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IT

SUMMARY

This thesis reports experimental and theoretical investigations on reinforced and
partially prestressed concrete beams subjected to multiple combinations of bending
and torsional loads. The beams were idealised as hollow beams with the walls in a
state of plane stress. Elastic stress field at ultimate load in conjuction with a yield
criterion was used to obtain the required quantities of reinforcement. The type of
yield criteria adopted in this study is the classical ultimate limit capacity concept
originated by Nielsen.

The experimental study consisted of testing four reinforced concrete beams and
two partially prestressed concrete beams. All the beams were 300mm square and
hollow. The parameters investigated were load combinations and load history. The
test results indicate that the adopted approach satisfactorily predicts the ultimate
strength of the beams under multiple combinations of bending and torsional loads.
A plane stress finite element program was used to carry out a non-linear analysis
of the experimental test beams. Good agreement was obtained between theoretical

results assuming monotonic proportional loading and the overall behaviour of tested beams.
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Nodal displacement
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CHAPTER 1

INTRODUCTION

Beams in practice are subjected to many types of loads like axial and shear
forces, bending and twisting moments, etc. In general the beam is subjected to
multiple load cases which result in non-proportional load sequences. However
strength determination in usual structural engineering practice is based on failure
under monotonically increasing, proportional loadings. The effects of non
proportional load sequences are largely ignored.

In the case of beams subjected to combined bending and torsion,
considerable work has been done using proportional loading. The aim of the
present study is to extend this to non proportional combined bending and torsional
load cases.

The study was confined to a short experimental programme of tests on
300mm square hollow beams subjected to non proportional combined bending and
torsional load cases. The beams were designed according to the classical limit state
concept such that the beams resisted any combination of non propertional loads.
Both reinforced and partially prestressed concrete beams were tested. The results
appear to indicate that the classical limit state concept called Direct Design
Approach is adequate for the design of beams subjected to non proportional loads.

The thesis is organized in seven chapters. Chapter two is a review of
torsion and torsion combined with bending applied to reinforced concrete beams. In
chapter three is presented the method of design adopted, and its application for
designing beams subjected to non proportional combination of bending and torsional
load cases. [Experimental set up and test programme are described in chapter four.
The experimental results and their discussion are presented in chapter five. In
chapter six is presented the 2-D non linear finite element program used to analyse
the reinforced concrete beams tested. The analysis to determine the overall

behaviour of beams under multiple loading was done assuming monotonically



increasing, proportional loadings. Finally, conclusions and recommendations for

future work are presented in chapter seven.



CHAPTER 2

REVIEW OF PREVIOUS INVESTIGATIONS

2.1 INTRODUCTION

Considerable amount of work has been done on beams subjected to torsion
and torsion combined with bending. A detailed review of the state of the art is
given in publications by Cowan(7) and Hsu(1).

In this chapter is presented a brief summary of research findings dealing

with torsion and torsion combined with bending.

2.2 TORSION

Torsion is a major factor to consider in the design of many kinds of
reinforced concrete structures, especially reinforced concrete beams. Torsion is
generally a secondary effect in reinforced and prestressed concrete buildings, it
occurs as a consequence of compatibility requirements as in grid systems. The
reduction of torsional stiffness due to cracking does not necessarily lead to collapse
but merely to a redistribution of the loads in the structure. When torsion arises as
a primary effect, redistribution of load paths is not possible. It is therefore

necessary to design the member to resist the effect of torsional forces.

2.2.1 Experimental Investigations

During the past five decades, detailed experimental programmes were
undertaken to understand the behaviour of members subjected to torsion. Hsu and
Mo(17,18,19) Jisted 108 tests on reinforced concrete beams and S0 tests on
prestressed concrete beams subjected to torsion available in the literature.

Before cracking, torsion is resisted by plain concrete alone. Failure was

generally assumed to occur when the maximum tensile stress due to shear reaches



the tensile strength of concrete. In plain concrete members subjected to pure
torsion, the beam fails by the formation of helical cracks inclined at 45° as shown
in figure 2.1.(a). Hsu reexamined the mechanism of failure with the aid of a
high-speed movie camera at a speed of 1,200 frames per second. The film
projection speed was 20 frames per second, thus the failure process was slowed
down and clearly observed. The movie showed that the first crack, which is
inclined at 45° to the axis of the beam, appeared on the front face. It gradually
widened and progressed accross the top of the beam. Until, finally, the concrete
crushed on the back face. This failure process and the study of the failure surface
as shown in figure 2.1.(b) revealed a bending—type failure.

For reinforced concrete beams, the stiffness of the section decreases rapidly
after cracking. But the ultimate strength is considerably increased over that of plain
concrete beams and large plastic deformations has been observed(1). The
post—cracking stiffness of reinforced concrete beams depends on the amount and

disposition of the reinforcing steel.

2.2.2 Theoretical Approach

2.2.2.1 Pre—cracking strength of section subjected to pure torsion

The study of the behaviour of reinforced concrete beams under torsion at
pre—cracking is based on plain concrete sections, because the contribution of
reinforcing steel at this stage is negligeable. Three theories are used to predict the
torsional strength of plain concrete members. These are the elastic theory, the

plastic theory and the skew—bending theory.

a) Elastic Theory (1,7)
St.Venant's classical solution predicts reasonably well the torsional strength
of plain concrete beams. In applying this theory, it is assumed that torsional failure

of plain concrete member occurs when the maximum principal tensile stress equals



Figure 2.1.a BHelical Crack on plain Concrete Beam under pure Torsicn .

compression
" Zoéne

Figure 2.1.b Skew Bending surface of rectangular section subjected

to pure Torsion .



the tensile strength or torsional shear strength of concrete. In a rectangular section,
the maximum shear stresses occur on the periphery at the middle of the longer sides
of the beam. The applied torque is expressed as
T = ox2.y.7¢
where a = St.Venant's coefficient depending on the ratio y/x .
x,y = cross—sectional dimensions y > x .

maximum torsional shear stress.

Tt
The elastic theory when compared with test results indicate that the theory
underestimates the ultimate strength of plain concrete members. The test strength is
approximately 50 % greater than that predicted by theory(‘). This is due to the
limited ductility of concrete which allows a certain amount of redistribution of

stresses.

b) Plastic Theory (1)

In this case we assume that concrete is a ductile material, then the
strength of concrete beams can be estimated from plastic analysis. Similar to elastic
theory, failure was assumed to occur when maximum principal tensile stress reaches
the tensile strength of concrete. Assuming full plasticity, the plastic failure torque,
T, can be expressed by :

T = ozp.xz.y.t (2.2)
Where ap = (0.5 — x/(6.y) , ap is approximately 50 % greater than « used in
the elastic theory. Thus the plastic theory explains the reason for the extra strength
underestimated by the elastic theory.
The plastic theory, however has the following weaknesses
1) Principal tension is the cause of torsional beam failure, but no significant plastic
behaviour has been observed in test of tensile strength of concrete.
2) Torsional failure of plain concrete members is quite brittle. There is no sign of
a plastic rotation.
3) The theory cannot account for a size effect. Tests results indicate that for small

sections, the calculated plastic torques are smaller than test values, whereas the



opposite is the case for large sections.

¢) Skew-Bending Theory (1)

The previous theories are unsatisfactory because they do not predict the
ultimate strength of plain concrete beams under torsion. Hsu surmised that the
failure criterion used in these theories may be incorrect. Consequently he developed
a new theory based on the observed skew—bending failure. He assumed that failure
is reached when the tensile stress induced by a 45° bending component of torque on
the wider face of beam is equal to the modulus of rupture of the material. Figure
2.2 shows the applied torque resolved into two components acting on the failure
surface. These are the bending component, T , which is assumed to be
responsible for the observed bending type failure and the torsional component, T;.

According to Skew—Bending theory. T pcan be defined as follow :

Tp = T.cos¢ = (x2.y/6).cosecd.f, (2.3)
Where ¢ = angle between tensile cracks on wider face and axis of beam.
f, = modulus of rupture of concrete.
T = (x2.y/3).f;.cosec26 (2.4

To find the minimum torsional strength, we differentiate equation (2.4) with respect
to 6 and equate it to zero :

dT/dé = (x2.y/3).f;.(2.cot26.cosec26) = 0
A minimum value is obtained when 6 = 45°. Therefore substituting ¢ = 45° into
equation (2.4)

T = (x2.y/3).f; (2.5)

It is noticed in equation (2.5) that the effect of the twisting component, T{ , is not
considered. According to tests by McHenry and Kerni(8), a perpendicular
compressive stress of equal magnitude due to T; will reduce the tensile strength of
concrete by 15%. Since bending failure in plain concrete is due to tension, the
modulus of rupture in equation (2.5) should also be reduced by 15%. Thus
equation (2.5) becomes :

T = (x2.y/3).(0.85.f,) (2.6)



Comparison of the equations provided by these three theories shows that they all are
functions of the same parameter x2.y. They differ only in the non dimensional

coefficients (oz,ap) and in the material constants. In the elastic and plastic theories,

the material constant is the direct tensile strength of concrete, f; . In the
Skew—Bending theory, it is the reduced modulus of rupture (0.85f . ). A
comparison of the coefficients is shown in figure 2.3. It can be seen that the

St.Venant's coefficient in the elastic theory and Nadai's coefficient in the plastic
theory are functions of y/x . Whereas the coefficient in the Skew—Bending theory

is a constant of 1/3 which lies between St.Venant's and Nadai's coefficients.

d) Thin Walled Tube Theory (21)

The shear stress near the perimeter is mainly responsible of the torsional
resistance of a member, because it has the largest lever arm. For this reason it is
helpful to approximate the solid section as a thin—walled hollow tube. According to
Bredt's thin tube theory, the maximum torque to be resisted by the section can be

expressed as :

T = 2.A5t.7¢ 2.7)
Where A, = area enclosed by the 'centreline' of cross—section of the tube.
t = thickness of the tube wall.

If the tube has re— entrant corners as shown in figure 2.4, then a considerable
stress concentration may take place at the corners, but equation 2.7 ignores this fact.
The stiffness relationship for the thin—walled section is given as :
T = G.C.dy/dz (2.8)

In which C = torsional inertia defined as 4.A,2.t/u

u = perimeter of the section centreline.

G = shear modulus of concrete.

dy/dz = rate of twist.

z = distance along the beam.
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2.2.2.2 Post cracking behaviour of beams subjected to torsion

In practice, the shear reinforcement is provided most conveniently in the
form of Ilongitudinal bars and vertical stirrups. The stirrups resist the vertical
component of the diagonal tension, and the longitudinal bars resist the horizontal
component as shown in figure 2.5, while concrete sustains diagonal compressive
forces parallel to the cracks. This behaviour is similar to that of the classical space
truss model. Tests carried out till now are in good agreement with the fact that
reinforcing steel in association with concrete is required to resist torsion i.e the
diagonal concrete struts are needed. This approach forms the basis of the British
code (BS 8110)(®) recommendations for torsional design.

Many models have been developed for calculating the torsional strength of members
with both longitudinal steel and stirrups. These models can be divided in two types:

The truss analogy model and the skew-bending model.

A) Space Truss Model (10,11,12,13)

The space truss method is based on the idealisation of a reinforced
concrete beam as a space truss, consisting of longitudinal bars called stringers acting
as compression or tension chords, and stirrups called ties. The cracked concrete
acts as compression diagonals. Figure 2.6 shows a typical space truss model.

The space truss model is based on the following assumptions :

1. Longitudinal and transverse steel carry only axial tension; i.e., the shear forces
carried by dowel action of the reinforcement are neglected.

2. The tensile strength of concrete is neglected.

3. For a solid section subjected to torsion, the concrete core does not contribute to

the torsional resistance.

4. All reinforcing steel passing through the failure surface have reached their

respective yield strength.
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To obtain a lower bound solution for any applied load, a statically admissible state
of stress not violating the yield criterion should exist. This means that the applied
and resisting forces in the reinforcing steel cannot exceed the yield forces nor can
the stress in the concrete strut be greater than the compressive stress of concrete
fou
Consider the freebody diagrams shown in figure 2.6. The cross—section is
considered to be symmetrical about the Z—axis. The longitudinal steel forces are
assumed to be concentrated in the stringers with force (H = Agfy) at the corners.
The stirrup reinforcement is taken to be constant on all sides of the beam.
Under torsion, a constant shear flow q, will develop in the wall of the box section.
It can be expressed as :
q = T/(2.Ap) (2.9)
The uniformly distributed concrete stress o is inclined at an angle ¢ to beam axis,
see figure 2.6.a . The diagonal stress is represented by a compression resultant
force Ry and Ry, on the flange and web of the beam respectively.
The resultant force Ry, is given in terms of shear flow q as :
Ry.siné = q.y,
Ry, = q.y,/siné (2.10.a)
Similarly, R¢ is obtained as
Rf = q.x,/sin¢
Where y, , x, are the depth and width of stirrup legs.

Taking a section perpendicular to the struts, from equilibrium the following relations

are obtained :

Ry = o¢.t.y,.cosf

oc = Ry/(t.y,.cos0) = q.y,/(t.y,.cosf.sinf)

gc.t = g/(sind.cosé) (2.10.b)

Assuming all the stringers are equal in cross—sectional area, the force in each
stringer H is obtained from the contribution of horizontal components of results R¢
and Ry, on the flange and web of the section respectively.

H = (1/2)(Ry, + Rf).cosé



Figure 2.6 Space Truss Model for Torsion.



But Ry, = q.y,/siné , Rf = q.x,/sinf (equation 2.10.a)
Hence

H

(1/2).q.(y,*+ x,).cosf/siné

H

As-fyl = (1/2).(y,*x,).q.cotd (2.11)
Where Ag,fy) @ Area and yield stress of one stringer.
According to figure 2.6.b , the force in a stirrup is expressed as :
Oc-t.sin?f.sy = Agy.fyy
Where Asv’fyv : Area and yield stress of stirrup leg
Sy : Spacing of stirrups
Substituting for o;.t from equa 2.10.a we get
(q.sin26/sinf.cos).s, = Asv-fyv
Therefore
Asv~fyv = q.sy.tan@ (2.12.2)
From equation 2.12.a, we can deduce the angle of inclination of the diagonals to
the beam axis as :
tanf = (Asv.fyv)/(q.sv) (2.12.b)
If now we consider the entire cross—section, the total force in the stringers is four

times the value found in equation 2.11. It can be expressed as :

YH = 4.As.fy1 = q.2.(x; + yp).cotd (2. 13)
Where u = 2(x, + y,) = perimeter of stirrup centreline.
Ag] = total area of stringers.

Also substituting for q from equa 2.9, we obtain stirrup force in equa 2. 12.a as :
Agy. fyv = (T.sy/2. Ay).tand (2.14)

Similarly, the diagonal stress o, (equation 2. 10.b) can be expressed as :

e = (T/2.A4. 1).1/(sinb.cos ) (2.15)

The state of stress described by equations 2.13, 2.14 and 2.15 is statically admissible,
i.e. it fullfills all equilibrium equations. Assuming an underreinforced cross—section,
i.e. yielding of the steel will take place prior to crushing of the concrete, the
strength of the section will be determined by the yield forces in the stringers and

stirrups.  The ultimate torsional resistance T, of the section is reached if both the
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stringers and stirrups yield. Equations 2.13 and 2.14 give :
T, = (2.A0.A51.fy| /u).tan 6 (2.16.a)
Ty = (2.Ag.8y-fyy /sy ).cotd (2.16.b)
Eliminating T,, or 6 the final expressions are obtained :
tanf = [ (Agy-fyy /sy ).-u/(Agp.fy) 12 (2.17)
Ty = 280 [ (Agy-fyy/sy )-(Agfyl /u) 1 (2.18.a)
If the ratio of transverse to longitudinal steel is equal to unity, equation 2.17 gives
tané= 1.0 , hence 0=45° ; and equation 2.18.a reduces to :
T, = (2-Ao-Asv-fyv Isy ) = (2.A0.A51.fy1 /u) (2.18.b)
Comparison with test carried out at various research establishments indicate very

good agreement between the observed ultimate strength and the predictions of

equation 2.18.a .

