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Abstract

Fire has been always a major concern for designers of steel and concrete structures.

Designing fire-resistant structural elements is not an easy task due to several limita-

tions such as the lack of fire-resistant construction materials. Concrete reinforcement

cover and external insulation are the most commonly adopted systems to protect

concrete and steel from overheating, while spalling of concrete is minimised by us-

ing HPFRC instead of standard concrete. Although these methodologies work very

well for low rise concrete structures, this is not the case for high-rise and inaccessible

buildings where fire loading is much longer. Fire can permanently damage structures

that cost a lot of money. This is unsafe and can lead to loss of life.

In this research, the author proposes a new type of main reinforcement for concrete

structures which can provide better fire-resistance than steel or FRP re-bars. This

consists of continuous braided fibre rope, generally made from fire-resistant materials

such as carbon or glass fibre. These fibres have excellent tensile strengths, sometimes

in excess of ten times greater than steel. In addition to fire-resistance, these ropes

can produce lighter and corrosive resistant structures. Avoiding the use of expensive

resin binders, fibres are easily bound together using braiding techniques, ensuring

that tensile stress is evenly distributed throughout the reinforcement. In order to

consider braided ropes as a form of reinforcement it is first necessary to establish the

mechanical performance at room temperature and investigate the pull-out resistance

for both unribbed and ribbed ropes. Ribbing of ropes was achieved by braiding

the rope over a series of glass beads. Adhesion between the rope and concrete was

drastically improved due to ribbing, and further improved by pre-stressing ropes and
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reducing the slacked fibres. Two types of material have been considered for the ropes:

carbon and aramid.

An implicit finite element approach is proposed to model braided fibres using Total

Lagrangian formulation, based on the theory of small strains and large rotations.

Modelling tows and strands as elastic transversely isotropic materials was a good

assumption when stiff and brittle fibres such as carbon and glass fibres are con-

sidered. The rope-to-concrete and strand-to-strand bond interaction/adhesion was

numerically simulated using newly proposed hierarchical higher order interface ele-

ments. Elastic and linear damage cohesive models were used effectively to simulate

non-penetrative ’free’ sliding interaction between strands, and the adhesion between

ropes and concrete respectively. Numerical simulation showed similar de-bonding

features when compared with experimental pull-out results of braided ribbed rope

reinforced concrete.
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Abbreviations

AR Alkali resistant

BCR Braided composite rods

CC Concrete canvas

CFCC Carbon fibre composite cables

CFRC Carbon fibre reinforced cement

CFRP Carbon fibre reinforced polymer

CMC Ceramic matrix composite

FE Finite Element

FEM Finite Element Method

FRC Fibre reinforced concrete

FRP Fibre reinforced polymer

GFRP Glass fibre reinforced polymer

GGBFS Ground granulated blast furnace slag

GTT Glass transient temperature

HDPE High density polyethylene

HESFRC High early steel fibre reinforced concrete

HO Higher order

HPC High-performance cement

HPFRC High performance fibre reinforced concrete

KSP Krylov scalable linear equation solver

LCFRC Long carbon fibre reinforced concrete

NFRCM Natural fibre reinforced cementitious matrices

PAN Poly-acrylonitrite-based (carbon fibres)

PE Polyethylene

PO Polynomial order

PP Polypropylene

PVA Polyvinyl alcohol

RBFR Ribbed braided fibre reinforcement
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SFRC Steel fibre reinforced concrete

T12 commercial name for a double braid twelve strand

round sinnet

TL Total Lagrangian

TRC Textile reinforced concrete

UCAS Unresin carbon-fibres assembly system

UCCF Unresin continuous carbon fibre

UHP-HFRC Ultra high performance hybrid fibre reinforced con-

crete

UHPFRCC Ultra high performance fibre reinforced cementitious

composite
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Terminology

braiding a group strands inter-winded using different pattern

and follow a single axis of direction

plait similar to braid refers to the inter-winding of 3 or

more strands

sinnet braided cordage in flat round or square form made

from 3 or more strands

strand a group straight or twisted yarns

weaving a group strands inter-winded using different pattern

and follow 2 or 3 axis of direction

yarn a group of straight tows

Cubit Terminology

blockset a set which contains geometrical entities

edge a entity representing a path between 2 end nodes and

passes through mid-nodes if exists in a FE mesh

meshset a set which contains a set of tetrahedrons

node a entity representing a point in a FE mesh

nodeset a set which contains a set of nodes

sideset a set which contains a set of triangles
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Operators

‖x‖ L2 norm of x

x̂ normalized vector of x

x̄ mean value of x

~x vector of x

d, ∂, δ differential operators

∆x range of x

∇x gradient of x

Symbols

α constant variable

β contribution damage factor between Modes I, II and III

γ, α, β index notation of corners, edges and faces DOFs

ε six-component strain vector

θ angle

κ exponent factor

µ coefficient of friction

νp Poisson’s ratio in the transverse plane of fibres

νpz Poisson’s ratio between fibre principal axis and transverse
plane

ξ, η, ζ normalized coordinates

φ nominal diameter of reinforcement

σ six-component stress vector

σ̄c effective ultimate tensile strength

τr bond stress at failure by slipping
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ω Gauss quadrature weights or damage fraction

Φ shape function matrix

Ψ potential field

~a axis of rotation

e error of solution

~f fibre directions

f intel element internal force

ft maximum traction force of interface

gi displacement of interface damage initialization

~p principal axis of transverse isotropy

p polynomial order

tloc local traction

u displacement

un,t1,t2 local interface gap displacement in Mode I, II and III

uloc,glob local/global interface gap opening

v velocity

x current coordinates

A, Ā area, effective cross sectional area

C compliance matrix

Dloc local elastic stiffness matrix

E Green strain tensor

Eo interface element penalty stiffness

Ep stiffness in the transverse plane of fibres

Ez stiffness in the principal axis of fibres

F , F̄c force, effective critical force

F deformation gradient tensor

Gf,I Griffth fracture energy in Mode I
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Gz shear modulus between fibre principal axis and transverse
plane

I identity matrix

I, II, III normal and two tangential modes of fracture

J Jacobian

Kel element stiffness matrix

L Legendre Polynomials

N number of degrees of freedom

N local shape functions

R rotation matrix

S 2nd Piola Kirchhoff stress tensor

Tσ, Tε stress/strain transformation matrix

W virtual work

X reference coordinates
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Chapter 1

Introduction

1.1 Motivation

Structural stability during fire incidents is extremely important to preserve occupants’

lives, reduce the risk to firefighters and reduce financial losses. It is important that

the duration of fire is minimised. In cases such as high-rise and confined buildings, the

containment of a fire can be very difficult and permanently damages the structure.

A recent example is a fire in Krasnoyarsk (south-western Siberia), involving a newly

built 25 storey monolithic concrete high-rise building. A fire was triggered during

maintenance work on a balcony and propagated to the above lying balconies205. Al-

though the building had appropriate fire access190, using 16 fire engines, three heli-

copters and about 100 firefighters, it took approximately 4 hours to get the fire under

control. Due to structural fire insulation and compartmentalisation, only the fab-

ric of the building was damaged, but still resulted in an approximate repair bill of

£605,000206. This case could have been worse if the building was taller and if a fire

was initiated further inside the building.

When concrete structures are exposed to elevated temperatures, permanent and large

deformation can occur due to excessive yielding of steel reinforcement and loss of bond

strength with concrete. Concrete’s strength and stiffness is also reduced. Spalling can
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be mitigated by using propylene fibres in the concrete mix. Propylene fibres melt at

around 130◦C, thereby forming a series of cavities through which built up water pres-

sure in concrete can be released. Heating of steel reinforcement is normally reduced

by providing adequate concrete cover and overall structural insulation. However,

these additional measures add extra weight to the structure, while the installation of

insulation inflates the overall cost of construction.

1.1.1 Aims and objectives

The principle aim of this research is to find an alternative concrete reinforcement

system that could be fire-resistant, and to study its mechanical behaviour and bond

adhesion with concrete. The first objective of this research is to develop a new

reinforcement system made from heat resistant materials, which provides sufficient

adhesion to concrete and can be used as main reinforcement in concrete structures.

A pre-stressed ribbed braided fibre reinforcement RBFR system was developed as

discussed Section 1.2 and experimentally tested using a pull-out test to determine

the overall bond adhesion with concrete. The second objective of this research was

to develop a numerical tool based on a parallelised finite element method to simulate

and understand the overall mechanical behaviour of RBFR system and its interaction

with concrete. This consists of developing a methodology to mesh braided geometries

using an efficient algorithms, to model fibrous materials using an elastic transversely

isotropic constitutive model, to simplify the bond interaction between braided strands

by using interface elements instead of contact mechanics (i.e. reduce computational

cost), and to accurately simulate the bond interaction between braided ropes and

concrete by developing hierarchical higher order interface elements.

1.2 The motivation for braided fibre reinforcement

Fibre reinforced material has been used for thousands of years. Adobe, which is

made from a mixture of natural straws and mud/clay, has been used for centuries
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by humans to build structures and produce artefacts. Since the Greek and Roman

Empires, cementitious materials have been used to produce stronger, water and crack

resistant products. By contrast, the use of steel as reinforcement to cementitious

products was not invented until the nineteenth century. This has revolutionised the

construction industry with stronger buildings in various shapes and forms.

In the late nineteenth and beginning twentieth century, we saw the introduction of

asbestos and glass fibres as reinforcement of cementitious products. While it was

common to add chopped fibres to concrete to enhance its properties, it was not

until a few decades ago that continuous fibre reinforced polymers were introduced to

produce an alternative reinforcement for steel, providing corrosion resistant, lighter

and stronger structural components. With the introduction of polymer matrices, fire-

resistance resurfaced as an issue, since commercially viable polymers have a low glass

transition temperature and this directly affects the structural integrity of the whole

reinforced system114;113.

The motivation behind this research was to produce and investigate, both experi-

mentally and numerically, a braided fibre reinforcement system for concrete as an

alternative to steel reinforcement that can be further studied for its potential fire en-

durance. Steel reinforcement in a typical 600×300 mm un-insulated concrete section

with 50mm of concrete cover can reach temperatures of 300◦C in a 90 minute standard

fire (Figure 1-1(b)) with an elastic modulus reduction of 20%-28%101. This results

in excessive yielding of steel, formation of plastic hinges and permanent deformation

beyond the serviceable limit state. Fibrous materials such as carbon and glass fibres

were considered in this research as an alternative to steel reinforcement due to their

heat and corrosioni resistance and high tensile strength.

Fibre reinforced polymer (FRP) rebars, available on the market, are used in mar-

ine environments and bridge construction. A case study shows that FRP rebars

are 60% more expensive than steel, but the construction of bridge decking was 56%

cheaper than conventional steel reinforced decking, with better endurance and less
ionly alkaline resistant glass fibres are suitable in concrete environment
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Figure 1-1: Temperature contours lines for a quarter of a 600x300mm concrete
section (60, 90 and 120 minutes standard fire exposure)101

maintenance, providing long-term benefits and savings29. Although such FRP rein-

forced concrete structures are corrosion resistant, at elevated temperatures the bond

strength between FRP bars and concrete is weakened by 80-90% at temperatures

around 200◦C114;113 due to the low glass transition temperature (GTT) of the poly-

meric resins used to produce FRP bars.

Developing heat resistant fibre reinforcement was one of the major challenges of this

research. Heat resistant polymeric resins were considered, but due to their manu-

facturing cost this idea was discarded. Another option was ceramic based matrices,

but due to the lack of expertise and necessary equipment and funding, this idea was

unworkable and remains open for investigation. Finally, the old art of weaving, stitch-

ing, knitting and braiding inspired the mechanical binding of a bundle of fibres to

form forming lengths of ropes. This cheap solution led to another challenge in provid-

ing a good adhesion between the ropes (used as tensile reinforcement) and concrete,

which was provided by braiding the rope over a series of fire-resistant beads forming

external ribbing effects. It was important for ropes to be fully embedded and beyond

their non-linear elastic stage before they were cast in concrete. Pre-stressing of ropes

up to the elastic region was necessary to avoid largely irreversible deformations and,

consequently, severe concrete cracking.
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Experiments were conducted to examine the feasibility of ribbed braided fibre rein-

forcement, while a finite element numerical modelling framework was developed to

model the mechanical behaviour of braided fibres and their interaction with concrete

and other materials.

1.3 Outline of thesis

A general literature review of different types of fibre reinforced concrete will now

follow, which later focuses on several types of continuous fibre reinforced concrete

and how the idea of un-resin ribbed braided fibre reinforcement emerged. The liter-

ature review also provides a general overview of the mechanics of fibres and braided

sections, and recent numerical modelling techniques for woven textiles and braided

fibres. Physical and numerical experiments were conducted to assess the feasibility of

ribbed braided fibre as concrete reinforcement and to develop a numerical tool that

simulates the kinematics of solo/cast in concrete braided fibres. Chapter 3 on the ex-

perimental work discusses the methodology adopted and presents results of pull-out

tests of carbon and aramid fibre ropes (later ribbed with glass beads) embedded in

concrete, before making recommendations. The last part of this research was divided

into three main chapters. Chapter 4 introduces the use of higher order finite interface

elements that are refined hierarchically (increasing computational efficiency) and in-

troduces cohesive damage models for the concrete-fibre interface. Chapter 5 focuses

on the methodology adapted to conduct finite element modelling of braided fibres.

It starts by explaining how braided geometries were generated and meshed, and how

the potential field equation was solved to determine the fibre directions and imple-

ment transverse isotropy for individual strands. The discussion continues to focus

on how pre-defined interface elements were used to describe the contact behaviour

between strands and demonstrates the importance of using geometric non-linearity

when modelling braiding fibres. After studying the mechanics of braided geometries

at the mesoscale in Chapter 5, the pull-out behaviour of ribbed braided fibre embed-

ded in concrete was simulated. Chapter 6 proposes a simplified version of modelling
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braided fibres embedded in concrete. This thesis concludes with a summary of the

main topics of study, further remarks on the investigation, and suggestions for future

work.
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Chapter 2

Literature review

Natural evolution has always found solutions to all sorts of mechanical challenges. For

millennia, natural fibres have been grown as rigid and flexible matter to resist tensile

actions. Mankind exploited natural fibres to manufacture ingenious products such as

lashings, ropes, textiles and adobe. Adobe is a mixture of mud and natural fibres and

is considered the first manmade composite material, able to resist compressive forces

and shrinkage.

Fibre reinforced concrete, similar to adobe, uses fibres to create a rigid composite

strong enough to be used as construction material. Invented during the Victorian age

by using steel fibres (wires), aggregate and cementitious matrix, reinforced concrete

has revolutionised the construction industry. During the twentieth century, new,

stronger, lighter, corrosion and heat resistant fibre materials were invented to replace

steel reinforcement. Among different types of composites such as fibre reinforced

polymers (FRP) and ceramic matrix composites (CMC), fibre reinforced concrete

(FRC) was developed to have special material characteristics discussed later in this

chapter.

This chapter is divided into three main parts. In the first section short and long

fibre reinforced concrete are discussed, and how the idea of ribbed braided fibre rope

system was proposed. The second section focuses on the understanding of the bond
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mechanism between steel reinforcement and concrete, followed by a comprehensive

literature review on the numerical modelling of reinforced concrete. Furthermore, it

discusses the development of damage modelling in the FEM, highlighting important

aspects required to model ribbed braided fibre reinforced RBFR concrete. The last

section focuses on the mechanics of fibre composites and braided fibres, including

recent developments on the numerical modelling of braided fibres.

2.1 Fibre reinforced concrete

Fibres used to reinforce concrete exist in various forms, materials and profiles. Dif-

ferent types of fibres contribute distinctively to the mechanics of concrete structures.

The aim of this section is to highlight the evolution of different types of fibre reinforced

concrete structures, and consequently ribbed braided fibre reinforcement.

2.1.1 Different types of fibre reinforcement

Fibres used in reinforced concrete exist in various forms and materials. Strong fibres

able to provide good adhesion with cementitious matrices can increase the tensile

strength of concrete, while other properties of fibres can enhance other physical prop-

erties of concrete.

Fibre reinforced concrete FRC was first invented by Ludwig Hatschek around 1890.

After 7 years of experimenting with different mixtures of cellulose, asbestos fibre,

cement and water, he optimised the mix. By pressing it through a papermaking

machine, he produced a viable fibre cement panel. This invention was later patented

under the name of Eternit133. Eternit became one of the most important construction

materials worldwide and was widely used as roofing and cladding material (Figure

2-1). This material was very well known for its fire-resistance, water tightness, rot

resistance, lightness, malleability and ease of installation. Awareness of the danger

of asbestos soon emerged during the 1970s, and consequently, PVA fibres have long
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since replaced asbestos fibres133.

Figure 2-1: Asbestos cement roof
cladding

Figure 2-2: SFRC after exposed
to 800◦C199

While Eternit was invented for non-load bearing components, the introduction of

high-performance cement (HPC)(later evolved into high-performance fibre reinforced

concrete (HPFRC)) enhanced the material properties of concrete. The first HPC was

produced with steel fibres to increase the durability and crack resistance of concrete.

This was later used by Romualdi and Batson in the United States around 1988 to

construct bridges with longer life expectancy169. A few years later Mori proposed an

inclusion model to determine the crack arrest in HPC145. Meanwhile, in ex-USSR,

glass fibre reinforced cement was invented by Mr Biryukovich and his sons32. Des-

pite the outstanding properties of glass FRC, it was discovered that ordinary glass

fibre was not fit for purpose, as it deteriorates in alkali environments produced by

hydrated Portland cement98. New attempts to use synthetic fibres such as nylon and

polypropylene as a replacement of glass fibres initially failed and produced an in-

ferior HPFRC compared to steel fibre reinforced cement (SFRC)144;75. This was later

improved by using high tensile strength polypropylene fibres147 to produce durable

concrete, adequate for the manufacture of corrugated roofing, precast flower beds,

and water tanks119.
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Steel fibre reinforced concrete

The popularity of steel fibre reinforced concrete (SFRC) rapidly increased among

researcher and engineers. The versatility of steel fibres in the market made it pos-

sible to produce concrete strong in bending, shear and torsion138. At a micro-level,

the bond adhesion between individual fibres and concrete was examined, while at

a meso-level the overall crack patterns of SFRC were studied28. It was discovered

that bond strength is influenced by the speed of pull-out testing15 and has a dir-

ect influence on the long-term performance of HPFRC. The bond strength can be

doubled by optimising the sand ratio in mortar95. On similar criteria, optimising

the right amount of steel fibre in concrete can produce C35 concrete after just 24

hours of curing time, commercially denoted as high early-strength steel fibre rein-

forced concrete HESFRC148. This is of great advantage when high strength concrete

is required at an early stage of the construction. When HPFRC is fully cured, com-

pressive strength can reach up to 90-115MPa with just 1% fibres by volume in normal

and lightweight concrete14. Moreover, fibre orientation influences the anisotropy of

the concrete and the post-cracking process of ultra high-performance fibre reinforced

cementitious composite UHPFRCC112. Using a cocktail of micro (8µm and macro

(12-31µm) steel fibres (having different shapes and geometries) it is possible to pro-

duce a hybrid UHPFRCC (UHP-HFRC) that has the advantage of multiple cracking

behaviours and strain hardening158. Some theoretical studies on the energy changes in

concrete contributed to the improvement of the tensile strain capacity of HPFRC207.

Various studies were conducted to examine the mechanical behaviour of SFRC when

exposed to fire or high/extreme temperatures. Early studies have shown that the com-

pressive strength of both plain and steel fibre reinforced concrete weakens drastically

at temperatures of around 800◦C (Figure 2-2)162;64. Corrugated and deformed steel

fibres SFRC are more resilient at temperatures of around 1000◦C125 than plain fibres.

Although the addition of polypropylene (PP) fibres to the SFRC did not improve the

strength of concrete115;199, it was beneficial in preventing explosive spalling generated

from water pressure build up in concrete. As temperature rises, PP fibres dissolve,

10



leaving micro pores from which water pressure can be released9;191. PP is one example

of fibres being used to improve the performance of concrete at elevated temperatures.

The same spalling resistance was observed in concrete columns containing PP fibres

and suggested that steel reinforcement can be reduced168, providing cheaper, lighter

and fire-resistant concrete components. Fire-resistant fibre reinforced concrete can

be achieved by adding ground granulated blast furnace slag (GGBFS) to concrete71

and produces commercially viable concrete products.

One of the main disadvantages of SFRC is the corrosion of the fibres. Corrosion

can be prevented by adding inhibitor admixtures148, using the protection system27

or by galvanizing or coating steel fibres with corrosion resistant material160. In the

meantime, steel fibres are beneficial as they produce a passive corrosion resistance to

the main reinforcement39. In certain cases, steel fibres can be replaced by polyethene

fibres PE which are ideal for repairing exterior damages of concrete structures due to

their inertness118.

Carbon fibre reinforced concrete

Carbon fibres are stronger, lighter, heat resistant and more cheaper than steel (com-

paring strength to volume). After initial studies of carbon fibre reinforced concrete

(CFRC)7, it became increasingly popular and commercially viable towards the end of

the twentieth century. This brought radical improvement in CFRC material proper-

ties by using a water reducer and accelerating admixture221. The addition of a latex

solution and use of hot water in the curing process enhanced the flexural resistance

of concrete by 40% and its toughness by 100%124. Moreover, the addition of silica

fumes increased the abrasion resistance of CFRC187.

The introduction of poly-acrylonitrile-based (PAN) carbon fibres in CFRC was revolu-

tionary, able to provide better tensile/flexural strength209 and higher damping ratio73

to concrete. Longer chopped carbon fibres (around 100mm) were also used to produce

reinforced concrete panels LCFRC and increase its blast spalling resistance201. The

performance of CFRC at elevated temperatures was also studied. Reductions of 60%

11



in compressive strength and 30% in flexural strength were observed when subjected

to temperatures of around 800◦C202. Unfortunately, the literature is quite limited

and further research is therefore highly recommended on this topic.

In the following section, the possibility of using continuous fibres to reinforce, and

eventually replace steel rebars in concrete structures is discussed.

Figure 2-3: Scattered carbon
fibres for CFRC

Figure 2-4: Scattered carbon
fibres embedded in concrete202

2.1.2 Continuous fibre reinforcement

While the purpose of short fibres is to improve the mechanical and non-mechanical

properties of concrete, long continuous fibres are mainly used to mechanically reinforce

concrete structures in tension and shear. This represents an alternative solution for

steel reinforcement that benefits from the advantageous properties of fibre products,

such as weight to strength ratio, flexibility and thermal resistance (specific types of

fibres).

Continuous fibres exist in various forms. The most common type of continuous fibre

reinforcement is fibre reinforced polymer (FRP) rebars, usually used as a substitute

for steel reinforcement. They provide lighter, corrosion resistant concrete structures.

Similarly, carbon fibre composite cables are used as a pre-stress reinforcement in

concrete structures. A less popular type is braided FRP rods, studied as an alternative

reinforcement to continuous FRP rods. While all of these make use of polymeric resin

binders, the use of un-resin (carbon) continuous fibre (UCCF) and textile reinforced
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concrete (TRC) was studied by researchers as a possible reinforcement for concrete

structures. The main disadvantage of this kind of reinforcement is the brittleness of

commonly used materials such as carbon, glass and Kevlar fibres. Concrete structures

will fail without any visible warning to the building users. It is thought that un-resin

braided fibre reinforcement as proposed in this thesis can absorb more energy than

the existing systems. A hybrid of carbon/glass/Kevlar fibres and steel wires may

solve this problem and is worth investigating further.

Carbon fibre composite cables and rods

Carbon fibre composite cables (CFCC) manufactured by Tokyo Rope Company Ltd

were the first type of continuous fibre reinforcement invented1. This was an early form

of FRP rods, which are corrosion resistant, able to withstand marine and salty envir-

onments, and therefore ideal for use in bridges and other long-life structures. CFCC

were first used as pre-stressing tendons (Figure 2-5), requiring the bond strength

between the cables and concrete135 to design pre-stressed concrete structures. Later

work showed how similarly carbon fibre reinforced polymer (CFRP) rebars can be

used as pre-stressed tendons. This was made possible by improving the the bond

adhesion using sand-covered and spiral glued modified FRP bars47. The same re-

search identified that the bond failure was very brittle and challenged manufactures

to produce better FRP rebars.

Although commercial FRP rods provide sufficient bond strength at room temperature,

this is not the case for elevated temperatures. Research shows that the bond strength

can be reduced by 80-90% at around 250◦C114. Due to the low glass transition

temperature (GTT) of the polymer binder69, the matrix liquefies and the structural

integrity of the fibres and bond adhesion is quickly lost113.

Braided composite rods

As an alternative to CFCC and FRP rods, braided FRP rods were developed with the

aim of providing better pull-out strength when embedded in concrete. Studies showed
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that partial pre-tensioned braided FRP achieved a better modulus of elasticity and

bond strength154 compared to continuous FRP rods. Like braided ropes (see 2.3.1.3),

the mechanical properties of braided composite rods (BCR) also depend on the type

and dimensions of the braiding profile itself. Research shows that the braiding angle

is the second most important parameter that determines the overall strength and

modulus of BCR195. As a matter of fact, BCR with an optimised braiding angle

made from 77% E-glass and 23% carbon fibre yields higher tensile strengths than 100%

carbon BCR (Figure 2-6)76;78;77. Although straight carbon fibres are stronger than

E-glass, the justification behind this is that carbon fibres are more brittle, especially

when embedded in a brittle matrix. Due to lack of research, BCR are not yet available

on the market until further research is conducted to determine the commercial and

mechanical viability of such a product.

Figure 2-5: CFCC and
typical anchorage for

pre-stressing197

Figure 2-6: Continuous braided rods, 77%
E-glass and 23% carbon fibre76

Un-resin continuous carbon fibres

In order to circumvent the poor performance of polymers used in FRPs at elevated

temperatures, one can use un-resin continuous carbon fibres (UCCF) as invented by

researchers at Kyushu University, Japan. UCCF are easy to anchor and shape, and

are more cheaply produced than FRP rods. Using UCCF reinforcement, studies have

shown that concrete beams can achieve up to 80% of the flexural strength compared
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to an equivalent steel reinforced beam. One of the main reasons for this is that only

50% of the carbon fibres were contributing to flexural resistance57 and reducing the

slackness of fibres increased this contribution up to 67%153.

Another drawback was the lack of good adhesion to concrete. A grid skeleton system

(UCAS) was proposed to mitigate this problem. This consisted of gluing UCCF

cables to a steel rib cage using polymeric resins152, which ultimately improved the

bond strength by ten times compared to a non-grid system and provided enough

flexural resistance to be a substitute for steel reinforcement56;184. Unfortunately, the

performance of UCAS at elevated temperature is not yet known and thus requires

further investigation.

The following literature review focuses on the bond behaviour of carbon fibres em-

bedded in concrete. The bond interaction between fibres and concrete can be studied

at both micro and meso-level. Several attempts were made to improve the lack of

microscopic adhesion with concrete and carbon fibres. Two successful methodologies

were to treat the carbon fibre’s surface (known as silane-treatment) and/or add silica

fume/organic polymer to the cementitious matrix12. Another possibility was the use

of air entraining concrete to create cavities which act as interlocking mechanisms on

the fibres108.

It is important to note that advanced studies, such as the micro-mechanical analysis

and the development of design models, started to appear few years after the invention

of the FRC by Biryukovich and sons32, and was later evolved by Briggs et. al.33.

One of the most important findings was that FRC with 3-5% unidirectional carbon

fibre CFRC can increase its relative tensile strength up to 7.8 - 13.7MPa3. There is

less research done on the micro-thermo-mechanical bond behaviour of carbon fibres

embedded in concrete.

Textile reinforced concrete

Another type of continuous fibre reinforcement is textile reinforced concrete TRC.

The practical use of TRC was highlighted by the invention of Concrete Canvas (CC),
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which is a flexible form of cement-impregnated fabric, capable of hardening into any

given shape and forming a thin durable waterproof fire-resistant concrete shell. This

could be used to produce inflatable emergency shelters (Figure 2-7) that are easily

transported and erected in a short period of time80. Understanding the mechanical

behaviour of TRC composites is important to the development and construction of

TRC structures.

TRC is considered to be a heterogeneous composite material with a complex micro-

structural layout and, similarly to CFRC, it suffers from a lack of adhesion between

concrete and fibres. Models describing the micro/mesoscopic mechanics of the bond

adhesion165 were useful in determining the bond strength between single filaments

and concrete86. These models were used in a finite element parametric study of a

TRC in direct tension and were able to predict the stress distribution in the composite

and determine the ultimate mean stress and strains of TRC85. It was also determined

that bond strength remains constant during ageing of TRC36, preserving durability

and structural integrity. Another advantage of TRC was its resistance to impact

loading compared to HPFRC122 and being able to produce impact-resistant concrete

panels159.

Box girders can also be constructed by gluing TRC panels, braided with fibres

throughout (Figure 2-8) and coated with cementitious matrix. These box girders

have good flexural resistance, but are weak in shear161. A better form of TRC panels

can be made from a hybrid composite of GFRP and TRC providing 3.75 times more

tensile strength than mono TRC panels70. CC, which is a form of TRC, can be also

made by 3D spacer fabric which yields better tensile strength than conventional TRC

CC84. TRC can also be used to reinforce concrete structures in bending179, and more

effectively as wrapping system to enhance the shear capacity of concrete columns156

and beams189. However this is not as good as external CFRP plate flexural reinforce-

ment system188.

TRC can also be manufactured using alkali-resistant (AR) glass fibres36 or natural

fibres such as flax, hemp, jute, sisal, and coir fibres which are 100% organic and
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Figure 2-7: Concrete canvas CC
shelter80

Figure 2-8: 3D braid over a beam
girder made from TRC panels161

biodegradable. Natural fibre reinforced cementitious matrices (NFRCM) can gain

tensile strengths of up to 60MPa, but with a relatively low modulus of elasticity46.

This literature review demonstrates that raw continuous fibres are a potential substi-

tute for steel reinforcement in the manufacture of corrosion and fire-resistant concrete

structures. Based on existing knowledge, this thesis proposes a new ribbed braided

fibre rope system which was studied both numerically and experimentally. Hence it

was necessary to obtain a good level of knowledge of the fibres and braiding mechanics

as discussed in the following section.

2.2 Steel reinforced concrete

While fibre reinforced concrete is becoming more popular in the construction industry,

steel reinforced concrete has remained the most popular construction material since

its invention. Studying the mechanical interaction between steel reinforcement and

concrete, and thereby gain an understanding of how stresses are transferred from one

material to another, is important to investigate and optimise the mechanical beha-

viour of the (RBFR) system proposed in this thesis. A review of various numerical

techniques adopted to simulate the bond behaviour between steel and concrete was

therefore carried out. The final part of this section is dedicated to the understanding

of fracture mechanics, how the fracture is modelled in the FEM, and how interface
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elements are enhanced and enriched to accurately simulate fracture and de-bonding.

