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A bstract

T he work in  this thesis divides naturally  into two distinct parts  which are linked 

by the general underlying them e of chiral discrim ination. The first p a rt concerns the 

discrim inatory response of chiral molecules to circularly polarized light which con­

stitu tes optical activity, the second, chiral discrim ination in interm olecular forces.

Specifically, in P a rt I, a detailed study of ro tational optical activity is under­

taken. Expressions are derived to describe R am an optical activity, optical ro tation  

and circular dichroism by first treating the simple case of a sym m etric top molecule 

and then  allowing this to be the basis for the more sophisticated development re­

quired for an asym m etric top molecule.

In P art II, discrim ination in the dispersion interaction between odd-electron chi­

ral molecules is studied. It is shown th a t novel contributions to the discrim inatory 

in teraction are in troduced by allowing for the tim e-odd part of the m olecular opti­

cal activity tensor which is supported by chiral molecular systems in which there is 

some source of tim e asym m etry, as provided, for example, by the residual electronic 

angular m om enta of odd-electron molecules. Both a semi-classical and a quantum  

electrodynam ical trea tm en t are given, the la tte r making possible a study of the 

wave-zone region in which the finite speed of light m ust be taken into account. 

Calculations, w ithin the semi-classical model, on a hypothetical odd-electron chiral 

transition  m etal complex of 0 * sym m etry indicate th a t the new discrim inatory con­

tribu tions could be w ithin an order of m agnitude of the conventional discrim inatory 

contributions.
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Part I

R otational optical activ ity



C hapter 1

R am an optical activ ity  in 

sym m etric top  m olecules

1.1 Introduction

O ptical activity associated with electronic and vibrational transitions has been 

extensively studied [1-5]. W hile this has proven a fertile area of theoretical and 

experim ental research, the possibility of optical activity in ro tational transitions 

has been little  considered.

For a fluid in the absence of an orientating influence, such as an external m ag­

netic field, the conventional procedure is to average the expression for a particu lar 

optical activity  param eter over all orientations of the molecule. Since this isotropic 

average is equivalent to a quantum -statistical average over all ro tational states, 

inform ation about individual rotational transitions is lost. The first trea tm ent of 

optical activity to take account of contributions from rotational transitions in a 

non-classical way was th a t given by Chui of optical ro tation in sym metric tops [6]. 

Later work in ro tational optical activity has included further studies of optical ro­

ta tion  [7-9] and a consideration of Ram an optical activity (ROA) [10] and circular

5



dichroism  (CD) [11]. W hile all these effects originate in the discrim inatory response 

of a chiral molecule to right and left circularly polarized light, each is associated 

w ith a different physical phenomenon; optical ro tation  with refraction, CD with 

absorption and ROA with Ram an scattering.

In this chapter we shall present a quantum  mechanical development of ro tational 

ROA in sym m etric top molecules.

1.2 Theory

1.2.1 B asic defin itions and expressions

We shall consider the experim ental arrangem ent of incident light, observed scat­

tered  light and sample depicted in fig. 1.1, in which circularly polarized light prop­

agates along the z direction and the scattered rad iation  is detected at 90° along the 

y  direction. An appropriate measure of Rayleigh and R am an optical activity is the 

dimensionless circular intensity difference (CID)

A a =  ( J ? - £ ) / ( £  + / f )  (1.1)

where 1^ and 1% are the intensities of scattered light with a  polarization in right 

and left circularly polarized incident light [1]. To obtain the polarized (a  = x)  

and depolarized (a  =  z) Rayleigh CIDs in term s of molecular property  tensors 

requires second-order tim e-dependent pertu rba tion  theory to calculate the electric 

and m agnetic m ultipole m om ents induced in a molecule by the incident light. These 

induced mom ents are then  taken to be the source of the scattered radiation. All 

calculations can be carried out adequately using semi-classical m ethods; tha t is, 

we may trea t molecules as quantum  mechanical entities interacting w ith classical 

electrom agnetic fields.
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The Rayleigh circular intensity sums and differences are found to be [1,12]

Ix 4* I x 32ir2cy2 ^ xx^ xx ^  **xy**xy + ’ " )  (1.2a)

t r  i _  u Aj i 0E ^  \ /i om
Z ~b I* 327r2cy2 1 zxQ!za; ~b G-zy&zy 4" ’ ' ’) (1.2b)

TR _ TL  _  ^ y oE (°)2 /** , -  /**
x x 167T̂ Ĉ 1/̂  i i^^^y^xx 4~ ^xyG X y  4~ ̂ xxGxx

~&xyGxz T  Q-xxGyz) T  ~u}R.e{otxxA xzy

~®-xy-Axzx 4“ ®-xy'Axxy — Oixx^yXy) “I- * ’ '] (1.2c)

tR tL _  u Ay 0E ^  . _ + _ -*
z xz ~  \Q^2c2y 2 ni^cazy°izx Q!zy zy °^zxGzx

^~&zyGxx ~  &zxGyX) 4“ 2^ ^ 'e( ^ za:'<̂2zy

— d;;y.<4zzx 4“ d zy^4xzy ~  OtZXA.yzy) 4“ * * * ] ( l .2d)

where we have introduced the complex dynamic molecular property tensors

tO l*oEW

da/3 = a af3 -  ictap (1.3a)

Ga/3 = Ga,3 -  iG 'aj3 (1.3b)

A a[3-y = A a07 — i A ap^ (1.3c)

Ga/3 =  GaP + (1.3d)

AaP'y =  -̂a/37 4- iA'af37 (1.3e)

A complex quantity  is denoted by a tilde. Expressions for the real and im aginary 

p arts  are provided by tim e-dependent pertu rba tion  theory as follows [1,12,13]:

a «/3 =  ? E “ T ^ 4 Re((n \ ^ \ j ) ( j \ ^ \ n ) )  (1.4a)

a «(3 = “ ? E t “ — jlm « n  | (i* | j ) { j  | fi/3 | n )) (1.4b)
h “jn -  ^

Ga(3 =  f- I ]  2^ jn-— Re((n I p a 1 i ) ( i  1 | n )) (1.4c)
/ l  • , — toj^n jn

G'c,0 =  - r £ - r - — -Im ((n  | ^  | j ) ( ;  | | n )) (1.4d)
^  <4. "  w

=  | S  ^  ? Re((n [ | ; ) ( j  | | n )) (1.4e)
h £ n <  -  w2
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j^n jn
where a)jn =  ujj — ujn, and fia , m a and Qap are the electric dipole, m agnetic dipole 

and  traceless electric quadrupole moment operators respectively, defined by

l^a ^   ̂elria (1.5a)
X

2m tafi-yfipPiy (1.5b)

0 «/3 =  -  (1.5c)
i

The sum m ations are over all particles i , w ith position vector i\ ,  charge e; and linear 

m om entum  p;, 8ap is the unit symmetric second-rank tensor and eapy is the unit 

antisym m etric th ird-rank tensor. We have also m ade use of the Einstein sum m ation 

convention whereby a repeated Greek suffix implies sum m ation over the C artesian 

com ponents [1].

The circular intensity sums and differences may be applied to R am an optical 

activity by replacing the property  tensors by transition  tensors, so th a t, for example, 

a ap becomes (aap)mn where |n) and \m) are the initial and final states. The complex 

transition  polarizability and optical activity tensors are given by [1]

(d a^)mn —

j^n,m

(Gafi)mn ~  T
j^n,m

(Aafi^mn  =  — ^
j^n,m

I Ma I j ) ( j  I Pfi I n) (m | fip | j ) ( j  \ \xa | n)
^ j n  ^  ^ j m  4“ ^

(m | (ia | j ) ( j  | mp  | n) (m \ mp  | j ) ( j  | fia \ n)

Wjn ~  V Vjm + U

(m \fj.a \ j ) ( j  | 0 /37 ! n) (m | 0 ^  | j ) ( j  \ fia \ n)
Ujn ~  & Ujm 4- UJ

(1.6a)

(1.6b)

(1.6c)

It proves instructive to w rite these complex transition  tensors as a sum  of real and 

im aginary parts  as follows:

(&ap)mn (^aj^mn 4“ (^a/3)mn K^ck/3)mn "̂(̂ ar/3)mn (1.7a)

where



(Gap)mn and (A apy)mn m ay be broken down in an analogous fashion. These complex 

transition  tensors have corresponding effective operators [1,14,15].

d a/3 =  d 3̂ +  a~p (1.8a)

G a p  = G+p + G 'p  (1.8b)

A ap~f =  A+fa +  A apy (1.8c)

where

^ t p  = \(V<*0 +fip +  fipO+fia ) (1.8d)

da /3 =  ~ ^ a 0 ~flp ~  f lpO~fla ) (1.8e)

Gap =  ^(VaO +mp + m p O +(ia) (1.8f)

1Gap = - ^ a O  m p - m p O  fia ) (1.8g)

Aiffy = \(̂ O+e0y + effyO + Ha) (1.8h)
A-apy — ~ ~  ®p-yG fia ) (l*8i)

°  = ( h  - E  + hw ±  H  - E  -  h o )

and E  is the average of the energies E n and E m of the initial and final states.

The complex transition  tensors may be generated by taking m atrix  elements of

the effective operators, summing over a complete set of states \ j)(j \  inserted after



and using the approxim ation u)Jn «  W riting the effective operators in the 

form  (1.8 ) allows us to deduce the sym m etry properties of each operator from those 

of its com ponent parts  [1,14,15].

Thus we find th a t a^p is Herm itian, has even parity  and is time-even, a~p is 

anti-H erm itian , has even parity  and is tim e-odd, G^p is H erm itian, has odd parity  

and is tim e-odd, G~p is anti-H erm itian, has odd parity  and is time-even, A^p is 

H erm itian, has odd parity  and is time-even and A~p is anti-H erm itian, has odd 

parity, and is tim e-odd. Using these properties w ith the result

(On | 5 (± )  | 0 m ) =  ± ( m  | 5 (± )  | n) (1-9)

where 0  is the quantum  mechanical time-reversal operator, S  is an arb itrary  op­

erator and the bracketed sign indicates the behaviour of S  under tim e-reversal, we 

deduce th a t [1,14,15]

(m | a ap | n) =  (0 n  | otpa | 0 m ) =  (0 m  | a ap | On)* (1.10a)

(m | Gap | n) =  —(0 m  | Gap | 0n)*  (1 .10b)

(m | A ap7 | n) =  (0 m  | A ap7 | 0n)*  (1.10c)

For an even-electron system, in the absence of a tim e-odd influence, the initial and 

final states can be chosen to be either even or odd with respect to tim e reversal and 

it follows th a t only the real parts of (m | a ap | n) and (m | A ap~, \ n) and im aginary

p art of (m | Gap | n) may be non-zero. An odd-electron system  requires a more

involved trea tm en t and we shall not consider it here.

The conventional R am an effect is associated with nuclear m otions for which 

the characteristic frequencies are significantly less than  either the frequency of elec­

tronic transitions or the frequency of the incident radiation. If we impose the further 

condition th a t the incident light is far from any absorption frequency, it becomes 

possible to introduce approxim ations to simplify the form of (otap)mn. In order to 

realise this simplification the Born-Oppenheim er approxim ation is invoked in ad­

dition to a separation of vibrational and rotational motion. This allows a general
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m olecular wavefunction | j )  to be w ritten as the product of an electronic wavefunc- 

tion |j e), a v ibrational wavefunction \jv) and a ro tational wavefunction |j r)- Then, 

the ro tational and vibrational contributions to the transition  frequencies in  the po- 

larizability are neglected and we make use of closure to sum over the com plete set 

of rovibrational states associated with an electronic state. If it is also assum ed th a t 

the molecule is in a quantum  state belonging to the lowest electronic level such tha t 

n e = m e =  0 and the adiabatic dynamic polarizability is introduced

2 v - - v  (j O .'jz-

h
x R e((0 I !ia{r,Q) \ j e){j€ | fi0 {r,Q) \ 0)) ( 1.11)

where r and Q are electronic and nuclear co-ordinates respectively, then it is possible 

to  write [16,17]

(^a/3)mn — (^a/3)msmvmr ,nen„nr — {tYIvTTIt | Ctap{ ( |  Tlv 7lr ) (1.12)

It should be noted th a t these assum ptions and a ttendan t simplifications, which con­

stitu te  w hat is usually called Placzek’s approxim ation, when taken in conjunction 

w ith time-reversal argum ents, dictate th a t only ( a a^ n of the original complex 

m atrix  element (otap)mn survives for an even-electron molecule in a non-degenerate 

state. Similar developments are available for the optical activity tensors showing 

th a t only (G % )"n and (A a^ ) + n survive [1,14,15].

From the definition of (oa/3)mn giyen by (l-7b) it is obvious th a t ( a a/3)+n =  

(a /3a)mn an<  ̂lh us scattering generated by this m atrix  element is often called sym­

m etric. P laczek’s approxim ation breaks down under resonance conditions, for elec­

tronic R am an scattering and in the presence of degeneracy. Any of these factors 

either separately or in com bination may allow an antisym m etric scattering contri­

bution to a particu lar band [18]. Antisym m etric scattering has, for example, been 

observed in the vibrational bands of resonance vibrational R am an spectra of haem 

proteins [19] and iridium  (IV) hexahalides [20]. Although resonance Ram an spectra 

of gaseous samples showing rotational structure have been recorded and interpreted
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[21 ,22], no molecule which is a potential antisym m etric scatterer by virtue of its 

possession of electronic angular m om entum  seems to have been chosen for this type 

of study. Nevertheless, there are m any potential candidates for an investigation of 

antisym m etric scattering in resonance rotational or rovibrational R am an spectra. A 

simple exam ple would be the nitric oxide molecule with the im pinging beam  in reso­

nance w ith one of the so-called (3 bands associated with the A 2H <— J f 2II electronic 

transition  [23]. It is interesting to note th a t Ziegler has observed antisym m etric 

UV-resonance R am an scattering with degeneracy in the ro tational states [24].

The ro tational selection rules for antisym m etric scattering are not a function of 

m olecular sym m etry alone. These rules depend on the appropriate set of angular 

m om entum  quantum  num bers for specification of the molecular state, and this in 

tu rn  requires determ ination of which mode of coupling, and thus H und’s case, is 

relevant [23,25]. A rigorous theoretical treatm ent of ro tational antisym m etric scat­

tering is not a trivial undertaking and no attem pt is m ade to  include the possibility 

of scattering of this type in the following development.

1.2.2 In ten sity  factors

We shall work exclusively within the lim itations of Placzek’s approxim ation and 

the appropria te  positive or negative superscript associated w ith a polarizability or 

optical activity  tensor component will be taken as understood. Since we are in­

terested in ro tational Ram an scattering, we develop (1.12) further by transform ing 

from  space-fixed to molecule-fixed axes, so tha t the ro tational transitions are ef­

fected by the direction cosines relating the axes systems:

{lTlv TTlr | OCa p ( Q )  | n v Tlr ) =  (cta' t3'(Q))mvnv {m r | ^aa'^001 \ n r) ( ^ ' ^ )

However, derivations are facilitated by replacing the conventional direction cosine 

form alism  by the irreducible spherical tensor formalism [26-29]. An appendix giv­
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ing a short in troduction to this m ethod and relating irreducible spherical tensor 

com ponents to  Cartesian components has been provided.

In Placzek and Teller’s original work on rotational R am an scattering intensities 

[30], circular tensor components were introduced as a first step towards establishing 

a n a tu ra l basis for the expression of rotational line strengths. Using spherical tensors 

allows, in addition, exploitation of the properties of both  the 3 — jr symbols and the 

transform ation  matrices relating space and molecule-fixed spherical com ponents 

[29,31]. The intensity of a Ram an line in the absence of an external m agnetic field 

is proportional to quantities of the form [32]

£  |(ra', J ' K ' M '  | d j  | n , J K M )|2 (1.14)
MM'

where a* is the qth. component of the rank k set of polarizability tensor operators. 

T he ro tational states are characterised by quantum  num bers J , K  and M  where 

J  specifies the to ta l angular m om entum  of the nuclear framework, w ith K  and M  

specifing its projection on molecule-fixed and space-fixed axes respectively. The 

vibrational states are characterised by n. For sym m etric isotropic and anisotropic 

scattering k takes the values of zero and two respectively. C ontributing values 

of q are determ ined by the characteristics of the im pinging beam  and the chosen 

experim ental arrangem ent for intensity m easurem ents on the scattered light.

It is necessary to generalise in order to take account of scattering generated by 

the  optical activity tensor operators G  and A , and to allow for interference term s 

dt G  and ol A . Thus for a rovibrational transition  n', J ' K ' M '  <—  n , J K M  we 

define an intensity factor corresponding to a T S  scattering contributions

[Iq(TS)]n'J'K',nJK = £  <»', J ' K ' M '  | i f  | n , J K M )[ZJ -t- L) M M ,

x (n ', J ' K ' M '  | 5* | n , J K M ) '  (1.15)

Note th a t we have m ade use of the fact th a t each of the 2J  +  1 values of M  in 

the in itial sta te  is equally probable. Our concern lies with conventional sym metric 

scattering and the associated discrim inatory contributions (k =  0 ,2). The general
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form alism  w ith k  — 1 could easily be adapted to trea t electric dipole absorption 

probabilities in microwave spectroscopy.

An extension of the W igner-Eckart theorem  to axially sym m etric systems allows 

expression of sym m etric top m atrix  elements in term s of 3 — j  symbols [33 ,34]:

(n#, J ' K ' M '  | T k | n , J K M )  = iJ,+J -K' - K { - l ) J,-M'[{2 J '  +  1)(2J  +  1)]2 

J '  k J  \  (  J '  k J
X

\ - K '  K ' - K  K  j  \ —M '  q M

x (n | T^,_k  | n) (1.16)

where a bar over the operator indicates molecule-fixed axes. Then (1.16) may be 

inserted into (1.15) to  obtain

/  '  2 
. (2 J ' + 1) J '  k J

[Iq ( T S ) \ n'J>K >,nJK =  7 K T T T V(2k A 1) y _ K , K , _ K  K

x (n ' I ^K '-K  I n )(n> I SK'-K  I n Y (1.17)

Introducing

1 r k j

k- K '  K ' - K  k  j  

allows (1.17) to be w ritten more simply as

1

(1.18)

[Iq(TS)\n>J>K’,nJK = \n ' I TK'-K I n )(n> I S r ' -K I n )*D J>K',JK (1-19)(2k +  1)

O ur general trea tm en t may be seen to  be consistent with the earlier literatu re  on 

ro tational R am an scattering by noting th a t the factor D j ,k , jK is identical to the 

Placzek-Teller factor bjfg,  when k =  2. The relations between the factors bJjYK, as 

presented by Gaufres and Sportouch [35] follow im m ediately from the sym m etry 

properties of the 3 — j  symbols. We reproduce these results in more general form

in term s of D j ,k , JK:

D kj>K',JK ~  ^  J ' -K 'J-K (1.20a)
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(2*1 +  ^)Dlj 'K'tJK — + 1 ) Dj K j,ki  (1 .20b)

^ J 'K ’.JK — 1 (1.20c)
J '

D j ’K ’J K  =  X ]  DkJ'K>, JK  
K  K '

=  (2J '  +  l ) / ( 2fc +  l)

(for fixed A K  = K ' -  K )  (1.20d)

Relation (1.20a) depends on the fact th a t the square of a 3 — j  symbol does not 

change when the signs of the second row num bers are reversed and (1.20b) follows

from the fact th a t the square of a 3 — j  symbol does not change when two of its

columns are interchanged. Relations (1.20c) and (1.20d) are a consequence of the 

orthogonality of 3 — j  symbols.

