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SUMMARY

The main aim of this thesis is to improve the computational efficiency of three
dimensional method and to investigate its applications to prediction of motion responses
and wave loads for mono and twin hull vessels with emphasis on twin hull SWATH ships
and crane vessels during heavy lifting operation . The result is to provide a more advanced

tool for practical ship designers to use at the primary design stage.

In order to improve the computational efficiency of the three dimensional theory,
the existing three dimensional panel method is modified in two different manners, firstly by
making use of the properties of Green's function and then by introducing the higher order
panel methods. It has been found that the first approach is simple and can save considerable
computation time, while the improvement by the second approach is not significant at

present but it has potential for future developments.

A mono hull Series 60 and a small waterplane area twin hull (SWATH) model are
calculated by the modified three dimensional method (from the first approach). The
emphasize is drawn on the SWATH model which is traditionally treated by the two
dimensional strip theory. The viscous effect on the motion of SWATH is taken into account
by a semi-empirical method . The comparison with rwo dimensional prediction and
experimental results has been made. In addition, the standing wave phenomenon in the
vicinity of twin hull ships and its etfect on hydrodynamic coefficients and wave loads are

extensively discussed.

The ordinary motion equation is modified to predict the motion responses of crane
vessels during heavy lifting operation. The coupling ettect between the motion of the vessel
and the load being litted and the viscous effect are considered in the prediction. The results

are compared with the available experiments to validate the prediction method.
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A general three dimensional method for predicting wave loads on cross deck
structures of twin hull ships has been introduced. The predictions are fully three
dimersional, so this method has ability to predict the wave loads and the wave load
distributions at arbitrary wave heading . The predictionshave been compared with

experimental data.

In order to evaluate the seakeeping quality of a ship design in certain ocean
environment,a seakeeping quality evaluation method has been presented. This method is
based on the irregular wave results which can be deriv ed from regular wave results and the
observed ocean environmental data in certain area and season. In addition, some design
criteria for SWATH ships have been discussed and an example has been given for

evaluation of the seakeeping quality for a SWATH design.

Finally, the overall conclusions regarding the above investigations are drawn. and

some possible proposals for future development based on the present study are suggested.
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NOMENCLATURE
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Bij(x)
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BL/pAL vt

B /pALN(/L,

V1)

-) non-dimensional damping ( i.j =

; non-dimensional damping

added masses or inertia
added masses or inertias at zero speed
added masses or inertias per unit ship length

at position x along hull

non-dimensional added mass (i,j = 1, 2, 3)
non-dimensional added inertia (i,j = 4, 5, 6}

i
non-dimensional coupling added inertia §

water plane area

wave amplitude

viscous lift coefficient

beam

maximum beam for twin hull ships
damping coefficient

damping coefficient at zero speed

damping coefficient per unit ship length at position x along hull

non-dimensional damping (i,j =1, 2, 3)

—_ e

viscous damping coefticient

aspect ratio of panel element

one half distance between centrelines of each hull
breadth of strut at waterline

breadth of strut at vertical position 7

block coefficient

crossflow drag coefficient

contour around intersection of body surface and free surface
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Cij

\2!

F
F
F
fi
fgq (= f-mg)
G

G;

GM;

GM

m

My

g

hydrostatic restoring coefficient
hydrostatic restoring coefficient of a crane vessel

with the load at the jib extreme

., ( = UN(Lg) ) Froude number

wave exciting force or moment due to wave

viscous wave exciting force or moment

component of the tension force on the sling cable in ith direction
dynamic sling tension of the cable

GE,0,n; x,y,2z)  Green's function

Green's function associated with the position (x;, y;. 7,) in fluid
transverse metacentric height

longitudinal metacentric height

gravitational acceleration

significant wave height

height of cross deck above the free surface for twin hull ships
inertia of waterplane area

moment of inertia in ith mode

product of inertia

wave number

ship length

length of lifting cable

mass of body

bending moment

torsional moment

moment of waterplane area

general mass matrix for ship

general mass matrix for crane vessel with the load at jib extreme
muass of the load being lifted

mass per unit area of cross deck

mass per unit ship length per unit height along stru
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N number of panels

n (ny, ny, n3j  outward unit normal

p pressure

q matrix of source densities

q; source density on ith panel

R V@2 + (z-m)D)

R' N2 + (z+ 1))

r V((x -8+ (y - §)?)

S mean wetted surface area

S, instantaneous wetted surface area
So surface in waterplane

S¢ free surface outside waterplane
T ship draught

hydrodynamic action on ith panel

per unit oscillatory displacement in jth mode

Ty modal wave period
T average wave period
t time

forward speed

\% fluid volume

v, horizontal side force

Vi vertical shear

v fluid velocity vector

Vo velocity in direction normal to the body surface
\%% steady state velocity vector

X, VY, 7 axis system defined as Fig. 2.1

Xg Yoo 20 axis system fixed in the space

X', vy, /7 axis system fixed in body

X, Y, 7 local element axis system

7 vertical co-ordinate of centre of gravity

B heading angle of incident wave with respect to x-axis
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AC;
AS;

waterline length of ith element adjacent to free surface
area of ith panel

displacement of ship

wave length

small quantity

displacement in ith mode of motion
complex amplitude of &;

free surface elevation

steady state free surface elevation
wave length

local element system

density of fluid

source strength

doublet strength

total velocity potential

steady velocity potential

unsteady velocity potential

incident wave potential

velocity potential associated with
ith mode of motion (1 = 1,2,...6)
forward speed independent part of o,

diftraction potential

swing angles of the lifting cable

with respect to x, y axes respectively

co-ordinates of the jib extreme in x, y. 7. direction respectively
wave frequency

encounter wave frequency
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CHAPTER ONE

INTRODUCTION

1.1 General Consideration

A ship or marine vehicle operating in ocean environments. which are
uncomfortable and often hostile, must fulfill its function namely transportation or
exploration with safety, prudence operation of the ship, and with effectiveness of the ship’s
crew and its equipment. In extreme conditions, it must withstand waves which cause it
to bend and twist without structural failure and seas which might overturn it without
capsizing. It should also retain its manoeuvrability and reduce deck wetness. slamming

and speed reduction in waves.

To design such a vessel, naval architects face a formidable task and must rely to a
large extent on the methods which can predict the way a ship behaves in a seaway. Since
Euler!!] and Bernoullil2! published the earliest work on the ship motion problem in the
middle of 18th century, naval architects have expended considerable efforts in deriving
such a prediction method for use in ship design. Unfortunately, this was something of a
‘black art” over a long period primarily because of the absence ot any technique that could
describe the complex nature of the problem involving free surtace waves which behave in a
random way. For this reason. naval architects were torced to rely heavily on empirical o
semi-empirical rules based on past experience. The result is that designs changed only
slowly from one vessel to another. Seldom is a radical departure made in the hull form ot a
ship. The improvement of the seakeeping quality of a ship design is a rather ditficult and

time consuming task.

The well known paper of St. Denis and Piersont?1in 1953 on the apphication ot the
principle of superposition to the ship motion problem started a new era in this field by

hypothesizing that the responses ot a ship to irrecular wave can be considered as the



summation of the responses to regular waves of all frequencies. Today, the validity of the
application of superposition to the ship motion and wave load problem is generally
accepted. In termsof the principle of superposition, the complex problem of predicting ship
motions and wave loads in a seaway can be replaced by two problems,

1, the prediction of the motions and wave loads in regular sinusoidal waves and,

2, the prediction of statistical responses in irregular waves by using the regular

wave results.

This first problem can be solved directly by measurements using mode] tests or
indirectly by a hydrodynamic theory to predict the ship responses in regular waves. Since
the St. Denis and Pierson's paper, there have been spectacular developments in both
experimental and theoretical methods for predicting ship responses in regular waves. Large
experimental facilities for testing models in oblique waves were built in many places around
the world. Furthermore, most of the tanks originally designed for resistance and propulsion
test have been equip ed with wavemakers, so that they can be used for head and following
wave experiments. Numerous ship motion and wave loads test have been conducted in

those facilities. Perhaps the most significant and comprehensive tests are the systematic
experiments carried out at NSMB in Wageningen on sixteen different Series 60 hull forms
in 1960's. The motions, power increases and wave loads were measured for each hull in
head, following and oblique waves. Unfortunately, even this kind of data has been
invaluable in the study of the hull form effect on seakeeping characteristics. However, tor

non-Series 60 hull forms there exists no similar systematic experimental data.

While experimental study is always desirable, it can be very expensive and time
consuming and so it is not usually feasible to perform these experiments tor each individual
ship design option. On the other hand, the experiments are difficult to give insight into why
a ship behaves in a particular way. Therefore, the paper of St. Denis and Pierson has
tfurther emphasized the importance of the development of theoretical and numerical methods

for predicting the ship responses in regular waves.

The main purpose of this thesis is to investigate the hydrodynamic theories which
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can predict the motion responses and wave loads of mono and twin hull ships in regular
and irregular waves. In particular, the predictions for Small Waterplane Area Twin Hull
(SWATH) ship and crane vessels during heavy lifting operations will be given emphasis.
Before the investigation is described, a literature review on the seakeeping theories will be

presented.

1.2 Literature Review

The study of seakeeping problem has been continued over a long period, but it is
only recently that much progress has been made in selving the total problem. However,
there are today a variety of different theoretical formulations based on a range of
assumptions in both two and three dimensional cases which are valid in particular
circumstances. Before going on to discuss the efficiencies and deficiencies of different
theories and set up the main aims of this thesis, a brief review of the development of

seakeeping theory is necessary.

1.2.1 The development of strip theory

Among many theoretical methods, the two dimensional strip theory has been
recognized as 'the most practical tool' for prediction of motions and wave loads of a ship
so far. The strip theory was first applied by Korvin-Kroukovsky and Jacobs!4! in 1957 to
the prediction of heaving and pitching motion of a ship in regular head waves. This was the
first motion theory suitable for numerical computations. which had adequate accuracy for
engineering applications. This theory was then extended by Jacobs!®! to include the wave
vertical shear forces and bending moments in regular head waves. Their approach has made
use of the characteristic shape of a ship which has a length many times its beam and
draught, so the ship can be divided into a number of transverse strips in the longitudinal
direction of the hull. Then, the wave excitations and hydrodynamic forces on each strip can
be evaluated separately. The interaction between one strip and another is ignored. It is.

therefore, termed 'strip theory'.

The theory of Korvin-Kroukovsky and Jacobs has since modified and extended.

Gerritsma and Beukelman!®! employed the multipole expansion technique to calculate the
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added mass and damping coefficients of each strip. Smith!7] showed their approach
predicted the head sea motions for a destroyer hull form which agree quite well with
experiments. Urselll8] found analytical solutions to the hydrodynamic forces of an infinitely
long half immersed cylinder oscillating on the free surface in both heave and pitch modes.
He employed the multipole expansion technique which has been discussed in detail by
Thorne!9). By applying a transformation to the results of Ursell's circular cylinder it is
possible to calculate the added mass and damping for a unit length of ship shaped section.

The multipole technique was also used by Porter(10] and Tasail1,

The use of close-fit methods pioneered by Frank!!2! was another significant
improvement in the development of strip theory. In Frank's approach a number of
segments with unknown sources are distributed on the section to calculate the added mass
and damping coefficients. Smith and Salvesen{13! have demonstrated that the head sea
motions can be predicted quite accurately even for a high speed hull with large bulbous
bow when such close-fit method is applied. They also attempted to extend the original head
sea strip theory to the case of oblique seas, but the theories are not that accurate since the

diffraction effect on the exciting forces was not treated properly.

It is worth to note that the original strip theory of Korvin-Kroukovsky and Jacobs
was based on a relative motion concept which was not derived in a rational mathematical
manner but rather by use of physical intuition, and so this concept was considered suspect.
It was found that some terms must be missing from the formula since the forward speed
terms in the coefticients of the motion equations do not satisty the symmetry relationship
proved by Timman and Newman!!4]. Timman and Newman gave rigorous analyses of the
hydrodynamic coupling for a symmetric point-ended ship. They revealed that the forward
speed dependent terms in hydrodynamic coefficients have the following relationship. (for

five degrees of freedom)

A, heave induced pitch moment = - pitch induced heave force
sway induced yaw moment = - yaw induced sway force
Yaw induced roll moment = -roll induced yaw moment

B, Sway induced roll moment = -roll induced sway force

-4 -



This is so called Timman-Newman relationship in the case of five degree freedom.
For above reason , the work on strip theory was consequently concentrated on providing a

rigorous derivation of the theory using the more rational approach.

It should be mentioned that the most general derivation of strip theory was made by
Ogilvie and Tuck!’>! to produce they called rational strip theory. They formulated the full
three dimensional boundary value problem and used the high frequency slender body
assumption with a systematic perturbation expansion to make consistent simplifications
throughout the analyses. Their formulae satisfy the Timman-Newman relationship (A), but
is only valid for the vertical modes of motion in head seas. There are some integral

terms in their theory which have not yet been evaluated, thus their theory is difficult to use.

Strip theory formulations which have been derived less rigorously, but still give
good results are those due to Salvesen, Ogilvie and Tuck!16) and Vugts!17). They agree
with Ogilvie and Tuck's results at zero speed, but include forward speed terms which
Ogilvie and Tuck described as higher order terms. Their theories satisfy the Timman-
Newman relationship (A) and (B) and also can be applied to the oblique waves. The
correlation study made by Kim, Chou and Tien[!3] shows that the predictions from this
theory agree well with experiments. except when the ship oscillates at low encounter
frequencies or moves with high speed. These limitations are consequences of the basic

assumptions of the strip theory.

On the other hand, Newman!!? pointed out that in strip theory it was difficult to
calculate the wave exciting forces and moments due to the diffraction directly in some
cases. Troesch!201 has obtained solution in oblique waves, but in head seas Newman! 19!
has found the solution singular. Consequently, the Haskind!2!) relationship is usually
employed m strip theory to calculate the diffraction forces in terms of the radiation
potential. The original formulae of the Haskind relationship is based on a three dimensional
potential problem. but when used with strip theory the resultant form of the wave excitation
acting on the ends of the ship is not strictly valid since three dimensional influences may be

important in these regions. Newman has shown that for high frequencies of oscillation this
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discrepancy does not cause significant differences on a slender ship since the wave
propagates almost entirely in the broadside direction as explained by Ogilvie!?2. However.
Faltinsen!23] found serious differences occurring at A/L=0.45, and Maruo!24! found that
strip theory fails to predict accurately the distribution of wave exciting forces and moments
on a ship in head seas. In particular, good agreement between measurements and
calculations for force distribution at bow was achieved, but the prediction of the pressure
decay along the hull was poor. This resulted in considerable error between measurement
and predictions on the sections over the after body. These findings were confirmed by

Ursell(25] and Moeyes!26),

Another important improvement on the strip theory was made by Kiml(27-28] | ee.
Jones and Curphey(2?1. They modified Salvesen, Tuck and Faltinsen's theory which is
original for mono hulls to twin hull ships by taking the hydrodynamic interaction between
the twin hulls in transverse direction into account. Later Lee and Curphey!3%) applied this
method to predict the motion response of SWATH ships in oblique waves with forward
speed. They also modified this approach to predict the dynamic wave loads on the cross-
deck structure of SWATH. In their approach the ship is approximated by uniform twin
cylinders for wave loads calculation, so it is only valid in case of pure beam seas. They
also compared the predictions with measurements and found generally good agreement,
except for those in following waves when the encounter frequencies were very low. The
pitch moment in head and following seas predicted by this approach was not good enough
as found by Fein and Lamb!31]. The unified slender body theory of Newman!32! has beer
applied to SWATH by Hongl33! in order to improve the prediction especially for
following seas. But in the limited comparisons that have been made with strip theory and
experiments in head and following seas, it was found that the computed motion were not

significantly improved by the application of the slender body theory.

1.2.2 Limitations of strip theories
and the need for three dimensional theories
As reviewed foregoing the strip theories have been significantly improved both on

the rigours of the theory and the accuracy of its prediction since it was first introduced by
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Korvin-Kroukovsky and Jacobs thirty years ago. However, all the strip theories have
deficiencies in one way or another. Takagil**! suggested that a major failing of such
approach was their inability to treat adequately three dimensional effects. From engineering
application point of view, there are some key points on the limitation of strip theories and

the need of three dimensional theories which can be identified as follows. -

The strip theories can be applied to the most of mono hulls which usually have large
length to beam ratios. Particularly, the prediction of motion responses of mono hull by strip
theories agree well with the experimental results in head, beam and oblique waves as long
as the forward speed is not very high and the oscillation frequency is not very low. The
wave load predictions from bow to midship section are reasonable, but the values on the
sections over the after body may cause considerable error. Therefore, the strip theories
could provide a very useful practical tool for motion and wave load prediction of mono

hulls before three dimensional theories become acceptable for engineering applications.

Unlike mono hulls, the twin hull or multi hull vessels, such as SWATH or
semi-submersible, generally have long slender hulls but fairly large beams. The application
of strip theory to such vessels still needs justification, as argued by Eatock Taylor and

(35]

Hung "~". The correlation study between experiments and theoretical predictions have

shown that the motion responses predicted by strip theory are good in head and beam

361 showedthe predictions from strip theory were

waves, but 1in oblique waves Djatmiko
poor for a tandem strut SWATH. This may be caused by the unfair treatment of
hydrodynamic interaction between the twin hulls by strip theories which only take these

interaction in transverse direction into account.

Atearly stage of SWATH research, the researchers were primarily concerned on the
most serious motion conditions which were the pitch responses in head or following seas
and the roll responses in beam seas. The strip theories were, therefore, quite acceptable.
Nowadays, the designer are also interested in evaluating the seakeeping quality of SWATH
in certain ocean environments(37), In thelattercase, the predictions of the motion response

in any wave heading are equally important from the point of view of evaluating
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seakeeping quality!37:38] Therefore. the accuracy of predictions from strip theory still need

further justification.

Wwul3%], Eatock Taylor and Hung(33! indicated that for certain combinations of wave
frequencies and the inner distances between the twin hulls the standing waves may occur.
Those standing waves are caused by the hydrodynamic interaction either in transverse
direction(391 or in longitudinal direction!3%). The computational results in this thesis show
that both cases of standing waves may occur. The longitudinal standing waves are very
important. The longitudinal standing waves with the lowest frequency may cause the
maximum side loads and bending moment on cross deck structure of twin hull ships. As
discussed by Eatock Taylor, the longitudinal standing waves are induced by three
dimensional hydrodynamic effect. To investigate such effect the three dimensional theories

are, therefore, necessary.

The wave loads, i.e. side forces and bending moments, on cross deck structure in
pure beam seas were seen to be the worst wave loading conditions. The recent research!#C]
has found that the seas approaching tfrom just forward or aft of beam give biased load
distributions which may cause the maximum local stress on the cross deck structure. Since
the present strip theories for predicting wave loads on super structure of twin hull ships are
only valid in pure beam seas, they are unable to predict such load distributions along the

hull. To overcome this problem the three dimensional theory must be applied.

On the other hand, the advanced structural analvses for SWATH or other twin hull
ships are mainly based on three dimensional methods If the strip theory is used for
hydrodynamic load calculation, a rough approximation of load distribution along the hull
must be employed. The three dimensional theory has ability to calculate the wave load
distribution directly and so can provide more accurate wave load input for the structural

analyses not only for beam sea case but also for any wave heading.

Owing to the slender body assumption, the strip theory is unable to treat a ship
which is not slender. This is a limitation for vessels such s semi-submersible crane vessels

which usually have columns with the similar size in diameter to the beam ot each demihull
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and the hull separation. To predict the motions and wave loads of such a vessel the three

dimensional effect must be taken into account.

The major advantage of strip theories is that it is computationally less expensive
than three dimensional theories. This 1s why strip theories are recognized as a very practical
tool to predict the ship motion and wave load problem in the past decades when
computations for three dimensional body in free surface were impractical if not impossible.
Computer technology has drastically improved during the past decades. Not only has the
memory space been expanded, but the speed of computation has increased and the relative
cost has been reduced drastically. With further improvements of the computer technology,
the advantage of strip theory will become less and less significant. The technology for
calculating three dimensional ship motion and wave loads have been under development for
a number of years, while general application of these techniques were restricted by the
limitation of computers and the cost. The majority of the previous work was, therefore,
concentrated on the development of the theories based on monohulls or stationary
structures. Before going to set up the main aims of thesis and to investigate the application
of three dimensional theories to engineering problem especially for twin hull ships, it is

necessary to briefly review the existing three dimensional theories.

1.2.3 Existing three dimensional theories

The pioneer work on three dimensional method was made by Hess and Smith(4!]
for the problem of nonlifting potential flow about arbitrary three dimensional bodies in an
infinite fluid. In their approach, a number ot panels with simple fundamental sources which
do not satisfy the free surface boundary conditions are used to approximate the body
surface. This approach is, therefore, termed 'panel method'. Hess and Smith's method is
unable to treat the free surface wave problem. However, this original panel method

provides the basis for the further development of three dimensional theories.

In the early seventies the advent of the offshore oil boom brought the need to
analyse structures which were large in all dimensions and for which strip theories were

invalid. Consequently, three dimensional theories which coped with the free surface wave
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problem were developed. Garrison!42:431_ Faltinsen and Michelsen!44] Hogben and
Standing!43! introduced the free surface Green's function which satisfied the linear free
surface boundary condition at zero forward speed, i.e. pulsating sources, to the original
panel method instead of tundamental sources. The result was that their panel methods had
the ability to treat the free surface wave problem. The comparisons with experiments
shown the prediction by their method are generally good for large number of offshore

structures under stationary conditions.

In a different manner, Bai and Yeungl#®! introduced another way to deal with the
free surface wave problem. They modified the original pariel method of Hess and Smith by
distributing source panels on not only body surface but free surface. sea bed and a vertical
control surface at infinity and choosing the source strength on each panel to satisfy body
surface kinetic boundary conditions, linear free surface, sea bed and radiation conditions.
Their approach only uses fundamental sources which has much simpler form than
pulsating source , but the method is computational less efficient than Garrison's approach
for the problems with an infinite extent of free surface!*’]. However this approach does
have its advantages, e.g. it can be used to treat the problem where the sea bed is not flat or

the fluid domain is restricted such as the sloshing in oil tanks.

Besides the above two approaches, there are many other three dimensional theories.
Zienkiewicz et all*%1 apphed the finite element method which has scored spectacutar
successes in structural mechanics to fluid mechanies with tree surface effect. Eatock Taylor
and Zietsman!**! introduced a hybrid method which used the finite element method in the
inner region close to body surface and the panel method in the outer region. All the
different three dimensional theories have their own efficiencies and deficiencies which

depend on the problem to be solved.

All'the 3D theories mentioned so far only deal with bodies without torward speed
and are mainly applied to the statonary offshore structures. The work by Chang!9 applied
the three dimensional theory to the ship motion problem with the forward speed eftect. She

introduced translating and pulsating sources which satistied the speed dependent free
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surface conditions to the ordinary panel method to take the forward speed effect into
account. The results by this approach agree well with experiments with or without forward
speed. Unfortunately, this approach is computationally very expensive because the double
integral in the formulations of translating and pulsating source is very time consuming for

numerical evaluation.

In order to reduce the computational effort for forward speed problem, Inglis/>!!
developed so called simplified three dimensional theory. He employed a similar approach
as the strip theory of Salvesen, Tuck and Faltinsen to simplify the forward speed dependent
terms on the free surtuce conditions under the assumptions of the oscillation frequency is
high and the forward speed is low. In his approach the pulsating source is used instead of
translating and pulsating source, so it is computationally much cheaper than Chang's
approach. Inglis has also investigated the full three dimensional theory which is similar as
Chang's approach and compared it with simplified three dimensional theory and
experimental results. The comparisons confirm that the simplified three dimensional theory
can give very reasonable predictions as long as its assumptions are valid. This approach is
now recognized as one of the most practical three dimensional tool for ship motion and
wave load problem and has been used by various of investigators, such as Chen, Torng

and Shin!>2), Wu and Price!33],

From the review of the previous work published n this field. some conclusions can

be drawn as follows:
1, the motion and wave load problems of twin hull vessels, especially for SWATH.
have been mainly treated by strip theories in the past but there are still some practically

important problems which are difficult to solve due to the three dimensional effects,

2, the three dimension methods are sull computationally time consuming, and

11 -



3. the majority of three dimensional work was concentrated on mono hulls or
stationary offshore structures and its application to some special twin hull vessels, such as
SWATH and crane vessels during heavy lifting operation that are primarily concemed in

this thesis, are still lack of justification.

These form the main aim of this thesis.

1.3 Main Aim of this Thesis

The main aim of this thesis is to improve the computational efficiency of three
dimensional method and to investigate its applications to prediction of motion responses
and wave loads for mono and twin hull vessels with emphasis on twin hull SWATH ships
and semi-submersible crane vessels during heavy lifting operation . The result is to provide
a more advanced tool for practical ship designers to use at the primary design stage. The

particular attention has been devoted to certain aspects as follows.

1, The existing three dimensional panel method has been modified to improve its
computational efficiency which is the major restriction on the application of three
dimensional theory to practical uses. Two approaches have been investigated in this thesis,
firstly by making use of properties of Green's function which is presented in Chapter 3 and

then by introducing higher order panel methods which is given in Appendix A.

2. The modified three dimensional method (by the first approach) was used to
predict the hydrodynamic coefficients, wave excitations and motion responses of mono hull
Series 60 model and compared the present predictions with other theoretical and

experimental results to validate the modification. This is described in the Chapter 4.

3, The three dimensional theory has been employed to predict the hydrodynamic
coefticients, wave excitations and motion responses of SWATH for different wave
headings and forward speeds. The correlation study has been made with the strip theory
predictions and experiments. Attention is paid to the discussion about the improvements of

three dimensional predictions over the traditional strip theory approach. The presentation is
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made in Chapter 4.

4, Unlike monohulls, the viscous effect on the motion responses of SWATH and
semisubmersibles is significant specially near the motion resonant frequencies. In order to
predict those motion responses correctly the semi-empirical cross flow approach which was
originally used with strip theories has been introduced to the three dimensional panel
method to estimate the viscous effect. An iterative method is employed in the solution of
motion equations. Comparison has been made with measurements. This is also in Chapter

4.

5, The standing wave phenomenon in the vicinity of twin hull ships has been
discussed in detail. The three dimensional hydrodynamic eftect on the standing waves and
its effect on the wave loads on the structures of twin hull ships has been given particular

attention. Those discussions are presented in both Chapter 4 and 6.

6, The ordinary motion prediction methods have been modified to predict the
motion responses of the crane vessels during heavy lifting operations. The motion coupling
effect between the vessel and the load being lifted and the viscous effect on the motion ot
the vessel has been considered in the prediction. The twe examples, for a mono hull and a
semisubmersible crane vessels, are given. Some comparison with experimental data have

been made as well. The details can be found in Chapter 5.

7, A general three dimensional method tor predicting wave Ioads on cross deck
structures of twin hull ships has been introduced. The predictions are fully three
dimensional, so this method has ability to predict the wave loads and the wave load
distributions for arbitrary wave headings. In addition. some special features of three
dimensional predictions such as

a. its ability to predict the biased load distribution in just forward or aft beam seas
which may give rise to maximum local stress on the structure.

b, to predict the maximum torsional moment on cross deck structure which usually

occeurs at quartering seas and
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¢, to produce more accurate wave distribution input for structural analyses
have also been discussed. Some of the results have been compared with the experiments to

validate the three dimensional predictions. This is presented in Chapter 6.

8, Finally, the traditional wave spectral methods were employed to predict the
statistic responses of the motion responses and wave loads of a ship in irregular waves by
using its regular results. These statistical results can be used to evaluate the significant
values of motion response and wave loads in given ocean conditions. In order to evaluate
the seakeeping quality of a ship design in certain ocean environment,a seakeeping quality
evaluation method has been presented. This method is based on the irregular wave results
for a given design and the observed ocean environmental data for certain area and season .
Furthermere, some design criteria for SWATH ships have been discussed and an example
has been given for evaluation of the seakeeping quality for a SWATH design. Those are

given in Chapter 7.
In the final chapter the conclusions of present study have been drawn and the

proposals for the future development based on the present work have been suggested as

well.
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CHAPTER TWO

THREE DIMENSIONATL POTENTIAL THEORY

This chapter summarises the method based on 3D diffraction theory for
predicting motion and wave load of a 3D arbitrary body in regular waves with and without
forward speed. The analysis is primarily based on irrotational (inviscid ). incompressible
potential flow theory. The viscous effect will be discussed in Chapter 4 and the randem sea

procedure will be discussed in Chapter 7

The general definition of the hydrodynamic problem is firstly outlined. This is
followed by the analysis of the different metheds for solving the boundary value problem
to get a suitable method for the present study. Finally a detailed discussion on the

singularity distribution method is given.

&

.1 Formulation of the Problem

9

.1.1 Definition of the problem

The hydrodynamic theory which deals with the problem of a 3D arbitrary body
moving at a constant speed 1 regular sinusoidal waves is developed based on the
assumption that the fluid surrounding the bady s inviscid irrotational, homogeneous and
meompressible. Therefore, a velocity porential must exist satistying Laplace's equation and
the respective boundary conditions. When linearization is considered permissible the
harmonic motion of the body becomes primarily important. In that case only the boundary
conditions for velocity potential remain. Summarizing, the velocity potential must satisty
the following requirements:
- Laplace's equation,
2-the linearized tree surtace condition
3+ the radhation condition.

4 sea bed condition. and
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5- body surface kinematic condition.

The underlying assumptions are:

1- the fluid is inviscid, incompressible and irrotational,

2- the surface tension may be neglected,

3- the free surface domain is infinitely large,

4- the seabed is flat or infinitely deep, and

5- the incident wave and resulting motion responses is sufficiently small in

amplitude.

By means of the velocity potential the fluid velocity vector v can be represented as

v=Vb (2.1)
with

O = B(x, 1) (2.2)
where @ is velocity potential satisfying the conditions mentioned above, x. t are
respectively the position vector and time. The pressure p is determined by Bemoullis

equation

1
p:_p(d)lJf--é- V-V 4 D) (2.3)

in which p is the fluid density, g is the gravitation acceleration and p;, is the atmospheric
pressure which is assumed constant. In equation (2.3) and hereafter when the independent
variables, X, y, z, tappear as subscripts, partial differentiation is indicated. i.e. ¢, = do ot

elc.

1.1.2 Co-ordinate systems

In dealing with the 3D ship motion problem defined above, it will be convenient te
consider three co-ordinate systems, one of these is the 0-xy(7, co-ordinate system fixed in
space in such a way that the 0-xgy, plane coincides with undisturbed free surface and o 7,
15 directed vertically upward, o-y( is chosen to mike the system right handed. The other 0
xyz is taken to be fixed in the ship, and in such a way that the origin, o, is at the point ot

intersection of the calm water surface, the longitudinal plane of symmetry and the vertical
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plane passing through the centre of gravity of the ship, the 0-xy plane coincides with the
undisturbed water surface when the ship is at rest, the o-xz plane coincides with the
longitudinal plane of symmetry of the ship. o-x towards the bow and o-y to the port side. If
the ship is moving in such a way that one may define average position around which the
axcs o-xyz fluctuate, this can be denoted by the co-ordinate system o'-x'y'z' (see Fig.2.1)
The aim of the ship motion theory is to find the mutual relationship of these sets of co-

ordinate systems.

2.1.3 Decomposition of the velocity potential

A total potential d(x,y,7z,t) exists which can be expressed in following form

O (X,y,7,1) = U[ E) (X,¥,7,) - X ] + 0 (X,Y,7,0) (2.4)

where U is the forward speed of the body, U [ E) (x,y,7) - x] is the time independent

potential due to the steady forward motion of the floating body travelling in calm water with
speed U and ¢ (x,y,7,t) 1s the unsteady time dependent potential due to the body motion in

waves.

Since the incident wave and the resulting responses have been assumed sufficiently
small in amplitude. the unsteady motion problem can be assumed to be a linear
superposition of the following boundary value problems as suggested by Haskind!!!:

I+ the incident wave encountered by the body will be diffracted from it assuming
the body is rigidly held in its fixed position. This is called the 'Diffraction Problem’.

2+ as soon as the incident waves are diffracted due to the presence of the body. it is
assumed that the motion can be represented by the oscillation of this body in initial calm
water with the same frequency as it encountered in the wave. The six degrees of rigid body

motions can be further decomposed linearly. This is known as 'Radiation Problem'.

