements were taken in the



direction of table motion for all three floors. The absolute accelerations and 

displacements were measured using three accelerometers and four 

potentiometers. All the measurements were taken at the level of the beam 

centre lines. The accelerometers were located at the middle of the cross beams 

connecting the two frames, and their signals represented the absolute 

accelerations of the masses assumed to be lumped at these levels.

The first mathematical model developed for these studies called Model 'A ' is 

shown in Fig. 1—4(a). In this model panel zone shear deformations were 

included, but the joint zones were considered rigid in flexure and axial 

loading, thus the flexible length of the members extended only to the joint 

faces. The mass of the concrete blocks and the steel frame was lumped at the 

joint centres, and a mass propotional damping matrix which provided 0.5% 

critical damping was assumed. The fundamental frequency computed for this 

model, 2.44 Hz., agreed quite well with the free vibration of 2.40 Hz. 

However, the predicted structural response when the structure was subjected to 

the first base input was not at all similar to the observed motion as may be 

seen from the comparitive plots of the third storey displacements. (Fig. 1—5). 

The reason given by the authors for this serious discrepancy was that the 

apparent frequency of the observed response was only 2.24 Hz., and the 

fundamental frequency of the structure had a controlling influence on the 

response.

A modified mathematical model called Model 'B ' (Fig. 1—4(b)) which had a 

natural frequency of 2.24 Hz. was developed. In this model, the columns were 

assumed to be flexible within the panel zones (i.e centre to centre of the 

joints) but the system otherwise was the same as model 'A '. Using this model 

excellent agreement was achieved between the analytical and experimental 

results (Fig. 1—6(a)). Because Model 'B ’ gave rather good correlation with the 

experimental results in the elastic range, it was used also as the basis for the 

inelastic analysis response to the second base motion input. The results shown



in Fig. 1—6(b) show that the agreement between the experimental and

theoretical analyses is not very good. The possible reason for this difference 

could be due to residual stresses due to fabrication as well as dead load 

stresses which may have an important influence on the member yield moments, 

thus leading to uncertainities in the mathematical modelling. The authors did

not propose to make any justification for using model 'B ' even though the

results obtained were good for the elastic case.

The conclusions made by the authors regarding this study were

1) The period of vibration of the mathematical model has a 

controlling influence on the predicted response; if it agrees well

with the observed response period the analytical response is good.

2) The higher modes contribute little to the response of this

structure, so the correlation was not sensitive to the accuracy of the 

model in the higher modes.

3) The inelastic mathematical model must be based on a good

elastic model, and in addition must define accurately the member

yield behaviour.

This study mainly highlights the value of shaking table test data in evaluating 

and making improvements in computer analyses procedures. Although 

mathematical models can predict the response of structures, the assumptions 

made when construing such models not always be valid and experimental

studies can be used to check their validity.

Mills ( 2 3) examined the use of small scale models to study the nonlinear 

response of steel framed motions to seismic motions. The three storey which 

was previously tested by Clough and Tang(13) was used as the prototype. 

Tests were performed on a i /s  scale model of the prototype where steel was 

used as the modelling material. The gravity loads on the structure were 

simulated using a technique known as Artificial mass simulation. Modelling by



AMS involves the addition of structurally uncoupled mass to augment the 

density of the model and permits selection of a model structural material 

without regard fro mass density scale. Fig. 1—7 shows the configuration of the 

small scale model.

In the prototype study the behaviour of the joint panel zone was critical to 

the inelastic behaviour of the structure, to achieve similarity, the detailing of 

the beam column connections was reproduced in the model. The I sections 

used in the model was produced by milling bars, using the same grade of steel 

as the prototype. All the primary structural elements were welded using the 

tungsten inert gas process with argon as the shielding gas. The welding at such 

a reduced scale required great skill and precautions were taken to minimise 

distortions caused concentrated welding. After fabrication the frame was heat 

treated at 595 °C for one hour and then cooled in ambient temperature to 

remove the distortion produced by high initial stresses without altering the base

material. As a result the model did not reproduce the initial stress state of the

prototype. The welds used were inevitabily larger than those required to 

simulate a true scale reduction. The yield levels were found to be 10 to 20%

higher for the model as a consequence of slightly higher yield stresses and the

smaller joint panel zones produced by oversized welds.

The model was subjected to actual and artificial earthquake records to

produce both elastic and inelastic structural response. The comparison of the

prototype and model natural frequencies is shown in Fig. 1—8. The 

correspondence between the base shears induced due to inelastic deformations 

can be seen in Fig. 1—9.

A summary of the test results showed that accurate simulation of the 

prototype was demonstrated by the similar dynamic properties of the model.

Minor discrepancies in correlation were produced by inadequate modelling of 

the initial stress state and the oversised welds of the model. These welds 

contributed to an increase of approximately 10% in yield strength and a



propotional increase in inelastic stiffness.

The authors concluded that within limitations it was possible to accurately 

reproduce the nonlinear dynamic response of structures to earthquake motions 

by testing small scale models on earthquake simulators. Artificial mass 

simulation was found to be a suitable modelling technique provided that the 

mass could be effectively isolated from the structural load resisting material. 

The drawbacks concerned certain aspects of modelling, for instance it was not 

possible to reproduce the initial stress state of the prototype for this study, 

thus, phenomena that are related to the initial stress state such as buckling 

could not be studied. Also, distortions in the model’s weld sizes would 

preclude the application of these techniques to studies of weld fracture.

Nakamura et al ( 2 7) performed an experimental study on single storey 

braced and unbraced steel model frames subjected to base motions on a 

shaking table. The object of the exercise was to investigate the hysteritic 

restoring force characteristics of the columns in an elastic plastic range and to 

understand the dynamic response behaviour up to failure.

Small scale models of single storey braced and unbraced steel frames 

composed of four columns, a rigid roof and floor plates were tested. The span 

length and bay width were lm  and 0.8m respectively. The clear height of the 

specimens were 40,80 or 120 mm. The total weight of the roof blocks were 

548kg and 1946kg. in the case of unbraced and braced frames respectively. 

Fig. 1—10 shows the test set up for both types of frames.

Each of the models was tested on an electromagnetic type shaking table at 

Kyoto University in Japan. The instrumentation used to obtain the response 

consisted of one acceleromemter positioned at the floor level to record the 

motion of the shaking table and three other accelerometers were attached to 

the undersurface of the roof plate to measure the movements in the two 

horizontal and the vertical direction. Relative displacements between a floor



and a roof was measured by two LVDT's. The fundamental dynamic properties 

of the models were examined under sinusoidal wave excitations. A free 

vibration test was also performed by subjecting the models to a sudden shock 

using a mallet.

The natural frequencies were found to be 10.85 and 18.70 Hz. for the 

unbraced and braced frames respectively. The corresponding values using 

analytical methods were 12.2 and 20.9 Hz. The authors attributed the 

difference between the two due to the fact the elastic stiffness of the model 

was smaller than the calculated value. They felt that slight imperfections in the 

rigidness of supporting blocks for the columns in the unbraced frames and 

imperfections in straightness of bracing members in the braced frames 

contributed to a reduction in model stiffness.

The models were subjected to the ground acceleration input of the 1940 El 

Centro earthquake (N—S componemt). The input values were reduced by a 

factor of 2 for all but one model. Fig. 1—11 shows the analytical and 

experimental storey displacements for two of the models. Static horizontal 

loading tests were performed for similar models tracing the history of the 

storey drift which was measured in the shaking table, to investigate the effect 

of a high strain rate in dynamic loading on hysteritic restoring force

characteristics. It was found that the horizontal load carrying capacities of the

frames in the shaking table were about 10 — 25% higher than those of the

frames in the static loading tests in the elastic range.

On the basis of the experimental and analytical results, the following 

conclusions were made by the authors

1) Dynamic elastic plastic behaviour of unbraced and braced frames 

were followed well by the experimental models.

2) Careful consideration should be paid to the effect of strain rate 

on the load carrying capacity in the formulation of hysteretic

restoring force characteristics, which could be used to predict the



load carrying capacity and dynamic response behaviour of the 

models in dynamic tests.

This study clearly shows the increase in yield strength caused by the high 

strain rate. It accounts for the increase in load carrying capacity of the frame 

and effectively should be taken account of to make valid comparisons of 

analytical and experimental results.

1.3 OBJECTIVES AND SCOPE

The two main objectives of this study are to examine the dynamic behaviour 

of skeletal frames by using suitable mathematical models and to examine the 

feasibility of using small scale models to predict the response of the prototype 

structures. Computer programs which will incorporate the appropriate 

mathematical models will be used for the analytical study. For the experimental 

study small scale models will be tested on a small shaking table.

Due to the limited capabilities of the experimental equipment available, the 

models to be tested have to be made fairly small and light.

1.4 CONCLUSIONS

The main conclusions which may be drawn from the study of previous work 

done in modelling are

1) Among the different materials examined for their suitaility as 

dynamic modelling materials, the use of plastics could be ruled out 

completely. Microconcrete is suitable for modelling reinforced 

concrete structures in both the linear and nonlinear ranges but is a 

fairly difficult modelling material with which to construct complex 

models . Steel was found to the most suitable material for 

modelling steel structures. Its main advantage is the reproduction of 

all the prototype material properties. It however has the drawback 

that in the fabrication of small sections distortions could be 

introduced due to machining procedures.



2) Accurate modelling and fabrication are essential if valid 

comparisons are to be made between the experimental and analytical 

results. Attention should be paid to the measurement methods used 

and the interpretation of experimental results obtained.

3) From the study of the previous case studies the need for 

experimental studies to confirm analytical results is shown to be 

essential. Within certain limitations, small scale modelling, appears 

to be a valid technique , for studying and predicting the behaviour 

of prototype structures.
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CHAPTER 2 DYNAMIC ANALYSIS OF TWO DIMENSIONAL FRAMES

2 . 1  INTRODUCTION

Structures whose behaviour is predominantly two dimensional can be 

accurately analysed using two dimensional mathematical models. In this chapter 

the dynamic behaviour of such structures with either single or multiple degrees 

of freedom is considered.

Structures such as water tanks, single storey shear frames etc., where the 

mass of the structure can be assumed to be lumped at one position may be 

idealised as single degree of freedom systems. In this chapter the dynamic 

behaviour of single degree of freedom systems is described intitally. The linear 

response of structures subjected to excitation at the base of the structure or at 

the position of the mass is explained next.

In cases where the structures have to be designed for excitations of large 

magnitudes such as strong motion earthquakes or the effects of nuclear 

explosion, it is not realistic to assume that the structure will remain linearly 

elastic and it is necessary to design the structure to withstand deformation 

beyond the elastic limit.

The nonlinear dynamic analysis of single degree of freedom systems is 

presented in the next section. The material is assumed to follow an 

elastoplastic behaviour in which the structure is assumed to remain elastic until 

it is subjected to a stress greater than the yield stress (in tension or 

compression) after which the displacement remains constant until the motion 

reverses its direction and the structure returns to elastic behaviour.

A numerical procedure is adopted to solve the resulting differential equation. 

The step by step linear acceleration method which is adopted, uses a simple 

algorithm and provides satisfactory results.

The dynamic analysis of multi degree of freedom systems is considered in



the second half of this chapter. The analysis presented is suitable for 

multistorey structures which can be assumed to behave as shear buildings. The 

assemblence of the equations of motion and the determination of the natural 

frequencies and mode shapes is described.

The procedure for the determination of the linear and nonlinear responses 

of multi degree of freedom structures subjected to ground accelerations is 

explained next. The step by step acceleration method used earlier for the

determination of the response of single degree of freedom systems is modified 

to obtain the response of multi degree of freedom systems.

Finally numerical examples and graphs showing the results obtained from

computer programs written for the analysis presented in the chapter is 

presented.

2 . 2  DYNAMIC ANALYSIS OF SINGLE DEGREE OF FREEDOM SYSTEMS

To enable the analysis of any structure to be performed, it has to be

initially idealised into a simple mathematical model. Fig. 2— 1 shows the 

mathematical model for a single degree of freedom system which has the 

following components :

1) A mass component m which represents the mass and inertial 

characteristics of the structure

2) A spring component k  which represents the stiffness and elastic restoring 

characteristics of the structure.

3) A damping component c which represents the frictional and energy 

dissipating characteristics of the structure.

4) An excitation force F(t) representing the external forces acting on the 

structure. F(t) is a function of time.

The free body diagram shows the external force acting on the structure and 

the inertial, damping and spring forces.



2 . 2 . 1  Undamped s y s t e m

The analysis of the simple single degree of freedom system neglecting 

frictional forces or damping is studied initially. Further the system is 

considered to be free from external actions or forces during its motion. Under 

these conditions, the motion of the system is governed only by the initial 

conditions, i.e the velocity and displacement at time t — 0 .

A mathematical model is as shown in Fig. 2 - 2(a) , in this figure the 

mass m is restrained by a spring of stiffness k .From the free body diagram 

shown in Fig. 2— 2(b) the internal and external forces acting on the structure 

can be seen. Applying D 'alembert's principle the equation of motion is 

obtained as

nik + kx = 0 ( 2 .1 )

Equation (2.1) is a linear second order differential equation which has a

general solution of the form

x = A c o s cot + B s i n  cot ( 2 . 2 )

Constants A and B can be determined from the initial conditions while co is a

quantity known as the circular natural frequency and is given as

co2 = k/m ( 2 . 3 )

When x  =  x Q and x — i : 0 at time t  — 0 the constants A  and B are 

A = x 0 B = x 0/co (2 A )

The natural frequency /  of the system expressed in hertz is related to the

circular natural frequency co as follows

/  = co/2 it ( 2 . 5 )

2 . 2 . 2  Damped s y s t e m

In considering damping forces in the dynamic analysis of structures, it is 

usually assumed that these forces are propotional to the magnitude of the 

velocity and opposite to the direction of motion. Considering the mathematical 

model and the free body diagram shown in Fig. 2 -  3 and applying



D'alembert's principle the equation of motion is given as

nix + c x  + kx  = 0  ( 2 . 6 )

or by dividing this equation by m we get

x + 2 £o)x + co 2x = 0  ( 2 . 7 )

where 2 £co -  c / m  and co2 -  k/m ( 2 . 8 )

The solution of eqn.(2.7) is,

x  = A exp(X. ,t )  + B exp(X 2 t )  ( 2 . 9 )

where = «  [ - £ ± ( £ 2 - l ) i ]  (2 . 1 0 ;

From eqn.(2.10) it can be seen that X1 and X2 vary depending on the value 

of £ , hence the solution in eqn.(2.9) changes its form according to the value 

of £.

If £ 2 < 1 then

x = exp(-£cot) (A cos copt + B sin cô t) ( 2 . 1 1 )

or x = C exp(-£cot) sin (cô  + 9) ( 2 . 1 2 )

where C = (A2 + B2)i ,0 = tan “1 A/B and cop = (l-^2)̂ .co

cop) is called the damped natural frequency.

If £ 2 >  1, the system does not oscillate because the effect of

damping overcomes the oscillation.

When % 2 =  1 a limiting value of damping is achieved ,the system loses its

vibratory characteristics and this is called critical damping.  If ccr denotes the

damping coefficient at critical damping ,from eqn. (2 .8 )

ccr == 2cm  ( 2 . 1 3 )

% can be defined in terms of ccr as

£ = c/ccr ( 2 . 1 4 )

£ is the ratio of the coefficient of viscous damping to its value at critical 

damping and is called the damping ratio. Constants A,B,C and 0 in

eqns.(2.11) and (2.12) are determined from the initial conditions. If x =  x Q =



The above equation is the general solution to the differential equation shown 

in eqn. (2.7)

2 . 2 . 3  R e s p o n s e  t o  g e n e r a l  s e i s m i c  l o a d i n g

The response of a single degree of freedom damped system subjected to

arbitrary ground motion will now be considered. To compute the response,

ground motion is assumed to correspond to the sum of a series of impulsive

loads. An impulsive load is a load applied during a short duration of time.

The corresponding impulse is defined as the product of the force and the time

of its duration. The shaded area in Fig. 2— 4 denotes the impulse of the force

F (r) during the time interval dr  and is equal to F( r) .d r .  The effective

external force F(t) caused by arbitrary ground motion is

F( t ) = —nikg ( 2 . 1 6 )

The impulse acting on a body of mass m produces a change in velocity

which can be determined from Newton's second law of motion namely

m dx = F ( t )  . dr  ( 2 . 1 7 )

This means that during a time interval of dr  the velocity of the mass (dx)

changes by F (r) dr/m.  These provide the initial conditions to the solution of

eqn.(2.15) which are

x =  0 and x =  F (r) dr / m  at t  =  t

By substituting the initial velocity x 0 =  [F(r)//n] d r  =  — X g ( r ) d T  at time

t =  r  and t =  t— t  into eq.(2.15) we get

x ( t )  = - [ Xg(T)  d r/o )D] exp [-£o)( t  - t ) }  s i n  a)D( t - r , )  ( 2 . 1 8 )

The above equation represents the vibration of a system when it is subjected

to an impulsive load of F(r)  =  -  mxg(r).  If this impulse F(t) is applied to

the system continously , the response of the system is obtained by summing

eqn.(2.18) with respect to time r . Thus

x ( £) = f t  x g ( T )  exp [-£(*)( t - r ) ]  s i n  coD( t - r )  dr ( 2 . 1 9 )

^  o

This equation is called the Duhamel's integral.
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Since in most buildings £ < <  1 , (1 -  £2) « 1 and coD « co, hence eqn. (2.19) 

can be approximated as 

( £ ) = 2. f t
— J Xg(T) exp [ -£co(t -r  ) ] s i n  a)(£-r)  dr ( 2 . 20 )

Alternatively this equation may also be written as 
x ( t )  = 1  f £— — F(r) exp[-£co(t-t) ] sin co(t-r) dr (2 . 2 1 )mcoD J o

2 . 2 . 4  Numer i ca l  e v a l u a t  i on o f  t h e  Duhamel i n t e g r a l

In the case of seismic motion the applied loading function is known only

from observations made and the response must be evaluated by using a

numerical method. For this purpose the trigonometric identity sin co (t— r) =

sin cot cos cor — cos od sin cot is made use of in eq. (1.3.6) .Assuming zero

initial conditions eq.(1.3.6) can be rewritten as

x ( t )  = (AD( t )  s i n  coDt -  BD( t )  cos coDt } exp [-Scot] .
m cop

where Ap(t) = j F(r) e cos cor dr ( 2 . 2 3 )
J o

and Bj}(t) = f F(r) e “£w£ sin cor dr ( 2 . 2 4 )
J o

The calculation of Duhamel's integral requires the evaluation of A(t) and B(t) 

numerically, several numerical techniques including Simpson's rule and 

Trapezoidal rule may be used but to increase accuracy an exact method 

proposed by Paz( 2 a) > which includes only rounding off errors is used.

