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ABSTRACT

The work contained in this thesis mainly relates to aspects of 

the dynamic behaviour of articulated column production platforms. 

However, the work can be applied in a more general sense to certain 

other compliant structures which share some of the dynamic 

characteristics of articulated columns.

After an introductory chapter on the characteristics and uses 

of articulated columns, some time is devoted to the examination of 

fundamental aspects which will have an important bearing on the 

feasibility of the articulated column concept. Such features as the 

amount of buoyancy required in terms of payload and static heel 

considerations, space utilisation within the structure, installation 

procedure and human awareness to motion responses are, discussed. Data 

are provided which are intended to give general guidance to designers 

and also establish the inter-dependence of certain parameters.

Chapters 4 and 5, are concerned with the rigid body motion 

response in the time domain. Computer programs have been developed to 

solve the equations of motion on a time incremental basis, using the 

modified Morison equation as the forcing function. Once developed, the 

programs have been applied to examine certain of the non-linear 

behaviour characteristics of articulated columns in regular waves. 

Chapter 5 is devoted to examining those aspects of dynamic instability 

which are readily examined in a time series analysis. Instability 

mechanisms examined are those due to regular waves and wave groups. 

Experimental results have been obtained and comparisons with theory 

are made.



The slenderness of the construction of articulated columns 

gives rise to elastic vibration characteristics which may result in 

undesirable resonant vibrations. Chapter 6 is concerned with an 

examination of this aspect, in terms of free vibration analysis, and 

of those parameters which have the greatest influence on vibration.

The finite element method has been used for the free vibration

analysis.

In Chapter 7, the development of programs to examine the full 

vibration analysis of articulated columns, in the time domain, is 

described. The programs have been used to examine, in the time domain, 

certain of those parameters which were examined in the free vibration 

analysis presented in Chapter 6. Some experimental results for a very 

flexible structure are presented and the programs have been adapted to 

simulate the model construction and test conditions. These results 

give credibility to the use of a full vibration analysis in the time

domain and comparisons of observed non-linear behaviour and predicted

non-linear behaviour are made.

The non-linear behaviour of articulated columns is shown to 

play a major part in concept feasibility as are elastic vibration 

characteristics. However, the concept comprising a lower column of 

relatively straightforward structural section is shown to be feasible 

in water depths up to 300 metres. Thereafter, greater flexural 

rigidity is required.
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NOMENCLATURE

variable in vibration analysis =yEI/pAs 
apparent amplitude of group waves

group wave amplitude 
regular wave amplitude
equivalent shape functions for beam element 
displacements 

amplitude of wave group envelope 
arbitrary constant 
projected area 
cross section area

B appropriate derivative of shape functions [A]
Bp buoyancy force
BQ arbitrary constant

c wave celerity
C damping matrix

added virtual mass coefficient 
CD drag coefficient
CDq current drag coefficient
CDW wind drag coefficient
CDL equivalent linearisation of drag = 8uq / 3 t[ x Cd
CD^ wind drag coefficient

inertia coefficient 
SCVR-| ,CVR2 , etc added mass coefficients for cylinder of radius R-j 

and length L-| , etc

d water depth
D diameter of cylinder
pC deck clearance
DW deck width

E Young's modulus of elasticity

li / i= 1 / 2

force vector
.drag component of force
equivalent nodal load force vector



inertia component of force 
maximum steady state force 
total force vector

gravitational constant

frequency response function

second moment of area of section
identity matrix = M” ^M (Chapter 6)
added mass moment of inertia about articulation
mass moment of inertia about articulation
total mass moment of inertia about articulation

three dimensional flow coefficient = 0.635 
derivative of Bessel function of first order

wave numbers = 2it/l 
elastic stiffness coefficients 
Dieckmanns sensitivity coefficient 
geometric elastic stiffness coefficients 
pendulum stiffness of articulated column

length of beam column element 
wave length
submerged depth of upper support column 
length of buoyancy chamber 
length of lower column 
distance from SWL to deck

mass per unit length of element
mass of element
lumped mass (Chapter 6)
moment of drag forces about articulation 
full width matrice
moment of inertia forces about articulation 
semi-band width of matrice 
total moment of forces about articulation 
moment of forces about vertical axis



nth vibration mode
total number of degrees of freedom 
fluid pressure distribution 
axial load on element

Eigen vectors

radius from articulation
finite elemental degree of freedom notation 
internal displacements
rigid body steady state response at time t 
plan radial distance from centre of cylinder 
rigid body maximum steady state response 
radius of upper support column 
radius of buoyancy chamber 
radius of lower column
distance from articulation to centre of current forces
distance from articulation to centre of buoyancy
distance from articulation to centre of gravity
distance from articulation to centre of wind pressure

integration variable along length of finite element 
surface force vector

instantaneous time 
total heave force 
drag heave force 
inertia heave force 
excess buoyancy force

horizontal water particle velocity 
horizontal water particle acceleration 
displacement vector
strain energy for virtual displacement

vertical water particle velocity 
vertical water particle acceleration 
volume displaced 
current velocity 
wind velocity



w i I i=i_ 3  weighting functions for Gauss quadrature integration
W weight of structure
WE external work done due to virtual displacement

x horizontal co-ordinate scalar quantity
x first derivative of x wrt time
x second derivative of x wrt time
x i ' j_= -| 3 value of function f(x) to integrate function between

specified limits using Gauss quadrature 
X normal function
XD drag component of pitching force
Xj inertia component of pitching force
XQ amplitude of forced oscillation

y depth measured from still water level (SWL)
Yn generalised co-ordinates
Yi derivative of Bessel function of 2nd order

z horizontal co-ordinate
Z body force vector

a coefficients in Newmark integration
a element inclination (Chapter 6 )

B percentage critical damping

y damping coefficient
y element co-ordinate transformation coefficients (Chapter 6 )
Y-j nodal co-ordinate transformation coefficients (Chapter 6 )

6 coefficient in Newmark integration algorithm
6 logarithmic decrement of damping (Chapter 5)

e elastic strain

£ phase angle between excitation and response

wave profile



coefficient in Newmark-Wilson algorithm (Chapter 7) 
pitch rotation about vertical axis 
first derivative of wrt time
second dervative of wrt time
damping coefficient

constant = 3.142

water density

elastic stress

mode shape vector
velocity potential for generated or radiated wave 
velocity potential for undisturbed incident wave 
velocity potential for generated wave for mode j 
velocity potential for undisturbed incident wave

wave frequency
natural frequency in pitch of structure 
frequency of apparent group wave



1.

CHAPTER 1 

INTRODUCTION AND OVERVIEW

1. INTRODUCTION

Forecasting the demand for, and availability of, offshore 

hydrocarbons is fraught with uncertainty. However, certain 

references (1) indicate that approximately two thirds of estimated 

future potential crude oil discoveries will be made offshore. One 

third will be within the continental shelf regions in water depths not 

exceeding 200 metres, while the other third will be in deep water and 

polar regions.

Other references (2, 3) indicate that as water depths increase 

there will be considerably more attention given to production 

platforms of a more cost effective genre than conventional fixed 

platforms. In addition to costs, technical limits in respect of 

fundamental vibration modes are reached with fixed platforms as water 

depths increase. Figure 1.1 indicates that deep water hydrocarbon 

extraction will be possible by 1985 to 1990. The chronology is suspect 

and at present the fixed platform technology available will only allow 

extraction in maximum water depth of approximately 300 metres. The 

relatively long lead times associated with the development of new 

concepts make it necessary that research be undertaken well in advance 

of anticipated requirements.

Floating production systems based either on semi-submersibles 

or large tankers are attractive alternatives to fixed platforms. The
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former are generally moored in a 'fixed' position and orientation and 

only move within the restraints imposed by their moorings. The most 

serious of these, from the riser design point of view is the 

vertical (heave) movement although this is being overcome by flexible 

risers. In deeper water the problem of mooring becomes very severe due 

to the mass of cable or chain involved and unless some new material 

such as KEVLAR can be brought into use, will impose a definite limit 

on this type of vessel. Its other great weakness is the lack of 

storage capacity. This is overcome by using a tanker but in this case 

it is impossible to moor the vessel in a fixed position and it must be 

allowed to rotate to be substantially head on to the sea and wind 

forces. This is achieved by mooring to a buoy or articulated column 

which must incorporate the risers plus a swivel to allow the vessel to 

rotate while accepting a continuous flow of oil and gas. These tanker 

mooring towers are one of the widest uses of articulated columns at 

present. The large storage in the tanker means that the export vessel 

need only call at intervals of a few days and there is little downtime 

on the export side. Floating production systems in the form of a 

tanker permanently moored and containing all of the processing 

equipment is another alternative. One such system is the CADLAO FPS in 

the Phillipines (4) which is operated by the Amoco oil company. The 

system has been operational since 1981 and has a minimum record of 

downtime.

Fixed jacket structures are limited by technical 

considerations in respect of fundamental sway periods, to maximum 

water depths of the order of 300 metres. The transition from one side 

of the spectrum to the other, as shown in fig. 1.2, is effected by 

allowing compliancy of the structure with waves. Compliant structures 

allow some lateral sway motion with waves while keeping vertical
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movements to a very low level. This avoids overloading drill stems and 

risers and achieves the transition from one side of the spectrum to 

the other in respect of fundamental vibration modes. However, while 

the fundamental natural frequencies may decrease, other vibration 

considerations in respect of higher modes become increasingly 

important as is shown in subsequent chapters.

A deepwater compliant riser system is proposed by the Mobil 

company (5). This system basically comprises a central structural core 

to which are attached the peripheral rigid risers. Buoyancy support 

for the central core is provided by a chamber which is at a depth of 

some 200 feet beneath the still water level. Flexible pipes complete 

the transition from the subsurface buoyancy chamber to the moored 

tanker, which contains the production equipment. The depth of 

submergence of the buoyancy chamber greatly reduces exciting forces 

and so motion responses on the lower structure will be very small. The 

array of flexible pipes, on the other hand, are in the most active 

wave region and will have to sustain considerable loads.

Guyed towers (GT), Tension Leg Platforms (TLP) and Articulated 

Columns (AC), are those structures generally associated under the 

broader term 'compliant systems'. A review of the relative merits of 

each is given in Reference 6.

2 . EXISTING APPLICATIONS

Articulated columns have been successfully used in the North 

Sea and elsewhere, for a number of years, mainly as loading terminals 

and flare columns, and their suitability has been established.



6.

The articulated column ELFOCEAN (5), was installed in 100 

metres of water in the bay of Biscay in 1968. Buoyancy tanks are 

provided near to the surface of the 7 metre diameter steel column and 

ballast is provided near to the base of the structure. ELFOCEAN was 

operational for 3 years during which time extensive tests confirmed 

the suitability of the concept in application as a mooring column for 

oil tankers and as flare stacks. The studies concluded, in part, that 

loading of tankers in the bay of Biscay could continue for 85-90% of 

the time compared to 70-75% of the time in the case of conventional 

mooring terminals.

Articulated columns have also been successfully used in the 

Beryl; Statfjord and Maureen fields as loading columns. The Maureen 

column is placed in approximately 100 metres of water (8). The main 

column is constructed of pre-stressed concrete and is 9 metres 

diameter ‘with a wall thickness of 300 mm. The Statfjord C articulated 

loading column (9) recently commissioned is 196m long overall and is 

probably the largest articulated column commissioned so far. This is a 

significant step in terms of water depths and is an indication of the 

increased awareness among operators as to the potential of the 

articulated column concept. Some examples of the structures mentioned 

are shown in fig. 1.3.

However, not all of the existing applications have enjoyed 

unmitigated success and the double articulated column servicing the 

Thistle field suffered a failure at the uppermost articulated joint in 

1979 (10). The upper column was found to be attached to the lower 

column by the two flexible risers across the joint. Attempts to sever 

the connection using explosives caused damage to the lower column. The
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structure was re-commissioned but broke away from its mooring in 

January 1983 and has since been taken out of service.

The articulated column concept can be applied also to a

combined mooring and riser device in which the column contains all the 

risers. The heavy processing equipment is then carried by a support 

vessel such as a tanker, barge or semi-submersible. The tanker is

connected to the column by means of a rigid yoke which attaches to the

tanker and the column by way of a horizontal hinge and universal

joint, respectively. This concept is illustrated in fig. 1.3 and is 

currently used in the development of the Tazerka field in the 

Mediterranean (11). This system incorporates a complex manifold 

chamber and swivels which are located on the yoke and are designed to 

allow for tanker rotation roll, pitch and heave. Such a complex

arrangement may be responsible for a substantial portion of the

overall structural costs.

3. POTENTIAL APPLICATIONS

In addition to the uses already mentioned, it is envisaged

that the concept could be applied as a production unit servicing a

number of sub-sea wells (12) each well being connected to separate 

inlet manifolds on the column deck by individual high-pressure risers.

Oil storage capacity of approximately 12,600 barrels could be provided 

at the base of the column so that production would not be interrupted 

when switching from one tanker to another. This amount would allow 

several hours production in the absence of a vessel moored to the 

structure. However, greater amounts of storage may be provided at the 

base of the column as necessary.



The concept might also be used as a relay column installed 

remote to sub-sea wells. In this case, the function would be remote 

production control in addition to well-killing capabilities and pump 

down operations.

The Howard-Doris deep water gravity tower concept (12) is 

proposed as a production platform for a site in the Mediterranean in 

490m of water. The buoyancy chamber is to be constructed of concrete 

and the lower column member is to be constructed as a lattice steel 

structure. This structure has a total topside payload of 15,000 tonnes 

and is capable of producing 50,000 BPD of oil. Risers and conductors 

would be 'clumped' and located within the lower column lattice 

framework.

An all concrete articulated column Arcolprod is proposed in 

Reference 13 and this concept includes for extension and retraction of 

the lower column telescopically. The articulated joint connection for 

Arcolprod comprises an array of synthetic tendons thus eliminating the 

need for a mechanical articulation device. Access through the joint 

into the base of the structure is provided by means of non structural 

flexible access tubes.

Guyed towers can be considered as a special type of 

articulated column with the buoyancy providing support to a fraction 

of the total mass of the structure. The remaining stiffness is 

provided by attached catenary guy lines anchored to the sea bed. The 

Exxon guyed tower (14) is situated in 300 metres of water and supports 

a payload of 240,000 KN. The total weight of the structure is 

470,000 KN and approximately 120,000 KN of buoyancy is provided. The 

remaining restoring stiffness is provided by twenty guy lines equally



spaced around the structure. The guy lines therefore constitute the 

major contribution to the restoring stiffness in this case. This means 

that the tower itself has to be designed to support very substantial 

compression loads. The provision of more buoyancy will reduce the 

compression loads on the tower and make an increased contribution to 

the restoring stiffness.

It is considered that buoyancy can be provided in such amounts 

as to provide support for the complete structure or a substantial 

proportion of the total weight of the structure, thus reducing the 

design and construction problems of the lower column.

4. DESIGN GUIDANCE

In order to promote the adoption of new concepts in a manner 

in keeping with the safety provisions necessarily imposed to ensure 

minimal risk to both personnel and the environment, it is essential 

that design guidance of an adequate and accredited quality be 

available to designers. This means that the formulation of proper 

design codes be undertaken by the relevant certification authorities.

Novel concepts lack the benefits of established, tried and 

tested technology and so the philosophy fundamental to the evolution 

of the design code must be sufficiently pragmatic to ensure that 

design considerations are rigorous. The DnV approach to the 

certification of novel concepts (15) is to provide guidance rules 

which ensure that proper procedures are adopted. DnV draw particular 

attention to the following aspects relating to the certification of 

articulated columns:-
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a. Dynamic Behaviour: the need to have a thorough 

understanding of the compliant motions the structure will 

undergo both at wave and resonant response frequencies. 

Time series analysis including rigid body and elastic modes 

should be completed.

b. Universal Joints: movements of joints and attendant forces 

at these must be understood in order that adequate 

provision be made for the transfer of flexible riser pipes 

either through or adjacent to the joints.

c. Inspection and Maintenance: the need to provide for 

comprehensive inspection and maintenance procedures in 

respect of all critical items of structural importance.

In respect of the latter item, there are indications that 

existing trends point to maintenance and repair costs for fixed 

platforms of the same order as the capital cost of the 

structure (15,16). It is estimated that approximately 100 diver 

inspection hours is required to inspect one node on a typical jacket 

structure (16).

Quite apart from the technical design problems associated with 

jacket structures in water depths greater than 300 metres, diver 

inspection/maintenance costs could conceivably become extremely high 

by virtue of the number and complexity of joints. Moreover, physical 

limitations mean that diver access is not possible beyond about 300 

metres water depth. This means that inspection must be remote and 

structural details for components at these depths must either be kept 

simple or allow retrieval to within diver depths for maintenance



purposes. From these points of view constraints may also be imposed on 

articulated columns, although it is envisaged that the construction 

will be simpler in detail thereby reducing maintenance requirements. 

Therefore, considerably more attention has to be given to inspection 

and maintenance at the concept evaluation stage, research and 

development, to ensure good directional control of efforts and, 

finally, design.

Research has an important contribution to make to the 

development of codes and to ensuring that the strengths and weaknesses 

of numerical techniques as applied to the dynamic analysis of 

compliant or fixed structures is rigorously and realistically 

assessed.

From this point of view, experimental work should continue 

hand in hand with the analytical work either as confirmation of 

analytical reliability and/or to highlight areas which require more 

rigorous analytical research. There are, of course, scaling problems 

with experimental work and a dearth of available and adequate deep 

water facilities. Nevertheless, it is an essential aspect of research 

into compliant structures.

5. PREVIOUS WORK

Articulated columns, as a consequence of the small restoring 

stiffness attributed to the displacement volume, have very small 

pitching frequencies. The slender nature of the construction means 

also that they will possess very little damping when excited at low 

frequencies. The steady drift forces which can be induced (17,18) 

require understanding and accurate assessment.



12.

•Drake et al (19) have studied the steady drift of articulated 

columns subject to regular waves by the formulation of far field (17) 

and near field (18) surface disturbance forces set up by the presence 

of the structure. They found that the analytical expressions for both 

approaches were identical and that a numerical boundary procedure 

based on both methods yielded results within 1% of the exact solution.

The mean drift force was also found to increase with increasing water 

depth and inertias for a given wave frequency.

Kirk and Jain (20,21) have investigated the response of both 

single and double articulated columns in the time domain. They were 

primarily concerned with the response such structures can undergo when 

subject to exciting forces which are multi-directional. They predicted 

complex sw'irling trajectories when such forces prevail. An

understanding of the swirling motion of loading columns is essential 

from the tanker hook up operational aspects and the predictions

augment the value of the time domain approach to the solution of the 

equations of motion.

Kirk (22) has presented an approximate frequency domain

analytic solution to the problem of a single anchor leg storage

system (SALS) with attached tanker, similar in concept to the Tazerka 

structure. The complete tanker/column and yoke analysis predicts that 

the riser would have to sustain compression loads during part of the 

loading cycle for a 20 metre wave, thus possibly sustaining dynamic 

snatch loads.

Chakrabarti (23) has completed work on the transverse 

oscillations which can be generated in waves as a consequence of 

vortex shedding on the body of the cylinder and found that the



transverse motions couple with the inline motions to form swirling 

traj ectories.

The dynamic instabilities which compliant structures may 

experience has been examined in the frequency domain (24,25) and found 

to exist in the form of a transient oscillation when the structures

are excited at twice their natural frequency in pitch.

The elastic vibrations of articulated columns were described

by Bishop (26) using Timoshenko beam theory and a linearised quadratic

drag term as part of the forcing function. He describes the vibration 

response as being analogous to that of ships in waves despite the 

differences in mode shapes obtained. McNamara et al (27) have 

presented a finite element analysis procedure to predict the time 

domain response of an articulated loading tower and found good 

agreement with predicted rigid body motion responses.

Eatock Taylor et al (28) have investigated the elastic 

vibration of articulated columns by extracting the first three 

response modes in the absence of tension forces and fluid inertial 

contributions. They include diffracted and radiated potentials in the 

formulation of the problem and noted the magnitude of the first 

resonant flexural response mode.

6. AIMS OF THIS WORK

Although there is a certain amount of general literature 

available on proposed uses for articulated columns, there appears to 

be very little available in the form of design guidance in respect of 

some of those aspects which are fundamental to any conceptual design
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appraisal. Chapter 2 addresses certain aspects which would probably 

determine the feasibility of a project and is intended as general 

design guidance.

The rigid body motion response of articulated columns has 

received a certain amount of attention (20,21,23) and some of this has 

been in the time domain (20,21). However, it appears that certain of 

the more salient features of the motion response of such compliant 

systems have not been treated in a manner most suitable to accommodate 

the non-linearities which give rise to them. Such features include the 

transient response harmonic with the natural pitch frequency, steady 

drift responses, dynamic instabilities, resonant response excitation 

at the natural pitch frequency and other non-linear sources such as 

non-linear waves and currents. In respect of rigid body motion 

responses, Chapters 4 and 5 of this work address certain of the 

aforementioned features by advancing the solution of the equations of 

motion in the time domain. The importance of certain of the features 

is noted and the implications of these in the design of articulated 

columns is assessed. The question of dynamic instabilities which may 

develop, resonant with the pitch frequency and at twice the pitch 

frequency is also examined in the time domain. The role of viscous 

damping in limiting responses is assessed and this is only feasible 

with a time domain solution.

Work on the elastic vibration of articulated columns, in the 

main, has been confined to a frequency domain analysis and has noted 

the importance of the first resonant flexural mode. Chapter 6 

addresses the elastic vibration problem in attempting to give a 

parametric treatment to those factors which have the greatest effect 

upon the frequency of the first flexural vibration mode. This is done



on the basis that the structural components of the articulated column 

are comprised of circular cylindrical steel sections of annular 

construction. The importance of accounting for the axial loads in the 

determination of vibration frequencies is also addressed.

Further work on the elastic vibration problem is given in 

Chapter 7 using an incremental solution to solve the equations of 

motion in the time domain, thus incorporating the full vibration time 

history. Such a procedure is necessary to fully understand the 

interaction of structural vibrations, acting in combination with 

significant compliant motions. Adequate structural analysis in 

combination with time simulation procedures must be assessed in order 

to validate the quality of the results. This approach and its ability 

to predict certain non-linear behaviour is vindicated by certain 

experimental results obtained for a model articulated column.
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CHAPTER 2 

CONCEPTUAL DESIGN CONSIDERATIONS 

1 . INTRODUCTION

As discussed in Chapter 1 articulated columns have been 

successfully implemented in a number of practical applications. These 

are, in the main, restricted to lighter structures in water depths not 

exceeding 150 metres. A proposed production platform may have a 

payload requirement of the order of 100,000KN and may well be situated 

in water depths in excess of 250 metres. The payload will be a 

function of the field characteristics, which will determine the amount 

of separation and processing necessary. In this respect, trends are 

towards much lighter deck components (29). The analysis presented in 

this chapter relates to a heavier structure and exemplifies the 

versatility of the articulated column. Lighter payloads will improve 

the efficacy of the concept.

The extrapolation of existing designs to deeper water and 

heavier structures is not straightorward and it is essential to make a 

fundamental appraisal of those factors which will determine the 

feasibility of any particular design.

Hence, the aim of this chapter is to examine those factors 

which have the greatest influence on basic design considerations. 

Those factors which are examined include static stability due to wind 

and currents, ballasting the structure, deck clearances required, 

access to the buoyancy chamber and damage stability. Having made an 

examination of these separate aspects, the interdependence of certain 

parameters is established and their optimisation is considered.



17.

Installation and relocation problems for this type of structure are 

examined and possible procedures are outlined. Finally, the human 

awareness to motion response is assessed.

The structure used for these initial studies has a deck 

payload of 100,0QGKN and the length from the seabed to the deck is 285 

metres. The water depth is 270 metres and the top of the buoyancy 

chamber is some 30 metres below the still water level (SWL). The 

structure is shown in fig. 2.1.

2. STATIC STABILITY

2.1 Wind and Steady Currents

Tension leg platforms, by virtue of their design, will surge 

under the action of steady current and wind forces. However, the deck 

will remain essentially horizontal in these circumstances and so 

steady drift forces will have no real impact on operational 

constraints. On the other hand, articulated columns by virtue of their 

design, will pitch under the action of steady drifting forces and the 

deck, therefore, will not remain horizontal, possibly imposing 

constraints on activities at deck level. It is necessary, therefore, 

to make an assessment of the amount of pitch the structure is likely 

to experience under the action of steady drift sources such as wind 

and current.

For any given structural configuration and distribution of 

mass it is possible to evaluate the amount of buoyancy which will be 

required in order to maintain a specified angle of heel under the 

actions of a steady current and wind speed.
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The static stability of the structure, shown in fig. .2.1, is 

calculated on the basis of equilibrium of the sums of the moments of 

the overturning and restoring forces taken about the pivot point or 

articulated joint. With reference to fig. 2.2 and by taking moments 

about the pivot, then:-

Total moments of forces about the pivot = 0. (2.1)

Z Overturning moments = £ Wind forces + £ Current forces
(2 .2 )

+ £ Self-weight forces 

£ Restoring forces = £ Buoyancy forces

where Self-weight forces = W.RKG.sin0

Buoyancy forces = B .RKB.sinGF
2Wind forces = i.p . -C .A .V .RKW air DW P W

2Current forces = $.p -C .A .V .RKCwater DC P C
and C DC = 1.0

CDW 1 '5
Ap = projected area

V = wind speed w ^

V = current speed.

RKG, RKB, RKW and RKC refer to the height of the centres of 

gravity, buoyancy, wind force and current force above the pivot point, 

respectively.

The value of C = 1 . 0  may be somewhat high for a smooth DC
cylinder in the supercritical Reynolds number range. However, an 

allowance must be made for increased surface roughness as a 

consequence of marine growth and a value of 1.0 is not 

unreasonable.
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Equating moments

Z wind forces + Z current forces + Z self-weight forces
- I buoyancy forces = 0 (2.3)

Figure 2.3 has been prepared in accordance with the form of 

equation 2.3. For the structure shown in fig. 2.1, it shows the amount 

of buoyancy chamber volume required as a function of the static angle 

of heel for given wind and current velocities as shown and in this 

case the wind speed is zero. There are two curves shown, one for the 

case of the lower column being flooded and the other assuming that the 

lower column is watertight. The trends for both curves are the same 

and they both display optimum points after which very little 

improvement in the angle of heel is achieved for fairly large 

increases in the amount of buoyancy required. It is obvious that 

considerably more buoyancy is required in the case of the flooded 

column.

Figure 2.4 shows the same plots but in this case, the wind 

speed is 35 metres per second. The buoyancy required is very 

considerably increased and, on the basis that the weights of the 

structural components are as shown in the table in fig. 2.1, then the 

amount required to maintain an angle of heel of 1° is approximately

1.5 times the total weight of the structure for the case where the 

lower column is flooded. To maintain a 2° angle of heel the buoyancy 

required is 1.35 times the total weight. It is clear, therefore, that 

the lower column for this particular design would have to sustain 

considerable tensile loads in order to satisfy the static heel 

requirements mentioned. An angle of heel of 2° corresponds to a 

horizontal excursion of the platform of approximately 3.5% of the 

water depth. The lower column can be designed to withstand the tension
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envisaged but there may be difficulty with the articulated joint. To 

overcome this it is necessary to have ballast at the foot of the lower 

column in order to put the articulated joint into compression.

For a fixed amount of buoyancy the angle of heel as a function 

of current velocity for zero wind speed is shown in fig. 2.5. The 

structure with the lower column flooded displays the most pronounced 

increase in heel as the current velocity is increased as would be 

expected. The increase in the angle of heel is fairly gradual for 

current velocities up to about 1 metre per second and thereafter 

increases quite rapidly.

Figure 2.6 shows the angle of heel as a function of the 

windspeed for zero current velocity. The trend is similar but less 

pronounced than for the previous figure and displays the influence of 

the speed squared term in each case. For a combination of wind and 

current the sum of the two components will sensibly be correct with 

minor adjustments for the small variation in buoyancy as the pitch 

increases.

It should be noted that the pitching moment due to wind on the 

deck and superstructures will increase as a function of the pitch 

angle, as the frontal area exposed to wind increases, and the wind 

force lever arm changes.

It should also be noted, however, that as the depth of water 

increases, the buoyancy required to maintain the same angle of heel 

will reduce as a consequence of the increased lever arm of the 

buoyancy, as will the excess tension loads on the lower leg. For 

example in 550 metres of water the buoyancy force required to maintain 

the same angle of heel for a platform of similar payload, ie
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100,000KN, would be approximately 200,000KN so that the lower leg 

would be subject to tensile loads of about 25% of the total weight of 

the platform. However, the extra weight of the lower column, to some 

extent, will offset the benefits of reduced tensile loads, so that the 

situation with regard to static stability will improve with depth.

Vibration aspects are shown to play a dominant role in the 

design of the lower column in chapters 6 and 7 of this thesis. The 

order of magnitude of the tensile loads in the lower column, 

therefore, are likely to be somewhat less than discussed here. 

However, increased tensile loads contribute to improved vibration 

characteristics and this is discussed in chapter 6.

2.2 Ballasting the Structure

Problems associated with the design of an articulated joint 

capable of withstanding the tensile loads anticipated calls for 

difficult engineering with a potentially dangerous situation 

developing if the structure breaks loose from its base. For this 

reason, it would be desirable to reduce the tensile loads at the 

articulated joint and, if possible, make it a compression load.

This can be achieved by the addition of an amount of ballast 

to the lower end of the lower tension leg and just above the joint so 

that the tensile load in the joint is reduced.

For the articulated column investigated the weight of ballast 

is of the order of 8500 tonnes. If concrete were to be used as ballast 

material this would result in a 'cylinder' of ballast with possible 

dimensions 40m long and 10m in diameter. However, problems associated 

with the removal of concrete render its use untenable and, therefore,
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it is thought that high density drilling mud which has a density of 

32300Kg/m would be used as ballast material since it may be placed and 

removed by pumping more readily than concrete.

2.3 Deck Clearance

Maximum responses will generally lag maximum wave forces by
o180 so that the maximum pitch, for a linear response, will occur at a 

wave node. This means that were the structure to be subject to linear 

waves and respond linearly then the amount of deck clearance between 

the mean surface level and the underside of the deck would need to be 

at least equal to the maximum wave amplitude expected during the life 

of the structure. However, it will almost certainly be necessary to 

allow for some amount of static heel as discussed in the previous 

section so that this must enter into the considerations in respect of 

adequate deck clearance.