B) Skew Bending Model (1,11)

The concept of the skew bending theory is based on the observed failure
mechanism characterised by the yielding of tension reinforcement on the three faces
of the beam and formation of compression ‘'hinge' on the fourth face. Figure 2.7
shows a skew bending failure model.

The skew bending model is based on the following assumptions :

1. Longitudinal and transverse steel carry only axial tension; i.e, the shear force
carried by dowel action of the reinforcement is neglected.

2. The tensile strength of concrete is neglected.

3. Both the longitudinal bars and stirrups, which intersect the failure surface, yield
at failure of the beam.

4. The width of compression struts is very small compared to the overall dimension

of the section.

From equilibrium conditions at a failure surface, the following equations for ultimate

torque are derived :

In the first equilibrium condition it is assumed that the compression zone is very
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small, therefore internal lever arm is taken as x— 2¢ = X The torsional

-
moment is then given by :
T = Agy.fyy.(y,.cott/sy ).x; + Agyfyy.(x,.cotb/sy ).y,

Where Agy , fyy = area and yield stress of stirrup.

X, , ¥y, = width and depth of stirrup.
¢ = concrete cover.
sy = spacing of stirrups.
Introducing enclosed area of stirrup Ay = x,.y, into the above expressions gives :
T = 2.A5.(Agy-fyy /sy ).cotd (2.19)

Equation 2.19 expresses the fact that torque is resisted by tensile forces in the
stirrups. These tensile stirrups, however, also cause an internal bending moment :
M = ASV.ny.()g.cotf)/sv ).(y, + x,; ).coté (2.20.a)

The function of the longitudinal bars is to neutralise the internal bending moment in
equation 2.20.a, thus making internal equilibrium possible. Moment from the
longitudinal bar is given as :

M= (y, / v). Asl-fyl-x1 + 2.(x, /u)-Asl-fyl-(x1 /12)

M

(1/2)-Asl'fyl-x1 (2.20.v)
In which
Ag fyl = area and yield stress of longitudinal bars.
u = 2.(x, + y, ), perimeter of the centreline of stirrups.
Therefore the following condition must be satisfied :
M = Agy.fyy.(x,.cotb/sy ).(y, + x, ).cotf = (1/2). Agp.fy).x,
This gives :

cot?0 = (Ag.fyl /u).sy H(Agy.fyy )

tan26 = (Asv-ny /sv).u/(Asl.fyl ) (2.21)
Substituting this equation (2.21) into 2.19 , we get :
Ty = 2.A0 [ (Agfy /u).(Agyfyy /sy ) ]2 (2.22)

T, : ultimate torque
For 'equal steel area'

i.e (Asv-fyv Isy ) = (Asl-fyl /u) ; tang = 1 and ¢ = 45°



Accordingly, equation 2.22 reduces to :
Ty = 2.A0.(Asy-fyy /sy) = 2.A0.(A51.fy1 /u) (2.23)
Equations 2.21 and 2.22 obtained in the skew bending model are identical to
equations 2.17 and 2.18.a derived by truss theory.
After description of these two theories, the following observations are made :
1. The quality of concrete plays no part in the ultimate torque. The ultimate
torque equations hold only for underreinforced beams, i.e. crushing of concrete is
avoided.
2. Altough both methods are based on different idealised failure surface, they lead
to the same ultimate strength solution.
Thurlimann{12:73) has introduced limitations on the value of tano. To avoid the
problem of excessive cracking due to crushing of diagonal compression struts before
yielding of reinforced steel, such limits are required. The limit deduced from
experimental tests is given by

1/2 ¢ tan6 g 2 (2.24)
If large cracks develop, then the aggregate interlock desintegrates. At lower limit
tan¢=1/2 the crack strain and the stirrup strain are equal to 5 and 4 times the
longitudinal strain, respectively. = Hence, it can be expected that yielding of the
stirrups alone will lead to a shear failure without yielding of the longitudinal steel.
The opposite holds for tang=2. In this case the stirrups will no longer yield and a
bending failure will result.

The prediction from the theoretical models have been compared to
experimental model. It is observed that the actual torsional strength of a member is
overestimated.

The ultimate torque expression for a beam with 450 crack angle is given as:

T, = 2-A0-Asv~fyv/sv (2.25)

Equation 2.25 was derived by Rausch in 1929, Since then efforts have been made
to modify this equation. The modifications suggested to improve this prediction are:
a) The addition of an efficiency factor for reinforcement.

b) An arbitrary definition for the centreline of the shear flow.



¢) The deletion of the concrete cover.
d) Use of a new stress strain curve for softened concrete.
The assumption in the first modification is that the reinforcement is only partially
efficient. An efficiency factor, which less than unity, was incorporated in Eq.2.25
so that the constant 2 is reduced. In the ACI code the torsional strength of an
underreinforced concrete member is expressed as :
Ty = T + O‘t-Ao-Asvfyv/Sv (2.26)
where o4 = 0.66 + 0.33 y,/x, < 1.5

T. = torque resisted by concrete.
The equation 2.26 gives a torsional strength considerably less than predicted by
Eq.2.25.
The second modification is to reduce the area A, by making an arbitrary definition
for the centreline of the shear flow. It is assumed that the centreline of the shear
flow coincides with the lines connecting the centres of the corner longitudinal bars.
This approach was first suggested by Lampert and Thurlimann in 1968 and was
adopted by the CEB— FIP Model code.(25) In the CEB—FIP model code, Ty, is
expressed as :

T

u Tey + 2.A1.Asv.fyv.cot6/sV (2.27)
where A, = the area bounded by the lines connecting the centres of the corner
longitudinal bars.

B = angle of inclination of the concrete struts.
Tey = T when T < T,
Tey = 0 when Ty » 3.T,
Since the longitudinal bars are always placed within the stirrups, A, will always be
less than A,. For practical purpose T from Eq.2.27 will be less than T from
Eq.2.25.
The third modification was suggested by Collins and Mitchell in 1980.(22) This
approach also tries to reduce the area A, by making an arbitrary assumption. The
equation proposed is

Ty = 2.A,. Agy fyy.cotfiisy (2.28)



where A, is the area bounded by the centreline of the shear flow. This centreline
of the shear flow is assumed to coincide with the centroidal line of the equivalent
compression stress block in the concrete struts. Thus the concrete cover outside the
centreline of a hoop bar is assumed to be ineffective. Tests indicate that this is
true especially at the corners.

Actually, the strength of concrete struts is greatly reduced by the diagonal

crack. This phenomenon is called the softening of concrete. The compression
capacity of the concrete in the longitudinal direction is reduced by the transverse
tension in the reinforcement. The stress—strain curve of the softened concrete has
approximately the same shape as that of nonsoftened concrete, except that the stress
has been proportionally scaled down.
The fourth modification was suggested by Hsu and Mol 1 7,18,189), Using the
softening effect of concrete, they presented a new theory which predicts the torsional
behaviour of 108 test beams available from the literature. This approach will not
be presented in this investigation, more details can be found in references
(17,18,19).

In the first three approaches an arbitrary assumption is necessary to bring the
theory closer to the test results. In the fourth approach there is no need to make
arbitrary assumptions, however, the theory presented in this approach is too complex
and is unsuitable for design practice. Therefore several simplifications and design

limitations are necessary for design practice.

2.2.2.3 Post—cracking Torsional Stiffness

The post— cracking torque—twist relationship can be expressed as :
T = G.Cgp.dW/dz (2.29)
where G.C.. = post—cracking torsional rigidity.
It has been shown(.2) that the behaviour and strength of a solid section after
cracking are identical to that of hollow section with the same overall dimension,

material and steel arrangement. In other words, a solid section can be idealised as



b2
[

a hollow section for the purpose of determining post— cracking stiffness.
Post— cracking torsional rigidity is given as.(1,2,21)
G.Cor = (4.Eg.Ap2.Aqy /(usy )).(r/r+1) (2.30)
where 1 = (Ag /Agy )(sy / u) = cot26 of Eq 2.17 if fy) = fyy
Eg = elastic modulus of steel.

Equation 2.30 is only true for the case of underreinforced section, because ultimate
failure is reached after yielding of steel and not crushing of concrete. The drop in
torsional stiffness after cracking may be characterized by the ratio of cracked rigidity
G.C.y to uncracked rigidity G.C. From equation 2.8, uncracked rigidity of a hollow
section G.C is defined as : 4.A52.t.G/u
G = 0.5 E; , if we assume that Poisson ratio equal zero.
G.C.r /G.C = (Eg.Agy. (r/r+1)) / (0.5.E..s,.1)

= (2.n.Agy )(t.sy ).(r/r+1) (2.31)

Where E. = Young modulus of concrete.

n Eg / E; , modular ratio .

2.3 TORSION COMBINED WITH BENDING MOMENT

Both the theoretical and the experimental results show that a moderate
amount of bending does not decrease the torsional strength, but on the contrary
increases it. The mode of failure of reinforced concrete beams subjected to
combined torsion and bending moment is difficult to predict, because failure patterns
associated with pure bending or pure torsion only are very different from each
other. Many parameters control the mode of failure. These parameters are the
ratio of bending to torsional moment, strength of concrete, ratio of cross—sectional

dimensions and quantity and disposition of reinforcing steel.

2.3.1 Experimental Investigations

Beams provided with both longitudinal and transverse reinforcing steel



generally behave similar to plain concrete beams before cracking. However, after
cracking the longitudinal and transverse steel become stressed, while the concrete
sustains diagonal compressive forces parallel to the cracks.

This increase in the reinforcing bars stresses is due to the redistribution of stresses
after cracking. A complicated cracking pattern with evidence of flexure and
torsional influence has been observed. Failure of the beam is caused by yielding of

steel and not crushing of concrete.

2.3.2 Theoretical Approach

2.3.2.1 Post cracking Behaviour of Beams under combined Torsion and Bending

There are two main approaches to assess the ultimate strength of
reinforced concrete beams subjected to combined torsion and bending. These are
the skew bending model and the space truss model. Figures 2.8 and 2.9 shows
typical space truss and skew bending failure models. Using the postulated failure
mechanism and adopting some simplifying assumption discussed in section 2.2.2.2 for
the case of pure torsion, ultimate strength equations are established from equilibrium
consideration for combined loading.

Figure 2.10 shows the superposition of the longitudinal bar forces F(T) and
F(M) induced by torsion and bending. It can be seen that the forces in the bottom
stringers due to torsion and bending are additive, whereas the forces in the top
stringer are substractive. The transverse reinforcement contribute to the torsional
resistance. Failure of hollow section subjected to torsion and bending may occur in
two modes. The first mode is caused by the yielding of the bottom longitudinal
bars and the transverse steel. The second mode is caused by the yielding of the
top longitudinal bars and the transverse steel.
A simplified generalised derivation of ultimate strength under torsion and bending is

given as follows :

From the ultimate strength of beams under pure torsion, assuming = 45°
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we obtain :
From consideration of stirrups
T, = 2.A0.(ASV.fyv sy ) (2.32)
and from consideration of the corresponding longitudinal steel
Ty = 2.Aq.(Aq1fy /) (2.33)
Half of the total area of the longitudinal steel is distributed at the bottom of the
beam, while the other half is distributed at the top. Therefore top or bottom
longitudinal steel equal to :
Agl 12 = (Ag)t dtorsion = (1/2).[(Tu.u)/(2.Ao.fy1 )] (2.34)
Ag 12 (As1,b )torsion = (1/2).[(Tu.u)/(2.Ao.fy1 )] (2.35)

Where Aq¢ and Agly : top and bottom longitudinal reinforcement respectively.

In the case of pure bending, longitudinal bottom steel area required to resist

applied bending moment M is :

(Asl,b Jbending = M/(fy1.y,) (2.36)
In which y, = lever arm.

In the state of combined torsion and bending, if we consider the first
mode of failure viz yielding of the bottom bars, we obtain total area of longitudinal
steel as :

(A Db = Mify1y, ) + (Ty /(2.Ag.fy1 )(w2) (2.37)

(As,bfyly)) = My = M+ (Tyy, /(2.A4 )).(w/2)

where M = ultimate strength in pure bending moment

Hence ultimate bending moment equal

My = M+ Tuy, /(2x,.y, )(x, + v,) (2.38)

and applied bending moment is given as :

M= M, = (T72).(1 + (y, /x,)) (2.39)

The second mode of failure is now considered. the tensile force due to torsion in
the top longitudinal bar is counteracted by the compression due to bending. Total

area of steel at the top is equal :

Aglt = —M/(fyl.y1 ) + (Ty /(2.Ao.fy1 )).(u/2) (2.40)



As in the case of first mode of failure, further simplification of equation 2.38 gives
M= —My + (T12).(1 + (y, /x, ) (2.41)
Where — M,; = negative ultimate pure bending moment.

Based on the above derivation of the ultimate strength for reinforced
concrete beams under torsion and bending, the following observations can be made :
1. Generally, the total area of steel is made up of the summation of separate design
for pure torsion and bending (equations 2.37 and 2.40). However, in the bending
compression zone, the longitudinal torsional steel may be reduced because the tensile
force due to torsion is counteracted by the compression due to bending. The
transverse steel for pure torsion is unchanged by combined loading and is required
on all sides of beam as usual.

2. To avoid the crushing of diagonal compression struts before yielding of reinforcing
steel, limitation is imposed on the inclination angle 6 of the compression diagonal to
beam axis. Thurlimann(12,13) suggested the following limit to ¢ as :

1/2 < tanf < 2
tang is a function of the ratio of transverse to longitudinal reinforcing steel.
Therefore a limit is set on the total amount of steel as well as the ratio of
transverse to longitudinal steel.
3. Equations 2.39 and 2.41 show that an interaction exists between torsion and
bending moment. The former equation shows that the bending moment of a section
is reduced when a torsional moment T is added. Whereas, the latter equation
shows that the presence of a small moment M, can increase the torsional capacity
of a section.
The equations derived in the above theoretical investigation seldom easily lead
themselves to design office use, even if the comparison between theory and
experiment shows a fairly satisfactory prediction of ultimate strength under combined

loading.

