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AB5STRACT

The work contained in this thesis mainly relates to aspects of
the dynamic behaviour of articulated column production platforms.
However, the work can be applied in a more general sense to certain
other compliant structures which share some of the dynamic

characteristics of articulated columns.

After an introductory chapter on the characteristics and uses
of articulated columns, some timz is devoted to the examination of
fundamental aspects which will have an important bearing on the
feasibility of the articulated column concept. Such features as the
amount of buoyancy required in terms of payload and static heel
considerations, space utilisation within the structurs, installation
procedure and human awareness to motion responses are, discussed. Data
are provided which are intended to give general guidance to designers

and also =2stablish the inter-dependence of certain parameters.

Chapters 4 and 5, are concerned with the rigid body motion
response in the time domain. Computer programs have peen developed to
solve the equations of motion on a time incremental basis, using the
modified Morison equation as the forcing function. Once developed, the
programs have been applied to examine certain of the non-linear
behaviour characteristics of articulated columns in regular waves.
Chapter 5 is devoted to examining those aspects of dynamic instability
which are readily examined in a time series analysis. Instability
mechanisms examined are those due to regular waves and wave groups.
Experimental results have been obtained and comparisons with theory

are made.



The slenderness of the construction of articulated columns
gives rise to elastic vibration characteristics which may result in
undesirable resoﬁant vibrations. Chapter 6 1is concerned with an
examination of this aspect, in terms of free vibration analysis, and
of those parameters which have the qgreatest influence on vibration.
The finite element method has been used for the free vibration

analysis.

In Chapter 7, the development of programs to examine the full
vibration analysis of articulated columns, in the time domain, is
described. The programs have been used to examine, in the time domain,
certain of those parameters which were examined in the free vibration
analysis presented in Chapter 6. Some experiinental results for a very
flexible structure are presented and the programs have been adapted to
simulate the model construction and test conditions. These results
give credibility to the use of a full vibration analysis in the time
domain and comparisons of observed non-linear behaviour and predicted

non-linear behaviour are made.

The non-linear behaviour of articulated columns 1is shown to
play a major part 1in concept feasibility as are elastic vibration
characteristics. However, the concept comprising a lower column of
relatively straigntforward structural section is shown to be feasible

in water depths u» to 300 metres. Thereafter, greater flexural

rigidity is required.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1. INTRODUCTION

Forecasting the demand for, and availability of, offshore
hydrocarbons is fraugnt with uncertainty. However, certain
references (1) indicate that approximately two thirds of estimated
future potential crude oil discoveries will be made offshore. One
third will be within the continental shelf regions in water depths not
exceeding 200 metres, while the other third will be in deep water and

polar regions.

Other references (2, 3) indicate that as water depths increas=
there will be considerably more attention given to production
platforms of a more cost effective genre than conventional fixed
platforms. In addition to costs, technical 1limits in respect of
fundamental vibration modes are reached with fixed platforms as water
depths increase. Figure 1.1 1indicates that deep water hydrocarbon
extraction will be possible by 1985 to 1990. The chronology is suspect
and at present the fixed onlatform technology available will only allow
extraction 1in maximum water depth of approximately 300 metres. The
relatively long lead times associated with the development of new

concepts make it necessary that research be undertaken well in advance

of anticipated reguirements.

Floating production systems pased either on semi-submersibles

or large tankers are attractive alternatives to fixed platforms. The
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former are generally moored in a 'fixed' position and orientation and
only move within the restraints imposed by their moorings. The most
serious of these from the riser design point of view 1is the
vertical (heave) movement although this is being overcome by flexible
risers. In deeper water the problem of mooring becomes very severe due
to the mass of cable or chain involved and unless some new material
such as KEVLAR can be brought into use, will impose a definite limit
on this type of vessel. Its other great weakness is the lack of
storage capacity. This is overcome by using a tanker pbut in this case
it is impossible to moor the vessel in a fixed position and it must be
allowed to rotate to be substantially head on to the sea and wind
forces. This 1is achieved by mooring to a buoy or articulated colunn
which must incorporate the risers plus a swivel to allow the vessel to
rotate while accepting a continuous flow of 0il and gas. These tanker
mooring towers are one of the widest uses of articulated columns at
present. The large storage in the tanker means that the export vessel
need only call at intervals of a few days and there is little downtime
on the export side. Floating production systems in the form of a
tanker permanently moored and containing all of the processing
equipment is another alternative. One such system is the CADLAO FPS in
the Phillipines (4) which 1is operated by the Amoco o0il company. The
system has been operational since 1981 and has a minimum record of

downtimme.

Fixed jacket structures are limited by technical
considerations in respect of fundamental sway periods, to maximum
water depths of the order of 300 metres. The transition from one side
of the spectrum to the other, as shown in fig. 1.2, 1is effected by
allowing compliancy of the structure with waves. Compliant structures

allow some lateral sway motion with waves while keeping vertical
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movements to a very low level. This aQoids overloading drill stems and
risers and achieves the transition from one side of the spectrum to
the other in respect of fundamental vibration modes. However, while
the fundamental natural frequencies may decrease, other vibration
considerations 1in respect of higher modes become increasingly

important as is shown in subsequent chapters.

A deepwater compliant riser system is proposed by the Mobil
company (5). This system basically comprises a central structural core
to which are attached the peripheral rigid risers. Buoyancy support
for the central core is provided by a chamber which is at a depth of
some 200 feet beneath the still water level. Flexible pipes complete
the transition from the subsurface buoyancy chamber to the moored
tanker, which contains the production equipment. The depth of
submergence of the buoyancy chamber greatly reduces exciting forces
and so motion responses on the lower structure will be very small. The
array of flexible pipes, on the other hand, are in the most active

wave region and will have to sustain consicderable loads.

Guyed towers (GT), Tension Leg Platforms (TLP) and Articulated
Columns (AC), are those structures generally associated under the
broader term 'compliant systems'. A review of the relative merits of

each is given in Reference 6.

2. EXISTING APPLICATIONS

Articulated columns have been successfully used in the North
Sea and elsewhere, for a number of years, mainly as loading terminals

and flare columns, and their suitability has been established.



The articulated column ELFOCEAN (5), was installed in 100
metres of water in the bay of Biscay in 1968. Buoyancy tanks are
provided near to fhe surface of the 7 metre diameter steel column and
ballast is provided near to the base of the structure. ELFOCEAN was
operational for 3 vyears during which time extensive tests confirmed
the suitability of the concept in application as a mooring column for
0il tankers and as flare stacks. The studies concluded, in part, that
loading of tankers in the bay of Biscay could continue for 85-90% of
the time compared to 70-75% of the time in the case of conventional

mooring terminals.

Articulated columns have also been successfully wused 1in the
Beryl; Statfjord and Maureen fields as loading columns. The Maureen
column is placed in approximately 100 metres of water (8). The main
column is constructed of pre-stressed concrete and is 9 metres
diameter with a wall thickness of 300 mm. The Statfjord C articulated
loading column (9) recently commissioned is 196m long overall and is
probably the largest articulated column commissioned so far. This is a
significant step in terms of water depths and is an indication of the
increased awareness among operators as to the potential of the
articulated column concept. Some examples of the structures mentioned

are shown in fig. 1.3.

However, not all of the existing applications have enjoyed
unmitigated success and the double articulated column servicing the
Thistle field suffered a failure at the uppermost articulated joint in
1979 (10). The upper column was found to be attached to the lower
column by the two flexible risers across the joint. Attempts to sever

the connection using explosives caused damage to the lower column. The



structure was re-commissioned but broke away from its mooring in

January 1983 and has since been taken out of service.

The articulated column concept can be applied also to a
comnbined mooring and riser device in which the column contains all the
risers. The heavy processing equipment is then carried by a support
vessel such as a tanker, barge or semi-submersible. The tanker 1is
connected to the column by means of a rigid voke which attaches to the
tanker and the column by way of a horizontal hinge and universal
joint, respectively. This concept is illustrated in fig. 1.3 and is
currently used 1in the development of the Tazerka field in the
Mediterranean (11). This system incorporates a complex manifold
chamber and swivels which are located on the yoke and are designed to
allow for tanker rotation roll, pitch and heave. Such a complex
arrangement may be responsible for a substantial portion of the

overall structural costs.

3. POTENTIAL APPLICATIONS

In addition to the uses already mentioned, it 1is envisaged
that the concept could be applied as a production unit servicing a
number of sub-sea wells (12) each well being connected to separate
inlet manifolds on the column deck by individual high-pressure risers.
0il storage capacity of approximately 12,600 barrels could be provided
at the base of the column so that production would not be interrupted
when switching from one tanker to another. This amount would allow
several hours production in the absence of a vessel moored to the
structure. However, greater amounts of storage may be provided at the

base of the column as necessary.



The concept mighﬁ also be used as a relay column installed
remote to sub-sea wells. In this case, the function would be remote
production control in addition to well-killing capabilities and pump

down operations.

The Howard-Doris deep water gravity tower concept (12) is
proposed as a production platform for a site in the Mediterranean in
490m of water. The buoyancy chamber is to be constructed of concrete
and the lower column member is to be constructed as a lattice steel
structure. This structure has a total topside payload of 15,000 tonnes
and 1s capable of producing 50,000 BPD of oil. Risers and conductors
would be 'clumped' and located within the lower column lattice

framework.

An all concrete articulated column Arcolprod is proposed in
Reference 13 and this concept includes for extension and retraction of
the lower column telescopically. The articulated joint connection for
Arcolprod comprises an array of synthetic tendons thus eliminating the
need for a mechanical articulation device. Access through the joint
into the base of the structure is provided by means of non structural

flexible access tubes.

Guyed towers can Dbe considered as a special type of
articulated column with the buoyancy providing support to a fraction
of the total mass of the structure. The remaining stiffness is
provided by attached catenary guy lines anchored to the sea bed. The
Exxon guyed tower (14) is situated in 300 metres of water and supports
a payload of 240,000 KN. The total weight of the structure is
470,000 XN and approximately 120,000 KN of buoyancy is provided. The

remaining restoring stiffness is provided by twenty guy lines equally



spaced around the structure. The guy lines therefore constitute the
major contribution to the restoring stiffness in this case. This means
that the tower itself has to be designed to support very substantial
compression loads. The provision of more buoyancy will reduce the
compression loads on the tower and make an increased contribution to

the restoring stiffness.

It is considered that buoyancy can be provided in such amounts
as to provide support for the complete structure or a substantial
proportion of the total weight of the structure, thus reducing the

design and construction problems of the lower column.

4. DESIGN GUIDANCE

In order to promote the adoption of new concepts in a manner
in keeping with the safety provisions necessarily imposed to ensure
minimal risk to both personnel and the environment, it 1is essential
that design guidance of an adequate and accredited quality be
available to designers. This means that the formulation of proper

design codes be undertaken by the relevant certification authorities.

Novel concepts lack the benefits of established, tried and
tested technology and so the philosophy fundamental to the evolution
of the design cocde must be sufficiently pragmatic to ensure that
design considerations are rigorous. The DnV approach to the
certification of novel concepts (15) 1is to provide guidance rules
which ensure that proper procedures are adopted. DnV draw particular
attention to the following aspects relating to the certification of

articulated columns:-



a. Dynamic Behaviour: the need to have a thorough
understanding of the compliant motions the structure will
undergo both at wave and resonant response frequencies.
Time series analysis including rigid body and elastic modes

should be completed.

b. Universal Joints: movements of joints and attendant forces
at these must be understood in order that adequate
provision be made for the transfer of flexible riser pipes

either through or adjacent to the joints.

c. Inspection and Maintenance: the need to provide for
comprehensive 1inspection and maintenance procedures 1in

respect of all critical items of structural importance.

In respect of the latter item, there are indications that
existing trends point to maintenance and repair costs for fixed
platforms of the same order as the capital cost of the
structure (15,16). It 1is estimated that approximately 100 diver
inspection hours 1is required to inspect one node on a typical jacket

structure (1lo6).

Quite apart from the technical design problems associated with
jacket structures in water depths greater than 300 metres, diver
inspection/maintenance costs could conceivably become extremely high
by virtue of the number and complexity of joints. Moreover, physical
limitations mean that diver access is not possible beyond about 300
metres water depth. This means that inspection must be remote and
structural details for components at these depths must either be kept

simple or allow retrieval to within diver depths for maintenance

10.



purposes. From these points of view constraints may also be imposed on
articulated columns, although it is envisaged that the construction
will be simpler in detail thereby reducing maintenance requirements.
Therefore, considerably more attention has to be given to inspection
and maintenance at the concept evaluation stage, research and
development, to ensure good directional control of efforts and,

finally, design.

Research has an important contribution to make to the
development of codes and to ensuring that the strengths and weaknesses
of numerical techniques as applied to the dynamic analysis of
compliant or fixed structures 1is rigorously and realistically

assessed.

From this point of view, experimental work should continue
hand in hand with the analytical work either as confirmation of
analytical reliability and/or to highlight areas which require more
rigorous analytical research. There are, of course, scaling problems
with experimental work and a dearth of available and adeguate deep
water facilities. Nevertheless, it is an essential aspect of research

into compliant structures.

5. PREVIOUS WORK

Articulated columns, as a consequence of the small restoring
stiffness attributed to the displacement volume, have very small
pitching frequencies. The slender nature of the construction means
also that they will possess very little damping when excited at low
frequencies. The steady drift forces which can be induced (17,18)

require understanding and accurate assessment.

11.



‘Drake et al (19) have studied the steady drift of articulated
columns subject to regular waves by the formulation of far field (17)
and near field (18) surface disturbance forces set up by the presence
of the structure. fhey found that the analytical expressions for both
approaches were 1identical and that a numerical boundary procedure
based on both methods yielded results within 1% of the exact solution.
The mean drift force was also found to increase with increasing water

depth and inertias for a given wave freguency.

Kirk and Jain (20,21) have investigated the response of both
single and double articulated columns in the time domain. They were
primarily concerned with the response such structures can undergo when
subject to exciting forces which are multi-directional. They predicted
complex swirling trajectories when such forces prevail. An
understanding of the swirling motion of loading columns 1is essential
from the tanker hook wup operational aspects and the predictions
augment the value of the time domain approach to the solution of the

equations of motion.

Xirk (22) has presented an approximate frequency domain
analytic solution to the problem of a single anchor leg storage
system (SALS) with attached tanker, similar in concept to the Tazerka
structure. The complete tanker/column and yoke analysis predicts that
the riser would have to sustain compression loads during part of the
loading cycle for a 20 metre wave, thus possibly sustaining dynamic

snatch loads.

Chakrabarti (23) has completed work on the transverse
oscillations which can be generated in waves as a consequence of

vortex shedding on the body of the c¢ylinder and found that the

12.



transverse motions couple with the inline motions to form swirling

trajectories.

The dynamic instabilities which compliant structures may
experience has been examined in the frequency domain (24,25) and found
to exist in the form of a transient oscillation when the structures

are excited at twice their natural frequency in pitch.

The elastic vibrations of articulated columns were described
by Bishop (26) using Timoshenko beam theory and a linearised quadratic
drag term as part of the forcing function. He describes the vibration
response as being analoyous to that of éhips in waves despite the
differences in mode shapes obtained. McNamara et al (27) have
presented a finite element analysis procedure to predict the time
domain response of an articulated loading tower and found good

agreement with predicted rigid bodv motion responses.

Eatock Taylor et al (28) have investigated the elastic
vibration of articulated columns by extracting the first three
response modes in the absence of tension forces and fluid inertial
contriputions. They include diffracted and radiated potentials in the
formulation of the problem and noted the magnitude of the first

resonant flexural response mode.

6. AIMS OF THIS WORK

Although there is a certain amount of general literature
available on proposed uses for articulated columns, there appears to
be very little available in the form of design guidance in respect of

some of those aspects which are fundamental to any conceptual design

13.



appraisal. Chapter 2 addresses certain aspects which would probably
determine the feasibility of a project and 1is intended as general

design guidance.

The rigid body motion response of articulated columns has
received a certain amount of attention (20,21,23) and some of this has
been in the time doméin (20,21). However, it appears that certain of
the more salient features of the motion response of such compliant
systems have not been treated in a manner most suitable to accommodate
the non-linearities which give rise to them. Such features include the
transient response harmonic with the natural pitch frequency, steady
drift responses, dynamic instabilities, resonant response excitation
at the natural pitch frequency and other non-linear sources such as
non-linear waves and currents. In vrespect of rigid body motion
responses, Chapters 4 and 5 of this work address certain of the
aforementioned features by advancing the solution of the equations of
motion in the time domain. The importance of certain of the features
is noted and the implications of these in the design of articulated
columns is assessed. The question of dynamic instabilities which may
develop, resonant with the pitch frequency and at twice the pitch
frequency is also examined in the time domain. The role of wviscous
damping in limiting responses is assessed and this is only feasible

with a time domain solution.

Work on the elastic vibration of articulated columns, in the
main, has ©Dbeen confined to a frequency domain analysis and has noted
the importance of the first resonant flexural mode. Chapter 6
addresses the elastic vibration problem in attempting to give a
parametric treatment to those factors which have the greatest effect

upon the frequency of the first flexural vibration mode. This is done

14.



on the basis that the structural components of the articulated column
are comprised of «circular cylindrical steel sections of annular
construction. The importance of accounting for the axial loads in the

determination of vibration frequencies is also addressed.

Further work on the -elastic vibration problem is given in
Chapter 7 using an incremental solution to solve the equations of
motion in the time domain, thus incorporating the full vibration time
history. Such a procedure 1is necessary to fully understand the
interaction of structural vibrations, acting in combination with
significant compliant motions. Adequate structural analysis in
combination with time simulation proceduresAmust be assessed in order
to validate the quality of the results. This approach and its ability
to predict certain non-linear behaviour. is vindicated by certain

experimental results obtained for a model articulated column.
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CONCEPTUAL DESIGN CONSIDERATIONS

1. INTRODUCTION

As discussed in Chapter 1 articulated columns have been
successfully implemented in a number of practical applications. These
are, in the main, restricted to lighter structures in water depths not
exceeding 150 metres. A proposed production platform may have a
payload requirement of the order of 100,000KN and mav well be situated
in water depths in excess of 250 metres. The payload will be a
function of the field characteristics, which will determine the amount
of separation and processing necessary. In this respect, trends are
towards much lighter deck components (29). The analysis presented in
this chapter relates to a heavier structure and exemplifies the
versatility of the articulated column. Lighter payloads will improve

the efficacy of the concept.

The extrapolation of existing designs to deeper water and
heavier structures is not straighforward and it is essential to make a
fundamental appraisal of those factors which will determine the

feasibility of any particular design.

Hence, the aim of this chapter is to examine those factors
which have the greatest 1influence on basic design considerations.
Those factors which are examined include static stability due to wind
and currents, ballasting the structure, deck clearances required,
access to the Dbuoyancy chamber and damage stability. Having made an
examination of these separate aspects, the interdependence of certain

parameters 1is established and their optimisation 1is considered.
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Installation and relocation problems for this type of structure are
examined and possible procedures are outlined. Finally, the human

awareness to motion response is assessed.

The structure used for these initial studies has a deck
payload of 100,COCKN and the length from the seabed to the deck is 285
metres. The water depth 1is 270 metres and the top of the buoyancy
chamber is some 30 metres below the still water 1level (SWL). The

structure is shown in fig. 2.1.

2. STATIC STABILITY

2.1 Wind and Steady Currents

Tension leg platforms, by virtue of their design, will surge
under the action of steady current and wind forces. However, the deck
will remain essentially horizontal in these circumstances and so
steady drift forces will have no real impact on operational
constraints. On the other hand, articulated columns by virtue of their
design, will pitch under the action of steady drifting forces and the
deck, therefore, will not remain horizontal, possibly 1mposing
constraints on activities at cdeck level. It is necessary, therefore,
to make an assessment of the amount of pitch the structure 1is likely
to experience under the action of steady drift sources such as wind

and current.

For any given structural configuration and distribution of
mass it 1is possible to evaluate the amount of buoyancy which will be
required in order to maintain a specified angle of heel under the

actions of a steady current and wind speed.
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TABLE 1
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GENERAL ARRGT. OF ARTICULATED COLUMN STRUCTURE

FIG. 21
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The static stability of the structure, shown in fig. 2.1, is
calculated on the basis of equilibrium of the sums of the moments of
the overturning and restoring forces taken about the pivot point or
articulated joint.'with reference to fig. 2.2 and by taking moments

about the pivot, then:-
Total moments of forces about the pivot = 0. (2.1)

£ Overturning moments = Z Wind forces + £ Current forces
(2.2)
+ I Self-weight forces

L Restoring forces = I Buoyancy forces

where Self-weight forces = W.RKG.sin®

Buoyancy forces = BF.RKB.sinS

2
Wind £ s = 4., .. ALV
in orces 3 palr CDw AP Vw RKW
2
Current forces = %, .C__.A_.V_.RKC
8 3.0 ateiCpePp Ve
= 1.0
and CDC
CDw = 1.5
Ap = projected area
\Y% = wind speed
w
V. = current speed.

RKG, RKB, RKW and RKC refer to the height of the centres of
gravity, buoyancy, wind force and current force above the pivot point,

respectively.

The value of CDC = 1.0 may be somewhat high for a smooth
cylinder in the supercritical Reynolds number range. However, an
allowance must be made for increased surface roughness as a
consequence of marine growth and a value of 1.0 1is not

unreasonable.

20.




Equating moments: -

Y wind forces + J current forces + I self-weight forces

- I buoyancy forces = 0 (2.3)

Figure 2.3 has been prepared in accordance with the form of
equation 2.3. For the structure shown in fig. 2.1, it shows the amount
of Dbuoyancy chamber volume required as a function of the static angle
of heel for given wind and current velocities as shown and 1in this
case the wind speed is zero. There are two curves shown, one for the
case of the lower column being flooded and the other assuming that the
lower column is watertight. The trends for both curves are the same
and they both display optimum points after which very little
improvement in the angle of heel 1is achieved for fairly large
increases 1in the amount of buoyancy required. It is obvious that
considerably more buoyancy is required in the case of the flooded

column.

Figure 2.4 shows the same plots but in this case, the wind
speed 1s 35 metres per second. The buoyancy required is very
considerably 1increased and, on the basis that the weights of the
structural components are as shown in the table in fig. 2.1, then the
amount recuired to maintain an angle of heel of 1° is approximately
1.5 times the total weight of the structure for the case where the
lower <column 1is flooded. To maintain a 2o angle of heel the buovancy
required is 1.35 times the total weight. It is clear, therefore, that
the 1lower column for this particular design would have to sustain
considerable tensile 1loads 1in order to satisfy the static heel
requirements mentioned. An angle of heel of 2° corresponds to a
horizontal excursion of the platform of approximately 3.5% of the

water depth. The lower column can be designed to withstand the tension

21.
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envisaged but there may be difficulty with the articulated joint. To
overcome this 1t is necessary to have ballast at the foot of the lower

column in order to put the articulated joint into compression.

For a fixed amount of buoyancy the angle of heel as a function
of current velocity for zero wind speed is shown 1in fig. 2.5. The
structure with the lower column flooded displays the most pronounced
increase in heel as the current velocity 1s increased as would De
expected. The increase in the angle of heel is fairly gradual for
current velocities up to about 1 metre per second and thereafter

increases quite rapidly.

Figure 2.6 shows the angle of heel as a function of the
windsneed for zero current velocity. The trend is similar but less
pronounced than for the previous figure and displays the influence of
the speed squared term in each case. For a combination of wind and
current the sum of the two components will sensibly be correct with
minor adjustments for the small variation in buoyancy as the pitch

increases.

It should be noted that the pitching moment due to wind on the
deck and superstructures will increase as a function of the pitch
angle, as the frontal area exposed to wind increases, and the wind

force lever arm changes.

It should also be noted, however, that as the depth of water
increases, the buoyancy required to maintain the same angle of heel
will reduce as a consequence of the increased lever arm of the
buoyancy, as will the excess tension loads on the lower leg. For
example in 550 metres of water the buoyancy force required to maintain

the same angle of heel for a platform of similar payload, ie
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100,000KN, would be approximately 200,000KN so that the lower leg
would Dbe subject to tensile loads of about 25% of the total weight of
the platform. However, the extra weight of the lower column, to some
extent, will offsét the benefits of reduced tensile loads, so that the

situation with regard to static stability will improve with depth.

Vibration aspects are shown to play a dominant role in the
design of the lower column in chapters 6 and 7 of this thesis. The
order of magnitude of the tensile 1loads in the 1lower column,
therefore, are likely to be somewhat less than discussed here.
However, increased tensile loads contribute to improved vibration

characteristics and this is discussed in chapter 6.

2.2 Ballasting the Structure

Proplems associated with the design of an articulated joint
capable of withstanding the tensile loads anticipated calls for
difficult engineering with a potentially dangerous situation
developing 1if the structure breaks loose from its base. For this
reason, it would be desirable to reduce the tensile 1loads at the

articulated joint and, if possible, make it a compression load.

This can be achieved by the addition of an amount of ballast
to the lower end of the lower tension leg and Jjust above the joint so

that the tensile load in the joint is reduced.

For the articulated column investigated the weight of ballast
is of the order of 8500 tonnes. If concrete were to be used as ballast
material this would result in a 'cylinder' of ballast with possible
dinmensions 40m long and 10m in diameter. tHowever, problems associated

with the removal of concrete render its use untenable and, therefore,
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it 1is thought that high density drilling mud which has a density of
3
2300Kg/m  would be used as ballast material since it may be placed and

removed by pumping more readily than concrete.

2.3 Deck Clearance

Maximum responses will generally lag maximum wave forces by
180o so that the maximum pitch, for a linear response, will occur at a
wave node. This means that were the structure to be subject to linear
waves and respond linearly then the amount of deck clearance between
the mean surface level and the underside of the deck would need to be
at least equal to the maximum wave amplitude expected during the 1life
of the structure. However, it will almost certainly be necessary to
allow for some amount of static heel as discussed 1in the previous
section so that this must enter into the considerations in respect of

adeguate deck clearance.

If we assume, in an extreme situation, that the wave crest 1is
directly beneath the tilted deck when the pitch is maximum then an
approximate formule to determine the deck clearance 1is given as

follows: -
DC =L_ -4 -4 - 0.5.DW.sin@ (2.4)

where DC = deck clearance

Lp = distance from bottom to underside of deck
d = water cepth
a, = wave amplitude

DW = deck width

0 = steady angle of heel



This approximate formula would serve to determine requirements
if the structure responded in a linear fashion about the steady heel
caused by waves and currents. In subsequent chapters it is shown that
the motion response of articulated columns, generally speaking, is not
linear and further considerations will inevitably enter into the
rigorous assessment of adequate deck clearance. The main consideration
in this respect is the transient response harmonic with the natural
period 1in pitch of the structure and the combined effects of current

plus wave. This 1s discussed in greater detail in Chapters 4, 5 and 7.

The deck mass location will significantly affect the centre of
gravity and, consequently, the static angle of heel. This 1is also a
function of the windage area of the deck superstructure in that the
centre of gravity of the deck can be assumed to increase in
approximate proportion with the height of the deck superstructure.
Wind profiles increase with elevation above sea level and the API
code (30) 1indicates that a sustained wind speed at an elevation of 50
metres above SWL is some 23% greater than that 10 metres above SWL.
This, 1in combination with the raised centre of gravity, would suggest
that low profiles are preferred. However, lower profiles will require
greater lateral distribution of deck mass with consequent influences

on deck support structure, deck clearances, etc.

2.4 Access to Buoyancy Chamber

In order to lower the centre of gravity it is desirable that
the buoyancy chamber be used to accommodate certain items of machinery
and plant which would otherwise be located on the deck of the
structure. Therefore, it is essential that access from the deck to the
buoyancy chamber be provided in a manner wnhich will satisfy damage

stability considerations and this should allow for ventilation duct
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regquirements. A typical minimum access dimension of about 4 metres
diameter 1is thought to be adequate. However, this dimension will be a
function of the design of production or other equipment which will be
located in the chamber and will only Dbe critical where the deck
support structure is other than a single circular cylindrical member.
The diameter of the deck support column is likely to be of the order
of 8-10 metres so that access should not be a problem. The main
advantages of utilising the buovancy chamber as accommodation for

machinery rooms and stores are thought to be:-

a. The total deck weight can be reduced by the amount of plant
relocated in the chamber: this will result in a more
slender and lighter deck structure.

b. Lighter deck support column structure.
c. Deck windage area will be reduced - decreased wind loads.

d. Lowering of the C.G. of the structure thus improving the

restoring moment.

The buoyancy chamber could be split on three levels, possibly
even four levels and in available floor space this could amount to 30%
to 40% of the area available on a ©&0m x 60m deck. Personnel
accommodation is most likely to be situated at deck level. However, it
is envisaged that the chamber would accommodate certain production
equipment and other materials not required on the deck. Regulations
may impose restrictions on activities within the chamber in regard to
ventilation requirements. These may dictate a high rate of change of
air so that it may only be possible to conduct low air requirement
activities within the chamber, certain of the more hazardous
activities being conducted at deck level. Nevertheless, in view of the

possible gains to be achieved in wusing the chamber, emphasis is

stressed on achieving maximum utilisation of the available space.
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2.5 Riser Accommodation

The riser flowlines conveying o0il from the wellhead to the
surface are central to the continued and uninterrupted production of
oil. The early floating production systems such as the
semi-submersibles in Argyll and Buchan used rigid risers with heave
compensators. The proposed Balmoral development will use flexible
risers with a buoy into an S configuration. Most of the tanker FPS use
some form of articulated column which contains a rigid riser
terminating in a swivel before entering the tanker. Thus many systems
are in use and this is still considered one of the areas of greatest
risk in ‘compliant' operations. The penalties as a consequence of
riser failure and/or downtime may run into millions of dollars per day
and, therefore, it is essential that adequate provision is made for

risers. A review of the technology is ovresented in Reference (31).

The risers can be accommodated inside the bulkheaded annulus
of the lower column along its entire length from the seabed to the
buoyancy chamber. Alternatively, separate accommodation could be

provided within the inner annulus of the lower column, see fig. 2.7.