2.2.1 Bond mechanism between steel and concrete

Steel reinforced concrete is a cheap composite material heavily used in the construc-

tion industry. It is able to sustain and transfer tensile and compressive stresses

through the structure. Like other composites, stresses are transferred between the

concrete and steel reinforcement through a suitable interface. The introduction of

steel rebars was a significant invention in the improvement of this bond adhesion42

through lateral and inclined lugs which are formed on the surface of cold or hot rolled

steel bars. Studies have shown that the bond strength is proportional to the lug

height and lug frequency ratio194; the bond failure can change from concrete splitting

to bond slipping as the lug height is reduced and lug frequency is increased. In the

same study, it was recommended that the minimum height of the lugs is 0.03 × bar

diameter, while the spacing of the lugs should be about 0.3 × bar diameter. Addi-

tionally, increasing the lug inclination to the bar axis results in minor improvement to

the bond characteristic, but significant increase in the bendability of the steel bar194.

Concrete confinement is the first major contributor to the pull-out strength of rebars

embedded in concrete134. Goto79 shows that concrete experience internal, secondary

and longitudinal cracks during the pull-out of embedded steel reinforcement. During

pull-out, zones of compressive and tensile stresses concentrate on the front and back of

every lug respectively, where internal cracks propagate without reaching the concrete

surface. Eventually, concrete around the reinforcement deforms and tightens in the

form of a comb-like teeth patterns which increase the frictional resistance between

steel and concrete (see Figure 2-9). At frequent intervals along the concrete, internal

primary transversal cracks are propagated along the concrete and up to its surface.

Monotonically loaded pull-out tests conducted by Rehm were insufficient to discover

at which stage fracture in concrete is initiated with irreversible pull-out deforma-

tion164. Instead, cyclic pull-out loading with limited reversal loading was introduced

by Giuriani74 to study the bond mechanism in terms of micro-cracking and concrete
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Figure 2-9: Schematic diagram of fracture in concrete during pullout of steel rebar79

crushing. Various parameters such as concrete strength, concrete cover, bar spa-

cing and confinement utilising stirrups have been used to study their influence on

the pull-out bond strength of reinforcement from concrete141, while empirical models

were proposed to compute the bond stresses during bond cracking, design stage and

ultimate loading condition117;130.

The understanding of the bond mechanism between steel and concrete is essential in

numerical modelling of reinforced concrete. The first review of the existing knowledge

on the bond behaviour between steel and concrete was reported by the American

Concrete Institute Committee number 408 in the year 196667. This report defines

the bond stress as either the stress per unit area of the nominal surface of the steel

bar, or by the rate of change of stress in the steel bar. The discussion now turns to

the bond failure of plain and ribbed bars. For plain bars, bond adhesion is provided

by chemical adhesion which concrete provides onto the bar’s surface. If we consider

a pull-out of a plain bar from concrete (Figure 2-10(a)), at first, the top part of the

bar does not contribute to the pull-out resistance (Figure 2-10(b-d)). As pull-out

progresses, adhesion resistance moves toward the top part of the bar (Figure 2-10(e))

until it is lost, leaving only frictional resistance against the pull-out action (Figure 2-

10(f-h))146. Unlike hot rolled bars, cold rolled plain steel bars tend to have smoother

surfaces and pull easily without splitting the concrete longitudinally.
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Figure 2-10: Bond stress variation during pull-out of a plain bar146

In deformed bars, the main contribution to the bond strength is due to the load

bearing of the lugs onto the concrete, and consequently the shear and compressive

strength of concrete between the lugs. The major failure mode is when the lugs create

a wedge action and split the concrete (see Figure 2-9). A secondary failure consists

in the shearing of concrete around the lugs, especially when reinforced concrete is

made from well confined small rebars or by using lightweight concrete. Bond stress

distribution along the bar under different force loading levels fA (and equivalent

strains εA) is given in Figure 2-11. While such curves were idealised due to the large

errors in the experimental data, some physical observations were made as follows:

(i) excellent bond stress transfer on the compression side was observed due to good

concrete confinement and the Poisson’s effect; (ii) bond stress transfer is much higher

towards the tensile end and reduces further down the embedment; (iii) at higher

loads, bond stress reduces towards the tensile end and increases further down the

bond interface31;48. The bond-slip measurement was later improved to an accuracy

of ±2.54µm by measuring the resistance of a coil around the steel bar during pull-out

action123.
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Figure 2-11: Bond stress distribution along an #8 bar at different loading levels31

Anchorage of steel reinforcement in concrete can provide stronger pullout resistance.

Experimental results showed that the bond strength can increase by 72% and 14%

when plain and deformed bars are anchored respectively using half around hook.

Although a significant increase in pull-out strength was observed in anchored plain

and deformed bars, this was due to the hanging effect especially in the plain bars,

while a small increase in the bond strength was observed in the deformed bars136. This

means that high compressive or shear stress exists in concrete nearby the anchorage

zone of plain hooked bars and that the design of anchorages can be considerably

problematic in concrete frame joints109. As this is similar to un-bonded pre/post-

tensioned concrete structures, this aim of this research is to develop a replacement

for steel rebars that can be used in smaller concrete building components.

Having gained an understanding of the bond behaviour between the steel reinforce-

ment and concrete, it is necessary to study the mechanical behaviour of reinforced

concrete as a composite material and to be able to predict the overall structural

behaviour by using numerical techniques such as the finite element analysis. The fol-

lowing section comprises in an extensive literature review to understand the process

of modelling reinforced concrete and how this could be applied to model the RBFR

system.
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2.2.2 Numerical modelling of reinforced concrete

Numerical modelling of steel reinforced concrete structures is a mathematical ap-

proach to evaluate their behaviour and determine their maximum deformation and

load bearing capacity. Developing such numerical tools will allow structural engineers

to design reinforced concrete structures such as frames, embankments, foundations

and shell structures.

Several important works are reviewed here to highlight the important aspects required

to build a numerical tool which is able to efficiently determine the true behaviour of

reinforced concrete subjected to different types of loading.

2.2.2.1 Bond Models for Steel-Reinforced Concrete

Several attempts to derive an analytical model describing the bond behaviour between

steel rebars and concrete has been made to predict the pull-out behaviour of rebars

from concrete149;151. A more general analytical model that describes the bond be-

haviour of steel rebar in well-confined concrete214 was presented to determine the

pull-out response of steel rebars under cyclic loadings40;41. The nonlinear response in

the bond-slip relationship193 led to the introduction of plasticity bond models, such as

Mohr-Coulomb34, for the interface between rebar and concrete. Concrete interaction

using empirical data for monotonic loading condition49 and further for both mono-

tonic and cyclic loading conditions63;90. A simple tri-linear bond stress-slip model

(Figure 2-12) can be used for low levels of bond slip under monotonic loading120.

The level of confinement that concrete gives to the embedded steel reinforcement is

essential to its bond adhesion and a bond model was developed considering such con-

finement55. A more precise time-dependent bond model was presented by Lowes et

al.132 which includes the contribution of the mechanical interaction (due to bearing

of steel lugs on concrete), residual friction (frictional bond strength after bond-zone

damage) and virgin friction (initial friction until maximum bond strength is achieved)

to the overall bond behaviour (see Figure 2-13). A complete model based on exper-
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imental data produced by Eligenhausen et al. and Malvar63;137;131, was presented

by Ožbolt et al.157;127 which classify the parameters into two part. The basic model

parameters such as the bond strength, the shape of the stress-slip curves and the

loading-unloading-reloading rules. The second set of parameters depends on the geo-

metry and on the strain state of the reinforcement bar and concrete in the vicinity of

the bar.
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2.2.2.2 Finite Element Modelling of Reinforced Concrete

According to Meyer: “It is the responsibility of the structural engineer to ensure that

all structures are accurately analysed and designed to safely withstand the anticip-

ated load"142. Numerical techniques are generally used to predict the behaviour of

concrete structures subjected to different types of loadings. Seven years after the in-

troduction of the finite element method FEM for civil engineering applications43;44;45,

Scordelis and Ngo made the first attempt to model reinforced concrete by using 2D

plane stress elements to represent concrete and steel reinforcement. Concrete crack

propagation was achieved by splitting the nodes to enabling crack formation between

the finite elements149. Another approach to model fracture in reinforced concrete was

to adjust the stiffness of the individual finite elements governed by a stress/strain

crack criterion163. A further enhancement was the addition of bond-slip and material

non-linearity response150. At an early stage some researchers adopted a linear elastic

approach to model reinforced concrete due to lack of experimental work that defines

the nonlinear response of concrete due to multiaxial stress states, bond stress-slip,

aggregate interlocking, and effective dowel length182. Eventually, a new attempt to

capture the non-linearity response of concrete was made by using a generalised Mohr-

Coulomb yield criterion to predict the yielding point and failure of concrete under

combined stress37 followed by the use of Drucker-Prager yield criterion to achieve nu-

merical stability123. A better representation of reinforced concrete behaviour under

shear and compressive stress, which accounts for aggregate interlocking, was demon-

strated in several FE examples and validated against experimental data38;180.

As more experimental data emerged to describe the inelasticity, inelastic dilatancy,

strain softening and hardening, hysteretic behaviour, degradation of elastic moduli,

rate dependency and ageing of concrete, a more unified material model for concrete

was developed by Bazant22;23;21. Adding other effects such as the dowel action mech-

anism, a complete FE model to analyse reinforced concrete was presented by Bergan30

and Grootenboer82. Subsequently, Scordelis presented a unified to perform geometric

and material nonlinear analysis of standard and pre-stressed reinforced concrete struc-

24



tures. This takes into account time-dependent effects due to load and temperature

history, ageing of concrete and the relaxation of the pre-stressing steel181. Eventually,

this led to the development of commercial software to accurately model the behaviour

of reinforced concrete16;17. Furthermore, dynamic analysis of reinforced concrete was

introduced to understand the structure response under cyclic loading such as seismic,

wind, ocean and blast waves and impacts142. A new attempt to accurately model

the bond slip between steel and concrete introduced a finite layer between these two

materials, and between the internal cracks of concrete123. By introducing of new

bond models as discussed in Section 2.2.2.1, the bond slip between steel and concrete

was modelled more accurately under cyclic loading to produce a high-resolution finite

element model of reinforced concrete structures127.

2.2.3 Damage modelling in Finite Element Method

The modelling of the damage mechanisms such as de-bonding and cracking is essential

to determine the overall response of reinforced concrete. This section will focus on

the modelling of damage in the FEM, starting with a short introduction to fracture

mechanics, followed by a discussion of the advantages and disadvantages of smeared

and discrete crack modelling. The focus then shifts to cohesive-zone models as a

discrete approach, followed by a review of different types of enhanced and enriched

methods.

2.2.3.1 Introduction to Damage and Fracture Mechanics

Damage mechanics is the science explaining damage in materials. Damage such as

cracking is when a material or matrix breaks apart, and de-bonding is the separation

of a weak interface between two materials. The initial process of cracking or de-

bonding occurs when micro-stresses accumulate around weak points in the materials

or composite and form microvoids. Eventually, microvoids coalesce into bigger voids

in which the cracks propagate at a mesoscale level129.
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The coupling between linear damage and elastic strains can be directly obtained by

reducing the elastic material modulus E using a damage parameter D which varies

from zero (no damage) to one (fully damaged). Therefore the new damaged elastic

material modulus is defined as Ẽ = E(1−D). In plasticity, damage reduces the yield

stress (σy), the isotropic strain hardening stress R and the back stress (X). Therefore

the reduction in stress is defined as σ = (σy+R+X)(1−D)129. The rupture criterion

is defined as the initiation of cracking at a critical damage value Dc. Dc is defined

as Dc ' 1 − σ
σu

(σu is the ultimate stress the material can resist) and in theory this

varies between Dc ' 0 for brittle damage to Dc ' 1 for ductile damage, but is more

likely to be in the region between 0.2 and 0.5129.

Linear fracture mechanics is sometimes used to model the structural response of very

large concrete structures. Depending on the crack/notch/hole geometry, Inglis96 was

able to determine the magnitude of the stress concentration by deriving a stress

concentration factor κ especially at an infinitely sharp crack tip107. As a general

rule, the sharper the crack or notch, or the smaller the hole, the higher the stress

concentration. While the size effect was not considered in the stress concentration

factor, Griffith later understood that cracks in large specimens tend to propagate

when subject to a smaller force (i.e. smaller is stronger) and therefore he proposed an

energy balance criterion81, where the rate of strain energy release per unit of crack

extension must be equal to the rate of surface energy released at the crack front68.

Later we see the introduction of the stress intensity factor K1, which tells us the

magnitude of stress around an infinitely sharp crack tip . In combination with the

Griffith energy (G) balance criterion, one can determine the fracture propagation in

concrete93 and other brittle materials.

2.2.3.2 Smeared vs Discrete Modelling

Smeared and discrete crack modelling are the two most common ways of modelling

cracks in concrete. The introduction of smeared cracking in concrete goes back to

1968, when Rashid proposed a way of nucleating micro cracks into a dominant crack,
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and can capture deterioration in heterogeneous materials such as concrete163. On the

other hand, a discrete crack model was proposed by Ngo and Scordelis to model the

initiation and propagation of dominant cracks149.

In smeared cracking approach, the crack opening gap in the finite element is rep-

resented by a crack strain and therefore the behaviour of concrete fracturing can be

modelled by a stress-strain relationship163. In this approach, the cracking of con-

crete occurs when the principal tensile stress exceeds the ultimate tensile strength

of concrete, and therefore the elastic modulus of concrete is reduced to zero ortho-

gonal to the principal tensile stress direction198. Further work by Rots shows how

smeared cracking can realistically predict the local fracture when taking into account

the tensile strain-softening effect due to progressive micro-cracking and crack clos-

ing170;171;172;175. The size effect was introduced into the strain-softening formulation

and adjusted to the chosen finite elements size leading to a mesh independent ma-

terial fracture properties defined by the fracture energy, uni-axial strength limit and

the width of the crack18;19;18;24. The introduction of fracture energy and crack band

are two regularisation techniques that prevent ill-conditioning of the problem due to

strain localisation25. In non-linear fracture mechanics, the size effect regularisation

technique can also be used to determine the nonlinear fracture properties20. Fur-

ther work shows the introduction of non-orthogonal smeared cracking with non-linear

plasticity, creep, thermal effect and shrinkage52. A mixed-mode smeared crack model

was proposed to cover the tension (mode I) and shear (mode II) softening, allowing

unloading and reloading, and multiple crack formation174;173.

In the discrete crack approach, crack propagation is resolved by node splitting to

accommodating the crack propagation between the finite elements149;53. This means

that crack length and direction is dependent on the FE mesh and re-meshing is

necessary to reduce this dependency97 (as cited in53). Interface elements are used to

represent the mechanical link between the finite elements and consequently represent

discontinuities in the FEM. Interface elements can be of two classes: continuous or

nodal (identical to spring elements used in149) interface elements178. The discussion of
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interface elements and cohesive-zone models continues in the following three sections.

2.2.3.3 Modelling of reinforced concrete using cohesive-zone models

The use of interface elements between finite elements dates back to 1967 when Ngo and

Scordelis modelled concrete crack propagation between finite elements149. Brown34

adopts link elements (interface elements) in the FEM to simulate the bond adhesion

between steel reinforcement and concrete while Lowes132 uses zero thickness bond

elements (cohesive elements) in 2D to investigate a new steel-concrete bond model.

The mechanical description of the interface elements can be governed by the energy

balance function proposed by Hillerborg93, where a crack gap appears between the

finite elements, and full damage is obtained as the fracture energy is fully dissipated

(see Section 2.2.3.1). Interface elements can be used to model the bond behaviour of

steel reinforcement and concrete149;173, discrete cracking in concrete173 and aggregate

interlocking149. While traditional cohesive-zone models are used to model the bond

interaction between steel and concrete173 described in Section 2.2.1, new models can

model friction6 and interlocking effect185 by using interface elements between steel

rebars and concrete186.

2.2.3.4 Enhancing methodologies for the interface elements

Interface elements are easily used in the FEM to represent discontinuities in and

between materials. One of the interface element parameters is an initial penalty

stiffness required to sustain the loading before damage is initiated. If this penalty

stiffness is very large, spurious oscillations in the stress field can be observed when

the Gauss integration rule is used to evaluate the interface stiffness matrix173;72 (see

Section 4.2.4). These oscillations can be reduced by using Newton-Cote or Lob-

atto integration schemes for linear interface elements, and by using a nodal lumping

scheme for quadratic interface elements178. Other instabilities are associated with

de-lamination of composite materials, especially when the laminates are very thin.
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Therefore snap-through/snap-back behaviour can be observed4 which can be con-

trolled by a new arc-length method88 and a double-line-search method proposed for

interface elements5.

2.2.3.5 Techniques in fracture modelling: application to interface ele-

ments

The modelling of fracture has evolved from a finite element mesh dependent tech-

nique149 to adaptive mesh refinement200 to capture the crack propagation. The in-

troduction of embedded displacement jumps within the solid finite elements help

the crack propagation to be determined independently of the finite element mesh.

One method is done by regularising the discontinuous displacement field where the

strains are bounded everywhere62;155. Another method that allows embedded dis-

placement jumps makes use of the partition of unity method140 as the finite element

shape functions to allows the modelling of crack propagation through the solid finite

element143;26;216. Later, level set method (LSM) has been introduced in X-FEM to

represent the crack and the location of the crack tip196.

While the above methodologies focus on the enrichment of the field, other works focus

on the enrichment of the interface element in de-lamination where crack direction is

known a priori. H-, p- and hp-refinement in the finite element method were introduced

by Babuska to provide a better approximation of the field through the individual finite

elements. Such refinement could be adaptive and based on an a priori or a posteriori

error criterion that determines the level of h, p or hp-refinement required to achieve

an accurate solution of the FE problem10. An adaptive hierarchical enrichment for

the de-cohesive zone model introduced hierarchical polynomial functions around the

softening process zone50. The idea of adaptive hierarchical enrichment is further

developed in this thesis to conduct adaptive hierarchical p-refinement at the interface

using the same approach adopted for the tetrahedron finite elements2. This type

of enrichment was used in Section 4.2.4 to study the traction oscillation problem

discussed in the previous Section 2.2.3.4, and throughout the thesis to model the
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de-bonding behaviour of fibre and concrete.

2.3 Appraisal of fibre mechanics

Fibre materials are identified as long and thin matter and characterised with distinct

material properties. They have high tension and relative flexibility, making them

suitable for a wide range of applications. Understanding the individual and composite

mechanical behaviour of fibres is necessary to study the feasibility and mechanics of

braided fibres in reinforcing concrete structures. This is done in various physical

spatial approximation scales. At a micro level, the behaviour of every single filament

is studied, while at a mesolevel, the behaviour of a bundle of fibres is studied. At a

macro level, the collective mechanical behaviour of twisted/braided/composite fibres

is studied.

In this section, some basic fibre and composite mechanics are given at different

physical scales. It concludes with a literature review of the numerical modelling

of woven/braided fibres and a brief discussion of how this approach was simplified to

perform computationally efficient modelling of braided fibres.

2.3.1 Mechanics of fibres

The mechanics of fibres depend not only on the constituent material properties but,

more importantly, on their physical characteristics. Fibres are defined as thin and

elongated matter with different surface textures. While natural/organic fibres are

more likely to have curved shapes with rough or uneven surfaces, synthetic fibres,

such as carbon, glass and plastic fibres, are characterized more by straight geometry

and smoother surfaces. The type of surface texture of fibres can have a significant

influence on its material properties: mostly on mechanical interaction with other

fibres and between fibres and other materials. Fibres are astonishingly resilient to

tension and relatively flexible, capable of being shaped in a wide range of geometries.
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Due to these advantages, fibres are used to manufacture braided ropes with high

tension and with great potential for main concrete reinforcement.

2.3.1.1 Physical properties

Tows/strands and braided geometries have relatively low stiffness in the transverse

plane (cross-section of fibre), compared to the stiffness along the fibre directions

(principal stiffness) and considered as transversely isotropic and described by five

material parameters (stiffness and Poisson’s ratio in the transverse plane, stiffness in

the principle axis, Poisson’s ratio and shear modulus between the transverse plane

and principle stiffness). Due to their brittle nature, in this research, it is considered

sufficient to model fibres such as carbon, glass or aramid fibres as elastic up to rup-

ture. Plastic constitutive models are necessary to model synthetic fibres such as

high-density polyethene (HDPE) material.

Tows and strands, which are made from a collection of filaments oriented evenly in the

same direction, are measured per thousand filaments; for instance, 3K is equivalent

to 3000 filaments. They can be also be measured as a linear weight in the units of

tex, where one tex is equivalent to a gramme of fibres per thousand metres (1 tex =

1g / 1000m), which depends on the effective fibre density ρ̄. A bundle of fibres is

made up of both solids and voids. The effective fibre density ρ̄ is equal to the weight

per unit solid volume (Vs). The solid volume Vs is equal to the effective solid cross-

sectional area (Ā) multiplied by the length of the fibres, assuming that the filaments

are continuous and that the same amount of fibres exist through the length of the

tow. Ā can also be used to compute the effective tensile strength σ̄ = Fc

Ā
, where Fc

is the maximum critical force to break the fibres. The tensile strength of glass fibres

ranges between 800 and 1700 MPa, while that of carbon fibres ranges from 2000 to

5650 MPa219.

Ageing of fibres, mainly in terms of deterioration and mechanical fatigue, is an im-

portant factor determined by the material properties of fibres and the surrounding

environment. Deterioration can take the form of rotting (dry and wet process), insect
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and chemical attacks, exposure to corrosive environments, thermal degradation and

other non-mechanical induced damage. Two typical examples are the exposure of

common glass fibres to alkali environments and the oxidisation of carbon fibres at

high temperatures. Modifying the chemical formula of the fibre material can be done

by adding Zirconia (ZrO2) to glass fibre or providing an adequate environment to

the fibres, such as oxygen-free enclosure to carbon fibre. These are two ways of pro-

tecting the fibres and reducing the degradation process. Moisture absorption in fibres

and composites is another degradation process, which results in swelling and directly

influences the fibre-fibre and fibre-matrix adhesion. A secondary damaging process is

induced by the exposure of composite containing moisture absorption to freezing or

heating fluctuations that can damage the structural integrity of the composites.

2.3.1.2 Mechanics of fibre composites

The purpose of this section is to revisit the mechanics of fibre composites and braided

fibres. Composite materials are usually made from reinforcement and matrix. Rein-

forcement takes the form of high tensile resistant fibres, while organic, cementitious,

polymeric or metallic matter is used as a matrix to bind fibres together. Voids are

also common in composites and minimises using appropriate impregnation techniques

which eventually improve the properties of composite material. Composite materials

are mostly considered heterogeneous materials, while homogenization techniques are

conducted to provide computationally efficient numerical multi-scale modelling210.

Heterogeneity depends on the configuration of the fibres, which can be scattered, uni-

directional or multi-directional (weaving/braiding) in orientation. As a general rule,

weaving is a 2D form of braiding, while knitting or sinnet is a 3D form of braiding. An

essential material property of composites is the fibre-matrix bond behaviour, which

influences their overall mechanical properties.

Fibres and matrix material properties, fibre distribution (see Section 2.3.1.3) and bind

properties are essential in producing a good composite material. This combination

makes it possible to distribute tensile stresses evenly among all fibres, and increase its
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compressive strength. Most importantly, though, this provides abrasion protection to

the fibres. Tensile strength distribution depends on various factors such as the fibre-

matrix bond strength, fibre-matrix volume ratio, fibre distribution, cracking patterns

of the matrix, and material properties of both fibres and matrix. These properties

also reflect the ways in and means by which a composite can fail.

In a unidirectionally reinforced composite, a common failure mechanism is when the

matrix cracks and fibres break along the transversal plane of the fibres. Another fail-

ure mechanism is the cracking of the matrix, followed by a progressive fibre-matrix

de-bonding failure89. Understanding the mechanics of composites can help to identify

similar mechanical behaviour and failure patterns observed in fibre reinforced con-

crete.

2.3.1.3 Mechanics of twisting, braiding and weaving

For centuries, fibres were accumulated not only by using matrices but also by twist-

ing, weaving, braiding and knitting. Capable of producing several products, fibre

technology was and still is an essential science in various applications. Ropes have

been manufactured using the same principles for centuries with very little technolo-

gical improvement over recent decades. This art of combining bundles of filaments

has produced ropes and cords which withstand tensile loading and are flexible enough

to work with.

It is important to note that the total tensile strength of a tow is not equivalent to

the sum of every individual filament’s tensile strength. The total tensile strength is

influenced by factors such as: filament length; distribution of fibres along the tow;

thickness and surface texture of filaments; the overall thickness of the strand; and

the type of twisting/braiding adopted to keep the fibres together211. A major weak-

ness of twisted/braided fibres is the stress concentration of a particular region of the

tow/strand. This is caused by lack of filament bedding-in after twisting/braiding,

mishandling of tows/strands causing pulled filaments, and by excessive bending of

fibres. The angle of twisting/braiding must be optimized to improve frictional ad-
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hesion between filaments and maximise the overall tensile strength of strands and

ropes139. Optimisation depends directly on filament material, geometry, surface tex-

ture and strand size in comparison to braiding geometry. If, for example, filaments

are made of a brittle material, excessive bending angles in the braiding geometry

should be avoided, but should not hinder the frictional resistance between filaments

that holds them together.







Figure 2-14: Three most common ropes

In general practice, an important property of ropes is their ability to absorb and

restore energy during loading/unloading. This is dependent on both material and

braiding type. The higher the braiding angle (angle between the principle axis and

strand orientation), the more energy absorption is observed during elongation. Such

elongation can be temporary or permanent, where permanent elongation is due to

permanent absorption of energy and, to a certain extent, renders the rope unfit for

use. A hysteresis effect is also observed during cycles of loading/unloading, where

energy is lost and transformed into heat139.

Abrasion constitutes another type of damage and can significantly damage fibres,
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especially brittle ones. Abrasion damage depends on two main factors: the fibres’

surface texture and the extent or duration of this abrasion process. Other factors

such as moisture content and temperature, among other conditions around the in-

terface, can significantly influence the overall abrasion damage. Mitigation, such as

embedding and pre-stressing of fibres, in addition to forming a rigid fibre-concrete

bond interface, minimises this kind of damage. Due to lack of research in this topic,

further study is necessary to determine the extent of damage when fibres are pulled-

out from concrete.

2.3.1.4 Existing research on the numerical modelling of braided fibres

Numerical modelling of braided fibres is a relatively new topic with very few worldwide

experts. Laboratoire Mécanique des Sols, Structures et Matériaux (MSSMat) led by

Professor Durville in collaboration with Ecole Centrale (Paris), has been conducting

experimental and numerical work to understand the mechanism of rope under various

circumstances. The numerical investigation was adopted using finite element techno-

logy. Beam elements were used to represent fibres and contact mechanics to predefine

(Figure 2-15) and retain the braiding geometry during the numerical simulation as

shown in Figure 2-1660. This approach is computationally expensive and suffers

when conducting large-scale problems. A new contact algorithm for beam elements

was devised by Durville61 to improve computational efficiency. This was later used to

model multilayer braided scaffold to repair anterior cruciate ligaments126. Similarly,

the mechanical response of braided fibres bending over sheave was examined for off-

shore application215. By conducting a numerical parametric study and experimental

investigation, the scale effect was determined as the rope size increases and the life

duration of similar ropes can be evaluated51.

Durville et al demonstrate the use of beam elements representing individual fibres

and a contact algorithm to model braided fibres that experience large relative move-

ments. Alternatively, when the relative movement between the individual fibres and

between two or more strands is relatively small, strands can be modelled as a single
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homogeneous material, while interaction between strands can be modelled using co-

hesive elements as described in Section 5.4, which is considered to be computationally

cheaper than contact mechanics.

A similar area of research is the numerical modelling of woven composites. Woven

composites are made from several layers of woven fibres glued with polymeric or

ceramic resins. These types of composites are mostly used to construct lightweight

cars, aeroplanes, marine vessels, wind turbine blades and other components requiring

extreme strength, as well as light and corrosion resistance. The numerical modelling

of woven composites using the FEM has boomed in the last few years and the industry

is growing exponentially. Several mesh generators such as TexGen128, WiseTex212 and

ScotWeave91 exist to create woven geometries. However no mesh generators exist to

create the sinnet braided geometries used in this thesis as an alternative concrete

reinforcement. The mechanical modelling of woven composites is usually performed

using a unit cell approach177. A homogenisation technique is then used to replicate the

micro-mechanical behaviour at a meso/macro scale218;217. In sinnet braided profiles, it

is thought that homogenisation can be simplified by an equivalent elastic transversely

isotropic material exhibiting large deformations, as discussed in Section 5.6.2. Elastic

transversely isotropic material was also used to represent the material properties of

the woven yarns as described in Section 2.3.1.1, whereby the fibre directions are

usually computed either from an expression defining the weaving geometry58 or from

a pre-defined yarn profile line embedded within the woven geometry59. While the

first option can lead to complicated expressions to define arbitrary twisted yarns,

the second option is only suitable to model yarns with constant cross-sections. This

thesis proposes a new way to obtain the fibre directions of arbitrary twisted yarns

with non-uniform cross-sections in Section 5.2.
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Figure 2-15: Initial configuration of
microscoptic textile model60

Figure 2-16: Mechanical
deformation of plain weave

composite60

2.4 Conclusion

This chapter has shown how small fibres contribute to the mechanical and thermal

properties of concrete, producing high-performance fibre reinforced concrete HPFRC.

HPFRC is characterised by high compressive strength and spalling resistant concrete

when exposed to fire. This contributes to the fire-resistance of concrete structures,

where the concrete cover is retained and main reinforcement is better protected from

overheating. Other than providing fire insulation to the concrete structure, very

little has been done to improve the fire-resistance of the main reinforcement. Re-

search shows that steel and FRP rebars are not adequate as reinforcement if concrete

structures overheat. While steel softens, FRP loses its composite integrity and, con-

sequently, the bond adhesion between the reinforcement and concrete.

An appraisal of current studies of continuous fibre reinforcement, such as braided

composite rods (BCR), carbon fibre composite cables (CFCC), un-resin continuous

carbon fibre (UCCF), un-resin carbon-fibres assembly system (UCAS) and textile

reinforced concrete (TRC), indicates that TRC can only be fire-resistant if produced

using thermal resistant fibres and high-performance concrete. Further studies are

necessary to prove this hypothesis. Understanding that UCCF can be used as main

reinforcement for concrete by improving the mechanical properties of continuous fibres

by braiding them into ropes similar to BCR and omitting the use of resins, this thesis
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proposes a new reinforcement system. It consists of strands of fibres braided over a

string of glass beads to form ribbed braided ropes. While braiding replaces the use of

matrices to merge all fibres together, glass beads produce a ribbing effect similar to

rebars and adhere to concrete in pull-out action. This feature was studied in Chapter

3 by conducting pull-out experiments of RBFR embedded in concrete to determine

the bond adhesion.

