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Abstract

The work in this thesis divides naturally into two distinct parts which are linked
by the general underlying theme of chiral discrimination. The first part concerns the
discriminatory response of chiral molecules to circularly polarized light which con-
stitutes optical activity, the second, chiral discrimination in intermolecular forces.

Specifically, in Part I, a detailed study of rotational optical activity is under-
taken. Expressions are derived to describe Raman optical activity, optical rotation
and circular dichroism by first treating the simple case of a symmetric top molecule
and then allowing this to be the basis for the more sophisticated development re-
quired for an asymmetric top molecule.

In Part II, discrimination in the dispersion interaction between odd-electron chi-
ral molecules is studied. It is shown that novel contributions to the discriminatory
interaction are introduced by allowing for the time-odd part of the molecular opti-
cal activity tensor which is supported by chiral molecular systems in which there is
some source of time asymmetry, as provided, for example, by the residual electronic
angular momenta of odd-electron molecules. Both a semi-classical and a quantum
electrodynamical treatment are given, the latter making possible a study of the
wave-zone region in which the finite speed of light must be taken into account.
Calculations, within the semi-classical model, on a hypothetical odd-electron chiral
transition metal complex of O* symmetry indicate that the new discriminatory con-
tributions could be within an order of magnitude of the conventional discriminatory

contributions.
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Part 1

Rotational optical activity



Chapter 1

Raman optical activity in

symmetric top molecules

1.1 Introduction

Optical activity associated with electronic and vibrational transitions has been
extensively studied [1-5]. While this has proven a fertile area of theoretical and
experimental research, the possibility of optical activity in rotational transitions
has been little considered.

For a fluid in the absence of an orientating influence, such as an external mag-
netic field, the conventional procedure is to average the expression for a particular
optical activity parameter over all orientations of the molecule. Since this isotropic
average is equivalent to a quantum-statistical average over all rotational states,
information about individual rotational transitions is lost. The first treatment of
optical activity to take account of contributions from rotational transitions in a
non-classical way was that given by Chui of optical rotation in symmetric tops [6].
Later work in rotational optical activity has included further studies of optical ro-

tation [7-9] and a consideration of Raman optical activity (ROA) [10] and circular



dichroism (CD) [11]. While all these effects originate in the discriminatory response
of a chiral molecule to right and left circularly polarized light, each is associated
with a different physical phenomenon; optical rotation with refraction, CD with
absorption and ROA with Raman scattering.

In this chapter we shall present a quantum mechanical development of rotational

ROA in symmetric top molecules.

1.2 Theory

1.2.1 Basic definitions and expressions

We shall consider the experimental arrangement of incident light, observed scat-
tered light and sample depicted in fig. 1.1, in which circularly polarized light prop-
agates along the z direction and the scattered radiation is detected at 90° along the
y direction. An appropriate measure of Rayleigh and Raman optical activity is the

dimensionless circular intensity difference (CID)
Ao = (IF - ID/IF+ I2) (1.1)

where I® and IL are the intensities of scattered light with a polarization in right
and left circularly polarized incident light [1]. To obtain the polarized (o = z)
and depolarized (o = z) Rayleigh CIDs in terms of molecular property tensors
requires second-order time-dependent perturbation theory to calculate the electric
and magnetic multipole moments induced in a molecule by the incident light. These
induced moments are then taken to be the source of the scattered radiation. All
calculations can be carried out adequately using semi-classical methods; that is,
we may treat molecules as quantum mechanical entities interacting with classical

electromagnetic fields.
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The geometry of polarized light scattering at 90°
Fig. 1.1
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The Rayleigh circular intensity sums and differences are found to be [1,12]

IF+ 1k
IF+1If
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IE — IF

F4 z
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= TGamicyr (Gl Al + o) (1.2b)
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where we have introduced the complex dynamic molecular property tensors

Gop = aag—ia;ﬁ (1.3a)
Gap = Gap—iGhg (1.3b)
fiaﬁv = Aapy — ZA’aﬁ-, v(1-3c)
Gop = Gap+1GlL, (1.3d)
Aapy = Aapy +idlg, (1.3€)

A complex quantity is denoted by a tilde. Expressions for the real and imaginary

parts are provided by time-dependent perturbation theory as follows [1,12,13]:

Aaﬁw =

ﬁ; s Re((n | pa | 5)(5 | 1o | 7)) (1.4a)
*-]; m((n | po | )5 | pg | 7)) (1.4b)
—?_; —Re((n | pa | 7)(7 | ms | ) (1.4c)
——J; Ea m((n | pa | 3){7 | mp | n)) (1.4d)
—; Re((n | pa [ 5)(3 | @py | m)) (1.4e)



apr = —Z m((n | po | 5)(7 | Opy | n)) (1.4f)

J;ﬁn n

where w;, = w; — wn, and pq, M, and O,p are the electric dipole, magnetic dipole

and traceless electric quadrupole moment operators respectively, defined by
Ha = Z €T (15&)

&
Mo = Z%faﬂmﬁpi., (1.5b)

l- i
Oup = = Z 37'%‘7'1‘3 7260p) (1.5¢)
The summations are over all particles 7, with position vector r;, charge e; and linear
momentum p;, b, is the unit symmetric second-rank tensor and €., is the unit
antisymmetric third-rank tensor. We have also made use of the Einstein summation
convention whereby a repeated Greek suffix implies summation over the Cartesian
components [1].
The circular intensity sums and differences may be applied to Raman optical
activity by replacing the property tensors by transition tensors, so that, for example,
&op becomes (@ag)mn Where [n) and |m) are the initial and final states. The complex

transition polarizability and optical activity tensors are given by [1]

SRS CATR CIVAC INCATTE AP RS
Jj#En,m n am

(Goaghn = % S [(m | m(l;)(_]tlumﬁ [m)  (m] mi[])j_]i#a | n)} (1.6b)
#nm in jm +

(Aus o h 5 [<m|#aij><iiu@ﬁw!n> +<m|®ﬁ;]J)J£le ua|n>}(1_6c)
Jj#n,m n m

It proves instructive to write these complex transition tensors as a sum of real and

imaginary parts as follows:
(&ap)mn = (Cap)mn + (ap)mn = (Cag)mn = H0Gp)mn (1.7a)

where

1 (Wjn + Wjm)
(dap)mn = 2h > (Wjn — w)(Wjm + w)

jEnm

«Re({m | pa | 3} [ps I )+ (m | pg | )5 | pa [ 7)) (1.7D)




1

- _ 1 (2w+wnm)
(ot = 38 2 = g +)

xRe((m | pa | 5)(5 I o I n) = (m | pp | )(5 | ba [ 1)) (1.7¢)

1 (Wjn + Wjm)
(ain = ~o R
A 2h jg;m (Win — w)(Wjm +w)

XTm((m | o | 5)(3 | pa | m) + (m | g | 5)(5 | pa | ) (1.7d)

b ov- 1 (2w + Wpm)
(oodn = 35 22 am —am + )

I#En,m

<Im((m | pa | 3)(7 [ e | n) = (m | pp | 5)(5 | pa [n)) (1)

(Gap)mn and (Aagy )mn may be broken down in an analogous fashion. These complex

transition tensors have corresponding effective operators [1,14,15].

Gap = Glg+ég, (1.8a)
Gap = Giz+Go, (1.8b)
Augy = Alg,+ A, (1.8¢)

where
& = (a0 ps+ 0 o) (1.8d)
bog = —%(#ao"#ﬁ—#aO‘#a) (1.8e)
Gla = 3(a0%mg +mgO"ha) (1.81)
i = —3(Ba0"ms —mp0 ) (1.58)
Alp = 5(4a0Op, + 05,07 pa) (1.8h)
Asgy = —5(4a0 O, — 05,07 p) (1.81)
0% = (H—%+hwiﬂ~%—hw) (1.85)

and E is the average of the energies E, and F,, of the initial and final states.
The complex transition tensors may be generated by taking matrix elements of

the effective operators, summing over a complete set of states |7)(j| inserted after



O* and using the approximation Win N Wjm. Writing the effective operators in the
form (1.8) allows us to deduce the symmetry properties of each operator from those
of its component parts [1,14,15].

Thus we find that &ZB is Hermitian, has even parity and is time-even, Gop s
anti-Hermitian, has even parity and is time-odd, éiﬁ is Hermitian, has odd parity

and is time-odd, é;ﬂ is anti-Hermitian, has odd parity and is time-even, A:[,,,

is
Hermitian, has odd parity and is time-even and fi;ﬂy is anti-Hermitian, has odd

parity, and is time-odd. Using these properties with the result
(On | S(£) | Om) = £(m | 5(£) | n) (1.9)

where © is the quantum mechanical time-reversal operator, S is an arbitrary op-
erator and the bracketed sign indicates the behaviour of § under time-reversal, we

deduce that [1,14,15]

(m | dag | n) = (On | dga | Om) = (Om | dag | On)* (1.10a)
(m | Gag | n) = —(Om | Gup | On)* (1.10b)
(m | Aagy | ) = (Om | Augy | On)" (1.10c)

For an even-electron system, in the absence of a time-odd influence, the initial and
final states can be chosen to be either even or odd with respect to time reversal and
it follows that only the real parts of (m | Gop | 7) and (m | Agpy | n) and imaginary
part of (m | G’aﬁ | n) may be non-zero. An odd-electron system requires a more
involved treatment and we shall not consider it here.

The conventional Raman effect is associated with nuclear motions for which
the characteristic frequencies are significantly less than either the frequency of elec-
tronic transitions or the frequency of the incident radiation. If we impose the further
condition that the incident light is far from any absorption frequency, it becomes
possible to introduce approximations to simplify the form of (aB)mn. In order to
realise this simplification the Born-Oppenheimer approximation is invoked in ad-

dition to a separation of vibrational and rotational motion. This allows a general

10



molecular wavefunction |5) to be written as the product of an electronic wavefunc-
tion |J.), a vibrational wavefunction |j,) and a rotational wavefunction |j,). Then,
the rotational and vibrational contributions to the transition frequencies in the po-
larizability are neglected and we make use of closure to sum over the complete set
of rovibrational states associated with an electronic state. If it is also assumed that
the molecule is in a quantum state belonging to the lowest electronic level such that

ne = m, = 0 and the adiabatic dynamic polarizability is introduced

p(Q) = = “2——

xRe((0 | pa(r, @) | je)(je | a(r,Q) | 0)) (1.11)

where r and @) are electronic and nuclear co-ordinates respectively, then it is possible

to write [16,17]

(aaﬁ)mn = (aaﬂ)memvmr,nenunr = (Vm-umr | aaﬁ(Q) | n,_,’n,.> (1.12)

It should be noted that these assumptions and attendant simplifications, which con-
stitute what is usually called Placzek’s approximation, when taken in conjunction
with time-reversal arguments, dictate that only (aag)f, of the original complex
matrix element (Gng)m~ survives for an even-electron molecule in a non-degenerate
state. Similar developments are available for the optical activity tensors showing
that only (Glg)m, and (Aagy),, survive [1,14,15].

From the definition of (c.g3)}, given by (1.7b) it is obvious that (aga)}, =
(ga)f, and thus scattering generated by this matrix element is often called sym-
metric. Placzek’s approximation breaks down under resonance conditions, for elec-
tronic Raman scattering and in the presence of degeneracy. Any of these factors
either separately or in combination may allow an antisymmetric scattering contri-
bution to a particular band [18]. Antisymmetric scattering has, for example, been
observed in the vibrational bands of resonance vibrational Raman spectra of haem
proteins [19] and iridium (IV) hexahalides [20]. Although resonance Raman spectra

of gaseous samples showing rotational structure have been recorded and interpreted

11



[21,22], no molecule which is a potential antisymmetric scatterer by virtue of its
possession of electronic angular momentum seems to have been chosen for this type
of study. Nevertheless, there are many potential candidates for an investigation of
antisymmetric scattering in resonance rotational or rovibrational Raman spectra. A
simple example would be the nitric oxide molecule with the impinging beam in reso-
nance with one of the so-called 3 bands associated with the A?II « X?2II electronic
transition [23]. It is interesting to note that Ziegler has observed antisymmetric
UV-resonance Raman scattering with degeneracy in the rotational states [24].

The rotational selection rules for antisymmetric scattering are not a function of
molecular symmetry alone. These rules depend on the appropriate set of angular
momentum quantum numbers for specification of the molecular state, and this in
turn requires determination of which mode of coupling, and thus Hund’s case, is
relevant [23,25]. A rigorous theoretical treatment of rotational antisymmetric scat-
tering is not a trivial undertaking and no attempt is made to include the possibility

of scattering of this type in the following development.

1.2.2 Intensity factors

We shall work exclusively within the limitations of Placzek’s approximation and
the appropriate positive or negative superscript associated with a polarizability or
optical activity tensor component will be taken as understood. Since we are in-
terested in rotational Raman scattering, we develop (1.12) further by transforming
from space-fixed to molecule-fixed axes, so that the rotational transitions are ef-

fected by the direction cosines relating the axes systems:
(mym, | @ap(Q) | nuntr) = (Qarp(Q))mun, (M | Laarlppr | 7r) (1.13)

However, derivations are facilitated by replacing the conventional direction cosine

formalism by the irreducible spherical tensor formalism [26-29]. An appendix giv-

12



ing a short introduction to this method and relating irreducible spherical tensor
components to Cartesian components has been provided.

In Placzek and Teller’s original work on rotational Raman scattering intensities
[30], circular tensor components were introduced as a first step towards establishing
a natural basis for the expression of rotational line strengths. Using spherical tensors
allows, in addition, exploitation of the properties of both the 3 — j symbols and the
transformation matrices relating space and molecule-fixed spherical components
(29,31]. The intensity of a Raman line in the absence of an external magnetic field
is proportional to quantities of the form [32]

S, |, 'K'M' | &% | n, JKM))? (1.14)

MM’

where c“x’; is the gth component of the rank & set of polarizability tensor operators.
The rotational states are characterised by quantum numbers J, K and M where
J specifies the total angular momentum of the nuclear framework, with K and M
specifing its projection on molecule-fixed and space-fixed axes respectively. The
vibrational states are characterised by n. For symmetric isotropic and anisotropic
scattering k takes the values of zero and two respectively. Contributing values
of ¢ are determined by the characteristics of the impinging beam and the chosen
experimental arrangement for intensity measurements on the scattered light.

It is necessary to generalise in order to take account of scattering generated by
the optical activity tensor operators G and A, and to allow for interference terms
& G and & A. Thus for a rovibrational transition n/,J'’K'M' «— n,JKM we

define an intensity factor corresponding to a TS scattering contributions

1 A
k g — "JIK'M | TF |\ n,JKM
(L (TS)]n ki nix T+ 1) w%;'(n ( | T | n )
<(n', J'K'M'| ¥ | n, JKM)* (1.15)

Note that we have made use of the fact that each of the 2J + 1 values of M in
the initial state is equally probable. Our concern lies with conventional symmetric

scattering and the associated discriminatory contributions (k = 0,2). The general

13



formalism with k& = 1 could easily be adapted to treat electric dipole absorption
probabilities in microwave spectroscopy.
An extension of the Wigner-Eckart theorem to axially symmetric systems allows

expression of symmetric top matrix elements in terms of 3 — j symbols [33,34]:

1

(n',J'K'M' | T} | n,JKM) = /7KK 1)/'"-M (2] 1 1)(2] + 1))z

Jook T
X
-K' K'-K K)\-M' ¢ M
(

x(n' | TE, . | n) 1.16)

where a bar over the operator indicates molecule-fixed axes. Then (1.16) may be

inserted into (1.15) to obtain
2

[I:(TS)]n’J’K',nJK (2_J,+_1)( J! k J )

Rk+) \_g' K'-K K
x(n' | Thi_g | n)(n' | Skr_g | n)” (1.17)
Introducing ,
J! k J
D‘I;’K’,JK = (2J, + 1) (1.18)
-K'" K'-K K

allows (1.17) to be written more simply as

1
(2k +1)

[Ik(TS)]n’J’K’.nJK = (nl | T}’?ux | n)<nl | 5'?0-;( | n)‘Dg'K’,JK (1.19)
q

Our general treatment may be seen to be consistent with the earlier literature on
rotational Raman scattering by noting that the factor D_’%K,’JK is identical to the
Placzek-Teller factor b7%., when k = 2. The relations between the factors 675 as
presented by Gaufres and Sportouch [35] follow immediately from the symmetry

properties of the 3 — j symbols. We reproduce these results in more general form

in terms of D%/ ;x:

Dsgigx = Dixnik (1.20a)

14



ZD.,;IK’,JK = 1 (1.2OC)
I
; Dl}'K',JK = Z D’}'K',JK
K’
= (2J'+1)/(2k +1)

(for fixed AK = K' — K) (1.20d)

Relation (1.20a) depends on the fact that the square of a 3 — j symbol does not
change when the signs of the second row numbers are reversed and (1.20b) follows
from the fact that the square of a 3 — j symbol does not change when two of its
columns are interchanged. Relations (1.20c) and (1.20d) are a consequence of the

orthogonality of 3 — j symbols.

1.2.3 Selection rules

Rotational selection rules for rotation-vibration Raman scattering depend on

the conditions required for the 3 — j symbols in (1.19) to be non-zero. For k=2

these are
AJ = 0,%1,42 (1.21a)
AK = 0,%+1,42 (1.21b)
while for £ = 0 we have
AJ=AK =0 (1.21¢)

This is the most general case, but further restrictions on AK are placed on molecules
in possession of symmetry elements, since a given vibrational transition may then
only be effected by selected component operators m. We note that the only
symmetric polarizability operator components which transform as the totally sym-

metric representation of the symmetric top point groups are
az = —V3a& (1.22a)

15



- 2
&2

5 = %(du—&ﬂ (1.22b)

1
3

where o = g, is the mean polarizability, ay=azgzand a; =axy =ayy. X,V
and Z denote the molecule-fixed principal axes. Thus for pure rotational scattering
and vibration-rotation scattering in fundamentals of totally symmetric modes only
AK = 0 occurs, while for non-totally symmetric fundamentals only AK = +1
and AK = %2, or both, occur. The selection rules for vibration-rotation ROA
follow from those given for conventional vibration-rotation Raman scattering, since
the rotational part of an intensity factor does not depend on the physical nature
of the associated tensor operators. However, in addition, the molecule must be
chiral in order that the same components of polar and axial tensor operators m
and m as specified by (1.19) transform identically [1]. The selection rules on
rovibrational Raman transitions for chiral symmetric tops are summarized in table
1.1 which is adapted from the standard table of vibration-rotation Raman selection
rules given by Stoicheff [36].

To calculate absolute intensities for symmetric scattering, we require the factors
D% ki 75 with k = 0,2 in explicit algebraic form. These can be obtained by making
use of the standard formulae which are available for some of the more common 3 —j
symbols [27]. From the non-vanishing properties of these symbols, it is obvious that
for k = 0 only DY ;x = 11is allowed. For k=2 the factors are given in table 1.2 and
are identical to the previously tabulated expressions for b7%., [30]. Fortunately, we

are primarily interested in dimensionless CIDs, for which it will be seen that there is

a cancellation of D’},K,’JK factors in the numerator and denominator in most cases.

1.2.4 Vibration-rotation Raman optical activity

To develop the dimensionless CIDs for rovibrational transitions, the products of
Cartesian tensor operator components in (1.2) must be transformed into irreducible

spherical tensor operator form. Using the relations listed in the appendix and

16
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neglecting antisymmetric scattering contributions, we obtain

GaGE, — (48 &G + 262G

+332G% +3a2,G%,) (1.23a)
8oy Go, — i(agégwaizéz) (1.23b)
GG — Z(aféfwailéﬁ) (1.23¢)
&Gl — Z(aféf*miléﬁ) (1.23d)
Goadt | - —— (2624 _ a242 _ a2 A% (1.23¢)

Yz 4\/6
~ )
&T A:::cz — T =
’ NG
~ 1
dzzAt7 - =
S G

G Al — ; f (6242 + &%, A%) (1.23h)

~
In the circular intensity sums, &,.é;_, QzyCly,, Oz O, and a,ya transform analo-

a2A% + &2 ,A4%) (1.23f)

GAT 4+ &2, A%) (1.23g)

gously to (1.23a)-(1.23d) with & replacing G. Each term qu5§ is then correlated
with an intensity factor [If(TS)]ask/nik defined by (1.19).

We thus may construct tables 1.3a and 1.3b in which for conciseness we have
suppressed the full matrix element notation, so that a,g is understood to mean
(ap)nn and similarly for the optical activity tensor matrix elements. Using tables
1.3a and 1.3b we can write down the polarized and depolarized dimensionless CIDs
A, and A, associated with allowed vibration-rotation transitions.

(a) Totally symmetric modes of vibration:

AJ=0,AK =0

(For pure rotational scattering, this constitutes the Rayleigh line)

[BK? — J(J + 1)]* (g — o)
J(J +1)(2J +3)(2J - 1)

| . TBK—J(J+ D) el .
x{45a + J(J+1)(2J+3)(2J—1)(a” 1) } (1.24a)

A, = [7(G|'| -G\)+ waYZ}}

o

{45aG" +

2[(G) — G") — lwA
A, = (G = G1) — SeoAxrs] (1.24b)

c(a“ - al)
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Table 1.3a

CIDs for rovibrational transitions in symmetric tops.

=

Im(&ea G, + oy G3,)

Im(&.. G, + 6.y Gry)

AK

+1

+2

L[7(0‘ll - O‘L)(Gﬁ - G'L)D?K,JK

45

é[O‘XZ(GlXZ + G%x)

+ayz(Gyz + G/ZY)]Dg'K:i:I,JK

[(axx — ayy)(Gxx — Gyy)

+20xy(Cxy + Gy x )| DYk sa 7k

%(O‘H - O‘L)(Gﬁ - G'L)DZ}'K,JK

wlaxz(Gx 7 + Gx)
+ayz(Gyz + Gy )| DYk 41,7
%[(OLXX — ayy)(Gxx — Gyy)

+2oxy(Gyy + Gy x)|Dyiks2,ix
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AJ = +1,42, AK =0

2[7(G) ~ G') + wAxys]

A, =
7c(a” —ay)

(1.25a)

2/(G) - G) - gwayz]

(o —aL)

A, = (1.25b)

(b) Non-totally symmetric modes of vibration:

AJ =0,+1,42, AK = +1

Ag

1
= “C‘[QXZ(G,}(Z+GIZX)+aYZ(G;fZ+GIZY)
+—2—1w[ayz(AZZX — Axzz + Axyy — Ayyx)

—axz(Azzy — Avyzz + Avxx — AXXY)]]

x(akz +ayz)™ (1.26a)

1 ! ! ! !
= 7 [O‘XZ(GXZ +Gyx) + avz(Gyz + Ggy)

1
—§w[ayz(AZZX — Axzz + Axyy — Ayrx)

—axz(Azzy — Ayzz + Avxx — AXXY)]]

x(aky, +ad)t (1.26b)

AJ =0,+1,+2,AK = £2

A, =

2 ! 1 !
e [(O‘XX — ayy)(Gxx — Gyy) + 20xy(Gxy + Gyx)

1
—z—lw[(axx —ayy)(2Azxy — Axvz — Avzx)

+2axy(Axxz — Azxx + Azvy — AYYZ)]]

x[(axx — avy)’ + 4aky]™ (1.27a)

2
c

[(axx — ary)(Gyx — Gyy) + 20xv(Gxy + Gyx)

1
-{——gw[(axx —ayy)(24zxy — Axyz — Avzx)

+2axy(Axxz — Azxx + Azvy — Ayyz)]]

x[(axx — ayy)’ +4aky]™ (1.27b)
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Having determined the CIDs for all possible cases of individual rovibrational tran-
sitions, we continue by considering the total unresolved CID for the envelope of
bands associated with vibrational transition n’ — n. For each initial rotational
state 7, it is necessary to sum over the intensity factors of all allowed final states
' and then to take the Boltzmann average of the resulting expression X over all
possible initial states j using

5, 9, X e BoIAT
P

where g; is the degeneracy of state j. However, since AK is fixed for each intensity

X = (1.28)

factor, summation over all final states may be effected with the use of (1.20c) to
give a value for X which is independent of rotational state. The Boltzmann average
over initial states is thus trivial.

The unresolved dimensionless CIDs for totally symmetric modes of vibration

(AK = 0) are found to be

AL - 2[45aG" + T(a — a1 (G| = G') + w(ay — a1 )Axy 7] (1.29a)
c[45a? + (o) — @y )?]
2(G) - G") — jwAxys]

c(o —ay)

A, = (1.29b)

For non-totally symmetric modes of vibration with exclusively AK = +1 or +2
allowed, the unresolved dimensionless CIDs are identical to the CIDs for individual
transitions given by (1.26) and (1.27), while, for vibrational modes for which both
AK = +1 and AK = £2 are permitted, we obtain

1 1 /
A, = E{O‘XZ(G,XZ + GYy) + ayz(Gy gz + Goy) + axy(Gy + Gyx)

1 1
+§(axx —ayy )(Gxx — Gyy) + ﬁw[ayz(Azzx — Axzz + Axyy — Ayvx)
+axz(Avzz — Azzy + Axxy — Arxx)

+axy(Azxx — Axxz + Ayyz — Azyy)

1
—§(O¢XX —ayy)(24zxy — Axvz — AYZX)]}

L1 N
x {a,%cz +ayg +akxy + Z(QXX - ayY)’} (1.30a)
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1 ! I ! ! !
A, = Z{aXZ(G/XZ +Gzx) + arz(Gyz + Gyy) + axy(Gyy + Gyx)

, 1
+§(0¢XX —oayy)(Gxx — Gyy) — §W[QYZ(AZZX — Axzz + Axyy — Avrx)
+axz(Ayzz — Azzy + Axxy — Ay xx)

‘axy(Azxx — Axxz + Avvz — Azyy)

1
—§(OAXX —ayy)(24zxy — Axyz — AYZX)]}
1 -1
X {O‘g(z +ay; +aky + Z(axx - ayy)z} (1.30b)

As noted in the introduction, these unresolved CIDs should be consistent with
the CIDs for vibrational Raman scattering from an isotropic fluid calculated by
averaging (1.2) over all orientations of the molecule.