In using this exact method it is asumed that F(r) , the forcing function may 

be approximated by a segmentally linear function as shown in Fig. 2—5. To 

obtain a complete response history the integrals Aj ^t )  and Bj^t )  are expressed 

in an incremental form as given below

An(£) = ^D(£ i - l )  + \ l i F(T) e ^ t  cos cor dr  ( 2 . 2 5 )
J t . l - i
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*D<0  +J *F ( r )  e s i n  ut  dr ( 2 . 2 6 )
i - i

As shown in Fig. 2—5, F(r)  may be expressed as

F ( r ) =  F(tH  ,) + M f C r - t i - , )  U - ^ t < t i ( 2 2 y )

where AF,- =  F(t,-) -  F(f,-_ ,)

and A/j =  t\ -  t[-  ,

By substituting eqn.(2.27) in eqs.(2.25) and (2.26) the following integrals have 

to be evaluated,

f 1 i e^037 \e%0)7 coscopT d r -------------------------- (^tocoso^T + o ^ s in c ^ T )
J 1 i - i (£a>) 2 + o>d2

f t  i >£ COT

t . 1

e^037 s inoy^rdr -  —
t l - i  (to))2 + t*>D2

( £ ti>s i no)£)T -  o)j)Cosa)DT)

i - 1

( 2 . 2 8 )

( 2 . 2 9 )

r t .i T e $ ow s i no)j)T dr T -
t  o)_____  , • fa>p

o)) 2 + o>d:
2 + ‘ * 1  

(£w) 2 + c*>d2

( 2 . 3 0 )

r e ^ 057 coscoprdr
to)T -------- ---------

t . 1
(Jo)) 2 + a>D2 «M)2 + V ‘ i-1

(2.31)

where I \  and i ' 2 are the integrals indicated in eqns.(2.28) and (2.29) 

before their evaluation at their limits.In terms of these integrals Aj^tD  and 

b D (*i) may ^  calculated using

“  A D ( t / - i ) + [ F ( t j _  f ) -  t 2-_ t ^  1 J + ^  t j ^ 4  ( 2 - 3 2 )

A F,
F oC tf )  -  B j ) ( t l' _ 1)+ F ( t ]-_1) t / - i  ^  1 J ^ 2 + A 3 ( 2 - 3 3 )

A Fi
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Finally by substituting the values obtained from eqns. (2.32) and (2.33) into

eq.(1.4.1) the displacement at time t( is given as 

e -£oot .
“  — irTc^ 1 { i4D( t f) s i n  " BD(t i )  cos c0Dt i > ( 2 . 3 4 )

2 . 2 . 5  R e s p o n s e  t o  f o r c e  a t  mass l e v e l

When the structure is excited by a force at the level of the mass, the 

procedure used to perform the dynamic analysis is the same as described for 

the seismic excitation. In the case of the seismic input, the effective force on 

the structure F(t) (= —rrixg), was due to the acceleration at the base of the 

structure, in this case however, F(t) is an arbitrary loading function. To 

perform the analysis it is considered as an impulsive load applied during an 

infinitesimal time interval dr  as shown in Fig. 2—5. The response of the 

system is obtained by solving a Duhamel's integral. The procedure described in 

section (2.2.4) can be applied to solve the resulting duhamel's integral.

2 . 2 . 6  N o n l i n e a r  model

Considering Fig. 2—1, the equilibrium of the system at any time t(i) can be 

obtained by equating the forces shown in the free body diagram and is 

expressed as.

At a short time later

F j C t i + A t )  + FD( t i +At )  + Fs ( t i + A t )  = F ( t i + A t )  ( 2 . 3 6 )  

S u b t r a c t i n g  eqn. (2 .3 5 )  from eqn. (2 .3 6 )  r e s u l t s  in

Assuming the damping force to be a function of the velocity and the spring 

force to be a function of displacement and the inertial force propotional to the 

acceleration, each of the incremental forces in eqn. (2.37) can be expressed as

F l ( t j )  + FD( t i )  + Fs ( t  j )  = F ( t t ) ( 2 . 3 5 )

AF j  ~h AFj) -f- AFg — AF ( 2 . 3 7 )

AFj  = mAx 

AFj) = CjAk

( 2 . 3 8 )

( 2 . 3 9 )



AFS = k fAx ^ . 4 0 ;

where the incremental displacement Ax, the incremental velocity Ax and the 

incremental acceleration Ax are

Ax = x ( t j + A t )  - x ( t j )  ( 2 . 4 1 )

Ax = x ( t  j+At) - x ( t  j) ( 2 . 4 2 )

Ax = x ( t  f t A t )  - x ( t  j) ( 2 . 4 3 )

The coefficients and c2 are defined as the current value of the derivatives 

of the spring and damping forces with respect to displacement and velocity 

respectively.

-  (dF<
dx ( 2 . 4 4 )

and

[ g 22] « ■ * >

These two coefficients ki  and C( are represented as the slopes of the curves 

shown in Fig. 2— 6 .

Substituting eqns. (2.38)—(2.40) into eqn. (2.37), a convenient form of the 

incremental differential equation is obtained

mAx2* + c  }Ax j + k  = AF ( 2 . 4 6 )

In the above equation the coefficients c2 and are evaluated at time tj  and 

are assumed to remain constant during a time step At.

2 . 2 . 6 . 1  Numer i ca l  e v a l u a t  i on  o f  e q u a t i o n  o f  mo t i o n .

The step by step integration method used is one of the most effective 

integration techniques and the algorithm is simple to understand and program. 

The response is evaluated at successive increments of time At which are usually 

taken to be the same. At the beginning of each time interval, the 

displacements and velocity are evaluated from which the stiffness and damping 

coefficients (k and c) can be found. The displacement and velocity values at 

the end of one time step are used as the initial values for the next one.



The stiffness and damping coefficients are assumed to remain constant during 

any particular time step, thus the nonlinear behaviour of the system is 

approximated by a sequence of successively changing linear systems. To 

integrate eqn. (2.46) the linear acceleration method is used, where as the 

name suggests the acceleration is assumed to vary linearly within any particular 

time step. For the implementation of this method the stiffness and damping 

coefficients may include any nonlinearity i.e these coefficients do not 

necessarily have to be specified only as functions of displacement and velocity.

2 . 2 . 6 . 2  L i n e a r  a c c e l e r a t i o n  met hod

Consider Fig. 2— 7 where the variation of acceleration in any particular time 

step is shown. The acceleration at any time t may be expressed as

where Axj is given by eqn.(2.43). Integrating eqn.(2.47) twice with respect to 

time between the limits tj and t gives

E v a l u a t i n g  e q n s . (2 .4 8 )  and ( 2 .4 9 )  a t  t ime t = t f +  At  y i e l d s

where Atj and Akj are given by eqns. (2.41) and (2.42) respectively. From 

eqn. (2.50) the incremental acceleration is

At ( 2 . 4 7 )

2 At
( 2 . 4 8 )

and

1 1  Ax *
y . ( t )  = k ( t - t i ) +  £ x . j ( t - t  i) 2 + -g ( t - t  ^  3 ( 2 . 4 9 )

Ax j = x  jAt +  £ Ax jAt ( 2 . 5 0  a)

and

Axj- = k j At  + — x jAt 2 + — Ax f i t  2
2 1 6

( 2 . 5 0  b)

( 2 . 5 1 )

and s u b s t i t u t i n g  e q n . ( 2 .5 1 )  i n t o  eqn.  (2 .5 0 )  y i e l d s
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*. 3 _. At ■■
“  ~fcl " -*x i ~ ~2~ x  i ( 2 . 5 2 )

By substituting eqns.(2.51) and (2.52) into eqn.(2.46) the equation of motion 

can be rewritten as

m - -„Ax,-- x 2- 3 ' x j j f  c i A * r  2 x  f- x  2 J/-lc /lx 2- =AF ( 2 . 5 3 )
6 . 6 

LAt 2 i ‘ At

o r

TcfAxi -  AF - 6 2 .5 4 ;

where

*t" 1 6 ni 3c{ . .
Ef “  k > + A t 2+ At  ( 2 '55 )

and

AF = AF + m ^ x i + 3 x j  ] + c , - [  3 x  j- + x  j ] ( 2 . 5 6 )

From eqn.(2.54) the incremental displacement can be determined as

Ax; -  £  ( 2 . 5 7 )

Substituting this value into eqn.(2.41) the displacement at time is obtained

as

x 2- + 1  = Xj + Axj  ( 2 . 5 8 )

The incremental velocity Ai2 is obtained from eqn.(2.52) and the velocity at 

time is obtained from eqn.(2.42) as

x 2 + 1 = x j + Ax j ( 2 . 5 9 )

Finally the acceleration 1 at time is obtained directly from eqn.(2.36)

i.e

y i + 1  -  ̂  ( F ( t l + , )  - f d ( t i+1;  - Fs ( t i + ;  ( 2 . 6 0 )

After the displacement, velocity and acceleration have been determined at time 

t ( + , =  ti +  At , the outlined procedure is repeated at the next time step 

t ( + 2 =  +  At and so on until the desired final value of time. Using this

method two approximations have been made

1) The acceleration varies linearly within any time increment and



2) The stiffness and damping ratios remain constant within any time increment. 

To ensure that the errors produced by these two approximations are small the 

time increment At chosen should be sufficiently small.

Several suggestions have beeen made by different authors as to the choice of 

the time increment but for most cases a satisfactory value is obtained if the 

following criteria are taken into account.

1) The time increment used is smaller than one tenth of the natural period of 

the structure.

2) The time step should be small enough to take consideration of the changes 

of force with time.

3) The time step should be small enough to take consideration of any sudden 

variation in material properties such as a sudden change from linear elastic to 

plastic.

2 . 2 . 7  N o n l i n e a r  s t r u c t u r a l  b e h a v i o u r

When a structure is allowed to yield plastically, the force displacement 

curve is assumed to follow the pattern shown in fig.2—8 (a). It can be seen 

that initially the material behaves linearly elastic in tension, after further 

loading plastic yielding takes place. When the structure is unloaded, the 

behaviour is again elastic until further loading produces plastic yielding in 

compression. The structure may be subjected to cyclic loading and unloading in 

this manner and the energy dissipated during each cycle is propotional to the 

area under the curve, such a loop is known as a hysterisis loop. This 

behaviour may be simplified by assuming a definite yield point beyond which 

the material displacement increases under the influence of a constant force. 

Such behaviour is known as elastic—perfect ly plastic or elastoplastic behaviour 

and the forces at which yielding begins are known as the yield forces in 

tension and in compression (fig. 2 —8 (b)).

For a single degree of freedom system the yield forces can be determined



easily. The initial conditions are assumed to be zero (x 0 =  0, x Q =  0) for

the unloaded structure. When the structure is initially loaded it follows an

elastic behaviour along line E 0. The displacements xt , at which plastic 

behaviour in tension is initiated and xc at which the plastic behaviour in 

compression is initiated may be calculated as follows.

x t = Fy t / k  ( 2 . 6 1 )

and

xc = Fy c / k  ( 2 . 6 2 )

where Fyt  and Fyc are the respective values of the forces which produce

yielding in tension and compression and k is the stiffness of the structure. The

structure will follow an elastic behaviour i.e it will remain on curve E Q as 

long as

xc < x < x £ ( 2 . 6 3 )

When the displacement x exceeds xt then the structure behaves plastically 

along curve T  (fig. 2— 8 (b)) as long as the velocity x >  0. When x <  0 the 

structure returns to behave elastically along a curve such as £ '1. The new 

yielding limits are

x £ -  xmax ( 2 . 6 4 )

and xc  = xraax ~ y t  ~ Fyc^ / ^

where xmax is the maximum displacement that occurs when x =  0

On the same basis if x decreases to xc the structure will behave plastically

in compression along curve C as long as the velocity x <  0. Elastic behaviour

will be restored when when the velocity x >  0 and the new yielding limits 

are given by

xe = x min ( 2 . 6 6 )

and x £ = x min y t  ~ Fyc^ / ^  ( 2 . 6 7 )

where xmin is the minimum displacement that occurs when x =  0. The 

condition specified in eqn. (2.63) is valid for elastic behaviour along any elastic 

curve such as E 0, E^,E2 etc. as shown in fig 2—8 (b). To determine the



acceleration at the end of each cycle, the spring force F$  is initially estimated 

as follows

FS = Fy t  ~ (x t - x > - k ( 2 . 6 8 )

in  th e  e l a s t i c  phase  and

FS -  Fy t  ( 2 . 6 9 )

in  th e  p l a s t i c  phase  in  t e n s i o n  and

FS = Fy c  ( 2 . 7 0 )

i n  t h e  p l a s t i c  phase  in  com pres s ion .

Having determined the spring force and acceleration at the end of each 

cycle, the response of a structure can be determined using the procedure 

outlined in the previous section.

2 . 2 . 7 . 1  A l g o r i t h m  f o r  s t e p  b y  s t e p  i n t e g r a t  i on  p r o c e d u r e  

For a particular time increment At, the following steps are performed

1) Initial displacement and velocity values x(t() and x( t^  are read 

either from values at the end of the preceeding increment or as 

initial conditions of the problem.

2) Using these values and the specified non linear properties of the 

structure the damping and stiffness coefficients and forces are 

evaluated from

3) The initial acceleration is evaluated from eqn.(2.60)

4 ) The incremental load,stiffness and displacement values are 

evaluated using eqns.(2.55),(2.56) and (2.57) respectively.

5) The incremental velocity value is calculated using eqn.(2.52).

6 ) Finally the velocity and displacement at the end of the time step 

are obtained from eqns.(2.58) and (2.59)

The evaluations for the particular time step in consideration are now completed



and the values obtained from step (6 ) are used as initial values for the next 

time increment. The whole procedure is repeated until the complete response 

of the structure until the desired time is obtained.

2 . 3  DYNAMIC ANALYSIS OF MULTISTOREY SHEAR BUILDINGS

A shear building may be defined as a structure in which there is no 

rotation of a horizontal section at the level of the floors. The assumptions 

made are

1) The t o t a l  mass o f  th e  s t r u c t u r e  i s  lumped a t  t h e  f l o o r  

1 eve 1 s .

2) The beams a t  th e  f l o o r  l e v e l s  a r e  i n f i n i t e l y  r i g i d  com pared 

to  th e  columns.

3) The d e f o r m a t i o n  o f  t h e  s t r u c t u r e  i s  independen t  o f  t h e  a x i a l  

f o r c e s  i n  t h e  columns.

Fig. 2— 9 shows the layout of a shear building. The structure can have. several 

bays each of the same configuration and constructed with the same material.

2 . 3 . 1  Fr e e  v i b r a t i o n  o f  a  s h e a r  b u i l d i n s

Considering the shear frame shown in Fig. 2—10, it is clear that n 

independent coordinates (x^ .x^) are required to define the configuration of the 

structure, i.e the structure can be assumed to have n degress of freedom. The 

stiffness method is used to develop the equations of motion. At a particular 

instant of time if the displacements at the various storeys are x ,x ,..xn 

respectively, then the equations of motions for the various masses are

Mx, + /c i ,x  .j + k , 2x , + --------+ k , nXn -  0

fix 2 + k 2^xy + k 22x 2 + . . . .  + k 2rpin = 0

( 2 . 7 1 )



In matrix from these equations can be expressed as 

M'x. + Kx -  0 

where the mass matrix is defined as

M, 0

( 2 . 7 2 )

n
s y m m e t r i c

0 0 0 0
0 0 0 0
W3 0 0 0

0 0C 0
nn.

and the stiffness matrix K is defined as

K =

k n k 1 2 ' . k 1 n
/C2 1 k 2 2 ■ • k 2 n
k 3 l k 31 ■ ■ k 3TX

k n 2 • • knn

and the dispalcement and acceleration vectors are

x i ’  X 1
X2 * 2

x  = X3 X = X

.  xn . .  xn .

Equation (2.72) is the equation of motion for the free vibration of an 

undamped multi degree of freedom system. Assuming that the free vibration 

motion is simple harmonic the solution takes the form

Xj = a j s in(o>t+a)  i= l . . n  ( 2 . 7 3 )

or in matrix notation

x = a s i n ( o i t  -ct) ( 2 . 7 4 )

where is the amplitude of motion of the coordinate. Substituting 

eqn.(2.74) into eqn.(2.72) gives

-o)2M a sin(u>t-ot)  + K a s i n( u>t - a ) = 0 ( 2 . 7 5 )

r e a r r a n g i n g  t h i s  e q u a t i o n  g i v e s

[ K - co2M ] a  -  0 ( 2 . 7 6 )

Equation (2.76) is known as the frequency equation with respect to the circular



natural frequency «  and is essentially an eigenproblem. Nontrivial solutions for 

a exist only if the determinant

I K - c«)2M | -  0 ( 2 . 7 7 )

i.e

I M { AT1 .K - o)2/  ) \  -  0 ( 2 . 7 8 )

where /  is an n x n unit matrix. Since the product of two matrices is equal

to the product of the determinants of the two matrices. Hence eqn. (2.78) can

be written as

I M | |  AT1 .K - w2/  | - 0  ( 2 . 7 9 )

Since M  is a diagonal matrix whose elements are all non zero, M  is non 

singular; hence for eqn. (2.79) to be valid

| AT1 .K - o>2/  | - 0  ( 2 . 8 0 )

{ M ~ ' . K }  is known as the dynamic matrix,  if nontrivial solutions exist for 

eqn.(2.76) then the values of o) 2 are the eigenvalues of the dynamic matrix 

M ~ 1 -JRT, and the corresponding amplitude vectors a satisfying eqn.(2.76) are 

the eigenvectors of the dynamic matrix.

For a structure with n degrees of freedom, the dynamic matrix is of order 

n x n, and hence it will have n eigenvalues and n eigenvectors. The n 

eigenvalues will be

where

w? , o)l , ...........   w2

cof < <S)\ .......... <

and t h e  c o r r e s p o n d i n g  e i g e n v e c t o r s  a r e  

a i> a 2 > ............  an

where

a  = [ a 1 a.
1 i
2 1

■in 
2 n e t c ,

ln 1 lnn

Each of the n values of o) corresponds to a natural frequency (oV 2 tt), the



smallest natural frequency o)1 / 2 ir, is called the first natural frequency, similarly 

c*)2/ 2 ir the second natural frequency and so on. Each of the amplitude vectors 

a is known as the normal mode shape, a y is the first mode shape, a 2 is the 

second mode shape etc. The solution to the above eigenproblem is achieved by 

using the Generalised Jacobi method which is briefly described in Appendix— 1. 

A more detailed explanation is given by Bathed1).

2 . 3 . 1 . 1  O r t h o g o n a l i  t v  p r o p e r t y  o f  t h e  modes

Mode shape vectors possess an orthogonality property which can be

demonstrated as follows. Considering the i^ 1 mode shape vector eqn.(2.76) can

be written as

K . a t - to I . M. a. i -  0 i . e  K . a f -  cof.M.a; ( 2 . 8 1 )

S i m i l a r l y  f o r  t h e  j mode

K . a j  -  ( 2 . 8 2 )

T r a n s p o s i n g  b o t h  s i d e s  o f  e q n . ( 2 . 8 1 )  g i v e s

a ? . K T -  a)2 . a T . Mr  ( 2 . 8 3 )

Since the structural mass and stiffness matrices are symmetrical the above 

equation can be written as

a ? . K  *  ( 2 . 8 4 )

Pos t  m u l t i p l y i n g  each  s i d e  by a j  g j v e s

a J . K , a j  -  u j . a J . M . a j  ( 2 . 8 5 )

Pre  m u l t i p l y i n g  each  s i d e  o f  e q n . ( 2 . 8 2 )  by a ^  g i v e s

aT. K-aj  -  a ) j . a f  W.aj (2.86)

S u b t r a c t i n g  e q n . ( 2 . 8 6 )  from e q n . ( 2 . 8 1 )

(o)f - ct j )  . a J . M . a j  = 0 ( 2 . 8 7 )

For two different modes, ^ 2  ^ ^ 2  Therefore from eqn.(2.87)

a ^ . M. a j  -  0 ( 2 . 8 8 )

which means that the normal modes are orthogonal to one another with 

respect to the mass matrix. Substituting eqn.(2.88) into eqn.(2.85) gives



a Z . K . a j  -  0 ( 2 . 8 9 )

This means that the normal modes are also orthogonal with respect to the 

stiffness matrix. This important property of orthogonality can be used to obtain 

the elastic response of multi degree of freedom systems subjected to external 

forces, by using the mode superposition technique. It is also used in the 

evaluation of the structural damping matrix which is described in 

section (2 .3.2 .1 ).