2.3.2.2 Post—cracking stiffness under combined loading




dWdz = (W2.Ag ).(€g + € ) (2.42)
And from the difference between the bottom and top longitudinal steel strains,

curvature can be defined as :

1/R = (fl,b G R )y, (2.43)
€1.p = bottom flange longitudinal strain.
€1t = top flange longitudinal strain.

y1 = depth of the section.
Under combined loading, post— cracking stiffness will depend on the ratio of torsion
to bending moment ¢. The interaction relationship is therefore broadly classified
into two regions.
a) Range 1 — Torsion dominates (T/M > & [impit)
b) range 2 — Bending dominates (T/M < & [jmit)
The value of dyjyj; between the two ranges is characterised by zero stress condition
in the top bars. By substituting Agl,t = 0 in equation 2.40, we obtain :
Yimit = 2.A¢ Ny,-(w2)) = 2/(1+(y, /x,)) (2.44)
1) Post— cracking rate of curvature :

Post— cracking rate of curvature can be expressed in a general form as :

d?w/dz? = M/Kpyqm + T/Kpm (2.45)
Kmm and Kpr are the post— cracking rigidities due to bending and torsion
respectively. Their value depends on the range.
a) Range 1 — Torsion dominates (T/M > & [jmit)
KMM = Esy,? . Agp o(rp /(rp +1))
KMT = (4.Ag.y,.Eg.Aq p /0).(r, /(rp, — 1))
L = Asl,t /Asl,b (ratio of area of top to bottom longitudinal bars)
b) Range 2 — Bending dominates (T/M > & [imit)
KMM = E¢.Io (flexural rigidity in pure bending)
KMT = #imit-Ecler /[(Ec-ler) — 1]
KMM = Egy,? . Aqp /2 (flexural rigidity when T/M = djjpi; )
Where E. = Young modulus of concrete

I.; = moment of inertia of cracked section (see equation 2.48)

s
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Where E. = Young modulus of concrete
I, = moment of inertia of cracked section (see equation 2.48)
2) Post— cracking rate of twist :
The post— cracking rate of twist is obtained from equation (2.42) as :
dWdz = T/Ktt + M/KpMT (2.46)
The values of torsional rigidities K1 , and Kyg1 depends on the range.

a) Range 1 — Torsion dominates (T/M > & jmit)

Krt = G.Coy = (4.Eg.Apg?2 . Agy /(usy )).(r/(r+1)) (torsional rigidity in pure

torsion)

where r = ratio of area of longitudinal/transverse steel in section
KM = KmT = (4.A5.y,.Eg.Aq p /0).(rp, /(rp, — 1))

where r = ratio of area of top/bottom flange longitudinal bars

If 0 < r, < 1.0 , the influence of the bending term in equation 2.46 will be
insignificant.  Therefore, post— cracking rate of twist in this range can be safely
approximated to the case of pure torsion.

b) Range 2 — Bending dominates (T/M < & [imit)

It is not possible to establish post— cracking rate of twist in this range directly
because contribution of uncracked compression zone to the stiffness is unknown.
The effect of bending is neglected in this range, hence post— cracking rate of twist

is approximated to the case of pure torsion.

2.4 SERVICEABILITY LIMIT STATE OF REINFORCED CONCRETE BEAMS

It has been recognized that the design approach for reinforced concrete,
ideally should combine the best features of ultimate strength and working stress
design. Early in 1964 the European concrete committee proposed that a structure
must be designed with reference to several limit states . The most important limit
states are : strength at ultimate load, deflection at service load and crack widths at
service load. Thus to ensure a satisfactory design, the crack widths and deflections

at service load must be checked to make certain that they lie within reasonable



limiting values. This check requires the use of ‘elastic theory'. The estimation of
the service load behaviour is complicated by the inelastic behaviour of concrete. In
the short—term, cracking of concrete in tensile zone is the main source of non
linearity. Cracking and deflection are inter— related problems but for simplicity it is

usual to treat them separately.

2.4.1 Deflection

During the pre— cracking stage, concrete is assumed to be linear elastic
and therefore deflections are evaluated using the elastic theory with the moment of
inertia of gross section Ig , i.e. that steel is neglected. After cracking, in the short
term, a modular ratio approach is considered in the elastic analysis. The tensile
concrete contribution to the stiffness of the beam is ignored. Branson(14) defined

the effective second moment of area after cracking as :

Legf = (Mgr Mpax )3.1g + (1 = (M¢p / Mpax )® ) Igr (2.47)
Where I = effective second moment of area.

Ig = gross second moment of area before cracking.

I,y = second moment of area of cracked section.

Mihax = maximum applied moment.

M., = moment at first cracking.

The second moment of area of the cracked section can be estimated from elastic
analysis of the fully cracked rectangular simply supported beam as :

Ier = (xy3/3)(K3 + 3.n.p.(1—K?2) (2.48)

K = y, /y = ratio of depth in compression to depth of the section.

In which x and y = breadth and depth of section respectively.

K= [ (np)2+ 2np— np J?

n = modular ratio

ratio of steel in section.

I

P

For ordinary reinforced beams, the cracking moment can be computed as :

Mcr = frlg /vt (2.49)



Where f, = modulus of rupture of concrete.
yi = depth from neutral axis to the tension face.

For ordinary reinforced concrete beams, short term deflection can be defined in the

form : A = Kg.My.L2 /[(E..Iegf) (2.50)
in which K5 = constant depending on loading and end restraints.
My = midspan moment.
L = span of beam.

E. = elastic modulus of concrete.
Gilbert(15) in his analysis introduced a new modular ratio, to take into account the
stiffening effect of intact concrete between cracks in the tensile zone after cracking.
This is possible by considering the effective area of tensile concrete Aggp located at
the level of steel.
Acsr = (0.21.y — n.Aq).(Mcr /Mpax )2 (2.51)

Accordingly the modified modular ratio n* is :

*

nt = n + Agff /Al p (2.52)

This value of n* instead of n should be used in calculating K and I, in Eq.2.48.
The Branson's approach forms the basis of the American code (ACI
318—77) ACI435 . The British code BS8110(%) requires that the final deflection
(including the effect of temperature, creep or shrinkage) should not exceed span/250
for the case of horizontal members (floors,beams,roof) where partitions and finishes
will not be affected by deflection. For the situation where partitions and finishes

will be affected, the deflection limit is span/350 or 20 mm whichever is the lesser.

2.4.2 Cracks (16,23)

With the frequent use of high strength steel tendency toward ultimate load
and limit theory designs, control of cracking becomes as important as control of
deflection in reinforced concrete. Cracks form when the tensile stress in the
concrete exceeds its strength. Immediately after the formation of the first crack, the
stress in the concrete at the cracking zone is reduced to zero and is resisted by the

reinforcement.



Many variables affect the development and characteristics of cracks. The major ones

are percentage of reinforcement, bond characteristics and size of bar, concrete cover,

distribution of reinforcement and strength of concrete.

The most commonly used theories for assessing crack widths are :

a) Classical theory : This approach is based on slip concept which assumes that
crackwidth depends on the bond slip between concrete and steel. Crackwidth is
expressed in terms of steel stresses.

b) No-slip theory : Assumes a condition of no slip of the steel relative to concrete.
Crack is therefore considered to have a zero width at surface of the steel bar and
increases gradually as the surface of the member is approached. This means that
crackwidth is dependent on deformation of the surronding concrete.

The British code BS8110(2?) recommendations for estimating crackwidth of
beams and one way slabs is based on Beeby's approach(‘e) . He observed that
crack spacing and width increased with the distance from the bar and reaches a
constant value at a certain distance from the bar. This value is dependent on the
crack depth rather than the distance from the bar. The design surface crackwidth,
which should not exceed 0.3 mm (BS8110 , part 2 , clause 3.2.4) may be calculated
from the following equation :

Whax = (3.agr-em Y1 + 2.(ac; — cpin Y(h—x)] (2.53)
Where a.. = distance from the point considered to the surface of the nearest
longitudinal bar.
Cmin = minimum cover to the tension steel.

h = overall depth of the member.

x = depth of the neutral axis.

€m = average strain at the level where the cracking is being considered.
€m may be calculated on the basis of the assumption given in clause 3.6 BS8110

part 2 .

em = €, — [bp.(h—x).(a'x)] / [B.E A sl,b .(d— x)]
In which

e, = strain at the level considered, calculated ignoring the stiffening effect



of the concrete in the tension zone.

b; = width of the section at the centroid of the tension steel.

a' = distance from the compression face to the point at which the crack
width is being calculated.

E; = modulus of elasticity of the reinforcement.

Aglp = area of tension reinforcement.
d = effective depth.
The proposed method described above can evaluate crackwidths with reasonable

accuracy.

2.5 BEHAVIOUR OF CONCRETE UNDER MULTIPLE LOADING

Strength determination in usual structural engineering practice is based on
failure under monotonically increasing, proportional loadings. The effects of non
proportional load sequences are largely ignored. To the author's knowledge no work
has been done on beams subjected to multiple loading.

Even in perfectly—plastic structures, where the strength can be represented by an
envelope enclosing all possible load histories, specific load sequences below failure
can cause incremental deformations that lead to unacceptably high displacements and
associated instabilities. Gerstle and Cook(24) report that the design rules for
assessing the strength of tall steel building frames are based on tests under
monotonically increasing axial loads, P, and bending moment, M. Actually, axial
columns forces are primarly due to gravity loads, while bending moments occur
primarly under wind or seismic loads. It therefore appears more appropriate to
anticipate axial forces applied first, followed by moments which may suffer reversal,
as shown in figure 2.11 . Gerstle(20) has also conducted tests involving multiaxial
load histories applied on 10 cm concrete cubes. These tests have no immediate
bearing on the present investigation, nevertheless it is interesting to show some
curves concerning these tests.  Figure 2.12 shows the loading and unloading in

concrete. Figure 2.13 and 2.14 show the major principal stress versus principal
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strains for the case of load history.

This brief summary of research dealing with multiple loading shows that this
kind of loading must be studied in the future for a better understanding of the
behaviour of reinforced concrete members under such loading and to find out if the

existing design recommendations are valid for this case of loading.
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CHAPTER 3

DESIGN PHILOSOPHY

3.1 INTRODUCTION

The object of structural design is to reach acceptable probability that the
structure during its design life, will fulfill the function for which it was designed.
The requirements that a structure has to satisfy are stated as limit states. If the
limit state of a structure is exceeded, then the structure is deemed to be unfit for
use. There are two types of limit states :

1) Ultimate limit state (ULS) : This requires that the structure, or part of structure
should not collapse at ultimate design load. The ultimate limit state should not be
reached by rupture of any section, by overturning or by buckling under the worst
combination of ultimate loads as stated in BS 8110(28). Collapse is associated with
the inability of the structure to carry any additional load.

2) Serviceability limit state (SLS) : This requires that the structure should not suffer
from excessive deflection, cracking and vibration under service load conditions.
Deflection due to gravity loading should not adversaly affect its efficiency or
appearence(?-s). Cracking should be kept within reasonable bounds by attention to
detail( 26).

The usual practice in reinforced concrete design is to design for the
ultimate limit state and then check for serviceability limit state. = The opposite
procedure is often followed in prestressed concrete design.

In order to study experimentally the strength of reinforced and partially
prestressed concrete beams under multiple loading consisting of various combinations
of combined bending and torsional loads. Large scale reinforced and partially
prestressed concrete models were chosen. This chapter details the procedure and
philosophy adopted in the design of models. In general, if a beam is subjected to
torsion and bending the following stresses exist : 0y, Oy, Tyy (figure 3.2), or

alternatively as principal stresses o, and ¢,, with an orientation §. This applied set
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of stresses are resisted by a combination of stresses in concrete and steel
reinforcement.  The object of design is to ensure that the combined strength of
concrete and the associated steel reinforcement area can safely resist the applied
loads. The basic approach is known as the 'Direct Design Method', and was
suggested for flexural members by Wood(3) and extended by Armer(4), and for in
plane stresses by Nielsen(5) and Clark(s). Hago(27), Memon(28), El— Nounou(29),
Ebireri(2) and AbdelhafizZ(30) have used this procedure to design and test various
type of reinforced concrete structures. This chapter describes the basic features of
this approach and how this method can be used for the design of beams under
multiple loading. More details about this approach are found in references (4,29).

The proposed ultimate limit direct design method is based on the theory of
plasticity, thus the structure must satisfy the three basic conditions at ultimate load
inherent in the classical plasticity theory :
1— Equilibrium condition : The externally applied loads must be in equilibrium with
internal stresses.
2— Yield criterion : At no point in the structure should the set of stresses exceeds
the yield criterion.
3— Mechanism condition : Under ultimate load, the structure should develop
sufficient ‘'plastic' regions to transform it into mechanism.

Reinforced concrete does not exhibit perfectly plastic response. Therefore

a collapse may occur in the concrete before yielding has redistributed the stresses.
One way of overcoming this defect is to reduce the ductility demands to ensure
minimum redistribution such that most of the critical sections of the structure yield

simultaneously.

3.2 PROPOSED ULTIMATE LIMIT STATE DIRECT DESIGN APPROACH

The direct design approach provides optimum reinforcement to resist
predetermined stress field in reinforced concrete structures.

In this approach, a section is designed to resist a given set of forces using



elastic stress field and yield criteria for reinforced concrete subjected to in—plane

and / or out of plane forces. The approach satisfies the classical conditions of
plasticity theory as follows :

1) Equilibrium condition :

The distribution of stresses in the reinforced concrete structure is obtained
by elastic analysis, using say the finite element or any other technique. Since these
methods of analysis are derived from equilibrium equations, this condition is
automatically satisfied.

2) Yield criterion

In reinforced concrete structures, the external applied loads have to be
resisted either by concrete alone or by combination of concrete and steel. In
addition to reinforcement requirements based on stress / strength considerations there
are often practical constraints on the direction in which the reinforcement may lie;
on the proportion of steel which may be provided. An efficient design is achieved
by minimizing the total amount of reinforcement required by the design criteria
within the bounds of these practical constraints.

For in—plane forces Nielsen (s) has presented the yield criterion for section
having orthogonal reinforcement in tension only. This approach has been extended
by Clark(8) to cover the possibility that compression steel or skew tension
reinforcement may be required. The required equations are derived in section 3.3
3) Mechanism condition :

Because the necessary resistance is made equal to the calculated stress at
every point in the structure, it is expected that all parts of the structure will attain
their ultimate strength under the design load. Accordingly, with minimum
redistribution of the stresses, every point will yield at the ultimate load, thus

converting the structure into a mechanism.



3.3 DESIGN OF ORTHOGONAL REINFORCEMENT TO RESIST IN-PLANE FORCES

The design of reinforcement for a given set of stresses in the case of
concrete beams has been solved by the classical ultimate limit capacity concept of
Nielsen( 5). The main problem is to find the optimum reinforcement area and
thickness of concrete.

The design equations are based on the following assumptions :
1— The reinforcement is assumed to be symmetrically positioned with respect to the
middle surface of the section and to be in two orthogonal directions, as shown in
figure 3.5.
2-The reinforcement can carry only uniaxial stress in their original bar direction.
This means kinking of the bars and contribution by dowel action of the bars in
resisting shear is neglected.
3— The bar spacing is assumed to be small in comparison with the overall structure
dimensions so that the reinforcement can be considered in terms of area per unit
width rather than as individual bars.
4— The concrete is assumed to have zero tensile strength, to exhibit the square
yield criterion shown in figure 3.3 for in—plane stress and to be elastic perfectly
plastic when yielding.
5— The reinforcement bars are also assumed to exhibit perfect elastic/plastic
behaviour and to yield at stress of fg in tension and fg' in compression, as shown in
figure 3.4
6— Instability failures, bond failures are assumed to be prevented by proper detailing
and choice of the section.

3.3.1 Theory

Figure 3.1 represents a thin— walled reinforced concrete element subjected to
in—plane forces N4, N yand Ny which is resisted by a combination of stress in
concrete and steel, as shown in figure 3.6 .

Equilibrium conditions
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a) Concrete

The principal concrete stresses are taken to be o, and o, with the major
principal stress ¢, at an angle ¢ to the X axis. o, is always numerically greater
than ¢,. All stresses are taken to be tension positive.

From figure 3.6(b) the concrete resistance is given as :

oy = 0,.082 0 + 0,.sin? ¢ (3.1.a)
gy = 0,.8n% § + 0,.c08% 0 (3.1.b)
Txy = (0,— 0 ,) cosf.sing (3.1.0)
b) Steel

Let the area of reinforcement in the X and Y direction be A, and Ay
respectively and their associated stresses f, and fy.  From figure 3.6(c) the steel
resistance in the X and Y directions is given as :

ox = Ayxfy/t (3.2.3)

oy = Ayfy/t (3.2.b)

Where t is the thickness of the element.

By equating the applied stresses to combined resisting stresses, the following three

equations of equilibrium can be written.