In some cases it may be necessary to use cooling water and
this presents no problem to utilising the bulkheaded annulus section.
Risers can be supported at intervals along the length of the lower
column, thus eliminating any requirement for top tensioning support or
heave compensators as reguired 1in a conventional FPS. Ventilation
requirements at the riser terminations will be a function of the
capacity of the risers. It may be necessary to provide temporary
ventilation to the riser accommodation in the lower column in the

event of maintenance operations being necessary.
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Articulated production risers (32) utilise flexible hose
connectors at articulations to provide continuity between rigid risers
on either side of the articulated joint (see fig. 2.7). Similar
methods can be employed to effect the transition from the wellhead
passing around the outside of the articulated joint and into a

location in the lower column above the articulated joint.

2.6 Damage Considerations

The overall integrity and stability of the structure will be a
function of both its structural strength and its buoyancy
characteristics. Fundamental to its integrity is the ability to remain
buoyant and stable, assuming that the lower joint remains intact.
Therefore, it is essential that the structure is capable of
maintaining a satisfactory damage stability in the event of a major
buoyancy device such as the buoyancy chamber and/or the submerged
portion of the deck support column éustaining an impact which might

render the skin of either or both to flood.

Therefore, the 1incorporation of an adequate arrangement of
watertight subdivision will be necessary in the design of both the
buoyancy chamber and the deck support column. Similar arrangements
will be necessary for the lower column if it 1is to be designed as
watertight. This 1is unlikely to make increased demands on the
structural mass of the lower column since vibration considerations
will require substantial second moments of area and this will aid the
design to withstand the hydrostatic pressures. This aspect is

discussed in greater detail in Chapter 6.
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One such possible arrangement is shown in fig. 2.8 although
this might be subject to alteration depending on other requirements as
might be determined by the possible uses for the space within the

buoyancy chamber.

In the event of a bulkhead sustaining a fracture and a
bulkhead compartment flooding, the effect will be to subject the
column to an additional mass, egqual to the flooded mass, acting at a
lever arm approximately equal to the radius of the buoyancy chamber.
From fig. 2.8 it can be seen that the centre of buoyancy will move
away from the centreline of the chamber resulting in a reduced

restoring moment.

For the arrangement shown in fig. 2.8 the static angle of heel
would be increased to 3.5° for flooding of a bulkhead compartment to

the full height of the buoyancy chamber (l2OOm3

of water). A more
extensive arangement of bulkheads which would reduce the flooded
volume is necessary and, for example, if a bulkhead arrangement as
shown 1in fig. 2.8 were acdopted then in the event of chamber number 1
becoming flooded this would increase the static heel to 1.86°. This
arrangement of Dbulkheads 1is especially feasible if the buoyancy

chamber is provided with split level decks. Figure 2.8 shows angle of

heel versus flooded volume.

Two compartment flooding will be a mandatory requirement for
the upper support column to provide against surface ship collision.
This requirement may be relaxed for the buoyancy chamber which is some
25-30 metres Dbeneath the SWL and one-compartment flooding will

probably suffice for the buovancy chamber.

The bulkhead arrangements shown in fig. 2.8 conform with rules
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C300 and C305 of the DnV (33) requirements in respect of possible
coilision/impact cdamage in that the minimum penetration dimension of
1.5 metres 1is satisfied. It should be noted, however, that this
requirement is intended to account for possible damage as a
consequence of impact from, say, a supply vessel or other such source.
While the wupper support column is clearly susceptible to damage of
this nature, the buoyancy chamber, by virtue of its submergence depth
of some 30 metres, 1is less likely to sustain damage of a similar
nature. Double bulkheading will be necessary but the requirement in
respect of the penetration dimension may be somewhat less stringent.
Some degree of extra protection from impact to the top of the buoyancy
chamber resulting from dropped objects from the platform above would

be prudent and some extra bulkheading may be necessary.

The possibility of the structure breaking loose from the
articulated connection must be considered. This is most likely to
happen, 1if at all, 1in a storm situation and in such circumstances
production will probably be very limited or even terminated. Wellkill
procedures will almost certainly have been implemented to minimise the
risk of environmental pollution. It will be essential to provide some
form of emergency mooring between the lower end of the lower column
and the foundation which will prevent the structure from drifting off
location in the event of a breakaway. This emergency mooring should be
of sufficient length to allow the drifting structure to clear such
wellhead equipment, etc as may be located in the vicinity of the base
in order to minimise the risk of damage to wellheads as a consequence

of the structure fouling these.

The free floating stability of the structure will be ensured
by the mass of the ballast at the 1lower end of the lower column.

However, heave amplitudes must be assessed to determine the
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possibility of bottom fouling. In this respect, a connection point at
the base sufficiently elevated from the sea bed to allow for maximum

heave in a storm situation should be provided.

3. INSTALLATION AND RELOCATION

The installation and relocation are major factors 1in the
assessment of both technical and economic feasibility. In the final
design process a detailed structural analysis will be necessary for

the installation and relocation stages.

Site restoration regulations now in force may in certain fixed
platform applications jeopardise the economic viability of the
project. Therefore, it 1is important that sufficient detailed
conceptual planning be undertaken so that restoration costs can be
accurately and reasonably estimated and accounted for in the economic
model for the project. In this respect, articulated columns have
definite advantages over fixed platforms or other compliant structures

sucn as TLPs which require tensile load bearing foundations.

The articulated column can be so ballasted, as discussed 1in
section 2.2, in order to render a gravity foundation feasible. This is
attractive to the foundation designer and may preclude the necessity
for piling the foundation. This arrangement, in ©vprinciple, would
reduce the termination problems to that of effective disconnect of
risers. Removal of wellheads remains a problem irrespective of the

platform type.

3.1 Installation

It 1is pertinent to assess conceptually the feasibility of the
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installation and relocation process and, accordingly, a possible
installation scheme is presented, together with a possible relocation

scheme.

Scheme 1

This 1is shown diagramatically in fig. 2.9 and basically
comprises preassembly of the three major component parts, ie the lower
column, the buoyancy chamber and the upper support column. The deck
structure would be added later. The preassembly would be towed to the

location.

The foundation for the structure having been pre-positioned,
the structure is control ballasted using the bulkheaded compartments
until it locates with the connection joint assembly on the base. It
may be necessary to fix the complete articulated joint to the column
assembly and to effect a connection with the base at the lower end of
the articulated joint rather than to effect a connection at the swivel

point of the articulated joint.

Controlled deballasting of the buoyancy chamber would bhe
necessary and this would continue concurrently with the addition of
mud ballast to the bottom of the lower column and the addition of deck

masses.

3.2 Relocation

The economic viability of a structure of this nature will be a
function of a number of different considerations but probably the most
important single consideration will be that of possible re-use of the
structure 1in another field. Therefore, it 1is essential that the

concept should show promise in terms of the feasibility of re-locating
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the structure to another site.

The 1inherent buoyant stability of the ballasted structure in
the frece floating‘situation will be of consideraple merit in terms of

ancillary re-location operations such as ballasting, etc.

In the event that relocation of the structure to deeper water
is necessary, a procedure as outlined below and shown in fig. 2.10
could be utilised. This procedure is based on the assumption that the
lower column may be disconnected from the buoyancy chamber. Such an

arrangement is thought to be technically feasible.

a. Partially Dballast the buoyancy. chamber and decouple the
lower column from the buoyancy chamber. It may be necessary
to reduce deck loads. However, since lifting capacity has
improved considerably 1in the past decade this should not

present major problems.

b. Float buoyancy chamber to a new location and ballast the

assempbly on to a pre-installed lower column.

4. PARAMETERS FOR OPTIMISATION

The deck mass and superstructure are supported by the buoyancy
chamber and static stability requirements will usually determine that
the buoyancy exceeds the total mass by a substantial amount in the
case where the lower column is flooded. As discussed in section 2.1,
the lower leg of the structure, generally, will be subject to a net
tension force, allowing for cyclic heave forces and this will help to
reduce the structural requirements for the lower tension leg and
simplify its design. 1In some cases, designers may wish to have the

articulated joint in compression and to do this a large mass is added
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immediately above the joint. Such a procedure cdoes not alter the above

arguments.

The lower leg may be left flooded but it is doubtful if this
is a major attraction. The vibration aspects of the lower column will
probably determine structural requirements since the vibration
freguencies are proportional to /§T7E&4. Therefore, it is desirable to
keep the unit mass of the lower column to a minimum. In order to
maintain vibration frequencies which are higher than expected wave
spectrum freguencies, to avoid resonant excitation, wall thicknesses
are likely to be substantial so that the lower column can probably be
designed to withstand the water pressures. This aspect is the subject
of a more rigorous analysis and is discussed in more detail in Chapter

6.

It 1is envisaged that risers and associated equipment would be
located within the lower leg. This feature has advantages in that such
equipment will not be subject to wave and current actions. The

advantages are much enhanced in the case of a dry lower leg.

Minimising the variation in the heave force on the buoyancy
chamber is desirable and can be achieved by the judicious choice of
buoyancy chamber radius and those of the upper and lower columns.
Cancellation of heave forces 1is possible for a particular wave
freguency and this aspect will play a major part in the design of the
articulated joint. This aspect 1is given further consideration in

Chapters 4 and 5.

The elevation of the buoyancy chamber will determine not only
the overall stability of the structure but also the structural

reguirements and, therefore, the dimensions of the upper support
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column. A deeper immersion increases the extarnal pressure on the
chamber and reduces the buoyancy lever about the joint but also leads
to reduced wave loading and it is the optimum combination of these

factors which is being sought.

Dynamic response will depend on the pendulum stiffness and,
therefore, on the buoyancy chamber dimensions and on the distribution
of the mass of the structure and these aspects are considered in more
detail in Chapter 4. The provisions to be made in respect of the deck

clearance reguired also will fe a function of the dynamic response.

Therefore, an adequate design must make an appraisal of the
interdependence o©of the parameters discussad and an optimisation
procedure may be undertaken.

F=

The optimisation o©of the parameters mentioned will be greatly
influenced by the operational requirements and performance
spacifications for a particular project and a sufficiently general

approach is not feasible. In principle, however, an optimisation

procedure similar to that shown in fig. 2.11 would be necessary.

5. HUMAN RESPONSE TO STRUCTURE MOTIONS

The human response to induced motions of the structure is of
importance and perception levels have been established and need to be
borne in mind. Perception thresholds are found to be insensitive to
small amplitude vibrations with frequencies in the range 1-5Hz (34,35)
and it has been suggested that for frequencies less than 1 Hz the rate
of change of acceleration, ie 'jerk' 1is an appropriate measure of

human awareness.
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The effects of levels of accelerations on the ability of
personnel to perform satisfactorily has been suggested as shown in
fig. 2.12 (36). This also shows the various bands of awareness to
acceleration leveis in terms of accelerations and wave periods. The
structure considered in fig. 2.1 experiences an acceleration level at

the deck of approximately 1.5 m/sec2

(0.153 G's) for a 20 metre high
wave, with a period of 15 seconds. This value falls within the
'perceptible' band. The response of the structure 1is shown in
fig. 2.13 as a function of time. The acceleration at the deck level in

m/sec2 is shown as the bottom plot in the figure. Dynamic response is

discussed in greater detail in subsequent chapters.

A 20 metre high, 15 second wave is likely to Dbe experienced
only 1in severe storm conditions. In such circumstances, operational
constraints in respect of production and processing are likely to be

imposed 1in any case.

An alternative measure of human awareness 1is commonly
expressed in terms of Dieckmann's Sensitivity coefficient KDS and a

relationship between KDS and the 'jerk' is proposed in reference (35).

For the structure shown in fig. 2.1 the maximum 'jerk' was of
the orcder of 20 cms/sec3 for a wave of height 20 metres and 15 second
period. This corresponds to a Dieckmann coefficient KDS of just
greater than 1 and just higher than the classification of ‘'distinctly
perceptible but not objectionable'. Potential applications are most
likely to be in water depths in excess of 250 metres. Therefore,
natural pitch frequencies will decrease as water depth increases. For
this wave in dgreater water depths, the ratio of wave frequency to

natural frequency will increase and the dynamic magnification factor

for response will decrease since the peak occurs at resonance.
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It is thought unlikely that major objections in terms of human
response to acceleration levels will arise, although there may be
misgivings in respect of non-preferential directional response as a
consequence of multi-directional forces and this 1is investigated

further in Chapters 4 and 5.

6. CONCLUDING REMARKS

The amount of buoyancy required to maintain an acceptable
level of static heel is noted to be sensitive to both steady currents
and wind speed. In respect of the latter, greater attention should be
given to minimising the windage drag on the deck superstructure. The
size and form of the superstructure are obviously important and it is
this aspect which strongly suggests that a greater use be made of the
buoyancy chamber to accommodate plant and machinery which would
otherwise have to be placed on the deck, thereby contributing to the

windage area at the deck level and raising the centre of gravity.

Relocation of deck masses to the buoyancy chamber considerably
improves the static stability of the articulated column and this is a
very important aspect in terms of the feasibility of the structure. It
also plays a major role 1in the optimisation of other important
parameters and 1is Dbelieved to be a central factor in many respects,
not least of which will be the design of the deck support column and

the deck structure itself.

Damage provisions must be made but the structural requirements
in terms of providing adequate bulkheading are not onerous since
utilisation of the buoyancy chamber will necessitate structural

provisions to accommodate plant, etc on different levels. Some form of
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ring and/or stringer stiffeners would be required for the buoyancy

chamber in any case and there is scope here for optimising the design.

Installation and relocation have been shown to be feasible in
principle and these will play an important part in determining the

economic viability of the concept.
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CHAPTER 3

WAVE FORCE EVALUATION

1. INTRODUCTION

The evaluation of wave forces on any structure, fixed or
floating, reduces to the determination of the distribution of pressure
over the wetted surface of the body. The complete fluid motion can be
said to comprise two parts, one of which is associated with the
irrotational inviscid flow which satisfies specified boundary
conditions and the other which is associated with the vorticity of the

fluid shed from the body.

This chapter first describes the forces attributed to the
irrotational inviscid flow (potential flow) and then describes the
effects of diffraction which increases as typical body dimensions
increase. The limitations of the Morison approach to fluid loading are
discussed and finally the drift forces which can affect floating

structures are discussed in the context of articulated columns.

2. IRROTATIONAL FLOW AND LINEAR DIFFRACTION

The equation of motion for a fluid domain is uniquely defined

by the Bernoulli equation:-

2 12 s Ry =
-3t t(u” o+ v 4+ o toy = 0 (3.1)

velocity potential describing the flow field.

E3
o2
0]
]
1)
©n
I

U,V = horizontal and vertical velocities.
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p = pressure distribution.
p = density of fluid.
y = elevation of point considered.

g = gravitational constant.

The incompressibility of flow in two dimensional motion (x,y)

states that:-

du v _ 3.2
Ix dy 0 (3.2)

If in addition the flow 1is irrotational, then the velocity must

satisfy the conditions that:-

ad 9
U——ax and V—-a—y' 4 (3.3)

The combination of these relations gives rise to :-

326 3% . .
— + — = .
ax®  ay?

which is the Laplace equation

The solution of this partial differential equation in
conjunction with the specified boundary conditions constitutes the

derivation of the velocity potential o.

3. BOUNDARY CONDITIONS

In boundary value problems it 1is common to define the

condition of zero normal velocity at the fluid boundaries.

a. The boundary condition to be satisfied at the sea bed is:-

V=-—=290 on y = —d where d = water depth (3.0)

b. The free surface kinematic boundary condition states that



the rate of increase of the hydrostatic component of
oressure at the surface is equal to the rate of decrease of

the transient component of pressure.

The height of the free surface increases at a rate equal to
the vertical component of fluid velocity or the vertical gradient of
the velocity potential, 1ie 3¢/3y. Thus the boundary condition to be

satisfied is:-

- pg%2 = p-a——(?i at y =0 (3.7)

Y
where d = water depth
The solution of the Laplace equation with the boundary
conditions proceeds to yield the velocity potential ® :-

B cosh{k(y + d)}
= %97 Ksinhkd

cos (kx - wt)

where ao = wave amplitude.

k = wave number = 2T7/L

e
n

frequency.

It follows that the dispersion relationship between w and k

can be stated as:-

w? = gktanhkd (3.9)

For deep water (d > L/2), equations (3.8) and (3.9), take the

form: -

o = aowekycos(kx - wt) (3.10)

and ®° = gk (3.11)

The velocity potential thus described is referred to as the
undisturbed incident wave velocity potential and is henceforth denoted

by a subscript I, ie ¢I.
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The ability of the body to 'resist' the incident wave
manifests itself in the generation of a scattered wave emanating from
the surface of the body and in a direction away from the body (see
fig. 3.1). This diffracted wave potential must, in addition to the
boundary on the incident wave potential, satisfy the kinematic

boundary condition on the surface of the body of zero normal velocity,

le: -
BQA
FT 0 at the body surface (3.12)
i b = 06 + 9 3.13
Now, since A 1 S ( )
8¢A 8@1 8%
thenm—=w+a—n (3.14)
BQI 8@5
so that 7;7 = - 7;; (3.15)

It is also necessary to specify a radiation boundary condition
which states that the scattered waves associated with the potential @S

are travelling outwards from the body (37).

lim S 1w
2 =X = 3.16
R » o ( ™ = $S) 0 ( )
where R = x2 + z = the radial distance
and w = 27m/T
c = L/T

The Laplace equation, solved in accordance with the additional
boundary condition, constitutes the derivation of the scattered or
diffracted potential @S. The scattered potential QS is derived in
terms of Hankel functions of the first kind, whilst the new incident
potential QI can be expressed as a series expansion of Bessel

functions. McCamy and Fuchs (38) have developed this theory and
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express the inertia coefficient:-

c, =1+, = 4_1 1 (3.17)

(/1) 3} (/1) + 2 (np/m) 2

where Ji and Yi are derivatives of Bessel functions of the first and

second order, respectively.

Values of CM based on equation (3.17) are shown in fig. 3.1
and shows that the diffraction theory results approach those of the
inertia term in the Morison equation as the ratio of D/L tends to

zZero.

Bodies free to respond to waves will themselves generate waves
as a consequence of the induced motions and these can be expressed as

additional to the incident and scattered potentials in the form:-
¢ =0 + 0+ 9 (3.18)

N
where @G = I ¢, (3.19)

and Qj represents the potential of waves generated by movement in the

jth mode in otherwise calm water. The surface foundary condition must

reflect the motion of the body.

The general form of the velocity potential 1is then written

$. : (3.20)

The pressure distribution 1is then obtained using the Bernoulli

equation.
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The total forces on the system will comprise those attributed
to the incident and scattered potentials and those attributed to the
radiated potential. The latter is decomposed into added mass and

damping components and the equation of motion can then be written:-
(M1 + MA)ii + Cx +Kx = F (3.21)

E

where FE is the force due to incident and diffracted potentials.

4. MORISON'S EQUATION AND ITS LIMITATIONS

The Morison (39) approach to fluid loading assumes that the

total force can be expressed as a sum of two components, ie:-

Fp= p.V.C.0l + tp.c .p.ulul (3.22)

The first inertial term reduces to 2pVa as the ratio of D/L tends to
zero with CM = 2 , when diffraction effects are unimportant see
fig. 3.1. The first term is associated with the irrotational part of

the flow.

The second term is meant to account for forces associated with
the velocity of the flow and takes the form of a steady flow drag
force, such as would represent the drag force in steady unbounded

flow.

This semi-intuitive form infers that the flow is such as would
prevail were the body removed from the fluid, ie that the flow field
remain undisturbed. There must therefore be misgivings as to the
adequacy of the expression when the ratio of characteristic dimension

to wave length D/L increases.
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Figure 3.1 (40) gives an indication as to the regions of
applicability of the diffraction theory and Morison's equation. This
suggests that there 1is an overlap region banded by 2aO/D = 1.0 and
D/L = 0.15 where both theories are applicable. It also suggests that
at large values of both 2aO/D and D/L then both diffraction and
viscous effects are important simultaneously so that neither theory
would be wvalid. However, this region 1is never realised as a
consequence of the maximum breaking wave height limit of 2aO/L = 0.14

which is shown on the figure.

Lighthill (41) has demonstrated that it is necessary to make
corrections to the Morison equation to account for three extra

contributions of force as follows:-

a. The linearisation of the free surface boundary condition
ignores a quadratic potential which would account for the
rate of <change of surface elevation. This potential
generates a contribution of force associated with the

dynamic pressure at the free surface.

b. A second order component of force associated with the
linear velocity potential attributed to the distribution of
pressure over the complete wetted surface of the structure

up to the instantaneous water surface.

c. A second order component of force associated with the
linear velocity potential attributed to a fluctuating

velocity or extensional velocity term.

Lighthill has shown that the inclusion of the three extra
terms as a correction to the Morison equation has the effect of

increasing the forces by 12% over and above that predicted by the
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Morison equation. In fact for small ratios of D/L the quadratic term
is not significant and it is the other two terms, ie (2) and (3) which
contribute to the increase. However, as D/L increases so does the

quadratic term.
It is evident that the contribution of forces deriving from
the complete immersion of the surface piercing cylinder play a

significant part in the determination of the forces.

4.1 Choice of Coefficients CD and CM

The question of realistic values for 1inertia and drag
coefficients has received considerable attention in the past decade.
Keulegan and Carpenter (42) postulated that the coefficients were a

function of the period parameter, or Keulegan-Carpenter number, KC,

where KC = Um T/D

and U = maximum horizontal particle velocity
T = wave period
D = diameter of cylinder.

Amongst other things, their observations were that CD and CM
had maximum and minimum values respectively, corresponding to a KC
nunper of 15. Most of the available experimental data relates to small
diameter members 1in the sub-critical Reynolds number range, ie

5 , s .
R < 2.107, and little data at supercritical Reynolds numbers, ie

n

RE > 2.106, exists.

Steady flow drag coefficients for a smooth circular cylinder
at supercritical Reynolds numbers are likely to have values in the

region of 0.66 - 0.8 and possibly greater.
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The structures investigated 1in this study have a minimum
diameter of approximately 10 metres, typical structural velocities
will Dbe of the order of 3-4 metres per second, so that the structures
will be operating -at supercritical Reynolds numbers most of the time.
A  time independent value for CD of 0.9 has been used for most of the
analysis. However, the effects of varying the drag coefficient is the
subject of a parameter study in chapter 4. A time independent value
for the inertia coefficient of 1.9 has been used throughout the
analysis, This 1s not unreasonable as suggested in References (43,44)

for small values of KC, ie <5.

Plots of CD and CM as a function of KC and Reynolds numbers
for harmonically oscillating flow are shown in fig. 3.2. It is
apparent that there is little variation in CM at the lower values for
KC. Values of C for small KC are in the region of 1.0 to 1.6 but

D

these are also for very small Reynolds numbers.

4.2 Non Linear Wave Theory

Since the evaluation of wave forces by the use of the Morison
equation essentially reduces to the determination of particle
velocities and accelerations, it is pertinent to examine the effects
of non linear waves. This is discussed in greater detail in Chapters 4

and 5 of this thesis.

It 1is essential to have an understanding of the shortcomings
of any wave loading estimation techniques in order to make a pragmatic
assessment of the resulting forces and motions. Notwithstanding, it is
believed that the Morison approach to wave loading on articulated

columns is valid so long as there 1is no violation of the
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characteristic dimension and wave parameter relationships as put

forward and shown in fig. 3.1.

5. SECOND ORDER FORCES

The preceeding analysis relates to first order forces and
assumes a linear relationship between forces and responses. It is
known that floating structures can experience drift forces, either
steady or slowly varying. The latter are associated with wave grouping

effects and this aspect is further discussed in Chapter 5.

Steady drift can arise as a consequence of second order forces
not accounted for in the linearised analysis aforementioned (45). It
is an 1important aspect of motion response and its effects on a

structure's performance reguire understanding.

Drag and diffraction forces contribute to mean drift forces
whereas inertia forces do not. The drag contribution is attributable
to the integration of these forces to the free surface level, whereas
integration of the inertia forces to the free surface levels produces

a nett zero inertia component of force.

Diffraction forces contribute to mean drift forces by virtue
of the change in momentum of the wave train as a consequence of the
diffracted and radiated waves. However, linear diffraction theory will
not predict mean drift forces since small amplitude linear waves are
used and the velocity potential is also linear, resulting in linear

sinusoidally varying forces with the same period as the wave.



Havelock (46) and Newman (17) have presented different
approaches to the estimation of mean drift forces. The former is.more
suited to situations where the waves have a high frequency content
whilst the latter which is based on slender body formulations is more

suitable to greater wave lengths.

Mean drift forces can be derived in two ways, ie the Far Field

(wave momentum) method and the Near Field method.

The Near Field method (18) postulates that the mean force
comprises the sum of 6 separate components. These are shown

diagramatically in fig. 3.3 and can be interpreted physically as:-

a. A contribution to the first order force as a consequence of

pressures on the body between the SWL and the free surface.
. 2
b. Second order dynamic pressure term 1/2pu

c. A contribution by virtue of the displaced position of the

structure.

d. This represents the change in direction of the force vector

as a consequence of the rotation of the body.

e. This represents the change in buoyancy by virtue of induced

motions.

f. Second order wave contribution, due to the set down of the

regular wave train.

A more comprehensive description of these components is given
in Reference (45) in which it is noted that the computational task

involved in accounting for all the components is considerable.
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In the analysis which follows in subsequent

procedure adopted, albeit
account, in principle, for
down wave component has

confined to slowly varying

chapters the

based on a Morison approach, 1s believed to

components a. to e. The

second

order set

not been modelled but its contribution 1is

drift forces and this

considered in Chapter 5, Section 5.

aspect

is

further
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CHAPTER 4

DYNAMIC ANALYSIS OF ARTICULATED COLUMNS

1. INTRODUCTION

The dynamic analysis of the motion response of compliant
structures can, in general, be made either in the frequency domain or
in the time domain. The former type of analysis is adequate for linear
systems which respond linearly and is generally more efficient in

computation time.

In researching the dynamic response of compliant structures,
analysis in the time domain is considered both feasible and valuable.
Feasible in that modern processors render the very considerable

arithmetic computations much less onerous than was the case even a

few years ago. Valuable in that non 1linear behaviour, such as
transient response is readily evaluated and investigated. Time
varying stiffness properties may also be readily accommodated and
examples of this are the varying pendulum stiffness of articulated

columns and guyed tower catenary stiffness.

This chapter examines the importance of certain parameters
which either contribute to non linear response behaviour or are non
linear by nature. The single degree of freedom (SDOF) rigid body
equation of motion is described and the modified Morison equation is
\included as the forcing function. Some features of dynamic response
are then examined and these include transients, effects of drag
coefficient Cp, effects of relocating deck masses in the buoyancy

chamber, alternative geometries of buoyancy chamber, effects of
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Stokes 5th order wave theory and the effects of waves and currents.
The effects of the variation in the heave forces is given a rigorous
examination in Chapter 5 and the contribution of this, in respect of

dynamic instabilities, is assessed.

Some experimental results are presented and these are
examined in the light of the analytical results obtained. Finally,
the action of forces which are not acting colinearily on the

structure are examined and the implications assessed.

The calculation of wave loading should properly allow for
incident, diffracted and radiated potentials as discussed in
Chapter 3. These become increasingly important for the shorter waves
where the structure may experience steady drift forces (45). Such
analysis is more appropriately conducted in the frequency domain
although it can be adapted to time incremental solutions subject to

limitations on computation time.

A simplified method of calculating the wave forces by strip
theory can, however, be utilised, the assumption being that the
structure leaves the flow field undisturbed. One such appropriate
method is by the use of the Morison equation (39) which comprises an
inertia term and a steady flow drag term. The non-linear drag
component, which would require linearisation for a frequency domain
analysis, is amenable to and readily accounted for in time simulation

‘analysis.

As discussed in Chapter 3, it is considered that the Morison
approach to the evaluation of wave loads is reasonable in the

investigation of the maximum response of articulated column

6l.



structures where typically ratios of member diameter to wave length
(D/L) will be less than 0.2. This ratio determines a lower limit of
about 10 seconds on the wave period for structures considered herein.
For smaller periods, the dynamic pitch response is not of any great
technical significance. Vibration considerations are important for
wave periods of this order and less and this is discussed 1in more

detail in Chapter 6.

2. STRUCTURE SUBJECT TO COLINEAR EXCITING FORCES

.In general, maximum responses will occur when the exciting
forces are acting colinearly with one another on the structure.
Accordingly, the motion response of an articulated column can be
described by the pitching motion of the structure about the
articulated joint. It is assumed, for the time being, that rigid body
deformations predominate so that the system can be considered as a

single degree of freedom system (SDOF).

2.1 Equation of Motion

Single degree of freedom

With reference to Fig. 4.1; the equation of motion for the

articulated column can be written:-

Ip6 + CO + KgB = M (4.1)

where Ip Iy + Ipy

IM = Mass moment of inertia

Added mass moment of inertia

Q
Il

Damping coefficient
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‘M = Sum of exciting moments about the pivot
. . zg . .
Kg = Pendulum stiffness of column in direction
= Bp.RKB - W.RKG
Bp = Buoyancy force
W = Total weight of structure
_RKB = Distance from pivot to centre of buoyancy

RKG = Distance from pivot to centre of gravity.

The natural frequency of the column in pitch for free undamped
vibration, therefore, is given by:-

(BF.RKB - W.RKG) }

[ (4.2)
+
n IM IAV

Linear Equations of motion

If we assume a linear system and that excitation and response

may be written in the form:-

F(t) = Foexp(jwt) (4.3)
and rg(t) = Ryexp(jwt) (4.4)
“then the steady state response is given by

r (t) = [H(®) [F(0) (4.5)

where H(Q) = > 12 (4.6)
IT(wn -0 + ZijnQ)

Now H(R) 1is complex and can be written in the form
hﬂslesexp(j £) where |H(Q)| is the real amplitude of response due
to a unit amplitude excitation at frequency @ and £ is the phase angle

between the excitation and the response.



1

%
Hence, [m(@)| = | wz[(1 ) (9)2)2 . 4(8_52)2] (4.7)
Tn wn a)n

where |H(Q)] is the dynamic magnification factor.

The peak response can be written,
r =
px = [HQ[M_

where the subscript PK refers to peak values.