Very little is known about the mechanics of braided fibres when used in particular

circumstances such as RBFR. In this thesis a numerical tool has therefore been

developed to investigate the mechanical behaviour of braided geometries in various

forms and conditions. To introduce this, the mechanics of fibres and braided fibres

were described in brief. This chapter concludes by highlighting an existing numer-

ical tool capable of simulating the woven/braided textiles. It also explains how this

inspired a concern with producing a similar but more efficient numerical tool using

finite element technology.
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Chapter 3

Experimental Investigation

The long-term objective of this work was to design an alternative to steel reinforce-

ment that improves the durability and fire-resistance of concrete structures. Braided

fibre ropes were considered as a new type of reinforcement. It was however necessary

to determine the mechanical performance and feasibility of the new reinforcement at

room temperature. This chapter investigates the pull-out resistance for both normal

and ribbed ropes, where ribbing was achieved by introducing glass beads inside the

rope. Two types of material were considered for the ropes: carbon and aramid.

3.1 Introduction to the ribbed braided fibre rein-

forcement system

There are several benefits of using fibre reinforcement in the design of concrete struc-

tures. While steel reinforcement corrodes and its stiffness is reduced by 10% every

100◦C increase above 150◦C102, fibrous materials such as carbon, Kevlar and glass can

resist high temperature and, on average, their strength to weight ratio is five times

greater than steel’s. Although carbon and Kevlar are corrosion resistant (un-reactive

and inert), a wide range of glass fibres such as concrete corrode in alkali environ-

ments. Therefore only alkali resistant (AR) glass fibres are suitable. Designing fibre
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reinforced concrete which adheres to Euro Code EN 1991 or other equivalent codes

is thought to be a great challenge.

Continuous fibres are normally used in FRP rebars and as a substitute to concrete

steel reinforcement, providing a lighter, corrosive resistant and magnetic induction

proof concrete structures. FRP rebars can be manufactured either by continuous

or braided fibres impregnated with resin. While continuous FRP rebars have to

be machined and textured to provide suitable adhesion to concrete, braided FRP

rods can provide bond strengths equivalent to those of steel rebars154 at ambient

temperatures.

However, the bond strength of continuous/braided FRP rebar is very weak at elev-

ated temperatures114 due to softening of the polymeric matrix and loss of composite.

To circumvent this problem this thesis proposes a new system made from thermal

resistant fibres, braided over a chain of glass beads to form ribbed braided fibre ropes

(RBFR system). Both ribbing and braiding act as a mechanical binder and have sev-

eral advantages compared to the chemical binders (resins) used in FRPs. Resins are

expensive and do not biodegrade, whereas braiding is a relatively inexpensive process

and does not make use of any harmful materials. RBFR ropes can be a cheap and

environmental friendly concrete reinforcement substitute for steel reinforcement. The

lack of resin and the use of fire-resistant materials is more likely to form a fire-resistant

RBFR system compared to FRP and steel re-bars.

This chapter describes a series of pull-out tests at an ambient temperature of RBFR

embedded in concrete that were conducted to determine its feasibility. This was

compared with similar specimens using plain braided ropes (no ribbing) that depend

on their surface texture to adhere to concrete. Only two adequate and cheap fire-

resistant braided ropes were found on the market. The first was aramid ropes (Marlow

T12 make), made from twelve strands of double-braided sinnet and supplied with a

polyurethane coat that acts as an abrasion resistant layer. This coat was omitted

when adopting such ropes to produce RBFR system and hence reduce the risk of

weakening bonds at elevated temperature. Technora (a type of aramid fibre produced
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by Teijin Limited) T12 was used for both plain and ribbed system. The second option

was Siltex carbon fibre rope manufactured from eight strands of single-braided sinnet,

produced as fire insulation sealant. Due to the compactness of the braid and surface

texture roughness (2mm variation in diameter), Siltex carbon fibre ropes were used to

reinforce plain braided fibre ropes. Table 3.1 shows the specifications for both ropes

used in these pull-out experiments, while Table 3.2 highlight some material properties

of PAN carbon fibres used to manufacture Siltex carbon fibre ropes, and Technora

T12 Marlow ropes.

Rope Manufacturer Diameter Breaking Load Elongation
[mm] [kN] [%]

Carbon Cord SILTEX GmbH 8 7.189 ii 14.1ii

Technora T12 Marlow Ropes Ltd 10 75.047 iii 2.7 iii

Table 3.1: Specifications of ropes in use

Fibre Young’s Tensile Elongation Density Decomposition
Material Modulus Strength [%] [g/cm3] Temperature

[GPa] [MPa] [◦C]
PAN
Carbon

230 3530 1.5 1.76 50065

Aramid 78 3400 4.6 1.44 500

Table 3.2: Material Properties of Carbon and Technora Fibres

3.2 Pull-out experimental set-up

After proposing a RBFR system, it was necessary to determine its feasibility by

examining a set of pull-out experiments of plain and ribbed rope reinforcement em-

bedded in concrete and determine the ultimate bond stress that eventually can be

used to design concrete structures.
iidata based of preliminary tensile tests.
iiimanufacturer’s data.
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Standards norms to determine the bond strength of concrete reinforcement

Bond strength of steel reinforcement embedded in concrete can be determined by

using the beam test methodology according to CEB/RILEM100;166, or similarly by

conducting pull-out experiments of steel rebars embedded in a beam-end specimen

according to ASTM A944-09106. Bond strength for FRP can be determined in a

similar fashion by pulling out the reinforcement from a vertical, beam-end, simple

beam, hinged beam-end, splice or other types of specimens in compliance to ACI

440.3R-0499. The vertical bond pull-out test described in ACI 440.3R-04 was partially

adopted to determine the pull-out strength for both plain and ribbed braided fibres

reinforcement, as described later in this section.

Description of ropes used as reinforcement

Two types of ropes were used for the pull-out investigation: a 10mm twelve strand

double braided sinnet Technora T12 Marlow rope and an 8mm eight strand single

braided sinnet Siltex carbon fibre rope, as highlighted in Table 3.1. The Siltex carbon

fibre rope diameter varies between 8 to 10mm (when the rope is not loaded) and is

thought to provide good adhesion without the need of ribbing. The surface texture

of Technora T12 Marlow rope is very smooth and hence this was investigated with a

plain and ribbed surface during pull-out testing. To create ribbing, oval glass beads

were inserted into the braided rope. The profile of the oval glass beads was 8mm in

diameter and 12mm in length with a 1mm hole throughout the longitudinal length.

Only one bead was used in the designated bonded area (Figure 3-1) in accordance

with ACI 440.3R-04.

Description of concrete for pull-out specimens

In accordance with ACI 440.3R-04, concrete used for pull-out specimens has to be

produced from Portland cement and aggregate of no more than 25mm in size, with

a slump of 100 ± 20mm, and a compressive strength of 30 ± 3MPa at 28 days of
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Figure 3-1: Ilustration of a designated bonding area between rope and concrete
using a single bead ribbing

standard curing in compliance with BS EN 12390-2:2009104. A 1 : 2.56 : 2.56 (cement

: fine aggregate : coarse aggregate) concrete mix with a 0.5 free water to cement

ratio was designed using a 20mm maximum coarse aggregate, and fine aggregate of

which 30% passed through the 600 µm sieve. Compressive strength was determined

according to BS EN 12390-3:2009105 standard.

Preparation of samples

Vertical pull-out specimens were prepared using cylindrical moulds rather than cube

moulds, as proposed in ACI 440.3R-04. The assembly consisted of a cylindrical

cast iron mould, measuring 150mm in diameter and 300mm in height, fixed on a

wooden base with a hole in the centre through which the reinforcement was passed

and anchored to the bottom side. On top of the mould, a bottle screw tensioning

mechanism was designed to anchor and pre-tension the reinforcement as shown in

Figure 3-2. The designated bonded area located at the base of the sample is required

to have a length of five times the diameter of the rope and is prepared by retaining

the area exposed to concrete while covering the rest of the rope using PVC tape,

preventing adhesion to concrete as shown in Figure 3-2. The Siltex carbon fibre ropes

were pre-tensioned up to 1000N and the Technora T12 ropes were pre-tensioned up to

2000N at a speed rate of 1.3mm/min on a tensile machine. Soon after, the mould was
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cast up to 200mm in height following standard procedures described in BS EN 12390-

2:2009104. Six standard concrete control cubes were cast and tested in accordance

with BS EN 12390-3:2009105 and repeated for the three sets of pull-out experiments

summarised in Table 3.3.














Figure 3-2: Mould Setup Assembly

Specimens were covered with a polyethene sheet for 48 hours to prevent dehydration.

The moulds were disassembled and all samples, plus the concrete control cubes, fully

submerged in a water tank at a temperature of 23◦C for 28 days to conform with BS

EN 12390-2:2009104. After curing, specimens were dried in a draft-free environment

at standard temperature for 24 hours before the pull-out experiments were conducted.
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Six pull-out specimens were produced for both plain Siltex carbon fibre and plain

Technora T12 ropes. Another six pull-out specimens were produced for ribbed Tech-

nora T12 ropes. All samples are summarised in Table 3.3.

Sample ID Rope Concrete Ribbing
CP8-1 to CP8-6 8mm Carbon - 8 strands C30 None
TP10-1 to TP10-6 10mm Technora - 12 strands C30 None
TR10-1 to TR10-6 10mm Technora -12 strands C30 Ribbed

Table 3.3: Summary of Samples

Pull-out testing procedure

Pull-out tests were conducted on a 250kN Zwick Roell tensile machine, calibrated up

to ±1% load precision. A pull-out assembly was designed, made from a 15 x 300 x

300mm steel plate used to clamp down specimens on the tensile machine base using

four M16 threads bars, as shown in Figure 3-3. Between the steel plate and the

specimens a rubber sheet was used as a cushion to prevent load concentration from

uneven concrete surface, as this could result in unwanted cracking. A hole in the

middle of the steel plate was drilled to allow the rope reinforcement passed through

and clamped with the machine head’s pin using a bulldog clip as shown in Figure 3-3.

The pull-out action was performed at a speed rate of 1.3mm/min and readings of the

pull-out force and displacement of tensile machine head were taken at a frequency of

no less than 1Hz.

Recording and report pull-out experiments

During and after the pull-out tests, samples were under continuous observation to

record various behaviours. At the end of the pull-out experiments, samples were split

into halves to measure the length and position of the bonded area using a standard

metric ruler. Afterwards, logged pull-out force and displacement data was plotted

as the load-displacement curves and studied for both common and unusual patterns.

Remarks and recommendations on the attained results were given, highlighting gaps
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Figure 3-3: Pull-out setup in 250kN Zwick Roell tensile machine
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in research for further investigation. The bond stress at failure by slipping τr was

computed according to equation D.1 in103.

3.3 Results

The aim of these pull-out experiments was to determine the ultimate bond stress τu

provided by braided fibre rope reinforcement embedded in concrete. This is an im-

portant measurement to determine the feasibility of the proposed system as concrete

reinforcement by comparing τu with the maximum bond stress recommended for con-

crete reinforcement expressed as τr ≥ 0.098(130 − 1.9φ)100, where φ is the nominal

diameter of the reinforcement. The elongation percentage of the reinforcement and its

elastoplastic behaviour are two important properties that determine whether the re-

inforcement is suitable for concrete structures. Due to lack of experimental resources

and a short time frame for experiments, these two properties were not investigated

but this is recommended for future research.

3.3.1 Regular braided carbon fibre reinforced concrete - CP8

Bond adhesion of braided carbon fibre ropes was examined. The 8mm Siltex carbon

cords consisted of a very compact single braided sinnet with an uneven surface texture,

initially thought to provide a good bond adhesion without the need of ribbing as

proposed in the RBFR system. Pull-out experiments were conducted for plain 8mm

Siltex carbon cords, where bond strength was determined and reported in this section.

Concrete quality

Concrete mixture was designed in accordance with Section 3.2. The ultimate com-

pressive strength was determined at 34 days and found to be 43.2MPa on average, as

shown in Table 3.4. Extrapolation from a compressive strength gain graph220 shows

that the concrete strength was around 40MPa at 28 days. This exceeds the design
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value of 30 ± 3MPa and hence the cement to water ratio was increased to 0.64 for

the other pull-out experiments.

Cube ID Age of curing Weight Density Compressive Stress
(days) (kg) (kg/m3) (MPa)

C-CP8-1 7 2.39 2390 26.3
C-CP8-2 7 2.37 2370 23.8
C-CP8-3 7 2.38 2380 25.3
Average at 7 days 25.1 MPa
C-CP8-4 34 2.36 2360 43.5
C-CP8-5 34 2.36 2360 41.5
C-CP8-6 34 2.38 2380 44.6
Average at 34 days 43.2 MPa

Table 3.4: Compressive testing of concrete control cubes for CP8 specimen

Pull-out observations and results

The clamping system adopted for this first batch of samples consisted of an 8mm

Siltex rope length attached at one end to the tensile machine head pin. The other

end was clamped with the rope’s end of the pull-out samples using two bulldog clips

to form a straight overlap configuration (Figure 3-4). This clamping system was seen

to fail as the rope stretches and narrows its cross-section (Figure 3-5), and therefore

further re-tightening was necessary at around 500N and 1000N of pull-out force. This

process disturbed the load cell readings as observed in the load-displacement curves

(Figure 3-6). While samples CP8-4,5 and 6 experienced debonding failure, reinforce-

ment for samples CP8-2 and 3 experienced tensile failure, where CP8-2 is thought to

have experienced interlocking due to a loose aggregate in the unbounded region. A

summary of the results is given in Table 3.5. The overall pull-out behaviour can be

interpreted as comprising three main parts. The initial part consists of the stretching

and embedding of the rope while under tension. The second part is characterised by

the elastic stiffening of the bond, and the third part is characterised by a sharp loss of

stiffness (debonding failure). Some additional pull-out resistance was observed (Fig-

ure 3-6) due to extra frictional resistance, induced from the rough concrete surface

acting on the rest of the rope during the pull-out action.
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Figure 3-4: Clamp system of CP8
samples

Figure 3-5: Failure in the CP8 clamp
system
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Figure 3-6: CP8 Load-Displacement graph
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Samples CP8-4, 5 and 6 show consistent load-displacement behaviour, having ap-

proximately the same pull-out strength but with different elongations. This suggests

anchorage slippage was present but not visible to the naked eye. Samples CP8-1,4, 5

and 6 were used to determine the bond stress from the maximum pull-out force and

bond area, where the bond area was equal to the bond length times circumference of

the 8mm rope. The average bond stress of 4.17MPa was achieved as shown in Table

3.5. This is equivalent to 37% of the bond stress of an 8mm steel rebar (equal to

11.25MPa) according to BS EN 1992-1-1:2004100.

Specimen
ID Failure mode description

Ultimate
failure load
(N)

Bond
length
(mm)

Bond
Stress
(MPa)

CP8-1 Slip from anchorage pro-
ceeded with de-bonding fail-
ure

4849.82 53 4.16

CP8-2 Tensile failure of rope 3533.48 58 n/a
CP8-3 Tensile failure of rope 5887.09 64 n/a
CP8-4 De-bonding failure 4971.85 58 3.90
CP8-5 De-bonding failure 4828.26 50 4.39
CP8-6 De-bonding failure 4906.18 53 4.21

Average 4.17 MPa

Table 3.5: Pull-out test results for CP8

Although the unbonded area was covered with PVC tape to prevent adhesion, a

frictionless condition was not guaranteed due to uneven concrete surface adjacent to

the reinforcement as shown in Figure 3-9, and might have contributed to the overall

pull-out strength. A better approach was to dress the rope with a loose fit pipe to

ensure it was free and not in contact with concrete in this region.

A major problem was the tensile resistance of these carbon fibre ropes, due to their

very low pitch/diameter ratio. Tensile failure before de-bonding is not recommended

as it can result in an instant collapse of concrete structures at the ultimate limit state,

and is not for this reason permitted by EN 1992-1-1100. Preliminary tensile tests on

Siltex carbon fibre ropes proved that they are very weak in tension (low breaking

load is shown in Table 3.1). This prompted discussion with Siltex’s representatives to

50



improve the tensile strength of these carbon fibre ropes, but an agreement was never

reached and no further studies were undertaken using carbon fibre ropes with a low

pitch to diameter ratio.

In the following set of experimental results, stronger un-coated fire-resistant 10mm

Technora T12 Marlow ropes were used as braided rope reinforcement. Their surface

texture is very smooth and a RBFR system was therefore adopted. A glass bead

in the bonded area was used to create a single rib and eventually enhance the bond

strength that was compared to the plain reinforcement system of the same kind of

ropes.

3.3.2 Regular braided technora fibre reinforced concrete - TP10

This set of experiments was designed to measure the percentage of bond enhance-

ment between plain and ribbed ropes embedded in concrete. The setup was similar

to the one used above, described in Section 3.3.1, but with a better anchorage sys-

tem and an adjusted concrete mix as discussed below. As already noted in Section

3.2, pre-tensioning of ropes was increased from 1000N to 2000N for Technora T12

ropes to maximise the compactness of the rope’s cross-section, meaning fewer loose

fibres increase the rope’s friction. This has improved the bedding-in of strands and

compactness of fibres and consequently enhances the bond strength with concrete.

Concrete quality

Due to an increase in the free-water to cement ratio, an average of 36.4MPa compress-

ive strength was achieved at 28 days of standard curing. It is thought that stronger

concrete produces better bond adhesion with reinforcement, especially when ribbed

reinforcement is used. Unfortunately this could not be observed in this set of exper-

iments and further experiments are required to determine the relationship between

concrete strength and reinforcement bond strength. Moreover, the moisture content
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of concrete is thought to influence the bond strength of concrete and, similarly, further

studies are required.

Cube ID Age of cur-
ing (days)

Weight (kg) Density
(kg/m3)

Compressive
Stress
(MPa)

C-TP10-1 7 2.27 2270 22.3
C-TP10-2 7 2.34 2340 20.2
C-TP10-3 7 2.38 2380 23.8
Average at 7 days 22.1 MPa
C-TP10-4 28 2.35 2350 36.2
C-TP10-5 28 2.36 2360 37.3
C-TP10-6 28 2.38 2380 35.6
Average at 28 days 36.4 MPa

Table 3.6: Compressive testing of concrete control cubes for TP10 specimen

Pull-out observations and results

The pull-out behaviour of the TP10 samples shown in the load-displacement curves in

Figure 3-7 can be classified into two parts: the initial phase is when the rope loses its

adhesion from concrete and de-bonds, while the second phase consists of a continuous

cyclic frictional pull-out resistance. While the initial phase has a predominantly

gradient friction reflecting the fibre-concrete chemical adhesion, the second phase has

a predominantly cyclic friction governed by the surface texture of the rope. The

amplitude is thought to be governed by the amount of pre-stressing onto the rope.

It was also observed that prolonged frictional abrasion caused some damage to the

fibre. The maximum pull-out force was not attained after the initial stiffening, but

rather at random places during the pull-out process.

The bond stress was determined by the maximum pull-out force per unit in the bond

area, where the bond area was equal to the bond length times the circumference

of the 10mm rope. The average bond stress was found to be 1.31MPa, which was

significantly weak compared to the CP8 sample, and only 12% of the bond stress of

a 10mm steel rebar (equal to 10.88MPa) according to BS EN 1992-1-1:2004100.
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Figure 3-7: TP10 Load-Displacement graph

Specimen
ID Ultimate failure load

(N)
Bond length (mm) Bond Stress (MPa)

TP10-1 2851.47 55 1.65
TP10-2 2848.72 55 1.65
TP10-3 1861.55 53 1.12
TP10-4 2285.51 54 1.35
TP10-5 1999.78 54 1.18
TP10-6 1567.68 57 0.88

Average 1.31 MPa

Table 3.7: Pull-out test results for TP10
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The results suggest that the designated bonding area does not provide an adequately

rigid bond with concrete. Therefore the plain Technora T12 reinforcement system

is not suitable as concrete reinforcement and results were only used to be compared

with the RBFR system.

3.3.3 Ribbed braided technora fibre reinforced concrete - TR10

Bond strength enhancement for Technora T12 ropes was necessary and made possible

by adopting the proposed RBFR system. Glass beads formed the ribbing surface tex-

ture to the ropes that enhances the pull-out strength when embedded in concrete.

This set of pull-out experiments examines the bond strength of ribbed braided Tech-

nora ropes embedded in concrete, using a glass bead to form a single rib located in

the designated bond area as discussed in Section 3.2.

Concrete quality

Although the concrete mix ratio was the same as that used in Section 3.3.2, an average

compressive strength of 40.2MPa was achieved at 28 days of standard curing. This

may be due to a technical error leading to incorrect water to cement ratio, which

eventually reduced the slump significantly. As discussed in Section 3.3.2, this is

thought to have contributed to the extra bond strength reported in this section.

Cube ID Age of cur-
ing (days)

Weight (kg) Density
(kg/m3)

Compressive
Stress
(MPa)

C-TR10-1 7 2.37 2370 21.3
C-TR10-2 7 2.36 2360 21.0
C-TR10-3 7 2.38 2380 23.9
Average at 7 days 22.0 MPa
C-TR10-4 28 2.37 2370 41.1
C-TR10-5 28 2.36 2360 39.6
C-TR10-6 28 2.37 2370 39.8
Average at 28 days 40.2 MPa

Table 3.8: Compressive testing of concrete control cubes for TR10 specimen
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Pull-out observations and results

The pull-out load/displacement curves were plotted in Figure 3-8. The initial load-

ing stage was very similar to that of TP10 and CP10 samples, where embedding of

strands/fibres was observed during the initiation of loading. This was followed by a

rapid increase in bond stiffness until the debonding mechanism was initiated. Then

a sharp loss of stiffness, representing a major debonding, was observed with some

residual bond strength due to extra friction with the concrete. Concrete cracking was

observed (Figure 3-10) due to tensile stresses induced by the rib onto the concrete

and, in some cases, the crushing of the glass bead. Rupture of fibres was observed

among all samples in various magnitudes of damage. It was unable to determine the

percentage of fibre rupture during different stages of the pull-out process. The hypo-

thesis suggests that very few fibres were damaged up to the maximum pull-out force,

and most of the damage happened afterwards when exposed to further concrete ab-

rasion resistance. Further studies are necessary to determine the rate of fibre rupture

in proportion to the extent of the pull-out.

Similarly to Section 3.3.2 the bond stress was determined as shown in Table 3.8,

resulting in an average bond stress of 7.22MPa: 5.5 times the average bond stress of

TP10 samples. This is equivalent to 66% of the bond strength required by a 10mm

steel re-bar in accordance with BS EN 1992-1-1:2004100.

Specimen
ID Ultimate failure load

(N)
Bond length (mm) Bond Stress (MPa)

TR10-1 12425.1 51 7.75
TR10-2 12266.4 50 7.81
TR10-3 11388.7 54 6.71
TR10-4 9896.0 50 6.30
TR10-5 12562.5 55 7.27
TR10-6 11731.7 50 7.47

Average 7.22 MPa

Table 3.9: Pull-out test results for TR10

As a general note, it is recommended that these experiments be repeated using differ-
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Figure 3-8: TR10 Load-Displacement graph

Figure 3-9: Specimen section of CP8 Figure 3-10: Concrete cracking
marked in black for TR10 sample
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ent concrete strengths, moisture contents, sizes of beads and different types of braids

made from fire-resistant fibres.

3.4 Discussion

Pull-out experiments of ropes embedded in concrete have delivered various challenges

due to its novelty and lack of experience. This section summarises main observations

and achievements, followed by a discussion of how the RBFR system can be improved.

It also highlights gaps in research and recommends further work.

During this set of experiments, it was found that plain 8mm Siltex carbon fibre rope

(CP8 samples) was not suitable for concrete reinforcement because they are very weak

in tension and do not provide sufficient bond strength. Further studies are required

to improve the tensile strength of carbon fibre ropes while adopting the RBFR system

to improve the bond strength between the reinforcement and concrete, as these could

be used as concrete reinforcement and conform with EN1992-1-1100. Similarly, plain

10 mm Technora rope (TP10 samples) only provided frictional resistance during pull-

out testing due to its smooth surface, and does not take the advantage of concrete

confinement as discussed in Section 2.2.1 when ribs are present on the surface of

the reinforcement. Pull-out experiments of RBFR made from 10mm Technora rope

ribbed with an 8×12mm glass bead (TR10 samples) obtained 66% of bond strength

compared to a 10mm steel re-bar. This verifies that the RBFR system can be a

feasible main concrete reinforcement if optimised, by modifying the size, geometry,

material and frequency of the beads. The RBFR system provided an enhancement

of 5.5 times the bond strength compared to plain Technora reinforcement (TP10).

Concrete confinement plays an important role in the overall bond strength, as dis-

cussed in Section 2.2.1. It is necessary that this confinement is enough to withstand

the tensile stresses exerted by the ribs on the concrete. During de-bonding of the

RBFR system, it was observed that concrete confinement was insufficient during the

appearance of longitudinal cracks in concrete, but sufficient when glass beads were
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crushed instead of concrete cracking. As the pull-out experiments were standardised

with pre-defined concrete strength and sample dimensions, the ribbing height can be

reduced to mitigate longitudinal cracking. Likewise, increasing the frequency of the

ribs (glass beads) could achieve a similar or better pull-out strength. De-bonding was

followed by progressive fibre rupture damage due to the friction contribution between

the reinforcement and concrete. Pre-tensioning of the RBFR system can significantly

contribute to the friction of the bond strength due to an increase in fibre compactness,

therefore providing a better and rigid bond with the concrete. This was validated by

observing the elastic stiffening behaviour of the bond during the pull-out action.

It is necessary that such experiments are repeated for different concrete strengths

and moisture content to determine their influence on the bond strength of the RBFR

system. Other variants, such as the fine to coarse aggregate ratio and curing process,

need further investigation into how they influence the bond strength and behaviour.

It is also worth investigating a different type of braid, since it was identified that

low pitch to diameter ratio provides better bond adhesion (comparing CP8 to TP10),

although it also weakens the tensile strength of the rope.

Experimental work has shown that the RBFR system can be used to reinforce con-

crete structures and possibly increase fire-resistance. Another gap in the research is

the need for numerically modelled braided fibres to show how they behave when bon-

ded with other materials. The following three chapters will discuss the methodologies

developed in this thesis to model braided fibres and their interaction with other ma-

terials. It uses hierarchical higher order interface elements and replicates numerically

the pull-out experiments discussed in these chapters.
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Chapter 4

Hierarchical higher order

approximations for interface elements

Having determined the feasibility of ribbed braided fibre reinforcement (RBFR) sys-

tems for concrete reinforcement in the previous Chapter 3, this thesis develops a com-

putational modelling framework to simulate and investigate bond behaviour between

RBFR ropes (reinforcement) and concrete. Within the context of the Finite Ele-

ment Method, attention is focused on the modelling of the interface between the

concrete and RBFR using cohesive elements and hierarchical higher order (HO) ap-

proximations. Hierarchical higher order interface elements are required to provide

an accurate approximation of the interface if material and geometrical non-linearities

exist. It will be shown that local p-refinement on the interface is possible and the rate

of convergence can be improved to reduce the computational cost without mitigating

the accuracy of the solution.

4.0.1 Overview

This chapter aims to discuss hierarchical higher order approximations and their use

within cohesive elements. The need for various types of refinements is explained,

as well why higher order polynomials are preferred within different contexts. Next
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the construction, properties and numerical implementation of hierarchical piecewise

polynomial basis functions are discussed. The focus then switches to how hierarchical

higher order approximation techniques are used for cohesive elements and illustrated

with two examples: first, a de-lamination problem for which uniform and localised

h, p and hp-refinement were used; second, an investigation into the use of localised

p-refinement to solve the traction oscillation problem induced at notches.

4.0.2 Higher order elements versus hierarchical higher order

elements

4-node 10-node 16-node

Linear Quadratic Cubic

3D Finite Element Tetrahedron

Nodal Shape Functions

Figure 4-1: Higher order tetrahedron and their nodal shape functions

This section highlights the difference between higher order elements and hierarch-

ical higher order elements. Like higher order interface elements, higher order finite

elements (Figure 4-1(top)) are used to approximate fields such as displacement us-

ing higher order polynomial shape functions (Figure 4-1(bottom)) and to represent

curved domains in the discretised finite element problem. The main disadvantage of

this is that the finite element type determines the polynomial order of approxima-

tion. Varying the polynomial order within a finite element domain requires the use

of serendipity elements and special re-meshing techniques, at a severe computational

cost.
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1st Degree 2nd Degree 3rd Degree

3D Higher Degree
Polynomial Tetrahedron

¾ Ø ¾ Ø

Linear - Nodal Quadratic - Edge Cubic - Edge

Quadratic - Face

Higher Degree Polynomial
Shape Functions

No face shape function
for 1st and 2nd Polynomial Degree

Figure 4-2: Linear tetrahedron with HO polynomial DOF and their nodal, edge and
face shape functions192

On the other hand, hierarchical higher order elements consist of linear finite ele-

ments, with additional virtual degrees of freedom (DOF) assigned to edges, faces and

volumes (Figure 4-2(top)), to approximate fields using HO basis functions (Figure 4-

2(bottom)). This system is called hierarchical because every entity of a finite element

can have a different polynomial order as necessary. However, it is worth noting that

curved domains cannot be represented using hierarchical higher order finite elements.

Additionally, complex data structures are required to store the polynomial order and

orientation of every entity of a finite element, as discussed later in this chapter.

4.0.3 Different types of refinement

h-refinement is a simple approach whereby the element size h is increased or de-

creased without changing the finite element type. h-refinement can be achieved by
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subdividing existing elements (Figure 4-3c) or by re-meshing the domain of interest.

Although h-refinement is easily adopted in the FEM, problems such as mesh quality

(skewness of elements and large variation in area/volume ratio) and weak convergence

are very common.

no refinement r-refinement h-refinement hp-refinement

1st degree-edge
2nd degree-edge
3rd degree-edge
4th degree-edge
1st degree-face
2nd degree-face
3rd degree-face

(a) (b) (c) (d)

Figure 4-3: Different types of refinement

r-refinement is a useful alternative to h-refinement, where the number of DOF is

maintained and the mesh nodes are concentrated in zones that requires improved

approximation (Figure 4-3b)), but the number of elements, DOFs or connectivity is

not changed. This method could however be inappropriate where the mesh is already

too coarse and/or the area or volume ratio of elements is very large.

p-refinement provides higher order approximation by increasing the order of ap-

proximation. In the traditional FEM, this is achieved by using higher order elements.

Typically, the mesh does not change but physical nodes are added, e.g. a three node

triangle becomes a six node triangle, or a four node tetrahedron becomes a ten node

tetrahedron. As discussed in Section 2.2.3.5, enrichment methods to improve the ap-

proximation variable fields on the interface have been developed to accurately capture

the de-bonding mechanism. In this thesis, a hierarchical higher order approximation

technique will be used to perform localised p-refinement on both the FEs and interface

elements.

hp-refinement is a mixture of non/-uniform h and p-refinement as shown in Figure

4-3d. Babuska and Guo10 showed that hp-refinement provides an exponential rate of

convergence e−κ
√

(α−1/2)N , where N is the total number of DOFs, α is a constant and

κ is the exponent factor which can range from 1.24 for a uniform p-refinement and
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optimal geometrical mesh to 1.76 for an optimal non-uniform mesh. If an exponential

rate of convergence is obtained, the problem is solved accurately using the minimum

number of degrees of freedom and minimum computational power.