For Rayleigh scattering, the isotropic averages of the dimensionless CIDs have

been shown to be [1,12]

~ 2ATaapGlg + aaalGpg + twaagEars Aysp)

A, = 1.31a
c(Tar o, + anray,) ( )

2(30(0“3(7”&3 - aaaG’;_w - %waagem,;A%ﬁ)

c(3aruan — )

Expressions (1.31) also apply to vibrational Raman scattering if the property tensors
are replaced by transition tensors, and reduce to (1.26), (1.27), (1.29) and (1.30)
for the specified vibrational transition types. To establish this, (1.31) should be
written in full, retaining only those transition elements which are non-zero for the
relevant vibrational mode.

It is also of interest to consider the particular case of partial resolution of the
Rayleigh band into the Rayleigh line and the pure rotational Raman wings which

flank it. Again using (1.28) with (1.20c) and tables 1.3a and 1.3b we obtain the

averaged Rayleigh CIDs

2 1 EJK(zJ + 1)D3K'JK3_EJK/"‘T I
B = 2{45aG i S rx(2J + 1)e Borper Cl aL)[7(G{| -G)
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ZJK(2J + 1)D2 e_EJK/kT -1

2 JK,JK

X {450! + ZJK(QJ n l)e—EJK/kT [7(01” — a_l_)z] } (1.32&)
2 (G' -G ) — jwAxyz

A, = (CRARS ] (1.32b)

c(og —ay)
and the averaged Raman wing CIDs

217(GH -G +wAd
A, = [( I 1) XYZ] (1.33)

76((1” - ai)

2[(G) - G") — LwAxys]

c(og — ay)

A, =

(1.33b)

The high temperature classical limit of (1.32a) may be obtained by using [17,30]

lim ZJ,K(2J+ ].)D%K,JKC—EJKMT _
T—eo ZJ,K(2J + l)e"EJK/kT

633
8 BB

12 27 2%arcsinh\/,3
_(ﬁ+ﬂ2>(1+ﬁ) VB } (39

where

8= (% - 1) (1.35)

and A, B are the rotational constants of the particular symmetric top molecule.

1.3 Discussion

The rotational transformation properties of a tensor operator are independent
of the physical nature of that operator. Thus, the contributions to the numerator
and denominator of the dimensionless CIDs, while differentiated by the intrinsic
character of their scattering mechanism, are identical in their spatial parts as de-
scribed by the D*, ., ;i factors. The polarized component of scattering for totally
symmetric modes of vibration with AJ = AK = 0 is composed of isotropic and

anisotropic parts and consequently depends on two D'}}K,JK factors of ranks zero
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and two respectively. In all other cases there is no isotropic scattering and for a
given transition, all contributing terms are a function of the same single D’},K,,JK
factor of rank two. In forming the ratio of discriminatory and non-discriminatory
parts, these D’},K,,JK factors cancel. Thus, the dimensionless CIDs, aside from the
noted exception, do not depend on the quantum numbers which characterise the
rotational states and are independent of temperature.

For non-totally symmetric modes of vibration with exclusively AK = +1 or
AK = £2 and for depolarized scattering in symmetric modes of vibration (AK = 0)
the CIDs for individual transitions given by (1.26), (1.27) and (1.24b) respectively
are identical to those for the set of rovibrational bands associated with that par-
ticular vibrational mode. Therefore, no new information about internal molecular
parameters is made available by spectral resolution.

For non-totally symmetric modes of vibration with both AK = +1 and AK =
+2 allowed, it may be seen on comparing (1.30) for the unresolved envelope of
rovibrational bands to (1.26) and (1.27) for individual transitions that some simpi-
fication in analysis arises from resolving bands of different AK.

In order to extract maximum information from totally symmetric bands in po-
larized ROA, it is sufficient that the manifold of unresolved rovibrational bands be
resolved from the central purely vibrational line, because the separate rovibrational
transitions all show the same CID (1.25a) while that of the parent line (1.24a) is
different. The same arguments as those set out for a totally symmetric vibrational
band hold for the Rayleigh line and its wings which originate in purely rotational
transitions. Pure rotational ROA is of special interest because the CIDs then be-
come simple functions of the polarizability and optical activity property tensor
components. It should be possible to deduce the two optical activity anisotropies
( !'| — G')) and Axyz from experimentally determined polarized and depolarized
CIDs using (1.33) provided that the separation of the Rayleigh line from the rota-

tional Raman envelope is feasible and that a value for the polarizability anisotropy
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(e — @) is available. In fact, for small molecules at least, isolation of the Rayleigh
line in conventional spectra has been demonstrated to be possible. There are, more-
over, various ways of obtaining (a)—c_ ). Depolarization ratios yield |(c—c )| and
the appropriate sign can often be determined by use of bond polarizability models.
The Kerr effect also supplies a value for (a) — a,) with the advantage of no sign
ambiguity [17,37].

Ifin addition to (o —a ) values of a and G’ are known from other measurements
such as the refractive index for a and optical rotation for G, then in the absence
of any resolution, (1.29) for the polarized and depolarized CIDs integrated over
the whole Rayleigh band may be used to extract values of (G| — G',) and Axyz.
However, the former method of determining optical activity tensor anisotropies is
preferable as it presupposes a knowledge of fewer components of molecular property
tensors.

A group polarizability model has been used to calculate the pure Raman optical
activity in a chiral conformation (Dj) of triphenylborane [10]. This model involves
splitting a molecule into its constituent groups and assigning to each group an in-
trinsic polarizability and where appropriate intrinsic optical activity tensors defined
relative to a local axes system. The global tensor components may then be written
as a sum over local tensor components including the origin dependent parts of the
optical activity tensors which allow optical activity to be generated from the chiral
disposition in space of locally achiral groups [1]. Although the left and right-handed
conformers cannot be resolved, this simple example provides a useful basis for more
complicated group polarizability calculations of rotational ROA in molecules of
lower symmetry. Moreover, the calculated CIDs are large enough to suggest that

rotational ROA could be observed using currently available instrumentation.
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1.3.1 Symmetry and rotational Raman optical activity

For a dynamic system, if chirality is equated with the ability of that system to
display optical activity, then chirality is no longer synonymous with the possession
of distinct mirror image forms [38,39]. It is therefore instructive to probe more
deeply into the fundamental symmetry aspects of rotational ROA to clarify the
concept of chirality in relation to rotating molecules and to discuss the attributes
required by a symmetric top for it to be optically active.

The rotational ROA observable has odd parity. There are many other instances
of odd-parity observables of which the space-fixed electric dipole is a familiar exam-
ple. Odd-parity observables are only displayed by systems in mixed parity states,
but the exact nature of these mixed parity states depends on the specific observable
and requires further analysis.

Consider the space-fixed electric dipole. A typical matrix element for a sym-

metric top may be written as follows:
(n,JKM | po | n, JKEM) = (JKM | Loz | JKM)fig
= (JKM | PPz P~ )P | JKM)Ei,
= (J-KM|lyz|J—-KM)i, (1.36)
where we have introduced the parity operator P. In the final step of (1.36) we have
used
P|JKM) = %|J—- KM) (1.37)
PlzP' = U az = —laz (1.38)
To justify (1.38) we note that within the passive convention P involves inversion
of the space-fixed axes accompanied by inversion of the molecule-fixed axes. How-

ever, as the sense of the Z-axis must not vary relative to the nuclei, the change in

handedness of the molecule-fixed axes requires a reversal of either the X or Y axes
[1].
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It is seen that the odd-parity space-fixed operator j, is split into the product
of an odd-parity direction cosine operator acting on the external rotational state
and an even-parity molecule-fixed operator iz acting on the internal vibronic state.
Clearly, mixed parity is a required characteristic of the rotational part of the to-
tal wavefunction if the matrix element is to be non-zero. Moreover, corresponding
matrix elements are equal and opposite for states |JK M) and |J — KM). A parity-
odd influence such as an electric field is necessary to lift the degeneracy of these
states, thus preventing complete cancellation and allowing some physically observ-
able expression of the matrix element, as seen, for example, in the first-order Stark
effect.

We now turn to rotational ROA, for which the symmetry characteristics are
best exposed by expressing the associated matrix elements in spherical tensor form,
although arguments involving direction cosines analogous to those presented for
the space-fixed electric dipole are available. It is clear from the expression for an
intensity factor (1.19) that the contributing spherical tensor components of a , G
and A are constrained to be identical for a given transition. This is only possible
in a chiral molecule. However, it might be suggested that |JKM) and |J — KM)
are enantiomeric and introduce a secondary source of chirality since these states are
interconverted by P. To refute this we recall the D% . ;i factor relation (1.20a)
which dictates that the intensity factors, and thus CIDs, be invariant to replacement
of K by —K and K' by —K', that is, invariant to the parity operation on the
rotational states. It is seen that, while the electric dipole observable is composed
of an odd-parity spatial part and even-parity internal part, the rotational ROA
observable is composed of an even-parity spatial part and odd-parity internal part
supported by the mixed parity internal states of the chiral molecule.

To summarize, we note that the unifying feature of all phenomena associated
with odd-parity observables is the requirement for distinct mirror image forms.

However, it is important to realise that the possession of mirror image forms is



a necessary but not sufficient condition. For example, a chiral asymmetric top
does not show a first-order Stark effect, and a rotating achiral symmetric top is
not optically active. In the case of optical activity, structural mirror images are
necessary, as provided by molecular enantiomers. In the case of the first-order
Stark effect it is the dynamic mirror images of symmetric tops rotating in opposite

directions relative to the symmetry axis which are needed.



Chapter 2

Raman optical activity in

asymmetric top molecules

2.1 Introduction

Until relatively recently, the complexity of the calculation of Raman intensities
for rotational transitions in asymmetric tops and the experimental difficulty of ob-
taining high resolution spectra of gas phase samples dissuaded workers in the field
from attempting to perform intensity calculations for asymmetric tops other than
those for which an accidentally symmetric top model was a reasonable approxi-
mation [40]. Improvements in instrumentation and a replacement of the conven-
tional direction cosine by the irreducible spherical tensor formalism have provided
mathematical and technological tools of sufficient sophistication to overcome earlier
difficulties.

It would now seem appropriate to undertake a rigorous treatment of rotational
ROA in asymmetric tops by extending the theory of rotational ROA in symmetric

tops presented in the preceding chapter.

Before deriving completely generalized intensity expressions, a preliminary inves-
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tigation of the accidentally symmetric top provides a useful stepping stone between
the relatively simple case of the geometric symmetric top and the algebraically more

complex case of the asymmetric top.

2.2 Theory

2.2.1 The accidentally symmetric top

The possession of a higher than twofold axis of symmetry by a molecule implies
that it has two identical principal moments of inertia, and is thus a symmetric top.
However, there may be molecules of lower symmetry for which two of the principal
moments of inertia happen to be equal. For such accidentally symmetric tops,
the principal axes of the moment of inertia ellipsoid do not necessarily coincide
with those of the polarizability ellipsoid. In consequence, the selection rules for
rotational and rovibrational Raman scattering in the accidentally symmetric top
are different from those given for the geometric symmetric top for which the axes
systems are constrained to coincide. The rules now depend on the distribution of
non-zero components of polarizability among the irreducible representations of the
appropriate asymmetric top point group. However, the inertial properties of the
accidentally symmetric top allow us to specify rotational states with the familiar
symmetric top quantum numbers J, K and M.

To obtain the dimensionless CIDs for individual rotational and rovibrational
transitions in accidentally symmetric tops we recognise that the series of equations
(1.24) to (1.27) describing the CIDs for a given AK in geometric symmetric tops
are merely a particular form of a more general set of equations applicable to all
symmetric tops. Removing the specific interrelations of tensor components, (ayx =
ayy = o, for example) and identifications of vibrational type with AK which are

characteristic of the geometric symmetric top, we find the following CIDs:
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_ 2 , BK? — J(J +1))? 1
B = 0{45 @ J-+1X2J-k3x2J—sn[azz"é(aXX‘FaYY”
X [7 GXX + ny)] +— (Axyz — Ayzx)] }
{45 Y EII{)(zJJJEé;Ezl}]_— 1y@zz - %("‘” + O‘YY)]Z}_(2-1a)

- 3(Gxx + Gyy)] — (Axyz — Ayzx)]

clazz — ;(axx + ayy)]

A, = s (2.1b)

AJ =+1,+2, AK =0

A 2 [7[G'zz — 2(G%x + Gyy)l + 4(Axyz — Ayzx)} (2.22)
i Tclazz — Saxx + ayy))]

A - 2Ug,-aa”+?h%—%va—Aﬂﬂ] (2.2b)
clagz — 5(axx +ayy)]

AJ =0,+1,42, AK +1

1 1

A, = —[axz(G'XZ + Ghx) + ayz(Gyz + Goy)
+;1 layz(Azzx — Axzz + Axyy — Ayrx)
—axz(Azzy — Avzz + Ayxx — AXXY)]]

x(akz +ofz)™" (2.3a)

1
A, = - loxz(Gxz + Gax) + avz(Gyz + Gy)
—-%) [ayz(Azzx — Axzz + Axyy — Ayvx)
—axz(Azzy — Avzz + Avxx — Axxy)]]

x(akz +apz)™! (2.3b)
AJ =0,4+1,+2, AK = £2

A, = g[(OLXX — ayy)(G'x — Gyy) + 2exv(Gxy + Gyx)

—-;fl* (axx — ayy)(24zxy — Axvz — Avzx)

+2axy(Axxz — Azxx + Azvy — AYYZ)]]

[(axx — ayy)’ + daky]™ (2.4a)
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[\V]

A = “|(axx — avr)(Glx — Gyy) + 2axv(Gly + Cix)

o
©| &

+—[(axx — avy)(24zxy — Axyz — Ayzx)
+2axy(Axxz — Azxx + Azvy — AYYZ)]]

x[(aXX - Oéyy)2 + 4a§(Y]‘1 (24b)

The unresolved CIDs for a vibrational band may be obtained by summing over
all allowed final states and then averaging over the initial states as detailed in
chapter one. For example, the unresolved CIDs for a totally symmetric mode of

vibration in an accidentally symmetric top of C); symmetry are

2 7 ,
A._,, = z [45016” + 5[(0:22 — axx)(G’ZZ — XX)
+(azz — ayy)(Gzz — Gyy) + (axx — ayy)(Gx — Gyy)

+3[laxz(G'z + Gox) + avz(Gyz + Gzy) + axy(Gxy + Glyx)]]
+§[(axx —azz)Ayzx + (avy — axx)Azxy + (azz — ayy)Axzy
taxz(Axxy — Avxx + Avzz — Azzy)

+ayz(Axyy — Ayyx + Azzx — Axzz)

+axy(Azxx — Axxz + Avyvz — Azvy)]

X [45612 + ;[(azz —axx)’ + (azz — avy)’ + (axx — ayy)’

-1
+6(ak 7 + by + oy (2.52)

8. = 2oz —axx)(Ghs — Gex) + (a7 = arv) Gz ~ Giy)
+(axx — ary)(Gxx — Gyy)
+3[axz(Gyz + Gyx) + avz(Gyz + Ggy) + axy(Gy + Gyx)]
—;—) [(exx — azz)Ayzx + (ayy — oxx)Azxy
+(azz — ayy)Axzy
taxz(Axxy — Avxx + Avzz — Azzy)

tayz(Axyy — Ayyx + Azzx — Axzz)
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+axy(Azxx — Axxz + Ayyz — AZYY)]]
x[(azz — QXX)Z + (azz — OLYY)2 +(axx — aYY)2

+6(akz + ajg + aky)] ™ (2.5b)

These results are consistent with (1.31) for Rayleigh scattering from an isotropic
fluid of molecules of C; symmetry. Comparing (1.29) to (2.5) reveals the extent
to which expressions for the unresolved CIDs are complicated by introducing an
inequivalence of principal inertial and principal polarizability axes. However, sim-
plification of the form of (2.5) is possible.

We may rewrite (2.5) as [1]

2[45aG" + 78(G")* + B(4)’]

B o502 + TB(a)?] (2.62)
A, — 2[8(G")* - 38(4)"] (2.6b)
cf(a)?
where we have introduced the following frame-independent combinations:
Bla)* = %(3%(4%;4 — Caapp)
= %[(axx —ayy)? + (axx —azz)’ + (ayy — azz)’
+6(aky +akz + ayz)] (2.7)
B = 5(30aaGhs = daaCig)
= %[(axx — ayy)(Gxx — Gyy) + (exx — azz)(Gxx — G7z)
+(avy — azz)(Gyy — Gzz) + 8laxy(Gxy + Gyx)
taxz(Glz + Gx) + arz(Gyz + Gy (2.8)
p(A) = %waaﬁfa‘réSAv&ﬂ
= %w[(ai’lf —axx)Azxy + (axx — azz)Ayzx + (azz — ayy)Axzy
t+oaxy(Azxx — Axxz + Avvz — Azyy)
+axz(Axxy — Avxx + Avzz — Azzy)
tayz(Axyy — Avyx + Azzx — Axzz)) (2.9)

31



It is useful to note that (2.5), being exclusively functions of tensor invariants a, G,
B(a)?, B(G")? and B(A)? may be immediately rewritten in canonical form by taking
tensorial components relative to the principal axes of polarizability rather than the
principal axes of inertia.

It is also possible to derive equations analogous to (1.32) and (1.33) which give
the CIDs applicable in the case of resolution of the pure rotational Raman wings
from the central Rayleigh line. The CIDs for the Rayleigh line averaged over all

initial rotational states for a molecule of C; symmetry are

2 , Lur(2 +1)Dige jpee” BT
A, = = :

X[Qazz — (axx + ayy)]

7
X [ZDGIZZ ~ (Gxx + Gyy)l + %(Axyz — Ayxz)
<4507 + Yik(2J + 1)D3K,i1;e_EJK“‘T
T2 + 1)e T
7 -1

X Z[2azz —(axx + OCYY)]Z} (2.10a)

Az _ 2[2GIZZ — (GIXX + GS/‘Y) - %w(AXYZ - AYZX)] (2.10b)

c[2azz — (axx + avy))

The corresponding CIDs for the combined Stokes and anti-Stokes rotational Raman

wings are
2
c
+w(Axyz — AYXZ)]
[1 _ Yk(2d + 1)D3K,JK6_EJK/I'T}
Sux(2d + 1)e B
+42[axz(G'yz + Gyx) + avz(Gyz + Gzy) + axy(Gxy + Gyx)

A, = [[2azz — (axx + ayy))] [7[20”22 — (G x + Gyy))

1
+§(axx — ayy )(Gxx — Gyy)l
twl2axz(Axxy — Avxx + Avzz — Azzy)
+2ayz(Axyy — Ayyx + Azzx — Axzz)

+2axy(Azxx — Axxz + Avvz — Azyy)

+ayy — axx)(24zxy — Axvz — Avzx))
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Yik(2J + 1)D3g ;e Boxnr
S (2d + L)e B

X [7[2azz —(axx + ayy)]’ [1

1 -1
+84[(ak s+ aby + o%y) + 7 (exx = ayy)ﬂ] (2.11a)

A, = %[[[hzz = (axx + ayy)[2G%; — (G x + Gyy)]
“‘%(AXYZ - AYXZ)]

w1 — k(2 + 1)D3K,JK€_EJK/"T
i (2J + 1)e~Brxnie
+3[2ax2(G% 7 + Gx) + 2ay2(Gy 7 + Gy ) + 2axv(Gy x + Gyy)

+(axx — ayy)(Gyx — Gyy))
—%[2axz(AXXY —Ayxx + Ayzz — Azzy)
+2ayz(Axyy — Avyx + Azzx — Axzz)
+2axy(Azxx — Axxz + Ayyz — Azyy)
+ayvy —axx)(24zxy — Axyz — AYZX)]}

Tk (2d + 1)D3'K,JK°’_EJK”‘T
T2 + 1)e B

x |[2azz — (axx + ayy)]? [1 -
1 -1
+12[(ak 5 + apz + aky) + Z(axx — ayy)z]} (2.11b)

We shall not write down explicitly the results equivalent to (2.5) to (2.11) for all
possible asymmetric top point groups. For asymmetric tops of higher symmetry, it is
obvious that these equations require modification consistent with the transformation
properties of the relevant polarizability and optical activity components as given by
the character tables of group theory.

The high temperature classical limit of (2.10a) and (2.11) for a specific molecule

may be obtained by using (1.34).
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2.2.2 Intensity factors

In chapter one, we defined intensity factors (1.15) for rovibrational transitions in
symmetric tops. In an analogous way, we define intensity factors for rovibrational
transitions n', J'T'M' « n,JTM in asymmetric tops. The 7 label is an integer
—J < T < J which is assigned such that the lowest energy level of a J manifold
has 7 = —J and the value of 7 increases with increasing energy up to the highest
energy level with 7 = J. An alternative labelling scheme associates the limiting
case prolate and oblate top K quantum numbers to each level. Thus, for a transition

n',J'T'M" — n,JT M we define an intensity factor corresponding to a TS scattering

contribution:
1 )
k T AT — "ITM | TF | n, JTM
(L (TS 1 mir (2J+1)%jm(n | Ty | n )
x(n, J'T'M'" | 8% | n, JT M)* (2.12)

It is possible to write |n,J7 M) as a linear combination of Wang functions
In, JTM) =Y ail in, JK M) (2.13)
K

The summation is over K exclusively even or odd, and the Wang functions are def-
inite parity symmetric or antisymmetric combinations of symmetric top functions:
1
V2

where v is exclusively even or odd for a given summation. The rotational energy

in, JKM7) = — [|n, JEM) + (=1)"|n,J — KM)], K >0 (2.14)

Hamiltonian for an asymmetric top may be set up in the Wang function basis and
diagonalized using standard methods to obtain the eigenvalues and eigenfunctions.
These can be classified according to their symmetry by E*,E~,0%,0~ where E or
O denote whether even or odd values of K are involved in the summation (2.13),
and + or — indicate the even or oddness of v [32,41,42].

The asymmetric top matrix elements in (2.12) may be expressed as a combina-

tion of symmetric top matrix elements by using (2.13) and (2.14). It is then possible
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to apply the Wigner-Eckart theorem for axially symmetric systems (1.16) to obtain
[40]

', J'T'M' | TF | n,JTM) = 7 (=1)" "M (27 +1)(27' + 1))}

J ok J A

M ¢ M K=0
x(—1)K [1 4 (=1) 7"t (—1)7+']

- J k J JoJ )
xTé“( )+ZZZ[WT§

-K 0 K
+(_1)7+1’(_1)J+J'+kz~q'qu

x (—1)K+7aJ'T'GJ'T Ik J
(°] K
V2 0 ¢ -K
R L
+—=ay a
vz (-—K' g 0
J k J
~K' q/ K
(1) J ok J
_KI ql _K
} (2.15)

B B A R |
_+_(_1)'Y+’Y
K' ¢ -K
Inserting (2.15) into (2.12) yields

(2J' +1)
UNTS)wrrimir = @h+1)

K
+——( 21) af{’;‘r'a{g

2K:O

ng(

J' k

K 0
J J K ! J+J' +k -q' ik
+ 330 [T (T )T,

K=1K'=1q¢'=1

1 d JT' JT( _1\K I+ Ry
<=5 afT el (-1)F [14+ (1) (~1)*]



R
0 ¢ -K
1 ..
+ﬁa}‘1{;f gT( kg
_KI ql 0

+__1_a.7’;]" JT JI k J
\/§K a, (_K’ q’ 0)
(J’ koJ
-K' ¢ K)
+(_1)7( Ik J)

~-K' ¢ -K

+(_1)'v+-r’( Jok
K oK (2.16)

1

(-1)%
+———2 aé?a}?
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conditions required for the 3 — j symbols in (2.16) to be non-zero. In the case of
isotropic scattering (k = 0) these are AJ = AK = 0, while for anisotropic scattering
(k=2) we have AJ = AK = 0,41,+2. As for the symmetric top, there are further
restrictions on AK dependent on whether or not the associated tensor component
contributes for a given combination of initial and final vibrational states.

In addition to the aforementioned rules, which are of the same character as those
rules given earlier for the symmetric top, there are rotational selection rules which
are unique to the asymmetric top. These rules, also obtainable from (2.16), specify
the allowed associations of AJ with initial and final rotational state symmetry
combinations for a given polarizability or optical activity tensor component and are
deduced from a consideration of non-vanishing 3 — 7 symbols and the combinations
of even and odd-valued J, J', v and ' required for a specific tensor component
to appear in (2.16). The selection rules so derived are listed in table 2.1, which
is consistent with Stoicheff [36]. For simplicity we have written the results for a
molecule of C; symmetry. For other asymmetric top point groups, the relation
between components and rotational selection rules are as given and the vibrational

species should be obtained from group theoretical considerations.