Ny = Ay fy + o0,.t.cos?2 § + 0,.tsin? § (3.3.3)
Ny = Ay.fy + 0,.tsin? § + ¢g,.t.cos? ¢ (3.3.b)
ny = (o0,— 0 ,) cosf sin (3.3.0)

where Ny = oy.t, Ny = oyt and Nyy = 74yt

In each direction, tension reinforcement, compression reinforcement or no
reinforcement may be required. Figure 3.7 summarises the four possible combinations
from the 2-D situation, originally proposed by Nielsen (s)  These four possible
combination are derived as follows. Let us consider the major principal stress o, as
tensile. Since concrete cannot carry any tension, we set the value of ¢,= 0.
Equation (3.3.a) to (3.3.c) gives

Ny — Ayfy = o,.tsin? ¢ (3.4.2)
Ny = Ayfy = 0,.t.cos? 0 (3.4.b)
Nyy = = 0,.t.cosd sinf (3.4.0)



Figure(3.5) Direction of Reinforcing Steel and

Principal Stress in Concrete.
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Using the notations
Ayfy = Ny8 (3.4)
Ayfy = NyS (3.5)
Eliminating 6 and ¢, from equation (3.4.a) to (3.4.c), we get
(NS — Ny (NyS - Ny) = Nzxy (3.6)
This equation represents the yield criterion for reinforced concrete element under
in—plane loads. Nielsen based his design equations on the assumptions that
g, <0
lo,1 < feu, so that compression steel is never required, i.e N,$ and NyS > 0
From equation (3.4.a) to (3.5)
Case 1 :
If NS = O,andNYS#O
Then from equatiom (3.6) NyS = (Ny — N2yy 7 Ny)
0,.tsin? § = Ny
— 0 ,.tsinf.cosf = N Xy
tanf = — Ny / ny
g,t = Ny + N2Xy ! Ng (3.7
If [o,] > foy , the section is redesigned with increased thickness t.
Case 2 :
If NS = 0 and N, # 0

y

Then from equation (3.6) NS5 = (Ny — N2y / Ny)

0yt.cos? § = Ny
—0 ,t.sinf.cos® = N Xy

tanf = — Ny, / N

Xy y

0,t = Ny + N2,/ Ny (3.8)

Again if jo,| > fo, , we redesign the thickness of the section.
Case 3 :

If NS and N8 # 0 , in this case we minimise total quantity of steel

y

(Ny$ + NS). From the yield criterion in equation (3.6)

NS:N+N2

y y xy I (Nx® = Ny



N + Ny = N8 + Ny + N2y / (NS ~ Ny

Minimising the sum of the steel in both directions;

d(N,S + Nys)/deS =0

d[Ny® + Ny + N2xy I (NS = NJVANGS = 1 = Nzxy /(N = Ny)2 =0
Rearranging the above equation we get

Ny — Ny = ¢ Iny|

As Ny5 — Ny > 0 , we choose the positive root

Ny® = Ny + [Nyl (3.9)

Substituting for the yield criterion for NS , we have

NS = Ny + [Nyl (3.10)
tan?0 = (Ny — NyS)/(Ny — Ny§) = 1

0 = 450

o,.t = —2|ny|

We can deduce from equation (3.9) and (3.10) that

NXS = 0if Ny = — |ny|
and
S — : - _
Ny = 0 if Ny = INXy|
Case 4 :

If both principal stresses o, and o, in equation (3.3.a) to (3.3.c) are compressive,

no steel reinforcement is required, in this case ¢, and o, are given by

gt = 4 (Ny + Ny) £ [ (3 (Ny = Ny)? + N2y 12 (3.12)
o,.t
Owing to Nielsen assumptions, compression steel is never required. @ However in

certain situations, compression reinforcement is required in one or both direction.

Accordingly, reinforcement can either be in tension, compression or no reinforcement

required. These situations have increased the number of cases of reinforcement
from original four to nine. Table 3.1 shows the 9 possible combinations of
reinforcement . In the design for multiple loading in the present study , we limited

ourselves to the four cases proposed by Nielsen, as use of compression steel is rarely

an economical proposition.



Table 3.1 — Summary of possible combination of reinforcement

case Reinforcement Known values Method of solution
1 X and y tension fX=fy=fS; Minimisation of
o, =0 (AX+Ay)
2 zero X,y tension fy=fs; £,=0 Direct solution
3 Zero y, X tension f=fq; fy=0; Direct solution
o, =0
4 X & y compression fx=fy=fs'; Minimisation of
o, feu (A + Ay)
5 Zero X, fx=fy', f=0; Direct solution
Yy compression 0, = fyu
' . .
6 zero y, f=fg fy=0, Direct solution
X compression g, fou
7 X tension, f=fs; fy=fsI Direct solution
y compression 0,=0; o,=f.y
8 tension, fx—fs', fy=fs Direct solution
X compression 01=0; o9=f.y
9 No reinforcement fx=fy=0 Direct solution




3.4 DIRECT DESIGN FOR MULTIPLE LOADING CASES

In this section is presented an application of the 'Direct Design Method’
to design reinforcement to resist multiple loading. The yield criteria is given by
equation (3.6).

(N, — Ny) (NyS - Ny) - N2Xy =0

In the case of multiple loading, the design procedure can be as follows.

1. Using the design equations (as shown in figure 3.8), for each load case, calculate
the corresponding NSy and NSy;.

2. Calculate the maximum of all the NSy; and Nsyi taking into consideration all the
load cases. Let these be NSy_ may and NSy,
Evidently if we use these as the design stresses, then we will get a safe design but
not necessarily an optimum design. So we can move towards an optimum design as
follows.

3. Assume that in the X direction we provide NS,_ ... , but in the Y direction we
provide NyS so as to satisfy the yield criterion in each case.

NyS is given for each case by

Nsyi = Nyj + Ny / (NSy— max — Nxi) (3.13)

Calculate the maximum of all these Nsyi. Evidently a safe design is produced if we
use NS, .y in conjuction with the maximum NSy; determined so as to satisfy the
yield criteria.

4. A similar procedure to 3 above can be done if we choose Nsy_ max as the
design stress in Y direction and calculate the NS,; for each load case so as to
satisfy the yield criterion and choose the maximum of all the NS; to determine the
design moment in the X direction,

NSy = Ny + N2y / (NSy—max — Nyj) (3.14)

Therefore a better design is to choose that set of design stress where the

(N, + NyS) is the smallest.

We can stop at this stage but if need be we can improve on this by assuming that

other combinations are possible and use a simple search technique ( i.e examining
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the feasable design region as shown in figure 3.8 ). For each load case, we see if
the design stresses at the grid points is a better minimum. If it is not, we reject
it. If it is, we check to see if it violates the yield criterion for the load cases
considered. If it does, we reject it. If not, we see at which grid point we can get
minimum of (N,$ + Nys). This give us the optimum design stresses. This results
in a large number of simple calculations. In the next section, is presented a simple

computer program to accomplish the task.

3.4.1 Program

For a given geometrical and mechanical characteristics of a concrete beam
and for different combinations of bending and torsional moments, do the following.
1. Calculate the flexural direct stress and torsional shear stress, the flexural stress is
calculated at different points in the section, but the shear stress is constant.

2. Evaluate

A = Ny / Ny, and B= Ny /N

y Xy -

3. Determine in which of the four regions in figure 3.7 the given stress state lies.

4. Calculate the corresponding value of the principal stress o, , if |o,| > fcy,, then
the concrete thickness must be increased.

5. Evaluate the forces in the reinforcement NS and NyS ,

6. Check the validity of the Nielsen yield criterion equation for different
combinations of (N,S , Nys ) varying from their minimal values to their maximal
values and for different combinations of (Ny =Ny , Nyy ).

7. Deduce the optimum reinforcement for the given section of the beam to

withstand multiple loading.



3.4.2 Design application for multiple loadcases

(Application for designing beams subjected to non proportional

combination of bending and torsional load cases)

The computer program described above gives the optimum values of
(NXS,NYS) for the six regions shown in figure 3.9. N,S and NyS are the theoretical
steel values. This section shows how these theoretical steel values are converted to

actual steel values.

3.4.2.1 Reinforced concrete beams

The actual steel values for the case of reinforced concrete beams are
obtained as follows:
Apfy = NSt
Ay.fy = Nys.t
From the above equations the actual steel values Ay and Ay are deduced as:
Ay = N,S.t/fy

Ay

Nxs.t/fy , Ay is the same for the six regions
a) Top flange (region 1)

Ay, = (NS4, .t/fy).b

where b = width of the top flange

b) Side webs (regions 2— 5)

Ay, ¢ = (NS, ¢ t/f )t

¢) Bottom flange (region 6)

Ay = (NS4, .t/fy).b

Numerical application for maximum loads of Tp,yx=32.0 kN/m and

Mpax=32.0 kN/m.

NSy, =6 N/mm, NS,,=6 N/mm, NS, ,=6 N/mm, NSy ,=7 N/mm, NS, =10 N/mm,
NS, =11.5 N/mm

Ny$=5.1 N/mm

Assuming t=50mm, b=300mm, assuming high yield steel fy=fy= 540 N/mm 2,
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Then

x steel Ay, =167mm?2, A, ,=56mm?2, Ag,=56mm?2, Ay =65mm?2, Ay =93mm?2,
Ay =320mm 2

y steel : Ay= 474mm 2

Longitudinal steel adopted :

from A,,=167mm?2, use 2 10mm bars in the top flange

from Ay, + Ay,=112mm?2, use 2 08mm bars in the webs (top half)

from Ay, + A,y ,=158mm?2, use 2 10mm bars in the webs (bottom half)

from Ay =320mm?2, use 2 08mm and 3 10mm bars in the bottom flange

Transverse steel adopted :
from Ay= 474mm?2, use 08mm stirrup at 10Smm

Figure 3.10 shows details of reinforced concrete beam cross—sectional reinforcement.

3.4.2.2 Partially prestressed concrete beams

The prestressing wires have an effective prestressing stress fpe of their yield
stress fpy- Then the remaining stress (fpy - fpe) is availible to act as ordinary
reinforcement.

The actual steel values for the case of reinforced concrete beams are obtained as
follow :

From figure 3.4.b the following expression can be expressed

Axfy = NSt = Aypfy + Aypfpy = fpe)

A,.f, = NSt

Yy y
where A, . = area of additional reinforcement needed
Axp = area of prestressing wires per unit width
fpy = vyield stress of prestressing wires
fpe = effective stress of prestressing wires
fy = yield stress of steel in x direction

From the above equations the actual steel values of Ay, and Ay are deduced

Axr = [ Nxs.t - Axp.(fpy - fpe)]/fx
Ay = Nys.t/fS , Ay is the same for the six regions
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1) Top flange (region 1)

Agrs = [ (NS¢t — Axp1.(fpy — fpe)l/fx 1
2) Side webs (region 2—5)

Agro—s = [ (NS p— g . t = Axpa—s - (fpy — fpe )) / fx ]t

3) Bottom flange (region 6)

Agre = [ (NSt — Axps-(fpy — fpe))/fx 1.0

Numerical application for maximum load of Mmax=32.0 kN.m and T, ,,=32.0
kN.m

Five prestressing wires of 5mm diameter were chosen, 3 in the bottom flange and 2
in the webs (bottom half).

NSy ,=5.2 N/mm, NS, =47 N/mm, NS, .,=4.2 N/mm, NS, ,=5.1 N/mm,

NS, .=7.1 N/mm, NS, =9.2 N/mm

Ny5=5.1 N/mm,

Assuming t=50mm, b= 300mm, fpyz 1522 N/mm?, fpe: 585 N/mm?2, fy,=540 N/mm?
Axp1=0, Axpz= 0, Axp3= 0, Axp4= 0, Axp5: 0.8 (2 wires of area 40mm %t),
Axps: 0.2 (3 wires of area 60mm 2/b)

Then

x steel: Ay ,=144mm?2, A, =44mm?, A,;,=39mm?2, A, =47mm?2, A,. =0,
Ayre=151mm 2

y steel : Ay =474mm?

Yy
Longitudinal steel :

from Ay;,=144mm?2, use 2 10mm bars in the top flange

from Ay, + Ay ,=83mm?2, use 2 08mm bars in the webs (top half)
from Ay, ,=47mm?2, use 2 08mm bars in the webs (bottom half)

from Ay, =0 and Ay,,=40mm?, use 2 prestressing wires of Smm diameter

Xp 5
from Ay, =151mm? and Axps'_' 60mm?2, use 2 10mm bars and 3 prestressing wires
of Smm diameter.

Transversal steel :

from A, =474mm?2, use 08mm stirrup at 105mm

y

Figure 3.11 shows details of partially prestressed concrete beam cross— sectional reinforcement .
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CHAPTER 4

TESTING PROCEDURE

4.1 INTRODUCTION

The aim of this chapter is to explain the experimental set up, the
determination of material properties and the test programme. The experimental set
up was used to study the strength and behaviour of reinforced and partially
prestressed concrete hollow beams subjected to multiple loading.

The investigation of the beams is carried out to study the following :
a) Load— deflection relationship.
b) Load— twist relationship.
¢) Crack pattern and crack propagation.
d) Strain distribution.

e) Failure characteristics.

4.2 DESCRIPTION OF TEST RIG

The test rig shown in figures 4.1 and 4.2 is a three— dimensional frame
designed for the independant application of torsion and bending moment. Bending
moment was applied by means of a hydraulic jack fixed to the main frame. Load
was transferred to the model through a speader beam mounted on the model by
means of support bearings (details A and B). This type of support bearings allow
rotational movement for torsion. Torsion was applied through the torsional arm
fixed to each end of the model. The torsion arms consisted of a triangular frame
with adjustement screws fixed to a 25mrﬁ steel plate with an inner face of
aluminium. The torsional arm is mounted on an open box which is fixed to each
end of the beam. On the open box is fixed a shaft which is linked to a bearing
as shown in figure 4.1. This bearing rests on a steel stanchion stool fixed to the

concrete floor. Torsional load was applied through the hydraulic jacks attached to
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each of the torsional arm. The applied load was measured by means of a load

cell.

4.3 MATERIALS USED

4.3.1 Concrete

The concrete mix consisted of rapid hardening cement, 10mm Hyndford
gravels and zone 2 Hyndford sand obtained from Lanarkshire. A mix proportion of
1:1.5:2.5 was designed for an average cube strength of 45 N/mm2 at 7 days, and a
minimum slump of 100mm was specified for the mix. A 12mm diameter poker
vibrator was used for compaction. After casting, the beams were cured under damp
hessian for the first three days before removing the formwork for final curing under
laboratory conditions.

For each test beam, control specimens included 6 Number 100mm cubes and
6 Number 150x300mm cylinders. The cube strength, cylinder compressive strenght,
cylinder split tensile strength, and the static modulus of elasticity were determined at
the time of testing the beam or at 28 days old as per BS 118, parts 116, 117 and
121(1).  Table 4.1 shows the properties of laboratory cured concrete for all the

models. Figure 4.3 shows typical concrete stress— strain curve.

4.3.2 Reinforcing steel :

High yield deformed bars of diameter 8 and 10mm were used for both
longitudinal and transverse reinforcement. Four samples for each diameter of bar
were tested in an OLSEN testing machine fitted with a S—type electronic
extensometer. The testing procedure followed the manufacturer's instruction manual.
The yield stress of the bar was taken as the stress at which a line parallel to the
initial slope of the curve from 0.2% proof strain intersects the curve. The yield

strain was taken as the strain at yield stress assuming linear stress— strain



TABLE 4.1 —

Properties of Concrete used in the Beams

Beam Compressive Compressive split cyl Modulus of
Mark Strength Strength Tensile elasticity
Strength
(cube f,)) (cylinder f.') fe E.
N/mm2 N/mm2 N/mm2 KN/mm2

AO 47.5 34.2 3.1 23.2
Al 49.3 37.4 3.2 25.1
A2 46.0 33.5 3.7 22.3
A3 47.6 35.2 3.1 23.5
A4 54.9 41.2 3.3 24.6
Bl 50.7 39.7 3.6 27.6
B2 57.6 40.9 3.7 28.7

* All the values given above are for laboratory cured specimens.