1.2.3 Selection  rules

R otational selection rules for ro tation-vibration R am an scattering depend on 

the conditions required for the 3 — j  symbols in (1.19) to  be non-zero. For k = 2 

these are

A J  =  0 ,± 1 ,± 2  (1.21a)

A K  =  0 ,± 1 ,± 2  (1.21b)

while for k =  0 we have

A J  = A K  = 0 (1.21c)

This is the most general case, but further restrictions on A K  are placed on molecules 

in possession of sym m etry elements, since a given vibrational transition  may then

only be effected by selected component operators OLkK_K,. We note th a t the only 

sym m etric polarizability operator components which transform  as the totally  sym­

m etric representation of the symmetric top point groups are

a° — — \/3  ol (1.22a)
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where a  = \ a aa is the mean polarizability, = aZz and a ± =  aXx = &yy- X ,  Y  

and Z  denote the molecule-fixed principal axes. Thus for pure ro tational scattering 

and vibration-ro ta tion  scattering in fundam entals of totally  sym m etric modes only 

A K  =  0 occurs, while for non-totally symmetric fundam entals only A K  =  ±1  

and A K  = ± 2 , or both, occur. The selection rules for v ibration-rotation ROA 

follow from  those given for conventional v ibration-rotation R am an scattering, since 

the ro ta tional p art of an intensity factor does not depend on the physical natu re 

of the associated tensor operators. However, in addition, the molecule m ust be 

chiral in order th a t the same components of polar and axial tensor operators ockK_K, 

and G kK_K> as specified by (1.19) transform  identically [1]. The selection rules on 

rovibrational R am an transitions for chiral symmetric tops are sum m arized in table

1.1 which is adapted from the standard  table of v ibration-rotation Ram an selection 

rules given by Stoicheff [36].

To calculate absolute intensities for symmetric scattering, we require the factors 

D k,K, j k  w ith k = 0,2 in explicit algebraic form. These can be obtained by making 

use of the standard  formulae which are available for some of the more common 3 — j  

symbols [27]. From the non-vanishing properties of these symbols, it is obvious th a t 

for k = 0 only D°JK JK =  1 is allowed. For k = 2 the factors are given in table 1.2 and 

are identical to the previously tabu lated  expressions for bjFKI [30]. Fortunately, we 

are prim arily interested in dimensionless CIDs, for which it will be seen th a t there is 

a cancellation of D k,K, JK factors in the num erator and denom inator in most cases.

1.2.4 V ib ration -rotation  R am an optical a ctiv ity

To develop the dimensionless CIDs for rovibrational transitions, the products of 

C artesian  tensor operator components in (1.2 ) must be transform ed into irreducible 

spherical tensor operator form. Using the relations listed in the appendix and
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neglecting antisym m etric scattering contributions, we obtain

+3&IGI’ + 3 a 2_2Gl'2) (1.23a)

^ y G xy —> - ( 0:262* +  a 2_ 2 G2*2) (1.23b)

5 - G L  -  +  (1.23c)

c'js/G;,, —► j ( “ iG j* +  a * 1G!l*1) (1.23d)

a xxA'xyz -  - ^ ( 2 d ^ * - ^ i f  - d i 2ii* 2) (1.23e)

-* - ^ ( « 2 ^ 2 * + « - 2 ^ - 2 )  (1.23f)

V t x K z y  + “ - l 4 - l ) (1.23g)

-  ^ ( d ^ '  +  d 2. ^ )  (1.23h)

In the circular intensity sums, a xxa xx, oixya xy, d ^ d ^ ,  and d 2yd*y transform  analo­

gously to (1.23a)-( 1.23d) with d  replacing G. Each te rm  Ty S y* is then correlated

w ith an intensity factor [Iq{TS)]n>j>k ',nJK defined by (1.19).

We thus may construct tables 1.3a and 1.3b in which for conciseness we have

suppressed the full m atrix  element notation, so th a t otap is understood to mean

{oi.af3)n'n and similarly for the optical activity tensor m atrix  elements. Using tables 

1.3a and 1.3b we can write down the polarized and depolarized dimensionless CIDs 

A x and A 2 associated with allowed vibration-rotation transitions.

(a) Totally sym m etric modes of vibration:

A J  =  0, A K  = 0

(For pure ro tational scattering, this constitutes the Rayleigh line)

A , -

, , 2 7[3A”2 -  J { J  + 1)]2 , ,21 /1 od x
x l 45“  +  J ( j l l ) ( 2J  +  3)(2J  - r ) ( a " -  ^  j  (1-24a)

A, = 2[(gj | - Ĝ ) - W ^ l  (1.24b)
c(q!|| -  atj_)
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Table 1.3a

CIDs or rovibrational transitions in symmetric tops.

Im(o:xccGII +  olXyGxy) lm.(otzxG*zx +  oizyG*zy)

A K

0

45[^(^ll — a i) (^ [ | ~  G'±.)D2j>k ,jk  

+45 ocG 'D jK jK]

iz(a \\ ~  ~  G '^)D 2j,KtJK

±1

^ l a x z ( G x z  +  G 'z x ) 

+ olyz(G'y z  +  G'z y ) \D2j IK±1jK

Yo[a x z ( G x z  +  Gz x ) 

+aYz{G'Yz  +  G'Zy ) \D2j IK±1j k

±2

i f q[(<*x x  ~  °lyy ){G'x x  -  G'y y ) 

+2  olXy {G'x y  +  G'y X )\D2j ,k ±2jK

^ [ ( a x x  ~  <x y y ){G'x x  -  G'y y )

-\-2olxy(G'x y  +  Gy X ) \D2j IK±2j k



CM

CM
rH | CO

CM



A J  =  ± 1 ,± 2 ,  A i f  =  0

^  ^ 2 [7 (0(1 — G'l ) + w A x y z ]

7 c ( a | | - Q ! i )

^  _  2[(GJ| -  G'±) -  \ u ) A X y z \

C ( a | | - Q ! i )

(b) N on-totally sym metric modes of vibration:

A J  =  0 ,± 1 ,± 2 ,  A K  = ±1

A x =  -  \ocXz{G'x z  +  G'z x ) +  olYz {G y z  +  G'ZY) 

+ ^ w [ a Y z ( A z z x — A x z z  +  A x y y  — A y y x )  

—axz{AzzY — A y z z  + Ayxx  — ^brxv)]]

X ( a X Z  + a Y z )

A z — ~ \a xz{G 'x z  +  G'z x ) +  olYz {G'y z  +  G'ZY)
1

— ~ w [ o l y z ( A z z x  — A x zz  + A x y y  — A y y x )  

—o l x z { A z z y  — A y z z  + A y x x  — Ayjrr)]] 

x (a x z + a Yz)

A J  =  0 ,± 1 ,± 2 ,  AiiT =  ±2

A s = -  \ { o l x x  ~  a Y Y ) { G ' x x  — G'y y ) + 2 o l x y { G ‘x y  + G'y x )c 1

— —-w[(axx ~  o l y y ) { Z A z x y  — A x y z  — A y z x )
Z  J.

+ 2 a x Y ( A x X Z  -  A z x x  + A z Y Y  -  Ayy^)]] 

x[(axx — < * y y ) 2 + ^ x y ]  1

A z =  -  [(atjrx -  olyy)(.G'x x  ~  G'y y ) +  2olxy(G'Xy  +  G'Yx ) c L

+  - w [ ( a x x  -  o l y y ) ( ^ A z x y  — A x y z  — A y z x )
9

+ 2 a x v ( A x x z  -  + A Zy y  -  A Y y z ]

x  [ ( a x x  ~  °<-yy)2 +  4 a ^ - r ] 1
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Having determ ined the CIDs for all possible cases of individual rovibrational tra n ­

sitions, we continue by considering the to tal unresolved CID for the envelope of 

bands associated with vibrational transition n' <— n. For each initial ro tational 

s ta te  j ,  it is necessary to sum over the intensity factors of all allowed final states 

j '  and then  to  take the Boltzm ann average of the resulting expression over all

possible in itia l states j  using

Z i g j X (j)e - E>/kT
X  = ------ ETfcT  (L 28)E j 9 j e - E^ kT v '

where gj is the degeneracy of state  j .  However, since A K  is fixed for each intensity

factor, sum m ation over all final states may be effected with the use of (1.20c) to

give a value for X  which is independent of rotational state. The Boltzm ann average

over in itia l states is thus trivial.

The unresolved dimensionless CIDs for totally sym m etric modes of vibration 

(AFC =  0) are found to be

2[45aG/ +  7(a„ -  a 1 ) ( q | -  G 'J  +  W(a„ -  a ±) AXYZ}
1 “  c[45a2 +  7(a„ — c*±)2j ( ^

2[((7|i — G'±) — ^ojA x y z ]
A z = 7 -— — -----------  (1.29b)

c(a|| — a±)

For non-totally  symmetric modes of vibration with exclusively A K  =  ±1 or ±2  

allowed, the unresolved dimensionless CIDs are identical to the CIDs for individual 

transitions given by (1.26) and (1.27), while, for vibrational modes for which bo th  

A K  = ±1 and A K  = ±2 are perm itted, we obtain

=  ~ { a xz{G'x z  A G'z x ) +  olyz(G'y z  +  G'z y ) +  <*x y {G'x y  +  G'YX)

-^-^(ocx x  -  oiYY)(G'x x  -  Gy y ) +  — oj[aYz { A z z x  — A X z z  +  A XYY -  A YYX) 

-\-olX z {AYZz — A z z y  +  A x x y  — A y x x )

-\~olxy{A zXX — A XXz  +  A YYz — A z y y )

-  oly y )(2Az x y  ~  A x y z  -  ^ 4 rz x )] |

x { a x z  +  a YZ +  a XY +  ^ ( a x x  -  # r r ) 2J (1.30a)
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A z — c | & x z { G x z  - f  G'z x ) +  olyz(G'y z  +  G'z y ) +  a XY(G'XY  -I- G'Y X )

- \-- j [oi-xx — Q-y y ^ G ' x x  — G'y y )  — ^ ° \ a Y z { A z z x  — A X z z  +  A X y y  — A y y x ) 

-{-o cx z{ A y z z  — A z z y  +  A X X y  — A y x x )

+ o ' X y ( A z x x  — A X X z  +  A y y z  — A z y y ) 

— ~ ( olx x  — ocyy) { 2 A z x y  ~  A X y z  — A y z x

x | a x z  +  a Y Z +  a X Y  +  ~̂ (a x x  — <*yy)2 j (1.30b)

As noted in the introduction, these unresolved CIDs should be consistent w ith

the CIDs for vibrational Ram an scattering from an isotropic fluid calculated by

averaging (1.2) over all orientations of the molecule.

For Rayleigh scattering, the isotropic averages of the dimensionless CIDs have 

been shown to be [1,12]

_  2(7CtapG'ap +  a oca.
L\x — \ ( I .o la j

CyiOCx^OtXfj, -(- Olxx X̂̂iij.)

2 ( 3 a ap G a/3 (X-aacGfift jWQ!a^a7sAygfl) ,
A z = ------------- ^ -------------------- — -------------  (1.31b)

CyOOCXij.CX.Xfj. CXxxCXfjjj)

Expressions (1.31) also apply to vibrational Ram an scattering if the property  tensors 

are replaced by transition  tensors, and reduce to (1.26), (1.27), (1.29) and (1.30) 

for the specified vibrational transition types. To establish this, (1.31) should be 

w ritten  in full, retaining only those transition  elements which are non-zero for the 

relevant vibrational mode.

It is also of interest to consider the particular case of partia l resolution of the 

Rayleigh band into the Rayleigh line and the pure rotational R am an wings which 

flank it. Again using (1.28) with (1.20c) and tables 1.3a and 1.3b we obtain the 

averaged Rayleigh CIDs

2 | \ r _ E jk (2«F + l )DjKijKe EjK/kT A n n 1 r '  \
=  - |4 5 « G  + +  (“ II a J-H7(G ll

+1oA X YZ
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a  ~  “  3 ^ A x y z ]A , =  -A- »■ ----------— L (1.32b)
c ( a | | - a ±) v '

and  the  averaged Ram an wing CIDs

A , =  2 [7(G l ' - . G,J- ) + ^ A  (1.33a)
7c(a|| — qjl)

A z -  - [ 11 , \ i  (1.33b)
c(a{\ - a L)

T he high tem perature classical limit of (1.32a) may be obtained by using [17,30]

E j . k ( 2 J  + 1 ) D 2jk , j k ^ Ejk i i -tlim --------------------    „------=
T-°°  E w ( y  +  1 )e~E^ l ^

' 21 2 7 \

. +  P V ]

12 +  ?T) + (1.34)

where

/ 3 = ( f - l )  (1-35)

and A , B  are the ro tational constants of the particu lar sym m etric top molecule.

1.3 D iscussion

The ro tational transform ation properties of a tensor operator are independent 

of the physical nature of th a t operator. Thus, the contributions to the num erator 

and denom inator of the dimensionless CIDs, while differentiated by the intrinsic 

character of their scattering mechanism, are identical in their spatial parts  as de­

scribed by the D j , k , JK factors. The polarized component of scattering for totally 

sym m etric modes of vibration with A J  — AA =  0 is composed of isotropic and 

anisotropic parts and consequently depends on two D kiK, j K factors of ranks zero
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and two respectively. In all other cases there is no isotropic scattering and for a 

given transition , all contributing term s are a function of the same single D j ,k , J K  

factor of rank two. In forming the ratio  of discrim inatory and non-discrim inatory 

p arts , these D kjiK',JK factors cancel. Thus, the dimensionless CIDs, aside from the 

noted exception, do not depend on the quantum  numbers which characterise the 

ro tational states and are independent of tem perature.

For non-totally  symmetric modes of vibration with exclusively A K  =  ±1 or 

A K  =  ± 2  and for depolarized scattering in symmetric modes of vibration (A K  — 0) 

the CIDs for individual transitions given by (1.26), (1.27) and (1.24b) respectively 

are identical to  those for the set of rovibrational bands associated with th a t par­

ticu lar vibrational mode. Therefore, no new inform ation about in ternal molecular 

param eters is m ade available by spectral resolution.

For non-totally symmetric modes of vibration with both  A K  = ±1 and A K  =  

± 2  allowed, it may be seen on comparing (1.30) for the unresolved envelope of 

rovibrational bands to (1.26) and (1.27) for individual transitions th a t some simpi- 

fication in analysis arises from resolving bands of different AJT.

In order to extract maximum inform ation from totally sym m etric bands in po­

larized ROA, it is sufficient th a t the manifold of unresolved rovibrational bands be 

resolved from the central purely vibrational line, because the separate rovibrational 

transitions all show the same CID (1.25a) while th a t of the parent line (1.24a) is 

different. The same argum ents as those set out for a totally sym m etric vibrational 

band  hold for the Rayleigh line and its wings which originate in purely rotational 

transitions. Pure rotational ROA is of special interest because the CIDs then be­

come simple functions of the polarizability and optical activity property tensor 

com ponents. It should be possible to deduce the two optical activity anisotropies 

(Gf| -  G'l ) and A x y z  from experimentally determ ined polarized and depolarized 

CIDs using (1.33) provided tha t the separation of the Rayleigh line from the ro ta­

tional Ram an envelope is feasible and tha t a value for the polarizability anisotropy
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(ay — c ii) is available. In fact, for small molecules at least, isolation of the Rayleigh 

line in conventional spectra has been dem onstrated to be possible. There are, m ore­

over, various ways of obtaining (ay — a i ) .  Depolarization ratios yield |(ay —aj_)| and 

the appropria te  sign can often be determ ined by use of bond polarizability models. 

T he K err effect also supplies a value for (ay — a i )  w ith the advantage of no sign 

am biguity [17,37].

If in addition to (ay — Q i) values of a  and G' are known from other measurem ents 

such as the refractive index for a  and optical ro tation for G ', then in the absence 

of any resolution, (1.29) for the polarized and depolarized CIDs integrated over 

the whole Rayleigh band may be used to extract values of (Gy — G'L ) and A x y z - 

However, the former m ethod of determ ining optical activity tensor anisotropies is 

preferable as it presupposes a knowledge of fewer com ponents of molecular property 

tensors.

A group polarizability model has been used to calculate the pure Ram an optical 

activity in a chiral conformation (D3) of triphenylborane [10]. This model involves 

splitting  a molecule into its constituent groups and assigning to each group an in­

trinsic polarizability and where appropriate intrinsic optical activity tensors defined 

relative to a local axes system. The global tensor com ponents may then be w ritten 

as a sum over local tensor components including the origin dependent parts of the 

optical activity tensors which allow optical activity to be generated from the chiral 

disposition in space of locally achiral groups [1]. Although the left and right-handed 

conformers cannot be resolved, this simple example provides a useful basis for more 

com plicated group polarizability calculations of ro tational ROA in molecules of 

lower symmetry. Moreover, the calculated CIDs are large enough to suggest th a t 

ro ta tional ROA could be observed using currently available instrum entation.
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1.3.1 Sym m etry and rotational R am an optical a ctiv ity

For a dynam ic system, if chirality is equated with the ability of th a t system  to 

display optical activity, then chirality is no longer synonymous with the possession 

of d istinct m irror image forms [38,39]. It is therefore instructive to probe more 

deeply into the fundam ental symmetry aspects of ro tational ROA to clarify the 

concept of chirality in relation to rotating molecules and to discuss the a ttribu tes 

required by a sym metric top for it to be optically active.