If we assume, in an extreme situation, that the wave crest is 

directly beneath the tilted deck when the pitch is maximum then an 

approximate formula to determine the deck clearance is given as 

follows:-

DC = Lp - d - aQ - 0.5.DW.sin6 (2.4)

where DC = deck clearance

Lp = distance from bottom to underside of deck

d = water depth

aQ = wave amplitude

DW = deck width

0 = steady angle of heel



This approximate formula would serve to determine requirements 

if the structure responded in a linear fashion about the steady heel 

caused by waves and currents. In subsequent chapters it is shown that

the motion response of articulated columns, generally speaking, is not

linear and further considerations will inevitably enter into the 

rigorous assessment of adequate deck clearance. The main consideration 

in this respect is the transient response harmonic with the natural 

period in pitch of the structure and the combined effects of current 

plus wave. This is discussed in greater detail in Chapters 4, 5 and 7.

The deck mass location will significantly affect the centre of 

gravity and, consequently, the static angle of heel. This is also a 

function of the windage area of the deck superstructure in that the 

centre of gravity of the deck can be assumed to increase in 

approximate proportion with the height of the deck superstructure. 

Wind profiles increase with elevation above sea level and the API 

code (30) indicates that a sustained wind speed at an elevation of 50 

metres above SWL is some 23% greater than that 10 metres above SWL.

This, in combination with the raised centre of gravity, would suggest 

that low profiles are preferred. However, lower profiles will require 

greater lateral distribution of deck mass with consequent influences 

on deck support structure, deck clearances, etc.

2.4 Access to Buoyancy Chamber

In order to lower the centre of gravity it is desirable that

the buoyancy chamber be used to accommodate certain items of machinery 

and plant which would otherwise be located on the deck of the 

structure. Therefore, it is essential that access from the deck to the 

buoyancy chamber be provided in a manner which will satisfy damage

stability considerations and this should allow for ventilation duct
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requirements. A typical minimum access dimension of about 4 metres 

diameter is thought to be adequate. However, this dimension will be a 

function of the design of production or other equipment which will be 

located in the chamber and will only be critical where the deck 

support structure is other than a single circular cylindrical member.

The diameter of the deck support column is likely to be of the order 

of 8-10 metres so that access should not be a problem. The main 

advantages of utilising the buoyancy chamber as accommodation for 

machinery rooms and stores are thought to b e :-

a. The total deck weight can be reduced by the amount of plant 

relocated in the chamber: this will result in a more 

slender and lighter deck structure.

b. Lighter deck support column structure.

c. Deck windage area will be reduced - decreased wind loads.

d. Lowering of the C.G. of the structure thus improving the 

restoring moment.

The buoyancy chamber could be split on three levels, possibly 

even four levels and in available floor space this could amount to 30% 

to 40% of the area available on a 60m x 60m deck. Personnel 

accommodation is most likely to be situated at deck level. However, it 

is envisaged that the chamber would accommodate certain production 

equipment and other materials not required on the deck. Regulations 

may impose restrictions on activities within the chamber in regard to 

ventilation requirements. These may dictate a high rate of change of 

air so that it may only be possible to conduct low air requirement 

activities within the chamber, certain of the more hazardous 

activities being conducted at deck level. Nevertheless, in view of the 

possible gains to be achieved in using the chamber, emphasis is 

stressed on achieving maximum utilisation of the available space.
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2.5 Riser Accommodation

The riser flowlines conveying oil from the wellhead to the 

surface are central to the continued and uninterrupted production of 

oil. The early floating production systems such as the 

semi-submersibles in Argyll and Buchan used rigid risers with heave 

compensators. The proposed Balmoral development will use flexible 

risers with a buoy into an S configuration. Most of the tanker FPS use 

some form of articulated column which contains a rigid riser 

terminating in a swivel before entering the tanker. Thus many systems 

are in use and this is still considered one of the areas of greatest 

risk in 'compliant' operations. The penalties as a consequence of 

riser failure and/or downtime may run into millions of dollars per day 

and, therefore, it is essential that adequate provision is made for 

risers. A review of the technology is presented in Reference (31).

The risers can be accommodated inside the bulkheaded annulus 

of the lower column along its entire length from the seabed to the 

buoyancy chamber. Alternatively, separate accommodation could be 

provided within the inner annulus of the lower column, see fig. 2.7.

In some cases it may be necessary to use cooling water and 

this presents no problem to utilising the bulkheaded annulus section. 

Risers can be supported at intervals along the length of the lower 

column, thus eliminating any requirement for top tensioning support or 

heave compensators as required in a conventional FPS. Ventilation 

requirements at the riser terminations will be a function of the 

capacity of the risers. It may be necessary to provide temporary 

ventilation to the riser accommodation in the lower column in the 

event of maintenance operations being necessary.
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Articulated production risers (32) utilise flexible hose 

connectors at articulations to provide continuity between rigid risers 

on either side of the articulated joint (see fig. 2.7). Similar 

methods can be employed to effect the transition from the wellhead 

passing around the outside of the articulated joint and into a 

location in the lower column above the articulated joint.

2.6 Damage Considerations

The overall integrity and stability of the structure will be a 

function of both its structural strength and its buoyancy 

characteristics. Fundamental to its integrity is the ability to remain 

buoyant and stable, assuming that the lower joint remains intact. 

Therefore, it is essential that the structure is capable of 

maintaining a satisfactory damage stability in the event of a major 

buoyancy device such as the buoyancy chamber and/or the submerged 

portion of the deck support column sustaining an impact which might 

render the skin of either or both to flood.

Therefore, the incorporation of an adequate arrangement of 

watertight subdivision will be necessary in the design of both the 

buoyancy chamber and the deck support column. Similar arrangements 

will be necessary for the lower column if it is to be designed as 

watertight. This is unlikely to make increased demands on the 

structural mass of the lower column since vibration considerations 

will require substantial second moments of area and this will aid the 

design to withstand the hydrostatic pressures. This aspect is 

discussed in greater detail in Chapter 6.
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One such possible arrangement is shown in fig. 2.3 although 

this might be subject to alteration depending on other requirements as 

might be determined by the possible uses for the space within the 

buoyancy chamber. '

In the event of a bulkhead sustaining a fracture and a 

bulkhead compartment flooding, the effect will be to subject the 

column to an additional mass, equal to the flooded mass, acting at a 

lever arm approximately equal to the radius of the buoyancy chamber.

From fig. 2.8 it can be seen that the centre of buoyancy will move

away from the centreline of the chamber resulting in a reduced 

restoring moment.

For the arrangement shown in fig. 2.8 the static angle of heel 

would be increased to 3.5° for flooding of a bulkhead compartment to 

the full height of the buoyancy chamber (1200m of water). A more 

extensive arangement of bulkheads which would reduce the flooded 

volume is necessary and, for example, if a bulkhead arrangement as

shown in fig. 2.8 were adopted then in the event of chamber number 1

becoming flooded this would increase the static heel to 1.86°. This 

arrangement of bulkheads is especially feasible if the buoyancy 

chamber is provided with split level decks. Figure 2.8 shows angle of 

heel versus flooded volume.

Two compartment flooding will be a mandatory requirement for 

the upper support column to provide against surface ship collision. 

This requirement may be relaxed for the buoyancy chamber which is some 

25-30 metres beneath the SWL and one-compartment flooding will 

probably suffice for the buoyancy chamber.

The bulkhead arrangements shown in fig. 2.8 conform with rules
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C300 and C305 of the DnV (33) requirements in respect of possible 

collision/impact damage in that the minimum penetration dimension of

1.5 metres is satisfied. It should be noted, however, that this 

requirement is intended to account for possible damage as a 

consequence of impact from, say, a supply vessel or other such source. 

While the upper support column is clearly susceptible to damage of 

this nature, the buoyancy chamber, by virtue of its submergence depth 

of some 30 metres, is less likely to sustain damage of a similar 

nature. Double bulkheading will be necessary but the requirement in 

respect of the penetration dimension may be somewhat less stringent. 

Some degree of extra protection from impact to the top of the buoyancy 

chamber resulting from dropped objects from the platform above would 

be prudent and some extra bulkheading may be necessary.

The possibility of the structure breaking loose from the 

articulated connection must be considered. This is most likely to 

happen, if at all, in a storm situation and in such circumstances 

production will probably be very limited or even terminated. Wellkill 

procedures will almost certainly have been implemented to minimise the 

risk of environmental pollution. It will be essential to provide some 

form of emergency mooring between the lower end of the lower column 

and the foundation which will prevent the structure from drifting off 

location in the event of a breakaway. This emergency mooring should be 

of sufficient length to allow the drifting structure to clear such 

wellhead equipment, etc as may be located in the vicinity of the base 

in order to minimise the risk of damage to wellheads as a consequence 

of the structure fouling these.

The free floating stability of the structure will be ensured 

by the mass of the ballast at the lower end of the lower column. 

However, heave amplitudes must be assessed to determine the
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possibility of bottom fouling. In this respect, a connection point at 

the base sufficiently elevated from the sea bed to allow for maximum 

heave in a storm situation should be provided.

3. INSTALLATION AND RELOCATION

The installation and relocation are major factors in the 

assessment of both technical and economic feasibility. In the final 

design process a detailed structural analysis will be necessary for 

the installation and relocation stages.

Site restoration regulations now in force may in certain fixed 

platform applications jeopardise the economic viability of the 

project. Therefore, it is important that sufficient detailed 

conceptual planning be undertaken so that restoration costs can be 

accurately and reasonably estimated and accounted for in the economic 

model for the project. In this respect, articulated columns have 

definite advantages over fixed platforms or other compliant structures 

such as TLPs which require tensile load bearing foundations.

The articulated column can be so ballasted, as discussed in 

section 2.2, in order to render a gravity foundation feasible. This is 

attractive to the foundation designer and may preclude the necessity 

for piling the foundation. This arrangement, in principle, would 

reduce the termination problems to that of effective disconnect of 

risers. Removal of wellheads remains a problem irrespective of the 

platform type.

3.1 Installation

It is pertinent to assess conceptually the feasibility of the
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installation and relocation process and, accordingly, a possible 

installation scheme is presented, together with a possible relocation 

scheme.

Scheme 1

This is shown diagramatically in fig. 2.9 and basically 

comprises preassembly of the three major component parts, ie the lower 

column, the buoyancy chamber and the upper support column. The deck 

structure would be added later. The preassembly would be towed to the 

location.

The foundation for the structure having been pre-positioned, 

the structure is control ballasted using the bulkheaded compartments 

until it locates with the connection joint assembly on the base. It 

may be necessary to fix the complete articulated joint to the column 

assembly and to effect a connection with the base at the lower end of 

the articulated joint rather than to effect a connection at the swivel 

point of the articulated joint.

Controlled deballasting of the buoyancy chamber would be 

necessary and this would continue concurrently with the addition of 

mud ballast to the bottom of the lower column and the addition of deck

masses.

3.2 Relocation

The economic viability of a structure of this nature will be a 

function of a number of different considerations but probably the most 

important single consideration will be that of possible re-use of the 

structure in another field. Therefore, it is essential that the 

concept should show promise in terms of the feasibility of re-locating
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the structure to another site.

The inherent buoyant stability of the ballasted structure in 

the free floating situation will be of considerable merit in terms of 

ancillary re-location operations such as ballasting, etc.

In the event that relocation of the structure to deeper water 

is necessary, a procedure as outlined below and shown in fig. 2.10 

could be utilised. This procedure is based on the assumption that the 

lower column may be disconnected from the buoyancy chamber. Such an 

arrangement is thought to be technically feasible.

a. Partially ballast the buoyancy chamber and decouple the 

lower column from the buoyancy chamber. It may be necessary 

to reduce deck loads. However, since lifting capacity has 

improved considerably in the past decade this should not 

present major problems.

b. Float buoyancy chamber to a new location and ballast the 

assembly on to a pre-installed lower column.

4. PARAMETERS FOR OPTIMISATION

The deck mass and superstructure are supported by the buoyancy 

chamber and static stability requirements will usually determine that 

the buoyancy exceeds the total mass by a substantial amount in the 

case where the lower column is flooded. As discussed in section 2.1, 

the lower leg of the structure, generally, will be subject to a net 

tension force, allowing for cyclic heave forces and this will help to 

reduce the structural requirements for the lower tension leg and 

simplify its design. In some cases, designers may wish to have the 

articulated joint in compression and to do this a large mass is added
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immediately above the joint. Such a procedure does not alter the above 

arguments.

The lower leg may be left flooded but it is doubtful if this

is a major attraction. The vibration aspects of the lower column will

probably determine structural requirements since the vibration
____________ 4

frequencies are proportional to /EI/m£ . Therefore, it is desirable to 

keep the unit mass of the lower column to a minimum. In order to 

maintain vibration frequencies which are higher than expected wave 

spectrum frequencies, to avoid resonant excitation, wall thicknesses 

are likely to be substantial so that the lower column can probably be 

designed to withstand the water pressures. This aspect is the subject 

of a more rigorous analysis and is discussed in more detail in Chapter 

6.

It is envisaged that risers and associated equipment would be 

located within the lower leg. This feature has advantages in that such 

equipment will not be subject to wave and current actions. The 

advantages are much enhanced in the case of a dry lower leg.

Minimising the variation in the heave force on the buoyancy 

chamber is desirable and can be achieved by the judicious choice of 

buoyancy chamber radius and those of the upper and lower columns. 

Cancellation of heave forces is possible for a particular wave 

frequency and this aspect will play a major part in the design of the 

articulated joint. This aspect is given further consideration in 

Chapters 4 and 5.

The elevation of the buoyancy chamber will determine not only 

the overall stability of the structure but also the structural 

requirements and, therefore, the dimensions of the upper support
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column. A deeper immersion increases the external pressure on the 

chamber and reduces the buoyancy lever about the joint but also leads 

to reduced wave loading and it is the optimum combination of these 

factors which is being sought.

Dynamic response will depend on the pendulum stiffness and, 

therefore, on the buoyancy chamber dimensions and on the distribution 

of the mass of the structure and these aspects are considered in more 

detail in Chapter 4. The provisions to be made in respect of the deck 

clearance required also will be a function of the dynamic response.

Therefore, an adequate design must make an appraisal of the 

interdependence of the parameters discussed and an optimisation 

procedure may be undertaken.

The optimisation of the parameters mentioned will be greatly 

influenced by the operational requirements and performance 

specifications for a particular project and a sufficiently general 

approach is not feasible. In principle, however, an optimisation 

procedure similar to that shown in fig. 2.11 would be necessary.

5. HUMAN RESPONSE TO STRUCTURE MOTIONS

The human response to induced motions of the structure is of 

importance and perception levels have been established and need to be 

borne in mind. Perception thresholds are found to be insensitive to 

small amplitude vibrations with frequencies in the range l-5Hz (34,35) 

and it has been suggested that for frequencies less than 1 Hz the rate 

of change of acceleration, ie 'jerk' is an appropriate measure of 

human awareness.
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The effects of levels of accelerations on the ability of

personnel to perforin satisfactorily has been suggested as shown in

fig. 2.12 (36). This also shows the various bands of awareness to

acceleration levels in terms of accelerations and wave periods. The

structure considered in fig. 2.1 experiences an acceleration level at
2the deck of approximately 1.5 m/sec (0.153 G's) for a 20 metre high

wave, with a period of 15 seconds. This value falls within the

'perceptible' band. The response of the structure is shown in

fig. 2.13 as a function of time. The acceleration at the deck level in 
2m/sec is shown as the bottom plot in the figure. Dynamic response is 

discussed in greater detail in subsequent chapters.

A 20 metre high, 15 second wave is likely to be experienced 

only in severe storm conditions. In such circumstances, operational 

constraints in respect of production and processing are likely to be 

imposed in any case.

An alternative measure of human awareness is commonly

expressed in terms of Dieckmann's Sensitivity coefficient K and aDS
relationship between I< and the 'jerk' is oroposed in reference (35).DS

For the structure shown in fig. 2.1 the maximum 'jerk' was of
3the order of 20 cms/sec for a wave of height 20 metres and 15 second

period. This corresponds to a Dieckmann coefficient K of justDS
greater than 1 and just higher than the classification of 'distinctly 

perceptible but not objectionable'. Potential applications are most 

likely to be in water depths in excess of 250 metres. Therefore, 

natural pitch frequencies will decrease as water depth increases. For 

this wave in greater water depths, the ratio of wave frequency to 

natural frequency will increase and the dynamic magnification factor 

for response will decrease since the peak occurs at resonance.
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It is thought unlikely that major objections in terms of human 

response to acceleration levels will arise, although there may be 

misgivings in respect of non-preferential directional response as a 

consequence of multi-directional forces and this is investigated 

further in Chapters 4 and 5.

6 . CONCLUDING REMARKS

The amount of buoyancy required to maintain an acceptable 

level of static heel is noted to be sensitive to both steady currents 

and wind speed. In respect of the latter, greater attention should be 

given to minimising the windage drag on the deck superstructure. The 

size and form of the superstructure are obviously important and it is 

this aspect which strongly suggests that a greater use be made of the 

buoyancy chamber to accommodate plant and machinery which would 

otherwise have to be placed on the deck, thereby contributing to the 

windage area at the deck level and raising the centre of gravity.

Relocation of deck masses to the buoyancy chamber considerably 

improves the static stability of the articulated column and this is a 

very important aspect in terms of the feasibility of the structure. It 

also plays a major role in the optimisation of other important 

parameters and is believed to be a central factor in many respects, 

not least of which will be the design of the deck support column and 

the deck structure itself.

Damage provisions must be made but the structural requirements 

in terms of providing adequate bulkheading are not onerous since 

utilisation of the buoyancy chamber will necessitate structural 

provisions to accommodate plant, etc on different levels. Some form of
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ring and/or stringer stiffeners would be required for the buoyancy 

chamber in any case and there is scope here for optimising the design.

Installation and relocation have been shown to be feasible in 

principle and these will play an important part in determining the 

economic viability of the concept.



CHAPTER 3

WAVE FORCE EVALUATION

1. INTRODUCTION

The evaluation of wave forces on any structure, fixed or 

floating, reduces to the determination of the distribution of pressure 

over the wetted surface of the body. The complete fluid motion can be 

said to comprise two parts, one of which is associated with the 

irrotational inviscid flow which satisfies specified boundary

conditions and the other which is associated with the vorticity of the 

fluid shed from the body.

This chapter first describes the forces attributed to the

irrotational inviscid flow (potential flow) and then describes the 

effects of diffraction which increases as typical body dimensions 

increase. The limitations of the Morison approach to fluid loading are

discussed and finally the drift forces which can affect floating

structures are discussed in the context of articulated columns.

2. IRROTATIONAL FLOW AND LINEAR DIFFRACTION

The equation of motion for a fluid domain is uniquely defined 

by the Bernoulli equation:-

1, 2 2x P
“ 9t' (U + v ) + ‘p + g y  ( 3 - 1 )

where $ = velocity potential describing the flow field.

U,V = horizontal and vertical velocities.



p = pressure distribution, 

p = density of fluid, 

y = elevation of point considered, 

g = gravitational constant.

The incompressibility of flow in two dimensional motion (x,y)

states that:-

3u 3v
3x + "Sy = 0 (3‘2)

If in addition the flow is irrotational, then the velocity must

satisfy the conditions that:-

3$ 3$U = - T—  and V = - —  (3.3)3x 3y

The combination of these relations gives rise to

2 23 $ 3 $
 J + --9 = 0 (3 *4)3x 3y

which is the Laplace equation

The solution of this partial differential equation in 

conjunction with the specified boundary conditions constitutes the 

derivation of the velocity potential $.

3 . BOUNDARY CONDITIONS

In boundary value problems it is common to define the 

condition of zero normal velocity at the fluid boundaries.

a. The boundary condition to be satisfied at the sea bed is:-

V = - —  = 0  on y = — d where d = water depth (3.6)

b. The free surface kinematic boundary condition states that



the rate of increase of the hydrostatic component of 

pressure at the surface is equal to the rate of decrease of 

the transient component of pressure.

The height of the free surface increases at a rate equal to

the vertical component of fluid velocity or the vertical gradient of

the velocity potential, ie 3$/3y. Thus the boundary condition to be

satisfied is:-

9$ 92$ n /■> -7X" = p ---o at y = 0 (3.7)3y at
where d = water depth 

The solution of the Laplace equation with the boundary

conditions proceeds to yield the velocity potential $

cosh{k(y + d)}a g -- : :— rg— '----  C O S ( k x  -  C O t )o k s m h k d

where a = wave amplitude, o
k = wave number = 2ir/L 

oj =  frequency.

It follows that the dispersion relationship between co and k 

can be stated a s :-

a)2 = gktanhkd (3.9)

For deep water (d > L/2), equations (3.8) and (3.9), take the

form:-

$ = aoWekycos(kx - ojt) (3 .10)

and a)2 =  gk (3 . 11)

The velocity potential thus described is referred to as the 

undisturbed incident wave velocity potential and is henceforth denoted 

by a subscript I, ie $ .
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The ability of the body to 'resist' the incident wave 

manifests itself in the generation of a scattered wave emanating from 

the surface of the body and in a direction away from the body (see 

fig. 3.1). This diffracted wave potential must, in addition to the 

boundary on the incident wave potential, satisfy the kinematic 

boundary condition on the surface of the body of zero normal velocity, 

ie: -

8$/\—  = 0  at the body surface (3.12]
a n

Now, since $ = $ + $ (3.13'A I S

9 $ 9 $ 9 $
then -  -r-p- + -5-^ (3.14;d n d n d n

9$r 9$s
so that ~T, = - ~z (3.15’d n d n

It is also necessary to specify a radiation boundary condition 

which states that the scattered waves associated with the potential 

are travelling outwards from the body (37).

r1^  * S) = 0 (3.16)r ->• 00 gr c

=  / ?  2where R = v x + z = the radial distance 

and (0 =  2tt/T 

c = L/T

The Laplace equation, solved in accordance with the additional 

boundary condition, constitutes the derivation of the scattered or 

diffracted potential <I>̂. The scattered potential is derived in

terms of Hankel functions of the first kind, whilst the new incident 

potential can be expressed as a series expansion of Bessel

functions. McCamy and Fuchs (38) have developed this theory and
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express the inertia coefficient:-

4 1 1C = 1 + C = -  --- ----  , (3.17)
M A -rr 2 2 2(TTD/L) / J 1 (1TD/L)Z + Y 1 (TTD/L)

where j| and are derivatives of Bessel functions of the first and

second order, respectively.

Values of C based on equation (3.17) are shown in fig. 3.1 M
and shows that the diffraction theory results approach those of the 

inertia term in the Morison equation as the ratio of D/L tends to 

zero.

Bodies free to respond to waves will themselves generate waves 

as a consequence of the induced motions and these can be expressed as 

additional to the incident and scattered potentials in the form:-

$ = $ + $ + $  (3.18)A I S G
N

where $ = E $. (3.19)
G 3-1 3

and $ represents the potential of waves generated by movement in the 

j mode in otherwise calm water. The surface foundary condition must

reflect the motion of the body.

The general form of the velocity potential is then written

a s : -

N
$A = (I>i + <I,g + • (3.20)

j = l

The pressure distribution is then obtained using the Bernoulli

equation.
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The total forces on the system will comprise those attributed 

to the incident and scattered potentials and those attributed to the 

radiated potential. The latter is decomposed into added mass and 

damping components and the equation of motion can then be written:-

(M + + Cx +Kx = F (3.21)

where is the force due to incident and diffracted potentials.

4. MORISON'S EQUATION AND ITS LIMITATIONS

The Morison (39) approach to fluid loading assumes that the 

total force can be expressed as a sum of two components, ie:-

F T = p.V.CM .u + ip.CD .D.u|u| (3.22)

The first inertial term reduces to 2pVu as the ratio of D/L tends to 

zero with = 2 , when diffraction effects are unimportant see

fig. 3.1. The first term is associated with the irrotational part of 

the flow.

The second term is meant to account for forces associated with 

the velocity of the flow and takes the form of a steady flow drag 

force, such as would represent the drag force in steady unbounded 

flow.

This semi-intuitive form infers that the flow is such as would 

prevail were the body removed from the fluid, ie that the flow field 

remain undisturbed. There must therefore be misgivings as to the 

adequacy of the expression when the ratio of characteristic dimension 

to wave length D/L increases.
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Figure 3.1 (40) gives an indication as to the regions of

applicability of the diffraction theory and Morison's equation. This

suggests that there is an overlap region banded by 2a /D = 1.0 ando
D/L = 0.15 where both theories are applicable. It also suggests that

at large values of both 2aQ/D and D/L then both diffraction and

viscous effects are important simultaneously so that neither theory

would be valid. However, this region is never realised as a

consequence of the maximum breaking wave height limit of 2aQ /L = 0 . 1 4  

which is shown on the figure.

Lighthill (41) has demonstrated that it is necessary to make 

corrections to the Morison equation to account for three extra

contributions of force as follows

a. The linearisation of the free surface boundary condition 

ignores a quadratic potential which would account for the 

rate of change of surface elevation. This potential

generates a contribution of force associated with the

dynamic pressure at the free surface.

b. A second order component of force associated with the

linear velocity potential attributed to the distribution of 

pressure over the complete wetted surface of the structure 

up to the instantaneous water surface.

c. A second order component of force associated with the

linear velocity potential attributed to a fluctuating 

velocity or extensional velocity term.

Lighthill has shown that the inclusion of the three extra

terms as a correction to the Morison equation has the effect of 

increasing the forces by 12% over and above that predicted by the



Morison equation. In fact for small ratios of D/L the quadratic term 

is not significant and it is the other two terms, ie (2) and (3) which 

contribute to the increase. However, as D/L increases so does the 

quadratic term.

It is evident that the contribution of forces deriving from 

the complete immersion of the surface piercing cylinder play a 

significant part in the determination of the forces.

4.1 Choice of Coefficients C and C___________________________ D______ M

The question of realistic values for inertia and drag 

coefficients has received considerable attention in the past decade. 

Keulegan and Carpenter (42) postulated that the coefficients were a 

function of the period parameter, or Keulegan-Carpenter number, KC,

where KC = U T/D m
and U = maximum horizontal particle velocity 

T = wave period 

D = diameter of cylinder.

Amongst other things, their observations were that C and CD M
had maximum and minimum values respectively, corresponding to a KC

number of 15. Most of the available experimental data relates to small

diameter members in the sub-critical Reynolds number range, ie 
5R < 2.10 , and little data at supercritical Reynolds numbers, ie n

R. > 2.10 , exists.E

Steady flow drag coefficients for a smooth circular cylinder 

at supercritical Reynolds numbers are likely to have values in the 

region of 0.66 - 0.8 and possibly greater.
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The structures investigated in this study have a minimum 

diameter of approximately 10 metres, typical structural velocities 

will be of the order of 3-4 metres per second, so that the structures 

will be operating -at supercritical Reynolds numbers most of the time.

A time independent value for of 0.9 has been used for most of the 

analysis. However, the effects of varying the drag coefficient is the 

subject of a parameter study in chapter 4. A time independent value 

for the inertia coefficient of 1.9 has been used throughout the 

analysis, This is not unreasonable as suggested in References (43,44) 

for small values of KC, ie <5.

Plots of C and C as a function of KC and Reynolds numbers D M
for harmonically oscillating flow are shown in fig. 3.2. It is

apparent that there is little variation in C^ at the lower values for

KC. Values of C for small KC are in the region of 1.0 to 1.6 but D
these are also for very small Reynolds numbers.

4.2 Non Linear Wave Theory

Since the evaluation of wave forces by the use of the Morison 

equation essentially reduces to the determination of particle 

velocities and accelerations, it is pertinent to examine the effects 

of non linear waves. This is discussed in greater detail in Chapters 4 

and 5 of this thesis.

It is essential to have an understanding of the shortcomings 

of any wave loading estimation techniques in order to make a pragmatic 

assessment of the resulting forces and motions. Notwithstanding, it is 

believed that the Morison approach to wave loading on articulated 

columns is valid so long as there is no violation of the
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characteristic dimension and wave parameter relationships as put 

forward and shown in fig. 3 .1 .

5. SECOND ORDER FORCES

The preceeding analysis relates to first order forces and 

assumes a linear relationship between forces and responses. It is

known that floating structures can experience drift forces, either 

steady or slowly varying. The latter are associated with wave grouping 

effects and this aspect is further discussed in Chapter 5.

Steady drift can arise as a consequence of second order forces 

not accounted for in the linearised analysis aforementioned (45). It 

is an important aspect of motion response and its effects on a 

structure's performance require understanding.

Drag and diffraction forces contribute to mean drift forces

whereas inertia forces do not. The drag contribution is attributable 

to the integration of these forces to the free surface level, whereas 

integration of the inertia forces to the free surface levels produces 

a nett zero inertia component of force.

Diffraction forces contribute to mean drift forces by virtue 

of the change in momentum of the wave train as a consequence of the 

diffracted and radiated waves. However, linear diffraction theory will 

not predict mean drift forces since small amplitude linear waves are 

used and the velocity potential is also linear, resulting in linear 

sinusoidally varying forces with the same period as the wave.
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Havelock (46) and Newman (17) have presented different 

approaches to the estimation of mean drift forces. The former is more 

suited to situations where the waves have a high frequency content 

whilst the latter which is based on slender body formulations is more 

suitable to greater wave lengths.

Mean drift forces can be derived in two ways, ie the Far Field 

(wave momentum) method and the Near Field method.

The Near Field method (18) postulates that the mean force 

comprises the sum of 6 separate components. These are shown 

diagramatically in fig. 3.3 and can be interpreted physically as:-

a. A contribution to the first order force as a consequence of 

pressures on the body between the SWL and the free surface.

2b. Second order dynamic pressure term l/2pu

c. A contribution by virtue of the displaced position of the 

structure.

d. This represents the change in direction of the force vector 

as a consequence of the rotation of the body.

e. This represents the change in buoyancy by virtue of induced

motions.

f. Second order wave contribution, due to the set down of the 

regular wave train.

A more comprehensive description of these components is given 

in Reference (45) in which it is noted that the computational task 

involved in accounting for all the components is considerable.
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In the analysis which follows in subsequent chapters the 

procedure adopted, albeit based on a Morison approach, is believed to

account, in principle, for components a. to e. The second order set

down wave component has not been modelled but its contribution is

confined to slowly varying drift forces and this aspect is further

considered in Chapter 5, Section 5.
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CHAPTER 4 

DYNAMIC ANALYSIS OF ARTICULATED COLUMNS

1. INTRODUCTION

The dynamic analysis of the motion response of compliant 

structures can, in general, be made either in the frequency domain or 

in the time domain. The former type of analysis is adequate for linear 

systems which respond linearly and is generally more efficient in 

computation time.

In researching the dynamic response of compliant structures, 

analysis in the time domain is considered both feasible and valuable. 