Modified Morison Equation

The RHS of the equation can be written in the Morison form

as:—

M =M, + My (4.9)

where Mp = Moment attributed to viscous effects
= }p.Cp.D-u|u|r per unit length
M1 = Moment attributed to inertia effects

= p.V.Cy.Uu.r per unit length

V = Volume of member

D = Diameter of member

r = Radius from articulation
di = Immersed depth

p = Water density

Cy = Inertia coefficient = (1 + CA)
Cpa = Added Mass Coefficient
Cp = Drag coefficient

u,u = Horizontal particle velocity and acceleration

The stiffness term Kg must allow for the contribution of the

submerged portion of the upper support column and its variation as a
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function of wave profile.

o

Hence, M = ‘f [i.p.CD.D.ulu

r + p.V.C u'.r]dr (4.10)
M ’
-di

This may be rewritten to account for the motions of the structure

relative to the waves, wind and current.

o]
ie, M = f[p.v.(cM - 1)er.(d - r8) + p.Ved.r
-ai

+ %p.CD-D.(u - ré)]u - rél.r]dr (4.11)

The first term is the added mass term; the second term is the

Froude-Krylov component and the third term is the non-linear drag

term.

Rewriting equation (4.11):-

o

M = é([p.v.r.(CM - Nu - p.V.r.(CM —1)r.é + p.V.u.r
i \

+ 4.p.D.C 5(u - r8)(u - ré)r]dr (4.12)

Now IAV = Added mass moment of inertia

d 2

I[O.V.r .(C - 1) ]dr (4.13)
. M

-di

This term can be transferred to the LHS of the equation of motion so

that:-
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o]
6 +cCh+ Kp= f[p.v.cM.r,{l + 4.p.C_.D -(u - rd).|u - rh|lar
S Zai (4.14)

(I + 1

AV)

The non-linear quadratic drag term is not amenable to linear
analysis and 1is frequently equivalently linearised (47). This
\introduces an error term which can be minimised in the least squares
sense. So that an equivalent 1linear draqg force term can be

_substituted, viz,

Drag force = épCDL.D.un (4.15)
\where,
C = C g—-u (4.16)
DL D°31" o :
U, = the amplitude of the oscillatory resultant normal velocity
and u, = resultant normal velocity

This assumption has the basis that the drag term does not constitute a
major portion of the forcing function and is, therefore, not
responsible for any significant instability phenomenon which is not

also contained in the linear approximation.

Response amplitude operators of pitch per unit wave height
versus wave excitation frequency can thus be obtained. This approach
is valuable in the design and appraisal of the motion characteristics

of offshore vessels and structures and is commonly utilised.

2.2 Time Domain Solution of the Equations of Motion

The non-linear drag term as discussed in the previous section
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together with the time varying pendulum stiffness of an articulated
column as a function of the immersed depth, position of the structure

relative to the wave and the heaving forces renders an analysis in the

time domain desirable.

There are, essentially, two approaches to the time
incremental solution of the equations of motion, viz direct
integration methods and multi-step methods (48), Both methods have
been found to be satisfactory in the solution of the SDOF equation of

motion and both have been used in obtaining the results presented.

A computer program was written to‘ solve the equation of
motion (4.14) on a time incremental basis. The direct integration
procedure used was the Wilson-0 operator with 68 = 1.0 and this is
basically a linear acceleration wmethod. More details of this

integration procedure are given in Chapter 7 and Appendix 4.1.

Program development was on the assumption that the lower
column would remain flooded. The buoyancy restoring force attributed
to the displacement volume of the buoyancy chamber and the submerged
portion of the upper support column was considered to act at the

centre of buoyancy as shown in fig. 4.1.

The LHS of equation (4.14) contains terms for the mass plus
added mass, damping and stiffness 1in respect of acceleration,
velocity and displacement respectively. The calculation of forces
attributed to these terms is carried out up to the instantaneous or
temporal water surface level. Thus the added mass and stiffness
terms reflect the variation in the water surface level as a function

of time.
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2.3 Transient Responses

The equation, MX + Cx + K,x = Fosinwt has the full
solution (49),
c . F
2M°

. o
x(t) = e (A sinw t + B cosW t)+ — .
o n o n KS

H(wﬂ sin(wt - kx) (4.17)

where A and B; are arbitrary constants and can be evaluated for any

given starting conditions.

The first term is the transient response and the second term
is the steady state response. The first term is generally considered
to decay rapidly with small amounts of damping (Bwn = C/2M). The
second term is the steady state response as a consequence of the

steady state excitation at frequency w .

Inoue (50) has given a solution to the above equation as,

c
-t

) 2M . .
x(t) =X —e sinw t - sinwt
o W, n

where X is the amplitude of the forced oscillation.

This equation implies that the transient response is
proportional to the frequency of excitation w. Inoue presents results
in support of the equation which shows that with increasing o the
ratio of the amplitude of the transient response to the amplitude of

the forced oscillation also increases.

The results of this investigation do not concur with those of

Inoue and, in fact, tend to display an attenuation of the ratio of the
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amplitude of the transient osciilation to that of ¢the frequency
oscillation for increasing forcing frequency w. Figure 4.2 is a
comparison of curves showing the response at two different
frequencies but for the same amplitude of forced oscillation. The

attenuation of the transient oscillation is apparent.

Kokkinowrachos (51) has predicted transient oscillations in
the case of articulated columns and these have been observed on a full
scale prototype articulated column. Some analytical results are

presented in section 2.4 of this chapter.

Relative Velocity Term

The modified Morison equation approach to fluid loading which
allows for the inclusion of the non linear relative velocity drag

terms and its effect on the response merits consideration.

The wave forces on the structure are calculated on the basis
that the evaluation of particle velocities and accelerations is valid
for elevations above the still water level, up to the instantaneous
water surface level. The calculation of forces wup to the
instantaneous water surface will result in a nett cancellation of the
inertia forces in a wave cycle. This will not be the case in respect
of the drag forces which will display some proportionality with the
wetted length of the structure in a wave cycle. On a fixed structure
the drag force would have a nett component in the direction of the
wave travel and this component would be maximum for a
Keulegan-Carpenter number- (KC) of approximately 15.0. (42). The
Keulegan-Carpenter number (KC) is defined as KC = U,T/D or wH/D where

Up is the maximum horizontal particle velocity.
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In the case of articulated columns, or compliant structures
in general, the situation with regard to nett drag forces is somewhat
less straightforward in view of the phase of the response with
respect to the wave forces. In general the wave frequency w will be
much greater than Wy and the inertia forces will predominate, so
that the response will 1lag the maximum wave inertia forces by
approximately 180°, ie the response will be positive when the wave
forces are negative and vice-versa. This means that the structures
velocities will generally be in phase with wave particle velocities.
This will tend to reduce the damping effects of the viscous component
of force. However, this would not be the case in respect of motions
due to slowly varying drift forces for example when the body motions

may lag the wave inertia forces by 90°.

Nonetheless, the drag component will affect the motion
response and may, in fact, contribute to the transient part of the

response.

2.4 Analytical and Experimental Results

Analytical results

The computer program developed, first calculates the static
angle of heel of the column subject to a steady 35 metres per eecond
wind force and/or a specified current velocity and uses this value
together with the initial condition that the column is stationary to

start the time series solution.

A particular version of the program allows for the excursion

of the elemental section in the wave in calculating the particle
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velocities and accelerationé pertaining to the section. In the
calculation of forces on elemental sections, components normal to the
axis of the structure are taken. The results of this version of the
program for the column subject to a 6m, 15 sec wave and zero wind
speed are shown in fig. 4.3. This figure also shows response curves
for different buoyancy chamber dimensions - in this case the
displacement volume and centre of buoyancy are maintained as constant
and the length and diameter of the chamber are varied. The closer
proximity of the top of the 22 metre diameter chamber to the water
surface explains the increased response for that particular

structure.

Figures 4.3 and 4.4 show what appears to be a harmonic
transient oscillation, about which is superimposed a higher frequency
oscillation of the column at the wave exciting frequency. This
transient oscillation, although locked on to a multiple of the wave
frequency, is of the order of the natural period of oscillation of the

column in pitch as calculated from equation (4.2), ie T, = 72 seconds,

Tyransient = /> seconds.

Results for 17 second and 25 second waves show the transient
oscillation period at 68 seconds and 75 seconds, respectively, and in
phase with wave oscillation, ie the structure tends to lock on to a

multiple of the wave period.

Transient phenomena will be more pronounced in compliant
structures and the question of authenticity naturally is posed. In
order to examine the transient the programs were run for 2000 seconds
model time. Figure 4.6 shows the results of the extended run time for

the column subject to a 6 metre high, 15 second wave plus a wind speed
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of 35 metres per second. and a watertight compartment flooded. The
extra mass due to the flooded compartment has the effect of reducing
the natural frequency of the column in pitch, ie the period of the
transient is increased and the pitch response is reduced. Figure 4.6
shows the decay in the transient to be more rapid and this may be

attributed to the extra damping provided by the wind force.

The steady state linear peak response in pitch for a 6 metre
high, 15 second wave as given by equation (4.5) is equal to 0.0135
radians. This is to be compared with the peak response as shown in
fig.4.3, of 0.028 radians, ie a 107% increase in response. Allowing
for the decay in the transient, the responses calculated by both
methods are of the same order of magnitude, ie the wave frequency

oscillatory responses are the same.

Effect of C on response

Figure 4.7 shows the response for a structure subject to the
same wave for different values of drag coefficient Cp- The bottom
plot is that for a Cp value of 0.6. It is apparent that the transient
part of the response increases to a maximum for a value of Cp = 0.7
and thereafter decreases to a minimum for the value of Cp = 1.2 where
the transient is eventually completely damped out. The damping
effect of the drag component is evident for values of CD greater than
0.7. Close inspection of the plots shows that the responses have
different phases for the different values of Cp- It would appear
\therefore that, for this relatively small structure, the value of
drag coefficient can affect the phase of the motion response and, in
turn, vaffect the damping contribution of the relative speed squared

term. These results are for a 6 second wave 5.14 metres high. A
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similar trend is observed for a larger and longer wave ie 10 metres

high with a period of 10 seconds, as shown in fig. 4.8.

The transient may be attributable, in part, to the
integration procedure used and it is noted that the results for figs.
4.2 to 4.6 were obtained by a direct integration procedure, whereas

the results in figs. 4.7 to 4.8 were obtained by a multi-step

integration procedure, ie Runge-Kutta-Merson. Transienté are further
investigated in the context of dynamic instabilities and discussed in
Chapter 5. It is also noted that at the full scale, Reynolds numbers
are likely to be in the supercritical region ie > 109. values of Cp
are likely to be of the order of 0.5 to 0.7 and it would therefore not
be unreasonable to expect maximum transient responses at the full
scale. However, these values relate to smooth cylinders and it must
be borne in mind that marine growth will make a contribution to
increasing roughness values over a period of time, so that

corresponding wvalues of Cp could well be of the order of 1.0-1.2.

Effects of Relocating Deck Masses in Buoyancy Chamber

As discussed in Chapter 2, it 1is envisaged that the
accommodation inside the buoyancy chamber could be used to contain
certain items of plant and machinery which would otherwise be located
on the platform deck. The structural provisions necessary to achieve
this aim are not considered to be excessive compared to those to be
made for the buoyancy chamber not containing plant, ie some form of
lateral bracing will probably be necessary and the proposed flooring

on three levels will help in this respect.
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The effecté of varying the deck mass and payload have been
examined in the context of dynamic response. The platform deck and
payload was reduced by an amount which was added to the buoyancy
chamber. This reduces the mass moment of inertia of the structure
and, therefore, increases the natural frequency in pitch. For the
case of a reduction in the platform deck weight from 100,000 KN to
50,000 KN there is an accompanying reduction in the pitch response of
the order of 10%. This is a modest reduction and is, in the main,

attributable to the increased pitch stiffness (see fig. 4.9).

Alternative Geometries for the Buoyancy Chamber

The buoyancy chamber and the upper support column are in the
most active wave loading region and it is essential that means of

reducing loading are investigated.

A spherical buoyancy chamber is probably the most efficient
buoyancy device from the hydrodynamic point of view, although it may
suffer from lateral instabilities (52), but highly impracticable in
terms of construction and accommodation. From this point of view,
plane surfaces are desirable. The circular cylinder as proposed is a
reasonable compromise in consideration of construction, accommodation

and hydrodynamic efficiency.

The truncated conical buoyancy chamber as shown in
fig. 4.10was investigated and, using inertia and drag coefficients Cy
and Cp as for the circular cylindrical section, a reduction in

response of 25% was achieved.
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Effect of Stokes Fifth Order wave

The use of linear wave theory in the calculation of wave
forces has obvious attractions but may result in under/over
predictions (53) of these forces. Non-linear wave lengths are
generally greater than the linear wave length of the same period and
as the horizontal inertia force decreases as 2ma/L increases, above a
given value, then a decrease in 27ma/L as a consequence of the

increased wave length may give rise to an increased horizontal

load (40).

The non-linear wave profile will also display differences to
the linear profile, in that wave amplitudes and troughs are generally
greater than and less than, respectively, half the wave height. This
effect is more pronounced in the higher frequency waves and, for
example, the Stokes fifth order wave theory calculates a crest height
above mean level of 11.9 metres for a 10 second wave 20 metres high -
an increase of almost 20% on the wave crest over that of a linear
wave. In consideration of the drag component of force, this
non-linearity warrants quantification and comparison with the linear

case.

Hogben and Standing (53) have compared the forces on surface
piercing cylinder by both linear theory and Stokes fifth order
theory. They found that differences in velocity and acceleration
profiles by both methods were small for deep water waves (ie
H/d = 0.2, H/gT? = 0.015, 4 = 150m, H = 30m, T = 14 secs). Also that
inertia components of force by Stokes theory were slightly greater
than by linear theory when integrated to the free surface and

slightly less than 1linear theory when integrated to the SWL. Drag
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components by Stokes theory were less than by linear theory when
integrated to the SWL but were greater when integrated to the free

surface.

The solution to the Stokes fifth order wave theory as
presented by Skjelbria and Hendrikson (54) is outlined in Appendix
4.2 and the constants given for various ratios of d4/L. The procedure
is readily programmed and requires the solution of two simultaneous
equations for wave height, wave length and lambda. This has been done
in the form of two subroutines; the first subroutine solves the
simultaneous equations and calculates the constants, iterating the
solution on a bisection procedure. The second routine calculates the

wave profile and the particle velocities and accelerations.

The regions of validity of the various wave theories are
suggested as shown in fig. 4.11 (55) and indicates that for deeper

water the Stokes fifth order wave theory is applicable.

At intermediate and shallow water depths the wave profile and
velocity and acceleration profiles may contain unrealistic 'bumps'
and this suggests a limitation to the application of the theory as per
Skjelbria and Hendrikson. Ebbesmeyer (56) has suggested these

limitations graphically as shown in fig. 4.11.

By way of illustration of the presence of the so called
'bumps', fig. 4.12 shows the surface profile and velocity and
acceleration profile for a 5.69 metre wave with period 7.72 seconds
in water depth 9.25 metres. The H/g’l‘2 and d/gT2 values are 0.0097 and
0.0157, respectively. The wave profile does not possess any

irregularities. However, velocity and acceleration profiles do
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display undulations. This example is the same as that presented by
Skjelbria and Hendrikson and corresponds to an intermediate depth
wave. The horizontal particle velocities at the mean surface level

are approximately 21% greater as calculated by Stokes fifth order

theory than by linear wave theory.

As water depths increase the differences in particle
kinematics as predicted by both theories also decreases. As an
example of a deep water wave, ie H/gT2 and d/gT2 equal to 0.02 and
0.137, respectively, fig. 4.13 shows the variation of velocity and
acceleration with depth as a comparison for the linear wave theory
and Stokes fifth order wave theory. Stokes theory appears to predict
velocities and accelerations about 9% less than those predicted by
linear theory at the still water level. The difference decreases with
depth to about 25 metres below the SWL and, thereafter, Stokes theory
predicts values somewhat higher than 1linear theory but only of the

order of 2% to 3%.

Figure 4.14 shows results obtained for a wave at the upper
limit of the definition of intermediate water depth, ie
d/gT2 = 0.068. Velocity distributions are similar to those of the
deep water wave except that the Stokes theory displays an asymptotic
minimum value of about 0.75 metres per second at the sea bed.
Accelerations by the Stokes theory are 1less than those by linear

theory over the whole depth.

It is also instructive to compare velocity and acceleration

distributions by both theories as a function of the wave phase angle.
Figure 4.15 gives distributions for one wave cycle at a depth of 5m

below the SWL. The Stokes theory predicts velocities less than those
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of linear theory between -7/2 and 1 /2 radians and greater velociéies
between m/2 and 37/2 radians. Accelerations predicted by Stokes
appear to be less throughout the wave cycle, the maximum difference
occurring at approximately 0.77 radians and 1.37 radians. For
comparison, fig. 4.16 shows the distribution of velocity and
acceleration for the same wave at a depth of 15 metres beneath the

SWL.

_Ohmart and Gratz(57) have compared velocity and acceleration
distributions by Stokes fifth order, Deans stream function and linear
theory with measured distributions from a site in the Gulf of Mexico
and their findings indicate that results of Stokes theory and stream
function theory were almost indistinguishable. The distributions were
qualitatively similar to those in fig. 4.15, ie the Stokes theory

predicted values somewhat less than those predicted by linear theory.

Comparison of responses

For figs. 4.17 to 4.26, the top plot is the wave profile; the
second plot is the pitch response; the third plot is the damping force

and the fourth plot is the restoring moment.

Figure 4.17 shows the response for a structure subject to a
20 metre high 15 second period wave, the wave particle kinematics
being calculated by linear theory. Figure 4.18 shows the response for
the same wave, the particle kinematics being calculated by Stokes
fifth order theory. The responses for figs. 4.17 and 4.18 are very
similar and this is not unreasonable considering the similarity of
the velocity and acceleration distributions for this relatively long

wave which are shown in fig. 4.19.
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Figures 4.20 and 4.21 show the responses obtained for the
structure subject to a 20 metre high 10 second period wave (ie 80% of
maximum wave steepness), the particle kinematics being calculated by
linear theory and Stokes fifth order theory, respectively. Apart from
transient responses, the wave frequency oscillatory responses are of
the same magnitude. The response for Stokes theory in fig. 4.21 stays
positive after the first cycle, whereas the response for linear
theory oscillates about zero. The difference is considered in the
main to be attributable to the drag component of force and by way of
illustration of the effects of the drag coefficient, fig. 4.22 shows
the response for a drag coefficient Cp = 0.6, whereas the drag
coefficient for fig. 4.21 was equal to 0.95. The response eventually
oscillates about zero, presumably as a consequence of the reduction

in drag component.

Effects of co-linear waves and currents

Waves travelling on currents will undergo changes in the wave
length (58), that is to say that waves travelling in the same
direction as the current will wundergo elongation whereas waves
travelling in the opposite direction to the current will become
shorter and steeper. The wave particle kinematics will be somewhat

altered and can be determined theoretically.

An approximation of the particle velocities as a linear
combination of the current velocity and the wave particle velocity is
considered reasonable in assessing the overall effects of currents

and waves acting co-linearily.

Figures 4.23 and 4.24 show responses for a structure subject
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to a 20 metre high 10 second period wave with zerb current ané 1 metre
per second current, respectively, the wave particle kinematics being
calculated by linear wave theory. The current is responsible for a
mean static heel of approximately 0.06 radians and it is noted that
this value does not constitute a new mean about which the structure
oscillates. The new mean has a value of aprox 0.12 radians so that

mean dynamic responses are increased by approximately 100%.
Figures 4.25 and 4.26 show responses for the same wave and
current, the particle kinematics being calculated by Stokes theory.

The new mean has a value of 0.075 radians, an increase of 25%.

Experimental Results

In order to assess the validity of some of the results
obtained from the mathematical analysis of the articulated column
structure, some limited amount of experimental observations were made
in the experiment tank at the University of Glasgow, Department of

Naval Architecture and Ocean Engineering

A model articulated column was constructed to an approximate
scale of 1/100 of a full scale prototype. The diameter of the buoyancy
chamber used was 0.32 metres and the length 0.286 metres. The main
concern with these dimensions was the possible violation of the
validity of the use of Morison's equation where D/L should be less
than 0.2. However, some limited number of tests were completed and
the results obtained correlate well qualitatively with those of the

mathematical analysis and are presented here.

Movement of the model was monitored with the use of a light
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emitting diode fitted to the model. This method of observing
translations avoids the attachment of any other monitoring device to
the model and, thus, eliminates any possible damping as a consequence
of such attachments. Unfortunately, in order +to simulate wind
loading, a constant force was applied to the platform deck by means of
a weight attached via a system of pulleys. The experimental

arrangement of the model and equipment is shown in fig. 5.1.

The natural frequency of the model in pitch which was
measured by means of a free oscillation test was found to be 0.11Hz.

The trace of the free oscillation is shown in fig. 5.34.

Figure 4.27 shows pen recordings of the fore and aft
displacement of the model subject to a wave 0.086 metres highAand
period 1 second. Note that the plots shown here are not phase
compensated in that the recording pens have staggered positions. The
simulated wind 1loading is in the same direction as the waves. The
existence of a harmonic transient oscillation is very evident at a
frequency equal to the pitch frequency of the model. Oscillations at

the wave frequency are fairly uniform.

Figqure 4.28 shows the displacement for a 1.5 sec wave
0.093 metres high. The transient oscillation is evident but is very

much reduced to that shown in fig. 4.27.

The experimental observations do not suggest any tangible
relationship between the magnitude of the transient oscillation and
any other significant wave paramater such as period or height.
Accordingly they are not considered to be conclusive in this respect.

However the phenonema has been observed experimentally and is noted.
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3. STRUCTURE SUBJECT TO NON CO-LINEAR EXCITING FORCES

The assumption that exciting forces in the form of waves,
currents, winds, etc are acting co-linearly renders the SDOF model,
described in section 2, most suitable and adequate in the
investigation of the motion response and the determination of maximum
response. It is well known, however, that this is not always the case
in the real situation and, therefore, a more adequate and rigorous
analysis which will allow for multi-directional exciting forces is

desirable to examine the response of a structure subject to such a

system of forces.

Kirk and Jain (20) and Kokkinowrachos (51) have investigated
the response of articulated columns in spherical co-ordinates (2
degrees of freedom) and both have found that under certain
non-colinear actions of waves and currents, the platform performed a

complex swirling motion.

In addition to wind, waves and currents, the articulated
column may, under certain circumstances, experience lift forces as a
consequency of the action of vortex shedding. Lift forces on
cylinders has been the subject of many investigations and there is a
certain amount of data available for cylinders both horizontal and

vertical in steady flow (43,59).

In the case of horizontal cylinders subject to sinusoidal
oscillating flow, the alternating 1lift forces can be well
correlated (59,60). In the case of an articulated column structure, a
steady current may be sufficient to correlate the vortex shedding

1ift forces on either the buoyancy chamber or the upper column.
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Chakrabarti (23) has obtained experimental data on 1lift
forces on an articulated column and found these to be well correlated
in some circumstances. Appendix 4.3 contains a table 1listing some

vortex shedding frequencies, current velocities and member diameters.

In consideration of the possible combinations of non-linear
exciting forces, the investigation of the response of the structure
in two degrees of freedom is considered of value and beneficial to an

understanding of the physical problem and to future research.

The equations of motion for the column are derived by the
Lagrange (61) method for a combination | of conservative and
non-conservative forces and the development of the equations together
with the evaluation of the forces is given in Appendix 4.4. The

equations of motion are:-

ITé- 1j)2sinfcosf + Kgsing = Me (4.19)
Ipysin® g + 2T)Bsinbcosd = ", (4.20)
3.1. Solution of the Equations of Motion

Equations (4.19) and (4.20) are solved simulataneously on an
incremental time basis. The sin%f term in the second equation gives
rise to a singularity in the region of small 6 and care needs to be
taken in the solution. This is of particular importance in the case of
small structures with very small mass moments of inertia about their
central axis. In such cases, errors may accumulate as 6 becomes small

and it is necessary to place a stringent bound on error controls.

For larger structures the problem is less acute as generally

these will possess significant mass moments of inertia about their
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central axis and the Iysin?g term will be replaced with an equivalent
Igo1v term, thus, reflecting the structures own inertia about the

central axis.

The equations of motion have been solved by two methods ie

direct integration method, ie Wilson-6, and a Multi-Step method.

The direct integration method solves the two equations
independently having first made a substitution for & and w in terms
of 8 and Y in the equations of motion. By this means it was necessary
to account for the moment of inertia of the structure about its own
centroid as already mentioned. The results thus obtained were for
larger structures and there was no evidence of any instability in the
solutions obtained. The results obtained by this method are presented

in figs. 4.30 to 4.33.

The Multi-Step methods basically comprise the Runge-Kutta
Merson, Adams and Gear methods{48). These are available as standard
NAG routines and in various stages of sophistication depending upon

the degree of accuracy required for the solution (62).

The Gear Method is most suitable for systems of equations
having rapidly decaying time components ie a stiff system of
equations. A preliminary check on the stiffness properties of the
equations by means of the Runge-Kutta Merson routine DO02BDF indicated
stiffness values of the order of 0.4-0.5. The recommendation is that

for low values of stiffness, the Gear routines are not appropriate.

Accordingly the Runge-Kutta Merson routine DO2BDF was used

but this did not prove to be sufficiently general in terms of error
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controls and subsequently the Runge-Kutta Merson routine DO2PAF which

allows for a wide range of error controls was used.

The NAG routines solve the equations on an iterative basis
and consequently call the main program, supplied by the wuser, a
number of times per successful iteration. Routine DO2PAF did so
approximately 15-20 times per successful iteration. This is obviously
computationally time consuming and the recommendation in such cases
is that the Adams routines are used. The Adams routine DO02QAF was
subsequently used to solve the equations and this routine allows for
the implementation of any one of five different error control bounds.
Routine DO2QAF calls the main program approximately 2-3 times per

successful iteration.

Although guidance is available on the most appropriate error
control for any particular problem the choice must be subjective and
trials made. The error control test which displayed the most
consistency in results was the 'Mixed Error Test applied
componentwise'. Nevertheless, some difficulties were encountered in
the solution of the equations in the region of small values of 9
particularly for the smaller structures with smaller inertias about

their centroids.

However, satisfactory results were obtained when there was
sufficient damping available in the form of a steady current to
counter the tendency for the structure to respond through the origin.
The results obtained are considered reasonable in reflecting the

complex responses in these circumstances (see figs 4.34 to 4.35).
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3.2 BAnalytical Results

The motion response of the structure as shown in fig. 4.1 for
6 metre high 15 second period waves at zero degrees orientation
together with a steady wind speed of 35 metres per second with an
orientation of +20°, is shown in fig. 4.30. This is the plan
trajectory in terms of the X and Z co-ordinates as defined in fig.
4.29. The starting point is the point marked '0' and it is observed
that a figure of eight pattern emerges with the column travelling in
the opposite direction in the opposite quadrant to its direction
approximately 7 wave cycles earlier. That is to say, the orientation
of the trajectory at time 12T is in the opposite quadrant to the
orientation of the trajectory at time 19T; similarly, at 13T and 20T,
etc. Figure 4.30 shows the trajectory of the column with the wave

starting at zero time at a wave crest.

Figure 4.31 shows the trajectory of the column given a wave
trough starting at zero time. A cyclic pattern emerges as in the case
of fig. 4.30 but in this case the column trajectory is in the opposite
quadrant to that for fig. 4.30. Clearly then, the trajectory is
sensitive to starting conditions for the time simulation solution

although the pattern of 7 wave cycles persists.

Both figs. 4.30 and 4.31 are for the same structure with a
buoyancy chamber 27 metres diameter and 40 metres long. The
trajectory for a column with a buoyancy chamber 24m diameter and 50
metres long is shown in figs. 4.32 and 4.33 for clarity. In fig. 4.32
the starting point for the wave is at a wave trough as for that shown

in fig. 4.31.
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cOmbarison of figs. 4.32 and 4.33. illustrates a cyclic
pattern emerging again but this time the most apparent pattern is
repeating itself approximately every 13 wave cycles and in the same
quadrant. Close inspection shows the 7 cycle pattern as in fig. 4.30
but much less pronounced. The column appears, therefore, to be
performing a trajectory in a yawing sense with a natural period of

approximately 105 seconds.

The sensitivity of lighter structures in shallower water to a
current orthogonal to the direction of the wave travel is illustrated
in fig. 4.34. A swirling trajectory is again assumed but is of a more
orderly fore and aft nature, mainly as a consequence of the damping
effect of the imposed current. The dominant effect of the current is
illustrated again in fig. 4.35 which shows the response for the
structure with a current of 1 metre per second imposed at an angle of
40° to the X-axis. The effect is to bias the response in the current
direction as would be expected and this concurs with the results
obtained and as shown in figs. 4.24 and 4.26 for the case of

uni-directional waves and currents.

4, Concluding Remarks

It has been demonstrated that a transient oscillation
harmonic with the natural pitch frequency of the structure can be
generated in the time simulation analysis. Experimental observations
confirmed the existence of the phenomenon although no plausible
correlation with any other significant wave parameter could be
established. The transient greatly increases the pitch response of
the structure, in some cases by 100%, and this clearly will play a

very major part in the design of the structure. The most important
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aspect of the increased pitch is likely to be the allowance to be made

for the deck clearance above the instantaneous water surface.

The transient was also noted to be a function of the
hydrodynamic viscous drag damping available and was a maximum for a

value of Cy = 0.7 - this value is thought to represent a full scale

value where Reynolds numbers are supercritical.

The non-linear transient phanomenon has been demonstrated to
be a function of viscous drag forces and it is important, therefore,
to adopt an analytical procedure which will deal with the relative
speed squared term. Both the Wilson-6 1inearvacceleration method and
the multi-step integration procedures are appropriate. However, the
latter requires access to special routines, whereas the former is

readily programmed and requires no special support routines.

Deck Mass relocation and alternative geometric shapes for the
buoyancy chamber hofh contribute to improving the dynamic response.
In particular, the conical shaped buoyancy chamber gives a marked
improvement. Together these make a worthwhile contribution in

reducing dynamic response.

The effects of non linear waves and currents have been shown
to be important. Without currents, the non linear theory predicted
greater responses than those predicted using a linear wave theory.
The situation is worsened by an order of magnitude when currents are
considered in combination with 1linear waves and mean dynamic
responses were increased by 100%. Currents in combination with non

linear waves increased mean dynamic responses by only 25%.
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It is also noted that the mean position about which the
structure oscillates, under the action of waves and currents, is not
the mean which could be attributed to currents in the absence of

waves. This observation, together with that on the harmonic transient

motion, puts a more stringent requirement on the deck clearance to be

provided.