4.0.4 Localised hierarchical refinement

Localised refinement reduces the total number of degrees of freedom (DOFs) without

diminishing the accuracy of the numerical solution. This is performed by decreasing or

increasing the number of DOFs on various zones in the FE mesh (Figure 4-3(d)), de-

pending on whether the level of approximation is sufficient to achieve a prescribed nu-

merical accuracy in the entire model. The decrease/increase of DOFs is performed by

pre-defining or adaptively localising refinement (such as h- or p-refinement) through-

out the model. Error estimators are used in determining the order of approximation

required for every entity in the finite element mesh and provide sufficiently accurate

results.

While h-refinement is easily implemented, it is not efficient in improving the solution

accuracy. P-refinement is more flexible and adaptable to different degree of non-

linearity. However, using higher order elements can be complex and typical elements

with a third order of approximation or higher are not implemented in finite element

codes; hence, hierarchical HO p-refinement may be more effective when different

approximation orders are required.

4.1 Hierarchical p-approximation

This section provides a step by step explanation of how hierarchical higher order

approximation is implemented in a FE context where cohesive elements are used.

The construction of the hierarchical HO shape functions will be explained for tetra-

hedral/triangular elements based on the work of Ainsworth and Coyle2. The imple-

mentation of hierarchical HO shape functions satisfies a priori conformity of shape
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functions, explained in Subsection 4.1.2. This is followed by a description of the ef-

ficient and flexible numerical integration procedure proposed in this work, explained

in Subsection 4.1.3 and implemented in MoFEM.

4.1.1 Construction of shape functions

In standard FE approximation, degrees of freedom are associated with physical nodes

on the vertex, edge and face. To increase the order of approximation, the old nodes

need to be removed and new nodes added in the appropriate position. This does not

permit hierarchical approximation functions to be constructed. For hierarchical HO

elements, degrees of freedom are associated with both physical vertex nodes and with

entities such as edges, faces and volumes. This enables us to construct the hierarchical

approximation basis. This also allows for a convenient construction of a heterogen-

eous order of approximation where the order can be defined independently for each

entity. Following the work of Ainsworth and Cole2, the hierarchical approximations

are provided by the Legendre polynomials for a reference interval l = [−1; 1], are

expressed as

L0(s) = 1; L1(s) = s; Ll+1(s) =
2l + 1

l + 1
sLl(s)−

l

l + 1
Ll−1(s), l = 1, 2, · · · (4.1)

where Ll is the Legendre polynomial of degree l. Legendre polynomials are a special

case of the Gegenbauer polynomials as a case of the generalised Humbert polynomi-

als94.

For a 1D edge, the linear shape functions are given as

No = 1− ξ Ni = ξ (4.2)

For a 2D triangular face they are

No = 1− ξ − η Ni = ξ Nj = η (4.3)
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Nj
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11

1
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NiNj

Nk

Figure 4-4: 1D edge / 2D triangle / 3D tetrahedron Isoparametric Elements

For a 3D tetrahedron volume they are

No = 1− ξ − η − ζ Ni = ξ Nj = η Nk = ζ (4.4)

where ξ, η and ζ are the local coordinates.

Once the linear edge shape functions (Equations 4.2-4.4) and the Legendre polyno-

mials 4.1 are determined, the shape functions for the extra DOFs can be computed

as shown in Figure 4-5.















    































Figure 4-5: Nodal and higher order shape functions for an edge
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Edge hierarchical higher order shape functions are:

N oi
l = βoiLl(soi), 0 ≤ l ≤ p− 2 (4.5)

Face hierarchical higher order shape functions are:

N oij
lm = βoijLl(soi)Lm(soj), 0 ≤ l,m, l +m ≤ p− 2 (4.6)

Tetrahedron hierarchical higher order shape functions are:

N oijk
lmn = βoijkLl(soi)Lm(soj)Ln(sok), 0 ≤ l,m, n, l +m+ n ≤ p− 4 (4.7)

where βoi = NoNi, βoij = NoNiNi, etc., and soi = Ni − N − o, soj = Nj − No, etc.,

and l,m, n are the polynomial degree, and p is the polynomial order.

The quantity of DOFs generated for a certain polynomial order p for edges, faces and

tetrahedrons is as follows:

DOFedge = p− 1 DOFface = (p− 2)(p− 1)/2 DOFtet = (p− 3)(p− 2)(p− 1)/6

(4.8)

As shown in Figure 4-6, hierarchical HO shape function for edges and faces should

conform with the neighbouring entities. Hence, when computing β and s, the indices

o, i, j should respect the orientation sense of the entity derived from the canonical

order of connectivity of the finite elements203.

jj

j

o

i
i

o

Figure 4-6: Conforming face shape function
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Examples of linear (polynomial order p=1), quadratic (p=1) and cubic (p=2) edge

shape functions are shown in Figures 4-7, 4-8 and 4-9 respectively. Quartic (p=3)

and cubic (p=4) face shape functions are shown Figure 4-10.

o

i

j

o

ij

o

ij

Figure 4-7: Linear edge shape functions: 0 ≤ N oi,ij,jo
p=1 ≤ 1

o

ij

o

ij

o

i

j

Figure 4-8: Quadratic edge shape functions: 0 ≤ N ij,jo,oi
p=2 ≤ 0.25

o

i

j

o

ij

o

i

j

Figure 4-9: Cubic edge shape functions: 0 ≤ N ij,jo,oi
p=3 ≤ 0.125

4.1.2 Enforcing conformity in 2D/3D hierarchical higher order

p-approximation

The main advantage of using hierarchical higher order shape functions is the ability

to locally enhance the order of approximation to achieve accurate results with the

minimum computational cost. This implies that a different number of higher order
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o

ij

o

ij

o

ij

Figure 4-10: Left: Quadratic (N oij
p=3); middle and right (N ioj,ijo

p=4 ) face shape functions

DOF are assigned to every mesh entity, and there is consequently different order of

approximation for every entity.

Enforcing conformity of shape functions and having adequate numerical integration

are two essential conditions when using hierarchical HO p-approximation. The latter

topic will be discussed in Section 4.1.3, but enforcing conformity of HO shape function

in 2D and 3D will be discussed in this section. Conformity is ensured by using same

approximation order (Figure 4-11) and same node ordering (Figure 4-12) for edges

and faces when shared between two more than finite elements2.

3rd degree

3r
d
de
gr
ee

3rd degree

3r
d
de
gr
ee

1
st de

gre
e

3
rd de

gre
e

4 th
degree

2 nd
degree

Figure 4-11: Matching of degree of polynomial in 2D (localised p-refinement)

For example, evaluating the edge shape functions for two neighbouring triangles

should obtain same values for that shared edge as shown in Figure 4-13(right). If a cor-

rect approximation order is used, but with a different node ordering, non-conforming

shape functions are generated with mismatched values as shown in Figure 4-13(left).

The key to practical implementation of the hierarchical HO element is the use of a

database which retains information about the polynomial degree and orientation of

each entity. This was made possible by the Mesh-Oriented database (MOAB) library,

which stores and retrieves information of every mesh entity.
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Figure 4-12: Conforming node ordering for a shared face

j

j

jj

j

o

i
i

o

o

i

o

i

Figure 4-13: 2D Conformity
Left: mismatch shape function values (non-conforming geometrical sense)
Right: matching of shape function values (conforming geometrical sense)2

It is worth noting that node ordering may vary if retrieved from the finite element

connectivity. An additional parameter is used to determine the sense of direction of

an entity when queried for different finite elements. Consider the two triangles in

Figure 4-13(left), where their connectivities are o, i and j respectively. If we compute

the HO shape functions for edge oi for the left and right triangles, obtaining N oi(left)
p

and N
oi(right)
p respectively, we can conclude that N oi(left)

p 6= N
oi(right)
p , on the other

hand, N oi(left)
p = N

io(right)
p for p > 2. If we assign a positive and negative unit value to

this edge when considered for the left and right triangle respectively, we can identify

whether we have to reverse the node ordering or not when computing the HO shape

functions.
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4.1.3 Numerical Integration for hierarchical higher order ap-

proximations

Standard Gauss quadrature given as

∫ 1

−1

f(x)dx ≈
N∑
i=1

wif(xi) (4.9)

where f(x) is the weak form function, wi are the weight functions, xi are the Gauss

points and the number of Gauss points N is computed as

N =
n!

l! ∗ (n− l)!
(4.10)

It is possible to obtain an accurate integral with the correct number and position of

Gauss points. An external library35 based on the Grundmann and Moller integration

rule83 was used in MoFEM to dynamically compute the Gauss points and weight

functions for any polynomial degree to increase computational efficiency. The number

of Gauss points required is determined from Equation 4.10, where n = d+ l+ 1 (d is

the dimensional space (1,2 or 3) and l is the polynomial degree).

4.2 Hierarchical higher order interface elements

The interaction modelling between the strands of the braided ropes and the rope and

the surrounding concrete requires the use of interface elements. However, interface

elements may require HO approximation due to localised deformations induced by

large deformations and/or damage on the interface. Localised h- and p-refinement are

generally used to achieve an accurate solution with the minimum number of DOFs.

P-refinement (Figure 4-14) based on hierarchical HO approximation is an efficient

process where additional HO DOFs are added to the system of equations without

re-meshing or inserting physical HO nodes in the interface elements. Hence the poly-
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nomial order can be easily increased in areas of localised deformation, retaining a low

polynomial order elsewhere.

1st Polynomial Degree

2nd Polynomial Degree

3rd Polynomial Degree

Notch

Interface

Figure 4-14: Localised p-refinement of edges on the interface

A well-known problem with interface elements178 is the presence of spurious traction

oscillations, commonly thought to be the result of incompatibility between the trac-

tion distribution along the interface and the stress distribution in the volume of the

neighbouring elements. This Chapter investigates this phenomenon and proposes a

solution.

4.2.1 Formulation of hierarchical higher order interface ele-

ments

A similar interface element formulation as that used by183 was adopted to formulate

hierarchical HO interface elements and is discussed in this Section. Unlike 6-noded or

other HO interface elements, hierarchical HO interface elements can be used to per-

form localised p-refinement at the interface. Consequently, computational efficiency

improves during de-lamination/fracturing problems.

An interface element is formed between solids (similar to Figure 4-15) by duplicating

the nodes of the common surface, separating the solids into two parts and creating

two independent surfaces. For notation purpose, one side is referred to as ‘positive’

and the other as ‘negative’ as shown in Figure 4-16. This means that any DOFs on the

original common surface must be duplicated. Consider X and x to be the reference
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and current coordinates of the interface element with a displacement vector of d,

hence x = X + d. Every interface element is composed of nodal and HO DOFs. For

example, vector x is constructed from the nodal DOFs for the positive and negative

sides of the interface and denoted by [+/−]γ respectively, then by the edges HO DOFs,

denoted by [+/−][1/2/3]α for the positive and negative sides and for the first, second and

third edge respectively and ends with the face HO DOFs, denoted by [+/−]β as shown

in Equation 4.11, where p is the polynomial order of the DOF.

3rd Order

2nd Order

1st Order

Figure 4-15: Localised p-refinement of interface and adjacent solid

end nodes

edge nodes

face nodes

n
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e-12
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e+21

e+22
e-31

e-32
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f-1

f +1
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Figure 4-16: Cohesive elements represented with prisms in FE mesh
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x =



x+γ
x x+γ

y x+γ
z . . .

(x+1α
x x+1α

y x+1α
z )p (x+2α

x x+2α
y x+2α

z )p (x+3α
x x+3α

y x+3α
z )p . . .

(x+β
x x+β

y x+β
z )p . . .

x−γx x−γy x−γz . . .

(x−1α
x x−1α

y x−1α
z )p (x−2α

x x−2α
y x−2α

z )p (x−3α
x x−3α

y x−3α
z )p . . .

(x−βx x−βy x1β
z )p


(4.11)

The traction resistance between interface elements is governed by their respective

local stiffness matrix Dloc. For an elastic interface element this is defined as

Dloc =


Dn

Dt1

Dt2

 (4.12)

• Dn - Normal Mode 1 stiffness

• Dt1 - Tangential Mode 2 stiffness

• Dt2 - Tangential Mode 3 stiffness

while for damage cohesive interface elements, the tangential operator Dloc is defined

as the rate of traction with respect to the local relative gap opening ∆uloc given as

Dloc =
∂tloc
∂∆uloc

(4.13) and tloc =


∂ψ

∂∆un

∂ψ
∂∆ut1
∂ψ

∂∆ut2

 (4.14)

for cohesive interface elements (described in the following section). tloc is the local

traction computed from the respective damage energy function ψ(∆un,∆ut1,∆ut2).

∆un, ∆ut1 and ∆ut2 are the relative gap openings of the interface in the normal and

tangential components as discussed in Section 4.2.2. The damage energy function is

governed by a traction-separation cohesive law as discussed in Section 4.2.2 and se-

lected to represent the mechanical behaviour of a particular type of interface between

two materials, such as the interface between steel reinforcement and concrete as ad-

dressed in Section 2.2.2.1. The local relative gap opening ∆uloc is determined from
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the global relative gap opening ∆uglob as

∆uloc = R∆uglob (4.15)

where R is the rotation matrix which transforms the interface element between the

global and local coordinates, as described later in this section, and ∆uglob at every

integration point is determined by

∆uglob = Φd (4.16)

where d is the displacement at all the DOFs of the interface element and Φ =

N(I3γ+(9α+3β)p | −I3γ+(9α+3β)p), where I is an identity matrix with a variable size of

3γ + (9α + 3β)p, depending on the hierarchical HO approximation order, and con-

sequently on the number of DOFs for a particular interface. N is the shape function

matrix defined as follows and composed of nodal shape functions (Equations 4.3) and

the higher order edges (1− 3α) and face (β) shape functions (Equations 4.5 and 4.6

respectively).

N3×(3γ+(9α+3β)p) =
(
NγI3×3 | N1αpI3×3 | N2αpI3×3 | N3αpI3×3 | NβpI3×3

)
(4.17)

Similar to the local and global relative displacements (∆uloc and ∆uglob), Dloc defined

in the local coordinate system has to be rotated in the global coordinate system, such

as

Dglob = RTDlocR (4.18)

and therefore the global stiffness matrix of the interface element can be computed as

Kel =

∫ (
ΦT
[
RTDlocR

]
Φ
)
dA =

n∑
i

n∑
j

ωiωj
(
ΦT
[
RTDlocR

]
Φ
)
J (4.19)
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and the internal force vector of the interface element can be computed as

f intel =

∫
ΦT
[
RT tloc

]
dA =

n∑
i

n∑
j

ωiωjΦ
T
[
RT tloc

]
J (4.20)

In Equations 4.19 and 4.20, J is the determinant of the Jacobian and equivalent to

the area of the interface when three nodes exist on each side of the interface.

When adaptive p-refinement is undertaken as shown in Figures 4-14 and 4-15, the

order of approximation of every entity (edges and face) is stored and N can be for-

mulated accordingly. It is important that conformity is ensured between any pair of

entities (a pair of edges or face on the +ve and −ve side), similar to the description

given in Section 4.1.2.

The rotational matrix R is made from the normalised normal vector (n̂ = t̂1 × t̂2)

and the two tangential vectors (t̂1 and t̂2)(Equations 4.22-4.23) of the median surface

as shown in Figure 4-16. The coordinates of the median surface which is the average

of the nodal coordinates of both sides (+ve and -ve sides) is x̄ = 1
2
[x+γ − x−γ]. In

a large displacement formulation (see Section 5.5), R has to be updated at every

load increment w.r.t. the current configuration. ∂x̄
∂ξ

and ∂x̄
∂η

can be computed using

Equation 4.24 and 4.25.

R =


n̂

t̂1

t̂2

 (4.21)

t̂1 =
1

‖∂x̄
∂ξ
‖
∂x̄

∂ξ
(4.22)

t̂1 =
1

‖∂x̄
∂η
‖
∂x̄

∂η
(4.23)

∂x̄

∂ξ
=
∂N

∂ξ
x̄ (4.24)
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∂x̄

∂η
=
∂N

∂η
x̄ (4.25)

Linearisation of the interface element formulation was necessary for cohesive damage

laws (explained in the next section). The internal force of the current load increment

i+ 1 is computed as:

f inti+1 = f inti +
∂f inti

∂∆uloc
δx (4.26)

where the tangent stiffness matrix KT is

KT =
∂f inti

∂∆uloc
=

∂

∂∆uloc

∫
ΦT
[
RT tloc

]
dA (4.27)

and can be expanded as

KT =

∫
ΦT

[
∂R

∂∆uloc

]T
[tloc] dA+

∫
ΦTRT

[
∂tloc
∂∆uloc

]
dA (4.28)

If the interface experiences small rotations, we can simplify KT as

KT =

∫
ΦTRT

[
∂tloc
∂∆uloc

]
dA (4.29)

where ∂tloc
∂∆uloc

is the tangent operator Dloc defined earlier in Equation 4.13. Assuming

that the interface experiences small rotations, KT expressed in Equation 4.29 was in

this thesis. The residual Fres then can be computed as −Fres(x) = KT δx, and used

in a Newton-Raphson algorithm to solve the non-linear problem. Newton-Raphson

was controlled using arc-length method, where the incremental load was controlled

by the gap opening of the crack front as proposed by5.
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4.2.2 Cohesive elements

This section discusses cohesive elements used to modelled de-bonding between fibres

and concrete (see Chapter 6). Cohesive elements are interface elements governed by

a traction/separation law, also referred to as a cohesive law.

Consider a model made from two laminates bound with a layer of glue (Figure 4-

17). During de-lamination, the model experiences a mechanical resistance governed

by a cohesive law. Cohesive laws vary from elastic models, providing uniform stiff-

ness across the interface without any damage (Figure 4-18(a)), to models that lose

stiffness as the gap increases between the interface (damaging) (Figure 4-18(b-d)).

Gap opening of the interface is classified into three modes: normal opening (∆un),

in plane shear (∆ut1), and out of plane shear (∆ut2) as shown in Figure 4-19(a-c)129.

The combination of gap openings governs the cohesive law, as will later be discussed.

For example, the de-lamination problem (Figure 4-17) is mainly governed by Mode I

gap opening, while fracturing of concrete can be governed by all modes of separation.

Top Laminate

Bottom Laminate

Glue

Figure 4-17: Fibrous glue (cohesive zone) between two laminates

In this thesis, de-bonding between fibres and concrete was assumed to damage linearly

and can therefore be represented by a linear cohesive model. The implementation of

the linear cohesive model is explained in this section.

A cohesive law governing the mechanics of an interface element is divided into four

main parts as shown in Figure 4-20. The first loading stage of the interface is where
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Figure 4-18: Cohesive Laws: (a) Elastic (no damage); (b) Linear damage; (c)
Bi-linear damage; (d) Exponential damage

(a) Mode I -
Normal opening

(b) Mode II - In
plane shear

(c) Mode III - Out
of plane shear

Figure 4-19: Modes of cohesive elements

a penalty stiffness Eo across the interface is used to incrementally determine the

maximum internal forces of the interface. Once the maximum traction ft is obtained,

the damaging phase is initiated. Traction resistance is governed by the gap opening

κ = max(κ, g− go), where g is the mixed-mode gap opening as discussed later in this

section, and go = ft
Eo
. The damage parameter ω is equal to zero if κ = 0 and is equal

to one if κ = κ1 (g = gmax) and the damage energy Gf is fully dissipated. Gf , also

known as Griffth energy, is equal to the area under the damaging phase of the cohesive

law (Figure 4-20). While g reduces during unloading, κ remains unchanged and go is

updated to the point at which the unloading was initiated. The third part of a cohesive

law is the re-loading of the interface element using the updated stiffness computed

from the new go and damaging will be continued as the maximum traction at the new

go is achieved. Once full damage is achieved (ω = 1), that is κ = κ1, and κi =
2Gf

ft
,

the fourth stage is initiated where full damage is obtained and no gap recovery is

possible. Post damage friction can be obtained by introducing a cohesive-frictional
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interface law that considers a constant frictional stress when κ ≥ κ1. However, the

influence of confinement on the bond stress-slip response is not taken into account by

this approach. Therefore, a unilateral contact can be obtained by introducing high

penalty stiffness in mode I6.

Initial Damage
Stage

Continuing Damage
after recovery

Fully Damage
State

Un
-lo
ad
ing

Re-
loa
din
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Gf

(ω=0)
gmax

(ω=1)

ft
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κ1

Figure 4-20: Linear damage model with full recovery during un-loading/re-loading
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Figure 4-21: Linear damage model with friction

The traction resistance of the interface τ can be expressed as

τ =

{
Eog κ = 0 (4.30)

(1− ω)Eo∆u 0 < κ ≤ κ1, (4.31)
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where ω is given as

ω =
(2GfEo + f 2

t )κ

2Gf (ft + κEo)
(4.32)

As discussed in Section 4.2.1, the energy damage function depends on a combina-

tion of normal, in plane shear and out of plane gap opening (∆un, ∆ut1 and ∆ut2

respectively). In this thesis g, which governs the damage law, was expressed as

g =
√

(∆un)2 + β((∆ut1)
2 + (∆ut2)

2) (4.33)

where β determines whether modes II and III will contribute to the damage model.

Unlike the de-bonding discussed in Section 2.2.1 where the bond-slip model for steel

reinforced concrete is mainly governed by the slip along the reinforcement, in braided

fibre reinforced concrete, the fibre cross-section reduces significantly and therefore

mixed-mode dislocation is considered. In the examples given in Chapter 6, it was

assumed that the de-bonding between fibres and concrete during pull-out is governed

by the normal and shear dislocation. Therefore Mode II and III were fully activated

by setting β equal to one (β can range from zero to one, depending on the contribution

of tangential slip to the damage model).

Hierarchical higher order cohesive elements were implemented in MoFEM and these

are represented by zero thickness prism elements that can be inserted between tetra-

hedron elements where fissures are pre-determined. Hierarchical higher order cohesive

elements ensure that non-linearity are approximated accurately within every interface

element.

In the following Section 4.2.3, de-lamination of a 3D laminate model identical to

the experimental model investigated by Robinson and Song167 and an equivalent 2D

finite element model analysed by Alfano and Crisfield5 is studied using uniform h and

p-refinement, along with localised p-refinement at the interface using the formulation

for p-refinement discussed in this section. This was utilised to investigate traction
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oscillations generated nearby notches using a four-point bending test of a 3D notched

beam equivalent to the 2D beam used by Schellekens and deBorst178 to investigate

the same problem.

4.2.3 Beam de-lamination problem

This section investigates implementation in a typical problem, consisting of a mech-

anical de-lamination of two plies glued together. In Robinson and Song167, a con-

ventional laminate with fibres oriented in the longitudinal direction with material

properties given in Table 4.1 and a bond area of 30 × 100mm was experimentally

investigated where the fracture energy Gf in Mode I (Gf,I) was determined. Alfano

and Crisfield5 analysed this problem via a 2D finite element approach, using the same

dimensions given in Figure 4-22 and same material parameters given in Table 4.1, but

with different penalty stiffness Eo as described later in this section.

In this thesis, the same problem is presented in a 3D finite element model using the

proposed hierarchical higher order interface elements. It investigates the difference

between h and p-refinements. To reduce the problem size, a quarter strip of this lam-

inate was investigated (Figure 4-22). Linear damage cohesive elements (parameters

given in Table 4.1) between the laminates were also used. The loading was controlled

by Newton-Raphson method and governed by arc-length, controlled by the gap open-

ing of the crack front5. The specimen was clamped at one end and, similar to the

experimental and 2D numerical model, a 30mm zero thickness notch was introduced

to the other end. The specimen was discretised with a structured tetrahedral mesh.

Interface elements were also structured and aligned in parallel with the loading edges.

This improved the non-linear convergence due to uniform damaging of the interface

with minimal damage oscillation effects. The same boundary conditions were used as

those in the experimental and 2D numerical investigations.

The penalty stiffness Eo = ft
gi

was reduced from that used by Alfano and Crisfield5 to

improve the rate of convergence as damaging phase is initiated. The effect of Eo was

only on the linear loading part of the load-displacement graph, as shown in Figure
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Composite Laminate Material
Ep = 7.5GPa Ez = 126GPa Gzp = 49.88GPa νp = νpz = 0.263

Interface
Gf,I = 0.281kJ/m2 gi = 2.047e −

3mm
ft = 57MPa

Table 4.1: Laminate material and interface parameters

Figure 4-22: Diagram of de-lamination beam model
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Figure 4-23: Comparison of 2D5, 3D FEM solutions and experimental results167
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4-23. This graph demonstrates good agreement between the 2D numerical results5,

the 3D numerical investigation using quadratic polynomial approximations and the

experimental results167. In the 3D model, Newton-Raphson was controlled by the arc-

length method where the load increment was dependent on the gap opening of the

crack front of the de-lamination5. This ensures a good rate of convergence throughout

the delamination process. Loading oscillations during de-lamination of the triangular

interface elements were observed. This was due to a non-uniform damaging along

the crack width front of the de-lamination. Due to these oscillations, the rate of

convergence was reduced and a significant number of load steps were required to

achieve a 4mm de-lamination as shown in Figure 4-23.

The aim of this part of thesis was to investigate the use of hierarchical higher order

approximation for both the interfaces and solids. A series of tests were conducted,

these included uniform h and p-refinement for both interfaces and solids, and localised

p-refinement at the interface only. The advantages of these types of refinements

in modelling de-lamination problems were studied. The smallest problem with a

linear approximation in the solids and interface had 901 DOFs, while the largest

problem with a quadratic approximation in the solids and quintic approximation at

the interface had 13,789 DOFs.

Mesh (h-) refinement was conducted in three stages: coarse, medium and fine dens-

ities, having 40, 60 and 80 interface elements respectively. Up to cubic (3rd order)

polynomial approximation was used. Figure 4-24 shows the results of delamination

process subjected to h-refinement. While interface damage oscillation was reduced as

the mesh was refined, convergence to the exact solution is very slow. This was due

to linear finite elements which experience shear locking and therefore extra bending

stiffness. At least quadratic polynomial approximation on a medium mesh (6,211

DOFs) was required to converge to the accurate solution. It can be observed that

cubic approximation on a coarse mesh (12,265 DOFs) is not as good as a 2nd PO

medium mesh (6,211 DOFs) although it has twice as many DOFs. This is clear evid-

ence that a combination of h and p-refinement gives the most accurate solution with
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the least number of DOFs. Error estimators such as the hp-interpolation error estim-

ator54 can be used to determine the optimal hp-refinement. The theory suggests that

an exponential convergence should be achieved if adaptive hp-refinement is used11;54.

In similar cases, where the geometrical aspect ratio is large due to the thickness of

the laminate, mesh quality constrains the possibilities of localised h-refinement at the

interface116.
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Figure 4-24: h-refinement 1st PO
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Figure 4-25: h-refinement of 2nd PO
approximation
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Figure 4-26: h-refinement of 3rd PO approximation

Another approach would be to perform localised p-refinement at the interface as

shown in the following study. A series of tests of the de-lamination problem with

three levels of h-refinement and four levels of p-refinement at this interface were

conducted. Localised p-refinement has to meet the conformity condition, discussed

in Section 4.1.2, where the same polynomial order on both sides of the interface has

to be used to achieve matching shape functions.
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Figure 4-28: 2nd PO approx. of solids
elements in coarse mesh

By observing localised p-refinement on a coarse mesh (Figures 4-29, 4-30), quadratic

approximation in the solid was required to prevent shear locking, while an increase of p

at the interface had a small difference on the overall result, especially when 2nd PO was

used for the interface. This is a quick and good preliminary test to determine whether

localised p-refinement at the interface improves the solution or not. After this test,

the next option to improve the numerical solution is to rely on hp-refinement. While

h-refinement alone is not enough (Figure 4-29), in combination with p-refinement

(Figure 4-30), a good approximation of the solution can be obtained. On the other

hand, as has been previously discussed, further localised p-refinement on the interface

of the medium dense mesh was redundant and is not recommended for problems

similar to this one. Further h-refinement (fine mesh) improved the solution when 2nd

PO was used for the finite and interface elements (Figure 4-32(b)). Although results

become smoother when h-refinement is conducted on a model with linear polynomial

approximation (Figure 4-27, 4-29 and 4-32(a)), the solution was far from converged.

This study shows how hierarchical higher order approximation can be used not only

to perform uniform p-refinement, but also to conduct localised p-refinement on a set

of entities. This section has shown that this methodology can be used to perform

localised p-refinement on the interface elements, although results shows that uniform

quadratic p-refinement on both the finite and interface elements was sufficient due to

the nature of the problem studied. Using the formulation discussed and implemented
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the interface in medium mesh
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Figure 4-30: 2nd PO approx. of solids
elements and various p-refinements at

the interface in medium mesh

according to Section 4.1 in MoFEM110, the study shows that localised p-refinement

is easy to achieve. MoFEM is a parallel multi-physics FEM C++ library that can

perform h-, p- and hp-refinement110 and take advantage of renowned libraries such as

PetSc (Portable, Extensible Toolkit for Scientific Computation)13 and MOAB (Mesh

Oriented Database)204. At a user level, this is done by specifying the PO of approx-

imation for every entity in the model (edges, faces and volumes). The embedded

algorithm takes care of building the appropriate strain-displacement matrix that con-

tains all the higher order DOFs which do not belong to any physically attached to

physical nodes.

The following section utilises hierarchical higher order approximations to investigate

an ongoing problem, where traction oscillations on the interface are evident when a

singularity exists on the crack front178.

4.2.4 Traction oscillation problem in notched models

Interface elements governed by cohesive laws are used to model fissures which propag-

ate from notches. As discussed in Section 4.2.2, the penalty stiffness used in the

elastic stage of the interface element should be large enough to prevent significant

deformations at the interface. High penalty stiffness may result in undesired spurious
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Figure 4-31: (a) 1st PO approx. of solids
elements and various p-refinements at

the interface in fine mesh
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Figure 4-32: De-lamination load-displacement graphs with uniform h and
p-refinement of the solids and localised p-refinement of the interface

oscillations of the stresses at the interface (Figure 4-33) when the Gauss integration

scheme is used. It was found that a nodal lumping scheme (the integration scheme is

done over the pair of nodes of the interface rather than integration points, resulting

in a diagonal stiffness matrix) or Newton-Cotes integration scheme are alternatives

ways of reducing these oscillations178.

It is here hypothesised that oscillations are the result of incompatibility between

the traction distributed along the interface and dependent on the traction-separation

constitutive law, and the stresses in the bulk. It is proposed that the order of ap-

proximation of the displacements in the bulk is made one order higher than for the

displacements in the interface.