Feasible in that modern processors render the very considerable 

arithmetic computations much less onerous than was the case even a

few years ago. Valuable in that non linear behaviour, such as 

transient response is readily evaluated and investigated. Time 

varying stiffness properties may also be readily accommodated and 

examples of this are the varying pendulum stiffness of articulated 

columns and guyed tower catenary stiffness.

This chapter examines the importance of certain parameters 

which either contribute to non linear response behaviour or are non 

linear by nature. The single degree of freedom (SDOF) rigid body 

equation of motion is described and the modified Morison equation is 

included as the forcing function. Some features of dynamic response 

are then examined and these include transients, effects of drag 

coefficient , effects of relocating deck masses in the buoyancy 

chamber, alternative geometries of buoyancy chamber, effects of
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Stokes 5th order wave theory and the effects of waves and currents.

The effects of the variation in the heave forces is given a rigorous 

examination in Chapter 5 and the contribution of this, in respect of 

dynamic instabilities, is assessed.

Some experimental results are presented and these are 

examined in the light of the analytical results obtained. Finally, 

the action of forces which are not acting colinearily on the 

structure are examined and the implications assessed.

The calculation of wave loading should properly allow for 

incident, diffracted and radiated potentials as discussed in 

Chapter 3. These become increasingly important for the shorter waves 

where the structure may experience steady drift forces (45). Such 

analysis is more appropriately conducted in the frequency domain 

although it can be adapted to time incremental solutions subject to 

limitations on computation time.

A simplified method of calculating the wave forces by strip 

theory can, however, be utilised, the assumption being that the 

structure leaves the flow field undisturbed. One such appropriate 

method is by the use of the Morison equation (39) which comprises an 

inertia term and a steady flow drag term. The non-linear drag 

component, which would require linearisation for a frequency domain 

analysis, is amenable to and readily accounted for in time simulation 

analysis.

As discussed in Chapter 3, it is considered that the Morison 

approach to the evaluation of wave loads is reasonable in the 

investigation of the maximum response of articulated column



structures where typically ratios of member diameter to wave length 

(D/L) will be less than 0.2. This ratio determines a lower limit of 

about 10 seconds on the wave period for structures considered herein. 

For smaller periods, the dynamic pitch response is not of any great 

technical significance. Vibration considerations are important for 

wave periods of this order and less and this is discussed in more

detail in Chapter 6.

2. STRUCTURE SUBJECT TO COLINEAR EXCITING FORCES

In general, maximum responses will occur when the exciting 

forces are acting colinearly with one another on the structure. 

Accordingly, the motion response of an articulated column can be

described by the pitching motion of the structure about the

articulated joint. It is assumed, for the time being, that rigid body 

deformations predominate so that the system can be considered as a

single degree of freedom system (SDOF).

2.1 Equation of Motion

Single degree of freedom

With reference to Fig. 4.1; the equation of motion for the 

articulated column can be written

IrpG + C0 + = M (4.1)

where lip = Iĵ  + -̂ AV

IM = Mass moment of inertia 

Ia v  = A(̂ ded .mass moment of inertia 

C = Damping coefficient
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M = Sum of exciting moments about the pivot 

K s = Pendulum stiffness of column in 3 direction 

= Bp.RKB - W.RKG 

Bp = Buoyancy force 

W = Total weight of structure 

RKB = Distance from pivot to centre of buoyancy 

RKG = Distance from pivot to centre of gravity.

The natural frequency of the column in pitch for free undamped 

vibration, therefore, is given by:-

60 =  n
(B .RKB - W.RKG) F

V  1AV
i

(4.2)

Linear Equations of motion

If we assume a linear system and that excitation and response 

may be written in the form:-

F(t) = FQexp(jwt) (4.3)

and rs^t  ̂ = R0e*P(jwt) (4.4)

then the steady state response is given by

r (t) = H(ft) F(t) s 1 1 (4.5)

where H (ft) =
I (do 2 - £2 2 + 2j$60 fi) T n J n

(4.6)

Now H(^) is complex and can be written in the form 

|h ( ft)| K gexp( j £) where |H(ft)| is the real amplitude of response due 

to a unit, amplitude excitation at frequency ft and £ is the phase angle 

between the excitation and the response.
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2 2 - - 21 ^Hence, H(ft) = " ^Ty  [(1 - (iL) )2 + 4(B0)T n L a) ojojn n'
(4.7)

where H(fi) is the dynamic magnification factor

The peak response can be written,

rpK IH(£2)IM p k

where the subscript PK refers to peak values

Modified Morison Equation

The RHS of the equation can be written in the Morison form

as : -

M = Mj + M d  (4.9)

where MD = Moment attributed to viscous effects 

= iP.c d .D*u|u|r per unit length 

Mj = Moment attributed to inertia effects 

= p.V.CM .u.r per unit length 

V = Volume of member 

D = Diameter of member 

r = Radius from articulation 

d^ = Immersed depth 

p = Water density

CM = Inertia coefficient = (1 + C^)

CA = Added Mass Coefficient 

CD = Drag coefficient 

u,u = Horizontal particle velocity and acceleration

The stiffness term K g must allow for the contribution of the 

submerged portion of the upper support column and its variation as a
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function of wave profile.

o

= ^  [$.p.C .D.u|u|.:Hence, M = J [^.p.C .D.u u|.r + p.V.C u.rldr (4.10)J, . D M '-di

This may be rewritten to account for the motions of the structure 

relative to the waves, wind and current.

i e , M = / [ p . V . ( C  - 1).r.(u - r0) + p.v.u.r
-di

+ ip.C^.D.Cu - r0)|u - r0|.r]dr (4.11)

The first term is the added mass term; the second term is the 

Froude-Krylov component and the third term is the non-linear drag 

term.

Rewriting equation (4.11):-

oiM = j [p.v.r.(CM - 1)u - p.V.r.(CM -1)r.0 + p.v.u.r

+ ^.p.D.C .̂(u - r0) (u - r0)r]dr (4.12)

Now IAV = Added mass moment of inertia

o „

f [p.V.r .(C - 1) ]dr (4.13)
J  . M-di

This term can be transferred to the LHS of the equation of motion so

that:-
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o
(I + I )0 + ce + K 0 = f  [p.V.C .r.u + i.p.c .D . (u - r§) . |u - re I 1 dr

^ ^  D t A A A \-di (4.14)

The non-linear quadratic drag term is not amenable to linear

analysis and is frequently equivalently linearised (47). This 

introduces an error term which can be minimised in the least squares 

sense. So that an equivalent linear drag force term can be 

substituted, viz,

uQ = the amplitude of the oscillatory resultant normal velocity 

and ^  = resultant normal velocity

This assumption has the basis that the drag term does not constitute a 

major portion of the forcing function and is, therefore, not 

responsible for any significant instability phenomenon which is not 

also contained in the linear approximation.

versus wave excitation frequency can thus be obtained. This approach 

is valuable in the design and appraisal of the motion characteristics 

of offshore vessels and structures and is commonly utilised.

Drag force = ^ C ^ . D . ^ (4.15)

where

8 (4.16)

Response amplitude operators of pitch per unit wave height

2.2 Time Domain Solution of the Equations of Motion

The ,non-linear drag term as discussed in the previous section
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.together with the time varying pendulum stiffness of an articulated 

column as a function of the immersed depth, position of the structure 

relative to the wave and the heaving forces renders an analysis in the 

time domain desirable.

There are, essentially, two approaches to the time 

incremental solution of the equations of motion, viz direct 

integration methods and multi-step methods(48). Both methods have 

been found to be satisfactory in the solution of the SDOF equation of 

motion and both have been used in obtaining the results presented.

A computer program was written to solve the equation of 

motion (4.14) on a time incremental basis. The direct integration 

procedure used was the Wilson-0 operator with 9 = 1.0 and this is 

basically a linear acceleration method. More details of this 

integration procedure are given in Chapter 7 and Appendix 4.1.

Program development was on the assumption that the lower 

column would remain flooded. The buoyancy restoring force attributed 

to the displacement volume of the buoyancy chamber and the submerged 

portion of the upper support column was considered to act at the 

centre of buoyancy as shown in fig. 4.1.

The LHS of equation (4.14) contains terms for the mass plus 

added mass, damping and stiffness in respect of acceleration, 

velocity and displacement respectively. The calculation of forces 

attributed to these terms is carried out up to the instantaneous or 

temporal water surface level. Thus the added mass and stiffness 

terms reflect the variation in the water surface level as a function 

of time.
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2.3 Transient Responses

The equation, Mx + Cx + Kgx = FQsinoJt has the full 

solution (49),

C
~2M * t  Fx(t) = e ( a  sinoj t + B cosw t)+ ■—  .1 H(oj)| sin(ojt - kx) (4.17) o n  o n K 1 1s

where AQ and BQ are arbitrary constants and can be evaluated for any 

given starting conditions.

The first term is the transient response and the second term 

is the steady state response. The first term is generally considered

to decay rapidly with small amounts of damping (3^n = C/2M). The

second term is the steady state response as a consequence of the

steady state excitation at frequency co .

Inoue (50) has given a solution to the above equation as,

_ C_
0) 2M t .x(t) = X —  e sinoj t - smarto oj nn

where XQ is the amplitude of the forced oscillation.

This equation implies that the transient response is

proportional to the frequency of excitation oj. Inoue presents results 

in support of the equation which shows that with increasing oj the 

ratio of the amplitude of the transient response to the amplitude of 

the forced oscillation also increases.

The results of this investigation do not concur with those of 

Inoue and, in fact, tend to display an attenuation of the ratio of the
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amplitude of the transient oscillation to that of the frequency 

oscillation for increasing forcing frequency w. Figure 4.2 is a 

comparison of curves showing the response at two different 

frequencies but for the same amplitude of forced oscillation. The 

attenuation of the transient oscillation is apparent.

Kokkinowrachos (51) has predicted transient oscillations in 

the case of articulated columns and these have been observed on a full 

scale prototype articulated column. Some analytical results are 

presented in section 2.4 of this chapter.

Relative Velocity Term

The modified Morison equation approach to fluid loading which 

allows for the inclusion of the non linear relative velocity drag 

terms and its effect on the response merits consideration.

The wave forces on the structure are calculated on the basis 

that the evaluation of particle velocities and accelerations is valid 

for elevations above the still water level, up to the instantaneous 

water surface level. The calculation of forces up to the 

instantaneous water surface will result in a nett cancellation of the 

inertia forces in a wave cycle. This will not be the case in respect 

of the drag forces which will display some proportionality with the 

wetted length of the structure in a wave cycle. On a fixed structure 

the drag force would have a nett component in the direction of the 

wave travel and this component would be maximum for a 

Keulegan-Carpenter n umb er  (KC) of a p p r o x i m a t e l y  15.0. (42). The

Keulegan-Carpenter number (KC) is defined as KC = Um T/D or ttH/D where 

Um is the maximum horizontal particle velocity.
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In the case of articulated columns, or compliant structures 

in general, the situation with regard to nett drag forces is somewhat 

less straightforward in view of the phase of the response with

respect to the wave forces. In general the wave frequency oo will be 

much greater than con and the inertia forces will predominate, so 

that the response will lag the maximum wave inertia forces by

approximately 180°, ie the response will be positive when the wave 

forces are negative and vice-versa. This means that the structures 

velocities will generally be in phase with wave particle velocities. 

This will tend to reduce the damping effects of the viscous component

of force. However, this would not be the case in respect of motions

due to slowly varying drift forces for example when the body motions 

may lag the wave inertia forces by 90°.

Nonetheless, the drag component will affect the motion 

response and may, in fact, contribute to the transient part of the 

response.

2.4 Analytical and Experimental Results

Analytical results

The computer program developed, first calculates the static 

angle of heel of the column subject to a steady 3 5  metres per second 

wind force and/or a specified current velocity and uses this value 

together with the initial condition that the column is stationary to 

start the time series solution.

A particular version of the program allows for the excursion 

of the elemental section in the wave in calculating the particle



velocities and accelerations pertaining to the section. In the

calculation of forces on elemental sections, components normal to the 

axis of the structure are taken. The results of this version of the 

program for the column subject to a 6 m, 15 sec wave and zero wind

speed are shown in fig. 4.3. This figure also shows response curves 

for different buoyancy chamber dimensions - in this case the 

displacement volume and centre of buoyancy are maintained as constant 

and the length and diameter of the chamber are varied. The closer 

proximity of the top of the 2 2  metre diameter chamber to the water 

surface explains the increased response for that particular 

structure.

Figures 4.3 and 4.4 show what appears to be a harmonic 

transient oscillation, about which is superimposed a higher frequency 

oscillation of the column at the wave exciting frequency. This 

transient oscillation, although locked on to a multiple of the wave 

frequency, is of the order of the natural period of oscillation of the 

column in pitch as calculated from equation (4.2), ie Tn = 72 seconds,

^■transient ~ ^  seconds.

Results for 17 second and 25 second waves show the transient 

oscillation period at 6 8  seconds and 75 seconds, respectively, and in 

phase with wave oscillation, ie the structure tends to lock on to a 

multiple of the wave period.

Transient phenomena will be more pronounced in compliant 

structures and the question of authenticity naturally is posed. In 

order to examine the transient the programs were run for 2 0 0 0  seconds 

model time. Figure 4.6 shows the results of the extended run time for 

the column subject to a 6 metre high, 15 second wave plus a wind speed
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of 35 metres per second and a watertight compartment flooded. The 

extra mass due to the flooded compartment has the effect of reducing 

the natural frequency of the column in pitch, ie the period of the 

transient is increased and the pitch response is reduced. Figure 4.6 

shows the decay in the transient to be more rapid and this may be 

attributed to the extra damping provided by the wind force.

The steady state linear peak response in pitch for a 6 metre 

high, 15 second wave as given by equation (4.5) is equal to 0.0135 

radians. This is to be compared with the peak response as shown in 

fig.4.3, of 0.028 radians, ie a 107% increase in response. Allowing 

for the decay in the transient, the responses calculated by both 

methods are of the same order of magnitude, ie the wave frequency 

oscillatory responses are the same.

Effect of Cn on response

Figure 4.7 shows the response for a structure subject to the 

same wave for different values of drag coefficient CD . The bottom 

plot is that for a Cp value of 0.6. It is apparent that the transient 

part of the response increases to a maximum for a value of CD = 0.7 

and thereafter decreases to a minimum for the value of CD = 1.2 where 

the transient is eventually completely damped out. The damping 

effect of the drag component is evident for values of CD greater than 

0.7. Close inspection of the plots shows that the responses have 

different phases for the different values of C p . It would appear 

therefore that, for this relatively small structure, the value of 

drag coefficient can affect the phase of the motion response and, in 

turn, affect the damping contribution of the relative speed squared 

term. These results are for a 6 second wave 5.14 metres high. A
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similar trend is observed for a larger and longer wave ie 1 0 metres 

high with a period of 1 0 seconds, as shown in fig. 4 .8 .

The transient may be attributable, in part, to the 

integration procedure used and it is noted that the results for figs.

4.2 to 4.6 were obtained by a direct integration procedure, whereas 

the results in figs. 4.7 to 4.8 were obtained by a multi-step 

integration procedure, ie Runge-Kutta-Merson. Transients are further 

investigated in the context of dynamic instabilities and discussed in 

Chapter 5. It is also noted that at the full scale, Reynolds numbers 

are likely to be in the supercritical region ie > 10^. Values of Cp 

are likely to be of the order of 0.5 to 0.7 and it would therefore not 

be unreasonable to expect maximum transient responses at the full 

scale. However, these values relate to smooth cylinders and it must 

be borne in mind that marine growth will make a contribution to 

increasing roughness values over a period of time, so that 

corresponding values of Cp could well be of the order of 1 .0 - 1 .2 .

Effects of Relocating Deck Masses in Buoyancy Chamber

As discussed in Chapter 2, it is envisaged that the 

accommodation inside the buoyancy chamber could be used to contain 

certain items of plant and machinery which would otherwise be located 

on the platform deck. The structural provisions necessary to achieve 

this aim are not considered to be excessive compared to those to be 

made for the buoyancy chamber not containing plant, ie some form of 

lateral bracing will probably be necessary and the proposed flooring 

on three levels will help in this respect.
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The effects of varying the deck mass and payload have been 

examined in the context of dynamic response. The platform deck and 

payload was reduced by an amount which was added to the buoyancy 

chamber. This reduces the mass moment of inertia of the structure 

and, therefore, increases the natural frequency in pitch. For the

case of a reduction in the platform deck weight from 100 ,000 KN to 

50,000 KN there is an accompanying reduction in the pitch response of 

the order of 10%. This is a modest reduction and is, in the main, 

attributable to the increased pitch stiffness (see fig. 4.9).

Alternative Geometries for the Buoyancy Chamber

The buoyancy chamber and the upper support column are in the 

most active wave loading region and it is essential that means of

reducing loading are investigated.

A spherical buoyancy chamber is probably the most efficient 

buoyancy device from the hydrodynamic point of view, although it may 

suffer from lateral instabilities (52), but highly impracticable in 

terms of construction and accommodation. From this point of view, 

plane surfaces are desirable. The circular cylinder as proposed is a 

reasonable compromise in consideration of construction, accommodation 

and hydrodynamic efficiency.

The truncated conical buoyancy chamber as shown in

fig. 4.1Owas investigated and, using inertia and drag coefficients CM

and CD as for the circular cylindrical section, a reduction in

response of 25% was achieved.
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Effect of Stokes Fifth Order wave

The use of linear wave theory in the calculation of wave 

forces has obvious attractions but may result in under/over 

predictions (53) of these forces. Non-linear wave lengths are 

generally greater than the linear wave length of the same period and 

as the horizontal inertia force decreases as 2ira/L increases, above a 

given value, then a decrease in 2ira/L as a consequence of the 

increased wave length may give rise to an increased horizontal 

load (40).

The non-linear wave profile will also display differences to 

the linear profile, in that wave amplitudes and troughs are generally 

greater than and less than, respectively, half the wave height. This 

effect is more pronounced in the higher frequency waves and, for 

example, the Stokes fifth order wave theory calculates a crest height 

above mean level of 11.9 metres for a 10 second wave 20 metres high - 

an increase of almost 20% on the wave crest over that of a linear 

wave. In consideration of the drag component of force, this 

non-linearity warrants quantification and comparison with the linear 

case.

Hogben and Standing (53) have compared the forces on surface 

piercing cylinder by both linear theory and Stokes fifth order 

theory. They found that differences in velocity and acceleration 

profiles by both methods were small for deep water waves (ie 

H/d = 0.2, H/gT2 = 0.015, d = 150m, H = 30m, T = 14 secs). Also that 

inertia components of force by Stokes theory were slightly greater 

than by linear theory when integrated to the free surface and 

slightly less than linear theory when integrated to the SWL. Drag
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components by Stokes theory were less than by linear theory when 

integrated to the SWL but were greater when integrated to the free 

surface.

The solution to the Stokes fifth order wave theory as 

presented by Skjelbria and Hendrikson (54) is outlined in Appendix

4.2 and the constants given for various ratios of d/L. The procedure 

is readily programmed and requires the solution of two simultaneous 

equations for wave height, wave length and lambda. This has been done 

in the form of two subroutines? the first subroutine solves the 

simultaneous equations and calculates the constants, iterating the 

solution on a bisection procedure. The second routine calculates the 

wave profile and the particle velocities and accelerations.

The regions of validity of the various wave theories are 

suggested as shown in fig. 4.11 (55) and indicates that for deeper 

water the Stokes fifth order wave theory is applicable.

At intermediate and shallow water depths the wave profile and 

velocity and acceleration profiles may contain unrealistic 'bumps' 

and this suggests a limitation to the application of the theory as per 

Skjelbria and Hendrikson. Ebbesmeyer (56) has suggested these 

limitations graphically as shown in fig. 4.11.

By way of illustration of the presence of the so called 

'bumps', fig. 4.12 shows the surface profile and velocity and 

acceleration profile for a 5.69 metre wave with period 7.72 seconds 

in water depth 9.25 metres. The H/gT2 and d/gT2 values are 0.0097 and 

0.0157, respectively. The wave profile does not possess any 

irregularities. However, velocity and acceleration profiles do
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display undulations. This example is the same as that presented by 

Skjelbria and Hendrikson and corresponds to an intermediate depth 

wave. The horizontal particle velocities at the mean surface level 

are approximately 21% greater as calculated by Stokes fifth order 

theory than by linear wave theory.

As water depths increase the differences in particle 

kinematics as predicted by both theories also decreases. As an 

example of a deep water wave, ie H/gT2 and d/gT2 equal to 0.02 and 

0.137, respectively, fig. 4.13 shows the variation of velocity and 

acceleration with depth as a comparison for the linear wave theory 

and Stokes fifth order wave theory. Stokes theory appears to predict 

velocities and accelerations about 9% less than those predicted by 

linear theory at the still water level. The difference decreases with 

depth to about 25 metres below the SWL and, thereafter, Stokes theory 

predicts values somewhat higher than linear theory but only of the 

order of 2% to 3%.

Figure 4.14 shows results obtained for a wave at the upper 

limit of the definition of intermediate water depth, ie 

d/gT2 = 0.058. Velocity distributions are similar to those of the 

deep water wave except that the Stokes theory displays an asymptotic 

minimum value of about 0.75 metres per second at the sea bed. 

Accelerations by the Stokes theory are less than those by linear 

theory over the whole depth.

It is also instructive to compare velocity and acceleration 

distributions by both theories as a function of the wave phase angle. 

Figure 4.15 gives distributions for one wave cycle at a depth of 5m 

below the SWL. The Stokes theory predicts velocities less than those
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of linear theory between -tt/2 and 77/2 radians and greater velocities 

between tt/2 and 3 tt/2 radians. Accelerations predicted by Stokes 

appear to be less throughout the wave cycle, the maximum difference 

occurring at approximately 0.7tt radians and 1 . 3tt radians. For 

comparison, fig. 4.16 shows the distribution of velocity and 

acceleration for the same wave at a depth of 15 metres beneath the 

SWL.

Ohmart and Gratz^"^ ̂ have compared velocity and acceleration 

distributions by Stokes fifth order, Deans stream function and linear 

theory with measured distributions from a site in the Gulf of Mexico 

and their findings indicate that results of Stokes theory and stream 

function theory were almost indistinguishable. The distributions were 

qualitatively similar to those in fig. 4.15, ie the Stokes theory 

predicted values somewhat less than those predicted by linear theory.

Comparison of responses

For figs. 4.17 to 4.26, the top plot is the wave profile; the 

second plot is the pitch response; the third plot is the damping force 

and the fourth plot is the restoring moment.

Figure 4.17 shows the response for a structure subject to a 

20 metre high 15 second period wave, the wave particle kinematics 

being calculated by linear theory. Figure 4.18 shows the response for 

the same wave, the particle kinematics being calculated by Stokes 

fifth order theory. The responses for figs. 4.17 and 4.18 are very 

similar and this is not unreasonable considering the similarity of 

the velocity and acceleration distributions for this relatively long 

wave which are shown in fig. 4.19.
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Figures 4.20 and 4.21 show the responses obtained for the

structure subject to a 20 metre high 10 second period wave (ie 80% of

maximum wave steepness) , the particle kinematics being calculated by 

linear theory and Stokes fifth order theory, respectively. Apart from 

transient responses, the wave frequency oscillatory responses are of 

the same magnitude. The response for Stokes theory in fig. 4.21 stays 

positive after the first cycle, whereas the response for linear 

theory oscillates about zero. The difference is considered in the 

main to be attributable to the drag component of force and by way of 

illustration of the effects of the drag coefficient, fig. 4.22 shows 

the response for a drag coefficient = 0.6, whereas the drag

coefficient for fig. 4.21 was equal to 0.95. The response eventually

oscillates about zero, presumably as a consequence of the reduction 

in drag component.

Effects of co-linear waves and currents

Waves travelling on currents will undergo changes in the wave 

length (58), that is to say that waves travelling in the same 

direction as the current will undergo elongation whereas waves 

travelling in the opposite direction to the current will become 

shorter and steeper. The wave particle kinematics will be somewhat 

altered and can be determined theoretically.

An approximation of the particle velocities as a linear 

combination of the current velocity and the wave particle velocity is 

considered reasonable in assessing the overall effects of currents 

and waves acting co-linearily.

Figures 4.23 and 4.24 show responses for a structure subject
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to a 20 metre high 10 second period wave with zero current and 1 metre 

per second current, respectively, the wave particle kinematics being 

calculated by linear wave theory. The current is responsible for a 

mean static heel of approximately 0.06 radians and it is noted that 

this value does not constitute a new mean about which the structure 

oscillates. The new mean has a value of approx 0.12 radians so that 

mean dynamic responses are increased by approximately 100%.

Figures 4.25 and 4.26 show responses for the same wave and

current, the particle kinematics being calculated by Stokes theory.

The new mean has a value of 0.075 radians, an increase of 25%.

Experimental Results

In order to assess the validity of some of the results

obtained from the mathematical analysis of the articulated column 

structure, some limited amount of experimental observations were made 

in the experiment tank at the University of Glasgow, Department of 

Naval Architecture and Ocean Engineering

A model articulated column was constructed to an approximate 

scale of 1/100 of a full scale prototype. The diameter of the buoyancy 

chamber used was 0.32 metres and the length 0 .286 metres. The main 

concern with these dimensions was the possible violation of the 

validity of the use of Morison's equation where D/L should be less

than 0.2. However, some limited number of tests were completed and

the results obtained correlate well qualitatively with those of the 

mathematical analysis and are presented here.

Movement of the model was monitored with the use of a light



emitting diode fitted to the model. This method of observing 

translations avoids the attachment of any other monitoring device to 

the model and, thus, eliminates any possible damping as a consequence 

of such attachments. Unfortunately, in order to simulate wind 

loading, a constant force was applied to the platform deck by means of 

a weight attached via a system of pulleys. The experimental 

arrangement of the model and equipment is shown in fig. 5.1.

The natural frequency of the model in pitch which was 

measured by means of a free oscillation test was found to be 0.11Hz. 

The trace of the free oscillation is shown in fig. 5.34.

Figure 4.2 7 shows pen recordings of the fore and aft 

displacement of the model subject to a wave 0.086 metres high and 

period 1 second. Note that the plots shown here are not phase 

compensated in that the recording pens have staggered positions. The 

simulated wind loading is in the same direction as the waves. The 

existence of a harmonic transient oscillation is very evident at a 

frequency equal to the pitch frequency of the model. Oscillations at

the wave frequency are fairly uniform.

Figure 4.28 shows the displacement for a 1.5 sec wave

0.09 3 metres high. The transient oscillation is evident but is very 

much reduced to that shown in fig. 4.27.

The experimental observations do not suggest any tangible

relationship between the magnitude of the transient oscillation and

any other significant wave paramater such as period or height. 

Accordingly they are not considered to be conclusive in this respect• 

However the phenonema has been observed experimentally and is noted.
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3. STRUCTURE SUBJECT TO NON CO-LINEAR EXCITING FORCES

The assumption that exciting forces in the form of waves, 

currents, winds, etc are acting co-linearly renders the SDOF model, 

described in section 2, most suitable and adequate in the

investigation of the motion response and the determination of maximum 

response. It is well known, however, that this is not always the case 

in the real situation and, therefore, a more adequate and rigorous 

analysis which will allow for multi-directional exciting forces is

desirable to examine the response of a structure subject to such a 

system of forces.

Kirk and Jain (20) and Kokkinowrachos (51) have investigated 

the response of articulated columns in spherical co-ordinates (2 

degrees of freedom) and both have found that under certain 

non-colinear actions of waves and currents, the platform performed a 

complex swirling motion.

In addition to wind, waves and currents, the articulated 

column may, under certain circumstances, experience lift forces as a 

consequency of the action of vortex shedding. Lift forces on 

cylinders has been the subject of many investigations and there is a 

certain amount of data available for cylinders both horizontal and 

vertical in steady flow (43,59).

In the case of horizontal cylinders subject to sinusoidal 

oscillating flow, the alternating lift forces can be well 

correlated (59,60). In the case of an articulated column structure, a

steady current may be sufficient to correlate the vortex shedding

lift forces on either the buoyancy chamber or the upper column.
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Chakrabarti (23) has obtained experimental data on lift

forces on an articulated column and found these to be well correlated 

in some circumstances. Appendix 4.3 contains a table listing some 

vortex shedding frequencies, current velocities and member diameters.

In consideration of the possible combinations of non-linear 

exciting forces, the investigation of the response of the structure 

in two degrees of freedom is considered of value and beneficial to an 

understanding of the physical problem and to future research.

The equations of motion for the column are derived by the 

Lagrange (61) method for a combination of conservative and 

non-conservative forces and the development of the equations together 

with the evaluation of the forces is given in Appendix 4.4. The

equations of motion are:-

IT0- Itjj^sinO cos0 + K gsin0 = (4.19)

ITij)sin̂  0 + 2Iij; 0sin 0cos0 = (4.20)

3.1. Solution of the Equations of Motion

Equations (4.19) and (4.20) are solved simulataneously on an

incremental time basis. The sin20 term in the second equation gives

rise to a singularity in the region of small 0 and care needs to be 

taken in the solution. This is of particular importance in the case of 

small structures with very small mass moments of inertia about their 

central axis. In such cases, errors may accumulate as 0 becomes small 

and it is necessary to place a stringent bound on error controls.

For larger structures the problem is less acute as generally 

these will possess significant mass moments of inertia about their
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central axis and the li|)sin^0 term will be replaced with an equivalent 

^EQIV term, thus, reflecting the structures own inertia about the 

central axis.

The equations of motion have been solved by two methods ie 

direct integration method, ie Wilson-0, and a Multi-Step method.

The direct integration method solves the two equations 

independently having first made a substitution for 0 and ^ in terms 

of 0 and ip in the equations of motion. By this means it was necessary 

to account for the moment of inertia of the structure about its own 

centroid as already mentioned. The results thus obtained were for 

larger structures and there was no evidence of any instability in the 

solutions obtained. The results obtained by this method are presented 

in figs. 4.30 to 4.33.

The Multi-Step methods basically comprise the Runge-Kutta 

Merson, Adams and Gear methods(48). These are available as standard 

NAG routines and in various stages of sophistication depending upon 

the degree of accuracy required for the solution (62).

The Gear Method is most suitable for systems of equations 

having rapidly decaying time components ie a stiff system of 

equations. A preliminary check on the stiffness properties of the 

equations by means of the Runge-Kutta Merson routine D02BDF indicated 

stiffness values of the order of 0.4-0.5. The recommendation is that 

for low values of stiffness, the Gear routines are not appropriate.

A c c o r dingly the Runge-Kutta Merson routine D0 2BDF was used 

b u t  this did not prove to be sufficiently general in terms of error



controls and subsequently the Runge-Kutta Merson routine D02PAF which

allows for a wide range of error controls was used.