A0 : Corresponds to the pilot test beam.
Al to A4

Bl & B2

are partially concrete beams.

: are reinforced concrete beams.
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relationship as illustrated in figure 4.4. The mean value from four specimens for
each diameter are presented in table 4.2 . Typical measured stress— strain curves

for each diameter are presented in figures 4.5 and 4.6 .

Table 4.2 : Properties of steel reinforcement

Bar size|Yield stress|Yield strain |Ultimate stress |Young's Modulus
mm N/mm? 1076 mm N/mm 2 KN /mm?

08 482 2446 592 201

10 525 2540 640 210

4.3.3 Prestressing wires :

Five prestressing wires of 5Smm diameter were used in the two partially
prestressed beams. Using a proof strain of 0.2% , the mean tensile yield stress was
1670 N/mm?2, mean yield strain was 8200x10~ &, mean modulus of elasticity 203

KN/mm?2 and mean ultimate tensile stress of 1750 N/mm? -

4.4 FORMWORK

The formwork was made up of two parts, an internal core and an open
external box. The internal core was made up of 200mm thick polysterene sheet.
The dimension of the polysterene was 200x200x2640mm. The open external box
was made up of 20mm thick plywood strengthened by 50x50mm horizontal and
vertical batterns. The external dimension was 300x300x3800mm. The ends of the
external open box were solid. Figure 4.7 shows the formwork in elevation and in
cross—section.

Since the wall thickness was only 50mm, maximum size of aggregate and the

reinforcing bar diameter was restricted to 10mm.
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L 3800 mm ¢l:

2) ELEVATION OF FORMWORK
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b ) CROSS-SECTION OF FORMWORK

Figure (4.7) Typical Formwork for Models



4.5 INSTRUMENTATION

4.5.1 Loads

Hydraulic jacks were used to apply both torsion and bending moments, and
load cells were used to measure the corresponding loads. Load cells were connected

to a data logger. Figure 4.8 shows the loading arrangement.

4.5.2 Global deformations

Twist and deflection were measured at various points within the test span by
means of a linear voltage displacement transducers (LVDT). The LVDT's were used
in conjuction with an automatic data storing and processing system for the recording
of results.
4.5.2.1 Deflection

The vertical deflection of the beam was measured by means of
transducers located at midspan of the beam and at 600mm from the centre— line on
both sides of the beam as shown in figure 4.9 . All the measurements were taken

at the bottom face of the beam.

4.5.2.2 Twist

Twist was measured by means of transducers located along the horizontal
centreline of beam on both webs as shown in figure 4.10. Rotation at any of the
vertical points was obtained by dividing the vertical difference in displacement
between directly opposite transducers by the respective horizontal distance between
them, as shown in figure 4.11. Twist along the test span was obtained as the

difference in rotation between two successives sections.
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4.5.3 Local deformations

4.5.3.1 Strains

Strains in longitudinal and transverse steel bars were measured by means
of émm long electrical resistance strain gauges type EA—06—240LZ— 120 connected
to a linear voltage processing mini—computer (data logger). To measure strain in
reinforcement, a pair of strain gauges was fixed directly on to opposite face of the
bar. Accordingly, the strain recorded at each load stage was taken as the average
of the reading from two gauges. Figure 4.12 shows the location of strain gauges on
reinforcement. 100mm demec gauges were used for measuring concrete surface
strains.

4.5.3.2 Crackwidth and crack pattern

Crackwidths were measured by means of a crackwidth measuring
microscope measuring to 0.02mm. The object of crackwidth measurement was to
obtain a quantitative measure of the severity of the crack instead of arbitrary
description being used and also for the purpose of monitoring the growth of cracks.

At each load stage, crack pattern was traced on the beam by means of a marker.

4.6 TESTING PROCEDURE

The beams were tested under non—monotonic and non—proportional

loading. The details of the loading procedure are shown in figures 4.13 to 4.18.

One important feature of the load path used in these tests should be noted. For

example comparing load paths in figures 4.13 to 4.16 and figures 4.17 to 4.18, One

can see that the load steps are much larger in the case of figures 4.17 to 4.18

adopted for the series B (i.e partially prestressed beams) compared with figures 413
to 4.16 adopted for the series A (i.e reinforced concrete beams).

The nature of the beam supports and torsion loading arms were such that in

the loading sequence, a uniform torque could be applied along the beam length.

The uniform bending moment in the test span was applied by two points loads.



JUSWS VIO JUTOA UC U0 14BO0] safned

uteas e (/1Y) sandty

V<

|
l
l
I
I
|
l
|
|

S T §
!
I
|
I




xeuw,/Buipueq peiddy

1l 01 6°0 8°0 470

|y weeq oy | yaed peo7 (¢ "y eunbiy

35¥J ONIOYDT JINOIONOW  V---=-=====" v

35YJ ONIOYOD IILINK B——8

F—— %

xew] senbucs pe ) ddy



xewy /Bui1pueq peddy

il 0l 60 8°0 20

gy weeq Joy z yied peo7 (y|‘y) eunbig

9°0 S0 %0 €0 20

36Y2 ONIOVOT JINOLONGH ¥---------=- v

3SYJ DNIOYDT 3dILINK B— —8

T

&

xeuw| yenbucs pe1yddy



¢y weeq Joy ¢ yied peoy (G| '4) ©unbiy

xwsuwly/Buipueq peiyddy

. 0t 60 8°0 20

T

3SYJ ONIQYOT JINOLONOW Y----=------ v

35YJ ONIOYOY IdILINH B ![mu

xeu|/enbJcz pe!jddy



xsuw) /Buipueq peiyddy

(! 0t 6°0 8°0 40

yy weeq Joy 4 yied peoy (9] y) eunbiy

3SY2 ONIOYOT JINOLONOW ¥----- e

3SYJ ONIQYDD 3WdILNKH B——H

11

xeu| senbuoy petddy



|g weeq 4oy G yied peoq (/] °y) eunbiy

xeul/Buipueq pei)ddy

[ 01 6°0 8°0 470

?°0 s’0

|
|

3SY3 ONIAYOT JINCLONOW 9------=--- i

3SYJ ONIOYOT 3dILINW &~

T Ty T TTTTTTyT OTTTTTIYT T T Ty %Lfll

v0 £°0 z°0 10

80

xewl/eano: pe1yddy



xeuw) /Buipueq pei1)ddy

() 01 6°0 8°0 470

zg wseq Joj 9 yaed peo] (g|y) eunbiy

90 S0 770 €0

T

3SYD INIOVOT JINOLONOW  ¥---===----- v

3SYJ ONIAYD] 3dILNW G——8

\h\
I
l
1
3
o
xew| senbuos peijddy




4.7 TEST PROGRAMME

Four reinforced and two partially prestressed concrete hollow beams were
tested to destruction. The beams were designed according to the classical ultimate
limit capacity concept to study the effect of multiple loading on reinforced concrete
and partially prestressed concrete beams and to check the applicability of the
proposed direct design method for multiple loading. All the beams were designed to
withstand different load combinations with a maximum bending moment of
Mmax=32.0 kN/m and a maximum torque of T,,,=32.0 kN/m. All the beams
were square in section and of the same dimensions. The cross—sectional dimension
is 300x300mm with a wall thickness of 50mm. The overall dimension of the beam
was 3800mm; while the middle 1200mm was used as the test span. The areas
outside the test zone were overreinforced in order to concentrate failure within the
test span and the end sections were solid . The main variables studied are the
loading history and the load combinations.

One of the objects of 'Direct Design' is to produce optimum designs, so that
the steel consumption is minimised. In the case of prestressed beams many designs
are possible using different eccentricities and amount of prestressing. The different
case are presented in figure 4.19 and table 4.3. One has to choose between using
ordinary steel which is less expensive than prestressing wires but its fabrication cost
is higher, and also between using a maximum eccentricity for the case of bending
and a minimum eccentricity for the case of torsion. One can see from figure 4.20
which represents the steel consumption versus prestressing force for different case of
eccentricity that the optimum design is case 8B. However for reasons of technical
constraints case 4A was the one adopted. Case 8B requires 8 load cells and a
prestressing force of 21 kN, however in the department there were only 5 load cells
and the maximum prestressing force we could get from the available jacking machine

was 15 kN.



Table 4.3 : Different cases of prestressing

case NO Jacking Eccentri- Stresses Ay Axp
wires| force (kN)| city (mm) N/mm?2 mm2 mm2

1A 4 15 - 60 {0p¢=0.26, opp=1.6 | 537 80
1A 4 21 - 60 ope=0.37, opp=2.2 | 467 80
2A 6 15 - 65 |0pe=0.30, op=2.5 | 417 | 120
2B 6 21 - 65  |opg=0.44, opp=3.5 | 358 | 120
3A 5 15 - 72 |opg=0.16, opp=2.2 | 445 | 100
3B 5 21 - 72 |ope=0.23, 0pp=3.0 | 406 | 100
LA 5 15 - 102 |0p=0.26, opp=2.6 | 425 | 100
4B 5 21 - 102 |opg=-0.37, op,=3.7| 387 | 100
5A 7 15 - 86 [0p¢=-0.05, gpp=3.3| 343 | 140
5B 7 21 - 86 |0p=-0.05, ogpp=t.6| 282 | 140
6A 7 15 - 107 |ope=-0.46, opp=3.7| 335 | 140
6B 7 21 - 107 |ope=-0.66, opp=5.3] 263 | 140
7A 8 15 - 30 fope=1.20, opp=2.5 | 323 | 160
7B 8 21 - 30 |ope=1.68, gpp=3.6 | 275 | 160
8A 8 15 0 |opt = opp = 1.87 | 295 | 160
8B 8 21 0 Opt = Opp = 2.62 | 242 | 160

>
|

yr = 474 mm? for all the cases

Ayy = total area of longitudinal steel
Ayr = total area of transverse steel
Axp = total area of prestressing steel

Opts Opb = prestressing stresses in top and bottom flange respectively
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 INTRODUCTION

This chapter presents the results of the experimental investigation on four
reinforced concrete beams and two partially prestressed concrete beams subjected to
multiple combination of bending and torsional loads. The test procedure used and
the material properties for each beam are given in chapter 4.

The experiments were conducted to :

a) Verify the validity of the proposed direct design approach based on classical limit
capacity concept( 5,6,31)

b) Study the behaviour of reinforced and partially prestressed concrete beams under
such multiple loading cases.

¢) Compare the behaviour of beams designed to resist multiple loading cases to the

beams designed to resist monotonically increasing proportional loading.

5.2 RESULTS

This section summarises the observed behaviour in the test span of the

beams tested. All the models were designed to withstand different load combinations

with a maximum bending moment of Mp., = 32 kN.m and a maximum torque
moment of T,y = 32 kN.m . The load increments for the 6 models are shown
in table 5.1.

5.2.1 Series A — Reinforced concrete beams

Four hollow reinforced concrete beams designed according to direct design
method based on classical limit capacity concept( s) were tested under various load

combinations. The different load paths followed in these tests are shown in figures



Table 5.1 Load increments for the 6 models

Inc| Beam Al Beam A2 Beam A3 Beam A4 Beam Bl Beam B2
NO [ [ I [
M T M T M T M T M T M T
1 10.06]0 0 0.09]0.05 |0 0.06 |0 0.05]0 0.0610
2 10.10](0 0.16) 0.10]|0 0.10]0 0.10(0 0.11]0
3 10.17]0 0 0.24| 0.10(0.10{ 0.17{0 0.10(0.09| 0.17]|0
4 10.22(0 0.30] 0.15|0.10f 0.22]0 0.10f0.16] 0.22]0
5 10.301]0 0.06( 0.30( 0.20]0.10| 0.30]0 0.10]0.24| 0.30]0
6 10.3010.09(0.11{ 0.30{ 0.20({0.20| 0.30]0.09| 0.10]0.30| 0.30{0.10
7 10.3010.16|0.17| 0.30{ 0.25{0.20( 0.30{0.16( 0.10({0.40| 0.30(0.20
8 10.30(0.24(0.22] 0.30| 0.30({0.20] 0.30(0.24( 0.15]0.40| 0.40{0.20
9 (0.3010.34[0.30| 0.30( 0.30]0.30| 0.30{0.32]1 0.20{0.40| 0.45({0.20
10 |0.30(0.40|0.35] 0.30] 0.35/0.30] 0.30]0.40| 0.25]0.40] 0.50]0.20
11 [0.30(0.45{0.40| 0.30] 0.40|0.30] 0.30]0.45| 0.30(0.40| 0.55|0.20
12 10.30(0.50{0.45| 0.30| 0.45]0.30] 0.30|0.50] 0.35]0.40] 0.60)0.20
13 10.40(0.50{0.50|0.30 [0.50 }J0.30| 0.35]0.50] 0.35)0.30}) 0.60]0.10
14 10.45(0.5070.50] 0.40| 0.5010.40] 0.40]0.50| 0.25]0.30| 0.500.10
15 [0.50|0.50;0.50| 0.50| 0.50]0.50| 0.45({0.50| 0.15[0.30| 0.40]0.10
16 {0.50|0.32]0.40] 0.50f 0.40]0.50| 0.50{0.50] 0.05(0.30| 0.30}0.10
17 10.50[0.16[0.40} 0.56| 0.40]|0.40| 0.50]0.40| 0.05[0.40] 0.20]0.10
18 10.50[0.1010.40} 0.64| 0.40]0.30| 0.50({0.30] 0.05(0.48] 0.20]0.16
19 [0.40(0.10(0.40| 0.70| 0.40]0.20| 0.40(0.30| 0.05(0.56] 0.20]0.24
20 (0.20(0.10{0.50( 0.70f{ 0.50{0.20| 0.30{0.30| 0.05({0.64] 0.20)0.32
21 [0.20]0.25]0.60] 0.70| 0.55|0.20| 0.20{0.30| 0.05|0.70] 0.20}0.40
22 10.20/0.40}0.70] 0.70| 0.60]/0.20] 0.20|0.40| 0.15]0.70] 0.30}0.40
23 |0.20|0.48]0.80| 0.70| 0.60|0.32| 0.20({0.48| 0.25|0.70| 0.40]0.40
24 |0.20[0.5610.80| 0.75| 0.60|0.40| 0.20{0.56| 0.35|0.70| 0.50(0.40
25 10.20|0.65({0.80| 0.80( 0.60(0.48| 0.20{0.64| 0.45]0.70| 0.60]0.40
26 10.30[0.65(0.70] 0.80] 0.60({0.56| 0.20|0.70| 0.50|0.70| 0.65]0.40
27 10.35|0.65(0.60| 0.80| 0.60(0.65| 0.30]{0.70| 0.55|0.70| 0.70]0.40
28 10.43(0.65(0.60] 0.70] 0.60{0.70} 0.40{0.70]| 0.60]0.70| 0.70]0.30
29 (0.57(0.65[0.60| 0.60{ 0.50({0.70{ 0.50{0.70] 0.60)0.60| 0.60]0.30
30 |0.65]0.65{0.55| 0.60| 0.50(0.60| 0.55[(0.70| 0.60({0.50] 0.50]0.30
31 ]0.70]/0.65{0.50|] 0.60| 0.60{0.60| 0.60(0.70| 0.60[{0.40] 0.40}0.30
32 10.70]0.56(0.50| 0.70| 0.65[0.60| 0.65|0.70| 0.50(0.40] 0.30{0.30