2 . 3 . 2  F o r c e d  v i b r a t i o n  o f  s h e a r  b u i l d i n g s

In the previous section the free vibration of multi degree of freedom

systems was described. In the determination of the natural frequencies the 

effect of structural damping was ignored as its effect is negligible. To obtain 

the response of structural systems to forced motion it is necessary to take 

account of the damping in the structure. The equation of motion for a 

damped structure is

Mx + Ck + Kx = F ( t )  ( 2 . 9 0 )

where C  is the damping matrix, F(t) is the applied forcing function which 

varies with time and the other symbols are as defined previously.

2 . 3 . 2 . 1  D e t e r m i n a t i o n  o f  t h e  damni nz  m a t r i x

The damping coefficient cn for any node i is expressed as

Cr  2 . £ i .o>i .Mi ( 2 . 9 1 )

where the damping ratio in the ^  na*ura  ̂ m°de vibration.

The orthogonality property of the mode shape vectors with respect to the mass 

and stiffness matrices can be assumed to apply equally to the damping matrix, 

therefore the relationship can be expressed as

a T . C . a j  -  0 ( 2 . 9 2 )

Having established the above relationship, for mode i, eqn.(2.90) can be 

written as



Wj-Xj* + C ix i + K p i f  = F f ( t )  ( 2 . 9 3 )

o r  a l t e r n a t i v e l y  as

x j  + 2 .£ j . o i j . k j  + o ) \ . x  i = F i ( t ) / M  j ( 2 . 9 4 )

where

Mj = a^.M.a,- C ,• -  a ^ . C . a f  = 2 . £ i .<J>i .Mi

Kf -  a T . K . a f  F{ ( t )  = a ? . F ( t )  ( 2 . 9 5 )

The damping matrix can now be evaluated as it terms of the damping 

coefficients. The procedure which is described in detail by Craig(15) can be 

briefly explained as follows.

Considering the complete diagonal matrix of damping coefficients, which can 

be obtained by pre and post— multiplying the damping matrix by the mode 

shape matrix, the following relationship may be established.

0 0 0
0 2H20)2M2 0$tflII 0 0 2 Z 3co3M3 .

0 0 0 • 2% no>nMn _

( 2 . 9 6 )

Therefore, for any specified set of modal damping ratios {£}, the matrix A  can 

be evaluated from the above equation. The damping matrix may now be 

evaluated by performing the following matrix operation

C = [aT] ' 1 . A . [ a ] - 1 ( 2 . 9 7 )

Since the inversion of the mode shape matrix is a large computational job, 

the orthogonality property of the mode shape vector relative to the mass 

matrix is made use of in determination of the damping matrix as shown 

below. The generalised mass matrix is obtained by pre and postmultiplying the 

mass matrix by the complete mode shape matrix

Mg  -  a T .M.a ( 2 . 9 8 )

P r e m u l t i p l y i n g  t h i s  by th e  i n v e r s e  o f  t h e  g e n e r a l i s e d  mass m a t r i x  

/  = Mg1 .Mg = [Mg1 . a T .M]a -  a " 1 .a  ( 2 . 9 9 )



T h e r e f o r e  t h e  i n v e r s e  o f  th e  mode shape m a t r i x  i s

a - 1  -  Mg1 . a T .M ( 2 . 1 0 0 )

S u b s i t u t i n g  e q n . ( 2 .100 )  i n t o  e q n . ( 2 . 9 7 )

C -  [M.a.Mg - 1 ] .A.[M~g ' . a ^ . M]  ( 2 . 1 0 1 )

For any mode i since the product of the central diagonal

matrices is

-  f f  -  2 £ i o)i / Mi ( 2 . 1 0 2 )

Hence e q n . ( 2 .1 0 1 )  can  be w r i t t e n  as

C -  [M.a.  f . a^ .M ]  ( 2 . 1 0 3 )

where f  i s  t h e  d i a g o n a l  m a t r i x  o f  f 2*

The total damping matrix is expressed as a summation of contribution of each 

of the modes where the damping coefficient for each mode is

Ci  -  [ N . a i A f . a ^ . M ]  ( 2 . 1 0 4 )

T h e r e f o r e  t h e  t o t a l  damping m a t r i x  C i s  

n n
C -  M.[ IEia , . r , . a , r  ].M ( 2 . 1 0 5 )

S u b s t i t u t i n g  f o r  f rom eqn.  (2 .102 )

C ~ M [  / £ .  ' a >'-a i T 1  M ( 2 . 1 0 6 )

In the above equation the contribution of each mode is propotional to the

appropriate modal ratio, thus any undamped mode will not contribute anything 

to the damping matrix. The damping matrix will be used in the solution of 

the equation of motion using the direct integration technique.

2 . 3 . 2 . 2  D i r e c t  i n t e g r a t i o n  o f  t h e  e q u a t i o n  o f  mo t i o n

The method presented in this section for the solution of the equation of 

motion of multi degree of freedom systems subjected to external forces is 

basically an extension of numerical technique presented in section 2 .2 .6 . 1  for 

the nonlinear response of single degree of freedom systems. A modification to



the linear acceleration method which has been incorporated known as the 

Wilson— 6 method^40) ensures numerical stability to the solution of the 

equation of motion irrespective of the magnitude of the time step chosen. The 

direct integration technique is used for both the linear and nonlinear response 

of multi degree of freedom systems. For linear systems the computational 

procedure is reduced significantly since it is not necessary to modify structural 

properties at each time step.

For non linear systems, a comparison is made at the end of each time step 

between the calculated displacement at each node and the displacement 

required to induce nonlinear material behaviour. A brief description of the 

Wilson— 6 method and the algorithm for the direct integration technique is 

presented. For non linear behaviour the damping and stiffness coefficients are 

evaluated in a similar manner described previously.

The incremental equation of motion for a multi degree of freedom system is 

M x j + CAk f t  K jAx } = AFj- ( 2 . 1 0 7 )

where

M = Mass mat r ix.  C = Damping m a t r i x

K = S t i f f n e s s  m a t r i x  F ( t )  = Fo r ce  v e c t o r

and the other symbols are as defined previously.

2 . 3 . 2 . 2 . 1  The W i l s o n - 6  Method

The basic assumption of the W ilson- 0  method is that the acceleration 

varies linearly over the time interval from t to t +  6At where 6 ^ 1.0. It

has been shown by Wilson that for unconditional numerical stability 6 should 

be ^ 1.37. Fig.(2—11) shows the linear variation of acceleration for the 

extended time step.

The procedure is described by rewriting the basic relationships of the linear 

acceleration method described previously. By analogy with eqns.(2.49) and 

(2.50).The incremental velocity at any time t may be expressed as



where

t  = 6 At ( 2 . 110 )

The circumflex refers to the increment associated with the extended time step. 

Repeating the mathematical procedures described earlier for the linear 

acceleration method, the incremental acceleration for the extended time step r 

is

From the next equation the incremental acceleration for the normal time step 

At is obtained by linear interpolation

The incremental velocity Axj and the incremental displacement Ax( are 

obtained by substituting the above value in eqns.(2.108) and (2.109) but written 

for the normal time step At. From these results, the initial acceleration for the 

next time step is obtained from the equation of motion at time t +  At; thus

where and K ^+ 1  represent the damping and stiffness coefficients

evaluated at the end of the time step t i + 1 — t +  At Once the displacement, 

velocity and acceleration vectors have been evaluated at the incremented time 

step, the outlined procedure can be repeated until any desired final time.

2 . 3 . 3  A l g o r i t h m  f o r  t h e  d i r e c t  i n t e e r a t i o n  t e c h n i q u e

The algorithm presented herein was used to solve the equations of motion of

shear buildings subjected to external forces and was incorporated in the

(2 . 111 )

(2 . 112)

■*i+ 1  ^ Fi  + i ~ ^  i-f-i•x  i+i ( 2 . 1 1 3 )



computer programs.

2 . 3 . 3 . 1  L i n e a r  a n a l y s i s

For a particular extended time increment t— 8At, the following steps are 

performed

1) Read the previously assembled structural stiffness matrix K,  mass 

matrix M  damping matrix C and read the excitation force vector.

2) Initial displacement —and velocity values x(ti) and x(t^) are 

obtained either from values at the end of the previous time 

increment or as initial conditions of the problem.

3) The initial acceleration is evaluated from 

Mxo =  F Q — C x Q — K x 0

4)* The incremental load and stiffness values are evaluated using 

eqns.(2.55) and (2.56).

5) Using these values calculate the incremental displacement and 

velocity values using eqns.(2.108) and (2.109).

6 ) Calculate the incremental acceleration for both the extended and 

normal time steps ( 2ix( and Ax* ) using eqns.(2 .1 1 1 ) and (2 .1 1 2 ).

7) Evaluate the incremental velocity Axi and displacement Ax[ for

the normal time step by substituting the value of into

eqns.(2.108) and (2.109), note however that these two equations

have to be modified appropriately for the normal time step At.

8 )* Finally the velocity and displacement at the end of the time 

step are obtained from eqns.(2.58) and (2.59)

* — Note that the variables in these equations pertain to single degree of

freedom systems. For this analysis they should be replaced by multi

dimensional vectors of the same quantities of size n, where n is the number of 

degrees of freedom of the structure.

The calculations for the particular time step in consideration is completed and



the values obtained from step (8 ) are used as initial values for the next time 

increment. The whole procedure is repeated until the complete response of the 

structure until the desired time is obtained.

2 . 3 . 3 . 2  Non I i n e a r  ana I v s  i s

For the nonlinear analysis since the stiffness and damping properties of the 

structure are assumed to be changing with time, step (1 ) above is modified as 

follows:

1) Using the nonlinear properties of the structure assemble the 

stiffness matrix K  and the damping matrix C. Read the excitation 

force vector

The rest of the procedure is as described for the linear analysis.

2 . 4  NUMERICAL EXAMPLES USING THE COMPUTER PROGRAMS

Computer programs were developed for the dynamic analysis of single and 

multi degree of freedom systems using the theory presented in this chapter. 

Four programs were written, two for the linear and nonlinear analysis of single 

degree of freedom systems and the other two for similar analysis of multi 

degree of freedom systems. In each of these programs the applied force to the 

structure could be input either as accelerations at the base of the structure or 

as forces at the storey levels.

The linear response of single degree of freedom systems was obtained by 

evaluating the Duhamel's integral at the given time intervals. The direct 

integration technique using the linear acceleration method was incorporated in 

the other programs to obtain the response. The algorithms used have been 

described in the previous sections. The programs were written to enable data 

to be input in any consistent system of units.

Two typical structures were analysed, the first one being a single storey 

shear frame, constructed of steel and carrying a flat concrete slab which was



rigidly attached to it at the roof level (Fig. 2—12). The structure was 

intentionally designed to be flexible thus enabling it to behave nonlinearly 

when subjected to large forces. The second structure was a three storey shear 

building (Fig. 2—13) which was designed to withstand relatively large forces. 

Both of these structures were subjected to the digitised accelerogram input of 

the Adak, Alaska earthquake of 1st May 1971 (See Appendix 2). The 

earthquake had a maximum intensity of approximately 0.06g in terms of 

acceleration. This earthquake was not a particularly strong one, it lasted for 20 

seconds and large ground accelerations were existant even in its final seconds. 

This in effect would cause the analysed structures to undergo large 

displacements for almost its entire duration. To obtain nonlinear behaviour in 

both these structures they were subjected to three times the magnitude of the 

digitised accelerogram.

2 . 4 . 1  S t r u c t u r a l  d e t a i l s  and r e s u l t s

The diagrams included at the end of the chapter show the configurations 

of the two structures analysed. The properties of the steel members were 

obtained from the Structural steel handbook( 3 5). The concrete slabs were 

assumed to have a density of 2400 kg/m 3. The results shown in graphical form 

are the comparison of displacements obtained using the linear and nonlinear 

analyses at each of the floor levels. For the three storey shear building the 

the natural frequencies and mode shapes calculated using the Jacobi method 

mentioned earlier are shown in a diagramatic form.

2 . 5  CONCLUSIONS

The concept of using two dimensional mathematical models to represent 

single or multistorey skeletal frames is a valid one provided that the behaviour 

of such frames is essentially two dimensional. The structures which were 

analysed using the computer programs were chosen to be symmetrical in their



plan view and the mass of the structures were effectively lumped at the floor 

levels. This in effect cancelled the effect of torsion in the structures and 

reduced the number of degrees of freedom.

From the results obtained using the computer programs the following points 

can be deduced.

1) Linear behaviour of structures is only valid when they are 

subjected to relatively small forces produced by minor earthquakes.

2) By using a nonlinear model the increase in displacements which 

will be encountered can be accounted for in the design procedure.

3) Comparison of the two curves in Fig. 2—14 shows that once the 

columns in the structure have yielded , the behaviour follows the 

same trend but the displacements pattern varies. As mentioned 

previously the magnitude of the input base acceleration was just 

sufficient to produce nonliner behaviour, which explains the small 

magnitude of variation in displacements between the two curves.

4) Figs. 2—16 show that only the third storey displacement was 

large enough to induce nonlinear behaviour in the columns at that 

level. In Fig. 2—16(c) the fact that the two curves follow the same 

pattern indicates that the only the first mode is dominant in 

obtaining the response. Contribution of the higher modes would 

result in a shift between the two curves.
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Fig. 2—12(a) Elevation of tingle

storey shear frame.

Fig. 2 - 12(b) Plan view of the building
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Fig. 2 -  13(b) Plan view of the building
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CHAPTER 3 DYNAMIC ANALYSIS OF THREE DIMENSIONAL FRAMES

3.1 INT RODUCTIO N

In the previous chapter structures were analysed using two-  dimensional 

mathematical models. Such analysis produces sufficiently accurate results 

provided the structural action is predominantly two dimensional and is 

applicable to structures which are symmetrical in plan and in .which 

torsional behaviour is negligible.

In practice, however, the behaviour of most structural frameworks is 

essentially three dimensional and the structural analysis should be carried out 

using a three dimensional mathematical model. This chapter is concerned 

with such dynamic analysis of rigidly jointed skeletal frameworks. As in the 

previous chapters the stiffness method is used to analyse the dynamical 

behaviour. The 12 x 12 element stiffness and consistent mass matrices are 

used to assemble the overall stiffness and mass matrices.

Allowing all the degree of freedoms for each element leads to very large 

global stiffness and mass matrices even for a medium sized structure. The 

effort and cost involved in solving the resulting eigenproblem is high. To 

overcome this problem the size of these matrices is reduced using a 

technique known as Dynamic Condensation. The dynamic analysis of a 

typical skeletal framework using the full sized and condensed matrices is 

presented.

3.2 ELEMENT STIFFNESS AND MASS MATRICES

Pig_ 3 — 1 shows a beam element of a three dimensional frame with its 

12 degrees of freedom numbered consequently. The single arrow is used to 

indicate the translation components and the double arrow is used to indicate 

the rotational components of displacement. The notation of member axes



which will be used in the rest of the chapter is also shown.

* The element stiffness matrix shown below for a uniform prismatic beam 

element of a three dimensional frame is assembled by superpositioning the

axial, flexural and torsional stiffness matrices.

EA 
L 0  0  0 0 0

-EA
L 0  0 0 0 0

^ 0  0 0
6EIZ
~ u 0

- i m z o
0 0

6E1 z  
L 3

l^ L y  o - 6 E l y
"77 0 0 o - i g b 0

-S E ly
T 5" 0
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L 0 0

4
la 0 0 0 L 0

2EI y  
I 0

u e i 7
L 0 - « ! ■  o 0 0 2E1Z
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1 2 E U
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0
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0

0

- 6 E l 7
“77

sym m etric
12EIy

L*y 0

CJ
L

6 E /y

0

0

0

oLd
4E1 z

L

The consistent mass matrix shown below for a uniform beam element is 

assembled in a similar manner to the element stiffness matrix taking account

1  0 0 0 0 0  j  0

p A L

3
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3.3 COORDINATE TRANSFORMATION

The stiffness and mass matrices shown above are related to the local 

coordinate system. The x— axis is defined as coinciding with the centroidal 

line of the member. The local coordinate system may be different for

different members. When a local coordinate system is used, the nodal

degrees of freedom will also be taken in a convenient manner. In such a

case before the element equations can be assembled, it is necessary to

transform the element equations derived in local coordinates systems so that 

all the elemental equations are referred to a common global coordinate

system. Fig. 3— 2(a) shows the two coordinate systems for an inclined 

member, the member axes are shown in lower case letters and the global 

axes are shown in capital letters, this will be the representation used in the 

rest of the chapter.

Using the stiffness method the element stiffness equations in a local 

coordinate system can be expressed in the standard form as

f e  = ke - 5e (3-1)

where f e is the force vector, ke is the stiffness matrix and 8e is the vector

of nodal displacements of element e. Lower case letters and capital letters 

are used to represent the characterestics pertaining to the local and global 

coordinate systems respectively. Let a transformation matrix Te exist,

between the local and global coordinate systems such that

«e -  Te .Ae (3 ' 2 >

and f e -  Te .Fe 0 - 1 )

By substituting eqns. (3 -2 )  and (3 -3 )  into eqn. (3 -1 )  we obtain

Te.Fe - k e .Te .Ae <3 ' 4 >

Premultiplying this equation throughout by Te _ 1  yields

Fe -  Te - ' -ke .Te .Ae ( 3 ~5)

or
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Fe = Ke .Ae

w here Ke = Te " 1 ./ce .Te

( 3 - 6 )

( 3 - 7 )

Since Fq and Aq are directional quantities, will be the matrix of 

direction cosines relating to the two coordinate systems. In this case the 

transformation matrix will be orthogonal and hence

3.3.1 Transformation matrix

In the previous section the concept of coordinate transformation was 

introduced and in this section the assemblance of the transformation matrix 

will be described. This transformation matrix assembled here will 

correspond to the submatrices of the element and mass matrices. Figure 

3— 3 shows two reference systems shows two reference systems x,y,z  axes 

representing the local axes and X ,Y ,Z  axes representing the global system 

of coordinates. Also shown in the figure is a general vector A  which may 

represent any force or nodal displacement. To obtain the components of 

vector A  along one of the local axes x,y or z,  it is necessary to add the 

projections of X , Y  and Z components along that axis. For example, the 

component x of vector A  along the x coordinate is given by

in which cos x X  is the cosine of the angle between the x and X  axes and 

corresponding definitions for the other cosines. Similarly the y and z  

components of A  are

T  - i  =  t  T l e l e

and Ke  = TeT .k e .Te

( 3 - 8 )

( 3 - 9 )

x = X co s  xX + Y co s  xY + Z co s  xZ ( 3 -10a)

y  = X co s  yX + Y co s  yY + Z cos  yZ 

z  = X co s  zX + y  co s  zY  + Z c o s  zZ  

These equations can be written in the matrix form as

( 3 -10b)

( 3 -10c )
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X COS xX co s  xY cos xZ ' X '
y = COS yx co s  yY cos yz Y ( 3 - 1 1 )
z COS zX co s  zY cos zZ Z

o r  a l t e r n a t i v e l y  as

X
y =
z

n.Zx mx  ,lx
Zy my riy
Z z n?z nz

-  [Tm] ( 3 - 1 2 )

where lx, mx and nx are the direction cosines of the member 'x ' axis. 

The problem is to find the remaining elements of the transformation matrix 

as lx, mx, and nx define only the orientation of the member 'x ' axis (i.e 

the member 'y ' and 'z ' axes can be rotated about the member 'x ' axis to 

take up any orientation).It should be noted that the transformation matrix 

[Tm] corresponds to the first three degrees of freedom i.e the translations 

at end 'i ' of a member and the same matrix will apply for the three 

rotational degrees of freedom, therefore the complete transformation matrix 

for an element will be a 6  X 6  matrix.