Finally, the swirling trajectories produced by the action of
multi-directional forces is to be noted. Although not of importance
in a maximum response sense, they may be considered very undesirable
in the context of the uncertainty associated with the direction of
travel and lack of preferred direction for response. This aspect may
play an even more important role from the point of wview of human

awareness and reaction to the motion response.
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CHAPTER 5

DYNAMIC INSTABILITIES OF ARTICULATED COLUMNS

Te INTRODUCTION

In Chapter 4 it was noted that articulated columns can
experience non-linear transient motions. The sensitivity of compliant
structures to transient or other non-linear behaviour means that it

~is important to have a thorough understanding of the motion

responses.

It is believed that instabilities can be experienced which
will result in non-linear maximum responses, for exciting frequencies
which are equal to and twice the natural pitch frequency of

articulated columns.

In certain conditions the restoring stiffness of compliant
structures, of which the articulated column is one particular
variety, may be reduced by virtue of the wave action and thereby
experience motion responses which are not sinusoidal and may even
become dynamically wunstable. These instabilities are commonly
referred to as Mathieu instabilities in so far as the equations of

motion can be shown to have solutions of the Mathieu type (63).

The natural frequency in pitch of most articulated columns is
very small so that first order wave excitation at that frequency is
most unlikely. However, it can be shown that wave trains which are
parmonic with the pitch period of the structure can occur. It is

necessary, therefore, to examine this possible mechanism as a source
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of excitation and to make an assessment of the likely increased

magnitude of the pitch oscillation.

This chapter first describes the development of the theory
and the way in which the various stiffness components act and then

goes on to examine their relative importance in the context of

Mathieu instabilities.

_The effects of the non linear relative velocity term in
limiting the onset of the instabilities is examined as are the
effects of wave growth and non linear waves. Also examined are the
effects of weight to buoyancy ratios and curfents. Some experimental

observations are presented and these are compared with analytical

results.

‘Finally, a description of the way in which wave groups may be
generated as a consequence of the superposition of two separate
reqgular wave trains with slightly different frequency travelling in
the same direction 1is given. BAnalytical results for a structure

subject to wave groups are presented.

2. MATHIEU INSTABILITIES

Essentially these instabilities are predicted when structures
with time varying stiffness properties are subject to sinusoidal
\excitation at about twice the natural frequency in surge or pitch of
the structure. It is also suggested that the range of exciting
frequencies may extend to ratios of exciting frequency to natural

frequency greater than 2.
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Structures with n;tural periods in excess of 75 seconds, such
as those considered in Chapter 4 may, in certain circumstances,
experience these dynamic instabilities, as a consequence of the
installation procedure which might be utilised. There may be periods
of time during installation when the structure will have a natural
frequency considerably higher than the final in situ natural
frequency. Exposure to exciting forces at critical phases in the
installation is obviously undesirable and it is considered,
therefore, that the question of dynamic instabilities of this type be

fully investigated.

Smaller structures in shallower watef with pitch periods of
~the order of 35 to 40 secs will almost certainly be wvulnerable.
Indeed, the majority of existing applications for articulated columns
occur in water depths of 1less than 140 metres. Most of these
structures are used as loading platforms and mooring terminals so
that for the majority of time they will have a tanker attached. This
may help to suppress the onset of the instabilities since the natural
surge period of the combined terminal and tanker will be very much
larger than that of the terminal itself. However, problems may be
encountered in the mooring phase if wave frequencies are such that
there is a tendency for instabilities to develop. There are no known
reports of instabilities having been observed at the full scale.
However, there is one report (64) of an articulated column having
become detached from its mooring although it is not known if this was

directly attributable to the onset of instabilities.

The dynamic instabilities are \considered to manifest
themselves as a consequence of the wvariation in the pendulum

restoring stiffness which can be considered to comprise two
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components, viz:-
a. a component attributable to the variation in heave forces

b. a component attributable to the instantaneous position of

the structure in the wave.

The heave force component can be considered to comprise an
,added mass part and a part attributable to the variation in pressure
on the upper and lower faces of the buoyancy chamber as a consequence
of the wave profile. Depending on the geometric configuration of the
buoyuancy chamber these two parts may be in phase or not. The added
mass portion will be downwards in a wave crest and upwards in a wave
trough. The evaluation of the two parts is described in more detail in

section 2.2.

In respect of the second component it can be shown that, when
expanded, the expression for the surge force which accounts for the
excursion of the structure contains a term in x which can be taken
over to the left hand side of the equation of motion. This term can be
considered as additional to the pendulum stiffness term and is also
in phase with the added mass part of the heave force. It is the
combined effect which assists the onset of dynamic instabilities. It
is necessary to examine the combined effects of the three components
in a realistic assessment of the possibility of dynamic

\

instabilities.

In addition to the components mentioned above, the wviscous
(speed squared) damping is considered to play an important part in
the 1limitation of the growth \of the instabilities and the
contribution of viscous damping increases as w/wn tends to unity so

that an adequate investigation must make a realistic assessment of



the contribution of non linear damping in the analysis.

Dynamic instability is a non 1linear phenomena and it is
\appropriate that the phenomena be investigated in a way which will
adequately account for any non linearities involved. Accordingly
this chapter sets out to examine the effects of the aforementioned
components in combination with each other and in a manner which

allows for the variations on an instantaneous time incremental basis.

2.1 Equations of Motion

In the first instance, neglecting for the time being the
heave forces and with reference to figs. 5.1 and 5.2, consider the

equation of motion,
ITe + CO + K56= M (5.1)

Neglecting potential damping and also, for the time being,
neglecting viscous drag damping and the velocity forces the equation

of motion can be written:-

Ip6 + K 0 = X.r.sinwt (5.2)

T

where X.r is the maximum pitching moment perpendicular to the

structure axis and

(Mass + Added Mass) moment of inertia

-
3
|

Kg = Pendulum stiffness

2]
I

radius from articulation to the centre of force

It is noted that r is a function of the exciting frequency ¢ and of
the elevation of the buoyancy chamber. Equation 5.2 accounts for the

forces on the structure assuming it to be stationary in the waves.
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In order that the instantanecus position of the structure

relative to the reference axis of the wave is accounted for, it is
necessary to rewrite equation 5.2 to allow for the excursion of the

structure in the wave thus:-
Ipf + K 8 = X.r.sin(kx - wt) (5.3)

where k is the wave number = 27/L and x is the excursion of the

structure in the wave.

Expanding equation 5.3 by assuming that for kx « 1 that

sinkx = kx and coskx = 1 then:-
I + KB + kx.X.coswt.r. = X.r.simwt (5.4)
Now Kg = Bp.RKB-W.RKG

_where Bp = Buoyancy force
W = Weight of structure
RKB = Distance from pivot to centre of Buoyancy
RKG = Distance from pivot to centre of Gravity

and 0 = x/r.

For the purposes of illustration, accepting that the buoyancy
chamber is the element which attracts the major portion of wave
forces, then r = RKB. (The computer program calculates forces on

elemental lengths of the structure and the correct force and buoyancy

distribution is thereby assured.)

Then the equation of motion can be written:-

ITé + [(Bp+RKB - W.RKG)/RKB + k.X.COSWt.RKB]x = X.RKB.sinwt (5.5)
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‘cOnsider the stiffness term:-

[(Bp.RKB - W.RKG)/RKB + k.X.coswt.RKB]x (5.6)

The second and additional term will render the total
stiffness to be sinusoidal in nature. The right hand side of the
.equation of motion now expresses the forces on the structure assuming
that it remains stationary relative to the frame of reference of the

wave.

It is also noted that in the physical sense this extra term,
strictly speaking, is not a stiffness componént in that it does not
contribute to a variation in the tension in the lower column but that
it is merely a force term in x and as such can be included in the
 stiffness term which is also expressed in x. In respect of the
calculation of the wave exciting forces, it is noted that exactly the
same result is obtained for the response when the right hand side
expression for force is of the type X sin(kx - wt) as is obtained when
this expression is expanded and the right hand side of the equation is
of the form X sinwt, the rest of the expression having been
transferred to the left hand side of the equation and included in the

stiffness term.

2.2 Time Varying Stiffness

The foregoing analysis assumes that the tension in the lower
member remains constant, as it is clearly unaffected by forces

perpendicular to the axis of the structure.



2.2.1 Calculation of Heave Forces

A rigorous analysis of the heaving forces on a floating
structure would necessarily require the determination of the pressure
and inertia components which are both functions of the wave profile
with respect to the body. Under a wave crest the pressure forces may,
depending on the geometry of the buoyancy chamber, act downwards and
the 1inertia forces, as a consequence of the wave particle
~accelerations, will act downwards. Conversely, in a wave trough the

opposite situation will prevail.

2.2.2 Pressure Forces

The Froude-Krylov pressure change on the top and lower faces

of the buoyancy chamber as a consequence of the wave profile, can be

written:-
KLy, 2
Pressure Force = [-oqaoe ‘(sz - WR1)
—k(L1 + L) ) 5
+ pgaoe '(nR2 - nR3)]cos(kx - wt) (5.7)

The first term inside the bracket is the pressure force on
the top face of the buoyancy chamber and the second term is the

pressure force on the bottom face.

This expression reduces to:-

2

-kL
1 - ¢ 2(R2 - R3)}cos(kx -wt) (5.8)

-kL 2
Pressure Force = - ﬂpgaoe l{R2 - R
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The pressure forces can be cancelled out for any particular wave
frequency by setting the term inside the square bracket equal to
zero, ie ratios of R,/R; can be chosen such that cancellation occurs

for a given wave frequency, ie

2 B 2
CRI(1 - ) = R| - Rje (5.9)

2.2.3 Inertia Forces

In the case of a submerged buoyancy chamber with concentric
cylinders protruding from the upper and lower faces the calculation
of the inertia forces will require the determination of the added
virtual mass coefficients for the upper and lower faces. This can be
calculated on the basis of a strip theory and will be a function of
the aspect ratios of the buoyancy chamber, the upper support column

and the lower column.

The inertia force can then be written:-

3 3 ~kL
Inertia Force = {- %pﬂJ(CVRZR - CVRlRl)kgaoe 1 cos(kx - wt)

2
(5.10)
2 3 2 -k(L; + L,) W
- 3DWJ(CVR2R2 - CVR3R3)kgaoe 2" cos (kx t)}
This reduces to:-

. 2 -KL 3 -KL,, _ 3

Inertia Force = - EpﬂJkgaoe 1{CVR2R2(1 + e ) CVR R}
(5.11)

- e Kby CVR2R§}cos(kx -wt)
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The total force can be written thus:-~-

Total Heave Force = Pressure Term + Inertia Term

_ -KL 2
=pTga e 1 {Rz(l

1
(0]
=

t
Iy
+

0]
|
N

2
Ry
(5.12)

2 3 -KL 3 kL 3
+ 3IK[CVR,R(1 +e7772) - CVRR] - e 2 CVR,R;] Jeos (kx - wt)

It is not possible to cancel the inertia component of heave
forces for a particular wave frequency, as is the case for pressure
forces. However, zero heave force can be achieved for the combined
pressure and inertia terms by the variaion of R2, L2 and R3, assuming
that R4 is fixed. Both components should be assessed separately in

order to make an appropriate choice of buoyancy chamber dimensions.

The heave force as given by equation (5.12) has been computed
in the form of subroutine HEA. This routine requires as input,
dimensions of the buoyancy chamber together with added mass
coefficients CVR4y, etc. The routine was incorporated into the time
gimulation program to provide both pressure and inertia components of
the heave force where CVRy; etc are the added virtual mass
coefficients which are functions of the aspect ratios mRq/2Lq, etc.
J = 0.635 and takes account of the three dimensionality of the flow.
The basis upon which the added virtual mass coefficients CVR,, etc
,are calculated is outlined in Appendix 5.1 which also shows the
variation of the coefficients with the aspect ratio. The total force
may then be calculated on the basis of the summation of individual

strip components.
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Consider now the inclusion of a time varying heave force on
the structure. If we say that the maximum heave force along the axis

of the structure |is TI then this will wvary «cyclically as
TI.cos(kx - wt) where TI is the inertia component of the heave force.
\

When the geometry of the buoyancy chamber is such that the pressure

component also acts downwards in a wave crest then this will also be
included in T. Viscous wave forces also contribute to the heave
component but this is small in comparison with the predominant

inertia forces.

Then, the stiffness term will become:-

{ (Bp +RKB-W.RKG) /RKB + kX.COSWt.RKB + T.cos(kx - wt)}rx  (5.13)
and this reduces to

{(Bp .RKB-W.RKG) /RKB + (kX.RKB + T)coswt}x (5.14)

The second part now contains an additional term as a
consequence of the variation in the heave force and this is in phase
with that term which accounts for the position of the structure in the

wave.

Now the equation of motion:-

K
\ ITe' + r—s + (kX.r + T)coswt) x = X.r.sinwt (5.15)
can be rewritten
. 3 _
6 + (1 + bcoswt)x = T +Tesin t (5.16)
T
Tor + kx r2 2 _k
where b = =—— "2~ and w~ = s
KS E—



By setting the RHS of the equation equal to zero, then:-

é + w2(1 + bcoswt)x = 0 (5.17)

which is Mathieu's equation and defines stability boundaries as shown

in fig. 5.3.

The relative magnitude of the stiffness terms discussed is
shown in fig. 5.4. These results have been computed incorporating
subroutine HEA which computes the pressure and 3inertia heave
components of force separately. The dimensions of the structure are
as shown in fig. 5.1 and the aspect ratios used for CVR4, CVR, and

CVR3 were 1.8, 1.65 and 2.5, respectively.

With reference to the bottom set of curves shown in fig. 5.4,
ie the restoring stiffness; curve 1 is the simple pendulum stiffness
of the structure. Curve 2 is the pendulum stiffness plus the pressure
component of heave force. Curve 3 is the pendulum stiffness plus the
pressure and inertia components of heave force and curve 4 1is the
total restoring stiffness, ie the pendulum stiffness plus the heave
forces plus the contribution from the component which accounts for
the position of the structure in the wave. For this particular
stucture, the pressure component of heave force is acting in phase

with the inertia component.

It would appear, therefore, that in this case the kX
component makes the major contribution to the stiffness. The kX
_contribution is proportional to the frequency squared (k,=w2/g) and
can thus increase rapidly with frequency although the effects will

probably be limited by the decrease in response as w/“ﬁ increases.
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2.3 DAMPING

Adequate representation of damping is necessary in the
realistic assessment of motion response and potential damping has not
been included in the above analysis. Potential damping is likely to
be small for the low frequencies which are of concern in respect of
possible dynamic instabilities. Material damping is only possible at
the articulated Jjoint for this SDOF model but this cannot be

quantified and is assumed to be zero.

@he only other available form of hydrodynamic damping

available is viscous and so the relative .velocity terms must be
adequately accounted for and its role in limiting unstable responses
assessed. The non linear viscous drag components normal to the axis
of the structure have been included in this investigation and the

effects on the response investigated.

As mentioned, the viscous wave forces will make a

contribution to the heave component. These would be 90° out of phase
with the inertia forces and are much smaller in magnitude and

unlikely, therfeore, to affect stability boundaries significantly.

3. ANALYTICAL RESULTS

3.1 Effects of Time Varying Stiffness

In order to investigate +the dynamic instabilities the

computer program described in Chapter 4 was adapted to,

a. take account of the instantaneous position of the
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structure in the wave in the calculation of wave forces, and

b. take account of the variations in vertical tension as a
consequence of the heave force in calculating the restoring

stiffness.

The analytical results obtained show evidence of
instabilities occurring for wave frequencies of twice the natural

frequency in pitch and greater and these are presented.

Figures 5.4 to 5.15 relate to a model articulated column of
the same dimensions as the experimental modei‘éescribed later and as
shown in fig. 5.1. The analysis for these results is by means of the
Wilson-8-linear acceleration method. For these figures the top plot
is the wave profile, the 2nd plot is the pitch response in radians,

the 3rd plot is the viscous damping force, the 4th plot is the

restoring moment and the bottom plot is the restoring stiffness, Kg.

The results for figs. 5.16 to 5.27 relate to €full size
structures and the analysis is by means of the Adams multi-step

integrator. In these figures the plot of the restoring moment has

been omitted.

Figure 5.5 is a plot of the pitch response versus time for a
model structure with a natural period in pitch of 4.95 seconds. The
wave height is 0.15 metres and period 1 second so that the ratio of
natural period to exciting period is 4.7 (or w/w, = 4.7). There is
evidence of a slight transient which is harmonic with the natural

period in pitch but otherwise the solution is stable.
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Figure 5.6 shows the ¥esponse for the structure subject to a
0.15m wave with period 2 seconds (wﬂun = 2.47). Viscous drag damping
is zero for this case. The wave frequency response has increased as
expected and again the transient harmonic response is present,

however the response is stable with no signs of instability.

The response for the structure subject to a 0.05m wave with
period 2.5 seconds (w/wn = 2) are given for viscous drag coefficients
of zero and 0.6 in figs. 5.7 and 5.8, respectively. Vertical heaving
forces are not included in the analysis. The response for zero
damping is slightly greater than that for Cp = 0.6 but is otherwise

stable. The harmonic transient is evident at the pitch frequency.

Figures 5.9 and 5.10 are similar but include the heaving
forces in the analysis. The transient is more pronounced and in the
case for zero damping (fig. 5.10) the transient is increasing in
magnitude. So that even at this very low level of excitation (wave

steepness = 0.005 or 3.6% of maximum) the instability is present.

Figures 5.11 and 5.12 are similar plots for 0.15m wave (15
metres full scale) and including vertical forces. The transient for
the case of zero damping, ie fig. 5.12, is more pronounced than that
in fig. 5.11 and appears to be increasing in magnitude. The large
increase in the magnitude of the response when w/'wn = 2 (fig. 5.11)
compared to that for w/w, = 2.47 (fig. 5.6) 1is apparent from
inspection of these two plots. The increase is 35% and is calculated
on the basis of the maximum response in each case, ie the transient

response.

Figure 5.13 shows the response for the same wave but
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excluding heave forces in the analysis and with zero viscous drag.

The response is similar to that of fig. 5.11 (heave forces included
= 0.6).

CD 0.6)

3.2. Effect of wave growth

The results obtained and shown in figs. 5.4 to 5.13 are those
allowing for an exponential wave growth starting from zero and
growing to full height over the first 4 wave cycles. Observations of
wave growth in the experimental tank suggest an exponential growth.
Real waves almost certainly assume a gradual growth to their full
height although the precise nature, whether linear or exponential is

uncertain.

It is necessary to assess the effects of the nature and rate
at which waves grow to their full height on dynamic instabilities.
Accordingly, the following results have been obtained for varying

rates and type of wave growth.

Figures 5.14 and 5.15 show the response for waves at twice
the natural frequency neglecting viscous damping and with heave
forces excluded and included, respectively. The wave growth is
imposed exponentially over 2 wave cycles. The transient is very

pronounced in fig. 5.14 but the response is limited and stable.

The response in fig. 5.15, which includes vertical heave
forces, shows an increasing instability and is much more pronounced

than that of fig. 5.12 (4 cycles wave growth).

Figures 5. 16 and 5.17 show responses obtained for linear
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wave qro%th and exponential wave growth, respectively. The response
for the linear wave growth is limited in magnitude whereas that for
exponential growth. is unstable. For the case of the exponential
growth it is noted that the response does not become negative in the
first cycle, whereas that for the linear growth displays a slightly

negative response in the first cycle.

3.3. Effect of Linear Theory and Stokes Fifth Order Theory

A comparison of the effects of the use of linear theory and
Stokes fifth order wave theory in the calculation of particle
kinematics was made in Chapter 4 and some of the results indicated

substantial differences in the response obtained.

In examining the dynamic instabilities of larger structures
with small pitch frequencies the offending waves will themselves have
fairly small frequencies so that a 1linear wave description is
adequate. However, smaller structures in shallower water will have
much greater pitch frequencies and the associated waves at twice the
frequency may be steeper and assume a more non linear profile. It is
pertinent therefore to examine the effects of non linear waves on the

dynamic instabilities.

A measure of the magnitude of the damping force is obtained
by observation of figs. 5.18 and 5.19. The damping force in fig. 5.18
is drawn to the same scale as the restoring force whereas the damping

force in fig. 5.19 is drawn to a much reduced scale for clarity.

Figures 5.20 and 5.21 show the responses obtained using

linear wave theory and Stokes fifth order theory, respectively. The
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response in fig. 5.20 is unstable whereas that in fig. 5.21 is limited
in magnitude, although the transient oscillation persists. It is

noted that vertical forces have not been included in the analysis.

The damping forces in each case are of the same order of
magnitude for the first 1.5 cycles so that it is not obvious that the
damping in the Stokes fifth order solution is preventing the onset of
the instability. For the wave considered, the linear theory is
probably predicting inertia and drag components of force greater than
those predicted by the Stokes theory (see Chapter 4, section 2.4). It
is worth noting that in both those cases the wave is growing linearly

in magnitude over one cycle.

3.4. Effects of Elevation of Buoyancy Chamber and Weight to
‘Buoyancy Ratio

It is instructive to compare responses for varying elevations
of buoyancy chamber and weight to buoyancy ratios. Figures 5.22 and
5.23 show the responses for a full size structure with depths of
submergence of the buoyancy chamber of 20 and 25 metres below the SWL,
respectively. Vertical forces have not been included and it is
apparent that differences in response are minimal. Similar plots
which include heave forces in the analysis are shown in figs. 5.24 and
5.25 and it is observed that the motion is marginally more stable for

the structure with the greatest depth of submergence.

The effects of variation in the ratio of weight to buoyancy
are shown in figs. 5.26 and 5.27 for ratios of 0.375 and 0.333,
respectively. The transient oscillation persists even for those
relatively small ratios of weight to buoyancy and it is apparent that

the decreased ratio does not contribute to limiting the response of
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the structure. However, it is noted that for both of these figures
that the wave forces are increased to the maximum value in the first

wave cycle.

3.5 Effect of Current Orthogonal to Waves

The effects of non co-linear exciting forces was investigated
and discussed 1in Chapter 4, section 3, and complex swirling

trajectories were observed.

The phase lag of the response of the structure subject to non
colinear exciting forces will be much the séme as for the structure
subject to colinear exciting forces. However, the effects of the
heaving forces acting together with the out of plane movement of the
structure requires <consideration in the <context of dynamic
instabilities. Accordingly, some analytical results have been

obtained and are presented.

Figures 5.28 and 5.29 show the effect of a 1 metre per second
current orthogonal to the direction of wave travel for the structure
excluding and including heave forces in the analysis, respectively.
The transient oscillation is evident in both cases but appears to be
somewhat more pronounced than that which was obtained for the single

degree of freedom structure.

The maximum response for the case including heaving forces is
some 20% greater than that obtained excluding heave forces. The
trajectory orthogonal to the direction of wave travel is also greater

when the heave forces are included in the analysis.
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4. EXPERIMENTAL OBSERVATIONS

Analytical @techniques are an economic way of obtaining
information on motion response characteristics. However, in order to
validate certain analytical results it is necessary to undertake
physical model tests. The scaling problems have to be borne in mind
in assessing the wvalidity of the results when it is intended to

extropolate these to the full scale situation.

A 1/100 scale model was adapted so that it was large enough to
permit the variation of ballast mass inside the buoyancy chamber. The

experimental model is as shown in fig. 5.1.

The 1logarithmic decrement of damping (§ = 27R) for the
experimental model subjected to an initial displacement and allowed
to oscillate freely, indicated approximately 2% to 6% of critical
damping (8 = 0.02 to 0.06) and this is shown in fig. 5.34. It is
considered that the nature of the hinge connection will impose little
or no damping, so that most of this is attributable to hydrodynamic
damping. Furthermore potential damping is likely to be minimal for
this relatively low frequency of oscillation so that the majority of

the damping is likely to be viscous in origin.

Some experimental observations of the response of the model
articulated column were obtained for exciting frequencies of the
order of about twice the natural frequency of the model and these are

presented.

Three operating conditions were simulated, viz:-

1. Basic model with no additional mass on the deck or in the

136.



buoyancy chamber.

Natural period in pitch = 4.0 seconds.

Ratio of weight to buoyancy = 0.34

2. Basic model with 2Kg mass added to the deck.

Natural period in pitch = 5.0 seconds.

Ratio of weight to buoyancy = 0.43

3. Basic model with 4Kg mass added to the inside of the
buoyancy chamber and zero deck mass.

Natural period in pitch = 5.2 seconds.

Ratio of weight to buoyancy = 0.52

Conditions 2 and 3 enable a comparison to be made of
responses for structures having the same natural frequency but with
different ratios of weight to buoyancy. A measure of the importance

of this can then be made.

Condition 1 - fig. 5.30 shows the response in pitch for the
model subject to a wave at twice the frequency of the structure. It is
noted that the response is not sinusoidal with the frequency but that
there 1is a transient oscillation at the natural frequency of the

structure.

Figure 5.31 shows the response in pitch for the model subject
to a wave of equal height to that of fig. 5.30 but at 2.8 times the
natural frequency of the structure. The transient has disappeared and

the response is approximately 50% of that in fig. 5.30.

Conditions 2 and 3 -~ figs. 5.32 and 5.33 show the response of

the model for conditions 2 and 3 respectively and for the same wave at

twice the frequency of the structure.
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The transient is much more pronounced in fig. 5.33 (condition

3) and the maximum response is approximately 15% greater than for
fig. 5.32 (condition 2). Evidently the increased weight to buoyancy

ratio has a significant effect on the response as would be expected.

The experimental result of fig. 5.32 (condition 2) bears
direct comparison with fig. 5.5 which is the analytical prediction of
the same structure subject to the same wave. The maximum pitch
response recorded experimentally was + 53mm and the minimum recorded
was - 40mm. The maximum pitch response apparent from fig. 5.5 is +
0.02 radians = + 50mm (-6% difference) and the minimum was 0.0175

radians = 43.7mm (9% difference).

The important observations to be made from the experimental

results are:-

a. the increased response, and

b. the transient oscillation.

In fig. 5.33 the magnitude of the minimum oscillation is
about 50% that of the maximum frequency response oscillation, whereas
in fig. 5.32 the minimum response was approximately 85% of the
maximum frequency response oscillation. Therefore, the increased
weight to buovancy ratio has the effect of increasing the maximum
response while, at the same time, decreasing the magnitude of the

minimum response.

It is interesting to note that the transient is qualitatively
similar to the transient which the analysis predicts and is also in

agreement with the transient as predicted by others (25). There is

also reasonable quantitative agreement between the experimental
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response and the analytical response for the part prior to the onset

of the instability.

5. RESONANT RESPONSES

5.1 Wave Groups

In the absence of non linearities the response of a structure
will be harmonic with the exciting wave frequency and symmetric about
the axis of oscillation. When the motion of the structure is
accounted for, second order forces which have the effect of imposing
a nett force in the direction of the wave tfavel can be generated.
Some of the consequences have been examined in Chapter 4 and in the
preceding section of this chapter. The steady drift phenomenon has
been comprehensively investigated (45) and a survey is presented in

Reference (65).

Although the magnitude of the second order forces may be
small in relation to the wave forces it may have a frequency component
resonant with the natural pitch frequency of the structure and large

motions may ensue as a consequence.

It is considered that one such way in which the resonant
mechanism may be generated is as a consequence of wave groups
harmonic with the natural frequency in pitch of the structure. Wave
groups may be generated when two reqular wave trains of slightly
different frequency are travelling in the same direction. A second
order 'set-down' wave may be generated as shown in fig. 5.35 and this
induces an inertia force contribution, albeit small, at the set-down

wave frequency.
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With reference to fig. 5.35; consider two waves of equal
height 2al-and 2a2 of frequency wy and Wy travelling in the same
direction and in phase with each other. The pure beat phenomenon will
ensue as shown and the resultant maximum amplitude of the wave

envelope will be equal to twice the wave amplitude, ie 2aq.

The amplitude of the composite wave is then written:-

= k - w
n a1cos( 1x

N t) + a cos(kzx - wzt) (5.20)

1 2

The resultant wave group will have a period equal to 21T/(w2 - w
seconds. The composite wave will have a £frequency w5 equal to

é(w2+ wqy,

The amplitude of the wave envelope can be written:-

Aa = 2a cos(—g——————)t (5.21)

The composite wave has been modelled computationally on the basis of

a regular wave with frequency ., having an amplitude varying with

a

time in accordance with equation 5.21. The wave surface at any

instant in time is taken as the value computed in accordance with
equation 5.20. No attempt has been made to model any 'set-down' wave

or any second order inertial contribution to the exciting force.

The results for the response of a structure with a natural
period in pitch of 67 seconds are shown in fig. 5.36. The wave periods
used were 10.2 seconds and 12 seconds. This produces a wave 'beat' or
group with a frequency = 21/(w, - w,) = 0.0938 radians per second or
period = 67 seconds. The height of both waves was 5 metres. The
resonant response at the natural pitch frequency is very evident and

displays some attenuation with time. However, the 'steady state'
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harmonic response is still some 100% greater than that obtained when
the structure is subject to regular waves with a period equal to the
average of both waves, ie 11 seconds and height 10 metres - this

result is shown in fig. 5.37 for comparison.

Figure 5.38 is the result for waves with periods of 10.9
seconds and 13 seconds each of height 5 metres. The harmonic resonant
response is somewhat better defined than that of fig. 5.36. Again for
comparison, fig. 5.39 shows the results for a single wave train with

waves of period 12 seconds and height 10 metres.

Figure 5.40 is the result for waveé with periods of 12.3
seconds and 15 seconds, each of height 5 metres. The harmonic
resonant response 1is considerably increased and very much better
defined than for the previous cases. The magnitude of the harmonic
resonant response 1is some 200% greater than that obtained for a
single wave train with waves of period 13.6 seconds and height 10
metres. BAgain, for comparison, fig. 5.41 shows the response for
regular waves with period equal to the average of the two separate

wave trains.

A general observation from the wave group responses is that
the wave frequency response lags the maximum wave frequency forces by
180°, whereas the harmonic resonant response is almost in phase with
the node of the low frequency 'set-down' wave. This observation is
depicted in fig. 5.42 and concurs with the theoretical result for a
structure excited by a wave at the natural frequency, where in

general the response would lag the maximum forces by 90°.