2.2.3 Vibration-rotation Raman optical activity

In a fashion similar to that detailed for the symmetric top, it is possible to cal-
culate the polarized and depolarized dimensionless CIDs A, and A, associated with
allowed rovibrational transitions by correlating an intensity factor (I, ;‘(TS N gz nsr
with each term quég* appearing in (1.2) as specified by (1.23). We now list the

CID:s for all possible combinations of initial and final state symmetries:
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AJ =0,+2; E* - E* 0% - 0%
AJ =+1; E* o E-,0% & O~

9 @r+1) 1
A, = E{3OLGI5JJ/5T'T’ + T) *\7—“6"[2022 — (axx + ayy)]
ZJ: T IJT J2J ( ) i (—1)7
X aK a.K —\axx —ayy
K=0 -K 0 K K=1 \/é-

rr! J' 2 J - K Yo y J' 2
xalT'ajT PGV O, J
0 2-2 V2 2 2 0

1Jq'17( 72 )+m-1r oyt o7

+2“K+2 K K29 K 5 ay_ g
J 2 J (=1 Jo92 J
X + “KTz Gp
(K—z 2—K) 2 K-2 2-K
1 /]
X {5_6 {7[2Gzz ~ (Gxx + Gyy)l + w(Axyz - Ayzx)]
I, J 2 J
x 3 aglay
K=0 -K 0 K
7
§(Gxx Gyy) — (2AZXY —Axyz — Ayzx)]

% i -1y J’T’ al” J'2J
= 0 2-2

rort J 2 J 1 J 2 J
oI 7a +gakfaak
-2 20 -K-2 2 K

(<1)" yr ( I’ J)
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+

()" g V2T
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]. 1! JI 2 J
(GXX—QYY)Zl JTaT
V2 Tt o 20

=" s gr Joo2J
K-2 2-K

-1
} (2.17b)

AJ =0,+2; Et - E~, 0t < O~
AJ = +1; E* — E*, 0* - O*

(Gxy + Gyx) — 5:w(Axxz — Azxx + Azvy — Avyz))

A, = (2.18a)
coxy
7 ’ 1 _ —_
A, = (Gxy +Gyx) + w(Axxz — Azxx + Azvy — Ayyz)] (2.18b)
Caxy
AJ =0,+2; Ef & OF
AJ = £1; E* & O*
A, = (GYyz + Gloy) + 57w(Axyy — Avyx + Azzx — Axzz)] (2.19a)
cayz
I ’ 1 A — A A —A
A, = [(Gyz + G%y) — w(Axyy — Avyx + Azzx — Axzz)) (2.19b)
cayz
AJ =0,+2; E*¥ « O*
AJ = +1; E* & OF
A, = (Cxz + Gax) = 7iw(Avxx — Axxy + Azzy — Ayzz)) (2.20a)
caxz
A [(Gxz + G%x) + sw(Ayxx — Axxy + Azzy — Ay zz)) (2.20b)

coxz
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2.2.4 Intensity sum rules

For both the inertial and geometric symmetric top, we have noted that the
unresolved CIDs for a vibrational band obtained by summing over all allowed states
and then averaging over the initial states are identical to the CIDs for an isotropic
fluid. To prove this identity for the symmetric top, we made use of some of the
properties of the factors D% .. ;x given by (1.20) which appear in the fully developed
intensity factor expression (1.19) to show that summing these intensity factors over
all allowed final states gives a simple result independent of initial state. For the
general case of an asymmetric top, it is easier to work with the original definition
of an intensity factor (2.12) rather than the finalised form (2.16).

We may write [31]

1 )
5T S) 0 yping m = e (o', JT'M' | TF | n,JTM)
J'ZZ;’ q J'T'M'nJTM (2] + 1) MMZJITI q
x(n', J'T'M" | $ | n, JTM)*
1

= (n' | T | )
(2k + 1)(2‘] + 1) MM%’:'T'qq’ !

x(n' | 3;“, | n)*

x(J'T'M' | D (w) | JTM)

< (J'T'M' | DY, (w) | JTM)*
1

= @D ;m’ | TS | n)(n'

Sk | n)* (2.21)

where the unitarity of the matrix of finite rotations is employed in the final step.
Clearly, the development is also applicable to the symmetric top for which 7 = K.
By correlating intensity factors with each term 5';°T:* appearing in the CIDs in the
usual manner, this result allows us to prove the required equivalence for a general

molecule.
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2.3 Discussion

It may be seen from table 2.1 and from the explicitly calculated dimensionless
CIDs of subsection 2.2.3 that the rotational selection rules for each of the tensor
components, with the exception of T and T? + T?,, are different. A consequence of
this is the simple temperature independent dimensionless CIDs obtained for indi-
vidual transitions except those associated with tensor components T?, and Ti +—T_2_2.

It is possible to show that the CIDs for individual transitions in the symmetric
top may be recovered from (2.17) to (2.20) by retaining only one of the coefficients
a3} per state for both initial and final states and setting it to unity. Clearly AK is
restricted to one value as a result and the appearance of one of the tensor compo-
nents TZ and T; +T2_2 in the CIDs for a given transition precludes the appearance of
the other. It is also necessary to note that levels which form distinct non-degenerate
pairs of opposite parity in the asymmetric top, coalesce in the limiting case of the
symmetric top. We must therefore sum the relevant intensity contributions to take
account of this degeneracy and correctly reproduce the results of chapter one for
the symmetric top. This is effected by adding intensity contributions associated
with T_z, + Tiq, to contributions associated with T;, - Tiq,.

In chapter one, it was noted that a group polarizability calculation of the pure
rotational ROA in triphenylborane had been carried out [10] and it should be men-
tioned that we have attempted some more complicated group polarizability calcula-
tions of the pure rotational ROA in epoxypropane and trans-2,3-epoxybutane within
the accidentally symmetric top approximation. Slight variation in the group polar-
izability isotropies and anisotropies used was found to effect a large change in the
magnitude, and even in the sign, of the calculated CIDs. Since the starting data was
in itself unreliable, as several quite different values were available in the literature
for each group polarizability component required, it was decided that the results

did not merit inclusion. However, the calculations did highlight the artificiality of
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splitting a molecule up into independent groups.

Although in this chapter and the preceding one, the theory of rotational ROA
has been set out in some detail, an experimental investigation remains an inter-
esting project for the future. The requirements and possible difficulties of such
an investigation in relation to conventional gas phase Raman spectroscopy should,
however, be mentioned. Obtaining sufficient spectral resolution is a familiar prob-
lem in conventional gas phase Raman spectroscopy which is particularly pertinent
for structures complex enough to be chiral. In recent years, workers have been
able to avail themselves of a range of techniques associated with non-linear Raman
spectroscopy such as coherent anti-Stokes Raman spectroscopy (CARS), Raman
gain and inverse Raman spectroscopy which provide resolution orders of magnitude
higher than that obtainable with linear Raman spectroscopy [43]. Indeed, the theory
of CARS ROA and magnetic CARS ROA has been developed [44]. Unfortunately,
one of the main disadvantages of CARS is a high non-resonant background lead-
ing to a poor signal-to-noise ratio and thus limiting detectability. It was probably
for this reason that attempts to observe natural and magnetic CARS ROA proved
unsuccessful [44]. However, as we have seen it is often the case that information
which is a function of handedness and given uniquely by ROA does not depend on

complete spectral resolution.
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Chapter 3

Circular dichroism and optical

rotation

3.1 Introduction

A detailed treatment of optical rotation in symmetric tops which takes account
of quantised molecular rotation has already been given by Chui [6]. We propose an
alternative development which is nevertheless consistent with the earlier work and
introduces the trivial modification of accommodating optical rotation at absorbing
frequencies and rotational CD by allowing for the finite lifetime of the excited
virtual states. Our results are then generalised to encompass the asymmetric top.
Finally, we explore optical rotation associated with purely rotational transitions

which requires a rotation-induced magnetic moment.
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3.2 Theory

3.2.1 The symmetric top

The angle of optical rotation for a collection of freely rotating symmetric tops
is [1,45]

1 giKx
AO ~ ——wu, N
22" J%/I (27 +1)

¢ (5 Aasel 1) = Aueal ) + Guf) + G ()] B (1)

where Z is the rotational partition function, w is the frequency of the incident
light, ¢ is the path length and N is the molecule number density. We have also
introduced the dispersion lineshape function f [1] and the dispersive parts of the

optical activity tensors G| 5(f) and Aqg,(f) defined by

, 2
aﬁ(f) = —ﬁ Z fw
"IJ‘KIMI
xIm((n,JKM | po | 7', JK'M"Y(n', J'K'M" | mg | n, JKM)) (3.2)
2
Aapy(f) = z > f@wrkaik
n JK'M'

xRe((n, JEM | po | 0, JE'M')(n', ' K'M' | ©s | n, JK M))(3.3)

The contribution to A® from G, (f) + G,,(f) for a molecule in rotational state
|JKM) is
' 2 -
@+ 1) T(CLN+CW) = T+ T fu
M n'J'K'M'M

xIm((n, JKM |} | n',J'K'M')
x(n,JJK'M' | m', | n,JKM)
Hn, JEM | gty | ', JE'M)
<(n',J'JK'M' | m} | n,JKM))

Yo fw(@ +1)(-1)F

n' JK'M'M

St oo
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2

J 1
X

K -K -K+K'

r 2 2

JoJo1 J oJ1
X +

M -M' -1 -M M -1
xhnﬂnlﬂk g [ 7)(n' | mki_g [ 7))

= — Z fw(2J' + 1)(—1)K+K+
n'J’K'

J 1
X
K-K' -K+K'

xIm((n | pi_go | 2} (0" | mir_g [ m))  (3.4)

2

where the second step involves application of the Wigner-Eckart theorem for axially
symmetric systems (1.19) and the third step exploits the orthogonality relations of
the 3 — j symbols. Note that we have taken account of the (2J + 1) degeneracy of
the M substates.

Similarly for the contribution from A.y.(f) — Ay.(f):

2J + ]- Z 4-z"yz - ya:z(f) =
l/?;(QJ +1)70 > fowrkinik
n'J'K'M'M

xIm((n, JKM |y} | n',J'K'M')
x(n/,JJK'M' | ©%, | n, JK M)
~(n, JKM | p*, |0, J'K'M")
x(n',J'K'M' | ©} | n, JKM))

= Q Z fwan/Kr'nJK(—1)K+K’+1(2J’ + 1)
h n'J'K'M'M

J J 1 J J 2
X

K-K K-K|\K-K K-K
(7 o1 J J2
3%

MM -1\ M-M-1
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JoJr o1\ [J 7 2
M-M 1)\ M-M 1
*Im((n | pie_go [ 2} (0" | OFi_g [ 7)) (3.5)

However, the orthogonality properties of the 3 — j symbols dictate that summation
over M and M’ produces a zero result, which means that there is no contribution

from A,y (f) — Aye:(f)-
Thus, we finally obtain

2wiu N A B A A 1
A0~ =T N fou(2) +1)(-1)FK
JK K -K' —-K+K'
n' J'K'
xIm((n | pk_g | n')(n' | mi_g | n))e Foxinr (3.6)

It is then immediately possible to write the following result for CD:

2

2w? AN / P .
(. —5}%2— Z g9k (2 + 1)(-1)K+X
JK R
n'J'K'
<Im((n | ph_gr | n)(n' | mbi_g | n))e Eomsrr .

where 7 is the macroscopic ellipticity, obtained from (3.6) simply by replacement
of the dispersion lineshape function f by the absorption lineshape function g [1].
Expression (3.6) is in agreement with Chui’s more rigorous result which involves
a summation over all ranks of interference terms between electric and magnetic
multipoles of the same rank [6], while our result depends on a single electric dipole-
magnetic dipole term. For most purposes our expression is adequate because the
dipole-dipole term dominates strongly over the other terms in the summation [46].

We may split the summations in (3.6) and (3.7) into two parts corresponding to

n' = n and n’ # n. Thus, (3.6), for example, becomes

2

R B 1
3 farr (27 + 1)(~1)FK
JK K-K' -K+K'

2w N

A® 3hZ

J'K’

<Im((n | pie_go [ n)(n | mi_g | n))e” BoKikT
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Y Y B 1
+ Z ngK(QJI-{- 1)(—1)K+K

7 K -K' -K+K'
J'K’
n'#£n

xIm((n | pk_go | )" | Mg | m))eBoxrer (3.8)

The first term describes the contribution to optical rotation through purely ro-
tational excited states while the second term describes the contribution through
rovibronic excited states. It is appropriate to consider the first term at rotational
transition frequencies, that is, in the microwave region and the second term at the
higher frequencies characteristic of vibrational or electronic transitions. The first
term, dependent on purely rotational virtual states, is equal to zero because it is
always possible in the absence of an external source of time asymmetry, such as
a magnetic field, to construct molecular states for which the expectation value of
the magnetic dipole operator is zero since it is a Hermitian time-odd operator [1].
There is thus no optical rotation in the microwave region or, for identical reasons,
CD analog to pure rotational ROA, within the approximation used in this deriva-
tion. The second term may be further separated into a part which is a function of
purely rovibrational transitions dominant in the middle and far infrared regions and
a part which is a function of rovibronic transitions dominant in the near infrared,

visible and ultraviolet regions [1].

3.2.2 The asymmetric top

We have shown in chapter two how a treatment of rotational ROA in symmetric
tops provides a framework on which to build the more sophisticated theory required
for an asymmetric top. In an analogous fashion, it is possible to extend the optical
rotation results obtained for a symmetric top to an asymmetric top. We develop

(3.1) making use of definitions (3.2) and (3.3) suitably modified for the asymmetric
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top by replacing the K quantum number of the symmetric top rotational state by
the pseudo-quantum number 7 for the asymmetric top rotational state. It may be

shown using (2.15) for rotational matrix elements of asymmetric tops that

2wip N ,
AO = “%—Z‘“ ; fgj'T(2J +1)

n' JIT!

{Z%—)fim%m

K=0

xIm

' ’ o J 1 J
x[1 = (=1)"*"(=1)"*" |ag a”
—-K 0 K

'LKX:(nimln + (=1 (=1 (n | ply | )]

( 17’+1 T J 1 J L L 1 IJTaJ,T, J 1 J
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Loyr pp (1T (=1 0 J1J
t—70" 0 + ax’ ak iy
V2 2 K-11K

+ ax’' ai
K-11-K
—1)E+r+r o J! 1 J
+'(—)‘2*‘“ a'}’{Ta}{-{l Kol 1-K } e BiTint (3.9)

The combination Ay, (f)— Ayz.(f) does not contribute because, as for the symmet-
ric top, summation over M and M’ leads to a zero result. Again, if the dispersion
lineshape function f is replaced by the absorption lineshape function g in (3.9), the

expression for 7 is obtained.

3.2.3 Optical rotation in the high frequency limit

At high frequencies of incident light, we can introduce a version of the Placzek

approximation as discussed in subsection 1.2.1 such that

ap = (s | Gop(Q) | numr) (3.10)

Note that we have dropped the dependence on lineshape function as it is implicit
in the approximation that we are considering off-resonance conditions. We can now
use (3.10) to derive an approximate expression for optical rotation. Assuming the
conditions necessary for Placzek’s approximation we write

lw(A-azyz - Aymz) = (n,JTJ\J | _%wAg - \/gag I anTM>

G, — G, + 3

——\%(n,JTM | GR | n,JT M) (3.11)

where 7 = K for the symmetric top.

Only the dependence of the matrix elements on M can be split off in general
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[33,34], so that (3.11) becomes, in terms of reduced matrix elements

' 1 J
sz - Glyy + gw(A:nyz - Ayz-z) = (—I)J_M-H 2 J
-M 0 M

x(n, JT | —%wA2 - \/ga'z | n, JT)

2 J o J
_ A qyM
Y (—M 0 M)

x(n,JT | G® | n,JT) (3.12)

Summation over M of the first term in (3.12) gives zero since [27,47]

J 2 J ) (=1 TM[3M? - J(J + 1)) (3.13)
Moo M/ TU+DRT+3)2T+1)(2] —1)]: '
i M? = %(2] +1)J(J +1) (3.14)

M=-J
and each rotational state is (2J + 1) degenerate in M. Thus our final expression is

1
AO = —gw,quNG;a (3.15)

It should be noted that, within the approximations made here, A® is independent of

rotational state and thus temperature, and coincides with the well-known classical

result for optical rotation in an isotropic sample [1].

3.2.4 Optical rotation at microwave frequencies

Thus far we have only taken account of the contribution from electrons to the
magnetic moment in the molecule-fixed frame and have ignored the effect of molec-
ular rotation on the resultant space-fixed magnetic moment. Within this approx-
imation there is no optical rotation in the region of pure rotational transitions.
However, Salzman has pointed out that optical activity at microwave frequencies is,

in principle, possible and depends on a rotation-induced magnetic moment which
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contains contributions from both electrons and nuclei [8,9]. The necessary theory
has been developed to describe the effect for an accidentally symmetric top in ro-
tational state [n, JKM) = |n,000) [8]. The mass distribution of this top is that of
a symmetric top but the molecular g tensor is not diagonal in the principal axes
frame.

We can accommodate the effect of molecular rotation in our formulation of
optical rotation by employing matrix elements in which the magnetic dipole operator
operates on rotational states [48,49]. Following Salzman, we consider specifically the
J =0 to J = 1 transition of the accidentally symmetric top. The required matrix
elements are given by Salzman [8,9] and reproduced in table 3.1. (The tabulated
matrix elements are expressed in Cartesian notation as are Salzman’s results, so we
do not attempt a translation into spherical tensor form.)

By making use of table 3.1, we may write

2un [px(gvz — gzv) + pr(g9zx — 9xz) + pz(gxy — grx)]
3h(wiy — w?)

Im(G;, + Gy) =

(3.16)

where we have assumed off-resonance conditions to ensure that we may neglect the
energy differences in the K sublevels.

Noting that Salzman’s molecular § parameter is related to G5 as follows:

AGoq
B=——= (3.17)

it is possible to see that (3.16) is consistent with (21) of Salzman’s paper [8]. More-
over, the derivation presented here constitutes a much more direct method of cal-

culating an optical rotatory parameter in the microwave region.

3.3 Discussion

It is interesting to note that prior to the work of Salzman, an independent

treatment of optical activity was presented by Atkins in which individual rotational
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Table 3.1
Rotational matrix elements of y;, yy, m, and m, for the J =0 to J =1 transition
of the accidentally symmetric top, where g.g is the molecular g tensor and uy is

the nuclear magneton [8].

Space-fixed matrix elements | Molecule-fixed matrix elements

(n,11 £ 1| pz | n,000 iﬁ(,ux + iuy)

(n,10 £ 1| pz | 7,000 :F%/LZ
(n,1—141|ps|n,000 435%(#){'- iy )
(n, 11+ 1 py | 2,000) | —32=(px +ipy)

(n,10 £ 1| py | »,000 Kz
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iuy
2v/6
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states were explicitly considered and a novel manifestation of optical rotation pre-
dicted, with molecular rotation again cited as a prerequisite [50]. However, the
underlying symmetry characteristics of this effect are completely different to those
of optical rotation in the microwave region as proposed by Salzman [14,39].

The optical rotation of the earlier study is associated with the difference in
response to circularly polarized light shown by counter-rotating molecules and is
properly classified as a magnetic optical activity phenomenon. The magnetic op-
tical rotation observable is generated by a time-odd, even-parity operator and it
is therefore supported by states which do not have definite reversality. Suitable
states are provided by molecular rotational states of definite angular momentum.
Notice that an equilibrium ensemble can be thought of as containing equal numbers
of counter-rotating molecules. Consequently, there would be no overall rotation of
plane polarized light by a bulk sample unless it were in the presence of an external
time-odd influence such as a magnetic field which, in breaking the time-reversal
symmetry of the system, would lift the degeneracy of counter-rotating molecules.
The effect described by Salzman is an example of natural optical activity. The time-
even, odd-parity operator which generates the natural optical rotation observable
is supported exclusively by the mixed parity internal states of a chiral molecule. As
expected, the combination of tensorial components in (3.16) describing molecular
rotation-induced natural optical activity may only be non-zero for a chiral molecule.

It is finally important to ask which of the expressions calculated in this chapter
are likely to be most useful from an experimental viewpoint. Since rotational struc-
ture has already been seen in gas phase vibrational IRCD spectra, this could prove a
favourable choice for a more detailed study [51]. The expressions appropriate to an
analysis of such spectra are (3.7) for symmetric tops and its analog for asymmetric
tops obtainable from (3.9). Experimental verification of natural optical rotation in
the microwave region is hampered by two intrinsic limiting factors. First, the angle

of rotation decreases as the frequency of the impinging light decreases, and second,
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the contributing magnetic dipole matrix elements are about 103 times smaller than

elements associated with electronic spin or orbital angular momenta.
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Part 11

Discrimination in the dispersion
interaction between odd-electron

chiral molecules
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Chapter 4

Semi-classical development

4.1 Introduction

The interaction of one chiral molecule with another, not necessarily of the same
chemical species, is determined by the relative handedness of the pair. This is mani-
fest in numerous diverse physical phenomena ranging from the difference in melting
points between active and racemic crystalline forms of a compound to biological sys-
tems in which physiological activity is linked to one stereoisomer exclusively [52].
Various model mechanisms have been posited to rationalise the discriminatory be-
haviour displayed by coupled chiral molecules for disparate chemical environments
and physical conditions [2,52-58].

Our specific objective is to shed new light on an old topic, namely that of
the difference in the dispersion interaction between a pair of chemically identical
molecules of the same and opposite absolute configurations.

The possibility of a term discriminating between like and unlike pairs of chiral
molecules in the dispersion interaction energy was first suggested by Mavroyannis
and Stephen [53]. Their calculation treated the case of an interaction averaged

over all relative orientations of the two molecules. Later work carried out by Craig,
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Power and Thirunamachandran amplified the original idea, extending the previous
results to cover locked and semi-locked molecular configurations [54,55].

The development presented here considers additional contributions to both dis-
criminatory and non-discriminatory dispersion interactions between chiral molecules
in degenerate states. Doubly degenerate Kramers conjugate states of odd-electron
molecules, being the simplest and most common example, are discussed in detail. By
allowing for degeneracy the possibility of contributions which are a function of time-
odd tensor components is introduced [1,59]. This augments the commonly cited
time-even contributions. Buckingham and Joslin have discussed spin-dependent
dispersion forces between alkali metal atoms originating in time-odd property and
transition polarizability tensors. The resulting contribution to the overall dispersion
interaction energy was found to be negligibly small [60]. However, the work does
provide impetus for a similar investigation of possible novel terms in the discrim-
inatory dispersion interaction dependent on time-odd components of the complex
optical activity tensor Gog.

In this chapter a semi-classical development of the discriminatory dispersion
interaction applicable at intermolecular separations in the near-zone region is given
along with a model calculation on a hypothetical chiral odd-electron transition metal

complex of symmetry O*.

4.2 Theory

4.2.1 A semi-classical development of the dispersion inter-

action for the near-zone limit

We present a semi-classical treatment of the discriminatory and non-discriminatory
parts of the dispersion interaction for the near-zone limit. The near-zone is that

intermediate region in which the molecules are sufficiently distanced, one from the
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other, to allow electron exchange interactions to be neglected, yet near enough
that retardation effects need not be taken into account [61]. Since in this range
the indistinguishability of electrons is irrelevant, we write the total wavefunction of
the two-molecule system as a simple product of the wavefunctions of the isolated
molecules 1 and 2.

The interaction Hamiltonian may be written [54,55]
Hine = Hg + Hu (4.1)

where Hg and Hjs in the dipole approximation are given by

Hy = —47::60To¢ﬁ,‘1'1a#2ﬁ (4.2)
Hy = ,Z_; 81,2, (4.3)

where
Top = VoVpR ™' = (3R,Rs — R*6,5)R™° (4.4a)

with R = Ry, the position vector of molecule 2 relative to molecule 1. The electric

dipole moment u, is given by (1.5a) and

€;
Ma = Z 9m~(l'a +gz'5,'a) (44b)

~ 2

is the magnetic dipole moment for the collection of charges e; with mass m;, orbital
and spin angular momenta /;, and s;, and g-factor g;. Notice that (4.4b) is a gen-
eralisation of (1.5b) which allows for a contribution to the magnetic dipole moment
from spin angular momentum s.

It is possible to extend the interaction potentials to include higher order multi-
polar terms, but the associated contributions to the total dispersion energy atten-
uate more rapidly with increasing intermolecular separation than the dipole-dipole
parts, and are not discussed here [46,62]. However, it is interesting to note that
new discriminatory contributions, some of which originate in pure electrostatic in-

teractions, are yielded by more sophisticated treatments of this type [46]. We shall
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consider the non-discriminatory dispersion energy arising purely from an electric
dipole-electric dipole electrostatic interaction and the discriminatory part resulting
from an electric dipole-magnetic dipole interaction.

Initially we derive expressions to describe the perturbation Hamiltonian matrix
elements for molecule 1 with isoenergetic states |n;) and |m;) and molecule 2 with
isoenergetic states |ny) and |m;). The eigenvalues of the secular matrix in the
particular case of odd-electron molecules in twofold degenerate Kramers states are

then explicitly given.

4.2.2 The non-discriminatory dispersion energy

Considering only Hg as the perturbation Hamiltonian, we find from second-order

perturbation theory [60,62]

1

Erimamin, = _WTaBTﬁ
o

- (mamy | paapag | J1J2) (J1d2 | B1, 2, | Ran2) (4.5)
| B(Wjyn; + Wizn, ) '

n#EnL,M

J2#nz,m2

The above expression can be written in terms of the dynamic transition polarizabil-

ities of the individual molecules. Making use of the identities

1 . 2/00 AB du
A+B 7o (A% +u?)(B?+u?)

uZ

2 =)
;/o (A2 + u?)(B? + u?)

du (4.6)

with A >0, B > 0,

we obtain

h

Emlmz,nan = _mTaﬂTqé
XA [(dla'y)r_‘ttlnl(iu')(dzﬁd)jr—zznz(iu)

(81 Y (1)(B2, )™ (30)] (4.7)

Mg
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where we have introduced dynamic transition polarizabilities [1,60,62]

Gaslinl) = 7 3

#nmwjn —w2
<({m | pa | 5)(5 | o I )+ (m | g | 5)(5 | pa | )
= (Gpa)hn(w) (4.8a)

(&aﬁ):nn(w) = ¥ Z

J#n m '"

X((m | pa | J)5 [ 1o I ) = (m | pa | 5)(5 | pa | 7))

= —(@pa)mn(w) (4.8b)

_wz

which may be obtained from transition polarizabilities (1.7) by particularising to
degenerate initial and final states. Note that we have explicitly written these tran-
sition tensors as functions of w to emphasize that they are dynamic, as it will be
necessary later to distinguish between dynamic and static transition tensors.

A similar analysis is possible for a purely magnetic interaction with Hjs as the
perturbation Hamiltonian. The resulting contribution differs from (4.5) only in
that the u, are replaced by m, and the constant factor is appropriately modified.
Magnetic transition dipoles are characteristically two or three orders of magnitude
smaller than electric transition dipoles. The purely magnetic contribution is there-

fore negligible in comparison.