The NAG routines solve the equations on an iterative basis 

and consequently call the main program, supplied by the user, a 

number of times per successful iteration. Routine D02PAF did so 

approximately 15-20 times per successful iteration. This is obviously 

computationally time consuming and the recommendation in such cases 

is that the Adams routines are used. The Adams routine D0 2QAF was

subsequently used to solve the equations and this routine allows for

the implementation of any one of five different error control bounds. 

Routine D02QAF calls the main program approximately 2-3 times per 

successful iteration.

Although guidance is available on the most appropriate error 

control for any particular problem the choice must be subjective and 

trials made. The error control test which displayed the most 

consistency in results was the 'Mixed Error Test applied 

componentwise1. Nevertheless, some difficulties were encountered in 

the solution of the equations in the region of small values of 0 

particularly for the smaller structures with smaller inertias about 

their centroids.

However, satisfactory results were obtained when there was 

sufficient damping available in the form of a steady current to 

counter the tendency for the structure to respond through the origin. 

The results obtained are considered reasonable in reflecting the 

complex responses in these circumstances (see figs 4.34 to 4.35).
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3.2 Analytical Results

The motion response of the structure as shown in fig. 4.1 for 

6 metre high 15 second period waves at zero degrees orientation 

together with a steady wind speed of 35 metres per second with an 

orientation of +20°, is shown in fig. 4.30. This is the plan 

trajectory in terms of the X and Z co-ordinates as defined in fig. 

4.29. The starting point is the point marked 'O' and it is observed 

that a figure of eight pattern emerges with the column travelling in 

the opposite direction in the opposite quadrant to its direction 

approximately 7 wave cycles earlier. That is to say, the orientation 

of the trajectory at time 12T is in the opposite quadrant to the 

orientation of the trajectory at time 19T; similarly, at 13T and 20T, 

etc. Figure 4.30 shows the trajectory of the column with the wave 

starting at zero time at a wave crest.

Figure 4.31 shows the trajectory of the column given a wave 

trough starting at zero time. A cyclic pattern emerges as in the case 

of fig. 4.30 but in this case the column trajectory is in the opposite 

quadrant to that for fig. 4.30. Clearly then, the trajectory is 

sensitive to starting conditions for the time simulation solution 

although the pattern of 7 wave cycles persists.

Both figs. 4.30 and 4.31 are for the same structure with a 

buoyancy chamber 27 metres diameter and 40 metres long. The 

trajectory for a column with a buoyancy chamber 24m diameter and 50 

metres long is shown in figs. 4.32 and 4.33 for clarity. In fig. 4.32 

the starting point for the wave is at a wave trough as for that shown 

in fig. 4.31.



SPHERICAL CO-ORDINATE NOTATION.
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Comparison of figs. 4.32 and 4.33 illustrates a cyclic 

pattern emerging again but this time the most apparent pattern is 

repeating itself approximately every 13 wave cycles and in the same 

quadrant. Close inspection shows the 7 cycle pattern as in fig. 4.30 

but much less pronounced. The column appears, therefore, to be 

performing a trajectory in a yawing sense with a natural period of 

approximately 105 seconds.

The sensitivity of lighter structures in shallower water to a 

current orthogonal to the direction of the wave travel is illustrated 

in fig. 4.34. A swirling trajectory is again assumed but is of a more 

orderly fore and aft nature, mainly as a consequence of the damping 

effect of the imposed current. The dominant effect of the current is 

illustrated again in fig. 4.35 which shows the response for the 

structure with a current of 1 metre per second imposed at an angle of 

40° to the X-axis. The effect is to bias the response in the current 

direction as would be expected and this concurs with the results 

obtained and as shown in figs. 4.24 and 4.26 for the case of 

uni-directional waves and currents.

4. Concluding Remarks

It has been demonstrated that a transient oscillation 

harmonic with the natural pitch frequency of the structure can be 

generated in the time simulation analysis. Experimental observations 

confirmed the existence of the phenomenon although no plausible 

correlation with any other significant wave parameter could be 

established. The transient greatly increases the pitch response of 

the structure, in some cases by 100%, and this clearly will play a 

very major part in the design of the structure. The most important
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aspect of the increased pitch is likely to be the allowance to be made 

for the deck clearance above the instantaneous water surface.

The transient was also noted to be a function of the 

hydrodynamic viscous drag damping available and was a maximum for a 

value of Cp = 0.7 - this value is thought to represent a full scale 

value where Reynolds numbers are supercritical.

The non-linear transient phenomenon has been demonstrated to 

be a function of viscous drag forces and it is important, therefore, 

to adopt an analytical procedure which will deal with the relative 

speed squared term. Both the Wilson-0 linear acceleration method and 

the multi-step integration procedures are appropriate. However, the 

latter requires access to special routines, whereas the former is 

readily programmed and requires no special support routines.

Deck Mass relocation and alternative geometric shapes for the 

buoyancy chamber both contribute to improving the dynamic response.

In particular, the conical shaped buoyancy chamber gives a marked 

improvement. Together these make a worthwhile contribution in 

reducing dynamic response.

The effects of non linear waves and currents have been shown 

to be important. Without currents, the non linear theory predicted 

greater responses than those predicted using a linear wave theory.

The situation is worsened by an order of magnitude when currents are 

considered in combination with linear waves and mean dynamic 

responses were increased by 100%. Currents in combination with non 

linear waves increased mean dynamic responses by only 25%.
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It is also noted that the mean position about which the

structure oscillates, under the action of waves and currents, is not 

the mean which could be attributed to currents in the absence of

waves. This observation, together with that on the harmonic transient 

motion, puts a more stringent requirement on the deck clearance to be 

provided.

Finally, the swirling trajectories produced by the action of 

multi-directional forces is to be noted. Although not of importance 

in a maximum response sense, they may be considered very undesirable 

in the context of the uncertainty associated with the direction of 

travel and lack of preferred direction for response. This aspect may 

play an even more important role from the point of view of human

awareness and reaction to the motion response.
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CHAPTER 5

DYNAMIC INSTABILITIES OF ARTICULATED COLUMNS

1. INTRODUCTION

In Chapter 4 it was noted that articulated columns can 

experience non-linear transient motions. The sensitivity of compliant 

structures to transient or other non-linear behaviour means that it 

is important to have a thorough understanding of the motion 

responses.

It is believed that instabilities can be experienced which 

will result in non-linear maximum responses, for exciting frequencies 

which are equal to and twice the natural pitch frequency of 

articulated columns.

In certain conditions the restoring stiffness of compliant 

structures, of which the articulated column is one particular 

variety, may be reduced by virtue of the wave action and thereby 

experience motion responses which are not sinusoidal and may even 

become dynamically unstable. These instabilities are commonly 

referred to as Mathieu instabilities in so far as the equations of 

motion can be shown to have solutions of the Mathieu type (63).

The natural frequency in pitch of most articulated columns is 

very small so that first order wave excitation at that frequency is 

most unlikely. However, it can be shown that wave trains which are 

harmonic with the pitch period of the structure can occur. It is 

necessary, therefore, to examine this possible mechanism as a source
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of excitation and to make an assessment of the likely increased

magnitude of the pitch oscillation.

This chapter first describes the development of the theory

and the way in which the various stiffness components act and then

goes on to examine their relative importance in the context of

Mathieu instabilities.

The effects of the non linear relative velocity term in

limiting the onset of the instabilities is examined as are the

effects of wave growth and non linear waves. Also examined are the 

effects of weight to buoyancy ratios and currents. Some experimental 

observations are presented and these are compared with analytical

results.

Finally, a description of the way in which wave groups may be 

generated as a consequence of the superposition of two separate 

regular wave trains with slightly different frequency travelling in 

the same direction is given. Analytical results for a structure

subject to wave groups are presented.

2. MATHIEU INSTABILITIES

Essentially these instabilities are predicted when structures 

with time varying stiffness properties are subject to sinusoidal 

excitation at about twice the natural frequency in surge or pitch of 

the structure. It is also suggested that the range of exciting 

frequencies may extend to ratios of exciting frequency to natural 

frequency greater than 2.
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Structures with natural periods in excess of 75 seconds, such 

as those considered in Chapter 4 may, in certain .circumstances, 

experience these dynamic instabilities, as a consequence of the 

installation procedure which might be utilised. There may be periods 

of time during installation when the structure will have a natural 

frequency considerably higher than the final in situ natural

frequency. Exposure to exciting forces at critical phases in the

installation is obviously undesirable and it is considered, 

therefore, that the question of dynamic instabilities of this type be 

fully investigated.

Smaller structures in shallower water with pitch periods of 

the order of 35 to 40 secs will almost certainly be vulnerable. 

Indeed, the majority of existing applications for articulated columns

occur in water depths of less than 140 metres. Most of these

structures are used as loading platforms and mooring terminals so 

that for the majority of time they will have a tanker attached. This 

may help to suppress the onset of the instabilities since the natural 

surge period of the combined terminal and tanker will be very much 

larger than that of the terminal itself. However, problems may be 

encountered in the mooring phase if wave frequencies are such that 

there is a tendency for instabilities to develop. There are no known 

reports of instabilities having been observed at the full scale. 

However, there is one report (64) of an articulated column having 

become detached from its mooring although it is not known if this was 

directly attributable to the onset of instabilities.

The dynamic instabilities are considered to manifest 

themselves as a consequence of the variation in the pendulum 

restoring stiffness which can be considered to comprise two
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components, viz:-

a. a component attributable to the variation in heave forces

b. a component attributable to the instantaneous position of

the structure in the wave.

The heave force component can be considered to comprise an 

^added mass part and a part attributable to the variation in pressure 

on the upper and lower faces of the buoyancy chamber as a consequence 

of the wave profile. Depending on the geometric configuration of the 

buoyuancy chamber these two parts may be in phase or not. The added 

mass portion will be downwards in a wave crest and upwards in a wave 

trough. The evaluation of the two parts is described in more detail in 

section 2.2.

In respect of the second component it can be shown that, when 

expanded, the expression for the surge force which accounts for the 

excursion of the structure contains a term in x which can be taken 

over to the left hand side of the equation of motion. This term can be 

considered as additional to the pendulum stiffness term and is also 

in phase with the added mass part of the heave force. It is the 

combined effect which assists the onset of dynamic instabilities. It 

is necessary to examine the combined effects of the three components 

in a realistic assessment of the possibility of dynamic 

instabilities.

In addition to the components mentioned above, the viscous 

(speed squared) damping is considered to play an important part in 

the limitation of the growth of the instabilities and the 

contribution of viscous damping increases as tends to unity so

that an adequate investigation must make a realistic assessment of
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Dynamic instability is a non linear phenomena and it is 

appropriate that the phenomena be investigated in a way which will 

adequately account for any non linearities involved. Accordingly 

this chapter sets out to examine the effects of the aforementioned 

components in combination with each other and in a manner which 

allows for the variations on an instantaneous time incremental basis.

2.1 Equations of Motion

In the first instance, neglecting for the time being the 

heave forces and with reference to figs. 5.1 and 5.2, consider the 

equation of motion,

i T e + ce + Ks e= m ( 5 . 1 )

Neglecting potential damping and also, for the time being, 

neglecting viscous drag damping and the velocity forces the equation 

of motion can be written

IT *0 + Ks 0 = X.r.sinoJt (5.2)

where X.r is the maximum pitching moment perpendicular to the

structure axis and

IT = (Mass + Added Mass) moment of inertia 

K s = Pendulum stiffness

r = radius from articulation to the centre of force

It is noted that r is a function of the exciting frequency a) and of

the elevation of the buoyancy chamber. Equation 5.2 accounts for the 

forces on the structure assuming it to be stationary in the waves.
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In order that the instantaneous position of the structure 

relative to the reference axis of the wave is accounted for, it is 

necessary to rewrite equation 5.2 to allow for the excursion of the 

structure in the wave thus:-

IT 0 + K g0 = X.r.sin(kx - wt) (5.3)

where k is the wave number = 2tt/L and x is the excursion of the 

structure in the wave.

Expanding equation 5.3 by assuming that for kx « 1 that

sinkx = kx and coskx = 1 then:-

IT0 + Kg0 + kx.X.cos<Dt.r. = X.r.sinojt (5.4)

NOW K s = Bp.RKB-W.RKG

where Bp = Buoyancy force

W = Weight of structure

RKB = Distance from pivot to centre of Buoyancy

RKG = Distance from pivot to centre of Gravity

and 0 = x/r.

For the purposes of illustration, accepting that the buoyancy 

chamber is the element which attracts the major portion of wave 

forces, then r = RKB. (The computer program calculates forces on 

elemental lengths of the structure and the correct force and buoyancy 

distribution is thereby assured.)

Then the equation of motion can be .written

Im 0 + [(Bp.RKB - W . RKG) /RKB + k.X.cos&t.RKB]x = X.RKB.sincjt (5.5) 1 r



112.

Consider the stiffness term:-

[ (Bp . RKB - W . RKG ) /RKB + k . X . coswt .RKBl x (5.6)

The second and additional term will render the total 

.stiffness to be sinusoidal in nature. The right hand side of the 

equation of motion now expresses the forces on the structure assuming 

that it remains stationary relative to the frame of reference of the 

wave.

It is also noted that in the physical sense this extra term, 

strictly speaking, is not a stiffness component in that it does not 

contribute to a variation in the tension in the lower column but that 

it is merely a force term in x and as such can be included in the 

stiffness term which is also expressed in x. In respect of the 

calculation of the wave exciting forces, it is noted that exactly the 

same result is obtained for the response when the right hand side 

expression for force is of the type X sin(kx - wt) as is obtained when 

this expression is expanded and the right hand side of the equation is 

of the form X sinwt, the rest of the expression having been 

transferred to the left hand side of the equation and included in the 

stiffness term.

2 .2 Time Varying Stiffness

The foregoing analysis assumes that the tension in the lower 

member remains constant, as it is clearly unaffected by forces 

perpendicular to the axis of the structure.
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2.2.1 Calculation of Heave Forces

A. rigorous analysis of the heaving forces on a floating

structure would necessarily require the determination of the pressure 

and inertia components which are both functions of the wave profile 

with respect to the body. Under a wave crest the pressure forces may, 

depending on the geometry of the buoyancy chamber, act downwards and 

the inertia forces, as a consequence of the wave particle

accelerations, will act downwards. Conversely, in a wave trough the

opposite situation will prevail.

2.2.2 Pressure Forces

The Froude-Krylov pressure change on the top and lower faces 

of the buoyancy chamber as a consequence of the wave profile, can be 

written:-

-kL
1 2 2Pressure Force = T-Pga e (irR. - ttR.)o 2 1

-k(L + L )
1 2 2 2 + pga e (ttR. - 7rR_) ] cos(kx - <yt) (5.7)o 2 3

The first term inside the bracket is the pressure force on 

the top face of the buoyancy chamber and the second term is the 

pressure force on the bottom face.

This expression reduces to:-

—kL 2 2 -kLPressure Force = - Trpga^e M R2 ** R1 ” 0 *^R2 ” R3^ cos k̂x “ (5.8)
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The pressure forces can be cancelled out for any particular wave 

frequency by setting the term inside the square bracket equal to 

zero, ie ratios of T^/R-j can be chosen such that cancellation occurs 

for a given wave frequency, ie

-kL -kL2 2 2 2 2 V 1 - e > = - R̂ e (5.9)

2.2.3 Inertia Forces

In the case of a submerged buoyancy chamber with concentric 

cylinders protruding from the upper and lower faces the calculation 

of the inertia forces will require the determination of the added 

virtual mass coefficients for the upper and lower faces. This can be 

calculated on the basis of a strip theory and will be a function of 

the aspect ratios of the buoyancy chamber, the upper support column 

and the lower column.

The inertia force can then be written

2 3 3 —kLInertia Force = {- — puJ (CVR2R2 - CVRjR^kga^ 1 cos (kx - OJt)
(5.10)

2 3 2. , -k(L., + L~) / \4- \ \
- -jptj (CVR2R2 “ CVR3R3)kgaQe 1 2 cos (kx - OJt)}

This reduces to:-

Inertia Force = - -jpTT JkgaQe ^L1{CVR2R2(1 + e 2) - CVR^R^
(5.11)

- e 2 CVR2R3>cos(kx - OJt)
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The total force can be written thus:- 

Total Heave Force = Pressure Term + Inertia Term

= pugaQe"kLl { R^U - e"kLl) - + e~kL2

(5.12)

+ T ^ k [^^^2^2^ + 6 2) - CVR^R^ - e 2 CVR^R^] }cos (kx - ait)

It is not possible to cancel the inertia component of heave 

forces for a particular wave frequency, as is the case for pressure 

forces. However, zero heave force can be achieved for the combined 

pressure and inertia terms by the variaion of R 2 , L 2 and R ^ , assuming 

that R-| is fixed. Both components should be assessed separately in

order to make an appropriate choice of buoyancy chamber dimensions.

The heave force as given by equation (5.12) has been computed 

in the form of subroutine HEA. This routine requires as input, 

dimensions of the buoyancy chamber together with added mass 

coefficients CVR^ , etc. The routine was incorporated into the time

simulation program to provide both pressure and inertia components of 

the heave force where CVR^ etc are the added virtual mass

coefficients which are functions of the aspect ratios 'irRi/2L-|, etc.

J = 0.635 and takes account of the three dimensionality of the flow. 

The basis upon which the added virtual mass coefficients CVR^ , etc 

are calculated is outlined in Appendix 5.1 which also shows the 

variation of the coefficients with the aspect ratio. The total force 

may then be calculated on the basis of the summation of individual 

strip components.
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Consider now the inclusion of a time varying heave force on 

the structure. If we say that the maximum heave force along the axis 

of the structure is then this will vary cyclically as

T-j-.cos(kx - &Jt) where Tj is the inertia component of the heave force.
\

When the geometry of the buoyancy chamber is such that the pressure 

component also acts downwards in a wave crest then this will also be 

included in T. Viscous wave forces also contribute to the heave 

component but this is small in comparison with the predominant 

inertia forces.

Then, the stiffness term will become

{(Bp .RKB-W.RKG)/RKB + k X .coswt.RKB + T.cos(kx - wt)}x (5.13) 

and this reduces to

{(Bp. RKB-W. RKG)/RKB + (kX.RKB + T)cosOJt}x (5.14)

The second part now contains an additional term as a 

consequence of the variation in the heave force and this is in phase 

with that term which accounts for the position of the structure in the 

wave.

Now the equation of motion

K
I *0 + ( —  + (kX.r + T)cos^t) x = X.r.sinat (5.15)T r

can be rewritten

(1 + bcoso)t)x = —  .r.sin t (5.16)
T

-  2 , , T.r + kx.r 2 kwhere b = ------------- and oj = sK
T
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By setting the RHS of the equation equal to zero, then:-

0 + (P {1 + bcoswt)x = 0 (5.17)

which is Mathieu's equation and defines stability boundaries as shown 

in fig. 5.3.

The relative magnitude of the stiffness terms discussed is 

shown in fig. 5.4. These results have been computed incorporating 

subroutine HEA which computes the pressure and inertia heave 

components of force separately. The dimensions of the structure are 

as shown in fig. 5.1 and the aspect ratios used for CVR-j , CVRp and 

CVR 3 were 1.8, 1.65 and 2.5, respectively.

With reference to the bottom set of curves shown in fig. 5.4, 

ie the restoring stiffness; curve 1 is the simple pendulum stiffness 

of the structure. Curve 2 is the pendulum stiffness plus the pressure 

component of heave force. Curve 3 is the pendulum stiffness plus the 

pressure and inertia components of heave force and curve 4 is the 

total restoring stiffness, ie the pendulum stiffness plus the heave 

forces plus the contribution from the component which accounts for 

the position of the structure in the wave. For this particular 

stucture, the pressure component of heave force is acting in phase 

with the inertia component.

It would appear, therefore, that in this case the kx

component makes the major contribution to the stiffness. The kx
2contribution is proportional to the frequency squared (k = oj /g) and 

can thus increase rapidly with frequency although the effects will 

probably be limited by the decrease in response as w/wn increases.
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2.3 DAMPING

Adequate representation of damping is necessary in the 

realistic assessment of motion response and potential damping has not 

been included in the above analysis. Potential damping is likely to 

be small for the low frequencies which are of concern in respect of 

possible dynamic instabilities. Material damping is only possible at 

the articulated joint for this SDOF model but this cannot be 

quantified and is assumed to be zero.

The only other available form of hydrodynamic damping 

available is viscous and so the relative velocity terms must be 

adequately accounted for and its role in limiting unstable responses 

assessed. The non linear viscous drag components normal to the axis 

of the structure have been included in this investigation and the 

effects on the response investigated.

As mentioned, the viscous wave forces will make a

contribution to the heave component. These would be 90° out of phase 

with the inertia forces and are much smaller in magnitude and 

unlikely, therfeore, to affect stability boundaries significantly.

3. ANALYTICAL RESULTS

3.1 Effects of Time Varying Stiffness

In order to investigate the dynamic instabilities the 

computer program described in Chapter 4 was adapted to,

a . take account of the instantaneous position of the
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structure in the wave in the calculation of wave forces, and

b. take account of the variations in vertical tension as a 

consequence of the heave force in calculating the restoring 

stiffness.

The analytical results obtained show evidence of 

instabilities occurring for wave frequencies of twice the natural 

frequency in pitch and greater and these are presented.

Figures 5.4 to 5.15 relate to a model articulated column of 

the same dimensions as the experimental model described later and as

shown in fig. 5.1. The analysis for these results is by means of the

Wilson-0-linear acceleration method. For these figures the top plot 

is the wave profile, the 2nd plot is the pitch response in radians, 

the 3rd plot is the viscous damping force, the 4th plot is the

restoring moment and the bottom plot is the restoring stiffness, K g .

The results for figs. 5.16 to 5.27 relate to full size 

structures and the analysis is by means of the Adams multi-step 

integrator. In these figures the plot of the restoring moment has 

been omitted.

Figure 5.5 is a plot of the pitch response versus time for a 

model structure with a natural period in pitch of 4.95 seconds. The 

wave height is 0.15 metres and period 1 second so that the ratio of 

natural period to exciting period is 4.7 (or co /u = 4.7). There is 

evidence of a slight transient which is harmonic with the natural

period in pitch but otherwise the solution is stable.
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Figure 5.6 shows the response for the structure subject to a 

0.15m wave with period 2 seconds (w/w = 2.47). Viscous drag damping 

is zero for this case. The wave frequency response has increased as 

expected and again the transient harmonic response is present, 

however the response is stable with no signs of instability.

The response for the structure subject to a 0.0 5m wave with

period 2.5 seconds (oj/cj = 2) are given for viscous drag coefficientsn
of zero and 0.6 in figs. 5.7 and 5.8, respectively. Vertical heaving 

forces are not included in the analysis. The response for zero 

damping is slightly greater than that for CD = 0.6 but is otherwise 

stable. The harmonic transient is evident at the pitch frequency.

Figures 5.9 and 5.10 are similar but include the heaving

forces in the analysis. The transient is more pronounced and in the 

case for zero damping (fig. 5.10) the transient is increasing in 

magnitude. So that even at this very low level of excitation (wave 

steepness = 0.005 or 3.6% of maximum) the instability is present.

Figures 5.11 and 5.12 are similar plots for 0.15m wave (15 

metres full scale) and including vertical forces. The transient for 

the case of zero damping, ie fig. 5.12, is more pronounced than that

in fig. 5.11 and appears to be increasing in magnitude. The large

increase in the magnitude of the response when w/wn = 2 (fig. 5.11)

compared to that for = 2.47 (fig. 5.6) is apparent from

inspection of these two plots. The increase is 35% and is calculated 

on the basis of the maximum response in each case, ie the transient 

response.

Figure 5.13 shows the response for the same wave but
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excluding heave forces in the analysis and with zero viscous drag.

The response is similar to that of fig. 5.11 (heave forces included 

Cd =0.6).

3.2. Effect of wave growth

The results obtained and shown in figs. 5.4 to 5.13 are those 

allowing for an exponential wave growth starting from zero and 

growing to full height over the first 4 wave cycles. Observations of 

wave growth in the experimental tank suggest an exponential growth.

Real waves almost certainly assume a gradual growth to their full 

height although the precise nature, whether linear or exponential is 

uncertain.

It is necessary to assess the effects of the nature and rate 

at which waves grow to their full height on dynamic instabilities. 

Accordingly, the following results have been obtained for varying 

rates and type of wave growth.

Figures 5.14 and 5.15 show the response for waves at twice 

the natural frequency neglecting viscous damping and with heave 

forces excluded and included, respectively. The wave growth is 

imposed exponentially over 2 wave cycles. The transient is very 

pronounced in fig. 5.14 but the response is limited and stable.

The response in fig. 5.15, which includes vertical heave 

forces, shows an increasing instability and is much more pronounced 

than that of fig. 5.12 (4 cycles wave growth).

Figures 5. 15 and 5.17 show responses obtained for linear
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wave growth and exponential wave growth, respectively. The response 

for the linear wave growth is limited in magnitude whereas that for

exponential growth, is unstable. For the case of the exponential

growth it is noted that the response does not become negative in the 

first cycle, whereas that for the linear growth displays a slightly 

negative response in the first cycle.

3.3. Effect of Linear Theory and Stokes Fifth Order Theory

A comparison of the effects of the use of linear theory and 

Stokes fifth order wave theory in the calculation of particle

kinematics was made in Chapter 4 and some of the results indicated

substantial differences in the response obtained.

In examining the dynamic instabilities of larger structures 

with small pitch frequencies the offending waves will themselves have 

fairly small frequencies so that a linear wave description is 

adequate. However, smaller structures in shallower water will have 

much greater pitch frequencies and the associated waves at twice the 

frequency may be steeper and assume a more non linear profile. It is 

pertinent therefore to examine the effects of non linear waves on the 

dynamic instabilities.

A measure of the magnitude of the damping force is obtained 

by observation of figs. 5.18 and 5.19. The damping force in fig. 5.18 

is drawn to the same scale as the restoring force whereas the damping 

force in fig. 5.19 is drawn to a much reduced scale for clarity.

Figures 5.20 and 5.21 show the responses obtained using 

linear wave theory and Stokes fifth order theory, respectively. The
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response in fig. 5.20 is unstable whereas that in fig. 5.21 is limited 

in magnitude, although the transient oscillation persists. It is 

noted that vertical forces have not been included in the analysis.

The damping forces in each case are of the same order of 

magnitude for the first 1.5 cycles so that it is not obvious that the 

damping in the Stokes fifth order solution is preventing the onset of 

the instability. For the wave considered, the linear theory is 

probably predicting inertia and drag components of force greater than 

those predicted by the Stokes theory (see Chapter 4, section 2.4). It 

is worth noting that in both those cases the wave is growing linearly 

in magnitude over one cycle.

3.4. Effects of Elevation of Buoyancy Chamber and Weight to
Buoyancy Ratio

It is instructive to compare responses for varying elevations 

of buoyancy chamber and weight to buoyancy ratios. Figures 5.22 and 

5.23 show the responses for a full size structure with depths of 

submergence of the buoyancy chamber of 2 0 and 25 metres below the SWL, 

respectively. Vertical forces have not been included and it is 

apparent that differences in response are minimal. Similar plots 

which include heave forces in the analysis are shown in figs. 5.24 and 

5.25 and it is observed that the motion is marginally more stable for 

the structure with the greatest depth of submergence.

The effects of variation in the ratio of weight to buoyancy 

are shown in figs. 5.26 and 5.27 for ratios of 0. 375 and 0. 333, 

respectively. The transient oscillation persists even for those 

relatively small ratios of weight to buoyancy and it is apparent that 

the decreased ratio does not contribute to limiting the response of
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the structure. However, it is noted that for both of these figures 

that the wave forces are increased to the maximum value in the first 

wave cycle.

3.5 Effect of Current Orthogonal to Waves

The effects of non co-linear exciting forces was investigated 

and discussed in Chapter 4, section 3, and complex swirling 

trajectories were observed.

The phase lag of the response of the structure subject to non 

colinear exciting forces will be much the same as for the structure 

subject to colinear exciting forces. However, the effects of the 

heaving forces acting together with the out of plane movement of the 

structure requires consideration in the context of dynamic 

instabilities. Accordingly, some analytical results have been 

obtained and are presented.

Figures 5.2R and 5.29 show the effect of a 1 metre per second 

current orthogonal to the direction of wave travel for the structure 

excluding and including heave forces in the analysis, respectively. 

The transient oscillation is evident in both cases but appears to be 

somewhat more pronounced than that which was obtained for the single 

degree of freedom structure.

The maximum response for the case including heaving forces is 

some 20% greater than that obtained excluding heave forces. The 

trajectory orthogonal to the direction of wave travel is also greater 

when the heave forces are included in the analysis.
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4. EXPERIMENTAL OBSERVATIONS

Analytical techniques are an economic way of obtaining

information on motion response characteristics. However, in order to 

validate certain analytical results it is necessary to undertake 

physical model tests. The scaling problems have to be borne in mind 

in assessing the validity of the results when it is intended to

extropolate these to the full scale situation.

A 1/100 scale model was adapted so that it was large enough to

permit the variation of ballast mass inside the buoyancy chamber. The

experimental model is as shown in fig. 5.1.

The logarithmic decrement of damping (6 =  2 tt|3 ) for the 

experimental model subjected to an initial displacement and allowed 

to oscillate freely, indicated approximately 2% to 6% of critical 

damping (3 = 0.02 to 0.06) and this is shown in fig. 5.34. It is 

considered that the nature of the hinge connection will impose little 

or no damping, so that most of this is attributable to hydrodynamic 

damping. Furthermore potential damping is likely to be minimal for 

this relatively low frequency of oscillation so that the majority of 

the damping is likely to be viscous in origin.

Some experimental observations of the response of the model 

articulated column were obtained for exciting frequencies of the 

order of about twice the natural frequency of the model and these are 

presented.

Three operating conditions were simulated, viz:-

1. Basic model with no additional mass on the deck or in the
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buoyancy chamber.

Natural period in pitch = 4.0 seconds.
Ratio of weight to buoyancy = 0.34

2. Basic model with 2Kg mass added to the deck.

Natural period in pitch = 5.0 seconds.
Ratio of weight to buoyancy = 0.43

3. Basic model with 4Kg mass added to the inside of the

buoyancy chamber and zero deck mass.

Natural period in pitch = 5.2 seconds.
Ratio of weight to buoyancy = 0.52

Conditions 2 and 3 enable a comparison to be made of 

responses for structures having the same natural frequency but with 

different ratios of weight to buoyancy. A measure of the importance 

of this can then be made.

Condition 1 - fig. 5.30 shows the response in pitch for the 

model subject to a wave at twice the frequency of the structure. It is 

noted that the response is not sinusoidal with the frequency but that 

there is a transient oscillation at the natural frequency of the 

structure.