Comparison of figs. 5.38 and 5.40 also show that there is a
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trend for rescnant responses *o increase fairly rapidly for
relatively small increases in the wave periods, +the ~ombined maximum

wave height of 10 metres remaining the same.

Figure 5.42 shows the response for waves each of a height 12
metres, ie 20% higher than for fig. 5.40, the response is increased by
almost 35%. It is also observed that the wave frequency oscillatory

response is greatly attenuated in the region of small group amplitude

and this is be expected.

6. CONCLUDING REMARKS

Dynamic instabilities have been observed both experimentally
and analytically and show reasonable quantitative agreement.
Qualitatively, the agreement is very good. The transient instability
is very pronounced for the increased weight to buoyancy ratio in the
experimental observation and this occurs in spite of the higher
damping which is probably present at the model scale and which may not

be present at the full scale.

The analytical observations would suggest that heave forces,
instantaneous position of the structure in calculating the wave
forces, viscous drag damping and starting conditions in respect of
wave growth for the time simulation analysis are all important

parameters.

While the omission of heave forces in the analysis may result
in an under prediction of the transient instability the nature and
rate of the wave growth clearly has an important part to play in the

motion response of the structure.



The inclusion of viscous damping clearly. has a moderating
effect in 1limiting the growth of the unstable motion. Potential
damping has not been included in this analysis and certain structures
subject to the shorter waves may generate some damping of this form.
Real structures operating at post critical Reynolds numbers may be
unable to generate the viscous damping necessary to moderate an
instability and may, therefore, be vulnerable to dynamic

instabilities.

Non linear waves suppress the onset of the instabilities and
it is noted that this result 1is in accord with certain results
obtained in the Chapter 4, where it was noted that the non linear wave
suppressed a transient oscillation which was predicted using linear
wave theory. It was also noted that the non linear wave predicted a
transient oscillation when the value of Cp was reduced to 0.6. This
suggests that there is more viscous damping available in the non
linear wave and is also an indication of the importance of damping in

limiting the onset of instabilities.

One possible way of generating wviscous damping would be to
fix 'damping' fins to the lower column. These need not be continuous
along the whole length and would be sufficiently distanced from the
surface not to attract very large wave exciting force. A disadvantage
may be the consequential increase in static pitch in steady currents.
However, current velocity profiles are seldom uniform with depth and
in general the higher wvelocities will be associated with ¢the near

surface regions.

The experimental results confirm that a reduction in the

ratio of the weight to buoyancy reduces the magnitude of the
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transient and this is to be expected. However, the analytical results
did not predict any reduction in the transient for reduced ratios of

weight to buoyancy.

The design of compliant structures should make allowance for
the possibility of dynamic instability. Production platforms in 250
metres of water and greater are likely to have natural periods in
pitch of the order of 70-80 seconds. These are unlikely to suffer

Mathieu instabilities from first order wave excitation.

However, there may be periods of time during the installation
when the structure will have substantially greater fundamental pitch
frequencies than the final operational frequency. In such situations,
Mathieu instabilities may be generated by first order wave
excitation. Therefore, installation procedures must make allowance in

this respect.

It has been demonstrated that wave groups which are generated
by two separate wave trains with slightly different frequencies can
give cause for concern. The analysis predicted large increases in the
resonant harmonic response when the period of the combined wave group
coincided with the natural period in pitch of the structure. The
precise nature of real wave groups may differ to those generated in
the analysis. Nevertheless, the ability of the analytical method to

predict instabilities is demonstrated.

Lighter structures in shallow water are 1likely to have
natural periods of the order of 30-40 seconds. In such circumstances,
the possibility of first order wave excitation Mathieu instability

must be fully assessed.
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Finally, all possible sources of excitétion at the critical
frequencies must be appraised and apart from the parameters
investigated already, special attention should be paid to the
possbility of encountering wave group frequencies in random seas,

wind gusting frequencies and long swell frequencies.
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CHAPTER 6

FREE VIBRATION AND FINITE ELEMENT FORMULATION

1. INTRODUCTION

The slenderness of articulated columns may render them
vulnerable to dynamic excitation and it is pertinent, therefore, to
perform a rigorous vibration analysis in order to assess the
importance of vibration, its implications, and the constraints which

may have to be imposed on any particular design concept.

Vibration frequencies will have some proportionality with
n2n2/ET7Eh4 where n is the vibration mode. The first three modes are
illustrated in fig. 6.1. The first is the fundamental pitch mode and a
column 1s unlikely to experience wave excitation at that frequency.
The second and third modes will have frequencies much higher than the
fundamental mode and may well fall within the range of wave
excitation. The second and third modes are the first and second

flexural response modes respectively.

The buoyancy chamber section will have a much greater flexural
rigidity than the upper and lower columns and will have some effect on
the mode shapes, in that the deflected shape over the length of the
buoyancy chamber will be much less pronounced than that for the lower
column. However, the mode shapes are unlikely to differ greatly

gualitatively from those shown in fig. 6.1.

An understanding of the dynamic response 1in these modes is



—.-

RIGID

- BODY MODE

1st.

29,

FLEX

RESPONSE MODE

L
- 2nd. FLEX
RESPONSE MODE

¢h

f“<\
\

N

DEFLECTION POLYNOMIALS

0,(x)

;
l AL _T//y
-_87).

UNDEFORMED

‘Jl ux=‘Y dx

DEFORMED

DEFORMATION OF ELEMENT

FIG 6.1

153.



154.

necessary not only 1in assessing primary structural requirements but
equally the operational requirements of ancillary production and

drilling equipment which will be contained in the lower column.

The structural analysis necessary in order to estimate the
vibration frequencies has been carried out by means of the finite
element method and the method 1is described and presented in this

chapter.

The analytical procedure thus developed has been applied to
typical structures and a number of parameter studies have been
completed to determine relationships with vibration frequencies. These
include the effects of water depth, plating thickness of lower column,
deck mass relocation and configuration, riser mass, axial loads,
buoyancy chamber dimensions and the effects of ballast placed at the
bottom of the lower column. Although not an exhaustive parameter
study, it is, nevertheless, comprehensive in examining those
parameters thought likely to have the greatest influence on the
vibration characteristics of the structures and hence on the design

appraisal of any particular concept.

The practical implications of the existence of the second mode
vibration are assessed in terms of structural requirements and water
depth limitations. Typical nett structural weights as a function of
water depth and deck mass are also presented and this gives a
preliminary guide to the structural steelwork weight requirements

likely for a particular application.

Finally, a column with a full fixity encastre connection at

the base 1is analysed in terms of first, second and third resonant
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flexural modes. Operational water depth ranges are suggested to avoid

resonant excitation of first and second flexural modes.

2. DETERMINATION OF FREQUENCY MODES

2.1 Undamped Free Vibration

The equations of motion for free undamped vibration can be
obtained by omitting the damping and forcing terms and 1is written

thus: -
Mx +IKlx = 0 (6.1)

where [M] and [K]l are mass and stiffness matrices for beam elements

assembled as described in section 3.

By analogy, with the behaviour of SDOF freedoms it is assumed
that the notion 1is simple harmonic and can be expressed for a multi

degree of freedom system (MDOF system) as:-
x(t) = {glexp(jwt) (6.2)

where {gq} is a vector of the relative amplitudes of displacement.

Substituting equation (6.2) into equation (6.1) gives:-
2
(K - w™™M{gq} =20 (6.3)

In order that finite amplitude oscillations are possible and to obtain
- . . . 2
a non-trivial solution to equation (6.3), the determinant, “K -w MH

must equal zero, ie,
lx - wZMH =0 (6.4)

Equation (6.4) 1is called the frequency equation. The solution

of the determinant will give an algebraic equation for the Nth degree
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in the frequency parameter wz for a system with N degrees of freedom.
The N roots of the equation represent the frequencies of the N

possible vibration modes of the system.
For real, symmetric, positive, definite stiffness and mass
matrices K and M which pertain to stable structural systems all

roots of the fregquency equation are real and positive.

The solution of the frequency equation is discussed in more

detail in section 4.3 of this chapter.

3. FINITE ELEMENT IDEALISATION AND STRUCTURE ASSEMBLAGE

The finite element method (66,67) is an established and
accredited method for 1idealising structural assemblages in discrete

elements.

The extent of the usage in this study has been confined to
beam column elenents and this type of element idealisation 1is
considered satisfactory in the analysis of tubular truss structures
and for structures with «cylindrical (circular or other) member
sections such as those anticipated for use with articulated columns.
More sophisticated structural idealisations are available for the
analysis of shell and plate structures and are essentially derived in
terms of an appropriate polynomial which is used to express deflected

shapes and boundary conditions.

Essentially, the finite element method implies that the
structure can be idealised by a system of discrete elements which are

connected by a finite number of nodal points. The properties of the
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complete structure are then found from the evaluation of the
individual element properties and then combining these as necessary to
reflect the complete structural behaviour. This idealisation reduces
the problem of .modelling a total structural stiffness to that of

evaluating the stiffness of individual elements.

Stiffness matrices may be formed from the classical beam slope
deflection theory or by energy methods. However, in dynamic problems a
mass matrix will be required and this should be formulated in an
energy consistent manner. Accordingly, for completeness the energy
consistent method for the formulation of stiffness and mass matrices

is outlined in the following sections.

3.1 Shape Functions and Stiffness Matrices

Consider the beam element shown in fig. 6.1. If only tranverse
deflections are assumed then the element will have two degrees of

freedom at each node, 1ie one translational and one rotational.

The deflected shapes which are obtained for a unit
displacement of each type ie, translational and rotational, are also
shown. These deflected shapes are generally assumed to be those
developed 1in a wuniform beam given these displacements and are cubic

hermitian polynomials which can be expressed as:-

1 - 3(x/2)2 + 2(x/2)3 (6.5)

wl(x)

%x(1 - x/8)2 (6.6)

lpz(X)

the shape functions for unit displacements at the right end are:-

V() = 3(x/0)% - 2(x/8)3 (6.7)
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V0 = %/ - 3 ‘ (6.8)

Using these interpolation functions the deflected shape of the
element can then be expressed in terms of its nodal displacements.

r{x) = wl(x)ﬁ‘ + w2(x)r2 + w3(x)r3 + w4(x)r4 (6.9)
where the degrees of freedom are shown in fig. 6.1, or generally:-
r* = [a {r ) (6.10)

Now strain € is the spatial rate of change of displacement and
we can relate the internal strains €& at a point to the nodal

displacements thus:-
e* = [B] {r } (6.11)

where [B] 1is formed from the appropriate differentiation of [A] in

equation (6.10).

Equating the external work done by external forces WE to

internal work done on internal forces ie, the strain energy Ug -

Now AWE = 'jkr*T.Z.d(Vol) + Jkr*T.S.d(area) + érTF (6.12)
where (2) the body force vector.

(s) the surface force vector.

(F) the nodal force vector and 6r* = A §r
Now AUS= jge*T.o.d(Vol) (6.13)

where ¢ is the internal stress vector.

Now ¢ = [D]{e} where [D] is formed from terms containing

Youngs modulus and Poissons ratio for the material used.
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By the principle of minimum potential energy:-

U -w_ =20
S E . (6.14)
So that:-
~ ASXTA~ATN rr.,* 7 AT~ Tf ~AT
jhg .g.d(Vol) -ISr* .Z.d(Vol) J%r* d(area) - GrEF =0 (6.15)

Substituting for 8, 6r*, it can be shown that:-

T T
jB .D.B.d(Vol) ry = {F} + fAT.z.d(vOl) + /A .S.d(area) (6.16)
which can be written symbolically as:-

[kl {x )= {F}+ {Feq} (6.17)

T
where [X] =[[[E .D.B.d(Vol) (6.18)

which 1is the stiffness matrix for the element. {Féq} are the
concentrated nodal forces equivalent to the distributed forces on the

element based on these doing the same work as the distributed loading

under virtual displacements.

By way of illustration of the process involved, the first term

of the stiffness matrix for a beam element is derived as follows.

Consider the deformation of the element according to simple beam

theory and as shown in fig. 6.1. Assuming that plane sections remain

plane then the axial displacement Yo« due to the transverse
displacement y is given by Yo =~ v.8r/8Xx where y is the distance
from the neutral axis.

The axial strain € = Grax/éx = - y.GZﬂ/6x2

The term 6%*/6x2 is the second derivative of the shape
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functions given by equations (6.5) té (6.8).

Y

23

Hence, [B] = - & ( 12x - 62),2(6x - 42), - (12x - 6%), 2(6x - 22))

Recalling equation (6.18):-

[x] = j[fBT.D.B.d(VOU (6.19)

L
or writing [K]:Efdx fj’BT.B.d(Area) (6.19a)
[¢} ‘Area
since D = scalar E

L

Now, for the first element [K] = ?/;x lyl E¥§l2x - 6£ﬂ 2 d (Area)
(e] Area “-§

Wheriﬁ;sz = Moment of Inertia (I)

g,
Then[K] = EI]%(12X - 63)%.ax (6.19b)
o 2

. . . . . 3
Integrating and substituting for ¢ gives the first term as 12EI/¢{ and

so on for the remaining terms.

The complete integration of equation (6.18) yields the

stiffness matrix for a beam element, ie:-

— -
12 64 -12 68
2 2
ET 48 -64 2%

[KJ =3 (6.20)
'} Symm 12 -62
a8

Thus, we have the means to develop stiffness matrices depending on the
degree of sophistication required and the physical form of the

elements and this is reflected in the choice of the shape functions.



161.

The literature contains comprehensive information in this
respect (68). If axial deformations were to be included, these would
be uncoupled from the flexural deformations and would result in an
additional ARZ/I term in the stiffness matrix at locations pertaining
to the axial translational degrees of freedom. The resulting stiffness

matrix would take the following form:-

(22 /1 0 0 -2/t 0 0]
12 62 0 -12 68
2 2
ET SYMM 42 -0 -6k 28 (6.21)
[x] == )
L ALT/I 0 0
12 6%
2
8 a8” |
However, this form requires extra computation and some early

analysis which compared the results obtained by wusing the forms of
(6.21) and (6.20) showed that the translation and rotational
deformations obtained were identical. This 1is as expected in
consideration of the uncoupled degrees of freedom. The extra
computation time required for the form of (6.21) was not Justified
and, consequently, the form of (6.20) has been adopted and is
adequate. Furthermore, it can be augmented in consideration of axial
forces by an additional geometric stiffness matrix which is discussed

later.

The stiffness matrix is symmetric about the leading diagonal
and this is attributed to Betti's law which states that the work done
by one set of loads on the deflection due to a second set of loads 1is

equal to the work of the second set of loads acting on the deflections

due to the first set of loads. Compliance determines that K = KT

’

ie symmetry.
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3.2 Mass Matrices

3.2.1 Lumped Mass Matrix

The simplést procedure for defining the mass properties of an
assemblage of finite elements is to assume that the mass contribution
from each element is distributed to the corresponding nodal connection
points relating to the translational degrees of freedom only.

Figure 6.2 illustrates the way in which this is achieved.
This assumes that only translational degrees of freedom are
relevant and results in a mass matrix with only diagonal terms - the

off diagonal terms being zero.

The form of the lumped mass matrix is then:-

for a system with n translational degrees of freedom.

If rotational degrees of freedom are to be included then the
matrix diagonal element corresponding to that degree of freedom will
be zero. This condition must be satisfied since it is assumed that the

mass is 'lumped' at points which have no rotational inertia.

The lumped mass matrix, although attractive in computational
terms, does present problems when rotational degrees of freedom are
included and when the stiffness matrix has been assembled in an energy

consistent manner. That is to say, the stiffness matrix would require
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the rotational degrees of freedom to be deleted in order that the
diagonal mass matrix can be wused in formulating the equation of

motion.

The unwanted rotational degrees of freedom in the stiffness
matrix can be eliminated by a process known as 'static condensation'.
A procedure for this technique is described in detail in
Reference (49). As an alternative to static condensation it may be
possible to apply some form of mass couple to each nodal point so that
rotational degrees of freedom can be accounted for. Neither approach
has been wused in this study. Instead the consistent energy approach
has been used in the formulation of stiffness and mass matrices and

load vectors.

3.2.2 ,Consistent Mass Matrix

The mass matrix may also be derived in a manner similar to
that which was used in the derivation of the stiffness matrix. This

results in the consistent mass matrix of the following form:-

156 224 54 138

0B 2 422 13% —322
M= s (6.22)

SYMM 156 =224

422J

The off diagonal terms will require more computational effort.
However, this is considered Jjustified in the dynamic analysis of
compliant structures. All structural and hydrodynamic masses can be
allowed for in assembling the mass matrix and this is described in

greater detail in section 4.2.



164.

3.3 Geometric Stiffness Matrice

3.3.1 Linear Approximation

If we assume that axial deformations are uncoupled from
flexural and translational degrees of freedom then the simple linear
shape functions will define the axial geometric stiffness and the
A22/I term in the 6 x 6 matrix of 6.21 will describe axial forces and

displacements.

3.3.2 Consistent Geometric Stiffness

A higher order approximation to the geometric stiffness can be
obtained by assuming that coupling exists but that the axial
deformations are sufficiently small and can be neglected. It is
assumed that the axial 1load P 1is constant over the length of the
element.

This results in an additional 'geometric stiffness matrix'

KG , le
6/5% 1/10 -6/5% 1/10
|
28/15 -1/10 -2/30
KG =*Pp (6.23)
SYMM 6/5% -1/10
22/15
where P = axial force

The total stiffness matrix will then become equal to:-

K = K + K (6.24)

Adequate description of axial loads must be allowed for and
the additional geometric stiffness term will facilitate this

requirement.
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4. COMPUTER IMPLEMENTATION

4.1 Assembling Stiffness and Mass Matrices

The total structural assemblage 1is accomplished by the
assembly of the stiffness matrices pertaining to each individual
element. Nodal displacements will then be compatible at the common
nodal points and net external 1loads will be equivalent to the
algebraic sum of the resolved components of each elemental nodal force
vector. The description of the development of the equivalent nodal

force vectors is relevant to Chapter 7 and is described there.

By way of illustration of the assembly procedure fig. 6.2
shows how the elemental stiffnesses are added into the total
assemblage. It is necessary to refer elemental matrices to a ‘'global
co-ordinate system' for the total structure. This is done by means of

a transformation matrix [Y] so that:-

{r}g = [\(]{r}q (6.25)
Y1 0
where[Y]= (6.26)
0 Y
cosa sina 0
Y] =
[ o 0 1
so that
FEosa sing 0 0 0 5—
0 0 1 0 0 0
[¥] = (6.27)
0 0 0 cos0  sing 0
__O 0 0 0 0 %J
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For a virtual displacement:-

tery, = [¥]{er) (6.28)

but the work done must be equal so that

T LT
61_'2.15‘2 = Grg.Fg (6.29)
T
It foll that F_ = .F .
ollows that F_ [v] . (6.30)
Now F = [K Y 6.31
g [ ]g g ( )
. -1
adfF =[x =[ ] .F .
an . [ ]2 r Y g (6.32)

so that Fg = [Y]T[Kk {r}z

=[Y]T[K]R {r} (6.33)

L

The global element stiffness matrix is:-

[K]_ = [Y]T[Kl% ¥] (6.34)

6x6%  6x4 4xd 4xb
Equivalent nodal forces due to distributed 1loading must also be

transformed to a common global datum, ie

B T T
{Feq} = [v]" [a] .s.d(vol) (6.35)

4.2 Structural Configuration

The form of structures investigated has been limited to those
comprising circular cylindrical sections. This form of construction
has considerable advantages over truss type structures from the
fabrication and inspection points of view. However, it is likely that
there will Dbe limitations in respect of the stiffness properties and

an assessment of these limitations has been attempted.

Figure 6.3 shows the general arrangement of the typical
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configuration of the structures investigated. The amount of ballast at
the 1lower end of the 1lower column is calculated on the basis that
there will be an uplift or tensile force at the articulation of about
108 of the net buoyant force. The diameter of the ballast may be
specified at any dimension but for convenience it has been assumed to
be the same as the diameter of the lower column. The stiffness of
elements relevant to the ballast is calculated on the same Dbasis as
for other structural elements and it may be prudent in a design to

allow for an increase in stiffness where bhallast is located.

Twenty finite beam column elements have been used and this 1is
considered to provide a realistic idealisation of the structure in

finite elements.

The consistent mass matrix allows for the inclusion of all
relevant structural masses for elements and any additional masses such
as those for risers and other ancillary equipment located inside the
lower column. Also included in the consistent mass matrix is the added

virtual mass component for each element.

The consistent mass matrix, once assembled for the whole
structure, will also allow for the inclusion of any additional
'lumped' masses which are simply added in to the appropriate location
within the matrix. The deck mass can be allowed for in this manner and
the way 1in which this 1is achieved computationally 1is further

investigated in section 5.3.

Inclusion of a flooded lower column is allowed for as an

option in the assembly of the mass matrix.
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4.3 Solution of the Eigenvalue Problemn

The analytical solution of equation (6.4) is cumbersome and
not readily amenable to computerisation. One way to solve
equation (6.4) is to reduce it to a standard eigenvalue problem of the

form

(A - AI)g = O (6.36)

This can be done by multiplying equation (6.3) by M -1

So that:-

MK - AI)g = O (6.37)

where [Mﬂl [k] = [a] and [I] = identity matrix = [Mi-l [M]

and A = w2

Alternatively, multiplying equation (6.4) by [KJ-l
-1
then [a] = []] "[M]
2 . .
and A = 1/w = Eigenvalue;q = Eigenvector

There are a number of ways of solving equation (6.37) on an iterative
basis, ie Givens, Householder and Jacobi methods (67).

The method utilised in this study was the Householder method
which 1s available as a standard NAG (62)routine FO2AEF, and the use
of this in the solution of the eigenvalue problem is described in the

next section.
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4.4 Computer Programs

-

A computer program comprising a number of subroutines was
developed to solve the eigenvalue oroblem and the development and
functions of the various subroutines are as follows. A flowchart for

the program is shown in fig. 6.3A.

Subroutine INCON - This routine reads the input data in terms
of the number of elements being used and the numbering system used for
nodal connections. Global nodal co-ordinates are calculated and read
into arrays and connectivity arrays are formed. This determines common
nodal connections for all of the elements. INCON <calls subroutines

VAPROP and BOUND.

Subroutine VAPROP - This routine computes the properties for
each element and reads these into arrays. The properties computed are
the cross sectional area, the second moment of area, the displacement
volume and the diameter. VAPROP requires nodal co-ordinates and
connectivities as input together with data describing the geometry.
The data computed by VAPROP is stored in array PROP and is later wused

in the assembly of the stiffness and mass matrices.

Subroutine BOUND - Applies the boundary conditions in terms of
translation and rotation at the articulation. The full size N x N
arrays are used in the solution of the -eigenvalue problem and
subroutine BOUND deletes degrees of freedom which are not relevant to
the solution. There are two options ie, restrained or free for each

boundary degree of freedom.



READ INPUT DATA

Water depth, Deck mass, Sturcture
dimensions, Finite element data,
Number of nodes, Elements, Boundary conditions, etc

Compute element properties and apply boundary conditions

CALL INCON <CALL VAPROD ]
CALL BOUND

Assemble Mass and Stiffness Matrices

/CALL STIFF

/CALL STENAS &—CALL EMASS
CALL ASMTEN \CALL GEOST

Solve the Eigenvalue equation (A - AI)g = O

CALL FOIlAEF

CALL f‘ozABF CALL FO2AEF]|
CALL _FOLAFF

Fig.6.3A Flow Diagram for Solution of Eignevalue Equation
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Subroutine AXLOAD - This routine computes the distribution of
axial load at.each nodal point and takes into account the hydrostatic
pressures acting on exposed horizontal plan areas, such as those at
cross-sectional changes, ie at the top and bottom of the buoyancy
chamber etc, 1in the calculation. All relevant structural masses are
included in the calculation. Input data required 1is connectivity

arrays and property arrays PROP.

Subroutine ASTEN - This routine assemhles the mass and
stiffness arrays for each element into the total arrays for the whole
structure. ASTEN loops on each element in turn and calls STENAS which

adds successive array elements into the total global arrays.

Subroutine STIFF - Computes each elemental stiffness matrice
in accordance with the form of (6.20) and requires array PROP as

input.

Subroutine EMASS - Computes the consistent mass matrice for
each element in accordance with the form of (6.22) and requires array

PROP as input.

Subroutine GEOST - Computes the consistent geometric stiffness

matrice for each element in accordance with the form of (6.23).

Subroutine FO2AEF reduces the equations of motion, as
assembled into stiffness and mass matrices in the form of
equation (6.37), to the standard eigenvalue form of Ax = AIx and
solves for all of the eigenvalues and their corresponding

eigenvectors.
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A detailed description of the use of the program is outlined
in Appendix 6.1 and this also contains the results of a program

written by a third party which was used as a basis for comparison of

results and confirmation that the routines were operating
satisfactorily.
5. ANALYTICAL RESULTS

The structural configuration investigated in Chapters 4 and 5
in rigid body motion form comprised a very slender lower column. Some
initial vibration analysis suggested second mode vibration periods of
the order of 20 seconds and third mode vibrgtion periods of the order
of 5 seconds. These, onhviously, would produce unacceptable
deformations and stresses in respect of the wave spectrum the

structure might be expected to encounter.

Accordingly, the structures investigated further all have a
lower column of minimum diameter 9 metres and, from the vibration
point of view, this is the minimum value which can be tolerated for
structures of this type and size in water depths exceeding about 200

metres. Typical general arrangements are shown in fig. 6.3.

An alternative to the concept of providing a lower member in
possession of flexural stiffness is to provide a lower member without
flexural stiffness. Tethers or chains are the obvious choice and these
eliminate the flexural response problem. This approach 1is tending
towards the tension leg platform concept with an accompanying range of
other engineering considerations, not least of which would be the
question of resonant heave and pitch responses which will tend to have

natural periods in approximate proportionality with water depth.
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The computer program described was adapted so that the various
parameters believed to be most relevant could be examined and their
relationship with vibration periods established. All of the
computations were ﬁade on the aain frame ICL 2988 computer at the

University of Glasgow.

5.1 Variation in Vibration Mode Frequency with Thickness of Lower
Column

The slenderness of the lower column must be thoroughly
investigated and the variation in vibration mode periods as a function
of diameter and equivalent thickness is thought meaningful in this

context. Accordingly the computed results are presented.

Figure 6.5 shows the variation in mode period with eguivalent
thickness of the lower column for a structure in 270 metres of water
having a deck mass of 150,000 KN and other data as shown. In this plot

the lower column has been assumed to be flooded.

It 1s evident that very considerable reductions in the second
mode vibration periods can be achieved by increasing the equivalent
thickness values up to approximately 60-70 mm. Thereafter, the
reduction in period bhegins to flatten out with very little improvement
for increasinyg thickness. The problem of achieving acceptably high

second and third mode frequencies is apparent.

There 1is a great deal of energy in the North Sea at wave
periods of the order of 6-10 seconds so that, in reality, we must be
aiming to achieve an upper limit to a second mode period of the order

of, say, 5 to 6 seconds and less, depending on stress levels reached.
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For a structure with a payload of 150,000KN, in 270 metres of
water, a minimum lower column diameter of 12 metres with an equivalent
thickness of about 110 mm, is necessary in order to ensure a second
mode period of approximately 6 seconds.

An annular type of lower column construction, such as that
shown in fig. 6.3, is anticipated and this would probably be augmented
by some stringer stiffener arrangement for the length of the column.
The steel thickness necessary to satisfy flexural rigidity
requirements, in fact, does provide an unexpected bonus in that it 1is
very likely that the lower column can be'designed to withstand the

water pressures at 300 metres depth.

Accordingly, it is instructive to investigate the improvements
expected in reduction of mode periods if it is assumed that the lower
column 1s watertight and dry. Figure 6.4 shows the results for the
same structure as in fig. 6.5 but with the lower column dry. The
second mode period for a 12 netre diameter lower column, with an
ecuivalent thickness of 80 mm, is 6 seconds which is to be compared

with 7 seconds for the floodea structure, ie a reduction of 14%.

The ability to design the lower column to be watertight will
also reduce the buoyancy requirements of the buoyancy chamber. The
reduction 1in displaced volume near to the water surface will reduce
wave loading and this, in turn, will improve dynamic performance
characteristics. The main advantages will be that the lower column
will be easily accessible for its entire length. This has very great

attractions in respect of riser and ancillary equipment maintenance.
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5.2 - Variation in Vipbration Mode Frequency with Water Depth

Vibration periods will have a proportionality with Vm24/EI SO
that large increases in vipration periods would pe expected as the

water depth is increased.

The wvariation in second and third mode periods as a function
of water depth is shown in figs. 6.6 and 6.7 for the lower column
flooded and 1lower column dry, respectively. Here again, the very
considerable improvement in the case of the dry column 1is apparent.
Again, the problem of limiting mode periods to an acceptable level in

water depths greater than 300 metres is apparent.

5.3 =ffects of Deck Mass Relocation and Configuration

Deck masses are likely to play a major role in the vibration
characteristics of articulated columns, by virtue of their distance
from the articulation. Accordingly, it is necessary to examine the
effects of the magnitude of the deck mass on the vibration modes. By
association it follows that the physical configuration of the deck
mass will also play an important part. This is examined both in the
context of relocating a percentage of the deck mass to the buoyancy
chamber and 1in the lateral distribution of the deck mass at the deck

level.

In Chapter 4 the advantages of relocating deck masses in the
buoyancy chamber was investigated in respect of dynamic response and
considered to be of merit. These advantages are further complemented
in respect of vibration frequencies, as is apparent from fig. 6.8

which shows the variation in mode period as a function of percentage
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reduction in deck mass. 100% reduction is most unlikely. However,
40-50% is conceivable and this results in a 15% reduction in the
second mode period for columns of 9, 12 and 15 metres diameter.
Figure 6.9 is for a structure containing twenty risers, whereas
fig. 6.8 1is for a structure without risers. In both cases the lower

column is f£looded.

Similar plots for a structure with a deck mass of 100,000 KN
are shown in figs. .10 and 6.11. The reductions achieved are somewhat
less than for the 150,000 KN structure as would be expected.
Figures 6.4 to 6.11 were obtained on the computational basis that the
total deck mass could be accommodated as an additional lumped mass.
This is then added to the consistent mass element relating to the
transverse degree of freedom at the end of the last element of the

structural idealisation, see fig. 6.12.