The rotational ROA observable has odd parity. There are m any other instances 

of odd-parity  observables of which the space-fixed electric dipole is a fam iliar exam ­

ple. O dd-parity  observables are only displayed by systems in mixed parity  states, 

bu t the exact nature of these mixed parity states depends on the specific observable 

and requires further analysis.

Consider the space-fixed electric dipole. A typical m atrix  element for a sym­

m etric top may be w ritten as follows:

<n, J K M  \ n a \ n, J K M )  = (J K M  \ £aZ \ J K M ) J lz

=  ( J K M  | P ' i P t c z P - ^ P  | J K M ) p z

=  - ( J  -  K M  \ l az \ J -  K M ) P Z (1.36)

where we have introduced the parity operator P.  In the final step of (1.36) we have 

used

P \ J K M )  = ± | J - K M )  (1.37)

P L z P - 1 = l - a Z = - t a Z  (1.38)

To justify (1.38) we note th a t within the passive convention P  involves inversion

of the space-fixed axes accompanied by inversion of the molecule-fixed axes. How­

ever, as the sense of the Z-axis must not vary relative to the nuclei, the change in 

handedness of the molecule-fixed axes requires a reversal of either the X or Y axes

[ I ] -

24



It is seen th a t the odd-parity space-fixed operator fta is split into the product 

of an  odd-parity  direction cosine operator acting on the external ro tational state  

and an even-parity molecule-fixed operator jlz acting on the internal vibronic state. 

Clearly, mixed parity  is a required characteristic of the ro tational part of the to­

ta l wavefunction if the m atrix  element is to be non-zero. Moreover, corresponding 

m a trix  elements are equal and opposite for states \ J K M )  and | J  — K M ) .  A parity- 

odd influence such as an electric field is necessary to lift the degeneracy of these 

states, thus preventing complete cancellation and allowing some physically observ­

able expression of the m atrix  element, as seen, for example, in the first-order Stark 

effect.

We now tu rn  to ro tational ROA, for which the sym m etry characteristics are 

best exposed by expressing the associated m atrix  elements in spherical tensor form, 

although argum ents involving direction cosines analogous to those presented for 

the space-fixed electric dipole are available. It is clear from the expression for an 

in tensity  factor (1.19) th a t the contributing spherical tensor com ponents of ct , G  

and  A  are constrained to be identical for a given transition. This is only possible 

in a chiral molecule. However, it might be suggested th a t \ J K M )  and | J  — K M )  

are enantiom eric and introduce a secondary source of chirality since these states are 

interconverted by P .  To refute this we recall the D j ,k , JK factor relation (1.20a) 

which dictates tha t the intensity factors, and thus CIDs, be invariant to replacement 

of K  by — K  and K '  by - K \  th a t is, invariant to the parity  operation on the 

ro ta tional states. It is seen th a t, while the electric dipole observable is composed 

of an odd-parity  spatial p art and even-parity internal pa rt, the rotational ROA 

observable is composed of an even-parity spatial part and odd-parity in ternal part 

supported  by the mixed parity  internal states of the chiral molecule.

To summarize, we note th a t the unifying feature of all phenom ena associated 

w ith odd-parity  observables is the requirement for distinct m irror image forms. 

However, it is im portan t to realise tha t the possession of m irror image forms is
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a necessary but not sufficient condition. For example, a chiral asym m etric top 

does not show a first-order Stark effect, and a ro tating achiral sym m etric top is 

not optically active. In the case of optical activity, structu ra l m irror images are 

necessary, as provided by molecular enantiomers. In the case of the first-order 

S tark  effect it is the dynamic m irror images of sym m etric tops ro tating  in opposite 

directions relative to the sym m etry axis which are needed.
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C hapter 2

R am an optical activ ity  in 

asym m etric top m olecules

2.1 Introduction

Until relatively recently, the complexity of the calculation of R am an intensities 

for ro tational transitions in asymmetric tops and the experim ental difficulty of ob­

taining high resolution spectra of gas phase samples dissuaded workers in the field 

from attem pting  to perform  intensity calculations for asymm etric tops other than 

those for which an accidentally symmetric top model was a reasonable approxi­

m ation [40]. Improvem ents in instrum entation and a replacement of the conven­

tional direction cosine by the irreducible spherical tensor formalism have provided 

m athem atical and technological tools of sufficient sophistication to overcome earlier 

difficulties.

It would now seem appropriate to undertake a rigorous treatm ent of rotational 

ROA in asym m etric tops by extending the theory of ro tational ROA in symmetric 

tops presented in the preceding chapter.

Before deriving completely generalized intensity expressions, a prelim inary inves-
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tigation of the accidentally symmetric top provides a useful stepping stone between 

the relatively simple case of the geometric symmetric top and the algebraically more 

complex case of the asymm etric top.

2.2 Theory

2.2.1 T he accidentally  sym m etric top

The possession of a higher than  twofold axis of sym m etry by a molecule implies 

th a t it has two identical principal mom ents of inertia, and is thus a sym metric top. 

However, there may be molecules of lower sym m etry for which two of the principal 

m om ents of inertia  happen to be equal. For such accidentally symmetric tops, 

the principal axes of the moment of inertia  ellipsoid do not necessarily coincide 

w ith those of the polarizability ellipsoid. In consequence, the selection rules for 

ro tational and rovibrational R am an scattering in the accidentally symmetric top 

are different from those given for the geometric symmetric top for which the axes 

systems are constrained to coincide. The rules now depend on the distribution of 

non-zero com ponents of polarizability among the irreducible representations of the 

appropriate asym m etric top point group. However, the inertial properties of the 

accidentally sym m etric top allow us to specify rotational states with the familiar 

sym m etric top quantum  numbers J, K  and M .

To obtain the dimensionless CIDs for individual ro tational and rovibrational 

transitions in accidentally symmetric tops we recognise th a t the series of equations 

(1.24) to (1.27) describing the CIDs for a given A A" in geometric sym m etric tops 

are merely a particu lar form of a more general set of equations applicable to all 

sym m etric tops. Removing the specific interrelations of tensor com ponents, (o y\rx =  

a Yy = a± , for example) and identifications of vibrational type with A A' which are 

characteristic of the geometric symmetric top, we find the following CIDs:
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A J  =  0, A K  =  0

a 2 b K n< , [3if2- J ( /  + l)]2 r 1,
-  c (4M + J(7TTl27T l 2M  '  2(“m + “!'r)l

HG'zz ~  2 ^ ' x x  ^  <̂ 'y ) ]  + î A x y z  -  A y z x )

[ 2 7 [3 if2 -  J ( J  + 1)]2 r 1 „ 2
X \ 45a +  ~f(J +  1)(27 +  3 )(2 J -  1) ~  2 { a x x  + aYY)]

^  _  2 [jG'zz ~ \(G'xx +  G'y y )} ~~ f (Axyz  -  ^ y z x )]

c[aZZ — \(ot-XX + &y y )\

A J =  ± 1 ,± 2 , AiT =  0

2 [7IG'zz ~ \ i G'xx + g 'y y )] +  f(A xyz  -  Ayzx)
A . =  -A-------

7c[azz ~  \ { a x x  +  <*yy)]

2 [t^zz -  §(G'xx + G yY)\ -  |(A x y y  -  Ayzx)
c[c*zz -  f f ^ x x  4 -ayy)]

A J  =  0 ,± 1 ,± 2 ,  A jFC ±  1

Ax =  -  [ a x z ^ x z  +  ^ z x )  4- ^ y zfG y z  4- ^ z y )  c L

+ —  [°t-Yz(Azzx  — A x z z  4- A x y y  — A y y x ) 

-a x z (A z z y  — A yzz  4- A yxx  -  Axxy)]]

X ( a X Z + a Y z )

A z — -  \&xz{G'xz +  G'z x ) +  a Yz(G'Yz  +  ^z y )

— — [ o c y z ( A z z x  — A xzz  4- Axyy — A y y x )  y
-c*xz(Azzy — A yzz  4- Ayxx -  Axxy)]]

X(Q!XZ +  ^ y ^)

A J  =  0, ±1 , ±2, A ir  =  ±2

A* =  -  [(axx ~ a YY){G'xx ~ G'yy) +  2a xr(G'xr  +  ^ yx)
c L

- ^ - [ ( olxx -  o'y y )(2Azxy — Axyz  -  Ayzx)
Z1

+ 2 axy(A xxz  -  Azxx  +  A z y y  -  Ayyz)]] 

x  [(axx —  a Y Y  Y  +  4 a ^ r ]

(2 .1a)

(2-lb)

(2 .2a)

(2 .2b)

(2.3a)

(2.3b)

(2.4a)
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A z — c [ { a x x  ~  o l y y ) { G ' x x  —  G y y )  +  2a x Y ( G ' X Y  +  G ' y x )

uj
+  g [(a n  ~  ocyy^ A z x y  — A x y z  — A y z x )

+2(Xx y {Ax x Z — A z x x  +  AzYY — Ayyz)]]

x [ ( a x i  -  o l y y ) 2 +  4 a ^ F ]-1 (2 .4 b )

T he unresolved CIDs for a vibrational band may be obtained by summing over 

all allowed final states and then averaging over the initial states as detailed in 

chapter one. For example, the unresolved CIDs for a totally sym m etric mode of 

v ibration  in an accidentally symmetric top of C\ sym m etry are

7
A, 45a G '  +  -  [(oczz — a xx){G'z z  — G'x x )

+(<*zz — <%y y )(G'zz  -  G'y y ) +  i a x x  -  °lyy){G'Xx  ~  G'Yy )

+3 [axz(G'x z  +  G'z x ) +  olYz {G'Yz +  G'ZY) +  olxy(G'x y  +  <2yx)]]

+  — [ ( ^ x x  —  o t z z ) A y z x  +  { o l y y  — o l x x ) A z x y  +  ( & z z  — o l y y ) A x z y
Ld

+ a x z ( A x x Y  — A y x x  +  A y z z  — A z z y )

+ olyz{Ax y y  — A y y x  +  A z z x  — A x z z )

+ a x Y ( A z x x  — A x x z  +  A y y z  — A z y y )]
•j

x [45a 2 +  - \ (o l z z  ~  o lxx )2 +  (olzz ~  o lyy )2 +  (<*xx ~  o lyy )2 

+ 6(a x z  A- a YZ +  a x r ) ] l  (2 .5a)

A z =  - \ ( a z z  ~  ocxx){G'z z  -  G'xx) + (a z z  ~  olY y ) ( G ' z z  -  G' y y )
c 1

+  («XX — 0tYY)(G'xx ~  G ' y y )

+3 [o l x z ( G ' x z  +  G'z x ) +  o l y z ( G ' y z  +  G'z r ) + o l x y { G ' x y  +  G'Y X )\ 

[ ( a x x  -  olZ z ) A y z x  +  ( o l y y  ~  olX x ) A Z x y
o

-\t ( o l z Z  — o l y y ) A x  ZY

+ o l x z ( A x x y  — A y x x  +  A y z z  — A z z y  )

4 - a Y z ( A X Y Y  -  A y y x  +  A z z x  ~  A x z z )
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+ o l x y { A z x x  -  A Xx z  +  A y y z  -  Azyy)]]

x [{oczZ ~  OLxx)2 +  (OLZZ ~  o l y y ) 2 +  {oLXX — o l y y ) 2

+ 6(a x z  +  a YZ +  a ?Yy)]_1 (2.5b)

These results are consistent with (1.31) for Rayleigh scattering from an isotropic 

fluid of molecules of Ci symmetry. Comparing (1.29) to (2.5) reveals the extent

to which expressions for the unresolved CIDs are com plicated by introducing an

inequivalence of principal inertial and principal polarizability axes. However, sim­

plification of the form of (2.5) is possible.

We may rew rite (2.5) as [1]

2[45aG ' +  7/3(G')2 + /3 (^ )2]
A * =  --------c[45a2 +  7/3(a)2]--------  (2-H

a z =  m o r - w w  (2.6b)
c(3(a)2

where we have introduced the following fram e-independent combinations:

j.3{ol) =  — {̂ OLafj(Xap OLaocOL@fi)

= -[(OLXX -  o l y y ) 2 +  {otxx — OLzzf  +  ( « y y  -  OLzzf

-f 6(a^-y +  a 2x z  -f- a ^ ) ]  (2-7)

(3(G')2 = -(ZOLapG'a(i — OLaaG'pp)

=  2 [(a x x  ~  a Y Y )(G'xx ~  G'y y ) +  ia x x  -  a zz)(G'x x  ~  G z z )

+ ( a y y  — o l z z ) { G ' y y  ~  G'z z ) +  3 [ o l x y { G ' x y  +  G ' y x )

+ o l x z { G ' x z  +  G'zx)  +  ° ly z { G ,y z  +  ^ zy )l]  (2 -8 )

f3{A) =  ~woLap€a^sA^sf3

=  iu>[(ayy -  o l x x ) A z x y  +  (<*xx ~  o l z z ) A y z x  +  (oczz -  o l y y ) A x z y
2

- \ - O l x y { A z X X  ~ AxXZ + Ayyz — AzYY)

- f - a , Y z ( A xxy —  A yxx +  A y z z  — A z z y  )

-\-olyz{Ax y y  — A yyx +  A z z x  — A xzz)}  (2*9)
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It is useful to note tha t (2.5), being exclusively functions of tensor invariants a , G ' , 

f l (G')2 and (3{A)2 may be immediately rew ritten in canonical form by taking 

tensorial components relative to the principal axes of polarizability ra ther than  the 

principal axes of inertia.

It is also possible to derive equations analogous to (1.32) and (1.33) which give 

the CIDs applicable in the case of resolution of the pure ro tational R am an wings 

from  the central Rayleigh line. The CIDs for the Rayleigh line averaged over all 

in itia l ro tational states for a molecule of C\ sym m etry are

2 f , E j k (2J  +  1)D2jk j K e~EjK/kT A x = - \ 4 5 a G ' + ^ ^ — , ’ ------------

x [2a z z  -  {&xx  +  a y r )] 

| [ 2Gzz “ (G'xx + G'y y )} +  j i ^ x v z  -  A YXz)

T.j k W  + l W j Kt]Kz JK' kT
E jk (  2J  +  l ) e - E^ /-Tx { 4 5 a2 +

x ~[2az z  — (cx-xx +  & y y ) \

2 [2G'zz ~  {G'xx +  G' y y )  — | w ( A x y z  — A y z x )]

(2 .10a)

(2 .10b)
c[2a ^  ~  (&xx  +  o l y y )]

T he corresponding CIDs for the combined Stokes and anti-Stokes ro tational R am an

wings are

A , = [2a z z  ~  ( a x x  +  <*yy)\ [7[2G'Z z  — [G'x x  +  G'Y y ) \  

+<jo( A X y z  — -Ayxz)]

1 -

Z J,KW  + 1)D2JK,JKe-EjK/hT
Z j k (2J  +  l ) e - E^

+42[otXz(G'x z  +  G'zx) +  a Yz{G'Yz  +  G'ZY) + olX y {G'x y  + G'Y X )

A - ( a x x  -  o c y y ) { G ' x x  -  G' y y )]

+u;[2a x z ( A x x y  ~  A Yx x  +  A y z z  -  A Z z y )

+ 2  a y z { A x Y Y  —  A y y x  + A z z x  —  A x z z )

+ 2 olX y ( A z x x  ~  A x x z  +  A y y z  — A z y y  )

- f ( a y y  —  o l X x ) { 2 A z x y  ~~ A x y z  ~  A y z x ) ]
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7[2 a z z  — ( & x x  + o l y y ) \ 1 -

E j k ( 2 J  +  l ) e - EjK/™

+84 [(at-xz +  a Y z  +  ° i  y) +  ~̂ {a x x  — ayy)' (2 .11a)

A z =  -
c [[2a Zz  ~  {&xx  +  olyy)] [2G§z z  -  (G ’x x  +  G'yy)]

(jJ -i

— ( A x y z  — A y x z ) j

1 -
E j K ( 2 J  + l ) D j K ,JKe - EjK/kT

E j K ( 2 J  +  l ) e - ^ / feT 

+ 3 [ 2 a . x z { G ' x z  + G'zx ) +  2  olyz(G'y z  +  G'z y  ) +  ^olxy{G'y x  +  

+ ( olxx -  a YY)(G'XX  -  G'y y )]

C0
- - ^ [ ^ x z (A x x y  -  ^ y x x  +  ^4-yzz -  -4^zy)

+2&y z (A x y y  — A y y x  +  A z z x  — A Xz z )

+ 2 olX y { A z x x  ~ A x x z  +  A y y z  -  A z y y ) 

+(<*yy — ocx x ) ( 2 A z x y  ~  A X y z  — A y z x )]

Z j K ( 2 J  + l ) D 2JK>JKe - E^
[2a z z  — ( a x x  +  « y y )l‘ E jix (2«/ +  \)e~ JKikT

+ 1 2 [ ( 4 x  +  a Y z  + a x z )  +  ^ ( a x x  -  & y y ) 2 ]

- i
(2 .11b)

We shall not write down explicitly the results equivalent to (2.5) to (2 .11) for all 

possible asym m etric top point groups. For asymmetric tops of higher symmetry, it is 

obvious th a t these equations require modification consistent with the transform ation 

properties of the relevant polarizability and optical activity com ponents as given by 

the character tables of group theory.

The high tem perature classical limit of (2 .10a) and (2.11) for a specific molecule 

m ay be obtained by using (1.34).
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2.2 .2  In ten sity  factors

In chapter one, we defined intensity factors (1.15) for rovibrational transitions in 

sym m etric tops. In an analogous way, we define intensity factors for rovibrational 

transitions n!, J 'T 'M 1 <— n , J T M  in asymmetric tops. The T  label is an integer 

- J  < T  < J  which is assigned such tha t the lowest energy level of a J  manifold 

has T  — — J  and the value of T  increases with increasing energy up to  the highest 

energy level w ith T  = J.  An alternative labelling scheme associates the lim iting 

case prolate and oblate top K  quantum  numbers to each level. Thus, for a transition  

n ', J 'T 'M '  n, J T M  we define an intensity factor corresponding to a T S  scattering 

contribution:

l I *( TS) ] n, j , j , , nj ?  =  — L -  £ > ' , j ' T ' A r  \ T kq \ n , J T M )
+  L> M M '

x (r i, J 'T 'M ' | S kq | n , J T M ) '  (2.12)

It is possible to  w rite jn,  J T M )  as a linear com bination of Wang functions

|n,  J T M )  =  Y ,  aK I". J K M y )  (2.13)
K

The sum m ation is over K  exclusively even or odd, and the Wang functions are def­

in ite parity  symmetric or antisym m etric combinations of symmetric top functions:

|ra, J K M y )  =  [ \ n , J K M )  + ( - l f \ n , J  -  K M ) }  , K  >  0 (2.14)
V 2

where 7  is exclusively even or odd for a given sum m ation. The ro tational energy 

H am iltonian for an asym m etric top may be set up in the Wang function basis and

diagonalized using standard  methods to obtain the eigenvalues and eigenfunctions.