The problem may be solved by using vector cross products. The vector 

cross product C  of two vectors and B  is defined as follows

J  = I  x a + J  y a + E za ( 3 - 1 3 )

B = 7  X5  + J  yjj + E Z£ ( 3 - 1 4 )

B = J  X B = 7 7 E
ya z a ( 3 - 1 5 )

*Z> yz> z b

w here B i s  th e  t h i r d  v e c to r  normal to  th e  p la n e  o f  ~A and B 

and i s  d i r e c te d  such th a t  S, B and B form a r ig h t  

hand system . The len g th  o f  B i s  | i ? | |B | | s i n  ~A.B\ 

s i n  ~A.B i s  th e  a b s o lu te  va lue  o f  th e  s in e  o f  th e  a n g le

betw een X and B .

7 , 7 , 1c a re  u n i t  v e c to r s  in  th e  d i r e c t i o n  o f  th e  ' x ' j ' y *  

and 'z* axes r e s p e c t iv e ly .
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xa>ya>z a a re  th e  m agnitudes o f  th e  components o f  th e

v e c to r  3  in  th e  d i r e c t i o n  o f  t he  ' x ' . ' y '  and ' z '  

axes r e s p e c t i v e l y .  

x 5 »yb»z £> a r e  t he  m agnitudes o f  th e  components o f  th e

v e c t o r  75 i n  t he  d i r e c t i o n  o f  the  ' x ' , ' y '  and ' z '  

axes r e s p e c t i v e l y .  

lx>mx> an<̂  nx are effectively the components in the directions of the 

global 'x '. 'y ' and 'z ' axes of a unit vector lying along the member 'x ' axis. 

If the member 'y ' axis, which is perpendicular to the member 'x ' axis, lies 

in the global 'x,y ', it must also be perpendicular to the global 'z ' axis. 

Hence the cross product of unit vectors lying along the global 'z ' and the 

member 'x ' axes must result in a vector Z  in the direction of the member 

'y ' axis.

Z = T 7 E
0 0 1
/ v m

A  A  A

= -7  mx + ~J l x  + TZ 0 ( 3 - 1 6 )

The length of Z  is |11 |11 1 7 (1 - ^ )  | as sin0  =  J ( l - c o s 2 0 ) 

ly,iriy, and riy are the components in the global axis system of a unit 

vector lying on the member 'y ' axis. Hence the direction cosines of the 

member 'y ' axis are found by scaling Z to make a unit vector.

Z / 7 ( l - n 2) = -T mx/ y ( l - n 2) + J  / ^ ( l - n 2) + 3c 0  - ( 3 - 1 7 )

l . e

ly -  -mx/y ( l -n 2) (3~18)

™y  = I x / J i 1 -* *)  P - 1 9 )

ny  -  0  W O )

A vector in the direction of the member 'z ' axis is generated by taking the 

cross product of unit vectors lying along the member 'x ' and y  axes 

Z -
‘x mx  nx
l y  rny  r t y

( 3 - 2 1 )



Using the same procedure as above the terms in the third row of the 

transformation matrix can also be expressed in terms of the direction 

cosines of the member V  axis as follows

Zz -  ( 3 - 2 2 )

™z = - mxnx / '/ ( 1 “nx) ( 3 - 2 3 )

nz  -  y ( l - n 2 )  ( 3 - 2 4 )

As all the direction cosines have now been expressed in terms of l x m x 

and nx the transformation matrix becomes

[TmJ

I.x ,ux
-uiy/D ly /D  0

~ Z yP"x/^ -mxnx / D D

x
( 3 - 2 5 )

where D =

The transformation matrix shown in Eqn. (3— 25) transforms the vectors 

of nodal forces , nodal masses and nodal displacements from the global 

axes system to the member axes system for an element 'i , j \  The inverse of 

the matrix shown below is used for the reverse transformation (i.e from the 

member to the global axes system)

[ T J - 1 =

zx ~mx / ^  " zxnx /^
mx ly /D  - mxnx/D

ru. 0 D

( 3 - 2 6 )

In the full form the transformation matrix will be

[ T i l ]  =

0
l x  mx

■Uly/D l y / D
•Zxnx /^  "mxny / D ^ 

0 0 0
0 0 0
0 0 0

"x
-my/D I x/D  
- l xny/D -mxny/D

x
( 3 - 2 7 )

[T jj]— 1 will be the inverse of the above matrix.



3.3.1.1 Rotation o f  element about member 'x' axis

In the previous section in obtaining the transformation matrix the 

member y axis was forced to lie in the global 'x,y' plane, however this 

restriction means that the member *y1 and 'z ' axes will not necessarily 

coincide with the principal axes (x*,y*) of the section. Fig. 3 - 2(b) 

illustrates the general case, where the member is viewed at from end *i1. 

The principal 'x ' axis and the member 'x ' axis are always coincident and /3 

is the anticlockwise rotation which will make the principal axes coincide 

with the member axes.

The transformation required of member end displacements and rotations 

form the member axes to the principal axis system is as follows

0
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■sinfi
0
0
0

0
sinf i
cos/3

0
0
0

0
0
0
0

cos(3
■sin(3

0
0
0
0
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cos|3

( 3 - 2 8 )

The reverse transformation is

0  0
cos/3 -sin(3 
s  i n/3 cos/3 

0 0
0 o
0 o

cos/3 -sin(3 
s  i n/3 cos(3

( 3 - 2 9 )

In Eqns. (3 -2 7 ) and (3-28) /3 the anticlockwise rotation required to make 

the principal and member axes to coincide has to be determined, this 

rotation cannot always be assessed by inspection and the following section 

describes a general method for its determination.

3.3.1.1.1 Third node method

This method as its name suggests involves using a third node which

would enable the principal be ,/ plane to be defined. This point -p- may lie



anywhere on the principal 'x,y' plane except on the principal *x’ axis. 

Consider the member shown in Fig. 3—3, the three points ' iVj '  and 'p ' 

define the principal 'x,y' plane.

The cross product of two independent vectors lying on the principal 'x ^ ' 

plane will result in a vector normal to that plane i.e in the direction of 

the principal 'z ' axis. The nodes *i* and 'j ' provide one vector and the 

nodes 'i ' and 'p ' provide the other. Hence

Z = J  1  n
( y j - y j )  ( z j - z i )

( x p - x i )  ( y p - y i )  ( Z p - Z j )

2 = 1  X* + J  Y* + TL 2*  

The l e n g t h  o f  t h i s  v e c t o r  i s

L = J ( X*2 + Y%2 + Z* 2 ;  

and t h e  d i r e c t i o n  cos i ne s  a re

1% = A / l

= Y*/L

4  -  Z%/L

(3 - 3 0 )

(3 - 3 1 )

(3 - 3 2 )

( 3 - 3 3 )

( 3 - 3 4 )

( 3 - 3 5 )

l*z ,m*z  and nz  are the components in the global axes system of a unit

vector lying on the principal 'z ' axis and Iz ,mz  and nz are the components

of a unit vector lying on the member 'z ' axis. The angle between these 

unit vectors (0) can be found using the cosine rule

0 = co s  - 1  ( ( a 2 + b 2 -  c 2) /  2 ab) ( 3 - 3 6 )

but  s i n c e  ' a 1 and *b * a re  un i t  v e c t o r s

(3 -  cos  ( (1 - c 2 ) / 2 )  (3-37)

w here

c 2 -  ( 1% - l z  ) 2 + ( m* - mz  ) 2 + ( n* - nz  ) 2 (3-38)

In the case where the angle between the member 'y ' axis and the principal

V  axis is less than 90° .then the value of (1 found would be wrong and

would have to be set equal to ( 360 - 0 ) ° -  This is due to the fact that



the vector cross product always produces a right hand system.

2 ‘ 4  ELEMENT STIFFNESS MATRIX IN THE GLOBAL AXES SYSTEM

An element stiffness matrix is normally divided into submatrices to take 

account of the contributions of the two ends of the elements as follows:

k j  j k

k J*

[J 
k j j

( 3 - 3 9 )

Now that the transformation matrices from the principal axes to the 

member axes ([T*j]“  1) and from the local axes to the global axes 

(ITij] 1) have been assembled each of the global submatrices may be 

assembled in the following manner. Using eqn. (3— 9)

Kj i  ~ [ T i j J - M T f j J - ’ - ^ . I T t j J . t T i j ]  (3 - 4 0 )

Kl j  -  I T i j ] - 1 - [ T ? j ] - ’ - * J * . ( T f j ] - [ T i j ]  (3 - 4 1 )

Kj i  -  [ T i j ] - M T ? j ] - ’ - i c / S ' . [ T f j ] . [ T i j ]  (3 - 4 2 )

and K j j  -  [ T i j l - ' . I T f j l - ’ - f e j J . t T f j l . I T i j ]  ( 3 - 4 3 )

Since k(j  and kji  are transposes of each other and since k(( and kj j  are 

the same with only the non diagonal terms negative of each other 

expanding eqns. (3 -40) and (3-41) will enable the whole element stiffness 

matrix to be assembled.

From the above equations it can be seen that for the evaluation of one 

global submatrix five, 6 x 6  matrices have to be multiplied. This involves a 

lot of multiplications and additions, and even though programming a 

computer to handle the task is straightforward, the time taken for the 

evaluation of global element stiffness matrix can become unacceptabily long 

as the number of elements increases. Significant savings in computer time 

and memory can be made by expanding the multiplication of the

transformation matrices
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where T, - I

T 2 = - (  m cos/3 + In sin/3 ) /D  

( m s i n P -  In cos(3 ) / DT =1 3

m

Ts = ( I cos/3 -  mn sin/3 ) / D  

Tg = - (  I sin/3 + mn cos/3 )/D

t 7 -

D sin/3 

D cos/3

The values in brackets are those used for the special case 

member lies parallel to the global 'z ' axis.

[ T f j J . I T j j ]  -  [ [ T i j l - M T * ) ] - ] - ’ 

which is the transpose of the matrix shown in eqn. (3—44).

In eqns. (3 -4 0 ) and (3 -41) the submatrices kl*  and k*j  can 

in terms of stiffness coefficient terms or ’k 1 terms as follows:

-

and

( 3 - 4  4)  
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( 3 - 4 5 )  

be written

k *  . K i j

0 0 0 0 0
0 k 2 0 0 0 K7
0 0 k 3 0 K8 0
0 0 0 0 0
0 0 k 9 0 K5 0
0 K , 0 0 0 0 Ks

-K, 0 0 0 0 0
1

0 - k 2 0 0 0 K7
0 0 - K3 0 K8 0

0 0 0 -K4 0 0

0 0 -K9 0 -Ks/ 2 0

0 - K 10 0 0 0 - K b/ 2

( 3 - 4 6 )

( 3 - 4 7 )
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where

*i -  EA/L
* 2  - 1 2 EI Z/ L 3

*3 -  1 2 E l y / L 3 *4 - GJ/L

k 5 -  4 El y /L
* 6  - 4 EI Z/ L

*7 -  6 EIZ/ L 2
* 8  - - 6 E l y / L 2

*9 -  - 6 E ly /L 2 * 1 0 - 6 EI Z/ L 2

The global stiffness submatrix can now be expressed in the expanded form, 

the first submatrix will be expanded in full, and the same expanded matrix 

may be used to assemble the other submatrices by making a few alterations

to some of the terms. This procedure may be adopted due to the similarity 

in the arrangement of terms in the submatrices.

" [Tij]-MT?j]-1-Mi.[Tfj].[Tij] -  

The submatrices A,B,C and D are shown below

( 3 - 4 8 )

(K,TJ + KJ* + K,T|) ( K J J 4  + K 2 T2 T5 + K J J J  (KJJ, + K 2 T 2 T 8 + K 3 T3 T9) 
(KJJ, + KjTjTj + K J J J  (KJI + KJ* + K 3 T1) (KJ 4 T 7 + K 2 T J 8  + K 3 T 6 T9) 
(KJJ, + K 2 T J 2 + K J J J  (K,T7 T4  + K 2 T J g + K J J J  (KJI + KJI + K J J

( k j j 3 + k j j j  (k J J 6 + K8 T 3 Ts) ( k j j 9 + K J J J
(KJ J 3 + K J J J  ( K J J 8 + K J J J  (K7T5 T9 + K J J J
(K7T 8 T 3 + K J J J  (kj 8 t 8 + k j j j  ( k j j 9 + K J J J

( K J J 3 + k, j j j  (K9 T 2 T 6 + k, j j j  (k9 t 2 t9 + K,0 T3 T8)
(K9 T J 3 + K, J J J  (KJJ, + K, J J J  ( K 9T s T 9 +  K i o T e T e>

( K J J 3 + K, J J J  (KJJ, + k, j j j  (K9 T9 T9 + k,0 t 9 t8)

(KJf + KJI + KJI) ( K J J 4 +  K 5T 2T 5 +  K 6T 3T 6> <K -.T , T 7 +  K ST 2T 9 + K J J J  
(KJJ, + K 5 TsT 2 + K J J J  (KJI + KJI + KJI) (K4 T4 T 7 + ICJJ 0 + K J J J  
(KJJ, + K J J 2 + KJJj) ( K J J 4 + K J J s  + K J J 6) (KJf + Kji + KJI) ^

(3-49

(3 - 5 0

(3 -51

(3 -5 2



Taking advantage of the symmetry of the global element stiffness matrix 

only the upper triangle needs to be evaluated. By using the expansion 

described above the arithmetic for the evaluation of one global element 

submatrix is reduced to to 180 multiplications and 5 4  additions as opposed 

to 3456 multiplications and 2880 additions which would be required if the 

matrix multiplication of the five 6 x 6  matrices was carried out.

3 . 5  ELEMENT NASS MATRIX IN THE GLOBAL AXES SYSTEM

The element mass matrix is also subdivided into submatrices in a similar 

fashion as the element stiffness matrix

ma = mh  mi j
mji  mjj

( 3 - 5 3 )

Using the same transformation matrices each of the global mass submatrices 

may be assembled in a similar manner as the global element stiffness

submatrices. Using eqn (3—9)

« h  -  I T i j l - M T f j l - ’ - W i . I T i j M T i j ]  ( 3 - 5 4 )

H i ]  -  [Tt j ] - > . [ T t j ] — -mfj .  [Tf j ]  . [Tj j ]  ( 3 - 5 5 )

M} i  -  [ T i j J - M T f j J - ' - m j l t T t j M T i j ]  ( 3 - 5 6 )

and Ni ]  ~ tTi j l " ' • ' raj * .  t Tf j l  • ITi j l  ( 3 - 5 7 )

In the case of the element mass matrix as well, wt/y and mji  are transposes

of each other, but unlike the element stiffness matrix where simple

mathematical relationships exist between the terms of ktf and k^j (see eqns.

3 - 4 6  and 3 -4 7 ), the terms of m,-,- and m*y vary more widely . This leads 

to more hand expansions of the transformation matrices so as to achieve

the same efficiency as for the element stiffness matrix case. The 

transformation matrices are the same shown in eqns. (3 -44) and (3 -45 ).

To enable eqns. (3 -54) and (3-55) to be expanded m/* and m j j  are 

expressed in terms of mass coefficients as follows.
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(3 - 5 8 )

mi *  -  PAL

where
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( 3 - 5 9 )

M. 13/35

M4  - J/3 A 

M 6 = L2/105 

M 8 = -11 L/210 

M10= 11 L/210

The global element submatrices Mfo and Mjj  will be expanded in full, using 

these two expanded matrices the upper triangle of the global element mass 

matrix can be a s s e m b l e d . w i l l  take the same form as (see eqns. 

( 3 -4 8 ) - ( 3 - 5 2 ) ) ,  but to enable to be assembled in terms of Mfc , 

each of the terms used for the assemblance of Af/t* will be assigned 

seperately as follows

F, = M^ T , F2 - m 2 t2 t2 CO = M 3 T3 T 3

F 4  = H J , T 4 = M 2 T 2 T 5 - M3T3T6
F 7 = M 1 T 1 T 7 *T1

CO

= m 2 t2 t8 f9 - M3T3T8
^ 1 0  = M/T-jTg Fn = MgTgTj F 1 2 - M7T2Tg
^13 Fl4 = M7T2T9 FlS - M 8 T 3 T8



9 7 6

F 1 6
= M T T1 ' 1 1 4 1 4 F 1 7 = m 2 t 5 t 5 F 1 8 = m 3 t 6 t 6

F 1 9 = M i T 4 T 7 F  2 0 = m 2 t 5 t 8 F  2 1 =
M 3 T 6 T 9

F  2 2 = m 7 t 5 t 3 F
1 2 3 = ^ 8 ^ 6 ^ 2 F  2 4 = m 7 t 5 t 6

F  2 5
= M8 T 6 T 5 Fr  2 6 -  M7T5 T9 F  2 7 =

M 8 T 6 T 8

F  2 8 = M i T , T 7 F
1 2 9 -  M2 T8 T8 F 3 0 = M 3 T 9 T 9

F 31 = M7T8 T3 F 3 2 = m8 t 9 t 2 Fr  3 3 = m7 t 8 t 6

F 3 4 — M T T " a 1 9 1 5 F 3 5 = M T T " 7 1 8 Z 9 F1 3 6 = M 8 T 9 T 8

F 3 7 = M T T “ 4 1 1 1 1 F 3 8 = m5 t 2 t 2 F 3 9 = M 6 T 3 F 3

Fr  4 0 M T Tm 4 * 1 1 4 F 4 1 = m5 t 2 t 5 F 4  2 =
M 6 T 3 T 6

Fr  4 3
= M T T1 *4 1 1 1 7 F 4 4 = m5 t 2 t 8 F 4  5 = ^ 6 F 3 ^ 9

Fr  4 6 = M T T" 4 * 4 I 4 F 4  7 = m5 t 5 t 5 F 4 8 = M 6 T 6 T 6

F 4  9 = M T T1 1 4 I  4 l  7 F  5 0 = m5 t 5 t 8 F 5 1 = M 6 T 6 T 9

F  5 2 - M T T" 4 1 7 7 F  5 3 -  m5 t 8 t 8 F 5 4 = M 6 T 9 T 9

Using these factors the global submatrices Af/f and Mjj can be assembled

easily, even though this involves more coding substantial savings in computer

time and memory are made. The complete assemblence of these submatrices 

is shown Fig. 3—4. Using these two submatrices the element mass matrix 

may be assembled in the usual fashion.

3.6 FREE VIBRATION ANALYSIS

The dynamic analysis of three dimensional frames is performed in a

manner which is entirely parallel to that described for two dimensional

shear buildings. The equation of motion may be expressed as

Mx + Kx = 0 ( 3 . 6 0 )

The solution to this equation is achieved by solving the eigenproblem

| K - w2M | = 0 ( 3 . 6 1 )

Jacobi's method which is described in Appendix 1 or other eigenvalue

solving routines could be used for solving this eigenproblem. Since six

degrees of freedom are allowed at every node, the resulting stiffness and 

mass matrices for a skeletal framework tend to be quite large. The solution 

to this problem requires the use of a computer with a large storage



memory and takes a fairly long time.

In such cases it is desirable to reduce the size of these matrices by

condensation techniques in order to make the solution of the eigenproblem 

more managable and economical.

3.6.1 Dynamic Condensation

The method of Dynamic Condensation is a recently proposed technique 

by Paz ( 2 9) , for the reduction of the eigenvalue problem in dynamic

analysis. The algorithm for this method begins by assigning an approximate 

value (e.g zero) to the first eigenvalue w2, applying dynamic condensation 

to the matrix i d , ]  =  m  —o) [̂A/] and then solving the reduced eigenvalue 

problem to determine the first and second eigenvalues a) 2 and o>|. Next, 

dynamic condensation is applied to the matrix [D 2] =  [AT]—«|[Af] to reduce 

the problem and calculate the second and third eigenvalues, o)| and cu|. 

The process continues in this manner, with one virtually exact eigenvalue 

and an approximation of the next order eigenvalue calculated at each step.