The total unsteady potential tor a sinusoidal wave excitation with encounter

frequency. m,. can thus be expressed as
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l(l)cl

6
o (xyd) = | 0 (1) + 6 (xy.2) + D &0, (25)

i=1
where o(x,y,z) is the incident wave potential representing the incident waves, Op(x,y.7) 1s
the diffraction potential representing the disturbance of the incident waves ditfracted from
the body, 0, (x,y,7), i=1,2,...6, are the radiation potentials due to oscillations of the body
in calm water with unit amplitude in each of six degrees of freedom, i=1,2....6 represent
surge, sway, heave, roll, pitch and yaw respectively and &i, i=1,2,...6 are the appropriate

amplitudes of the oscillation.

The incident wave potential is of the form
) E ekz ei( kxcosp + kysinp )

%= (2.6)

and the encounter frequency, ®., in Eqn.(2.5) is represented by
we =1 - Ukcosf | (2.7)
where ® is wave frequency, a is the wave amplitude, k is the incident wave number.

k=w?/g, and P is an arbitary heading angle (180° for head sea).

2.1.4 Boundary conditions

The nature of the boundary value problem under the foreging assumptions
described in section 2.1.1 imposes the following conditions which should be satisticd in
fluid domain, on the free surface, the immersed surface of the hody, a <sutable closure a

infinity and sea bed.

I, Laplace equation

Vip =0 in tluid domain 1295

2, Linear free surtace condition
20 - Jd -
U — o+g 5 =0
8X [eX4

on z=() (210
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. d 2 d
(i Us=) 0 +g=-0=0 on 7=0 2.11)
for the zero forward speed
2 d
o ¢)+g—a7¢:O on z=0 (2.12)
3, Body boundary condition(?!
9 (5-x)=0
—8—1?(¢_X)_ on S (2.13)
_()—E(q)(ﬁ%)zo on S (2.14)
J . U
35 % = o, n + Um, on S (2.15)

where
(ny, ng, n3) =n
(ng4,ns5,ng) =rxn
with n the outward unit normal vector and r the position vector with respect to the origin of

reference frame

(m.m, m,)=-(n V) V(o -x)

(m, memg )= (n-V) | rxV(d_p -x) |

Salvesen. Tuck and Faltinsen!2! showed that the cross products of the steady perturbation
potential &) and the unsteady potential ¢ are of higher order and ¢ may be neglected in the
computation of m; in above equation, this leads to

m; = () i=1.234

Ms= N3, Me=-N (2.16)

4, Sea bed condition

For finite depth
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0

oz =0 for z=-d (2.17)
and the infinite depth

)

3070 for 7 -c (2.18)

where d is the depth of water.

5, Radiation condition at infinity

A radiation condition. which states that wave cnergy flux is directed away from the
body at infinity, must be satisfied. This restriction imposes a uniqueness for the solution of
the boundary problem, which would not otherwise be presented. The radiation condition
takes various mathematical forms depending on the nature of the velocity potential. The

detailed discussions are given by John{3], Newmanl4], and Wehausen and Laitonel5!,

2.1.5 Evaluation of the hydrodynamic forces
[f the velocity potential ¢ is known, the pressure on the body surface can be
obtained by applying the Eqn.(2.4) to the Bernoullis' equation, Eqn.(2.3), i.e.

vl(x)el

p=-p[ 1400+ UV (0-x)Vole
(2.19)

10 L

(s

l/V )z le V’f_ 2 ]

—_ - C “+ Ny

+2( 0e +2,[ (D -x)V ] +paz

in which the last two terms on the right hund side are time independent, the tirst of them is
associated with wave making resistance and the litt, the second is the hydrostatic buoyancy
force contribution. The other terms in Eqn.(2.19) are time dependent due to the factor

e '@el and give rise to unsteady forces.

The linearized hydrodynamic pressure is obtained by disregarding higher order

terms in ¢ as well as terms involving cross products of ¢ and ¢ from the time dependent

terms in Egn.(2.19), as tollows



(OR

, J i
p=-pliw -U==l0e (2.20)

Since the oscillation displacement is assumed small, the total oscillation force and moment
on the body can be obtained by integrating the pressure(2.20) ( ignoring the time factor

e 10cty over the mean wetted body surface instead of the instaneous wetted surface, thus

H. =- “A pn. ds

S . (2.21)
=-pJ.jni(iwc+U%)¢ds
S

By substituting Eqn.(2.5) to Eqn.(2.21), the total force, H;, can be divided into the

wave exciting force, Fj, and the motion induced forces, Ej, i.e.

H; = F; + E; (

9
o
[e®]

and the wave exciting force can be further divided into the incident wave part, Fi®, and the

diffraction part, F;P, so that

) , d
F =F +F :--J.JAni(lmc+Ug)(q>O+Q)D)ds (2.23)
S

with

F :” n( iw?+U%)¢nds (2.24)

S
and
) : d
F :-”ni(mﬁua_x)q)[)ds, (2.25)
S

The motion induced force is
a 6
E = J-J.ni(i(ucﬁtl]x)Zéj (Dj ds . (2.26)
S =1

Since the derivative n Eqn.(2.26) is not easy to deal with. the tollowing form which i<
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derived from the Stokes' theorem has been suggested by Salveseni2l.

J.J.niI_Jaa—xcpds:UJJmiQ)ds-UJ.niQ)dl (2.27)
S S

CO
where ¢ is any differentiable scalar function, Cy is the intersection of the body surface and

the free surface.

In accordance with classical linear gravity wave theory, the potential for the incident
wave, Eqn (2.6), is introduced in the expression for the incident wave part of exciting

force Eqn.(2.24) and gives
FO=-pi '”‘ n. (o + UkcosP; 0, ds (2.28;

and Eqn.(2.7) reduces this to
Fo=- pico'”.n o ds.
‘ J0 (2.29)

This is well known Froude-Krylov force which is independent of the forward speed.

By applying the Stokes' theorem, Eqn.(2.27), to Eqn.(2.25), the diffraction part of

the wave exciting force can be expressed as

FP=p JJ.( ion +Um)o.,ds-pU J n. o, ds.
: el 1 D g 17D (2.30)

The mouon induced torces on moments. Eqn.(2.26) can be rewritten as

[§) 6
=P J-J.. i n + Um) Z ;l ¢ ds+U J n; Z éj ¢,dl
S = S

0

Do 3 for i=1.2...6

'l‘i;. =P JJ tron + Um) ¢)] ds + Up J-J. n o ds
S

’ (2.31)
- A -io B
¢ 1 © 1)
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The terms Ajj and By are added mass and damping coefficients respectively. The
subscript ij denotes jth mode of motion induced ith mode of added mass and damping
coefficient. Furthermore, Ajj and Bjj can be expressed as the following form by extending
Eqn.(2.32).

A..:——p—Im[“.ni(pjds] +P—[;—IR6[J!min(is]—%Re[J.n1¢jdl]

1
® S w Cy

—pRe[“n o, ds +—Im[”m o, ds. ——Im[J.n 0. dl ]

0 [§3)
(’0

(2.33)

2.1.6 Haskind relationship

In terms of Eqn.(2.29)-(2.30), the wave exciting forces can be obtained by direct
integral of incident and diftraction wave potential over the mean wetted body surface. This
is the so called direct integration method. There is an indirect way to do it by using

'Haskind relationship'.
For any two functions ¢ and ¢p satisfying the same Laplace equations, the free

surtace condition, the radiation condition and the sea bed condition, from Green's second

identity

J‘“. (0, v Oy ¢ v o4 )(V~J'J- a%" B%%'\_)ds (2.3H

it can be found that

o [[on g
NE

This is the so called "Haskind relationship Since this relationship is also valid tor the twe

(2.35)

dimensional case, it can be applied to both the surface integral and the line integral in

Eqn.(2.23), so that the wave exciting force can be written by means of the boundary
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condition (2.15) as following
d0,
F, - p”;—w Fop)ds = pﬂ<a 0,520 0 (236)
Here the boundary condition, d/dn = - dop/on. Eqn.(2.14) has been used.

The use of 'Haskind relationship’ enable to the total wave exciting forces or
moments acting on a ship to be determined from the velocity potential associated with the
forced oscillation of the ship in calm water without recourse to the diffraction problem.

However, the results obtained by the two approaches are completely equivalent.

2.1.7 Evaluation of motion
Under the assumptions that the responses are linear and harmonic, the six linear
coupled differential equations of motion can be written in following form

6
=1

where M;j is the generalized mass matrix for the ship, Ajj, Bij. and Cjj are added mass.
damping and restoring force matrices respectively. &, is complex amplitude of the
responses motion in each of six degrees of freedom, and F; is the complex amplitude ot

wave exciting force.

It it is assumed that the ship has lateral symmetry and the centre of gravity is located
at (0.0.z¢), then the generalized mass matrix has the form of
M 0 0 0 Mz 0]

0 M 0 -Mz 0 0

0 0 M 0 0 0

[M.]= 238
n 0 Mz 0 Ly 0 oo ’ ( )
Mz 0 0 0 Is 0
0 0 0 ley 0 Lo,
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where M is the mass of the ship, Ij, is the moment ot inertia in ith mode and IiJ are the

products of inertia. The inertia terms are with respect to co-ordinate system shown in

Fig.2.1. The only product of inertia which appears is lss, the roll-yaw product, which

vanishes if the ship has fore-aft symmetry The other nondiagonal elements all vanish if the

origin of the co-ordinate system coincides with the centre of gravity of the ship. However,

it is frequently more convenient to take the origin in the water plane, in which case. 7¢ is

not equal to zero.

For ship with lateral symmetry it also follows that the added mass and damping

matrices are

[ Ai4 1=
’ 0 A 0 A44 0
A51 0 Ags 0 Ass
0 Ag 0 Agy 0
and
B, 0 B, 0 B.
0 B, 0 B, 0
B:] 0 BNB Y B%\
| Bll ] =
: 0 B, 0 B, 0
Bs 0 By, 0 By s
0 Bﬁ2 0 B64 0

Furthermore. for a ship in the free surtace the

Matrix 1s
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0
(2.39)
46

66

(2.4

B
66J

lincar hydrostatic restoring coetticient



0 0 U 0 0 0

0 0 0 0 0 0
0 0 A, 0 M, 0

Gl=esly 0 0 vom, 0 of (241
0 0 -M, 0 VGM, 0
0 0 0 0 0 0

where Aw is the waterplane area, My is the moment of waterplane, V is the displacement
of ship, GMt i$ the transverse metacentric height and GML. is the longitudinal metacentric

height.

If all those matrices are substituted in equation (2.37), it is seen that for ship with
lateral symmetry, the six coupled equations of motion reduce to two sets of coupled
equations: a set of three coupled equations for surge, heave and pitch and another set of
three coupled equations for sway, roll and yaw. Thus, for 4 ship with lateral symmetry.

surge, heave and pitch are not coupled with sway, roll and yaw.

With the present method, the added mass, damping and wave exciting force terms
are yielded from the 3D diffraction theory. From a knowledge of these hydrodynamic

coefticients, the equations of motion (2.37) can be solved for ship responses &;

The motion equationsdescribed above only contain the potential terms and viscous
etfect is not included in the prediction of motion. In some cases, such as the roll responses
of mono hull ships, and the heave and pitch motions of SWATH ships or
semisubmersibles, the viscous effect is significant. In fact, the viscous torces are nonlinea
and not readily amenable to computation, even in relatively simple contiguration.

Consequently, it has been found to be necessary to introduce cquivalent, r.e.
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6
- - i ; )+ C.
Z [ (Di (Mn + Al]) ](Dc (BU + Bvu) ij I é,
=1 (2.42)
~Fo+F i=1,2,...6
1 Vi L]

where Byjj is an equivalent linear damping matrix and Fy;j is viscous wave exciting forces.
Both of them can be determined by empirical or semi-empirical method. which will be

discussed in Chapter 4.

2.2 The Solution of the Boundary Value Problem
and the Singularity Distribution Method
There are many techniques which may be considered for obraining the solution of
the boundary value problem formulated in previous sections for arbitrary 3D bodies. Quite
comprehensive reviews in this field have been made by Shenl®], Meil”) and Yeung!®!. In
order to choose a suitable method for the present problem, it is necessary to have a brief

view of several major techniques and their advantages and disadvantages.

One widely used method is finite element technique which has successfully used in
structural analysis for many years, but only recently is introduced into hydrodynamic tield.
The finite element method is based on the variational principle. In order to solve the
boundary value problem and determinc the veiocity potential, the whole fluid domain is
described by a number ot tinite elements and the velocity potential within each element may
be approximated by« set of polynomiat tnal functions which are ultimately chosen to
satisty the required boundary conditions. As reviewed by Yeung!8! this technique can be
saustactorily used 10 solve the problem where the fluid domain is restricted, for example. in
canals, harbours, even tor the interior tlow problem like oil sloshing in the tank which isina
seaway. Butitis faced with the difficulty of imposing an effective open boundary problem
because of Targe number of elements required. There are some variations on this method to
overcome this problem: The hybrid method desceribed by Bai and Yeung|9] combines finite
clement idealization close to the body with an analytic solution away from the body where
the boundaries are simple. The infinie element method of Bettess!!0 divides the fluid

domain mto two parts. the finite elements are used in the inner region which is close to the



body and the infinite element in the outer region. The idea of the both methods is to reduce

the number of elements required for the open boundary problem.

Alternatively, the boundary integral or singularity distribution method is another in
which to make use of Green's identity to reduce the 3D potential flow problem to a 2D
boundary surface problem. It generally involves distributing singularities (sources, dipoles
or source-dipoles) over the body surface and using Green's theorem to obtain an integral
equation for the strength of these surface singularities to satisfy the body boundary
condition. The velocity potential associated with the singularity satisfies all the boundary
conditions except the one on the body surface which is used to determine the strength of the
singularities. Integral equations for the velocity potential can generally be derived from
Green's identity in order to satisfy the body surface condition. So this approach needs to
solve a Fredholm integral equation with a complicated kernel function. In order to avoid
this problem a small departure from tradition was made by Yeung(9] which utilizes only the
fundamental source function (1/R in 3D case). However, since the fundamental source
function does not satisfy any of the required boundary conditions the sources must be
distributed over the fluid boundaries,the strengths are chosen to meet these boundary
conditions. Like the finite element method. this approach is particularly useful for the
problems where the fluid domain is restricted or seabed is not flat. But for the problem with

open water. this method not efficient.

In the current study, ships on the surtace of infinite fluid is of primary interest. so

the singularity distribution method in its basic form will be used.

There are at least three different way to formulate the Fredholm integral equations in
the singularity distribution method:

L. source and dipole distribution by the second kind of integral equation,

o

-source distribution by the second kind of integral equation. and

)

- dipole distribution by the first kind ot integral equation.

For the convenience of discussion, the three different distribution methods will
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firstly be formulated for each case at zero forward speed. then they will be moditied to take

into account of forward speed.

2.2.1 Source-dipole distribution method

Apply Green's second identity to the exterior flow

G (P.Q) 0 ,
”w(Q) 2 6pQ 148 Q

Q Q

(2.43)

:'[”{ 0 (1Y) G (P.Q)- G (P.Q) Vg0 1 dv
\Y

where Green's function, G (P.Q). represents the potential at field point P(x.y.z) due to @

source of strength 47 at point Q (&,n,8)
G (x,y.z: En.0) = I/R + G* (x,y,z: En.0) (2.44)
where

V2 G*x.y,z; En0) =0 inVv
R? = (x-£)% + (y-1)? +(z-0)2

St represents all the boundary surtace. that is. body surface, surface at infinity, bottom
surface and control surface around point PV isthe volume surrounded by SF, as shown in
Fig.2.2. ¢ is the unknown velocity potential which also satisties the Laplace equation V-6
= 0. in volume V, but it should be noted that G is not a harmonic function at point
QEN.0). so
2 2e 0 R=z0
\% G:V (R)—hm(——— ):{oo R=0 (2.45
= R(R+¢) :

It & small sphere isolating the singularity for the case of P in V or a small hemisphere for
the case of Pon SE is used then G is harmonic outside this isolated region and the volume

. . YN . . . . . -
integral of 0V-G gives, in limit as the radius of the sphere, r, approaches zero,
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T,
2 : -2¢ 2
J.J. & V'Gdv=Ilimo¢ (P) ———,;4TIR dr
g~+0 S R(R+¢eY

12.46)
-4r ¢ (P) for P in
=4 2n ¢ (P) forPon S
0 for P outside VUS

Substituting Eqn.(2.46) into Eqn.(2.44), the principle value integral yields the basic

integral equation of the method

- o(P)  for p outside SUS |
0 Q) ——— G(P d y=¢ 2ro(Py forp on S
.”.I (Q Bn “on_, (P.Q)1dsQ 0 for p inside SUS
Q Q (
(2.47)

for the case of the body floating on the free surface without forward speed, the surface
integrals over free surface, the surface at infinity and bottom do not give any contribution.
G and ¢ satisfy the same boundary condition on those surfaces, so putting those conditions
into Eqn.(2.47), it can be found the integral terms cancel each other on those surfaces and
the Eqn.(2.47) reduces to

{

- Amo(Py  for P outside SU S
J.J.[Q(Q)m_a_q)c(p@ | ds(Q) = < 2ro(P) forP oon S
S

8no 8nQ \ 0 for Pinside  SUS |
24N
where Sg 1s the waterplane area of the floating body o7 zero tor submerved body
LLet P on the body surface S and make use ot body boundary conditton. Eopic 2 1
and (2.15). the equation can be rewritten as
(P dG(P.Q)

j f 0 (Q as(Q)

ISR

” v, (Q) G(P.Q) ds(Q)
S

where vy, is the normal component of the velocity or the hody surtace and equal te men

fori=1,2,..6 at zero torward speed or - ddg/dn for ditt:action potential.
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This is so called source-dipole distribution of second kind of integral equation.

It should be noted that the Eqn.(2.49) is only valid for a body without forward

speed otherwise the integral over the free surface would not vanish.

This method has been discussed from a strict mathematical point of view by John!3!
and is called Green's integral equation method (Meil7]y or direct boundary integral equation

method (Zienkiewicz et al [111),

2.2.2 Source distribution method

In the Eqn.(2.48) the potential ¢ is only dealt with outside the volume V' which is
enclosed by the body surface S and the waterplane area Sg. It is termed exterior problem
and ¢ outside V' is of physically interest. For the convenience of the solution, a
complementary interior problem can also be formulated similarly. Let ¢'(P) be a solution of
3D Laplace equation for P' inside V' which is an artificial potential without any physical
meaning. If ¢' satisfies the free surface condition, a similar expression is obtained trom
Green's identity by keeping the same sign of n.

[[1co XD 20 6 0)as @

S

3 3
"o Mo (2.50)

=0 for P' outside SUSO .

Subtracting Eqgn.(2.50) from Eqn.(2.48) gives

9GP, % 90
”[W(Q) o (@) 0 G( DV 612 2 o

Jn  on ,
250
=-4m ¢ (P) for P outside SUSO.
It the definitions are made for
v=0-0 (2.52)
a9 do’
“on on (2.53)
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where v is termed the dipole strength and o is termed the source strength. The velocity
potential in Eqn.(2 511 is represented by source and dipole distribution over the body
surface, but it involves the interior potential terms. This kind ot integral equation is
therefore not used as commonly as Eqn.(2.49) which is simpler and moves straight
forward. The use of the artificial; interior potential is only for convenience of the solution

by other kind of singularity distributions.

Furthermore, if the specification
Y =0(Q)-¢6(Qi=0 forQon S (2.54)
is made, then the potential can be represented by the source distribution with the density

o(Q) on the surface S.

JJ o(Q) G(P,Q)ds(Q) = 4m o (P) for P outside SUSg (2.55)

The unknown source density ¢ can be found by imposing the body boundary
condition, Eqn.(2.14) and (2.15), and it gives

—o(P) + ——JJ. o(Q) ————— BG(P Q ds(Q) = v, forPonS. (2.56)

The first term of Eqn.(2.56) represents the contribution of local source strength to the
normal velocity since d(G/dn becomes singular as P approaches to Q. This is the two
dimensional Fredholm integral equation of second kind which can be solved by various

methods.

This distribution is related to that of the mixed distribution, Eqn.(2.49). by 4
similarity transformation. It is the version used in most studies, such as Frank!’2!,

Garrison and Raol!3). Faltinsen and Michelsen!'4] Inglis and Pricel 13,

2.2.3 Dipole distribution method

If the specitication is made in another way. i.e.

5 20Q) 90Q

— T:() Q on StISo. 2.57)
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then the potential in Eqn.(2.51) is represented only by dipole distribution with the density

v on the body surface So.

J‘J‘ BG( Q) —— = ds(Q)=-4n ¢ (P) for P outside SUS, (2.58)

For the case ¢, = ¢'n = n3, ¢'(P) = Uz, and so on for the case of other rigid body
motions. Eatock Taylor has found ¢' for the rectangular box. For an arbitrary ¢n this

procedure breaks down since ¢' is unknown, but from Eqn.(2.58), one can get

Np

3°G(P,Q) _ d¢ (P)
jsj Y (P) =—= a ds(Q) = - 4n . PonS. (2.59)

This is a Fredholm equation of the first kind. Once v is found, ¢ follows from Eqn.(2.58)
by quadrature. This method has been applied by Pien(16] and Chang and Pien(17] to
submerged bodies. Compared with second kind of Fredholm equation (2.48) and (2.56),
the first kind of Fredholm equation(2.59) is much less amenable to iterative solution,
because its dominant is off the diagonal. Yeung!®) pointed out that for the cases that for
which Eqn.(2.58) can be used, the dipole distribution method can be 50% more efficient
than the other two distributions because it only needs the evaluation of dG/on, not both G
and 0G/on. If Eqn.(2.59) is used for the case of arbitrary ¢y, it results in second
derivatives of Green's function, which compounds the already difficult task of evaluating a

highly oscillatory Green's function.

2.2.4 Influence of forward speed

The fundamental integral equations of singularity distribution methods in previous
Sections were derived for a body without forward speed. The zero speed free surface
boundary condition, Eqn.(2.12), was used to simplify the integrals over the free surface.
When a body moving forward in the free surface, the velocity potential must satisfy the free
surface condition which 1s speed dependent, Eqn.(2.11). The basic equation of the method
must therefore be modified to account for the influence of forward speed. Brard!!8! has

given a result, equivalent to Eqn.(2.49), for a body moving with forward speed in the free

surface, i.e.
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2
oG U aG oy
JJorg-oona- Jovg-a50e
S Co (2.60)

=-4n ¢ (P) for P outside SUS,,»

h
where y and G are:s{'rength of dipole and source respectively as defined by Eqn.(2.52) and

(2.53), and contour Cy is the intersection of the body surface and mean calm water surface.

Brard treated the term dy/dx by letting a point on the contour Cp with t to be a unit
vector tangential to Cy in the positive direction and 7 =t x n, 1 is tangential to the body

surface S and normal to contour Cy. 0y = cos(t,x), o = cos(T,x) and oy = cos(n,x), SO

dy _dy  dy Iy (2.61)
EZ R TR

Noting oy = ny, the Eqn.(2.60) becomes

2
oG U aG Y oy
_”(wjﬁ--cG)ds--g—J(\y&—-Gtx?-GrX¥+anc)dy
S C,
= -4n ¢(P) for P outside SUS,,

(2.62)
Here the potential is in general form and represented by source and dipole distribution.
Eqn.(2.62) is the extension of Eqn.(2.49). If y or © are set to be zero as in the zero speed

case, Eqn.(2.62) reduces to source or dipole distribution.

In the usual approach, the solution is found to ship motion problem using only
sources in order to have same kind of distribution both in the surface integral and line

integral, i.e. by letting W = 0 on S, Eqn.(2.62) reduces to

2
[[o@ac®aass Eg— [o@G®onay=-4xo@) (2.63)
S C

0

This kind of source distribution method with forward speed effect has been
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examined by Chang(!%], Inglis and Pricel!3]. Taking the normal directional derivative of ¢
in Eqn.(2.63) on the body surface S and applying the boundary condition, Eqn.(2.15),

yields the following integral equation for G.

2
P, U oG(P,
-—6(Q)+—[” 0@ 5L s+ - [ 0@ iy |

(2.64)
The first term of Eqn.(2.64) represents the contribution of local source density to the local

normal velocity since dG/dn becomes singular as P approaches Q.

The dipole distribution could used instead of, or as well as, a source distribution.
However, if a source distribution is used the contribution from line integral is much smaller
than if a dipole distribution were used, i.e. letting 6=0 in Eqn.(2.62). In view of the
simplification that will be needed to evaluate the line integral, the source distribution

method may be more accurate.

In deriving Eqn.(2.62) and (2.63), it has been assumed that a linear body surface
boundary condition is valid. This assumption is suspect for a bluff body moving in free
surface and so the method can no longer be applied to arbitrary bodies with forward speed.

The body must be thin or flat for the method to give accurate results.

2.3 Irregular Frequency
2.3.1 Occurrence of irregular frequency

The integral equation methods by source, dipole or source-dipole distributions are
all plagued by the presence of irregular frequencies when the body is surface piercing. This
was first pointed out by John{3] in the context of source distribution method. John showed
that the integral equation by source, Eqn.(2.56) can be approximated by a set of the
simultaneous linear algebraic equations which can be solved by matrix inversion.
However, the integral equation fails to produce solutions at certain frequencies associated

with the resonance of interior flow. At these frequencies, called irregular frequencies or
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eigenfrequencies, the determinant of the kernel matrix becomes singular. In practice ,
however, the matrix is never completely singular due to rounding errors in the numerical

procedure and the solution is ill conditioned

John pointed out that the irregular frequencies are the solutions of interior

eigenvalue problem defined by the set of equations for source distribution at zero forward

speed.
v o' =0 in V'
a t
g rgSl=0 s, (2.65)
¢' =0 on S

where the interior velocity potential ¢' defined in the region V' inside the body with a

surface S and waterplane Syp. as shown in Fig.2.2.

The solution of such equations, however, is only available for some simple
geometries, such as boxes, circular or triangular cylinders. The solution for a box was

given by Eatock Taylor(29) as follows

C x 1 . y 1 .
¢—Sm[pﬂ(i—-i)151n[mn(§-5)]sm[Y(Z+T)]

for-LR2 <x<L/2,-B2<y<B/2and -T <z <0, where L, B, T are length, beam, and

draught of the box respectively.

The irregular frequencies occur at

@pmz[ gycothyr]z (2.66)

with

1
T
Y:{(%)%(%)z}z p,m=12,..

For an arbitrary 3D body, there are no exact solution available, but a semi-empirical

formula given by Wu and Price!?!! may be used to predict irregular frequencies. This
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formula make use of equivalent box approximation for the prediction.

1

= th 2 2.67
o, =[ gvcomT] 2.67)
with
1

(B, mr2 2 =12

y—[( Lc) +( Be) ] p, m 2 yenes
where

— & — %, — M
L.=B,B) 'L B =B,By B T, L. B,

are equivalent length, beam and draught of the body respectively with

L2 132
o = s o =
1 L2 + B2 2 L2 + B2

CO Cl CZ
B,=(Cy) s B =(Co " B,=C)",

where V is the displacement, Cw=Aw/LB, Cy=An/BT and C;=A/LT are waterplane,
midsection and central longitudinal section coefficients with Aw, A and A the relevant

plane area. The correction coefficients are expressed as
L-B i L-B
L+BI1H(P)]/8, C2=[1+6|L+B‘1n(m)]/8,

In their limiting case, the Eqn.(2.67) reduces to the Eqn.(2.66) for the solutions of a box,

2
Co:g’ C1:[1+6|

otherwise it approximates solutions.

It can be considered that the integral equation by source-dipole distribution,
Eqn.(2.49) derived directly from Green's identity is more general in the sense of that no
assumption about the interior flow has been made. However, Meil”l and Shin!22! have
proven that this alternative form of integral equation also has the same difficulty at those
irregular frequencies of the interior Dirichlet problem. Both source, Eqn(2.56), and source-
dipole, Eqn.(2.49), distributions have the same irregular frequencies since the kemel of

one integral equation is transferable from the other. Furthermore, a subtle distinction
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between the two integral equations is that the inhomogeneous term of the source-dipole
distribution equation is orthogonal to the interior eigensolution at these frequencies,
whereas that of the source distribution equation is generally not. Delves and Walsh[23] have
shown that the source-dipole distribution method actually has a solution, though not
unique, whereas source distribution method has none. Neither situation is entirely

desirable.

For the dipole distribution method, the reason for the irregular frequencies is the
same as the source method, but the irregular frequencies in the dipole distribution don't
generally coincide with those of the source distribution as discussed by Chertock 24,

2.3.2 Avoiding of irregular frequency

Several ways devoted to prevent the occurrence of irregular frequencies can be
found from the literature by Ursell(251(26] Faltinsen(27), Ohmatsu(28], Soding(?%], Soding
and Lee(30], Ogilvie and Shin(3!], Meil”), and Sclavounos and Leel32]. The Sclavounos and
Lee method is suitable for 3D ship motion problem with zero speed and appears to give
reasonable good results. Their theory originally comes from the method of Burton and
Miller(33] in an acoustic problem. It depends on the fact that irregular frequencies for the
second kind integral equation by source-dipole distribution do not coincide with those of
the first kind one by dipole distribution. Actually their formulation is a linear combination of

those two distributions, but it involves the second order derivative of Green's function.

In the results presented in the thesis,no attempt has been made to avoid irregular
frequencies since for ship shaped bodies they are often a high frequency phenomenon, the
most of interesting frequency range is under the first irregular frequency. Even when the
irregular frequency occurs, its influence only appears within a very narrow bandwidth at
each irregular frequency. It is easy for them to be distinguished and removed. If however
the method is extended to calculate the hydrodynamic properties associated with flexible
bodies in which the higher frequency range is needed then some avoidance procedure

would be necessary.
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2.4 Use of source distribution method
To decide which method will be used in the present study, the comparison among

the methods discussed above will be concluded first.

1, The source and source-dipole distribution methods involves the same amount of
computational effort (G and dG/dn), since ¢, being proportional to the pressure, is the
desired quantity. Actually, the source-dipole distribution method has a slight advantage
over the source one because it can solve for ¢ directly. The dipole distribution method may
be more efficient (only 0G/on needed) than the other two if ¢' is known, but for arbitrary

¢' it needs the second derivatives of Green's function which may eliminate its advantage.

2, Both the source and source-dipole distribution methods give the Fredholm
integral equation of second kind which is diagonally dominant in the matrix equation and
much more amenable to iterative solutions than the dipole one with the Fredholm integral

equation of the first kind, which is dominant off the diagonal of the matrix equation.
3, All three distributions are subject to irregular frequencies.

4, For the non-zero speed case, the source distribution has the same form of
distribution in the surface and contour integral, so it is simpler and more straightforward

than the other two.

Considering the above distribution methods, the source distribution method is the
one which has more advantages at present especially for the forward speed case and also

considerable numerical experience has been accumulated in the past. Therefore, it is used in

the present study.

The other two distributions may have their advantages in other cases. As mentioned
earlier, the dipole distribution with first kind of integral equation may be more efficient than
the other two if ¢' can be found. The linear combination of the second kind of integral

€quation from the source-dipole distribution with the first kind of integral equation from the dipole
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distribution can eliminate the irregular frequencies. But these are not part of this study.

2.5 Solution by Source Distribution Method
2.5.1 Green's functions

The Green's function,or source potential, is fundamental to the singularity
methods. A collection of appropriate formula for this function can be found in the well
known paper by Wehausen and Laitonel®! in various cases involving a ideal fluid, a
linearized free surface, and a fluid domain which is otherwise unbounded except by a fixed
horizontal bottom at a finite depth beneath the free surface. If attention is restricted to the
conventional point source beneath a free surface, a summary can be made in various time

dependence including:

1, oscillatory motion,
2, steady translation,
3, combined oscillatory motion with steady translation, and

4, transient motion with source strength described by a step or delta function.

Each of them has four different conditions, that is, two and three dimensions, finite

and infinite depth. From this list alone there are 16 cases.