These can be classified according to their symmetry by E +, E ~ , 0 + , 0 ~  where E  or 

0  denote w hether even or odd values of K  are involved in the sum m ation (2.13), 

and +  or — indicate the even or oddness of 7 [32,41,42],

The asym m etric top m atrix  elements in (2.12) may be expressed as a com bina­

tion of sym m etric top m atrix  elements by using (2.13) and (2.14). It is then possible
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to  apply the W igner-Eckart theorem for axially symmetric systems (1.16) to obtain 

[40]

(n ', J ' T ' M '  | T* | n, J T M )  =  i J+J\ - l ) J' - M'[(2J +  1)(2/ '  +  1)]*

J '  k J  

- M '  q M JC=0

x ( - l ) K [l +  ( - l ) J+J'+'!( - l ) 1+y]

x f *
V  k  T \  J J' k

+ E  E  E  •"•'3$
-K  0 K  K = l K >  =  l q '  =  l

+ ( —1 ( —1) -7++fci9' T1̂ ,

( - 1)K+7 J ' T '  J T  
a o a K

1 J ’ k j  ^

0 g' - i f

I J ' T '  J T

+ 7 2 a* ' °

J '  k J  ^

\ - K '  q' 0 y

I  ̂—̂  nJ"T'nJT~\— ~ Q>k ' a K
\ - K '  q' K  )

+ ( - 1)'
1 r k j  N

\ - K ‘ q ' - K  )

+ ( - 1)7 + 7 '

V

J '  k J  

K '  q' - K
(2.15)

Inserting (2.15) into (2.12) yields

(2J' + 1)
[Iq(TS)\n'J>T',nJT -  ^  +  ^

1 E  4 'T'4 T( - 1  f  [i + (-i)w '+k( - i r y]
K = o

xT0k
r k j

- K  O K )

+ E  E  E  [rq'fk, + ( - i r +'l'(-i)J+J'+hiq'fliq.
K - 1 J C ' = 1 <?'=!
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t i l
v s

tf+7
J'T'  „  J T J '  k J

aK
0 q ' - K  )

J ' T ' J T
+ v T * ' a

J '  k J

- K '  q' 0 )

TCL il aJ'T nJTaK, aK
/ r k j

\ - K '  q' K

+ (- ! )■

+ ( - 1)

J '  k J  

\ - K '  q ' - K

J '  k J  

K '  q' - K
7+7'

xU  E  aJK7 '4 r( - i f  [i + (-i)7+y'+t( - ir +-'i
y L k =o 1

xS,k*

- K  0 K

J J 1 k

+ E  E  E  [X5 ,t; + ( - ir +y(-i)7+-,'+t*-,'5 *;,l
K = l K ' = l q ' = l

( - 1)
V2

K+1 I T' k J
J'T'  J T  1a„ a

I 1  J ' T  JT  
H 7Ea K '  a o

( “ 1 )  J ' T  J T  
o  a K '  a K

K
0 q ' - K

J'  k J

- K '  q' 0

J '  k J  

-  K ' q' K  )

+ ( - 1)'

+ ( - 1)7+ 7'

J'  k J  

- K '  q1’ - K

J '  k  J
(2.16)

\ K '  q' - K  y j

R otational selection rules for rotation-vibration Ram an scattering depend on the
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conditions required for the 3 — j  symbols in (2.16) to be non-zero. In the case of 

isotropic scattering (k =  0) these are A J  =  A K  =  0, while for anisotropic scattering 

( k = 2) we have A J  = A K  — 0, ±1, ±2. As for the symmetric top, there are further 

restrictions on A K  dependent on whether or not the associated tensor component 

contributes for a given combination of initial and final vibrational states.

In addition to the aforementioned rules, which are of the same character as those 

rules given earlier for the symmetric top, there are rotational selection rules which 

are unique to the asymm etric top. These rules, also obtainable from (2.16), specify 

the allowed associations of A J  with initial and final rotational state  symmetry 

com binations for a given polarizability or optical activity tensor component and are 

deduced from a consideration of non-vanishing 3 — j  symbols and the combinations 

of even and odd-valued J ,  J ',  7 and 7 ' required for a specific tensor component 

to appear in (2.16). The selection rules so derived are listed in table 2.1, which 

is consistent w ith Stoichelf [36]. For simplicity we have w ritten the results for a 

molecule of C\ symmetry. For other asymm etric top point groups, the relation 

between com ponents and rotational selection rules are as given and the vibrational 

species should be obtained from group theoretical considerations.

2.2.3 V ibration-rotation  R am an optical activ ity

In a fashion similar to tha t detailed for the symmetric top, it is possible to cal­

culate the polarized and depolarized dimensionless CIDs A x and A z associated with 

allowed rovibrational transitions by correlating an intensity factor [Iq(TS)\n<j'T',nJ7 

w ith each term  T*S%* appearing in (1.2) as specified by (1.23). We now list the 

CIDs for all possible combinations of initial and final state symmetries:
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2.2.4 In tensity  sum  rules

For both  the inertial and geometric symmetric top, we have noted tha t the 

unresolved CIDs for a vibrational band obtained by summing over all allowed states 

and then averaging over the initial states are identical to the CIDs for an isotropic 

fluid. To prove this identity for the symmetric top, we made use of some of the 

properties of the factors Dkj,K,>JK given by (1.20) which appear in the fully developed 

intensity factor expression (1.19) to show th a t summing these intensity factors over 

all allowed final states gives a simple result independent of initial state. For the 

general case of an asymm etric top, it is easier to work with the original definition 

of an intensity factor (2 .12) rather than  the finalised form (2.16).

We may write [31]

E  = TFTTn T  (n' , r r M ' \ T qk \n,JTM)
J'J> ~t_ M M ' J ' T

x (« ', J'T'M' I S* I n , /T M )*<2
1

(2k +  1 )(2J +  1) MMijiTiqq 

x (n | Sql | n)*

x ( J 'T 'M ' | Dkq,q(uj) | JTM) 

x (J'T'M' | Dkqlq(u;) | JTM)*
 ̂ * ' '  ' 1 I I C'kY ; ( n ' \ T kq, | n ) ( n ' | 5 J | n ) *  (2 .21)

(2£ +  l ) ^

where the unitarity  of the m atrix  of finite rotations is employed in the final step. 

Clearly, the development is also applicable to the symmetric top for which T  =  K . 

By correlating intensity factors with each term  SqTq* appearing in the CIDs in the 

usual m anner, this result allows us to prove the required equivalence for a general 

molecule.
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2.3 D iscussion

It may be seen from table 2.1 and from the explicitly calculated dimensionless 

CIDs of subsection 2.2.3 th a t the rotational selection rules for each of the tensor 

com ponents, w ith the exception of T02 and T!22 -f T 22, are different. A consequence of 

this is the simple tem perature independent dimensionless CIDs obtained for indi­

vidual transitions except those associated with tensor components T 2q and T \  + T 2_2.

It is possible to show tha t the CIDs for individual transitions in the symmetric 

top may be recovered from (2.17) to (2.20) by retaining only one of the coefficients 

a j f  per state for both initial and final states and setting it to unity. Clearly AA" is

restricted to one value as a result and the appearance of one of the tensor compo-
—2 —2 —2nents T 0 and T 2-\-T_2 in the CIDs for a given transition precludes the appearance of 

the other. It is also necessary to note tha t levels which form distinct non-degenerate 

pairs of opposite parity in the asymm etric top, coalesce in the limiting case of the 

sym m etric top. We m ust therefore sum the relevant intensity contributions to take 

account of this degeneracy and correctly reproduce the results of chapter one for 

the sym metric top. This is effected by adding intensity contributions associated 

w ith T 2, +  T 2_q, to contributions associated with T 2, — T 2_ql.

In chapter one, it was noted tha t a group polarizability calculation of the pure 

ro tational ROA in triphenylborane had been carried out [10] and it should be men­

tioned th a t we have attem pted some more complicated group polarizability calcula­

tions of the pure rotational ROA in epoxypropane and trans-2,3-epoxybutane within 

the accidentally symmetric top approxim ation. Slight variation in the group polar­

izability isotropies and anisotropies used was found to effect a large change in the 

m agnitude, and even in the sign, of the calculated CIDs. Since the starting data  was 

in itself unreliable, as several quite different values were available in the literature 

for each group polarizability component required, it was decided tha t the results 

did not m erit inclusion. However, the calculations did highlight the artificiality of
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splitting a molecule up into independent groups.

A lthough in this chapter and the preceding one, the theory of rotational ROA 

has been set out in some detail, an experim ental investigation remains an in ter­

esting project for the future. The requirements and possible difficulties of such 

an investigation in relation to conventional gas phase Ram an spectroscopy should, 

however, be mentioned. Obtaining sufficient spectral resolution is a familiar prob­

lem in conventional gas phase Ram an spectroscopy which is particularly  pertinent 

for structures complex enough to be chiral. In recent years, workers have been 

able to  avail themselves of a range of techniques associated with non-linear Ram an 

spectroscopy such as coherent anti-Stokes Ram an spectroscopy (CARS), Ram an 

gain and inverse Ram an spectroscopy which provide resolution orders of m agnitude 

higher than  th a t obtainable w ith linear Ram an spectroscopy [43]. Indeed, the theory 

of CARS ROA and magnetic CARS ROA has been developed [44]. Unfortunately, 

one of the main disadvantages of CARS is a high non-resonant background lead­

ing to a poor signal-to-noise ratio  and thus limiting detectability. It was probably 

for this reason th a t attem pts to observe natura l and m agnetic CARS ROA proved 

unsuccessful [44]. However, as we have seen it is often the case tha t information 

which is a function of handedness and given uniquely by ROA does not depend on 

complete spectral resolution.
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Chapter 3

Circular dichroism  and optical 

rotation

3.1 Introduction

A detailed treatm ent of optical ro tation in symmetric tops which takes account 

of quantised molecular rotation has already been given by Chui [6]. We propose an 

alternative development which is nevertheless consistent with the earlier work and 

introduces the trivial modification of accommodating optical ro tation at absorbing 

frequencies and rotational CD by allowing for the finite lifetime of the excited 

virtual states. Our results are then generalised to encompass the asymmetric top. 

Finally, we explore optical rotation associated with purely rotational transitions 

which requires a rotation-induced magnetic moment.
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3.2 Theory

3.2.1 T he sym m etric top

The angle of optical ro tation for a collection of freely rotating symmetric tops 

is [1,45]

A 0  *  £  9JK

X

2£  -  + 
1

L3
- u ( A xyz( f )  -  A yxz( f ) )  +  G'xx( f )  +  G'w ( f ) e - E j K ! k T  ( 3 ! )

where 2  is the ro tational partition  function, uj is the frequency of the incident 

light, i  is the path  length and N  is the molecule num ber density. We have also 

introduced the dispersion lineshape function /  [1] and the dispersive parts of the 

optical activity tensors G'af3( f ) and A ap7( f )  defined by

G V / )  =  - r  £  / «
n  n 'J 'K 'M ’

x lm ((n , J K M  \ fia \ n ' , J 'K 'M ' ) { n  , J ' K ' M '  | m p | n , J K M )) (3.2) 

2 ^
A c & t f )  =  — 2-j  fU n 'J 'K ' .n J K

h  n'J'K'M'
xR e((n , J K M  \ fia | n ' , J ' K ' M ' ) ( r i , J ' K ' M '  | | n, J K M ) ) (3.3)

The contribution to A© from Gxx( f ) +  Gyy( f )  for a molecule in rotational state 

| J K M )  is

(2 J  +  I )"1 £ ( G U ( / )  +  G y / ) )  =  J ( 2 /  +  l ) - ‘ £  fu>
M n'J'K'M'M

x lm ( ( n , J K M  I | n ' , J 'K 'M ' )  

x { n ' , J ' K ' M '  | m 1.!  | n , J K M )

+ { n , J K M  I u l i  I n', J 'K 'M ' )  

y ( n ' , J 'K 'M '  | m \ \ n , J K M ))

=  |  E  W 2; '  +  i ) ( - i ) « ,+1
11 n 'J 'K 'M 'M
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I K -K'  - K  + K'

M —M —I )

2~\
J' 1

- M  M' -1

xlm ({n | f i x_Ki | n '^ n ' | m lK,_K \ n )) 
_4

^  n ' J' K'

{

 ̂ K -K '  - K  + K'
x lm ((n  | | ti ) (ti | | n.)) (3.4)

where the second step involves application of the W igner-Eckart theorem  for axially 

symmetric systems (1.19) and the th ird  step exploits the orthogonality relations of 

the 3 — j  symbols. Note th a t we have taken account of the (2 J  +  1) degeneracy of 

the  M  substates.

Similarly for the contribution from A xyz( f )  — A yxz(f):

(2J' +  l ) - 1£ A lys( / ) - A v„ ( / )  =
M

■v/2
—- ( 2 J  +  1)-1 Y  f^n'J'K',nJK 
^ n'J'K'M'M

x lm ((n , J K M  \ n\  \ n ' . J 'K 'M ' )  

x { n \ J ' K ' M '  | 0 2_! | n, J K M )

— (n, J K M  | | n ,  J 'K 'M ' )

x (n ', J ' K ' M '  | 0 2 | n , J K M ) )

— ~C~ Y  f UJn'J,K'lnJK( — l ) K + K+1(2J f + l)
n ' J ' K ' M ' M

J J'

K -K' K' - K  )

I M —M —I\ M - M ' - l  )
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(  J  J '  1 w

M  - M '  1

j r 2
 ̂ M  —M '  1 )

x lm ((n  | | n ) ( n '  | ©/<-/_/<• | n ) ) (3.5)

However, the orthogonality properties of the 3 — j  symbols dictate th a t sum m ation 

over M  and M '  produces a zero result, which means th a t there is no contribution 

from A XyZ( f }  A yxz ( /)•

Thus, we finally obtain

A 0
2uj2 fj,0d.N
shz J K

n'J'K'

J  J '  1 

K  - K '  - K  +  K '

x lm ((n  | tilx _ Ki | n ) ( n  | Tn}K , _ K  \ n ) ) e  E jK / kT

It is then im m ediately possible to write the following result for CD:

(3.6)

2 uj2fi0£N  
3 hz

{
K + K '

J K
n'J'K'

J  J '

\  K  - K '  - K  +  K '

x lm ((n  | I n ' ) ( n  \ r n lK >_K  | n ) ) e ~ E jK / kT (3.7)

where rj is the macroscopic ellipticity, obtained from (3.6) simply by replacement 

of the dispersion lineshape function /  by the absorption lineshape function g  [1]. 

Expression (3.6) is in agreement with C hui’s more rigorous result which involves 

a sum m ation over all ranks of interference term s between electric and magnetic 

multipoles of the same rank [6], while our result depends on a single electric dipole- 

magnetic dipole term . For most purposes our expression is adequate because the 

dipole-dipole term  dominates strongly over the other term s in the sum m ation [46].

We may split the summations in (3.6) and (3.7) into two parts corresponding to 

n '  — n  and n '  ^  n. Thus, (3.6), for example, becomes

A 0
cluj2fi0l N  

3 hz Y ,  f g j K C 2 J ' +
K + K '

J K  
L J ' K '

J  J '

\  K  - K '  - K  + K '  )

:Im ((n | l±xK _ K , \ n ) { n \  m lK , „ K  \ n ) ) e  JK>V
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+ E  f 9 J K ( 2 J '  +  l ) ( - l ) K + K '
J K

J ' K '
n'^n

K  - K '  - K  +  K '

x lm ((n  | | n'){ri  | | n))e EjK/kT (3.8)

The first term  describes the contribution to optical ro tation through purely ro­

ta tional excited states while the second term  describes the contribution through 

rovibronic excited states. It is appropriate to consider the first term  at rotational 

transition  frequencies, th a t is, in the microwave region and the second term  at the 

higher frequencies characteristic of vibrational or electronic transitions. The first 

term , dependent on purely rotational virtual states, is equal to zero because it is 

always possible in the absence of an external source of time asymmetry, such as 

a m agnetic field, to construct molecular states for which the expectation value of 

the magnetic dipole operator is zero since it is a Hermitian time-odd operator [1]. 

There is thus no optical rotation in the microwave region or, for identical reasons, 

CD analog to pure rotational ROA, within the approxim ation used in this deriva­

tion. The second term  may be further separated into a part which is a function of 

purely rovibrational transitions dom inant in the middle and far infrared regions and 

a part which is a function of rovibronic transitions dominant in the near infrared, 

visible and ultraviolet regions [1].

3.2.2 T he asym m etric top

We have shown in chapter two how a treatm ent of rotational ROA in symmetric 

tops provides a framework on which to build the more sophisticated theory required 

for an asymm etric top. In an analogous fashion, it is possible to extend the optical 

ro tation results obtained for a symmetric top to an asymmetric top. We develop 

(3.1) making use of definitions (3.2) and (3.3) suitably modified for the asymmetric

48



top by replacing the K  quantum  num ber of the symmetric top rotational sta te  by 

the pseudo-quantum  number T  for the asymmetric top rotational state. It may be 

shown using (2.15) for rotational m atrix  elements of asym m etric tops tha t

A©
2u>2fi0£N

ZJiZ
J T

n'J'T'

x lm
J (~1)K —

S  o (n I I n>>
K  = 0

J  1 J  

- K  0 K

/ \  

/

i E  I /*} I "') + ( - 1) + (—1)7+7 <n | ^  | n')]
K = l

• \ (

o “ I

„ J T  J ' T '  
a K  a K - 1

H 7Ta l ao
V 2

J T  J ' T  
a K  a l - K

2  a K  a K + l

o i  - i ;

j  i  j '

- K  1 K - l

J  1 J'

- K  1 JRf — 1

 ̂ J  1 J'  

k K  I - K - l

X

J  1 J  

- 1 1 0

/ \  

/

x < t l  — 7T~(n ' \ m o \ n )
K = 0

r i  j

\^-K  0 K

i £  [<„' | | n) +  (v! I m L l | n)]

< J '  1 J  

0 1 - 1

J

E
K = 1

(~ 1 )7+1 7'
J 2

„J'T J'T  
a l  a o
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J '  1 J
+ (  ^ ) K  „ J T  _ J ' T

^ + 7  
v - J T  _ J ' T_ aw a

- I  1 0

/
K  U 1 - K

' a K  a K + l

J ' 1 J  

- K - l  1 K

J^+7+7'
i v /  - J T  _ J ' T

"I a K  K —l

J 1 1 J

K - l  1 - K

1 j '  i  j  

\ K - 1 1 - K

y
►

/ . >

e- EJT/kT (3.9)

The com bination A xyz( f )  — A yxz( f )  does not contribute because, as for the sym m et­

ric top , sum m ation over M  and M'  leads to a zero result. Again, if the dispersion 

lineshape function /  is replaced by the absorption lineshape function g in (3 .9 ), the 

expression for 77 is obtained.