An identical beam to that studied by Schellekens (1993)178 and Vignollet (2015)213,

having the same dimensions, with an initial notch and interface element at its centre

is shown in Figure 4-34. A Young’s Modulus of 20, 000MPa and Poisson’s ratio of

0.2 was used for the solids. While Schellekens (1993)178 use three different stiffness

for the interface (103, 104 and 105 MPa) in this research, a high value of elastic

stiffness Eo = 20 × 106MPa was used. The 3D structured mesh finite element beam

was subjected to a four-point bending test. Two sets of numerical experiments were
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Figure 4-33: Stress concentration at the notch

conducted, the first set having uniform PO varying from 2nd to 4th, and the second

set having a PO less on the interface (localised p-refinement). A load controlled

Newton-Raphson method with arc length and basic line search control was used.

As part of the post-processing, stresses on elements were determined from the com-

puted displacements. To observe the stress variation in every finite element, these

were interpolated on a finer mesh using the hierarchical higher order shape functions.

Paraview was then used to visualise the interpolated stress on the interface surface,

with the aim of visualising stress oscillations. This problem was solved using MPI

parallelisation and a SuperLU parallelised pre-conditioner on Intel R© Xeon R© CPU

E7-4830 (2.13GHz) processors. 409,080 DOFs were solved in 114 seconds parallel-

ised on eight processors. Computational efficiency was achieved by using hierarchical

p-refinement rather than h-refinement, because a narrower bandwidth is obtained in

the sparse stiffness matrix. It is hence much easier to pre-condition and solve the

linear system of equations using a Krylov solver.

Spurious traction oscillations were not completely removed when displacements at

the interface were approximated using a polynomial order less that than of the solid

domain. This was demonstrated by comparing the models which used 2nd, 3rd and

4th PO at the bulk, and 1st, 2nd and 3rd PO at the interface (Figures 4-36, 4-38 and
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Figure 4-34: Diagram of notch beam

4-40 respectively), with those having uniform PO in the bulk and interface (2nd, 3rd

and 4th in Figures 4-35, 4-37 and 4-39 respectively). It is worthwhile noting that

oscillations are not clearly visible in Figure 4-36 due to the linear approximation of

displacement field at the interface.

Further localised p-refinement by increasing and reducing the PO at the interface

was investigated, but showed no further improvement in the reduction or removal of

traction oscillations at the interface. Understanding why Gauss quadrature leads to

Figure 4-35: 2nd PO approx. for solids
and interface

Figure 4-36: 2nd PO approx. for solids,
1stPO approx. for interface
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Figure 4-37: 3rd PO approx. for solids
and interface

Figure 4-38: 3rd PO approx. for solids,
2ndPO approx. for interface

Figure 4-39: 4th PO approx. for solids
and interface

Figure 4-40: 4th PO approx. for solids,
3rdPO approx. for interface

Traction oscillations at interface

spurious traction oscillations at the notched interfaces is yet unclear, and further stud-

ies are necessary to determine why and how to solve this problem without changing

the integration scheme.

4.3 Conclusion

In this chapter, a methodology for localised p-refinement at the interface was proposed

using hierarchical higher order approximation2. This was beneficial when the interface

element experienced non-linear behaviour due to damaging and large deformation.

While h-refinement can be used, it is an inefficient approach, and uniform p-refinement
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using higher order interface elements constrains the possibility of having localised p-

refinement to improve computational efficiency.

Hierarchical higher-order approximation is obtained by increasing the polynomial or-

der of entities (edge, face and volume) of a finite element where eventually, higher

order virtual DOFs (not related to physical nodes) are added into the system of

equations. These higher order DOFs require higher order shape functions which are

formulated according to Section 4.1, where conformity of shape functions of shared

entities is enforced when integrating over the finite elements to obtain uniform ap-

proximation in between. Using a Gauss quadrature integration scheme requires an

automated system by which enough base points and weight functions are generated for

the polynomial degree in use. This eventually improves the computational efficiency

because the correct number of Gauss points are used.

Section 4.2 discussed the formulation of a hierarchical higher order interface ele-

ment. Following a standard interface formulation, the variation is only in the strain-

displacement matrix B which is modified to account for the higher-order DOFs. The

fact that linear interface elements are used, and the higher order DOFs have no

physical connection to any node on the interface, means the rotational matrix R

is computed considering only the vertex nodes of the interface. This formulation

can be increased/decreased in a hierarchical way, depending on the polynomial order

assigned to every entity is essential to conduct localised p-refinement on the interface.

A classic de-lamination problem using a 3D finite element method was used to test the

implementation of hierarchical higher order approximation at the interface. Results

were verified with a 2D numerical investigation conducted by Alfano and Crisfield5

and an experimental investigation by Robinson and Song167. Uniform h, p and hp-

refinement using hierarchical HO approximation provided accurate results, but not

as computationally efficient as as the localised refinement. The Newton-Raphson

controlled by arc-length method in which the load increment is controlled by the

gap-opening of the interface is a numerically efficient method to achieve a good rate

of convergence, while oscillations in the 3D de-lamination reduced the rate of conver-
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gence. As theory suggests11;54, an exponential rate of convergence could be achieved

by a combination of localised h and p-refinements. In this series of tests, the con-

vergence rate was improved when uniform hp-refinement was used. While localised

p-refinement was conducted on the entire interface, improvement in convergence was

not achieved on such a problem because quadratic approximation with some mesh

refinement was sufficient for good convergence. In complex problems with sophist-

icated damage laws to represent the interface elements, localised hp-refinement on

the interface is essential in order to achieve good convergence and computational

efficiency.

Localised p-refinement on the interface was used to investigate an ongoing prob-

lem of traction oscillation on the interface elements when the interface is very stiff

compared to the solid, where a notch is located on the crack front while using the

Gauss-Legendre quadrature integration scheme. This problem has been investigated

since 1993 by Schellekens178, whose solution was to adopt a Newton-Cotes/Lobatto

integration scheme. In this research, a hypothesis to reduce the order of approxima-

tion on the interface due to the fact that tractions are one order less than the forces

and displacements was tested by using performing localised p-refinement. This was

only possible due to the implementation of hierarchical higher order approximation

for interface elements. Although traction oscillations are reduced when the interface

was approximated as one PO less than the bulk, some oscillations were still visible.

This hypothesis was not therefore fully confirmed. This example was also used to

demonstrate the improvement in computational efficiency when p-refinement is used,

generating a sparse matrix with a narrow bandwidth, unlike h-refinement which re-

quires extensive node renumbering to narrow the bandwidth.
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Chapter 5

Modelling of braided fibres

The numerical study of fibre mechanics is a relatively new topic and mainly developed

to model woven textile composites rather than braided fibres. In this chapter, a

numerical approach is developed and implemented in a FEM tool to investigate the

mechanical behaviour of braided fibres.

The process of carrying out a FE analysis of braided fibres is divided into two main

parts: the pre-processing stage and the mechanical analysis stage. In this thesis, pre-

processing is divided into three stages: preparation and meshing of the braided fibres,

as discussed in Section 5.1; the inclusion of zero thickness interface finite elements

between strands (Section 5.4); and the determination and application of the fibre

directions in order to apply transversely isotropic material as explained in Section

5.2. In the mechanical analysis, the fibres are modelled as transversely isotropic, as

explained in Section 5.3, while the equations of linear momentum balance are solved

using a finite deformation formulation (considering small strains and large rotations)

as discussed in Section 5.5.
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5.1 Braid geometry

Braided fibres consist of complex shapes so it was necessary to develop an efficient

technique to generate their geometries. A script routine was written in Cubit176 that

executes a set of algorithms to form 3D braided models of various dimensions. Cubit

was also used to discretize these geometries into tetrahedral meshes for finite element

analysis.

The simplest form of braiding consists of three interwoven strands, forming a plait

(flat braid). Four or more strands can either form a plait or a sinnet (round)121, de-

pending on the interweaving configuration. More complex braids such as 3D braiding

can be created, most often by computer algorithms208. Braided profiles can be used

either for decorative purpose or for cordage use. Decorative plaits/sinnets are usually

made from an elaborate interweaving of various fibres to form an aesthetically pleas-

ing profile. Simpler plaits/sinnets are often used as cords due to better mechanical

performance. This chapter considers two types of braiding: a three strand plait and

a twelve strand double sinnet (also used in Marlow Technora T12 ropes), both shown

in Figure 5-1.

The profile structure for both the flat plait and round sinnet had to be determined

accordingly. While the profile for the flat plait was easy to determine, the profile for

T12 is split into two main categories: six strand turns clockwise and another six turn

counter-clockwise (Figure 5-2(b)). If the first strand starts at zero pitch height, the

second strand starts at a sixth of the pitch height (equivalent to a rotation of 60◦ about

the longitudinal axis of the rope) as shown in Figure 5-2(a). This incrementation is

only valid for a twelve strand double braid sinnet rope and does not apply to other

types of braids.

Once the profile centre line for every strand was determined, the solid part was formed

by extruding the strand’s cross-section along the same centre line. In reality, this

cross section geometry varies along the braid. Here, though, a uniform circular cross-

section was used to simplify the methodology. The model’s cross-section diameter
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Figure 5-1: Representation of 3 strand plait and 12 strand round sinnet

(a) Sinnet pattern of 12 strand round
sinnet (T12)

(b) Example of left and right strand in
3D T12

Figure 5-2: Pattern recognition for T12 cord
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was increased to 15% of the actual diameter to achieve a degree of overlap between

strands. By trimming one strand from the neighbouring one, common surfaces were

created, where zero thickness interface elements were inserted. To determine the fibre

directions (necessary to model the anisotropy of the material properties), a potential

flow problem was analysed for every strand, where the fibre directions were found

by assuming that the potential flow gradient is equivalent to the fibre directions.

Interface elements were also used to allow free sliding between strands in contact

and constrain inter-penetration. The overall procedure to generate the geometry and

mesh for a T12 sinnet rope (Figure 5-3) is summarised in Algorithm 1. The execution

duration to generate a single pitch length of cord was 82 seconds on a single 2.4GHz

Intel Core i5 processor machine. Of this, 78 seconds were due to the trimming process.

This represents an efficient way to produce an ACIS geometry and a tetrahedral mesh

of a double braid sinnet rope of any dimension in a relatively short period of time.

Common faces between strands were denoted as sidesets in Cubit database, and such

a database was used in MoFEM to enable an easy way of inserting interface elements

on these faces. Meshing in Cubit was conducted in three main steps: define the

approximate size of FEs; define the finite element type (i.e. Tetrahedral elements);

and execute meshing.

Algorithm 1: Algorithm to generate T12 round sinnet
Data: Strand radius (r); Pitch length (P); Number of pitches (nP); Tolerance (x)

between 1st and 2nd family of strands
Initialise: Calculate the coordinate points along the centre line of every strand
w.r.t. to r, P, nP and x using the profile shown in Figure 5-2(a)
for Strand 1 to 12 do

Draw a spline axis of every strand;
Draw the cross-section of every strand with radius r, orthogonal to the
respective spline axis;
Extrude the circular face along the spline axis;

end
Initialise: Define the trimming sequence of strands to form a common interface
between the strands. Size of trim depends on the tolerance x
for Loop of the size of the trimming sequence do

Trim the strands according to the pre-defined sequence;
end
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Figure 5-3: 3D ACIS geometry of 12 strand round sinnet cord

Once the FE mesh has been generated, geometrical entities representing boundary

conditions and strands were classified as nodesets, sidesets, and blocksets in Cubit

database and easily read by MoFEM. The next step was to determine the orientation

of fibres (used to apply transverse isotropy) by solving Laplace’s equation for a steady

laminar incompressible potential flow problem, as discussed in the following section.

5.2 Determination of fibre directions

It is assumed that strands or yarns can be modelled using an elastic transversely

isotropic constitutive model. Transverse isotropy is a subset of anisotropy, where

material properties are isotropic on the transverse plane of the strands or yarns, but

different along the longitudinal direction of the fibres (principal axis) (see Section

5.3).

Fibre directions for straight uniform cross-section strands can simply be determined

by the geometry topology. On the contrary, it is rather difficult to use the geometry

topology to determine the non-uniform fibre directions for non-uniform cross section

(Figure 5-4) and/or twisted geometry (Figure 5-5).

This problem was solved by considering every strand as an individual steady laminar

incompressible problem from which a potential flow gradient is computed and assumed

to represent the fibre directions. If two or more neighbouring strands shared common

faces, zero thickness interface elements were inserted to separate them into individual

volumes (see Section 5.4). If neighbouring strands remain attached, an incorrect

potential flow is computed due to flow leakage from one strand to another (see knot

example in Section 5.4). Every strand was then represented as a tube, a potential
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Figure 5-4: Flow in a non-uniform
cross-section strand

Figure 5-5: Flow in a twisted strand with
uniform cross section

difference applied at both ends of each (Neumann boundary condition) and zero flux

applied on the external wall of the tube (Dirichlet boundary condition). By solving

Laplace’s partial differential equation

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0 (5.1)

a potential field ψ is computed. Its gradient ∇ψ represents the potential velocity v

found. Subsequently, the potential velocity was assumed to be equivalent to the fibre

directions f . Once the fibre directions were determined at every integration point, a

rotation matrix was computed (Section 5.3.2) and used to calculate the transversely

isotropic stiffness matrix.

5.3 Elastic transversely isotropic material

In this thesis, bundles of fibres such as yarns and strands are represented as homogen-

eous transverse isotropic material, for which the material properties in the transverse

plane differ from those along the fibres directions (principal axis). In fact, the stiff-

ness in the transverse plane of a yarn is significantly smaller than the stiffness in the

principal axis. This chapter will discuss the methodology adapted to model fibres

as transversely isotropic materials. Simple tests in Abaqus were used to validate the

implementation undertaken in MoFEM.
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5.3.1 Definition

Transversely isotropic material is an anisotropic material, where the material prop-

erties are isotropic on the transverse plane. The transverse isotropic material is only

defined by five parameters, unlike nine parameters required for orthotropic materi-

als. Considering the case where the plane of isotropy lies in the x-y plane, the z-axis

represents the axis of symmetry (more often referred to as the principal axis). The

parameters for transverse isotropy are: Ez - the principal elastic stiffness along the

z-axis; νpz - Poisson’s ratio between the x-y plane and z-axis; Ep - elastic stiffness in

the isotropic plane, νp - Poisson’s ratio of the isotropic plane; and Gzp - the shear

modulus contribution between the principal axis z-axis and plane of isotropy, as shown

in Figure 5-6. These are used to construct the local transverse isotropic compliance

and stiffness matrices as given in Equations 5.2 and 5.3.

pz

Plane of Isotropy

Figure 5-6: Transversely isotropic material parameters

Hooke’s Equation for 3D Transversely Isotropy: ε = Cσ (σ = Dε), where ε

and σ are the strain and stress vector respectively, and C and D are the compliance
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and stiffness matrices respectively.
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where νzp = Ezνpz
Ep

, Gzp = Ez

2(1+νpz)
and γij = εij + εji = 2εij due to the symmetry of

the stress and strain tensor.

5.3.2 Rotation of plane of isotropy

Equations 5.2 and 5.3 are described with respect to the fibre local coordinate system.

In general, this is not aligned with the global coordinate system and it is necessary

to rotate the stiffness matrix. Once the fibre directions are extrapolated from the

potential flow velocity v (Section 5.2) at every Gauss quadrature point, axes and

angles of rotation between the fibre directions and principal axis of transverse isotropy

can be determined and rotation matrices R can be evaluated to rotate the local

stiffness matrix at every Gauss quadrature point. A rotation matrix R based on

axis/angle of rotation can be determined from an exponential mapping function66
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expressed as

R = I + sin θN + (1− cos θ)N2 (5.4)

where I is a 3x3 identity matrix, θ is the angle between the global z-axis and fibre

direction f , and N is a unit spinor. The axis-angle rotation system to compute

the rotation matrix R for second order tensors is explained in Figure 5-7 for every

integration point.

The components rotation matrix R is then used to form the transformation matrices

Tσ as

Tσ =



R2
11 R2

21 R2
31 2R21R11 2R31R21 2R11R21

R2
12 R2

22 R2
32 2R22R12 2R32R22 2R12R32

R2
13 R2

23 R2
33 2R23R13 2R33R23 2R13R33

R12R11 R22R21 R32R31 R22R11 +R12R21 R32R21 +R22R31 R12R31 +R32R11

R13R12 R23R22 R33R32 R23R12 +R13R22 R33R22 +R23R32 R13R32 +R33R12

R11R13 R21R23 R31R33 R21R13 +R11R23 R31R23 +R21R33 R11R33 +R31R13


(5.5)

and Tε as

Tε =



R2
11 R2

21 R2
31 R21R11 R31R21 R11R21

R2
12 R2

22 R2
32 R22R12 R32R22 R12R32

R2
13 R2

23 R2
33 R23R13 R33R23 R13R33

2R12R11 2R22R21 2R32R31 R22R11 +R12R21 R32R21 +R22R31 R12R31 +R32R11

2R13R12 2R23R22 2R33R32 R23R12 +R13R22 R33R22 +R23R32 R13R32 +R33R12

2R11R13 2R21R23 2R31R33 R21R13 +R11R23 R31R23 +R21R33 R11R33 +R31R13


(5.6)

that can transform C using

C∗ = TεCT−1
σ (5.7)
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Get Fibre Direction f for a Gauss point (see section 5.2)

Calculate angle θ
between p and f vectors
θ = cos−1 f .p

‖f‖‖p‖

Calculate the axis of rotation a
a = f × p

Calculate the length ω of
the rotation axis vector a

ω = +
√
a2

1 + a2
2 + a2

3

Form the spin tensor Ω

Ω =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


Calculate the rotation matrix R

R = I + sin θN + (1 − cos θ)N2

where N = Ω
ω

Done

Repeat for every
Gauss point

Figure 5-7: Axis-Angle Rotation Procedure
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and D using

D∗ = TσDT−1
ε (5.8)

The inverse transformation T−1
σ and T−1

ε are computed by determining R for a neg-

ative angle θ in Equation 5.4. The formulation of the rotation matrix (R) and trans-

formation matrices (Tσ and Tε) were validated in Section 5.3.3.

5.3.3 Verification of transversely isotropy

The implementation of elastic transversely isotropic material in MoFEM has been val-

idated analytically and cross-referenced with an identical problem solved in Abaqus.

A unit cube with minimal Dirichlet boundary conditions on one side and with a

unit tensile pressure on the other side was used as a benchmark test. An elastic

transversely isotropic material with parameters, shown in Table 5.1, was used and

its principal axis p was aligned to the fibre direction f(0, 1, 1) using an appropriate

rotation matrix R as described in Section 5.3.2. The model was analysed using small

deformation theory.

Parameter Value Parameter Value
Ez 1.00 νpz 0.15
Ep 1.00 Gzp 1.00
νp 0.20 f [0, 0.5, 0.5]

Table 5.1: Material Parameters for Benchmark Model

Numerical solution

This problem was analysed in MoFEM, approximating the displacement field linearly

in every finite element. The resulting strain vector

ε =
[
−0.175, 0.175, 0.675, 0.0, 0.0, 0.0

]
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corresponds exactly to the analytical solution. The equivalent displacements are

shown in Figure 5-8.

The same problem was analysed using Abaqus software where the same results as

those of MoFEM were obtained. Abaqus CAE environment constrains transverse

isotropy direction to be defined by a vector or spatial expression in every continuum

("block" in Abaqus terminology). Meanwhile, Abaqus script subroutines allow the

rotation of transverse isotropy to be achieved by a set of predefined fibre direction92.

Displacement
Contours in x-axis

Displacement
Contours in y-axis

Displacement
Contours in z-axis

Figure 5-8: MoFEM Displacement Results

5.4 Interface elements representing contacts between

strands

This section focuses on a simplified approach to modelling the contact between

strands. Contact interaction is developed as strands are interwoven to form braids,

textile and knots. As discussed earlier in this chapter, strands must have separate

mesh domains and the mechanical interaction between strands is not neglected. Fric-

tionless sliding between strands was considered, based on the assumption that that

fibres have a low coefficient of friction similar to that of carbon87, while interpenetra-

tion of strands was constrained. Contact interaction is usually modelled using contact

mechanics, which is extremely expensive for complex geometries such as braids126.
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Assuming that the contact surfaces between strands do not change significantly, this

thesis proposes that interface elements are sufficient to model this interaction.

Interface elements, as discussed in Section 4.2, were used and inserted where contact

exist between strands. An elastic constitutive model for interface elements was used to

simulate the free sliding and penetration free interface mechanism. This was achieved

by using a very low stiffness to govern Modes II and III (i.e. Et1 and Et2) and a very

high stiffness governing Mode I (i.e. En). Although Et1 and Et2 should be equal

to zero to achieve 100% free sliding, this was not possible as the interface stiffness

matrix becomes singular. Similarly, the ratio between En and Et1 or Et2 should not

be very high, as this produces an ill-conditioned global stiffness matrix. Therefore a

poor rate of convergence is experienced when using an iterative solver to solve the

linear system of equations.

Knot example

Tightening knot was numerically analysed to illustrate how interface elements were es-

sential in such circumstances. A large-displacement formulation (see Section 5.5) and

elastic transversely isotropic material (Ez = 135GPa,Ep = 50GPa, νp = 0.4, νpz =

0.1 and Gzp = Ez

2(1+νpz)
) were used. An elastic interface element with Eon =

13500GPa and Eot1 = Eot2 = 1GPa as parameters was also used. Eon is very large to

mitigate penetration, while Eot1 and Eot2 are very low to provide a quasi frictionless

interaction. Choosing smaller Eon can dramatically increase the condition number of

the global stiffness matrix. During the geometrical modelling of the knot, it was as-

sured that a good interface area of the ravelled knot was obtained. This was achieved

by increasing the diameter of strand where solids overlapped and by trimming this

overlapping. Common surfaces were created as shown in Figure 5-9(right).

After the discretisation of the knot geometry into a FE mesh, interface elements were

inserted at the contact surfaces. Interface elements were also helpful to divide the

finite elements between one side and the other side of the knot. This was essential to

accurately identify the external wall correctly and assign zero flux condition for the
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Figure 5-9: Left: knot geometry - Right: highlighted contact surface of knot

(a) (b)

Figure 5-10: (a) leaking surface boundary - wrong flow and (b) tight surface
boundary - correct flow
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potential flow problem (Figure 5-10(b)). If interface elements were not inserted, the

knot would have been analysed as a single solid domain and wrong directions determ-

ined (Figure 5-10(a)). Interface elements were later used to simulate the mechanical

interaction between the ravelled knot as discussed earlier in this section.

After determining the fibre orientation as discussed in Section 5.2, this elastic knot

was fully fixed on one end and subjected to tensile loading on the other end; a large

displacement FE formulation was used. During this mechanical analysis, transverse

isotropy alignment to the fibre orientation in MoFEM was automatically performed

at every load step following the procedures discussed in Section 5.3. The mechanical

performance is partly described in the load vs axial-displacement graph shown in

Figure 5-11. This consists of an exponential stiffening of the tightening knot, followed

by a geometric locking release, hence resulting in a loss in overall stiffness. This is

then followed by further re-tightening and re-softening behaviour. At this stage the

knot was nearly fully tightened and embedded. Using interface elements to model this

interaction is restricted to certain cases and cannot be used if the deformed geometry

requires a redefinition of the contact surfaces, for which contact models are required.
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Figure 5-11: Axial load-displacement graph for stretching behaviour of knot
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5.5 Large deformation modelling of fibres

The main focus of this thesis is to propose a procedure to model braided fibres.

Materials such as carbon, glass and Kevlar fibres behave like elastic under tension

and extend very little due to their high stiffness. Fibres are also easy to bend due to

their thin and elongated geometries. The kinematics of fibres is therefore considered as

hyperelastic and can be modelled in FEA using the Total Lagrangian (TL) formulation

based on small strains and large rotations.

A suitable hyperelastic model is the St Venant Kirchhoff model which suits materials

that exhibit small strains and large rotations. The strain energy density function for

St Venant Kirchhoff model is defined as

Ψ =
1

2
E : D : E (5.9)

where D is the elastic stiffness matrix and E is the Green strain tensor, defined as

E =
1

2
[FTF− I] =

1

2
[d + dT ] +

1

2
dTd (5.10)

δE is the change in the Green strain tensor defined as

δE =
1

2
FT δd +

1

2
δdTF + [

1

2
δdT δd] (5.11)

and d is the displacement-derivative matrix given as

d =


∂ui
∂Xi

∂ui
∂Xj

∂ui
∂Xk

∂uj
∂Xi

∂uj
∂Xj

∂uj
∂Xk

∂uk
∂Xi

∂uk
∂Xj

∂uk
∂Xk

 (5.12)

and F is deformation gradient tensor given as

F = [I3 + d] (5.13)
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This thesis proposes that the St Venant Kirchhoff model can be expanded to fibrous

materials by considering D to be the elastic transversely isotropic stiffness matrix

(see Section 5.3).

The virtual work in the Total Lagrangian (TL) formulation is expressed as

W =

∫
Vo

S : δE dVo −Wext (5.14)

and the change in virtual work δW , from which the tangent stiffness (Kt) can be

obtained, is defined as

δW =

∫
Vo

[
δETCδE + S : δdT δd

]
dVo = δuTKtδu (5.15)

where the 2nd Piola-Kirchhoff stress tensor S = JF−1σF−T , σ is the Cauchy 2nd

order stress tensor (also call stress tensor) and the J is the Jacobian (J = det F).

The Newton-Raphson method from PETSc’s Scalable Nonlinear Equations Solvers

(SNES) was chosen to solve these nonlinear problems. Furthermore, the secant line

search method over the L2 norm built in with PETSc’s arc-length control technique

already built in MoFEM was used to improve the rate of convergence at every load

step.

5.5.1 Example - transversely isotropic cantilever

In this section, the bending of a simple 3D transversely isotropic cantilever was in-

vestigated using finite deformation formulation as previously discussed. A cantilever

measuring 1mm by 1mm by 20mm was fully fixed on one side and loaded on the

other side, which was also constrained the out of plane direction (constrained in

the x-direction). The material parameters for transversely isotropic material were,

Ep = 100GPa, Ez = 200GPa, νp = νpz = 0.3 and Gzp = Ez

2(1+νpz)
. Three different mod-

els with three different fibre orientations were examined, i.e. fibres oriented along the

x, y and z-axis (Model Cantilever_X, Cantilever_Y and Cantilever_Z respectively).
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The applied loading was constantly updated during the load steps to maintain its

orthogonality to the edge of the cantilever as shown in Figure 5-12.

Figure 5-12: Large deformation transversely isotropic cantilever -
Cantilever_X

As foreseen, Cantilever_Z behaved more rigidly than Cantilever_Y and even more

than Cantilever_X (the stiffness of Cantilever_Z was nearly equivalent to a cantilever

with an isotropic material of 100GPa Young’s modulus) (see Figure 5-13). Unlike

small deformation formulation, spurious strains in finite deformation are not an issue

(Figure 5-12). Comprehensively, no numerical problems were observed where the

KSP solver converged in less than 3 iterations, and the non-linear solver converged in

not more than 12 iterations. In MoFEM, the load step size automatically increases

by a user-defined factor unless a certain number of iterations threshold is exceeded

for the convergence of the previous load step. If this is exceeded, the load step size is

reduced by 90% (or any user-defined percentage) to improve the rate of convergence.

This behaviour was observed in the load-displacement graph, Figure 5-13.
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Figure 5-13: Load-displacement for three cantilevers with different fibre orientation

5.6 Numerical example

The outcome of this section is the demonstration of the importance of using finite

deformation and considering fibrous materials as transversely isotropic material when

modelling braided fibres. The aim of the first numerical example was to investigate

the difference between a small and a large displacement formulation and the use of

isotropic and transverse isotropic materials to represent the strands of a three strand

plait subjected to longitudinal tension. After this study, a more advanced approach

to modelling and understanding the mechanical behaviour of a T12 under tension (a

type of braiding configuration of 12 strands) was undertaken.

5.6.1 Example 1: three plaited braid

A three strand plait 3D model was selected to examine the benefits of using large

displacement formulation based on small strains and large rotation, and the im-

portance of defining the material as transversely isotropic material in similar prob-

112



lems. After establishing the geometrical configuration of the three strand plait, a Py-

thon/APREPRO script was written, and after prescribing the geometrical parameters

shown in Figure 5-14, the script was executed in Cubit to generate the correspond-

ing 3D model and a FE mesh. Within this model, 22 common surfaces between the

three strands were identified, and interface elements were inserted (Figure 5-15(top))

according to Algorithm 2 (see Section 5.4 for more details). Fibre directions in every

strand were computed (Figure 5-15(bottom)) according to Algorithm 3 (see Section

5.2). During this pre-processing stage, the insertion of interface elements was the

most computationally expensive, followed by the building the system of equations as

shown in Table 5.2.

Pitch = 3.14
Dia. = 0.4

1

Figure 5-14: 3 Plait Braided Model

Algorithm 2: Pre-processing algorithm for interface insertion
Input: Load Cubit mesh having i number of common interfaces between strands
were classified as sidesets named interface_i ;
for level of h-refinements do

For every level of refinement, every edge is divide into 2 edges, every triangle is
divide into 4 triangles and every tetrahedron is divided into 8 tetrahedrons;
Update cubit BC meshsets;
The new refinement can be stored in a new mesh level or squashed with the
previous original mesh level;

end
foreach interfaces i do

Identify the triangles in the relevant sideset;
Split the nodes and update the adjacent triangle and tetrahedron;
Insert prism element to represent the interface;
Update cubit BC meshsets;
This refinement can be inserted in a new mesh level or squashed with the
previous original mesh level;

end

After inserting interface elements and finding the fibres’ directions, the model was

ready for study of its kinematics. The material parameters assigned for both iso-
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Algorithm 3: Pre-processing algorithm for solving potential flow
Input: Same loaded mesh (Algorithm 2) with s number of strands having the
following information:
Every individual strand was classified as a meshset named PotentialFlow_s ;
A inlet and outlet surface were identified for every strand and classified as sidesets
named PressureIO_s_1 and PressureIO_s_2 respectively;
A zero pressure node for every strand was categorised as nodeset named
ZeroPressure_s
Initialise: Add a potential field
foreach strand s do

Add finite element for every strand and insert their respective tetrahedrons to
the finite element;
Include every finite element to the potential field ;
Add potential problem for every strand;
Load BCs;

end
Initialise: Build fields, finite elements, problems
Initialise: Partition every problem
foreach strand s do

Loop of finite elements and building stiffness matrix;
Apply loaded BCs;
Solve the potential flow problem;

end
Finalise: Export potential field to a tag on mesh and save
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Figure 5-15: Pre-Processing - Top: Highlighted interface elements; Bottom: Fibre
directions

Interface
Insertion

Building
Problem

Partitioning Solving Post-processing Total

22 Interfaces
(127 tri)

1 processor 8881 dofs transferring data from
field to mesh and save

16.35 7.74 0.66 1.64 1.22 27.61s

Table 5.2: Duration breakdown of pre-processing

tropic and transversely isotropic models are given in Table 5.3. The model was fully

restrained on one side and tensioned axially on the other side as shown in Figure 5-14.