Nor will the list above satisfy every need. For example, in numerical techniques
where the free surface Green's function is employed on a matching boundary, maximum
efficiency is achieved by choosing a special Green's function which satisfies an appropriate
boundary condition on that boundary. In the present study, the problem of a body moving
in regular waves, the interesting cases are 1 and 2. Table 2.1 gives the general formula of
Green's functions for 3D. Actually, in the limiting case (3) reduces to case (1) by the
forward speed approaching zero and case (2) approaches (1) if the oscillating frequency
approaches to zero. On the other hand, if the oscillating frequency in case (1) approaches
zero or infinity it gives the two different Green's functions for rigid wall free surface
condition which are shown in Table 2.1 as well. The point source in case (1) is called a

pulsating source and in case (3) is called a translating and pulsating source.
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Table 2.1 Green's Functions

T
|
| Name Free Surface . SeaBed Function ]
; Condition i Condition ?
! |
. o i
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2.5.2 Solution by translating and pulsating source

When the body is moving in regular waves, the source potential should satisfy the

speed dependent free surface condition, Eqn.(2.11), which can be rewritten as

2
2070 . dd J0
U _.2_+21(oe—-w§¢+ga—2=0. (2.68)

I ox
Such a source potential is obtained by a translating and pulsating source which includes the
combined effects from oscillatory motion and steady translation. Its form is listed in Table
2.1. By means of the translating and pulsating source and the body boundary condition
Eqn.(2.13)-(2.15), the source distribution integral equation (2.64) can be solved directly
for the velocity potential ¢. Consequently, all other results, such as forces and motion

responses of the ship, can be obtained.

This approach has been used by Changl!], Inglis and Price!!5]. Good agreement
with experimental results has been achieved, but a translating and pulsating source requires
a considerable amount of computational effort, which restricts its use, since the efficient
way to evaluate its Green's function involves a double integral has faced a difficult task.
There are several ways to evaluate such a double integral. Inglis34] divided the integral into
two parts with respect to 7>0.25 or 1<0.25. For the case of 1<0.25, the integral can be
reduced to the single integral, but when 120.25, the double integral is still necessary.
Unfortunally, the case of ©720.25 is of practical interest. Guevel and Bougis!3>), Wu and
Eatock Taylor!3¢] introduced two alternative forms of this Green's function which only
contain a single integral involving an exponential function. Their approaches have a better
numerical performance than the form given by Inglis and Price, but is still very expensive
since the complex exponential function must be evaluated by a series expansion or an
asymptotic expansion at every step of the numerical integral. In order to reduce the
computing cost, an alternative method was suggested by Salvesen, Tuck and Faltinsen,

refered to as the simplified approach by a pulsating source.

2.5.3 Solution by pulsating source
To simplify the problem and use the pulsating source, some assumptions must be
made: - that the ship hull is thin or flat, that the forward speed is low and the oscillatory

frequency is high, thus the boundary conditions of the problem become
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with
m; =0 i=1,2,3,4
ms=n3, Mg =-1n3

and

3
I (8 *+ o) =0 on S. (2.70)

The forward speed free surface condition Eqn.(2.68) reduces to

a¢0

‘(0§¢+gg:

on z=0 (2.71)

This is equivalent to the zero speed free surface boundary condition Eqn.(2.12) with the

wave frequency o replaced by encounter frequency we , so the pulsating source is valid.

Under the above assumptions, It has been suggested that the contour integral can be
neglected since its effect is small. The only speed dependent boundary condition is now
Eqn.(2.69). Substituting Eqn.(2.69) into integral equation (2.64), Salvesen et al.?]
showed that the speed dependent velocity potential can be expressed in terms of the

correspondent zero speed velocity potential. Thus
0,= 9 i=1234
(2.72)
0 0
¢)5 ¢5 U ¢3

= + — »
of ~ 0
o, O i0g| 9,

where ¢;", i=1.2,...6, denotes the correspondent zero speed velocity potential. Introducing
Eqn.(2.72) to Eqn(2.33) gives the speed dependent added mass and damping coefficients
expressed in terms of the correspondent zero speed coefficients. These formula are listed in

Table 2.2.
In present study the pulsating source is used. Although the translating and pulsating
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source gives a better description of the problem, it required a considerable amount of
computational effort (an order higher than the pulsating source ) which restricts its use.
With the computer facility in the University when the program was developed, i.e. ICL
2988, the translating and pulsating source was impossible to use because of the huge CPU
time required for this method. The pulsating source is computationally much cheaper. A
considerable amount of successful numerical solutions has been achieved by previous
investigators and reasonable agreement they achieved with experimental results was
encouraging. Finally, the greater part of the program based on the pulsating source method
is compatible with the translating and pulsating source method. As long as the translating
and pulsating source can be evaluated efficiently or a new more powerful computer
becomes available, replacing the pulsating source with a translating and pulsating source
would upgrade the program immediately. For this reason, the contour integral in
Eqn.(2.64) is kept in the program, although its effect is small with the pulsating source

method, since it may not be negligible when the translating and pulsating source is used.
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CHAPTER THREE

NUMERICAL PROCEDURE

As described in Chapter 2, several singularity distribution methods have been
studied and some of them have been developed into powerful tools for engineering
applications in predicting motion responses and wave loads fir ships or offshore structures
inaseaway. Until recently, the 2D strip theory is still the most universally used technique in
practical applications. The restriction on the use of 3D theory is the large computing time
and memory space required for it. Improving the numerical efficiency of 3D theory is
important for practical purposes. In this chapter, a modified numerical procedure is
introduced based on the traditional procedure employed by most  previous authors,
such as Garrison and Michelsen!!!, Shin[®! and Inglis" etc. The modified procedure makes
use of the symmetric property of Green's function and its derivatives. The comparison with
the traditional numerical procedure has been made. The results show that considerable

computing time saving can be achieved.

3.1 Approximation by Matrix Equations

In order to be able to implement the source distribution method described in Chapter
2. it is necessary to adopt a technique pioneered by Hess and Smith!*]. The body surface is
replaced by large number of small panels, so the method is also called 'panel method', of
area AS; (i=1,2,..N), where N is the number of the panels. The continuous formulation
of the solution indicates that Eqn.(2.63) and (2.64) are to be satisfied at all points(P) on the
immersed surface S, but in order to obtain a discretized numerical solution it 1$ necessary to
relax this requirement and apply the condition at only N control points. The location of
these control point may, in principle, be chosen arbitrarily, but for convenience the N
points at the panel centroids are used. Thus, in the discretization process Eqn.(2.64) is

replaced by the N equations
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Furthermore, the surface integral in Eqn.(3.1) may be written as the sum of the
integral over the N panels of area AS;, and as an approximation, the source strength

function 6(Q) may be taken as constant over each panel,so that Eqn.(3.1) becomes
J.J. J s +_2 J( in )dy

=V . fori=1,.2,.N

n1

(3.2)

where

1
4= % ) for j = 1,2,..N

is the source density on the jth panel to be determined,which has its centroid at (x;, y;, z;)
and vg; is the component of the body velocity normal to the body surface at (xi, y;, zi).
When i=j, the first term of Eqn.(3.2) becomes singular and gives the contribution of
(1/2)c; which is the first term of Eqn.(3.1). Here the panels numbered 1 to M are
distributed along the mean waterline and the jth panel on the waterline has a horizontal
length of AC; along its upper side which coincides with the mean waterline. The term
(dGj/on)n1 should be integrated along the intersection AC;j, but for simplicity, this
integration can be achieved by evaluating (dG;/dn)n; at the centroid of the jth panel and
multiplying by the y component, §;, of AC; passing through the centroid. Thus. Eqn.(3.2)

becomes

Zq (1, +—J )+Z q L =v, fori=12N (3.3)

j=M+1

Here the 'complex influence coefficients 1;; and Jj; are defined as
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d
AS.

(3.4)
d
Ty =y 03 O v 73 6 mp G ds

and (nyj, ny;, n3;) are direction cosine of the unit normal vector n on jth panel about x, y,

and z axes respectively.

The Eqn.(3.3) represents a set of N simultaneous equations for N unknown source
densities q; (i=1,2,...N) and may be expressed in the matrix form

axq = v, (3.5)
where a is a N x N matrix of influence coefficients, q and v, are column matrices of order

N. The element of matrix a is

=1 U2 :
aij =1, + ? Jij forj=1.2,..M
(3.6)
a. =1 for j = M+1,..N

The Eqn.(3.5) can be solved for q by using any standard matrix inversion or
iterative techniques. The Crout's factorisation method"! (iterative method) was found to be

16]. In order to make the solution more

convenient and is available 85 @ NAG routine
efficient for present use. a small modification has been made in the use of the NAG

routine.

Having found the unknown source density, the potential at any point in the fluid
(Xi, ¥i, 7;), not necessary on the body surface, can be found by discretized form of

Eqn.(2.63)

2
U
(D(x )= ) Jdes S qj nG)dy
y )zq & IJAC

i=

i=12,..N (3.7)



or

0. = Zq(l' +—J' )+—Zq

] M+1

e
I

1,2,..N (3.8)
with

= J.J G (x;, ¥y, 25 éj, n; Cj) ds
ASj
(3.9)

The above equation can be expressed in matrix form as

¢=b-a. (3.10)

where b is also N x N matrix, ¢ is column of order N representing N unknown potentials

on N panels. The element of matrix b is

2

U
bij:(Iij+?Jij ) forj=12,.M
(3.11)

by =T for j = M+1,..N

3.2 Integration over one panel

Once the body surface has been approximated by a number of panels on which the
source strength is constant, it is necessary to integrate the Green's function and its
derivatives over each panel in order to evaluate the Eqn.(3.3) and (3.7). For the

convenience of the discussion, the Green's function is written in the form of Eqn.(2.44) as

G(x,y,z&mn, C)——+G*(x v, &1, 0). (3.12)

The first term here and its derivatives are not gradually varying when the field point (x;, y;.
z) is near the panel over which the integration is to be carried out and are in fact, singular
as R-0, i.e. when (x;, y;, %) is inside the panel. On the other hand, the second term and

its derivatives are regular throughout the field domain except the case that R 0 at free
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surface. In practice, this case can be avoided. So the first term is termed 'singular part’ and
the second term is termed ‘regular part'. Because of the different nature of the two parts of
the Green's function, their integral sill be treated in different ways and discussed as

follows.

3.2.1 Integration for the singular part of Green's function over a panel
3.2.1.1 Integration of contribution due to (1/R)

Due to the singular nature of the source, 1/R, the integration of it over each panel
must be carried out properly when the field point (x;,y;,z;) is near the panel. For the

integral
1
JJzas.
AS

there are two numerical procedures given by Faltinsen and Michelsen!!!

. Hogben and
Standingm have been used by many previous investigators which are briefly reviewed

here.

Following a procedure similar to Hess and Smith!* for the velocity components,
Faltinsen and Michelsen integrated above integral by means of local co-ordinates X, y, z,
and &, n,where the x, E and y, 11 axes lie in the plane of the panel as indicated in Fig.3.1.

They gave the results of the integral as

o | —

4 E’H»l
1 - - o |
.HﬁdS:VE‘Jln[y'nl,m+l(y'ni,i+1)2+(x‘§)] ] dg (3.13)
AS :

1=1

where

a
This integral may be directly evaluated through numerical integral in most cases. However,
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the integrand of Eqn.(3.13) is singular when z =0, E=x, y-n; ;,;<0. In this case, the

integration may be replaced by

B
Jlnﬂi-5f+22]d5
&

- (3.14)
&m 1

'Jlln [ - (9 _ni’”l) + [6-/ ‘ni,i+1)2 + (; 'E)z +}2 ]2 ] dg

5,

The first integral in this expression can be integrated analytically and the second term can be

integrated numerically since it contains no singularities.

Hogben and Standing treated the integration in the different way. They used the

approximation of a point source, 1.e.
1 1
JJ gos=gas, (3.15)
AS

to evaluate the integration except the case where the field point (x;,y;,z;) lies at the panel.
i.e. i=] in Eqn.(3.8). It has been shown that if the field point (x;, y;, z;) is right at the

centroid of the quadrilateral panel, i.e. R=0, the integration becomes

1
JJ‘Eds:Zy T AS (3.16)
AS

with

)
1 2 1 ++/1+b”

Y= In(b++41+4b" )+ bln (———) |,

‘/nb b

where b is the aspect ratio of the quadrilateral panel.

Generally. the method of Faltinsen and Michelsen gives better approximation but

needs more computing time and storage space. Both approaches have been tried in this

study. From the results in Fig.3.3 it can be seen that the method of Hogben and Standing gives

adequate results for the panels which are almost square, this is the case in the study of the
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offshore structures which usually are well rounded or rectangular bodies. However, when
analyzing  bodies with a thin structure, such as the struts of ~ SWATH ships or even
the skeg area of the conventional ships, Faltinsen and Michelsen's method is preferable.
This is because the sides of the bodies may be close together and a point source
approximation leads to serious error. The procedure adopted in this study is to use

different formula for the different cases and the strategy is described as follows:

1, when R < R, the exact formulation, Eqn.(3.13), is adopted, where R is

criterion distance,

2, when R > R, the point source approximation,Eqn.(3.15),
3, when R =0, The Eqn.(3.16) is used, and
4, R = 3V(AS).

The setting of the R can be justified by the results in Fig.3.2.

J 1
3.2.1.2 Integration of contribution due to =— (ﬁ)

Jd 1
The integration of the contribution due to Ty (E) can be written as

J 1 0 J J 1
Jawgos=[[ gz nggrngp s (317
AS

AS

where

”%(-}lg)ds:“;_(x;f) X
AS A
JAJ;;—y('}l{)ds:JAJ;_ (yiR';l) i«

LR
AS AS
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Table 3.1

Integration for the Derivatives of Singular Part of

Green's Function over a Quadrilateral Panel

R _ — e SR
i
Exact Integral Formulae ‘
o e ey
g | - - Mn-n  r+r-4d, N -7M T, v 1, - d,,
'[ :__(__) d& dTl -_2 Lin 1 2 12 3 2 In—= 3 23
Jgx R d12 T +r2+d13 d23 Tt +dr;
AS T _
+“4'n; n fp+r,-dy AN n Tty dy
dyg Ty 4t dy d, Ty '
- - s oz
2 1 = - -& ro+r,+d - r,+r, +d
jJ'__(_)d&,dn:ild Ln 123 ézsn 3 B ‘
R 2 htnody dyy  ntr-dy
S _ 7 l
-& r,+r, +d - r,+r, +d i
+é4 C-‘z,]n3 4*344_1&41“4 1 {
dyy  rptr-dy d, g+ - dy
3 1 = - mjc—hx ,me, -h ; Mye, -y . e, -h
J.J.—_-(—) d¢ dn =tan I“_l - tan 12_2 =+ tdn 3_ ~-aan mZ3_3 3
Jz R 7T zr, zr, zr,
AS ‘ “ ;
1 M€y By M, -y 4 mye,-hy A mye -y
+tan — - tan — + tan — - tan —
| zr, zr, zr, zr,
2 v vam o X ;7 T T T2
where dj, =, -3+ M- m)r” dyy =G -5)" +(n,-m,)
2 ror o2 T 2 Ty -2
d34‘(§4*€3) +(n47n)~ d“=(€1-€4)'+('ﬂl‘ﬂ4)
I n,-n n,-n n, -m n, -M
1 m,, = = 1 m,, - S My =43 m,, = B
£ _F = - -
5,-E 5 &, Z, -k, g g,
b Y
rkt(x-ak)+(y-nk;*z k=1,234
e =7 +(x ;_kv hk:(\ N x-g)
|
i Point Sourc ¢ Approximation Formulae !
i~ T T e - TT T e e e ey
] Jd 1. S(x - & ‘
| [ :
dx R B
; AS L2 2 22
(x - +(y-m+z-0
J | Sy - T
J.J.—,—(——\ds; B Y
Jdy R 2
AS 02 . 212
(x-5 vy - 27 - D) ]
“‘ J 1 1 (-0 ‘
——dr -
; dz R Al
i AS 2 . L2002
; xS ey vz s>]
Note: X, y, zare field points in local co-ordinate system
£, .= 1234 are co-ordinates of the tour corners of a quadrilateral

1

in local co-ordinate system osee e b 1
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The exact formula of this integral is well known and derived by Hess and Smith!?!
in terms of local co-ordinate system. Therefore it is not discussed here. The final formula

are given in Table 3.1. The strategy of the integration is the same as that for (1/R) integral

and also has several different ways to treat it for different cases, i.e.

1, when R < R, the exact formulae in Table 3.1 are used,

2, when R > Rg, the point source approximation formula in Table 3.1 is used, i.e.

Jd 1 1
”a—n(ﬁ)dw-;[nl(X-§)+n2(y—n)+n3(Z-C)]AS (3.18)
AS

3,whenR =0

1
[[2(xras=-2m (3.19)
AS

4, again R¢= 3V(AS)

It should be noted that in the case of R=0, the integration of normal derivative has

been shown to be independent of panel shape by Hogben and Stand'mgm.

0

1
3.2.1.3 Contour integrations of contributions due to { &) and o (%)

The line integration in Eqn.(3.3) and (3.8) are evaluated by Eqn.(3.4) and (3.9) in

terms of point source approximation, that is

[§®]
)
—

1 1
J.n . dy=n_3%. . (3.
1 R(Xi‘ yi’ Liv é]’ njv Cj) 157 R(Xiv yi’ [i’ élv nJ7 CJ)

AC

1

and

d
J.nl-é-n-(R)dy

AC.

J

ZH,S,[__I—}[nl(xing)+n2( yi'1]j)+n3(li“c..j)l]
7] R
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1 |
Both ( R ) and '] ) are evaluated at the centroid of the panel using the source

approximation formula. The above equations becomes singular at x;=§, y;=n, and 7=,
that is, when the field point at the centroid of the source panel. In this case, the results of

Hogben and Standing can be used, i.e.

1 _ T o
J-n,(ﬁ)dy—nlij(M ASA) fori=j, (3.22)
AC, J
J
where
1 2
y= n(b+d1+b% )+bln( b”b )
,/nb
and
3 1 2n o
J“lﬁ(i)dy:“usj AS, fori =) (323
AC !

J

3.2 Integration for the regular part of the Green's function

Owing to its complex form, the regular part of Green's function and its derivatives,
G*(xi, vi» 733 &5, My, §i)) and dG*/dn, cannot be integrated exactly over a panel like the
singular part. However, the nature of the regular part of Green's function is not like the
singular part either. It and its derivatives are regular throughout the fluid domain except the
case that the field point (x, y, z) coincides with a source point (§, 1, ) at free surface. G*
oscillates approximately with wave length A. In practice, A is at least of the same order as
the length of the body hull for the frequency range of the present problem, so G* and
dG*/on vary slowly over S and therefore, are nearly constant over AS. Thus, a valid and
convenient approximation to the integrations of the regular part is to evaluate the integrand
at the centroid of the panels and simply multiplied by AS as the point source
approximation. The only difficulty comes from the contour integrations in Eqn.(3.3) and
(3.7), where the G* and dG*/dn may become singular. If the panels are arranged in the

way described foregoing, that is the panels near the free surface have horizontal supersides
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which coincide the mean free surface and making use of the contour integration
approximation Egn.(3.4) and (3.9), which has been used in the contour integration for
singular part, the singularity difficulty can be simply avoided. Because of the good
behaviour and slow varying nature of the regular part of the Green's function, the present
calculations and many other papers have been shown the good approximation by this

approach. The outline for the integration of the regular part can be drawn as follows:

1, surface integral

” G* (%, yp> 25 &, My, §) ds = G* (x;, y;, 23 &, My, §) AS (2.24)
AS.
)

)
J.J.a_n G* (‘xi’ Yiv Zi; é]’ njy C_]) dS
(3.25)

d 0
_[nlja G*(x,, ¥, 23 & M, C)+n ayG*+“3j3?G*]

2, contour integral

AC,
J

0
* .
jan G* (% vy 7 & My &) my dy
(3.27)

0

o d
=n, 5[n E_G*(X Y,z é n;, §)+n —G*+n3—a7G*:|

where (x;, y;, ) is field point and (§;, n;, §;) is the centroid of jth panel.

3.3 Numerical Integration of Green's Function

The numerical solution of the present problem involves firstly the determination of the
source density distribution function ¢ in Eqn.(3.5). Once q is known, the problem is
considered ' solved'. The 6 and its derivatives at any point in the fluid region may be

determined through the integration indicated in Eqn.(3.10) and 6 leads to the pressure on
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the body surface S.

The evaluation of the matrices a and b in Eqn.(3.5) and (3.10) represent the most important
part of the numerical procedure since most of the CPU time is consumed in this process.
An efficient way to evaluate the Green's function and its derivatives is the key to reduce the
computing time and also to make the 3D theory of more practical value. Green's function
has been studied extensively during the 1940's and 1950's, notably by Kochin[gl,

Havelock[gl, Hask'md“o] and Thome[“]. These studies were reviewed in Wehausen and

(12]

Laitone' ~* where several alternative integrals were listed. A convergent expansion of

1[13]

Green's function involving spherical harmonics is given in Ursell' . The advent of fast

computers, opening up the feasibility of numerical calculations for 3D flow, has caused a

search of the expressions for the Green's function suited for efficient numerical evaluation

which is the main interest of this section The modified form of the Haskind!!*!

(14]

expression

for Green's function is given and used in Kim
(15]

. This modified Haskind expression was

[16] (17)

also used by Yeung' - and rederived by Hearn" """ and Newman' "’. Recently, an integral

presentation for the Green's function in terms of the exponential integral was obtained

(18]

independently and in different ways by Guevel and Daubisse' °", Martine!**! and

(20]

Noblesse™™". Martine also gives asymptotic expansions of the Green's function. The study

by Noblesse contains asymptotic expressions and convergent ascending series. The

(20]

numerical evaluation of the Green's function was reviewed in Noblesse and

Newmanm]

. recently with regard to the efficiency of different methods for various cases.
The most efficient way to evaluate Green's function is to combine several suitable

expressions in a program subroutine for different wave number space.

The present study is based on two different expressions of the Green's function. In the 3D
case, the analogue of the Green's function for a pulsating source is

1

G=—+

42k F(X, Y)+i2nke "I (X) (3.28)

| —~
~

where
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1

x:k[(x-li)z+<y-n)2]2

Y=k(z+0() 1

2
R=[ (x-8)+(y-n)(z-0) ]

1

R=[ (x-8 4y (2007 |

and

F(X,Y):Jdu (-1 e T X). (3.28)
0

Here Jp and J; are Bessel function of first kind of zero order and first order. The singular
part and image part of Eqn.(3.27) and their derivatives can be evaluated in straight forward
way since Jo and J; can be efficiently calculated by series expansionm]. Therefore, the
essential task for evaluating the Green's function is to evaluate the F(X, Y) for all possible

values of two arguments throughout the quadrant where X>0 and Y<0.

In the case of X>-Y, the Bessel function Jg in Eqn.(3.28) oscillates many times
before the exponential term decays significantly and consequently numerical computation
becomes inefficient. To overcome this situation, Eqn.(3.28) can be transtormed to a finite

form (due to Haskind) which gives the form

Y
F(X, Y) = (g)[ Eg(X) - Y(X) ] e’ - j e+ X7 T (3.30)
0

o | —

The derivatives of F(X, Y) can be shown to be

dF JF 3X _k(x-&) JF

ox 0X ox r aX
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OF 9F 0X k(y-m) oF

— T e s " e s

where
1
2 2 g
:[<x-f;> +(y-1) ]

3

g;:(% [E (0 -¥ (X) J Y4 xD Pt (3.31)

Here Eq and E; are Weber functions defined in Abramowitz and Stegun!??. Yo and Y are

Bessel functionsof the second kind of zero order and first order respectively.

The above formula can be easily evaluated by Simpson's first rule, clearly in the

case of X=0, these formula break down and also for small X the Eqn.(3.30) is inefficient.

Therefore, Monacella‘sm] approach can be introduced for the case of X<-Y, that is

f v) - f(k
Py, J f(u) fv) - flk) )
v-k
9]
. _ o (3.32)
v
sy Py, [V +j dv
s v-k j vk
2k
dk
since  P.V. j =0, the Eqn.(3.32) reduces to
PV j f(U) f(U) f(k) f(U) d (3.33)
v-k 2 V- k

Applying Eqn.(3.33) to Eqn.(3.28) gives
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2k

f(v) - f(k ‘
F(X,Y) :J._(_l.)l_(_)dl)+ f(_u)d'u (3.34)
5 L-k N V-k

where

f(v) = ¢*¥ J,(VX)

f(k) = e J,(kX)

and the derivative is

2k o0
oF f'(v) - f'(k) f'(v)
= —————Zdv- | —=dv (3.35)

X
5 v-k 21(\)-k

where

f) =-ve” J,(vX)

£(k) =- ke I (kX).

Introducing (3.34) and (3.35) into Eqn.(3.30) gives the derivatives of F(X, Y).

The Eqn.(3.34) and (3.35) can be evaluated by a normal quadrature method. To do
this more efficiently, Simpson's second rule is used for the first integral with the number of
ordinates m used to attain the required accuracy, generated as m=6n+4 for n+1,2,.... This
automatically avoids the calculation at v=k. For the second integral, Simposon's first rule

is used.

3.4 Use of Symmetry of Body Geometry

Most of the bodies in naval architecture and ocean engineering problem have at least
one vertical plane ot symmetry and this property can be used to save both computing time
and the computer storage gpace. If the body has port-starboard symmetry, the co-ordinate
system O-xyz will be set in the way described in section 2.1.2 with the body symmetry

plane coinciding with o-xz plane.
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As mentioned earlier, in implementing the source distribution method most of the
computing time is spent in calculating the influence of one source panel on another. If the
total number of the panels of the body is N, the matrix a in Eqn.(3.5) and b in Eqn.(3.10)
indicatesthe N x N operations. Taking advantage of the body symmetry, a considerable
computing time can be saved. The scheme for use of this computing time is illustrated in

following example.

For the sake of convenience, take the total panel number N=4, and the panel indices
1 and 2 be on one side, the indices 3 and 4 be on the opposite symmetric side, as shown in

Fig.3.2, the Eqn.(3.5) becomes

- I, -

Ay A 3z A4, q Vo1
B Ay B3 A4, V2
= . (3.36)
A3 A3y 833 31103 Vo3
A Ay B3 |4 Voa
After partitioning, Eqn.(3.36) can be written as
a, aAp % Vol
_ (3.37)
4 2|19 Vo2
where
a7 4 A3 Ay
all = ) ) 312 = a 5 etc. (3.38)
|21 %22 Ay Ay
q RE Vi Va3
q1= ’ q2: ? vnl = ’ vn2— ’
4 Q4 Vo2 Viod
Due to the symmetry of the body, it can be shown that
= = C
a1 = Ay A, =3, (3.39)

Furthermore, if the boundary values are also symmetric with respect to the 0-xz plane, i.e.
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v,1=Vn2, then it can be shown that qi=q,. Similarly, if the boundary values are

asymmetric with respect to 0-xz plane, i.e. v,1=-vp, then q;=-q,.

In Eqn.(3.31), the boundary values n, are symmetric when i=1,3,5, i.e. for surge,
heave and pitch modes, and are asymmetric when i=2,4,6, i.e. sway, roll and yaw modes.

Summarizing, the Eqn.(3.37) can be rewritten in two special cases as follows:

1, for surge, heave and pitch modes

Var = Va2 then 4= 9

and [311+312][q1} = ["1] (3.40)

2, for sway, roll and yaw modes

vnl :_vn2 then ql :-q2

wd (a2 [ @] =[] (3.41)

For the diffraction boundary value, i.e. -09¢/dn, ¢o as well as d¢o/dn can be split
into symmetric and asymmetric parts. Then in a similar manner equations like Eqn.(3.40)

and (3.41) can be used.

For the evaluation of the velocity potential, a similar scheme can be used for

Eqn.(3.10) which is rewritten as

- - 8 1r 7
o by by by byl |4
1
0, by by by Dyl (4
= . (3.40)
0, by, by by by ||y
L¢4 ] _b41 by by b44_ | 94 |
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or

0, by, by
= (3.43)
0 by, by |49
2
where
biy by, by by
b11 = s b12 = s etC.
by by by by
o o,
0, = ’ 0, =
9, 0,

1, for surge, heave and pitch modes
q;= q, then =9

and [ q] ~[bu+bn ][ 4] (3.44)

2, for sway, roll and yaw modes

q;=-q, then o =-9,

and [ q] = [b“'b”][ql] (3.45)

Because the matrices aqq, aj2, b1y and byp are all N/2 x N/2, the use ot above

scheme does not need to evaluate the G and dG/dn for N x N times to form the matrices a

and b in Eqn.(3.5) and (3.10). It only needs to evaluate the G and dG/dn for 2[N/2 x N/2|

times, that means 50% of computing time is saved on creating the matrices.

So]ving for the source densities using Eqn(34()) and (3.41) involves a matrix

which is only one quarter the size (N/2 x N/2) of the matrix in Eqn.(3.5) (N x N), but to
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find all the hydrodynamic coefficients the matrix must be inverted twice. The time saving
depends on the method of inversion. If the time for the inversion increases as N2. the time
saving is 50%. In practice, the solution of Eqn.(3.40) and (3.41) is obtained by the
elimination method whose computing time usually increases as N3, that means the more
computing time can be saved on the inversion of the matrix, but it should be keeping in
mind that the main CPU time is spent on creating the matrices ayy, a2, b1y and by,. The

memory space saving is 50%.

Using a similar scheme, the amount of computation can be further reduced if the
body geometry has two planes of geometry, say 0-xz and o-xy planes. But advantage of

this has not been taken in the present work.

This scheme of use of symmetry of the body geometry to reduce the computation
effort can be found in many papers, such as Hogben and Standingm, Ingiism. The

composite source distribution (c.s.d) method recently introduced by wul?4!

is equivalent to
the above scheme. But in present study the above scheme is used because it has simpler
form than c.s.d. method and is physically easier to understand. When the body is not
symmetric , the program based on c.s.d. method apparently does not work, but the present
scheme is fully compatible. This situation is important for the research into the behaviour of

damaged structures.

3.5 Use of Properties of Green's Function
3.5.1 Properties of Green's function

A list of Green's functions for different boundary conditions is presented in Table
2.1. Some of their properties which are well behavioured may be benefit to the
computation. By denoting any two point in the field domain

Xi = (Xiy ¥io Zi)s X5 = (X, ¥j» ),

these properties are outline in following.
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d 0
2, R G(xi, xj) =- a—XJ G(xj, X.)

1

0 d
a—yi- G(xi, xj) =- a—yJ G(xj, xi)

the two corresponding symmetric points of x; and x; with respect to the o-xz plane are

denoted as

x'i= X - Yi zi)y X5 = (X5 - Y5 %)

Other properties of symmetry are given as

3, Glx,x) = G(x, x); G(x; x') = G(x';, x))
;); Glx ;,x )= ai)(l G(x', x)): ;X-J- Glx,x )= aixj Gx';, x)
% G(x . x) = ;): G(x'y, x )3 a—axj— Glx , x')) = aixj Gx'p, x )
aiyi G(x , x j) = —a%—l G(x',, x'j); gay—] G(x , x j) = aiyj G(x',, X'J-)
8iyi G(x , x')) :8%1, G(x';, x ): éay—J G(x |, x) =—aa?j Gx'y, x )
E)i/] G(x |, x )= % G(x'j, x')): % Glx . x ) —_—a—az; G(x'j, x7)
% G(x . x') = 8% G(x', x ): % Gix . x'J) = ;TJ G(x', x ).

These properties are attributable to the Green's function itselt and can be derived from its

definition.

If the body has the port-starboard symmetry with respect to o-xz plane, the

symmetric and asymmetric boundary values can be written as follows
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ni(x;) = (n1;,02,,n3);  Ni(x';) = (n'1;,n'9;,n's)

and Ny =015, N=-n', mi=n4; (3.46)

By means of the Equation

3G 3G 3G aG

and the property 3, the following properties can be obtained for o-xz plane symmetric

body.

d . d o
a_ni G(xi, X;) = = G(x',, xj)

1

(3.48)

0 o 0 ,
_BTi G(xi, xj) =5 G(x o xj)

1

This property is due to the symmetry of the body which has been used in Eqn.(3.40) and
(3.41).

The proof of these properties follows the symmetry of the source potential (Green's
function) with respect to its arguments and the properties of the derivatives with respect to

its arguments as well.

For the convenience of the discussion, the Green's function can be divided into
singular and regular parts as Eqn.(2.44)

G =1/R + G*
The singular part (1/R) satisfies all the properties 1, 2 and 3. There is an additional part to
Property 2, i.e.

) 1 d 1

2, ()T e ()

dz. " Ix. - x| dz. Ix.-xI|"’"
1 1 J J 1 J

Similarly, the regular part, G*(x;, xj), satisfies the all the properties 1, 2 and 3, and also

has an addition to Property 2, i.e.

5 5
— % =— G*(x,, x.
L g GO =g G
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These properties will be very useful in the discussion of following section, use of

the properties of Green's function to saving the computation effort.