3.2.3 O ptical rotation  in the high frequency lim it

At high frequencies of incident light, we can introduce a version of the Placzek 

approxim ation as discussed in subsection 1.2.1 such tha t

GaP = (Uvn r | G'ap(Q) I n vnr) (3.10)

Note th a t we have dropped the dependence on lineshape function as it is implicit

in the approxim ation tha t we are considering off-resonance conditions. We can now

use (3.10) to derive an approxim ate expression for optical rotation. Assuming the 

conditions necessary for Placzek’s approxim ation we write

+  =  ( n , J T M \ - l- u , A l - ]I^G '02 \ n , J T M )

- - ^ = ( n , J T M  | G'° I n , J T M )  (3.11)
v 3

where T  =  K  for the symmetric top.

Only the dependence of the m atrix  elements on M  can be split off in general
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[33,34], so th a t (3.11) becomes, in term s of reduced m a trix  elements

G L  -  G'yy +  -  A ^ )  =  J  2 J
6 \ - M  0 M

x (n , J T  || - - u A 2 - J - G '2 J n , J T )

- M O M

x ( n , J T  | G | n , J T ) (3.12)

Sum m ation  over M  of the first te rm  in (3.12) gives zero since [27,47]

J  2 J  )  _  ( - 1)j+m[3M2 -  J ( J  +  1)]
■M 0 M  I ~  [S(S +  l) (2J  +  3X2J +  l ) ( 2 J - l ) ] i

f ;  M2 = 1(2J + 1)7(J + 1)
M = - J  6

(3.13)

(3.14)

and  each ro ta tional s ta te  is (2J  +  1) degenerate in M.  Thus our final expression is

A & & --u>fi0£NG'a
o

(3.15)

I t should be noted th a t, w ithin the approxim ations m ade here, A 0  is independent of 

ro ta tio n a l s ta te  and thus tem peratu re , and coincides w ith the well-known classical 

resu lt for optical ro ta tion  in an isotropic sample [1].

3 .2 .4  O p tica l ro ta tion  at m icrow ave frequencies

T hus far we have only taken account of the contribu tion  from electrons to the 

m agnetic m om ent in the molecule-fixed fram e and have ignored the effect of molec­

u lar ro ta tio n  on the resu ltan t space-fixed m agnetic m om ent. W ith in  this approx­

im ation  there is no optical ro ta tion  in the region of pure ro ta tional transitions. 

However, Salzm an has pointed out th a t optical activity  at microwave frequencies is, 

in principle, possible and depends on a ro tation-induced m agnetic m om ent which
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contains contributions from  both  electrons and nuclei [8,9]. T he necessary theory 

has been developed to  describe the effect for an accidentally sym m etric top  in ro­

ta tio n a l s ta te  |n , J K M )  = |n,000) [8]. The mass d istribu tion  of this top  is th a t of 

a sym m etric top  bu t the molecular g tensor is not diagonal in the principal axes 

fram e.

We can accom m odate the effect of m olecular ro ta tion  in our form ulation of 

optical ro ta tion  by employing m atrix  elements in which the m agnetic dipole operato r 

operates on ro ta tional states [48,49]. Following Salzm an, we consider specifically the 

J  — 0 to  J  =  1 transition  of the accidentally sym m etric top . The required m atrix  

elem ents are given by Salzm an [8,9] and reproduced in table 3.1. (T he tab u la ted  

m a trix  elements are expressed in C artesian no ta tion  as are Salzm an’s results, so we 

do not a ttem p t a transla tion  into spherical tensor form.)

By m aking use of tab le 3.1, we may w rite

T ( r t , ,  ̂ 2fJ’N [ t J ’x ( 9 Y Z  -  9 z y )  + P y { 9 z x  -  9 x z )  +  P z ( 9 x y  -  9 y x )\
lm(&IX +  G9V)  -----------------------------------3 t M o _ u !)

(3.16)

where we have assum ed off-resonance conditions to ensure th a t we m ay neglect the 

energy differences in the  K  sublevels.

N oting th a t Salzm an’s molecular (3 param eter is related  to  G 'a/3 as follows:

\ rn
p  = - - f 3- <3 -17)07r

it is possible to see th a t (3.16) is consistent w ith (21) of Salzm an’s paper [8]. M ore­

over, the derivation presented here constitu tes a m uch more direct m ethod  of cal­

culating an optical ro ta to ry  param eter in the microwave region.

3.3 D iscussion

It is in teresting to note th a t prior to the work of Salzm an, an independent 

trea tm en t of optical activ ity  was presented by A tkins in which individual ro ta tional
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Table 3.1

R ota tional m a trix  elements of fix, fiy , m x and m y for the J  =  0 to J  =  1 transition  

of the accidentally sym m etric top, where gap is the m olecular g tensor and /iw is 

th e  nuclear m agneton [8].

Space-fixed m atrix  elements Molecule-fixed m atrix  elements

(n, 11 dh 1 1 | n , 000) ± i73 ( ^  +  w )

(n, 10 ±  1 1 n , 000)

(n, 1 — 1 ±  1 1 | n , 000)

(n, 11 ±  1 1 fty | 72, 000) t  w )

(n, 10 ±  1 1 Py | 72, 000) t ^ z

(n, 1 — 1 ±  1 1 l^y | 72,000) t t & x  -  W )

( n , l l ± l  | TYlx | 72, 000) 4 3̂ ~  0Xz)]

( n ,10 ±  1 m x I 72, 000) (#xy -S 'y x )

(n, 1 -  1 i  1 | 7Tlx I 72, 000) b y x  #xy -  *(#zx -  #xx)]

(n, 11 i t  1 | m y 1 72, 000) ^  b y z  -  #zy +  K d z x  -  g x z )]

( n ,1 0 ± l  I m y 1 72, 000) - % / g ( 9 x y  ~  9 y x )

(n, 1 — 1 ±  1 TUy 1 72, 000) ~ W 3 IgYZ ~~ 9ZY ~ i (gZX -  gxz)]



sta tes were explicitly considered and a novel m anifestation of optical ro ta tion  p re­

dicted, w ith  m olecular ro tation  again cited as a prerequisite [50]. However, the 

underly ing sym m etry characteristics of this effect are com pletely different to  those 

of optical ro ta tion  in the microwave region as proposed by Salzm an [14,39].

T he optical ro tation  of the earlier study is associated w ith the difference in 

response to circularly polarized light shown by counter-ro tating  molecules and is 

properly  classified as a m agnetic optical activity phenom enon. The m agnetic op­

tical ro ta tio n  observable is generated by a tim e-odd, even-parity operato r and  it 

is therefore supported  by states which do not have definite reversality. Suitable 

sta tes are provided by m olecular ro tational states of definite angular m om entum . 

Notice th a t an equilibrium  ensemble can be thought of as containing equal num bers 

of counter-ro tating  molecules. Consequently, there would be no overall ro ta tion  of 

plane polarized light by a bulk sample unless it were in the presence of an external 

tim e-odd influence such as a m agnetic field which, in breaking the tim e-reversal 

sym m etry  of the system, would lift the degeneracy of counter-ro tating  molecules. 

The effect described by Salzman is an example of n a tu ra l optical activity. T he time- 

even, odd-parity  operator which generates the na tu ra l optical ro ta tion  observable 

is supported  exclusively by the mixed parity  in ternal states of a chiral molecule. As 

expected, the com bination of tensorial com ponents in (3.16) describing m olecular 

ro tation-induced  na tu ra l optical activity may only be non-zero for a chiral molecule.

It is finally im portan t to ask which of the expressions calculated in this chapter 

are likely to be m ost useful from an experim ental viewpoint. Since ro ta tional s tru c­

tu re  has already been seen in gas phase v ibrational IRCD spectra , this could prove a 

favourable choice for a more detailed study [51]. The expressions appropria te  to an 

analysis of such spectra are (3.7) for sym m etric tops and its analog for asym m etric 

tops obta inable  from  (3.9). Experim ental verification of n a tu ra l optical ro ta tion  in 

the microwave region is ham pered by two intrinsic lim iting factors. F irs t, the angle 

of ro ta tion  decreases as the frequency of the im pinging light decreases, and second,
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the  con tribu ting  m agnetic dipole m atrix  elements are abou t 10 3 tim es sm aller th a n  

elem ents associated with electronic spin or orbital angular m om enta.
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Part II

D iscrim ination  in th e  d ispersion  

in teraction  betw een  od d -electron  

chiral m olecules
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C hapter 4 

Sem i-classical developm ent

4.1 In troduction

The in teraction  of one chiral molecule w ith another, not necessarily of the same 

chemical species, is determ ined by the relative handedness of the  pair. This is m an i­

fest in num erous diverse physical phenom ena ranging from  the  difference in m elting 

points between active and racemic crystalline forms of a com pound to biological sys­

tem s in which physiological activity  is linked to  one stereoisom er exclusively [52]. 

Various m odel m echanisms have been posited to  rationalise the  discrim inatory  be­

haviour displayed by coupled chiral molecules for d isparate  chem ical environm ents 

and  physical conditions [2,52-58].

O ur specific objective is to shed new light on an old topic, nam ely th a t of 

the  difference in the dispersion in teraction  between a pair of chem ically identical 

molecules of the same and opposite absolute configurations.

The possibility of a term  discrim inating between like and unlike pairs of chiral 

molecules in the  dispersion in teraction  energy was first suggested by M avroyannis 

and Stephen [53]. T heir calculation trea ted  the case of an in teraction  averaged 

over all relative orientations of the two molecules. Later work carried out by Craig,

56



Power and  T h irunam achandran  amplified the original idea, extending the  previous 

results to  cover locked and semi-locked m olecular configurations [54,55].

T he developm ent presented here considers additional contributions to  bo th  dis­

crim inatory  and non-discrim inatory dispersion in teractions between chiral molecules 

in degenerate states. Doubly degenerate K ram ers conjugate sta tes of odd-electron 

molecules, being the sim plest and most common exam ple, are discussed in detail. By 

allowing for degeneracy the possibility of contributions which are a function of time- 

odd tensor com ponents is in troduced  [1,59]. This augm ents the  com m only cited 

tim e-even contributions. Buckingham  and Joslin have discussed spin-dependent 

dispersion forces between alkali m etal atom s originating in tim e-odd p roperty  and 

transition  polarizability  tensors. The resulting contribution to  the overall dispersion 

in teraction  energy was found to be negligibly small [60]. However, the work does 

provide im petus for a similar investigation of possible novel term s in the discrim ­

ina to ry  dispersion in teraction  dependent on tim e-odd com ponents of the  complex 

optical activity  tensor Gap.

In th is chapter a semi-classical developm ent of the discrim inatory  dispersion 

in teraction  applicable at interm olecular separations in the  near-zone region is given 

along w ith  a m odel calculation on a hypothetical chiral odd-electron tran sitio n  m etal 

complex of sym m etry  O *.

4.2 T heory

4.2 .1  A  sem i-classica l d evelop m en t o f  th e  d isp ersion  in ter­

a ction  for th e  near-zone lim it

We present a semi-classical trea tm en t of the discrim inatory and non-discrim inatory 

parts  of the dispersion in teraction  for the near-zone lim it. The near-zone is th a t 

in term ediate  region in which the molecules are sufficiently d istanced, one from the
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other, to  allow electron exchange interactions to  be neglected, yet near enough 

th a t re ta rd a tio n  effects need not be taken into account [61]. Since in th is range 

the  indistinguishability  of electrons is irrelevant, we w rite the to ta l wavefunction of 

the  two-molecule system  as a simple product of the wavefunctions of the  isolated 

molecules 1 and 2 .

T he in teraction  H am iltonian m ay be w ritten  [54,55]

H int = H E + H M (4.1)

w here H E and H m  in the  dipole approxim ation are given by

^ E =  ~ 4

H m =  — ~ T af3m lam 2p (4.3)
4-7T

w here

T*0 = V cV ^ fl- 1 =  (3R aRp -  R 28ap ) R ~5 (4.4a)

w ith  R  =  R 21, the position vector of molecule 2 relative to  molecule 1. The electric

dipole m om ent jia is given by (1.5a) and

m a = X! b ^ ia 3ista ) (4.4b)i 2 rrn

is the m agnetic dipole m om ent for the collection of charges e; w ith mass m l , o rb ita l 

and spin angular m om enta and and ^-factor gt. Notice th a t (4.4b) is a gen­

eralisation of (1.5b) which allows for a contribution to the m agnetic dipole m om ent 

from  spin angular m om entum  s.

It is possible to  extend the in teraction  potentials to include higher order m ulti­

po lar term s, but the associated contributions to the to ta l dispersion energy a tte n ­

uate  m ore rapidly  w ith increasing interm olecular separation  th a n  the dipole-dipole 

p a rts , and  are not discussed here [46,62]. However, it is in teresting  to note th a t 

new discrim inatory  contributions, some of which orig inate in pure electrostatic  in ­

teractions, are yielded by more sophisticated trea tm en ts  of this type [46]. We shall

58



consider the  non-discrim inatory dispersion energy arising purely from  an  electric 

dipole-electric dipole electrostatic in teraction  and the discrim inatory  p a rt resulting 

from  an  electric dipole-m agnetic dipole in teraction.

In itially  we derive expressions to describe the p ertu rba tion  H am iltonian m atrix  

elem ents for molecule 1 w ith isoenergetic states |n i) and \m\)  and  molecule 2 w ith 

isoenergetic states \n2) and \m2). The eigenvalues of the secular m a trix  in the 

particu la r case of odd-electron molecules in twofold degenerate K ram ers sta tes are 

then  explicitly given.

4 .2 .2  T h e non-d iscrim inatory  d isp ersion  en ergy

Considering only H e  as the pertu rba tion  H am iltonian, we find from  second-order 

p e rtu rb a tio n  theory  [60,62]

i
Emlm2in1n2 167T2e2

x y '  (m i m 2 1 Piofrp  1 h j 2) ( j i j 2 I 1 ^ i n 2) ^  ^

j iM .m i +  ^ 2n2)
J2 ,m2

T he above expression can be w ritten  in term s of the dynam ic tran s itio n  polarizabil- 

ities of the individual molecules. M aking use of the  identities

2 f°° A B1 _  2 r
4- B  7T JO

-du
A  4 - B  tt Jo (A 2 +  u 2) ( B 2 4- u 2)

2 u^
Jo ( A 2 + u 2) ( B 2 + u 2J U *4 '6^x Jo (A2 +  u 2) ( B 2 + u 2)

w ith  A  >  0, B  > 0,

we ob ta in

Emlm2,nin2 =  — %2n 3e2 ^



w here we have in troduced dynam ic transition  polarizabilities [1,60,62]

1 —  Ujn
(jJ- — <jjd Jn

X « TO I I j ) { j  I H  I n ) +  (m  I H  I j)0 ' I Ma I «))

=  (4.8a)

h . f - ' — u;2
j^ = n ,m  J 7*

X (("I I I j ) ( j  I [1(3 I n) -  (m  I /10 I j ) ( j  I \xa I n) )

= - ( ^ « ) ; „ ( w )  (4.8b)

which m ay be obtained from  transition  polarizabilities (1.7) by particu larising  to 

degenerate in itia l and final states. Note th a t we have explicitly w ritten  these tra n ­

sition tensors as functions of uj to  em phasize th a t they are dynam ic, as it will be 

necessary la te r to  distinguish between dynamic and static tran sitio n  tensors.

A sim ilar analysis is possible for a purely m agnetic in teraction  w ith H m  as the 

p e rtu rb a tio n  H am iltonian. The resulting contribu tion  differs from  (4.5) only in 

th a t the  fia are replaced by m a and the constant factor is appropria tely  modified. 

M agnetic transition  dipoles are characteristically  two or th ree  orders of m agnitude 

sm aller th a n  electric transition  dipoles. The purely m agnetic con tribu tion  is th e re ­

fore negligible in com parison.

4.2 .3  D iscrim in atory  d isp ersion  en ergy

From  the cross te rm  of H e  and  H m , we ob ta in  a d iscrim inatory  contribution  for 

chiral molecules as follows[54,55]:

h  4™2 im2

x ((mim2 | giati20 I jih){jij2  I m ^ m 2s | nxn2)

+  (m im 2 | m i  m 2s \ j i j 2) { j i j 2 | I \ (4.9)
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A gain using identities (4.6) we find

F* =  T
•Cjml m2,nl n2 167T3 e  ^  5

[(G ia7) i in i(»«)(G2(,,)+ 3̂ (*Jt) 

- (G l . , )m 1n1(i“ )(G 2,„ )^ 3̂ ( i« ) ]  du  (4.10)

w here analogously to  (4.8) we have introduced dynam ic transition  G  tensors [1]

( & * ) £ »  = I  £h  • f - '  u j2 —  u j2j^n,m jn
x ( ( m  I fia I j ) ( j  I 171/3 | n) +  (m \ mp  | j ) ( j  | jia \ n))  (4.11a)

h u>2 — uj2j^n,m jn
x ((m  I fia I j ) ( j  I 171(3 | n) -  (m  | mp  | j ) ( j  | fia \ n))  (4.11b)

4 .2 .4  T im e reversal characteristics o f  m atrix  e lem en ts

O ur sta ted  aim  was to allow for tim e-odd tensorial p a rts  in the calculation of 

discrim inatory  and  non-discrim inatory dispersion energies. We pause to identify 

these term s in the results of subsections 4.2.2 and 4.2.3. The dynam ic transition  

tensors in (4.7) and (4.10) which describe the near-zone have corresponding effective 

operators (1.8) w ith E  =  E n = E m in (1.8j ). The behaviour under tim e reversal 

of the operators generating these dynam ic transition  tensors has been discussed 

in subsection 1.2.1. By time-even and tim e-odd tensorial parts , in w hat follows, 

we m ean those parts  which are generated by time-even and tim e-odd operators 

respectively. It is necessary to note explicitly th a t we are linking the time-even 

or tim e-odd character of a transition  tensor w ith the behaviour of the generating 

operator, because the behaviour of the associated m atrix  element w ith respect to 

tim e-reversal is only th a t of the operator for diagonal transitions. The discrim ina­

to ry  and non-discrim inatory interactions in the near-zone limit described by (4.7)



and (4.10) are thus seen to contain contributions from bo th  tim e-even and  tim e-odd 

tensors.