The Dynamic Condensation method does not require matrix inversion nor 

series expansion. To illustrate the method more clearly the following

eigenvalue problem is considered. A structural system for which it is desired

do reduce the secondary degrees of freedom {x̂ } and retain the primary 

degrees of freedom {xp}. In this case the equations of free motion may be 

written in the partioned form as

The substitution of {*} = {AT} sin Ujt in eqn. (3.62) results in the general

eigenvalue problem



0 7 8

L t^psi- w?iMpsi i^pp]~ ^it^ppij [
i x s )
Wp)

{0 }
{0 }

( 3 . 6 3 )

where o)f is the approximation of the i^ 1 eigenvalue which was calculated 

in the preceding step of the process. To start the process an approximation 

or a value of zero is taken for the first eigenvalue uf.

The following three steps are executed to calculate the i^ 1 eigenvalue o)? 

and the corresponding eigenvector (a}j as well as an approximation of the 

next eigenvalue 0%+,.

Step 1 The approximation of w*2 is introduced in eqn. (3.63). 

Gauss— Jordan elimination of the secondary coordinates {AT5} is then used to 

reduce eqn. (3.63) to

( 3 . 6 4 )

( 3 . 6 5 )

[ / ] - I T , ]  ‘ i x s ) {0 }
[0 ] [Hf] . {Xp) {0 }

The first equation in eqn. (3.64) can be written as 

[Xs ) -  [Tf ] {Xp )

Consequently, (X) can be expressed as

m  = [Tj j i x p )

where

[ Tj ] mil {X) ixs )
IXp)

( 3 . 6 6 )

( 3 . 6 7 )

Step 2 The reduced mass matrix [A?/] and the reduced stiffness matrix 

are calculated as

[ » i l  -  [T i ) T W  ( 3 ' 68)

and

[Kj] -  [Sj ]  + « ? • ! * / ]  0 - 6 9 )

where the transformation matrix [T,] is given by eqn. (3.67) and the 

reduced matrix [Dt*] is defined by eqn. (3.64).



Step 3 The reduced eigenvalue problem

[ [ K i ] -  w2 [HJ*] ]  {Xp)  = {0} ( 3 . 7 0 )

is solved to obtain an improved eigenvalue o)|2, its corresponding eigenvector

also an approximation for the next higher eigenvalue 1.

This three step process may be applied iteratively, i.e, the value of c*̂ 2 

obtained in step 3 may be used as an improved approximate value in step

1 to obtain a further improved value of cô2 in step 3. Once an eigenvalue

ix p)i for the reduced system is found, the itil modal shape of the complete 

structural system is determined as {X}( =  {Tt).{Xp \  using eqn.(3.66)

3 .7  FORCED VIBRATION ANALYSIS

The analysis is performed in a similar fashion as for two dimensional 

multi degree of freedom systems which was described in the previous 

chapter. The direct integration technique is a suitable method to solve the 

resulting differential equation especially when the forcing function varies with 

time as is the case for earthquake loading. It also has the advantage that it 

does not employ an iterative procedure to obtain the solution at any 

particular time step. Thus the solution to even large sets of equations can 

be obtained fairly rapidly using this technique.

3.8 DESCRIPTION OF THE COMPUTER PROGRAMS

Two computer programs were developed for the dynamic analysis of three 

dimensional framed structures using the theory presented in this chapter. In 

the first program the element structure and mass matrices are computed 

initially, from which the overall structural stiffness and mass matrices are 

evaluated. The matrix multiplication procedures which are required to 

perform the coordinate transformations required were input in the expanded 

form shown. The advantage in terms of reduction in the number of



arithmetical operations required has been mentioned before, this in effect 

enables the program to be run on powerful microcomputers. Since the 

concept of consistent mass matrices was made use of, the mass of all the 

elements of the structure were taken into account, thus making the 

mathematical model more realistic. Every node was allowed six degrees of 

freedom, hence the degree of fixity at any node could be altered to suit 

requirements. The nodes at the base of the structure could thus be 

considered to be pinned or fixed as required, additional restraints at other 

nodes could also be defined.

The assumption of rigid floor slabs in structures and the contributions of 

self loads and design superimposed loads at the floor levels are taken into 

account by including additional members linking the columns at the floor 

levels. These members are given very high values of modulii of elasticity 

and shear ( 1 0 6 times the values input for other structural elements), thus 

imparting very high axial, flexural and torsional rigidity in these members. 

The value given for the density of these members was such that it would 

take account of the mass of the floor slab and any additional superimposed 

load.

Figure 3 - 5  will illustrate the point more clearly. Assuming a 150 mm

concrete floor slab is rigidly fixed to a steel framework arranged on a 3 m

grid and carrying a 3 kN/m 2 superimposed load, the equivalent structural 

set up which would be incorporated into the computer program is as 

follows. The mass of the floor slab = 3300 kg ( Pconc. “  2400 kg/m3) 

and the total mass =  6050 kg.

Assuming two 100 x 200 mm members are used to simulate the floor slab,

the value of density given to these members is 35650 kg/m3.

Once the overall stiffness and mass have been computed and stored in a 

banded form, the natural frequencies are evaluated by solving the eigenvalue



problem by using a NAG subroutine( 1 <0 (F02BFF) which uses the 

Householder reduction method. The reason for not using Jacobi’s method

was due to the fact that the subroutine for the method from Bathe(1)

required the stiffness and mass matrices to be input in the full form. It was 

thought that for large eigenproblems storing the matrices in full form would

occupy large amounts of computer memory and that the Jacobi subroutine

would take a relatively long time to solve the eigenproblem as it is an 

iterative procedure.Once the eigenvalues and eigenvectors are computed, the 

seismic analysis is performed using the direct integration technique described 

in the previous chapter.

The second program basically incorporated the dynamic condensation 

technique to reduce the size of the eigenvalue problem to be solved. The 

structural stiffness and mass matrices are computed in the normal fashion. 

The degrees of freedom which are considered as primary values i.e those 

which are regarded as effectively defining the behaviour of the structure, 

are input. The reduced eigenvalue problem which results from the 

condensation procedure is solved using the Jacobi method ( Appendix 1 ).

3.9 NUMERICAL EXAMPLE

Dynamic analysis was performed on the four storey steel framed structure 

shown in Fig. 3 - 6  . The structure was assumed to be rigidly fixed at the 

base level. All the other nodes defining the structure were allowed six 

degrees of freedom. The structure was designed to carry typical loadings for 

offices (Fig. 3— 7). Cross bracing was provided at appropriate positions to 

counter wind loading (Fig.3-8) . The structure was intentionally chosen to 

have an L shape in plan, to enhance the torsional behaviour. The floors 

were assumed to be 1 0 0  mm concrete slabs which were rigidly connected to 

the steel framework, thus acting as integral parts of the structure. Free



vibration analysis of this strucuture was performed and for the forced 

vibration analysis a damping ratio of 5 percent was assumed. The structure 

was then subjected to the digitised accelerogram input of the Adak, Alaska 

earthquake of 1st May 1971, and the linear response was obtained.

In the second program the eigenvalue problem was reduced using the 

technique of Dynamic Condensation. The primary degrees of freedom which 

were chosen included two translation degrees of freedom for each node 

(relating to the global 'x ' and 'z ' directions), and one rotational degree of 

freedom ( relating to rotation about the global 'y ' direction ). Thus three 

degrees of freedom were allowed for every node instead of the normal six.

The results obtained for the evaluation of the first six natural frequencies 

is shown in table 3— 1

3.9.1 Discussion o f results

From the free vibration analysis performed the first four mode shapes are 

shown in Figs. 3—9 — 3—12 . The deformed shapes are shown in an

isometric view and to give a clear view of the nature of the modes a plan 

view of each mode is included. The first mode is a purely bending one 

about the weaker axis of the structure. The second mode is essentially a 

bending mode about the other axis but a slight effect of torsion is shown to 

manifest itself. The third mode is a purely torsional mode and the fourth 

mode was a combination of bending about both the axes and torsion of the 

structure . At higher frequencies, the effect of torsion plays a significant 

part in determining the behaviour of this structure, this is to be expected as 

the structure is unsymmetrical in plan about both the major axes.

From the forced vibration analysis carried out, graphs showing the 

average displacement for every storey in the global 'x ' and 'z ' directions 

are plotted (Figs. 3 -1 3  and 3 -1 4  ). The values plotted were obtained by



averaging the displacements at the fourteen nodes which define the boundary 

of each storey. The values of displacement at any two nodes connected by 

the rigid members simulating the floor slab were found to be close, thus 

validating the assumptions made in their choice. The displacement at any 

interior node at any particular time was found to be equal to the average 

of the displacement values of the two adjacent nodes, thus indicating that 

the structure behaved linearly throughout the period of application of the 

external loading.

The resulting displacement for any particular node can be obtained by 

vectorial addition of the displacements in the 'z* and V  directions. The

displacements in the 'z ' direction are seen to be significantly larger than

corresponding values in the 'x ' direction. This shows that the structure 

vibrates more freely and violently about the weaker axis and is to be 

expected. The behaviour of the four storeys in the 'z ' direction follows a 

fairly uniform pattern indicating increasing bending with height about the 

weaker axis. The displacement in the 'x ' direction shows rather erratic 

behaviour indicating that, rather than pure bending about the stronger axis 

torsional behaviour plays a small but significant part in determining the 

overall behaviour of the structure.

From the results shown in Table 3— 1 it can be seen that the first two 

natural frequencies values calculated using the Dynamic Condensation method 

are very close and are acceptable, however the higher values vary

considerably . Although the results shown are for Dynamic condensation 

with one iteration, the process was tried with two and three iterations, but 

the results produced were much the same. This discrepancy could be

attributed to the choice made in selecting the primary degrees of freedom. 

The choice of primary degrees of freedom was made after examining the 

eigenvectors obtained by solving the full size problem, which indicated very



small displacements ( of the order of 1 / 5 0  of the horizontal displacements ) 

in the vertical direction, and negligible rotational deformations.

3.10 CONCLUSIONS

1) In framed structures which are unsymmetrical, three dimensional 

mathematical models are essential to portray the effects of torsional 

behaviour on the structure and the overall behaviour of the whole system.

2) By allowing six degrees of freedom at every node the fixity at the 

nodes can be altered as necessary,i.e nodes can be taken to be fixed, free

or pinned as the case may be. This gives a better representation of real

structures.

3) By using consistent mass matrices the mass of all the structural 

elements are taken into consideration. In vibration analysis since the mass of 

the system needs to be assessed accurately, it seems realistic to take account 

of the mass of all the structural elements.

4) The inclusion of additional members to simulate the effect of floor 

slabs and to take account of the mass contributions due to the superimposed 

loads has been shown to be valid by the fact that the displacements at

nodes connected by these members are very close, this would be expected 

when the rigid floor slabs form an integral part of the structural system.

5) In the structure analysed the mode shapes indicate the effect of

torsion and its contribution to vibrational behaviour of structures. The 

structure was deliberately chosen to accentuate this effect, but for most 

structures, after the bending modes, torsional behaviour is found to have

large contributions in the higher modes.

6) The seismic analysis performed once again illustrates the erratic 

movement of the structure in the V  direction due to torsioanl behaviour. 

Although bending about the weaker axis caused high deformations, the



effects of cross axis movement is essential to determine the overall

behaviour of the complete system.

7) The Dynamic Condensation method has been shown to be a useful 

technique for evaluating the natural frequencies only when the structure is 

encountering pure bending. Although each node was allowed three degrees 

of freedom, rather than the complete six, the torsional effects could not be 

effectively accounted for in the reduced eigenvalue problem. The choice of 

the degrees of freedom made seem to the most appropriate after examining 

the eigenvectors obtained by performing a full dynamic analysis. Inclusion of 

another degree of freedom at each node would have considerably reduced 

the efficiency of the technique and not led to a substantial saving in 

computer memory and time.
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TABLE 3-1 COMPARISON OF NATURAL FREQUENCY VALUES

FREQUENCY
NO.

EXACT
VALUE

DYNAMIC CONDENSATION 
WITH ONE ITERATION

PERCENTAGE
ERROR

1 8.6927 8.6023 1.04
2 10.6867 10.9583 2.54
3 12.4554 13.4556 8.03
4 20.7951 22.8761 1 0 . 0 1

5 21.1855 23.8795 12.72
6 27.6374 31.6502 14.52



CHAPTER 4 DYNAMIC MODELLING THEORY

4.1 INTRODUCTION

The purpose of model analysis in earthquake engineering is the prediction 

of dynamic response of a prototype structure from laboratory tests on 

physical models. This prediction may include all relevent response 

parameters or it may be limited to selected parameters such as natural 

frequencies and mode shapes. The desired range of prediction may be 

limited to linear elastic response or it may comprise the complete response 

history to failure including material and geometric non-linearities.

In this chapter modelling theory is discussed in a general sense initially, 

and is then applied to specific cases which are most useful in seismic 

investigation. Modelling theory establishes the rules according to which 

geometry, material properties, initial conditions, boundary conditions and 

loading effects of the model and the prototype have to be related so that 

the behaviour of one can be expressed as a function of the behaviour of 

the other. The theory which leads to the development of a complete set of 

scaling laws defining the model prototype correspondence is that of 

similitude.

The theory of similitude, upon which model design and analysis is based, 

may be developed by dimensional analysis. Dimensional analysis is based on 

the consideration of the dimensions in which each of the relevant quantities 

involved in a physical phenomenon is expressed. The principles of 

dimensional analysis are well established in the literature and are 

summarised in Section 4.3 as far is needed for the development of a

general modelling theory.



4.2 BASIC MODELLING THEORY

To develop the necessary mathematical relationships between the 

characteristics of a prototype and its model, consider the basis that every 

physical phenomenon can be expressed by a dimensionally homogeneous 

equation of the type

qi = f ( q 2 ,q3 , ......... qn) (4.1)

where n is the total number of physical quantities involved in the

phenomenon. In this expression qj is the dependent quantity and q2  to qn 

are the variables and parameters on which qj depends. According to 

Buckingham's Pi theorem (Sect. 4.3), every dimensionally homogeneous 

equation can be written in the form

nl  = f ( n 2 ,n3 , ......... nn_N) (4.2)

where rq to rrn_  jq are dimensionless products of powers of the physical

quantities q\ to qn . The number N is the rank of the dimensional matrix

which is usually equal to the number of basic units needed to describe the

physical quantities.

Since equation 4.2 is identical to equation 4.1, it describes the same 

physical phenomenon and, because of its dimensionless form, must be 

equally valid for the prototype and the model if similitude is to be 

achieved.

A sufficient condition for complete similitude is therefore

(nl ) p  = (nl)m ( 4 . 3 )

and

(n2 ) p = (n2)m

(nn-K>p “  ( nn-N>p ( 4 ' 4)

Equation (4.3) is often referred to as the prediction equation and equations



(4.4) constitute the design conditions for the model. Methods for deriving 

the dimensionless products are summarised in section 4.3.

There are two major difficulties which have to be faced. Firstly extreme

care has to be exercised in specifying the right number of physical

quantities which enter equation (4.1). Quantities which have insignificant 

effect on the response parameters of interest will impose unnecessary 

restraints on the model, while neglecting a significant quantity can yield

incorrect results. Secondly problems will be encountered when trying to

reproduce at scales the design conditions posed by equation (4.4). In 

particular, the simulation of material properties and loading conditions may 

be an extremely difficult task. The latter often leads to the design of 

distorted models in which one or more of the design conditions are 

violated. Nevertheless, such models may still be adequate if the prediction 

can be corrected to account for the violation in the design conditions.

The specification of all important quantities on the right hand side of 

equation (4.1) requires some insight into the physical problem under study. 

In general, the more that is known about the behaviour of the prototype 

and of the laws which describe it, the easier it is to design the model. 

Models are most useful when the general features of the prototype 

behaviour are known but specifics such as complex geometry or material 

non— linearities render it difficult to obtain quantitative information by 

analytical means.

The physical quantities which may enter a structural problem are difficult 

to enumerate in their entirety but are for most cases contained in one of 

the following four groups:

4.2.1 Geometric Properties\

Geometry includes all the space relationships which may influence the



results. All distances or lengths and all angles that are relevant must be 

represented. For geometrically similar models a location vector is sufficient 

to describe any point in the structure. In dynamic problems the vector will 

depend not only on the space coordinates but also on the time t.

4.2.2 Material Properties

In general, these properties may vary from point to point in space and 

with time and temperature. A material has thermal, mechanical, electrical 

and magnetic properties, although the latter two can usually be neglected in 

structural problems. Thermal properties of interest may be specific heat, 

coefficients of thermal conductivity and linear expansion, and emmisivity. 

The mechanical properties are stress and strain in the material. These 

properties may be time and temperature dependent (e.g creep and 

relaxation), vary from point to point (inhomogeneity), and be direction 

dependent (anisotropy). They also describe the interaction between different 

directions (Poisson's ratio) and the interaction between neighbouring points

(e.g strain gradient effects).

4.2.3 Initial Conditions

These conditions can be described by initial stress and temperature 

functions, ctq and Tq, at time tQ. In many cases, the specification and

simulation of ctq and Tq will be an extremely difficult task due to their

dependence on fabrication and construction procedures and previous loading 

histories. In the design of models this will necessitate an accurate

reproduction of fabrication and construction procedures whenever those have 

a significant effect on the initial conditions. In reinforced concrete structures 

initial conditions may be strongly affected by creep and shrinkage effects, 

while in steel structures residual stresses due to welding and erection stresses



have to be considered. For steel as a prototype material it may be 

necessary to trace the history back to member fabrications which is visually 

the source of significant residual stresses.

4.2.4 External Influences

Such influences may be prescribed displacements which may be time 

dependent as in the case of seismic ground motions, prescribed temperature 

variations, surface forces on the boundaries of the structure, and body 

forces caused by the gravitational field of the earth or generated by 

artificial means such as magnetic fields.

For most structural problems the relevant physical quantities can be 

selected from these four groups. Based on a physical understanding of the 

problem, quantities which will significantly affect the response quantities to 

be measured during the model experiment , have to be chosen.

To aid in selecting model design and response quantities, an extensive list 

of physical quantities and their dimensional description is presented in 

Table. 4—1. Before equations (4.1) and (4.2) can be utilized to derive 

appropriate similitude relationships for dynamic model studies, it is necessary 

to briefly summarise the fundamentals of dimensional analysis.

4.3 DIM ENSIONAL ANALYSIS

Dimensional analysis is an analytical method by which a dimensionally 

homogeneous equation, containing physical quantities and describing a 

physical phenemenon is converted to an equivalent equation containing only 

dimensionless products (rr — factors of powers of the physical quantities). 

Since these dimensionless products describe the same physical phenomenon 

and are independent of the units of measurement, they must be equal in 

the prototype and the model if complete similitude is to be achieved.



Dimensional analysis is based on Buckingham's Pi theorem which states 

that a dimensionally homogeneous equation can be reduced to a functional 

relationship between a complete set of independent dimensionless products 

(n—factors). The number of independent dimensionless products is equal to 

the total number of physical quantities involved minus the number of 

fundamental quantities needed to describe the dimensions of all physical 

quantities.

The simple rule for the determination of the number of independent 

dimensionless products has been reformulated in more formal mathematical 

terms as: the number of dimensionless products in a complete set is equal 

to the the total number of physical quantities involved minus the rank of 

their dimensional matrix (The rank of a matrix is the order of the largest 

submatrix whose determinant is non zero). In order to determine a 

complete set of dimensionless products it should be noted that the units of 

any physical quantity can be expressed as a combination of units of basic 

or fundamental quantities. The choice of basic quantities is largely an 

arbitrary one but is governed by practical considerations of physical 

phenomena and simplicity of measurement.

In engineering , the most common sets of basic quantities are those of 

masss M, length L, time T and temperature 9 (called MLT0 system) of 

force F, L , T and 9 (called the FLT9 system).