Figure 5.31 shows the response in pitch for the model subject 

to a wave of equal height to that of fig. 5.30 but at 2.8 times the 

natural frequency of the structure. The transient has disappeared and 

the response is approximately 50% of that in fig. 5.30.

Conditions 2 and 3 - figs. 5.32 and 5.33 show the response of 

the model for conditions 2 and 3 respectively and for the same wave at 

twice the frequency of the structure.
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The transient is much more pronounced in fig. 5.33 (condition 

3) and the maximum response is approximately 15% greater than for 

fig. 5.32 (condition 2). Evidently the increased weight to buoyancy 

ratio has a significant effect on the response as would be expected.

The experimental result of fig. 5.32 (condition 2) bears 

direct comparison with fig. 5.5 which is the analytical prediction of 

the same structure subject to the same wave. The maximum pitch 

response recorded experimentally was + 53mm and the minimum recorded 

was - 40mm. The maximum pitch response apparent from fig. 5.5 is +

0.02 radians = + 50mm (-6% difference) and the minimum was 0.0175 

radians = 43.7mm (9% difference).

The important observations to be made from the experimental 

results are:-

a. the increased response, and

b. the transient oscillation.

In fig. 5.33 the magnitude of the minimum oscillation is 

about 50% that of the maximum frequency response oscillation, whereas 

in fig. 5.32 the minimum response was approximately 85% of the 

maximum frequency response oscillation. Therefore, the increased 

weight to buoyancy ratio has the effect of increasing the maximum 

response while, at the same time, decreasing the magnitude of the 

minimum response.

It is interesting to note that the transient is qualitatively 

similar to the transient which the analysis predicts and is also in 

agreement with the transient as predicted by others (25). There is 

also reasonable quantitative agreement between the experimental
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response and the analytical response for the part prior to the onset 

of the instability.

5. RESONANT RESPONSES

5 .1 Wave Groups

In the absence of non linearities the response of a structure

will be harmonic with the exciting wave frequency and symmetric about

the axis of oscillation. When the motion of the structure is 

accounted for, second order forces which have the effect of imposing 

a nett force in the direction of the wave travel can be generated. 

Some of the consequences have been examined in Chapter 4 and in the 

preceding section of this chapter. The steady drift phenomenon has 

been comprehensively investigated (45) and a survey is presented in 

Reference (55).

Although the magnitude of the second order forces may be 

small in relation to the wave forces it may have a frequency component 

resonant with the natural pitch frequency of the structure and large 

motions may ensue as a consequence.

It is considered that one such way in which the resonant 

mechanism may be generated is as a consequence of wave groups 

harmonic with the natural frequency in pitch of the structure. Wave 

groups may be generated when two regular wave trains of slightly 

different frequency are travelling in the same direction. A second 

order ’set-down’ wave may be generated as shown in fig. 5.35 and this 

induces an inertia force contribution, albeit small, at the set-down 

wave frequency.
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With reference to fig. 5.35; consider two waves of equal 

height 2a^ and 2a^ of frequency (ô and travelling in the same

direction and in phase with each other. The pure beat phenomenon will 

ensue as shown and the resultant maximum amplitude of the wave

envelope will be equal to twice the wave amplitude, ie 2a^.

The amplitude of the composite wave is then written

T]t = a 1cos(k<Jx - oJ^t) + a^cos(k^x - co^t) (5.20)

The resultant wave group will have a period equal to 2tt/(co2 - 6^)

seconds. The composite wave will have a frequency co a equal to

i ( o j2  +  ).

The amplitude of the wave envelope can be written

CO (O
2 - 1

A = 2a cos(--- ---- )t (5.21)3. \ A

The composite wave has been modelled computationally on the basis of 

a regular wave with frequency coa having an amplitude varying with 

time in accordance with equation 5.21. The wave surface at any

instant in time is taken as the value computed in accordance with

equation 5.20. No attempt has been made to model any 'set-down' wave

or any second order inertial contribution to the exciting force.

The results for the response of a structure with a natural

period in pitch of 67 seconds are shown in fig. 5.36. The wave periods 

used were 10.2 seconds and 12 seconds. This produces a wave 'beat' or 

group with a frequency = 2ir/(<jU2 ” 6 0 = 0.09 38 radians per second or 

period = 67 seconds. The height of both waves was 5 metres. The

resonant response at the natural pitch frequency is very evident and

displays some attenuation with time. However, the 'steady state'
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harmonic response is still some 100% greater than that obtained when 

the structure is subject to regular waves with a period equal to the 

average of both waves, ie 11 seconds and height 10 metres - this 

result is shown in fig. 5.37 for comparison.

Figure 5.38 is the result for waves with periods of 10.9

seconds and 13 seconds each of height 5 metres. The harmonic resonant 

response is somewhat better defined than that of fig. 5.36. Again for

comparison, fig. 5.39 shows the results for a single wave train with

waves of period 12 seconds and height 10 metres.

Figure 5.40 is the result for waves with periods of 12.3

seconds and 15 seconds, each of height 5 metres. The harmonic 

resonant response is considerably increased and very much better 

defined than for the previous cases. The magnitude of the harmonic 

resonant response is some 200% greater than that obtained for a 

single wave train with waves of period 13.6 seconds and height 10 

metres. Again, for comparison, fig* 5.41 shows the response for 

regular waves with period equal to the average of the two separate 

wave trains.

A general observation from the wave group responses is that 

the wave frequency response lags the maximum wave frequency forces by 

180°, whereas the harmonic resonant response is almost in phase with 

the node of the low frequency 'set-down' wave. This observation is 

depicted in fig. 5.42 and concurs with the theoretical result for a 

structure excited by a wave at the natural frequency, where in 

general the response would lag the maximum forces by 90°.

Comparison of figs. 5.38 and 5.40 also show that there is a
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trend for resonant responses to increase fairly rapidly for 

relatively small increases in the wave periods, the combined maximum 

wave height of 10 metres remaining the same.

Figure 5.42 shows the response for waves each of a height 12 

metres, ie 20% higher than for fig. 5.40, the response is increased by 

almost 35%. It is also observed that the wave frequency oscillatory 

response is greatly attenuated in the region of small group amplitude 

and this is be expected.

6. CONCLUDING REMARKS

Dynamic instabilities have been observed both experimentally 

and analytically and show reasonable quantitative agreement. 

Qualitatively, the agreement is very good. The transient instability 

is very pronounced for the increased weight to buoyancy ratio in the 

experimental observation and this occurs in spite of the higher 

damping which is probably present at the model scale and which may not 

be present at the full scale.

The analytical observations would suggest that heave forces, 

instantaneous position of the structure in calculating the wave 

forces, viscous drag damping and starting conditions in respect of 

wave growth for the time simulation analysis are all important 

parameters.

While the omission of heave forces in the analysis may result 

in an under prediction of the transient instability the nature and 

rate of the wave growth clearly has an important part to play in the 

motion response of the structure.
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The inclusion of viscous damping clearly has a moderating 

effect in limiting the growth of the unstable motion. Potential 

damping has not been included in this analysis and certain structures 

subject to the shorter waves may generate some damping of this form. 

Real structures operating at post critical Reynolds numbers may be 

unable to generate the viscous damping necessary to moderate an 

instability and may, therefore, be vulnerable to dynamic 

instabilities.

Non linear waves suppress the onset of the instabilities and 

it is noted that this result is in accord with certain results 

obtained in the Chapter 4, where it was noted that the non linear wave 

suppressed a transient oscillation which was predicted using linear 

wave theory. It was also noted that the non linear wave predicted a 

transient oscillation when the value of C^ was reduced to 0.6. This 

suggests that there is more viscous damping available in the non 

linear wave and is also an indication of the importance of damping in 

limiting the onset of instabilities.

One possible way of generating viscous damping would be to 

fix 'damping' fins to the lower column. These need not be continuous 

along the whole length and would be sufficiently distanced from the 

surface not to attract very large wave exciting force. A. disadvantage 

may be the consequential increase in static pitch in steady currents. 

However, current velocity profiles are seldom uniform with depth and 

in general the higher velocities will be associated with the near 

surface regions.

The experimental results confirm that a reduction in the 

ratio of the weight to buoyancy reduces the magnitude of the
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transient and this is to be expected. However, the analytical results 

did not predict any reduction in the transient for reduced ratios of 

weight to buoyancy.

The design of compliant structures should make allowance for 

the possibility of dynamic instability. Production platforms in 250 

metres of water and greater are likely to have natural periods in 

pitch of the order of 70-80 seconds. These are unlikely to suffer 

Mathieu instabilities from first order wave excitation.

However, there may be periods of time during the installation 

when the structure will have substantially greater fundamental pitch 

frequencies than the final operational frequency. In such situations, 

Mathieu instabilities may be generated by first order wave 

excitation. Therefore, installation procedures must make allowance in 

this respect.

It has been demonstrated that wave groups which are generated 

by two separate wave trains with slightly different frequencies can 

give cause for concern. The analysis predicted large increases in the 

resonant harmonic response when the period of the combined wave group 

coincided with the natural period in pitch of the structure. The 

precise nature of real wave groups may differ to those generated in 

the analysis. Nevertheless, the ability of the analytical method to 

predict instabilities is demonstrated.

Lighter structures in shallow water are likely to have 

natural periods of the order of 30-40 seconds. In such circumstances, 

the possibility of first order wave excitation Mathieu instability 

must be fully assessed.
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Finally, all possible sources of excitation at the critical 

frequencies must be appraised and apart from the parameters 

investigated already, special attention should be paid to the 

possbility of encountering wave group frequencies in random seas, 

wind gusting frequencies and long swell frequencies.
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CHAPTER 6

FREE VIBRATION AND FINITE ELEMENT FORMULATION

1. INTRODUCTION

The slenderness of articulated columns may render them 

vulnerable to dynamic excitation and it is pertinent, therefore, to 

perform a rigorous vibration analysis in order to assess the 

importance of vibration, its implications, and the constraints which 

may have to be imposed on any particular design concept.

Vibration frequencies will have some proportionality with 
2 2 /----- 4n n v E I / m i  where n is the vibration mode. The first three modes are 

illustrated in fig. 6.1. The first is the fundamental pitch mode and a 

column is unlikely to experience wave excitation at that frequency. 

The second and third modes will have frequencies much higher than the 

fundamental mode and may well fall within the range of wave 

excitation. The second and third modes are the first and second 

flexural response modes respectively.

The buoyancy chamber section will have a much greater flexural 

rigidity than the upper and lower columns and will have some effect on 

the mode shapes, in that the deflected shape over the length of the 

buoyancy chamber will be much less pronounced than that for the lower 

column. However, the mode shapes are unlikely to differ greatly 

qualitatively from those shown in fig. 6.1.

An understanding of the dynamic response in these modes is
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necessary not only in assessing primary structural requirements but 

equally the operational requirements of ancillary production and 

drilling equipment which will be contained in the lower column.

The structural analysis necessary in order to estimate the 

vibration frequencies has been carried out by means of the finite 

element method and the method is described and presented in this 

chapter.

The analytical procedure thus developed has been applied to 

typical structures and a number of parameter studies have been 

completed to determine relationships with vibration frequencies. These 

include the effects of water depth, plating thickness of lower column, 

deck mass relocation and configuration, riser mass, axial loads, 

buoyancy chamber dimensions and the effects of ballast placed at the 

bottom of the lower column. Although not an exhaustive parameter 

study, it is, nevertheless, comprehensive in examining those 

parameters thought likely to have the greatest influence on the 

vibration characteristics of the structures and hence on the design 

appraisal of any particular concept.

The practical implications of the existence of the second mode 

vibration are assessed in terms of structural requirements and water 

depth limitations. Typical nett structural weights as a function of 

water depth and deck mass are also presented and this gives a 

preliminary guide to the structural steelwork weight requirements 

likely for a particular application.

Finally, a column with a full fixity encastre connection at 

the base is analysed in terms of first, second and third resonant
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flexural modes. Operational water depth ranges are suggested to avoid 

resonant excitation of first and second flexural modes.

2. DETERMINATION OF FREQUENCY MODES

2 .1 Undamped Free Vibration

The equations of motion for free undamped vibration can be 

obtained by omitting the damping and forcing terms and is written 

thus:-

D4Jx+D<]x = 0 (6.1)

where IK] and [K] are mass and stiffness matrices for beam elements 

assembled as described in section 3.

By analogy, with the behaviour of SDOF freedoms it is assumed

that the motion is simple harmonic and can be expressed for a multi

degree of freedom system (MDOF system) a s :-

x(t) = {q}exp(jojt) (6.2)

where {q} is a vector of the relative amplitudes of displacement.

Substituting equation (6.2) into equation (6.1) gives:-

(K - oj2M) {q} = 0 (6.3)

In order that finite amplitude oscillations are possible and to obtain 

a non-trivial solution to equation (6.3), the determinant, ||k  - o)2m || 

must equal zero, ie,

||k - « MII = 0 (6.4)

Equation (6.4) is called the frequency equation. The solution 

of the determinant will give an algebraic equation for the Nth degree
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2in the frequency parameter a; for a system with N degrees of freedom.

The N roots of the equation represent the frequencies of the N 

possible vibration modes of the system.

For real, symmetric, positive, definite stiffness and mass 

matrices K and M which pertain to stable structural systems all 

roots of the frequency equation are real and positive.

The solution of the frequency equation is discussed in more 

detail in section 4.3 of this chapter.

3. FINITE ELEMENT IDEALISATION AND STRUCTURE ASSEMBLAGE

The finite element method (66,67) is an established and 

accredited method for idealising structural assemblages in discrete 

elements.

The extent of the usage in this study has been confined to 

beam column elements and this type of element idealisation is 

considered satisfactory in the analysis of tubular truss structures 

and for structures with cylindrical (circular or other) member 

sections such as those anticipated for use with articulated columns. 

More sophisticated structural idealisations are available for the 

analysis of shell and plate structures and are essentially derived in 

terms of an appropriate polynomial which is used to express deflected 

shapes and boundary conditions.

Essentially, the finite element method implies that the 

structure can be idealised by a system of discrete elements which are 

connected by a finite number of nodal points. The properties of the
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complete structure are then found from the evaluation of the 

individual element properties and then combining these as necessary to 

reflect the complete structural behaviour. This idealisation reduces 

the problem of modelling a total structural stiffness to that of 

evaluating the stiffness of individual elements.

Stiffness matrices may be formed from the classical beam slope

deflection theory or by energy methods. However, in dynamic problems a

mass matrix will be required and this should be formulated in an 

energy consistent manner. Accordingly, for completeness the energy 

consistent method for the formulation of stiffness and mass matrices 

is outlined in the following sections.

3 .1 Shape Functions and Stiffness Matrices

Consider the beam element shown in fig. 6.1. If only tranverse 

deflections are assumed then the element will have two degrees of 

freedom at each node, ie one translational and one rotational.

The deflected shapes which are obtained for a unit

displacement of each type ie, translational and rotational, are also 

shown. These deflected shapes are generally assumed to be those

developed in a uniform beam given these displacements and are cubic 

hermitian polynomials which can be expressed as:-

^1(x) = 1 - 3 (x/£)2 + 2 (x/£)3 (6.5)

if; (x) = x(l - x / l ) 2 (6.6)

the shape functions for unit displacements at the right end are:-

^(x) = 3 { x / l ) 2 - 2 ( x / Z ) 3 (6.7)
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^ ( x )  =  x 2/l{x/l -  l ) 3 ( 6 . 8 )

Using these interpolation functions the deflected shape of the 

element can then be expressed in terms of its nodal displacements.

r*(x) - ^ i (x ) ri +  ^ 2 (x)r2 + ^ 3 (x)r3 + ^ 4 (x)r4 (6.9)

where the degrees of freedom are shown in fig. 6.1, or generally:-

r * = [a] {r } (6.10)

Now strain e is the spatial rate of change of displacement and

we can relate the internal strains ^  at a point to the nodal

displacements thus:-

E* = [B] {rd > (6.11)

where [B] is formed from the appropriate differentiation of [A] in

equation (6.10).

Equating the external work done by external forces W to

internal work done on internal forces ie, the strain energy Ug .

/ T f T T6r* .Z.d(Vol) + J6r* .S.d(area) + jr F (6.12)

where (Z) the body force vector.

(S) the surface force vector.

(F) the nodal force vector and 6r* = A 6r

r tNow AUg= J 6 e *  .o.d(Vol) (6.13)

where a is the internal stress vector.

Now a = [D] {e} where [D] is formed from terms containing 

Youngs modulus and Poissons ratio for the material used.
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By the principle of minimum potential energy

U W. 0 (6.14)S E

So that:-

6e .u.uwui; -j oi .^.ui»ui| - jox" .S.d(area) - 6 r*d? = 0 (6.15)

Substituting for 6e, <5r*, it can be shown that:-

TB .D.B.d(Vol) rd {f } + / AT.Z.d(Vol) + TA .S.d(area) (6.16)

which can be written symbolically a s :-

B .D.B.d(Vol)

(6.17)

(6.18)

which is the stiffness matrix for the element. {F } are theeq
concentrated nodal forces equivalent to the distributed forces on the 

element based on these doing the same work as the distributed loading 

under virtual displacements.

By way of illustration of the process involved, the first term 

of the stiffness matrix for a beam element is derived as follows.

Consider the deformation of the element according to simple beam

theory and as shown in fig. 6.1. Assuming that plane sections remain

plane then the axial displacement r due to the transversedX
displacement y is given by r = - y.6r/6x where y is the distancedX

from the neutral axis.

The axial strain e = <Sr /6x = - y.6^iV6x^x ax

2 2The term 6 r*/<$x is the second derivative of the shape
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functions given by equations (6.5) to (6.8)

Hence, [b] = --^r(l2x - 6£),£(6x - 4£ ) , - (12x - 6£),£(6x - 2£ )) 
£

Recalling equation (6.18):-

[K] = jjjBT .D.B.d (Vol)
I

or writing [k]=E J dx J J BT .B.d(Area)

(*

(6.
o Area

since D = scalar E
I f

Now, for the first element [k] = EjGx JJ - |~-̂ -(12x - 6£)*1 2 d(Area)
o Area ^£ -*

r j yWher e/Zy 'dA = Moment of Inertia (I)

£ 1 2
Then M  = El f — — (12x - 6£) .dx 

o £
(6 .

Integrating and substituting for £ gives the first term as 12EI/£' 

so on for the remaining terms.

The complete integration of equation (6.18) yields 

stiffness matrix for a beam element, ie:-

DO - El
3

12 6 £ -12 6£
24 £ -6 £ 2 £

Symm 12 -6 £

4 £

((

.19)

19a)

19b)

and

the

.20)

Thus, we have the means to develop stiffness matrices depending on the 

degree of sophistication required and the physical form of the 

elements and this is reflected in the choice of the shape functions.
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The literature contains comprehensive information in this

respect (68). If axial deformations were to be included, these would

be uncoupled from the flexural deformations and would result in an 
2additional A£ /I term in the stiffness matrix at locations pertaining 

to the axial translational degrees of freedom. The resulting stiffness 

matrix would take the following form:-

[ K j  =
El

A£2/I 0 0 -A£2/I 0 0

12 6 1 0 -12 6 1

SYMM 4 Z 2 -0 - 6 1 2 £

A£2/I 0 0

12 6 1

41

:6.2i)

However, this form requires extra computation and some early 

analysis which compared the results obtained by using the forms of 

(6.21) and (6.20) showed that the translation and rotational 

deformations obtained were identical. This is as expected in 

consideration of the uncoupled degrees of freedom. The extra 

computation time required for the form of (6.21) was not justified 

and, consequently, the form of (6.20) has been adopted and is 

adequate. Furthermore, it can be augmented in consideration of axial 

forces by an additional geometric stiffness matrix which is discussed 

later.

The stiffness matrix is symmetric about the leading diagonal

and this is attributed to Betti's law which states that the work done

by one set of loads on the deflection due to a second set of loads is

equal to the work of the second set of loads acting on the deflections
Tdue to the first set of loads. Compliance determines that K = K / 

ie symmetry.
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3.2 Mass Matrices

3.2.1 Lumped Mass Matrix

The simplest procedure for defining the mass properties of an 

assemblage of finite elements is to assume that the mass contribution 

from each element is distributed to the corresponding nodal connection 

points relating to the translational degrees of freedom only. 

Figure 6.2 illustrates the way in which this is achieved.

This assumes that only translational degrees of freedom are 

relevant and results in a mass matrix with only diagonal terms - the 

off diagonal terms being zero.

The form of the lumped mass matrix is then:-

M n

for a system with n translational degrees of freedom.

If rotational degrees of freedom are to be included then the

matrix diagonal element corresponding to that degree of freedom will

be zero. This condition must be satisfied since it is assumed that the 

mass is 'lumped' at points which have no rotational inertia.

The lumped mass matrix, although attractive in computational

terms, does present problems when rotational degrees of freedom are

included and when the stiffness matrix has been assembled in an energy 

consistent manner. That is to say, the stiffness matrix would require

0

0
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the rotational degrees of freedom to be deleted in order that the 

diagonal mass matrix can be used in formulating the equation of 

motion.

The unwanted rotational degrees of freedom in the stiffness 

matrix can be eliminated by a process known as 'static condensation'.

A procedure for this technique is described in detail in 

Reference (49). As an alternative to static condensation it may be 

possible to apply some form of mass couple to each nodal point so that 

rotational degrees of freedom can be accounted for. Neither approach 

has been used in this study. Instead the consistent energy approach 

has been used in the formulation of stiffness and mass matrices and 

load vectors.

3.2.2 .Consistent Mass Matrix

The mass matrix may also be derived in a manner similar to 

that which was used in the derivation of the stiffness matrix. This 

results in the consistent mass matrix of the following form:-

M =
pA I  r s
420

156 221 

4 £2

SYMM

54

13£

156

-13 £ 

-3 4“

- 2  2 £ 

4 1 2

(6 .22)

The off diagonal terms will require more computational effort. 

However, this is considered justified in the dynamic analysis of 

compliant structures. All structural and hydrodynamic masses can be 

allowed for in assembling the mass matrix and this is described in 

greater detail in section 4.2.
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3.3 Geometric Stiffness Matrice

3.3.1 Linear Approximation

If we assume that axial deformations are uncoupled from

flexural and translational degrees of freedom then the simple linear

shape functions will define the axial geometric stiffness and the 
2A£ /I term in the 6 x 6  matrix of 6.21 will describe axial forces and 

displacements.

3.3.2 Consistent Geometric Stiffness

A higher order approximation to the geometric stiffness can be 

obtained by assuming that coupling exists but that the axial 

deformations are sufficiently small and can be neglected. It is 

assumed that the axial load P is constant over the length of the 

element.

This results in an additional 'geometric stiffness matrix'

k g , ie

6/5£ 1/10
i

- 6 / 5 S L 1/10

2 1 / 1 5 -1/10 - £'/ 3 0

S Y M M 6/5 I -1/10

2 1 / 1 5

kg - ± p

where P = axial force

The total stiffness matrix will then become equal to:-

(6.23)

K = K + K' (6.24)

Adequate description of axial loads must be allowed for and 

the additional geometric stiffness term will facilitate this 

requirement.
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4. COMPUTER IMPLEMENTATION

4.1 Assembling Stiffness and Mass Matrices

The total structural assemblage is accomplished by the 

assembly of the stiffness matrices pertaining to each individual 

element. Nodal displacements will then be compatible at the common 

nodal points and net external loads will be equivalent to the 

algebraic sum of the resolved components of each elemental nodal force 

vector. The description of the development of the equivalent nodal 

force vectors is relevant to Chapter 7 and is described there.

By way of illustration of the assembly procedure fig. 6.2 

shows how the elemental stiffnesses are added into the total 

assemblage. It is necessary to refer elemental matrices to a 'global 

co-ordinate system' for the total structure. This is done by means of 

a transformation matrix [y ] so that:-

{ U „  = [Y]{r} (6.25

where[y ]=
JJ

(6.26)

cosa sina

so that

M
cosa sina 0 0 0 0

0 0 1 0 0 0

0 0 0 cosa sina 0

0 0 0 0 0 1

(6.27)
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For a virtual displacement

{Sr >£ = [Y]{6r}g (6.28)

but the work done must be equal so that

5V b  = Srg-Fg <6 '29>

It follows that F = fyl T.F (6.30)g L J i

Now F = [k 1 r (6.31)
g L Jg g

and F ^  [k ] £ r = [y T] . Fg (6.32)

so that Fg = [Y]T [ ^  {r}^

= [Y]T [K]£ {r}£ (6.33)

The global element stiffness matrix is:-

[ K L  = M T M .  [Y] (6.34)
6x6 6x4 4x4 4x6

Equivalent nodal forces due to distributed loading must also be

transformed to a common global datum, ie

{Fe q } = [Y]T [A]T .S.d(Vol) (6.35)

4.2 Structural Configuration

The form of structures investigated has been limited to those 

comprising circular cylindrical sections. This form of construction 

has considerable advantages over truss type structures from the 

fabrication and inspection points of view. However, it is likely that 

there will be limitations in respect of the stiffness properties and 

an assessment of these limitations has been attempted.

Figure 6.3 shows the general arrangement of the typical
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configuration of the structures investigated. The amount of ballast at 

the lower end of the lower column is calculated on the basis that 

there will be an uplift or tensile force at the articulation of about 

10% of the net buoyant force. The diameter of the ballast may be 

specified at any dimension but for convenience it has been assumed to 

be the same as the diameter of the lower column. The stiffness of 

elements relevant to the ballast is calculated on the same basis as 

for other structural elements and it may be prudent in a design to

allow for an increase in stiffness where ballast is located.

Twenty finite beam column elements have been used and this is 

considered to provide a realistic idealisation of the structure in 

finite elements.

The consistent mass matrix allows for the inclusion of all

relevant structural masses for elements and any additional masses such 

as those for risers and other ancillary equipment located inside the 

lower column. Also included in the consistent mass matrix is the added 

virtual mass component for each element.

The consistent mass matrix, once assembled for the whole

structure, will also allow for the inclusion of any additional 

'lumped' masses which are simply added in to the appropriate location 

within the matrix. The deck mass can be allowed for in this manner and 

the way in which this is achieved computationally is further 

investigated in section 5.3.

Inclusion of a flooded lower column is allowed for as an 

option in the assembly of the mass matrix.
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4.3 Solution of the Eigenvalue Problem

The analytical solution of equation (6.4) is cumbersome and 

not readily amenable to computerisation. One way to solve

equation (6.4) is to reduce it to a standard eigenvalue problem of the 

form

(A - XI )q. = 0 (6.36)

This can be done by multiplying equation (6.3) by M ^

So that:-

( M ^ K - X D q  = 0 (6.37)

x -1
where [Ml [K] = [ a ] and [i^ = identity matrix = [m} [m |

and X =

Alternatively, multiplying equation (6.4) by M

then [a ] = [K]

2and X = l/(o =  Eigenvalue ;q = Eigenvector

-1

There are a number of ways of solving equation (6.37) on an iterative 

basis, ie Givens, Householder and Jacobi methods (67).

I
The method utilised in this study was the Householder method 

which is available as a standard NAG (62)routine F02AEF, and the use 

of this in the solution of the eigenvalue problem is described in the 

next section.
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4.4 Computer Programs

A computer program comprising a number of subroutines was 

developed to solve the eigenvalue problem and the development and 

functions of the various subroutines are as follows. A flowchart for 

the program is shown in fig. 6.3A.

Subroutine INCON - This routine reads the input data in terms 

of the number of elements being used and the numbering system used for 

nodal connections. Global nodal co-ordinates are calculated and read 

into arrays and connectivity arrays are formed. This determines common 

nodal connections for all of the elements. INCON calls subroutines 

VAPROP and BOUND.

Subroutine VAPROP - This routine computes the properties for 

each element and reads these into arrays. The properties computed are 

the cross sectional area, the second moment of area, the displacement 

volume and the diameter. VAPROP requires nodal co-ordinates and 

connectivities as input together with data describing the geometry. 

The data computed by VAPROP is storea in array PROP and is later used 

in the assembly of the stiffness and mass matrices.

Subroutine BOUND - Applies the boundary conditions in terms of 

translation and rotation at the articulation. The full size N x N 

arrays are used in the solution of the eigenvalue problem and 

subroutine BOUND deletes degrees of freedom which are not relevant to 

the solution. There are two options ie, restrained or free for each 

boundary degree of freedom.
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READ INPUT DATA

Water depth, Deck mass, Sturcture 
dimensions, Finite element data,

Number of nodes, Elements, Boundary conditions, etc

Compute element properties and apply boundary conditions 

CALL INCON rT •CALL VAPROD 
‘CALL BOUND

Assemble Mass and Stiffness Matrices

^ C A L L  STIFF 
.CALL S T E N A S —  CALL EMASS

CALL ASMTEN' 'CALL GEOST

Solve the Eigenvalue equation (A - X l ) q  = 0
CALL F01AEF
CALL .F02ABF 

?CALL FOlAFF
dHCALL F02AEF

Fig. 6.3A Flow Diagram for Solution of Eignevalue Equation
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Subroutine AXLOAD - This routine computes the distribution of 

axial load at each nodal point and takes into account the hydrostatic 

pressures acting on exposed horizontal plan areas, such as those at 

cross-sectional changes, ie at the top and bottom of the buoyancy 

chamber etc, in the calculation. All relevant structural masses are 

included in the calculation. Input data required is connectivity 

arrays and property arrays PROP.

Subroutine ASTEN - This routine assembles the mass and 

stiffness arrays for each element into the total arrays for the whole 

structure. ASTEN loops on each element in turn and calls STENAS which 

adds successive array elements into the total global arrays.

Subroutine STIFF - Computes each elemental stiffness matrice 

in accordance with the form of (6.20) and requires array PROP as 

input.

Subroutine EMASS - Computes the consistent mass matrice for 

each element in accordance with the form of (6.22) and requires array 

PROP as input.

Subroutine GEOST - Computes the consistent geometric stiffness 

matrice for each element in accordance with the form of (6.23).

Subroutine F02AEF reduces the equations of motion, as

assembled into stiffness and mass matrices in the form of

equation (6.37), to the standard eigenvalue form of Ax = Xlx and

solves for all of the eigenvalues and their corresponding

eigenvectors.
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A detailed description of the use of the program is outlined 

in Appendix 6.1 and this also contains the results of a program 

written by a third party which was used as a basis for comparison of 

results and confirmation that the routines were operating 

satisfactorily.

5. ANALYTICAL RESULTS

The structural configuration investigated in Chapters 4 and 5 

in rigid body motion form comprised a very slender lower column. Some 

initial vibration analysis suggested second mode vibration periods of 

the order of 20 seconds and third mode vibration periods of the order 

of 5 seconds. These, obviously, would produce unacceptable 

deformations and stresses in respect of the wave spectrum the 

structure might be expected to encounter.