The mass of the declkk superstructure, a priori, will be a
function of the lateral distribution of the deck payload. The weight
sensitivity of articulated columns will demand a rigorous design
appraisal of deck payload configurations in order to minimise
superstructure weichts. The spreading of the deck payload laterally
can be likened to a mass damping 1in respect of vibrations. Some
assessient of the variation of vibration frequencies with lateral
distribution of deck payload 1is necessary 1in order to put the

preceeding design argument in context.

The lateral distribution of deck mass has been modelled
computationally on the basis that the mass can be approximated as two
discrete 'lumped' masses located at a distance fa/2 from the centre

line of the structure, see fig. 6.12. This mass couple is added to the
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consistent mass matrix term corresponding to the rotational degree of
freedom at the end of the last element. A proportion of the deck mass

is attributed to the transverse degree of freedom.

Figure 6.13 shows the wvariation in vibration periods as a
function of the lever arm of the deck mass about the centre line. Very
significant gains in period reductions are achieved by increasing the
lever arm up to about 20 metres, which is equivalent to a 40 metre
wide deck, and thereafter the gains are only nominal. It 1is likely
that a minimum toleraible deck width, in respect of operational
requirements, will he of the order of 30-40 metres so that the results
obtained must be assessed in the light of minimum deck width required.
Nevertheless, there is scope for optimising and the contribution of

deck mass distribution to reducing vibration periods is noted.

5.4 Variation in Vibration Mode Frequency with Riser Mass

The variation in mode period with riser mass is shown in
figs. 6.14 and 6.15, for structures having ‘payloads of 100,000KN and
150,000KN, respectively. 1In both cases the lower column is flooded.
The plots assume twenty risers per structure and a unit weight of 10KN
per metre length of riser. The effect of the mass of risers is only
nominal and this is to be expected as the total riser mass is of the
order of 20% of the total mass per unit length of the lower column
when this is flooded. The mass of risers will have a more significant

effect on vibration periods when the lower column is watertight.

5.5 Yariation in Vibration Mode Frequency with Axial Loads and
Buoyancy Chamber Dimensions

The effect of axial loads is demonstrated by considering the
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equation of motion for a simply supported beam subject to lateral

vibrations (68), ie:

E164y/6x4i P.6%/6x% = - p.B.6%y /682 (6.38)
The term on the right hand side is the inertia force of the mass of
the vibrating beam.

Assuming a solution to equation (6.38) of the form:-

y = X(Aocoswt + Bosinwt) (6.39)
Substituting equation (6.39) in (6.38) gives:-

E16—4X -P.G—zx = p.A.w2x ' (6.40)

sx’ §x°

For a simply supported beam:-

%» = Sin‘}f‘ (1 =1, 2, 3..... ©) (6.41)

Substituting this expression into equation (6.40), gives the

corresponding angular frequency of vibration:-

where a = YEI/pA

2 .22
The term PL /i T EI is the ratio of the axial 1load to the
Euler critical buckling 1load and, for a tensile load, the term is
additive and the frequencies will increase, whereas for a compression

load the term is subtractive and the frequencies will decrease.

The effect of axial forces 1is readily allowed for in the

analysis by the inclusion of the geometric stiffness matrix in the
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equation of motion. In the case of undamped free vibrations, it can be

included in the equation of motion as follows:-
M X+ (K+K) x =0 (6.43)
G

As discussed previously, the geometric stiffness matrix is
derived and multiplied by the axial 1load, assuminyg that this 1is
constant over the 1length of the element. In the case of articulated
columns, where the axial load distribution is not constant along the
whole 1length of the structure, it is necessary to ensure that the
axial load at any particular node 1is referred to the degrees of

freedom pertaining to that node.

By way of 1illustration of the effect of axial loads on a
fairly slender structure, it is observed from fig. 6.16 that the mode
periods are reduced for increasing axial tensions. The third mode
curves are of particular interest in that they show maxima for the
10,000KN and 20,000KN tensile loads for a column with a diameter of

approximately 1.5 metres.

It is expected that the effects of axial loads will be much
less pronounced for larger diameter structures, such as those being
investigated, and this is apparent from fig. 6.17 which shows the

variation in mode period as a function of axial tension.

Conversely, as axial tensions increase frequencies, axial
compressive loads will reduce freguencies. The effects of excluding
and including the axial distribution of load for the structures
considered are shown in figs. 6.18 and 6.19, respectively. Second mode
vibration periods are increased on average by 15% for a 9 metre column

and by 6% for a 15 metre diameter column in 250 metres of water.
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Axial loads 1in the column are also a function of the
dimensions of the buoyancy chamher, as exposed horizontal plan areas
will pe subject to vertical hydrostatic pressures. Figure 7.12  Shows
the axial distribution of load in a structure with a lower column
diameter of 12 metres and a buoyancy chamber 20 metres in diameter.
The bottom of the buoyancy chamber is at an elevation of approximately
200 metres and the effect of the wuplift on reducing the axial
compressive loads in the lower column 1is apparent. The increased
compressive loads near the bottom of the column are attributed to the

high density drilling mud ballast located there.

As the buoyancy chamber is located fairly near to the top of
the structure, the effects of the flexural rigidity of the chamber
would not be expected to greatly affect the second mode vibpbration.
However, the added mass contribution will increase with the diameter
of the chamber. Therefore, it is instructive to examine the effects of
increasing the Dbuoyancy chamber diameter on the vibration, from the
point of view of axial load distribution, increased flexural rigidity

and added mass contribution.

Figure 6.20 shows the variation in vibration mode period as a
function of buoyancy chamber diameter for a structure with a lower
column 12 metres in diameter and 100 mm equivalent thickness. The top
curve is that obtained when the axial load distribution is included in
the analysis and the lower curve 1is that obtained excluding axial
loads. The general trend 1is for vibration periods to decrease with
increasing buoyancy chamber diameter. The reduction is approximately

15% when axial loads are included and 7% when they are excluded.
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The 1lower curve gives a good indication of the effects of
flexural rigidity and added mass contribution, since the axial 1loads
are excluded. In this case, the vibration mode is decreasing with
increasing buoyancy chamber diameter. The improvement is most marked
for the smaller values of diameter and becomes only nominal as the
diameter increases. The increased flexural rigidity for the larger
diameter and its tendency to reduce vibration periods is countered by
the increased added mass contribution, which will tend to increase

periods, in approximate equal measure.

The top curve gives a good measure of the effects of the axial
load reduction as a consequence of uplift on the lower face of the
buoyancy chamber as the diameter is increased. This accounts for the
extra 8% reduction over that achieved when the axial loads are not

included.

5.6 Variation in Vibration Mode Frequency with Length of Ballast.

Some form of ballast will be necessary as previously discussed
and accordingly it is necessary to make some assessment of the effects

of the ballast material on vibration characteristics.

If wmud were to be used as a ballast material then this would
make no contribution to the flexural rigidity of the relevant section
and, accordingly, this would mean that an increased flexural rigidity
may need to be provided over that section of the lower column. The
flexural rigidity for the ballast sections is calculated on the same

basis as for other structural elements.

Figure 6.21 shows the plot of vibration mode period in seconds
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as a function of the length of ballast material as measured from the
bottom of the structure. The very rapid increase in the second mode
period for the 9 metre diameter column reflects the very slender
nature of the column. The increase in the third mode period for the 9
metre diameter column is also noted. The rates of increase in the
second mode periods reduces with increasing diameter as would be
expected. Axial forces are 1included in the analysis so that the
correct axial force distribution and its effect on the vibration will

be accounted for in the solution of the Eigenvalue problem.

5.7 Practical Implications

The parameter studies described give a very good illustration
of their relative 1importance and their relationship to vibration
periods. For a given water depth and lower column structure, the deck
mass 1s the variable which has the greatest effect on vibration

periods.

figure 6.19 indicates the maximum water depth tolerable in
order to maintain second mode vibration periods for a given structure.
For a maximum second mode period of 6 seconds, a structure with a deck
mass of 150,000 KN and a lower column 15 metres diameter and 50mm

thick is limited to a maximum water depth of approximately 250 metres.

It 1s instructive to compute the maximum deck mass allowable
against water depth, assuming a fixed dimension for the lower column,
in order to achieve a specified second mode vibration period. The
calculation requires that an iterative procedure 1is employed to
optimise the deck mass and this is done by means of a bisection

method, which effectively halves the error in each iteration. The
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results obtained, as shown in figs. 6.22 and 6.23, allow a maximum

error of * 0.5% on the second mode vibration period of 6 seconds and 5

seconds, respectively.

Trends for production =quipment are towards much lighter
components and fig. 6.24, which 1is reproduced from reference (29),
shows typical deck load requirements for a floating production system
in the North Sea. Typical requirements to produce 60,000 BPD o0il and
30 MMSCFD gas are shown to be approximately 40670 KN. Assuming that a
total deck mass, including the structural steelwork, of 50,000 KN is
feasible, the limitations on water depth for a structure of this size
are shown in figs. 6.25 and 6.26, for equivalent thicknesses of 80 mm

and 50 mm respectively.

Figure 6.26 bears direct comparison with fig. 6.19. Both are
for structures with identical lower column dimensions but with deck
masses of 50,000 KN and 150,000 KN respectively. Figure 6.19 indicates
a maximum water depth of 245 metres for the 12 metre diameter column
to maintain the second mode period at 6 seconds. The maximum water
depth for this period as shown in fig. 6.26 1is 280 metres - a 15%

increase.

It 1is important to be able to make some assessment of the
total structural weight requirements for a structure, given the
payload and the operating depth. Accordingly, figs. 6.27 to 6.28 have
been produced. The iterative procedure used was the same as that for
figs. 6.22 and 6.23, ie the maximum error in the second mode period is

+ 0.5%.

Figures 6.27 anéd 6.28 show the maximum deck mass as a function
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of the nett weight of the structure necessary to maintain the second”
mode period equal to 5 seconds, for various water depths. Figure 6.28
is basically an extension of fig. 6.27 in order to take the maximum

deck mass to 90,000 KN.

Referring to figs. 6.27 and 6.28; the curve for 285 metres of
water shows approximate proportionality in deck mass and nett
structural weight up to the maximumm deck mass of 90,000 KN. The curve
for 308 metres of water shows that the ratio of nett structural weight
to deck mass is of the order of 2.0, up to a value of the deck mass of
approximately 80,000 KN. Thereafter, the nett structural weight
required increases very rapidly with deck mass. The curve for 322
metres of water shows very large increases in nett structural weight

for small increases in deck mass.

Similarly, figs. 6.29 and 6.30 are those obtained for a second
mode period of 6 seconds. The 1limit of weight and deck mass
proportionality for the second mode period occurs for a water depth of
approximately 308 metres, an 8% increase in depth over that for the

- second mode period of 5 seconds.

It is noted that the nett structural weight 1is calculated
assuming fixed masses for the buoyancy chamber and the upper support
column. Also, the eguivalent thickness of the lower column, makes no
allowance for internal stiffeners. This is not thought to contribute
to significant errors in the estimation of the structural weights, as
the equivalent thicknesses are such that if stiffeners are to be used
then the thickness may be reduced, 1ie the reduction 1in equivalent
thickness will be offset by the increased weight of the stiffeners -

the overall flexural stiffness remaining approximately constant.
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Figures 6.22 to 6.30 make no allowance for relocation of deéck
masses in the buoyancy chamber and this, as has already been
demonstrated, will improve the structures vibration characteristics

and increase operating water depths by a small amount.

The proportionality of deck mass with structural weight is
noted in figs. 6.27 to 6.30 up to limiting water depths. It 1is
accepted practice to express the payload of compliant structures as a
percentage of the displacement. For most semi-submersibles, for
example (71), this ratio 1is of the order of 0.2 to 0.3. For those
articulated columns just discussed, and for a maximum water depth of
308 metres, the ratio of payload to structural steelwork weight is
approximately 1.0 and this increases as depth decreases. This is a
significant improvement over that for semi-submersibles and other

compliant systems.

5.8 Full Fixity Encastre Column

An alternative to the articulated joint at the bottom of the
lower column is to provide a connection with full fixity, such that no
rotation about the <connection 1is permitted. Such a connection is
proposed for use with a new deep water loading/mooring system (69,70),

see fig. 6.31.

The encastre connection means that the section at the base
will have to resist the total moment generated as a consequence of
zero rotation. The first three vibration mode shapes for the column
with full fixity are shown in fig. 6.31. The first mode is analogous
to the rigid body mode of the articulated column except that there is

no rotation at the connection.

198.
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The program described in section 4.4 was amended to include
the additional boundary condition to restrict vrotation at the base
connection. Figure 6.32 shows the results of the program in the form
of a plot of the vibration mode period as a function of water depth.
The structure is the same as that for fig. 6.25. The first mode period
is that which displays the greatest increase for increasing water
depth. Qualitatively, the trends are very similar to those obtained

for the articulated column (see fig. 6.25).

The curves 1indicate that it 1is possible to design the
structure such that the first and second moqe periods are greater than
and less than, respectively, likely wave spectra. This is analogous to
the articulated column for the rigid body mode and the first flexural
regsponse mode. With the articulated column, the rigid bhody mode was of
little consequence in terms of bending stress, whereas for the column
with full fixity, the first mode period should be much greater than

expected wave spectra to avoid resonant excitation.

In terms of design criteria for first and second mode
vibration periods, it will be necessary to stipulate minimum and
maximum values, respectively. This puts upper and lower limits on
water depth for any particular column design, whereas in the case of

the articulated column, an upper limit was imposed.

Imposing ‘'minimum' and ‘'maximum' values of 30 seconds and 5
seconds for the first and second mode periods, respectively, the water
depth ranges for various diameters of lower column are shown in
fig. 6.32. The trend is for the water depth range to decrease in

magnitude as column diameters increase. This indicates that the fixed
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connection column is more effective as water depth is reduced.

The effects of increasing the diameter of the buoyancy chamber
and, therefore, the added mass is displayed in fig. 6.33 which shows

the same curves but for a structure with a 20 metre diameter buoyancy

chanber.

5.9 Lower Column of Lattice Construction

The limitations in depth for the circular cylindrical
structural section have been established on the basis of second mode
vibration constraints. The circular cylindrical secticn offers
benefits 1in terms of riser accommodation, maintenance, etc, as
discussed. It 1is also a relatively straightforward structure to
fabricate and it possesses its own Dbuoyancy which will aid
installation. The major drawback is the very large added virtual mass

of the section and this plays an important part in the vibration.

Structures which comprise a lower column of lattice
construction have been proposed. This 1is 1less attractive than the
circular cylindrical structure on many counts. However, it will have
advantages in that the added virtual mass of the structural assemblage
will be much less than that of the c¢ylindrical section. This will
affect the vibration characteristics and, for this reason, it was felt
necessary to make an assessment of the vibration frequencies for such

a structure.

The structural modelling of a lattice arrangement of members
is the same as that described in this chapter. However, the

computational task is greatly increased as a consequence oOf the
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MASS AND STRUCTURAL DATA
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- MASS OF SECTION| METRE LENGTH METRE LENGTH
PLAN
// E
Q|
£
@

ELEVN.

LATTICE CONSTRUCTION FOR LOWER COLUMN

FIG.6.34
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increased numper of members. For example, one bay of the aésemblage as
shown in fig. 6.34, comprises 5 members, each with 4 degrees of
freedom, ie a total of 20 degrees of freedom. The cylindrical
structure analysed comprised 20 elements with a total of 42 degrees of
freedom. On the basis that 20 bays will provide an adequate lattice
structural assemblage, the total number of degrees of freedom will be
20 x 20 = 400. The computer programs described can be amended to
compute the associated structural matrices but limitations in time

prevented a full analysis of such a structure.

However, an alternative mathematical model is legitimate in
making a preliminary assessment of the vibration behaviour. This
method is on the basis of applying the value for the flexural rigidity
of the lattice structure to that of a beam column element with 4
degrees of freedom. The mass matrix can be generated in a similar

manner.

On the basis that the plan area of the lower column remained
the same as that for a 9 metre diameter column, it corresponds to a
square with 8 metre sides (see fig. 6.34). Four vertical columns, one
in each corner, each 1.5 metres in diameter and 50mm wall thickness,
have been modelled. Horizontal and diagonal bracing are as shown in
fig. 6.34 and these are modelled on the basis that they do not
contribute to the second moment of area but are included in the
calculation for an equivalent added virtual mass for the assembly. The
equivalent area and mass data are shown in fig. 6.34, compared to that

for a 9 metre diameter column, 50mm thick.

The results of the vibration analysis for this assemblage are

plotted in fig. 6.26 in order that the curves obtained for the second
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and third mode vibration periods can be compared with those for the 9
metre diameter column. The very significant reduction in the vibration
periods is noted. These are approximately 30% less at 200 metres water

depth to approximately 40% less at 400 metres.

6. CONCLUDING REMARKS

The free wundamped vibration analysis by means of tne finite
element method provides a useful insight into the vibration behaviour

of the structural assembly.

The dominant effect of the lower column properties, compared
to those of the buoyancy chamber, 1is noted in determining the
vibration frequencies 1in that the moment of inertia of the buoyancy

chamber has been shown to have little influence on the vibration.

The relationship between the vibration frequencies and the
equivalent thickness of the 1lower column is noted and the optimum
equivalent thickness for the three diameters considered appears to be
in the region of 50-85mm. Thereafter the improvement in vibration
frequencies is only nominal. It is also noted that trends for the
third mode vibration frequencies are similar to those for the second
mode frequencies and are more pronounced at the lower values of

frequency.

The fairly rapid increase 1in vibration periods with water
depth is to be expected, nevertheless the advantages to be gained in
respect of the dry lower column are noted and, for example, the curves
for the 12 metre diameter dry and the 15 metre diameter wet columns

are almost identical as is observed from figs. 6.6 and 6.7.
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Relocation of deck masses has a significant effect on reducing

the vibration periods whereas the gains in respect of riser mass are

only nominal.

The effects of axial tensile loads is noted particularly in
the case of very slender structures as is to be expected, and is 1less
pronounced for the types of structure considered. The distribution of
axial loads plays an important role in the vibration periods and this
is observed in the similarity of the curves for the 12 metre diameter
dry and the 15 metre diameter columns as shown in figs. 6.18 and 6.19.
The tendancy for the increased diameter of the buoyancy chamber, as a
consequence ©0f both the increased flexural rigidity and the reduced

compressive axial loads, to reduce 2nd mode neriods is also noted.

The effects of the ballast material are significant for the 9
metre and 12 metre diameter lower columns and is nominal for the 15
metre diameter column. Improvements are possible in this area if the
diameter of the ballast is made greater than the lower column diameter

so that the length of the ballast is reduced.

The single most important parameter in respect of the
reduction of vibration periods is the deck mass and this 1is as
expected. However, the contributions from other parameters 1ie,
diameter of lower column and thickness, diameter of buoyancy chamber,
length of ballast and lateral distribution of deck mass are noted and,
on a cumulative basis, would constitute a significant contribution in

reducing vibration periods.

The practical implications of the above work for proposed

structures 1is that water depths cannot greatly exceed 300 metres and
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the major parameter in this respect is the total deck mass. However,
very favourable nett structural weight characteristics are possible
within this range and these are greatly improved for small reductions

in the water depth.

The advantages of the full encastre connection will manifest
themselves in reduced first mode motions and negate the reguirement
for an articulated connection at the base. However, in respect of the
encastre connection considerable bending moments will have to be
accommoaated at the pase and the foundation will have to be designed
to withstand the large cyclic moments transmitted to the base. This

aspect is further discussed in Chapter 7, section 7.

The advantages 1in adapting a lattice construction for the
lower column has been demonstrated and reductions in second mode
periods of the order of 35% were achieved. This is a very significant
reduction and it is noted that the area of steel for the lattice
column was some 30% less than for the circular cylindrical column. It
is considered that very substantial gains are to be made in adopting a
lattice construction for the lower column. However, the disadvantages
in terms of vriser, accommodation, etc, have to be weighed against

improved vibration characteristics.

In conclusion it is believed that a careful optimisation of
the parameters considered would result 1in a structure with a
sufficiently high second mode vibration frequency. Third mode

vibration frequencies are unlikely to be a cause for concern.
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CHAPTER 7

FORCED VIBRATION OF ARTICULATED COLUMNS

1. INTRODUCTION

The undamped free vibration as presented in Chapter 6 provides
a necessary insight into the dynamic behaviour of articulated columns
and would be an essential part of any design feasibility study. The
free vibration analysis is also a prerequisite to the dynamic analysis
in the time domain in that accurate values of vibration frequencies

are required for application in the time domain.

Having established that vibration mode periods for typical
structures considered are likely to be in the range of probable wave
energy spectra to be encountered, it 1is necessary to examine the

forced vibration response.

There are, essentially, two ways of investigating the forced
dynamic response of structures ie, by a frequency domain analysis or

by a direct integration method in the time domain.

This chapter first describes the analysis in the frequency
domain and then goes on to describe the development of the various
techniques which combine to give the full forced vibration analysis in
the time domain. The program development and solution method thus
described is applied to typical structures subject to regular waves at
frequencies egqual to and 1less than the second mode vibration
frequency. The relative importance of certain parameters is then

examined.
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The responses obtained will be those for waves of the order of
5-7 seconds period acting on structures with typical dimensions as
shown 1in fig. 6.3. The vratio of diameter to wave length (D/L) is,
thus, approaching ' the 1limiting wvalue of approximately 0.2 where
diffracted and radiated potentials become significant and beyond which
the wvalidity of the Morison approach may be in guestion. The upper
support column for the structures considered is 1likely to be 10-12
wetres diameter. A 6 second wave is 56 metres long and the D/L ratio
for the upper column will be in the region of 0.18 to 0.21. The errors
in the calculation of wave forces on the upper column using the

Morison approach are, therefore, thought to be small.

The top of the buoyancy chamber is likely to be located some
20-30 metres beneath the still water level (SWL). The maximum wave
steepness limits a 6 second wave to a height of approximately 8-9
metres. Bearing in mind that the wave forces decrease exponentially
with depth, the upper support column will be responsible for the major
proportion of the forces on the upper support column and the buoyancy
chamber combined. Therefore, it is thought that the errors in respect
of the wave forces on the buoyancy chamber will be very small. It is
believed that despite possible small overestimations in loading the
approach is valid and valuable in the examination of certain aspects

of response pertaining to the second mode excitation.

The monopile structure which was analysed in Chapter 6 is
examined in the full time domain vibration analysis and certain

non-linear behaviour is assessed.

Finally, some experimental data which have been obtained for a

model articulated column with a length scale of 1/100 and which has a
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very flexible lower column 1is presented. The experimental results
obtained are compared with the results of an analysis of the model

configuration and the effects of non linear waves is examined.

Eatock Taylor (28) has obtained added mass and damping
coefficients from the radiated and diffracted potentials for
articulated columns and the conclusions were that the Morison approach

tended to overestimate responses for the shorter waves.

A comprehensive loading mechanism which would include the time
variation of the diffracted and the radiated potentials could be
incorporated into the vibration analysis routines which have been
developed. Such an approach, albeit time consuming computationally,
would be valuable in order to calibrate and compare results obtained

by the Morison approach to wave loading.

2. MATRIX ASSEMBLY

The mass and stiffness matrices are assembled in the same way
as described in chapter 6. However, in chapter 6 the full size matrices

were used to aid the solution of the eigenvalue problem.

Stiffness and mass matrices for most structural systems are
well ordered in that they are wusually ‘'symmetrical' about the
diagonal. In addition, they are generally 'banded' about either side
of the 1leading diagonal. Other off diagonal elements are zero. The
symmetry and = bandedness, 1if taken advantage of, greatly reduces
computer storage requirements and the computational task, as it is no
longer necessary to perform computations on array elements which are

not relevant to the solution of the problem.
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Figure 7.1 shows the way in which the reduced size matrix is
achieved. For clarity the array elements in the original full size
matrix (OLD) are shown in their new locations in the new reduced size
matrix (NEW). The symmetry of the matrices means that computations are
only performed on one half of the full size matrix. The original full
size N x N matrix reduces in size to an N x MS matrix where MS is the
semi bana width. The relationship between the full band width MF and

the semi band width MS is MF = 2*MS-1.

3. RAYLEIGH DAMPING

Rayleigh showed that a damping matrix of the form C = YM + MK
will satisfy the orthogonality conditions necessary in order to permit
uncoupling of the equations of motion (49). The coefficients Y and
are arbitrary proportionality factors which can be evaluated on the
basis that the amount of critical damping in any particular mode 1is

known.

When the damping matrix is mass proportional, ie C = YM then
the damping ratio will be inversely proportional to the frequency of
vibration and the higher modes will be very lightly damped. Conversely
when the damping 1is stiffness proportional, 1ie C = HK, then the
damping ratio is proportional to the frequency and the higher modes

will be heavily damped.

4. MODAL SUPERPOSITION

The dynamic response of structures which possess linear

characteristics is readily investigated by modal co-ordinate
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superposition methods. This requires the evaluation of the relevant

eigenvalues and the corresponding eigenvectors as shown in chapter 6.

Using the eigenvalues and eigenvectors thus obtained it can be
shown that the equations of motion can be reduced to a set of

uncoupled equations of motion by the following transformation process.

On the assumption that the total displacement of the structure

can be obtained as the sum of the individual modal components then:-

X o= $ 1Y) + 6, + d Yo, ¢, ¥
or in matrix notation X = ¢ Y . (7.1)
where ¢ = mode shape matrix

<
1

generalised coordinates
so that the transformation from generalised coordinates Y, to

geometric coordinates X is by means of the mode shape matrix ¢.

The evaluation of any normal coordinate Yn is obtained by
multiplying equation (7.1) by the product of the transpose of the

. T .
corresponding modal vector ¢ and the mass matrix M , thus:-
T T
= Y 7.2
¢nM X ¢nM ¢ﬁ ( )

since x = &Y

and X

I
©
S

since the mode shapes do not change with time.

So that the equation of motion:-
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MX + Cx + Kx = F(t) (7.3)

can be written

T . T . - T T (7.4)
Y + + = )
¢)nM ¢n n ¢nc¢nYn ¢nK ¢nYn ¢nF(t)
. . T
where M_ = generalised or modal mass matrix = ¢nM¢n
T
K = generalised or modal stiffness matrix = ¢nK¢n
T
F(t) = generalised or modal force vector = ¢nF(t)
The equation of motion can then be written:-
T
. . 2 ¢)nF(t)
+ Y o+ =—
Yn 28nwn n mnYn Mn (7.5)

and this is the equation of motion for a SDOF system.

The normal coordinates Yn have thus been used to reduce the N
coupled equations of motion to a set of N uncoupled SDOF equations
which can be solved in the usual way for a SDOF system. The total
response is then obtained by superposing the response for each degree

of freedom into the aggregate.

For linear systems the advantages of the modal superposition
method lies in the fact that only the first few modes, over and above
that mode being investigated, need to be included as providing a
significant contribution to the response. This greatly reduces the

computation task to that of working on the first few modes generally.

An example of the frequency response spectra thus obtained for
a typical structure is shown in figs. 7.2 and 7.3, excluding and
including the geometric stiffness, respectively. The second mode
response spectrum for the analysis including geometric stiffness is

some 10% greater than that excluding the geometric stiffness.
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The first 10 modes of a possible 41 were included in the
analysis for figs. 7.2 and 7.3. The inclusion of a greater number of
modes did not have any significant effect on the solution obtained and

this 1s confirmation that only the first few modes need to be

included.

The disadvantages in using the modal superposition method in a
time incremental solution, as applied to articulated columns in
particular or compliant structures in general, lies in the difficulty
in treating the relative velocity term on the RHS of the equation of
motion. It is then necessary to employ an equivalent linearisation of
the velocity squared term. The solution then proceeds on the basis of
making an assumption as to the magnitude of the structural velocity
and iterating until the solution converges to an acceptable 1level of

accuracy.

In the structural analysis of compliant structures, where
there is significant interaction of structural motions with wave and
current motions, it 1is desirable to employ a step by step direct
integration procedure which will allow for the quantification of any

non-linearities with time.

5. DIRECT INTEGRATION PROCEDURES

Articulated columns can display certain non linear response
behaviour and this was demonstrated in Chapters 4 and 5 of this
thesis. The direct integration approach to the solution of the

equations of motion was demonstrated to be of value in predicting the
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non linear behaviour for the rigid body single degree of freedom

system.

When physical properties change with time it is desirable to
take account of the changes as they may significantly affect
responses. The importance of accounting for the relative motion of the
structure with waves and current has been demonstrated in chapters 4
and 5. Other examples of physical properties which may change are
stiffness influence coefficients which will change as a consequence of
time varying geometric stiffness such as those which would ensue in
consideration of heave forces. Non linear material damping and plastic
analysis are also examples where quantification in time would be

necessary to truly reflect structural behaviour.

Essentially direct integration procedures are Dbased on the
response being calculated for each increment of time for a linear
system having the properties as defined at the beginning of a
specified time interval. The properties are modified at the end of the
time interval to conform with the state of stress and deformation at
that time. Therefore, the non linear analysis 1is approximated as a

sequence of the analyses of successively changing linear systems.

The implementation of a direct integration procedure basically
involves reducing the simultaneous differential equations of motion to
a set of simultaneous algebraic equations, by means of the
introduction of a simple relationship between displacement, velocity

and acceleration.

The most popular and widely used direct integration schemes

appear to be:-
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a. The central difference method.

b. Newmark-Wilson method.
c. Crank-Nicholson method.

d. Houbolt method.

The central difference wmethod 1is an explicit integration
scheme in that values to be computed at the next time step are based
on values obtained for the previous time step. The other methods are
implicit schemes, where some assumption about the nature of the

variation in motion over the time step is implied.

The implicit integration schemes pose the problem of solving
non linear equations at the beginning and ena of each time step, ie at
t and at t + At so that the solution can proceed. Newton Raphson
iterative procedures are sometimes used to do this. Alternatively, 1t
is possible to transfer the non linear terms to the right-hand side of
the equation of motion and treat them as additional loads to the
right-hand side load vector. A Taylor's series expansion 1is then
utilised to express the new loads as functions of the previous time
step. This procedure reduces the problem to a set of simultaneous

algebraic equations.