4.2.3 Discriminatory dispersion energy

From the cross term of Hg and Hjr, we obtain a discriminatory contribution for

chiral molecules as follows[54,55]:

P !

Ji#ng,my Wjiny + wiz"z)
J2#nz,me

% ((mamy | prapas | 5152)(1d> | mayme, | nana)

+({mymy, | M, T, | 7172) {172 | Mg f2g | n1n2>)} (4.9)
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Again using identities (4.6) we find

foh
E o myminy = _mTaBTvs
) AR (A O (IR G
~(Gray)mam (10)(Gag, g (300)| A (4.10)

where analogously to (4.8) we have introduced dynamic transition G tensors [1]

( aﬂ)mn(w) =37 Z

;&nm jn

><(<m | #a |J><J | mp | ) + (m | mg | 5)(J | pa | ) (411a)

(Gap)mn(w) =— >

J#n m '"

x({m | pa | 5)(7 | mp | ) — (m | mg | 3)(5 | pa | m)) (4.11D)

__w2

4.2.4 Time reversal characteristics of matrix elements

Our stated aim was to allow for time-odd tensorial parts in the calculation of
discriminatory and non-discriminatory dispersion energies. We pause to identify
these terms in the results of subsections 4.2.2 and 4.2.3. The dynamic transition
tensors in (4.7) and (4.10) which describe the near-zone have corresponding effective
operators (1.8) with E = E, = E,, in (1.8j). The behaviour under time reversal
of the operators generating these dynamic transition tensors has been discussed
in subsection 1.2.1. By time-even and time-odd tensorial parts, in what follows,
we mean those parts which are generated by time-even and time-odd operators
respectively. It is necessary to note explicitly that we are linking the time-even
or time-odd character of a transition tensor with the behaviour of the generating
operator, because the behaviour of the associated matrix element with respect to
time-reversal is only that of the operator for diagonal transitions. The discrimina-

tory and non-discriminatory interactions in the near-zone limit described by (4.7)
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and (4.10) are thus seen to contain contributions from both time-even and time-odd

tensors.

4.2.5 Molecules in non-degenerate states

Our results may be shown to be consistent with conventional treatments of
systems lacking degeneracy by letting |mq) = |n;) and |mj) = |n2).

Then, from (4.8), (4.11) and (1.4) it is possible to see that

(aaﬁ)nn( ) = aaﬂ((U) (4'123')
(Gap)an(w) = —iogy(w) (4.12b)
( Otﬁ)nn(w) = Gaﬂ(CU) (4120)
(Gaplin(w) = —iGop(w) (4.12d)
so that we may write
h
E = —mTaﬁT’Y&
X/o [a1,,, (fu)ag,, (tu) + a'lw(iu)a'zm(iu)]du (4.13)
' _ Boh
E 1673¢, TapTos
« /w[am(w) Yon, i) + G ()G, (iu))du (4.14)
0

It is usual to discard the terms in the imaginary parts of the polarizability tensors
and in the real parts of the G tensors, since for an even-electron system it is always
possible to choose wavefunctions which are of definite time-reversal symmetry and
therefore do not support such time-odd tensor operators (1,14].

If time-even contributions only are retained, it is possible to recover expressions
for the discriminatory and non-discriminatory dispersion energies as most commonly

found in the literature:

h
" 3arie LT
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x /0 " o, ()t (i) du (4.15)

E = _ R
16m3¢,

X /0 G, (iu)Gh,, (iu)du (4.16)

Taﬁ T‘y&

Equation (4.15) is just the well-known London formula for the dispersion energy
[62], while equation (4.16) is the fixed orientation form of the result first obtained by

Mavroyannis and Stephen for the near-zone limit discriminatory dispersion energy

[53].

4.2.6 The dispersion energy of chiral molecules in twofold

Kramers degenerate states

Thus far, derived expressions appertain to general degenerate states. Twofold
Kramers degeneracy in odd-electron molecules is a simple example which may be
considered specifically.

Following the normal convention, the orthogonal spin states for one electron
%,%) and I%,——%) are denoted by a and 3 respectively. An appropriate choice
of basis set for the spin wavefunctions of the two-molecule system would be the
following combinations of products of one-electron spin states quantised along the

intermolecular axis;

a singlet state

B4 = (i) - o) (4.17a)
and triplet states

M) = lenes) | (4.17b)

) = 5l + i) (4.17¢)

M-2) = 18162) (4.17d)
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This particular choice ensures that the electric dipole-electric dipole and the mag-
netic dipole-magnetic dipole perturbation Hamiltonian matrices are immediately in
diagonal form since the spin functions (4.17) transform as irreducible representa-
tions of the point group to which the molecular pair belongs. The perturbation
Hamiltonians span the totally symmetric representation and cannot mix functions
spanning different irreducible representations. It follows that these functions are in
fact the eigenfunctions of the perturbation Hamiltonians (4.2) and (4.3) [60].

The dispersion energy of molecules encountering in these states is

E(H:{:l) = quaz,alaz (418&)

E(E:F) = Ealﬁz.alﬁziEalﬁzﬁxaz (4'18b)

where Eq, o 0100 Boypaonp, 204 Fayp, pa, are given by (4.7).
For molecules which are, in addition, chiral it is possible to write analogous

results for the discriminatory part of the dispersion interaction:

El(H:I:l) = Ec’xlaz,alaz (4.198.)
E,(E:F) = ;1ﬁz.a1ﬂ2 + E‘;lﬁz,ﬁﬂ!z (4‘19b)
where E!, .. o 00> Eoigocap, a0d El g, 5., are given by (4.10).

These results for twofold Kramers degeneracy may be put to use in a model
calculation on a specific odd-electron chiral molecule. For simplicity a hypothetical
transition metal complex of chiral symmetry O* is chosen. It has already been shown
that the large spin-orbit coupling in the charge-transfer states of iridium(IV) hexa-
halide complexes leads to such molecules being favourable candidates for the study
of antisymmetric scattering in the resonance Raman effect [15,18]. The intensity
of this scattering is a function of the time-odd part of the transition polarizabil-
ity (&up)m, Since the time-odd part of the dispersion interaction is also dependent

on (Gag)imn, it would seem apposite to endow our hypothetical molecule with the

properties of these complexes.
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Consequently, the model chiral complex is taken to be low spin d° with an energy
level pattern identical to that of IrBr~ in aqueous solution, as illustrated in fig. 4.1
[63]. The first few electric dipole-allowed transitions, which are in addition t, «— 7,
charge transfer transitions, are U;(le(i)) +— E](*Ty), E}(*T2) — E!Y(*Ty,) and
U'(*Tz) «— E;’(zng). It is noted that the transition Ug’(zng) — E;’(Zng) is
electric dipole-forbidden because the initial and final spin-orbit states are derived
from the same orbital configuration. Those transitions which are electric dipole-
allowed in the parent O} complex are also magnetic dipole-allowed in the molecule
of O* symmetry.

In the calculation of time-even and time-odd contributions to the dispersion
energy of alkali metal atoms [60], it was possible to make the assumption that
most of the electric dipole oscillator strength originated in n?P « n’§ transitions,
rendering tractable the summation over intermediate states required to obtain the
polarizability transition tensor components from the dipole matrix elements. The
admissibility of such a simplification is atypical. Electronic absorption spectra of
iridium hexahalide complexes display a more complicated pattern of bands and it
now becomes expedient to take account of excited states which are not necessarily
spin-orbit states derived from a common orbital configuration. Bands arising from
charge-transfer transitions feature prominently in the spectra. Those corresponding
to the transitions illustrated in fig. 4.1 have been assigned using magnetic circular
dichroism. They are of the type f; «— 7, and characteristically of intermediate
intensity. Strong e; «— <, charge transfer bands make a systematic appearance
at frequencies higher than those of the t, «— 7. transitions [63]. It is obvious
that the final states associated with e, « 7, transitions should be included as
intermediate levels in our summations because they are of an intensity which more
than compensates for their high frequency. However, these bands were not resolved
and thus no attempt at assignment was possible. This prohibits rigorous inclusion

of these transitions into our calculations.

65



U’y

Ell

E',

U’

U’

E ll'g

The first few electric dipole-allowed transitions

between the spin-orbit levels of [IrBrg?

Fig. 4.1



With these attendant difficulties, a calculation of the relative values of the total
time-odd and time-even parts to the discriminatory and non-discriminatory disper-
sion interaction is not feasible for an O* molecule modelled on iridium (IV) hexa-
halide complexes. A less ambitious attempt to calculate the relative magnitudes of
time-odd and time-even parts for a specific transition or for transitions with final
states of common orbital configuration proves instructive and is in keeping with our
desire for a qualitative estimation of magnitudes. Specifically, we shall treat singly
the transitions shown in fig. 4.1, combining the results for those transitions with a
common orbital configuration.

A direct comparison between time-even and time-odd parts is possible because
both can be shown to be a function of the same reduced matrix elements. All
possible transition tensor components may be calculated from the Wigner-Eckart

theorem for the octahedral double group O* [1,64] which allows us to write

(Tyltx|TY) = (—1)“(“)%@;““1“')
r ., T r 7, I
-y 1 9 -y -1 v

(Talty [Ty = (—1)““‘*’—;—5(1“ t]T)

r ., I r 7, ™
x 1 + P (4.20b)
-y 1 7 -y -1
N B |
<P7|tz|r’7l> — (_l)u(F—T)(_z)(FlltHIF) 0 ) (420(3)
-7 %

In this context ¢, should be interpreted as either the magnetic or electric dipole
moment operator. The states | I'y) and | ['y") are the ground and excited spin
orbit states given in fig. 4.1. The function u has been defined, and the possible
values it may take listed, by Harnung [64]. Making use of (4.20) and the tables of

3 — I’ symbols given by Harnung we obtain, for example,
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(4.21)

All other pertinent matrix elements may be calculated in a similar manner. On

making the assumption that the electric and magnetic dipole moment reduced ma-

trix elements are pure real and pure imaginary respectively, the following results

are found for the polarizability and optical activity transition tensors:

E" intermediate level

(&aﬁ);:n

0 00
000
0 00

Common factor g3y [(E"(n) || u || E"(7))*
% 00 % 00
0 %— 0 0 % 0
00 ;/\00 3
1/2+1/2 -1/2e-1/2

-1/2<1/2

67

000
000
0 00

1/2-1/2

(4.22a)



(&aﬂ);m

Common factor W KE"(n) || p || E"(5))?

0 :0\[0-% 0 00 2)(fo0 0-%
-5 00| 500(]00i)]loo0 :
0 00/1000/\-2-20/\1-%0
1/2¢1/2 —1/26--1/2 ~1/2¢1/2 1/2~1/2 (4.22b)

(Gap)in

Common factor zz2 [(E"(n) || u || E(5)) KE"(n) || m || E"(5))

h(w;‘.’n—w?)
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(Gap)iin

Common factor 57z [(E(n) || || E"(5)) KE"(n) || m || E“(5))]

(w?,—w?)

-t 0 0\(-2 0 0})f0o0O0}[f0O00O
0-% 0 0~ o0 Jloo0O0O(|[{0O00O

0 0 - 0 0-¢£/\000/\000O

1/2¢1/2 —1/2e--1/2 ~1/2e1/2 1/2¢--1/2 (4.22d)
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U' intermediate level

(&O‘ﬁ)'r‘:n

Common factor 77— (E"(n) || p || U'(5))I?

h(w?, ~w?)

oo Loolfoo00O
o tofloiofloO00O
00ij/loo /000
1/2<1/2 —1/2¢-1/2 —1/2+1/2

(&aﬁ);tn

Common factor gz (E"(n) || w || U'(1))*

0-:0)f0 fo0)(00-¢
0 0ff-200 0 0-3
000 0 00/\L o0
1/21/2 —1/2-1/2 -1/2+1/2

( éc‘ﬁ )r-tr,n

Common factor gz (E"(n) [ w1V ) KE"(m) [l m || U"(3))

0-: 0 0 20 0 0 %

1
Loof|-500 0 0-:
0 00 0 00/\-% 30
1/21/2 —1/2-1/2 —1/2<1/2
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(Gap)rn

Common factor oz [(B(n) || & | V(7)) KE'(n) || m || U'(3))

-+ 0 0)\({- 0 0 000)(0O00O

0-: 0 0-% 0 000{/000
0 0 - 0 0-:/\oo0oo0/\oo0o

1/2¢1/2 —1/2e-1/2 ~1/2e1/2 1/2--1/2 (4.23d)
Having found the contributions from individual transitions of symmetries U’ and E”
to the property and transition tensor components associated with the discriminatory
and non-discriminatory dispersion interaction, we are now in a position to calculate
the contributions to the eigenvalues of the two-molecule system originating in these
specified transitions.
We begin by considering the discriminatory dispersion interaction. The property
tensors of each molecule are referred to a common axis system X,Y, Z attached to

the pair, with Z along the position vector R which connects the local origins, so
that we may write
TogTysGroy Gagy = R GirxCGary + GryyGayy +4G1,,Ga,,
+G1y Gaxy + Gryx Gayx
~2(G1x;Goxs + CroxGoax
+G1y,Gayy + Gy Gagy )] (4.24)

To calculate the eigenvalues, we make use of (4.10), inserting the appropriate tensor

components of (4.22¢), (4.22d), (4.23c) and (4.23d).
Considering an excited level of U’ symmetry, we have, for example,
TaﬂT'yé/O [(éla—,)i%_,_%(iu)

. _ 1 o wh
2><(G;,m)ié_+%(w)}du = 1852R6./0 (@ - wz)zdu
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x [(E"(*Tye) || o || U'CTEO))
x (B"(*Ts) || m || U'CTO))P

72h2R6wU,
X (E"(*Ty) || e || U'CTIO)))

x (E"(CTay) | m || U'CTENE  (4.25)

EI

a1 Bz,a182

and E’

The time-odd and time-even contributions to E’
a1 82,81z

@) ap,0)ap?
associated with excited levels of U’ and E” symmetry are displayed in table 4.1.
An obvious adaptation of the noted procedure yields the time-odd and time-even
contributions to Fy, ;01021 Faifyarp, 20d Eay g, gia,- For completeness, these results
are collected in table 4.2. From table 4.1 it may by seen that the discriminatory
dispersion energy is given by Eg, = E;_,(1+ A7) and Ef = E, (1 + At

where

Ho
E = ——
Ox 96%m2e, Réwy

x [(E"(n) || | XGIPIE" (n) | m || X(5))I° (4.26)

is the conventional discriminatory dispersion energy deriving from time-even tenso-
rial components and associated with excited level X. The conventional discrimina-
tory dispersion energy £ is augmented by a term originating in time-odd tensorial
components and parameterised by \?, where A? is a characteristic of the eigenstate
lg) of the two-molecule system and takes the values —1,—% and 2 for the states
|SF), |T14:) and |X7) respectively. Similarly, from table 4.2, it may be seen
that the non-discriminatory dispersion energy is given by E%, = E,_,(1 + A7) and
El,=FE

oo (1 + 3) where
1

({E"(n X 4.27
T ) w1 X)) (4.27)

EO,\' - -

These results show that in the case of the O* model complex, the conventional
spin-independent non-discriminatory dispersion energy is negative, indicative of an

attractive interaction whereas the conventional discriminatory dispersion energy is
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positive for molecules of the same absolute configuration indicative of a repulsive
interaction. Molecules belonging to any chiral point group yield these same results
for the conventional discriminatory and non-discriminatory dispersion energies upon
orientational averaging [52,61]. However, it is not in general possible to predict
whether either type of conventional dispersion interaction is attractive or repulsive
for a specific intermolecular configuration of two chiral molecules without recourse
to detailed calculation.

The combined contribution from the E!(*T%,) and U.(*T5,) levels to the non-
discriminatory dispersion energy may be expressed in terms of one reduced transi-

tion matrix element, since [65]
(Eq(*Tog) 1| 1 || ELCTou))*= 2 (B (*Tog) 1] o || U (*T2))I? (4.28)

Writing the result explicitly is instructive as this allows an interesting comparison
to be made between the O* complex and the symmetry-related alkali metal atom
treated by Buckingham and Joslin [60].

The tensor pattern for a level of E! symmetry in the O* complex is the same as
for the ZP% level of the alkali metal atom. A similar correspondence exists between
the tensor pattern for a level of U symmetry in the O* complex and the ?'P% level
of the alkali metal atom [1,60]. However, the relation between components of spin-
orbit split levels is not the same in the two cases.

The polarizability tensor components calculated by Buckingham and Joslin lead

to the following contributions to the dispersion energy:
(O 11 o l| DI* [4h s + hyp + 130R 2 0Py
B 432n2e2h R® [ wpm(wpl/z +wp3/2)wp3/2
AM(wp,,, — u)pm)2 }

6wP1/z (wPL/Z + Wp;,, )wajz

E,

(4.29)

+

while for the O* complex we may write the following:
(E"(*Tog) || ¢ || B"CTou))l®
768m2e2h RS
w2E11 + 4(1)6/ + ].SWE”LUUI Aq(szu + 16&)?]; —|— u}Ellu}Ul)
wEu(u)En + wU/)wU’ 12wE~(wEu + wU/)wUn

E, = -

(4.30)
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Clearly, the time-odd contributions associated with ZP% and ZP% levels of the al-
kali metal atom are such as to effect complete cancellation upon summation if the
spin-orbit splitting is zero. It is obvious from (4.30) that this is not the case for
the spin-orbit components U, and E! deriving from the 2T}, excited level of the O*
complex, although partial cancellation does result. Furthermore, the spin-orbit split
components of 2T1(i) are of symmetry U, and E;, and since transitions to F! are elec-
tric dipole-forbidden, only transitions to U, contribute to the polarizability tensor

components, precluding outright the possibility of any inter-level cancellation.

4.3 Discussion

In collating these results, a crucial point emerges. The complete dependence of
the size of a time-odd contribution on the difference in energy of spin-orbit split
states is a consequence of the specific polarizability matrix interrelations found for
the alkali metal atom. The concomitant limitation of the ratio of the time-odd
contribution to the time-even contribution to being at most ~ 107* is thus not a
general characteristic of all systems capable of supporting time-odd tensor compo-
nents. Indeed, we have shown explicitly that it is not the case for the dispersion
energy of O* complexes. We must, therefore, admit the viability of systems in which
the magnitude of the time-odd contribution to the dispersion interaction is compa-
rable to the time-even contribution. This suggests that time-odd contributions may
give rise to physically observable effects, and that an experimental investigation of
such effects is a realistic proposition. In conjunction, the interesting possibilities
arising from consideration of the application of an external magnetic field could be
explored. This would enable controlled manipulation of the separation of energy

levels, and hence of spin-dependent dispersion interactions.
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Chapter 5

Quantum electrodynamic

development

5.1 Introduction

In the previous chapter a semi-classical treatment of the discriminatory and
non-discriminatory dispersion energy for the near-zone region was detailed. It is
also of interest to discuss the wave-zone. In this region, interacting molecules are
sufficiently far apart that retardation effects due to the finite speed of light become
significant and a full quantum electrodynamic treatment is appropriate. We develop
expressions to describe the discriminatory and non-discriminatory dispersion energy
at all intermolecular separations outwith the region of electron overlap with the
near-zone and wave-zone as limiting cases.

Our calculations follow closely the work of Craig, Power and Thirunamachan-
dran [54,55,58,61]. However, in a generalisation of the specific near-zone results
of chapter four, we introduce novel time-odd terms supported by odd-electron
molecules and other systems lacking time-reversal invariance [1,60]. No attempt

is made at a detailed discussion of quantum electrodynamics, a subject well-served



by text-books [33,61,66]. It suffices to say that therein the electromagnetic field is
introduced as a quantised entity. The quantum mechanical molecule and classical
radiation field of the semi-classical paradigm become a fully-integrated quantum me-
chanical system, a complete description of which must include the quantum state of
the photon. We employ a semi-colon to separate the specification of molecular and
photon states. Within the multipolar formalism, the mediators of intermolecular
interactions are virtual photons. In particular, the dispersion interaction is associ-
ated with exchange of virtual photons deriving from fluctuations in the quantum
vacuum [58,61].

We shall discuss the non-discriminatory and discriminatory parts of the disper-

sion interaction in subsections 5.2.3 and 5.2.4 respectively.

5.2 Theory

5.2.1 Time-ordered graphs

The starting point in all calculations is the expression from fourth-order pertur-
bation theory for the energy of interaction. Our task is to develop the interaction
Hamiltonian matrix elements for each mode of two-photon exchange in order to
obtain the associated contribution to the dispersion energy, and then to sum over
all possible contributions. Types of two-photon exchange may be illustrated by
time-ordered graphs, which provide a helpful pictorial framework on which to base
calculation. In time-ordered graphs, virtual photons are delineated by an internal
wavy line joining the vertical lines which display the quantum states of the inter-
acting molecules as a function of time. It is a consequence of the virtual character
of the processes involved that the photon path is represented by an internal line.
Photon pathways appear external to the area between the lines associated with

the time progress of each molecule when real absorption or emission occurs. The

~J
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vertices of the graphs are labelled by interaction type. Within the dipole approx-
imation, all such vertices in the non-discriminatory dispersion energy calculations
are associated with electric dipole interactions, while in the evaluation of the dis-
criminatory dispersion energy, all appropriate combinations of electric and magnetic

dipole interactions must be included [61].

5.2.2 A quantum electrodynamic development of the dis-

persion interaction

The perturbation Hamiltonian for the interaction of molecules 1 and 2 is given
by (4.1) with the following expressions for Hg and Hys in the dipole approximation

obtained from a quantum electrodynamic treatment:

He = —'m,d (Ry) — & pa,d(Ro) (5.1)

Hy = —‘mvnaba(Rﬂ) - ‘m«zmbm(Rz) (5.2)

where g, and m, are given by (1.5a) and (4.4b) respectively, d.(R) is the micro-
scopic displacement vector, the transverse component of which is indicated by the
symbol 1, and b, (R} is the magnetic field vector. As in chapter four, we find
the perturbation Hamiltonian matrix elements for the general case of molecule 1
with degenerate levels |} and [m;) and molecule 2 with degenerate levels |n,} and
|m.) from which the eigenvalues for a specific case such as Kramers degeneracy in

odd-electron molecules could easily be deduced.

5.2.3 The non-discriminatory dispersion energy

We may write for the dispersion interaction energy between non-polar molecules
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1 and 2 [61,p152]

E _ (0"H,‘ntIIII)(III!Hmt]II)(IIIHint]I)(I|Hint|0)

mymy,mng — T Z

LILIII (Er — Eo)(Err — Eo)(Err — Eo)
‘ (5.3)

where |0) and |0’) are degenerate ground states of the system |n;n,;0) and [m;m2;0),
\I), |[II) and [III) are intermediate states and H,, = Hg which is given by (5.1).
From graph 5.1 we obtain [61,p153]

(I | Hine l 0) = <1(pl)\,);j1n2 l ~€61#1C,df;(R1) ("1”2§0>
= — (g1 | p1a [ m)(1(p'N) | dx(R1) | 0)

hep' z , -,
- 3:(2——’%,—) N U | e | )P B (5.4)

where f())(p) is the photon polarization vector associated with polarization X
and wave vector p’ and V is the volume of the quantisation box. Calculating the
remaining matrix elements for graph 5.1 similarly, we find the contribution to the
dispersion energy from this interaction mode to be
Recpp’ V()L @) £ (0[5 (p) e P e R
- E, 45V?  (Ejny + hep')(Ejin, + Ejpn, )(Ejon, + hep)

AN
Ji.J2

<(my | pa | J1)(01 e [ ma)(ma | gy | 72) (G2 [ s | m2)  (5.5)

Graphs 5.2-5.12 may then be treated in turn to obtain the contribution to the
dispersion energy that each illustrates.

On summation over polarizations A, A’ using [61,p39]
AL 57 ()" = b — Pabs (5.6)

where p is a unit vector along p, we obtain the total dispersion energy

CPP

A A YR
Emlm2:nln2 = - Z 2V2 a7 _pap7)(5ﬂ‘s _pﬁp )6 (P+P)-

Jl J”

< (ma | pa | J1) (1 | g [ ) (me | py | 52)(F2 | s | m2)
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1
* ((Ejml + hCP’)(Ejlnll + Ejyn, )(Ejyn, + Ficp)
“Errma + 70) (B F By B + 1)
“Eome + bt (B, F B 1e7)
+(Ejm + hCP’)(Ejm11+ Ejyn, )(Ejyny + ficp)
s + hep)(icp + hop)(Bsmg + Fcp)

1
+(Ejzn2 + hcp’)(hcp + hcp’)(Eﬁm + hcp))
+(ma | po | 31)G1 | g | ma)(ma | ps | J2) (G2 | 1y | m2)

1

) ((Eﬁnl + hep')(hep + hep')(Ejpn, + hiep')

1
By ¥ hrep)(Bep + hcp')(Eijlm T+ hep)

( i + hcp/)(EJi n Ej2n2 + ﬁcp + hcpl)(Ejznz + hcp’)
1

T Eooms + 5p) (B + Bore 0 T ) (B + i)
+(Ejzn2 + hcp)(EJinx + Ejznz + hcp + hcpl)(EJim + hcp)

1
+(Ej1n1 + hcp/)(Ejlm + Ejznz + th + hcp/)(EJim + th))jl
(5.7)

where the energy denominatorsin the first set of parentheses correspond in the order
written to graphs 5.1-5.6 and those in the second set, again in the order written, to
graphs 5.7-5.12.

This may be rearranged to give [61,p160]

«p+p').R

o Z hepp'(8ay — Paby)(d8s — PpPs )e
4egv (Em + hicp)(Ejn, + hep)

Em1m2yn1 na
!