Accordingly, the structures investigated further all have a 

lower column of minimum diameter 9 metres and, from the vibration 

point of view, this is the minimum value which can be tolerated for 

structures of this type and size in water depths exceeding about 200 

metres. Typical general arrangements are shown in fig. 6.3.

An alternative to the concept of providing a lower member in 

possession of flexural stiffness is to provide a lower member without 

flexural stiffness. Tethers or chains are the obvious choice and these 

eliminate the flexural response problem. This approach is tending 

towards the tension leg platform concept with an accompanying range of 

other engineering considerations, not least of which would be the 

question of resonant heave and pitch responses which will tend to have 

natural periods in approximate proportionality with water depth.
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The computer program described was adapted so that the various 

parameters believed to be most relevant could be examined and their 

relationship with vibration periods established. All of the 

computations were made on the main frame ICL 2988 computer at the 

University of Glasgow.

5.1 Variation in Vibration Mode Frequency with Thickness of Lower
Column

The slenderness of the lower column must be thoroughly 

investigated and the variation in vibration mode periods as a function 

of diameter and equivalent thickness is thought meaningful in this 

context. Accordingly the computed results are presented.

Figure 6.5 shows the variation in mode period with equivalent 

thickness of the lower column for a structure in 270 metres of water 

having a deck mass of 150,000 KN and other data as shown. In this plot 

the lower column has been assumed to be flooded.

It is evident that very considerable reductions in the second 

mode vibration periods can be achieved by increasing the equivalent 

thickness values up to approximately 60-70 mm. Thereafter, the 

reduction in period begins to flatten out with very little improvement 

for increasing thickness. The problem of achieving acceptably high 

second and third mode frequencies is apparent.

There is a great deal of energy in the North Sea at wave 

periods of the order of 6-10 seconds so that, in reality, we must be 

aiming to achieve an upper limit to a second mode period of the order 

of, say, 5 to 6 seconds and less, depending on stress levels reached.
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For a structure with a payload of 150,000KN, in 270 metres of 

water, a minimum lower column diameter of 12 metres with an equivalent 

thickness of about 110 mm, is necessary in order to ensure a second 

mode period of approximately 6 seconds.

An annular type of lower column construction, such as that 

shown in fig. 6.3, is anticipated and this would probably be augmented 

by some stringer stiffener arrangement for the length of the column. 

The steel thickness necessary to satisfy flexural rigidity 

requirements, in fact, does provide an unexpected bonus in that it is 

very likely that the lower column can be designed to withstand the 

water pressures at 300 metres depth.

Accordingly, it is instructive to investigate the improvements 

expected in reduction of mode periods if it is assumed that the lower 

column is watertight and dry. Figure 6.4 shows the results for the 

same structure as in fig. 6.5 but with the lower column dry. The 

second mode period for a 12 metre diameter lower column, with an 

equivalent thickness of 80 mm, is 6 seconds which is to be compared 

with 7 seconds for the flooded structure, ie a reduction of 14%.

The ability to design the lower column to be watertight will 

also reduce the buoyancy requirements of the buoyancy chamber. The 

reduction in displaced volume near to the water surface will reduce 

wave loading and this, in turn, will improve dynamic performance 

characteristics. The main advantages will be that the lower column 

will be easily accessible for its entire length. This has very great 

attractions in respect of riser and ancillary equipment maintenance.
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5.2 • Variation in Vibration Mode Frequency with Water Depth

Vibration periods will have a proportionality with /m£^/EI so

that large increases in vibration periods would be expected as the 

water depth is increased.

The variation in second and third mode periods as a function 

of water depth is shown in figs. 6.6 and 6.7 for the lower column 

flooded and lower column dry, respectively. Here again, the very 

considerable improvement in the case of the dry column is apparent. 

Again, the problem of limiting mode periods to an acceptable level in 

water depths greater than 300 metres is apparent.

5.3 Effects of Deck Mass Relocation and Configuration

Deck masses are likely to play a major role in the vibration 

characteristics of articulated columns, by virtue of their distance 

from the articulation. Accordingly, it is necessary to examine the 

effects of the magnitude of the deck mass on the vibration modes. By 

association it follows that the physical configuration of the deck 

mass will also play an important part. This is examined both in the 

context of relocating a percentage of the deck mass to the buoyancy 

chamber and in the lateral distribution of the deck mass at the deck 

level.

In Chapter 4 the advantages of relocating deck masses in the 

buoyancy chamber was investigated in respect of dynamic response and 

considered to be of merit. These advantages are further complemented 

in respect of vibration frequencies, as is apparent from fig. 6.8 

which shows the variation in mode period as a function of percentage
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reduction in deck mass. 100% reduction is most unlikely. However, 

40-50% is conceivable and this results in a 15% reduction in the

second mode period for columns of 9, 12 and 15 metres diameter. 

Figure 6.9 is for' a structure containing twenty risers, whereas 

fig. 6.8 is for a structure without risers. In both cases the lower 

column is flooded.

Similar plots for a structure with a deck mass of 100,000 KN 

are shown in figs. 6.10 and 6.11. The reductions achieved are somewhat 

less than for the 150,000 KN structure as would be expected. 

Figures 6.4 to 6.11 were obtained on the computational basis that the 

total deck mass could be accommodated as an additional lumped mass. 

This is then added to the consistent mass element relating to the

transverse degree of freedom at the end of the last element of the 

structural idealisation, see fig. 6.12.

The mass of the deck superstructure, a priori, will be a 

function of the lateral distribution of the deck payload. The weight 

sensitivity of articulated columns will demand a rigorous design 

appraisal of deck payload configurations in order to minimise 

superstructure weights. The spreading of the deck payload laterally 

can be likened to a mass damping in respect of vibrations. Some 

assessment of the variation of vibration frequencies with lateral

distribution of deck payload is necessary in order to put the

preceeding design argument in context.

The lateral distribution of deck mass has been modelled 

computationally on the basis that the mass can be approximated as two 

discrete 'lumped' masses located at a distance £a/2 from the centre 

line of the structure, see fig. 6.12. This mass couple is added to the
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consistent mass matrix term corresponding to the rotational degree of 

freedom at the end of the last element. A proportion of the deck mass 

is attributed to the transverse degree of freedom.

Figure 6.13 shows the variation in vibration periods as a

function of the lever arm of the deck mass about the centre line. Very 

significant gains in period reductions are achieved by increasing the 

lever arm up to about 20 metres, which is equivalent to a 40 metre 

wide deck, and thereafter the gains are only nominal. It is likely 

that a minimum tolerable deck width, in respect of operational 

requirements, will be of the order of 30-40 metres so that the results 

obtained must be assessed in the light of minimum deck width required. 

Nevertheless, there is scope for optimising and the contribution of 

deck mass distribution to reducing vibration periods is noted.

5.4 Variation in Vibration Mode Frequency with Riser Mass

The variation in mode period with riser mass is shown in

figs. 6.14 and 6.15, for structures having payloads of 100,000KN and 

150,000KN, respectively. In both cases the lower column is flooded.

The plots assume twenty risers per structure and a unit weight of 10KN

per metre length of riser. The effect of the mass of risers is only

nominal and this is to be expected as the total riser mass is of the 

order of 20% of the total mass per unit length of the lower column

when this is flooded. The mass of risers will have a more significant

effect on vibration periods when the lower column is watertight.

5.5 Variation in Vibration Mode Frequency with Axial Loads and
Buoyancy Chamber Dimensions

The effect of axial loads is demonstrated by considering the
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equation of motion for a simply supported bean subject to lateral 

vibrations (68), ie:

EI64 y/6x4 - P.6 2y/6x2 = -p.A.62 y/6t2 (6.38)

The term on the right hand side is the inertia force of the mass of 

the vibrating beam.

Assuming a solution to equation (6.38) of the form:-

y = X (Acos&Jt + BsinoJt) (6.39)o Q

Substituting equation (6.39) in (6.38) gives:-

64X <5 2x 2El T - P .   q = p . A . a X  (6.40)
6x 6x

For a simply supported beam:-

X̂  = sin 1£X (i = 1, 2, 3 ..... 00) (6.41)

Substituting this expression into equation (6.40), gives the 

corresponding angular frequency of vibration:-

2 / 2 = iJLa / l ± P£
i 2 / .2 2£ / l EItt

where a = v^EI/pA

2 . 2 2The term P^ /i it El is the ratio of the axial load to the 

Euler critical buckling load and, for a tensile load, the term is 

additive and the frequencies will increase, whereas for a compression 

load the term is subtractive and the frequencies will decrease.

The effect of axial forces is readily allowed for in the 

analysis by the inclusion of the geometric stiffness matrix in the
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equation of motion. In the case of undamped free vibrations, it can be 

included in the equation of motion as follows

M x + (K + K ) x = 0 (6.43)G

As discussed previously, the geometric stiffness matrix is

derived and multiplied by the axial load, assuming that this is 

constant over the length of the element. In the case of articulated

columns, where the axial load distribution is not constant along the 

whole length of the structure, it is necessary to ensure that the

axial load at any particular node is referred to the degrees of

freedom pertaining to that node.

By way of illustration of the effect of axial loads on a

fairly slender structure, it is observed from fig. 6.16 that the mode 

periods are reduced for increasing axial tensions. The third mode 

curves are of particular interest in that they show maxima for the 

10,000KN and 20,000KN tensile loads for a column with a diameter of 

approximately 1.5 metres.

It is expected that the effects of axial loads will be much 

less pronounced for larger diameter structures, such as those being 

investigated, and this is apparent from fig. 6.17 which shows the

variation in mode period as a function of axial tension.

Conversely, as axial tensions increase frequencies, axial

compressive loads will reduce frequencies. The effects of excluding 

and including the axial distribution of load for the structures

considered are shown in figs. 6.18 and 6.19, respectively. Second mode 

vibration periods are increased on average by 15% for a 9 metre column 

and by 6% for a 15 metre diameter column in 250 metres of water.
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Axial loads in the column are also a function of the 

dimensions of the buoyancy chamber, as exposed horizontal plan areas 

will be subject to vertical hydrostatic pressures. Fiqure 7.12 shows 

the axial distribution of load in a structure with a lower column 

diameter of 12 metres and a buoyancy chamber 20 metres in diameter. 

The bottom of the buoyancy chamber is at an elevation of approximately 

200 metres and the effect of the uplift on reducing the axial 

compressive loads in the lower column is apparent. The increased 

compressive loads near the bottom of the column are attributed to the 

high density drilling mud ballast located there.

As the buoyancy chamber is located fairly near to the top of 

the structure, the effects of the flexural rigidity of the chamber 

would not be expected to greatly affect the second mode vibration. 

However, the added mass contribution will increase with the diameter 

of the chamber. Therefore, it is instructive to examine the effects of 

increasing the buoyancy chamber diameter on the vibration, from the 

point of view of axial load distribution, increased flexural rigidity 

and added mass contribution.

Figure 6.20 shows the variation in vibration mode period as a 

function of buoyancy chamber diameter for a structure with a lower 

column 12 metres in diameter and 100 mm equivalent thickness. The top 

curve is that obtained when the axial load distribution is included in 

the analysis and the lower curve is that obtained excluding axial 

loads. The general trend is for vibration periods to decrease with 

increasing buoyancy chamber diameter. The reduction is approximately 

15% when axial loads are included and 7% when they are excluded.



The lower curve gives a good indication of the effects of 

flexural rigidity and added mass contribution, since the axial loads 

are excluded. In this case, the vibration mode is decreasing with 

increasing buoyancy chamber diameter. The improvement is most marked 

for the smaller values of diameter and becomes only nominal as the 

diameter increases. The increased flexural rigidity for the larger 

diameter and its tendency to reduce vibration periods is countered by 

the increased added mass contribution, which will tend to increase 

periods, in approximate equal measure.

The top curve gives a good measure of the effects of the axial 

load reduction as a consequence of uplift on the lower face of the 

buoyancy chamber as the diameter is increased. This accounts for the 

extra 8% reduction over that achieved when the axial loads are not 

included.

5.6 Variation in Vibration Mode Frequency with Length of Ballast.

Some form of ballast will be necessary as previously discussed 

and accordingly it is necessary to make some assessment of the effects 

of the ballast material on vibration characteristics.

If mud were to be used as a ballast material then this would 

make no contribution to the flexural rigidity of the relevant section 

and, accordingly, this would mean that an increased flexural rigidity 

may need to be provided over that section of the lower column. The 

flexural rigidity for the ballast sections is calculated on the same 

basis as for other structural elements.

Figure 6.21 shows the plot of vibration mode period in seconds
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as a function of the length of ballast material as measured from the 

bottom of the structure. The very rapid increase in the second mode 

period for the 9 metre diameter column reflects the very slender 

nature of the column. The increase in the third mode period for the 9 

metre diameter column is also noted. The rates of increase in the 

second mode periods reduces with increasing diameter as would be 

expected. Axial forces are included in the analysis so that the 

correct axial force distribution and its effect on the vibration will 

be accounted for in the solution of the Eigenvalue problem.

5.7 Practical Implications

The parameter studies described give a very good illustration 

of their relative importance and their relationship to vibration 

periods. For a given water depth and lower column structure, the deck 

mass is the variable which has the greatest effect on vibration 

periods.

Figure 6.19 indicates the maximum water depth tolerable in 

order to maintain second mode vibration periods for a given structure. 

For a maximum second mode period of 6 seconds, a structure with a deck 

mass of 150,000 KN and a lower column 15 metres diameter and 50mm 

thick is limited to a maximum water depth of approximately 250 metres.

It is instructive to compute the maximum deck mass allowable 

against water depth, assuming a fixed dimension for the lower column, 

in order to achieve a specified second mode vibration period. The 

calculation requires that an iterative procedure is employed to 

optimise the deck mass and this is done by means of a bisection 

method, which effectively halves the error in each iteration. The
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results obtained, as shown in figs. 6.22 and 6.23, allow a maximum 

error of ± 0.5% on the second mode vibration period of 6 seconds and 5 

seconds, respectively.

Trends for production equipment are towards much lighter

components and fig. 6.24, which is reproduced from reference (29), 

shows typical deck load requirements for a floating production system 

in the North Sea. Typical requirements to produce 60,000 BPD oil and 

30 MMSCFD gas are shown to be approximately 40670 K N . Assuming that a 

total deck mass, including the structural steelwork, of 50,000 KN is 

feasible, the limitations on water depth for a structure of this size 

are shown in figs. 6.25 and 6.26, for equivalent thicknesses of 80 mm 

and 50 mm respectively.

Figure 6.26 bears direct comparison with fig. 6.19. Both are 

for structures with identical lower column dimensions but with deck 

masses of 50,000 KN and 150,000 KN respectively. Figure 6.19 indicates 

a maximum water depth of 245 metres for the 12 metre diameter column 

to maintain the second mode period at 6 seconds. The maximum water 

depth for this period as shown in fig. 6.26 is 280 metres - a 15%

increase.

It is important to be able to make some assessment of the

total structural weight requirements for a structure, given the

payload and the operating depth. Accordingly, figs. 6.27 to 6.28 have 

been produced. The iterative procedure used was the same as that for 

figs. 6.22 and 6.23, ie the maximum error in the second mode period is 

± 0.5%.

Figures 6.27 and 6.28 show the maximum deck mass as a function
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of the nett weight of the structure necessary to maintain the second’ 

mode period equal to 5 seconds, for various water depths. Figure 6.28 

is basically an extension of fig. 6.27 in order to take the maximum

deck mass to 90,000 K N .

Referring to figs. 6.27 and 6.28; the curve for 285 metres of 

water shows approximate proportionality in deck mass and nett 

structural weight up to the maximum deck mass of 90,000 KN. The curve 

for 308 metres of water shows that the ratio of nett structural weight 

to deck mass is of the order of 2.0, up to a value of the deck mass of 

approximately 80,000 KN. Thereafter, the nett structural weight 

required increases very rapidly with deck mass. The curve for 322 

metres of water shows very large increases in nett structural weight 

for small increases in deck mass.

Similarly, figs. 6.29 and 6.30 are those obtained for a second 

mode period of 6 seconds. The limit of weight and deck mass

proportionality for the second mode period occurs for a water depth of

approximately 308 metres, an 8% increase in depth over that for the 

second mode period of 5 seconds.

It is noted that the nett structural weight is calculated

assuming fixed masses for the buoyancy chamber and the upper support 

column. Also, the equivalent thickness of the lower column, makes no 

allowance for internal stiffeners. This is not thought to contribute 

to significant errors in the estimation of the structural weights, as 

the equivalent thicknesses are such that if stiffeners are to be used 

then the thickness may be reduced, ie the reduction in equivalent

thickness will be offset by the increased weight of the stiffeners - 

the overall flexural stiffness remaining approximately constant.
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Figures 6.22 to 6.30 make no allowance for relocation of deck 

masses in the buoyancy chamber and this, as has already been

demonstrated, will improve the structures vibration characteristics

and increase operating water depths by a small amount.

The proportionality of deck mass with structural weight is

noted in figs. 6.27 to 6.30 up to limiting water depths. It is

accepted practice to express the payload of compliant structures as a 

percentage of the displacement. For most semi-submersibles, for

example (71), this ratio is of the order of 0.2 to 0.3. For those

articulated columns just discussed, and for a maximum water depth of

308 metres, the ratio of payload to structural steelwork weight is

approximately 1.0 and this increases as depth decreases. This is a

significant improvement over that for semi-submersibles and other 

compliant systems.

5.8 Full Fixity Encastre Column

An alternative to the articulated joint at the bottom of the 

lower column is to provide a connection with full fixity, such that no 

rotation about the connection is permitted. Such a connection is

proposed for use with a new deep water loading/mooring system (69,70),

see fig. b.31.

The encastre connection means that the section at the base 

will have to resist the total moment generated as a consequence of

zero rotation. The first three vibration mode shapes for the column

with full fixity are shown in fig. 6.31. The first mode is analogous 

to the rigid body mode of the articulated column except that there is 

no rotation at the connection.
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The program described in section 4.4 was amended to include 

the additional boundary condition to restrict rotation at the base 

connection. Figure 6.32 shows the results of the program in the form 

of a plot of the vibration node period as a function of water depth. 

The structure is the same as that for fig. 6.25. The first mode period 

is that which displays the greatest increase for increasing water 

depth. Qualitatively, the trends are very similar to those obtained 

for the articulated column (see fig. 6.25).

The curves indicate that it is possible to design the 

structure such that the first and second mode periods are greater than 

and less than, respectively, likely wave spectra. This is analogous to 

the articulated column for the rigid body mode and the first flexural 

response mode. With the articulated column, the rigid body mode was of 

little consequence in terms of bending stress, whereas for the column 

with full fixity, the first mode period should be much greater than 

expected wave spectra to avoid resonant excitation.

In terms of design criteria for first and second mode 

vibration periods, it will be necessary to stipulate minimum and 

maximum values, respectively. This puts upper and lower limits on 

water depth for any particular column design, whereas in the case of 

the articulated column, an upper limit was imposed.

Imposing 'minimum' and 'maximum' values of 30 seconds and 5 

seconds for the first and second mode periods, respectively, the water 

depth ranges for various diameters of lower column are shown in 

fig. 6.32. The trend is for the water depth range to decrease in 

magnitude as column diameters increase. This indicates that the fixed
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connection column is more effective as water depth is reduced.

The effects of increasing the diameter of the buoyancy chamber 

and, therefore, the added mass is displayed in fig. 6.33 which shows 

the same curves but for a structure with a 20 metre diameter buoyancy 

chamber.

5.9 Lower Column of Lattice Construction

The limitations in depth for the circular cylindrical 

structural section have been established on the basis of second mode 

vibration constraints. The circular cylindrical section offers 

benefits in terms of riser accommodation, maintenance, etc, as 

discussed. It is also a relatively straightforward structure to 

fabricate and it possesses its own buoyancy which will aid 

installation. The major drawback is the very large added virtual mass 

of the section and this plays an important part in the vibration.

Structures which comprise a lower column of lattice 

construction have been proposed. This is less attractive than the 

circular cylindrical structure on many counts. However, it will have 

advantages in that the added virtual mass of the structural assemblage 

will be much less than that of the cylindrical section. This will 

affect the vibration characteristics and, for this reason, it was felt 

necessary to make an assessment of the vibration frequencies for such 

a structure.

The structural modelling of a lattice arrangement of members 

is the same as that described in this chapter. However, the 

computational task is greatly increased as a consequence of the
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increased number of members. For example, one bay of the assemblage as 

shown in fig. 6.34, comprises 5 members, each with 4 degrees of 

freedom, ie a total of 20 degrees of freedom. The cylindrical 

structure analysed comprised 20 elements with a total of 42 degrees of 

freedom. On the basis that 20 bays will provide an adequate lattice 

structural assemblage, the total number of degrees of freedom will be 

20 x 20 = 400. The computer programs described can be amended to 

compute the associated structural matrices but limitations in time 

prevented a full analysis of such a structure.

However, an alternative mathematical model is legitimate in 

making a preliminary assessment of the vibration behaviour. This 

method is on the basis of applying the value for the flexural rigidity 

of the lattice structure to that of a beam column element with 4 

degrees of freedom. The mass matrix can be generated in a similar 

manner.

On the basis that the plan area of the lower column remained 

the same as that for a 9 metre diameter column, it corresponds to a 

square with 8 metre sides (see fig. 6.34). Four vertical columns, one 

in each corner, each 1.5 metres in diameter and 50mrn wall thickness, 

have been modelled. Horizontal and diagonal bracing are as shown in 

fig. 6.34 and these are modelled on the basis that they do not 

contribute to the second moment of area but are included in the 

calculation for an equivalent added virtual mass for the assembly. The 

equivalent area and mass data are shown in fig. 6.34, compared to that 

for a 9 metre diameter column, 50mm thick.

The results of the vibration analysis for this assemblage are 

plotted in fig. 6.26 in order that the curves obtained for the second
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and third mode vibration periods can be compared with those for the 9 

metre diameter column. The very significant reduction in the vibration 

periods is noted. These are approximately 30% less at 200 metres water 

depth to approximately 40% less at 400 metres.

6. CONCLUDING REMARKS

The free undamped vibration analysis by means of tne finite 

element method provides a useful insight into the vibration behaviour 

of the structural assembly.

The dominant effect of the lower column properties, compared 

to those of the buoyancy chamber, is noted in determining the 

vibration frequencies in that the moment of inertia of the buoyancy 

chamber has been shown to have little influence on the vibration.

The relationship between the vibration frequencies and the 

equivalent thickness of the lower column is noted and the optimum 

equivalent thickness for the three diameters considered appears to be 

in the region of 50-85mm. Thereafter the improvement in vibration 

frequencies is only nominal. It is also noted that trends for the 

third mode vibration frequencies are similar to those for the second 

mode frequencies and are more pronounced at the lower values of 

frequency.

The fairly rapid increase in vibration periods with water 

depth is to be expected, nevertheless the advantages to be gained in 

respect of the dry lower column are noted and, for example, the curves 

for the 12 metre diameter dry and the 15 metre diameter wet columns 

are almost identical as is observed from figs. 6.6 and 6.7.
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Relocation of deck masses has a significant effect on reducing 

the vibration periods whereas the gains in respect of riser mass are 

only nominal.

The effects of axial tensile loads is noted particularly in 

the case of very slender structures as is to be expected, and is less 

pronounced for the types of structure considered. The distribution of 

axial loads plays an important role in the vibration periods and this 

is observed in the similarity of the curves for the 12 metre diameter 

dry and the 15 metre diameter columns as shown in figs. 6.18 and 6.19.

The tendancy for the increased diameter of the buoyancy chamber, as a 

consequence of both the increased flexural rigidity and the reduced 

compressive axial loads, to reduce 2nd mode periods is also noted.

The effects of the ballast material are significant for the 9 

metre and 12 metre diameter lower columns and is nominal for the 15 

metre diameter column. Improvements are possible in this area if the 

diameter of the ballast is made greater than the lower column diameter 

so that the length of the ballast is reduced.

The single most important parameter in respect of the 

reduction of vibration periods is the deck mass and this is as 

expected. However, the contributions from other parameters ie, 

diameter of lower column and thickness, diameter of buoyancy chamber, 

length of ballast and lateral distribution of deck mass are noted and, 

on a cumulative basis, would constitute a significant contribution in 

reducing vibration periods.

The practical implications of the above work for proposed 

structures is that water depths cannot greatly exceed 300 metres and
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the major parameter in this respect is the total deck mass. However, 

very favourable nett structural weight characteristics are possible 

within this range and these are greatly improved for small reductions 

in the water depth.

The advantages of the full encastre connection will manifest 

themselves in reduced first mode motions and negate the requirement 

for an articulated connection at the base. However, in respect of the 

encastre connection considerable bending moments will have to be 

accommodated at the base and the foundation will have to be designed 

to withstand the large cyclic moments transmitted to the base. This 

aspect is further discussed in Chapter 7, section 7.

The advantages in adapting a lattice construction for the 

lower column has been demonstrated and reductions in second mode 

periods of the order of 35% were achieved. This is a very significant 

reduction and it is noted that the area of steel for the lattice 

column was some 30% less than for the circular cylindrical column. It 

is considered that very substantial gains are to be made in adopting a 

lattice construction for the lower column. However, the disadvantages 

in terms of riser, accommodation, etc, have to be weighed against 

improved vibration characteristics.

In conclusion it is believed that a careful optimisation of

the parameters considered would result in a structure with a

sufficiently high second mode vibration frequency. Third mode

vibration frequencies are unlikely to be a cause for concern.
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CHAPTER 7

FORCED VIBRATION OF ARTICULATED COLUMNS

1. INTRODUCTION

The undamped free vibration as presented in Chapter 6 provides 

a necessary insight into the dynamic behaviour of articulated columns 

and would be an essential part of any design feasibility study. The 

free vibration analysis is also a prerequisite to the dynamic analysis 

in the time domain in that accurate values of vibration frequencies 

are required for application in the time domain.

Having established that vibration mode periods for typical 

structures considered are likely to be in the range of probable wave 

energy spectra to be encountered, it is necessary to examine the 

forced vibration response.

There are, essentially, two ways of investigating the forced 

dynamic response of structures ie, by a frequency domain analysis or 

by a direct integration method in the time domain.

This chapter first describes the analysis in the frequency 

domain and then goes on to describe the development of the various 

techniques which combine to give the full forced vibration analysis in 

the time domain. The program development and solution method thus 

described is applied to typical structures subject to regular waves at 

frequencies equal to and less than the second mode vibration 

frequency. The relative importance of certain parameters is then 

examined.
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The responses obtained will be those for waves of the order of 

5-7 seconds period acting on structures with typical dimensions as 

shown in fig. 6.3. The ratio of diameter to wave length (D/L) is, 

thus, approaching ' the limiting value of approximately 0.2 where 

diffracted and radiated potentials become significant and beyond which 

the validity of the Morison approach may be in question. The upper 

support column for the structures considered is likely to be 10-12 

metres diameter. A 6 second wave is 56 metres long and the D/L ratio 

for the upper column will be in the region of 0.18 to 0.21. The errors 

in the calculation of wave forces on the upper column using the 

Morison approach are, therefore, thought to be small.

The top of the buoyancy chamber is likely to be located some 

20-30 metres beneath the still water level (SWL). The maximum wave

steepness limits a 6 second wave to a height of approximately 8-9 

metres. Bearing in mind that the wave forces decrease exponentially 

with depth, the upper support column will be responsible for the major 

proportion of the forces on the upper support column and the buoyancy 

chamber combined. Therefore, it is thought that the errors in respect 

of the wave forces on the buoyancy chamber will be very small. It is

believed that despite possible small overestimations in loading the

approach is valid and valuable in the examination of certain aspects 

of response pertaining to the second mode excitation.

The monopile structure which was analysed in Chapter 6 is

examined in the full time domain vibration analysis and certain 

non-linear behaviour is assessed.

Finally, some experimental data which have been obtained for a 

model articulated column with a length scale of 1/100 and which has a
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very flexible lower column is presented. The experimental results 

obtained are compared with the results of an analysis of the model 

configuration and the effects of non linear waves is examined.

Eatock Taylor (28) has obtained added mass and damping 

coefficients from the radiated and diffracted potentials for 

articulated columns and the conclusions were that the Morison approach 

tended to overestimate responses for the shorter waves.

A comprehensive loading mechanism which would include the time 

variation of the diffracted and the radiated potentials could be 

incorporated into the vibration analysis routines which have been 

developed. Such an approach, albeit time consuming computationally, 

would be valuable in order to calibrate and compare results obtained 

by the Morison approach to wave loading.

2. MATRIX ASSEMBLY

The mass and stiffness matrices are assembled in the same way 

as described in chapter 6. However, in chapter 6 the full size matrices 

were used to aid the solution of the eigenvalue problem.

Stiffness and mass matrices for most structural systems are 

well ordered in that they are usually 'symmetrical' about the 

diagonal. In addition, they are generally 'banded' about either side 

of the leading diagonal. Other off diagonal elements are zero. The 

symmetry and bandedness, if taken advantage of, greatly reduces 

computer storage requirements and the computational task, as it is no 

longer necessary to perform computations on array elements which are 

not relevant to the solution of the problem.
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Figure 7.1 shows the way in which the reduced size matrix is 

achieved. For clarity the array elements in the original full size 

matrix (OLD) are shown in their new locations in the new reduced size 

matrix (NEW). The symmetry of the matrices means that computations are 

only performed on one half of the full size matrix. The original full 

size N x N matrix reduces in size to an N x MS matrix where MS is the 

semi band width. The relationship between the full band width MF and 

the semi band width MS is MF = 2*MS-1.

3. RAYLEIGH DAMPING

Rayleigh showed that a damping matrix of the form C = YM + UK 

will satisfy the orthogonality conditions necessary in order to permit 

uncoupling of the equations of motion (49). The coefficients y  and y 

are arbitrary proportionality factors which can be evaluated on the 

basis that the amount of critical damping in any particular mode is 

known.

When the damping matrix is mass proportional, ie C = YM then 

the damping ratio will be inversely proportional to the frequency of 

vibration and the higher modes will be very lightly damped. Conversely 

when the damping is stiffness proportional, ie C = UK, then the 

damping ratio is proportional to the frequency and the higher modes 

will be heavily damped.

4. MODAL SUPERPOSITION

The dynamic response of structures which possess linear 

characteristics is readily investigated by modal co-ordinate
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superposition methods. This requires the evaluation of the relevant 

eigenvalues and the corresponding eigenvectors as shown in chapter 6.

Using the eigenvalues and eigenvectors thus obtained it can be 

shown that the equations of motion can be reduced to a set of 

uncoupled equations of motion by the following transformation process.