Isotropic Transverse Isotropic Interface
Ez = 135000

E = 135000 Ep = 50000 Dn = 13500000
ν = 0.1 νp = 0.4 Dt1 = 1000

νpz = 0.1 Dt2 = 1000
Gzp = Ez

2(1+νpz)

Table 5.3: Material and interface parameters for the three plaited braid

Elastic small deformation

The kinematics of the three plaited braid using transversely isotropic fibres were

studied using infinitesimal strain theory. Using linear polynomial approximation (1st

order), the linear static elastic problem with 4809 DOFs was solved in 1.015s on a

single 2.4GHz Intel Core i5 processor. Due to large rotation of finite elements and the

use of small deformation theory, the formation of spurious strains induce unrealistic

sagging deformation of the plait as observed in Figure 5-16(b).
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Figure 5-16: Linear geometry

Elastic large deformation

In this section, the kinematics of the three plaited braid were studied using finite

deformation theory based on small strains and large rotations as discussed in Section

5.5. This study considered four models: the first model had isotropic material, while

the second to fourth models had transversely isotropic material (see Table 5.3 for ma-

terial parameters). The displacement field was approximated linearly in the first and

the second models, while quadratic and cubic hierarchical higher order approximation

was used in third and fourth models respectively (summarised in Table 5.4).

Model No. Material (see Table 5.3) Polynomial Approximation Order
3P_I_PO1 Isotropic 1st Order
3P_TI_PO1 Transversely Isotropic 1st Order
3P_TI_PO2 Transversely Isotropic 2nd Order
3P_TI_PO3 Transversely Isotropic 3rd Order

Table 5.4: List of 3-plait braided models analysed using large displacement
formulation

From the load-displacement behaviour of the transversely isotropic model (Figure

5-17), convergence was observed among linear, quadratic and cubic approximations

(p-refinement using hierarchical higher order approximation (see Chapter 4)). From

the same graph, stiffening due to an embedding process was noted. Unlike Figure 5-16

(small deformation), in Figure 5-18 (large deformation) there is no artificial sagging,

and the overall deformation is more realistic.
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Figure 5-17: Load-displacement convergence results for three plait braided model
using different degrees of polynomial

Artificial torsional twisting about the longitudinal axis was observed in the isotropic

model compared to the transversely isotropic model, as shown in Figure 5-19. This

was due to excessive stiffness in the transverse plane of the isotropic strands, leading

to the conclusion that realistic kinematics of plaited braids are only achieved by

defining the strands as transversely isotropic material.

Further research is required to understand how different parameters of the interface

element and transverse isotropy influence the overall kinematics of a three plaited

braid.

5.6.2 Example 2: T12 sinnet rope

From the previous example, it was concluded that numerical modelling of braided stiff

fibres should be conducted under small strains and large rotations finite deformation
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Figure 5-18: Nonlinear geometery

3P_I_PO1 (Isotropic) 3P_TI_PO1 (Transversely Isotropic)

Figure 5-19: Torsional twist on the 3 plait model when using isotropic material
compared to transversely isotorpic (figure represents half of the model)

theory and that fibrous materials should be considered transversely isotropic. This

section discovers the challenge undertaken in examining the mechanical behaviour of

T12 sinnet rope under axial tension.

A T12 sinnet rope was generated (see Section 5.1) using the dimensions given in

Figure 5-20. The rope was then anchored using two steel plates on each end as

shown in Figure 5-20, ensuring that all strands were evenly stretched. The bottom

anchor was constrained in all directions, while the top plate was constrained in x and

y-directions and loaded in the z-direction.
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Figure 5-20: T12 sinnet rope model

Geo. Parameters

No. of Strands 12

Pitch Length 60 mm

Strand Radius 1.44 mm

Braid Type sinnet T12

Fibre Mat. Parameters

Ez 135,000 MPa

Ep 50,000 MPa

νp 0.3

νpz 0.1

Clamp Mat. Parameters

E 200,000 MPa

ν 0.3

Table 5.5: Geometry and Material
Parameter of T12 sinnet rope

The model was meshed as shown in Figure 5-20 containing about 50,000 tetrahedral

elements and 13,656 nodes. Similarly to the three plaited example, interface elements

between the strands and the clamps were inserted and fibre directions were found for

every strand. The material parameters are given in Table 5.5 and were saved to their

respective blocksets in Cubit and automatically read in MoFEM.

As discussed earlier, a TL formulation based on small strains and large rotations was

used to model braided fibres. The non-linear convergence criterion ‖F‖ < 1.0 e−6 was

used, where F is the residual force vector. An average of five iterations for every load

step was necessary for the solution to converge. P-refinement was performed using 1st,

2nd and 3rd polynomial degree (Model No: T12_PO1, T12_PO2 and T12_PO3 re-

spectively) using hierarchical higher order approximation and their load-displacement

behaviour is shown in Figure 5-22.

Contrary to the observed experimental behaviour of T12 under tension (Figure 5-21),

tightening and bedding of strands in the numerical model was not observed. This
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Figure 5-21: Tensile test experiment of 10mm Technora T12 sinnet rope

suggested that a geometrically rigid lattice structure was formed from the sinnet

configuration and that Ep was higher than the actual transversal stiffness (this was

necessary to avoid ill-conditioning). Similarly to the three plaited model, using inter-

face elements proved an effective solution to model contact, where free sliding/rotation

and penetration constraint was possible between neighbouring strand domains.

Further work is necessary to produce an effective numerical tool to simulate complex

braided geometries. Braids should be modelled with tighter geometries and to look

more realistic. Secondly, a solution for the ill-conditioning of transverse isotropic stiff-

ness matrices must be found. Once the T12 braided fibres are successfully modelled

numerically and their mechanical behaviour is obtained, it can be assumed that over-

all performance can be represented by an elastic transversely isotropic material, and

such homogenisation can be used in other problems using less computational effort

(example in Section 6.3.2).

Polynomial Degree Number of DOFs Number of processors Maximum extension (mm) Actual solution time (hours)
1st 39,937 8 3.98 8.09
2nd 255,961 16 2.98 33.54
3rd 798,781 16 1.96 150.24

Table 5.6: Computational summary of large deformation analysis of T12 model
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Figure 5-22: Load-displacement of finite element T12 sinnet rope model under
tension

5.7 Conclusion

In this chapter, a new methodology for studying the mechanics of braided fibres using

the FE technology is proposed and illustrated with various examples.

The first stage was to model braided geometries such as plaits and sinnets. This

was achieved by determining how braided profiles are constructed. Subsequently

dynamic algorithms were written in Cubit to generate the respective geometries of

any desired dimensions. In the second stage, interface elements were inserted between

the strands to allow free sliding and prevent interpenetration. Thirdly, by solving a

steady-state incompressible laminar potential velocity problem for every strand, the

potential flow was determined and later was assumed to be equivalent to the fibre

directions. Following this, the principal axis of transverse isotropy was aligned from

its global position to the fibre directions at every Gauss integration point.

In this thesis, it was demonstrated that the small deformation assumption does not

suit the modelling of braided fibres, where large geometrical rotation exists. Similarly,
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representing fibre as an isotropic material does not provide the correct mechanical

behaviour. However, using large deformation theory based on small strains and large

rotations and representing fibres as transversely isotropic materials proves a reliable

method of studying them.

This research raises various challenges for future studies. Transversely isotropic ma-

terials can be challenging, as singularities are formed in local and global stiffness

matrices. Consequently, the global matrix is subject to ill-conditioning and poor

convergence results. Modelling of braided fibres becomes more difficult as geometry

becomes more complex. While the embedding process was observed in the three

plaited model, this was not observed in the T12 model. It is therefore recommended

that complex braided geometries are modelled as realistically as possible.
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Chapter 6

Modelling of braided rope reinforced

concrete

This chapter will demonstrate the techniques developed in Chapters 4 and 5 to numer-

ically reproduce the pull-out experiments explained in Chapter 3 using finite element

technology. This is categorised into three main parts. The first section provides a brief

introduction highlighting the motivation behind modelling continuous fibre reinforced

concrete and the second provides an appraisal of how continuous fibres embedded in

concrete are modelled. In the third section, two examples are given to aid a numerical

understanding of the bond behaviour between fibres and other materials, and to sim-

ulate a similar pull-out experiment of a ribbed braided rope embedded in concrete.

A brief summary and suggestions for future work are given at the end of this chapter.

6.1 Introduction

One of the major goals of this research was to develop a numerical technique to

model continuous fibre reinforced concrete. From Chapter 3, it was learnt that ribbed

braided fibre reinforcement (RBFR) is a potential system for reinforcing structural

concrete. Producing more experimental and numerical work to understand the mech-

anics of ribbed braided fibre reinforcement embedded in concrete is necessary to assure
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the feasibility, durability and reliability of such a system before its commercialisation.

It is also expected that this will contribute to new research to develop fire-resistant

concrete structure elements using RBFR and high-performance concrete111.

This thesis investigated and proposed the use of hierarchical higher order (HO) in-

terface elements to simulate de-bonding between the fibres and the concrete. As

discussed in Chapter 4, localised p-refinement of the interface was made possible by

using hierarchical HO interface elements, and non-linearities can be approximated

accurately using the least computational power. This was studied by investigating

the pull-out behaviour of a straight strand embedded in concrete (see Section 6.3.1).

After understanding how hierarchical HO interface elements can be useful to model

de-bonding between two different materials, all the numerical techniques developed

and discussed in this thesis were brought together to simulate the pull-out beha-

viour of RBFR embedded in concrete. Numerical results were compared with those

obtained in the experimental investigation conducted in Chapter 3.

6.2 Appraisal

This section is divided into two main parts. First, a summary of how elastic trans-

versely isotropic materials are studied using the FE technology as discussed in Chapter

5. Second, an appraisal of how hierarchical HO an interface element using cohesive

laws, as discussed in Chapter 4, was used to simulate de-bonding behaviour between

fibres and concrete.

As discussed in Section 5.6 (Example 2), sinnet braided fibres can be homogenised

into an elastic transversely isotropic material. This assumption was made on the basis

that the overall mechanical behaviour can be represented by transverse isotropy. In

MoFEM, any finite element domain representing elastic isotropic material is set up

in two stages. The first is the pre-processing stage described in Algorithm 3, where

the first part of this algorithm is handled by the user in Cubit, and the second part is

automatically handled by a program written for MoFEM. The second stage is where
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MoFEM automatically reads the fibre directions from the potential flow velocities

and aligns transverse isotropy accordingly (see Section 5.3). From Chapter 5, it was

learnt that the transversely isotropic stiffness matrix becomes singular as the ratio

between Ep and Ez increases and the global stiffness matrix will be ill-conditioned.

The consequence is a poor rate of convergence. Further studies on this numerical

limitation are necessary.

It can be assumed that fibres embedded in concrete exhibit small strains and small

rotations. Small deformation formulation is therefore sufficient. Although in Sec-

tion 3.3.3, the concrete of RBFR pull-out experienced cracking, the first stage was

to investigate the bond adhesion which the rib-shaped interface between RBFR and

concrete provides during pull-out testing. Therefore, in this Chapter, concrete was

assumed to be a linear elastic material. Concrete confinement action onto the bond

slip resistance is thus controlled by the normal penalty stiffness of the interface ele-

ment, as studied in the results of Section 6.3.2. The second stage, not covered in this

thesis, would be to investigate the pull-out when considering plasticity in concrete

that captures any fracturing in concrete.

The bond behaviour between fibres and concrete was simulated using cohesive ele-

ments. As explained in Section 4.2.2, cohesive elements provide traction resistance

between two finite elements that are separated from each other. In this thesis, a linear

damage cohesive model was used in pull-out numerical experiments to simulate the

bond behaviour between fibres and concrete. Therefore the friction contribution is

simplified as part of the adhesion strength and a frictionless state is achieved after

full de-bonding. A linear cohesive law is governed by three parameters only: the pen-

alty stiffness (Eo) and the maximum traction resistance (ft) of the interface before

de-bonding is initiated; and the fracture energy (Gf ), which is dissipated during de-

bonding. ft andGf are selected to represent the de-bonding mechanism between fibres

and concrete. The relative gap opening between the fibres and concrete that governs

the traction-separation law was computed based on Equation 4.33 (see Section 4.2.2),

and β = 1 was selected. This means that both shear gap openings (Mode II and III)
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and normal gap opening (Mode I) will contribute to the de-bonding between fibres

and concrete. In such cases, Mode I is mainly governed by the stiffness and Poisson’s

ratio in the transverse plane (Ep and νp respectively) and the normal penalty stiff-

ness component (Dn- see matrix 4.12 in Section 4.2.1) of the interface element of the

strand. To assure that the fibre domain does not interpenetrate with the concrete

domain (therefore ∆un ≥ 0), Dn was a hundred times the tangential stiffness (Dt1

and Dt2).

In both examples given in this chapter, hierarchical HO interface elements (see

Chapter 4) were inserted between the different materials. A feasibility study was

conducted on the use of hierarchical HO interface elements in the context of pull-out

problems (see Section 6.3.1). From Section 4.2.3, it was concluded that hierarchical

HO interface elements are useful when they experience complex deformations, while

localised p-refinement is useful in assigning the minimum polynomial order for every

interface element without mitigating the accuracy of the solution.

Once the interface elements were inserted, and the transverse isotropy and cohes-

ive model were assigned, the equations of linear momentum were solved, and the

non-linear system of equations was solved using PetSc SNES Newton solver. The

arc-length method, controlled by the gap opening of the interface, was used without

running into problems of convergence5. Numerical problems larger than 5000 DOFs

were solved on multiple on Intel Xeon R© CPU E7- 4830 processors. Partitioning in

MoFEM was performed automatically using the ParaMETIS library for a given num-

ber of partitions. MUMPS8 package solver was used as a parallelised pre-conditioner

for sparse matrices.

6.3 Example

Two examples are given in this section. The first is a feasibility study of the use of

hierarchical higher order interface elements for modelling the pull-out behaviour of

fibres embedded in concrete. The second is the study of bond behaviour between a
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single ribbed strand embedded in concrete (similar to the RBFR developed in Chapter

3) using all the numerical techniques developed/discussed in this thesis.

6.3.1 Fibre strand embedded in concrete

A pull-out test of a simple 10mm diameter fibre strand embedded in a 100mm concrete

cube (model denoted as FEIC) was investigated (Figure 6-1). The fibre strand was

modelled as a transversely isotropic material and the concrete as an isotropic material

(Parameters defined in Table 6.2). Full shear contribution to the damage model was

assumed (β = 1 in Equation 4.33). A linear damage model with parameters give

in Table 6.2 was used to describe the kinematics of the interface between fibre and

concrete. During pull-out, the top face of the concrete cube was fully restrained from

moving, while a pull-out force acted on the top end of the strand, and restrained

laterally to allow only upward and downward movement.

Model No.
Transversal
stiffness of

fibre

Transversal
Poisson’s ratio

Damage
Model

Ep [N mm−2] νpz

Gf [N mm−1],
ft [N mm−2],
Eo [N mm−2]

FEIC_10k_A/_PO2 10, 000 0.1 2.5, 5.0, 1000

FEIC_10k_B/_PO2 10, 000 0.1 2.5, 5.0, 1000

FEIC_10k_C 10, 000 0.1 2.5, 5.0, 1000

FEIC_25k_B 25, 000 0.1 2.5, 5.0, 1000

FEIC_50k_B 50, 000 0.1 2.5, 5.0, 1000

FEIC_135k_B 135, 000 0.1 2.5, 5.0, 1000

FEIC_1k_B_1 1, 000 0.1 2.5, 5.0, 25

FEIC_10k_B_1 10, 000 0.1 2.5, 5.0, 100

FEIC_1k_B_2 1, 000 0.3 2.5, 5.0, 25

FEIC_10k_B_2 10, 000 0.3 2.5, 5.0, 100

FEIC_135k_B_2 135, 000 0.3 2.5, 5.0, 100

Table 6.1: List of the FEIC models

To reduce the computational effort, a quarter of the model shown in Figure 6-1 was

considered for the FE analysis. Axis-symmetric boundary conditions were used on
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Figure 6-1: Pull-out model of fibre strand embedded in concrete

both sides of axis-symmetry of the meshed models. In the pre-processing stage, the

interface elements were inserted between the strand and concrete, and fibre direc-

tions were determined. The pull-out analysis was conducted using small deformation

formulation. Eleven different models (Table 6.1) were examined with various para-

meters as follows. Models FEIC_[10k/25k/50k/135k]_B will examine the influence of

transverse plane stiffness (Ep) on the bond strength between fibres and concrete, while

models FEIC_10k_A, FEIC_10k_A_PO2, FEIC_10k_B and FEIC_10k_C exam-

ine the influence of local and global enrichment (summarised in Table 6.3) on the over-

all pull-out behaviour. Models FEIC_1k_B_1, FEIC_10k_B_1, FEIC_1k_B_2,

FEIC_10k_B_2 and FEIC_135k_A_2 will examine the influence of νpz on the pull-

out behaviour. Due to the convergence problem, Eo was reduced as given in Table
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Transverse Isotropy (Fibres) Isotropic (Concrete)
Ez = 135, 000 N mm−2 E = 17, 000 N mm−2

νp = 0.4 ν = 0.1

Gzp = Ez

2(1+νpz)

Ep and νpz given in Table 6.1

Table 6.2: Material parameters for the FEIC models

6.1.

Model No. h-refinement p-refinement No. of DOFs
FEIC_10k_A none none 1687

FEIC_10k_A_PO2 none uniform 2nd order 10204
FEIC_[10/25/50/125k]_B localized at interface none 3835

FEIC_10k_B_PO2 localized at interface uniform 2nd order 23677
FEIC_10k_C uniform none 10204

FEIC_1k_B_[1/2] localized at interface none 3835
FEIC_1k_B_1_PO2 localized at interface uniform 2nd order 23677

Table 6.3: Local and global enrichment of FEIC models

Results

The pull-out forces obtained from all the FE analysis were multiplied by four to

represent the entire model shown in Figure 6-1 and reported in Figures 6-5 and 6-7.

Models FEIC_10k_B, FEIC_10k_A_PO2 and FEIC_10k_C achieved a maximum

pull-out force of 14672N, 14084N and 13537N respectively, which reflects the bond

strength of ft = 5Nmm−2 acting on the bonded area 785.4mm2 between fibre and

concrete.

It was found out that the transversal stiffness (Ep) does not have a significant in-

fluence on Mode I de-bonding if the Poisson’s ratio between the principal axis and

transverse plane νpz is as small as 0.1 (see Figure 6-5). If νpz is increased to 0.3, the

influence of strain in the principal axis of the fibre is more significant on the strain

in the transverse plane, and therefore activates Mode I de-bonding along with Mode

II/III. While the overall difference is very small when comparing FEIC_10k_B_1

and FEIC_10k_B_2 (both have Ep = 10, 000, but with νpz = 0.1 and 0.3 respect-

ively), this will significantly change as the transverse stiffness (Ep) is reduced in
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Figure 6-2: Mesh for
FEIC_10k_A and
FEIC_10k_A_PO2

Figure 6-3: Mesh for
FEIC_10k_B/_PO2
and FEIC_25k_B/
_50k_B/_135k_B

(localised
h-refinement)

Figure 6-4: Mesh for
FEIC_10k_C

(uniform
h-refinement)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  0.5  1  1.5  2  2.5

P
u

ll
-o

u
t 

fo
rc

e
 [

N
]

Displacement [mm]

FEIC_1k_B_1
FEIC_10k_B
FEIC_25k_B
FEIC_50k_B

FEIC_135k_B

Figure 6-5: Pull-out load-displacement curve for FEIC Models varying Ep in fibre
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Models FEIC_1k_B_1 and FEIC_1k_B_2 as shown in Figure 6-6. It was observed

that the rate of convergence for every load step increases as Ep is reduced and νpz is

increased. This is due to an increase in the conditioning number of the global stiffness

matrix, resulting in ill-conditioning of the inverse matrix.
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Figure 6-6: Pull-out load-displacement curve for
FEIC Models with different νpz and Ep

The second part of this investigation was to determine what the benefit of h- and

p-refinement on the overall pull-out behaviour is. It was found out that p-refinement

did not influence the overall pull-out behaviour when Ep is larger than 10, 000Nmm−2

(FEIC_10k_A_PO2 and FEIC_10k_B_PO2). However, as Ep reduces to ap-

proximately 1000Nmm−2, as discussed previously, Mode I starts contributing to

de-bonding damage. Furthermore, p-refinement will influence the pull-out beha-

viour as shown between FEIC_1k_B_1 and FEIC_1k_B_1_PO2 in Figure 6-7.

H-refinement was proven to be a more effective FE enrichment as the pull-out models

FEIC_10k_B_PO2 and FEIC_10k_A_PO2 were subjected to localised and uni-

form h-refinement as shown in Figure 6-7.
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Figure 6-7: Pull-out load-displacement curve for
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It can thus be concluded that while h-refinement is always necessary to achieve an

accurate solution, p-refinement is only necessary as Mode I starts to contribute to

the damaging of the interface. Further studies are necessary to determine whether

hierarchical HO enrichment is useful when fibres are made from soft material and

when cohesive models representing the interface are non-linear.

6.3.2 Ribbed braided fibre embedded in concrete

The second example discussed in this chapter is a ‘replica’ of the pull-out experiments

of the proposed and investigated RBFR (see Chapter 3). This consists of a trans-

versely isotropic rope (replicating a homogenised sinnet rope) embedded in a concrete

cylinder, with a designated bonding area between rope and concrete, measuring five

times the rope’s diameter in length. The rope was ribbed by placing a glass bead in

the centre of the bonding area as shown in Figures 6-8 and 6-9(b).

A quarter of the aforementioned problem was meshed in Cubit (FIC Model), generat-
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Figure 6-8: Pull-out model of the braided fibre reinforced concrete
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ing 1049, 1298 and 194 of tetrahedral finite elements for the rope, concrete, and glass

bead respectively. An axisymmetric boundary condition was applied to the axisym-

metric planes, the top face of the concrete was fully constrained from moving, and an

upward pull-out force was applied at the top end of the rope.

Bead-Fibre Interface

Bond Length

Concrete-Fibre Interface

Fibre Directions

(a)

(b)
(c)

Figure 6-9: (a) Mesh representation of the FIC model; (b) detail at ribbed bond; (c)
fibre directions

The rope was represented as an elastic transversely isotropic material that reflects the

kinematics of a homogenised sinnet rope, as explained in Section 5.6.2. Three different

transversal plane stiffness values Ep = 1000, 5000 and 50, 000Nmm−2 were used

in models FIC_1k_50, FIC_5k_50 and FIC_50k_[05/50/50_P2/500] respectively.

The concrete and glass bead were considered as elastic isotropic materials. Material

parameters for the rope, concrete and glass bead are summarised in Table 6.4. Large-

displacement formulation base on small strains/large rotations was used (see Section

5.5).

Interface elements were inserted between rope and concrete, and rope and glass bead

(see Figure 6-9(b)). A linear constitutive damage model, with parameters given in

Table 6.5, was used to represent the combined adhesion and friction contribution of

the rope-concrete bond mechanism (see Section 2.2.1). The post failure friction is

considered to be insignificant to the overall structural performance of ribbed braided

fibre reinforced concrete. Three different normal penalty stiffness values Eon = 5,

50 and 500Nmm−2 were used on models FIC_50k_05, FIC_[1k/5k/50k]_50 and

FIC_50k_500 respectively to investigate how this influenced the overall pull-out
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strength of the model. The tangential penalty stiffness values Eot1 and Eot2 remained

constant in all models. The fracture energy Gf given in Table 6.5 is approximately the

bond energy dissipated in the experimental samples TR10, considering a bond stress of

7.22MPa (friction contribution is included as part of the adhesion to maintain a simple

linear damage model) and assuming that the bond slip at the interface contribution

for both Mode I, II and III (see Equation 4.33) is approximately 0.69mm. This is a

simplified approach, which does not take into account the influence of confinement on

the bond stress-slip response. This is an estimate, however, and adjustments might

be required for limited experimental data.

Rope (Transversely Isotropic) Concrete (Isotropic) Glass (Isotropic)
Ep - varies (see Table 6.5) E = 17, 000 N mm−2 E = 50, 000 N mm−2

Ez = 135, 000 N mm−2 ν = 0.15 ν = 0.1

νp = 0.4

νpz = 0.3

Table 6.4: Material parameters for the FIC models

Model No. Transversal stiffness of fibre Damage Model
Ep [N mm−2] Gf [N mm−1], ft [N mm−2], (Eon ,Eot1 ,Eot2)[N mm−2]

FIC_1k_50 1, 000 2.5, 5.0, (50.0,1.0,1.0)
FIC_5k_50 5, 000 2.5, 5.0, (50.0,1.0,1.0)
FIC_50k_05 50, 000 2.5, 5.0, (5.0,1.0,1.0)

FIC_50k_50/_p2 50, 000 2.5, 5.0, (50.0,1.0,1.0)
FIC_50k_500 50, 000 2.5, 5.0, (500.0,1.0,1.0)

Table 6.5: List of the FIC models

Results

Finite element analysis of all models, given in Table 6.5, were conducted in MoFEM,

while post-processing was done in ParaView. This section reports and discusses the

results. The initial loading stage behaved elastically until the maximum pull-out

resistance was achieved. This behaviour reflects the elastic response of both the

rope and concrete. Its gradient directly depends on the selected penalty stiffness

Eon as shown in the load-displacement curve in Figure 6-10. At this stage, it is

worth reiterating that this behaviour is similar to the initial loading stage of the

experimental pull-out investigation of TR10 models conducted in Chapter 3. This
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was due to the pre-stressing of braided ropes that ensured maximum embedment of

the braided fibres, after which the ropes behaved elastically.
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Figure 6-10: Load-displacement curve for the FIC_50k models

After the loading stage, it was noted that the de-bonding behaviour was similar in

all models. After a maximum pull-out strength was obtained, cycles of softening and

stiffening were observed during de-bonding of the rope from concrete. This was due

to the interlocking effect generated by the presence of the glass bead. Towards the

end on total de-bonding, a quasi-uniform stiffness was observed in Figure 6-10, and

this is due to the permanent attachment of the interface nodes located at the bottom

of the bonding area which was also recorded in the previous example given in Section

6.2.

It was discovered that the normal penalty stiffness Eon plays an important role in

achieving the correct pull-out resistance and taking account of the concrete confine-

ment contribution. If Eon is very small, as in models FIC_50k_05 and FIC_50k_50,

the interface is mainly governed by Mode I separation (Figure 6-11(b)). The fibre

domain penetrates into the concrete domain and pre-de-bonding failure results, result-

ing in smaller pull-out force. On the contrary, using high Eon constrains the interface

136



damage to governance by Mode II and III separation (Figure 6-11(b)). This leads to

a realistic representation of the contribution that concrete confinement makes to the

bond strength resistance during the pull-out action of ribbed reinforcement system.

It was discovered that the ratio between Eon and Ep (transversal plane stiffness of

fibre) plays an important role in the bond adhesion of pull-out problems. If Eon

Ep
/ 1,

this would provide the wrong maximum pull-out force (e.x. models FIC_50k_05

and FIC_50k_50). Moreover, if Eon

Ep
' 1, a correct maximum pull-out force would

be achieved, but its magnitude would depend on Ep (e.x. model FIC_50k_500).
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Figure 6-11: (a) Represention of the interface between fibre and concrete ; (b)
Interface damage governed by Mode I (penetration of fibre and concrete domain);

(c) Interface damage governed by Mode II and III

In models, FIC_1k_50, FIC_5k_50 and FIC_50k_50, where de-bonding was gov-

erned by Mode I failure, the change of the transversal stiffness Ep did not influence

the maximum pull-out resistance of the de-bonding failure, as shown in Figure 6-12.

While similar de-bonding behaviour was observed in all the three models, the rate of

convergence reduces significantly as Ep reduces. This is due to the ill-conditioning

of the global stiffness matrix as discussed in the previous example given in Section

6.2. P-refinement conducted in model FIC_50k_50_p2 did not provide any improve-

ment in the numerical solution when compared to load-displacement curve of model

FIC_50k_50 given in Figure 6-10.

Similar patterns in the pull-out behaviour of the RBFR system were visually observed

between the numerical and experimental work. It is thought that a linear damage

model is sufficient to replicate these types of problems, but further investigation could
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Figure 6-12: Load-displacement curve comparison between the FIC_1k, FIC_5k
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use more complex damage models. In particular, the influence of confinement on the

bond stress-slip response should be taken in to account.

6.4 Summary and suggestions

This chapter demonstrated how pull-out of fibres embedded in concrete can be numer-

ically simulated. This was made possible by the methodologies developed in Chapters

4 and 5.

The first set of numerical pull-out analyses was conducted to examine the benefits of

p-, h- and hp-refinement of the interface. It was found out that p-refinement of linear

damaging cohesive elements using hierarchical HO interface elements was not useful in

improving the numerical accuracy of pull-out problems. Further work is necessary to

determine whether hierarchical HO interface elements can be useful in more complex

damaging cohesive elements. On the contrary, uniform h-refinement was an effective

way to provide better numerical accuracy of similar problems. Although localised h-
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refinement provided similar results to uniform h-refinement, computational efficiency

was doubled. It was also found that the transversal stiffness Ep of fibres does not

influence the bond behaviour in similar cases, but the rate of convergence reduces

significantly as the ratio between Ep and Ez increases.

The second set of experiments was conducted to study numerically the pull-out beha-

viour RBFR system developed in Chapter 3. Similar to the first set of experiments,

the bond adhesion between the fibres and concrete was represented using cohesive

elements with a linear damage constitutive model. The overall numerical pull-out

response has features in common with the experimental TR10 samples discussed in

Chapter 3. While no direct relationship can be stated as the parameters of the linear

damage model require fine tuning to achieve quantitatively similar results, it can be

concluded that such a damage model can provide a good representation of the bond

behaviour between the rope and concrete during pull-out. From a numerical point of

view, it was observed that the normal penalty stiffness Eon of the interface element

should be higher than the transversal stiffness Ep of the fibres in order to achieve

a true representation of the maximum pull-out resistance. If Eon is lower than Ep,

the damaging of the cohesive elements will be governed by Mode I gap opening, and

pre-failure is obtained before the true de-bonding mechanism of the RBFR system.