Jl ]2

5 ( 1 1 ) [(Ejlnl + Ejn, + 2hcp)
“\p+p p-p Ejin + Ejpn,

<((ma | pa | 1)1 | e | ma)(ma | gy | 52) (G2 | ps | m2)

+(ma [ pp | 50) (G | pa [ 1) (ma | ps [ 52)(52 | 1y | m2))



+((ma | pa | 31051 | g | n1)(ma | ps | 52)(d2 | iy | m2)

+(ma | pp | J1) (1 | e [ ) (2 | iy | 52)(52 [ 6 | m2)) | (5:8)

We replace summation over p, p’ by integration using [61,p147|

1 Vo dsp
— = (5.9)
|4 ; (2m)3
and
d*p = p? dp df2 (5.10)

where df is an element of solid angle. Angular integration is effected using [61,p148]

R ip. cospR sinpR
/ (8ap — Papp)e™RdQ = 4 |S.g _RT"“’( »” PR )]

= 4rT.5(pR) - (5.11)

where T,z is defined by (4.4a) and we have introduced the tensor

Sep = VaVsR = (R*6.3 — RyRg)R™® (5.12)
Thus
E = / / Z Tor(pR)Tps(p' R)p*p"
T 1662w4 (Ejim + hep)(Ejpng + hcp)

( 1 1 ) [(Eﬂn1 + Ejn, +2hcp)

X / - !

p+p p—rp Ejin + Ejn,

}((ma | pa | J1) 1 | e | ma)(ma | py | 32) (G2 | ps | 22)
+(my | pa | G1) (1 | pa | ) (ma | s | 32) (G2 | gty | 22))
+((m1 | po | J1) (G2 | 1 | ma)(ma | ps | 52)(F2 | ity | 22)

(
+(ma | ps | 31) U1 | pa | 1)
(

ma oy 2)Ga s | )| o (5.13)

The integrand is even in p’ and we may therefore write [61,p162]

oo 1 1
T /R _ > ’delz
/0 ps(P )<p+p, )P
1 foo 1 1
- T IR _ I3dl
2/_00 s5(p )<p+p, p_p,)p p
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cospR

sinpR cospR
S P P )]

+RTﬂ5( e + 7R
= TP TL(pR) (514

where we have used the residue theorem on appropriately chosen contours, with
poles at p' = £p. T 5(pR) and T,5(pR) are respectively the real and imaginary
parts of [61,p162]

Sap

1 1 .
_ JHab o= pR
Fos(pR) = { % — RTup (pz - R) } e (5.15)

Therefore we may write (5.13) as
—he
16m3e2
) /oo [Re[Fuy(PR)|Im[Fps(pR)] + Im|Fory (pR)]Re[ Fps(pR))| p°
0 g (Ejlnl + hcp)(Ejznz + hcp)
x [(Eﬁm + Ejony + 2hcp)
Ejiny + Ejyny
x(ma | o | 31) (G0 | s [ 1) (ma | iy | 52) (52 | ps | m2)

Emlmz.mnz =

H(ma | pe | J1) (01 | pe | ma)(ma | ps | 52) (52 | 1y | nz)] }dp (5.16)
But

Re[Fo(pR)|Im([Fps(pR)] + Im[For(pR)|Re[Fps(pR)]

= %[Faq(pR)Fm(pR) — [Fory(pR)]* [Fs(pR)]"] (5.17)

Thus substituting (5.15) into (5.16) using (5.17) we obtain

E _ ke /oo Z pG
mymg,niny  — 3271'352?: o S (Ejml + hcp)(Ean + hcp)
1 i1
; 1 21 1 .
2 2ipR
Tt (o T ) )
S 1 1 1
_ Sa‘y 86 ? - R(SQ,YTH,S + TC!‘YSﬂtS) _E — ﬁ
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1 22 1 2
+R2Ta—yTﬁa( o +'—5‘R'+p6R2>}e ZPR}

% [(Ejlm + Ejznz + 2ﬁcp>
Ejlm + Ejznz
x(my | pa | 1) (71 | 1 | P2)(ma | py | G2) (52 | 125 | m2)
)

Hma [ pa [ 1) (51 | e | ma

(s | s | 32) (s || nz>] }dp (5.18)

This integral may be split into two parts. The first integral contains e??F in the
integrand, while the second contains e~ ?P®, We let p = u in the first integral and

p = —u in the second integral to give

4 _-2uR
E _ / 5 u'e
T 327r362hc (2 ny +uB) (K2, +u?)

Jid2 nm

1 1
X [507555 — QRSQA,TM (; + ﬁ)

1 2 1
FE T s (5 + o )|

X lkjlnlkj2n2(<m1 ‘ Ha ‘]1>(]1 | J27¢] i TL1> + (ml l Hs |]1><]1 | Ho l nl))
x((ma | gy | J2) (2 | s | n2) + (ma | ps | 52) (G2 | iy | 2))
Cul((ma | pa | 1) (51 | e | ) = (ma [ pg | 51) (51 | pa | 7))

((ma | oo | 32) s | ma) — (ma | s | 3200 | o | nz>)]}du<5.19)

where k;, = E;,/hc.

The complete potential is described by (5.19). It is possible to obtain simpler
expressions for the near-zone and wave-zone limiting cases by making use of physical
arguments to approximate this general equation. We can expand (5.19) in a Taylor
series either in powers of k;,R or 1/(k;,R). The former is a suitable choice for
kinR < 1, that is, the near-zone region (assuming low-lying states to make the
more significant contributions), while the latter is suitable for k;, R > 1, that is,
the wave-zone region.

Thus for the wave-zone region, retaining the first term of an expansion in
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1/(kjnR), we have

[fwove-zone hc /oo 4_—2uR
0

mymg,ning '"32,”362 ue
(o]

X [Sa.,s,@g — QRSQ,YTﬁg ( + —}ﬁ)

1 2 1
+R*T,., Tps ( + —=+ )] du

u3R 4R2
DN . E

.72 Jiny ~iz2n2

% [((ma | o [ 32)(G1 | 1o | 1) + (ma | g | 1) (51 | o | 1))
X((ma | oy | 32) (G2 | s | m2) + (ma | s | 52) (52 | aa | m2))[(5.20)

On completion of the integration we obtain finally

he

E:T::;,Z:F:z = —m[GSa,yS&s — 10RZSQ7T35 + 10R4TQ7T[35]
- SL - SL
X(alaﬁ):zlnl (az'y&):’-’tznz (5'21)
where
(Gap) = lim(Gap)’ Z ((mlpals)(7lnln) + (mipgls) (Glkaln)) 5 g9

E;,

J

The superscript SL indicates the static limit (w — 0) of the tensor. In the near-

zone, again cohsidering only the first term in the expansion in k;, R, we may write

Enear zone — TavTﬂ& / Z { 1
mim2,m1n2 3271'3 Ji.J2 Jlm + u2)( J2m2 + u2)
X [kj1 ny ka"2

x((ma | pa | 1) (1 | g [ ma) 4 (ma [ ps | 51) (51 | e | ma))
x((ma | gy | 52) (G2 | s | m2) + (ma | ps | 52)(52 | 1y | m2))
+ut((ma | pa | 1) (51 [ g [ ma) = (ma | g | 51) (51 | pa | 71))
x((mz | gy | 52) (2 | ps | m2)

(s s | 2 iy | )] (5.23)

Letting u = tw/c, it is easily shown that (5.23) gives an identical result to (4.7) for

Enear zone
mymz,nin2°
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5.2.4 The discriminatory dispersion energy

Again we make use of (5.3) for the dispersion energy introducing the full pertur-
bation Hamiltonian in dipole approximation (4.1) with Hg and H)s defined by (5.1)
and (5.2). We consider those combinations in (5.3) which give rise to a discrimina-
tory interaction, that is, those which involve one electric dipole and one magnetic
dipole interaction for each centre. We have illustrated only the four graphs of this
type originating from graph 5.1. Analogous permutations are available for graphs
5.2-5.12, so we could draw a total of forty-eight graphs of the contributions to the
discriminatory dispersion energy.

From graph 5.1a we obtain

(I'| Hine | 0) = (L(P'N);51n2 | =M ba(Ry) | n1n2;0)
= =1 [mi, | n)(1(p'N) | ba(R1) | 0)

' hC ' ! */ . —ip’
= 12(——#21,1)) [C (PN (51 | ma | na)e™® R (5.24)
P’

The other matrix elements of graph 5.1a may be calculated following (5.4) and
(5.24). We thus find the contribution to the discriminatory dispersion energy from
graph 5.1a to be [61,p170]

Aty SO ()8 ()8 (p')] e R

o H
Z 460V2 (Ejlnl + hcp,)(Ejlnl + Ejznz )(Ejznz + hcp)

A A’
.71 7.]2

X (ma | pa | J1)(G1 [ mp | na)(ma | py | 52) (52 | ms | m2) (5.25)

Summing over the forty-eight contributing graphs which are calculated in similar

fashion we obtain E;, ... =FE, . .+ E5 . m a0, Where
22
poh’c*pp' pp . N R
E;mlmz ninz - Z 4€ Vz _pap7)(6ﬂ5 p p ) (P+P)
pp
J1.J2

x| ((n1 | pa | 1)1 | ma | ma)(na | gy | J2) (52 | ms | ma2)
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Graph 5.1a Graph 5.1b
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Some time-ordered graphs for the discriminatory
dispersion interaction
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+ (1 | ma | J1)(G1 | g | ma)(n2 | my | 52)(d2 | ps | m2))
1

X
((Ejlnl + hcp’)(EJinl + Ejzﬂz)(Ejznz + hcp)
1
_I_.
(Ejznz + hcpl)(Ejl"l + Ejznz )(Ejznz + hcp)
1
+
(Ejznz + hcpl)(EJi"l + Ej2n2)(Ejln1 + hcp)
1

+
(Ejlnl + hcpl)(EJim + Ejznz)(Ejlnl + hcp)

1
+(Em + hcp')(hep + hep')(Ejyn, + hep)

1
+(Ej2n2 + hep')(hep + hep')(Ejipy + hcz)))
+ (1 | pa | 71) (51 | ma [ ma)(ng | ms | 52) (G2 | py | m2)

+(na1 | ma | 1) (01 | g | ma)(na | ps | 52) (52 | my | m2))

1
. ((Ejlm + hcp')(hcp + hcp,)(Ejznz + hcp’)
1

+(Ej2"2 + Tch)(hcp + hcpl)(Ejlnl + hcp)

1
+(Ej1n1 + hcpl)(Ejlnl + Ejznz + hep + hcpl)(Ejznz + hcp’)

1
+(Ej2n2 + hcp)(Ejlnl + Ejzﬂz + hep + hcp/)(Ejznz + hcp’)

1

+(Ej2n2 + hcp)(EJinl + Ejyn, + hep + hcpl)(Ejlm + hcp)

1
+
(Ejlnl + hcpl)(Ejlnl + Ejznz + hcp + hcp,)(Ejlnl + ﬁcp))}

(5.26)
and
poh’cipp o oD R
E;ml"u ming T T Z 046 V2 ea‘rue&ﬁ/\pupi\e (P+p1)
A

9 [(<m1 | e | 70051 | g | ma)(ma | o | G2 | s | ma)

+(my | ma | 71)(G1 | | na)(ma | iy | 52)(J2 | ms | n2))

1 v
X
<(Ejlnl + ﬁcp’)(Ejlm + Ejznz)(Ejznz + hep)
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1
" (Ejun + hep)(Ejym, ;r Ejyn, )(Ejyny + Ricp)
T Eromn + 1) (B, F BB + )
(Bim, + hCP’)(Enml + Ejyn)(Ejymy + hicp)
T B + Fcp)(hep + Fict) (B + Ficp)

1
+(Em + hep')(hep + hep')(Ejyn, + hcp))
+((ma | pa | J1) (G | ma | na)(ma | ps | J2) (g2 | My | n2)

H(ma | ma [ 1)(51 | pg | na)(ma | ms [ 52)(72 | 1y | 22))

1
X
((‘Ejnu + hep')(hep + hep')(Ejyn, + hep')

1

* (Ejyn, + hep)(hep + ﬁcp’)(-’*im + hep)

- (Ejl.nl + hcp,)(Eij + Ejznz + hcp + hcpl)(Ejzm + hcp’)
1

" (Bjsny + hep)(Ejyny + Ejyny + hiep + hep')(Ejpn, + hep)
1

——(E2n2 +hcp)(E 17 +E2n2 +hcp+h'cp )( lnl +hcp)
1

- (Ejlm + hcp/)(EJi"l + Ejznz + Tch + hcp/)(ijm + hcp)

where to sum over polarizations A,A’ we have used (5.6) [61,p39],

Clearly E;

1mima,niny

Zb(” B (D))" = bas — Pabs

S I (P)]* = €apapy
A

may be developed in a similar way to (5.7) for the non-discrim-

inatory dispersion interaction, so we may immediately write

1 mymaz,ning

u4e-—”uR
- 16eo7r3}‘7,c / JZ.I:" {(knnl u?) (k3 Jang T u?) )
1 1
X [Sa‘ySﬂ& - R(Sa'yTﬁé + Ta‘75135) ( + ')R)
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1 2 1
2
B TayTss ( + u3R + u4R3>]

X [ka‘{nlkanz((ml | | 51) (51 | mp [ n1) + (ma | mg | 1) (51 | pa | 1)

X ((ma | gy | 2)(F2 | ms | n2) + (ma | ms | G2) (G2 | gy | m2))

Fu*((ma | o [ 31){51 [ mp [ 1) = (ma [ mg | 1) (1 | e [ 1))

x((ma | oy | 32)(52 | ms | m2) — (ma | ms | 32) (G2 | poy | 12))]

It is possible to rearrange (5.27) to give

}

du(5.30)

E _ #ohcpp,eaéuevﬁkﬁuﬁi\ei(p+p,).R ( 1
2myma,nin; o 4€0V2(Ej,_n1 + ﬁCp)(Ej2n2 + hcp) P + p/
C 12
% I:(Ejlm + Ejznz + 2hcp>
Ejlnl + Ejznz

p—p

x[(ma | pa | 1) (G0 [ g | ma)(ma | ms | G2 (52 | o | m2)

+(mi | ma | 71) (51 | e | na)(ma | ps | 52) (32 | my | n2)

+(ma | pe | J1) (G | ma | Ra)(ma | my | 52) (2 | s | R2)

+{ma | pa | 51) (G [ M | na) (Mo | gy | 52

( )
+(ma | mp | 52051 | e | 7a) (2 | gy | 2052 | 5 | )]

I )

< )

+(ma | mo | 31)(J1 | g | ma)(me | my | 32) (G2 | 15 | m2)

(72 [ ms | m2)

+(ma | pp | J1)(G1 | ma | na){ma | ps | 52) (32 | my [ m2)

)

s | mp 3 o ) ma | s )G | ]| 501

Summation over p and p’ is replaced by integration using (5.9) and (5.10).

To perform the angular integration we make use of [61,pp147,148]

.~ +ioR _ .[cospR sinpR\ -
/pae PR IO = I|:47rz( R — szz)Ra

= F4mio.(pR)

We therefore find

(5.32)

B _ ok / / Z eaauemau (PR)o(P'R)P°P® [ 1
2mymaning 166071'4 ]lnl + hcp)(Ejz'nz + th)
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% [(Ejlnl + Ejznz + 2hcp)
ijm + E.’iznz
X[(ma | pa | 1) (51 [ mp | m1)(ma | ms | G2) (52 | gy | P2)

(ma [ ma | ) (s | g | ma) (ma | s | 32} 52 | my | ma)
(ma | g | 31} | ma | ma)(ma | mas | 322 | s | ma)
lma [ mg | 300 | e | ma)(ma | oy | 52) (2 | ms | ma)]
Fllma | pa | 32) G | mig | maima | i | G202 | ms | ma)
(m [ ma | 32) Gr | g [ na)(ma | o | 32302 | s | ma)
F(ma | pg | 31) (G | ma [ o) (ma | s | 32} (G2 | my | ma)

ms | mg | 32)0n | e | o)z | ms | 32) G | o | nz>1] }dpdp'

(5.33)
The integrand is even in p’ and we find, using the methods of (5.14),
00 1 1 sinpR  cospR\ -
IR I3d U 3 . R
/0 ax(p )<p+p,+p_p,>p P ™\ Sr T o |
= wp’s\(pR) (5.34) -

It may be seen that o,(pR) and o, (pR) are the real and imaginary parts of

1 1 A
E.(pR) = | — + HPF .
(pR) (pR szz) R,e (5.35)

Therefore, following the same procedure as (5.16) to (5.19) in the calculation of the

non-discriminatory dispersion energy, we may finally write

B _ potasutypr B /°° 3 wlemn? [1 L2t
2mimzmng 16e,m3Rhc Jo = | (k] +u?)(k],,, +u?) uR  u?R?

X [Rjyng Kjpny (M1 | pa | 31) (31 [ g | 1) + (ma | mg | J1) (G2 | pa | 1))
x({ma | py | 32) (32 | ms | n2) + (ma | ms | g2) (G2 | py | 2))
—u*((my | pra | 1) (G2 | g [ m1) = (ma | mg | 12) (51 | pa | 1))

<((ma | py | 52)(52 [ ms | n2) = (ma [ ms | 52) (G2 | py | nz))]}d‘“(5-36)
Adding the expressions given by (5.30) and (5.36) for Ef, ., .n, and B},
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we find

I i : _ / Z{ u4e-—2uR
MmN 16607r3ﬁc = (k2 +u?) (RS, +u?)

1 1
x [{Sa'rsﬂés - R(Sa'yTﬂé + Ta,YSgg) ( + —27%-)

9 1 2 1
+R~Ta'yT,36 ( + —= + )

w3R  u*R?
_5a6u€76ARuR/\ ( __2_ 1 )
R R Y2

Xkginy Kiyny [((m1 | pa | J1) (G2 [ Mg | 1) + (M1 | mg | 51) (G2 | pa | 21))
x({ma | py | J2) (32 | ms | m2) + (ma | ms | 32) (G2 | iy | 2))]

1 1
" [SMS@& — B(SoyTps + Tay Sps) (Z * u2R>

2 1 2 1
17‘+R~Ta7Tﬂ5 ( + =+ )

udSR  u*R?
eag'ueyg,\RuR)\ ( l 1 )
+ R2 1+ uR + u?R?

xu?[((my | po | 1) (51 | ma | n1) = (ma | mg | 51) (51 | pa | 7))
X({ma | py | 32) (G2 | ms | m2) — (ma | ms | 32)(J2 | piy | TLZ))]} }d“
(5.37)

It is possible to use the arguments put forward in the non-discriminatory case to
obtain simpler expressions for the discriminatory interaction in the near-zone and

wave-zone limits. We find

Elwave-zone — #Ohc
mim2 Ny 128¢,m3 R7

+6R2Sa7555 14€a5u67ﬁ)‘R R)J(Gl )

[10R®Ty, Tps — 5R*(ToySps + SoryT3s)

_I_SL
mzanz

Gy )i (5.38)

mlnl(

where

(Gapltn = lim(Gag)pn(w)

5 L ta 196 s n>Etn<m s 130 ke )5 59

J

By including a further term in the expansion in 1/(k;,R) we obtain the more rig-
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orous result

wave-zone ,’Lohc
1In1m2,n1n2 = “m [IORGTa,yTg5 - 5R4(T0‘75ﬂ,5 + Sa,yng)
+6R* S0y Sps — 146a5u€7ﬁ)\fzuéz\} (Grog )i (Gap )i
_ﬂf‘i [14R6Ta Tﬁ& - 21R4(Ta Sﬁ5 -I— Sa Tﬁ&)
128¢,m3 R? i Y v

+45R25a7555 — 81 €a7”€5ﬁ,\fzﬂé)\]

1 1
* Z (—EB EJ - Ej1n1E3 )

J1.J2 i 272 Jan2

x((ma | pa | J1) (51 | mp | na) + (ma | mg | 1) (51 | e | 21))
x((ma | gy | 32) (G2 | ms | n2) + (ma | ms | J2)(J2 | iy | 2))

-+ [14R6Ta7T35 —_ 21R4(Ta75g5 + Sa,yTg,s) + 45R25a75ﬁ5

+81607#65ﬁARM1%A]

- (ma | pa | J1) (1 | mp | na) — (ma | mp | §1) (51 | pa | 1)
2 B2
JiaJ2 17

E?

Jz2n2

" ((mz | 1y 1 32) (52 [ s | m2) — (ma [ ms | 52) (52 | 1y |n2>>}

(5.40)

From the discussion of subsection 1.2.1, (5.38) may be seen to be a function of exclu-
sively time-odd parts and thus may only give a non-zero result for chiral molecules
in degenerate states while, as we shall show later, (5.40) is dependent on both
time-even and time-odd parts and may be applied to any pair of chiral molecules.

The calculation of E, 527 "*°"° retaining the first term in the expansion in k;, R

gives a result identical to (4.10).

5.2.5 Orientational averages

It is possible to perform an average over all orientations of the dispersion energy

expressions derived in the preceding two subsections. For the product of the first
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rank tensor components P, and Qs we have

(P.@s) = 38.5P,Q, (5.41)
It may also be shown that
SuySesbapbos = % (5.42a)
SuyTosbupbos = _-;—4 (5.42b)
T Tosbapbos = % (5.42¢)
and
exsuErgrugbns = —2 (5.43)

Making use of (5.41) to (5.43) we obtain the following results:

'E B / Z { u4e—2uR
367r3ezf'ch2 = (k;21n1 + uz)(knn2 + u?)
2 5 6 3
% [1 + uR + u?R? + u3R3 + u4R4]
sk s |l 3] (5.44)
Fwave-zone B —23566&53”@&%) (5 45)
B 64m3e2 R7 |
where
2 “\12
J n
JFnear-zone —3h et . i .
E = WA as(tu)ag(iu)du (5.47)
where
: 2 '
aliv) = 5 X s i )P (5.48)
J n
E" B / E ub‘e—ZuR
o 18€o7r3th4 = (k2. +u?)(kZ 2y T u2)
[
R uwiR?
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«({ma | g | 32)-4n | | ma))((ma | o] 7o)z | m | nz>)}du

(5.49)
—Elwave-zme _ I—l’ohsc3 E (nl ‘ n ‘ ]1) (.71 | m ‘ nl)
3607T3R9 1 Ejzl’nl
na| gl g2).(2 | m | |
% Z ( 2 2;; 2 I | 2) (550)
12 J2n2
—~/near-zone - 3ﬂoh * 17- !
E = —W/O G (i) Gy (tu)du (5.51)
where
G'(tu) = — n|plj).(7jm|n 5.52
51 2 Gy )i (552)

We note that (5.45) and (5.47) are the familiar Casimir-Polder and London ex-
pressions for the spacially averaged non-discriminatory dispersion interaction in the
wave-zone and near-zone respectively [61,62,67]. Furthermore, (5.50) and (5.51) are
the standard results for the spacially averaged discriminatory dispersion interaction
in the wave-zone and near-zone respectively [53,61].

Although these averaged expressions are of use in many situations, it should
be mentioned that the assumption of completely free rotation is not always appro-
priate. Spin-spin coupling via the magnetic dipoles of the unpaired electrons on
each molecule could lead to certain intermolecular configurations being energeti-
cally favoured if the spin is in turn fixed in the molecular frame through spin-orbit
coupling. In this case it would be necessary to consider a quantum-statistical aver-
age weighted by the magnetic dipole-dipole interactions. This particular orientating
mechanism is peculiar to molecules with unpaired spins. Another possible mecha-
nism which would hinder free rotation, and do so more effectively than the purely
magnetic interaction, would be the coupling of permanent electric dipole moments.
In short, meaningful averaging calculations must take account of all significant cou-

pling mechanisms.
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5.2.6 Time reversal characteristics of matrix elements

The discriminatory and non-discriminatory parts of the complete potential are
a function of both time-even and time-odd contributions which may be identified

by noting from (5.19) and (5.37) that

EmlmZ:nln2 X /Ooo[a(u,R)(&laﬁ);n(iu)(&gw);n(iu)
+b(u’R)(&laﬁ)r_nn(iu)(&2~,5)r—nn(iu)]du : (5533‘)

and

Brppars % [, (60 RY (G ni0)( GV ni)
+d(u, R)( G, (i0)(Gaymnli)ldu (5.53)

From (5.21) and (5.38), the leading terms of the non-discriminatory and discrim-
inatory parts in the wave-zone are a function of the static limits of (&qp);},(w)
and (Gup)t,(w) for each molecule. (It is clear that there can be no static limit
of (&), (w) and (Gap)o, (w)). Therefore, to a first approximation, the non-
discriminatory interaction consists of purely time-even parts, while the discrimina-
tory interaction consists of purely time-odd parts. These leading terms are depen-
dent on R~7. A more rigorous calculation of the discriminatory dispersion energy
in the wave-zone gives (5.40) which reveals a further term, dependent on R™° and
composed of both time-odd and time-even parts. This explains the apparent asym-
metry in form of the previously predicted expressions for the discriminatory and
non-discriminatory energies in the wave-zone. Clearly, if time-odd contributions
are forbidden, which is a valid assumption for ground state even-electron systems,
the leading terms in the discriminatory and non-discriminatory interactions are

dependent on R~° and R™7 respectively.
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5.3 Discussion

Most theoretical treatments fo date have been concerned with small molecule
interactions, based on the assumption of one point chiral field per molecule. Yet,
the most striking and effective examples of chiral discrimination are to be found in
biomolecules. Such molecules are often in possession of many localised chiral centres
sometimes combined with a delocalised chirality associated with secondary helical
structure. It is easy to see that the former type of chirality may be treated as an
extension of the simple two-centre interaction discussed here, where a summation
over pairwise interactions would be necessary to determine the intermolecular or
intramolecular discriminatory dispersion energy. The latter type of chirality requires
a different approach, not dependent on point chiral sources. Craig and Schipper have
addressed the problem of what they call environmental chirality, that is chirality
resulting from the helical disposition of individual sites which may be locally achiral
[66]. They suggest a model in which a small test system interacts with the chiral
field produced by a lattice of moments which simulate the helical structure of the
biomolecule. In biosystems the relevant localised chiral entities are functional groups
attached to a macromolecular framework. For such groups anchored to a large
molecule, freedom of movement of one group relative to another can be severely
restricted, even for wave-zone separations. This consideration, along with the fact
that many biochemical processes involve the formation of radicals, underlines the
potential importance in the biological context of the fixed orientation expressions
here developed. In particular, the novel time-odd term in R~7 in the discriminatory
dispersion interaction in the wave-zone may be significant in odd-electron systems,
possibly orders of magnitude larger than the spin-independent term in R~°.