On the assumption that the total displacement of the structure 

can be obtained as the sum of the individual modal components then:-

X - ♦1Y1 + *2Y2 + 4,3Y3 ........ *n Yn

or in matrix notation X = <f> Y (7.1)

where <P -  mode shape matrix

Y = generalised coordinates

so that the transformation from generalised coordinates Y , to 

geometric coordinates X is by means of the mode shape matrix <j>.

The evaluation of any normal coordinate Y is obtained byn
multiplying equation (7.1) by the product of the transpose of the

Tcorresponding modal vector $ and the mass matrix M , thus:-

)^M x = <f>̂ M <P Y (7.2n n ri

since x = $Y 

and x = <f)Y

since the mode shapes do not change with time. 

So that the equation of motion:-



Mx + Cx + Kx = F(t) 

can be written

212.
(7.3)

T •• T * T T H A<f>Mc}>Y + 4>C<f>Y + <J) K <j) Y = d> F(t) 'n n n n n n n n n n
Twhere M = generalised or modal mass matrix = d> Md) n Tn n

TK = generalised or modal stiffness matrix = <j> Kcj> n n n
TF(t) = generalised or modal force vector = d> F(t)n

The equation of motion can then be written:-

2 *nF(t>Y + 26 w Y + 0) Y = —  ---  (7.5)n n n n n n Mn

and this is the equation of motion for a SDOF system.

The normal coordinates Y have thus been used to reduce the Nn
coupled equations of motion to a set of N uncoupled SDOF equations 

which can be solved in the usual way for a SDOF system. The total 

response is then obtained by superposing the response for each degree 

of freedom into the aggregate.

For linear systems the advantages of the modal superposition 

method lies in the fact that only the first few modes, over and above 

that mode being investigated, need to be included as providing a 

significant contribution to the response. This greatly reduces the 

computation task to that of working on the first few modes generally.

An example of the frequency response spectra thus obtained for 

a typical structure is shown in figs. 7.2 and 7.3, excluding and 

including the geometric stiffness, respectively. The second mode 

response spectrum for the analysis including geometric stiffness is 

some 10% greater than that excluding the geometric stiffness.



213.

<  o
S£ 2:

00 0 0 0

K ̂  M K X A /0  x  x x/o

I '

s  ■§ ©000O0000©

O O O O . 7 ©
X X 0  X X
K 0  K K K 
©  X K */□
x x x/ o  o

x X x / o  O O
x x/ o  0 0 0  
x/o O O O O

©

Q
O

FR
fQ

UF
NC

Y 
RE

SP
ON

SE
 

SP
I.f

.T
RA

 
FO

R 
AR

TI
CU

LA
TE

D 
CO

LU
MN



214.

The first 10 modes of a possible 41 were included in the 

analysis for figs. 7.2 and 7.3. The inclusion of a greater number of 

modes did not have any significant effect on the solution obtained and 

this is confirmation that only the first few modes need to be 

included.

The disadvantages in using the modal superposition method in a 

time incremental solution, as applied to articulated columns in 

particular or compliant structures in general, lies in the difficulty 

in treating the relative velocity term on the RHS of the equation of 

motion. It is then necessary to employ an equivalent linearisation of 

the velocity squared term. The solution then proceeds on the basis of 

making an assumption as to the magnitude of the structural velocity 

and iterating until the solution converges to an acceptable level of 

accuracy.

In the structural analysis of compliant structures, where 

there is significant interaction of structural motions with wave and 

current motions, it is desirable to employ a step by step direct 

integration procedure which will allow for the quantification of any 

non-linearities with time.

5. DIRECT INTEGRATION PROCEDURES

Articulated columns can display certain non linear response 

behaviour and this was demonstrated in Chapters 4 and 5 of this 

thesis. The direct integration approach to the solution of the 

equations of motion was demonstrated to be of value in predicting the
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non linear behaviour for the rigid body single degree of freedom 

system.

When physical properties change with time it is desirable to 

take account of the changes as they may significantly affect 

responses. The importance of accounting for the relative motion of the 

structure with waves and current has been demonstrated in chapters 4 

and 5. Other examples of physical properties which may change are 

stiffness influence coefficients which will change as a consequence of 

time varying geometric stiffness such as those which would ensue in 

consideration of heave forces. Non linear material damping and plastic 

analysis are also examples where quantification in time would be 

necessary to truly reflect structural behaviour.

Essentially direct integration procedures are based on the 

response being calculated for each increment of time for a linear 

system having the properties as defined at the beginning of a 

specified time interval. The properties are modified at the end of the 

time interval to conform with the state of stress and deformation at 

that time. Therefore, the non linear analysis is approximated as a 

sequence of the analyses of successively changing linear systems.

The implementation of a direct integration procedure basically 

involves reducing the simultaneous differential equations of motion to 

a set of simultaneous algebraic equations, by means of the 

introduction of a simple relationship between displacement, velocity 

and acceleration.

The most popular and widely used direct integration schemes

appear to be:-
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a. The central difference method.

b. Newmark-Wilson method.

c. Crank-Nicholson method.

d. Houbolt method.

The central difference method is an explicit integration

scheme in that values to be computed at the next time step are based 

on values obtained for the previous time step. The other methods are 

implicit schemes, where some assumption about the nature of the 

variation in motion over the time step is implied.

The implicit integration schemes pose the problem of solving 

non linear equations at the beginning and end of each time step, ie at 

t and at t + At so that the solution can proceed. Newton Raphson 

iterative procedures are sometimes used to do this. Alternatively, it 

is possible to transfer the non linear terms to the right-hand side of 

the equation of motion and treat them as additional loads to the 

right-hand side load vector. A Taylor's series expansion is then

utilised to express the new loads as functions of the previous time 

step. This procedure reduces the problem to a set of simultaneous

algebraic equations.

The central difference method suffers the main disadvantage 

that it is only conditionally stable. In order for the solution to 

produce finite results, the time step At must be less than Tn/ir where 

Tn is the lowest vibration mode period in the structure being

analysed.

Newmark-Wilson Method

This method is a most flexible integration procedure and is



based on the following expressions for velocity and displacement at 

the end of each time step.

d = U, + At (1-6)U + At.fi.U^ (7.6)t+At t t t+At

U = U + AtLI + At2 (i-a)6 + At2 v (7.7)t+At t t t t+At

The coefficients a and 6 are chosen for the accuracy of the 

solution required. With values of a = 1/2 and 6 = 1/6 the procedure

reduces to the linear acceleration method which is a conditionally 

stable method. This method was utilised in the dynamic analysis

presented in chapters 4 and 5 of this thesis and the recurrence 

relations are derived in Appendix 4.1. An unconditionally stable 

method is the Wilson-0 method with 0 1.4 (72).

The solution method finally adopted for use in the time 

simulation vibration analysis presented in this chapter is that with 

values of ot = 1/2 and 6 = 1/4. This is known as the constant average 

acceleration method and is an unconditionally stable method without 

numerical damping.

The relative merits of some solution procedures are discussed 

in references (73 to 75).

5.1 Consistent Nodal Loads

Distributed loads acting on discrete elements can be 

represented as equivalent nodal loads. The formulation of consistent 

nodal loads has the same basis as that for the formulation of the 

consistent mass and stiffness matrices as derived in chapter 6 and is 

by means of the integration of the shape functions [A],
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Hence the equivalent nodal loads are given by:-

{Fe q } = I [X|T -S *ds (7.8)
Jo

where S is the intensity of load.

Recalling the shape functions as given by equations (6.5) to

(6.8) in Chapter 6, we can write the shape function for the beam 

element shown in fig. 7.4 as:-

rn 1” s 2 s 3 s s 2 s 3  s 2 s 3[A] = [1-3 <T ) + 2 ( J )  ,Zij - 2(j) + (J) ) , 3 ( J )  - 2(|)t
s 3 1< £ >  )Js 2

+ (7*9)

For the case of a beam element subject to a uniformly 

distributed load 'S' per unit length, the equivalent nodal loads will 

be given by integration of equation (7.2), ie

{ F } = S eq jw ds

{F } = S eq

i/2

l 2/12

i / 2

~ i 2 / 12,

(7.10)

and these are usually referred to as the fixed end loads relating to 

the degrees of freedom as shown in fig. 7.4.

When the intensity of loading is not uniform along the length 

of the element the explicit evaluation of the integral of equation

(7.8) becomes a very lengthy process. In such cases it is prudent to 

employ some quadrature formulae to integrate the load on the element.
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The Gaussian quadrature formulae have been used to integrate the 

loading and evaluate the equivalent nodal loads.

The Gaussian quadrature formulae integrates a function between 

specific limits by taking the sum of the value of the function f(x)# 

multiplied by a weighting function w ^ , for n number of stations at 

which the function has been evaluated, ie

+ 1 n
J  f(x)dx = .1 w.f(x.) (7.11)_ 3 3 3

By evaluating the loading intensity at 3 stations on each 

element, ie at each end of the element and at the mid point, then:-

x 1 = -0.77445967 W;L = 0.55556

x 2 = 0.0 w 2 = 0.88S89 (7.12)

x 3 = 0.77455967 w 3 = 0.5555

For compatability with the form of equation (7.11) it is 

necessary to adjust the limits and the integration variable 'ds' in 

equation (7.8).

2sThis can be done by setting x = (—  - 1) (7.13)£

* ^so that, ds = ‘2*dx

the limits are then changed to -1 to +1
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2 sRecalling equation (7.13), ie x = —  -1j £
x. + 1S 1this can be re-written y  = — ----- for j = 1 to 3.

The evaluation of the shape functions for each station is then 

performed on the basis that,

1 + x .
(f) j = — 2-J- for j  = 1' to 3

so that (-) = (1 - 0.77445967)/2V l

(f)2 = i  (7.15)

(|) = (1 + 0.7744596)/2

For a particular element the process is to evaluate the four 

shape functions for each station and multiply these by the weighting 

function w_. and the intensity of loading for that station. This is 

done for each degree of freedom and the sumnation of terms is taken.

This process has been programmed in the form of three

subroutines, namely SHAPFN, FEQUIV and FEQTOT and these are described

in section 5.3.

5 . 2 Intensity of Loading

With reference to fig.7.4; the actions of the various forces

on an elemental length of the structure are as shown. The non

conservative forces acting on an elemental length comprise

a. Wave loads, ie drag and inertia components F^ and F

b. Buoyancy force F .
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The intensity of force per unit length attributable to a) is

evaluated in the same way as those forces described in Chapter 4. The

assumption that the buoyancy force F acts as a distributed load alongB
the length of each element is in contradiction to the laws of 

hydrostatics which strictly, speaking, state that buoyancy forces can 

only act on exposed end faces such as those at the top and bottom of 

the buoyancy chamber and at the bottom of the lower column, see 

fig. 7.4. Applying the buoyancy forces in this manner gives rise to 

numerical instabilities in the numerical integration procedure and so 

the buoyancy forces have been assumed to act in a distributed manner 

as shown. This is not considered to give rise to significant errors in 

the solution.

5.3 Computer Program Implementation and Solution of the
Equations of Motion

The mass and stiffness matrices are assembled as described in 

section 2 using subroutine ASMCON.

Subroutine LINWAV calculates wave particle kinematics 

according to linear wave theory.

Subroutine STOKE calculates wave particle kinematics according 

to Stokes' fifth order wave theory.

Additional subroutines to compute equivalent nodal loads in 

accordance with section 5.1 are:-

Subroutine SHAPFN evaluates the shape function for each 

station as given in equations (7.9) and (7.15).



223.
Subroutine FEQUIV evaluates the equivalent nodal load for each 

element. The input required for FEQUIV are the values of the shape 

functions from SHAPFN, the weighting functions w. and the intensity of 

loading for each station.

Subroutine FEQTOT evaluates the sum of the equivalent nodal 

loads for each nodal point along the length of the structure and 

requires, as input, the equivalent nodal loads for each element as 

evaluated in FEQUIV.

Subroutines ADSUB and MULBAV are routines to add matrices and 

multiply condensed matrices by vectors, respectively.

The equations of motion:- 

Mx + Cx + Kx = F(t)

are solved as outlined in fig. 7.5 and it is noted that, in order to 

avoid the accumulation of numerical errors, initial accelerations are 

calculated prior to the calculation for displacements (step B2). These 

accelerations are then used in the calculation for the effective load 

vector ie, step B l . It is considered that this procedure eliminates 

the possibility of errors accumulating were the recurrence relations 

in step B3 only used to calculate the accelerations.

The Gauss elimination procedure is used to solve for 

accelerations and displacements and this has been programmed in the 

form of subroutine SLBVI which takes account of the symmetry and 

bandedness of the matrix in the solution of the standard form Ax = B.
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6. ANALYTICAL RESULTS

6.1 Effects of Concentrated and Distributed Loads

Initial versions of the program developed to solve the forced 

vibration in the time domain attempted to utilise the linear 

acceleration method, which had been successfully used for the dynamic 

analysis presented in chapters 4 and 5 of this work. The solutions 

obtained were unstable and it was necessary, therefore, to investigate 

the stability of alternative procedures. In the event the 

Newmark-Wilson method with a = 1/2 and 6 = 1/4 ie, the constant

average acceleration method proved to provide stable solutions and was 

used in all subsequent time simulation analysis of the forced 

vibration.

Program development was in stages so that initially a program 

was developed to investigate the response of a cantilever beam subject 

to static loads and sinusoidally varying loads, either concentrated or 

evenly distributed along the length of the beam. It is instructive to 

compare the responses for the cantilever beam subjected to sinusoidal 

excitation at the same frequency as the second mode vibration 

frequency. Figures 7.6 and 7.7 show the responses obtained for the 

beam subject to a point load and a distributed load, respectively. The 

first of the four plots is the magnitude of the exciting force. The 

second and third plots are the displacements of the mid nodal joint 

and end nodal joint, respectively, and the fourth plot is the 

displacement of the beam along its length at a time when the 

displacement at the end of the beam is maximum.

The intensity of the distributed load is such that it would 

produce the same static bending moment as the point load which is
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applied to the end of the cantilever. The effect of the distributed 

loading is to attenuate the vibratory response as is observed from 

fig. 7.7. The response for the distributed load is about 60% of that 

for the point load’.

6.2 Effects of Rayleigh Damping

When frequency domain analysis is used it is necessary to 

evaluate damping matrix coefficients y and y, as discussed in section

3. Time domain analysis reduces this problem to one of selecting an 

appropriate value for the amount of critical damping B present, for 

inclusion in the damping term Cx, where C = 2(3oj M.

The effects of zero percent critical Rayleigh damping and 0.5%

critical Rayleigh damping on the response of the forced vibration are 

shown in figs. 7.8 and 7.9, respectively. It is apparent that even 

this moderate amount of 0.5% damping attenuates the vibratory response 

significantly.

6. 3 Response of Structures to Waves

A computer program based on the flowchart in fig. 7.5 was 

developed to account for the wave forces, as described, and specify 

the boundary conditions necessary to ensure rotation about but no 

translation at the articulated joint. The effects of certain 

parameters on the forced vibration were then assessed and are 

presented as follows.

6.3.1 Effects of Geometric Stiffness Matrix

It was noted in the free vibration analysis presented in
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chapter 6 that the inclusion of the axial distribution of loading, as 

reflected in the geometric stiffness matrix, significantly altered the 

second mode vibration period. Accordingly some analytical results have 

been obtained to make some assessment of the relative importance of 

this parameter on the forced vibration in the time domain.

Figure 7.11 shows the response for a structure excited by a 

wave at the same frequency as the second mode vibration frequency and 

excluding the geometric stiffness in the analysis. In this case the 

second mode period is 6.18 seconds. Figure 7 . shows the response for 

the same structure but including the geometric stiffness term in the 

analysis. Accordingly, the second mode period is 6.67 seconds.

The nature of the response is very different in the latter 

case and it eventually becomes unstable. Clearly then the inclusion of 

the geometric stiffness in this particular case is very important and 

to neglect it would be in error.

The structure appropriate to figs. 7.10 and 7.11 has a lower

column 12 metres diameter and 50 mm equivalent thickness. The critical

Euler buckling load for this section, assuming pinned end conditions,
2 2is tt EI/L which equals 771,470KN. The average axial load is 

240,000KN. Figure 7.12 shows the distribution of axial loads for this 

structure. The net compressive loading is apparent and explains the 

increased vibration period.

Figures 7.13 and 7.14 show the responses from an analysis 

which imposed average axial loads of 125,000KN and 100,OOOKN, 

respectively, on the structure. The response is stable for the latter, 

whilst that for the former is unstable, indicating a maximum allowable
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axial load of 100,000KN. This load corresponds to an effective length 

of the structure of 2.77L.

Figures 7.15 and 7.16 show the responses for a structure with 

a lower column 12 metres diameter and equivalent thickness 65 mm, 

excluding and including the geometric stiffness in the analysis, 

respectively. The transient response persists for the latter case but 

the solution is stable.

This instability, in part, may be attributable to the 

numerical integration procedure used, although this is thought to be 

unlikely since the procedure is unconditionally stable. The stability 

bounds may narrow as vibration frequencies increase for the same 

length of integration step At but this would infer that the solution 

would become less stable for the structure with the increased flexural 

rigidity.

The top plot for both these figures is the bending stress at 

the mid nodal connection as calculated from the nodal rotations which 

are generated in the analysis. The stress levels are significant. It 

should be noted, however, that the wave steepness used in the analysis 

is 0.12 or 80% of the maximum wave steepness.

Figures 7.17 and 7.18 show the responses obtained for a 

structure with an equivalent thickness of 80mm, excluding and 

including the geometric stiffness in the analysis, respectively. The 

transient in the latter is considerably reduced in magnitude but is 

nevertheless present. Responses are generally about 50% greater than 

those obtained excluding the geometric stiffness.
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5.3.2 Deck Mass Relocation and Configuration

In Chapter 4 it was noted that the dynamic response 

characteristics of structures were somewhat improved as a consequence 

of relocating deck masses in the buoyancy chamber. In Chapter 6 it was 

noted that this would also increase the second mode vibration 

frequency. The effects of different lateral distributions of deck mass 

waves was also noted. Accordingly, it is desirable to examine the 

response in the time domain as a consequence of the partial relocation 

of deck masses and in terms of varying lateral distribution.

Figure 7.19 shows the response of the structure with 50% of 

the deck mass relocated in the buoyancy chamber. The second mode 

vibration period has been reduced to 5.335 seconds. The response is 

similar to that for the structure with no deck masses relocated (again 

shown above fig. 7.18 for comparison) for the first seven cycles and 

is then considerably reduced. There are indications that the response 

increases thereafter. It is also noted that the maximum stress levels 

are approximately 75% of the stress levels for the structure with no 

relocation of the deck mass (fig. 7.18).

In Chapter 6 the lateral distribution of the deck mass was 

shown to decrease vibration modes as the effective lever arm of the 

deck mass about the centre line of the deck was increased. Responses 

have been obtained for two different values of lever arm and are shown 

in figs.7.20 and 7.21. The first of these is for an effective lever 

arm of 15 metres, ie an equivalent deck width of 30 metres, and the 

latter is for an effective lever arm of 30 metres, ie an equivalent 

deck width of 50 metres. Second mode vibration periods for these two
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cases are 5.02 seconds and 4.49 seconds, respectively. The results 

shown are for waves with these periods. The stress levels at the mid 

nodal point for the structure with the increased lever arm are

approximately 10% greater than those for the other structure.

The width of the deck is a parameter for optimisation together 

with certain other interdependent parameters, as discussed in Chapter 

2 , and it is likely that the trend will be towards reductions in the 

width rather than increases so that the increased stress levels may 

not be realised. However, the trend is to be noted and will play a 

part in any optimisation procedures which are undertaken in respect of 

deck widths, upper support column dimensions, etc.

6.3.3 Effects of C on Response ______________D_______

The relatively high frequency of the second mode vibration 

means that the inertia forces will dominate the response. In the

absence of currents, the drag contribution would not normally be

expected to play a major part in the response. However it is 

instructive to obtain a measure of the effects of different levels of 

hydrodynamic viscous damping and accordingly the results as shown in 

figs. 7.22 and 7.23 are presented.

These show the response for the structure subject to the same

wave and for values of drag coefficient C = 0.9 and C = 0.6,D D
respectively. There is no appreciable difference in response for these 

two values of drag coefficient.

In order to fully assess the effects of the viscous term on

the response, it is pertinent to compare responses in the absence of
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any viscous contribution to the forcing functions. Accordingly,

figs. 7.24 and 7.25 have been obtained for drag coefficients of

C = 0 . 9  and C = zero, respectively. For both these Dlots the D D
excursion of the structure in the wave is ignored, in order to make a 

direct assessment of the contribution of the drag term.

The linearity of the response in fig. 7.25 is apparent and is 

as would be expected since the forcing function is linear and consists 

only of the inertia term in the Morison equation. There is no 

transient response as in fig. 7.24 and, therefore, it is reasonable to 

attribute the transient response in fig. 7.24., in the main, to the 

viscous drag contribution to the forcing function.

The transient is also noted to comprise a steady drift

component, since the response is not sinusoidal about the vertical

axis. Further experimental observations, relevant to this observation,

are made in section 7 of this chapter. The transient is responsible

for mean increased responses. However, the magnitude of the relative

response of the top and middle of the column is reduced as are bending

stresses as shown in fig. 7.24 ie, including the relative speed

squared term. Maximum bending stresses in fig. 7.25 are approximately 
2300N/mm whereas in fig. 7.24 the maximum stresses are approximately 
22 3 0 N/mm

6.3.4 Effects of Current on Response

The previous section highlights the importance of the viscous 

term in damping the responses and stress levels. Steady currents, in 

combination with waves, could therefore be expected to have some 

damping effect and this can be expected to increase as current
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velocities increase. The results obtained for zero current,. 0.5 m/sec 

and 1 m/sec acting co-linearly with the waves are presented in 

fig. 7.26.

The mean response of the end nodal point is increased and this 

is to be expected. The attenuation in the mid nodal point bending 

stress for the increased current is apparent and is a measure of the 

damping influence of the imposed current on the response.

6.3.5 Response to Waves with Frequency less than the second Mode 
Vibration Frequency

The level of excitation possible at the second mode vibration 

frequency has been observed. However, it is also instructive to 

observe responses of the structure when subject to waves of 

frequencies less than the second mode vibration frequency.

Figures- 7.27 and 7.28 show responses for waves of period 6 

seconds and 7 seconds, respectively. The response is attenuated as 

shown in fig. 7.28 and this is to be expected in consideration of the 

reduction in . the dynamic magnification factor as the ratio of 

exciting frequency to natural frequency decreases. This is readily 

appreciated from fig. 7.4 which shows the dynamic magnification as a 

function of the ratio of exciting frequency to natural frequency.

Figures 7.29 and 7.30 are the responses obtained for an 8 

second wave and a 10 second wave, respectively. The mid nodal point 

and the end nodal point are now in phase and the most striking feature 

in the latter is the very marked reduction in stress levels.
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||Ŝ î g2y
SsSSZf̂ s
E S S ^ d d S *Sa?g|jaig••" •2£°fc‘L!S 88.



242.
It is also interesting to observe the presence of the 

transient oscillation which is harmonic with the natural period in 

pitch of the structure and is qualitatively very similar to the 

transient which was predicted in the rigid body analysis presented in 

Chapter 4.

6.3.6 Effects of Wave Groups on Response

The rigid body dynamic analysis in chapter 5 describes the 

transient oscillations possible for certain wave frequencies and 

groups of waves. The transient was seen to increase considerably for 

wave groups with a frequency harmonic with the natural period in pitch 

of the structure.

For completeness, it is pertinent to examine the effects of 

wave groups on the elastic vibration responses. It is conceivable that 

a group of waves having the same period as the fundamental pitch 

period, could be generated by two waves of slightly different 

frequency but approximately equal to the first flexural response mode 

frequency.

Figure 7.31 shows the response for a structure which has a 

fundamental pitch period of approximately 95 seconds and a first 

flexural response inode period of 8.5 seconds. The wave group -is - 

generated by two separate wave trains with periods of 8.2 seconds and 

8.93 seconds each with a height of 5 metres. The average wave period 

of 8.5 seconds is coincident with the first flexural mode period. The 

attenuation in the response in the region of diminished wave height is 

to be expected as is the transient response. Figure 7.32 has been 

prepared for comparison and shows the results for a regular wave with 

a period of 8.5 seconds and height 10 metres.
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The response for the top and the middle of the column is antiphase as 

expected and the bending stress at the middle is of the order of 

±200N/mm^.

Transient responses for both figures are of the same order of 

magnitude. However stress levels for the wave group response of 

fig. 7.31 are somewhat less than for the regular wave.

6.3.7 Full Fixity Encastre Column

The effects of fixity on the bottom joint was examined in 

Chapter 6 in terms of free vibrations. It is instructive to examine 

the response of a structure with full fixity at the bottom and, 

accordingly, fig. 7.33 has been prepared.

Plots of the bending stress at the bottom and middle of the 

column are given together with displacement at the top and the 

overturning moment on the base of the structure. The response of the 

top of the structure, as shown in fig. 7.33, bears direct comparison 

with the response for the structure shown in fig. 7.30 which is for an 

articulated column of the same structural dimensions. There is a 

modest reduction in response as shown in fig. 7.33 and the magnitude 

of the overturning moment on the base is reduced. The transient 

oscillation harmonic with the first flexural response mode is also 

apparent.

Figure 7.34 shows the response for a structure with a payload 

of 50,000KN and a lower column 6 metres in diameter. The transient 

oscillation is apparent. However, it is not harmonic with the first
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flexural response mode, which for this structure is approximately 90 

seconds (see fig. 6.32), but appears to have a frequency of twice the 

first flexural response mode. This response is analogous to the 

Mathieu instability type of reponse, as was investigated in Chapter 5 

of this study, and is particularly noteworthy in that the wave 

frequency is six times the first flexural response frequency. This is 

an important observation since it is not suggested by any formal 

theory.

By way of confirmation of the second flexural response mode, 

fig. 7.35 has been prepared and shows the response for a 10 second 

wave. The anti-phase of the top and middle displacements is noted from 

observation of the bending stress plots for the bottom and middle 

points on the structure.

7. EXPERIMENTAL OBSERVATIONS

Any analytical procedures applied to the dynamic analysis of 

articulated columns must be verified before the use of such procedures 

can proceed with confidence to their application to prototype 

structures. Experimental data may suffer certain limitations in 

respect of scaling but the underlying physical trends can be observed

by this means. The value of experimental data in the case of the rigid

body dynamic analysis was noted in Chapters 4 and 5 and the results 

obtained confirm certain response characteristics as predicted 

analytically.

It is very difficult to manufacture an experimental model

which scales both physical and dynamic elastic vibration

characteristics of a prototype articulated column. It is necessary to
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reduce the flexural rigidity of the lower column by some means, so 

that the resulting vibration frequencies will be within the range 

which the wavemaker can generate. At the University of Glasgow the 

experiment tank, ' which measures 76 metres x 4.6 metres x 2.4 metres, 

has a wavemaker capable of generating waves with maximum frequencies 

of the order of 2Hz. Accordingly, the design of the model must be such 

that the maximum second mode frequency is of this order of magnitude.

It is only possible to achieve frequencies of the order 

desired b y :-

a. reducing the diameter of the lower column and by using a 

material such as aluminium which has linear elasticity for 

a fairly small stiffness value, ie 6 .9 .1010N/mm (c.f. 

steel 21.10 ̂ N /mm^ , and

b. by the addition of 'lumped' masses attached to the lower 

column.

With these considerations in mind the experimental model, as 

shown in fig. 7.36, was designed and constructed. The use of lead 

washers as 'lumped' masses allows for a range of mass distributions 

and, therefore, it is possible to adjust the vibration frequency in 

this way. Buoyancy is provided by the 112 mm diameter PVC tube which 

is of annular construction, the inner annulus being flooded. The 

experimental model thus constructed bears little resemblance to a 

scaled down prototype articulated column but this is not important as 

the intention is to validate analytical techniques and the 

experimental arrangement can be modelled precisely in the analysis. 

This aspect is described in more detail in section 7.3.

It was desired to measure the response of the top and mid
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point of the column. Conventional LVDT's and their attachments would 

impart unacceptably high damping on the structure and it was decided, 

therefore, to use a Selspot camera with light emitting diodes attached 

to those locations which were to be monitored. A special waterproof 

camera housing was constructed and this contained the Selspot camera 

used to monitor the movement of the mid point of the column. The 

arrangement of the cameras relative to the model is shown in 

fig. 7.36.

In order to achieve a satisfactory quality of output signal 

from the submerged camera it was necessary to place it to within 1.5 

metres of the model. However, the submerged depth of the camera is 

such that it is unlikely that the camera housing will affect the flow 

field significantly. The output signals from both Selspot cameras and 

the wave probe were recorded on paper by means of a pen recorder.

7.1 Description of Model Tests

It was primarily intended to obtain experimental data on the 

forced vibration at the second vibration mode frequency. The 

construction of the model allows for adjusting the distribution of 

equal lumped masses on the lower column and at the top of the column.

By this means it is possible to achieve the same vibration frequency

for different lumped masses on the lower column by adjusting the mass

at the top of the column. This makes it possible to examine and verify 

the influence of deck masses on the vibration characteristics.

Five series of tests were completed for the frequencies shown 

in Table 7.1. For each condition, waves of heights varying between 

14 mm and 95 mm were generated and the response of the top and middle
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of the column observed and recorded on paper tape. The tabulated 

results of the tests are given in Appendix 7.1. The distribution of 

mass for the five conditions examined are as shown in Table 7.1.

The number of lead washers allocated to each nodal connection 

point along the length of the structure having been fixed, it was 

necessary to 'tune' the structure. By adding lead washers to the top 

of the structure the natural frequency is changed. By this means, the 

required amount of mass necessary at the top of the model could be 

determined by observing the magnitude of the anti-phase response of 

the top and middle of the structure. The amount of mass at the top was 

adjusted until the anti-phase response was observed to be maximum for 

a wave at the specified frequency.

It was not possible to achieve precisely the same frequency 

for all conditions, as can be seen from Table 7.1. However, conditions 

2-5 are within 4% of each other. The greatest error is for condition 1 

which had a frequency of some 10% greater than those for conditions 3,

4 and 5.