The basic quantities can be used as building blocks since the dimensions 

of all other physical quantities can be expressed as products of powers of 

basic quantities. When the dimensions of physical quantities are properly 

arranged in a dimensional matrix it is reasonably simple to extract 

dimensionless products by comparing inidvidual quantities as to their 

dimensional dependence. Systematic methods for generating a complete set 

of dimensionless products can be achieved by inspection if the following



rules and guidelines are considered:

i) The dimensionless products are composed of products of powers of

the physical quantities and should not involve more than N— 1 quantities in

any one product, where N is the number of basic quantities.

ii) The dimensionless products must be independent, i.e none of the

products can be obtained as a product of power of other products.

iii) Independence is easy to verify if the dimensionless products are 

generated such that each product involves a quantity which does not appear 

in any other product.

iv) The dimensional matrix should be arranged such that the response 

quantity of interest (dependent variable) is listed first, followed by 

independent variables and then parameters.

v) Dimensionless products should be generated such that quantities are 

eliminated from left to right in the dimensional matrix.

Guidelines (iv) and (v) are important for the design and control of the 

experiment. Since complete sets of dimensionless parameters are not unique, 

one will be more useful than others in model analysis. These two guidelines 

are also important for the design and control of the experiment.

4.4 SIM ILITUDE RELATIONSHIPS AND TYPES OF MODELS

The necessary conditions for complete similitude between model and 

prototype can be derived through the following procedure

i) Write down all physical quantities on which the solution of the 

phenomenon under study depends significantly.

ii) Develop a suitable and complete set of independent dimensionless

products from these physical quantities (eqn. 4.2) 

iii) Establish equality between prototype and model for each of the 

independent dimensionless products (eqns. 4.2 & 4.4).



The third step defines the design conditions for the model and the

prediction equation(s) for the dependent response quantity (or quantities) 

which relates the measured model response to the prototype behaviour. As 

such, this step establishes the scaling laws for all physical quantities or 

products of physical quantities. Usually, these scaling laws are expressed as 

ratios of the numbers of units needed to describe identical quantities in 

model versus prototype. These ratios are designated with a subscript r added 

to the description of the physical quantity, i.e lr =  lm/lp =  0.1 means that 

one unit of length measurement (e.g mm) in the model corresponds to ten 

equal units of length measurement in the prototype.

One important observation can be made from the fact that all physical 

quantities can be expressed in terms of basic or fundamental quantities (e.g 

FLT9 or MLT9) . Since these basic quantities are independent of each 

other, it is evident that as many scales can be selected arbirtarily as there 

are basic quantities needed to describe a problem. For instance in a static 

problem which has F and L as basic quantities, two scales can be selected 

arbitrarily. In a dynamic problem which may be described by M , L and T 

three scales can be selected arbitrarily, however, in this case it is usually 

necessary to select gr = 1 ( g is the acceleration due to gravity ) which

reduces the choice of arbitrary scales to two. The scales of all other 

physical quantities are then expressed in terms of the arbitrarily selected

ones and can be obtained from the dimensionless products.

It should be noted that the choice of arbitrary scales is not limited to 

basic quantities; any set of independent quantities may be selected for this 

purpose. The number of independent quantities is always equal to the

number of basic ones. In many practical situations the fulfillment of all 

design conditions will be an impossible task. Under those circumstances it is 

a matter of judgement and experience to isolate those features which may



be altered such that the model construction becomes feasible but the 

response prediction is not hindered by an excessive amount of error.

4_J.. P H YSICA L M ODELS FOR SHAKE TABLE STUDIES

4.5.1 True Replica Model

A model that fulfills all similitude requirements is called a true replica

model. Suppose the task is to reproduce, at model scale, the time history

of stress components <jjj(r,t) in a replica model subjected to a time history

of vector imposed acceleration a(t). Recognising that the distributions of

stress and of material in the prototype and model must be identical,

dimensional analysis can be applied by calling a  a typical stress, p a typical

density, and E some representative stiffness property, then the stress

distribution may be written as

o-ij = 0'Sij(r,t) i,j - 1,2,3

where Sjj is dimensionless.

With the greatest degree of simplification, the typical stress can be 

expressed through a functional relationship of the form

o' = f  ( r , t ; p , E , a , g ,  1 ,0'o, i*o) (4 -5 )

where ctq and tq  refer to initial conditions. Evidently, the ommision of all 

material properties with the exception of E implies that similarity of 

material properties is implicitly assumed.

Utilising dimensional analysis, a complete set of dimensionless products

can be generated from the dimensional matrix of the quantities in equation

(4.5). The products presented in Table 4.1 should be useful for this task. 

The resulting dimensionless relationship could be of the following form



7

If gravitational contributions to stress histories must be accounted for, 

the two terms containing the gravitational acceleration g restrict the freedom 

in selecting model materials and scale factors. Since there is almost no 

practical way that g can be changed between model and prototype, the 

value of gj. usually must be taken equal to one. Consequently, from the 

dimensionless product a/g ( also known as Froude's number and usually 

written as v2/lg ) it follows that

If this relationship is substituted into the design condition (glp/E)r =  1 it 

follows that

This scaling law places a severe limitation on the choice of suitable model 

materials. Equation (4.8) is sometimes expressed in terms of one 

dimensional wave propogation velocities as follows

and is referred to as the Cauchy's condition (based on Cauchy's number 

pv2/E)

The ratio between Froude's and Cauchy's number produces a parameter 

E/1 pg. If it is required that a replica model reproduces the full scale values 

of those numbers, for fixed g, equations (4.7) & (4.8) can be derived. Thus 

eqn. (4.8) is a necessary condition for simultaneous replication of restoring 

forces, inertia forces and gravitational forces.

a r  = Sr = 1 ( 4 .7 )

( 4 .9 )



Additional design conditions are obtained from the other dimensionless 

terms of eqn. (4.6). For instance, it follows from the second term on the 

right hand side that

= , = O r ) *  (4 .10 )

P
Since elastic and plastic strains are dimensionless, they must be 

instantaneously equal in the prototype and model structures. From this 

observation it follows that typical structural displacements are related by 

Sr  = l r

This relation ensures that geometrical non- linearity in structural behaviour 

is properly simulated.

Table 4—2 shows in column (4) the scaling laws for several physical 

quantities for a true replica model. In this case the independent quantities 

are chosen to be 1,E and g, and gr is taken equal to one. However, one 

major difficulty exists in this true replica modelling, namely, the selection 

of a suitable model material. Exact material simulation goes far beyond 

simulation of modulus of elasticity (E), Poisson's ratio (u) and strain; 

theoretically it should include all relevant material properties discussed in 

section 4— 2. Since no two materials in nature are exactly alike, material 

simulation will always introduce errors in the prediction values.

In the simplest case, similarity is necessary for the uniaxial stress strain 

curve for the range of strains in interest. Since true replica modelling 

requires that er =: 1 (since e is dimensionless), the stress—strain curves for 

model and prorotype materials should be identical except for a constant 

stretching by the ratio Ep/Em in the e direction (fig. 4—1).

Materials with shape similar a -  e diagrams are difficult to find, 

particularly if nodistortion in the e direction ( er = 1) is permitted. Under 

certain conditions, strain distortion (er ^ 1) may provide an interesting



alternative to true replica modelling, an idea discussed in section 4.5.2.

True replica models are extremely difficult to realise because of 

problems in material simulation. Nevertheless, for certain length scale 

factors ( lr =  Er/pr ), suitable materials for the modelling of metallic 

structures are available.

In many cases it is possible to find acceptable alternatives to true replica 

modelling which are based on compromises that minimise the errors in 

rewponse prediction. The next section deals with an alternative method 

which will not solve all the problems encountered in dynamic modelling but 

is suitable for certain types of model studies concerned with particular 

parameters and structural configurations.

4.5.2 Adequate Models

All physical models which violate any of the design conditions discussed 

in the previous section could be called distorted models. However if the 

effect of distortion in one dimensionless product is such that it does not 

require an adjustment of other dimensionless products or of the prediction 

equation, then it seems appropriate to seperate such models from truly 

distorted models. Such models are known as adequate models.The need for 

such models is based on the desire to use the same materials as in the 

prototype.

There are two distinct distortions leading to two types of models which 

should prove very useful for model studies of certain classes of structures on 

shaking tables.

4 .5 .2 .Z Model Tests With Artificial Mass Simulation

Equation (4.9) for true replica modelling requires that model materials 

have a small modulus or large mass density or both. Since such materials



are difficult to find, it appears attractive to supplement the density of the

structurally effective material with additional material which is structural not

effective. This can easily be achived in lumped mass systems as discussed 

below.

(a) LaiPped Mass Systems — For many types of typical building structures 

it is acceptable to represent the seismically effective mass by a series of 

masses concentrated at the floor levels (lumped masses). In this case the 

seismically effective mass can be decoupled from the density of the 

structurally effective material which relaxes the dimensional requirement that 

( E /p  )m must be equal to lr .

Cauchy's requirement for proper simulation of internal forces and 

restoring forces can be written as

gM ‘ gM ‘

. 12E. m . 12E.

which  f o r  g r  = 1 becomes 

Mr  = Er l r

In this equation M represents the lumped masses at the floor levels . It 

must be emphasised that " lumped masses " are those which are seismically 

but not structurally effective. In reality any mass, which is attached to 

structural components will affect the structural response. Masses at floor 

levels, such as a concrete slab system, will certainly affect the stress 

distribution in the structutal elements and in many cases will be part of the 

structural system. Great care must be taken in positioning such lumped 

masses in models to simulate the effects of gravitational and inertia forces. 

In many cases the distributed mass simulation discussed in (b) is preferable.

When the structurally effective mass is small and a representation of the 

seismically effective mass by lumped masses is feasible, the structural model 

may be made of prototype material ( Er = 1 ) and lumped masses are



scaled in the ratio Mr -  lr2. For small scale model tests this often 

requires excessive weights which may render such tests impractical. However, 

the weight requirements may be reduced when the model materials used 

have small stiffness properties (see eqn. 4.11).

(b) _ Distributed Mass Systems For many types of structures a correct 

simulation of the mass distribution in space is essential and a simplified 

lumped mass system cannot be accepted. A simple way of testing adequate 

models of such structures would be to decouple the mass density pq of the 

structurally effective material from an additive p j, which is to be built into 

the model but has no counterpart in the prototype. Thus the full scale 

density and stiffness would be represented by (po)p and Ep whereas those 

for the model would be (po)m+ Pi anc* Em respectively. This modification 

would alter the Cauchy's requirement as follows

gl(PO + Pi )
E ■’m

with one g testing this relation leads to

"  ( ST £l ]

( p ° > r + r T b o  -

or

E
f 11 -<P0)r ]PI =

For instance,for a l/20th scale model using prototype material 

(Er= (po ) r= l )  the density will have to be increased by a factor of 19. In a 

small scale model, the incorporation of the material that increases the

density p i has to carefully thought out.

It is very difficult to effectively seperate the seismically effective mass 

from the structurally effective material. This method is practical for instance 

in structures consisting of slender load carrying mambers, the method for



adding mass could be to attach to each member suitable amounts of lead or 

other soft high density materials, arranged in such a way that it contributes 

negligibly to the strength and stiffness but supplements the weight and 

inertia. The spacing of these added masses should be maximised, so as to 

facilitate the manufacture while still approximating a distributed inertia.

The modelling law for such distributed masses can be obtained by 

replacing the mass per unit volume pq with some representative mass per 

unit length pq. When lead or other material with runnung mass is 

attached to the model members, Cauchy's requirement is altered to

g ( MO + Ml ) SMQ '
El El

m
With one g testing this leads to

( MO ̂  r  Ml = Ej» 1 r
(M0)p

o r
Ml — [ E r^ r -  (Mo)r ] (Mo)p (4.1.3)

Using the same material in the model and prototype would make Er =  1

and ( Mo)r =  *r^ (from po = MÔ  )• This leads to the requirement

n  -  Or - >r2 Hw)p 0 0 4 )
This law may not be practical because it calls for adding a lot of mass. 

For instance for linear elements of a 1/20 scale model of identical 

structurally effective material, (po)m is 1/400 of (po)p whereas m  is 1/21 

of (po)p, hence 19 times as massive per unit length as the basic model

structure.

It appears that the practical realisation of this scale for small scale 

models in many cases will call for using reduced E/pq model materials. The 

use of such materials , which need not obey the requirement (E/p)r — lr 

will require a lesser amount of added m  which might lead to desirable

compromises in the choice of materials and added weights.

The modelling laws summarised in column (1) of Table 4 - 2  apply to



the cases discussed in (a) and (b) with the exception of the requirement 

(E/p)r =  lr . For the case of identical prototype and model material (E ^= l) 

the modelling laws are shown in column (2) of the table.

Models with artificial mass simulation particularly suit the model study of 

multistorey and bridge structures. Such model studies are expected to result 

in a good prediction of prototype behaviour provided that mass distribution 

is properly simulated, the ground motion is reproduced according to the 

laws of similitude, model design and construction is done according to 

prototype procedures, and last perhaps most important, a thorough material 

study has proven the adequacy of material simulation. Model tests with 

artificial mass simulation is a very important source of information on 

structures whose stress and displacement histories have to be simulated in 

the elastic and inelastic range and whose materials are difficult to simulate 

by other than prototype like materials, such as in the case of reinforced 

concrete.

4 .5 .2 2  Model Tests Without Simulation O f  Gravity Forces

Considering only multistorey structures, it appears that for certain types 

of structural configurations (e.g frame and shear wall structures) the stresses 

induced by gravity loads are small and maybe negligible compared to stress 

histories generated by seismic motions. In this case (a/gr) need not be equal 

to unity, which allows considerably more freedom in selecting model

materials and scaling parameters.

The scaling laws can be derived from the remaining dimensionless 

products of eqn. (4.6) with g in glp/E replaced by a. If 1 and E as well as 

p of a specific model material are selected as the independent quantities, 

the scale factors shown in column (3) of Table 4 - 2  can be derived. If 

prototype material is used (i.e Er = pr — 1)» scale factors can be



expressed in terms of lr . (column (4) in Table 4 -2 )

It is important to note that the scale factors for many physical 

quantities are different from those for true replica models which will affect 

the shaking table input, the model design and the response prediction. For 

instance, when prototype material is used (column (4) in Table 4 -2 )  with 

tr=  lr and ar= l / l r , a reproduction of actual seismic motions on shaking 

tables may cause problems. This makes the use of other than prototype 

materials with (E/p)r smaller than one more feasible. For instance if brass 

is used for the simulation of steel ( with (E/p)r « 0.5 ) results in t^= 1.411r 

,vr =  0.71 and ar =  0.5/lr . With these values, seismic motions become

more easily reproducable on shaking tables.

A building system which may be suitable for this type of model testing 

is a structural system where the lateral load resisting system consists 

primarily of shear walls which carry little vertical loads except through 

boundary elements. In slender shear walls the level of stress due to vertical 

loads in the boundary elements will be small and will not affect the 

response of the shear walls to a significant degree.

Now consider a mutistorey steel braced frame without moment resisting

connections. In most type of bracing systems the stresses in the bracing 

members due to vertical loads will be negligible compared to those induced

* by lateral loads. A simulation of the load -  deformation response of the

structure will require proper modelling of the vertical elements of the 

braced bays.

4.5.3 Distorted Models

Models in which deviations from complete similarity exist and linear

extrapolation from model to prototype would not be valid are known as

distorted models. Distortion can be due to dissimilarity in boundary and



initial conditions , geometry or material properties.

In structural problems a distortion in boundary and initial conditions or 

in geometry is not usually necessary. Distortion in the reproduction of 

prototype stress strain characteristics is of greater significance. The 

requirement of identical strains in model and prototype ( er =  1 see 

fig.4.1) is difficult to achieve in terms of availibility of suitable model 

materials. Materials which follow the stress _  strain pattern shown in 

Fig. 4.2 are more easily available.

If a model material which conformed to Fig. 4 _ 2  was used the strains in 

the model would be larger than those in the prototype, hence the 

displacements in the model would not be similar to those in the prototype.

If a model material which conformed to Fig. 4 _ 2  was used the strains in 

the model would be larger than those in the prototype, hence the 

displacements in the model would not be similar to those in the prototype. 

If the structural behaviour is dependent on the displacements such a 

distortion would not be suitable. However, if the displacements are 

sufficiently small such that they do not affect the equilibrium conditions, 

they may be acceptable. Since the ratio of correspondence between the 

model and the prototype is known strains, displacements, velocities and 

accelerations which occur in the model would vary by a factor which 

indicates the magnitude of strain deformation ( er in Fig 4_ 2 ).

Another type of material property distortion occurs when the Poisson's 

ratio of the model material and the prototype material are not the same. If 

the structural behaviour is dependent on the plane stress, a Poisson s ratio 

variation may distort the model strains. If however, the Poisson s ratio v is 

not of prime importance materials having dissimilar Poisson's ratio may be 

used leading to only a small percentage of error.



4.6 CONCLUSIONS

Dimensional analysis has to be used to derive modelling laws for various 

types of model tests of structures subjected to seismic motion. It has to be 

realised that an exact reproduction of all parameters affecting the response 

of structures under dynamic actions can rarely be achieved. The emphasis 

here has beeen directed towards identification of important parameters and 

possible types of model tests which allow, as exact as possible, replication 

of these important parameters.

The choice of the right type of model for the intended purpose and the 

degree of approximation that must be accepted are of primary concern. In 

the most general case of a complex three dimensional structure where 

gravity and inertia effects are equally important, a true replica model is the 

ideal choice provided that a suitable model material can be found. If this is 

not possible, adequate accuracy in model tests can often be achieved by 

means of model tests with artificial mass simulation. In cases where prior 

knowledge shows that gravitational effects are small compared to seismic 

effects, model tests without simulation of gravity forces are feasible 

alternatives. These three types of model studies are the most suitable ones 

for seismic response phenomenon by means of small shaking tables.
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EA^LE— ^ — EHYSICAL QUANTITIES AND THEIR DIMENSIONS

PHYSICAL
QUANTITY

SYM
BOL

DESCRIPTIONS IN 
TERMS OF OTHER 
PHYSICAL 
QUANTITIES

St rain e a/E
Poisson's ratio V

Length 1

Time t
Frequency 0 ) (k/m)i

Elastic restoring
force fE k5,al2 ,eEl2

Gravitational force FC 7l3 »Pgl3
Inertia force FI ma,pi3a
Viscous damping 
force fd cv

Modulus of elast-
-icity E a/e,FE/el2

Shear modulus G E/2(l+0
St ress a eE,F£/l2

Displacement 6 el, f e / 1 2

Elastic stiffness K fEl ,Fe/6

Axial stiffness Ka AE/1
Shear stiffness *s ASG/1
Flexural stiffness Kf EI/1 3

Moment M FI
Mass m pi3

Velocity V

Acce1erat i on a
Coefficient of 
viscous damping

\

c <

DIMENSIONS IN 
FLT0 SYSTEM
F L T 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 - 1 0

1 0 0 0

1 - 2 0 0

0 1 0 0

1 - 1 0 0

1 1 0 0

1 - 1 2 0

0 1 - 1 0

0 1 - 2 0

1 - 1 1 0

DIMENSIONS IN 
MLT0 SYSTEM
M L T 0

0 0 0 0

0 0 0 0

• 0 1 0 0

0 0 1 0

0 0 - 1 0

1 1 - 2 0

1 - 1 - 2 0

0 1 0 0

1 0 - 2 0

1 2 - 2 0

1 0 0 0

0 1 - 1 0

0 1 - 2 0

1 0 - 1 0



IABLE— &z2-- BASIC SIHILTUDF REOUIRFMFMTS

MODEL
TYPE

TRUE
REPLICA

ARTIFICIAL
MASS

GRAVITY FORCES 
NEGLECTED STRAIN

n i  CTADT 1 a \ t

SCALING
PARAMETERS

SIMULATION ANY
MATERIAL

PROTOTYPE
MATERIAL

u i o i UK1 1 UN

(1 ) (2 ) (3) (4) (5)
Length lr lr lr lr lr lr
T i me t r lr4 lr4 lr(E/p)r-i lr (erlr) 4

Frequency u)r
1 r~ 4 lr"4 lr-’(E/ P ) r i lr"1 (erlr)"4

Velocity vr
1 r4 lr4 (E/p)i 1 (erlr)i

Gravi tat ional 
acceln. gr 1 1 neglected neglected 1

Acceleratn.gr 1 1 lr_1 (E/p)r lr"1 1

Mass
density pr Er/lr - P r 1 erEr1r“1

Strain er 1 1 1 1 fr
Stress a r Er Er Er 1 Er er
Modulus of 
elast icity Er Er Er Er 1 Er
Speci fic
Stiffnef£/P)r

lr - (E/p)r 1 lrer- 1

Di splaceme^t
lr lr lr lr 1 r €r

Force Fr Er 1 r 2 Erlr 2 Er 1 r 2 lr2 Er1r 2 cr

Ene r gy (EN)r Erlr 3 Erlr 3 Er 1 r3 lr3
Erlr3 er 2



CHAPTER 5 EXPERIMENTAL STUDY

5.1 INTRODUCTION

The literature review of Chapter 1 examined a few case studies where 

experimental techniques have been used to verify analytical results for the 

dynamic analysis of skeletal frames. The use of small scale models however 

has been limited partially due to the difficulties involved in modelling and in 

the interpretation of results. The main problem of accurate scale modelling 

involves the simulation of the mass of the structure i.e as the section sizes of 

the members are reduced to the appropriate scale, the mass is not reduced 

accordingly. To overcome this problem, in the last few years the technique of 

artificial mass simulation, where additional material of a non structural nature 

is attached to the structure to simulate the required scaled density of the 

model, has been used quite successfully by several researchers^20’23).