In conclusion, it should be emphasized that our treatment is not applicable to
the ubiquitous substrate-receptor ‘lock and key’ type of interaction, for which the

proximity of the interacting molecules requires that the actual physical extension of
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the molecules be taken into account, invalidating the point chiral source assumption.
For such cases, a development of the model proposed by Craig and Schipper would

seem germane.
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Appendix A

The irreducible spherical tensor notation provides an elegant alternative to the
Cartesian formalism, and is particularly suitable for the concise expression of higher
order interactions between a molecule and its environment. Use of the notation
allows full advantage to be taken of the simpler rotational transformation proper-
ties of irreducible spherical tensor components and of the Wigner-Eckart theorem
[28,29,31]. This theorem facilitates the evaluation of a general matrix element of an
irreducible tensor operator by expressing it as the product of a 3 — j symbol which
describes entirely the dependence of the general matrix element on its component
indices and a reduced matrix element which is independent of transformation prop-
erties. Let qu be an irreducible spherical tensor operator of rank & and component
index ¢ which operates within a system with eigenstates |n, JM) where J, M are the
angular momentum quantum numbers and n represents any other quantum numbers

required to specify the state, then, from the Wigner-Eckart theorem [33,34]

3 J kJ .
(n, JM | TF | n/,J'M') = (-1)"¥ (n,J || T* || n',J") (A1)
-M q M

A modification of the Wigner-Eckart theorem for axially symmetric systems with
rotational states characterised by quantum numbers J, K and M is given by (1.16).

An irreducible tensor operator qu can be constructed from tensor operators T'(1)*
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and T'(2)* using [26]

{T(1)k1 X T(2)k2]: — Z(__l)kl—kz_Q(ZkﬂLl)%

91492

ke ke k) ..
x| T(1)kF(2)k (A.2)

q2
1 92 —¢q

Since the Cartesian coordinates (or angular momentum components) transform un-
der a rotation such that they span the D! irreducible representation of the rotation
group, it follows that the nine components of a general second rank tensor transform

as

D' @ D' =D° + D' + D? (A.3)

and the 27 components of a general third rank tensor as
D'@D'®@D' =D° 43D +2D* + D? (A.4)

Sets of irreducible components for general first and second rank tensors are readily
available in the literature. To construct sets of irreducible components for a general
third rank tensor we could make use of (A.2) with k; = 1 and k; = 0,1,2. However,
the third rank optical activity tensor operator fiam with which we are concerned is,
as a consequence of the symmetry properties of the quadrupole moment, symmetric
and traceless in its last two subscripts. A second rank symmetric traceless tensor
spans exclusively the D? part of D! © D'. Thus by taking k; = 1 and only k; = 2
in (A.2) we may obtain the complete set of 15 independent components for fiam.

In specialising to a third rank tensor with the symmetry properties of flaﬁﬁ, we
note, from

D'@D*=D' +D*+D° (A.5)

that the degeneracies in D' and D? are removed and D° vanishes.

Alihough Gray and Lo have constructed spherical components from the Carte-
sian components of Aqg,, the results are presented in reducible, and therefore not

immediately useful, form [29].
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A.1 Irreducible sets of tensor components

The required sets of irreducible spherical components for the third rank ten-
sor operator fia,_;v are presented. For completeness, sets for first and second rank
tensors are also listed. We choose to write these in terms of a common example
of each tensor type. Thus, the electric dipole operator [i, exemplifies a first rank
tensor operator and the polarizability operator &,g exemplifies a second rank tensor
operator. However, these first and second rank sets are completely general and may
be used for any tensor operator of appropriate rank. Specifically, the sets for the
optical activity tensor G are identical in form to those given for dqg.

It should be mentioned that the usual statement of the Condon and Shortley
phase convention

Y, = (~1)"Ys (A.6)

m

is replaced for spherical tensor components by the relation
T!,, = (=11 (A7)

where n is the rank of the associated Cartesian tensor, which follows from (1.2) and
(2.1) in Stone’s paper on the construction of irreducible tensor components [28].

First rank tensor:

pio= —\—%%H#y) (A.8a)
Bo = Ha (A.8b)
B = (e = i) (A.8¢)
Second rank tensor:
ay = —%(azﬁayﬁau) (A.92)
ol = —%[azz—azz+i(ayz —au) (A.9b)
0 = ety — o) (A.90)
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Third rank tensor:

A

1

= —-5[0:“, — Oz — 10y — Q)]

= -2-[amz - a'yy + i(ayz: + azy)]
1 .

= _é[amz + az + z(ayz + al‘y)]

1
= %[2052z — (otwz + ayy)]

1 .

= §[amz + oy — ?'(ayz + aly)]
1 .

= §[ax2 — Olyy — 'L(ay:z: + axy)]

3
10
+7'(Az:a:y - Ay:z::c + Azzy - A-yzz )]

3
J%[Azmz - Az:a:z + A-zyy - AyyZ]

[Ayyz = Avyy + Azze — Azzz

3
B E[Ayym — Avyy + Azzo — Az
_Z(Az:my — Ay;cz + Azzy - AyZZ )]

1
V6
-—Z(2Azzy - Azyz - 44yzz:)]
1
V6
-I—t(Ay;m; - Azmy + Azzy - Ayzz )]

i(A:r:yz - Ayz:c)

[A:L'a:z - Azzx + Azyy - Ayyz

[A;cyy - Ayyz + Azzz: - A:czz

1
%[Awyy — Aye + Aizz — Az

"i(Aym: — Azmy + Azzy - Ayzz )]
1

_—\/_E—[Azmz — Azez + Azyy — Ay

+2(2Azmy - Az'yz - Ayzx)]

1
—-——2\/5[2Ayyz + 24,4y + As:-
_'i(2A1‘;ry -+ 2Ayzz + Ayzz )]

1

5o P e~ 2 — Ay
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(A.9)
(A.9f)
(A.%)
(A.9h)

(A.91)

(A.10a)

(A.10b)

(A.10¢)
(A.10d)

(A.10e)

(A.10f)
(A.10g)
(A.10Dh)

(A.10i)



+27'(A:cyz + Ayza: + Azzy)]

1
—— 2A z 2Am - 7Az;zz - 8Azz1:
2\/3—0[ Yy vy

+"'(2A:z:z'y - 2Ay:c:z: - 7Ayzz - SAzzy )]

1
"7’1—-6(314-:1::: + 2A:m:z + 3A2yy + 2Ayy2)

—%m[2Ayym - 2Awyy
~i(2A50y — 2Ayes — TAyzz — 84,.,)]
1
23
~-21'(44:81“ + Ayeo + Auy)]

—TAy., — 84,

[2A:cz:z + Azrm - 2Ayyz - Azyy

2\/_ 72400 + 240y + Ace

+Z(2Az;z;y + 2Ay:c:z: + Ayzz )]
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Rotational Raman Optical Activity in Chiral

Symmetric Tops

L. D. Barron and C. J. Johnston

Chemistry Department, The University, Glasgow G12 8QQ, UK

A theory of rotational Raman optical activity in chiral symmetric top molecules is presented. The required rotational
transition polarizability and optical activity tensors are calculated using irreducible tensor methods for axially
symmetric systems. Selection rules on optically active rotational Raman scattering are found to be basically the
same as for conventional rotational Raman scattering, namely AJ =0, 1, £2 with AK =0, but in addition to
possessing an anisotropic polarizability, the molecule must be chiral and must possess an anisotropy in the electronic
optical activity tensors. A measure of this optical activity anisotropy is provided by the dimensionless circular
intensity difference in a resolved rotational Raman band or in the envelope of unresolved bands provided the envelope
is resolved from the central sharp Rayleigh line. A group polarizability model is used to calculate the rotational
Raman optical activity in a chiral (D,) conformation of triphenylborane.

INTRODUCTION

In the past decade, conventional natural optical activity
measurements, associated with electronic transitions of
chiral molecules, have been augmented with vibrational
optical activity measurements using both infrared cir-
cular dichroism (IRCD)'** and Raman optical activity
(ROA).>® The former measures a small difference in the
absorption of left and right circularly polarized infrared
radiation, the latter a small difference in the Raman
scattering of right and left circularly polarized visible
radiation, and both provide detailed and complementary
new stereochemical information. It is now time to discuss
the further possibility of optical activity in pure rota-
tional transitions.

Although rotational structure has been seen in gas-
phase vibrational IRCD spectra,’ it is not likely that
IRCD will yield pure rotational optical activity spectra,
since the lowest frequency so far reached is ca
600 cm™'.'° On the other hand, the Raman approach,
since it excites with visible light, suffers no frequency
limitations and so pure rotational Raman optical activity
measurements should be feasible, given the right sample.
Here we present a model calculation of rotational ROA
in a chiral symmetric top molecule.

Even though they cannot usually be applied directly
to an actual chiral molecule, simple models have been
of great value in the development of theories of conven-
tional electronic and vibrational optical activity since
they provide physical insight into the generation of the
phenomena by archetypal chiral structures and often
serve as the basis for more sophisticated theories.!' The
chiral symmetric top serves this purpose for theories of
rotational optical activity, which justifies the detailed
development below even though suitable chiral sym-
metric top molecules are rare so that the explicit results
are likely to have limited direct applicability. However,
since the rotational states of asymmetric top molecules
are written in a symmetric top basis, the results provide
a first step towards the calculation of rotational ROA
in chiral asymmetric tops, which is likely to be more
important from the experimental standpoint.

The results also illuminate a fundamental problem in
the theory of the quantum states of chiral objects. It has
been suggested that rotating achiral molecules, even
symmetric or spherical tops, are optically active,'*'? with
counter-rotating pairs constituting enantiomers.'* This
view has been criticized by applying the fundamental
symmetry operations of space inversion and time
reversal to the corresponding rotational quantum states,
which shows that rotating achiral molecules are not truly
chiral objects.'""'*'® If an achiral molecule prepared in
a pure rotational quantum state can be properly regarded
as a chiral object, it should support the pseudo-scalar
rotational ROA observable. However, our results show
that this is definitely not the case: the rotational quantum
states by themselves introduce no new source of chirality.
{The optical rotation observable invoked in Refs 12-14
is actually magnetic, or Faraday, rotation which is a
time-odd axial vector and so is completely different from
the natural optical rotation observable, which is a time-
even pseudo-scalar. There will be a corresponding mag-
netic ROA observable that can be supported by rotating
achiral molecules, but this is not considered here.)

THEORY

The circular intensity difference

Most of the material of this and the next sub-section
has already been given elsewhere (see the detailed refer-
ences for the various formulae), but is included here for
completeness.

Our measure of Rayleigh and Raman optical activity
is a dimensionless circular intensity difference (CID) '
given by

Aa=(I3-13)/(I3+]17) (1

where I} and If are scattered intensities with a-polariz-
ation in right and left circularly polarized incident light
(see Refs 17 and 18 for a discussion of other conven-
tions). The CIDs have been developed in terms of
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Figure 1. The geomaetry for polarized light scattering at 90°.

molecular property tensors by using a semi-classical
theory in which the origin of scattered light is considered
to be the fields radiated by the electric and magnetic
multipole moments induced in a molecule by the
incident light wave. For a plane-wave light beam of
angular frequency w incident along the z direction and
scattered at 90° along y (Fig. 1), the polarized (x) and
depolarized (z) Rayleigh circular intensity sums and
differences are found to be'"'**°

) (032
IR+ 1t= %(uuagﬁ-awa;ﬁ ) (2a)
Em)z
*+1t= %%—-(a.,u,x+a,yazy+ ) (2b)
4 E(O)Z
I8-1:= %%—;T[Im (Chyyak +6,,GY +a..GE

—&xy‘g +a, ‘5*)+3w Re (ax, e
_&xy-szx+axyﬂxxy_axxﬂyxy)+' ) '] (2C)
L w4M0E(0)2
z 16 2 2 2
+azy<§xx —'&zx .tx)'*'%‘” Re (&zx/itzy
_&zy“izzx+a dx:y azx*dy:y)+ ] (Zd)

The complex polarizability and optical activity tensors
are written as sums of real (unprimed) and imaginary
(primed) parts:

I?— [Im (C&zy&tx+dzy6ty+&uGtx

Qap = Aup — iXip (3a)
Gop = Gaop~ iGlg (3b)
Aagy = Aupy— iAlpy (30)
$u5=Gop+iGls (3d)
Aapy= Acpy+ iALgy (3e)

A tilde (~) denotes a complex quantity. Time-depen-
dent perturbation theory provxdes the following quan-
tum mechanical expressions:

Qg =% Z - — Re ((nlpal /) lpaln)) (4a)

e =—7 Z Im ((nlual }Jlwaln))  (4b)
}w‘n /n

Gas ‘; z r‘—-Re(<nlua|J><Jlmaln>) (4c)

2
R ‘zw—mf““ (nlwal Njlmgln))  (4d)

h j#n (l)}'" -
Aupy=2 & =2 Re (nlual DJ18pim)  (de)
h jan w,,‘ o’
2
wpr= 7 L =5 Im ((nlualjXjlOg,Im) (4D
jnn )
where w;, =©; ~w,, and w,, m, and O, are the electric

dipole, magnetic dipole and traceless electric quad-
rupole moment operators, respectively, defined by

Po ==Z er, (5a)
= Z Equ TPy, V (Sb)
@a5=%z e,’(3’,~ur,'g"r,;8ua) (SC)

particle i at r; having charge e, and linear momentum
p; (we use a cartesian tensor notation in which 8qp is
the unit symmetric second-rank tensor, £,a, is the unit
antisymmetric third-rank tensor and a repeated Greek
suffix in the same term denotes a summation over the
Cartesian components'').

If the initial state |n) is non-degenerate, and no static
external magnetic fields are present, it can be shown
from time reversal arguments that only a,s, G’ and
A,gy survive [see Eqns (11) below]. For scattering from
isotropic fluids it is necessary to average Eqns (2) over
all orientations of the chiral molecule, and the corre-
sponding polanzcd and depolarized Rayleigh CIDs are
found to be''

2(7(!,36 + aﬂuGﬁp + JwaageuybAyQE)
c{Tay,af, +a,,a

4,(90°) =

(6a)

)

AL(90°) = 4(3(!@ G:E ~Quq GEE - %wauﬂsa‘vbA:QL) (6b)
z 20(3(1)‘“(!:“ - C‘xxa:u)

However, we are concerned here with rotational Raman
scattering and so must extend the formalism to
accommodate transition tensors. Also, the CIDs in
specific resolved rotational Raman bands must be calcu-
lated in place of the isotropic averages [Eqns (6)], but
we shall see that Eqns (6) provide a valuable check on
the results.

Rotational Raman transition tensors

The circular intensity sum and difference [Eqns (2)] can
be applied to Raman optical activity by replacing the
property tensors Q,m, etc. by corresponding transition
tensors (&) mms €tc., between different initial and firfal
molecular states In) and |m). These transition tensofs
have the quantum mechanical forms''

(Gag) mn =% £ [M_Mﬂ_»aiﬁ

Wip —w

NPT RS
Wjm tw
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(Gl = % : [(mlﬂ-um(ﬂ’"al")

W~
+(m|mEIj)(jlualn>] (7b)
Wjim T
(m|uqljXj|Ogyln)
Wjp, ~w

+(m|03~1[j><j[“'u,">]

- l
(Auay)mn =-h_ ;m [

(7¢)

and can be written as follows in terms of explicit real
and imaginary parts:

(&aa)mn=(au8)mn—i(a;a)mn (83)

1 1

() =25 L Tom—w)(om+a)

X[(w)jn +w;m) Re ((mpqlj)jlugln)
+(m|ug|j)Jjlpal 7)) + (20 + ©pm)

X Re ((m{pql j){jlpaln)
—(m|ugliXjlraln))] (8b)

1 5 1

2—h-j#n_m (“-‘jn —“’)(mjm +w)

(aclxa)mn ==

X[(@)n + @jm) Tm ({mfpal )l walm)
+{m|pug| NJjlpalm) + (20 + )

X Im ((m|pal )} jlpneln)

= (m|pg| /) jlmaln))] (8¢)

with similar expressions for (G,g)ms and (AGB,),,.,‘ in
which g is replaced by mg and 0., respectively.
These transition tensors can be generated by taking
matrix elements of corresponding effective oper-
ators.'''®22 Thus the effective polarizability operator is

&ag =&‘:B+&;B (9a)
&:B = %( uuo+""ﬂ+ uﬂo+"'c) (9b)
I R (T o TP o Ty (9¢)

where

. 1 1
o —(H-W+hth—W—hw) (5d)

W is the average of the energies W, and W,, of the
initial and final states. By summing over a complete set
of states | j){j| inserted after O, and using the approxima-
tion w;, = w, itis easily verified that (m|a.g|n) generates
the complex transition polarizability (@.s)m. [Eqn (72)].
Similarly, the effective optical activity operators are

Gup= ‘;B+ G (10a)
é:fs:l(l-'-uo mB+mBO+“'a) (10b)
Gia= — (a0 mg—mgOp,) (10c)
Angy= Alp,+ Ay, (10d)
Alsy=H1aO"Op,+65,071,) (10e)

Aoy = 310765, -85,07,) (10

210 JOURNAL OF RAMAN SPECTROSCOPY, VOL. 16, NO. 3, 1985

(The notation for these operators is slightly different to
that in Refs 11, 16 and 22; also we have corrected some
sign errors.)

These effective polarizability and optical activity
operators have certain well defined characteristics:'''%??
thus a.p is Hermitian, has even pamy and is time-even;

a.q is anti-Hermitian, has even parity and is time- odd;
G g is Hermitian, has odd parity and is time-odd; Gae
is anu Hermitian, has odd parity and is time-even; A_,
is Hermitian, has odd parity and is time-even; and AC,B,
is anti-Hermitian, has odd parity and is time-odd. This
classification is important when considering the various
light-scattering and optical activity phenomena that each
operator can generate, and leads to the following funda-
mental properties of the transition tensors:'''®2

AaBy

(m|agpln) =(On|dp,|Om) =(Om|a.plOn)*  (lla)
(m|Gogln) = —(Om|G,gl@On)* (11b)
(m|A,gn)=(Om|A,q,|On)* , (11¢)

where © is here the time reversal operator (not to be
confused with the electric quadrupole moment). One
important consequence of Eqns (11) is that, for an
even-electron system, only the real parts (a.a)m» and
(Aapy)mn of {(m|a,g|n) and (m|A,4,/n) and the imaginary
part (G.g)mn of (m|G,g|n) survive (assuming no static
external magnetic field is present). The situation for
odd-electron systems is more complicated and will not
be elaborated here.

The Born-Oppenheimer approximation is now intro-
duced so that each state is written as a product of
electronic, vibrational and rotational parts:

lj)=|jejvjr>=‘jimjr) (12)

where |ji,0 is the internal molecular vibronic state. In
the usual theory of rotational Raman scattering,”*** the
rotational contributions to the transition frequencies in
the transition polarizability are neglected and the closure
theorem invoked with respect to the complete set of
rotational states associated with every electronic-vibra-
tional state, which enables the transition polarizability
to be written"' (for an even-electron system):

( Min mrlaaBI ninl"r) = (mrl(aua) m;,,,n;,,.l nr) ( 13)
where
2
_LmuL_.
a . . =3
( ‘XB) MindMine h i %ﬂ 0.)) I wZ
MingMing

X Re ((minllpu‘jint)(jim!ﬂ'ﬂl ninl>) (14)

is an internal transition tensor that acts as an operator
on the rotational states. The space-fixed axes a, 8, . . . can
then be related to molecule-fixed axes a’, B, ... using
direction cosines such as I_,- between the a and a' axis
so that Eqn (13) becomes

(mrl(auﬁ) ”'im"im] nr) = (aa‘a') m,,“n,,,,<mrl lau'lﬁa’l nr) ( l 5)

the rotational transition being effected by the direction
cosine operators. A similar development is possible for
the transition optical activity tensors. However, the com-
plexity of the rotational Raman optical activity calcula-
tion warrants a more sophisticated approach utilizing
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Table 1. Rotational Raman factors, DY jx

J

Pa . J -1 J J+1
K -1 (J+K)J +K=-1) (J+K)(J—K+1) (J=K+1)(J-K+2)
2J(2J +1) 2J(J +1) 2(J +1)(2J +1)
K J2-K? 4K? [{J +1)2-K?
J(2J +1) J{J +1) (J+1)(2d +1)
K+t (J=K)NJ-K=-1) (J=K)}J+K +1) (J+K+1)J+K +2)
2J(2J +1) 2J4(J +1) 2(J +1)(2J +1)
irreducible spherical tensor operators, to which we now where
turn. . , J' k J\?
DJ'K’.JK=(2-I+1)<_K, K'-K K) (19b)

Matrix elements and intensity factors

Symmetric top rotational matrix elements can be
obtained by using the following extension of the Wigner-
Eckart theorem to axially symmetric systems (within the
Condon and Shortley phase convention extended to
general spherical tensor components):>*-%

(n', J'K'M'| T4|n, JKM))
_ i_,.+_,_Kr_K(_l)J'-M‘[(211+ l)(2]+ l)]I/Z

x( J' k J)( J ok J)
-K' K'-K K/\-M' ¢ M

x(n'| T kIm) (16)

where J, K, M are the usual set of symmetric top rota-
tional quantum numbers, n denotes the internal (vibra-
tional-electronic) states, and T" is the gth component
of the rank-k set of tensor operators expressed in
irreducible spherical form with respect to space-fixed
axes. A bar over the operator indicates that it 1§_d_:ﬂned
with respect to molecule-fixed axes, so that (n'| T%._x|n)
is an internal matrix element [and would be an analogue,
in a spherical basis, of (a,a),,, in Eqn (15), for
example].

Since we are calculating intensities, and the magnetic
substates are degenerate if no external static magnetic
field is present, considerable snmplnﬁcatlon is possible
by invoking the following sum:?

lﬂlnlﬂl

QJS+1)2J+1)

’ 374 1 Tk 2 _
5l ROM T, KM =

J' k
T%. z 17
(e ok 2)kniFeamean
Each of the 2J+1 values of M in the initial state is
equally probable, so the associated “intensity factor” is
obtained by dividing Eqn (17) by (2J +1):

[ _(2J’+l)< k J)’
(")"""”‘“(Zk+1) -K' K'-K K
x| Te-xIm)f? (18)

Similar results are given in Refs 23 and 28. We now write

(I ,kux= 2k+ll("lT Kln)‘zDJK x  (19a)

is actually the factor b7’ of Placzek and Teller”® when
k =2. This treatment can therefore be correlated with

the 2trad;tnonal theory of rotational Raman scatter-
3,24,29-31

ing, except that we can automatically accommo-
date antisymmetric scattenng by taking mtensnty factors
with k=1. We require the factors D% .. JK wnth k=

0, 1, 2: using the formulae given by Edmonds*? for the
first few 3j symbols, we find for k =0 thatonly D9y jx =1
is allowed, and for k =1 and 2 we find the factors listed
in Tables | and 2, respectively. The propemes of the 3j
symbol enable the following properties of D% .. Ik to
be deduced:

DIJ:'K‘_JK = D’J"-K’,)-x (20a)
(2J+ 1) DY gy = (27" + 1) Dl sk (20b)
L Dixax=1 (20c)

Z

Z D'J"K'.Jx = Z Dl;’K'.JK
K K’

=27 +1)/(2k+1)
(for fixed AK =K'= K) (20d)

Placzek and Teller’s factor b7%.
properties.**?

We now invoke irreducible spherical tensor versions
of the effective polarizability and optical activity
operators (9) and (10) Since each operator in the prod-
ucts of the form &2, 4G and 4A that contribute to the
circular intensity sums and differences connects the same
set of initial and final states |n, JKM) and |n’, J'K'M"),
the same spherical components must be specified in each
term. The rotational angular momentum aspects of each
transition tensor (i.e. the external part) is independent
of the physical nature of the tensor operator, so we can
write intensity factors [Eqns (19)] for each type of
Raman scattering contribution:

[I:(az)]rx'. JK

has equivalent

=2k+ N [(n'l& k- k|n) D% k- sk (21a)

[1:(00)]1'x'.1x

T (n1&k_xlnXn' |Gl k|m*Dfxc i (21b)
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Table 2. Rotational Raman factors D%, x

e

J-1 J
32— (K11 S +1)2 - (K- 1))

2J(J +1){2J = 1)(2J +3)
32K - 1)3{J +K)(J - K +1)

2J(J +1)(2J = 1)(2J +3)
[J{J +1)-3K??