Test
Condition

Weight per 
Nodal Point 

(Kg)

Weight 
at Top 
(Kg)

Frequency
(Hz)

1 0.089 0.379 1.3
2 0.1115 0.4 1.22
3 0.1338 0.3568 1.18
4 0.156 0.2899 1.175
5 0.223 0 1.175

Table 7.1 Experimental Test Conditions
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7.2 Experimental Results

Figure 7.37 shows a typical pen recording obtained for one of 

the conditions. Plot 1 is the wave profile. Plot 2 is the response of 

the top of the column and plot 3 is the response of the middle of the 

column. These are not phase compensated and the phase relationship is 

shown so that the correction must be applied in comparing the 

responses of the top and middle of the column. The phase difference 

between plots 2 and 3 is three divisions on the recording paper, ie 

plot 2 is three divisions in advance of plot 3. By applying this 

correction it is observed that the responses are anti-phase. The 

calibration for the two light emitting diodes (LED's) was not the 

same, the signal for the middle LED being greater than that for the 

top LED.

It can be seen from fig. 7.37 that a transient oscillation is 

present and is harmonic with the natural period of the structure in 

pitch. Figure 7.37 also shows a steady drift offset of the structure 

from the vertical and this is in proportion for both the top and the 

middle displacements as would be expected.

Figures 7.38 to 7.41 show the wave frequency oscillatory 

response part of the top and middle displacements as a function of 

wave height for each test condition. In all cases the displacement at 

the middle of the column is greater than that at the top. This is in 

agreement with the free vibration eigenvalue analysis of the model 

structure and is a consequence of the very slender lower column. The 

displacements are greatest for condition 1, ie the condition with the 

maximum amount of mass at the top of the column. The displacements
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decrease as the amount of mass at the top is reduced and this is to be 

expected.

It is also' observed that in general the ratio of the middle 

displacement to the top displacement decreases with increasing wave

height. From fig. 7.38 it is seen that the ratio of middle to top

displacement is 2.66 for a wave height of 15 mm and decreases to 1.9

for a wave height of 80 mm. The decrease in the ratio is most likely 

to be attributed to the viscous speed squared drag force on the lower 

column.

The steady drift from the vertical is also seen to increase as 

a function of the wave height and this is to be expected since drift

forces are a function of the square of the wave height.

Plots of steady drift as a function of wave height for each 

test condition are shown in fig. 7.42. The results for condition 1 

display the most marked variation of steady drift with wave height.

The results for conditions 2, 3 and 4 are quite closely grouped

together. Nevertheless, the trend for steady drift to decrease, as the 

mass at the top decreases, is evident.

7.3 Structural Assemblage and Computer Implementation

The Computer programs described in Chapter 6 (for the

eigenvalue solution) and in this chapter (for the time simulation

analysis) were modified to account for the geometry and mass

distribution of the model, as shown in fig. 7.36.

Analytical results for the second mode vibration frequencies
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were found to be within 5% of the frequencies at which the models were 

found to have the greatest responses. Analytical trends in respect of 

the top and middle displacements are in accord qualitatively with the 

experimental results in that the displacements increase with 

increasing top mass, as does the ratio of the middle to top 

displacements. This good agreement is taken as confirmation of the 

adequacy of the program in predicting frequencies.

The buoyancy chamber on the model is fixed to the aluminium 

tubing by means of a screwed connection at the bottom and a close 

fitting locating connection at the top. There may b e ,therefore, some 

discontinuity in fixity at these locations and this might be expected 

to slightly affect the stiffness. However, the good agreement with the 

analysis and experiment confirms that any errors in this respect are 

likely to be minimal.

A linear elastic analysis has been performed and it has been

assumed that the PVC buoyancy chamber behaves elastically and has a
3 2value for Young's modulus of elasticity of 2.75.10 N/mm . PVC is not 

truly linear elastic but the errors for small strains will be minimal 

and are not thought to contribute significantly to the analysis.

The lead washer 'lumped' masses are incorporated into the 

analysis by adding the amount to the relevant mass corresponding to 

the translational degree of freedom pertaining to the nodal connection 

considered.

Thirteen finite elements each 200mm in length have been used 

in the analysis. The bottom of the buoyancy chamber corresponds to 

nodal connection number 10 and the top corresponds to a mid element
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point but this has been allowed for in the assembly of the mass and 

stiffness matrices.

7.4 Analytical Results

7.4.1 Effects of Linear Wave Theory

Figure 7.43 shows the results of the analysis for the model 

arrangement relating to condition number 5, ie 6 lead washers per 

nodal connection and 16 washers at the top. The wave generated was 

73mm high with period 0.83 seconds. The wave frequency response 

displacements at the top and middle are 68mm and 84mm, respectively, 

ie the ratio of mid to top displacement = 1.24.

Corresponding experimental displacements were 45mm and 65mm, 

respectively, (mid to top displacement ratio = 1.45). A transient 

oscillation, harmonic with the natural period in pitch, is just 

perceptible. A steady drift from the vertical of approximately 35mm is 

observed and this compares with an experimental observation of steady 

drift equal to approximately 50mm.

Figure 7.44 shows the analytical results for a 90mm wave with 

period 0.83 seconds for the same structural configuration. Top and 

middle displacements are 84mm and 100mm, respectively, (mid to top 

displacement ratio = 1.19) compared to experimental displacements of 

67mm and 79mm, respectively, (mid to top displacement ratio = 1.17).

The steady drift component is approximately 50mm compared to an 

experimental value of 90mm. The results concur qualitatively with the 

experimental results which display a decrease in the mid to top 

displacement ratio for increasing wave height.
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A general observation in regard to the phase of the response

should be noted. The analytical model predicts that the maximum

displacement at -the top of the column lags the wave crest by 

approximately 30°, ie the response lags the maximum forces by 120°. 

The experimental observations would suggest that the response lags the 

maximum wave force by 90° ie, the response is in phase with the wave 

crest. The small discrepancy in the analytical phase lag may occur if 

exciting frequencies are slightly different to natural frequencies and 

is not thought to be attributable to any other significant factor.

7.4.2 Effects of Stokes Fifth Order Waves

It is pertinent to examine the effects of Stokes' fifth order 

waves on the response since some of the waves considered are

relatively steep, ie the 73mm wave is 50% of maximum steepness and the 

95mm wave is 68% of maximum steepness. Particle velocities and

accelerations for these waves are some 6-8% greater by Stokes' fifth 

order theory than by linear wave theory.

Figure 7.45 shows the result for the 73mm wave using Stokes's 

fifth order theory in the analysis. The transient oscillation is more 

pronounced at the start and is effectively damped out in time. The top 

displacement has increased to 74mm (9% greater than by the linear wave 

theory) and the middle displacement is the same.

Figure 7.46 shows the result for the 95mm wave using Stokes' 

theory. Again the transient is more pronounced to start and the steady 

drift has increased. Both the top and middle displacements are less 

than those as predicted using the linear wave theory, being 79mm and
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95mm, respectively. These values are greater than those obtained 

experimentally and are +13% for the top displacement and +26% for the 

middle displacement.

The effects of Rayleigh damping is illustrated by comparing 

fig. 7.43 which is for 2.5% of critical Rayleigh damping with 

fig. 7.47 which is for 1.5% critical damping. Both these results are 

for linear wave theory. The middle displacement has increased to 

115mm, otherwise the results are very similar.

Figure 7.48 shows the result obtained for 1.5% critical 

damping using Stokes' fifth order wave . theory. The transient is 

considerably increased as is the steady drift component which is now 

approximately 150mm. This is some 55% greater than the experimental 

steady drift. " These results indicate that a value for critical 

Rayleigh damping of the order of 2% would produce analytical results 

similar in magnitude to the experimental value.

There is good qualitative agreement between the analytical 

results and those obtained experimentally in respect of top and middle 

displacements, transient oscillations, and steady drift components. 

Quantitatively, the errors decrease with increasing wave height and 

the best agreement is obtained using Stokes' fifth order wave theory.

The rate of increase of displacements is greater for

fig. 7.38, ie condition 1, which is for the maximum mass at the top of

the column. The rate of increase decreases as the mass at the top is

reduced.
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8. CONCLUDING REMARKS

The full finite element vibration analysis, in the time domain 

presented, highlights the harmonic vibration which may exist when the 

structure is excited with waves at the same frequency as the first 

resonant flexural mode frequency. The magnitude of stress levels is 

significant, in spite of the relatively small magnitude of the 

exciting forces involved.

The Newrnark-WiIson integration operator with a = 1/2 and 

6 = 1/4 provides the most stable solution and the unsuitability of the 

Wilson-0 linear acceleration method for MDOF systems is noted. In 

appraising the results of any time incremental analysis the 

integration procedure used must be borne in mind. However, the results 

obtained are thought to be reasonable and the integration procedure 

used does not possess numerical damping.

Very small amounts of Rayleigh damping were shown to 

significantly affect the response but the uncertainties relating to 

the use of a realistic amount precludes the justified inclusion of 

larger amounts of damping.

The non-linear responses obtained as a consequence of the 

inclusion of the axial forces is particularly important and these 

indicated a 'threshold' level or a 'quasi' dynamic buckling load 

falling far short of the static critical Euler buckling load. This 

dynamic aspect of the buckling analysis clearly plays a very major 

role in the vibration analysis and, in part, poses the question of 

integration operator stability.
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While different drag coefficients did not appear to influence 

the vibration responses noticeably, the current of 1 metre per second 

shifted the mean response as would be expected. The importance of 

including the viscous speed term is observed, particularly for the 

more slender structures, and the contribution of this term in 

producing the transient and steady drift responses is noted.

Relocation of deck masses did not have any marked effect on 

the forced vibratory response. Apart from increasing second and third 

mode frequencies, the advantages will be otherwise associated with 

improved statics, etc, as discussed in Chapters 2 and 4.

The attenuation in stress levels obtained for waves with 

frequencies less than the second mode vibration frequency are to be 

expected and confirms the transition from second mode vibration to 

fundamental mode vibration.

The monopile structure displayed modest reduction in the 

motion response compared to the articulated column. The resonant 

response at tv/ice the frequency of the first flexural response mode is 

a significant observation and this resonant response can apparently be 

induced by waves with frequencies which have multiples greater than 

twice the first resonant flexural mode. This phenomenon is of 

particular concern as a possible source of dynamic instability.

The experimental data obtained, albeit for a structure with 

exaggerated mass distribution and flexural rigidity, correlates very 

well qualitatively with the analytical predictions. The prediction of 

the steady drift component in the response is noted and although 

different to the experimental value it is, nevertheless, an important 

observation.
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The analysis presented calculates forces to the SWL and not to 

the instantaneous water surface which is assumed to be coincident with 

nodal connection point number 13 (see fig. 7.36). There is, therefore, 

no nett drag component of force entering into the calculation which 

might otherwise, in part, account for the steady drift. If the 

excursion of the structure in the wave was not accounted for the nett 

forces integrated over one wave cycle would be zero. This would infer 

that, after the initial transient had been damped out, the structure 

would oscillate about the vertical and not experience any second order 

drift effects (see fig. 7.25). However, the effect of the viscous 

speed squared term and its role in the transient and steady drift 

response was noted in section 6.3.6 and this will, in the main, 

explain the experimental and analytical prediction for the model. The 

excursion of the structure in the wave does make a contribution, 

albeit of a much reduced size, to that of the speed squared term.

The good qualitative agreement between experiment and theory 

vindicates the efficacy of the full vibration time series solution in 

the analysis of compliant structures in general and articulated 

columns in particular.
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS

This study has addressed those aspects pertaining to the 

proposed use of articulated columns as production platforms, which are 

thought most likely to have a fundamental impact on the feasibility of 

the concept. At the same time, it has attempted to validate the use of 

time simulation methods to examine the non-linearities in response 

which play a major role in the design of compliant structures.

Conclusions have been given at the end of relevant chapters 

thoughout the work. These are of a very specific nature in relation to 

the contents of the chapter and, it is desirable to remark upon the 

main findings in a more general sense. In particular it is important 

to assess the inter-dependence of these and the way in which they work 

in combination to affect concept design feasibility.

As noted in Chapter 1, articulated columns have been used 

successfully for some time in a number of applications, mostly in 

connection with tanker moorings but for a few small oil field 

production platforms. In Chapter 2 the principal concepts relevant to 

production platforms were reviewed and it was shown that, potentially, 

the maximum benefit would be obtained from the use of the buoyancy 

chamber as accommodation for plant and machinery or as storage space. 

Through reduction in the height of the centre of gravity, this greatly 

reduces the constraints on the design of the deck and its support 

column. Containment of risers, etc within the lower column offers 

considerable advantages in respect of giving protection from wave and
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impact loading as well as making inspection easier and safer. This 

feature is greatly enhanced when the lower column is designed to be 

watertight. Installation and relocation are feasible provided they are 

carefully planned at the design stage. The gravity type foundation 

reduces problems in that area and, indeed, at the removal stages upon 

completion of the production.

In Chapter 3 the evaluation of wave loads was assessed in the 

context of articulated columns. The way in which drift forces could be 

generated was also assessed, as was the importance of accounting for 

the forces up to the instantaneous water surface and in respect of 

structural displacements. The Morison approach to loading, 

incorporating the aforementioned features, is reasonable provided the 

ratio of D/L does not exceed about 0.2 and it provides a means by 

which the viscous drag relative speed squared term can be 

incorporated. This is of merit in the analysis of compliant structures 

in general and articulated columns in particular.

The rigid body dynamic analysis presented in Chapter 4 

highlights the transient response which the time series analysis 

predicted. Experiments confirmed the phenomenon and it will have a 

major part to play in the design of the upper support column and the 

deck structure. Deck clearance requirements will obviously have to be 

assessed with the increased pitch in mind. It is also likely to 

feature as a primary consideration in respect of production and, where 

applicable, drilling activities. The transient phenomenon is damped 

out in time as expected. Two numerical procedures were used, ie direct 

integration and multi-step methods, and they produced essentially the 

same results so that confidence in the mathematical modelling was 

established.
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The relationship between the transient and the viscous drag 

damping was noted, especially when waves superimposed on currents were 

examined. Non-linear wave theory had a marked effect on the response, 

and this, together with the effects of currents, exemplifies the need 

to account for viscous drag in the analysis. The assessment of the 

minimum deck clearance required must take all of these factors into 

account.

All possible sources of dynamic instabilities were examined 

and it was shown in Chapter 5 that several of these could give rise to 

Mathieu type and other instabilities. Again, viscous drag damping 

plays an important role and is an area for concern, since it will be 

of fairly low order at full scale Reynolds numbers. The time series 

analysis provides an efficient means of assessing the magnitude of the 

non-linear oscillations. The importance of heave forces and of the 

consistent time history approach in accounting for the instantaneous 

position of the structure in the waves was established.

As noted, fully operational production platforms are unlikely 

to experience Mathieu type instabilities as a consequence of first 

order wave excitation. However, other sources may exist and special 

attention has to be paid to the installation procedure to ensure that 

consequent pitch frequencies are sufficiently low. Harmonic resonant 

response instabilities brought on by specific wave groups were shown 

to produce large motions and clearly their possible existence in a 

seaway must be carefully assessed and allowed for. The versatility of 

the time series analysis in dealing with wave groups was demonstrated.

Having examimed the rigid body dynamic behaviour, attention



was directed towards other areas considered likely to give rise to 

problems. Hence, the examination of elastic vibration as presented in 

Chapters 6 and 7. The free vibration finite element analysis suggests 

that the first and second mode flexural vibration frequencies are 

likely to give cause for concern. The single most important parameter 

in this respect is the deck mass and it was shown that a substantial 

relocation to the buoyancy chamber greatly improved the vibration 

characteristics. This, albeit for different reasons, concurs with the 

findings in Chapter 2 where the advantages were related to static 

stability.

Vibration constraints mean that the thickness of the lower 

column is likely to be such that it can be designed to withstand the 

external water pressures. This is beneficial both from the point of 

view of access to risers, etc and in extending operational depths as 

well as reducing buoyancy chamber requirements. For a maximum payload 

of approximately 60,000KN, the circular cylindrical annular steel 

section investigated is feasible for maximum water depths of 

approximately 300 metres. At this depth the payload to structural 

weight ratio for the structure is of the order of 1.00 and this is 

competitive with alternative compliant structure concepts. The 

adequacy of the finite element method as a means of conducting 

parametric studies of the free vibration analysis of articulated 

columns has been demonstrated.

Although the advantages of using a circular cylindrical 

watertight section for the lower column are significant, there are 

obvious limitations as described. The alternative structural form for 

the lower column comprising a lattice structure of small diameter 

members has been shown to be very efficient in reducing the vibration



problems. This form of structure will also be lighter than the 

equivalent circular cylindrical section. However, the design and 

fabrication will be less straightforward but the lattice structure is 

established and should not present unsurmountable problems. Access to 

risers and the maintenance of these are the main disadvantages.

The existence of the non-linear behaviour as observed in the 

rigid body analysis, necessarily determined that a full vibration 

analysis in the time domain be undertaken for completeness. This 

analysis confirms the existence of non-linear behaviour attributable, 

in the main, to viscous drag. The non-linear behaviour was observed 

experimentally and also confirmed by the analysis and this vindicates 

the analytical method used, despite possible limitations in the use of 

the Morison approach to loading. The non-linear behaviour referred to 

is, again, the transient drift, which comprises a steady varying 

component harmonic with the fundamental pitch frequency and a steady 

drift component. The ability of the simplified Morison approach to 

predict such behaviour is attributed to the viscous drag component and 

a component which accounts for the instantaneous position of the 

structure in the wave, the latter having much less effect than the 

former.The full time simulation finite element analysis, highlights 

the non linear behaviour which must be carefully understood and 

demonstrates the adequacy of this approach.

The design of new concepts must be conservative and can only 

proceed with confidence when consideration has been given to all 

conceivable problem areas. The process must involve evaluation and 

re-evaluation to increase confidence limits in the adequacy of the 

work. Recommendations for future work must involve an element of 

hindsight; nevertheless it is consideed that attention to the



following recommendations will augment the work presented in this 

thesis.

The buoyancy chamber is of such central importance both from 

the static and dynamic points of view, that it is essential to make an 

assessment of possible uses. This can be achieved in a most effective 

manner by cultivating the interest and involvement of potential 

industrial operators. Also in this context it will be desirable to 

undertake further investigation of the optimisation procedure as 

suggested in Chapter 2. These together are likely to make an effective 

contribution, in that they will help to resolve problems in that area, 

thus allowing for greater concentration on other critical areas for 

design, such as the lower column.

Further analytical work in respect of waves, both linear and 

non-linear, and currents is needed in order to fully understand the 

viscous drag contribution. Experimental work will be of considerable 

merit and a means of simulating a steady current to act with waves 

should be sought. Some form of carriage traversing the length of the 

experimental tank is possible.

Resonant responses are an area of concern and more analytical 

work is necessary in assessing the possibility of wave groups in 

random seas. There are a number of ways of doing this in the time 

domain and this work should be complemented with experimental 

observations. It would also be beneficial to generate wave groups from 

two regular wave trains.

The circular cylindrical section as proposed for the lower 

column, will have advantages in respect of construction and



maintenance. However, as water depths increase beyond 280-300 metres, 

a more critical appraisal of the vibration will be necessary if the 

simple section is to be retained. It may be necessary to make a more 

rigorous assessment of wave loading and this may require a full 

diffraction and radiation analysis in the time domain. However, the 

importance of the visous drag term is noted and would need to be 

accounted for in any such analysis. More work is required in the 

analysis of lattice structures especially in the time domain. The 

nature of the construction may give rise to increased viscous drag 

forces and these have been shown to be important.

In respect of first flexural mode vibration response, it would 

be desirable to make an assessment of any non-linear inertia 

forces (63). These may arise as a consequence of the vertical 

displacement of structural elements as the column vibrates. This can 

readily be incorporated into the time simulation analysis. Further 

analysis of the role of the viscous drag term in first flexural 

responses is also recommended.

Finally, it is recommended that some attention be given to an 

alternative structure: the conventional guyed tower designs provide

buoyancy support to a small percentage of the total weight of the 

structure, deriving most of its restoring stiffness from guy lines. It 

is believed that a structure with the desirable response 

characteristics of the guyed tower and the load bearing capacity of 

the articulated column is feasible. This structure would provide 

buoyancy support to a substantial proportion of the total weight and 

derive the remaining stiffness from attached guy lines. The dynamics 

of the guy lines would need to be incorporated but the time simulation 

analysis will readily accommodate this. Indeed, it would be necessary



to assess the dynamic behaviour of the guy lines to investigate 

resonant amplification of these.
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APPENDIX 4.1

Derivation of recurrence relations for displacement, velocity and 
acceleration for the linear acceleration method.

Assuming that the acceleration 0,of the column varies linearly over
a series of time steps t., t. + At, t. + 2At

i .  1  i

e

e(t)

A t

and if 0^ = 0 (t̂ )

then 6 (t) = ej.! + (6± - e ^ . t  , t < t t
At ^  1

and integrating w.r.t. time

6 (t) = 6-j-i .t+(0s-6-j-i) »t2 +6j-i
2At

and 0(t)= t2+ (0-j-0-j-i) . t3 +8j-i.t+01>_i
2 6 At

now let t = At 

then

fi - ft 4 A L  (6i+ 0 i - l )6i " QL-1^T i l l
and 0jl = +6-;-] »At+At2 (29i-i+9j)

rewriting we have the expression for the acceleration 

Si = ^  (ex-Si-i)-£  •
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APPENDIX 4.2

The evaluation of wave particle kinematics by Stokes 
fifth order wave theory proceeds in accordance with 
the following definitions.

Results of Stokes Fifth Order Wave Theory.

k0 JLVelocity potential, 0 —  = > <#>' cosh (nks) sin (n0)c
n  =1

c2 tanh (kd) , .Wave celerity, c —  = -— —  [1 + X2Ci + X4C2]

Surface elevation, t j  k r j  = ̂  cos (n0)
n = i

u 5Horizontal particle velocity, u — = n 0„ cosh (nks) cos (n0)

gd kd
s
X
n = l  

5
i

n  = 1

w _Vertical particle velocity, w —  = ̂  n (nks) sin (n0)
n = i

3u/3t JL ,Horizontal particle acceleration, 3u/3t —--- = ̂  n2 4>'n cosh (nks) sin (n0)

3w/3t JL \Vertical particle acceleration, 3w/3t  = - ) n2 <f>L sinh (nks) cos (n0)cue n=l
3<#>/at A  xTemporal derivative of <p —  ̂~ = ~ n cos*1 (nks) cos

P sPressure, p — - = 1 - —
P g d  d

c*
gd

30/at l 
~ ^ ~ + 2 f * 0

where
<f>\ = XAji + X3Ai3 + \SAi5, 02 = ̂ 2A22 + k4A24,
03 = X3A33 + \5A 3s, 04 = X4A44, 05 = X5A55,
17 j = X, 172 = ̂ 2^22 +  ̂ 4B24. ̂ 3 = X 3B 33 +  XSB 35,
P4 = X4B44, p's = XSB55.

The coefficients A, B, C are known functions of kd only, given by Skjelbreia and 
Hendrickson

The equations to be solved simultaneously are:-

2-(X+B33X3 +(B3s + B s5)X!] = ^ :kd 2d

kd tanh (kd) [1 + C, A2 + C2X4] = 4n2 —
gT2

Fifth order wave lengths usually lie somewhere between 
linear wave length and 1.2 times linear wave length; a 
suitable starting point for an iterative procedure would 
lie between these two limits.
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APPENDIX 4.3
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APPENDIX 4.4

With reference to fig. 4.29; the X and Z axes are orthogonal 

and in the horizontal plane parallel to the sea bed. The motion of the 

column is considered in the 0 plane YOP, which is defined by the

angle 0 and in the ij; plane XOZ, as shown. Rotations are, therefore,

considered about the OY and OX axis, respectively.

The Lagrange equation for a system of forces can be written:-

3 3l  3l
3t 3̂ 3 q ^q

where L = T - V

and Fq = non-conservative forces

T = kinetic energy of system

V = potential energy of system (only conservative forces)

Consider an element of mass at a distance rfc from the

articulation. It will have a velocity expressed in spherical

co-ordinates equal to (r̂ -2 .(02 + i> ̂  sin2 0).

The kinetic energy of the element can be written, therefore, as:-

T = ^m.rt2 »(0 2 + i[) 2 sin2 0)

= } .1.(0 2+ ijj2sin2 0)

The potential energy is given by, V = -(1 - cos0)mg

and the Lagrangian is written as L = T - V

. = i I ( Q ^ ^ s i n 2 0) + mg( 1 - cos0 )

applying Lagranges method by the differentiation of L with respect to

0 , 0, \p and ijj the equations of motion are derived.



276,

16 - Iij>2sin0 cos0 + K sin0 = Mg

and iijjsin̂ ê  + 2Iijj 0sin 0cos0 =

where K = (Bp.RKB - W.RKG)

* 2 * ’The ijj and the ■ \]j 0 part in the second term in each equation is 

attributed to a centrifugal and a coriolis component of force, 

respectively.

M_ and M. are the sums of moments about the O X 1 and OY axes,
0 ^ '

respectively. As for the SDOF system, the non-conservative moments

are calculated using the modified form of the Morison equation to

account for column motions.

Evaluation of Forces

Forces are evaluated on the basis that components normal to 

the axis of structure are relevant. Accordingly, the drag components 

are derived as follows assuming relative velocity of the structure 

and fluid.

Consider a current VC at an angle to the X axis
VC = V C c o s a  VC = V C s i n a  VC = 0 x z y

The resultant velocity of current and wave particle velocities Ures 

is given b y :“

'res

U + VC* 
V + VCy 
Z + VC_

where z = 0.0

Components normal to the axis of the structure, U ^ ,  Uny and Unz are 

obtained by means of the transformation matrix,
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A =
( 1 - < V )
“Cx Cy

“cxcz

CjjCy
(1 -  cy 2 }

- c  c

-CVCX'-'Z
cy^z

( 1 -  cz?h

where Cx = sinBcosijj

Cy = cos(

Cz = sinQsin^1

ie V
-< uny
J-̂ nzj

- A,ures

the velocity of an element of the structure at a distance r

articulation 0 is given by:-

'ucx cosSsin'p sintpcos^

«< ucy
uczk. J

_= r.B. where B = -sin 0 0 
_cosdcos\p -sin0sini(j

the relative normal velocity is then given by:-

Urx = Unx " Ucx

ury uny “* ucy

^rz Unz - Ucz

so that MDX
Mq y — ^p. r «D.Cq • | Uj-e^ | (Ur x /U^y/Urz)^
M,DZ

/ 2  1 X
where Ur e i  = / Urx + U ry + Urz

The moments of inertia forces are then calculated as follows:-

m i x ' m i y ' m i z = r r  -r -

The Fluid Added Mass moments of forces are calculated thus:-

MAX< MAY' MAZ = pV-r -(CM -<> -|
CX

cy
cz
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where ac x , aCy and acz are differentials with respect to time of the 
velocities of the structure as given by U c x , UCy and Ucz

ae acx = [0cos0sinijj + i|;sin0cos^ - (02 + 2) sin© sin^ + 20'i,cos0cos^]

aCy = [0sin0 - 02cos0]

acz = [0cos0cosi/; - $sin0sini|; - (02 + ip2 )sin0cos^ - 20^cos0sin^] 

the total moments of forces are then given by:-

-MAX + M IX + m d x
NLpy = "MAY + m ty = m d y
Mt Z = _m a z = M IZ = m d z

By vector analysis the moments in the 0 and ip directions are 

given by:-

di
M = I CyCMrj^sinil; + ttpZ cosijj) - MTYsin0).dr

di
and M = J (Ĉ T̂X - CxMT Z )dr 

o

these moments are substituted into the equations of motion which can 

then be solved incrementally.
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APPENDIX 5.1

EVALUATION OF ADDED VIRTUAL MASS COEFFICIENTS IN THE CALCULATION OF 

HEAVE FORCES

Consider the disc as shown in fig. A5.1.

2 R s i n 0

2 R  

F I G  A5 . T

The added virtual mass of a strip

of width 6x and length 2Rsin0 is
2equal to t (RsinQ) C dx, where C * V V

is appropriate to an aspect ratio

of 2Rsin0/h.

By integrating, the added virtual mass for the complete disc 
may be written as:-

tt/2r
Complete AVM = 2 pTTC (Rsin0) Rd0.sin0 V

C^ will be a function of 0 and the evaluation of this integration can 

be made more staightforward by taking a mean aspect ratio for the 

whole disc o f :-

ttR = ttR

2Rh 2h
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The complete AViM is then written:- 

t t / 2

AVM = 2 pTT(R3sin30)Cv. J.di

where J = 0.635 and accounts for the 3-dimensionality of the flow.

Values of C as a function of the aspect ratio 7TR/2h are V
obtained from fig.A5.2.

C V

3-0

2-5

2-5 %

ADDED VIRTUAL MASS COEFFICIENTS. CV. 

FI G.A5.2
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APPENDIX 7.1

EXPERIMENTAL TEST RESULTS FOR ELASTIC 
VIBRATION OF MODEL ARTICULATED COLUMN

Wave
Freq
(Hz)

Ht
(mm)

Top
Displ

Mid
Displ

Ratio
(Mid/Top)

Steady
Drift
Top

TEST CONDITION 1
4 Washers per node plus 17 on top. Freq 1.3Hz
1.3 2V 14 5 13.3 2.66 3.48
1.3 3V 30 10. 34 25.8 2.49 6.89
1.3 4V 47 19.8 39.58 1.99 17.2
1.3 5V 58 24.13 47.5 1.96 27.5
1.3 6V 60 25.0 50.0 2 37.93
1.3 7V 70 30.17 56.66 1.878 44.8
1.3 8V 80 31.03 60.83 1.96 51.7

TEST CONDITION 2
5 Washers per node plus 18 on top. Freq 1.22Hz
1.22 3V 33,33 8.33 25.6 3.07 5.17
1.22 4V 46.67 14.16 35.3 2.49 8.6
1.22 5V 60.0 20.0 45.0 2.25 23. 27
1.22 6V 68.33 20.0 46.55 2. 32 27.5
1.22 7V 76.67 26.67 55.08 2.06 34.48
1.22 8V 85.00 30.0 61.29 2.04 44.8

TEST CONDITION 3
6 Washers per node plus 16 on top. Freq 1.18Hz
1.18 3V 33.3 9.16 23.6 2.57 5
1.18 4V 46.67 15.83 35.25 2.23 12.5
1.18 5V 65.0 23.33 48.0 2.05 26.6
1.18 6V 70.0 30.83 54.75 1.77 30.0
1.18 7V 78.33 33.33 60.0 1.8 43.3
1.18 8V 86.67 34.16 66.0 1.93 60.0

TEST CONDITION 4
7 Washers per node plus 17 on top. Freq 1.175Hz
1.15 17 0
1.2
1.155

16
16

5.0
5.0

1.175 20 16/10 24/22 1.5 7.0
1.175 30 22/18 36/36 1.63 10.0
1.175 40 24/20 42/39 1.75 12.0
1.175 50 32/28 53/50 1.65 20.0
1.175 62 40/40 66/65 1.65 32.0
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