The central difference method suffers the main disadvantage
that it is only conditionally stable. In order for the solution to
produce finite results, the time step At must be less than Tn/n where
T is the lowest vibration mode period in the structure being

n

analysed.

Newmark-Wilson Method

This method is a most flexible integration procedure and is
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based on the following expressions for velocity and displacement at

the end of each time step.

It

Ut'+ At(l-G)Ut + At.6.U (7.6)

t+At t+At

. 2 . 2 e
U U + U + -
t+At g PARUL F AT (-a)U + AT U (7.7)

The coefficients o and 8 are chosen for the accuracy of the
solution required. With values of @ = 1/2 and § = 1/6 the procedure
reduces to the linear acceleration method which is a conditionally
stable method. This method was utilised in the dynamic analysis
presented 1in chapters 4 and 5 of this thesis and the recurrence
relations are derived 1in Appendix 4.1. An unconditionally stable

method is the Wilson-06 method with 6 2 1.4 (72).

The solution method finally adopted for use in the time
simulation vibration analysis presented in this chapter is that with
values of & = 1/2 and § = 1/4. This is known as the constant average
acceleration method and is an unconditionally stable method without

numerical damping.

The relative merits of some solution procedures are discussed

in references (73 to 75).

5.1 Consistent Nodal Loads

Distributed loads acting on discrete elements can be
represented as equivalent nodal loads. The formulation of consistent
nodal loads has the same basis as that for the formulation of the
consistent mass and stiffness matrices as derived in chapter 6 and is

by means of the integration of the shape functions [A].
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Hence the equivalent nodal loads are given by:-

T
F_} =Jf[A] .S.ds (7.8)
€q
o B
where S is the intensity of load.

Recalling the shape functions as given by equations (6.5) to
(6.8) in Chapter 6, we <can write the shape function for the beam

element shown in fig. 7.4 as:-

2 3 2 3 2
[a] = [1—3(%) rapiag -2 e @0, 367 - 257,

2 3
p- (4 (%))] (7.9)

For the case of a beam element subject to a uniformly
distributed 1load 'S' per unit length, the equivalent nodal loads will

be given by integration of equation (7.2), ie

eq b
(1/2 h
22/12
{F_} =5 J (7.10)
ed w2 [
2
ZL7/12

and these are usually referred to as the fixed end loads relating to

the degrees of freedom as shown in fig. 7.4.

When the intensity of loading is not uniform along the length
of the element the explicit evaluation of the integral of equation
(7.8) becowmes a very lengthy process. In such cases it is prudent to

employ some quadrature formulae to integrate the load on the element.
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The Gaussian quadrature formulae have been used to integrate the

loading and evaluate the equivalent nodal loads.

The Gaussian quadrature formulae integrates a function between
specific limits by taking the sum of the value of the function £f(x),
multiplied by a weighting function wj, for n number of stations at

which the function has been evaluated, ie
+ n
fix)dx = .Z w.f(x.) (7.11)
<l 1=1"] B

By evaluating the loading intensity at 3 stations on each

element, ie at each end of the element and at the mid point, then:-

Xy = -0.77445967 Wy = 0.55556
X, = 0.0 Wy = 0.88889 (7.12)
Xq = 0.77455967 Wy = 0.5555

For compatability with the form of equation (7.11) it 1is
necessary to adjust the limits and the integration variable 'ds' in

equation (7.8).
. . 2s
This can be done by setting x = (7: - 1) (7.13)

so that, ds = %.dx
the limits are then changed to -1 to +1

so that,

+
Feq Ji[é(xﬂ TS.dx

n

Lw.A(x.)Sx. (7.14)
. J :

j=1



Recalling equation (7.13), ie x, = %? -1
x. + 1
. . S _ J .
this can be re—wrltten-z i — for 3 = 1 to 3.

The evaluation of the shape functions for each station is then

performed on the basis that,

1 + x.

S _ J . .
= = .———2 fo = 1 3
(2)j > rj to

so that (%)1 = (1 - 0.77445967) /2

y, = 4 (7.15)

-
it

(1 + 0.7744596) /2

For a particular element the process is to evaluate the four
shape functions for each station and multiply these by the weighting
function wj and the 1intensity of loading for that station. This is

done for each degree of freedom and the sumnation of terms is taken.
This process has been programmed in the form of three
subroutines, namely SHAPFN, FEQUIV and FEQTOT and these are described

in section 5.3.

5.2 Intensity of Loading

With reference to fig.7.4; the actions of the various forces
on an elemental length of the structure are as shown. The non

conservative forces acting on an elemental length comprise:-
a. Wave loads, ie drag and inertia components FD and FI.

b. Buoyancy force FB.

221.
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The intensity of force per unit length attributable to a) is
evaluated 1in the same way as those forces described in Chapter 4. The
assumption that the buoyancy force FB acts as a distributed load along
the lencth of each element 1is in contradiction to the laws of
hydrostatics which strictly, speaking, state that buoyancy forces can
only act on exposed end faces such as those at the top and bottom of
the buoyancy chamber and at the bottom of the lower column, see
fig. 7.4. Applying the buoyancy forces in this manner gives rise to
numerical instabilities in the numerical integration procedure and so
the buoyancy forces have been assumed to act in a distributed manner
as shown. This is not considered to give rise to significant errors in

the solution.

5.3 Computer Program Implementation and Solution of the
Egquations of Motion

The mass and stiffness matrices are assembled as described in

section 2 using subroutine ASMCON.

Subroutine LINWAV calculates wave particle kinematics

according to linear wave theory.

Subroutine STOKE calculates wave particle kinematics according

to Stokes' fifth order wave theory.

Additional subroutines to compute equivalent nodal loads in

accordance with section 5.1 are:-

Subroutine SHAPFN evaluates the shape function for each

station as given in equations (7.9) and (7.15).
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Subroutine FEQUIV evaluates the eguivalent nodal load for each
element. The 1input required for FEQUIV are the values of the shape
functions from SHAPFN, the weighting functions w, and the intensity of

3

loading for each station.

Subroutine FEQTOT evaluates the sum of the equivalent nodal
loads for each nodal point along the length of the structure and

reguires, as input, the equivalent nodal loads £for each element as

evaluated in FEQUIV.

Subroutines ADSUB and MULBAV are routines to add matrices and

multiply condensed matrices by vectors, respectively.

The equations of motion:-
MX + Cx + Kx = F(t)

are solved as outlined in fig. 7.5 and it is noted that, in order to
avoid the accumulation of numerical errors, initial accelerations are
calculated prior to the calculation for displacements (step B2). These
accelerations are then used in the calculation for the effective load
vector ie, step Bl. It is considered that this procedure eliminates
the possibility of errors accumulating were the recurrence relations

in step B3 only used to calculate the accelerations.

The Gauss elimination procedure 1is used to solve for
accelerations and displacements and this has been programmed in the
form of subroutine SLBVI which takes account of the symmetry and

bandedness of the matrix in the solution of the standard form Ax = B.
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6. ANALYTICAL RESULTS

6.1 Effects of Concentrated and Distributed Loads

Initial versions of the program developed to solve the forced
vibration in the time domain attempted to wutilise the linear
acceleration method, which had been successfully used for the dynamic
analysis presented in chapters 4 and 5 of this work. The solutions
obtained were unstable and it was necessary, therefore, to investigate
the stability of alternative procedures. In the event the
Newmark-Wilson method with o = 1/2 and § = 1/4 ie, the constant
average acceleration method proved to provide stable solutions and was
used in all subsequent time simulation analysis of the forced

vibration.

Program development was in stages so that initially a program
was developed to investigate the response of a cantilever beam subject
to static loads and sinusoidally varying loads, either concentrated or
evenly distributed along the length of the beam. It is instructive to
compare the responses for the cantilever beam subjected to sinusoidal
excitation at the same frequency as the second mode vibration
frequency. Figures 7.6 and 7.7 show the responses obtained for the
beam subject to a point load and a distributed load, respectively. The
first of the four plots is the magnitude of the exciting force. The
second and third plots are the displacements of the mid nodal joint
and end nodal joint, respectively, and the fourth plot 1is the
displacement of the beam along its 1length at a time when the

displacement at the end of the beam is maximum.

The intensity of the distributed load is such that it would

produce the same static bending moment as the point load which is
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READ INPUT DATA -

CALCULATE LENGTH AND DIA. OF CONCRETE BALLAST
CALL CONCBA

COMPUTE ELEMENT PROPERTIES
CALL INC

y

COMPUTE AXIAL LOAD DISTRIBUTION
CALL AXLOAD

¥

COMPUTE CENTRES OF GRAVITY AND BUOYANCY
CALL RKBOY

COMPUTE ASSEMBLED STIFFNESS ANO MASS MATRICES
CALL ASMCON .

APPLY BOUNDARY CONDITIONS
CALL BOUAY

¥

COMPUTE DECK PAYLOAD DISTRIBUTION LEVER ARM
CALL DECKLA

SPECIFY ALGORITHM PARAMETERS «, 6 AND ©
162050; «=0.25(0.5+4)%; 0210

CALCULATE INTEGRATION CONSTANTS:

o7l
o= (S -2) o =8H1-¢) qp=at6 gpe8F()-a) gpzcaf?

COMPUTE EFFECTIVE STIFFNESS MATRIX
K¥= K+ ayM+ a,C
CALL ADSUB

Tet+pt l

COMPUTE EFFECTIVE FORCE VECTOR

COMPUTE LOADING INTENSITY
CALL LINWAY
CALL MORIS

CGHPUTE EQUIVALENT NODAL Loaps|] OV EP Bl
CALL SHAPFHN
CALL FEQUIV
CALL FEQTOT
v
FORM EFFECTIVE FORCE VECTOR
CALL ADSUB
CALL MULBAY
E*=F ., * MgV, + a0, » a0+ Clay, « 00, as0,)

v

COMPUTE ACCELERATIONS AT TIME t
'} BY GAUSS ELIMINATION METHOD
CALL SLBVI

v

COMPUTE DISPLACEMENTS AT TIME t+ At
BY GAUSS ELIMINATION METHOD

CALL SLBVI STEP B2
S'ALCULATE ACCELERATIONS. AND VELOCITIES AT t + At
Oy p=0lUp.p - Upd =00y - 00,
" . 1 . .
Leat =U"§(U,.,r -U,)
U'-m =0 osu.n' U,
Uyogy Uy * 010, ¢ 0,0, v 0,0,

SET DISPLACEMENTS AND VELOCITIES
FOR NEXT TIME STEP EQUAL TO
THOSE COMPUTED IN THIS TIME STEP

COMPUTATION FLOW CHART FOR
TIME SIMULATION VIBRATION ANALYSIS

FIG 7.5
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applied to the end of the cantilever. The effect of the distributed

loading is to attenuate the vibratory response as is observed from
fig. 7.7. The response for the distributed load is about 60% of that

for the point load.

6.2 Effects of Rayleigh Damping

When frequency domain analysis 1is wused it is necessary to
evaluate damping matrix coefficients Y and U, as discussed in section
3. Time domain analysis reduces this problem to one of selecting an
appropriate value for the amount of critical damping 8 present, for

inclusion in the damping term Cx, where C = ZBwnM.

The effects of zero percent critical Rayleigh damping and 0.5%
critical Rayleigh damping on the response of the forced vibration are
shown in figs. 7.8 and 7.9, respectively. It is apparent that even
this moderate amount of 0.5% damping attenuates the vibratory response

significantly.

6.3 Response of Structures to Waves

A computer program based on the flowchart in fig. 7.5 was
developed to account for the wave forces, as described, and specify
the boundary conditions necessary to ensure rotation about but no
translation at the articulated joint. The effects of certain
parameters on the forced vibration were then assessed and are

presented as follows.

6.3.1 Effects of Geometric Stiffness Matrix

It was noted in the free vibration analysis presented in
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chapter 6 that the inclusion of the axial distribution of loading, as
reflected in the geometric stiffness matrix, significantly altered the
second mode vibration period. Accordingly some analytical results have
been obtained to make some assessment of the relative importance of

this parameter on the forced vibration in the time domain.

Figure 7.i1l shows the response for a structure excited by a
wave at the same frequency as the second mode vibration frequency and
excluding the geometric stiffness in the analysis. In this case the
second mode period is 6.18 seconds. Figure 7.f0shows the response for
the same structure but including the geometric stiffness term in the

analysis. Accordingly, the second mode period is 6.67 seconds.

The nature of the response is very different in the latter
case and it eventually becomes unstable. Clearly then the inclusion of
the geometric stiffness in this particular case is very important and

to neglect it would be in error.

The structure appropriate to figs. 7.10 and 7.11 has a lower
column 12 metres diameter and 50 mm equivalent thickness. The critical
Euler buckling load for this section, assuming pinned end conditions,
is 'n2EI/L2 which equals 771,470KN. The average axial 1load is
240,000KN. Figure 7.12 shows the distribution of axial loads for this

structure. The net compressive loading is apparent and explains the

increased vibration period.

Figures 7.13 and 7.14 show the responses from an analysis
which imposed average axial 1loads of 125,000KN and 100,000KN,
respectively, on the structure. The response is stable for the latter,

whilst that for the former is unstable, indicating a maximum allowable
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axial load of 100,000KN. This load corresponds to an effective length

of the structure of 2.77L.

Figures 7.15 and 7.16 show the responses for a structure with
a lower column 12 nmetres diameter and equivalent thickness 65 mm,
excluding and including the geometric stiffness in the analysis,

respectively. The transient response persists for the latter case but

the solution is stable.

This instability, in part, may be attributable to the
numerical integration procedure used, although this is thought to be
unlikely since the procedure is unconditionally stable. The stability
bounds may narrow as vibration frequencies increase for the same
length of integration step At but this would infer that the solution
would become less stable for the structure with the increased flexural

rigidity.

The top plot for both these figures is the bending stress at
the mid nodal connection as calculated from the nodal rotations which
are generated 1in the analysis. The stress levels are significant. It
should be noted, however, that the wave steepness used in the analysis

is 0.12 or 80% of the maximum wave steepness.

Figures 7.17 and 7.18 show the responses obtained for a
structure with an equivalent thickness of 80mm, excluding and
including the geometric stiffness in the analysis, respectively. The
transient in the latter is considerably reduced in magnitude but is
nevertheless present. Responses are generally about 50% greater than

those obtained excluding the geometric stiffness.
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6.3.2 Deck Mass Relocation and Configuration

In Chapter 4 1t was noted that the dynamic response
characteristics of structures were somewhat improved as a consequence
of relocating deck masses in the buoyancy chamber. In Chapter 6 it was
noted that this would also increase the second mode vibration
frequency. The effects of different lateral distributions of deck mass
waves was also noted. Accordingly, it is desirable to examine the
response in the time domain as a consequence of the partial relocation

of deck masses and in terms of varying lateral distribution.

Figure 7.19 shows the response of the structure with 50% of
the deck mass relocated in the buoyancy chamber. The second mode
vibration period has been reduced to 5.335 seconds. The response 1is
similar to that for the structure with no deck masses relocated (again
shown above fig. 7.18 for comparison) for the first seven c¢ycles and
is then considerably reduced. There are indications that the response
increases thereafter. It is also noted that the maximum stress levels
are approximately 75% of the stress levels for the structure with no

relocation of the deck mass (fig. 7.18).

In Chapter 6 the lateral distribution of the deck mass was
shown to decrease vibration modes as the effective lever arm of the
deck mass about the centre line of the deck was increased. Responses
have been obtained for two different values of lever arm and are shown
in figs.7.20 and 7.21. The first of these is for an effective lever
arm of 15 metres, ie an equivalent deck width of 30 metres, and the
latter is for an effective lever arm of 30 metres, ie an equivalent

deck width of 60 metres. Second mode vibration periods for these two
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cases are 5.02 seconds and 4.49 seconds, respectively. The results
shown are for waves with these periods. The stress levels at the mid
nodal point for the structure with the increased lever arm are

approximately 10% greater than those for the other structure.

The width of the deck is a parameter for optimisation together
with certain other interdependent parameters, as discussed in Chapter
2, and it is likely that the trend will be towards reductions in the
width rather than increases so that the increased stress levels may
not be realised. However, the trend is to be noted and will play a
part in any optimisation procedures which are undertaken in respect of

deck widths, upper support column dimensions, etc.

6.3.3 Effects of CD on Response

The relatively high frequency of the second mode vibration
means that the inertia forces will dominate the response. In the
absence of currents, the drag contribution would not normally be
expected to play a major part in the response. However it is
instructive to obtain a measure of the effects of different levels of
hydrodynamic viscous damping and accordingly the results as shown in

figs. 7.22 and 7.23 are presented.

These show the response for the structure subject to the same
wave and for values of drag coefficient qj = 0.9 and CD = 0.6,
respectively. There is no appreciable difference in response for these

two values of drag coefficient.

In order to fully assess the effects of the viscous term on

the response, it is pertinent to compare responses in the absence of
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any viscous contribution to the forcing functions. Accordingly,
figs. 7.24 and 7.25 have been obtained for drag coefficients of
CD = 0.9 and CD = zero, respectively. For both these plots the

excursion of the structure in the wave is ignored, in order to make a

direct assessment of the contribution of the drag term.

The linearity of the response in fig. 7.25 is apparent and is
as would be expected since the forcing function is linear and consists
only of the 1inertia term 1in the Morison eguation. There is no
transient response as in fig. 7.24 and, therefore, it is reasonable to
attribute the transient response in fig. 7.24., in the main, to the

viscous drag contribution to the forcing function.

The transient 1s also noted to comprise a steady drift
component, since the response is not sinusoidal about the vertical
axis. Further experimental observations, relevant to this observation,
are made 1in section 7 of this chapter. The transient is responsible
for mean increased responses. However, the magnitude of the relative
response of the top and middle of the column is reduced as are bending
stresses as shown in fig. 7.24 1ie, including the relative speed
squared term. Maximum pending stresses in fig. 7.25 are approximately
3OON/mm2 whereas in fig. 7.24 the maximum stresses are approximately

230N/mm2

6.3.4 Effects of Current on Response

The previous section highlights the importance of the viscous
term in damping the responses and stress levels. Steady currents, in
combination with waves, could therefore be expected to have some

damping effect and this can be expected to increase as current
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velocities increase. The results obtained for zero current, 0.5 m/sec .

and 1 m/sec acting co-linearly with the waves are presented in

fig. 7.26.

The mean response of the end nodal point is increased and this
is to be expected. The attenuation in the mid nodal point bending
stress for the increased current is apparent and is a measure of the

damping influence of the imposed current on the response.

6.3.5 Response to Waves with Frequency less than the second Mode
Vibration Frequency

The level of excitation possible at the second mode vibration
frequency has been observed. However, it 1is also instructive to
observe responses of the structure when subject to waves of

frequencies less than the second mode vibration frequency.

Figures. 7.27 and 7.28 show responses for waves of period 6
seconds and 7 seconds, respectively. The response is attenuated as
shown 1in fig. 7.28 and this is to be expected in consideration of the
reduction in. the dynamic magnification factor as the ratio of
_exciting frequency to natural frequency decreases. This is readily
appreciated from fig. 7.4 which shows the dynamic magnification as a

function of the ratio of exciting frequency to natural frequency.

Figures 7.29 and 7.30 are the responses obtained for an 8
second wave and a 10 second wave, respectively. The mid nodal point
and the end nodal point are now in phase and the most striking feature

in the latter is the very marked reduction in stress levels.
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It 1is also interesting to observe the presence of the
transient oscillation which is harmonic with the natural period 1in
pitch of the structure and is qualitatively very similar to the

transient which was predicted in the rigid body analysis presented 1in

Chapter 4.

6.3.6 Effects of Wave Groups on Response

The rigid body dyvnamic analysis in chapter 5 describes the
transient oscillations possible for certain wave frequencies and
groups of waves. The transient was seen to increase considerably for
wave groups with a frequency harmonic with the natural period in pitch

of the structure.

For completeness, it is pertinent to examine the effects of
wave groups on the elastic vibration responses. It is conceivable that
a group of waves having the same period as the fundamental pitch
period, could be generated by two waves of slightly different
frequency but approximately egual to the first flexural response mode

frequency.

Figure 7.31 shows the response for a structure which has a
fundamental pitch period of approximately 95 seconds and a first
flexural response mode period of 8.5 seconds. The wave group -.is -
generated by two separate wave trains with periods of 8.2 seconds and
8.93 seconds each with a height of 5 metres. The average wave period
of 8.5 seconds is coincident with the first flexural mode period. The
attenuation in the response in the region of diminished wave height is
to be expected as is the transient response. Figure 7.32 has been
prepared for comparison and shows the results for a regular wave with

a period of 8.5 seconds and height 10 metres.



HFJJE:;I:ggkow%%;gl%DATAo«ALPHA- 0.25Q000E00 OELTA= 0.50000E00 THETA= 0.10EQ! TIME STEP= 0.2500000E00 SEC

s

ouDISTF\IBUTEO LOADeee WAVE HEIGHT= O, STSEolHETRES "A\)E PERINO= 0.8SOOEQ1SECONDS CH= 0. 20EQ01 C0= J.90ED0
WATER DEPTH= 0.28SEQIMETRES IBOT= 14 1TOP= {8 NO OF RISERS= 20 CURRENT VELOI"ITY- 0.500E-02 M/SEC

0EPTH OF \HTER E)LLA‘%T— 0, 195EQ03 METRES DEPTH OF COHCRETE BALLAST= 0 450EQ2 )

G1= 0.10000E02 TST 0,100O0E=01 D2- Q. 15000602 TS2= 0.30000E-G1 03= 9/'I(JOOEOI TS3 Q. SO0Q0E-01

RKB= 0. 167EN3 RKi= 0. 177E03 RATID OF 'JT/BUDMNI Y= 0. 00E0C

PERCEMTAGE CRITICAL RAYLEIGH DAMPING= 0.S00EQQ LOWER COLUMM DRY GEOMETRIC STIFFHESS NOT IMCLUDED

LEVER ARM FOR DECK MASS= 0.1Q0E02METRES [Tia 8.2 Sec5s T2 = 893 5ecs]

_:2;0 [\V 7& AR &z& g \j\? Aﬂﬂv \/AVQ{’ “Ro\/
:g E\} VAYE PROFILE \] \Z(1] \j
i”AAAAAAAAAAAAAAAﬂAAA
2L 140 165 ©
-4 |-

MID NODE DISPLACEMENT

i AA/\/\/\/\/\/\/\/\/\ A

0 100 120 . 140 160

-4 |

END NODOE DISFLACEMENT

g Jfﬂﬂﬂﬂﬂﬂﬂm AA
S0 0p 7\ ] \\/40,\/ VE'AVAL: \/ U 2 lkou \‘6?] |

-1S0 \/
_200 L M1D0 NODE BEMDING STRESS

FIG 7.31

ﬁgEmggra IgS(E)gBDlgAnALPHA- 0.25000EQ0 DELTA= 0.S00Q0EQ0 THETA= 0.10EQ1 TIME STEP= 0.2500000£00 SEC
o

++¢DISTRIEUTED LOADeee WAVE HEIGHT= O, 100E0ZMETRES WAVE PERIOD= 0.8500EU1SECOMDS CM= 0.20E01 CO= 00.$0EQG

WATER DEPTH= Q,2BSEQ3METRES 1B0T= 14 [TOP= 18 NO OF RISERS= 20 CURRENT VELOLITY- 0.S00E-02 M/SEC

DEPTH OF VATER EBALLAST= (. 19SE03 METRES DEPTH OF CONCRETE BALLAST= Q.450EQZ METRES

O1= 0.10000E02 TST 0, 10000201 02= 0.15000EC2 TS2= Q,30000E-O1 03= (.90000EQT TS3= 0.50000E-01

RKB= 0. 147E03 RKG= 0.177EQ3 RATIO0 OF WT/BUCYANCY= G, 900E00

PERCENTAGE CRITICAL RAYLEIGH DAMPING= 0.500EQ0 LOWER COLUMM DRY GEOMETRIC STIFFNESS NOT INCLUDED

LEVER ARM FOR OECK MASS= 0.1QUEU2METRES

ANANAAAAANAAAAAAAAR]S
VYV TVA VTV VYTV

i‘AAAAAAAAAAAAAAAAAAA
_20_

HID NODE DISPLACEMENT

A Y v
2
0 Q\IA

~ €0 80 100 120 140 160

0 20 40

T

[l
ES
T

END NODE DISPLACEMENT (

n JAY /\ /\ /\ e 5 l I 5
-50- - 1 f 4 1
-?OOOOE \7)0 V bu

2] 00 5 £SS

FIG 7.32

8%

243.



244.

The response for the top and the mifdle of the column is antiphase as

expected and the bending stress at the middle is of the order of

2
+200N/mm .

Transient responses for both figures are of the same order of
magnitude. However stress levels for the wave group response of

fig. 7.31 are somewhat less than for the regular wave.

6.3.7 Full Fixity Encastre Column

The effects of fixity on the bottom joint was examined in
Chapter o in terms of free vibrations. It is 1instructive to examine
the response of a structure with full fixity at the bottom and,

accordingly, fig. 7.33 has been prepared.

Plots of the bending stress at the bottom and middle of the
column are given together with displacement at the top and the
overturning moment on the base of the structure. The response of the
top of the structure, as shown in fig. 7.33, bears direct comparison
with the response for the structure shown in fig. 7.30 which is for an
articulated column of the same structural dimensions. There 1is a
modest reduction 1in response as shown in fig. 7.33 and the magnitude
of the overturning moment on the base 1is reduced. The transient
oscillation harmonic with the first flexural response mode is also

apparent.

Figure 7.34 shows the response for a structure with a payload
of 50,000KN and a lower column 6 metres in diameter. The transient

oscillation is apparent. However, it is not harmonic with the first
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flexural response mode, which for this structure is approximately 90
seconds (see fig. 6.32), but appears to have a frequency of twice the
first flexural response mode. This response is analogous to the
Mathieu instability type of reponse, as was investigated in Chapter 5
of this study, and 1is particularly noteworthy in that the wave
frequency is six times the first flexural response frequency. This is

an 1important observation since it 1is not suggested by any formal

theory.

By way of confirmation of the second flexural response mode,
fig. 7.35 has been prepared and shows the response for a 10 second
wave. The anti-phase of the top and middle displacements is noted from
observation of the bending stress plots for the bottom and middle

points on the structure.

7. EXPERIMENTAL OBSERVATIONS

Any analytical procedures applied to the dynamic analysis of
articulated columns must be verified before the use of such procedures
can proceed with confidence to their application to prototype
structures. Experimental data may suffer certain limitations in
respect of scaling but the underlying physical trends can be observed
by this means. The value of experimental data in the case of the rigid
body dynamic analysis was noted in Chapters 4 and 5 and the results
obtained confirm certain response characteristics as predicted

analytically.

It is very difficult to manufacture an experimental model
which scales both physical and dynamic elastic vibration

characteristics of a prototype articulated column. It is necessary to



reduce the flexural rigidity of the lower column by some means, so
that the resulting vibration frequencies will be within the range
which the wavemaker can generate. At the University of Glasgow the
experiment tank, - which measures 76 metres x 4.6 metres x 2.4 metres,
has a wavemaker capable of generating waves with maximum frequencies
of the order of 2Hz. Accordingly, the design of the model must be such

that the maximum second mode frequency is of this order of magnitude.

It 1is only possible to achieve frequencies of the order

desired by:-

a. reducing the diameter of the lower column and by using a
material such as aluminium which has linear elasticity for

. . 2
a fairly small stiffness value, ie 6.9.1010N/mm (c.f.

steel 21.10 % /mm®, and

b. by the addition of 'lumped' masses attached to the lower

column.

With these considerations in mind the experimental model, as
shown in fig. 7.36, was designed and constructed. The use of lead
washers as 'lumped' masses allows for a range of mass distributions
and, therefore, it 1s possible to adjust the vibration frequency in
this way. Buoyancy is provided by the 112 mm diameter PVC tube which
is of annular construction, thé inner annulus being flooded. The
experimental model thus constructed Dbears 1little resemblance to a
scaled down prototype articulated column but this is not important as
the intention 1is to wvalidate analytical techniques and the
experimental arrangement can be modelled precisely in the analysis.

This aspect is described in more detail in section 7.3.

It was desired to measure the response of the top and mid

247.
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point of the column. Conventional LVDT's and their attachments would
impart unacceptably high damping on the structure and it was decided,
therefore, to use a Selspot camera with light emitting diodes attached
to those locations which were to be monitored. A special waterproof
camera housing was constructed and this contained the Selspot camera
used to monitor the movement of the mid point of the column. The
arrangement o©of the cameras relative to the model 1is shown in

fig. 7.36.

In order to achieve a satisfactory quality of output signal
from the submerged camera it was necessary to place it to within 1.5
metres of the model. However, the submerged depth of the camera is
such that it is unlikely that the camera housing will affect the flow
field significantly. The output signals from both Selspot cameras and

the wave probe were recorded on paper by means of a pen recorder.

7.1 Description of Model Tests

It was primarily intended to obtain experimental data on the
forced vibration at the second vibration mode frequency. The
construction of the model allows for adjusting the distribution of
equal lumped masses on the lower column and at the top of the column.
By this means it is possible to achieve the same vibration frequency
for different lumped masses on the lower column by adjusting the mass
at the top of the column. This makes it possible to examine and verify

the influence of deck masses on the vibration characteristics.

Five series of tests were completed for the frequencies shown
in Table 7.1. For each condition, waves of heights varying between

14 rm and 95 mm were generated and the response of the top and middle
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of the column observed and recorded on paper tape. The tabulated
results of the tests are given in Appendix 7.1. The distribution of

mass for the five conditions examined are as shown in Table 7.1.

The number of lead washers allocated to each nodal connection
point along the length of the structure having been fixed, it was
necessary to 'tune' the structure. By adding lead washers to the top
of the structure the natural frequency is changed. By this means, the
required amount of mass necessary at the top of the model could be
determined by observing the magnitude of the anti-phase response of
the top and middle of the structure. The amount of mass at the top was
adjusted until the anti-phase response was observed to be maximum for

a wave at the specified frequency.

It was not possible to achieve precisely the same frequency
for all conditions, as can be seen from Table 7.1. However, conditions
2-5 are within 4% of each other. The greatest error is for condition 1
which had a frequency of some 10% greater than those for conditions 3,

4 and 5.