J(J+1)(20 - 1)(24 +3)
32K +1)AJ-K)(J+K +1)

2J(J +1)(24 = 1)(2J +3)
(U (K +12[(J +1)2 = (K +1)]]

2J(J +1)(2J —1)(2J +3)

L J-2
K -2 (J+K)I+K=1)(J+K=2)(J+K-3) (J+K)HJ +K=2)[J2+(K-1)3
aJ(J =1)(2J +1)(2J - 1) 2J(J +1)(J = 1){2J +1)
K1 (J2=K)J +K=1)(J+K=2) (J+K)J+K-1){J-2K +1)2
J(J=1)(2d +1)(2J - 1) 2J(J +1)(J =1)(2J +1)
X JT-KY[(J-1)2-KY 3K3(J2-K?)
2J(J =1)(24 +1)(2J = 1) J(J+1)(J=1)(2J +1)
K1 (J2=KHYJ=-K-1)(J-K-2) (J=K)J=K=1)(J +2K +1)2
J(J=1)(2d +1)(20 -1) 20(J +1)(J = 1)(2J +1)
K+2 (J=K)J=K=-1)(J=-K=2)(J-K=3) (J = K)(J-K=2)[J2=(K +1)7]
aJ(J-1)(24 +1)(2U-1) 2J(J +1)(J=1)(2J +1)
P
K’ J J+2
K2 [(J+12=(K=13](J =K +1)(J =K +3) (J=K+1)(J—K+2)(J - K +3)(J —K +8)
2J(J +1){J +2)(2J +1) 4(J +1)(J +2){2J +1)(2J +3)
K1 (J+2K)HJ =K +1)(J-K +2) {(J+1)2-K(J - K+2)(J - K +3)
2J(J +1)(J +2){2U +1) (J+1){(J +2){2J +1){2J +3)
K 3K +1)* - K7 3 +1) - K4 +2)° - K7
J(J +1)(J +2)(2J +1) 2(J +1)(J +2)(2J +1)(2J +3)
K 1 (J=2K(J +K+1){J +K +2) [(J +1)2 = K3(J +K +2)(J +K +3)
2J(J +1){J +2)(2J +1) (J +1)(J +2)(2J +1)(24 +3)
K +2 [(J+1)2=(K+1)P2)J+K +1)(J +K +3) (J+KH1)J +K +2)(J + K +3){J +K +4)

20(J +1)(J +2)(2J +1)

4(J +1)(J +2)(2J +1)(2J +3)

[[I;(U-A)]J’K‘JK

<"|<11< _kInXn'|A% K|n>*DJKJK (21¢)

2k
Selection rules for optically active scattering therefore
devolve entirely upon the internal parts of the matrix
elements.

It remains to_ convert the cartesian components of the
tensors Q.p, Ga.s and A.g, specified in the circular
intensity sums and differences[Eqns (2)] into irreducible
spherical form. Second-rank sets are readily available,
but appropriate third-rank sets are hard to find. Stone** a4
has provided systematic procedures for converting
between cartesian and spherical tensors, but in this in-
stance we found it easier to generate the required third-
rank sets using the following equation for constructing
irreducible tensor operators from products of two
arbltrary tensor operators T(l) ' and T(Z) 2 of rank k,
and k,:*°

[T()% x T(2)1%
k, k, k
=¥ (-nk7RTI2k+1 V—Z( v )
qéx( ) ( ) 9 492 —9
xT(HaT(2)k (22)

Since
D' XD xP' =9°+39'+22°+D° (23)
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where @* is the irreducible representation of the proper
rotation group of dimension K, it follows that a general
third-rank tensor has 27 independent components with
three degenerate first-rank and two degenerate second-
rank sets. Fortunately, A,g, is symmetric and traceless
in its last two subscripts [from the properties of the
quadrupole moment, Eqns (5)], and since a second-rank
symmetric traceless tensor spans 92, it follows from

2'x9*=9'+2*+3° (24)

that AQB., has just 15 independent components with no
degeneracies. Thus, by taking k, =1 and k,=2 in Eqn
(22), it is possible to obtain unique irreducible sets for
A,a, that can be readily interconverted between car-
tesian and spherical form. The required sets for &ae and
AGB, are listed in the Appendix; we have not given the
sets for G,,B since these are identical in form with G.g
(polar and axial tensors have identical transformation
properties under proper rotations). Chiu®® listed
equivalent sets, but with different constants and phase -
factors, which he used for a discussion of new selection
rules for higher order rotational Raman scattering
processes.

Symmetric top selection rules

We first apply these results to derive the selection rules
for conventional pure rotational Raman scattering in
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symmetric tops. This means that the initial and final
internal states |n) and |n’) correspond to the molecule
in its ground vibrational and electronic level; however,
in order to accommodate the possibility of antisymmetric
scattering we allow the electronic state to be degenerate
so that |n) and |n’) could correspond to different com-
ponents. Denoting the molecule-fixed principal axes by
X, Y and Z, with Z as the symmetry axis, the only
non-zero symmetric polarizability components are
azz =ajand axx =ayy =a, so that only the following
internal symmetric irreducible spherical operator com-
ponents survive:

0= -J34 (25a)

‘&.§=i(&”-&L) (25b)

where o = 3(axx + @ yy + azz) is the mean polarizability.
It follows from Table 4 in Ref. 11 that the only non-zero
antisymmetric polarizability componentis axy = —ayx ;
however, this is not supported by all symmetric tops,
only those belonging to point groups Cj, S¢, Ca, Ss, Can,
Cs, Csn and Cg, The corresponding internal antisym-
metric irreducible spherical operator component is
therefore '

&y == (Gxy —Gyx) (26)

J2

However, since the antisymmetric part [Eqn (9¢)] of the
effective polarizability operator is time-odd, further con-
siderations are required in order to know if a particular
molecule can support antisymmetric scattering, in par-
ticular the behaviour of the electronic state under time
reversal.''***” An earlier discussion of antisymmetric
rotational Raman scattering did not invoke time reversal
arguments and so the conclusions are misleading.?

A consequence of Eqns (25) and (26) is that K'= K =
0 in the intensity factors [Eqns (21)]. Using the factors
Dj .-« listed in Tables | and 2, the non-zero intensity
factors for conventional Raman scattering are found to
be as follows:

(a) AJ=0,AK =0:

[73(e®)) sk =3Km'l&lm)® (27a)
2K?

3J(J+1)

K2 -J(J+1)P
15J(J+1)(2J+3)(27 - 1)

x(n'léy—a n)? (27¢)
(b) AJ=+1, AK =0:
(J+K+1)(J-K+1)

[I:;(az)]m.:x“ K""&xv‘&vxl’mz (27b)

[Ifz(az)]ll(.lx =

[I:;(az)]J-HKJK =

6(J+1)(2J+1)
><|<"’|C‘5lxv“3Al\f>«'|")|z (27d)
2 2 2KMJ+K+1)(J-K+1)
@i == Tr @ +1)
xl(n'l&"—&Jn)P (27e)

(c) AJ=~1,AK =0:
_{(+K)J-K)
[I,',(az)]l-lx.lx ———————61(2.’4- 1)
x|("'}&xv’&rx"')|z (27f)
2K} (J+K)(J-K)
S5I(J+1D)QRI+1)(JT-1)

x|(n'|&y - &, |m)|? (27g)

(I3(e)]-ikk =

(d) AJ=+2, AK =0:
Ug(az)]uzx.m

CJ+K+DU+K+)(J-K+D)(J-K +2)
- S(J+1)(J+2)(2J +1)(2J +3)

x|(n')&) =& |mf? (27h)
(e) AJ=-2, AK =0:
[Izq(az)]J—zx,JK

_(J+K)(J+K-DJ-K)IJ-K-1)
B SJJ+1)(J-1)(RJ-1)

x[(n'l&y =&, |n)? (279)

Hence the well known selection rules for symmetric
scattering, namely AJ =0, 1, +2; AK =0; with AJ = =1
forbidden if K =0. The selection rules for antisymmetric
scattering also follow immediately, namely AJ =0, =1;
AK =0; with AJ =0 forbidden if K =0. Apart from
these selection rules we see that, within the Born-Oppen-
heimer approximation, the generation of antisymmetric
rotational Raman scattering does not depend on the
nature of the rotational transition; it requires degeneracy
in the electronic state. However, if the Coriolis coupling
between the electronic motion and the molecular rota-
tion is taken into account, antisymmetric scattering is
possible even if the electronic state is non-degenerate.*®

These selection rules also apply to vibration-rotation
Raman scattering in fundamentals of totally symmetric
modes of vibration. Selection rules for non-totally sym-
metric fundamentals are more complicated because
additional components must be included in the polariza-
bility operators.?*2428-3!

Rotational Raman optical activity

The ROA is calculated by converting the products of
cartesian tensor components in the circular intensity
sums and differences [Eqns (2)] into irreducible
spherical operator form (using the relationships in the
Appendix) and interpreting each term as a correspond-
ing intensity factor [Eqns (21)]. The non-zero ROA
contributions have the following form:
&Gl > 360G +3a5G3* + 436G
+a2,G*) (28a)
&G - 328G +aiG* +42,G%) (28b)
&G~ LalG*+aL, G +alG*+a2,G™)
(28c¢)
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~ e l A e ~
anA:yz_’_-[:l'e(aiAi*"’a—z 2) 0‘(2>A2*] (28e)

2V6
&vatxz-’ ——ﬁ(&glig*"' Az*——ao l*) (28f)
&A%, > —4—12[&%,&?*+&3,AZ_"{
3 Al gk Al Slix
‘E(QIAI +a ,A%) (288)
a.y/i.,,aﬁ[amfmaim“;
N
3 Alx l*
’T( 1A| +a& -l) (28h)

By mterpreung &XGE* and &XA** as [I15(aG)],kux
and (I q(aA)] JKJK and neglectmg the antisymmetric
scattering contributions (which is always valid at trans-
parent frequencies, irrespective of the nature of the
initial and final vibrational-electronic states),''?? the
ROA intensity factors to be used in Eqns (2) are found
to be as follows:

Im (8.G%+&,G%) -
%{7(al]—aL)(G|‘|—G,J_)D.ZI'K.,JK+4SQG'D9’KJK] (29a)
Im (&.G% +&,G%) >
%(Oln‘ L)(G|’| G,J.)DJ ‘K,JK (29b)
oAl >
9—0’4’(‘1" —a NAxyz— szx)Da'K.Jx (29¢)
o Re (&A%, ~&,A%)
_alsw(an“ﬂu)(Axyz‘szx)Di'qu (29d)

where G =}(G'xx+ G'yy+ G%z). Similarly, the
required conventional intensity factors are

3(‘) Re (axx xyz

QO h t 0L, &% >

i 7(ay—a,)? Dk x +45¢*° DYk ;x] (30a)
&:x&?x+&zy&ty*’lz_s(an—aJ.)zDi'&JK (30b)

We have specialized here to the case of pure rotational
Raman scattering, so that oy —«a,, etc., are the corre-
sponding tensors for the molecule in the ground vibra-
tional-electronic state.

We can now write down the polarized and depolarized
CIDs A, and A, [Eqn (1)] associated with the different
allowed rotational Raman transitions.

(a) Rayleigh line (AJ =0, AK =0):
For a molecule in a particular state |JKM):

BK:-J(J+1)F
JI+DQI+3)(2T-1)

A, =%{45aG’+

X["(a"—aL)(GI{I-GL)*‘%(a"_uL)(AXYZ—AYZX)]}
{45 ,. T3K*-JUJ+DF
0 BT (2J+3)(2J

2[(G|| sw(Axyz Ayzx)]
c(a“ a,)

1)( —a,) } (31a)

A, = (31b)
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Clearly, 4, is independent of temperature, but A,, since
it is a function of J and K, is temperature-dependent
and a quantum statistical average should be taken.
However, a useful approximate result can be obtained
if K=0 and J> 3, for then

BKP-JU+DE 1

JU+DQI+3)2I-1) 4

so that

2{45a G’ +z[7(a|| a (G- G))
2‘-“(0'-" a, ) Axyz — Ayzx)]}

Ay
> c[45a’ +3(ay—a,)?] (32)
with increasing temperature.
(b) Raman lines (AJ =1, +2; AK =0):
A, = A7(Gj=G'\) +iw(Axyz — Ayzx) (33a)
Te(ay—~a,)
A, = (G~ G.) —sw(Axyz — Ayzx)] (33b)
C((]." "0._‘_)

In the case that the separate transitions are not re-
solved, the total scattered intensity from the Rayleigh
line and all the rotational Raman lines is measured. This
means that, for each initial state |JK), we must sum the
intensity factors over all the allowed transitions to final
states |[J'K"), and then take a quantum-statistical average
of the resulting expressions over all possible initial states
|JK) using

LY X g W/kT
x=;£_z_e__mr__ (34)
J

where X" is the value of the quantity X in the jth
quantum state. Since AK =0, the use of the sum rule
{Eqn (20c)] gives a constant result for each intensity
factor (I )rksx [Eqn (21)] when summed over all
allowed ﬁnal states |J'K) for a given initial state |JK),
which means that when the average [Eqn (34)] over all
initial states |JK) is taken a temperature-independent
result is obtained. Specifically, the unresolved CIDs are
found to be

245aG'+7(ay~a,)(Gj- G})
+-w(a“ o )(Axyz = Avzx)]
c[45a* +7(ay—a,)’]

A= (35a)

and

2[(Gﬁ -Gl) ‘%W(Axvz - Avyzx)]
c(ay—ay,)

A, = (35b)

These results are precisely the CIDs [Eqns (6)] for an
isotropic fluid in the case of axial symmetry'' and so
conform to the ‘principle of spectroscopic stability’.*®

Notice that the nature of the initial and final rotational
quantum states does not influence the Raman optical
activity. The latter is determined solely by the nature of
the internal vibrational-electronic states, and so the
structure must be chiral in order that the same com-
ponents of polar and axial tensors such as a,g and G,
have the same transformation properties.''
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DISCUSSION

In molecules sufficiently large to be chiral, it is unlikely
that the separate rotational Raman transitions would be
resolved. However, the separate transitions all show the
same CIDs [Eqns (33)], so it is sufficient that the
envelope of unresolved rotational Raman bands be
resolved from the central sharp Rayleigh line, since this
has a different polarized CID [Eqn (31a)], although the
depolarized CID [Eqn (31b)] is the same. Thus if the
polarizability anisotropy (a;—a,) were known from
other measurements (such as depolarization ratio or
Kerr effect), it would be possible to extract from the
polarized and depolarized CIDs of the unresolved rota-
tional Raman bands values for the two optical activity
anisotropies (G — G') and (Axyz — Ayzx)-

Chiral symmetric top molecules belong to point
groups C, or D, with n>2. An example with D; sym-
metry is triphenylborane shown below. The minimum

-0

energy conformations of this molecule are known to be
chiral, with the aromatic rings constituting a left- or
right-handed propeller (that shown above is left-

handed), but unfortunately they are unresolvable.*
Nonetheless, it provides an instructive example for an
explicit calculation of rotational Raman optical activity.
This is performed in the Appendix using a group
polarizability model in which the optical activity effects
originate in the origin-dependence of the tensors G.g
and A,

Unfortunately, examples of chiral symmetric top
molecules that are sufficiently simple for useful rota-
tional Raman features to be observable are hard to find.
Any chiral molecule sufficiently small and volatile is
likely to be an asymmetric top. Asymmetric top
wavefunctions depend only on the quantum numbers J
and M and so have definite parity. They are usually
written as linear combinations of definite parity pairs
of symmetric top functions (|[JKM) alone has mixed
parity),””*! and so intensity factors corresponding to
transitions between asymmetric top states reduce to
weighted sums of intensity factors between symmetric
top states. However, because the principal inertial and
principal polarizability axes no longer coincide in most
chiral asymmetric tops, transitions with AK ==+1, +2
are now allowed in addition to those with AK =0, which
are the only ones allowed in a symmetric top. Hence
the theory of rotational ROA in a general chiral asym-
metric top is much more complicated, and is deferred
to a later paper along with discussion of rotation-vibra-
tion ROA.
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APPENDIX

Irreducible sets of tensor components required
in the text

It is important to realize that the usual statement of the
Condon and Shortley phase convention

Yi.=(-D)"Y}
applies only to the spherical harmonics Y+,. For general

spherical tensor components the corresponding state-
ment is

T, =(-)™ Tl

where n is the rank of the associated cartesian tensor,
which follows from Egns (1.2) and (2.1) in Stone’s
paper.”’ As well as the required third-rank sets, we have
also given the corresponding first- and second-rank sets
for completeness, even though these are completely
standard.

(a) First-rank tensor, exemplified by the electric dipole
moment operator. Only one set, spanning 2', can be
constructed.

1
1 .
=~ = (hetin,)
Mt Y

Ko = Wz

u'|=i(u- —ip,)
- x

‘/‘i y
The inverse relationships are

1
ux=-7§(ui-n'~n)

u,=-\;§(u}+u'-.)

P'z="‘(!)

(b) Second-rank tensor, exemplified by the effective
polarizability operator a,g. The effective electric dipole-
magnetic dipole optical activity operator G, has the
same form. Three sets can be constructed, spanning 2°,
2' and D%

1
ag: —‘:/? (an+ayy+azz)
1 .
a, = —E[axz —azx+‘(ayz -a:y)]

|
Qo= (axy_ayx)

-
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1

aLl = —E[axz T i(ayz —azy)]
o= [on —a,, +ila,+ay,)]

1 v
a% = _E[ax: ta,t i(ayz +azy)]

g= [2‘1 2z (axx+ayy)]

<\|_
(=, Y)]

l
az—l =§[axz+azx - i(ayz+azy)]

2 .
Q. =5[axx —Qy,, = l(ayx +axy)]

The inverse relationships are as follows:

Qgx =% [ - \/g (a¢2,+\/5ag)+(a§+az_z)]

@y, = -% [\/-3- (a§+~/§u8)+(a§+az_z)]
2 1

= \/%(uﬁ—ﬁag)

ay = =3 [V2ab+ (ad-al)]

Ay = _E[(a%_az—l)"’(a}'}'a‘-l)]

aye =3 [V2ad - (ad-a?,)]
a,e =3 [(ad+al ) +(al-al)]

aw= —3l(ai-al)-(al+al))]

0y =3 [(at+aZ) ~(al~al)]

(c) Third-rank tensor, exemplified by the effective elec-
tric dipole-electric quadrupole operator A,q,. For a
general third-rank tensor, seven sets can be constructed
corresponding to 9°, 39", 29” and 9°, but since A,g,
is symmetric and traceless in the last two subscripts, the
degeneracies in @' and @* are removed and 2° vanishes.

3 .
= /B[Am +A, AL Fi(A),, + A, +AL)]

Al‘) = Jg (Azxx - Axxz + Azyy - Ayyz)
Al -—\/ (A +A,,,+Au,

—i(A,,,+A,, tA,)]

A% = —— [A:—Apx + Azyy - Ayy!

J6
- '(2Azxy - Axyz - Ayzx)]
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—[A t A t2A

xyy — }‘J’-‘

~Js
+i(A,,, +A,, + 24, - Ay)]
Aé = i(Axyz - Ayzx)
1
Al =—=[Awc +Ax +2A,,, - A,
i s/‘6- yy Yy
—i(A,, + A,y 24,0 — Acy)]
1
Al = ——=[A..
e

Azxx + Azyy yyz

+ i(zAzxy - Axyz - Ayzx)]

A= J‘ [24,,,+Ay, A —i(2A, + A — A1
A3 =—\l7— (24, + Acx —24,,. — A,,,

+ ;(A,,, +A,+AL)]
Al= 3 J —=[TAux+5A4,,+24,,, -8A,,,

+i(TA,,, +5A,x+2A,,—84,,,)]

1
Aa = —:/1—_0 (3Aw + zAxxz +3Azyy + 2Ayyz)

Al = ——=[TAL +5A,,+2A,, 84,
2~/
1(7Ayyy + SAyxx + 2Ax_xy 8Azzy)]
A3 = '2_:/— [2A: + Arx yyz - A!Y,V
—2i(Ax,, +A,tAL)]

A= \/— [24,, + Ay — Arx

+i(2A5, t Ay —A),)]

The inverse relationships, specifying only the 15
independent cartesian components, are as follows:

2 1\/2 o
Am-\/;m. AL)+3 75 (Al-AL)

—=(A3-AL)

\/.

[\/—(A,+A‘ D+= \/—(A’+A’_,)

1
+-2-7; (A§+Ai3)]

L[ f3 Lo
Ayyx=2_\/§ [J‘;‘(A: —'A-'I)—'\/_E(A%"'Az-l)

+JLE(A?—A’..)+<A§—A’.3)]
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I 3 1 1 1 2 2
= —-—-—= - AL))——= Ay—AZ
Axxy 2\/2[\/;(A|+ l) J}( ] I)

+—1=(A?+A’_,)—(A§+A3_3)]

J15
1 1 2 2
A, = L Al-Al ) +=(A+A2)
» v'z[ T AT AT AT A
1
+—=<A1-Ai.>+—<A§—Ai,>]
215 2

Ay,,=—,'=[—‘_=(A:+A'.
! v2LV15S

\/—(A2 AL)

"——‘(AJ"'A3 |)+"(A3+As—3)]

A =——= [((A‘ A‘_,)+—(A2+Ai,)

-J—%(A?-A’_l)]

A,,ﬁi_[_ ;—O(AHA'_

1
\/2 1)‘E(A%‘Az—1)

2
+7:(A{+Ai.)]

xxz [: \/— AO J' AO —(Az Az—Z)

1
- A3+A3_z ]
+‘/3( 2 )

1 1
A, = ——[ \/éAf'ﬁ- \/§A3+‘——(A§-A2_2)
2L Vs s V6

+\/-1—3(A§+A3_2)]

A=t - NEENCEEE
J15 5 3

J_(A2+ Aiz)]

U2 g\ fare\froar-a
Z[x/l—SAo p ot 3( 32— A%L)
1
]
A, = 2[A0+J-(A2+Aiz)+f(A’ Ai,_)]

Ay = z—f—szM’» (A3-A2)]

i

1
Am=5 Aﬁ-J—g(A§+A3 J-(Az—Aiz)]

The remaining cartesian components can be obtained
from A,g, = A,.s and A,z =0.

Figure 2. The geometry of triphenylborane in a left-handed propel-
lor conformation. u,, u, and u, are unit vectors along the effective
six-fold symmetry axes of the aromatic rings.

Rotational Raman optical activity of triphenylborane

We use a group polarizability model in which the
polarizability and optical activity tensors of the molecule
are written as sums over a convenient set of local bond
or group tensors, taking care to include the origin-
dependent parts of Gl and A,q,:"'

a,B = Z txiﬂ
Gt'!ﬁ Z (G, éweB,&R y(]. ius)
Aapy = Z (A, + X Ria; +R;a;, - R,a;dg,)]

where a, ,, G}, and A, are the tensors pertaining to
group i and referred to a focal origin on i, and R, is the
vector from the molecular origin to the local group
origin. Here we take the set of groups i to be the three
aromatic rings, neglecting for simplicity the three B-C
bonds (which contribute only to the Raman intensity,
not the optical activity). Figure 2 shows the geometry
of a chiral conformation of the triphenylborane molecule
in which the three aromatic rings constitute the blades
of a left-handed propellor. The aromatic rings are
assumed to retain the same symmetry as free benzene,
so that each has a six-fold symmetry axis perpendicular
to the plane: this enables us to drop the intrinsic optical
activity tensors G;, and A, of each aromatic nng, and
to write each polanzablhty tensor in the form'!

a;,= a;(l —Ki)5u5+3u,giugu"

where ; is a unit vector along the principal symmetry
axis and

k=(ay—a,)/3a

is a dimensionless polarizability anisotropy. The
molecule-fixed axes X, Y, Z are taken to coincide with
the principal inertial axes with origin at the centre of
mass. Each group unit vector & makes an angle ¢ with
the Z axis. Labelling the three groups 1, 2 and 3, we have

R'u=RI°
RZ = (—lIc+£Ju)
2
1 ﬁ)
= - - 4 —
R; R(zlﬂ 2],,

u, =J,sine¢+ K, cosd
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3 1
U, = ——2- I, sind)—zla sind+ K, cos ¢

v |
u,a=—2—3-lasind>—-2-.l,, sin ¢ + K, cos ¢

where I, J, K are unit vectors along X, Y, Z and R =|R)|
is the distance from the centre of each aromatic ring to
the molecular centre of mass.
We now obtain
a" _aJ. = Z (axzz _aixx)

=%a;x;(3cos 24 +1)
2 (G, - Gi,)

i

G- Gl

il

-ZwRak; sin 2
AXYZ - AYXZ =Z (Aixvz - Aivzx)

= —ZRax, sin 2¢
a= %am =3a;
G =31G.L. =0
Using these results in the CIDs [Eqns (33)] for the
rotational Raman lines, we obtain

487 R sin 2¢

B.= TN cos 2b+1)

47 R sin 24
A3 cos2d+1)

2 =

This expression for A, also applies to the Rayleigh line
and to the unresolved band, but the corresponding polar-
ized CIDs are, from Eqns (32) and (35a),

_4811-R:<f(3 cos 26 +1) sin 2
A[320+7x?(3 cos 2+ 1)?]

A=

and

_ _48mRk(3 cos 26+ 1) sin 2
A[80+ 7k (3 cos 26+ 1)?]

x

To estimate the magnitudes, we use the following
values: |«;| =0.18 (from light-scattering data on ben-
zene);* R=0.3nm and ¢=30° (from x-ray data);*
A=500nm. This gives A,=-448x10"° and A,=
—-2.61 x 1072 for the Raman lines, A, = ~1.97 x10”° and
A,=-2.61x10"* for the Rayleigh line and A,=
-7.80x107° and A, =-2.61x10"* for the unresolved
band. Triphenylborane is actually a very favourable
example: more typical values might be an order of
magnitude smaller. However, most of these parameters
should still be measurable, since scanning ROA instru-
ments can detect A values down to ca 10™* and optical
multi-channel instruments down to ca 10757
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The time-odd part of the molecular optical activity tensor is shown to
provide new contributions to the discriminating dispersion interaction between
chiral molecules in degenerate states. Detailed calculations on a hypothetical
odd-electron chiral transition metal complex of O* symmetry indicate that the
new discriminating contributions could be within an order of magnitude of the
conventional discriminating contributions. In the near zone, the new contribu-
tions have the usual R™® dependence, but in the wave zone they depend on
R';, unlike the conventional discriminating contributions which depend on
R™%. :

1. Introduction

Among the unique properties of chiral molecules are their discriminatory inter-
actions [1]. In particular, the difference in the interaction energy between pairs of
chiral molecules with the same absolute configuration and pairs with opposite
absolute configurations has attracted much attention recently [1-5]. Although
chiral discrimination in the dispersion interaction is expected to be weaker than in
other interactions such as ‘contact’, electrostatic and hydrogen bonding, it is uni-
versal. The purpose of this article is to discuss additional contributions to the
discriminating dispersion interactions between chiral molecules in degenerate states,
particularly Kramers degeneracy associated with an odd number of electrons.