Table 5.1 (continued 1) Load increments for the 6 models

Inc| Beam Al Beam A2 Beam A3 Beam A4 Beam Bl Beam B2
NO T
M M| T M T M T M T M T

33 10.70]|0.40(0.50| 0.78| 0.70{0.60| 0.70(0.70} 0.40|0.40| 0.20}0.30
34 10.6510.40({0.50( 0.85( 0.75{0.60| 0.70{0.60( 0.40[0.48{ 0.10({0.30
35 0.55(0.40]0.60) 0.85| 0.80(0.60] 0.70]0.50( 0.40(0.56] 0.10|0.40
36 10.55]0.480.65| 0.85( 0.80(0.50| 0.70(0.40| 0.40(0.65( 0.10(0.48
37 10.55]0.56|0.70| 0.85| 0.70(0.50| 0.60(0.40| 0.40(0.72| 0.10]|0.55
38 10.55]|0.64]0.75| 0.85| 0.70(0.56| 0.55(0.40( 0.40({0.80( 0.1010.60
39 10.55]0.72}10.80] 0.85| 0.70}0.64] 0.55]0.48| 0.50(0.80] 0.20(0.60
40 10.55]0.80]|0.85] 0.85| 0.70|0.72| 0.55|0.64]| 0.60{0.80| 0.30|0.60
41 10.6010.8010.851 0.90| 0.70{0.80( 0.55(0.72| 0.65({0.80| 0.4010.60
42 10.65]0.80(0.80{ 0.90| 0.75|0.80| 0.55[0.80| 0.70({0.80| 0.50]0.60
43 10.70]0.800.75| 0.90| 0.80(0.80| 0.55(0.85| 0.75|0.80| 0.60|0.60
44 10.7510.8010.75| 0.85| 0.85|0.80| 0.60(0.85| 0.80(0.80| 0.70]0.60
45 10.8010.80|0.751 0.80] 0.90|0.80| 0.65|0.85| 0.80(0.70| 0.75]0.60
46 10.85(0.80]/0.75} 0.75] 0.90]0.70| 0.70[/0.85] 0.80]0.60) 0.80]0.60
47 10.85|0.72]0.80f 0.75| 0.80]0.70} 0.75{0.85] 0.80({0.50| 0.85]0.60
48 [0.85]10.64|0.85] 0.75| 0.80(0.80| 0.80(0.85| 0.8010.40[ 0.9010.60
49 10.85]0.55/0.90f 0.75] 0.80|0.85| 0.85]|0.85| 0.80;0.30| 0.90|0.50
50 10.80(0.55[0.90| 0.80| 0.80(0.90( 0.85(0.75| 0.75]0.30] 0.70]0.50
51 10.75|0.55{0.90| 0.85] 0.85|0.90| 0.85|0.65| 0.70|0.30( 0.50(0.50
52 10.75[0.64]0.90| 0.90{ 0.90]0.90| 0.85{0.55| 0.70|0.40| 0.40j0.50
53 10.75]0.72]0.90| 0.95] 0.95]0.90| 0.80|0.55} 0.70]0.48| 0.40)0.56
54 [0.75]0.80/0.95] 0.95| 1.00]|0.90] 0.75[0.55| 0.70]0.56| 0.40|0.64
55 [0.75]0.88]1.00| 0.95| 1.00)0.95| 0.75|0.64| 0.70]0.64| 0.4010.72
56 |0.75/0.95/1.00| 1.00| 1.00|1.00| 0.75|0.72| 0.70]0.72] 0.40]0.80
57 10.80(0.95 1.05(1.00] 0.75(0.80| 0.70]0.80{ 0.50(0.80
58 ]0.85|0.95 1.05(1.05|] 0.75|0.85| 0.70]0.85| 0.60(0.80
59 10.90(0.95 1.10{1.05| 0.75|0.90( 0.75]|0.85| 0.70(0.80
60 [0.95({0.95 0.80(0.90| 0.80)0.85] 0.80(0.80
61 10.95(0.80 0.85]0.90| 0.85[0.85| 0.90]0.80
62 10.95(0.70 0.90]/0.90| 0.90}0.85| 0.95(0.80
63 10.90(0.70 0.95]0.90| 0.90]0.75| 0.9510.70
64 10.90(0.80 0.95]/0.80| 0.90|0.65| 0.85]0.70
65 10.9010.90 0.95]0.70] 0.90]0.55f 0.75]0.70




Table 5.1 (continued 2) Load increments for the 6 models

Inc

Beam Al

Beam A2

Beam A3 Beam A4 Beam Bl Beam B2

NO | | I

M| T M [T M T M T M T M T
66 {0.90(1.00 0.90]0.70] 0.90{0.45| 0.65]0.70
67 10.95/1.00 0.9010.80| 0.90[0.35| 0.65|0.80
68 {1.00(1.00 0.90(0.88| 0.90{0.20| 0.65(0.90
69 0.90|0.95| 0.85{0.20| 0.75/0.90
70 0.95]0.95| 0.85/0.30| 0.85]0.90
71 1.00]0.95| 0.85{0.40| 0.90]0.90
72 1.00{1.00| 0.85|0.60| 0.95{0.90
73 1.05)1.00| 0.85]0.80} 1.00/0.90
74 1.05|1.05( 0.85[{0.90| 1.05{0.90
75 0.90{0.90| 1.10/0.90
76 0.95(0.90
77 1.00[0.90

M = applied bending/M

T

max

applied torsion/Ty,




4.13—4.16. The object of these series was to study the behaviour of reinforced
concrete beams under different load combinations. In the load paths shown in
figures 4.13 and 4.16, bending was applied first, whereas in the load path shown in
figure 4.14 torsion was applied first. The load steps followed in theses three load
path are far from the monotonic case. In the load path shown in figure 4.15
torsion and bending were applied alternatively and the load steps followed were close
to the monotonic loading case.

Model Al — Ioad path 1 (see fig 4.13)

During the experiment the load was applied in small increments of
0.05xMp,5x and 0.08xTy,,4. Figure 5.1 shows crack development on the model at
each load stage, and the numbers on the photograph show the increment stages.
Bending was first applied; the first cracks located at the bottom flange were noticed
at a load of 0.3xMp,,,. These cracks were approximately 90° to the beam axis.
Keeping M = 0.3xM,4, torsion was increased till load 0.5xT,,5x was reached. At
this load stage, inclined cracks developed on the webs. Keeping T = 0.5xT 54,
bending was increased till a load of 0.5xMp,,, was reached. At this load level, the
existing cracks widened further and the maximum displacement at midspan was 6mm.
Then torsion and bending were successively decreased till a load of
(0.2xMy1a%,0.3xT05) was reached. Keeping M = 0.2xM,y, torsion was increased
till a load of 0.7xTp,,x was reached. Several inclined cracks developed on all sides
of the beam. Most of the cracks extended through the height and joined at the
corners to become spiral. When the load was decreased, the crack width narrowed
and then widened when load is increased. Keeping T = 0.7xT 44, bending was
increased till a load of 0.7xM,,x was reached. Maximum displacement at the
centre of the beam at this stage was 12mm. Then the load was decreased and
increased three times as shown in figure 4.13 till failure occured. Figures 5.2, 5.3
shows the load/strain curves, while figure 5.4 shows the load/displacement curve for
beam Al.

The deflection limit of span/250 according to BS8110(26) was attained at a

load of (0.7xMy44,0.65xT,,). The first yield of longitudinal steel was recorded at

9
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Fig 5.1 Crack development at each load stage.

(Beam Al : Reinforced Concrete beam)
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a load of (0.75xMp,4,0.8xTy,,,) at the bottom longitudinal steel bar, while the first
yield of transverse steel was recorded at a load of (0.6xMyy,y,0.8xT ...

The beam failed after a load of (0.9xM;,4,0.95xT ;%) was reached. At
that load, a major spiral crack opened up and the beam collapsed. The maximum
displacement at the centre of the beam before failure was 18mm.  The torsion
loading system used in this test probably caused the early failure of the beam. It
was impossible to get the same amount of torque at the ends of the beam. The
system was altered and maximum load combinations were reached more or Iless
conveniently for the other models.

Model A2 — load path 2 (fig 4.14)

During the experiment, the load was applied in small increments of
0.05xMp, 4 and 0.08xTy,,y. Figure 5.5 shows crack development on the model at
each load stage. Torsion was applied first and the first cracks were observed at a
load of 0.3xTy,,x. These cracks were approximately at 45° to the beam axis. The
width of the crack measured on the front web was 0.08mm. Keeping T=0.3xT g,
, bending was increased till a load of 0.5xMp,,y was reached. Crack developed on
the webs and on the bottom flange, and these two different cracks joined at the
corners. The width of the crack measured on the front web was 0.14mm. Keeping
M = 0.5xMp,y, torsion was increased till a load of 0.5xT,,x was reached. The
main observations made at that stage were the spreading of the web cracks towards
the top flange, and the 0.18mm wide crack measured on the front web. Keeping
T= 0.5xTp 5%, bending was decreased till a load of 0.4xMp,,¢ was reached. Then
keeping M = 0.4xM,,,,, torsion was increased till a load of 0.7xT 5 Wwas reached.
At that load level, the maximum deflection at midspan was 18mm. Keeping
T=0.7xTax, the bending moment was increased till a load of 0.8xMp,y was
reached. At that load stage, cracks developed on all sides of the beam. The crack
width on the front web was 0.32mm and on the top flange 0.14mm. Then the
beam was subjected to other load combinations as shown in figure 4.14 till failure
happened. Figure 5.6 and 5.7 shows the load/strain curves, while figure 5.8 shows

the load/displacement curve.
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Fig 5.5 Crack development at each load stage.

(Beam A2 : Reinforced Concrete beam)



cY W¥Y38 404

SYVE8 TYNIUNLIONGT FHL NI FA8N2 NIVHLS 737i6-0v07T 2°S 914

66-L6 ¥04 ((5200°0=A3) /3~ '

66-46 SATNYY NI NIVYLS 40 JIvH3AY

ST en GAUTNO RD HIWNIL A0 AUYNS)Y

[T N N NS P A R T

6222 S3TNY3 NI NIVHIS 40 33V¥3AY

{SC00°0=A3) /3

ER 0°g

e e

£3 I8

S'¢

6L 1L

L ] [

o 669 @
- - . P H
. S ,
666 ® _

hord ‘X.u..
FORC A
.,\
b le

0

|
w
|
i

!
!
M
i
i
_
!

S0
R i B

B S

S S

L]
.
o

-
(=]

73]
.
(o]

*ewl/INIANIG 0417ddY

(W*NX 0°¢% 3°1)



2V WY35 0= ScnedIls FHL NI SAER2 NIVELS T33i6-CVC7T £°G DI
(54200 °0=43) /3

]
<
-T
o
o
Q

(o]

gy (A} 9% (483 8°¢ ¥Z 0°c 9%
ST R e B T I S S R 00

Gomge 5A00YY NI NIVHLS 40 4IVy-AY e -1 i°0
RN AUETO U PO DU M R Al | EERIREELEERLEESE T

£9-19 S4DNYT NI NIVHIS 40 39VE3AY - -

N
/
y e e e /
S ! P
a { y
. ; .
. ; 7
o/ ! ;
. i e e
Ve : -
- e
- —zilll 7
- e

xew! /anoH0l (317ddY

N IS

>

C

(WNAOF



001 (HLd30/INIWIIYTIASIO

CVY W¥Y38 804 FAdNT INIWFIVIdSIa 8°S 914

9i 9l zi 01 8 o 4 o

| 4 T _

|8 NCLLISOD Y N TdSlD s

| e T e |

_r ! NDILISOd LV INIWIIVISIO ———— tw _

“ _\.\\. !
bl

| .

,

m -t

,, \”_v -y B

: P - |

i :

_W

- [\.‘ ) -

| ,

w k]

_ @ ueds 31591 Im

w

'[ 00z

1°0

cQ

S0

2°0

8°'0

6°0

(W'NX 0°2g7371) *BWW/9INION3E 03177ddY



The deflection limit of span/250 was attained at a load of (0.5XxMpay,0.7xT a5

The first yield of longitudinal steel was recorded at a load of (0.75xMpax,0.7xT a5)
at the bottom longitudinal steel bar and the first yield of transverse steel was
recorded at the same load.

Under the last increment in torsion, the spalling of the concrete along the top
flange was noticed. Then a major spiral crack at midspan opened up and the beam
collapsed at a load of (1.0xM44,0.95xT55). Most of the steel were at yield.
The top steel reinforcement had twisted. Before failure, the maximum displacement

at midspan was 48mm.

Model A3 — load path 3 (see fig 4.15)

The new set up shown in fig 4.2.b was used to test the next models
(A3,A4,Bl and B2). The load was applied in small increments of 0.05xMp ., and
0.08xTax- The beam was loaded alternatively in torsion and bending till a load of
(0.3xMp3%,0.3xT55) was reached. The first cracks on both the webs and the
bottom flange occured very early at load of (0.15xM;,4,0.1xT,,,). Between the
load at cracking and a load of a (0.3xMp,,,,0.3xT,,), more cracks developed on
both the webs and the bottom flange. As the load increased, these cracks spread
towards the top flange but no cracks were noticed on the top flange. Maximum

recorded displacement at the centre of beam was 6mm. Keeping T = 0.3xT,y,

bending was increased till a load of 0.5xMp,,, was reached. At that stage more

inclined cracks developed on the bottom flange. Keeping M = 0.5xM,,y, torsion
was increased till a load of 0.5xT,x Wwas reached. Maximum recorded
displacement at the centre of the beam was 12mm. Between loads of

(0.5xMp%,0.5xTa%) and (1.0xM,,,1.0xTmax) more inclined cracks developed on
all the sides of the beam, and existing cracks extended and widened. Figure 5.9
shows crack development on beam A3, and the crack width values are shown in
table 5.2 . Figure 5.9.A shows the specific cracks where crack widths were
measured. Most of the cracks joined up at the corners of the beam to become
spiral.  This was directly accompanied by a rapid increase in deformation. At a

load of (0.8xM,y,0.9xT,5) the first cracks on the top flange were noticed.
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Fig 5.9 Crack development at each load stage

(Beam A3 : Reinforced Concrete beam)
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Figure 5.10 and 5.11 shows the load/strain curves, while figure 5.12 shows the
load/displacement curve for beam A3.

The deflection limit of span/250 was attained at a load of (0.6xM4+,0.7xT 1a5).
The first yield of longitudinal steel was recorded at a load of (0.7xMy,,4,0.8xT45)
at the bottom longitudinal steel bar, while the first yield of transverse steel was
recorded at a load of (1.0xM;,4,1.0xT44).

At a load of (1.1xMp,4,1.05xT55) a major spiral crack opened up and the
beam collapsed. The strain in the longitudinal bars and stirrups either exceeded the

yield strain or were near to yielding.

Table 5.2 Load/crack width for model A3

M/Mp 4 T/Thax crack(1l) crack(2) crack(¥*)
(mm) (mm) (mm)
0.5 0.5 0.10 0.12 *
0.6 0.7 0.12 0.28 *
0.8 0.6 0.14 * 0.30
0.7 0.8 0.16 0.30 0.35
0.9 0.8 0.18 0.38 0.50
0.8 0.7 * 0.32 0.46
1.0 0.9 0.18 0.40 0.60

* missing data

Model A4 — I.oad path 4 (see fig 4.16)

The load was applied in small increments of 0.05xMp,,, and 0.08xTp,y.