4.2 .5  M olecu les in n on-degen erate s ta te s

O ur results m ay be shown to be consistent w ith conventional trea tm en ts  of 

system s lacking degeneracy by le tting  |m i) =  |n i) and \m2) — |n 2).

T hen, from  (4.8), (4.11) and (1.4) it is possible to  see th a t

(“««)tn(w) =  (4.12a)

(“ ^)nr,(“ ) =  (4.12b)

( < ? ,* ) + »  =  Gafiiu) (4.12c)

( G ^ K O )  =  - i f f a f i W  (4.13d)

so th a t we m ay w rite

E  =  ~ 3 W 4 Taf,T''s
r»CO

x 1
POO

jo l ^ i a^ u ) a 2l3s(iu)  +  a'lai{iu)a'2ps(iu)]du (4.13)

e  - - j £ k T" T«
r oo

X Jo
[Gia i(iit)G 2(Ji(tit) +  G’̂ i h O G ' ^ i i u ^ d u  (4.14)

It is usual to  discard the term s in the im aginary parts  of the polarizability  tensors 

and in  the real p arts  of the G  tensors, since for an even-electron system  it is always 

possible to  choose wavefunctions which are of definite tim e-reversal sym m etry  and 

therefore do not support such tim e-odd tensor operators [1,14].

If tim e-even contributions only are retained, it is possible to recover expressions 

for the discrim inatory  and non-discrim inatory dispersion energies as m ost commonly 

found in the literatu re:



poo

x Jo aia^ i u ^a 2̂ ivJ du (4.15)

7- 7/  _  rp rri

167^  a/3 75
poo

X /„ G U-,(i u )G 2pt(i u )du (4 -16)V 0

E quation  (4.15) is ju st the well-known London form ula for the  dispersion energy

[62], while equation (4.16) is the fixed orientation form of the result first ob ta ined  by

M avroyannis and Stephen for the near-zone lim it discrim inatory dispersion energy 

[53].

4.2 .6  T h e d ispersion  energy o f chiral m olecu les in tw ofold  

K ram ers d egen erate  sta te s

Thus far, derived expressions appertain  to  general degenerate sta tes. Twofold 

K ram ers degeneracy in odd-electron molecules is a simple exam ple which m ay be 

considered specifically.

Following the norm al convention, the orthogonal spin sta tes for one electron 

| | ,  | )  and  | | , - | )  are denoted by a  and (3 respectively. An app rop ria te  choice 

of basis set for the  spin wavefunctions of the two-molecule system  would be the 

following com binations of products of one-electron spin states quantised along the 

in term olecular axis;

a singlet s ta te

and  trip let states

|E +) =  4 ( I “ A >  -  l / W )  (4 -17a)

|n + i)  =  (4.17b)

IE ” ) =  (4.17c)

|fU >  =  IA & ) (4-17d)
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This p articu la r choice ensures th a t the electric dipole-electric dipole and the  m ag­

netic dipole-m agnetic dipole pertu rba tion  H am iltonian m atrices are im m ediately in 

diagonal form  since the spin functions (4.17) transform  as irreducible represen ta­

tions of the  point group to  which the molecular pair belongs. T he p e rtu rb a tio n  

H am iltonians span the to tally  sym m etric representation and  cannot mix functions 

spanning  different irreducible representations. It follows th a t these functions are in 

fact the  eigenfunctions of the pertu rba tion  H am iltonians (4.2) and (4.3) [60].

T he dispersion energy of molecules encountering in these states is

E(U ±l)  ~  •£’aia2,aia2 (4.18a)

E (T ,T ) =  E ai02>ai(32 ±  E ai/_32,pia2 (4.18b)

w here E a ia 2 , a i a 2 ? E a i j32i0lC(2 are given by (4.7).

For molecules which are, in addition, chiral it is possible to  w rite analogous 

results for th e  discrim inatory p art of the dispersion in teraction:

£ '(n ± i)  =  (4-19a)
EXT,*) =  (4 -19b)

where E'aia^ ia3, C a , ° i A  and are «iven (4 ' 10)'

These results for twofold K ram ers degeneracy may be pu t to use in a model 

calculation on a specific odd-electron chiral molecule. For sim plicity a hypothetical 

transition  m etal complex of chiral sym m etry O* is chosen. It has already been shown 

th a t the  large spin-orbit coupling in the charge-transfer states of iridium (IV ) hexa- 

halide complexes leads to  such molecules being favourable candidates for the study  

of an tisym m etric scattering in the resonance R am an effect [15,18]. The in tensity  

of this scattering  is a function of the tim e-odd p art of the  transition  polarizabil­

ity (d a/3)~n Since the tim e-odd p art of the dispersion in teraction  is also dependent 

on (d a/3) " n , it would seem apposite to endow our hypothetical molecule w ith  the 

properties of these complexes.
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Consequently, the model chiral complex is taken to be low spin d5 w ith an energy 

level p a tte rn  identical to  th a t of IrBrg-  in aqueous solution, as illustrated  in fig. 4.1

[63]. T he first few electric dipole-allowed transitions, which are in  addition tg <— 

charge transfer transitions, are Ui(2T $ )  <—  E ”{2T2g), E ”(2T2u) <—  E ”(2T2g) and 

U'u(2T2u) a—  E ”(2T2g). It is noted th a t the transition  U'g(2T2g) <—  Eg(2T2g) is 

electric dipole-forbidden because the initial and final spin-orbit states are derived 

from  the  same orbital configuration. Those transitions which are electric dipole- 

allowed in the parent O£ complex are also m agnetic dipole-allowed in the molecule 

of O* symmetry.

In  the  calculation of time-even and tim e-odd contributions to the dispersion 

energy of alkali m etal atom s [60], it was possible to  make the assum ption th a t 

m ost of the electric dipole oscillator strength  originated in n 2P  <— n 2S  transitions, 

rendering trac tab le  the sum m ation over in term ediate states required to obtain  the 

polarizability  transition  tensor com ponents from the dipole m atrix  elements. The 

adm issibility of such a simplification is atypical. Electronic absorption spectra of 

irid ium  hexahalide complexes display a more com plicated p a tte rn  of bands and it 

now becomes expedient to take account of excited states which are not necessarily 

spin-orbit states derived from a common orbital configuration. Bands arising from 

charge-transfer transitions feature prom inently in the spectra. Those corresponding 

to  the  transitions illustrated  in fig. 4.1 have been assigned using m agnetic circular 

dichroism . They are of the type tg <— and characteristically of in term ediate 

intensity. Strong eg <— 7u charge transfer bands make a system atic appearance 

at frequencies higher than  those of the tg <— transitions [63]. It is obvious 

th a t the final states associated with eg <- j u transitions should be included as 

in term ediate  levels in our sum m ations because they are of an intensity which more 

th a n  com pensates for their high frequency. However, these bands were not resolved 

and  thus no a ttem p t at assignment was possible. This prohibits rigorous inclusion 

of these transitions into our calculations.

65



2u

2T(1) 
11u

2g

<

U #u

E',

U'u

uv

F« t- r

The first  few electric dipole-allowed transitions 
between the spin-orbit levels of [IrBr^]2

Fig. 4 .1



W ith  these a ttendan t difficulties, a calculation of the relative values of the to ta l 

tim e-odd and time-even parts to the discrim inatory and non-discrim inatory disper­

sion in teraction  is not feasible for an 0*  molecule modelled on irid ium  (IV) hexa- 

halide complexes. A less ambitious attem pt to calculate the relative m agnitudes of 

tim e-odd and time-even parts for a specific transition  or for transitions w ith final 

states of com mon o rb ita l configuration proves instructive and is in keeping with our 

desire for a qualitative estim ation of m agnitudes. Specifically, we shall trea t singly 

the transitions shown in fig. 4.1, combining the results for those transitions w ith a 

com m on o rb ita l configuration.

A direct com parison between time-even and tim e-odd parts  is possible because 

b o th  can be shown to be a function of the same reduced m atrix  elements. All 

possible transition  tensor com ponents may be calculated from  the W igner-Eckart 

theorem  for th e  octahedral double group 0*  [1,64] which allows us to  write

(r7|<x|ry) = ( - l j ^ ^ r i i i i i r )  
1 r 2\ r  ^

_ \ - 7  i  i  i

( _ 1 ) u ( r - i ' ) _ l _ ^ r  ||j t  | |  p ' }

v 2

(4.20a)

<r7 M r y >

+
\ —7 1 7 /

<r7MrV) = ( - ir (r‘7)(-0 <r||*l|r'>

(4.20b)

(4.20c)

\ —7 - 1 i  

r  Ti r

j  0 y*

In  th is context t a should be in terpreted  as either the m agnetic or electric dipole 

m om ent operator. The states | Ty)  and | T 'y ' )  are the ground and  excited spin 

o rb it states given in fig. 4.1. The function u  has been defined, and the possible 

values it may take listed, by Harnung [64]. M aking use of (4.20) and the tables of 

3 — T symbols given by H arnung we obtain, for example,

66



~(E"(n )  || ,x || E " ( j ) ) (E " ( j )  || m  || E"{n))  

1 E "  Tt E "  \

E"  T, E"

E "  T, E

E "  T, E"  }

- -<J?"(») || ix || E"( j ) )  

y.(E"(j)  || m || E"{n)) (4.21)

All o ther pertinen t m atrix  elements m ay be calculated in a sim ilar m anner. On 

m aking the assum ption th a t the electric and m agnetic dipole m om ent reduced m a­

trix  elem ents are pure real and pure im aginary respectively, the following results 

are found for the  polarizability and optical activity transition  tensors:

E "  in term ediate  level

(^a/3)+mn

Com m on factor

(  1

|(E"(n)  || M || E "( j ) ) \ ‘

5 0 0

0 1 0

0 0 I
1/ 2*—1/2

f \  0 0 

0 1 0

1° 0 \ )
- 1/2*— 1/2

000

( 0

0 0 0 0

000

11 1/2 (4.22a)

67



f ) mn

C om m on factor ^ -u,2) |(E"(n)  || /t || E"(j))\ '

0
%
3 0

i
3 0 0

0 0 0

1 / 2 — 1/ 2

0 - |  0 

I  0 0

 ̂0 0 0 /
— 1/ 2 * 1 / 2

0 0 I  

0 0 I

V - l - 5  0 
—1/ 2*—1/2

0 0 - I  

0 0 I

\ I - i  0 
1/ 2 * 1 / 2

(Gat3)+
m n

C om m on facto r \(E "(n ) II t1 II E "(j))\ I(E "(n)  || m  || E"{j))\

1 0 |  0 \ 1 

- I  0 0

0 0 0
1/ 2*—1/2

\

0 - 1  0 

I  0 0

0 0 0
- 1 / 2 * 1 / 2

0 0 - I

0 0 I

\ ! - I  0
—1/ 2<—1/2

0 0 I

0 0 I

r l - i  0
l / 2 < ----- 1 / 2

(Get))]

C om m on factor l(E"(n)  || /t || E"{}))\ \(E"(n) || m  [| E"(j))\

- I  0 0 

0 0 

0 0 ,
1/ 2 *—1 / 2

3 0  0

0

0 0 - 1 /
—1 / 2 < 1 / 2

0 0 0

0 0 0

0 0 0
— 1/24—1/2

^  0 0 0 ^

0 0 0

0 0 0
l / 2 < ----- 1 / 2

(4.22b)

(4.22c)

(4.22d)
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U* intermediate level

(<Xap)mn

Common factor ^ " " 2) \[E "(n ) II A1 II u '(j))\2

(oa/3),

1I  0 0

0 I  0

0 0 I ,
l /2<-l/2

( 1
5 0 0

0 I  0

0 0 1 /
—1 / 2 « 1 / 2

0 0 0

0 0 0

^ 0 0 0 )
—1/24—1/2

0 0 0 

0 0 0 

^ 0 0 0 /
l/2<— 1/2

Common factor ĥ 2 W_ ^  \(E"(n ) II f1 II U'(j))\2

0 - 1  0 

l  0 0 

0 0 0
1/ 2*—1/2

0 1 0 

- l  0 0

0 0 0 /
- 1/ 2: 1/2

0 o - l  

0 0 - 1

v s  I 0 
— 1/2*—1/2

0 0 I

0 0 - 1

6 6 0
1/ 2 *----1/2

(Gap)',

Common factor \(E "(n ) II f-L II E'U))\ t E  (n ) II TO II ^  (j))\

I  0 0D
0 0 0
l/2«-l/2

—  ~  0 0
6

^ 0 0 0 /
- 1/2— 1/2

0 0 1 

0 0 - 1

\ - l  I 0
- 1 / 21- 1 /2

^ /  0 0 - | '  

00-1
\  6 6

1/24---1/
0

(4.23a)

(4.23b)

(4.23c)
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{ G f x P  )mn

Common factor h(u£ _ „ 2) !(£"(«) || p  || i/'(i)>| |(E"(n) || m  || U'(j))\

0 0 - | ;

- I  o o

0 - I  0 

0  0 - 4 /

0 0 0 

0 0 0

0 0 0 

0 0 0

\ Q  0 0 )
1 / 2  < 1 / 21/ 21- 1/2 —1/2*---1/2 - 1/ 21- 1/2 1/21----1/2 (4.23d)

H aving found the contributions from individual transitions of sym m etries U' and E"  

to  th e  p roperty  and transition  tensor com ponents associated w ith the discrim inatory 

and  non-discrim inatory dispersion interaction, we are now in a position to calculate 

the  contribu tions to  the eigenvalues of the two-molecule system  originating in these 

specified transitions.

We begin by considering the discrim inatory dispersion interaction. The property 

tensors of each molecule are referred to a common axis system  X , Y, Z  a ttached  to 

th e  pair, w ith  Z  along the position vector R  which connects the local origins, so 

th a t we may write

Taf3T^sGiaiG 2p5 = R ~ 6[G\x x G2xx +  G iy y G2yy +  4G iz z G2zz 

~̂ ~G\XyG2xy T G\yxG2yX 

~ 2 (G ix z G2xz +  G \z x G2zx

+ G iy z G2yz +  G1z y G2zy )] (4.24)

To calculate the eigenvalues, we make use of (4.10), inserting the appropria te  tensor 

com ponents of (4.22c), (4.22d), (4.23c) and (4.23d).

Considering an excited level of U1 symmetry, we have, for exam ple,

poo „
TapT-,s /

Jo 2 2

x (G 3s4)+ l+ l(*«)M« =
0Jy,
- u ;2)2

du
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n h 2R*u>w
x \{E"(2T2g) II// II t r'( 2Tici ))>|2 

x |( £ " (2T29) | | TO| | J / f r W ))|2 (4.25)

T he tim e-odd and time-even contributions to  E'  „ „ , E'  „ „ and E 1 a aatia2,otia2’ cti/B2,ai/32 ■L-'ai(32,/3ia2

associated w ith excited levels of U’ and E ” sym m etry are displayed in table 4 .1. 

An obvious ad ap ta tion  of the noted procedure yields the tim e-odd and time-even 

contributions to  E aia2yaxa2'> and Eai(32,Pia2- For completeness, these results

are collected in tab le 4.2. From  table 4.1 it may by seen th a t the discrim inatory

dispersion energy is given by E%, =  ^ , , ( 1  +  A9) and E'J, = E'0ui( l  +

where

E ' .  =  ^
° v 96h7r2e0R 6ujx

x |(E"(n)  || fjL || X ( 3 ))\2\{E"{n) || m  || X ( j ))\2 (4.26)

is the  conventional discrim inatory dispersion energy deriving from time-even tenso- 

rial com ponents and associated w ith excited level X .  The conventional discrim ina­

to ry  dispersion energy E '0 is augm ented by a te rm  originating in tim e-odd tensorial 

com ponents and  param eterised by A9, where A9 is a characteristic of the eigenstate 

|q) of the two-molecule system and takes the values — 1, — |  and |  for the states 

| E +), ln ± i)  an d | E _ ) respectively. Similarly, from table 4.2, it may be seen 

th a t the non-discrim inatory dispersion energy is given by Eg,, =  E 0e„{ 1 +  A9) and 

Eu, = E 0u,( 1 +  f ) where

E 0 = ------------ -— s—  \ ( E " ( n ) \ \ n \ \ X { j ))\4 (4.27)
°x I 9 2 h n 2e l R eu)x K 1 11 P 11 w ; / l  V '

These results show th a t in the case of the O* model complex, the conventional

spin-independent non-discrim inatory dispersion energy is negative, indicative of an

a ttrac tive  in teraction  whereas the conventional discrim inatory dispersion energy is
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positive for molecules of the same absolute configuration indicative of a repulsive 

in teraction . Molecules belonging to any chiral point group yield these same results 

for the conventional discrim inatory and non-discrim inatory dispersion energies upon 

orien tational averaging [52,61]. However, it is not in general possible to predict 

w hether either type of conventional dispersion interaction is a ttractive or repulsive 

for a specific interm olecular configuration of two chiral molecules w ithout recourse 

to  detailed calculation.

The com bined contribution from the E "( 2T2u) and U^(2T2u) levels to the non- 

discrim inatory dispersion energy may be expressed in term s of one reduced transi­

tion  m atrix  element, since [65]

|( E ' X T 2g) || M || K ( 2T2u))|2=  2 \{E''(2Tlg) || /t || K ( 2T2u))\2 (4.28)

W riting the  result explicitly is instructive as this allows an interesting comparison

to  be m ade between the 0 * complex and the sym m etry-related alkali m etal atom

trea ted  by Buckingham  and Joslin [60].

The tensor pa tte rn  for a level of P "  sym m etry in the O* complex is the same as

for the 2 P i level of the alkali m etal atom . A similar correspondence exists between 
2

the tensor p a tte rn  for a level of JJ'U sym m etry in the O* complex and the 2P | level 

of the  alkali m etal atom  [1,60]. However, the relation between components of spin- 

orb it split levels is not the same in the two cases.