3.5.2 Use of Properties of Green's Function

Generally speaking, the elements aj;; and b;; in Eqn.(3.5) and (3.10) are neither
symmetric nor asymmetric about the diagonal of the matrices.. If the body is symmetric,
making use of the body symmetry and the Properties 1 and 3 in Section 3.5.1 the
computing time can save nearly 50% as discussed above. Furthermore, if the Properties of
the Green's function themselves are used together with the suitable numerical integral
manner , the computing effort in creating the matrices a and b in Eqn.(3.5) and (3.10) can

be further reduced by almost another half.

As mentioned in Section 3.2, the integration over one single panel is treated by
either exact integral formula or point source approximation, Because the a;; and b;; are
generally neither symmetric nor asymmetric, the exact integral formula cannot simply make
of the properties of the Green's function, so it will not be discussed here. The exact integral
formula is only used for the integral of the singular part of Green's function in the
situation of the field point near the source panel, i.e. R<Rc. Otherwise, when R>Rc the
point source approximation formula are used. For the regular part of Green's function the
point source approximation is always used in the present numerical procedure. As
discussed, the singular part of Green's function has a much simpler form than its regular
part and independent of the frequency. Once the singular part is calculated and will be
stored for the use of all the calculations. Therefore, the computing time on this part is very
limited compared with that on the regular part. In this section, the use of the properties of

Green's function for the regular part will be discussed.

From the Eqn.(3.3)-(3.6), (3.25) and (3.26), the integration of the regular part of

Green's function, G*, can be written in terms of X; = (X,, ¥i, zi) and x; = (X;, ¥j, ), 1.€.
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d ) d
a'ij =1 ASJ. + 0y, 8), ] l:nu a—xl +n, a—y} + n3i8_zi] G*(x,, xj)

b =[AS, +n, 8 1 GHx, x)

for i=1,2.N, j=12,..M
and

0 in 0 . )
d,=AS, nli?{ 23y, "3i'a?i G*(x;, x,)

b =AS. G*(x., x.)
1j ] o)

for i=1,2,...N, j=M+I1,..N, (3.49)
where a'j; and b';; denote the integration of the regular part of Green's function, G*,
involved in the elements a;; and by; respectively. Introducing the Properties 1 and 2 in
Section 3.5 for the G* gives
0 0 a

2, =[AS, +n,, 8 ) [ Mgk Mgy TN e } G*(x;, x,)

b'ji =[AS, + n, Si ] G*(xi, xj)

for j=1,2,...N, i=1,2,..M
and

0 0 0
a. = AS. ‘n1jmf'n2j§7+n3jﬁf G*(x,x)
J1 1 i i i o)

b'ji =AS, G¥(x,, xj)

for j=1,2,..N, i=M+1,..N (3.50)

By means of Eqn.(3.49) and (3.50) to calculate the influence coefticients a'y; and

a'j;, or by, and b';, the G* and its derivatives dG*/ox, dG*/dy and dG*/dz are only

calculated once. Owing to the complicated form and the frequency dependent nature of the

G* and its derivatives, the over 90% of the computing time in creating the matrices a and b
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is spent on their evaluation. The above method needs only one evaluation of the G* and its
derivatives for the both symmetric elements with respect to the main diagonal, a;; and a'j;
or b and b'ji,. The use of this method, Eqn.(3.49) and (3.50), can reduces nearly 50% of

the creating a and b.

If the symmetry property of the body is used in the calculation, the matrices a and b
are divided into four sub-matrices, Eqn.(3.37) and (3.43), and only two of them are
calculated. In such cases, one sub-matrix, for example, the aj; or by, in Eqn.(3.37) or
(3.43), is off the main diagonal, so the Eqn.(3.49) and (3.50) are no longer valid. In order
to extend the above method to involve this case, the Property 3 of Green's function may be

introduced by denoting

X; = (Xi, ¥i» Zi)s Xj = (X}, ¥j»> Zj)

X=X, -yi zi), X = (X, -Yi 7).

and assuming the same panel arrangement for both star to portboard sides of the body
surface, i.e. AS;=AS'; where AS'; is the area of the panel with its centroid at x';. From

Eqn.(3.3)-(3.6) and (3.24)-(3.27), the following formula can be obtained.

0 d d
ay=1AS +n, 8| nlia_)(i+“2i§7i+ “3i§2; G*(x,, x,)

N N N
Y= I * s i
bl_] [ ASJ + n]] 6] ] G (xl’ x]) 1—1,2,...5‘, _]T‘f‘l,...—z—
and

d d
alj=AS, [nlia_,(l+n2i 9_Y_i+ D3 '371] G*(x;, x,)

b= AS, G*(x, x)) i:1,2,...; j:-I:I-;—NLl,...N, (3.51)

where the elements a'; and b';; represent the influences from the source panel with its

centroid af x';

i on the field point x; which only involve the integral of G* and its

derivatives.
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By means of the Property 1, 2 and 3 for G*, another group of equations are
obtained, i.e.

J J d
aji=[AS, +n, 5 1[ Mok T oy, ™ 97, ] G*(x;, x))

b'jir:[ASi+n1i25i | G*(xi, xj) j=1,2,...

N . N N+M
2

and

d ] . )
aiii':ASi ‘nlja_xi-nzl'a_y: n3ja_zi G*(xi,xj)

b= AS; G*(x;, x,) =12, =, i=——+1,..N, (3.52)

where a'j; and b'j; represent the influence from the source panel with the centroid at x'; on
the field point x'; for the integral of the G* and its derivatives. In terms of Eqn.(4.49) and
(3.50), the evaluation times of the G* and its derivatives for a port-starboard symmetric
body with total N panels to present is are (N/2 x N/2), which is only a quarter of the size of
matrices a or b, which is (N x N). For the arbitrary body, there is no symmetry can be
used, the total evaluation times for G* and its derivatives are (1/2)(N x N), which is half of

the size of the matrices a and b.

3.6 Efficiency Consideration

The computational effort involved in the obtaining the results of the hydrodynamic
coefficients, wave exciting forces and motion responses is always a criterion for judgement
of the practical value of the method and the program. For several models with different
number of panels the CPU time taken on ICL 3980 machine is given in Table 3.2. The
program now works on double precision in order to evaluate the Green's function with an
absolute error smaller than 10°® and also make use of the NAG routine software package in
ICL 3980 system. The total CPU time involves the whole procedure from the mesh
generation to the prediction of the motion responses and wave loads. The CPU time per
frequency here is the average value of twenty five typical non-dimensional frequencies

from (Oc‘j(L/g):O.S - 5.3 with 0.2 interval because the CPU time varies from different
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frequencies and the singular art of the Green's function is frequency independent once

calculated it will be stored and used for all the frequency calculations.

Table 3.2 The Comparison of the CPU Time per Frequency

(in Seconds)

_—
Number of Model Present Ordinary Time Saving
Panels Procedure Procedure %
—
120 Ship Shaped 6.2 9.9 37.4
Crane Vessel 3
|
200 Twin Cylinder 18.7 28.3 34.0 {
252 Series 60 Model 35.1 51.5 31.9
352 SWATH 1 72.4 118.1 30.7

Table 3.2 show the comparison between the ordinary numerical procedure and the

present procedure which make use of the properties of Green's function for the bodies with

port-starboard symmetry. Both methods have made use of the symmetry of the body

geometry. The present one savesover 30% of the total computing time. From the results in

Table 3.2 it can be seen that the total CPU time increases nearly as the square of the number

of panels.
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CHAPTER FOUR

PREDICTION OF MOTION RESPONSES OF
MONO AND TWIN HULL SHIPS IN REGULAR WAVES

In this chapter the hydrodynamic coefficients, wave exciting forces and motion
responses of the mono and twin hull ships travelling in regular waves were analysed by the
three dimensional theory described in previous chapters. The results have been compared
with the other theoretical and experimental results. Because the twin hull ship is primary
concern here, the hydrodynamic interaction effects in the form of 'standing waves' between
the two hulls were studied in detail. The purposes of this chapter are

1- to demonstrate the validity of the theory and the modified numerical procedure
with respect to physical reality,

2- to investigate the 'standing wave' phenomenon and its effect on the
hydrodynamic coefficients, wave excitation and motion responses of the twin hull ships,
and

3- to apply the theory to the prediction of the twin hull ship motion in regular waves

for practical uses.

For these purposes a Series 60 model with Cp=0.70, twin cylinders and « SWATH
( small waterplane twin hull ) ship model were analysed and their main particulars are given

in Table 4.1.

The computational results of a Series 60 model were compared with other

theoretical and experimental data to validate the method and the numerical procedure.
The standing waves phenomenon and its effect on the hydrodynamic coefficients.

wave excitation of the twin hull body was systematically studied by varying the distance

between the two hulls of the twin cylinders for several values. The frequencies at which the
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Table 4.1 Main particulars and stability data

Designation Symbol  Unit Series 60 Twin cylinders SWATH 1
Length (between
perpendiculars) L m 3.048 2.0 1.5
Breadth By m 0.435 0.813,1.219,2.203 0.8092
Hull spacing
between the B m --- 0.61, 1.016, 2.0 0.72
central lines
Beam of cach
hull at W.L. bg m --- 0.127 0.05
Draught T m 0.174 0.294 0.1984
Displacement v m? 0.1616 0.171 0.0218
Block cocf. Cp 0.700 -—- -
Vertical centre of
gravity above base KG m 0.179 --- 0.1763
Transverse
metacentric height GMr m 0.030 --- 0.191
Longitudinal
metacentric height GMy, m 3.46 - 0.232
Incrtia in pitch* Iss kg m? 96.2 --- 4.01
Incrtia in roll* I44 kg m? 3.48 - 3.30
Incrtia in yaw* Iee kg m? 96.2 - 6.36
Inertia conduct
roll-yaw* Lie kg m? 0.40 --- 0.0
Waterplane arca Aw m? 0.1042 0.054
L.C.B. after F.P. m 1.509 1.0 0.9725
Centre of floatation
after F.P m 1.575 1.0 0.972

*.

= relative to origin above centre of gravity in waveplane



standing waves occur, so called 'standing wave frequencies' were also discussed.

Finally, the present theory was used to predict the motion responses of a SWATH
ship travelling in regular waves. A semi-empirical iterative method was introduced to
estimate the viscous effects. This method is generally suitable for not only SWATH ships
and also other type of semisubmersibles whose demi hull may not be as slender as
SWATH ships. The results were compared with the 2D strip theory results and

experimental data for different wave headings, with and without forward speed.

4.1 Series 60 Model

In order to provide the validation of the method and the numerical procedure, a
Todd series 60 model with Cy=0.70 was firstly calculated with the model travelling at
forward speed associated with F;=0.0 and Fp=0.2. This typical model has been
extensively studied by a number of previous authors. The available experimental and
theoretical results are very convenient for the present purpose of validation. In this section
the computational results have been compared with the experimental and the other
theoretical results. The comparison with the other three dimensional results can be used to
check the validity of the present numerical procedure which is modified to make using the
symmetric properties of the Green's function and the body geometry. This numerical
procedure provides the basis of the following studies including the predictions of the
motion responses, wave loading of ships, and the random sea process. On the other hand
the comparison with the strip theory and the experimental results can show the general
validity of the present three dimensional theory to ship motion problem and the

improvement from the simple two dimensional approximation.

The principal particulars of the Series 60 model are given in the Table 4.1. The hull
form is represented by 252 panel elements as shown in Fig.4.1. The calculation was made
by the modified numerical procedure described in the previous chapters. Because of the
symmetric feature of the model about its centre plane, the method utilizes the symmetry of
the body geometry and considers the half of the hull form only. Consequently considerable

saving on both computing time and storage space i$ attained.
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For the comparison the results obtained by some previous authors for the same

model were used in this study which are listed as following:

Theoretical results

1, Strip theory:  The results are given by Inglis (1] who used the Lewis-form
method by dividing the hull into 20 segments each of which was modelied using a Lewis
section.

2, Three dimensional theory:  The results are also given by Inglis [2] using three

dimensional source distribution method.

Experimental results

1, Gerritsma and Beukelman [3] give the measured results for whole and segmented
models at Fn=0.2 for heave and pitch. Their model was 2.258 m long, so the results have
been scaled up to the same length as present model;

2, Vugts 4] gives the experimental results measured on the model of length 3.048m
for both whole and segmented hull at F;,=0.0 and F,=0.2;

3, Van Leeuwen 3] measured the results for the whole model of length 2.258m at
Fn=0.2 both with and without rudder in sway and yaw modes. The results are presented in

stability axes and so they have been transformed and scaled for the present comparison.

4.1.1 Motion Induced Coefficients

The motion induced coefficients, i.e.added mass and damping, were computed over
a wide range of frequencies of 0.8970<®.<9.867 or 0.5< weV(L/g) 5.5 in non-
dimensional frequencies. The coefficients were calculated for all six modes ( i.e. surge,

sway, heave, roll, pitch and yaw ) including coupled motion induced coefficients.

The coefficients are presented in Fig.4.2-4.11. In all figures the abscissa is a non-
dimensional frequency w¢V(L/g). The added mass and damping are also represented as
non-dimensional values, A'jj and B'jj. The non-dimensional products are described in the

nomenclature.
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Generally the very good correlations have been found between the present three
dimensional results and Inglis 3D results which shows the validity of the present modified
numerical procedure. The two approaches use similar basic theory but different numerical

procedures, so the results should be very close to each other.

The distinct feature of the discontinuities in the coefficients of the vertical
oscillations at we = 9.13 is considered to be caused by irregular frequencies. From the
geometric properties of the model. i.e. L/B=7.0 and B/T=2.5, one would except an
irregular frequency at we = 9.16 (corresponding A/L.=0.24) by means of Eqn. 2.92, and
out of the frequency range of practical interesting for rigid body motion. However it is not
true if the ship has a high speed and consequently a high encounter frequency. On other
hand, when hydroelastic theory is used where the body is assumed flexible these irregular
frequencies would become a very serious restriction since they occur in the region of
resonances of the distortional mode (see reference [6]). The strategies to avoid irregular
frequencies have discussed in the Chapter 2. The simplest way is to forecast them prior to
setting the frequencies to be calculated and avoid them. The range of the effect of each
irregular frequency is often very narrow, so the results laying in this range can be

approximated by interpolation. The Eqn. 2.92 can be used to forecast.

For better understanding the theory, the two dimensional and the experimental
results are also shown in the Fig.4.2-4.11. The discussion of the results are made in two
groups, vertical mode of oscillation and lateral mode of oscillation which are assumed

independent each other in the present theory.

I, Vertical mode of oscillation

Surge and Surge-Pitch

There is no measured data available for these modes. The strip theory neglects them
by the assumption ot the theory. Theretore no comparison can be made with experimental

and two dimensional results. On other hand the two 3D results agree well with each other.
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Heave

At higher frequencies both three dimensional and strip theory agree well with the
measured data for Fy=0.0 and Fr=0.2 but in the low frequency range the strip theory
deficiencies are apparent. This is due to the basic assumption in strip theory that the high
oscillation frequency is required. In the present three dimensional theory the heave
coefficients are speed independent and it certainly appears from the experiments that the

speed effects on added mass are small.

Pitch

As with heave, the three dimensional results and strip theory results agree well in
high frequency range, but at lower frequencies there is large difference between them. For
zero speed damping coefficients three dimensional theory improved the results

significantly, but at non-zero speed the agreement with measured data is only fair.

When the encounter frequency approaches zero, the Ass at F,=0.2 as predicted by
three dimensional theory become infinite. From the Table 3.2 it is clear that the Ass5 has an
order of we‘2 . In the motion equation the Ass will be multiplied by w,? which means the
contribution of Ass to the motion equation is only finite, whereas the Ass predicted by strip
theory will gives an infinite contribution. Therefore, near the zero encounter frequencies in

the cases of following and stern quatering seas must be avoided with strip theory.

Heave-Pitch

It is obvious that the added mass Ass of present results at zero speed, Fig.4.6, is
different from the other three dimensional and strip theory results. The present one agrees
with the experiments much better than the others. The reason is not clear, but it is
confirmed by the calculations of three different panel arrangements for the same model

from coarser to finer (only one result is shown here).

For the forward speed case the results show similar behaviour to that found in the
zero speed case. The differences between present results and the others are caused by the

zero speed Ass values. The present one lies close to measured data as well. Another
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important fact can be found is the three dimensional results satisfies the Timman-

Newman!”!l symmetry relationship, but the strip theory results does not.

II, Lateral modes of oscillations

Sway

The predictions by all theories are close each other at both speeds and all of them
underpredict the damping. This is believed to be the influence of viscosity as has been
demonstrated by Vugtsm. He used the strip theory to predict sway and roll damping of two
dimensional rectangular cylinders with different B/T. In his results the theoretical
predictions and the experiments coincide for larger ratio of B/T and get more inaccurate for
smaller B/T. It can be understood that the flow pattern about the deep immersed sections is
more influenced by separation than the shallow one. The sway added masses predicted by
all the theory agree well with each other for both speed, but all of them are higher than the
experimental results at Fn=0.2 which is due to the limitation of both 3D and 2D theories,

i.e. A and By are speed independent.

Sway-Roll

The damping coefficients for this coupling mode, Fig.4.8, show the same
tendencies as those in the sway mode. The underpredictions are caused by viscosity. The
experiments show the damping coefficients are changed with forward motion but the

theoretical results is independent of forward speed.

Roll

The added mass at both speeds are nearly constant which is experimentally
confirmed by Vugts!®]. It is clear that the theory gives the inadequate results for the roll
damping. Unlike other modes for the mono hull ship the viscosity gives a significant
contribution to the roll damping. This will be discussed later. However both  of the
theories fail to predict satisfactorily the influence of forward speed. The hydrodynamic

coefticients in roll mode are speed independent due to the limitation of the theory.
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Yaw

At zero speed, the Fig.4.10 shows that all the theories predict satisfactorily the
added mass. In the case of Fy=0.2, the three dimensional results lies close to the
measurements, but they still can not simulate the trend of the added mass at the middle
frequency range. The limitation of strip theory is obvious since it is speed independent in
this mode. The agreement between the predictions by all the theories with experiments for

the damping is not good at lower frequencies.

Sway-Yaw

For sway-yaw coupling, Fig.4.11 shows the present results of damping
coefficients agree with the experiments better than the three dimensional results given by
Inglis! ). This is similar as that found in heave-pitch coupling mode and the reason is not
clear either. For the zero speed the added mass the strip theory seems to be giving better
results, but at Fn=0.2 the predictions of three dimensional theory are closer to the

measurements.

4.1.2 Viscous roll damping

Potential theories, such as those under discussion, are based on the ideal flow
assumptions, and so attributes all damping effects to wave damping. For most modes of
oscillation of mono hull ships this gives adequate results but for roll motion the viscous

effects must be considered.

The viscous effects on roll damping can be divided into two parts, i.e. skin friction

and eddymaking.

(1) Skin friction

Skin friction is due to the existence of boundary layer in real fluid and causes a
contribution to roll damping which is Reynolds number dependent. This contribution to the
roll damping is quite important in the model test, but it has been shown by Myrhaug and

Sand!¥! to be negligible for real ship.
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(2) Eddymaking
The eddymaking damping was studied by TanakallOl It was found that this

contribution is dependent on the roll velocity and independent of Reynolds number.

The different components of the roll damping on Series 60 were measured and
compared with the prediction from the empirical formulae by Ikeda, Himena and
Tanakal!l). Their results are shown in Fig.4.12. Their results were used here. Fig.4.13
shows that the agreement of the prediction with experiments is improved significantly by

introducing the viscous effect.

4.1.3 Wave Exciting Coefficients

The wave exciting forces and moments acting on the submerged hull of the model
have been calculated with the model travelling at the speed associated with Fn=0.0 and
Fn=0.2 in head sea (B=180°), Fn=0.0 in bow quartering sea (=120°) and Fn=0.2 in
beam sea (B=90°). The results against the non-dimensional wave frequency, weV(L/g), are
presented in Fig.4.14-4.22. The contributions of Froude-Krylov force are also shown in

the figures.

The experimental results are only available for heave and pitch modes in head sea at
Fn=0.2, sway, heave, roll and pitch in bow quatering sea at Fn=0.0. Therefore the

comparisons are only made for these modes.

All the results show the present predictions agree with the other 3D results very
well which further confirms the present numerical procedure. The discussion of the

comparisons with experiments and other theoretical results follows.

Head seas

From Fig.4.14-4.16 it can be seen that the diffraction components reduce the wave
excitation in all the vertical modes, i.e. surge, heave and pitch. The Froude-Krylov torces
dominates the total wave excitations in surge and heave modes, but the diffraction forces

give the most important contribution to the pitch moments since the diffraction pressure at
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the two ends 1s more sensitive to the pitch moments rather than surge and heave forces.

Fig.4.15 and 4.16 show the exciting force and moment predicted by 3D theory are
closer to the measured values in the range of low frequencies at Fn=0.0, but at higher
frequencies the strip theory results appear better. In fact, in spite of these differences and
those found in hydrodynamic coefficients both 3D and strip theory predict similar heave
and pitch responses, as shown in Fig. 4.24 and 4.25. At F;,=0.2 the 3D theory gives better

results than strip theory.

Bow quartering seas

The bow quartering sea results are represented from Fig.4.17-4.19 for Fn=0.0.
Comparing the results for vertical modes (surge, heave and pitch) with lateral modes
(sway, roll and yaw), it can be found that the diffraction effects on the lateral modes are
much more significant than those on the vertical modes. Unlike in the head sea the Froude-
Krylov predictions are clearly inadequate and the results show the diffraction effect is

important even in the vertical modes.

At zero speed, the 3D theory predicts heave and pitch excitation better at all
frequencies. For the sway force, the 3D results agree well with the measurements. For the
rolling moments the 3D predictions are significantly closer to the measurements than those
obtained by strip theory but the level of agreement is pot as good as those in the other

modes. For the yaw moments their is little to choose between 3D and strip theory.

Beam seas

The beam sea results are shown in Fig.4.20-4.22 for sway, heave and roll at
Fp=0.2. It can be seen that the Froude-Krylov forces predictions are inadequate. For the

roll moments the diffraction force gives the largest contribution.

Two 3D results agree well each other but are much higher than the predictions by
strip theory. The difference increases as the frequency increases just like was found in the

bow quartering sea but more markedly. This is caused by the underprediction of diffraction
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in strip theory. Diffraction increases in effect as the frequency increases.

4.1.4 Motion Responses

The theoretical results of hydrodynamic coefficients and wave excitation calculated
previously were used in the coupled motion equation described in the Chapter 2 to predict
the coupled responses of the model in six degrees of freedom. The viscous effect in roll
damping has been taken into account. The results of the responses are shown in Fig.4.23-
4.31. The comparisons among different theories and experiments are made for different

wave heading, with and without forward speed.

Head seas
The results for Fn=0.0 and Fn=0.2 are shown in Fig.4.23-4.25. The surge
responses get the minimum value near wey(L/g)=2.75 at Fn=0.0 and wV(L/g)=3.75 at
Fn=0.2 where the surge excitations had their the minimum value. When the frequency
approaches to zero the surge responses should theoretically approach to infinity due the
zero stiffness in the surge mode of the motion equation but this limiting value is not shown
in Fig.4.23. At the lowest frequency calculated, weV(L/g)=0.5, the surge responses still
give the reasonable values. The non-dimensional heave responses approach to 1.0 while
the frequency approaches to zero because the the heave wave exciting force equals to the
heave stiffness, C33=pgAw, at zero frequency. The natural frequency of heave is about
wey(L/g)=3.25, the natural period is about 1.08 sec.. The non-dimensional pitch response
approaches to 1.0 at zero frequency. The reason is similar to the heave response. The pitch
stiffness Css equals to the pitch wave excitation when the frequency approaches to zero and
the coupling coefficients of stiffness and wave excitation for heave-pitch cancel each other.
The pitch natural frequency is about wey(L/g)=3.75 and its effect is not as obvious as heave

natural frequency because the wave exciting moment is small at this frequency.

Bow quartering seas

The responses in six degrees of freedom with Fn=0.0 are shown from Fig.4.26-
4.28. In the bow quartering seas, all the non-dimensional responses in vertical modes, 1.e.
surge, heave and pitch are less than those in head sea. For the lateral motions, the roll

natural frequency is near wqy(L/g)=2.25 which gives obvious coupling effect on sway
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responses.

Beam seas

The sway, heave and roll responses are represented in Fig.4.29-4.31 These are the
worst cases for sway and roll motions. The sway responses should theoretically become
infinite due to the stiffness is zero, but this does not appear at the lowest frequency calculated.
The roll response changes the phases by 180" when the frequency is changed from lower
than its natural frequency to higher than it. The coupling effect between sway and roll is
significant. The predictions by all the theories agree well each other in sway and roll modes

but there is no experimental data available.

4.2 Standing wave phenomenon
4.2.1 Twin Cylinders

The panel method has been modified by using the symmetric properties of Green's
function and the body geometry, so it is necessary to validate it for the twin or multi-hull

bodies. Here a simple twin hull cylinder is first considered.

At the early stage of the SWATH program in DTNSRDC, the experimental studies
on a forced oscillation of twin cylinders with small water plane area were carried out by
Gerzina. The forced oscillation was made independently in heave, sway and roll modes and
several amplitude of oscillations were used to check the linearity. Later Lee, Jones and
Bedel''?! calculated the added mass and damping coetficients for those modes by 2D strip

theory, the Frank close-fit method!!3) was employed.

The model is shown in Fig.4.32 with the length of 2.0m, the radius of one hull of
0.1015m and the distance between the centre lines of the two hulls varies for three values,
ie. 0.6Im, 1.016m and 2.0m. The first two distances were used by Gerzina and also
employed in present calculations. The 164 panel elements were used to present the hull
form as shown in Fig.4.32. The results given by Gerzina have been scaled to compare with

the present non-dimensional values .
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In this section the present predictions of added mass and damping in sway and
heave modes were first compared with the 2D and experimental results to validate the
theory for twin hull bodies. Then the results based on the twin hulls approach were
compared with the demi hull results to investigate the hydrodynamic interaction between the

two hulls.

I. Hydrodynamic coefficients

The added mass and damping coefficients of the twin cylinders with B=0.61m and
B=1.016m were calculated by 3D theory and are shown in Fig.4.33. The present 3D
results are compared with both experimental and 2D results for added mass and damping
coefficients for sway and heave modes. The comparison shows that both theories correlate
with the measured data well for this special model ("2D" model), but the 3D results still
show the relatively better correlation in heave added mass prediction than the 2D results. It
is also clear that the damping coefficients predicted by both theories are lower than
experimental values this is considered to be caused by the viscous effect. As explained in
the Section 4.3.3, the damping coefficients involved in the vertical plane modes play a
sensitive role in prediction of heave and pitch motions. The damping obtained by the
potential theory for a small amplitude of oscillation produce exaggerated peak amplitudes of
motion at the natural frequencies, compared with the magnitude measured in motion
experiments in regular waves. Therefore the viscous effect must be taken into account for

predicting the motion of the SWATH type of ships.

The most strike feature of the results in Fig.4.33(a) is the discontinuity at non-
dimensional frequency w2(ro/g)=0.65, where A/Bj=2.0 (B; is the distance between the
inner boards of the twin hulls) for the sway mode, which is due to the effect of the
asymmetric mode of standing waves between the two hulls. It is interesting to note that the
dip in As3 at w2re/g=0.18, where A/Bj=4.0, was stated by Lee and Curphey(!#! to be
caused by the mutual blockage effect between the twin hulls. However the present studies
show this dip is caused by the symmetric standing waves, such a dip has been

experimentally confirmed by Lee, Jones and Curphey! 12! for a conventional catamaran. In
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Fig.4.33(b) there is a peak in heave added mass at w2ry/g=0.7, where A/B;=1.0, which is
caused by the second vertical standing waves. Generally the two theories underpredict the
heave damping B33 because of the viscous effect. At lower frequencies the strip theory

does better than 3D theory.

II. Hydrodynamic interaction between the two hulls

For better understanding the hydrodynamic interaction between the twin hulls, the
comparison of the hydrodynamic coefficients between demi and twin hull approaches are
presented in Fig. 4.34. The demi hull results are obtained under the assumption that the
hydrodynamic interaction between two hulls are neglected, so the results are simply
obtained by two times the results of the single hull. In heave mode, the two results agree
well except at those at the frequencies where the standing waves occur. This means the
hydrodynamic interaction is weak in the heave mode. Similar features were also found in
the other vertical modes, i.e. surge and pitch. Whereas the differences in sway mode are
much clear. The effect of the standing waves at 02r/g=0.65 can not be seen in the demi
hull results. The sway damping B9, predicted by demi hull theory is nearly as twice as
those by the twin hull theory. The comparison showsthat the demi hull theory is inadequate
to predict the added mass and damping for sway mode, and the other transverse modes,

roll and yaw. The results are not shown here.

4.2.2 The Standing Waves

When a twin hull surface piercing vessel oscillates in the free surface or in the
incident waves, the radiation or diffraction waves generated on the one hull will transter to
and reflect back from the other. At certain combination of the frequencies and the distance
between the inner boards of the twin hulls, the waves transformed and reflected in the
vicinity of the twin hull have the same phase which causes the so called resonant wave' or
‘'standing wave'. This fluid interaction is verified the experiments on the SWATH model by
McGregorl 10l The experiment shows that the standing wave can makes the wave
amplitude in the vicinity of the two hulls 3-4 times the incident wave amplitude, and at
same time it produces the maximum wave loads on the hull structure and large motion

responses. It significantly effects the hydrodynamic feature of twin hull ships. In order to
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investigate the hydrodynamic effect of the standing waves, the twin cylinders, as shown in
Fig.4.32, was systematically analysed by varying the spacing between the twin hulls using
3D diffraction theory. The distance between the twin hulls, B, was varied for three
different values B=0.61m, 1.016m and 2.0m, i.e. B/L=0.305, 0.508 and 1.0. The results
are shown in Fig.4.35-4.50. In order to discuss it is appropriate to divide the standing

waves into two different types since they have different features.

I. Symmetric standing waves

The symmetric standing waves are generated at certain frequencies by the oscillation
of the twin hull in the vertical modes or under the action of the symmetric incident waves
(or symmetric part of the incident waves). In these cases, the radiation and diffraction
standing waves between the twin hulls are symmetric about the centre line with the

maximum amplitude on it.

II. Asymmetric standing waves

The asymmetric standing waves are generated at certain frequencies by the
oscillation of the twin hulls in the transverse modes or under the action of the asymmetric
incident waves (or asymmetric part of the incident waves). The both radiation and

diffraction standing waves are asymmetric about the centre line with zero amplitude on it.

4.2.3 The Influence of the Standing Waves

Generally, the standing waves influence the hydrodynamic features of twin hull
ships in three different ways.

- introducing rapid changes in the curves of added mass from maximum to
minimum, sometimes negative added mass,

- producing the peak values on damping coefficients, and

- producing the peak values on the wave exciting torces.

The influences result the maximum wave loads on the twin hull ship structure, large

motion responses and serious upwelling phenomenon.

The influences of the symmetric and asymmetric standing waves are clear in the
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results shown in the Fig.4.35-4.50. From the results, it can be seen that the effects of
standing waves generally decreases as the spacing between the two hulls increases.
Theoretically there are infinite number of standing waves could occur, but in present
calculation only the first two symmetric and asymmetric waves can be seen. The results
also show that the effect of standing waves decrease significantly as the standing wave
frequency increases, so in practice only first few standing waves with low frequencies are
of interest. The discussion will be made in detail in following text. The corresponding
frequencies of the symmetric and asymmetric standing waves are indicated by we] and we)

respectively. The values of @] and e for varying B/L are listed in the Table 4.2.

I, Effect of standing waves on hydrodynamic coefficients

When the twin hull body oscillates at the frequencies e, the symmetric radiation
standing waves occurs and it only effects in the hydrodynamic coefficients in the vertical
modes, which is clearest in heave mode. The heave added mass A33 attains a minimum at
first symmetric standing wave and has a jump at the second one. There are corresponding
peaks on the curves of the heave damping B33 (see Fig.4.36).Generally this effect
decreases as the B/L value increases. For the most separated case of B/L=1.0, the influence

of the second vertical standing waves is much less than those in the other two cases.

The asymmetric radiation standing waves at .2 introduce peak values in the added
mass curves in all the transverse modes, i.e. A2, Ag4, Ags and Ang4. these are rapidly
changed from the positive maximum to the minimum values (possibly negative). The
standing wave frequencies, ®cp, appear to be the turning point. The corresponding eftect

on the damping coefficients, B2z, Ba4, Bgg and Bog, results in peak values of all the

transverse modes, as shown in Fig.4.38-4.41.
The peak values of the damping caused by symmetric and asymmetric standing

waves are physically reliable since the dissipation of the energy through surface waves

dispersion is partially prevented when standing waves occur.