Bending was applied first. The first cracks appeared in the bottom flange at a load



t

of 0.3xM,5. These cracks were approximately 90° to the beam axis. Keeping M
= 0.3xMy,x, torsion was increased till a load of 0.5xT,,4 was reached. At that
stage, inclined cracks developed on both the webs and the bottom flange. At a
load of (0.3xMp,54,0.5xT54), the first inclined cracks occured on the top flange.
Keeping T=0.5xT %, bending was increased till a load of 0.5xM,,, was reached.
Maximum displacement at the centre of the beam at this stage was 15.4mm. Then
torsion and bending were successively decreased till a load of 0.3xT.., and
0.2xM,,,x was reached. Keeping M = 0.2xM,,,y, torsion was increased to
0.7xThax- At this stage more inclined cracks developed on all the sides of the
beam. Most of the cracks joined up at the corners to become spiral. Keeping T
= 0.7xTpax, bending was increased to 0.7xMp,,,. At that stage all the bottom
flange longitudinal steel bars were at yield. Then torsion and bending were
successively decreased to 0.4xTp,,5 and 0.55xMp,y.  Keeping M = 0.55xMp 4y,
torsion was increased to 0.85xT.,y. At that stage, the first yield of stirrup was
recorded. Keeping T = 0.85xT,y, bending was increased to 0.85xMy,,,. At that
stage; existing cracks extended and widened, but few new cracks developed. Figure
5.13 shows crack development on beam A4, and the crack width values are given in
table S5.3. Figure 5.13.A shows the specific cracks where crack widths were
measured. At a load of (0.85xMp,4,0.85xT %), the longitudinal steel bars in the
top half of webs yielded. Then torsion and bending were successively decreased and
increased twice as shown in figure 4.16 . At a load of (1.0xMy,4,1.0xT 550, the
longitudinal bars located in the bottom half of webs yielded. Near failure, spalling
of concrete on the top flange was noticed, and stirrups and longitudinal steel bars
were at yield. The beam failed at load (1.1xM,4,1.05xTp,,). At that load a
major spiral crack opened up and the beam collapsed. Kinking of the bars was
noticed after the beam had failed.

The deflection limit of span/250 was attained at (0.5xMp,,4,0.7xT 1,55). The first
yield of longitudinal steel was recorded at the same load, while the first yield of
transverse steel was recorded at (0.7xMp,4,0.75xT54). Figure 5.14 to 5.17 shows

the load/strain, load/deflection and load/twist curves for beam A4.



Fig 5.13 Crack development at each load stage.

(Beam A4

: Reinforced Concrete beam)
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In the case of series A cracks in the top flange appeared last.

Table 5.3 Load/crack width for model A4

M/Mpax T/Thax crack(2)
(mm)
0.50 0.7 0.12
0.55 0.7 0.15
0.65 0.7 0.20
0.55 0.8 0.25
0.55 0.85 0.30
0.65 0.85 0.35
0.80 0.85 0.40
0.85 0.85 0.45
0.85 0.90 0.50
0.90 0.90 0.55
0.95 0.90 0.60
0.90 0.95 0.60
1.00 1.00 0.70
5.2.2 Series B — Partially prestressed concrete beams

Two partially prestressed concrete hollow beams designed according to
direct design method based on classical limit capacity concept( s) were tested under
various load combinations. The load paths followed in these tests are shown in

figures 4.17—4.18 .  The object of this series was to study the behaviour of



partially prestressed concrete beams under multiple loadcases. In these series, large
decrease in loads were operated at higher load than in series A, in order to make
the load history depart strongly from the monotonic loading case.

Model Bl — I.oad path 5 (see fig 4.17)

The load was applied in small increments of 0.05xMy,,, and 0.08xT,.x.
Bending was applied first up to a load of 0.1xMp;,. Keeping M = 0.1xM .5,
torsion was increased up to a load of 0.4xTy,,y. At (0.1xMp,4,0.3xT.0) inclined
cracks started to develop on the top flange. Torsional moment caused the
development of these early cracks on the top flange. Keeping T = 0.4xTp,,y,
bending was increased up to a load of 0.35xM,,4. At that load level, cracks
developed on both the webs and the bottom flange as shown in figure 5.18. Then
torsion and bending were successively decreased to (0.05xMy,a4,0.3xT,05). Keeping
M=0.05xM,x, torsion was increased to 0.7xT . At that stage more cracks
developed on the top flange and the previously formed ones extended and widened,
and the cracks on the webs spread towards the top flange. At
(0.05xM;4%,0.7xT 10%), cracks developed everywhere on the beam, most of them
extended through the depth and joined at the corners to become spiral. Keeping
T=0.7xTy,x, bending was increased to 0.6xMp,,. At that stage the crackwidth
limit of 0.3mm according to BS8110(4) was reached. The span/250 limit
displacement  was reached at (0.5xM,4,0.7xT45).  Then torsion and bending
were successively decreased to (0.4xMy44,0.4xT55).  Keeping M = 0.4xM,y,
torsion was increased to 0.8xT.,,yx. At that load stage, the stirrups started yielding
and the opening up of the cracks on both webs and bottom flange was noticed.
Keeping T=0.8xT 4%, bending was increased to 0.8xMpax- At
(0.6xM;115%,0.8xT %) Yyielding of bottom flange longitudinal steel bars was recorded.
At a load of (0.8xMp,54,0.8xT44), the longitudinal bars located in the webs
yielded.  Then the beam was subjected to other load combinations as shown in
figure 4.17 till failure occured. The prestressing wires started yielding at a load of
(0.9xM,3%,0.8xTy,). Figure 5.19 to 5.22 show the load/strain curves and

load/displacement curves for beam Bl. Near failure, spalling of concrete on the top
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Fig 5.18 Crack development at each load stage.

(Beam Bl : Partially Prestressed Concrete beam)
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flange was noticed. The beam failed at (1.05xMp,,5,0.9xT.y). At that load, a
major spiral crack opened up and the beam collapsed. Kinking of the bars and
prestressing wires was noticed. The maximum value of torsion (T ,x) Wwas not
reached, this might be due to the large decrease and increase of torsion operated at
a stage where the reinforcing steel bars and stirrups were already at yield, and the
concrete cracks were very quite wide (0.6mm).

Model B2 — l.oad path 6 (see fig 4.18)

The load was applied in small increments of 0.05xMpy,yx and 0.08xT,,y.
The first cracks occured at a load of (0.4xM;;,4,0.2xT,4) on both the webs and
the bottom flange. After the initial load increments had been applied, bending was
kept at M=0.2xM,;,, and torsion was increased to 0.4xT.,,x. Then keeping
T=0.4xTp 44, bending was increased to 0.7xMp,,x. More inclined cracks developed
on the bottom flange and both webs. At that stage, the cracks in the webs spread
towards the top flange. At (0.7xMy,4,0.4xT,%) the crackwidth limit of 0.3mm
was reached. The crack development at each load stage is shown in figure 5.23
and the crack width values are given in table 5.4. Figure 5.23.A shows the specific
cracks where crack widths were measured. Then torsion and bending were
successively decreased to (0.1xM;;,,,0.3xT,,) and then they were successively
increased to (0.9xMp54,0.6xT44).  The first inclined cracks on the top flange
occured at (0.2M,44,0.6xTj54). Displacement limit of Span/250 was reached at
(0.5xM5%,0.7xTj5).  The first yield of longitudinal steel occured at the bottom
longitudinal corner bar at a load of (0.6xM,,4,0.6xT,,4), while the first yield of
transverse steel was recorded at a load of (0.8xM;;,4,0.7xT,5,). Then the beam
was subjected to other load combinations as shown in figure 4.18 till failure occured.
At (1.0Mp,4%,0.85xT,55) the spalling of concrete was noticed on the top flange and
the failure surface was clearly noticed. The beam failed after load
(1.1xMp54,0.9xT54) Wwas  reached. At failure, the kinking of the steel
reinforcement and prestressing wires which were near yield was noticed. Figure 5.24
to 5.27 show the load/strain curves, load/displacement and load/twist curves for beam

B2.
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Fig 5.23 Crack development at each load stage.

(Beam B2 : Partially Prestressed Concrete beam)
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Table 5.4 Load/crack width for model B2

M/Ma T/Thax crack(1) crack(3) crack(4)
(mm) (mm) (mm)
0.40 0.20 0.05 0.40 *
0.80 0.60 0.10 0.60 *
0.80 0.70 0.15 * 0.25
0.85 0.80 0.20 0.80 0.30
1.00 0.85 0.25 0.95 0.35

* missing data

5.3 DISCUSSION

Detailed description of experimental behaviour of individual models was
presented in section 5.2. The object of this section is to summarise the behaviour
of all the models tested under the following headings.

a) Crack patterns
b) Deflection
c) Twist

d) Strains

5.3.1 Crack patterns

For reinforced concrete beams, under pure bending (first stages of tests
Al,A4) cracks did not occur until a load of 0.3xMp,,, had been applied. Under
pure Torsion (first stages of test A2) the first cracks occured at load of 0.3xT,y.

When the beam is loaded alternatively in torsion and bending (first stages of test



A3) cracks developed very early, at a load of (0.15xMp,5,0.1xTay). This might
be due to the combined action of bending and torsion.

For partially prestressed concrete beams, the cracking load is at a much
higher load than for reinforced concrete beams. For beam B1 the cracking load
was (0.1xMp13%,0.3xT 0 4), for beam B2 the cracking load was

(0.4xM 113 4,0.2xT 14 %) -

5.3.2 Deflection

The load/deflection curves follow generally the same variation as the load
path, and for the different transducers locations the load/displacement curves are
similar.  When bending is increased, deflection increases and the load— deflection
relationship is nearly linear. When bending is decreased, the deflection decreases
too. When bending is kept constant and torsion is varied, deflection wvariation is
minimal. The curves obtained by joining the peaks of the load/deflection curves
from this investigation (reinforced and partially prestressed concrete beams under
multiple loading cases) are compared to the load/deflection curves obtained under
monotonically increasing proportional loading by J .Ebireri( 2) (reinforced concrete
beam subjected to combined bending and torsion) and R.Saadi(?2) (partially
prestressed concrete beams subjected to combined bending and torsion) in figures

5.28 and 5.29 .

5.3.3 Twist

Few conclusions can be drawn concerning twist, as the twist results
presented are for models A4 and B2 only. It happened that the transducers used
for the twist measurement repeatedly failed to function properly. However the
load/twist curves (fig 5.17 and fig 5.27) obtained respectively from the testing of
models A4 and B2 follow the same variations as the load path followed respectively

in the testing of beams A4 (figure 4.16) and B2 (figure 4.18). When torsion is
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increased, twist increases and the load— twist relationship is almost linear. = When
torsion is decreased the twist decreases too. When torsion is kept constant and

bending is varied, twist changes very little.

5.3.4 Strains

The load/strain curves follow generally the same variation as the load path.
When the load is increased, strain increases and the load— strain relationship is
nearly linear. When the load is decreased the strain decreases too. When bending
moment is kept constant and torsion is varied, both the strain in the longitudinal
bars and prestressing wires varies very little. The torsion load/stirrups strain curve is
nearly flat, when bending moment is varied and torsional moment is kept constant.
The curves obtained by joining the peaks of the load/strain curves are compared to
J.Ebireri{2) and R.Saadi(32) load/strain curves in figures 5.30 to 5.34 . It is clear
from figure 5.30 to 5.34 that the general behaviour of the curves obtained in joining
the peaks of the load/strain curves obtained for the case of multiple loadcases is
similar to the load/strain curves obtained for the case of monotonically increasing
proportional loading. The conclusion holds good for both reinforced concrete beams
and partially prestressed beams. This general behaviour can be described as
trilinear:
a) Behaviour before cracking
b) Behaviour after cracking
¢) Behaviour after yielding of steel

Before the development of the first cracks, very little strain was normally
observed in the reinforcing steel. As the applied load on the section is resisted
mainly by concrete and steel is inactive.

After cracking, a gradual increase in strain was observed in all the steel
bars and stirrups. The increase in strain is attributed to redistribution of stresses
after cracking and subsequent progressive deterioration of concrete resistance.

After vyielding, a rapid increase was recorded in strain with little or no
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increase in load before failure. This represents the development of plastic strains.

At ultimate load, most of the tension steel in the sections had yielded.

5.4 ANALYSIS OF TEST RESULTS

5.4.1 Serviceability limit state

Table 5.5 shows the summary of all the test results. The service load
behaviour according to BS8110(26) is based on one of the following criteria.
a) Deflection limit of span/250
b) Maximum crackwidth limit of 0.3mm

From table 5.5, it is observed that all the beams reached the limiting
service deflection at a low load—level. Average service deflection for the 6 beams
tested is (0.54xM54,0.72xT54). The low service deflection load can be attributed
to the presence of torsional moment. However, in the investigation reported in
reference 2 , a very high service deflection load has been recorded in presence of
torsional moment. This probably indicates that under non monotonic loading,
deflection limit of span/250 cannot be used to determine serviceability limit state in
the case of combined loadings. The deflection limit of span/250 recommended in
BS8110(26) is normally intended for flexural moments only.

In the limit state theory, the general practice is to design for ultimate
limit state and then check for serviceability. Considering that most of the loads on
the beams tested are mainly live loads, by applying a load factor of 1.6 from
BS8110(26) recommendations, the service load is obtained as :
design load/1.6 = 0.625xP4 (5.1)

Accordingly, the corresponding service deflection is obtained as deflection at a load
level of 0.625 x design load from the test results.

Table 5.5 shows the ratio of load at maximum service crackwidth to
maximum load for all the beams tested in this investigation. The maximum

crackwidth was obtained as average crackwidth on the webs or flanges. From table



5.5 the load level corresponding to the maximum service crackwidth is fairly
satisfactory.  The average load level at service crackwidth of 0.3mm for all the
beams is (0.69xMy,,4,0.65xTy4y). This value is slightly higher than the working load
of 0.625xdesign load, and nearly equal to the value obtained in the investigation

reported in reference 2 (0.66xdesign load).

5.4.2 Ultimate limit state

Table 5.5 gives the summary of the ultimate behaviour of the beams tested
in this investigation. The ultimate behaviour is classified into two stages for the
purpose of analysis as :

a) First yield of steel

b) Final failure loads

a) First yield of steel

The average load at first vyield of steel is equal to
(0.70xMp4%,0.75xT 1a%).  This value is higher than the service load of 0.625xdesign
load, but compared to the value obtained by J.Ebireri( 2) (0.79xdesign load) it is
slightly lower.

Comparison of the load at first yield of steel in the case of reinforced
concrete and partially prestressed concrete beams shows that the yield load of
reinforced concrete beams are higher than that of partially prestressed concrete
beams when prestressing wires are excluded. The prestressing wires yield at very
high load level or were only near yield at failure.

Comparison of the load at first yield of the longitudinal bars and stirrups
shows that the yield load of stirrups is higher than that of the longitudinal bars.

b) Ultimate load

The ratio of experimental ultimate load to design load in table 5.5 shows

that most of the beams tested in this investigation failed at the maximum bending

load or in excess of the maximum bending load, but only two beams failed at the



maximum torsion load. Beams Al1,A2,B1 and B2 failed at a load slightly less than
the maximum torsion load. The reason for this may be attributed to the improper
use of centre— line to calculate enclosed area of beam for shear stress. This has
been discussed in section 2.2.2.2 and in appendix C. In appendix C is compared
the differences in the alternative centreline location used for calculating enclosed area
of section A, . It was observed that the application of longitudinal bar centreline
gives about + 8.5% more torsional steel than the wall centreline approach adopted in
this  study. For beams with a small amount of torque, this difference is
insignificant. However for high torsional loading, the difference could be very
significant. For example, for a torque of 32 kN.m which is T, ;4 the beam is
underreinforced by about 2.7 kN.m with centreline approach. This could be one of
the main reasons for the early failure. The CEB-— FIP(25) recommendation for the
design of torsion is based on this concept.