The polarizability tensor com ponents calculated by Buckingham  and Joslin lead 

to  the  following contributions to the dispersion energy:

1(0 II 11 II 1)|4 \ 4UJPU2 +UJh/2 +  13^ l / 2̂ 3/2  
q “  432tr2e2h R 6 ^Pl /2 i^Pl /2 ^̂ *3/2 )̂ -P3/2

^ ( ^ 1/2 ~  ^ 3 /2 ) '
6u7pi/2(wpi/2 +  <JJp3/2 )<-4P1/2 J 

while for the O* complex we may write the following:

_ \ ( E " C T 2g) \ \ h \ \ E " ( 2T2u))\a

“ 7687r2e ^ P 6

(4.29)

uj%„ +  4o>5-' +  1Zoje"{jJu i Xq{^E" +  16a;2r> +  oje"^u')
(jOe"{^E" +  UJU')^U' V2(jJe"(wE" +  uu')uu '

(4.30)
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Clearly, the  tim e-odd contributions associated w ith 2Pi  and 2Pa levels of the a1-
2 2

kali m etal atom  are such as to effect complete cancellation upon sum m ation if the 

spin-orbit sp litting is zero. It is obvious from (4.30) th a t this is not the case for 

the spin-orbit com ponents U'u and E ” deriving from the 2T2u excited level of the O* 

complex, although partia l cancellation does result. Furtherm ore, the spin-orbit split 

com ponents of 2T[]} are of sym m etry U'u and E'u and since transitions to  E'u are elec­

tric  dipole-forbidden, only transitions to U'u contribute to the polarizability tensor 

com ponents, precluding outright the possibility of any inter-level cancellation.

4.3 D iscussion

In collating these results, a crucial point emerges. The complete dependence of 

the size of a tim e-odd contribution on the difference in energy of spin-orbit split 

states is a consequence of the specific polarizability m atrix  interrelations found for 

the alkali m etal atom . The concom itant lim itation of the ratio  of the time-odd 

contribution to  the time-even contribution to being at most ~  10~4 is thus not a 

general characteristic of all systems capable of supporting tim e-odd tensor compo­

nents. Indeed, we have shown explicitly tha t it is not the case for the dispersion 

energy of O* complexes. We m ust, therefore, adm it the viability of systems in which 

the m agnitude of the tim e-odd contribution to the dispersion in teraction is com pa­

rable to the time-even contribution. This suggests th a t tim e-odd contributions may 

give rise to physically observable effects, and th a t an experim ental investigation of 

such effects is a realistic proposition. In conjunction, the interesting possibilities 

arising from consideration of the application of an external m agnetic field could be 

explored. This would enable controlled m anipulation of the separation of energy 

levels, and hence of spin-dependent dispersion interactions.
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C hapter 5

Q uantum  electrodynam ic  

developm ent

5.1 Introduction

In the  previous chapter a semi-classical treatm ent of the discrim inatory and 

non-discrim inatory dispersion energy for the near-zone region was detailed. It is 

also of in terest to discuss the wave-zone. In this region, interacting molecules are 

sufficiently far apart th a t re ta rdation  effects due to the finite speed of light become 

significant and a full quantum  electrodynam ic treatm ent is appropriate. We develop 

expressions to  describe the discrim inatory and non-discrim inatory dispersion energy 

at all interm olecular separations outw ith the region of electron overlap with the 

near-zone and wave-zone as lim iting cases.

O ur calculations follow closely the work of Craig, Power and Thirunam achan- 

d ran  [54,55,58,61]. However, in a generalisation of the specific near-zone results 

of chapter four, we introduce novel time-odd term s supported  by odd-electron 

molecules and other systems lacking time-reversal invariance [1,60]. No a ttem pt 

is m ade at a detailed discussion of quantum  electrodynam ics, a subject well-served
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by text-books [33,61,66]. It suffices to say th a t therein the electrom agnetic field is 

in troduced  as a quantised entity. The quantum  mechanical molecule and classical 

rad ia tion  field of the semi-classical paradigm  become a fully-integrated quantum  me­

chanical system , a complete description of which must include the quantum  state  of 

the photon. We employ a semi-colon to separate the specification of molecular and 

photon  states. W ithin  the m ultipolar formalism, the m ediators of interm olecular 

in teractions are v irtual photons. In particular, the dispersion interaction is associ­

ated  w ith exchange of v irtual photons deriving from fluctuations in the quantum  

vacuum  [58,61].

We shall discuss the non-discrim inatory and discrim inatory parts of the disper­

sion in teraction  in subsections 5.2.3 and 5.2.4 respectively.

5.2 Theory

5.2.1 T im e-ordered  graphs

T he sta rting  point in all calculations is the expression from  fourth-order p e rtu r­

bation  theory for the energy of interaction. Our task is to develop the interaction 

H am iltonian m atrix  elements for each mode of two-photon exchange in order to 

ob ta in  the  associated contribution to the dispersion energy, and then to sum  over 

all possible contributions. Types of two-photon exchange may be illustrated  by 

tim e-ordered graphs, which provide a helpful pictorial framework on which to base 

calculation. In tim e-ordered graphs, virtual photons are delineated by an in ternal 

wavy line joining the vertical lines which display the quantum  states of the in te r­

acting molecules as a function of time. It is a consequence of the virtual character 

of the processes involved tha t the photon path  is represented by an internal line. 

Pho ton  pathw ays appear external to the area between the lines associated with 

the tim e progress of each molecule when real absorption or emission occurs. The



vertices of the graphs are labelled by interaction type. Within the dipole approx­

imation, all such vertices in the non-discriminatory dispersion energy calculations 

are associated with electric dipole interactions, while in the evaluation of the dis­

criminatory dispersion energy, all appropriate combinations of electric and magnetic 

dipole interactions must be included [61].

5 .2 .2  A  q uantum  electro  dynam ic developm ent o f  th e  d is­

p ersion  in teraction

The perturbation Hamiltonian for the interaction of molecules 1 and 2 is given, 

by (4.1) with the following expressions for H e and Hm  in the dipole approximation 

obtained from a quantum electrodynamic treatment:

He  =  -  % V z ^ C R ,)  (5.1)

H m =  (5-2)

where p a and m a are given by (1.5a) and (4.4b) respectively, 4«(R) is the micro­

scopic displacement vector, the transverse component of which is indicated by the 

symbol _L, and 6a(R ) is the magnetic field vector. As in chapter four, we find 

the perturbation Hamiltonian matrix elements for the general case off molecule 1 

with degenerate levels j|U|} and jjroif and molecule 2 with degenerate levels fraj| and 

j|'m-2)} from which the eigenvalues for a specific case such as Kramers degeneracy in 

odd-electron molecules could easily be deduced.

5 .2 .3  T h e  non-d iscrim inatory d ispersion  en ergy

We may write for the dispersion interaction energy between mom-polar m dleojfa



1 and 2 [61,pl52]
p  v  (O ' [ H mt | I I I )  ( I I I  | Hmt | I I )  ( I I  | Hint 1I )  {I  | H lnt | 0)

mim!,n‘n2 ( £ /  -  ■£>)(£// -  $ , ) ( £ / / /  -  Eo)
(5.3)

where |0) and  |0;) are degenerate ground s tates of the  system  |rai7i 2; 0) and  |m im 2; 0), 

| / ) ,  \ I I )  and  |I I I )  are in term ediate states and  Hint — H e  w hich is given by (5.1). 

From  graph  5.1 we obta in  [61 ,pl53]

( I  I Hint I 0) =  ( l (p 'A ') ; j in j  | I n i« 2 ;0 )

= *' E  ( § ? )  2 (/iV)(p')]*(ii I /*- I n,)e-'p' (5.4)

w here f i X \ p ' )  is the photon  polarization vector associated w ith  po larization  A' 

and  wave vector p ' and V  is the volume of the quan tisa tion  box. C alculating the  

rem aining m a trix  elements for g raph  5.1 similarly, we find the  con tribu tion  to  the  

dispersion energy from  this in teraction  m ode to  be

^  /<>)(p)[/<A)(p )], / l A')( p ') [ 4 V)(p ')] , e '(p+p,)-R
^  4elV2 (Enni +  hcp'){EJini +  EJ2n2)(Ej2n2 +  hep)
A ,A '

J i  ,32

x (m i I jj,a I I M/3 I n 1) ( m 2 I fj.7 I j 2) ( j 2 | Ms | n 2) (5.5)

G raphs 5.2-5.12 may then  be trea ted  in tu rn  to  o b ta in  the con tribu tion  to  the  

dispersion energy th a t each illustrates.

On sum m ation  over polarizations A, A' using [61,p39]

E  /aA>(P)[//3A>(p)]* = S<*0 -  PoPff (5.6)
A

where p  is a un it vector along p , we ob ta in  the  to ta l dispersion energy

Emim2W = - E  S l V -  -  **)(«* -  ^ K (p+p,)'R
P . P '  °
J1 ,32

(rni I Ma I i i ) ( i i  I M/3 I n i) (m 2 | M7 I h ) ( j 2 I Ms I n 2)
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V  ( E j i n i  “ I" h c p , ) ( E j i n i  4 "  E j 2n 2 ) ( E j 2U2 4  h e p )

 1_____________________

{Ej2n2 “1“ hcV')(En ni 4  Ej2ri2 ) iE J2n2 4  hep)
 1_____________________

(  Ej2 n2 4  hcpl)(EJini 4  Ej2 n 2 ) {  E JI ni 4  hep) 
 1_____________________

{E jini 4  hcp'){En n L “1“ Ej2n2 )(EJini 4  hep)
 1___________________
(Enni 4  hcp')(hcp +  hcp')(EJ2n2 4  hep)
 1___________________\
(EJ2n2 + hcp')(hcp 4  hcp')(Ejini 4  hep) J

4(^1 | Pee | j l ) ( j l  | P(3 | ^ l ) ( m 2 | PS | 32) ( j '2 | p~f I n 2)
(  1

X
(Ejini 4  hcp')(hcp +  hcp')(EJ2Tl2 4  hep1)

 1___________________
(Ej2n2 4  hcp)(hcp +  hcp')(EJini 4  hep)
 1____________________________
(Ehni +  hcp')(Enni 4- Ej2n2 +  hep 4  hcp')(EJ2n2 4  hep')

1
( E j 2U2 4  hcp)(EJini 4  Ej2n2 4  hep + hcp')(Ej2n2 4  hep')

1
( E j2n2 4  hcp)(EJini 4  E j2n2 4  hep  4  hcp')(EJini 4  hep)
 1___________________________
(E nni 4  hcp')(Ejini 4  E j2n2 4  hep 4  hcp')(Enni 4  hep) j

(5.7)

w here the  energy denom inators in the first set of parentheses correspond in th e  order 

w ritten  to  graphs 5.1-5 .6 and  those in the second set, again in the  order w ritten , to  

graphs 5.7-5.12.

T his m ay be rearranged  to  give [61,p i 60]

hcpp'(8al -  pap^)(8pS -  PpPs)el{p+pn> R
E mim2inin2 ^  >

p,p' 4eo ^ 2( ^ m 1 4  hep)(Ej2U2 4  hep)
JI,J2

1
p 4 p '  p — p'

E Jini 4  E J2U2 4  2hep'  
E Ji ni 4  Ej2n2

x ( ( m 1 | iia | j i ) ( j i  | pp | n l ) {m 2 | p 1 | j 2 ) ( j 2 | Ps | n 2) 

4 (mi  | jip | j i ) ( j i  | p a I n i) (m 2 | ps | J 2 ) ( j 2 I P y  I n 2))
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+ ( ( m i | Pa | j i ) ( j i  | M/3 I n 1) ( m 2 \ Ms \ 72)0*2 | M7  I n 2 ) 

+  K  I M/3 | j l ) ( j l  | Ma I n 1) ( m 2 | Py I 72)0*2 | PS I ” 2 )) (5.8)

We replace sum m ation  over p , p ' by in teg ration  using [61,pl47]

d3 p

and

d3p  =  p2 dp dfl

(5.9)

(5.10)

w here dQ, is an elem ent of solid angle. A ngular in tegration  is effected using [61,pl48]

J(S*0 -  pap0)eMP Rd n  =  4tt
sin p R  ( cos p R  sin pi2

<5a/3 “ id 3 ap
P V p3R

=  4nTap (pR) (5.11)

w here Tap is defined by (4.4a) and we have in troduced  the tensor

Sap =  VaV^jR =  ( R 25ap — R a R p ) R - 3 (5.12)

T hus

E
he

771]. 7712 >nl n2 16e^7r4 

(  1

p oo  p oo  ___I. I. E71.72

3„,/3

1
X

p +  p' p — p'

Ta^(pR)T(3s(p>R)p p 
(Ejl m + hcp)(Ej2n2 + hep) 

( Edlni 4“ -Ej2n2 ~t~ 2 hcp\
E nni +  # 72 n2

x((mi | M« | 7i)0'i I M/3 I n 1){m 2 | M7 I 7 2)O2 I Ps \ n 2)

+  (mi | M/3 I 7i)0i I Ma I ^i)(m2 | Ms I 7*2 )(7 2  I M7  I ^2))

+((mi | Ma | 7i)0’i I M/3 I «i)(wi2 I Ps | 72)(72 I Py I n2>

+  (mi | M/3 I 7i)0i I Ma I n i )

x (m 2 | M7 I 72)02 I Ms I n 2>) dp dp; (5.13)

T he in teg rand  is even in p' and we m ay therefore w rite [61,pl62]

1 1

1 r T g s (p 'R )  ( -  - 2—  |
2 7-00 Vp +  p p - p j

/3 7 /

79



717?" >P5
cos p R  ( sin p R  cos p R
----------- (- RTps [ — ------ 1-

\  p p3R

= ^P3TffS{pR) (5.14)

w here we have used the  residue theorem  on appropria te ly  chosen contours, w ith  

poles a t p' =  ± p . T ^ p R )  and  Tap(pR)  are respectively th e  real and  im aginary  

p a rts  of [61,pl62]

Faff(pR) = { ^ - - R T a P ( ^  1 , ip R

p 2 p3R
(5.15)

T herefore we m ay w rite (5.13) as

—he
E 77i i m2 ,ti\_ ri2

B ut

167r3e2

poo ___I. S
[Re[Fa7(pi2)]Im[i^5(pi2)] +  I m ^ a ^ p R ^ R e l i^ p R J l jp *

7 1 ,7 2

E j lUl +  E j2n2 +  2 hep 
Ej. n. +  E,

(Ejy m +  hcp)(Ej2n2 +  hep)

7 l  n l  1 32 n 2 /

x (m i | p a | j i ) ( j i  | p p  | n i) (m 2 | \ j 2) ( j2 I Ps  \ n 2)

+ ( m 1 | p a | j i ) ( j i  | pp | n i ) ( m 2 I Ps  | J 2) (J 2 | P'r I w2) dp (5.16)

Re[Fa7(p i2)]Im [F^(pR )] +  Im [Fa7(p.R)]Re[.F/W(p.R)] 

=  i  [Fa7( p l ? ) ^ {(pi?) -  [ ^ ( p i l ) ] *  [^ (p -R )]* ]
2i

T hus su b stitu tin g  (5.15) in to  (5.16) using (5.17) we ob ta in

E t
he

mi m2 ,ni n2 327T3e?i f  E{71,72 V

P
(Ejini +  hcp)(Ej2n2 +  Ticp)

7 i 1
SaySpS ^  J — R ( S a iTp5 +  Ta^Sps)

p3 p4R

+ R 2Ta^Tps
1 2 i 1

+
p 4  p 5 R  p 6 R 2

2  i p R

— \ S a i Sp8 ( -r  ) — R { S ayTf3s +  Ta i Sps) \ ----\  — pAR

(5.17)
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-\-R2Ta^Tf3s
1 2 i 1+ + -2 ipR

p 4 p 5i2 p6i22

X
Ejini ~t~ RJ2n2 ~f~ 2/lCp 

Ej, m +  EjJ3 l n  1 1 J2™2 /

x ( m i  I p a I I pp  I n i ) ( m 2 | I J 2 ) 0*2 | fig I ™2)

+  (m i | //a | j i ) ( j i  | pp | n i)

x (^ 2  | At« | J2)0‘2 I Py I n 2) ■dp (5.18)

This in tegral m ay be split in to  two parts . T he first in tegral contains e2tpR in  the  

in teg rand , while the  second contains e~2tpR. We let p = iu  in  the  first in tegral and  

p  =  — iu  in  th e  second in tegral to  give

- 1
E.mi m2 n2 32n3e1hc Jo E

u Ae~2uR

JUJ2 ^ kl n ,  + U2) ( k i n 2 + U2) 

SaiS(36 — 2 R S ayTps ( ----1----777)

+ R  TarfTpg ( — +  +
1 \

X

u * u 3R  u AR 2

k Ji ni k j2  n2 {(mi  I p a I j i ) ( j i  | Pp | Til) + (m i  I Pp I j i ) 0 i  I Pot | Til)) 

x((m2 I p^ | 72)02 I Ps \ n2) + (m2 | Ps | 72)02 I Py I ^2))

W ( ( m i  | pa | 7i )0 'i I PP I ™i) ~ (mi I PP I 7i )0 i I Pet I Tii))

x (( m 2 I /Li7 I 7 2)0*2 I Ps I Ti2) -  ( m 2 I p s I 72)0*2 I /*7 I n2>) ■du (5.19)

w here kjn = E j n/Hc.

T he com plete po ten tia l is described by (5.19). It is possible to  ob ta in  sim pler 

expressions for the near-zone and wave-zone lim iting cases by m aking use of physical 

argum ents to approx im ate th is general equation. We can expand (5.19) in a Taylor 

series e ither in powers of kjnR  or 1 / (kJnR).  T he form er is a su itab le  choice for 

kjnR  <  1, th a t is, the  near-zone region (assum ing low-lying sta tes to  m ake the  

m ore significant con tribu tions), while the  la tte r  is su itable for kjnR  >• 1, th a t is, 

the wave-zone region.