87



II. Effect of standing waves on wave excitation

Head sea

In the head sea, the incident waves are symmetric about the centre line, so only the
symmetric diffraction standing waves could occur. In the Fig.4.42, the symmetric standing
wave at we] produces peaks on the curves of wave exciting forces FoP and F,$ acting on
the port and starboard sides of the vessel. these are 180° out of phase each other and tend
to split the twin hulls. A similar influence can be seen on the curves of F4P and F45 as well

(Fig. 4.43)

Beam sea

In beam seas, the results are more interesting. The incident waves in this case are
neither symmetric nor asymmetric about the centre line. From Fig.4.47, it is clear that both
symmetric and asymmetric diffraction standing waves at w1 and e influence the wave
exciting forces FoP significantly. The first peak on the curve FoP is introduced by the
symmetric diffraction standing waves at we] This produces the maximum side force and
bending moment on the cross-deck structure, and the second peak by the asymmetric
diffraction standing waves at wez which produces the maximum wave exciting forces
contributing to the motion responses. In order to understand the features of these two
different diffraction standing waves, it is appropriate to divide the incident wave and the
diffraction wave potentials into symmetric(even) and asymmetric(odd) parts. The incident

wave potential is given in Eqn. 2.7, 1.e.

iga
0= - &2 exp [kz + ik ( xcosp + ysinf )]
w (4.1)
[ [¢]
= 5 + 0
where
. iga : .
¢:) = . exp [kz + 1kxcosB] cos ( kysinf3)
Q)
and
o iga , , .
0g = -——€exp [kz + 1kxcos[3] sin ( kysinf).
"
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The diffraction potential is defined by the boundary conditions

3¢D 8¢0
_87-_ - dn on S
Since  op=9p°+op°,
905 9%,
on  on
on S (4.2)

95 99,

on  on

The part of the incident wave associated with the potential ¢p is called the even
part of incident wave, and associated with ¢p° the odd part.In head sea only ¢p° remains,
so only symmetric diffraction standing wave could occur. In beam sea or other heading,
both ¢p® and ¢p° are generally non-zero. The two boundary conditions in Eqn.(4.2) could
make the diffraction waves which are generated on the one hull transfer and reflected back
from the other have the same phase in the vicinity of the twin hulls at certain frequencies,

This means that both symmetric and asymmetric standing waves could occur. The

prediction of the force F7P in Fig.4.47 has confirmed this phenomenon.

The Fi®(even part of the force F;) has the same amplitude and sign (same phase)
acting on the port and starboard sides of the vessel, whereas F;®(the odd part of the force
I}) has the same amplitude but opposite sign acting on the port and starboard sides of the

vessel. The Fi® and F;° on the right side hull can be obtained from following formulae.

{ .

(¢g+¢>le))nids i=13.5
o
S
R
p?: C (4.3a)
J(¢0+¢D)nids i=2.4,6
S
“R
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(6, +0)nds =135

7 > (4.3b)

(0,+0p)n ds  i=2,46

where Sg is the wetted surface area of the right hull.

The symmetric standing waves at @] are only associated with the even part of the
diffraction potential ¢p°, so they produce peak values on the curves of F3€, F2°, F4© and
Fg®, as shown in Fig.4.48-4.49. Specially, F,° is the force tending to split the hulls and
produces the maximum bending moment at cross deck structure at ;. The asymmetric
standing waves at w2 associate with the odd part of the diffraction potential $p°, so they
produce the peak values on the curves of F2¢, F4°, Fg® and F3° etc., as shown in Fig.4.48-

4.49. The F,° gives the maximum total exciting force contributing to its motion.
g g g

It is interest to note that all the even forces F;®, for i=1-6, only contribute to the
motion responses of the ship, whereas all the odd forces F;°, for i=1-6, only contribute to
wave loads on the ship structure. In this section, the results have shown the important
effect of standing waves on the hydrodynamic coefficients, wave excitations of the twin
hull body. In the next section and Chapter 6, the investigation will be made on its effects on

the motion responses and waves loads respectively.

4.2.4 Standing wave frequency

It has been suggested that the standing wave frequencies for two parallel surtace

piercing cylinders with infinite length may be obtained by following formulal!”!
n=1,2,3, .. for symmetric standing waves
At (4.42)
B, n n=0.5, 1.5, 2.5, ...  for assymmtric standing waves

or
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2nn | 5 n=1,23, .. for symmetric standing waves

i n=05,15,25,.. for asymmetric standing waves

(4.4b)

This formula based on the assumption that 'the wave generated between two cylinders is

symmetric or asymmetric and that at each end the wave slope is zero.

The above conjecture for symmetric mode is drawn from the 2D interference studies
conducted on simple sections primarily regarding the heave mode!1217:18] Data for surface
piercing strut or column type bodies in asymmetric modes was found generally scarcel19].

This feature was confirmed by present study.

The standing waves frequencies of different spacing between the two hulls are
listed in Table 4.2. The results show that when L/B value becomes large, the values for the
second symmetric standing waves approach to 2.0, for the first asymmetric standing waves
approach to 1.0 and for second asymmetric standing waves are around 0.67. This is close

to that estimated by Eqn.(4.4).

On the other hand,the results in Table 4.2 also show the strong 3D effect on the
first symmetric standing waves. For different L/B values, A/B; varies significantly from
about 3.0 to 6.5. The concept of wave reflection between the two hulls in transverse
direction is difficult to explain why the A/B; value of this standing wave is not integer. In

order to understand this phenomenon the further discussions are made as follows.

4.2.5 Discussions on transverse and longitudinal standing waves

The above discussions on standing waves are based on the concept of wave
reflection between the two hulls in transverse direction. This explanation was used in many
papers of two dimensional theories in which only the transverse wave interaction between
the two hulls can be considered, and also used by Price and wul231 to explain the three

dimensional standing wave phenomenon in the vicinity of the twin hull semi-submersibles.
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Table 4.2 Frequencies of standing waves of the twin cylinders

BIL 1.0 0.508 0.305
B(m) 2.0 1.016 0.61
B;(m) 1.873 0.889 0.483
Wei(rad./sec.) 3.322 4.153 4429
1 e V(L/g) 1.5 1.875 2.0
., | (Long) A (m) 5.585 3.574 3.142
o = A /Bi 2.982 4.020 6.505
E 3 A/Lg 3.103 1.986 1.746
E oo
£ 5 |
= 2
w g Weq(rad./sec.) 5.814 8.305 11.07
i 2 ®¢1V(L/Z) 2.625 3.75 5.0
(Trans.) A (m) 1.823 0.894 0.503
A/Bi 0.973 1.006 1.041
o ¢x(rad./sec.) 4983 6.090 8.028
% 3 ©eaV(L/g) 225 2.75 3.625
9 z | (Trass) A (m) 2.482 1.662 0.956
T 3 A/Bi 1.325 1.870 1.979
£ wo
g &
=5
< g W eptrad fsec.) 10.24 13.17
- 4 weV(L/g) 4.625 6.125
(Trans.) A(m) 0.587 0.335
A /Bi 0.660 0.694
- S R _J

From the computational results in this thesis, one can find that the A/Lg values of
the 'so called' first symmetric standing waves for different L/B are close to 2.0, where L
is the length of the strut. Eatock Taylor and Hung!?#) also confirmed this by investigating
upwelling in the vicinity of SWATH ships with both single and tandem struts. Their results
are given in Fig.4.50. The characteristic of the antinode at the centre and a node fore and aft
near the strut extremes. This condition is physically realistic for two reasons: Firstly the
ML, is close to 2.0, and then the locations of node and antinodes at these points will satisfy

the expected symmetric flow conditions. This behavior is reminiscent of a channel with
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open ends, in which resonant modes exist at

1
S SRR (4.4¢)

This type of standing waves are termed 'longitudinal standing waves' here.

The present study suggests that the wave interaction in the vicinities of the twin hull
ships could occur in both transverse and longitudinal direction. At the lowest frequency the
longitudinal standing waves usually occur and cause the most serious upwelling and side
force acting on the twin hull structures. While at higher frequencies the wave interactions in
transverse direction are often dominant, so the transverse standing waves are usually seen.
Theoretically there are infinite number of standing waves, but their effect decreases
significantly as the standing wave frequency increases. Therefore only the first few

standing waves with the lowest frequencies have serious effect and are of primary interest.

Above conclusions are made primarily based on the results of the computations,
they still need systematic experiments to confirm. If the conclusions are true, the
longitudinal standing waves, which usually produce the most serious upwelling and side
forces on the structure, are purely three dimensional effect and difficult to be predicted by

any two dimensional theory .

4.3 A SWATH SHIP

The SWATH (Small Waterplane Area Twin Hull) ships have attracted increasing
interesting since the last decade and now receiving considerable attention. Among many
advantages over conventional mono hull vessels, a major attraction is superior sea keeping
performance at a seaway and little speed reduction in waves. A comprehensive review of

SWATH ships has been made by McGregor!20].

In this section, the 3D hydrodynamic analysis is performed on a tandem strut
SWATH ship. The different wave heading and forward speeds were considered.
Parametric investigations include hydrodynamic coefficients, wave exciting forces and

motion responses of the twin hulls. The effects of standing waves are specially discussed.
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The viscous effects are taken into account by a semi empirical iterative method. The

comparison has also been made with the results from 2D predictions and the experiments.

The model is shown in Fig.4.51 with the principal particulars listed in the Table

4.1. The model was represented by 356 panel elements.

4.3.1 Hydrodynamic Coefficients

The hydrodynamic coefficients calculated by 3D theory are shown in the Fig.4.52-
4.63. The results are represented in two groups, vertical modes (surge, heave and pitch)
and the transverse modes (sway, roll and yaw) including their coupling terms as well. In
the present theory, the only speed dependent hydrodynamic coefficients are in pitch and
yaw and their coupling modes. Therefore only these speed dependent coefficients are
shown in two different cases associated with the Froude numbers of F,=0.0 and F,=0.261
(i.e. U=0.0m/s and U=1.0m/s). The others are all speed independent. From the Green's
second identity, it can be proved that at zero speed Ajj=Aj; and Bj;=Bjj, but in practical
numerical calculation this can not be satisfied absolutely. The double curves in the coupling
coefficients at zero speed indicate the error of the calculations. One curve represents Ajj or

Bjj and the other Ajj or Bij.

I, Vertical oscillations

In the first group of results Fig 4.52-4.57, vertical mode coefficients are presented.
The most distinct feature in those results are the effectsof the symmetric standing waves at
oV(L/g)=3.875, the corresponding A¢/B;=0.937 (kC:ZRg/mcz). Since the twin hull of the
SWATH model is quite separate and there also is a gap between the two struts on the same
hull, the standing wave effect is not as strong as those in the case of the twin cylinders
discussed in the Section 4.3 and the effect of the first vertical standing wave on

hydrodynamic coefficients is not visible.

At F;=0.0 the standing wave at weV(L/g)=3.875 introduces the minimum values on
the curves of A1y, A3z, Ass and A3s and the peak values on the corresponding damping

terms By 1. B33, Bss and Bas. For the A3, A}s, B3 and Bys the influences of the vertical
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standing waves are in different direction because the values of these coefficients seem up

side down from the former.

It is interesting to note that the torward speed does not change the encounter
frequencies of the standing waves which stay at we\/(L/g)=3.875 at F=0.261. This is
expected (see Table 2.1) because the speed dependent terms of the coefficients are based on
the corresponding zero speed coefficients which all have rapid changes at the frequency of
the standing waves. The ways in which the standing wave exert an influence are also
dependent on the speed dependent term of each coefficient. For example, the speed
dependent terms of Aszs and Asy are -(U/0e2)B33% and +(U/we2)B330, where the B3z"
indicates the corresponding value of B33 at zero speed, so the peak of B33? at standing
wave frequency results minimum or maximum values on the curves of Azs and Asz

respectively. The result satisfies the Timman-Newman relationship.

The dashed lines in the damping coefficients indicate the damping coefficients
including viscous effect. This is predicted by a semi-empirical iterative method presented in
the Section 4.3.2. Because the viscous effect is motion dependent, the present results were
obtained by assuming the SWATH model under the bow quartering sea (B=135") and the
wave amplitude of 0.02m. In fact, if the wave heading and amplitude are changed the
results do not change significantly except those near the motion natural frequencies. The
damping coefficients show that the viscous damping gives a considerable contribution to
the total damping except at the frequencies of the standing waves. As discussed previously.
at frequencies of standing waves the standing waves can cause very large wave damping
which dominates the total damping, so the viscous contribution is relatively small. In the
lower and middle frequency range which is the range of practical interest, the viscous
damping dominates the B33, Bss and B3s. As shown in the motion responses for vertical
modes, the viscous effect influencesthe motion responses significantly near the motion

natural frequencies.

II, Transverse oscillations

The results of the transverse mode coefficients are shown in Fig.4.58-4.63. The
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two asymmetric standing waves are evaluated to be at weV(L/g)~2.875 and weV(L/g)=4.5,
corresponding to A¢/Bij=1.425 and 0.695. Comparing the B/L value of the present tandem
strut model with those in Table 4.2, the corresponding value of A¢/B; for the standing
waves are justifiable. The both standing waves in the present results produce rapid changes
from the maximum values to the negative minimum on the curves of A, and Ag6 and the
we2 seems to be the turning point. The standing waves also produce peak values on the
damping curves of By, and Beg at Fy=0.0 and F,=0.261. For all the A44, As4, Bss and
Bo4, the standing waves introduce maxima. The results show that the standing waves

effect the hydrodynamic coefficients in transverse modes significantly.

The total damping including the viscous effect is also presented in the in the same
figures. In contrast to those in the vertical modes, the viscous damping in transverse modes
is much less significant. Although the viscous damping in transverse modes has the same
order of magnitude as those in vertical modes , its contributions to the total damping is
limited because the potential wave damping is an order higher than in the vertical modes. In
Fig.4.61, it is seen that the wave damping in roll mode B44 is much less than By, and Beg,
so the viscous effect is clearer. At forward speed, the results predicted by present 3D

theory satisfies the Timman-Newman relationship.

4.3.2 Viscous Effect

The viscous effect due to drag has been discussed in detail for SWATH ships by
Lee and Curphey!’#) in five degrees of freedom. Their method is based on the empirical
tormula given by Thwaites!2!] from the crossflow approach to a slender body at a moderate
angle of incidence in a uniform flow. In order to extend this approach to the six degrees of
freedom for SWATH ships or other type of semi-submersibles (for example, the semi-
submersible crane barge in the Chapter 5). The structure is divided into two sets of strips
parallel to the x and z axes. Then suitable pointson each strip contour are chosen as
representative point for evaluating the relative velocity. Based on the crossflow approach, a
pseudo-steady-state assumption has to be made to apply the method to an oscillatory body
and the viscous interaction between the twin hulls is neglected. Then the viscous forces and

moments due to drag in six degrees may be approximated as
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AFD1 = 0.5pAS1CpEn 6]

AFpy = 0.50A8; [ U2agas (x) + CpEpaléel ]

AFp3 = 0.5pAS3 [ U2agon(x) + Cpéplénl ]

and (4.5)
Fpi = ZAFD; for i=12,3

Fpa = - S2AFD) + SyAFp3

Fps = - ExAFp3 + £2AFp,

Fpe = - ZyAFp; + £xAFp»

where the two parts of the viscous effects involved in the crossflow approach are the
viscous lift (associated with the viscous lift coefficient ag) and the crossflow drag
(associated with the crossflow drag coefficient Cp). The AS; is the projected area of the
strip along z axis in x direction, and AS and ASj3 are the projected area of the strip along x
axis in y and z directions respectively, &rl, &r?_ and &r3 are relative velocity components in
the x, y and z directions. AFpj indicates the element of viscous force in ith direction, and

o1 (x) and ap(x) are the angles of incidence of flow at the representative point of a strip in

x-y plane and x-z plane.

[t is clear the viscous lift forces only act on the body in y and z directions with the
angles of incidence o1 (x) and o (x). Since o(x) and aa(x) are small, the diffraction ettect

is neglected. The relative velocity components in x. y and 7 directions can be written as

Eri=- &) —7Es + yEg + L
Ero=- & — xbe + 284 + (4.6)
En=-3 —yEa +x&s + §)

where the velocity components of a wave particle in x. y and 7 directions are
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' _% - 1ot
S5 ¢ (4.7)
C' _ % 1t
z dz
where
9%
ox cosf
. = a wexp [ik ( xcosf + ysinf )] exp (kz)
i% sinf
b ay
d0

_BZO_ =_jam exp[ ik (xcosp + ysinfB ) ] exp (kz)

(4.8)

In the foregoing expressions, Eqn.(4.6), the crossflow drag terms are nonlinear.
hence, they can not be directly introduced into the linear motion equations. By using

Fourier Series, it can be shown that

cosO | cosBI = z a, ,cos(2n-1)0

n=1

where
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an =0 for neven

n+1
2 8
a =(-1) > for n odd
n(n-4)xn
N S I
'oan 15t 0 tosn

Taking the first term yields an equivalent linear approximation

cos6 I cosO | = 3—8- cosH

and for any harmonic motion given by x = xgcoswt, the approximation is

P 8 . .
x|x|=-——u)x X 4.9)

w0
Substituting (4.6) and (4.8) into (4.5) and applying the equivalent linearization procedure

of equation (4.9) gives
AF =2 pas CE ¢
D1 ‘;p 1 Dérloéﬂ

F 2 . 8 . .
-,UE + 4 Ug , + 3nCD§r20§r2 (4.10)

_ | —aUzé +a UE  +—C & &
AF|, _ipAS3 07 25 " 0TR  TDPr07

where &;19, érzo and érg() are amplitude of &1, &2 and &3, and can be written as
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Then the viscous force can be split into viscous damping, viscous restoring and viscous

wave exciting force terms, i.e.

6
Z[ vij & vUf,j]wvj for i=1,2...6, (4.12)

j=1

where viscous wave exciting forces may be expressed as

DI
Fa= D 2 b,
Fo= D k00

=Y v kG- Y ra byt
= D28 ho b D8, gk,
Fo= D e b0 Y yak, ©

(4.13)

with

(a a a )_-—pC (AS ASz)‘
3n :

All these viscous terms are dependent on the motion amplitude, therefore they will be
determined simultaneously with the solution of the motion equation by an iterative

procedure.

For the present SWATH model to two hull are treated separately. The representative
points of the strips are chosen at the middle of the strip along 7z axis for AS), the one-half
draught of the strip along the x axis for ASy and the centre of the sub-hull for the strip

along x axis for AS3. All of them are on the centre line of the demi-hull.
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4.3.3 Wave exciting forces

The wave exciting forces and moments are calculated for three different heading,
head sea ( p=1807 ), bow quartering sea ( p=1350 ) and beam sea (B=909). at F,=0.0 and
Fp=0.261 ( i.e. U=0.0m/s and U=1.0m/s ). The components of Froude-Krylov force and
diffraction force are also shown in the results. The abscissa is non-dimensional wave

frequency.

Head sea

Fig.4.64-4.66 present the wave exciting forces in head sea with Fn=0.0 and
Fn=0.261. In surge forces, the Froude-Krylov force dominates the total wave excitation.
but in heave and pitch, the etfect of diffraction component is obvious. At w+(L/g)=3.875
(or wV(L/g)=2.338 at F;=0.261), there are peaks on all the curves of surge, heave and

pitch forces which are caused by the symmetric standing waves.

Bow quartering sea

As shown in Fig.4.67-4.72, the diffraction in this heading is more significant than
those in the head sea case. In the vertical modes, it is clear that the vertical diffraction
standing wave at o\ (L/g)=3.875 (w+/(L/g)=2.615 for Fn=0.261 ) introduces peak values
in surge, heave and pitch forces. In the transverse modes, the diffraction component
contributes the largest part of the total excitation. At zero speed, the two transverse standing
waves at wv(L/g)=2.875 and at w+/(L/g)=4.5 produce peak values on the sway and yaw
forces (Fp and Fgy. For roll mode Fy4, this effect is smaller, but its influence on the
diffraction components is still clear in the results.At F,=0.261, it is interesting to note that
the first asymmetric standing wave at 0v(L/g)=2.079 (corresponding encounter wave
frequency we(L/g)=2.875) influences a greater influence on Fp, F4 and Fg than at zero
speed. The effect of the second asymmetric standing wave at w+v(L/g)=2.934
(corresponding encounter wave frequency w¢v(L/g)=4.5) is much less significant than at

zero speed.

Beam sea

The wave exciting forces at zero speed are shown from Fig.4.73-4.75. Because the
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model is nearly fore-aft body symmetric, the surge, pitch and yaw forces are much smaller
than the other forces, so only the forces in sway, heave and roll modes are shown here.
The diffraction effects are more important in sway and roll than those in the heave. The
symmetric standing wave produces a peak in heave exciting force at av/(L/g)=~3.975. The
asymmetric standing waves at o(L/g)=2.875 and w+(L/g)=4.5 cause the peak excitation

values in the curves of F7 and Fjy.

4.3.4 Motion responses

The hydrodynamic coefficients and wave exciting forces/moments calculated in
previous sections were introduced into the coupled motion equations in six degrees
freedom. The results of motion responses in head seas(180°), bow quartering seas(135°)
and beam seas(90°) were compared with experimental and 2D strip theory results which
were obtained from the strip theory program, SWATH L, developed by Atlar{22]. The
results are shown in Fig.4.76-4.82. The comparison was also made for the forward speed
cases in head seas associated with Fp=0.13 (0.5m/s) and F,=0.26 (1m/s). The 3D theory
has considered the viscous effects by the method described in section 4.3.2, but 2D results

are without the viscous effects.

Due to small waterplane area and deep submerged main hull, the SWATH ships
usually have small wave damping comparing with mono conventional mono hull.
consequently the contribution from viscous damping is very large. The viscous effects on
motion responses are shown in Fig.4.76. The results show that the viscous effects
influence the motion responses significantly near the motion resonant frequencies. When
the viscous effects are considered the results are significantly improved and agree well with

experiments even in the range of motion resonances.

Head seas

The head seas results for different forward speeds are presented in Fig.4.77-4.79
for surge , heave and pitch respectively. The surge responses predicted by 3D theory
generally agree well with experimental results, but it fail to predict the peak near

weV(L/g)=1.0 satisfactorily. This peak is caused by the coupling effect from pitch
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resonance. It can be seen the pitch resonance is underpredicted as well. If the viscous effect

is reduced, both pitch and surge responses near ooe\/(L/g)zl.O can be improved. The 2D

theory neglects the surge motion, so no results can be predicted.

At zero speed, the heave and pitch responses from both 2D and 3D theories agree
well with the experiments,but 3D results are better than 2D. The predictions by 2D theory
near the heave and pitch resonant frequencies are too high. These can be reduced by
introducing the viscous effects. For forward speed cases, the difference between 2D and
3D theories is clear. In the case of Fy=0.13, the 2D results are clearly unsatisfactory. These
results may be improved by including viscosity, but the 3D effect on this tandem strut
model is another reason.The 2D results of pitch responses near its resonant frequency at
Fn=0.13 may be improved by including viscosity, but the heave responses are already
lower than the experimental values and will be further reduced if viscosity is taken into

account.

Bow quartering seas

3D results for surge responses generally agree well with experiments and are underpredicted
near weV(L/g)=1.0 where the peak is caused by coupling effect from pitch resonance. The
pitch responses predicted by 3D theory are lower than experiments near its resonance. This
is due to the too large viscous correcting term. Reducing viscous effects, the responses of
both pitch and surge can be improved.The agreement between 3D results and experiments
for heave responses is good, but 2D results are poor in the important medium frequency
range. The peak near w.V(L/g)=1.0 can be improved by including viscosity, but this will
further reduce the peak near eV(L/g)=1.5 which is already underpredicted. The pitch
responses predicted by 2D theory are too high at lower frequencies. at higher frequencies

the 2D prediction agree well with the experiments.

In sway and yaw modes, it is clear that 2D theory does not predict the motion
responses satisfactorily, but 3D theory does well. the 3D results for roll mode agree with
the experiment better than 2D results. The 2D results are too high at heave resonance and

also in the range of weV(L/g)=1.5-2.5.
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Beam seas
The results from the both 2D and 3D agree well with the experiments except for the
2D results near the roll resonant frequency. The overprediction by 2D theory on sway and

roll responses near roll resonance is due to the lack of viscous effect.

It is interest to note that the sway responses in beam seas. The first peak near
weV(L/g)=1.0 is caused by coupling effect from roll resonance. The second peak from
weV(L/g)=2.5-4.0 is the result of asymmetric standing waves. On the curve of sway wave
exciting forces in beam sea (Fig.4.73) there also is a peak in the same frequency range.
This is produced by the standing waves and causes the second peak in sway responses.
The experiments have shown the this peak and the predictions agree well with the

experiments.

Generally, both 2D and 3D theories produce satisfactory results in head and beam
seas. The 3D results are better than 2D. The difference between the two theories occurs in
quartering seas. In bow quartering seas, the 2D results are generally poor, specially for
sway, heave and roll modes (at least for present model), but 3D results agree well with the

experiments.

4.4 Conclusions
On validating the theory

1, From the very good agreement between the present 3D theory and the other 3D
theory on hydrodynamic coefficients, wave exciting forces and motion responses of Series
60 model, it can be concluded that the modified numerical procedure is identical to the

original one, but it increases the computational efficiency considerably.

2, The 3D method gives more realistic values for the low frequency hydrodynamic
coefticients unlike 2D theory which is restricted to high frequencies of oscillation. In spite
of these differences both 3D and 2D method predict motion responses which agree quite
closely. This is due to the fact that at lower frequencies, where 2D and 3D theory differ

most, the equations of motion are dominated by the stiffness and wave exciting terms.
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On standing waves
1, Standing waves occur at certain combinations of wave frequencies and the
spacing between the twin hulls. Its effect on the hydrodynamic features of twin hull ships

is significant and can be predicted by present theory satisfactorily.

2, Two types of standing waves with different natures may occur in the vicinity of
the twin hull ships, i.e. longitudinal and transverse standing waves. The longitudinal
standing waves occur at 2L /A=nand transverse standing waves occur at 2B;/A=n, where
L is length of strut, B; is inner distance of the twin hulls, A is the wave length and n is any

integer number.

3, Theoretically there are infinite number of standing waves could occur, but their
effect decreases significantly as the standing wave frequency increases. Therefore only the
first few standing waves with the lowest frequencies have serious effect and are of primary
interest. The first longitudinal standing wave  usually has the lowest frequency and can
therefore cause the most serious effects which may produce the maximum upwelling and

side forces on the structures.

4, The conclusions made for longitudinal standing waves are mainly based on the
theoretical calculations. Therefore, systematic experiments are needed to support the
present finding. If the finding is true, those longitudinal standing waves are three
dimensional effects and subsequently the three dimensional method should be used in the

predictions.

On SWATH ships

1, Both 3D and 2D strip theory can be applied for predicting motion responses of
SWATH ships in waves, but the 3D theory is more reliable. If only head and beam seas
cases are interesting, the 2D theory is acceptable. Otherwise if oblique seas are also need to

be predicted, the 3D theory is recommended.

2, The viscous effect on SWATH ships can be predicted by combining the
crossflow approach with present theory. This effect must be included in prediction the

motion responses of SWATH ships.
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CHAPTER FIVE

PREDICTION OF MOTION AND SLING TENSION
RESPONSES OF CRANE VESSELS DURING HEAVY LIFT
OPERATION IN REGULAR WAVES

The motion of a crane vessel during heavy lift operation is quite different from that
in its free floating condition since it is significantly influenced by the coupling between the
motions of the vessel and the load being lifted. Consequently it is important in the design of
such a vessel that an appropriate method which takes the coupled motion effect into

consideration is used to predict the motion responses and sling tension force.

In the past, many theoretical methods! -2 have been used to calculate the wave load
and motion responses of mono and twin hull ships, but very few papers have dealt with the
crane vessel with the coupled motion effect. In this chapter the theoretical method is
modified to include the effect of the coupled motion in 8 degrees freedom using a similar
approach as!3), but additionally the viscous effect is taken into account. The results show
that the viscous effect plays a sensitive role in the prediction of the motion response when
the coupled motion effect is included, especially for the semi-submersible type of crane
vessels. Two typesof crane vessels, ship shaped and semi-submersible, are analysed in this

study. so 3D diffraction theory is the most suitable method.

In contrast to the the SWATH ship or ordinary semi submersible, the semi
submersible crane vessel has the columns which relatively short and the cross section
dimension are similar in size to the hull separation and the column submergence. The three
dimensional effect between the pontoon and the columns as well as the twin hulls are
dominated in this case, so the strip theory and the Morison approach are inadequate to use
due to their limitations, and the three dimensional diffraction theory is believed to be the

most suitable method and used here to predict the hydrodynamic forces on the submerged
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part of the vessels.

Both motion responses, with and without the coupled motion effect of the load
being lifted and the sling tension force, are calculated. Some of the results have been
compared with the experiments. The agreement is generally very good. The results show
that such coupled motion effects on the motion performance of the crane vessel are great. It
is therefore considered necessary in the design of crane vessels that the coupled motion

effect is taken into account when predicting the motion response.

5.1 Motion Prediction Method
5.1.1 Motion of vessel

In order to describe the motion of the vessel and the load being lifted, it is
appropriate to divide the entire system into two parts, the vessel and the load alone. Both of
them satisfy Newton's second law. Small wave and motion amplitudes are assumed in
order to apply linear theory. A right handed Cartesian coordinate system o-xyz with x-y
plane in still water surface and z positive upward through the centre of the gravity is used.

For the vessel, the six-degree-motion equations with viscous effect may be written as

6 .. .
3 [ M+ A DG (B +BIECE | =F+E o1

=1

i=1, 2, ...6 (5.1)

where M;; is generalized inertia matrix of the vessel alone. Aj;, By and Cj; are added mass,
wave damping and hydrostatic restoring coefficients, F; is wave exciting force, By, and
F,; are viscous damping and viscous wave exciting force due to drag, 1, j = 1.6 denote the
motion modes of surge, sway, heave, roll, pitch and yaw respectively, éi =&, e 1O ig the
displacement of motion in ith mode with the amplitude of &,,, and f; is the component of

the tension force on the sling cable, f, in ith direction about the origin.

5.1.2 Motion of load
To describe the motion of the load relative to the coordinate system 0-Xyz, two
additional variables ¢, and ¢,, the swing angles of the load about x, y axes, are

introduced. If small swing angles are assumed, the motion equation of the load alone can
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be derived in x, y and 2 directions respectively, as

£y + mlgy =m (& + x3Es - Xzée )
f@r - mIGr =m (& - xaEa + 1186 ) (5.2)
f-mg=m (& +xas-11Es)

where 1 is the cable length, 1, %2 and y3 are coordinates of the jib extremity in x, y and z

directions and m is the mass of the load. The dynamic tension on the cable is fy = f - mg.

5.1.3 Motion of coupled system
Substituting eqn. (5.2) into (5.1) and taking account of different direction of the
tension force f acting on the jib and the load gives

6 - _ .. . ..
z[ (Mij+A1j)éj+(BiJ.+Bvij)E,J.+Cij§j]-m@Ri:Fi+FVi
=1
i=1,2,..6 (5.3)

where & is the relative acceleration of the load to the 0-xyz in ith direction with

.

Eri=1( 2 ¢01,0) fori=1,2,3
and

ngzl(XI»XZsXB)X((.I;Z,élyo) fori=4,5,6.

The exact relative acceleration in z direction, Egs = 1 (912 + @22 ), is a higher order term
which has already been neglected in the formula. M,; and Cj; are the inertia and restoring
coefficient matrices of the entire system when the load is located at the top of the jib

respectively.

The system of equation (5.2) and (5.3) is solvable and also applicable for any type
of crane vessels. In this chapter both ship shaped and semi-submersible type of crane
vessels are analysed, so 3D diffraction theory is adopted to yield the potential terms such as

A1jv B;

, and F;. The 3D source-doublet distribution method is used. There are several
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detailed papers!!-2| available for this method, so no description of it is represented here.

5.1.4 Dynamic sling tension

[f the motion responses are known, the dynamic sling tension can be obtained by

the last equation of Eqn.(5.2).