Although a linear damage model was sufficient to represent the de-bonding of the

pull-out behaviour of the RBFR system, further tests using different damage models

may be conducted to achieve more alike behaviour. It is suggested that these numer-

ical works be expanded to include problems where two or more ribs with different

dimensions are used, and to determine how these different parameters influence the

total pull-out behaviour of the RBFR system. To further enhance the numerical pro-

cedure, fracture modelling for concrete should be introduced to simulate the fractures

obtained in experimental studies.
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Chapter 7

Conclusions

This thesis proposes ribbed braided fibre reinforcement (RBFR) for concrete struc-

tures. This investigated both numerically and experimentally. These consist of car-

bon, Technora, and/or alkaline resistant glass fibres braided over a series of glass

beads to form high strength ribbed reinforcements. Braiding is necessary to mechan-

ically bind the fibres together, unlike fibre reinforced polymers (FRPs) where fibres

are bound using a polymeric resin matrix, and ribs are necessary to enhance the re-

inforcement bond adhesion with concrete. These types of fibres consist only of fire

and corrosion resistant materials, and can be used to produce fire resistant RBFR,

unlike FRP rebars which quickly disintegrate at elevated temperatures114;113. It is

thought that RBFR and ultrahigh performance fibre reinforced concrete (HPFRC)

can produce extremely fire-resistant concrete structures. These types of fibres are also

famous for their high strength to weight ratio and can produce a magnetic induction-

free environment.

RBFR was experimentally tested by performing a pull-out test of a single ribbed

twelve strand Technora sinnet rope embedded in a concrete cylinder. The ribbing

effect was formed by inserting a glass bead into the sinnet, and then situated in the

designated bonding area. These pull-out experiments were compared with similar

pull-out tests using plain (no ribbing) twelve strand Technora sinnet and plain Siltex
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carbon fibre ropes embedded in concrete. Initial investigations demonstrated that

bond strength depends on the ropes’ surface texture and the compactness of braided

strands. RBFR obtained 66% bond strength compared to an equivalent steel rebar,

and 550% bond strength compared to a plain Technora rope embedded in concrete.

The optimisation of the RBFR system, for example by adjusting different dimensions

and material parameters, is essential but beyond the scope of this thesis. Therefore

further studies are strongly recommended.

The mechanical behaviour of braided fibres is a poorly understood area, especially

when new materials such as carbon, glass and Technora fibres are used. Moreover,

when the use of ropes is modified their new mechanical behaviour needs to be invest-

igated. This was observed in the proposal of the RBFR system, with the inclusion of

beads providing new physical phenomena for exploration. Abrasion damage of RBFR

with concrete was neglected on the assumption that pre-stressing of reinforcement will

provide rigid bonding against concrete.

This thesis used a newly developed numerical tool to simulate braided fibres, and

proposes, eventually, the RBFR system. The first challenge was to generate a finite

element domain to represent braided fibres. Dynamic and efficient algorithms were

written in Cubit to generate three strand plait braids and twelve strand sinnet ropes.

It was thought that braided geometries can be numerically pre-stressed. Unfortu-

nately, however, this is not possible for all geometries, as rigid lattice-like structures

can form. It is recommended that braided geometries are modelled as tightly as pos-

sible. A linear elastic transverse isotropic constitutive material model based on large

rotations and small strains (St Venant Kirchhoff strain energy density function) finite

deformation formulation was used to study the kinematics of braided fibres. Based on

the assumption that the contact area between strands does not vary significantly, co-

hesive elements were used to simulate the mechanical interaction between the strands.

Due to the use of carbon and Technora fibres, that have very low coefficient of friction,

free sliding between the strands was assumed. The efficacy of this was demonstrated

by modelling a tightening of a single overhand knot.
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The importance of using transverse isotropy to represent fibre materials in braided

geometries is demonstrated by a finite element large deformation simulation of a

three plait braid under tension. This was compared with a similar model using an

isotropic material, where unrealistic deformation was observed. Other tests showed

that small deformation theory is not suitable for modelling braided geometries, as

spurious strains are formed and unrealistic deformations can be observed. Unfortu-

nately, transverse isotropy can produce singular stiffness matrices when the stiffness

in the transverse plane varies significantly from the stiffness in the principal axis.

This leads to ill-the conditioning of the global stiffness matrix. Although robust

parallelised preconditioners such as MUMPs and SuperLU were used, a poor rate

of convergence was still visible in large deformation problems. Hence, transversely

isotropic materials should be used with precaution and this problem remains in need

of further investigation.

In this thesis, linear damaging cohesive elements were used to simulate the bond beha-

viour between fibres and concrete. Furthermore, it was proposed hierarchical higher

order interface elements. These can be useful to conduct localised p-refinement at the

interface elements, providing accurate solutions without mitigating the computational

performance. The formulation and approach for the use of hierarchical higher order

interface elements were reported, and its feasibility was demonstrated through invest-

igation of a 3D de-lamination problem. Hierarchical higher order interface elements

were also used in the failed attempt to remove traction oscillations from interface

elements next to notches. Although it was found out that hierarchical higher order

interface elements were not useful to model shear damaging interface elements with

a linear damage model (i.e. pull-out of fibres embedded in concrete), these can be

useful for more complex damaging models. H-refinement was more useful in such

cases and computational performance was improved as localised h-refinement was

used, without mitigation of accuracy. Finally, the pull-out tests of the RBFR sys-

tem were successfully simulated using the interface element represented by a linear

damage model, and pull-out behaviour was obtained in a similar manner to the ex-
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perimental investigation. The braided reinforcement was simulated as a homogenised

transversely isotropic material, while concrete and glass beads were assumed to be

linear elastic materials. It was learnt that the normal penalty stiffness of the inter-

face element, should be higher than the transversal stiffness of the fibres to obtain

the correct maximum pull-out force.

This experimental and computational research project has established ribbed braided

fibre as a new potential reinforcement for concrete. A numerical tool was developed

to model braided fibres and RBFR embedded in concrete. Further work is necessary

to improve the RBFR system and to find solutions for all the highlighted issues

experienced during numerical work.

143



Bibliography

[1] Tokyo Rope Mfg. Co. LTD. Carbon fibre composite cable. [http://www.
tokyorope.co.jp/english/products/cfcc/index.html accessed 28 March 2015].

[2] M. Ainsworth and J. Coyle. Hierarchic finite element bases on unstructured tet-
rahedral meshes. International Journal for Numerical Methods in Engineering,
58(14):2103–2130, Dec. 2003. http://dx.doi.org/10.1002/nme.847.

[3] S. Akihama, T. Suenaga, and T. Banno. The behaviour of carbon fibre rein-
forced cement composites in direct tension, 1984. http://dx.doi.org/10.1016/
0262-5075(84)90004-6.

[4] G. Alfano and M. A. Crisfield. Finite element interface models for the delamin-
ation analysis of laminated composites: mechanical and computational issues.
International Journal for Numerical Methods in Engineering, 50(7):1701–1736,
Mar. 2001. http://dx.doi.org/10.1002/nme.93.

[5] G. Alfano and M. A. Crisfield. Solution strategies for the delamination analysis
based on a combination of local-control arc-length and line searches. Inter-
national Journal for Numerical Methods in Engineering, 58(7):999–1048, Oct.
2003. http://dx.doi.org/10.1002/nme.806.

[6] G. Alfano and E. Sacco. Combining interface damage and friction in a cohesive-
zone model. International Journal for Numerical Methods in Engineering,
68(5):542–582, 2006. http://dx.doi.org/10.1002/nme.1728.

[7] M. A. Ali, A. J. Majumdar, and D. L. Rayment. Carbon fibre reinforcement of
cement. Cement and Concrete Research, 2:201–212, 1972. http://dx.doi.org/
10.1016/0008-8846(72)90042-7.

[8] P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent. Mumps multifrontal massively
parallel solver version 2.0, 1998.

[9] S. Aydin, H. Yazici, and B. Baradan. High temperature resistance of normal
strength and autoclaved high strength mortars incorporated polypropylene and
steel fibers. Construction and Building Materials, 22:504–512, 2008. http://dx.
doi.org/10.1016/j.conbuildmat.2006.11.003.

[10] I. Babuška and B. Q. Guo. The h, p and hp version of the finite element method
basic theory and applications. Advances in Engineering Software, 15(3-4):159–
174, 1992. http://dx.doi.org/10.1016/0965-9978(92)90097-y.

144

http://www.tokyorope.co.jp/english/products/cfcc/index.html
http://www.tokyorope.co.jp/english/products/cfcc/index.html
http://dx.doi.org/10.1002/nme.847
http://dx.doi.org/10.1016/0262-5075(84)90004-6
http://dx.doi.org/10.1016/0262-5075(84)90004-6
http://dx.doi.org/10.1002/nme.93
http://dx.doi.org/10.1002/nme.806
http://dx.doi.org/10.1002/nme.1728
http://dx.doi.org/10.1016/0008-8846(72)90042-7
http://dx.doi.org/10.1016/0008-8846(72)90042-7
http://dx.doi.org/10.1016/j.conbuildmat.2006.11.003
http://dx.doi.org/10.1016/j.conbuildmat.2006.11.003
http://dx.doi.org/10.1016/0965-9978(92)90097-y


[11] I. Babuška and M. Suri. On locking and robustness in the finite element method,
May 1992. http://dx.doi.org/10.1137/0729075.

[12] A. Badanoiu and J. Holmgren. Cementitious composites reinforced with con-
tinuous carbon fibres for strengthening of concrete structures. Cement and
Concrete Composites, 25:387–394, 2003. http://dx.doi.org/10.1016/S0958-
9465(02)00054-9.

[13] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.7, Argonne National
Laboratory, 2016.

[14] R. V. Balendran, F. P. Zhou, A. Nadeem, and A. Y. T. Leung. Influence of
steel fibres on strength and ductility of normal and lightweight high strength
concrete. Building and Environment, 37:1361–1367, 2002. http://dx.doi.org/
10.1016/S0360-1323(01)00109-3.

[15] N. Banthia and J. F. Trottier. Deformed steel fiber-cementitious matrix bond
under impact. Cement and Concrete Research, 21:158–168, 1991. http://dx.
doi.org/10.1016/0008-8846(91)90042-G.

[16] K. J. Bathe and S. Ramaswamy. On three-dimensional nonlinear analysis of
concrete structures. Nuclear Engineering and Design, 52:385–409, 1979. http:
//dx.doi.org/10.1016/0029-5493(79)90029-3.

[17] K. J. Bathe, J. Walczak, A. Welch, and N. Mistry. Nonlinear analysis of concrete
structures. Computers & Structures, 32(3/4):563–590, 1989. http://dx.doi.org/
10.1016/0045-7949(89)90347-7.

[18] Z. P. Bažant and B. H. Oh. Crack band theory for fracture of concrete. Matéri-
aux et Constructions, 16(3):155–177, May 1983. http://dx.doi.org/10.1007/
BF02486267.

[19] Z. P. Bažant. Instability, ductility and size effect in strain-softening concrete.
Journal of Engineering Mechanics Division, ASCE, 102(2):331–344, 1976.

[20] Z. P. Bažant. Mechanics of distributed cracking. Appl. Mech. Rev, 39(5), 1986.

[21] Z. P. Bažant and A. A. Asghari. Constitutive law for nonlinear creep of concrete.
Journal of Engineering Mechanics Division, ASCE, 103:113–124, 1977.

[22] Z. P. Bažant and P. Bhat. Endochronic theory of inelasticity and failure of con-
crete. Journal of Engineering Mechanics Division, ASCE, 102:701–722, 1976.

[23] Z. P. Bažant and P. Bhat. Prediction of hysteresis of reinforced concrete beams.
Journal of Structural Division, ASCE, 103:153–167, 1977.

[24] Z. P. Bažant and B. H. Oh. Rock fracture via strain-softening finite elements.
Journal of Engineering Mechanics Division, ASCE, 110(7):1015–1035, 1984.
http://dx.doi.org/10.1061/(ASCE)0733-9399(1984)110:7(1015).

145

http://dx.doi.org/10.1137/0729075
http://dx.doi.org/10.1016/S0958-9465(02)00054-9
http://dx.doi.org/10.1016/S0958-9465(02)00054-9
http://dx.doi.org/10.1016/S0360-1323(01)00109-3
http://dx.doi.org/10.1016/S0360-1323(01)00109-3
http://dx.doi.org/10.1016/0008-8846(91)90042-G
http://dx.doi.org/10.1016/0008-8846(91)90042-G
http://dx.doi.org/10.1016/0029-5493(79)90029-3
http://dx.doi.org/10.1016/0029-5493(79)90029-3
http://dx.doi.org/10.1016/0045-7949(89)90347-7
http://dx.doi.org/10.1016/0045-7949(89)90347-7
http://dx.doi.org/10.1007/BF02486267
http://dx.doi.org/10.1007/BF02486267
http://dx.doi.org/10.1061/(ASCE)0733-9399(1984)110:7(1015)


[25] Z. P. Bazžant and G. Pijaudier-Cabot. Nonlocal Continuum Damage, Localiza-
tion Instability and Convergence. Journal of Applied Mechanics, 55(2):287–293,
jun 1988. http://dx.doi.org/10.1115/1.3173674.

[26] T. Belytschko and T. Back. Pull-out processes in steel fibre reinforced cement.
International Journal for Numerical Methods in Engineering, 45(5):601–620,
1999. http://dx.doi.org/10.1016/0010-4361(86)90266-1.

[27] E. J. Bennett, R. G. Pohto, and A. T. Mitchell. Cathodic protection system for
a steel-reinforced concrete structure, 1999. http://dx.doi.org/10.1016/S0958-
9465(99)90120-8.

[28] A. Bentur, S. Mindess, and S. Diamond. Pull-out processes in steel fibre re-
inforced cement. International Journal of Cement Composites and Lightweight
Concrete, 7(1):29–37, 1985. http://dx.doi.org/10.1016/0262-5075(85)90024-7.

[29] A. C. Berg, L. C. Bank, M. G. Oliva, and J. S. Russell. Construction and cost
analysis of an FRP reinforced concrete bridge deck. Construction and Building
Materials, 20(8):515–526, Oct. 2006. http://dx.doi.org/10.1016/j.conbuildmat.
2005.02.007.

[30] P. G. Bergan and I. Holand. Nonlinear finite element analysis of concrete struc-
tures. Computer Methods in Applied Mechanics and Engineering, 17/18:443–
467, 1979. http://dx.doi.org/10.1016/0045-7825(79)90027-6.

[31] V. V. Bertero, E. P. Popov, and S. Viwathanatepa. Bond of reinforcing steel:
Experiments and a mechanical model. In Nonlinear behaviour of reinforced
concrete spatial structures: Contributions to the IASS symposium, Darmstadt,
1978.

[32] K. L. Biryukovich, Y. L. Biryukovich, and D. L. Biryukovich. Glass fiber rein-
forced cement. Budivel’nik, Kieve, Translation by Civil Engineering Research
Association, (12), 1964.

[33] A. Briggs. Review carbon fibre-reinforced cement. Journal of Materials Science,
12:384–404, 1977.

[34] C. J. Brown, D. Darwin, and S. L. McCabe. Finite element fracture analysis of
steel-concrete bond. Technical report, University of Kansas Center for Research,
Lawrence, Kansas, 1993.

[35] J. Burkardt. Grundmann Moeller Quadrature Rules for a Simplex in M di-
mensions, July 2008. [http://people.sc.fsu.edu/jburkardt/c_src/simplex_gm_
rule/simplex_gm_rule.html posted 15 February 2014].

[36] T. Büttner, J. Orlowsky, and M. Raupach. Textile reinforced concrete - durab-
ility issues: changes of the bond and tensile strength due to ageing. In Brittle
Matrix Composites 9, pages 301–312, Warsaw, 2009. Woodhead Publishing Lim-
ited. http://dx.doi.org/10.1533/9781845697754.301.

[37] O. Buyukozturk. Nonlinear analysis of reinforced concrete structures. Com-
puters & Structures, 7:149–156, 1977.

146

http://dx.doi.org/10.1115/1.3173674
http://dx.doi.org/10.1016/0010-4361(86)90266-1
http://dx.doi.org/10.1016/S0958-9465(99)90120-8
http://dx.doi.org/10.1016/S0958-9465(99)90120-8
http://dx.doi.org/10.1016/0262-5075(85)90024-7
http://dx.doi.org/10.1016/j.conbuildmat.2005.02.007
http://dx.doi.org/10.1016/j.conbuildmat.2005.02.007
http://dx.doi.org/10.1016/0045-7825(79)90027-6
http://people.sc.fsu.edu/ jburkardt/c_src/simplex_gm_rule/simplex_gm_rule.html
http://people.sc.fsu.edu/ jburkardt/c_src/simplex_gm_rule/simplex_gm_rule.html
http://dx.doi.org/10.1533/9781845697754.301


[38] V. Cervenka and K. H. Gerstle. Inelastic analysis of reinforced concrete panels :
experimental verification and application. IABSE publications, 32:25–39, 1972.
http://dx.doi.org/10.5169/seals-24951.

[39] P. K. Chang, Y. N. Peng, and C. L. Hwang. A design consideration for durability
of high-performance concrete. Cement and Concrete Composites, 23:375–380,
2001. http://dx.doi.org/10.1016/S0958-9465(00)00089-5.

[40] V. Ciampi, V. V. Bertero, and E. Popov. Analytical Model tor Deformed
Bar Bond under Generalized Excitations. Proceedings IABSE Colloquium an
"Advanced Mechanics in Reinforced Concrete", pages 53–67, 1981.

[41] V. Ciampi, R. Eligehausen, E. P. Popov, and V. V. Bertero. Analytical model for
concrete anchorages of reinforcing bars under generalized excitations. Technical
report, College of Engineering, University of California, Berkeley, California,
1982.

[42] A. P. Clark. Comparative bond efficiency of deformed concrete reinforcing
bars. Journal of Research of the National Bureau of Standards, 37, Dec. 1946.
http://dx.doi.org/10.14359/8754.

[43] R. W. Clough. The finite element method in plane stress analysis. In 2nd
Conference on Electronic Computation, ASCE, Pittsburgh, 1960.

[44] R. W. Clough and L. Wilson. Stress anlaysis of a gravity dam by the finite
eleemnt method. In Proceedings, Symposium on the Use of Computers in Civil
Engineering, pages 29.1–29.22, Lisbon, Portugal, 1962. Laboratorio Nacional de
Engenharia Civil.

[45] R. W. Clough and L. Wilson. Stress analysis of a gravity dam by the finite
element method. Bulletin RILEM, (19):41–54, 1963.

[46] R. Codispoti, D. V. Oliveira, R. S. Olivito, and P. B. Lourenço. Mechan-
ical performance of natural fiber-reinforced composites for the strengthening
of masonry. Composites Part B, 77:74–83, 2015. http://dx.doi.org/10.1016/j.
compositesb.2015.03.021.

[47] E. Cosenza, G. Manfredi, and R. Realfonzo. Behavior and modeling of bond of
FRP rebars to concrete. Journal of Composites for Construction, 1(2):40–51,
1997. http://dx.doi.org/10.1061/(ASCE)1090-0268(1997)1:2(40).

[48] A. D. Cowell, E. P. Popov, and V. V. Bertero. Effects of concrete types and
loading conditions on local bond-slip relations. Technical report, College of
Engineering, University of California, Berkeley, California, 1982.

[49] J. V. Cox. Development of a plasticity bond model for reinforced concrete: theory
and validation for monotonic applications. Naval Facilities Engineering Service
Center, 1994.

[50] M. A. Crisfield and G. Alfano. Adaptive hierarchical enrichment for delamin-
ation fracture using a decohesive zone model. International Journal for Nu-

147

http://dx.doi.org/10.5169/seals-24951
http://dx.doi.org/10.1016/S0958-9465(00)00089-5
http://dx.doi.org/10.14359/8754
http://dx.doi.org/10.1016/j.compositesb.2015.03.021
http://dx.doi.org/10.1016/j.compositesb.2015.03.021
http://dx.doi.org/10.1061/(ASCE)1090-0268(1997)1:2(40)


merical Methods in Engineering, 54(9):1369–1390, 2002. http://dx.doi.org/10.
1002/nme.469.

[51] P. Davies, N. Lacotte, G. Kibsgaard, R. Craig, D. Cannell, S. Francois,
O. Lodeho, K. Konate, S. Mills, M. Francois, A. L. Defoy, D. Durville, D. Vu,
J. Gilmore, and D. Sherman. Bend over sheave durability of fibre ropes for deep
sea handling operations. In Proceedings of the ASME 2013 32nd International
Conference on Ocean, pages 1–8.

[52] R. de Borst and P. Nauta. Non-orthogonal cracks in a smeared finite ele-
ment model. Engineering Computations, 2(1):35–46, 1985. http://dx.doi.org/
10.1108/eb023599.

[53] R. de Borst, J. C. Remmers, A. Needleman, and M. A. Abellan. Discrete vs
smeared crack models for concrete fracture - Bridging the gap. International
Journal for Numerical and Analytical Methods in Geomechanics, 28(7-8):583–
607, 2004. http://dx.doi.org/10.1002/nag.374.

[54] L. Demkowicz. Computing with hp-adaptive finite elements: Volume 1, One and
two dimensional elliptic and maxwell problems. Chapman & Hall/CRC Applied
Mathematics & Nonlinear Science. CRC Press, 2006.

[55] J. A. Den Uijl and A. J. Bigaj. A bond model for ribbed bars based on concrete
confinement. Heron, 41(3):201–226, 1996.

[56] R. Djamaluddin, S. Hino, and K. Yamaguchi. Bond capacity of grid system in
unresin carbon fiber reinforcement for concrete beams. Journal of Structural
Engineering, 50A:927–934, 2004.

[57] R. Djamaluddin, Y. Kobayashi, T. Nagahama, and T. Ohta. Application of Un-
resin Continuous Carbon Fibers as Flexural Reinforcement in Concrete Struc-
tures. Doboku Gakkai Nenji Gakujutsu Koenkai Koen Gaiyoshu. 5, 22(3):283–
288, 2000.

[58] W. Dong, J. Xiao, and Y. Li. Finite element analysis of the tensile properties of
2.5d braided composites. Materials Science and Engineering: A, 457(1-2):199–
204, may 2007. http://dx.doi.org/10.1016/j.msea.2006.12.032.

[59] A. Drach, B. Drach, and I. Tsukrov. Processing of fiber architecture data
for finite element modeling of 3d woven composites. Advances in Engineering
Software, 72:18–27, jun 2014. http://dx.doi.org/10.1016/j.advengsoft.2013.06.
006.

[60] D. Durville. Composite Reinforcements for Optimum Performance. Elsevier,
2011. http://dx.doi.org/10.1533/9780857093714.4.461.

[61] D. Durville. Contact-friction modeling within elastic beam assemblies: an ap-
plication to knot tightening. Computational Mechanics, 49(6):687–707, Feb.
2012. http://dx.doi.org/10.1007/s00466-012-0683-0.

[62] E. N. Dvorkin, A. M. Cuitiño, and G. Gioia. Finite elements with displacement
interpolated embedded localization lines insensitive to mesh size and distortions.

148

http://dx.doi.org/10.1002/nme.469
http://dx.doi.org/10.1002/nme.469
http://dx.doi.org/10.1108/eb023599
http://dx.doi.org/10.1108/eb023599
http://dx.doi.org/10.1002/nag.374
http://dx.doi.org/10.1016/j.msea.2006.12.032
http://dx.doi.org/10.1016/j.advengsoft.2013.06.006
http://dx.doi.org/10.1016/j.advengsoft.2013.06.006
http://dx.doi.org/10.1533/9780857093714.4.461
http://dx.doi.org/10.1007/s00466-012-0683-0


International Journal for Numerical Methods in Engineering, 30(3):541–564,
1990. http://dx.doi.org/10.1002/nme.1620300311.

[63] R. Eligehausen, E. P. Popov, and V. V. Bertero. Local bond stress-slip relation-
ships of deformed bars under generalized excitations. Technical report, College
of Engineering, University of California, Berkeley, California, 1983.

[64] F. I. Faiyadh and M. A. Al-Ausi. Effect of elevated temperature on splitting
tensile strength of fibre concrete. International Journal of Cement Compos-
ites and Lightweight Concrete, 11(3):175–178, 1989. http://dx.doi.org/10.1016/
0262-5075(89)90090-0.

[65] S. Feih, E. Boiocchi, and E. Kandare. Strength degradation of glass and carbon
fibres at high temperature. In ICCM-17 Proceeding, 2009.

[66] C. A. Felippa and B. Haugen. A unified formulation of small-strain corotational
finite elements: I. Theory. Computer Methods in Applied Mechanics and En-
gineering, 194(21-24):2285–2335, June 2005. http://dx.doi.org/10.1016/j.cma.
2004.07.035.

[67] P. M. Ferguson. Bond Stress-The State of the Art. Journal of the American
Concrete Insititute, ACI Committee 408, 408:1161–1190, 1966. http://dx.doi.
org/10.14359/7665.

[68] A. C. Fischer-Cripps. Introduction to Contact Mechanics. Springer US, 2007.
http://dx.doi.org/10.1007/978-0-387-68188-7.

[69] J. R. Fried. Polymer Science and Technology. Prentice Hall Professional Tech-
nical Reference, 2003.

[70] H. Funke, S. Gelbrich, and A. Ehrlich. Development of a new hybrid material of
textile reinforced concrete and glass fibre reinforced flastic. Procedia Materials
Science, 2:103–110, 2013. http://dx.doi.org/10.1016/j.mspro.2013.02.013.

[71] D. Gao, D. Yan, and X. Li. Splitting strength of GGBFS concrete incorporating
with steel fiber and polypropylene fiber after exposure to elevated temperatures.
Fire Safety Journal, 54:67–73, 2012. http://dx.doi.org/10.1016/j.firesaf.2012.
07.009.

[72] A. Gens, I. Carol, and E. E. Alonso. An interface element formulation for
the analysis of soil-reinforcement interaction. Computers and Geotechnics, 7(1-
2):133–151, Jan. 1988. http://dx.doi.org/10.1016/0266-352X(89)90011-6.

[73] V. T. Giner, F. J. Baeza, S. Ivorra, E. Zornoza, and O. Galao. Effect of steel and
carbon fiber additions on the dynamic properties of concrete containing silica
fume. Materials and Design, 34:332–339, 2012. http://dx.doi.org/10.1016/j.
matdes.2011.07.068.

[74] Giuriani, E. Experimental investigation on the bond-slip law of deformed bars
in concrete. 1981. http://dx.doi.org/10.5169/seals-26883.

149

http://dx.doi.org/10.1002/nme.1620300311
http://dx.doi.org/10.1016/0262-5075(89)90090-0
http://dx.doi.org/10.1016/0262-5075(89)90090-0
http://dx.doi.org/10.1016/j.cma.2004.07.035
http://dx.doi.org/10.1016/j.cma.2004.07.035
http://dx.doi.org/10.14359/7665
http://dx.doi.org/10.14359/7665
http://dx.doi.org/10.1007/978-0-387-68188-7
http://dx.doi.org/10.1016/j.mspro.2013.02.013
http://dx.doi.org/10.1016/j.firesaf.2012.07.009
http://dx.doi.org/10.1016/j.firesaf.2012.07.009
http://dx.doi.org/10.1016/0266-352X(89)90011-6
http://dx.doi.org/10.1016/j.matdes.2011.07.068
http://dx.doi.org/10.1016/j.matdes.2011.07.068
http://dx.doi.org/10.5169/seals-26883


[75] S. Goldfein. Plastic fibrous reinforcement for fortland cement, Technical Re-
port No. 1757-TR. Technical report, U.S. Army Research and Development
Laboratories, Fort Belvoir, 1963.

[76] C. Gonilho-Pereira, R. Fangueiro, and S. Jalali. Composite rods as a steel
substitute in concrete reinforcement. In Asia-Pacific Conference of FRP in
Structures (APFIS 2007), pages 2–6, 2007.

[77] C. Gonilho-Pereira, R. Fangueiro, and S. Jalali. Tensile performance of braided
composite rods for concrete reinforcement. In Challenges for Civil Construction,
2008.

[78] C. Gonilho-Pereira, R. Fangueiro, S. Jalali, M. Araújo, and P. Pina Marques.
Tensile properties of braided composite rods. In Fourth International Confer-
ence of FRP Composites in Civil Engineering (CICE 2008), Zurich, 2008.

[79] Y. Goto. Cracks formed in concrete around deformed tension bars. ACI journal,
68(4):244–251, 1971. http://dx.doi.org/10.14359/11325.

[80] C. Greer, P. Concrete Canvas, 1999. [http://www.concretecanvas.com/ accessed
28 March 2015].

[81] A. A. Griffith. The phenomena of rupture and flow in solids. Philosophical
transactions of the royal society of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 1921. http://dx.doi.org/10.1098/rsta.1921.0006.

[82] H. J. Grootenboer. Finite element analysis of two-dimensional reinforced con-
crete structures, taking account of non-linear physical behaviour and the de-
veloplement of discrete cracks. PhD thesis, Delft University, 1979.

[83] A. Grundmann and H. M. Moller. Invariant integration formulas for the n-
simplex by combinatorial methods. SIAM Review, 15(2):282–190, 1978. http:
//dx.doi.org/10.1137/1019132.

[84] F. Han, H. Chen, K. Jiang, W. Zhang, T. Lv, and Y. Yang. Influences of
geometric patterns of 3D spacer fabric on tensile behavior of concrete canvas.
Construction and Building Materials, 65:620–629, 2014. http://dx.doi.org/10.
1016/j.conbuildmat.2014.05.041.

[85] J. Hartig, U. Häußler-Combe, and K. Schicktanz. Influence of bond properties
on the tensile behaviour of Textile Reinforced Concrete. Cement and Concrete
Composites, 30(10):898–906, 2008. http://dx.doi.org/10.1016/j.cemconcomp.
2008.08.004.

[86] U. Häußler-Combe and J. Hartig. Bond and failure mechanisms of textile rein-
forced concrete (TRC) under uniaxial tensile loading. Cement and Concrete
Composites, 29(4):279–289, 2007. http://dx.doi.org/10.1016/j.cemconcomp.
2006.12.012.

[87] W. M. Haynes. CRC Handbook of Chemistry and Physics, 93rd Edition. CRC
Handbook of Chemistry and Physics. Taylor & Francis, 2012.

150

http://dx.doi.org/10.14359/11325
http://www.concretecanvas.com/
http://dx.doi.org/10.1098/rsta.1921.0006
http://dx.doi.org/10.1137/1019132
http://dx.doi.org/10.1137/1019132
http://dx.doi.org/10.1016/j.conbuildmat.2014.05.041
http://dx.doi.org/10.1016/j.conbuildmat.2014.05.041
http://dx.doi.org/10.1016/j.cemconcomp.2008.08.004
http://dx.doi.org/10.1016/j.cemconcomp.2008.08.004
http://dx.doi.org/10.1016/j.cemconcomp.2006.12.012
http://dx.doi.org/10.1016/j.cemconcomp.2006.12.012


[88] H. B. Hellweg and M. A. Crisfield. A new arc-length method for handling sharp
snap-backs. Computers & Structures, 66(5):704–709, 1998. http://dx.doi.org/
10.1016/S0045-7949(97)00077-1.

[89] C. T. Herakovich. Mechanics of Fibrous Composites. John Wiley & Sons, Ltd,
1998.

[90] L. R. Herrmann and J. V. Cox. Development of a plasticity bond model for
reinforced concrete - Preliminary calibration and cyclic applications. Technical
Report March, Naval Facilities Engineering Service Center, Port Hueneme, Cali-
fornia, 1994.