The average ultimate failure loads for all the beams tested in this study is
(1.04xM;,5%,0.97xT j1ax) - This result shows that the classical ultimate limit capacity

concept gives very satisfactory failure loads under multiple load cases.



Table 5.5 Summary of experimental results

Test [Cracking load Load at displ span/250 at 0.3mm crackwidth
beam|maximum load maximum load maximum load

N°s |Mc/Mpax|Te/Tmax|Mzs0/Mmax | Tzs0/Tmax .3/Mnax | To-3/Tpax
Al 0.30 0.0 0.65 0.80 - -

A2 0.0 0.30 0.50 0.70 .80 0.70

A3 0.15 0.10 0.60 0.70 .80 0.60

A4 0.30 0.0 0.50 0.70 .55 0.85

Bl 0.10 0.30 0.50 0.70 .60 0.70

B2 0.40 0.20 0.50 0.70 .70 0.40

Table 5.5 (continued) Summary of experimental results

Test Load at first yield of steel Ultimate load
beam maximum load maximum load
N°s for long bars for stirrups
Mly/Mmax le/Tmax Msy/Mmax Tsy/Tmax M,,/Mmax T,/Tmax

Al 0.75 0.80 0.60 0.80 0.90 0.95
A2 0.75 0.70 0.75 0.70 1.00 0.95
A3 0.70 0.80 1.00 1.00 1.10 1.05
A4 0.50 0.70 0.70 0.75 1.10 1.05
Bl 0.60 0.80 0.60 0.70 1.05 0.90
B2 0.60 0.60 0.80 0.70 1.10 0.90




CHAPTER 6

THEORETICAL INVESTIGATIONS

6.1 INTRODUCTION

The aim of this chapter is to analyse the beams tested using a non-linear
finite element program. Before this a brief review of the non linear analysis and
the finite element technique adopted are presented.

In problems of linear elastic stress analysis the differential equations governing
the solution are linear. In numerical stress analysis, non-linear solution involves the
solving of a series of linear problems. The phenomena introducing nen linearity
(e.g. plasticity, creep etc.,) are handled while satisfying basic laws of continum
mechanics; equilibrium, compatibility and constitutive relationship of the materials.

The main causes of non-linearity in structures are :— (33,24)

a) Geometric non-linearity

b) Material non-linearity

Geometric non-linearity is caused by large displacement which alter the shape of
the structure such that the equilibrium equations have to be considered in terms of
the displaced position of the structure.
Material non-linearity occurs due to changes in the basic stress— strain relationship
caused by plasticity, cracking, creep etc. In reinforced concrete structures, cracking
and crushing of concrete and yielding of reinforcing steel are the main causes of
non-linear behaviour. In this study, only the short term non-linear behaviour of
reinforced concrete is considered.

Generally, the accuracy of a non-linear solution depends on the accuracy of
the material law, numerical procedure wused, and the basic finite element
approximation.  For economical but reasonably accurate solution, some degree of

error is normally tolerated.



-

6.2 REVIEW OF NON—LINEAR ANALYSIS

6.2.1 Numerical appraoch for non—linear analysis (33,34)

In small strain linear elastic problems, using the displacement approach of the
finite element technique, the external nodal force are related to the nodal

displacement {d} through the element constant stiffness matrix [K] in the form

{P}= [K.d¢ (6.1)
This relationship assumes a linear elastic constitutive law as:
{o} = [DL[{e} — {e;}] + {o,} .. (6.2)
where

[D] = constant linear elastic material property matrix.
g,€ = final stress and strain respectively.

0,,€, = initial stress and strain respectively.

Generally, in structural analysis problems involving small displacement for
which a varying constitutive relationship D applies, condition of displacement
continuity and equilibrium must still be satisfied. Equa 4.2 is still valid provided that
yield criterion F(o,¢) is not violated i.e F(o,¢)<0. However, if the material yields
ie.

Fle,ey = 0 L (6.3)

then a new material law has to be used. This relationship is generally non-linear.
The solution of equa. 6.1 when [K] is not constant is obtained by a succession of
linear approximations. This forms the basis of the non-linear approach.

The finite element method uses one of the following techniques for the
solution of non-linear problems:

a) Incremental procedure

b) Iterative procedure

¢) Incremental-Iterative procedure

The above techniques will not be described in this chapter. All the details of this

techniques are given in references (33,34,35).
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6.2.2 Procedures in _non—linear analysis

The following are the basic steps of non-linear analysis.

1) Apply load increment and calculate trial incremental displacement.

AMdp} = [K]” {4} (6.4)
where AP = load increment
[K] = stiffness matrix based on material law at the start of loading.

2) Estimate total displacement and strains at this stage :

{dp+ 1} = {dp} + A{dp}

Aey = [B]l.Adg

{en+ 1 = {end + AMed (6.5)

3) Calculate the total stress op4+ , from present material properties

Aoy, = [D].Aey

{on+ 1} = {on} + Aop}

4) Check total stress against relevant yield surface.

F(op+ 1,€n+,) = 0

If total state of stress does not cause yielding, repeat steps 1 to 4.

5) If the state of total stress violates the yield criterion, modify the material
constitutive matrix and then bring the state of stress back to the yield surface.
Calculate excess force F€X .

FeX = (P, .} — fBlo,av Ll (6.6)

6) Add excess force to present load vector, and reanalyse the structure

Ady} = [KT'FEX (6.7)

Check for force and displacement convergence, if satisfied, proceed to step 1 and
repeat.

7) Go back to step 2 and repeat process until convergence is achieved.



6.3 FINITE ELEMENT TECHNIQUE

The finite element method has been widely used in structural analysis. Its
basic principles are well known (237 37), The main advantage of this method is its
versatility. However, the accuracy of any analysis greatly depends on the choice of
the finite element model adopted.

In this investigation attention is concentrated on the analysis of "thin—walled"
beams under bending and torsional loadings. Considering the complex behaviour of
hollow beams, a detailed analysis would normally require a full three dimensional
finite element model. A full three dimensional finite element analysis requires six
degrees of freedom (three translations and three rotations) per node of the element.
However, such models demand very large computer capacity and time, and therefore
very expensive. Various simplified two dimensional finite element models have been
proposed (2,38,39) with two main objectives in mind
a) To reduce expensive computation associated with three dimensional analysis.

b) To produce a simple, acceptable analytical approach.
The model proposed in reference 2 was the one adopted in this study.

A study of the structural behaviour of thin—walled beams indicates that the
main stress condition are those of inplane stresses in the plates of the box girder. In
steel box girders, cross—sectional distortional stresses are also important. However,
in the case of concrete box girders, this may not be the case, provided the
individual plates are reasonably thick and there are sufficient diaphragm to prevent
cross—sectional distortion.  Therefore, it can be represented by an assemblage of
plane stress elements to account for the major stresses and zero stiffness assumed for
out of plane bending action of the component plates. Figure 6.1 shows the
rectangular plane stress element with two degree of freedom per node adopted in
this investigation. The two—dimensional idealisation of box girders is adequate
provided compatibility of displacement between adjoining plates along the line of
intersection is maintened and cross—sectional distortion is reduced to minimum.

The advantage of this approach over a full three—dimensional finite element



solution is that it leads to cheaper computations while at the same time the main
stresses are obtained with reasonably accuracy.

To achieve these objectives, the following techniques has been adopted as
shown in figure 6.2.
1) To ensure shear transfer between adjoining plates of the beam, compatibility of
displacements along the line of intersection at the common edge of adjoining plates
is maintained by introducing geometrical constraints, as shown in figure 6.3.
2) To reduce cross—sectional distortion, end diaphragms are introduced into the
analysis.

The mesh and the boundary conditions adopted in this theoretical study are

shown in figure 6.4.

6.4 NUMERICAL PROCEDURE ADOPTED IN THE PROGRAM

The procedure adopted in the program can be summarised as follows:
a) Read in the beam's geometrical properties, material properties, design loads and
the exact quantity of steel used as input data.
b) Using the initial uncracked materials properties, the program performs an elastic
analysis to obtain deflections and stress distribution (ox,oy,rxy) at every Gauss point
in each element.
¢)An incremental non-linear analysis is then performed until failure.
d) The serviceability and ultimate behaviour of all the beams tested in this study are
checked with respect to the following:
1) Deflections: — The program outputs deflections and stress distribution at each
load increment. However, the initial deflection and stresses under the design load
are obtained with the elastic stiffness of the section. Assuming that only live load
is applied to the members, the service deflection is taken as the deflection
corresponding to a load of P4/1.6 (i.e. an ultimate load factor of 1.6 is assumed).
2) Yielding of steel: — The stress in the reinforcing steel is calculated during the

non-linear analysis. A yield strain of 2.5 x 10 =3 is assumed for steel.
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3) Cracking and crushing of concrete: — A crack is assumed to occur when the
principal stress exceeds the tensile strength of concrete. The development of cracks
is closely monitored during the analysis. A limit crack width of 0.3mm is assumed
for serviceability ckeck.

4) Ultimate load: — The ultimate failure load of the beams tested and stress
distribution are also considered. Failure is attained when reinforcing steel in many
elements has yielded and very large displacements are obtained and it becomes
impossible to obtain convergence.

Further details of the program used for the analysis are found in reference (30).

6.5 COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS OF

TESTED BEAMS

Only reinforced concrete beams were studied theoretically. For lack of time
the partially prestressed beams were not analysed.
Table 6.1 and figures 6.5 to 6.7 show the results of the comparison between
theoretical and experimental studies. The results are discussed under the two

headings.

6.5.1 Service behaviour

The post-cracking region of the load-deflection relationship at the midspan
of the beams shows good agreement between theory and experiment. At service
load, the average ratio of theoretical to experimental deflection at midspan was 0.91.
The maximum steel strain at service load was also examined. It was observed that
both theoretical and experimental results show very good correlation. The average
ratio of theoretical to experimental maximum steel strain at service load was 0.96.

In the theoretical analysis, it was observed that all the steel yielded outside
the service load. The load at first yield of steel was higher for the case of

theoretical analysis (0.9 design load) than for the case of experimental tests (0.7



design load). The average ratio of theoretical to experimental load at first yield of

steel was 1.28.

6.5.2 Ultimate load

Comparison of final failure loads for both theoretical and experimental
investigations shows very good agreement. The average ratio of theoretical to
experimental ultimate load was 0.94.

From the above results, we conclude that both theoretical and experimental

analysis agree satisfactorily at both service and ultimate load levels.

Table 6.1 Comparison of theoretical and experimental results of tested beams

Beam |[Cracking load|Service load(0.625xPg4) |Load at yield|Ultimate

NO PerT/PerE Displct Strains of steel load
5sT/ 8sE esT/ €sE Pyr/PyE Put/PugE

Al 1.25 1.25 1.50 1.17 1.02

A2 1.66 0.71 0.94 1.25 0.97

A3 1.66 1.05 0.75 1.20 0.88

A4 1.43 0.67 0.75 1.50 0.83
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSION

From the experimental and theoretical investigations reported in this thesis, the
following conclusions can be drawn:
1— The direct design method based on classical wultimate limit capacity
concept(s:sv:‘”) was used to design the beams tested in this study. It was observed
that the approach predicted satisfactorily the behaviour of beams subjected to

multiple combinations of bending and torsional loadings.

2— The results indicate that at service load (0.625xdesign load) both deflections and
crack widths were within the limits recommended by the British Standard Code

BS8110(26), Average crackwidth of 0.3mm was reached at (0.69xMp,,x

0.65xTmay)-

3— No steel yielded within the service load limit. The average load at first yield

of steel for all the beams tested was (0.70xMp,5x , 0.75xT 55 ).

4— The average ultimate load for all the beams was (1.04xM .y, 0.97xT 54 ).
However, four of the beams tested (Al,A2,B1,B2) failed at approximately 92% of
the maximum torsional load. This behaviour is attributed to the use of a longer
centreline in calculating the enclosed area of section A, for torsional shear stress

resulting in less steel area.

5— The general behaviour of the beams tested is similar to the behaviour of

beams subjected to monotonic, increasing proportional loading.



6— The non linear finite element program used in this study proved to be a useful
tool for the analysis of reinforced concrete hollow beams under multiple combinations
of bending and torsional loadings. Good agreement was obtained between theoretical

and actual behaviour of beams in almost all cases.

7— The use of polysterene has given satisfaction for the casting of the hollow

beams tested. It is a cheap material and does not need any fabrication.

8— It is recommended (from the casting of the tested beams) to increase the wall

thickness from 50mm to 60mm.

7.2 RECOMMENDATIONS FOR FURTHER WORK

1— The experimental and theoretical investigations presented in this thesis pertains
only to beams. It is recommended to extend the study to other elements of

structure such as slabs and columns.

2— The beams investigated in this study are subjected to only multiple combinations
of bending and torsional loadings. It is recommended that multiple combinations of

bending, shear force and torsional loadings should be studied in future investigations.

3— Only partially prestressed concrete beams were studied in this investigation. It

is recommended to extend the study to fully prestressed concrete beams.



APPENDIX A

Appropriate centre— line for the calculation of torsion in beams.
The general equation for calculating torsional shear in beams is given as :
T = TH2.Ag.t) (Al)
Where 7 = shear stress

t = thickness of beam wall

—~
It

applied torque

&
il

(x,.y,) , enclosed area of centre— line

The resulting shear stress from above equation depends on the exact enclosed area A,
adopted. Accordingly, the steel area required to resist the applied shear is directly
influenced by the location of the centre—line. The following three types of alternative
centre— line can be used.
a) Centre— line of thickness of beam wall.
b) Centre— line of stirrups.
¢) Centre— line of longitudinal bars
Figure Al shows part details of section 300x300x50mm .
Enclosed area A, is then obtained as follows :
a) A, from centre—line of beam wall
Ay = (300 — 2(15 + 10))2 = 2502 mm?
b) A, from centre—line of stirrups
Ay = (300 — 2(15 + 5))2 = 2602 mm?
c) A, from centre— line of longitudinal bars
Ay = (300 — 2(15 + 10 + 5))2 = 2402 mm?

The centre— line of the beam wall was adopted in calculating the enclosed area A,
in this investigation. If the stirrup centre— line was used, an increased enclosed area A,
will be obtained resulting in a reduction of about 8.2% in the quantity of steel required
to resist a similar loading. However, if the centre— line of longitudinal bars is adopted, a

reduced enclosed area is obtained. Accordingly, more quantity of steel is required to resist
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similar loading. An increase of 8.5% is obtained compared to the centre— line approach

adopted. This method is recommended in CEB— FIP model code(25).



APPENDIX B

Contribution of self weight and sundries to total moments on test beams.

Square sections (300mmx300mm)
1) Self weight of solid end of beam 580mm.
03 x 0.3 x 24 = 2.16 KN/M
2) Self weight of effective span of beam (hollow section)
( (03 x03) — (02x0.2)) x24 = 1.2 KN/M
3) Self weight of torsion arm = 3.0 KN
4) Self weight of secondary beam = 0.65 KN
Reaction R, = (2.16 x 0.58) + 3.0 + 0.33 + (1.2 x 1.32) = 6.17 KN
Moment of midspan is
(6.17 x 1.9) — (1.2 x 1.32%2/2) — (0.33 x 0.6) — (3.0 x 1.78)
— (2.16 x 0.58 x 1.61) = 3.12 KN.M
This value represents 10% O0f the maximum bending applied. This means that the

actual bending applied is M + 0.1M = 1.1M,

0.33KN 0.33KN

5 oK | 1200 S0KN
216KNM M ] 62;(.1
'*«MLY*W&ZE&\F L

Ra Rg
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