5.1.5 Viscous effect

The viscous terms, Byj; and Fy; play the sensitive role when the coupling effect
between the vessel and the load is taken into account and must be considered. Two
different empirical methods are used for ship shaped and semi-submersible types of vessels

separately.

For the ship shaped crane vessel the experiments show that the peak values at
resonant frequency in roll model is not predicted correctly when the coupling effect is
considered, therefore the viscous effect must be included in the prediction. In this study it
was found that the rolling viscous damping By44 is the most important term and the other
may be neglected. The By44 can be estimated by the method of Ikeda, Himena and

Tanakal4! which is common in prediction of viscous damping for mono hull ships.

The viscous effect on the semi-submersible type of crane vessel is more sensitive in
the vertical modes than those on the ship shaped one. because its small waterplane area
makes it have small wave damping especially in the vertical modes of motion ( heave and
pitch ) and the contribution of the viscous effect to the total damping becomes more
important. The viscous effect due to drag has been discussed in detail for SWATH ships
by Lee and Curphey!S! and McGregor, et.al.[] in five degrees of freedom. Their estimating
method is based on the empirical formula given by Thwaites!”! from crossflow approach to
a slender body. This approach has extended to the six degrees of freedom in order to be
applied to the semi-submersible crane vessel. The detail description has already given in
section 4.3.2. For the present problem the general equation in section 4.3.2 will be set for

special case that forward speed U = 0.0 and Cp = 0.5
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5.2 Multi resonant frequencies

The resonant frequencies on the curves of motion responses of a crane vessel with
the effect of the load being lifted do not coincide with those without such an effect and the
natural frequency of the pendulum. The multi resonant frequencies may occur on one single

mode of motion, therefore in practice it is important to predict such resonant frequencies.

To simplify the problem, the coupling effects between surge and pitch, heave and
pitch are neglected. The resonant frequencies of the the coupled motion system can be

obtained from equation (5.2) and (5.3), that is,

m
02 + @2 2 242 4 55 2 2
( 'mm\/(m" T A

0,= m,, (5.4)
2(l - ———)
Mg+ Agg
h (02 — _CSS___ 2 _ _g_ d — 12 . f
where @y, = _Mss +A55 , W = L andmg=ml,, and wp, is the resonant frequency of the

pitch motion, w¢ is the resonant frequency of the pendulum, Mss and Css are the pitch
inertia and restoring coefficient of the entire system respectively, and mss the pitch intertia

of the load alone.

When n155/(I-\-/155+A55) = (.0, the w; and w; equal to wp and wy. respectively, that
means the load effect is too small to effect the motion responses of the entire system. The
greater value of m55/(IT/155+A55), the greater differences between w1, m; and wp, w;, will
be. One simple relationship can be adopted, i.e.

0 <wpand o, <y

For the roll motion, a similar relationship can be found

2 22 Myy 2 2
(o)§+mﬁ)+\/(wR_mL)+4ﬁ——mRmL
o =

+ A
_ 44 44 (5.5)
1,2 m,,
2(1-—= )
M+ Ay
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Caa ) _ 8

where b =5, 0 =
ROMy, +Ay, LT

2 .
dm,, =mI; and wg is resonant frequency of the roll
motion, M44 and C44 are the roll inertia and restoring coefficient of the entire system
respectively, and my4 is the roll inertia of the load alone. There is a similar relationship.

w; <wg and o < oy,

In the computation, the coupling effect between different modes of motions is
included and the results are different from the simplified prediction formula. In some cases
the coupling effect is not very strong, for example the load is small compared with the total
displacement ( say less than 5% ) or abaft lifting in head sea, the above formula can be used
to roughly predict the multi resonant frequencies. This is often its case and so the prediction
formula is valuable. Some examples are given in Table 2. In the table the calculated values
are read from the computation and the estimated values are obtained from the formula (5.4)

and (5.5).

5.3 Numerical results

Two types of crane vessels, ship shaped and semi-submersible as shown in Fig.5.1
and Fig.5.2, are analysed. The semi-submersible crane vessel is examined for free floating
(without the load) and two lifting conditions, abaft (A) and athwartship (B). The principal
particulars of the vessels are listed in the Table 5.1. The models are represented by 120

panel elements for the ship shaped vessel and 272 for semi- submersible.

Table 5.1 Principal Particulars of Crane vessels

— . . . T S
F Ship Shaped Semi-sub T Semi-sub Semi-sub |
' - ' ( Free floating ) {Cond. A (Cond. B |
L S e Tt B e sy
1.8, dm ©2.0,076,0.0974 182, 1164, 0318 VR2E et 3SG TR, 1 Ind 033 :
[ -J1NY 135.1 249.2 260100 25408
I
i KCun 0.381 0.242 e 22858
| BN
oM GMp am) 0208, 1416 0145 0.5} [E I PR
Ry Kyy, Kzzom) 0481, 0977, 0882 0407, 0828 vnee” R L R AR AN R
’ 1
Rxy, Kyz. Kzx (my 0.0, 0.0, -0.54 0.0, ©.0, 0.C Qo G 020 50,062, 0,139 007X :
ay T 12 4 10K :
19.5 04 7 g

Load tkg)

[ T O S
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The results for the ship shaped vessel are shown in Fig.5.3 against the non-
dimensional frequency wV(L/g). The most distinct feature of the results is that the coupling
motion effects introduce the multi resonant frequencies on the curves of the motion
responses and the dynamic sling tension, unlike the motion responses of the vessel without
the load which usually have only one resonant frequency on each mode of motion. As
discussed previously, the resonant frequencies are closely related to the resonant
frequencies of uncoupled vessel and the load, but usually do not coincide with them. For
the ship shaped vessel, the multi resonant frequencies of pitch and roll in head and beam
seas are listed in the Table 5.2. The estimated values of pitch resonant frequencies in the
head sea agree well with the calculated values, whereas for the roll motion in the beam sea
the agreement is not good. The reason may be attributed to the roll-yaw coupling effect. If
the coupling term K, 1s set to zero, the agreement is good (not presented). In this case the
mass of the load is about 15% of the total displacement of the vessel and the K, is even
bigger than K.y, so the roll-yaw coupling effect is very strong. It is also clear that the
differences between the multi resonant frequencies of the entire system and the individual
frequencies in roll is greater than those in the pitch because the influence fact

Maa/(Maa+Asq) is bigger than mss/(Mss+Ass).

Table 5.2 Multi Resonant Frequencies

Ship Shaped Semi-sub (cond. A )| Semi-sub ( Cond. B)
" cal Est | Cal Est. Cal. Est.
wV(Lug) 1.50 140 | 105 1.08
wv(L/g) 2.05 2.12 ! 1.75 1.69
f:; wLv(L/g) 1.49 1.55
(oW
wpV(Lsg) 1.87 1.12
Ass/(AL?) 0.25 0.08
wiV(l/g) 1.2§ 0.95 0.65 0.70 0.70 0.70
waV(L/g) 2.90 3.24 1.75 1.68 1.65 1.63
g wL¥(LUg) 1.49 1.55 1.57
wrV(Lsg) 1.15 0.63 0.70
Asy/(ABY) 0.15 0.25 0.25

The viscous effect influences the roll response near the resonant frequencies

significantly, but for pitch response it is negligible. Generally, the very good agreement
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between theoretical and experimental results have been achieved. The experimental data for

ship shaped vessel is taken froml3!.

The results of the semi-submersible type of vessel are presented in Fig.5.4-5.6 for
free floating condition, lifting condition A and B. The results of the free floating condition
have been compared with the results for heave and roll in beam seal®! and the agreements

are good.

In the lifting condition A, it can be found that the coupled motion effect on the
heave is negligible, whereas on the roll response it is quite clear. On the roll response
curve, the coupled motion effect seems to reduce the peak value at the resonant frequencies.

The second resonant frequency effect is barely observable when the viscosity is included.

In the head sea, the coupling effect is not as great as those in the beam sea because
the Mss and 655 are greater than IT/LM and Cy4. The viscous effect in pitch motion is more
sensitive than those in pitch of the ship shaped vessel. This is caused by the relative small

pitch wave damping of semi-submersibles comparing with the total damping.

In the lifting condition B, such an effect on the roll motion response is obvious,
although the load is less than 2% of the total displacement of the vessel in weight. The
viscous effect is important in order to predict correctly the peak value at the second
resomant frequency correctly which is usually near the frequency of the peak of the wave

spectrum.

The multi resonant frequencies of the entire system for both lifting conditions are
listed in the Table 5.2. Generally, the agreements between calculated and estimated values
are good because the loads in the both cases are not very heavy comparing with the total

displacement ( 5% for condition A and 2% tor B ).

5.4 Conclusions

From the present study the following conclusions may be drawn.
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1, The coupled motion effects between the vessel and the load being lifted influence
the motion response of both ship shaped and semi-submersible crane vessels significantly

and must be taken into account in predicting the motion responses.

2, The viscous effect may be neglected in the prediction of the motion responses of
the vessel alone, but when the coupling effect of the load is considered it changes the peak
values at resonant frequencies especially for the semi-submersible, so it should be

included.

3, The estimation formula of resonant frequencies of the entire system may be used
to roughly estimate the multi resonant frequencies when the coupling effect between

different modes of motion is not so strong.

4, The motion behaviour of the semi-submersible type of crane vessels is generally
better than that of the ship shaped one. The former has smaller motion responses and

longer natural period of motion which may be beyond the peak of the wave spectrum.

The study presented here shows that the coupled motion effect should be
considered in reasonable way in design of crane vessels. The present method may help to

reduce the expensive experiments to a minimum in the primary design stage.
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CHAPTER SIX

WAVE LOADING ON CROSS-DECK STRUCTURE
OF TWIN HULL SHIPS IN REGULAR WAVES

In this chapter, the bending moment, vertical shear force, horizontal shear force and
torsional moment acting on the cross-deck structure of ~ SWATH ships in regular waves
will be analysed by 3D theory. The hydrodynamic force distributions along the hulls of
SWATH are also calculated. The standing wave effect on wave loads of twin hull ships
will be discussed. In order to simplify the problem, port and starboard symmetry has been

assumed.

In many previous 2D theories, the loading on the cross-deck structure of SWATH
ships is calculated under the equivalent two dimensional hull form assumption, so only the
beam sea case can be dealt with and the pitch and yaw motion effect is neglected. The
torsional moment on the cross-deck is difficult to predict because it often has its maximum
value in quartering seas. In the present study, the traditional 2D approach is extended to the
3D case to treat the wave loading on the cross-deck structure for any wave heading . The
four major types of wave loads: bending moment, vertical shear, horizontal shear and
torsional moment. can be predicted by the present method. Although the maximum
torsional moments on cross deck of SWATH are usually much smaller than the maximum
bending moments, the combination effect from both of them in oblique seas may produce
the maximum local stress on the cross deck. Therefore, it will be necessary to check such
kind of loading condition in the primary design stage if the proper prediction method is

available.
On the other hand, the side forces and bending moments on cross deck of SWATH

In pure beam seas were seen to be the worst wave loading conditions. The recent

research! 01 hag found that the seas approaching from just forward or aft of beam give
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biased load distributions which may cause the maximum local stress on the cross deck
structure. Since strip theories are only valid in pure beam seas, they can not predict such
load distributions along the hull. To overcome this problem the three dimensional theory

has been applied in this chapter and the results have been presented.

In order to validate the method a SWATH ship has been analysed and compared
with the experimental values. The 3D effect is taken into account in present 3D theory, so
the mathematical model for SWATH ships is also applicable to conventional catamarans or

semisubmersibles whose demi hull may not as slender as SWATH ships.

6.1 Formula for Wave Loading on Cross-Deck Structure
of Twin Hull Ships
As the incident wave propagates past the body, a pressure distribution is established
over the hull which tends to excite motion in six degrees of freedom. As motion is excited,
additional forces and loads due to the motion itself are generated. The motion prediction
method has been presented in the previous chapters. Once the motion is known, the loading

may computed.

The first study of wave loads on the cross section of mono hull ships is credited to
Jacobs!!} who extended the strip theory for heave and pitch motion in head waves of
Korvin-Kroukovsky and Jacobs!?! to include the wave induced vertical shear forces and
bending moments for a ship in regular head waves. Later Salvesen et all3] presented an
analysis of all mode loads on a mono hull ship running in oblique waves. The application
of 2D theory to prediction of wave loads on the cross-deck structure of twin hull ships is
pioneered by Lee and Curphey[‘”, In their method an equivalent 2D hull assumption is
made and the effects of pitch and yaw motion are neglected and only beam sea case can be
dealt with. In the present study, the Lee and Curphey's approach is extended to 3D case
including the effect of all six degrees freedom of motion, so the wave loading in oblique

wave (any wave direction) can be predicted theoretically.

The maximum torsional moment on the cross-deck usually occurs in bow
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quartering sea and is of primary importance in the structure design. In practical design the
maximum torsional moment is usually approximated from the maximum side force on the
hull in beam seal!. From the present study it is clear that there is no direct relationship
between the side force and torsional moment. The torsional moment is actually caused by
the odd pitch moment which acts on the two hull with opposite direction. Therefore such an
approximate method for the maximum torsional moment is open to question. Consequently
a proper way to predict this moment is of practical importance in the structure design of the

twin hull ships.

Generally, the six components of the loads acting on the cross deck structure are:

1- vertical bending moment: the moment tending to roll the hulls relative to each
other,

2- vertical shear force: the force tending to heave the hulls differentially,

3- torsional moment: the moment tending to pitch the hulls with respect to each
other,

4- transverse force: the force tending to differentially translate the hulls athwartships
(sway),

5- yawing moment: the moment tending to produce differential yawing, and

6- the force tending to produce differential surging.

The first four types of loads may be considered to be of great importance. The other
loads are expected to produce stresses in the prototype cross structure about an order of
magnitude smaller than the first four types. In this chapter, only the first four types of loads
are analysed. The remaining two can be evaluated in the similar manner, but are not

discussed here.

In order to formulate the problem, the structure loading may be resolved into
following contributing effects.

1- Wave exciting force: This component of structural loading arises from the
pressure distribution of the incident wave, when the body is restrained from moving.

Based on the linear theory, this component can be further divided into incident wave
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exciting force, or Froude-Krylov force, and the wave diffraction force.

2- Motion induced hydrodynamic force: This component arises from the
hydrodynamic effect when the body moves in the calm water. The effect of such a force is
normally represented as added mass and damping coefficients.

3- Hydrostatic restoring force: This component arises from the change of mean
floating position of the body due to its excited motion in waves.

4- Mass inertia force: This component is due to the acceleration of the body when it

is moving.

To find the loading at the mid-section of the cross-deck, a standard approach of the
structural analysis would be to cut the body at the section where the loading is to be
determined and consider all of the forces and moments (both inertia and hydrodynamic)

acting on the free end.

If the portion to the right of the cut is taken to be the free end as shown in Fig. 6.1
the moments and shears are given by the mass inertia force minus the total external forces
acting on the free portion in a sense which provide the moment or force in a given

direction.

The loading at cross-deck mid-section of SWATH ships (y=0 and z=hg) is then

given.

Mb:Mb]-Jp[n3y+n2(h()-z)]ds

Sk

MT:MTI-J.p[nS]dS
(6.1)
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where Mp, MT, V; and V3 are bending moment, torsional moment, horizontal shear force
and vertical shear force respectively, My, My, Vo1 and Vs; are mass inertia forces of the
free end portion and in general depend on all modes of motion, p is the hydrodynamic
pressure, Sg denotes the integration over the submerged portion of the demi hull on the
right. The same loading quantities must also be obtained if the left hull is taken as the free

end and all forces and moments acting on the left hull are considered.

As mentioned in section 4.4.2, all the forces acting on the port and star board hulls
of ship can be split into even and odd components. If the foregoing expressions of the
loading on the left and right demi-hulls are added together with sign consistent with loading
convention and then divided two as shown in Fig. 6.1, the loading at mid-section of cross-
deck may be evaluated by using the symmetric and antisymmetric nature of the forces on

the two hulls with respect to the centreline. This greatly simplifies the loading analysis.

The even vertical forces acting the the twin hulls in the same direction produce
positive bending moments and opposite vertical shear forces on the both right and left free
ends, so summation of the bending moments and vertical shear forces from each hull gives
twice the bending moment but no vertical shear. In contrast, the odd vertical forces produce
no bending moment but twice vertical shear force. An analogous argument can be made for
the case of horizontal forces acting on each hull. An even horizontal force produce no
bending moment or horizontal shear force but does tend to produce roll and sway
responses. An odd horizontal forces produce both a bending moment and horizontal shear

force at mid-section of cross-deck.

Similarly, the even pitch moment produces only pitch motion but no torsional
moment. The odd pitch moment which actson both hulls in different directions produces the
torsional moment at mid-section of cross-deck. The pitch moment here also includes the

mass inertia, hydrostatic and hydrodynamic forces.

Once the loading at mid-section of cross-deck structure is determined, the loading at

any section above the waterline can be found. This can be done by subtracting the mass
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inertia forces of the portion between the mid-section and the section calculated from the
already known loading at the mid-section because the both hydrostatic and hydrodynamic

forces acting only on the submerged part of the hull.

The formula of the structural loading at mid-section of cross deck may now be
rewritten following the method of summation of the loading on the two free ends described

above, 1.e.

1 o
Mb =5 my()§ - -2-'” p [ (n3l y )+ nz(h0 - 7) sgn(y) ] ds
S

1 .
Mp=-5 [ p Lngsen T as
> (6.2)

1
V,=- | o [n, senty) ] as
S

1 PR
V3:'2—MYOE_,4"§J.J.I) [n3 Sgn(}')]ds
S

where yj is the y-coordinate of the centre of gravity, (xo,yo0,20), of the demi hull, as shown

in Fig. 6.2 .
It is clear that the heave mass inertia force only contributes to the bending moment,
and the roll mass inertia force only to the vertical vertical shear force. Sway inertia force

does not effect the horizontal shear because it is an even force. Pitch mass inertia force does

not contribute to torsional moment and it is an even force too.

The hydrodynamic pressure p can be expressed as ,
6

p= | 0t 0+ D 0.8 | pe(E +yE -xEy) (6.3)
i=1 )

where the terms in the first bracket are the contributions from hydrodynamic effect and
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those in the second bracket from the hydrostatic effect. As mentioned previously ¢;=1, 3, 5
are even functions and ¢;=2, 4, 6 are odd functions. The incident wave and diffraction
wave potentials may also be resolved into even and odd components, and denoted by o,

0%, op° and Op° respectively.

The dynamic loading at the mid-section of cross-deck, then can be expressed in the
simple form listed in Table 6.1-6.4 which only includes the terms contributing to the certain
type of loading. The formula of loading at any position of the cross-deck and vertical strut

are also listed in the Tables 6.1-6.4.

In the Tables 6.1-6.4, the constant mass distribution over the cross-deck and the
vertical strut are assumed. The my and mg represent the mass density per unit span on the
cross deck and unit height along the vertical strut respectively. (xg,Y0,Zo) is the centre of
gravity of a demi hull with respect to the coordinate system o0-xyz and xo=0.0. In the first
row of Tables 6.1-6.4 , the terms contributing to the loads at the mid-section of the cross-
deck given by Eqn.(6.2) are given. The second row of Tables 6.1-6.4 gives the addition
contribution which must be included to determine a given load quantity at a location y along
the cross-deck. The third row denotes the contributions which must be further included to
obtain the load at a vertical location z along the strut. Terms in the third row below the
dashed line must be included if z below the waterline {=0.0, S¢ is the submerged area of
the strut between the free surface {=0.0 and the cutting section {=z, (n,{) are dummy

variables of the integration about Sc.

All the results of dynamic loading obtained from Table 6.1-6.4 are complex which
can be expressed, for example, by M = Mg + iM;
2
M=y M+ M (6.4)

Phase = tan"! ( Mp/MpRr)

The similar relationship can be obtained for torsional moment Mr. vertical shear V,

and horizontal shear V.
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The amplitude of motion responses &;» i=1.2,...6, contained in Table 6.1-6.4 can
be solved by the method described in the previous chapters. Once the motion responses are

known there 1s no difficulty in solving the loading equation.

6.2 Comparison between Computational and Experimental Results

The dynamic wave loads on the SWATH 1 shown in Fig.4.51 were analysed for
three different wave heading, head sea (180%), bow-quartering sea (135% and beam sea
(90%) at zero speed. The same panel arrangement on the hull as that in section 4.3 was
used. The data of cross-deck and strut of SWATH 1 are also shown in Fig.4.51. Thirty

two frequencies were carried out in the calculation.

In order to validate the theory, the computational results were compared with the
experimental data for the bending moment at mid-section of cross deck in bow-quartering
and beam seas, because only those experimental results were available. The experiment
was carried out by Djatmikol®]. All the results are shown in Fig.6.3-6.6. The discussions

are made for four major wave loads respectively in the following sections.

6.2.1 Bending moment

From the results that the maximum bending moment is seen to occur in beam seas.
The most prominent feature of bending moment response is the large peak occurring at
A/Bp=2.1 equivalent to A/L¢=1.5. This peak is associated with the effect of the first
longitudinal standing wave. As mentioned in section 4.2.2, the first longitudinal standing
wave may introduce the maximum wave loading on the cross-deck structure. This is
confirmed here. The theoretical results agree well with the experimental data on both the
frequencies at which the maximum bending moment (or first longitudinal standing waves)
occurs and the amplitude of the bending moment. The first longitudinal standing wave does
not effect the added mass and damping coefficients as mentioned in section 4.3.1. but its
effect on the loads is obvious. The other peak on the bending moment is at about
MBo=1.0. It is associated with the second symmetric standing wave (transverse). This
peak also appears in the experiment. In bow quartering sea case, the theoretical predictions

agree also well with experiments which confirm the two peaks caused by the standing
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waves at A/Bo=2.1 and 1.0 respectively.

In Fig.6.3 and 6.4, the motion responses of SWATH 1 in sway, heave and roll in
beam sea are also shown against the abscissa of ratio of wave length to maximum beam
(A/Bp) in order to compare with the loading results. Comparing the loads and motion
results, it can be found that roll resonance at low frequency has virtually no influence at

mid-section bending moment. The experiments have confirmed this feature.

The components of the bending moment in the beam seas are presented in Fig. 6.7(a).
The large contribution of wave diffraction is apparent. This kind of influence is purely
hydrodynamic effect associated with the standing waves and would not be predicted by
simple theories based on the 'static’ approach or diffraction theory with the fluid interaction

between the twin hulls neglected.

In addition, the transverse bending moment of SWATH 1 in regular beam waves at
cross deck strut juncture and strut at waterline were also calculated by the formulae in Table
6.2 and presented together with those at cross deck mid-section in Fig.6.8. It is noted that
the roll resonance occuring at A/Bp=9.2 has no effect on the moment at mid-section.
Moving along the cross deck to the juncture with the strut, a secondary peak due to roll
resonance occurs, with the primary peak nearly unaffected. On the strut, the moment is
reduced but the secondary peak remains unchanged. Although the peak bending moment is
greatest at the mid-section, the appearance of the secondary peak at other location on the
cross deck means that in irregular waves the statistical amplitude of the bending moment
could be slightly greater away from the mid-section, if the roll resonant frequency is in the

vicinity of the wave spectrum.

6.2.2 Horizontal shear force

The horizontal shear force response has almost identical shape with the bending
moment. The maximum value occurs in beam seas. The two peaks on the each response
curve of three different heading are at A/By=2.1 and A/Bo=1.0 coinciding with those ot

bending moment response curves. This suggests the bending moment on the cross-deck
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structure of SWATH ships is primarily a result of the action of horizontal forces applied on
the hull with some equivalent vertical moment arm. The present results show that for
SWATH ships which have narrow beam and large draft the horizontal side load is one
order higher than the vertical load in short wavelengths (near the peak), so the bending
moment is dominated by the contribution from the side loads. Consequently, this suggests
an approximate formula for the bending moment calculation if the horizontal side load is

known, 1.e.
M=(ho+D/2)*V,» (6.5)

The difference between the maximum bending moment calculated by Eqn.(6.5) and
actual theoretical prediction is about 5% for present model. In the early design stage . the
maximum side load can be roughly evaluated from the semi empirical formulae!’l, the

maximum bending moment can then be obtained by Eqn.(6.5).

In contrast the conventional catamaran has large beam-draft ratio, and the relative
magnitudes of the vertical and horizontal loads are roughly the same order of amplitude.
This feature was shown in the theoretical and experimental work by Wahab, et al.l%! and

Jones and Gerzinal9l.

6.2.3 Vertical shear force

The vertical shear force is an order smaller than the horizontal force. It has its
maximum value in the beam sea case. The theory predicts the roll resonance should
contribute to the vertical shear force.In Fig. 6.4, the peak in the vertical shear response
does occur at roll resonant frequency. The other peak at A/Bop=2.0 is believed to be caused
by the asymmetric standing wave. but is it less significant than the one induced by the roll

motion resonance.

6.2.4 Torsional moment
In contrast to the bending moment, horizontal and vertical shear force, the

maximum torsional moment occurs in a quartering sea. The results show that the
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torsional moment has the peak values at A/By=2.1 and A/By=1.0 which coincide with the
peaks of bending moment and horizontal shear force. This is expected because the theory

predicts the peak torsional moment be should associated with the symmetric standing

waves as is the bending moment.

The Fig.6.7(b) presents the different components of the torsional moment in bow-
quartering sea. The contribution from the diffraction component is apparently dominant
over the maximum torsional moment which associated with the first longitudinal standing
wave at A/Bp=2.1, i.e. A/L¢=1.5. This is purely hydrodynamic effect and can not be
predicted by stimple methodsbased on the 'static' approach, or by the diffraction theory with
the fluid interference between the twin hull neglected. For the present model, the
contribution from incident wave (Froude-Krylov force) is only about 18% of the
maximum torsional moment. On the other hand, the maximum torsional moment is about
10% of the maximum bending moment, but its prediction still provides important

information for the structure design.

6.3 Wave Load Distributions over the Hull of SWATH

The wave loads, e.g. side forces and bending moments, on cross deck structure in
pure beam seas were seen to be the worst wave loading conditions. The recent researcht!V]
has found that the seas approaching from just forward or aft of beam give biased load
distributions which may cause the maximum local stress on the cross deck structure. The
present computational results have confirmed this. The side force distributions along a
tandem strut model (SWATH 1) and a single strut model (same geometry as SWATH 1,
but only a single strut on each hull) were calculated. The calculation were carried out trom
45% 10 135" with 2.5" intervals. For present two models the most serious conditions is
82.5" and 97.5" (7.5 forward and aft of beam) at the frequency where the maximum side
force occurs. The results are presented in Fig.6.9. In this condition the total side torce
acting on the hull is nearly equal to that in beam seas, but the biased load distributions
produce the maximum local side torce at the position forward or att of middle ot the
SUUL This kind of load may cause the serious local stress which is worse than that in case

of beam seas. Since the present strip theories for wave load calculation on SWATH are
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only valid in pure beam seas, they can not predict such load distributions along the hull. To

overcome this problem the three dimensional theory should be applied.

On the other hand, the advanced structural analyses for SWATH or other twin hull
ships are mainly based on three dimensional methods. If the strip theory is used for
hydrodynamic load calculation, a rough approximation of load distribution along the hull
must be employed. The three dimensional theory has ability to calculate the wave load
distribution directly and so can provide more accurate wave load input for the structural

analyses not only for beam sea case but also for any wave heading.

6.4 Conclusions
On theory

1, Dynamic load prediction based on present 3D diffraction theory agreeswell with
available experimental data in both beam and bow quartering waves, confirming the basic
validity of the the present method. Because the 3D effect is taken into account, the present
method can predict the wave load in any wave direction and also theoretically has potential
to predict the wave load on semi-submersible crane vessels or similar type of vessels on

which the 3D effect is significant, but these still need more experimental work to validate.

2, The Experiments confirm that the first longitudinal standing wave produces the
maximum bending moments at cross deck of the SWATH ship. This effect can be predicted

by the present theory.

3, The major improvement of the present method is its ability to predict the wave
loads and its distribution over the hull ar any wave heading. This ability gives designers
much more flexibility to investigate the different loading conditions during primary design

stage in contrast the tradition 2D theory is only adequate in beam seas conditions.

4, It is believed that the present three dimensional method can produce the more
accurate load distribution over the wetted hull surface of a vessel than two dimensional

theory. Those predictions are important for structural analysis. More experimental datiis
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still needed to validate the predictions of force distribution from the present theory.

On the features of the dynamic load on the SWATH
1, The horizontal acting loads on the SWATH ships are an order of amplitude larger
than vertical acting loads. The transverse bending moment acting on the cross deck is

primarily a result of the side loads at a point near mid draft.

2. The most prominent feature of the side load and bending moment responses on
the cross deck is a large peak due to the effect of the first longitudinal standing waves

which usually occur at wavelength  close to twice of the length of the strut.

3, The maximum torsional moment occurs  quartering waves at the same
frequency at which the maximum bending moment occur, but the former is an order smaller
than the latter in amplitude. This effect is necessary to be considered if the proper prediction
method is available, since the local combined stress between bending and torsional effects

on the cross deck may be very large.

4. The analytical results show that the sea approaching just forward or aft of the
beam can produce the biased load distributionswhich may introduce the maximum local
stress on the structure. [t is difficult to predict this kind of load distribution by any two
dimensional theory, but the prediction from three dimensional theory still need to be

Justitied by experiments.
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CHAPTER SEVEN

RANDOM SEA PROCEDURE

As indicated in Chapter 1, the principle of superposition introduced by St. Denis
and Pierson reduces the complex problem of ship motions and wave loads in seaway.,
which behaves random in nature, to two problems:

1, the prediction of the ship motions and wave loads in regular waves and

2, the prediction of the statistical responses in irregular waves using the regular

wave results.

In previous chapters all the discussion is concentrated in the first problem since it is
the major task of the seakeeping study and also the main objective of this thesis. The results
have shown that the predictions from the present theory agree well with the experimental

data for various type of mono and twin hull ships.

In this chapter the second problem is dealt with. The wave energy spectrum method
is used for determining the statistical responses of the ship motion, wave loads in irregula
waves. The seakeeping criteria for both monohulls and SWATH are discussed. In practice.
a ship designer not only needs to know the motion and wave load responses ol a ship to be
designed in the extreme sea condition, but is also interested in the seakeeping qualities of
such a ship, for example the seakeeping effectiveness i.e. the percentage of time that ship
may be expected to operate in a given ocean environment with safe and prudent operation
of the ship and with an effective ship's crew and equipment. For above reason. the method
to evaluate the seakeeping qualities of a ship is introduced in the chapter Based on this
method, if the regular wave responses of a ship, the seakeeping criteria and the statisueul
probability of specitic sea conditions (i.e. certain wave height, modal period ete.nm given

ocean environment are known, the seakeeping qualities of the ship can be predicted
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Finally, the motion response results of the prototype SWATH 1 in irregular waves
are calculated as a numerical example. The results of its seakeeping effectiveness in the
North Atlantic are represented and compared with a selection of monohulls. The wave

loads on the cross-deck structure of the SWATH 1 in irregular waves are given as well.

7.1 General Considerations and Formulae

In principle, the time history of the system responses of the ship motion and wave
loads to any random single can be obtained for a linear system by a convolution integral of
the product of the signal and the inverse Fourier transform of the transfer function!!:2]
Here, the transfer function, or called frequency response function, is the ratio of the
complex amplitudes of any motion or wave load quantity to the amplitude of the incident
wave. A correct approach to ship motion and wave loads in the time domain, however, is
not so straightforward as described previously as has been pointed out by Cummins!3!. As
is well recognized, a unique representation of the time history of sea waves is impossible.
Hence, representation of the sea waves has been made through energy spectra from which

various statistical averages of the wave condition can be obtained.

The application of the sea energy spectra in conjunction with the transfer function to
obtain various statistical averages of ship motion and loads responses was first introduced
by St. Denis and Pierson!4). Since then, statistical averages have been used almost as a
standard tool for investigation of ship motions and wave loads in an irregular seaway. To
simplify the problem, the three major assumptions were made in this approach, i.e.

I, the relationship between the wave exciting and ship responses is linear,

2, the ship motions are stationary and normal random processes with zero mean and

3, the sea energy spectral density function of waves and ship motion are narrow

banded.