To examine the feasibility of using small scale models to depict the seismic 

behaviour of the skeletal framed structures, it was decided to build a simple 

unidirectional shaking table upon which small scale models could be tested. 

Two models were tested on the shaking table. The models were subjected to 

simple sinusoidal loading to determine the natural frequency and completely 

random vibrations covering a large frequency spectrum which simulated an 

artificial earthquake.

5.2 DESIGN AND CONSTRUCTION OF THE SHAKING TABLE

5.2.1 M odififMinn o f  existant supporting framework

A supporting framework, which had been used by Burns(7) to study the 

dynamic behaviour of model bridge decks, was modified to enable the 

mounting of the vibrator and shaking table. Basically this involved the addition 

of extra members on which the vibrator and shaking table itself could rest.



Fig. 5 1 shows the side elevation of the whole system where the double 

frame arrangement was isolated from one another using steel coil springs. The 

frequencies of the springs isolating the two frames were selected so that the 

value of transmissibility was as low as possible. Transmissibility is a measure of 

the amount of vibration transmitted through an isolation system. It is a 

function of damping and the ratio of the fundamental frequency of the element 

being isolated and of the fundamental frequency of the isolation system. For

satisfactory isolation of the two systems a minimum value of two, for the 

frequency ratio, is recommended.

For frame 'A* the calculated fundamental frequency was 465 Hz. Forcing

frequencies thus had to be below 465 Hz. to avoid frame resonance. The 

natural frequency of the complete set up was found to be 4 Hz. These two 

values defined the upper and lower bounds of the allowable excitable 

frequencies. By ensuring that the minimum exciting frequency would be 10 Hz. 

and assuming a damping ratio of 0.2, the value of transmissibility was found 

to be less than 0.5 (Fig.5—2)

5.2.2 Desien o f  the shakins table

The size and material used for the shaking table were limited by two factors

1) The dimensions of the supporting framework.

2) The operational capability of the electromagnetic vibrator.

The supporting framework consisted of two parallel frames (Fig. 5— 3), 430mm 

apart, which were rigidly connected together by two cross members. The usable 

working space between the two cross members was approximately lm , within 

which both the vibrator and the supporting system for the shaking table had to 

accomodated. As the vibrator was approximately 350mm long, it was decided

that the shaking table should occupy the remaining space available to enable

reasonably sized models to be tested in the future if necessary. A dimension of

710mm X 680mm was chosen.



The elctromagnetic vibrator used had a maximum throw of 16mm (± 8mm). 

The mass of the table had to be chosen such that it would not adversely 

affect this capability. Mild steel which was the first choice of material was 

found to be too heavy and considerable problems were encountered due to the 

distortion of the supplied plate, which had been cut to size by oxy- 

acetelyene burning. Aluminium was chosen as an alternative material. It had 

the advantage of being lighter in weight and no distortions were produced 

when cut to the required size. Table support rollers were made of mild steel 

and, to overcome the problem of possible rapid wear at the contact positions 

with the aluminium table, thin pieces of stainless steel strips were attached at 

the appropriate roller positions (Figs. 5 - 3 ,5 -5 ) .  In order to maintain a low 

mass and yet have a high rigidity the thickness of the aluminium table was 

chosen to be 10mm.

5.2.3 Desisn o f  the table support mechanisms

To evenly distribute the load from the shaking table to the supporting 

framework, it was to rest on bearing at the four corners of the table. The 

bearings had to carry the load and simultaneously allow movement of the table 

in one horizontal direction. The supporting mechanism for each corner was 

made up of three mild steel rollers which were fitted with ball races at each 

end and were mounted together in a single bracket (Fig.5—4). A similar 

inverted double roller system was used on the top surface of the table to 

prevent possible table "chatter". This upper mechanism could be moved up or 

down in order to position it accurately against the surface of the table 

(Figs.5—5, 5—19). A substantial reduction in the amount of vibration in the 

table could be felt when these upper rollers were in contact with the table, as 

opposed to when they were raised from the contact position.

Two additional pairs of PTFE (Polytetrafluoroethene) rollers 

(Figs.5—19,5— 20) which were mounted on vertical shafts were located against



two sides of the shaking table. These were used to ensure that the table 

encountered no torsional or lateral movement which would inevitably have 

caused damage to springs within the body of the vibrator.

5.2 .4  Performace o f  the shaking tahlo

To determine the capability of the shaking table, sinusoidal signals in the 

frequency range of 2 Hz.— 100 Hz. were fed through the vibrator connected 

to the bare table. The amplifier (PA 1000) maximum power was produced at 

an output current of 16.5 Amps, (rms) and was controlled by adjusting the 

'sine' output control potentiometer on the Random Spectrum Generator (RSG 

30). To obtain the overall response characteristics, bare table accelerations over 

the frequency spectrum of 2 Hz.— 100 Hz. were recorded when maintaining 

the output current fixed at 5, 10 and 15 Amps, (rms) in turn. Fig. 5 - 6  is a 

four way logarithmic plot showing the characteristics of the bare table, from 

which the displacement and accelerations can be read for a particular 

frequency at any of the three designated values of output current.

5.3 TH E EXPERIMENTAL PROCEDURE

The two models tested were subjected to both sinusoidal and random 

excitations. By applying a sinusoidal input the natural frequencies of the 

models and the associated maximum displacements at these frequencies were 

determined. These values were also evaluated using simple mathematical 

relationships. Comparison of these experimental and analytical results served as

a basic check to the accuracy and performance of the models.

The models were then subjected to random base excitations. The excitation

was tailored to simulate an artificial earthquake by enveloping a wide frequency

spectrum. The response of the models to these excitations was obtained and 

compared to the results obtained by using the computer programs.



5.3.1 Experimental Apparatus

The experimental equipment for testing each of the models can be broadly 

divided into two basic component systems namely the excitation system and the 

data aquisition and signal conditioning system.

The vibration input system comprised of :

a) A Farnell sine-  square oscillator with a frequency range of 1
H z -  1 MHz.

b) A Ling Dynamics Systems Random Spectrum Generator (RSG 30) 

which could provide a random input in the frequency range of 2
Hz. — 2 kHz.

c) A Ling Dynamics Systems Random Spectrum Analyser (RSA 30) 

which was used in combination with the RSG 30 to give a visual 

display of the frequency spectrum in histogram form.

d) A Ling Dynamics Systems Amplifier (PA 1000) which provided 

the input current to the vibrator. Its maximum output power of 

1000 W was achieved at an output current of 16.5 Amps. (rms).

d) A cooling fan, used to protect the moving coil assembly of the 

vibrator from overheating.

e) A Ling Dynamics Systems Vibrator (Model no. 455). The peak

thrust force with air cooling and bare table was 490 N.

The data aquisition apparatus which were directly located at appropriate 

positions in the shaking table and the models comprised of :

a) Birchall general purpose piezoelectric accelerometers which were 

used to measure accelerations by attaching them at the required 

positions on the shaking table and the models.

b) Linear Variable Differential Transducers (LVDTs) were positioned 

against appropriate locations on the shaking table and the models. 

The output from the LVDTs was used to evaluate the 

displacements at these locations.



To determine the response of the table and the models, the following signal 

conditioning equipment was used. For the accelerometers i—

a) The signals were passed through high impedence microdot cables. 

These high impedence cables were reduced to low impedence cables 

by using voltage amplifiers. The reason for this impedence transfer 

is that if long cables are required on site where low impedence is 

necessary, the loss of signal power would not be great.

b) The output from the voltage amplifiers were fed through an 

oscilloscope, which was used to check resonant frequencies of the 

models by associating them with the maximum signal amplitude on 

the oscilloscope screen.

c) The signals from the voltage amplifiers were passed through an 

attenuator/amplifier.

d) Permanent records of the accelerometers' signals were made on 

photographic paper using an S.E Laboratories Oscillograph (Type 

S.E 3000).

The signals obtained using the LVDT's were

a) Fed into a voltage calibrator and amplifier. The voltage 

calibrator was used to control the voltage change induced by 

movement of the plunger by a fixed amount. The output signal was 

then amplified to 24 mv before it could be compatible with other 

instrumentation being used.

b) Th^ signals from the voltage amplifiers were passed through an 

attenuator and an amplifier which were used to decrease or increase 

the LVDT's signals respectively.

c) Permanent records of the accelerometers' signals were made on 

photographic paper using an Bell and Howell light pen Oscillograph.



5.4 EXPERIM ENTAL STUDY OF MODFJ.

Model 'A ' was chosen to be the prototype, this was mainly to ascertain the 

performance of the experimental equipment and model behaviour without 

having to get involved with the complications of scale modelling. The results 

obtained from the experimental study could be directly compared to analytical 

results without actually having to scale them in any way.

5.4.1 Description o f  model 'A'and instrumentation used

In order to check the validity of assumptions made in modelling a structure

as a shear building, this model was basically a single bay of a single storey

shear building. It was composed of two mild steel columns with the mass 

lumped at the top of the columns. As can be seen in Fig. 5— 7 the columns 

were rigidly fixed at the base and at the level of the mass. The lumped mass 

was taken as an infinitely rigid beam and as such was a structural component. 

For simplicity bolted connections were used both at the base and at the upper 

level. The exterior plates at the upper level were used to ensure that the 

positions of the points of contraflexure at the top of each column would 

remain fixed when the model swayed about its equilibrium position.

One accelerometer was attached to the shaking table from which continuous 

recordings of the base acceleration was made. When the model was subjected 

only to sinusoidal vibrations the response of the lumped mass was obtained 

from the output of the accelerometer attached at this level. However, when

the model was subjected to random excitations, the response of the lumped 

mass could not be obtained from the accelerometer trace as it was necessary 

to know the frequency content at any particular instant before the accelerations 

could be related to displacement. To obtain a direct reading of the 

displacement one LVDT was attached at the centre level of the mass. The 

LVDT was mounted on a rigid member which was secured to the clamping 

supports on the shaking table. This effectively ensured that the absolute



displacement readings were being monitored. Continuous readings from both 

aceelerometers and LVDT's were fed into the light pen oscillograph from 

which acceleration and displacement traces were obtained. Fig. 5 - 8  shows a 

line diagram of the instrumentation used for this model.

5.4.2 Determination o f  damping ratin

From free vibration experiments the damping ratio for a single storey 

structure was determined by the following procedure

a) The structure was disturbed from its equilibrium position through 

some initial displacement x Q and then released.

b) The free vibrations of the structure were recorded and an 

acceleration— time plot was obtained from which :

c) Two peak values of accelerations xi and Xf+j,  that were several 

cycles apart were measured.

d) The logarithmic decrement 5 = 1// [ In(u}/U(+j)  ] was

computed.

e) The damping ratio £, for the structure was evaluated as £ =

8/ 2TT

For this particular model the free vibration acceleration— time plot is shown in 

Fig. 5 - 9  . B y  measuring the peak values for the 2nd and 7 th cycles the

logarithmic decrement 5, was computed as 0.1353. The corresponding value for

the damping ratio £, was evaluated as 0.0215.

5.4 .3  Determination o f  the natural frequency o f  the model

Although free vibration measurements are sometimes easily accomplished by 

pulling on the structure, then releasing quickly and measuring the free motions 

of the structure, in the laboratory tests it was simpler to force the structure to



vibrate in one of its natural frequencies and then measure the response. By 

attaching the model to the shaking table and changing the frequency of the 

forcing signal, occurence of resonance was observed on the oscilloscope. When 

resonance occured, since the displacement at the level of the mass was 

maximum, the output from the accelerometer attached at that level produced a 

point of maximum amplitude on the oscilloscope. The output signals were also 

examined through the oscillograph traces obtained at this particular frequency. 

The results were measured from the oscillograph traces as follows :

The photographic paper used to record the traces was fed through the 

oscillograph at a known speed, so that by measuring the distance along the 

trace for say 2 0  cycles, the time for 1 cycle, and hence the frequency could 

be calculated.

Table 5— 1 shows the comparison of the experimental and theoretically 

computed values. The sinusoidal oscillator was used to to generate the required 

frequency, the frequency of motion of the table was estimated by obtaining an 

oscillograph trace of the output from the accelerometer attached to the table 

and counting the number of sine waves plotted for a period of 5 seconds. The 

theroretical value for the frequency of the model was computed by considering 

it as a single degree of freedom system.

5.4 .4  Response to harmonic excitation

The response of the model when subjected to harmonic excitation was 

studied to provide a further check on the behaviour of the model. The input 

signal to the table was fine tuned to produce a frequency of 20 Hz. This was 

checked by obtaining an oscillograph trace for 5 seconds and counting the 

number of sine waves. From this trace the base acceleration was computed

using the following formula

-  = Ar  ( ^ - O
a GS •G A•A0

w here a - Peak acceleration in term s o f  ' g 1



At  -  T race am pl i tude  (peak  v a lu e )  (mm)

gA ~ A m p l i f i e r  g a in

Gs  -  Galvanometer  s e n s i t i v i t y  (mm/mv)

Aq -  Acce le rom e te r  ou tpu t  (mv/g)

For the experiments performed in this study each accelerometer was

calibrated with a 3m. length of microdot cable connected to a voltage amplifier 

and the average peak outputs were found to be 26.77 mv/g. The fluid damped 

galvanometers had a sensitivity of 14 mv/mm for a lv  input with the amplifier 

gain set to unity. To obtain reasonably sized traces from the oscillograph the

amplifier gain was set to 1 0 .

Since the model was considered to be a single degree of freedom system, 

the static and maximum dynamic displacement at a particular forcing frequency 

was computed by following the procedure indicated in Fig. 5—23.

Experimentally the value of the acceleration at the level of the mass was

obtained from the output of the accelerometer attached at this level. For

harmonic loading the equation of motion can be written as

x = A s i n  Qt ( 5 .2 )

d i f f e r e n t i a t i n g  t h i s  e q u a t i o n  twice g ives

x = - a)2.A s i n  o)t ( 5 .3 )

h ence  th e  peak  a c c e l a r a t i o n  i s

x = c*> 2. A ( 5 .4 )

By substituting the experimental value of the peak mass acceleration into eqn. 

(5 .4 ), the displacement at this position was computed.

5.4 .5  Response to random vibration

Having examined the response of the model to harmonic excitation, it was 

subjected to random excitations. Since the model was effectively a single 

degree of freedom system, the frequency content of the random excitations 

had to be composed of mainly those frequency bandwidths which included the



natural frequency of the model. The frequency control potentiometer in the 10 

-  20 Hz. range of the Random Spectrum Generator was used to provide the 

major component of the random signal. However, due to overlap of adjacent 

frequency ranges, the generator produced vibrations in the 20 — 30 Hz. and

30 -  40 Hz. ranges. These signals had smaller intensities but could not be 

altogether isolated as shown in Fig. 5 -1 1 .

The model was vibrated continuously for a period of 10 seconds and base 

accelerations and mass displacements were recorded. The values of the base 

accelerations were later digitised and used as data for the mathematical analysis 

using the computer program. The comparison of response of the model using 

the theoretical and experimental results was made and is shown in Fig. 5 -1 3 .

5.4.6 Discussion o f  results 

The predicted and actual values for the natural frequency correspond very 

well. The response to harmonic excitation also shows that the behaviour of the 

model to sinusoidal behaviour can be predicted quite accurately. The supporting 

blocks did not provide absolute fixity, this was clear as slight lifting of the 

supports could be noticed, and hence the actual stiffness of the structure was 

possibly lower than the calculated value. This would certainly result in a lower 

value for the natural frequency of the structure. Losses which were 

encountered in the transmission of signals from the accelerometer could also be 

one of the contributing factors i.e the frequency of table motion was slightly 

higher than the actual recorded value.

The comparison of the theoretically computed and experimental values of 

displacements with the model subjected to random base excitations show that 

both the curves follow the same pattern. The experimental results confirm the 

trend in the behaviour of the structure. The use of LVDT’s to measure the 

displacements of the structure had two drawbacks. Firstly they offered a slight 

resistance to free movement of the structure and secondly as slight bending



occured in the structure, the LVDTs’ plungers were rubbing against the 

transformers within the body of the transducers . This in effect resulted in 

lower than actual values being recorded. It can be seen from Fig. 5—13 that 

the computed values are slightly higher than the corresponding experimental 

values. One of the reasons for this difference could be the effect of damping 

in the structure. In the mathematical analysis damping was assumed to be 

constant, in reality, however, the damping in any structure varies with 

frequency and this effect was not investigated here.

5.5 EXPERIM ENTAL STUDY OF MODEL 'B*

Having studied the behaviour of a model shear building, it was decided to 

test a truly three dimensional model. Model 'B' was designed as a 1 / 2 5  scale 

model of a pseudo prototype structure shown in Fig. 5 -1 4  . The reason for 

not constructing a reduced scale model of a real steel structure was to avoid 

the complications involved in the fabrication of miniature I— sections. Small 

scale I— sections would have to be fabricated by milling mild steel bars, this 

was thought as being a very intricate and time consuming task. Moreover, high 

initial stresses would have been induced by the fabrication process and hence 

reproducing the initial stress state in the prototype would have involved 

complex heat treatment procedures.

The natural frequencies of the model were determined in a similar fashion 

as for model 'A '. The modes of vibration of the model were deduced by 

comparing the phase differences between the output signals. It was then 

subjected to random vibrations to try and induce non— linear beahviour. 

Comparisons of results obtained using experimental and analytical techniques 

were made later.

5.5.1 Description o f  model 'B1 and i^trumentation used

This model was designed as an adequate model of the prototype using



artificial mass simulation to achieve density similitude. The model shown in 

Figs. 5—15 and 5—22 was a one storey three dimensional structure which was 

constructed using mild steel. The members were made from 3 mm rolled bar 

stock, which was obtained easily from suppliers. All the connections were made 

using spot welds. The model was braced in the direction perpendicular to the 

direction of vibration to eliminate the effects of cross vibrations. The columns 

were welded to two 2mm mild steel plates at the upper and lower levels, thus 

forming a rigid open ended box type framework. A lumped mass of 5 kg was 

attached to the upper plate by bolts, it was however seperated from the plate 

by means of washers to effectively isolate it, in a structural sense, from the 

main body of the structure.