Weight per Weight
Test Nodal Point at Top Frequency

Condition (Kg) (Kg) (Hz)

1 0.089 0.379 1.3

2 0.1115 0.4 1.22

3 0.1338 0.3568 1.18

4 0.156 0.2899 1.175

5 0.223 0 1.175

Table 7.1 Experimental Test Conditions
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7.2 Experimental Results

Figure 7.37 shows a typical pen recording obtained for one of
the conditions. Plot 1 is the wave profile. Plot 2 is the response of
the top of the column and plot 3 is the response of the middle of the
column. These are not phase compensated and the phase relationship 1is
shown so that the correction must be applied in comparing the
responses of the top and middle of the column. The phase difference
between plots 2 and 3 is three divisions on the recording paper, ie
plot 2 is three divisions in advance of plot 3. By applying this
correction 1t is observed that the responses are anti-phase. The
calibration for the two light emitting diodes (LED's) was not the
same, the signal for the middle LED heing greater than that for the

top LED.

It can be seen from fig. 7.37 that a transient oscillation 1is
present and 1s harmonic with the natural period of the structure in
pitch. Figure 7.37 also shows a steady drift offset of the structure
from the vertical and this is in proportion for both the top and the

middle displacements as would be expected.

Figures 7.38 to 7.41 show the wave freauency oscillatory
response part of the top and middle displacements as a function of
wave height for each test condition. In all cases the displacement at
the middle of the column is greater than that at the top. This is in
agreement with the free vibration eigenvalue analysis of the model
structure and is a consequence of the very slender lower column. The
displacements are greatest for condition 1, ie the condition with the

maximum amount of mass at the top of the column. The displacements
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decrease as the amount of mass at the top is reduced and this is to be

expected.

It is also observed that in general the ratio of the middle
displacement to the top displacement decreases with increasing wave
height. From fig. 7.38 it is seen that the ratio of middle to top
displacement 1is 2.66 for a wave height of 15 mm and decreases to 1.9
for a wave height of 80 mm. The decrease in the ratio is most likely
to Dbe attributed to the viscous speed squared drag force on the lower

column.

The steady drift from the vertical is also seen to increase as
a function of the wave height and this is to be expected since drift

forces are a function of the square of the wave height.

Plots of steady drift as a function of wave height for each
test condition are shown in fig. 7.42. The results for condition 1
display the most marked variation of steady drift with wave height.
The results for conditions 2, 3 and 4 are guite closely grouped
together. Nevertheless, the trend for steady drift to decrease, as the

mass at the top decreases, is evident.

7.3 Structural Assemblage and Computer Implementation

The Computer programs described in Chapter 6 (for the
eigenvalue solution) and in this chapter (for the time simulation
analysis) were modified to account for the geometry and mass

distribution of the model, as shown in fig. 7.36.

Analytical results for the second mode vibration frequencies
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were found to be within 5% of the frequencies at which the models were
found to have the greatest responses. Analytical trends in respect of
the top and middle displacements are in accord qualitatively with the
experimental results in that the displacements increase with
increasing top mass, as does the ratio of the middle to top
displacements. This good agreement 1is taken as confirmation of the

adequacy of the program in predicting frequencies.

The buoyancy chamber on the model is fixed to the aluminium
tubing by means of a screwed connection at the bottom and a close
fitting locating connection at the top. There may be,therefore, some
discontinuity in fixity at these locations and this might be expected
to slightly affect the stiffness. However, the good agreement with the
analysis and experiment confirms that any errors in this respect are

likely to be minimal.

A linear -elastic analysis has been performed and it has been

assumed that the PVC buoyancy chamber behaves elastically and has a
o 2 .

value for Young's modulus of elasticity of 2.75.103N/mm . PVC is not

truly linear elastic but the errors for small strains will be minimal

and are not thought to contribute significantly to the analysis.

The lead washer 'lumped' masses are incorporated into the
analysis by adding the amount to the relevant mass corresponding to
the translational degree of freedom pertaining to the nodal connection

considered.

Thirteen finite elements each 200mm in length have been used
in the analysis. The bottom of the buoyancy chamber corresponds to

nodal connection number 10 and the top corresponds to a mid element
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point but this has been allowed for in the assembly of the mass and

stiffness matrices.

7.4 Analyticai Results

7.4.1 Effects of Linear Wave Theory

Figure 7.43 shows the results of the analysis for the model
arrangement relating to condition number 5, ie 6 1lead washers per
nodal connection and 16 washers at the top. The wave generated was
73mm high with period 0.83 seconds. The wave freguency response
displacements at the top and middle are 68mm and 84mm, respectively,

ie the ratio of mid to top displacement = 1.24.

Corresponding experimental displacements were 45mm and 65mm,
respectively, (mid to top displacement ratio = 1.45). A transient
oscillation, harmonic with the natural period in pitch, 1is just
perceptible. A steady drift from the vertical of approximately 35mm is
observed and this compares with an experimental observation of steady

drift equal to approximately 50mm.

Figure 7.44 shows the analytical results for a 90mm wave with
period 0.83 seconds for the same structural configuration. Top and
middle displacements are 84mm and 100mm, respectively, (mid to top
displacement ratio = 1.19) compared to experimental displacements of
67mm and 79mm, respectively, (mid to top displacement ratio = 1.17).
Theé steady drift component 1is approximately 50mm compared to an
experimental value of 90mm. The results concur qualitatively with the
experimental results which display a decrease in the mid to top

displacement ratio for increasing wave height.
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A general observation in regard to the phase of the response
should be noted. The analytical model predicts that the maximum
displacement at -‘the top of the column lags the wave crest by
approximately 300, ie the response lags the maximum forces by 120o
The experimental observations would suggest that the response lags the
maximum wave force by 90O le, the response is in phase with the wave
crest. The small discrepancy in the analytical phase lag may occur 1if
exciting frequencies are slightly different to natural frequencies and

is not thought to be attributable to any other significant factor.

7.4.2 Effects of Stokes Fifth Order Waves

It 1is pertinent to examine the effects of Stokes' fifth order
waves on the response since some of the waves considered are
relatively steep, ie the 73mm wave is 50% of maximum steepness and the
95mm wave 1s ©8% of maximum steepness. Particle velocities and
accelerations for these waves are some 6-8% greater by Stokes' fifth

order theory than by linear wave theory.

Figure 7.45 shows the result for the 73mm wave using Stokes's
fifth order theory in the analysis. The transient oscillation is more
pronounced at the start and is effectively damped out in time. The top
displacement has increased to 74mm (9% greater than by the linear wave

theory) and the middle displacement is the same.

Figure 7.46 shows the result for the 95mm wave using Stokes'
theory. Again the transient is more pronounced to start and the steady
drift has increased. Both the top and middle displacements are less

than those as predicted using the linear wave theory, being 79mm and
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.95mm, respectively. These values are greater than those obtained

experimentally and are +13% for the top displacement and +26% for the

middle displacement.

The effects of Rayleigh damping is illustrated by comparing
fig. 7.43 which is for 2.5% of critical Rayleigh damping with
fig. 7.47 thch is for 1.5% critical damping. Both these results are
for 1linear wave theory. The middle displacement has increased to

115mm, otherwise the results are very similar.

Figure 7.48 shows the result obtained for 1.5% critical
damping using Stokes' fifth order wave .theory. The transient is
considerably increased as is the steady drift component which is now
approximately 150mm. This is some 55% greater than the experimental
steady drift. ~ These results indicate that a value for critical
Rayleigh damping of the order of 2% would produce analytical results

similar in magnitude to the experimental value.

There is good qualitative agreement between the analytical
results and those obtained experimentally in respect of top and middle
displacements, transient oscillations, and steady drift components.
Quantitatively, the errors decrease with increasing wave height and

the best agreement is obtained using Stokes' fifth order wave theory.

The rate of increase of displacements is greater for
fig. 7.38, ie condition 1, which is for the maximum mass at the top of
the column. The rate of increase decreases as the mass at the top is

reduced.
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8. CONCLUDING REMARKS

The full finite element vibration analysis, in the time domain
presented, highlights the harmonic vibration which may exist when the
structure 1is excited with waves at the same frequency as the first
resonant flexural mode frequency. The magnitude of stress levels is
significant, in spite of the relatively small magnitude of the

exciting forces involved.

The Newmark-Wilson integration operator with a = 1/2 and
§ = 1/4 provides the most stable solution and the unsuitability of the
Wilson-f 1linear acceleration method for MDOF systems is noted. In
appraising the results of any time incremental analysis the
integration procedure used must be borne in mind. However, the results
obtained are thought to be reasonable and the integration procedure

used does not possess numerical damping.

Very small amounts of Rayleigh damping were shown to
significantly affect the response but the uncertainties relating to
the use of a realistic amount precludes the Jjustified 1inclusion of

larger amounts of damping.

The non-linear responses oObtained as a consequence of the
inclusion of the axial forces 1is particularly important and these
indicated a 'threshold' 1level or a ‘'quasi' dynamic buckling load
falling far short of the static critical Euler buckling 1load. This
dynamic aspect of the buckling analysis clearly plays a very major
role in the vibration analysis and, in part, poses the question of

integration operator stability.
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While different drag coefficients did not appear to influence
the vibration responses noticeably, the current of 1 metre per second
shifted the mean response as would be expected. The importance of
including the viscous speed term is observed, particularly for the
more slender structures, and the contribution of this term 1in

producing the transient and steady drift responses is noted.

Relocation of deck masses did not have any marked effect on
the forced vibratory response. Apart from increasing second and third
mode frequencies, the advantages will be otherwise associated with

improved statics, etc, as discussed in Chapters 2 and 4.

The attenuation in stress levels obtained for waves with
frequencies less than the second mode vibration frequency are to be
expected and confirms the transition from second mode vibration to

fundamental mode vibration.

The monopile structure displayed modest reduction in the
motion response compared to the articulated column. The resonant
response at twice the frequency of the first flexural response mode is
a significant observation and this resonant response can apparently be
induced by waves with freguencies which have multiples greater than
twice the first resonant flexural mode. This phenomenon 1is of

particular concern as a possible source of dynamic instability.

The experimental data obtained, albeit for a structure with
exaggerated mass distribution and flexural rigidity, correlates very
well qualitatively with the analytical predictions. The prediction of
the steady drift component in the response is noted and although
different to the experimental value it is, nevertheless, an important

observation.
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The analysis presented calculates forces to the SWL and not to
the instantaneous water surface which is assumed to be coincident with
nodal connection point number 13 (see fig. 7.36). There is, therefore,
no nett drag component of force entering into the calculation which
might otherwise, in part, account for the steady drift. If the
excursion of the structure in the wave was not accounted for the nett
forces integrated over one wave cycle would be zero. This would infer
that, after the initial transient had been damped out, the structure
would oscillate about the vertical and not experience any second order
drift effects (see fig. 7.25). However, the effect of the viscous
speed squared term and its role in the transient and steady drift
response was noted in section 6.3.6 and tﬁis will, in the main,
explain the experimental and analytical prediction for the model. The
excursion of the structure in the wave does make a contribution,

albeit of a much reduced size, to that of the speed squared term.

The good qualitative agreement between experiment and theory
vindicates the efficacy of the full vibration time series solution in
the analysis of compliant structures in general and articulated

columns in particular.



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

This study has addressed those aspects pertaining to the
proposed use of articulated columns as production platforms, which are
thought most likely to have a fundamental impact on the feasibility of
the concept. At the same time, it has attempted to validate the use of
time simulation methods to examine the non-linearities in response

which play a major role in the design of compliant structures.

Conclusions have been given at the end of relevant chapters

thoughout the work. These are of a very specific nature in relation to
the contents of the chapter and, it is desirable to remark upon the
main findings 1in a more general sense. In particular it is important
to assess the inter-dependence of these and the way in which they work

in combination to affect concept design feasibility.

As noted in Chapter 1, articulated columns have been used
successfully for some time in a number of applications, mostly in
connection with tanker moorings but for a few small o0il field
production platforms. In Chapter 2 the principal concepts relevant to
production platforms were reviewed and it was shown that, potentially,
the maximum benefit would be obtained from the use of the buoyancy
chamber as accommodation for plant and machinery or as storage space.
Through reduction in the height of the centre of gravity, this greatly
reduces the constraints on the design of the deck and its support
column. Containment of risers, etc within the lower column offers

considerable advantages in respect of giving protection from wave and
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impact loading as well as making inspection easier and safer. This
féature is greatly enhanced when the lower column is designed to be
watertight. Installation and relocation are feasible provided they are
carefully planned at the design stage. The gravity type foundation
reduces problems in that area and, indeed, at the removal stages upon

completion of the production.

In Chapter 3 the evaluation of wave loads was assessed in the
context of articulated columns. The way in which drift forces could be
generated was also assessed, as was the importance of accounting for
the forces wup to the instantaneous water surface and in respect of
structural displacements. The Morison approach to loading,
incorporating the aforementioned features, is reasonable provided the
ratio of D/L does not exceed about 0.2 and it provides a means by
which the viscous drag relative speed squared term can be
incorporated. This is of merit in the analysis of compliant structures

in general and articulated columns in particular.

The rigid body dynamic analysis presented in Chapter 4
highlights the transient response which the time series analysis
predicted. Experiments confirmed the phenomenon and it will have a
major part to play in the design of the upper support column and the
deck structure. Deck clearance reguirements will obviously have to be
assessed with the increased pitch in mind. It is also likely to
feature as a primary consideration in respect of production and, where
applicable, drilling activities. The transient phenomenon is damped
out in time as expected. Two numerical procedures were used, ie direct
integration and multi-step methods, and they produced essentially the
same results so that confidence in the mathematical modelling was

established.
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The relationship between the transient and the viscous drag
damping was noted, especially when waves superimposed on currents were
examined. Non-linear wave theory had a marked effect on the response,
and this, together with the effects of currents, exemplifies the need
to account for viscous drag in the analysis. The assessment of the

minimum deck clearance required must take all of these factors into

account.

All possible sources of dynamic instabilities were examined
and it was shown in Chapter 5 that several of these could give rise to
Mathieu type and other instabilities. Again, viscous drag damping
plays an important role and is an area for concern, since it will be
of fairly low order at full scale Reynolds numbers. The time series
analysis provides an efficient means of assessing the magnitude of the
non-linear oscillations. The importance of heave forces and of the
consistent time history approach in accounting for the instantaneous

position of the structure in the waves was established.

As noted, fully operational production platforms are unlikely
to experience Mathieu type instabilities as a consequence of first
order wave excitation. However, other sources may exist and special
attention has to be paid to the installation procedure to ensure that
consequent pitch frequencies are sufficiently low. Harmonic resonant
response instabilities brought on by specific wave groups were shown
to produce large motions and clearly their possible existence in a
seaway must be carefully assessed and allowed for. The versatility of

the time series analysis in dealing with wave groups was demonstrated.

Having examimed the rigid body dynamic behaviour, attention
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was directed towards other areas considered likely to give rise to
problems. Hence, the examination of elastic vibration as presented in
Chapters 6 and 7. The free vibration finite element analysis suggests
that the first and second mode flexural vibration frequencies are
likely to give cause for concern. The single most important parameter
in this respect is the deck mass and it was shown that a substantial
relocation to the buoyancy chamber greatly improved the vibration
characteristics. This, albeit for different reasons, concurs with the
findings in Chapter 2 where the advantages were related to static

stability.

Vibration constraints mean that the thickness of the lower
column is likely to be such that it can be designed to withstand the
external water pressures. This is beneficial both from the point of
view of access to risers, etc and in extending operational depths as
well as reducing buoyancy chamber requirements. For a maximum payload
of approximately 60,000KN, the «circular cylindrical annular steel
section investigated is feasible for maximum water depths of
approximately 300 metres. At this depth the payload to structural
weight ratio for the structure is of the order of 1.00 and this is
competitive with alternative compliant structure concepts. The
adequacy of the finite element method as a means of conducting
parametric studies of the free vibration analysis of articulated

columns has been demonstrated.

Although the advantages of wusing a circular cylindrical
watertight section for the lower column are significant, there are
obvious limitations as described. The alternative structural form for
the lower column comprising a lattice structure of small diameter

members has been shown to be very efficient in reducing the vibration
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problems. This form of structure will also be 1lighter than the
equivalent «circular cylindrical section. However, the design and
fabrication will be less straightforward but the lattice structure is
established and should not present unsurmountable problems. Access to

risers and the maintenance of these are the main disadvantages.

The existence of the non-linear behaviour as observed in the
rigid body analysis, necessarily determined that a full vibration
analysis in the time domain be undertaken for completeness. This
analysis confirms the existence of non-linear behaviour attributable,
in the main, to viscous drag. The non-linear behaviour was observed
experimentally and also confirmed by the analysis and this vindicates
the analytical method used, despite possible limitations in the use of
the Morison approach to loading. The non-linear behaviour referred to
is, again, the transient drift, which comprises a steady varying
component harmonic with the fundamental pitch frequency and a steady

drift component. The ability of the simplified Morison approach to

predict such behaviour is attributed to the viscous drag component and

a component which accounts for the instantaneous position of the
structure in the wave, the latter having much less effect than the
former.The full time simulation finite element analysis, highlights
the non linear benaviour which must be carefully understood and

demonstrates the adequacy of this approach.

The design of new concepts must be conservative and can only
proceed with confidence when consideration has been given to all
conceivable problem areas. The process must involve evaluation and
re-evaluation to increase confidence 1limits in the adequacy of the
work. Recommendations for future work must involve an element of

hindsight; nevertheless it 1is «consideed that attention to the
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following recommendations will augment the work presented in this

thesis.

The buoyancy chamber is of such central importance both from
the static and dynamic points of view, that it is essential to make an
assessment of possible uses. This can be achieved in a most effective
manner by cultivating the 1interest and involvement of potential
industrial operators. Also in this context it will be desirable to
undertake further investigation of the optimisation procedure as
suggested in Chapter 2. These together are likely to make an effective
contribution, in that they will help to resolve problems in that area,
thus allowing for greater concentration on other critical areas for

design, such as the lower column.

Further analytical work in respect of waves, both linear and
non-linear, and currents is needed in order to fully understand the
viscous drag contribution. Experimental work will be of considerable
merit and a means of simulating a steady current to act with waves
should be sought. Some form of carriage traversing the length of the

experimental tank is possible.

Resonant responses are an area of concern and more analytical
work 1s necessary 1in assessing the possibility of wave groups in
randon seas. There are a number of ways of doing this in the time
domain and this work should be complemented with experimental
observations. It would also be beneficial to generate wave groups from

two regular wave trains.

The circular cylindrical section as proposed for the lower

column, will have advantages in respect of construction and
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maintenance. However, as water depths increase beyond 280-300 nmetres,
a more critical appraisal of the vibration will be neceséary if the
simple section is to be retained. It may be necessary to make a more
rigorous assessment of wave loading and this may require a full
diffraction and radiation analysis in the time domain. However, the
importance of the visous drag term 1is noted and would need to be
accounted for in any such analysis. More work is required 1in the
analysis of lattice structures especially in the time domain. The
nature of the construction may give rise to increased viscous drag

forces and these have been shown to be important.

In respect of first flexural mode vibration response, it would
be desirable to make an assessment of any non-linear inertia
forces (63). These may arise as a consequence of the vertical

c

displacement of structural elements as the column vibrates. This can
readily be incorporated into the time simulation analysis. Further

analysis of the role of the viscous drag term in first flexural

responses is also recommended.

Finally, it is recommended that some attention be given to an
alternative structure: the conventional guyed tower designs provide
buoyancy support to a small percentage of the total weight of the
structure, deriving most of its restoring stiffness from guy lines. It
is believed that a structure with the desirable response
characteristics of the guyed tower and the load bearing capacity of
the articulated column 1is feasible. This structure would provide
buoyancy support to a substantial proportion of the total weight and
derive the remaining stiffness from attached guy lines. The dynamics
of the guy lines would need to be incorporated but the time simulation

analysis will readily accommodate this. Indeed, it would be necessary
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to assess the dynamic behaviour of the guy lines to investigate

resonant amplification of these.
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APPENDIX 4.1

Derivation of recurrence relations for displacement, velocity and

acceleration for the linear acceleration method.

Assuming that the acceleration 6,of the column varies linearly over

a series of time steps t., t. + At, t. + 2At
1. 1 1

8

e(t)

y

At

and if 65 = 6(t;)

then B(t) = 851 + (8; - 85_1).t
i-1 1 i-1 At ’ ti-lststi

and integrating w.r.t. time

'
.

8(t) = ei_l.t+(ei—ei_1).t2 +64-1
2At

and 6(t)= 05_7.t2+(0;-05_7).t3 +05_1.t+65)
2 6At
now let t = At

then

b, = 8, e; (6,+6, 1)

i i 1

and By = 0j_q+B;_1-At+At2(205_1+0;)
i i-1"Yi-1 - i
rewriting we have the expression for the acceleration

B, = B (05-65_1)- 2 . B5_1-25
ei = -Z'Ez (el-el—l) At M el-l 61_1
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APPENDIX 4.2

The evaluation of wave particle kinematics by Stokes

fifth order wave theory proceeds in accordance with
the following definitions.

Results of Stokes Fifth Order Wave Theory.

. ) k¢ <& .
Velocity potential, ¢ Y = Z ¢y, cosh (nks) sin (né)
n=1
2
. [ tanh (kd
Wave celerity, ¢ = = % {1+2A2Cy +24C,]
s
Surface elevation, 1 kn= )" np cos (o)
n=1
a S
Horizontal particle velocity, u —= Z n ¢, cosh (nks) cos (ng)
n=1
. w s i .
Vertical particle velocity, w —_= Z n ¢, sinh (nks) sin (ng)
c
n=g
. R . au/at S 2 0 .
Horizontal particle acceleration, 3u/at _—= Z n? ¢;, cosh (nks) sin (n6)
we
n=l
aw/at i
Vertical particle acceleration, dw/at =- Z n? ¢}, sinh (nks) cos (n@)
wce
n=1
d¢/at s
Temporal derivative of ¢ (1/2 = - Z n ¢ cosh (nks) cos (n6)
n=l
P s
—_— 1 - —
Pressure, p ped 1
2 2 2
P LI T g )
gd | 2 2|\c c
where

61 =M1 +A3A13 +ASA s, 02 =AZAg; +A%Ag,
®3=A3A33 +A5A3s, 04 = N*Ass, 05 = ASAgs,

71 = A, ny = A%Bag +A%Bjq, n3 = A3Ba3 + 2By,
n4 = A*Baa, 15 = A5 Bss.

The coefficients A, B, C are known functions of kd only, given by Skjelbreia and
Hendrickson

The equations to be solved simultaneously are:-

1 H
— [A+B33A3 +(Bys + 1=—
K [A+B33\® +(Bas + Bss)A] 2d

kd tanh (kd) [l +C1)\2 +C27\4] = 47(2 %
8

Fifth order wave lengths usually lie somewhere between
linear wave length and 1.2 times linear wave length; a
suitable starting point for an iterative procedure would
lie between these two limits.
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APPENDIX 4.4

With reference to fig. 4.29;

the X and Z axes are orthogonal

and in the horizontal plane parallel to the sea bed. The motion of the

column is considered in the 6 plane YOP, which is defined by the

angle 6 and in the {y plane XO0OZ,

as shown. Rotations are, therefore,

considered about the OY and OX axis, respectively.

where L, =T = V
and Fq = non-conservative forces
T = kinetic energy of system

The Lagrange equation for a system of forces can be written:-

9 9L 3L
ot 3 g dg - q

<
It

Consider an element of mass

potential energy of system (only conservative forces)

at a distance re from the

articulation. It will have a velocity expressed in spherical

co-ordinates equal to (ry2.(82 + 92 sin26).

The

\The

and

kinetic energy of the element can be written, therefore, as:-

smere2.(62 +¢ 2 sinZg)
3.I1.06 %+ §2sin?g)

potential energy is given by,

the Lagrangian is written as

v

L

I

-(1 - cosf)mg

T -V

311(32+{?sin20) + mg(1 - cose)

applying Lagranges method by the differentiation of L with respect to

9, 6, Yy and ¢ the equations of motion are derived.
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16 - I&zsinecose + K sinf = My

and Iisinzat+ 2I¢ésin6cose = Mw

where K = (Bp.RKB - W.RKG)

The &2 and the @épart in the second term in each equation is
attributed to a centrifugal and a coriolis component of force,

respectively.

Me and M, are the sums of moments about the 0X' and OY axes,

v

respectively. As for the SDOF system, the non-conservative moments
are calculated using the modified form of the Morison equation to

account for column motions.

Evaluation of Forces

Forces are evaluated on the basis that components normal to
the axis of structure are relevant. Accordingly, the drag components
are derived as follows assuming relative velocity of the structure

and fluid.

Consider a current VC at an angle @ to the X axis

VC_ = VCcosa VC_ = VCsina VC_ =0
X z y
The resultant velocity of current and wave particle velocities Upgg
is given by:~

U + VCy
Upeg = vV + VCY where z = 0.0

Z + VCy

Components normal to the axis of the structure, Upy, Upy and Up, are

obtained by means of the transformation matrix,
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2
(1 = Cx*) - CxCy -CxCy,
2 -c
A= [-CyCy (1 - c,2) vCz
2
-CyCy ~CyC, (1 - 2

where C, sinfcosy

0
1

cos®

@]
Il

sinBsiny
ie Unx
Unyt= AeUres
Unz

the velocity of an element of the structure at a distance r from the

articulation 0 is given by:-

Uy cosfsiny sinycosy
Ucyb= r.B. where B = |-sinf 0
Uey cosbcosy -sinfsiny

the relative normal velocity is then given by:-

so that MDX

Mpy = 4P.r.D.Cp. Urell(UrxlUry'UrZ)?

2 2 2
where U, = V/Urx + Ury + Upy
The moments of inertia forces are then calculated as follows:-

u

= RVC A \' X.
M. ¢
o

Mixr Mpyr Myg

The Fluid Added Mass moments of forces are calculated thus:-

a

cX
= . - a

Max+ Mpyr Mpgy = PV.T.(Cy =1) cy
a

cz



where acy, acy and a,, are differentials with respect to time of the

velocities of the structure as given by Uecx s Ucy and U.y,

ie ox [§cosgsiny + Ysinbcosy - (B2 + y2)sinbsiny + 2é¢cosecosw]

»
i

]
I

cy = (6sin6 - 62cos6]

cz (6cosbcosy - (sinbsiny - (éz + ¢2)sinecosw - 2é¢cosesinw]

V]
1]

the total moments of forces are then given by:-

Mrx = Max * Mpx * Mpy

Mpy = -May + My = Mpy

Mpz = —Mpgy = M1z = Mpgy

By vector analysis the moments in the & and y directions are

given by:-

di

M = —[ Cy(MTXsinw + Mpy cosy) = Mqysing).dr
(o)

di

[e]

and M

these moments are substituted into the equations of motion which can

then be solved incrementally.
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APPENDIX 5.1

EVALUATION OF ADDED VIRTUAL MASS COEFFICIENTS IN THE CALCULATION OF

HEAVE FORCES

Consider the disc as shown in fig. A5.1.

/
—
—-72Rsin® The added virtual mass of a strip
of width 6x and length 2Rsin® is
-—ﬂr
equal to W(Rsin@F(: .X, where C
\Y% v
is appropriate to an aspect ratio
] h of 2RsinB/h.
1I. L
2R 1

FI1G AS.1

By integrating, the added virtual mass for the complete disc
may be written as:-

m/2

Complete AVM = 2 pﬂCv(RsinG)2Rd6.sin6

0

CV will be a function of 6§ and the evaluation of this integration can

be made more staightforward by taking a mean aspect ratio for the

whole disc of:-
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The complete AVM is then written:-

ﬂ/2'
_ 3...3
AVM = 2 pm(R7sin S)CV.J.de

O

where J = 0.635 and accounts for the 3-dimensionality of the flow.

Values of CV as a function of the aspect ratio TR/2h are

obtained from fig.A5.2.

cv

77
i L/ %

201

k5

' ey t — 4 °/b.
0-5 1-0 1-5 2-0 2-5

ADDED VIRTUAL MASS COEFFICIENTS, CV.

Fl G.A5.2
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APPENDIX 7.1

EXPERIMENTAL TEST RESULTS FOR ELASTIC
VIBRATION OF MODEL ARTICULATED COLUMN

Wave Steady
Freq Ht Top Mid Ratio Drift
(Hz) (mm) Displ Displ (Mid/Top) Top

TEST CONDITION 1

4 Washers per node plus 17 on top. Freq 1l.3Hz

1.3 2v 14 5 13.3 2.66 3.48
1.3 3v 30 10.34 25.8 2.49 6.89
1.3 4v 47 19.8 39.58 1.99 17.2
1.3 5v 58 24.13 47.5 1.96 - 27.5
1.3 6V 60 25.0 50.0 2 37.93
1.3 7V 70 30.17 56.66 1.878 44.8
1.3 8v 80 31.03 60.83 1.96 51.7

TEST CONDITION 2

5 Washers per node plus 18 on top. Freq 1l.22Hz

1.22 3v 33,33 8.33 25.6 3.07 5.17
1.22 4v 46.67 14.16 35.3 2.49 8.6
1.22 5v 60.0 20.0 45.0 2.25 23.27
1.22 6V 68.33 20.0 46.55 2.32 27.5
1.22 7V 76.67 26.67 55.08 2.06 ' 34.48
1.22 8v 85.00 30.0 61.29 2.04 44.8

TEST CONDITION 3

6 Washers per node plus 16 on top. Freq 1.18Hz

1.18 3V 33.3 9.16 23.6 2.57 5

1.18 4v 46.67 15.83 35.25 2.23 12.5
1.18 5v 65.0 23.33 48.0 2.05 26.6
1.18 6V 70.0 30.83 54.75 1.77 30.0
1.18 7V 78.33 33.33 60.0 1.8 43.3
1.18 8V 86.67 34.16 66.0 1.93 60.0

TEST CONDITION 4

7 Washers per node plus 17 on top. Freq 1.175Hz

1.15 17 , 0

1.2 16 5.0
1.155 16 5.0
1.175 20 16/10 24/22 1.5 7.0
1.175 30 22/18 36/36 1.63 10.0
1.175 40 24/20 42/39 1.75 12.0
1.175 50 32/28 53/50 1.65 20.0

1 1.175 62 40/40 66/65 1.65 32.0
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