[91] J. Hewitt, D. Brown, and R. Clarke. Modelling, evaluation and manufac-
ture of woven composite materials. Composites Part A: Applied Science
and Manufacturing, 27(4):295–299, jan 1996. http://dx.doi.org/10.1016/1359-
835X(95)00041-Y.

[92] K. Hibbitt and Sorensen. ABAQUS/User Subroutines Reference Guide.
Dassault Systemes Simulia Corporation, 2013.

[93] A. Hillerborg, M. Modéer, and P. E. Petersson. Analysis of crack formation and
crack growth in concrete by means of fracture mechanics and finite elements.
Cement and Concrete Research, 6(6):773–781, Nov. 1976. http://dx.doi.org/
10.1016/0008-8846(76)90007-7.

[94] A. F. Horadam. Gegenbauer polynomials revisited. Fibonacci Quart, pages
294–299, 1985.

[95] S. Igarashi, A. Bentur, and S. Mindess. The effect of processing on the bond
and interfaces in steel fiber reinforced cement composites. Cement and Concrete
Composites, 18:313–322, 1996. http://dx.doi.org/10.1016/0958-9465(96)00022-
4.

[96] C. E. Inglis. Stresses in a plate due to the presence of cracks and sharp corners.
Technical report, Institution of Naval Architects, Cambridge, Mar. 1913.

[97] A. R. Ingraffea and V. E. Saouma. Numerical modeling of discrete crack
propagation in reinforced and plain concrete. In Fracture mechanics of concrete:
Structural application and numerical calculation, pages 171–225. Springer Neth-
erlands, Dordrecht, 1985. http://dx.doi.org/10.1007/978-94-009-6152-4_4.

[98] A. C. Institute. State-of the-Art Report on Fiber Reinforced Concrete, Reported
by ACI Committee 544. ACI, 1996.

[99] A. C. Institute. Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for
Reinforcing or Strengthening Concrete Structures, Reported by ACI Committee
440. ACI, 2004.

[100] B. S. Institution. Eurocode 2 : Design of concrete structures, Part1-1: General
rules and rules for buildings. BSI, London, 2004.

151

http://dx.doi.org/10.1016/S0045-7949(97)00077-1
http://dx.doi.org/10.1016/S0045-7949(97)00077-1
http://dx.doi.org/10.1016/1359-835X(95)00041-Y
http://dx.doi.org/10.1016/1359-835X(95)00041-Y
http://dx.doi.org/10.1016/0008-8846(76)90007-7
http://dx.doi.org/10.1016/0008-8846(76)90007-7
http://dx.doi.org/10.1016/0958-9465(96)00022-4
http://dx.doi.org/10.1016/0958-9465(96)00022-4
http://dx.doi.org/10.1007/978-94-009-6152-4_4


[101] B. S. Institution. Eurocode 2 : Design of concrete structures, Part1-2: General
rules - Structural fire design. BSI, London, 2004.

[102] B. S. Institution. Eurocode 3 : design of steel structures, Part1-2: General rules
- Structural fire design. BSI, London, 2005.

[103] B. S. Institution. Steel for the reinforcement of concrete. Weldable reinforcing
steel. General. BSI, London, 2005.

[104] B. S. Institution. BS EN 12390-2:2009, Testing hardened concrete. Making and
curing specimens for strength tests. BSI, London, 2009.

[105] B. S. Institution. BS EN 12390-3:2009, Testing hardened concrete. Compressive
strength of test specimens. BSI, London, 2009.

[106] A. International. ASTM A944-09, Standard test method for comparing bond
strength of steel reinforcing bars to concrete using beam-end specimens. ASTM
International, West Conshohocken, PA, 2004.

[107] G. R. Irwin. Fracture dynamics. Fracturing of Metals, American Society For
Metals, pages 147–166, 1948.

[108] A. Ivanič, S. Lubej, R. Rudolf, and I. Anžel. Bond behavior of carbon-fiber yarn
embedded in cement mortar. Science and Engineering of Composite Materials,
18(3):181–186, 2011. http://dx.doi.org/10.1515/SECM.2011.029.

[109] J. O. Jirsa. Bond and anchorage in reinforced concrete frame joints. In Japan
seminar on earthquake engineering with emphasis on the safety of reinforced
concrete structures, Berkeley, California, 1973.

[110] Kaczmarczyk, Ł., et. al. Mesh Oriented Finite Element Method (MoFEM),
Version 0.1.4. The University of Glasgow, Glasgow, United Kingdom, 2014.

[111] P. Kalifa, G. Chene, and C. Galle. High-temperature behaviour of HPC with
polypropylene fibres: From spalling to microstructure. Cement and concrete
research, 31:1487–1499, 2001. http://dx.doi.org/10.1016/S0008-8846(01)00596-
8.

[112] S. Kang and J. Kim. The relation between fiber orientation and tensile behavior
in an Ultra High Performance Fiber Reinforced Cementitious Composites (
UHPFRCC ). Cement and Concrete Research, 41(10):1001–1014, 2011. http:
//dx.doi.org/10.1016/j.cemconres.2011.05.009.

[113] A. Katz and N. Berman. Modeling the effect of high temperature on the bond of
FRP reinforcing bars to concrete. Cement and Concrete Composites, 22(6):433–
443, Dec. 2000. http://dx.doi.org/10.1016/S0958-9465(00)00043-3.

[114] A. Katz, N. Berman, and L. C. Bank. Effect of high temperature on bond
strength of FRP rebars. Journal of Composites for Construction, 3(2):73–81,
May 1999. http://dx.doi.org10.1061/(ASCE)1090-0268(1999)3%3A2(73).

152

http://dx.doi.org/10.1515/SECM.2011.029
http://dx.doi.org/10.1016/S0008-8846(01)00596-8
http://dx.doi.org/10.1016/S0008-8846(01)00596-8
http://dx.doi.org/10.1016/j.cemconres.2011.05.009
http://dx.doi.org/10.1016/j.cemconres.2011.05.009
http://dx.doi.org/10.1016/S0958-9465(00)00043-3
http://dx.doi.org10.1061/(ASCE)1090-0268(1999)3%3A2(73)


[115] O. Kayali, M. N. Haque, and B. Zhu. Some characteristics of high strength fiber
reinforced lightweight aggregate concrete. Cement and Concrete Composites,
25:207–213, 2003. http://dx.doi.org/10.1016/S0958-9465(02)00016-1.

[116] A. Kelly. The Optimisation of Finite Element Meshes. PhD thesis, The Uni-
versity of Glasgow, 2014.

[117] E. L. Kemp and J. Wilhelm. Investigation of the parameters influencing bond
cracking. ACI JOURNAL, page 47, 1979. http://dx.doi.org/10.14359/6936.

[118] K. Kobayashi, T. Iizuka, H. Kurachi, and K. Rokugo. Corrosion protection
performance of High Performance Fiber Reinforced Cement Composites as a
repair material. Cement and Concrete Composites, 32(6):411–420, 2010. http:
//dx.doi.org/10.1016/j.cemconcomp.2010.03.005.

[119] H. Krenchel and S. Shah. Applications of polypropylene fibers in Scandinavia.
Concrete International, pages 32–34, 1985.

[120] H. G. Kwak and F. C. Filippou. Finite element analaysis of reinforced concrete
structures under monotonic loads. Technical Report November, Department of
Civil Engineering, University of California, Berkeley, California, 1990.

[121] Y. Kyosev. Braiding Technology for Textiles, Principles, Design and Processes.
Woodhead Publishing Limited, 2015.

[122] K. H. Kyung and C. Meyer. Aramid fiber mesh-reinforced thin sheet response
to impact loads. In H. Reinhardt and A. Naaman, editors, High Performance
Fiber Reinforced Cement Composites - HPFRCC 5, pages 447–453, Cachan,
France, 2007. RILEM Proceedings.

[123] B. J. Lahnert and K. H. Gerstle. Direct measurement of slip between steel and
concrete. Technical report, University of Colorado, Boulder, 1984.

[124] B. K. Larson, L. T. Drzal, and P. Sorousian. Carbon fibre-cement adhesion in
carbon fibre reinforced cement composites. Construction and Building Materi-
als, 5(3):83–92, 1991. http://dx.doi.org/10.1016/0950-0618(91)90006-7.

[125] A. Lau and M. Anson. Effect of high temperatures on high performance steel
fibre reinforced concrete. Cement and Concrete Research, 36:1698–1707, 2006.
http://dx.doi.org/10.1016/j.cemconres.2006.03.024.

[126] C. P. Laurent, D. Durville, D. Mainard, J. F. Ganghoffer, and R. Rahouadj. A
multilayer braided scaffold for Anterior Cruciate Ligament: mechanical model-
ing at the fiber scale. Journal of the mechanical behavior of biomedical materials,
12:184–96, Aug. 2012. http://dx.doi.org/10.1016/j.jmbbm.2012.03.005.

[127] S. Lettow and R. Eligehausen. The simulation of bond between concrete and
reinforcement in nonlinear three-dimensional finite element analysis. Civil En-
gineering, pages 1–8, 2004.

[128] H. Lin, L. P. Brown, and A. C. Long. Modelling and simulating textile structures
using texgen. In Advances in Textile Engineering, volume 331 of Advanced

153

http://dx.doi.org/10.1016/S0958-9465(02)00016-1
http://dx.doi.org/10.14359/6936
http://dx.doi.org/10.1016/j.cemconcomp.2010.03.005
http://dx.doi.org/10.1016/j.cemconcomp.2010.03.005
http://dx.doi.org/10.1016/0950-0618(91)90006-7
http://dx.doi.org/10.1016/j.cemconres.2006.03.024
http://dx.doi.org/10.1016/j.jmbbm.2012.03.005


Materials Research, pages 44–47. Trans Tech Publications, 10 2011. http://dx.
doi.org/10.4028/www.scientific.net/AMR.331.44.

[129] H. Lippmann and J. Lemaitre. A Course on Damage Mechanics. Springer
Berlin Heidelberg, 1996.

[130] A. Losberg and P. A. Olsson. Bond failure of deformed reinforcing bars based
on the longitudinal splitting effect of the bars. ACI Journal Proceedings, 76(1),
1979. http://dx.doi.org/10.14359/6934.

[131] L. N. Lowes. A Concrete-Steel Bond Model For Use in finite Element
Modeling of Reinforced Concrete Structures. Special Publication, 205, 2002.
https://www.concrete.org/publications/internationalconcreteabstractsportal.
aspx?m=details&ID=11643.

[132] L. N. Lowes, J. P. Moehle, and S. Govindjee. Concrete-Steel Bond Model for Use
in Finite Element Modeling of Reinforced Concrete Structures. ACI Journal,
101(S50):501–511, 2004. http://dx.doi.org/10.14359/13336.

[133] C. Ltd. Fibre cement - rooted in history, 2008. [http://www.cembrit.co.uk/
Fibre_cement-21715.aspx].

[134] L. A. Lutz and P. Gergely. Mechanics of bond and slip of deformed bars in
concrete. ACI Journal Proceedings, 64(11):711–721, 1967. http://dx.doi.org/
10.14359/7600.

[135] Z. I. Mahmoud. Bond characteristics of fibre reinforced polymers prestressing
reinforcement. PhD thesis, Alexandria University, 1997.

[136] R. M. Mains. Measurement of the distribution of tensile and bond stresses along
reinforcing bars. American Concrete Institute, 48(11):225–252, 1951. http:
//dx.doi.org/10.14359/11882.

[137] L. J. Malvar. Bond of reinforcement under controlled confinement. Materials
Journal, 89(6):593–601, 1992. http://dx.doi.org/10.14359/4039.

[138] M. A. Mansur and T. Y. Lim. Torsional behaviour of reinforced fibre concrete
beams, 1985. http://dx.doi.org/10.1016/0262-5075(85)90047-8.

[139] H. A. McKenna, J. W. S. Hearle, and N. O’Hear. Handbook of Fibre Rope
Technology. Woodhead publishing in textiles. CRC Press, 2004.

[140] J. Melenk and I. BabuÅąka. The partition of unity finite element method:
Basic theory and applications. Computer Methods in Applied Mechanics and
Engineering, 139(1):289 – 314, 1996.

[141] C. A. Menzel. Some factors influencing results of pull-out bond tests. ACI
Journal Proceedings, 35(6), 1939. http://dx.doi.org/10.14359/8507.

[142] C. Meyer. Dynamic finite element analysis of reinforced concrete structures.
IABSE reports of the working commissions, 33:65–84, 1981. http://dx.doi.org/
10.5169/seals-26264.

154

http://dx.doi.org/10.4028/www.scientific.net/AMR.331.44
http://dx.doi.org/10.4028/www.scientific.net/AMR.331.44
http://dx.doi.org/10.14359/6934
https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=11643
https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=11643
http://dx.doi.org/10.14359/13336
http://www.cembrit.co.uk/Fibre_cement-21715.aspx
http://www.cembrit.co.uk/Fibre_cement-21715.aspx
http://dx.doi.org/10.14359/7600
http://dx.doi.org/10.14359/7600
http://dx.doi.org/10.14359/11882
http://dx.doi.org/10.14359/11882
http://dx.doi.org/10.14359/4039
http://dx.doi.org/10.1016/0262-5075(85)90047-8
http://dx.doi.org/10.14359/8507
http://dx.doi.org/10.5169/seals-26264
http://dx.doi.org/10.5169/seals-26264


[143] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for
crack growth without remeshing. Int. J. Numer. Meth. Engng, 46(1):131–
150, 1999. http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::
AID-NME726>3.0.CO;2-J.

[144] G. E. Monfore. A review of fiber reinforced Portland cement paste, mortar, and
concrete. Journal of Research Development Labs, Portland Cement Association,
10(3):36–42, 1968.

[145] T. Mori, K. Saito, and T. Mura. An inclusion model for crack arrest in a
composite reinforced by sliding fibers. Mechanics of Materials, 7:49–58, 1988.
http://dx.doi.org/10.1016/0167-6636(88)90005-1.

[146] T. D. Mylrea. Bond and Anchorage. American Concrete Institute, 44(3):521–
552, 1948. http://dx.doi.org/10.14359/12190.

[147] A. Naaman, S. Shah, and J. Throne. Some developments in polypropylene fibers
for concrete. American Concrete Institute, SP-81:375–396, 1982.

[148] A. E. Naaman and H. Hammoud. Fatigue characteristics of high performance
fiber-reinforced concrete. Cement and Concrete Composites, 20:353–363, 1998.
http://dx.doi.org/10.1016/S0958-9465(98)00004-3.

[149] D. Ngo and A. C. Scordelis. Finite Element Analysis of Reinforced Concrete
Beams. ACI Journal Proceedings, 64(3):152–163, 1967. http://dx.doi.org/10.
14359/7551.

[150] A. H. Nilson. Nonlinear analysis of reinforced concrete by the finite element
method. ACI Journal, 65(9):757–766, 1968. http://dx.doi.org/10.14359/7510.

[151] A. H. Nilson. Internal measurements of bond slip. ACI Journal, 69:439–441,
1972. http://dx.doi.org/10.14359/7170.

[152] T. Ohta, R. Djamaluddin, S. Hino, K. Yamaguchi, and K. Harada. Flexural
properties of concrete beams reinforced with UCAS. Journal of Structural En-
gineering, 48A:1229–1238, 2002.

[153] T. Ohta, R. Djamaluddin, S. T. Seo, T. Sajima, and K. Harada. Evaluation of
tensile strength of Unresin Continuous Carbon Fiber cables as tensile reinforce-
ment for concrete structures. Memoirs of the Faculty of Engineering, Kyushu
University, 62(4):179–190, 2002.

[154] T. Okamoto, S. Matsubara, M. Tanigaki, and K. Hasuo. Long-term loading
test on PPC beams using braided frp rods. In Fibre Reinforced Cement and
Concrete, Proceedings of the Fourth RILEM International Symposium, pages
1000–1014, Sheffield, 1992. E & FN Spon.

[155] J. OLIVER. Modelling strong discontinuities in solid mechanics via
strain softening constitutive equations. part 1: Fundementals. Interna-
tional Journal for Numerical Methods in Engineering, 39(21):3575–3600,
1996. http://dx.doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-
NME65>3.0.CO;2-E.

155

http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1016/0167-6636(88)90005-1
http://dx.doi.org/10.14359/12190
http://dx.doi.org/10.1016/S0958-9465(98)00004-3
http://dx.doi.org/10.14359/7551
http://dx.doi.org/10.14359/7551
http://dx.doi.org/10.14359/7510
http://dx.doi.org/10.14359/7170
http://dx.doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E


[156] L. Ombres and S. Verre. Structural behaviour of fabric reinforced cementi-
tious matrix (FRCM) strengthened concrete columns under eccentric loading.
Composites Part B: Engineering, 75:235–249, 2015. http://dx.doi.org/10.1016/
j.compositesb.2015.01.042.

[157] J. Ožbolt, S. Lettow, and I. Kožar. Discrete bond element for 3d finite element
analysis of reinforced concrete structures. In Proceedings of the 3rd Interna-
tional Symposium: Bond in Concrete-from research to standards. Budapest:
University of Technology and Economics, page 4, 2002.

[158] S. H. Park, D. J. Kim, G. S. Ryu, and K. T. Koh. Tensile behavior of ultra high
performance hybrid fiber reinforced concrete. Cement and Concrete Composites,
34(2):172–184, 2012. http://dx.doi.org/10.1016/j.cemconcomp.2011.09.009.

[159] A. Peled. Textiles as reinforcements for cement composites under Iimpact load-
ing. In H. Reinhardt and A. Naaman, editors, High Performance Fiber Rein-
forced Cement Composites - HPFRCC 5, pages 455–462, Cachan, France, 2007.
RILEM Proceedings.

[160] A. Poursaee and C. M. Hansson. The influence of longitudinal cracks on the
corrosion protection afforded reinforcing steel in high performance concrete. Ce-
ment and Concrete Research, 38:1098–1105, 2008. http://dx.doi.org/10.1016/
j.cemconres.2008.03.018.

[161] G. Promis, A. Gabor, G. Maddaluno, and P. Hamelin. Behaviour of beams
made in textile reinforced mineral matrix composites, an experimental study.
Composite Structures, 92(10):2565–2572, 2010. http://dx.doi.org/10.1016/j.
compstruct.2010.02.003.

[162] J. A. Purkiss. Steel fibre reinforced concrete at elevated temperatures. Interna-
tional Journal of Cement Composites and Lightweight Concrete, 6(3):179–184,
1984. http://dx.doi.org/10.1016/0262-5075(84)90006-X.

[163] Y. R. Rashid. Ultimate strength analysis of prestressed concrete pressure ves-
sels. Nuclear Engineering and Design, 7:334–344, 1968. http://dx.doi.org/10.
1016/0029-5493(68)90066-6.

[164] G. Rehm. Über die Grundlagen des Verbundes zwischen Stahl und Beton.
Deutscher Ausschuss für Stahlbeton. Vertrieb durch Verlag von W. Ernst, 1961.

[165] M. Richter and B. W. Zastrau. Behaviour of fiber reinforced concrete columns
in fire. Materials Science and Engineering A, 92(5):1263–1268, 2010. http:
//dx.doi.org/10.1016/j.msea.2006.02.007.

[166] T. C. RILEM. RILEM Recommendations for the Testing and Use of Construc-
tions Materials. 1994. http://dx.doi.org/10.1617/2351580117.080.

[167] P. Robinson and D. Q. Song. A Modified DCB Specimen for Mode I Testing of
Multidirectional Laminates. Journal of Composite Materials, 26(11):1554–1577,
Jan. 1992. http://dx.doi.org/10.1177/002199839202601101.

156

http://dx.doi.org/10.1016/j.compositesb.2015.01.042
http://dx.doi.org/10.1016/j.compositesb.2015.01.042
http://dx.doi.org/10.1016/j.cemconcomp.2011.09.009
http://dx.doi.org/10.1016/j.cemconres.2008.03.018
http://dx.doi.org/10.1016/j.cemconres.2008.03.018
http://dx.doi.org/10.1016/j.compstruct.2010.02.003
http://dx.doi.org/10.1016/j.compstruct.2010.02.003
http://dx.doi.org/10.1016/0262-5075(84)90006-X
http://dx.doi.org/10.1016/0029-5493(68)90066-6
http://dx.doi.org/10.1016/0029-5493(68)90066-6
http://dx.doi.org/10.1016/j.msea.2006.02.007
http://dx.doi.org/10.1016/j.msea.2006.02.007
http://dx.doi.org/10.1617/2351580117.080
http://dx.doi.org/10.1177/002199839202601101


[168] J. P. C. Rodrigues, L. Laím, and A. M. Correia. Behaviour of fiber reinforced
concrete columns in fire. Composite Structures, 92(5):1263–1268, 2010. http:
//dx.doi.org/10.1016/j.compstruct.2009.10.029.

[169] J. P. Romualdi and G. B. Batson. Mechanics of crack arrest in concrete. Journal
of Engineering Mechanics Division, ASCE, 89(EM3):147–168, 1963.

[170] J. G. Rots. Analysis of crack propagation and fracture of concrete with DIANA,
Report No. BI-83-26. Technical report, Insitute TNO for Building Materials and
Building Structures, Rijswijk, The Netherlands, 1983.

[171] J. G. Rots. Prediction of dominant cracks using the smeared crack concept,
Report No. BI-83-39. Technical report, Insitute TNO for Building Materials
and Building Structures, Rijswijk, The Netherlands, 1983.

[172] J. G. Rots. Variabele reductiefactor voor de schuifweerstand van gescheurd
beton, Report No. BI-84-33. Technical report, Insitute TNO for Building Ma-
terials and Building Structures, Rijswijk, The Netherlands, 1984.

[173] J. G. Rots. Computational modeling of concrete frature. PhD thesis, Delft
University of Technology, 1988.

[174] J. G. Rots and R. de Borst. Analysis of mixed-mode fracture in concrete.
Journal of engineering mechanics, 1987. http://dx.doi.org/10.1061/(ASCE)
0733-9399(1987)113:11(1739).

[175] J. G. Rots, P. Nauta, G. M. A. Kusters, and J. Blaauwendraad. Smeared crack
approach and fracture localization in concrete. Heron Journal, 30(1), 1985.

[176] Sandia Corporation. Cubit 13.0 User Documentation. Sandia National Labor-
atories, New Mexico, United States, 2011.

[177] B. V. Sankar and R. V. Marrey. A unit-cell model of textile composite beams for
predicting stiffness properties. Composites Science and Technology, 49(1):61–69,
jan 1993. http://dx.doi.org/10.1016/0266-3538(93)90022-9.

[178] J. C. J. Schellekens and R. de Borst. On the numerical integration of inter-
face elements. International Journal for Numerical Methods in Engineering,
36(1):43–66, Jan. 1993. http://dx.doi.org/10.1002/nme.1620360104.

[179] F. Schladitz, M. Frenzel, D. Ehlig, and M. Curbach. Bending load capacity
of reinforced concrete slabs strengthened with textile reinforced concrete. En-
gineering Structures, 40:317–326, 2012. http://dx.doi.org/10.1016/j.engstruct.
2012.02.029.

[180] W. C. Schnobrich. Behavior of reinforced concrete structures predicted by
the finite element method. Computers & Structures, 7:365–376, 1977. http:
//dx.doi.org/10.1016/0045-7949(77)90074-8.

[181] A. C. Scordelis. Computer models for nonlinear analysis of reinforced and
prestressed concrete structures. PCI Journal, 29(6):116–135, 1984. http://dx.
doi.org/10.15554/pcij.11011984.116.135.

157

http://dx.doi.org/10.1016/j.compstruct.2009.10.029
http://dx.doi.org/10.1016/j.compstruct.2009.10.029
http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:11(1739)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:11(1739)
http://dx.doi.org/10.1016/0266-3538(93)90022-9
http://dx.doi.org/10.1002/nme.1620360104
http://dx.doi.org/10.1016/j.engstruct.2012.02.029
http://dx.doi.org/10.1016/j.engstruct.2012.02.029
http://dx.doi.org/10.1016/0045-7949(77)90074-8
http://dx.doi.org/10.1016/0045-7949(77)90074-8
http://dx.doi.org/10.15554/pcij.11011984.116.135
http://dx.doi.org/10.15554/pcij.11011984.116.135


[182] A. C. Scordelis, D. Ngo, and H. A. Franklin. Finite element study of reinforced
concrete beams with diagonal tension cracks. International Concrete Abstracts
Portal, 42:79–102, 1974.

[183] J. Segurado and J. LLorca. A new three-dimensional interface finite element to
simulate fracture in composites. International Journal of Solids and Structures,
41(11-12):2977–2993, June 2004. http://dx.doi.org/10.1016/j.ijsolstr.2004.01.
007.

[184] S. T. Seo and R. Djamaluddin. Experimental studies on bond capacity of grid
system for UCCF cables. KSCE Journal of Civil Engineering, 10(1):15–19, Jan.
2006. http://dx.doi.org/10.1007/BF02829300.

[185] R. Serpieri and G. Alfano. Bond-slip analysis via a thermodynamically con-
sistent interface model combining interlocking, damage and friction. Interna-
tional Journal for Numerical Methods in Engineering, 85(2):164–186, Jan. 2011.
http://dx.doi.org/10.1002/nme.2961.

[186] R. Serpieri, L. Varricchio, E. Sacco, and G. Alfano. Bond-slip analysis via
a cohesive-zone model simulating damage, friction and interlocking. Frattura
ed Integrita Strutturale, 8(29):284–292, 2014. http://dx.doi.org/10.3221/IGF-
ESIS.29.24.

[187] Z. Q. Shi and D. D. L. Chung. Improving the abrasion resistance of mortar by
adding latex and carbon fibers. Cement and Concrete Research, 27(8):1149–
1153, 1997. http://dx.doi.org/10.1016/s0008-8846(97)00097-5.

[188] A. Si Larbi, A. Agbossou, and P. Hamelin. Experimental and numerical in-
vestigations about textile-reinforced concrete and hybrid solutions for repairing
and/or strengthening reinforced concrete beams. Composite Structures, 99:152–
162, 2013. http://dx.doi.org/10.1016/j.compstruct.2012.12.005.

[189] A. Si Larbi, R. Contamine, E. Ferrier, and P. Hamelin. Shear strengthen-
ing of RC beams with textile reinforced concrete (TRC) plate. Construction
and Building Materials, 24(10):1928–1936, 2010. http://dx.doi.org/10.1016/j.
conbuildmat.2010.04.008.

[190] C. Sibagropromstroy. Proektnaja deklaracija na stroitelstvo �ilogo
doma 4 ot 24.05.2012 g. ONLINE, May 2012. [http://www.saps.ru/upload/
files/pd_dom4.doc].

[191] K. K. Sideris, P. Manita, and E. Chaniotakis. Performance of thermally
damaged fibre reinforced concretes. Construction and Building Materials,
23(3):1232–1239, 2009. http://dx.doi.org/10.1016/j.conbuildmat.2008.08.009.

[192] P. Solin, K. Segeth, and I. Dolezel. Higher-order finite element methods. Studies
in Advanced Mathematics. Taylor & Francis, 2003.

[193] S. Somayaji and S. P. Shah. Bond stress versus slip relationship and cracking
response of tension members. ACI Journal Proceedings, 78(20):217–225, May
1981. http://dx.doi.org/10.14359/6920.

158

http://dx.doi.org/10.1016/j.ijsolstr.2004.01.007
http://dx.doi.org/10.1016/j.ijsolstr.2004.01.007
http://dx.doi.org/10.1007/BF02829300
http://dx.doi.org/10.1002/nme.2961
http://dx.doi.org/10.3221/IGF-ESIS.29.24
http://dx.doi.org/10.3221/IGF-ESIS.29.24
http://dx.doi.org/10.1016/s0008-8846(97)00097-5
http://dx.doi.org/10.1016/j.compstruct.2012.12.005
http://dx.doi.org/10.1016/j.conbuildmat.2010.04.008
http://dx.doi.org/10.1016/j.conbuildmat.2010.04.008
http://www.saps.ru/upload/files/pd_dom4.doc
http://www.saps.ru/upload/files/pd_dom4.doc
http://dx.doi.org/10.1016/j.conbuildmat.2008.08.009
http://dx.doi.org/10.14359/6920


[194] S. Soretz and H. Holzenbein. Influence of rib dimensions of reinforcing bars on
bond and bendability. Journal Proceedings, 76(1), Jan. 1979. http://dx.doi.
org/10.14359/6939.

[195] R. M. E. Sousa Fangueiro, C. Gonilho-Pereira, S. Jalali, and M. de Araújo.
The mechanical properties of braided reinforced composites for application in
concrete structures. In 37th International Symposium on novelties in Textiles,
number June, Ljubljana, Slovenia, 2006.

[196] M. Stolarska, D. l. Chopp, N. Moës, and T. Belytschko. Modelling crack growth
by level sets in the extended finite element method. International Journal for
Numerical Methods in Engineering, 51(8):943–960, 2001. http://dx.doi.org/10.
1002/nme.201.

[197] F. Stoll, J. Saliba, and L. Casper. Experimental study of CFRP-prestressed
high-strength concrete bridge beams. Composite Structures, 49(2):191–200,
2000. http://dx.doi.org/10.1016/S0263-8223(99)00134-8.

[198] M. Suidan and W. C. Schnobrich. Finite element analysis of reinforced concrete.
Journal of Structural Division, ASCE, 99(10):2109–2122, 1973.

[199] P. Sukontasukkul, W. Pomchiengpin, and S. Songpiriyakij. Post-crack (or post-
peak) flexural response and toughness of fiber reinforced concrete after exposure
to high temperature. Construction and Building Materials, 24(10):1967–1974,
2010. http://dx.doi.org/10.1016/j.conbuildmat.2010.04.003.

[200] D. V. Swenson and A. R. Ingraffea. Modeling mixed-mode dynamic crack
propagation nsing finite elements: Theory and applications. Computa-
tional Mechanics, 3(6):381–397, sep 1988. http://link.springer.com/10.1007/
BF00301139.

[201] Z. S. Tabatabaei, J. S. Volz, J. Baird, B. P. Gliha, and D. I. Keener. Experi-
mental and numerical analyses of long carbon fiber reinforced concrete panels
exposed to blast loading. International Journal of Impact Engineering, 57:70–
80, 2013. http://dx.doi.org/10.1016/j.ijimpeng.2013.01.006.

[202] H. Tanyildizi. Effect of temperature, carbon fibers, and silica fume on the mech-
anical properties of lightweight concretes. New Carbon Materials, 23(4):339–
344, 2008. http://dx.doi.org/10.1016/S1872-5805(09)60005-6.

[203] T. J. Tautges. Canonical numbering systems for finite-element codes. Interna-
tional Journal for Numerical Methods in Biomedical Engineering, Mar. 2010.
http://dx.doi.org/10.1002/cnm.1237.

[204] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst. MOAB: a
mesh-oriented database. SAND2004-1592, Sandia National Laboratories, Apr.
2004. Report.
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