As the structure could vibrate in more than one direction, it was necessary 

to monitor the various possible motions. A line diagram and a photograph of 

the experimental equipment used is shown in Figs. 5—16 and 5—21 

respectively. Accelerometers in the three orthogonal directions were attached to 

the lumped mass and to obtain direct readings of displacements LVDT's were 

also used. LVDT's were located parallel to each other and rigidly fixed to a 

common bracket which served as a reference line (Fig. 5—22). The LVDT in 

the middle was used to monitor actual displacements, while the outer two were 

primarily attached to see whether torsional behaviour was induced by the 

vibrations. Base accelerations were monitored from the accelerometer attached 

at this level. Accelerometers at the upper level were used to check whether 

strong movements were induced in the directions perpendicular to the direction 

of motion of the shaking table.

5.5.2 Determination o f  damping ratio 

The damping ratio of the model was found in exactly the same manner as 

for model 'A '. The model was disturbed from its equilibrium position and 

from the trace of the decay of acceleration (Fig. 5 -1 0 ), the damping ratio



r 3 3

was evaluated as 0.018.

5.5.3 Determination o f  the natural frequencies

Using the computer program developed for three dimensional frames, the 

first six natural frequencies and mode shapes for the prototype were 

determined. Examination of the eigenvectors revealed that the first mode shape 

was pure bending about the weak axis, the second mode was also pure 

bending, but about the other axis. In the third mode the structure reverted to 

bending about the weak axis, the fourth and fifth modes were composed of 

combined bending and torsion and the sixth mode was axial extension in the 

vertical direction. Scaling the natural frequency values of the prototype using 

similitude laws the corresponding values for the model were evaluated.

The model was attached to the shaking table and excited by feeding signals 

from the sine wave generator. As the input frequency values corresponded with 

any of the expected frequency values, the output from the appropriate 

accelerometer was fed into the oscilloscope and the input signal was fine tuned 

until a point of maximum amplitude was displayed on the oscilloscope. Table 

5— 3 shows the results obtained from the experimental study and corresponding 

theoretical values for the prototype and the model.

5.5.4 Response to random excitation

In this part of the study the model was subjected to random vibrations in 

the frequency range which covered the first six natural frequencies of the 

model. To achieve this a white noise signal ( A signal where the Power 

Spectral Density of each of the frequency components is the same) was used 

as the input (Fig. 5 -1 2  ). To try and induce non-linear behaviour of the 

model, the amplitude of the random input signal was increased to a maximum 

such that the output current produced by the amplifier was the maximum of

15 Amps.



The model was vibrated for a period of 10 secs, during which continuous 

recordings of output from the accelerometers and LVDT's were made. The 

base acceleration values were digitised and used as data input for the computer 

program in which the prototype was analysed. The displacement values 

obtained while monitoring the response of the model were scaled using 

similitude laws. A comparison of these two sets of values is made in Fig. 

5 -1 8

5.5.5 Discussion o f  results

In studying the response of model 'B' displacements and accelerations in the 

three orthogonal directions were monitored. In determining the natural 

frequencies, the procedure was only successful for the first three values. 

Occurence of resonance was clearly noticeable when the first three natural 

frequencies were excited. For the higher values, even at maximum 

amplification, the signals from the accelerometers were too weak, and failed to 

produce any visible effect on the oscilloscope screen. At these higher 

frequencies no motion, either of the table or the model was visible, only high 

frequency sound produced by the vibrator was audible. The first three mode 

shapes were clearly observable and the modes of vibration corresponded with 

those obtained by interpretation of the calculated eigenvectors.

The difference between the analytical and experimental results was probably 

because the actual elastic stiffness of the model was smaller than the calculated 

value. The welding process produced distortions in two of the columns. Even 

though the members were rigidly fixed to a jig during the welding process, 

one of the columns was slightly off plumb.

Bracing which was added to the model was effective in reducing any cross 

axis vibration to a very large extent. Fig. 5 -1 7  shows the oscillograph trace 

from the three LVDT's which were used to monitor the displacements. The 

diagram clearly shows that the three traces are identical, indicating that the



torsional effect is negligible.

Since movement in the direction perpendicular to that of applied motion was 

negligible only displacements occuring in the primary direction were monitored.

5—18 shows a comparison of experimental values and theoretically 

computed displacements in this direction. As with model 'A ' at higher 

amplitudes of table motion, the experimental values were lower than the 

corresponding theoretically computed values. The two curves follow a similar 

pattern indicating that the experimental results accurately predict the trend in 

the response of the structure. On average the variation between the values 

plotted amounts to about 10—12 %. However, losses were encountered in 

recording the experimental results. The frictional effects which were described 

for model 'A ' were more prominent in this test as three LVDT's were used as 

opposed to one for the previous test.

The effect of variation of damping ratio is thought to be of significance but 

no definite figure could be attributed to this effect. As the model behaved 

linearly elastic, the effect of strain rate was not taken into account.

5.6 CONCLUSIONS

The conclusions which may be drawn from this experimental study are

1) The behaviour of model 'A ' which itself was the prototype was predicted 

accurately by the experimental study. The predicted natural frequency and 

response to harmonic motion was closely related to the mathematically 

computed values.

2) The experimental prediction of response of this model to random behaviour 

also showed a close correspondence to the mathematically evaluated response. 

However, losses were involved in the recording of signals.

3) The model accurately represented the behaviour of a shear building. This 

was confirmed by the fact the experimental and theoretical values corresponded 

closely, thus reinforcing the assumptions made in the mathematical modelling of



the system.

4) The artificial mass simulation technique for adequate models satisfied the 

necessary mass similitude laws.

5) The prediction of natural frequencies of model 'B ' was not totally 

successful. The first three frequencies were predicted rather accurately, but 

distortions produced during fabrication led to a reduction in the stiffness of the 

structure. The procedure of sinusoidally exciting the structure at higher 

frequencies proved unsuccessful as the amplitude of the signals produced from 

the accelerometers were too small to be effectively recorded.

6) The response of the model to random vibration predicted the trend of the 

response of the pseudo prototype structure subjected to the same base 

accelerations. The experimental values underestimate the displacements produced 

in the structure. Experimental losses in recording the signal had a major 

contribution in the discrepancies produced.

7) It was not possible to induce nonlinear behaviour in this model in spite of 

using strong base accelerations. The capability of the vibrator limited the 

magnitude of base accelerations which would be required to cause nonlinear 

behaviour.

8) The use of small scale models was found to be a suitable technique for 

predicting the response of simple prototype structures. It was however a time 

consuming process and involved a lot of intricate work in the actual 

construction of the models and the monitoring of experiments.
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F ig . 5-19 ROLLER MECHANISMS USED FOR SUPPORTING 
AM) GUIDING THE SHAKING TABLE.

F ig . 5-20 CLOSE UP VIEW OF ORE ROLLER MECHANISM.
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F i g .  5-21 OVERALL VIEW OF THE EXPERIMENTAL EQUIPMENT 
AND THE SHAKING TABLE.

F i g .  5 -2 2  MODEL , B t WITH THE LVDT' s ATTACHED TO IT .
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TABLE 5-1 COMPARISON OF NATURAL FREQUENCY VALUES FOR MODEL 'A‘

THEORETICAL
VALUE

EXPERIMENTAL
VALUE

PERCENTAGE
ERROR

FREQUENCY IN Hz. 18.15 17.50 3.58

TABLE 5-2 COMPARISON OF RESPONSE OF MODEL ‘A’ TO HARMONIC LOADING

THEORETICAL
VALUE

EXPERIMENTAL
VALUE

PERCENTAGE
ERROR

MASS DISPLACEMENT 
(mm) 1.98 1.84 7.0

TABLE 5-3 THEORETICAL AND EXPERIMENTAL VALUES OF NATURAL 
FREQUENCIES OF MODEL 'B'

FREQ.

NO.

THEORETICAL
VALUES
(PROTOTYPE)

SCALED (*) 
THEORETICAL 
VALUES 
(MODEL 'B')

EXPERIMENTAL 
VALUES 
(MODEL 'B')

PERCENT
ERROR MODE

1 3.310 16.655 16.50 0.9 BENDING 
ABOUT X

2 4.265 21.326 20.75 2.7 BENDING 
ABOUT Z

3 7.780 38.898 37.50 3.6 BENDING 
ABOUT X

4 69.051 345.256 — —

5 76.107 380.534 — —

6 123.335 616.675 — —

(*) By similitude o>r = l r ~$, for this model l r = 1 / 2 5



CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

As stated in Chapter 1 there were two major objectives to be achieved by this 

research work. The first was to carry out a mathematical study of the dynamic 

behaviour of both two and three dimensional frames. The second objective was to 

examine the feasibility of using small scale models to predict the behaviour of 

prototype structures and to examine how well the experimental and analytical 

results matched.

From the mathematical study the following conclusions can be drawn

1) The concept of using two dimensional mathematical models to represent the 

single or multistorey skeletal frames is a valid one provided that the behaviour of 

such frames is essentially two dimensional. Such models are particularly suitable 

for shear buildings where the structures are assumed to vibrate primarily in only 

one plane.

2) Using nonlinear models, a more realistic behaviour pattern of structures 

subjected to large ground accelerations is obtained. It would therefore be 

uneconomical to design structures to remain elastic in regions where strong 

earthquakes occur.

3) For structures whose behaviour is three dimensional, by using more 

sophisticated mathematical models, in which six degrees of freedom are allowed 

per node and consistent mass matrices are used to accurately account for the 

mass of the structure, a clear understanding of the behaviour of the complete 

structure was achieved.

4) The effect of torsional behaviour in the structures was highlighted by the 

results shown for the numerical example analysed. At higher frequencies torsional 

behaviour torsional behaviour has a major contributionin determining the dynamic 

behaviour of structures.

5) The Dynamic condensation used to reduce the size of a large eigenvalue 

problem was not found to entirely successful in the evaluation of the natural 

frequncies for large structural systems.



From the experimental study the following conclusions can be made

1) Modelling laws should be applied meticulously when designing a model. The 

choice of the type of model depends to a large extent upon the type of material 

used and the parameters which are to be studied.

2) The experimental study of the first model was successful in accurately 

predicting the behaviour of a two dimensional prototype which was the model 

itself. Close comparisons were achieved between the experimental and theoretically 

computed results. This proved that the mathematical model used to predict the 

behaviour of shear buildings was valid and effective when the structure's behaviour 

was predominantly two dimensional.

3) The experimental behaviour of the second model, which was a reduced scale 

model of a pseudo prototype structure, was close to the predicted mathematical 

behaviour. The behaviour trend was very similar but due to experimental losses 

and inaccuracies in the fabrication process the displacements in the structure were 

underestimated.

4) The capability of the equipment used was not enough to induce nonlinear 

behaviour in the model. This was one of the objectives of the study that was'nt 

achieved.

5) The use of small scale models is a suitable technique to predict the 

behaviour of prototypes provided that the model accurately reproduces the 

characteristics of the prototype which are to be examined.

For the mathematical model used for three dimensional frames, the following 

enhancements can be made

1) To reduce the size of the eigenvalue problem, by using geometric constraints, 

the number of degrees of freedom per storey can be set to three i.e two 

translation degrees of freedom and one rotational degree of freedom.

2) Nonlinear modelling can be introduced in a similar manner as for two 

dimensional structures.

3) Inclusion of effect of shear deformation in the structural stiffness matrix.



4) Better modelling of the floor slab and possible inclusion of shear walls and 

infill panels.

For the experimental study of small scale models the following suggestions can be 

made

1) Models using smaller members and hence lower stiffness can be used to study 

the nonlinear behaviour of prototypes.

2) If more poweful equipment is available, multistorey models should be tested.

3) The effect of varying damping, with frequency, on the behaviour of models.

4) Improvements in fabrication techniques to reduce the effect of distortions 

produced.
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Jacobi’s method

APPENDIX 1

Jacobi's method provides a convenient scheme to compute all the 

eigenvalues and eigenvectors of a system such as

AX = XX (A l . l )

when the system matrix A is a real symmetric matrix. To explain the method 

the n matrix equations corresponding to each eigenvalue is expressed in terms 

of the normalised eigenvectors 

AX ̂

AX2 = X2X2

AXn = XnXn ( A 1 . 2)

o r  in  compact form

A(X, X 2...Xn) = ( \ ,  X ,, X2 X2 ' " "  Xn Xn) (A1.3)

S u b s t i t u t i n g

Q = (XA X 2....Xn) (AZ.4)

i t  can  be se en  th a t

(\,X,, X2X2, . . . . , X nV  -  Q\  (A1.5)

where X i s  th e  d ia g o n a l m a tr ix  o f  e ig e n v a lu e s

X1 0
0 X.

. . . 0

. . . 0

0 0 Xn j

Eqn. (A 1 . 3 ) can  th e n  be w r i t t e n  as 

AQ -  QX

Exam ining th e  m a tr ix  p ro d u ct 

B = QT .Q

(.A1.6 )

(AZ.7)

(A 1.8)



i 0 4.

The coefficient of B located on the row and column will be given by 

b j j  -  X ? . X j  ( A 1 . 9 )

corresponding to the scalar product of the and eigenvectors, associated 

with the two different eigenvalues Xy and Xy by the expressions

AXy = XyXy (A l . l O a )

AXj  -  XyXy ( A l . l O b )

Postmultiplying the transpose of {Al. lOa) by Zy, and premultiplying (Al. lOb)  

by X j  gives

X j X j - Xy X j  (A l . l l a )

and X? A Xj  = \ j  X \  Xj  ( A l . l l b )

Subtracting Eqn. (A l . l l b ) from { Al . l l a ) ,  and considering that A =  A ^ for a 

symmetric matrix A, the result is

(Xy - X y) X^Xj  -  0 (A1 . 12 )

w hich shows th a t

X?Xj = 0 (A1 . 13)

f o r  two d i f f e r e n t  e ig e n v a lu e s  Xy and Xy. I f /  = j  th e n

tffXy * 0 ( A 1 .14)

and in  p a r t i c u l a r  i f  th e  e ig e n v e c to r s  a re  n o rm a lise d

xJXj  -  1 ( A1 . 15)

From t h i s  d is c u s s io n  i t  can  be co n c lu d ed  th a t

b j j  - 0 ,  f o r  i * j  (A1. 16)
1 ,  f o r  i = j

so th a t

B = I  (A 1 . 1 7 )

and

q T = 0 - i  ( A1 . 18 )

A matrix having the property of eqn. {A1.18) is called an orthogonal matrix 

Now premultiplying eqn.{A1.7) by Q ?  the result is

qT. A. Q  = Qt . Q . \  = X ( A1 . 19)



which shows that if an orthogonal matrix Q,  such that applying to A  the 

orthogonal transformation .( ) .Q,  produces a diagonal matrix, then the 

diagonal coefficients of that matrix are the eigenvalues of system (Al .J) ,  and 

the columns of matrix Q are the corresponding eigenvectors. Therefore the 

problem reduces to try and diagonalise the matrix A.

Jacobi's method provides a scheme to eliminate, in turn, selected 

off— diagonal terms of matrix A  by performing a sequence of . elementry 

orthogonal transformations.

Considering the symmetric matrix of order 4

(A 1 . 2 0 )
a n *12 *13 *14
*12 *2 2 *2 3 *24
* 1 3 *2 3 *33 *34

.
*14 *24 *34 *44

assuming that the term  a 2A is

orthogonal transformation matrix matrix

* 1  -

1 0
0 c
0 0
0 s

0
-s

0
c

(A2 . 21)

where C =  cos 6 and S =  sin 6, with 6 being a rotation angle to be 

determined, the result of a matrix operation of type (A1.19) is

J 0»u + *|4 ! *13 ! -«12 + «44
| + ŝ 44 + 2xa24 1 «23 ♦ *34 1 -«(ff22 - *44) ♦ *24̂ * ~ I2)

*13 J «32 + »34 J *33 [-M32 + «34
-M12 + M14 [ -0(̂ 23 “ *44l+*24̂c2 “ I -»23 + coJ4 1 ,J*22 + fJ*44 “ 2j°°24

r [ a r ,

(A 1 . 2 2 )

To eliminate the term in the second row and fourth column it must be

- c o s d . s i n e  (&2 2  " a 4 4 > + a 2A( c o s 26 - s i n 2e) -  0 (A 1 . 2 3 ) 

which can be transformed in to

a 2A t a n 2e + t a n 6 ( a 22 - a AA) m a 2A -  0



5. 6 (j

The r o o t s  o f  t h i s  second o rder  equa t ion  are

t and  = 2 2 '  * [ ^ 2 2  ~ + 4 a 2^ 2 ]  ̂ (A I.24 )
2 4

C o n s id e r in g  o n ly  one o f  th e s e  r o o ts ,  f o r  in s ta n c e

t and  = ~^a 2 2 " + [ (g.2.2 '  a W .2 + 4 a 24 2 ] * ( A1 . 25)
2 4

It can be noticed that the other root will be 180° out of phase and would not 

affect the results. Working with root (A1.25) is equivalent to considering only 

the — 7r/ 2 <  0 <  7r/ 2 interval.

Having tand the following can be computed 

c o s d  = (1 + t a n 2d) ~ i  

and s i n d  = c o s  0t and  (A 1 . 2 6 )

Jacobi's method consists of applying the above transformation to all the 

off— diagonal terms until all of them are, to a small error, equal to zero. 

Normally the initial starting value is taken to be the off diagonal term with 

the largest absolute value. Assuming that it occupies the location (*,/) the 

expression (A1.26) becomes

t a n d  -  ~ ( a i i  ' a U ) * [ (* i l  a ! i - 1 t  4 a U 2 ]* . (A 1 . 2 7 )
2aij

from which cosd and sind can be evaluated using eqns.( A /.26). Next the 

matrix 2?1 is built taking a unit matrix and placing cosd in location (i,i) and 

(/,/), —sind in location (i,j) and sind in location (j,i).  The orthogonal 

transformation Rj . A. R^  ,which is equivalent to modify the i tfl and j tlt rows 

and columns of A  according the following scheme, is performed next.

Row i a i i  = c o s 20 . a n  + s i n 20 . a j j  + 2 s i n d . c o s d . a j  j

a j j  = - c o s d . s i n d  ( a j j - a j j )  + a j  j ( c o s 20 - s i n 20) = 0 

affc = c o s d . a + s i n d . a j f c

k = 1 ,n  bu t k  ^ i ,  k ^ j  (A 1 . 2 8 )

Row j  a j j  = s i n 2d . a j j  + c o s 2 0 . a j  j  + 2 c o s d . s i n d . a j  j

a j j  = - c o s d . s i n d  ( a n - a j j )  + a j  i ( c o s 20 - s i n 20) -  0



a j k  = s i nO. aj f o  + cos  6 . a

k  = I , n but k # i , k  * j (A 1 . 2 9 )

Column i a^j  = cosd. aj ^j  + s i n d . a ^ j

k  = l , n  bu t k * i , k  ^ j ( A1 . 30 )

Column j  a ^ j  = - s i n d . a ^ j  + c o s d . a ^ j

k  = 1 , n  bu t k ^ i , k  & j 0A 1 . 3 1 )

It can be noticed that the orthogonal transformation preserves symmetry which 

allows the number of operations required by eqn.(A1.28) to be reduced to the 

same number as eqn. (A1.31). Again the largest absolute value non zero 

off— diagonal term is selected and the transformation outlined above is 

repeated. These transformations are repeatedly applied until no other zero off 

diagonal terms remain. It should be noticed however,that when applying the 

transformations (A1.31) to (A1.28) at a given stage, a non zero value for a 

term previously eliminated might be obtained, which indicates the iterative 

nature of this method. Nevertheless, it can be shown that this method is 

always convergent, and that is completely stable against rounding off errors.

Assuming that n iterations are needed to diagonalise A,  after all 

transformations have been applied, the result obtained is

so th a t  th e  e ig e n v e c to r  m a t r i x  Q i s  g iv e n  by

(A 1 . 3 3 )
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