Following the spectralmethod of St. Denis and Pierson, the variance of the absolute

value of a transfer function, say I§;l/a, can be obtained by
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2
&,

where [ [E;l/a 12 is often called the response amplitude operator (RAO), S(w) is sea

energy spectral density function, which has the dimensional unit of [L2T] or [m2s]. The

variances for velocity and acceleration of ith mode of motion can also be obtained by

2

1]

=
3
to
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v a 2
0
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°° 1€ |
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Since the sea energy spectral density function of waves and ship motion are
assumed narrow banded, the distribution of motions or wave loads may be described by a
Rayleigh probability density function, although this may not be quite true in some cases!!l,
Under this assumption, the statistical averages of ship responses can be expressed in the

form
'Average' amplitude = C V(E ) (7.4)

Here V(E ) is called Root Mean Square (RMS) of a particular motion amplitude:

C=1.253 gives the average; C=2.0 gives the one-third highest average or significant value:
C

If the absolute motion amplitude &l is replaced by the absolute load amplitudes
Vol IVl Myl or IMl, the Eqn.(7.1)-(7.4) can be used to predict the statistical averages of
horizontal forces. vertical shear forces, Bending moments or torsional moments on the ship

structure respectively.
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For a design or operational criterion, it is also interest to know the probable extreme

value a ship may encounter in given sea environments. From the property of the Rayleigh

distribution function, this can be shown asl5]

3600 H m,
Y, (&)= 21n W m—o ‘/_E for small € (7.5)

where H is the time in hours during which an extreme sea environment may persist. € is a
probability factor. For €=0.01, the Eqn.(7.5) gives a 99% assurance that the maximum
amplitude yn(0.01) will not be exceeded. Whereas for £=1.0, Yn(1) represents the 'most
probable maximum amplitude'. For large number of observations, the probability that the

maximum value will exceed yy(1) is 63.2%.

The problem of the cross-structure slamming of a SWATH ship is a serious
concern for the designer. This phenomenon results when the cross structure hits the surface
of the water at small or moderate angles giving rise to dynamic pressures and loads which
can reach extremely high levels. The probability of this impact occurring and the expected
number of impacts per unit time acting on the cross-structure can be estimated by the
method of Ochi and Motterl®7]. The requirement for an impact of the cross-structure of a

SWATH ship is that the vertical relative motion of the hull is greater than the cross -

structure clearance above the calm water level[g'gl. The formula i
2 2
R)
Ng=— — &Pl TR L (R -0
ST\ E® 2E® 2

where superscript (R) denotes the relative motion at the location of interest. €4 is the
vertical distances above the calm water level to bottom of either the main hull or the cross-
deck in the same dimensional unit used for V(E®), V is the threshold velocity that incites
slamming. The value of V can differ from case to case and should be given in the same
dimensional unit as V(Ey®). In many cases the value of Vr is unknown, and it Vpis set to
ze10, the Eqn.(7.6) then gives either the number of hull bottom emergencies or water
contacts of cross-deck bottom per n seconds. If Vr is set to zero and Cyq is set to be the

deck height, then Eqn.(7.6) provides the probable number of occurrences of deck wetness
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by green water per n seconds.

The complex relative vertical motion of a point (x,y,z) on the ship is given by

EvR =y 1, (7.7)
and

EviN =& + y&a - x&s (7.8)
where §v(A) is complex absolute vertical motion and {; is complex amplitude of incident
waves given by

C, — 4 eik (xcosP - ysinB).

0 (7.9)

7.2 Wave energy spectra
Common mathematical expressions which are frequently used by ship investigators

are the so called Pierson-Moskowitz spectrum!!%l and 17th ITTC spectrum!!].

The Pierson-Moskowitz spectrum is obtained semi-empirically by analysis of
extensive wave data relating to fully developed sea condition in North Atlantic. This
spectrum was recommended by 11th ITTC conference (1966) for ship motion
computations when information on typical (i.e. locally derived) sea spectrum is not

available!"2! It has the form of

C, C,
S(m) = —exp| - — m2-sec] (7.10)
" w*
where
Ci1=0.78

Cr=3.1 2/H]/12
where Hyj 1s the significant wave height in metres. If the only information available is the
significant wave height. this spectrum may be used. Note that Pierson-Moskowitz
spectrum is a single parameter spectrum. i.e. uniquely determined by a single parameter,
e.g significant wave height or wind speed. This limits the tlexibility of the spectral
description because of the fixed relationship between wave height and modal wave period.

To. where the wave period of maximum wave energy(i.e the peak of the spectral
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distribution) 1s:
TO:SO\/(HI/?,)
with the maximum value of wave spectrum, S(®)=0.25¢"5*H 352, The Pierson-

Moskowitz spectrum is illustrated in Fig.7.1.

If further information is available on the modal wave period, the 17th ITTC wave
spectrum can be used, i.e.

2

H -1951
s(w) =320 4”3 exp[ T ](3.3)Y (7.11)
T (1)5 T @
0 0
where
2
0.766 ® TO -1.0
Y =exp| -
2o
and

=007 forw<6.28/T,
c=0.09 for w > 6.28/T

where Ty is the modal wave period. The other characteristic wave period can be used as
well, such as the average wave period T, by means of

T1=0.834T¢

Of the two spectra discussed above. a more recent trend indicates a preference tor
WO parameter spectrum because it is not constrained by the assumption ot a fully
developed sea. Pierson-Moskowitz spectrum, on other hand, is a less complex spectrum

and appears to be quite reasonable, where its limitations are accepted.

The flexibility of two parameter spectrum is attractive when used in conjunction
with data reflecting observations of both wave height and modal period tor a specitic ocean
area. The data of this type 1s available for the North Atlantic! %151 and other ocean arca.
It provides some keys as the frequency of occurrence of wave conditions

throughout the world. Thus the specifications of the two parameters of 17th TTTC spectrum
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can be made with some intelligence and regard of the operating area of the ship under

evaluation.

In this chapter, the seakeeping effectiveness of the SWATH 1 will be evaluated in
terms of the average probability of occurrence of specific ocean condition (i.e. certain wave
height and modal period), therefore the 17th ITTC spectrum is used to determine the
seakeeping qualities. The wave loads on the SWATH 1, on other hand, are only evaluated
in the most serious condition (beam and quartering seas), so the Pierson-Moskowitz

spectrum is used because of its simplicity.

7.3 Spectral Transformation

If a ship is in transit at speed U at an angle B to the predominant direction of the
waves, then it will 'encounter’ the waves at a frequency different from that which it would
meet if it were at rest. The encounter frequency is rewritten here

2
@
cosp

The energy of the wave is the same whether it is expressed in term of @ or we, 50

that
Ey C3 ] = J S(w) do = J.S((oc) do, (7.12)
0 0
where
’ | d(oe/ dow|

The modulus of dwe/dw is used because S(we) must always be positive.[see

el [1]]. By deriving the definition of encounter frequency. one can obtain

S(w)
2Uw
g

S = (7.14)

11 cosP |
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Given the wave spectrum S(®), it is thus possible to find the 'wave encounter
spectrum’, S(we). Its effect is to distort the spectrum as shown in Fig.7.1 for Pierson-
Moskowitz spectrum. It should be noted that the area under the curves represents the
energy of the waves, and is thus constant. This formula only applies in deep water. In
shallow water, the spectrum would need modified since wave speed also depends on the

depth of water.

7.4 Seakeeping Criteria

The U.S. Navy seakeeping criteria, which include a set of 12 criteria with which
one can assess the seakeeping quality of candidate design, are chosen in the study. These
criteria are shown in Table 7.1. The establishment of these criteria were primarily of
interest in Anti-Submarine-Warfare (ASW) missions of a naval combatant. The discussion
of the establishment of those criteria was given in detail by Olsen!!]. Four seakeeping
categories were considered as listed in Table 7.2. The first, general category, identifies
seakeeping considerations that are essential to effective operations regardless of the
mission. The seakeeping criteria in this category are concerned with the safe and prudent
operation of the ship with the effectiveness of ship crew. This category includes criteria 1-6
for monohulls; criteria 1-3, 11 and 12 for SWATH. The second category addresses the
ability of ship to support embarked ASW helicopters and includes criteria 7-9. as well as
the appropriate general criteria for both monohulls and SWATH. The third category
addresses the impact of ship motion on the performance of hullmounted sonars on the
monohulls. Thus it includes criteria 1-6 and 10. Because of the SWATH contiguration, a
sonar dome emergence criterion was inappropriate for SWATH. The tourth category (all
criteria) combines both the helicopter and sonar categories and retlects & composite

seakeeping assessment,

The criterion 11 based on the occurrence of wave impact on the SWATH cross-
structure limits the relative motion of the 1/10th highest displacement between the SWATH
and waves to maximum of 6.1 metres. The 6.1 metres figure is simply the design clearance
between the bottom of the cross structure and the waterline of the prototype SWATH 1 As

discussed by Olsen! 151, this roughly equates to one wave contact every 2 to S minutes. The
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Table 7.1 Selected Seakeeping Criteria and Categories! 9]

General Criteria

Monohulls and SWATH

(N 127 single amplitude average roll (personnel effectiveness)
@) 3" single amplitude average pitch (personnel and equipment effectiveness)
3) Motion sickness indicator (20 percent of laboratory subjects experience emesis

within 2 hours)

Monohulls only

(G Bottom plate damage
5 Three slams in 100 motion cycles
(6, One deck wetness every 2 minutes

SWATH only
a1 6.1-metre average of highest 1/10th relative bow motions (slamming)

(12) 4.2-metre significant relative motion at the propeller (propeller emergence)

Helicopier Operating Criteria for Monohulls and SWATH

@) 12.80 double amplitude significant roll
&) 2.54-metre double amplitude significant vertical displacement at the thight deck
9) 2.13-metre-per-second significant vertical velocity at the flight deck

Hull-Mounted Sonar Criterion for Monohulls Only

(1M Sonar dome emergence criterion (three-out-five detecon opportunitiess

Table 7.2 Principle Dimensions of the Ships

Sample  Unit SWATH 1 FFG 7 FE 1052 DD Y
FUIA] .]{)Vuvdh T T
displucement A% m’ 1395 357% 4246 7822
Length between ‘
Perpendiculars L m 60,0 1240 1270 161 .0
Beam B m 124 14.0 14.0 17.0
Drafn T m 7.1 4.5 4.7 S

Now: 1) The lengin shown for SW ATH 1s the Tength of the miun sub-hull

2) The cle;;r;mcc hetween the hottom of the SWATH cross deck structure and mean frec
surtace 15 6.1 metres.

(3) The distance between the mean free surface
propellers in vertical position is 4.2 metres

(4) The co-ordinates of the centre of the fight deck

and the 25% blade tip of the SWATH

is (-15.0,0.0,8.1)
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criterion 12 is based upon the phenomenon of propeller emergence. The criterion limits the
relative vertical displacement at the SWATH propeller to maximum of 4.20 metres. This s

equivalent to an exposure of 25% of the blade tip in the vertical position which can result

in 9% loss of total thrust(13].

The data of the prototype SWATH 1 and the other three monohull designs are listed
in Table 7.2.

7.5 Seakeeping Assessment

In the foregoing discussion, the method of evaluating ship responses in irregular
waves and the twelve seakeeping criteria were identified. Here, those method and criteria
will be used to evaluate the seakeeping qualities of a candidate ship design. SWATH 1 was
used as an example. By means of the method discussed in Section 7.1, there are four major
steps to assess the seakeeping quality of a ship in given ocean environment:

1, calculate the motion spectra of a ship in irregular waves by using its motion
response results in regular waves and the wave spectra,

2, evaluate the statistical averages of the ship responses in irregular waves from its
motion spectra,

3, compare the irregular wave results with the seakeeping criteria for all possible
wave headings, forward speeds and modal wave periods, and

4, estimate the seakeeping effectiveness of the ship design in given ocean
environment by using the data of the average probability of occurrence of specific ocean

conditions.

7.5.1 Motion spectra of a ship

The motion spectrum is the integrand of Egn.(7.1). i.e.

2
1E.(w )l
S, (®)= o) S(w,) (7.15)

where S,;(w,) is the motion spectrum 1n ith mode of motion, the RAO 1s the function ot

encounter frequency and the wave spectrum is also corrected for encounter frequency by
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Eqn.(7.14). Similar process can also apply to velocity and acceleration of the motion in

Eqn.(7.2) and (7.3), i.e.

2
: 2 léi(mc)l
S (w) =, — S(o ) (7.16)
and
2
o] E (@)
§$,{(0) =0, | —— | S(o) (7.17)

where Syij(®.) and S,(w.) are velocity and acceleration spectra in ith mode of motion

respectively.

The Fig.7.2-7.4 show the motion spectra of prototype SWATH 1 in irrecular
waves for head, bow quartering and beam seas at 15 knots. The 17th ITTC spectrum was
used. Only one special case is shown in the figures, i.e. significant wave height H;5=3.25
metre and wave modal period Tp=12.3 seconds. The wave spectrum and the the RAO
curves are also shown in the figures. It is obvious that when the peak of of wave spectrum
is close to the resonance of the motion response in particular mode, the motion spectrum
gives the maximum value. To reduce the motion responses of a ship in seaway. it is

important to avoid this situation occurring.

7.5.2 Statistical averages of ship responses

The statistical averages of ship responses in irregular waves can be obtained by
integrating the motion spectra over whole of the encounter frequency range. i.e. Eqn.(7.1)-
(7.3). Then Eqn.(7.4) and the different statistical constants can give the different statistical
values. If the 17th ITTC spectrum is used, the motion spectrum is different for each wave
modal period. Consequently, the integral of Eqn.(7.1)-(7.3) must be carried out for
different modal wave period. Because the Root Mean Square (RMS). ie. N(Ey in

Eqn.(7.4). obtained by 17th ITTC spectrum is linear with respect to stgnificant wasve

height, the dependence can be treated as independent to the significant wave height.

The results of SWATH 1 in irregular waves for different modal periods. wave
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headings and forward speeds are calculated in this study. Some important figures of them
are shown in Fig.7.5-7.10. those include the significant amplitudes of heave, roll, pitch,
relative bow motion, relative vertical motion at the propeller and vertical velocity at the flight
deck in head, bow quartering or beam and at 0 to 25 knots forward speeds with 5 knots
increment. The results of relative motion amplitudes were calculated by means of Eqn.(7.1)

and (7.7).

7.5.3. Comparing the irregular wave results with the seakeeping criteria

To evaluate the seakeeping quality of a ship, the ship responses in irregular waves
should be compared with the specific seakeeping criteria for all possible wave headings and
forward speeds. This can be easily conceptualized by viewing the seakeeping matrix of
Fig.7.11. The ship is represented at the centre of the matrix and is proceeding from lett to
right. The concentric bands of the matrix represent different ship speeds while the radials
represent the wave heading. The centre of the matrix represent zero speed. Each cell of the
seakeeping matrix addresses a specific condition, where the ship motion spectra, whether it
be for roll, pitch, heave or whatever, will be varied. For the present study, the calculation
consists of estimates of ship motion spectra and statistical averages of motion responses in
modal period of 7.0, 8.5, 9.5 and 12.0 seconds. for heading angles from 0° to 180" in 15°
increments, and at speeds from 0 to 25 knots in 5 knots increments. Although the
seakeeping matrix is symmetric about the port and star board of a ship, it still consists of 78
cells in the present case and each of them should be evaluated for four different wave modal

periods.

The results of above calculations are shown in Table 7.3-7.6. The upper matrices in
those tables identify the seakeeping criterion that is first exceeded for each combination of
ship speed and heading angle. Those criteria are listed in Table 7.1. The lower matrix of
each table identifies the significant wave heights (in metres) at which the limiting criteria are

exceeded. Thus the two matrices in each table are complementary.

Among the 12 criteria listed in Table 7.1, the criterion 3 was not considered in

above evaluations because of the lack of detailed information for such cnterion, and the
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criterion 8 used here is the 2.54 metres double amplitude of significant vertical
displacement at flight deck due to pitch only. The criterion 8 was discussed by Olsen!15 in

detail. The above treatment of the criterion 8 follows the practice of Olsen.

From the results in Table 7.3-7.6, it can be seen that the criteria 2, § and 12 are
most seriously concerned. All those criteria are closely related to the pitch motion of the
SWATH. If the pitch response can be reduced, the seakeeping quality of the SWATH will
be improved considerably, specially for following and stern oblique sea cases. The
SWATH 1 model used here has no fin control system. The use of passive or active fins can
reduce the pitch response considerably, and consequently improve the seakeeping quality
of SWATH. The detailed discussion about fin control on SWATH ships were given by
Caldeira-Savaiva and Clarkel16] and McGregor, et al.l!7], but this is beyond of the scope of

the present study.

The results in Table 7.3-7.6 also show that the SWATH performance is very good
in head, bow quartering and beam seas, but appears to sufter in following and stern
quartering seas because of pitching. The pitch spectrum in following sea at 20 knots is
represented in Fig.7.12 against the wave frequency. At ©=0.476. the denominator in
Eqn.7.14 becomes zero, the encounter wave spectrum is therefore approaches to infinity.
In this case the area under the wave spectral curve remains finitel!]. The peak on the
encounter wave spectrum contributes a large peak on the pitch spectral curve which results
large pitch response of the SWATH in irregular following waves. Furthermore. with the
information of Table 7.3-7.6, the seakeeping effectiveness of a ship in given ocean

environment can be evaluated as follows.

7.5.4 Seakeeping effectiveness evaluation

Seakeeping effectiveness is the percentage of time that a ship could expect to
operate in given ocean environment without violating any of the specified criteria. The data
in Table 7.3-7.6 were derived based on the 17th ITTC spectrum (two parameters), itis then

possible to take the observed wave heights for a specitied ocean environment and evaluate
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the seakeeping effectiveness of the SWATH 1. The average probability of occurrence of
specific ocean conditions in the North Atlantic are listed in Table 7.7U14:13]. By means of
the probability data in Table 7.7 and the data in Table 7.3-7.6, the seakeeping effectiveness
of SWATH 1 in the North Atlantic can be estimated. To do this two assumptions should be
made as follows:

1, the probability of the encountering a sea at a specific heading angle relative to the
ship is equally likely for all headings, and

2, the speed at which the ship desired to operate is equally distributed at 0. 5. 10,

15. 20 and 25 knots.

Table 7.7 Wave Height Distributions!13]

North Adantic Summer (June, July)

Significant Wave Period (T, scconds)
1 Wave Height

N U ———

\ (Z, metres) T<7 8<T<Y 10<T<11 12<T ;
|
2<0.75 12 .00 00 00 i
0.75<Z2<1.75 37 .06 01 01
1.775<2<2.78 15 09 03 01
2.75<7<3.75 .04 .03 02 01
3TS<Z<8 s .01 .02 01 01
5.75<Z<7.75 .00 .00 00 .00
775<Z<9 75 00 00 .00 .00

North Atlantic Winter (December, January)
Signiticant Wave Period (T, seconds)

Wiave Height ] L m e

(Z, metres) T<7 8<T<Y 10<T<1] 12<T !
Z<0.75 .03 .00 .00 00
(0.75<7Z<1.73 15 01 00 01
1.75¢2<7 75 13 10 04 o
25¢/ 0% 06 07 03 03
VIS<Z5T5 02 05 06 04
5.75<Z2<7.75 01 02 02 02
TT5<7Z<9 75 00 .01 01 02 |



Table 7.8 Seakeeping Effectiveness of SWATH 1 and the Speed Effect on it

in the North Atlantic (Criteria 1-2, 7-9, 11-12)

—_—— e

Speed (knots)  All 0 5 10 15 20 25
Summer 0.87 1.00 0.98 (.85 0.78 0.73 0.91
Winter 0.7% 0.92 091 0.73 0.70 0.66 0.73
General 0.82 0.96 0.94 0.79 0.74 0.69 0.82

Table 7.9 Comparison of Seakeeping Effectiveness

Between SWATH and Monohulls

Scason SWATH 1 FFG 7 FF 1052 DD 963
- - -
Summer 0.87 0.78 0.84 0.92
Winter 0.78 0.48 (.58 0.71
General (1.825 0.62 0.71 0.815

Note: The criteria 1-10 tor monohulls and the criteria 1, 2. 7-9. 11, 12 for SWATH

The results for prototype SWATH 1 in the North Atlantic for different seasons are

shown in Table 7.8. The effect of forward speed on seakeeping effectiveness is also
presented in the table. The seakeeping effectiveness of the SWATH 1 decreases as the
speed increases from 0 to 20 knots. The poorest case is 20 knots. At 25 knots seakeeping

effectiveness becomes better. The results at 30 knots have also been calculated (but not

presented) and are even better than the 25 knots case.

In comparing with the monohulls, the seakeeping effectiveness of three other

monohull frigates are shown together with SWATH 1 results in Table 7.9. Those results

‘ 51
tor the monohulls were given by Olsen. Their main dimensions are also listed in Table 7.1,

The comparison show that 1397 tons SWATH | provides better seakeeping effectiveness
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than 3578 tons FFG7 and 4246 tones FF1052. It would appear that the monohulls.
especially the smaller FF1052 and FFG7 Classes without fin stabilization, poorly satisfy
the roll criterion. On the other hand, the fin control system can also increase the seakeeping

effectiveness of the SWATH ship considerably.

7.6 Wave Loads in Irregular Waves

The wave loads on the ship in irregular waves can be calculated in a similar way as
the motion response evaluation in irregular waves. The Eqn.(7.1) and (7.4) can also be
used if the motion response in Eqn.(7.1) is replaced by the wave load response. For the

wave loads on the cross-deck structure of SWATH ships the Eqn.(7.1) becomes
clov ((ub)l
E= J. _— S(o)e) dwe (7.18)
0

where IV,(we )l is the amplitude of horizontal force acting on the cross-deck structure of the
SWATH and can be replaced by the other type of wave loads. IVi(w.)l, IMp(w,)! or
IMt(w.)l. When the value of E in Eqn.(7.18) is calculated. Eqn.(7.4) could give the

different statistical average of the specific wave load in irregular waves.

The Pierson-Moskowitz spectrum was used in wave load calculation. The results of
significant horizontal force, vertical shear, bending moment and torsional moment on the
cross-deck structure of the SWATH 1 in mrregular beam and bow quartering waves are
shown in Fig.7.13-7.14. The results are given against significant wave heights. It is
obvious that the maximum bending moment occurs at beam sea. while the maximum

torsional moment occurs at quartering sea.

7.7 Conclusions
On theory

I. The method presented in this chapter together with the singularity distribution
method described in previous chapters can be used to predict the seakeeping qualities of
ship in the certain ocean environment when its hull form is given. The predictions include

not only the motion response of a ship in given sea state Or the extreme sea condition, but
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also the seakeeping effectiveness of the ship in certain ocean environments. This method
provides a useful and economic tool to estimate the seakeeping qualities of a ship at early

design stage.

2, The method described here can also predict the statistical wave load responses on
the structure of a ship in given sea state in arbitrary wave heading. With some modification,
the method can be further used to estimate the extreme wave loads on a ship in given ocean

environment and certain period.

On SWATH

3, The method tfor evaluating the seakeeping effectiveness concerns that the
accuracy of the motion response prediction of a ship in regular wave at any possible wave
heading and forward speed is equally important for evaluating the seakeeping effectiveness,
while for evaluating the most serious motion conditions the head. following (pitching) and
beam (rolling) seas are more important than the others. Considering the conclusions made
in chapter 4, both 3D and 2D theories give reasonable prediction for head and beam sea
cases, but for oblique seas the 3D theory is more reliable than 2D theory. Therefore, it may
be concluded that it only the most serious motion condition of SWATH in a seaway is
needed the both 31 and 2D theories are acceptable, while if the seakeeping effectiveness is

to be predicted the 3D theory will provide more reliable results than the 2D theory.

4, Because of the theoretical limitations of the present 3D and the 2D theories. both
of them are unable to accurately predict the motion responses of a ship in regular following
and stern oblique waves near the range of zero encounter frequency. The predictions in
above situation are important for seakeeping quality prediction, so a more reliable method
for predicting the motion response in regular following and stern oblique waves near the

zero encounter trequency range is  necessary for future development.

5. To improve the seakeeping quality of SWATH, it is important to reduce its pitch
response especially in tollowing and stern oblique sea cases. The use of a fin control

system is necessary for higher speed operations.
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6, If one is primarily concermned with the seakeeping performance of a ship, the

SWATH can offer a major improvement vis-a-vis similar size conventional monohull

designs.
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CHAPTER EIGHT

CONCLUSIONS AND PROPOSALS FOR FUTURE DEVELOPMENT

8.1 Conclusions

As the results of the investigations presented in this thesis the following

conclusions can be drawn.

1) The existing three dimensional panel method has been modified in two ways in

order to improve its computational efficiency.

a)

b)

By using of symmetric properties of Green’s function: This approach has

saved over 30% of total computing time for the examples used in this thesis and
1t 1s applicable for both symmetric or non-symmetric bodies. The modification
made in this approach is simple and easy to merge with ordinary three
dimensional panel method program. It may, therefore, suggest a practical way
to improve existing three dimensional panel methods (Chapter 3).

By introducing two types of high order panel methods: The T.C.method is
marginally more efficient than the ordinary panel method for the present
numerical examples where only a few hundred of panels are employed. but this
improvement will be more significant when a more complex body or a multihull
body is calculated and consequently more panels are needed to approximate the
body geometry. The T.G. method is computationally less efficient than ordinary
panel method although it can minimize the effect from irregular frequencies

(Appendix A).

2) The predictions from modified panel method (a) agree well with experimental

and other theoretical results for the Series 60 model, confirming basic validity of the

present modification. The results also show that the three dimensional theory gives

more realistic value for the low frequency hydrodynamic coefficients than the two
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dimensional theory which is restricted to high frequency oscillation. In spite of
these differences both two and three dimensional theories predict motion responses
which agree quite closely for the monohull model. This is due to the fact that at
lower frequencies, where two and three dimensional theories differ most. the
equations of motion are dominated by the stiffness and wave exciting forces

(Chapter 4).

3) Both two and three dimensional theories are acceptable in predicting motions of
SWATH ships in head and beam seas, while in oblique seas three dimensional
theory produces more realistic predictions at least for the present tandem strut
model. The relatively poor predictions by the two dimensional approach are due to
its inability to treat the hydrodynamic interaction between twin hulls properly
because it only take such interactions in transverse direction into account (Chapter

4).

4) The viscous damping effects motions of SWATH ships significantly and must be
considered in the motion predictions. The viscous damping on SWATH motion can
be predicted by combining the crossflow approach with present three dimensional
theory. In a strict theoretical sense, an extension of the equilinearization method for
predicting motion in irregular waves cannot be justified. However. the present
approach is recommended until a more rigorous and practical means is developed

(Chapter 4).

5) The standing waves can significantly effect the hydrodynamic coetticients of
twin hull ships by introducing rapid changes inthecurves of added masses from
maximum value to minimum value (sometime negative) and peaks on the curves of
damping coefficients. These effects can be predicted by the present three

dimensional theory (Chapter 4).

6) Two types of standing waves with different natures may occur in the vicinity of

the twin hull ships, i.e. longitudinal and transverse standing waves. The
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longitudinal standing waves occur at 2L/A=n and transverse standing waves occur
at 2B;/A=n, where Lg is length of strut, Bj is inner distance of the twin hulls, A is

the wave length and n is any integer number (Chapter 4).

7) The first longitudinal standing wave with the lowest frequency, i.e. 2L/A=1.
usually produces the maximum side force and bending moment on the cross deck
structure of twin hull ships and its induced bending moments on the cross deck
structure of SWATH can be predicted by the present three dimensional theory with

reasonable accuracy in beam and quartering seas (Chapter 4 and 6).

8) The conclusions made for longitudinal standing waves are mainly based on the
theoretical calculations. Therefore, systematic experiments are needed to support the
present finding. If the finding is true, those longitudinal standing waves must have
very strong three dimensional effects and subsequently the three dimensional

method should be used in the predictions (Chapter 4).

9) The theoretical method introduced in this thesis is acceptable for predicting
motion and sling tension of crane vessels during heavy lifting operations. The
results confirm that both the coupling motion effect between the vessel and the load
being lifted and the viscous damping effect onthe motion are significant. The
present method includes these effects in the prediction and the results agree well

with available experimental data (Chapter 5).

10) A general three dimensional method for predicting wave loads on cross deck of
twin hull vessels is presented and it is suitable for arbitrary wave heading unlike the
widely used strip theory approach which is only valid in pure beam sea. The three
dimensional predictions agree closely with available experimental data in both beam

and quartering seas which can be used to validate the present method (Chapter 6).

11) The analytical results show that the sea approaching just forward or aft of the

beam can produce the biased load distribution which may introduce the maximum
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local stress on the structure. It is difficult to predict this kind of load distribution by
two dimensional theory, but the prediction from three dimensional theory still need
to be justified by experiments. It is believed that the present three dimensional
method can produce the more accurate load distribution over the wetted hull surface
of a vessel than two dimensional theory. Those predictions are important for

structural analysis (Chapter 6).

12) The method for predicting statistic responses of motion and wave load of a ship
in irregular waves based on wave energy spectrum is presented. This method is
then extended to predict the seakeeping quality of a specific ship design in given
ocean environment. By means of this method., if the ship hull torm and the ocean
environmental data for certain area are known, the seakeeping quality of the design
can be evaluated analytically. Therefore, it provides a useful tool for practical ship

designers (Chapter 7).

13) If only the most serious motion condition of SWATH in a seaway is needed the .-
both 3D and 2D theories are acceptable, while if the seakeeping effectiveness is to
be predicted the 3D theory will provide more reliable results than the 2D theory

(Chapter 7).

14) Prediction of ship motion in following waves or at high forward speed is an
area that needs further improvement of theory. This is particularly important tor
SWATH if future developments call for equipping with controllable fins to maintain

good seakeeping quality in following waves (Chapter 4 and 7).

8.2 Proposals for Future Developments

The three dimensional theory presented in this thesis has been shown to be a

powerful tool in the solution ot ship motions and wave loads in regular and irregular

waves. It has been successfully applied to a number of engineering problems with

zood prediction accuracy. Furthermore, the work in this thesis has also provided an

mmportant basis which can be a stepping stone towards further d

evelopments. As
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extensions of the present work, a number of other problems can be dealt with by means of

the direct application or minor modification of the present theory and program. These

problems are briefly listed as follows.

1) Relative bow motion and slamming: The usual approach to predict the relative
bow motion of a ship is to simplify the problem by neglecting the effect from
disturbance of the ship to the local free surface elevation near the bow. This results
in generally poor prediction, especially for the twin hull vessels since the
hydrodynamic effect is very significant in this condition. Both experimental and
theoretical results have shown that at certain frequencies the amplitude of wave
elevation in the vicinity of twin hulls can be three or four times higher than the
amplitude of the incident waves, so this contribution to the relative bow motions
can not be simply neglected. The present theory and the program have the ability to
predict such an effect even near the bow region where the three dimensional etfect
is significant. It is worth while to investigate the application of the present theory to
predict the relative bow motion of twin hull ship by taking the local elevation into
account. With better predictions of relative bow motions. the prediction of the
occurrences of slamming and the slamming forces acting on the cross deck
structures of twin hull ships, which are difficult to predict correctly by traditional
strip theory approach instead some empirical correction terms must be used. will

also be improved.

2) Upwelling: The upwelling phenomenon in the vicinity of twin or multi hull
bodies. such as SWATH, semi-submersible and TLP, can be predicted by the
present theory in both frequency and time domain. This approach can directly deal
with three dimensional problem in a much cheaper way than the finite difterences
and finite element method. By means of the theoretical and experimental
investigations into upwelling, the standing wave phenomenon and its etfect on the

wave loading can also be systematically studied. This 1s still an area which 1s not

well understood.
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3) Predicting motion and forces between two ships closely advancing in waves:
This is equivalent to the problem of ships fueling in a seéaway and is of interest to

either naval or merchant ships. By slightly modifing of present theory this problem

can be predicted.

The applications of the present theory is now restricted to the first order force and
motion problems. With the further modification of the present theory and program, the
study can be carried out in the second order force and motion problems in both frequency

and time domains, 1.e.

4) Second order wave drifting forces and motions: Based on the first order
potential provided by the present program, it is possible to calculate the second
order wave drifting forces and motions by using the near field approach. The
second order forces are primarily important in the motion prediction of mooring
systems and for TLPs. This approach can also extended to the time domain solution
for the problem of so called 'low frequency second order motions' by applying

Fourier transformation to the frequency domain solution.

5) Wave added resistance: The wave added resistance is equivalent to the
prediction of the second order wave drifting forces acting on the moving bodies in
surge direction. The torward speed effect can be considered in two different ways:
firstly. by simplitied three dimensional approach as described in this thesis in terms
of the forward speed correction terms, or by full three dimensional theory in terms
of the translating and pulsating source which satisties the forward speed dependent
free surface condition. The second approach is much more computationally time

consuming than the tirst one.