Molecules in degenerate quantum states can support, in addition to the usual
range of time-even property tensors, time-odd property tensors that generate new
phenomena [6-8]. Although phenomena that are linear in time-odd property
tensors, such as the Faraday effect, are only manifest in the presence of some
time-odd influence such as a magnetic field, phenomena that are quadratic in such
tensors do not require a time-odd influence. Antisymmetric light scattering provides
a good example [6-10]. Buckingham and Joslin [11] have discussed spin-dependent
dispersion forces between alkali metal atoms which originate in the same property
and transition tensors as antisymmetric scattering, namely the time-odd parts of the
polarizability. Although the existence of analogous contributions to discriminating
dispersion interactions between odd-electron chiral molecules originating in the
time-odd parts of the optical activity tensors was mooted several years ago [12, 7],
the detailed theory has not been developed previously.

2. The near-zone limit: single-centre formalism

The near-zone limit refers to separations R of the interacting pair that are much
smaller than the wavelengths characteristic of the molecular electronic transitions so
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that retardation effects can be neglected in the calculation of dispersion interactions
[5]. This situation is conventionally treated using second-order perturbation theory
[13].

The wavefunctions are written as simple products | n, n,) of the separate wave-
functions |n, ) and | n,) of molecules 1 and 2. The perturbation hamiltonian is taken
to be the operator equivalent of the dipole—dipole interaction energy for two neutral
charge and current distributions [13, 7]

1
=——'(_—.Tlﬂ#lg#2‘ + "')

4re,
+ i‘—° (= Togmy my, + .., @.1)
T
where
M=) ery, (220)
m=% S (l, + gi5), (2.2b)

i
are the electric and magnetic dipole moments for the collection of charges ¢, with
mass m, and orbital and spin angular momenta |, and s;and g-factor g,,and

Ty =Tpe=V,V4R™' = (3R, Ry — R¥5,)R™%, 22¢)

where R = R, — R, is the vector from the origin on molecule 1 to that on 2. The
dipole dispersion energy is then [13]

U= _(L)z wTs 3 <"1"2i#lgz,|j1jz>01jz“‘1,#z;|"1"z>. 2.3)
4'7“0 j1%m h(wll'll + w]znz)
FERLLH
It is well-known that, using the identities
1 2 (® AB 2 (= u?
= — d = - .
A+B n)y @ruxE )™ nL @raEra 9

with 4 > 0, B > O, the dispersion energy (2.3) can be separated into single-centre
contributions involving the individual molecular dynamic polarizability tensors at
imaginary frequencies [13]

1 \*( h ®
= —(——> (ﬂ>7;¢ Ts J; [oy (i, (i) + o (iu)edy, (iw)] du,  (2.5)

4ne,
where [13, 7]
2
14@) = 3 T =2 Re (<1l 115G | g1 mD) = agelo), (26a)
i#*n “jn
2
hfo) = =5 T s Im LD g ) = —pe) (26D)
with o = iu.

Interference between the electric and magnetic dipole—dipole interaction oper-
ators generates the following contribution to the discriminating dispersion inter-
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action between two chiral molecules [14, 15, 5]

1 ;10> { 1
U=—-|— Ty T, —_—
(47‘50>(47‘ p e Ilgﬂl hwjin, + ©jy0,)

Ja#*n2

x ({n, nz“‘x,l‘z,”sz)(iljz|m1,m24,"1 ny>
+ (nynyimy my, 1 jyjad iz iy, B2, 0y ”z>)}- 27

Again using the identities (2.4), this can be separated into single-centre contributions

1 h *
U= —(Z;za—,))(:;)( >T,ﬁ T J; (G, (iu)G,, (i) + G, (iu)GY,(iw)] du, (2.8)

where
2
Gus) = 3 & 35 Re (<l e 3< 1mg ), (29a)
Gylw)= —< Z : ——— Im (<"|#,|J></|mpln>) (29b)

are the optical activity tensors [13, 7].

We now consider the encounter of two molecules, each with an odd number of
electrons. For simplicity we shall consider only the case of a twofold Kramers
degeneracy with effective spin states |S, M,> =4, £4), a=|4,4) and B =
|4, —4> being the conventional shorthand. Although the electronic wavefunctions
are not usually antisymmetrized since the indistinguishability of electrons plays little
réle in determining intermolecular interactions at the separations we are consider-
ing, antisymmetrization is essential for any discussion of spin-dependent features.
Thus in the absence of a magnetic field, and neglecting exchange interactions, there
are four degenerate zeroth-order eigenfunctions: a singlet and three triplets. As we
shall see, the dispersion interaction will lift some of this degeneracy. Assuming C,,
symmetry for the interacting pair, which obtains for two unlike atoms or two unlike
_molecules which have effectively spherical symmetry (e.g. belonging to cubic point
groups), the singlet transforms as £* and the triplets as £~ and I1,,. In terms of
one-electron spin states quantized along the intermolecular axis, the singlet state is

1
127> =7 (g B3> — | By a2))s (2.10q)
and the three triplet states are
[Ty ) =|ay a3, (2.10b)
) .
[Z7> =r/—2(laxﬂz> +1B122)) (2.100)

ITI.> =By B2d. (2.10¢)
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The dispersion energy of molecules encountering in these eigenstates is [11]
U(n+l) = U(n—l) = Uzlaz.amz’ (211(1)
U(zx) = Uzlﬂz-zlﬁz t Unﬁa. Braz» (2-“ b)

where

1 2
Umlmz.funz = - (47158(,) T;ﬂ TIJ

oy Smumalinn, G Bty MR gy

jiEnL, my h(wiuu + wjznz)
ja#nz, m

For simplicity, we have not specified explicitly the spatial parts of the states. Intro-
ducing symmetric ( + ) and antisymmetric ( — ) transition polarizability tensors

1 Wiy
(@zp)ma(@) = ——
s j*gmw]zn-wz'

x (Km|ug| < uglnd + <mipg| DG Hal 1)) = (tge)mald), (2129

w

@) =5 3. ;
J

#n,m (D},, -
x ({m|p | jD< T uglny — <mpg|jd> 1 te| 1)) = —(Xpe)mal@)s (2-125)

we obtain

1 \(h @
Umxmz.nmz: - Fso E; Tc':ﬁ T:/d b

X L@, Imyns (X2, man(18) + (21 Iy, (UN© 3, Iz (iU)] i (2.13)

The transition polarizabilities (2.12) are not quite as general as corresponding
Raman transition polarizabilities [7] because |n) and |m) must have the same, or
nearly the same, energy.

If the odd-electron molecules are chiral there will, in addition, be analogous
discriminating dispersion interactions for pairs encountering in the singlet and
triplet states (2.10). Specifically,

, - (L Yk ®
o= () BN

X [(G{,)mim (NG Sy )mans(it) + (G 1 myn (UK G 2y mamy(iW)] duty  (2.14)

where

1 w;
+ . —_—in
Comie) =5 T o3

X ((m{pal > Imgln> + <mimy|jD i pgin)),  (2154a)
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i w
(GopdmalW) = T 53
g h j*%m CL)},, -’

X ({m]p,|j3<j I mg|ny — (mimg | Dl ug|nd),  (2.15b)

are transition optical acitvity tensors. Because products of transition moments con-
taining different operators are involved, these transition optical activities do not
have well-defined behaviour under permutation of the tensor subscripts, unlike the
transition polarizabilities {2.12).

3. Optical activity and time reversal

Further development of the one-centre contributions (2.13) and (2.14) to the
dispersion interaction between odd-electron molecules is facilitated by a consider-
ation of the behaviour of the transition polarizability and optical activity tensors
under time reversal.

It is easy to deduce the behaviour under time reversal of the basic polarizability
and optical activity tensors (2.6) and (2.9) from simple classical arguments [16, 6, 7]
based on a consideration of the contributions of these tensors to the oscillating
electric dipole moment induced in a molecule by the electric and magnetic field
vectors E and B of a light wave:

1 1 . :
u,=a,ﬂE,+51;,E,+GQ,B,+BG;5B,+.... (3.1)

Classical time reversal involves replacing t by —t everywhere, from which it follows
that u, is time-even so that the real and imaginary polarizabilities a,; and «;; must
be time-even and time-odd, respectively; whereas the real and imaginary optical
activities G,; and G, must be time-odd and time-even. It is the imaginary part G,
that is responsible for conventional optical activity phenomena such as optical
rotation: the real part is responsible for exotic effects such as gyrotropic birefrin-
gence {17] and magneto-chiral birefringence and dichroism [ 18] which require the
presence of a static magnetic field or some other time-odd influence.

Useful relationships between components of the corresponding transition tensors
involving various degenerate states can be deduced from a consideration of the
behaviour of states and operators under the quantum-mechanical time reversal
operation ® that first takes the complex conjugate of a wavefunction and then
reverses the sign of the time coordinate. The two orthogonal spin states « and B
provide an important example: it can be shown that (with a particular choice of
phase) [19]

Oa = B, Of = —a. (3.2)
Time-even (+) and time-odd (—) opérators are defined by
QA(+)®! = +A(+)". (33)
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The transition tensors (2.12) and (2.15) can be generated by taking matrix elements
of the corresponding effective operators [7, 9, 12]

335 = 3w 0" g + 1s 0% 1), (3.4a)

3= —$(u,0 " pg — g0 1), (3.4b)
and

Gip = 3(u, 0" my + mg0* 1), (34¢)

G = —4u,0"my — m0~ ), (3.44)
where

1 1
+ _ —
0% = (H— Wtho THo W= hw)' (34e)

W is the average of the energies W, and W, of the initial and final states. By
summing over a complete set of states |j)>{j| inserted after O, it is easily verified that

(@ mal®) = <] &y | 1, (3.5a)
(@) = iCm | 55| m, (3.55)
(GLrl@) = <m| Gy, (3.50)
(GPun@) = iCm| G351 m. (3.5d)

It has been shown that the product of two non-commuting hermitian operators with
well-defined behaviour under time reversal does not itself have well-defined behav-
iour but can be written as the sum of a time-even and a time-odd operator [19]. By
extending these considerations to the operators (3.4), it can be shown that & is
time-even and hermitian, & is time-odd and anti-hermitian, G}, is time-odd and
hermitian, and G,', is time-even and anti-hermitian [7, 12]. Then using the result
[19, 7]

(@a| A(1)|Ob) = £<b|A(£)|a), (3.6)
we obtain the following general relationships:
’ (@3 n = (os)omem = (2:5)Emen (3.7a)
(%apdmn = —(%zp)onvem = —(¥ep)Emen> ' (3.7b)
(Gipdma = —(Gplonom = —(Gop)dmen> (3.7¢)
(Gaphmu = (Geplonem = (Gop)émen - (3.7d

Chiu [20] has also used time reversal arguments to discuss aspects of natural
optical activity in degenerate states, but his approach is rather different.

In what follows, we use the terms time-even and time-odd transition tensors to
refer to tensors generated by time-even and time-odd operators, respectively. This
terminology is rather loose, because the behaviour of the associated matrix element
is only that of the operator for diagonal transitions.
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An important characteristic of these transition tensors is the existence or other-
wise of a static limit. Thus the transition tensors generated by the hermitian oper-
ators #;; and G,, remain finite as w — 0, whereas those generated by the
anti-hermitian operators ., and G,, vanish. We shall see that this has mportant
consequences for chiral discrimination in the wave-zone limit.

4. The singlet and triplet dispersion energy

We now apply the results of the previous section to simplify expressions for the
singlet and triplet dispersion energy of pairs of chiral molecules in twofold Kramers-
degenerate states. Using (3.2) in (3.7), we find for the transition polarizability

(@35 ¢ 1722 1/2(0) = (@55) % 127 1/2(®), 4.1a)
(@ap)s 1/221/2(@) = —(%3p) 7 127 1/2(@) (4.1b)
(@3p) 2127 1/2(0) = — (@)% /21 1/2(®), 4.1
(@ap) 1127 1/2(@) = (%2p)% 1/2£1/2(). (4.1d)

Similarly, we find for the transition optical activity

(Gip)s1/2£1/2(0) = —(Gip)z 1/23112(), (4.1¢)
(Gap) 21722 1/2(0) = (Gop)z 127 1/2(@), @1f)
(Gap)x 127 1/2(@) = (G3p)% 12 £1/2(), (41g)
(Gap)r1/2712(@) = —(Gp)% 124 1/2(@) (4.1h)
The polarizability dispersion energy contributions are then
ur,)=Uu(I1.)

1 \*/ & ©
= '(za) (2_1;)7,, TwL

x [(r,)+ 172+ 1/200UX%25) + 172 + 1/2(i)

+ (al—.,)+ 12+ 1/2(iux¢;,,)+ 172 +1/2(iW)] du, 42a)

1\ h ®
——) =)
() G |

x [(a f.,)+ 12+ 1/z(i“x¢{,)+ 12+1/2(i%)
= (@) + 12+ 17200@2,) + 172+ 1/2(i4)
F (@1,)+ 12 - 1/20uX23,)% 12 - 1/2(10)

+ (@)+12- 1/2(‘.“)(“2-,)1 12 - 172(iw)] du, (4.2b)

UE%)
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and the discriminating optical activity contributions are

U,)=U(l.)

(@)@ )

X [(GI:,)+ 12+ 1/2(i“)(Gz+,4)+ 172+ 172(i4)

+ (Gr,)+ 172+ 12(UNG 2,) + 12 + 12(iW)] du, (42¢0)

N S STV ®
v = (g B |

x [—(Gﬂ,ﬂ 12+ xlz(i“xG;,)+ 172+ 172(iu)
+ (Gr) + 172+ 1/20UXG2,,) + 172 +1/2(i4)
x (G.T.,)+ yz- 1,z(iu)(Gi’,)‘l 172 - 1/2(iu)

F (Gr)+uz-1/20UXG3,)% 12 - 1/2(i0)] du. (4.24)

Notice that the contributions from the time-odd tensors a, and ‘G, disappear
when summed over the singlet and the three triplet states.

In general, the calculation of optical activity parameters for specific chiral mol-
ecules is difficult and the results often unreliable. However, it is possible to calculate.
meaningful relative magnitudes of the time-odd and time-even contributions to the
chiral discrimination because the interference terms that the chiral distortion
induces between the electric and magnetic dipole transition moments have the same
reduced matrix elements in the two contributions. It is instructive to take as a model
a hypothetical chiral odd-electron transition metal complex of symmetry O*. Large
spin—orbit coupling in the charge-transfer states of iridium (IV) hexahalide com-
plexes generates significant antisymmetric scattering contributions to resonance
Raman processes from the time-odd part of the transition polarizability (¢ 5)w [7, 9,
10], and similar mechanisms will generate time-odd transition optical activity com-
ponents (G,3)m, in corresponding chiral complexes.

We take the same pattern of spin—orbit levels as is found in IrBr~ in aqueous
solution (figure) [21]. The first few electric dipole-allowed transitions in the parent
O complex are

UCT) — ECTy) EiCT«E(T,) and ULT)«E(CT,)

These all become magnetic dipole-allowed as well in the hypothetical chiral O*
complex. The first transition U,(3T;,) « E;(*T;,) is forbidden because both terms
originate in the same orbital configuration. Using Harnung’s version of the Wigner—
Eckart theorem for the octahedral double group O* [22, 7], we find the following
transition polarizability and optical activity tensor patterns:

(@) E” intermediate level

(1) (@zp)mn
Common factor | <E"(n) || p || E"()) |*w w/hler}, — @?)
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We have assumed that the electric and magnetic dipole moment reduced matrix
elements are pure real and pure imaginary, respectively. Notice that these tensor
components accord with the relationships (4.1).

An interesting feature of these transition tensor components is that, unlike the
case of atomic Na where the contributions to the time-odd (antisymmetric) tran-
sition polarizability (x,4),, associated with transitions from the ground level to the
spin-orbit split components of a given excited level (e.g. 2P, 2Py, « 2S,,,) would
sum to zero if the splitting were zero [11], the corresponding contributions in
IrBrZ~ do not cancel. For example, it has been shown that [23, p.488]

ICESCTo) Il ESC TR 12 = 21CEQC T Il N UG T 2 (44)

and so from (4.3b) and (4.3f) we see that the contributions to (2,), from the pair
of spin-orbit components E., and U, deriving from the excited level 2T;, (figure)
would by no means sum to zero. Indeed, looking at the spin—orbit components U,
and E, deriving from the 2T\ excited level, we see that there is no cancellation at
all since only U, contributes to (x,5)ms, transitions to E, being electric dipole-
forbidden. In order to obtain a rough estimate of the relative magnitudes of the
contributions from the time-even and the time-odd transition tensors to the disper-
sion interaction we shall therefore consider, for simplicity, just the U,(*T{\) excited
level.

For the situation where the two interacting molecules are held in fixed orienta-
tions relative to each other, we refer the property tensors of each to a common axis
system X, Y, Z attached to the pair. Taking Z to be along the vector R connecting
the two local origins, we have from (2.2 ¢)

T;ﬂ 7:/6 G qu = R_6[Glxx Glxx + Gln GZYY + 4Glzz Gzzz
+ Glxr Gny + Glrx Ger
- 2(Glxz szz + Glzx Glzx

+ G,; G2y, + G1,, G2yl 4.5)

lay

If the principal axes of the two molecules have different orientations with respect to
the reference axes, G,,, will not in general be the same as G,,,. But for simplicity we
take the case where the principal axes of the two molecules have the same orienta-
tions. Considering just the U’(*T\Y) excited level (the subscripts ‘g’ and ‘u’ are
retained in the orbital term symbols to indicate the OF parentage of the spin—orbit
levels in O*) we use (2.4), (4.3 g), (4.3 h) and (4.5) to write

0

TsTs j (G{,)+uz+ 1720UXG3,,) + 12 +1/2(iu) du
o

= e [CECT) LRI UCTE) FIKECT ) | m UCTED . (46a)

Te T J‘ (GL,) + 12+ 1/20UNG3,) + 12+ 1/2(iu) du
o

= — e [KECT 11 I UCTE) FIKE'CT) I mI UCTE) P, (460)
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etc. The total discriminatory dispersion energy may now be written [’ =
Ug(l + 4'/4), where A’ characterizes the additional contributions from the time-odd
tensors and takes the values —1, —4, £ for the states |[Z*), [IT,,), |Z ™), respec-
tively, and

U < 1 ) ,u_o> 1
°® ™ \4ne, /\4n/ 6RR%w,

X [KE'CT) Il UCTEN PIKECT ) I mI UCTIN 12 (47a)

Similarly, the total non-discriminatory dispersion energy may be written U =
Uo(l + 4/4), where i characterizes the additional contributions from the time-odd
tensors taking the same values as A’ above, and

)2 1
Up = _(Fs() TR, [KE"CT )l ull UCTEN 1% (4.7b)
The sign difference between U, and U, reflects the fact that the conventional
contribution (i.e. from time-even tensors) to the non-discriminatory dispersion inter-
action is attractive (negative), whereas the conventional contribution to the discrimi-
natory dispersion interaction is repulsive (positive) between pairs of chiral molecules
of the same species and same enantiomer provided the two molecules have the same
orientation relative to the reference axes [2, 5, 15].

The results of our model calculation indicate that contributions from time-odd
tensors to the dispersion energy, both non-discriminatory and discriminatory, could
be within an order of magnitude of the conventional contributions from time-even
tensors for pairs of molecules with large spin—orbit coupling. This contrasts with the
case of interacting pairs of alkali metal atoms, where the additional contributions
are expected to be four orders of magnitude smaller in the most favourable cases
[11]. Notice, however, that the sum of the contributions from the time-odd tensors
over the four possible states |Z*) and |I1.,) of the interacting pair is zero, as
anticipated quite generally from (4.2).

The isotropic case, where the molecules are free to rotate relative to each other,
requires further consideration. In atoms, the ‘molecule-fixed’ axes can be chosen to
coincide with the space-fixed axes so that orientational averaging is irrelevant; and,
as discussed by Piepho and Schatz [23, p. 89], this is usually also the case for
molecules belonging to the cubic point groups since the Zeeman effect is usually
isotropic. This implies that the above results for oriented molecules of cubic sym-
metry should correlate with the isotropic case. Thus averaging each tensor com-
ponent in (4.5) independently using isotropic averages such as (a,;)> = ad,s, where
a = {(ayy + %yy + azz), We recover the same dispersion energies as before, but
summed over the singlet and three triplet spin states so that the contributions from
the time-odd tensors in U = Uy(l + 4/4) and U’ = Ug(1 + A'//4) vanish (this corre-
sponds to the fact that each time-odd tensor component has a zero classical iso-
tropic average).

5. The wave-zone limit: retardation effects

At separations much larger than the wavelengths of the molecular transitions,
the finite speed of propagation of light leads to a cancellation of the ordinary
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dispersion energy varying as R %, being replaced by an interaction dominated by a
term varying as R~’ [24]. This Casimir—Polder potential is derived using quantum
electrodynamics.

We consider first just the contributions from time-even tensors. Thus starting
from equation (7.4.9) of Craig and Thirunamachandran [5] and retaining only the
terms corresponding to contributions from virtual photons with energies much less
than the molecular transition energies, the wave-zone non-discriminatory dispersion
energy is found to be

1 \*/ hc
U,mm;,nl’lz = _<47t60> (87[R7)

X (3stzy Sﬁa - 5R4S:7 Tﬁd + SR Tﬂdxaaﬂ)mlnl( ¥ sznz, (51)

where
Ss=V.V4R = (Rzéw - R,R,,)R'3

and we have generalized to a transition energy as in (2.13). The superscript SL
indicates the static limit (w — 0) of the tensor. In the isotropic case where the two
molecules are free to rotate independently, this expression reduces to the usual
Casimir-Polder expression if m = n [§, 24]

23hc
U= ~ GrR 2R ajtadt. (5.2)

Similarly, the discriminatory dispersion energy between a pair of chiral molecules at
the wave-zone separation is

, 1 Uo \[ h3c?
Unimg,minz = —(Z;:o)(ﬁ)(m [14R°T,, Ty,

- ZlR"‘(’I;, Sps + Sey Tys) + 45R2S,, Sy + 818y, 859, R, R R 2]

X Z hz Kmy |#1.|f1><fx|m1,|"1> —<my lm1,|j1><jx |4y, 1n0))

Wjiny

1 L s
Z 2,2 (("‘2“12, li2>Galmy,Ing) — <’"2|"‘z,|]2><lz|#z,|”z>)
h 2"2
- [14R6’I;,’I}‘, - 21R‘(’I;w Sps + Say Tga) + 45R2$,., Sps

2" + 2'
- 816,7“86,*R RAR-Z] Z Mu

4. .2 2
Jii2 h Wjiny Dfznz

x (Kmylpy ljimy, i) + <myimy, 1< T ug I ne))

X ({my|pa, 1j2d<izImy,Iny) + <mz|mz.|jz><jz|ﬂz.|"z>)}- (5.3)
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Again, in the isotropic case with m = n, this reduces to a standard expression 5]

' (1)<“°)(‘6”"’)
U={— = 5
4ne, /\4n/\ 3nR

x Z hz <"1|#1,|11><11|m1.|n1>)

x Z hz <"2|#2,Uz></2|mz,|"z>) (5.4)
jznz

We now consider the new contributions from time-odd tensors. Unlike the
near-zone situation, these have a different R-dependence from the corresponding
time-even tensors. Thus there is a non-discriminatory term looking similar to (5.3)
but involving only electric dipole interactions [25]: we have not bothered to write it
down because the dependence on R™? ensures that it will usually be of no signifi-
cance relative to the conventional contribution (5.1). On the other hand, the contri-
bution from time-odd tensors to the discriminatory dispersion interaction looks

similar to (5.1), including a dependence on R~’

: - (L 6T
e = ~( g ) i 108 T

- SR‘(T;Y Sﬂt’ + Sﬂ? T‘ﬁ&) + 6st Spa

- l4€abu ezﬁA Ru RA R” 2](G1¢; mpn(G;, 'mang (5'5)

Since the conventional wave-zone discriminatory dispersion energy (5.3) depends on
R~%, this additional contribution between odd-electron chiral molecules could be
several orders of magnitude larger.

A full quantum-electrodynamical treatment that gives complete expressions con-
taining both time-even and time-odd tensors in the near zone and the wave zone
(including some other new terms) is given elsewhere [25].

6. Discussion

We have shown that, in favourable cases, there are additional contnbutnons to
the discriminating dispersion interaction between odd-electron chiral molecules
encountering in spin eigenstates of the interacting pair that are within an order of
magnitude of the conventional contribution. In the near zone these new contribu-
tions, which originate in the time-odd part of the molecular optical activity tensor,
have the same R~¢ dependence as the conventional contributions arising from the
time-even part. But in the wave zone, the new discriminating contributions depend
on R~7, unlike the conventional discriminating contributions which depend on
R~?: this is because the time-even part (G )., of the optical activity tensor does not
have a static limit (like the time-odd part (z;)., Of the polarizability tensor),
whereas the time-odd part (G.j)., does have a static limit (like the time-even part
(2,3)mn Of the polarizability tensor).

Unfortunately these new discriminating contributions mutually cancel when
summed over the singlet and the three triplet eigenstates of the interacting pair.
However, since the dispersion interaction lifts some of the degeneracy of these states
(we have seen that =¥ split apart), there should be a small residual effect arising
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from population differences. In the hypothetical chiral O* complex considered
above, this would reduce the conventional repulsive discriminating contribution to
the dispersion interaction between pairs of chiral molecules of the same enantiomer
and reduce the attractive discriminating contribution between pairs of opposite
enantiomers. On the other hand there is the interesting possibility of manipulating
the discriminating dispersion interaction with a magnetic field: since the field would
split the IT,, states, we would expect the effects described in the previous sentence
to be enhanced.

The magnetic field dependence of the wave zone discriminating dispersion inter-
actions in R™7 could have interesting consequences in biological systems.

We thank the Science and Engineering Research Council for a Research Stu-
dentship for C.J.J.
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