So far the discussions have shown that the present theory and program have been
Successfully applied or have the ability to apply to wide range of motion and wave load

problems for both ships and offshore structures. However, it should always be keept in mind

Qg
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theory are acceptable. In other words, the present theory can only apply to the problems
with linear free surface, small motion amplitude and an open free surface region, and for a
moving body the Froude number must be low and the oscillation frequency must be high.
Removing all of these limitations is, at least at present, impossible, but modifying some of

them for a specific purpose do can form a reasonable proposal for  future development.

6) Introducing the translating and pulsating source: When a ship moves a quite
high Froude number, the forward speed effect on the free surface condition is not
negligible. Therefore, the Green's function which satisfies the forward speed
dependent free surface condition, i.e. translating and pulsating source, should be
employed in the present program. The hydrodynamic effect from the steady state
potential may also considered if necessary. This approach may be extended to the
second order problem to calculate the wave added resistance as mentioned in the

Proposal 5.

7) Large amplitude motions: The large amplitude motions in serious ocean
environments are of primary concermn in the design practice for either ships or

offshore structures. The removal of the linear assumption on the free surface
condition and the body surface condition which is derived from the mean wetted
surface becomes necessary. The use of fundamental sources (1/R) distribution over
whole body, free surface and a control surface at infinity is one of the possible
approaches. In terms of this approach the introduction of non-linear free surface
boundary condition is relatively easy. If the frequency domain solution is turther
transferred to the time domain there even exists a way to solve the problem tor the
body surface kinetic boundary conditions over instantaneously submerged body
surface. Unfortunately, the non-linear radiation condition at infinity is still &
difficult task. There are two possible ways to do it Firstly, by setting the control
surface, on which the radiation condition must be satistied. far away from the
body, so that the non-linear radiation eftect 1s negligible. But this will mcrease the

total number of panels required on the free surface and consequently the

' i illi amatice > ' ing the solutions
computational effort will increase dramatically. Secondly, by applying the
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for the non-linear radiation condition on the control surface. This may lead a

efficient way for the present problem, but is a mathematical problem.

Apart from the foregoing discussion, there is a more practical method to solve this
problem. In this method, the present frequency solution is firstly transferred to the
time domain, then the hydrostatic and hydrodynamic terms in the motion equations
can be derived on the instantaneously wetted body surface at every time step by
using the present program, and finally the motion equation can be solved at each
time step. This method is not theoretically rigorous since the linear free surface
condition and linear body surface condition are still kept in the solution. However,
it is simpler and more straightforward than the first suggested approach, and it can

improve the solution over the original three dimensional theory.

8) Ship motions in  following seas: The solution of this problem is an area that
needs further improvement both theoretically and experimentally. The use of
translating and pulsating source can improve the solution near the zero encounter in
following seas since this approach does not assume the high oscillation frequency at
forward speed case. But the experiments have shown that the coupling effect
between the surge and pitch on the motion responses in the following seas is
significant. This kind of coupling effect may not be small enough to be considered
by the linear assumption. The prediction of the motion responses in the following
seas, especially for the SWATH with fin control system, isanimportant task for the

future research.

9) Solution of a problem with restricted free surface region: The oil sloshing in a
tank at a seaway is such kind of problem. The combination of the present theory
and the fundamental source distribution method (Proposal 7) for the fluid region

outside and inside the tank respectively may suggest a way for the solution.

The three dimensional theory is still computationally expensive, especially when

translating and pulsating sources are used. Clearly another important area 1s to Improve
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computational efficiency which leads to the following tasks.

10) To find a efficient way to evaluate the double integral in the translating and

pulsating source is a key point to make the full three dimensional theory for ship

motion problem computationally more efficient.

11) High order panel method: As discussed in Appendix A the high order panel
method has potential to improve the computational efficiency of three dimensional
panel method when more panels are required to approximate a complex body or a
multi hull body. Even for simple mono hulls, if the translating and pulsating source
is employed and the steady state potential is taken into account the high order panel
method may become computational efficient. As next step of the development of
high order panel method the quadrilateral curvilinear panels with constant or higher
order source density distribution may be introduced. The major advantage of such
panels is that they fit the body surface more closely than the present triangular plan

panels used in Appendix A.
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APPENDIX A

HIGHER ORDER PANEL METHODS

Abstract

Triangular panels with linear source density distribution are employed in the 3D panel
method for the radiation and diffraction problem. Both the collocation and 'Galerkin’
techniques have been used in the solution of the boundary integral equation. Extensive
computations were made for the hydrodynamic coefficients of a spheroid and a Series 60
model. Comparisons on accuracy, efficiency and the behaviours in the vicinity of the first
imegular frequency have been made between the present approaches and the ordinary panel
method which uses quadrilateral panels with constant source distribution on each panel. The
results show that the triangular panel method with the 'Galerkin' solution can minimize the
effect from irregular frequencies, but it is computational inefficient, and the triangular panel

method with the collocation solution is more efficient than the ordinary quadrilateral panel

method.

1. Introduction

The 3D boundary integral method (or panel method) was pioneered by Hess and Smith
(1964) in the context of infinite fluid flow. In their method the body surface is replaced by
plane quadrilateral panels and a constant source density is assumed on each panel. In terms of
Green's theorem, a Fredholm integral equation can be derived from the body surface boundary
tondition and then solved by the collocation technique for the velocity potential on each panel.
Based on their work, numerous others, such as Garrison (1974), Faltinsen and Michelsen
(1974), have extended this approach to the radiation and diffraction problem of linear surface

Waves by introducing the free surface potential or Green's function.

Nowadays, this approach which uses quadrilateral panels with constant source density
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and collocation technique for its solution (called ordinary panel method in the following) has

already used in most of 3D panel method programs. but there are two limitations which are

worthy of noting here.

1. The composite source surface is discontinuous. For an arbitrary body it is not
possible to arrange the trapezoids so that all four corners of each panel match the corners of

adjacent panel. In other words, the source surface has leaks (see Fig.1).

2. The source distribution is discontinuous. The source density is constant over each

panel and therefore jumps stepwise at boundary of two panels.

To avoid these limitations, one can either increase the number of panels used to

each panel (changing the shape of

approximate the body surface or improve the accuracy of
er order distribution of source density over each panel). In some cases, the

panels or using high

latter approach is effective and has already been used successfully in some panel programs, for

example Breit, Newman and Sclavounos (1985) and Breit (1985). In this study, an alternative

way using triangular panels with linear source density distribution was employed in the 3D
panel method. It is clear that this kind of panel can eliminate the two limitations mentioned

above and improve the accuracy of panel description.

Two alternative methods based on the triangular panel approach were used in this

cation' technique to solve the boundary inte
alerkin' technique (called T.G. method). The

paper. One of them uses the ‘collo gral equation

(called T.C. method) and another uses 'G
C., T.G. and ordinary panel method with

oefficients of a spheroid, and the

eries 60 model. The

comparisons were made among the three methods, T-

the collocation solution, for heave added mass and damping €
oefficient distribution along the hull of a S

heave added mass and damping ¢
putational inefficient, but it can minimize t

results show that the T.G. method is com he effect
od is shown to be more efficient than the

from the irregular frequencies. The T.C. meth
s for which only a few hundred or

ordinary panel method. In the present numerical example
y of the T.C. method is not

less panels were used, the improvement of computational efficienc

metry or multi-hull body 15 considered and more panels are

significant. If a more complex geo
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required, the advantage of the T.C. method will be more apparent. Finally, the possible

directions for future work on the computation of wave-body effect using boundary integral

method have been discussed.

2. Formulation of the Problem

The formulation considers a rigid body floating on a free surface. A right handed
coordinate system o-xyz fixed with respect to the mean position of the body is used, with
positive z vertically upwards through the centre of gravity of the body and origin in the plane of
undisturbed free surface. Assuming the fluid to be idealized, the linearised problem describing
the hydrodynamics associated with a body in sinusoidal waves may be expressed in terms of
the velocity potential, ¢(x,y,z). The complex time dependence eiot where ® is circular

frequency and t is time, has already been factored out. After making the linear decomposition,

the total potential can be rewritten as
6
0=0 +0 + D 0§ (m
i=1

where ¢;, i=1,2,...6, are the velocity potential arising from the motion of the body and §;,
i=1,2,...6, are the amplitude of motion in each of six degrees freedom. The modes i=1,2,3

correspond to translation in the x, y, z directions and modes i=4,5,6 to rotation about the same
axes respectively. ¢g is the incident wave potential, ie.

o o
6, = = exp( kz + ikxcosp - ikysinf3 ) @)
®

where a is the wave amplitude, B the direction of wave propagation relative to x-axis and

k=0)2/g is the wave number. ¢7is the diffraction potential. All potentials ¢, i=1,2,...7, are

governed by Laplace equation, the linear free surface condition, seabed condition, the body

surface condition and the radiation condition.

Substituting the Green's function and one of the potentials ¢;, i=1,2,...7, into Green's

theorem leads to the boundary integral equation
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Q
where x=(x,y,z) and &=(§,n,0) are two points on the body surface, n=(ny,ny,n3) is the unit
outward normal and xxn=(ng,ns,ng), Vy, is the normal component of the velocity on the body
surface and is equal to -ion; for j=1,2,...6 or -0¢¢/dn, j=7. In general, Q(>0) takes a value of
2nif x is on a plane surface, but otherwise is the solid angle inside the fluid in the
neighbourhood of point x, if x happens to be a vertex point, then G(x,£) is the Green's
function, which has different form in different boundary conditions. A good collection of
Greens functions can be found in [Wehausen and Laitone, 1960].Since V, is known, the
unique solution of the Eqn.(3) always exists except at a set of discrete frequencies known as

rregular frequencies’.

The integral Eqn.(3) may be solved numerically beginning with the subdivision of body
surface S into N panels. Let S; be the surface area of jth panel (j=1,2...N). After discretising,

the Eqn.(3) can be written as

s+ Y [as o Zjdév ®GEy @

Jls

where the subscript i is omitted from ¢. Generally, ¢ is variable in each panel. For different
assumptions on the source density distribution over each panel, one can choose different
collocation points x and make a linear system of equations with equal number of unknowns.
This system of equations can then be solved directly for velocity potential. This is so called

‘collocation method'. In an alternative way, the ‘Galerkin' technique may be used where

Eqn.(3) is satisfied in an averaged sense by integration over ith panel, i.e.

-Qfdxcp (x>+2jdxjd&¢ (&)aG(x 2

j=ts,

- J-dxfdév &) G ¢, x) (5)
j S
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The numerical solution of Eqn.(4) and (3) invoives evaluation of il indicated integraly
over each panel and solution of resulting linear system. In the ordinary panel method, the
source density over a panel i1s assumed constant. The singular part of Green function is
integrated analytically [Hess and Smith, 1964], and the integral of the regular part is simply
obtained by 9;S;, where ¢; is the source density in jth panel. In alternative, the source
distribution can be assumed to have a higher order approximation and the integral is then
performed by analytical method or numerical procedure to a certain accuracy. This leads to the
higher order panel method. In present study the triangular panel with linear source density
distribution is employed. This kind of panel can eliminate the two limitations of the ordinary

panel method as mentioned above.

3. Numerical Solution Using Triangular Panel with Linear

Source Density Distribution

3.1 Collocation method (T.C. method)

To solve Eqn.(4) numerically, N flat triangular panels are used to approximate the body
surface and there are Nt grid points on the body surface. Each panel has linear distribution of
velocity potential over it, so the source density function ¢ within each panel can be

approximated by some convenient linear distribution function as follows

T_o .
¢ (EJ) I Sj = [gl(E;)7 gz(g)) g3(a)] [¢Bls q)Bz’ q)BJ] =g ¢B(l) (6)

where g(;)is a three components vector and denotes the values of ¢ at three vertices of jth

tnangular panel and integers B, i=1,2,3, are evidently depend on the jth panel. Combining
Eqn.(6) and (4) gives
N N
- QO(x) + JZ‘ QJ. q)m) = ; Pj VBa) (7

where Pj and Qj are source and normal-dipole distribution integrals over jth panel and vg() is

the normal vector on the three vertices of the jth panel.
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Q_) =J. [gl’ g27 g3] 'a; G (X, E.;) dx
§

The Greens function can be written as

G =—r1—+ G*(x, &)

where r = |x-§|, 1/r is defined as the singular part of Green function and G*(x, §) is the
regular part. It is more convenient to integrate the Eqn.(8) by treating the singular and regular

parts of Greens function separately.

3.1.1. Integration of the singular part over a panel

The singular part, 1/r, is not slowly vary when the point x is near the panel over which
the integration is to be carried out and are, in fact, singular as r-» 0. Thus, the integral of
Eqn.(8) for singular part was carried out analytically in this study. The analytical formula for

such integration was derived by Webster(1975) in terms of the local coordinate system. Since

the detail of the formula can be found in [Webster, 1975], it is not given here.

31.2. Integration of the regular part over a panel
The regular part of Green's function, G*, is much more complex than the singular part

and consequently, it is impossible for it to be integrated analytically. The regular part and its

normal derivative, G* and 0G*/dn, are regular throughout the fluid domain and oscillate with a

wavelength of approximately A. In practice, A is generally large, so G* and oG*/on vary

. . . . : * ]d
slowly over Sj. Thus a valid and convenient approximation to the integration for G* ar

dG*/n is to evaluate the integration by the discrete source approximation. The final formulac

are as follows

- 180 -



- 1 W

1
4G (X’XBO) + 12G (x,xﬁ])

1 1
T et *
pj =S 7 G*(x, XBO) + T G*(x, XB 2) ©)

1 1
— G* — G*
L 7] G (X’XB0)+ 7 G (x,xB3)

where Xgo is coordinates of the centroid of jth triangular panel. xg;, i=1,2,3, are coordinates of
the three vertices of jth triangular panel. ¢g1.9p2 and 9p3 in Eqn.(7) are the potentials at xg,

xp2 and Xp3 respectively. Simply replacing G* in Eqn.(9) by dG*/on gives

[ 1 9 13, l
z-'a—n' G*(X, XBO) + TEEEG (x’ xBl)

1 o 1 0
T — G* —_— — G*(X. 3
QJ = Sj 4 an G (X, XBO) + 12 an G (x’ ‘ﬁ 2) (10)

1 o N 1 o N
1—556 (x, XBO)+ -1-2-371-0 (x,xB3)

and

0G* oG* oG* oG*
on M Tox * M dy Tz

3.1.3. Solution of the boundary integral equation

Substituting Eqn.(9) and (10) together with the integral results of the singular part over

each panel into Eqn.(7), a set of the equations with Nt unknowns is obtained. So far, the point

xin Eqn.(7) is undecided. If the x is chosen to be at each grid point, it leads immediately to a

linear system of N algebraic equations with the same number of unknowns. This linear
system can be solved directly for the velocity potential at each grid point in terms of standard

tomputer subroutine.

32 'Galerkin' method (T.G. method)

The triangular panels with linear source density distribution are again employed, but the

boundary integral equation from 'Galerkin' approach, Eqn.(5), is used here. Substituting

Eqn.(6) into (5), a similar discrete integral equation to Eqn.(7) is obtained. The integrations
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over each panel with respect to the &-variable in Eqn.(5) are treated in the same way as those in
collocation method for both the singular and regular part. That is. the singular part of Green's
function is analytically integrated, and the regular part is integrated by making use of Eqn.(9)
and (10). On other hand, all the integrations with respect to x-variable in Eqn.(5) are carried
out by the discrete sources approximation method which is similar to the way used to derive
Eqn.(9) and(10). Then, the x in Eqn.(5) is chosen as each of N grid points. The system of Nt

equation is solved directly.

4, Numerical Results
In order to compare the present numerical schemes with the ordinary panel method, the
extensive computations have been performed for heave and pitch added mass and damping
coefficients of a semi submerged prolate spheroid (beam/length=1/4) and the added mass and
damping coefficient distribution along the hull of a Series 60 model (C,=0.70) in infinite
 depth. The added mass and damping coefficient are defined in the conventional manner, as the
factors which multiply the acceleration and velocity of the body respectively, in the equation for

the radiation force.

The comparison between the three different methods for added mass and damping
coefficients of the spheroid are presented in Fig.2 and 3 in heave and pitch modes respectively.
The hydrodynamic coefficients are plotted against the parameter 1(Mk), where Mk is the total
mmbers of evaluations of Greens function and its derivatives or the total numbers of the
tlements of the main matrix in discrete boundary integral equation (Eqn.(4) or (5)). The same

Mk value means the about same CPU time consumed in creating such a matrx.

For ordinary panel method
11

M2 (11)
For T.C. method

(12)
Mg=(N+N7)*N
For T.G. method

(13)

Mg =4*(N+N7)*Nt
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The inversion of such a matrix takes times like N? for ordinary panel method and N4 for T.C
wnd T.G. methods. The different panel arrangements for cuch kind of method are listed in the
Table 1. The finest panel arrangement is for the ordinary panel method and has 162 panels on

half of the body.

In the results shown in Fig.2 and 3, the values from three different methods fall nearly
on a straight line, specially for the ordinary panel method, and have the same tendency. It is
therefore reasonable to assume the error of the results reduces as 1/V(Mg) approaches zero and

- the 'most accurate’ results are obtained from the finest panel arrangement for the ordinary panel
method. Because the accurate results are unknown, the comparisons are made based on the

! 'most accurate' results.

From the Fig.2 and 3, it can be seen that the results obtained by the T.C. method
converge to the 'most accurate’ results more quickly than those by the ordinary panel method.
For the same 1/V(Mg) value, the results from the T.C. method are closer to the 'most accurate'
results except the coarest panel arrangement. In other words, for the same accuracy, the former
' is computationally more efficient than the latter. In contrast, for the same 1/N(M) value the

T.G. method produces worse results than the other two, this means the T.G. method is less

efficient than the others for the present numerical example. For the same panel arrangement it is
~ found that the T.G. method hardly gives the improvement on the accuracy over the T.C.
method, but its Mg value is four times higher the that of T.C. method. Its large increase on

- computational effort and little improvement in accuracy make it computational inefficient.

‘ The improvement in the accuracy by T.C. method is more significant at higher

frqquency than that at lower frequency, because the shape error between actual body surface
ind composite panel surface dominates the total error of the results at lower frequency, but at
higher frequency the error caused by rough approximation of source distribution plays a more
mportant role. Similarly, the improvement of the T.C. method is more obvious in pitch mode

than that in the heave mode because the velocity potential distribution is more variable in the

Pitch motion,
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Perhaps the major shortcoming of boundary integral method for free surface problems
is the presence of 'irregular frequencies' which correspond to the eigenfrequencies of the
interior homogeneous Dirichlet problem. The behaviour of the different panel methods have
been investigated in the vicinity of the first irregular frequency. The results according to the
" four models with different number of quadrilateral panels with constant source density
- distribution are shown in Fig.4. The amplitude and bandwidth of the irregular frequency
- disturbance decrease with more panels. Fig.5 shows the comparison among different panel
- methods in the vicinity of the first irregular frequency. For the same number of panels, the
- disturbance of irregular frequency on the results obtained by the T.G. method is less than that
on the results by the T.C. method, but both of the triangular approaches show the better

behaviour than the ordinary panel approach.

The comparison between the ordinary panel method and the T.C. method has been
further made for the added mass and damping coefficient distribution along the hull of a Series
60 model with Cy=0.7 at F,=0.2. The 104 panels were used in the ordinary panel program to
approximate the half of the hull form, otherwise the 104 panels (N) with 75 grid points (NT)
were used in the T.C.method program. As3(x) and Bz3(x) are added mass and damping
coefficient per unit length at x position along the hull. The \/(MK) value for ordinary panel
method is 104 and for the T.C. method is 116. The CPU time required to invert the matrix is
normally dependent on N3 for the ordinary panel program and Np? for triangular panel
. Program respectively, so the total CPU time consumed on the two programs are nearly same.
The Fig.6 shows the comparisons of the two kinds of the results with the experimental data

given by Vugts (1971). The T.C. method gives more accurate results.

3 Conclusion and Future Directions

Two alternative approaches to 3D panel method for the radiation and diffraction

problem have been presented. For present numerical examples the T.C. method is shown to be

rmer produces more

thod

more efficient than the ordinary panel method, in other words the fo

&curate results than the latter without increasing the computational effort, but the T.G. me

8 computational inefficient.
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The investigation of the irregular frequencies shows that both amplitude and bandwidth
of irregular frequency disturbance dimishes as the number of panels increases. If the same
number of panels are used, the T.G. method shows the better behaviour than the T.C. method

but both of them perform better than ordinary panel method.

In the panel method, the solution involves the two main CPU time consuming steps,
(1) creating the N*N matrix (or N7*Nr for triangular panel approach) by evaluating the Green
function and its derivatives and (2) inverting this matrix. The CPU time required on the first
step increases as the order of N2 (or Nt2), but the second step takes times like the order of N3
(or N7%). Tuck (1974) suggested 'any computing problem involving inversion of a dense
matrix is optimized by making the time taking to invert the matrix about equal to that required to
evaluate its elements'. In the present programs the time required on the two steps is about same
if a few hundred panels are used. Otherwise, for the more complex geometry or multi hull
body it will be necessary either to increase the number of panels, shifting the burden almost
entirely to the matrix inversion or else to improve the panel description. In order to balance the
CPU time required on the two steps to optimize the calculation, the higher order panel approach

may be valuable.

In the present numerical examples in which only a hundred or less panels werc uscd,
the improvement by using triangular panel approach with collocation solution over the ordinary
~ panel method is not significant. The consideration should be made on the potential efficiency of
the present approach when large number of panels are required in the calculation. In such a
case, the use of higher accurate panels may reduce the total number of panels required in the

calculation and save CPU time on the inversion of the main matrix.

Finally,it is noted that the combination of the present triangular panel approach with

odinary quadrilateral panel approach to match the different places of a ship hull and reduce the

- oal number of required panels is one possible future direction for the present work.

Introducing the curvilinear panel instead of present plane-panel to fit the body surface more

closely is another possible future direction.
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Fig. 1

Table 1  Different panel arrangements on the submerged surface of a spheroid (e=1/4)
for the three different panel methods. N is the number of panels on the half of the
submerged surface and Nr is the number of grid points (for triangular panel method).

Quadrilateral panels on irregular surface

The parametre My is defined by Eqn.(11), (12) and (13)

quadrilateral panel | triangular panel method | triangular panel method
method ( collocation ) ('Galerkin')
N  JMyg) N N VMg)| N Nt V(MK)
1 18 18 18 16 233 18 16 26.6
2 32 32 32 25 3717 32 25 754
3 50 50 50 36 556 50 36 1112
4 72 72 72 49 77.0 72 49 144.0
5 98 98 98 64 1018 98 64  203.6
6 128 128
7 164 164
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—6——  Quadrilateral panel method
—A-—  Triangular panel method ( collocation )
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Fig.2 Comparisons of the heave added mass and damping coefficients of a spheroid
(e=1/4) obtained by the three different panel methods versus reciprocal of the parametre

V(Mg). M is defined by Eqn. (11), (12) and (13)
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APPENDIX B

LINEARIZATION OF THE FREE SURFACE CONDITIONS

The condition for free surface is as follow

D7) =0 B.1)

where zo=C(x0,yo,t) represents the free surface elevation. (D/Dt)=0/0t+V-V.and dynamic
condition is obtained from Bernoulli's equation by assuming the pressure at the free surface

be constant equal to atmospheric pressure.

CI)1+%V(I>-V(I>+gC=O. (B.2)

It is clear those conditions involve the unknown of the free surface elevation, . To obtain
the single boundary condition for the potential which does not explicitly involve the wave

elevation, the substantial derivative of Eqn.(B.2) and the fact of

DC B
-li-—((DZO)ZO_C

from Eqn.(B.1) gives the new linear free surface boundary condition

D +2Vd)I'Vd)[+%-V<D-V(V(D'Vd>)+g(bzo=0, z=C. (B.3)
tt

The potential here involves both steady and unsteady components. According to the
assumptions of the incident wave and the resulting motion responses of the body are small,
the linearization of Eqn.(B.3) can be made by introducing Eqn.(2.4) to Eqn.(B.3) and
neglecting only the second order of the unsteady potential ¢, that is
0, +2 WV +WV (W-VO) +g 0,
+é(W+V¢)-V(w-W)+gU$Z=o onz=_ (B.4)

where W is the velocity vector of steady flow relative to the moving reference frame
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W=UV[ 9y -x] (B.S)

and there 1S no restriction on steady potential. Newman argued that directly applying the

Eqn.(B.3) on the steady free surface elevation, z=E, by assuming the difference between g

and { is higher order quantity and used the Taylor series expansion in Eqn.(B.2) showed
C—C=-[(¢c+w'v¢)/(g+w'wz)]Z;c (B.6)

which is of the order 0(¢).

Hence expanding all the terms in Eqn.(B.4) from { to Eand neglecting the second

order quantity 0(¢2), it follows that

¢n+2W-V¢t+W-V(W~V¢)+g¢z+%-V¢-V(W-W)

19 " e =
+_2_§[W~V(W~W)+gU¢Z](§—§)=O on z=L. (B.7)

This equation govemns the unsteady potential provided by the velocity of the steady flow W
is known. Since the steady flow depends not only on the steady forward speed but also on
the body geometry, the linearization of the steady potential can be adopted only when
suitable geometric restrictions are placed on the shape of the body surface. If further
assume that the body geometry is thin or flat or steady forward speed motion is small, the
higher order quantities O(¢E>) and O((T)z) can be neglected from Eqn.(B.7) due to@ is small.
the Eqn.(B.7) reduces to

@, -2Ud +U'® +g® =0 on z={, (B.8)

For the steady forward motion the boundary condition can be obtained by letting

unsteady potential ¢ to be zero in Eqn.(B.4), that is

1 (B.9)

-2-w~V(w-W)+gU$z=o on z=(
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where the steady state free surface elevation Eis given by

L%g_[ VE-V¢-2_¢X] - (B.10)

7=

which states the steady wave elevation z is of the order 0(62). Therefore, applying
Eqn.(B.8) on z=0 instead of z=z has the error of order 0(62). Thus the linear free surface

boundary condition can be written as

2
D, -2UQ +U'D +gd =0 on z=0 (B.11)

For the case of a body in steady forward motion the time dependent terms in

Eqn.(B.11) go out and the steady potential 6 satisfies the linear boundary condition

U¥o_+g0, =0 on 2=0 (B.12)

Alternatively for a body without forward speed the speed dependent terms are

vanished and Eqn.(B.11) becomes
¢, +89,=0 on z=0 (B.13)

For the time harmonic problem introducing Eqn.(B.2) to Eqn.(B.11) and (B.13)
gives
(im+Ui)2¢+g3-¢=o on z=0 (B.14)
ax oz
for forward speed case and
2o4gd =0 (B.15)
- — =0 on z
0 ¢+g=-0

for zero speed case.
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APPENDIX C

SIMPLIFICATION OF THE BODY BOUNDARY CONDITION

The boundary condition on the body surface can be written as

2

Sn - Vs ™ on Sy (C.1)

where Sy is the instantaneous wetted surface of the body and n is the unit normal vector
pointing outward of S,. This condition states that the relative velocity between the fluid and
body surface in the direction normal to body surface be zero. Generally, this condition has
to be satisfied at the instantaneous position of the body wetted surface. Since the oscillation
of the body is small, the local velocity of the fluid can be represented in terms of Eqn.(2.4)
and (B.5), i.e.

Vg =W|Sl +V o (C.2)

t

where W| s, is the steady velocity due to forward motion of the body which is evaluated on

the instantaneous surface S,

For convenience, an oscillatory co-ordinate system fixed on the body should be
employed, that is

r=r -a
and

a= 1N+ Qx r'

where o is an infinite small vector of the oscillatory displacement, 1 and Q are the

translation and rotation components of o respectively. By means of o the unit normal

vector n of the body surface in its instantaneous position S, can be expressed by the body

surface in its steady state position S, S is the mean wetted body surface, through the fir~

order contribution, as
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n|S!=n|S +an|S C2)

The Wlsl can be expressed by the velocity on the steady state body surface taking
the differentiation of it in o direction into account, that is

Wlsl:W|S +0cVWlS,

(C.3)
Substituting Eqn.(C.1)(C.3) in Eqn.(B.5) and the fact that
o, n|sl = (')m|sl
gives that
(W + V¢ )n=an on S,. (C.4)

Hereafter the overdot signifies the time differentiation in the reference frame of axes, or
[ W + (aV)W+V¢](n +Qxn )= o(n +Qxn ),
Neglecting the second order terms in ¢, o and Q the following expression is obtained

o =| &+ QxW-(o¥)W ] on S.

The first two terms give the rate of change of o in a frame of reference moving with
steady flow. By means of the vector identity, the Eqn.(C.2) and the fact of VW=V2$:0

(incompressibility), a more compact results can be obtained

q)n:[ &+Vx(o<xW)]~n on S (C.5)

This formula was first derived by Timman and Newman. Furthermore, from the definition

of o, the assumptions about the diffraction and radiation problems, the harmonic motion

problem can be expressed

it
n= (T]l, n, 113) e
wt

Q=m,n,m)e’

The boundary condition for the radiation potential ¢; (j=1,2....6) can be presented
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in terms of Eqn.(C.5) as

> ¢j =-im n, + U m. j=12,.6

onS (C.6)
where
(ny,m, n3)=n
(n4, ns, n6) =rxn (C.7)
(my, mp, m3) =-(n-V)W/U
(my, ms, mg) =- (n-V) (rxW)/U (C.8)

This formulations were introduced by Oglivie and Tuck. If the assumption W = -
(U, 0, 0) is made by neglecting the perturbation of steady velocity potential in the case of

the body shape is assumed thin or flat, the relationship in Eqn.(C.8) reduces to

(ml, m,, m3) =0

(my, ms, mg) = (0, n3, -ny). (C.9)
For the diffraction problem, the governing Eqn.(2.14) is rewritten here as a
boundary condition

o9, _ 9 on S. (C.10)

on on
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Fig. 2.1a The Co-ordinate Systems

Fig. 2.1b Definition of Motions



Fig. 2.2 Definition of Integral Surfaces and Volumes
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Fig. 3.1 Local Co-ordinate System

Fig. 3.2 Typical Partitioning of o-xz Plane Symmetric Body
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Fig. 4.12 Components of roll damping for Series 60 model at Fy=0.0
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according to Ikeda, Himena and Tanaka [11]
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Fig. 4.13 Roll damping

coefficients of Series 60 at F,=0.0 including viscous effect
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Fig. 4.20 Sway wave exciting forces on Series 60 in beam sea at Fp=0.2
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Fig. 4.21 Heave wave exciting forces on Series 60 in beam sea at F;=0.2
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Fig. 422 Roll wave exciting moments on Series 60 in beam sea at Fp=0.2
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Fig. 4.29 Sway motion responses of Series 60 in beam sea at F,=0.2
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Fig. 430 Heave motion responses of Series 60 in beam sea at Fy=0.2
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Fig. 4.31 Roll motion responses of Series 60 in beam sea at Fa=0.2



(b) B/L=0.508

200cm
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Fig. 4.32 Geometry of twin cylinders with the hull form
represented by 192 panel elements
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(a) Single strut SWATH

Fig.4.50 Free surface amplitudes plotted

along twelve sections parallel
>0

to SWATH longitudinal axis ~ +»
(at beam seas)?*!

BX®6XBIOx+ b o

Legend

*yBa 0175
*+yMB at 0525
c~yBa 09504
~yBa 109
~+.yBa 1445
*yBat 1.795
«+yBa 0175
*++yBat 0525
<+ y/B at -0.904
<+ y/Ba -1.096
-~ y/Bat -1445
-«.yBa -1.795

(b) Tandem strut SWATH
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MODE: HEAVE, Fn= 0. 000

Fig.4.55 Heave added mass and damping coefficients of SWATH 1
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Fig. 4.61 Roll added inertia and damping coefficients of SWATH 1.
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Fig. 6.2 Definition sketch of the cross section of a twin hull ship
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(b) torsional moment in regular bow quartering seas

Fig. 6.7 Decomposition of wave Joad effects at cross deck mid-section of
SWATH 1 in regular beam and bow quartering seas
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Fig. 6.8 Transverse bending moment of SWATH 1 in regular beam waves
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Side force distributions along the hull of the SWATH in longitudinal axis

at the frequency where the maximum side force and bending moment

on the cross deck occur (@e= 6.0 ).
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Fig. 7.1(a) Pierson-Moskowitz wave spectrum and
the wave encounter spectrum in head sea
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