Thus for the wave-zone region, re ta in ing  the first te rm  of an expansion in
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he ro°
■mim2lnin2 327T3e2

.... p c~
jjiw a v e-zo n e   ______  j  ^ 4 ^ —2uR

~ ~~ Vo

X Sa^fSpS — 2R S ayTps

du+ R 2Ta i T/3s (1 + ̂  ^
x E  —

Jij'a
x [((mi I jLia I j i ) ( j i  I up I nx) -f (mi | jip | ji)(Vi | /xa | n i))  

x ( (m 2 | /x7 I j 2) ( j2 | I n 2 > +  (m2 I ^  I 7 2 ) (j2 I /^7 I n 2))J(5.20)

O n com pletion of the in teg ration  we ob ta in  finally

he
E Z a~ n ,  =  - 2 5 6 * 3 ^  t6 5 -*5*  ~  1 0 t f 5 ^ r g« +  W R i T M

S L  ,  _  „ i S X

(5.21)

w here

( 5 - « r  -  -  e  (5 .22 )
W _ +  J

T he superscrip t S L  indicates the  sta tic  lim it (a; —> 0) of th e  tensor. In  th e  near­

zone, again  considering only th e  first te rm  in the  expansion in kjnR , we m ay w rite

jpnear-zon e    -̂ 017-Z)38 f  \  J
mim2,nin2 — Q0^3, 2fe. L |32tr3e27ic Vo jlij2l ( ^ ini +  ^2)(^j2n2 +  ^2)

X [ ĵj. ni kj2n2

x ( ( m i  I / i a  I j i ) ( j i  I / i / 3  I n i )  +  ( m i  | | j i ) ( 7 i  | | n i ) )

x ( (m 2 | /i7 | 72)(72 I ^  I w2) +  (m2 | /x$ | 7 2 X72 I A*7 I n 2 >) 

+ ti2((m l I I 7 l ) 0 l  I A*/3 I n l) ~  (m l I P/3 I Ol) 0*1 I | ™l)) 

x ( ( m 2  | | i 2 ) 0 ‘2  | 1*8 | n 2 )

- ( m 2  I fis I 7 2 X 7 2  I î 7 I n 2 ) ) ]  j d u  ( 5 . 2 3 )

L etting  u  =  ia ;/c , it is easily shown th a t ( 5 . 2 3 )  gives an identical result to (4.7) for



5 .2 .4  T h e d iscr im in atory  d isp ersion  en erg y

A gain we m ake use of (5.3) for th e  dispersion energy in troducing  the  full p e r tu r­

ba tio n  H am iltonian in  dipole approxim ation  (4.1) w ith  H e  and  H m  defined by (5.1) 

and  (5.2). We consider those com binations in  (5.3) which give rise to  a d iscrim ina­

to ry  in teraction , th a t is, those which involve one electric dipole and  one m agnetic 

dipole in teraction  for each centre. We have illu s tra ted  only the  four graphs of th is 

type  orig inating from  g raph  5.1. A nalogous perm u ta tions are available for graphs 

5.2-5.12, so we could draw  a to ta l of forty-eight graphs of the con tribu tions to  the 

d iscrim inatory  dispersion energy.

From  graph  5.1a we ob ta in

( I  | H lnt | 0) =  ( l ( p /A/); j xn 2 | - m i a6a (R i)  | n ^ ;  0)

=  ~ ( j i  I ™>ia I n i ) ( 1(p /^ /) I M R i) I °)

=  i E ( ^ ) 2 [ ^ ' )( p ') ] * 0 i l™ « |n i ) e - * P' Rl (5-24)

T he o ther m a trix  elem ents of g raph  5.1a m ay be calculated  following (5.4) and 

(5.24). We thus find the  con tribu tion  to the  discrim inatory  dispersion energy from  

g raph  5.1a to  be [61,pl70]

r  A a v p p '  / f )( p ) [ / lX)(p )], 4 v>(p , )[4 V)(p ,)], ei<p+p,)'R 
4e0V 2 (Ejini +  hcp')(En ni "b Ej2 n2 ){e J2U2 +  hep)

A,A'
3 l ,32

X (m i I p a I j \ ) ( j \  I 771/3 I r t i ) (m 2 \ p-, | J 2 )(j '2 | rns \ n 2) (5.25)

Sum m ing over the  forty-eight con tribu ting  graphs which are calculated  in  sim ilar 

fashion we ob ta in  ^ im2iUin2 =  ^ mim2)„in2 +  ^ 2mlm2)n1n2 where

771/ p 0h C2pp ~ - \/c \ i(p-fp').R
1 m i m 2 ,711 ri2 ~ ' Z - /  ^  y 2 ( “ T PocP-y)[h(36 PpPb) 6

P , P '  °
J l  ,32

({ni  | Pa I J i ) ( j i  | m^ I 771!) (n2 \ p^ | j 2){ j2 | m 6 \ m 2)
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and

E '2 mim2 ,niri2

+  (ni  | m a | j i ) ( j i  | fi/3 | m i ) ( n 2 | m 7 | j 2) ( j 2 | P>6 I r n 2) )

j ____________________ I_____________________
\  {Ejini “1“ hcpl) (Ejl7ll -|- E j2n2 )(E j2n2 -f- hep)

 1_____________________

( ^ 3 2 « 2  4 "  ni  4 ~  - ^ J 2 ™2 )  ( E j 2n 2 +  h e p )

1
(.E j2n2 +  hcp')(E3l n i  4" E j2  U 2  ) ( - ^ j i n i  4" h e p )

1
(-E'jini 4" ^ cP'){Ejini 4“ E j2n2 ) (E jlUl 4" -̂Cp)

1
(i?Jini 4- hcp')(hcp  +  hcj / ) (E j2n2 4- ftcp)

+  1 \
(Ej2 n2 +  hep1) (hep  +  hcp ')(EJini +  hep) )

+  ((n! I fLa I j i X i l  I m^ I m i ) (n 2 | m 5 | j 2) ( j 2 I ^ 7  I m 2 >

4-(n! | m a | j i ) ( i i  | fifi | m i ) ( n 2 I Ps I 32)^2  \ | m 2))

J ___________________ !____________________
4- hcp')(hcp  +  hcpl)(Ej2n2 4- ^cp;)

1
(.E j2n2 4- hcp)(hcp  -f hcp')(Ejini 4- hep)

1
(-E'iini 4- hcp ')(Enni 4- E j2n2 4- hep  4- hcp')(Ej2n2 4- hep')

1
(E j2n2 4- hcp)(EJini +  Ej2n2 4- hep  4- hcp ')(Ej2n2 4- hep1)
 1___________________________

(-̂ hn-2. 4” fi>cp)(Ek n1 4- E j2rl2 4" hep  4~ hcp ')(Ekni  4~ Ticp) 

+  ( % ni 4- hcp')(EJini 4- Ej2n2 4- hep 4- hcp')(Ekni  4- Ticp)

(5.26)

_ fl0h 2C2pp' , .(p + p'J.R
4eoy 2 ea i^e5 ^ P ^ P \e

PPj 1 >J2

( (m i  | /za | i i ) 0 ‘i | mp  | n i ) ( m 2 | m 7 | j 2) ( j 2 | ps  | n 2)

4-(mi | m a | | pp | n i ) ( m 2 | p 7 | i 2)0 ‘2 | | n 2))

/  1^ j __________________________________________
4 “  f i c p l ) ( - ^ j i. n i  4 “  E j 2n 2  ) ( E j 2 n 2 4 “ h e p )
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 1_____________________

( -̂ J2 n2 4" ^'cp ,)(-^'jini 4" E j2 n2 ) ( E j2 n2 4“ %Cp) 
 1____________________

(-®j2n2 4- b'cP/){Ejlm 4- Ej2n2 )(-^jini 4~ hep)
1

(-Ejiru +  hcpr)(Ejini 4- J2 n2 ) ( £ Jini +  ftcp)
1

(i£jini 4- hcp')(hcp  +  hcp,)(Ej2n2 +  hep)
1

{EJ2T12 4- hcp')(hcp  4- hcp')(Ejini 4- ftcp)

4-((m i I Ma | i i ) 0 'i  I ra/3 | rt i){m2 I Ms I J 2) ( j2 I I n 2)

+  K  | rna | j i ) ( j i  | /X/3 | n i ) ( m 2 \ m 6 \ j 2) ( j 2 | p 7 | n 2»

J ___________________ I____________________
\ ( £ Jini 4- hcp')(hcp +  hcp')(E32n2 4- hep')

1
(E J2n2 +  hcp)(hcp  4- hcp')(Ejini +  hep)

1
(E Jini 4- hcpl) ( E 4- ^ J2n2 4- hep  +  f tc p 'X i^ n , +  hep')

1
(J57j2„2 +  hcp)(Ejini 4- E j2n2 +  hep  +  hcp ')(Ej2n2 4- hep')
 1___________________________

(E j2n2 +  hcp)(EJini 4- E j2n2 +  hep  +  hcp,)(Ejint 4- hep)
1

( £ j ini 4- ftcp')(i?,,ini +  £ j2n2 4- ftcp +  ftcp ')(E jini 4- hep)

(5.27)

w here to  sum  over polarizations A,A' we have used (5.6) [61,p39],

Y  &LX)(P)[^A)(P)]* = -  P*PP (5*28)
A

and

Y  fiX)(p)lbpX)(P)}* = 6<*̂ P-y (5-29)
A

Clearly E [ m m nin2 m ay be developed in a sim ilar way to  (5.7) for the  non-discrim - 

ina to ry  dispersion in teraction , so we m ay im m ediately  w rite



-\-R2TayTj3s [ —  + +ux u3R u*R3
x kjinikj2n2 {{mi | na | J i ) ( i i  | mp | ni) +  {mi | | ji){ji  \ pa \ m))

x ((m 2 | /x7 | j 2){j2 | m s | n 2) +  (m2 | m 5 | j 2){j2 \ py \ n2))

+  lX2((m i | fia | ji){ji | 7720 | 72X) -  (772-1 | ^  | X ) ( j l  | / ia | n X))

X (<777-2 I ft-y I 32) {32 | | ^ 2) -  {m 2 | 772,5 | J2) <J2 | fty I n2>) jcfo (5.30)

It is possible to  rearrange (5.27) to  give

EL2 mi m2 ,ni n-2 =  - E
yL2o^cpp/ea5Me70ApMp/A^(p+p/)R +

P , P
J l  ,32

4e0V 2(E Jini +  hcp)(Ej2n2 +  hep) \ p  +  p‘ p  -  p‘

E jini “I" Ej2n2 +  2?2Cp\
Ejini +  E n32n2 J

{m X | f t a  | i l ) ( j l  | 7 7 2 0  | 7 2 i )  (t722 | m 6 | j 2){ji  | ^ 7  I n 2)

+  (?72i I 772a | j ! ) ( j!  | f t / 3 | 721)(t722 | f l S | X )(j2  | ™7 I n 2>

+  ( ^ 1  | /i0 | i l ) ( j l  | 772a | 72i)(t722 | 7727 | j 2 ) { j 2 | f t S  J ™2)

-t-(772i | 7720 | J i) (X  | f l a  | 72i)(7722 | p 7 | X )(j2  | | ™2)

+  [(772! | /2a | X ) 0 ’l | 7720 | 72i)(t722 | p 1  \ j 2 ) { j 2 | m S | 722) 

+  { m i  | 772a | X ) ( j l  | /20 | 721)(7722 | 7727 | j 2 ) { j 2 \ f t S  \ U 2 )

+  (™1 | f t p  | J lX i l  | m a  | 721)(7722 | p S | j 2) ( j 2 I m 7 I n 2>

+  (772i | 7720 | X X X  | | 72i)(7722 | 772,5 | j 2 ) { j 2 \ f t 7 | T22) (5.31)

Sum m ation  over p  and  p ' is replaced by in teg ration  using (5.9) and  (5.10). 

To perform  the  angu lar in teg ration  we m ake use of [61,ppl47,148]

cos p R  sinpJ7J  p.e±ip R dQ = 4̂7ri
p R

=  qc47T2<Ta (p i? )

p2i?2
i?a

We therefore find

OO  P O O

2 mi mo ,7ii 712
Pohc 

16e07r4 Jo Jo E
71,32

ZccSy €7/3 A ( P R ) (X 7?)p3X3
+  ficp)(£Jj2n2 +  ftcp) l p  +  X ' p - X

+

(5.32)

1
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X E jx n i  “1“ 72 n.2 ~t~ 2 f l C p

E j ini +  E.}32T12
x [(mi 1 Ma 1 i i ) ( i i 1 m/s | ™l)(™2 1 m s 1 72)0*2 1 M7 1 w2>

+  (m x m a 1 i iX i i 1 M/3 n i ) ( m 2 Ps | 72)0*2 1m 7 n 2)

+  (m! M/3 i iX i i  1m a n \ ) ( m 2 m 7 1 72)0*2 1 MS n 2)

+  (m x m/s 1 7 i) 0 i 1 Ma n \ ) ( m 2 Py 172)0*2 1m 8 n 2>]

+  [(m i 1 Pa 1 h )  (ji 1 m/s 1 n 1){ m 2 1 M7 1 72)0*2 | 7725 \ n 2)

+ K m a 1 j i ) ( j i 1 M/3 n \ ) ( m 2 1m 7 1 72) 0*2 1 M<5 n 2)

+  (m i P/3 1j i ) ( j i  1m a | n i ) ( m 2 Ms 172)0*2 1m 7 1 n 2)

m/s 1 i iX i i 1 Ma | n i ) ( m 2 1 72)0*2 M7 1n 2)\ | dpdp'

(5.33)

T he in teg rand  is even in p ' and  we find, using the  m ethods of (5.14),

sin pi? ( cos p R  
~pR~ + p2R 2f  < r \ { p ' R )  (  * , H —̂7)  p ' 3 d p  =  * p 3 ( '

Jo \P  +  M p  — p  J \
Rx

= *P v'x(pR) (5.34)

It m ay be seen th a t <7a (pi?) and  a'a (pR)  are the  real and  im aginary  p arts  of

( 1
E a(pR) + R aeipR (5.35)

^pR  p 2R

Therefore, following the  sam e procedure as (5.16) to  (5.19) in the  calculation of the 

non-d iscrim inatory  dispersion energy, we m ay finally w rite

P o € a  8 p. ̂ 7 /3 A R p  R  XE'2 mirri2,nin2 16e07v3R 2hc Jo

poo

L  5Jl tj2
u 4e~2uR

(^ ,n , +  u2)(kln2  +  U2)

2 1
1 +  - ^  +u R  u 2R 2.

x{kj in ikj■2n2( { m 1 I I j i ) ( j i  I mp  | n x) +  (m j | m & | | p a  | ^ l) )

x((m2 | p-y | .72)0*2 | m s | n 2) +  ( m 2 \ m 6 | 72)(j‘2 I M7 I ^ 2))

- u 2{(mi  I p a I i i ) 0 'i  \ m/3 I Til) -  (mi \ mp \ j i ) ( j 1 \ p a | n a))

x ( (m 2 | p-y | 72 ) 0*2 I ms  | n 2) -  ( m 2 | m 8 | j i ) ( j 2 | p y  | n 2>)]Jdu(5.36) 

A dding the  expressions given by (5.30) and (5.36) for £ ( mLm2>nin2 and £ 2mim2inin2
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we find

E ' m n nmi m2 ,nin2
u*e 2uR

X

i c ^ f t c  l  S ' { (fcj ̂  + u2)(fe? ^  +  « 2)

S a i S{3t — R ( S a^T(3s +  TaySps) ( — I—
\ t i  u  JtiJ

+ R “TayT/3s ( —  H— +
1

€oc6/j.€'y(3\RnR\ (  ̂ | 2 | 1
B? I 1 +  +  S f f

X kJlTll kj2n2 [((mi | fxa | ji)(ii | | ni) + (mi | m g  | ii)(ji | | ni))

x ( ( m 2 | | J 2 ) ( j ' 2  | I ^ 2 )  +  ( ™ 2  | rn5 \ j 2 ) ( j 2 | I n 2>) ]

+ Sa-ySps -  R { S ctlTg8 +  TayS/3s) ( — H— — )
\ t i  u z H /

+ R 2TayT0S ( 1  +  - ^  +  - ^ )

€a5/j,€'yfi\RnR\ ( -̂ ^ ^
# 2 wi? u 2i?2

xii2[((mi | jj,a | jr‘i>(ji I m/3 | m) -  (mx | m/3 | ji)(ji | n a \ ni)) 

x ( ( m 2 | ju7  | j 2 ) ( j 2 | m 5 | n 2) -  ( m 2 | m 8 | 3 2 ) { j i  \ ^ 7  | n 2 ) ) ]

( 5.37)

It is possible to  use the argum ents pu t forw ard in th e  non-discrim inatory  case to  

ob ta in  sim pler expressions for the  d iscrim inatory  in te rac tion  in the  near-zone and 

wave-zone lim its. We find

E /w ave-zone  
mi mo ,nin2

fJL0tiC
1 00  3 D7 [ l 0 ^ 6^«7T/3<5 ~  ^ R 4 ( T a yS /3S  4 - S ^ T p s )IZ0eo7T Jtb

+  6/? Sa-fSps ~ ^■^a5^e-^P\RfxR\]{Glaf3)rnini{Cr2yS)rn2n2 ( 5. 38)

where

(<?<*)
| o  1j

w —>0

^  ( ( m  I A*q I i ) ( i  1 m /3 1 n )  +  (m  \ m g  \ j ) ( j  | fia \ n } )  ^  ^

7 Ejn

By including a fu rther te rm  in the expansion in  l / ( k jnR)  we ob ta in  the  m ore rig-
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orous result

jptw averzone  
mi m2 ,niTi2

fJL0 %C

128e07r3JR7 
>2 5 i

10iE6Ta7T^5 — 5 R 4(Ta l Sps +  ^ 07^/35)

+ 6 E 25 a75 /3,5 -  l A e a s ^ p x R ^ R x  (G laf3)̂ nini(G2lS) t l2n2 

fj,0h3c3 
_ 128e07r3# 9

+45.R Sofy^/36 ^^-^a'yfj,^S(3\R/fj,R'X 

1 1

14JR6Ta7T/3,5 — 21E 4(Ta75 /35 +  S a^Tps)

E  -
ji 1J2 E 3 i?J i n i  J2n2 E  E 3^Jinx J2 Ti2

x ((m i I /ua I j 1) ( j 1 I m/3 | Wi) +  (m i I m/3 | j 1) ( j 1 \ fia \ n t ) )  

x ( (m 2 | ji7 | j 2> (J 2 | m i | 772) +  (m 2 | m^ | j 2){j2 | M7 I ^ 2))

+ 14:R6TayTps — 2 l R 4(Ta~ySps +  S^Tps)  + 4 5  R 2Sa^Sl(36

+81 €a~ffj.€6j3\RiJ,R\^

x j 2 (  m̂i I I 1m/31711) ~  (mi 17X1(31 •7'1̂ 1 1 Ini^
Jl.72 # 2j ini

( m 2 | H'y | J 2) (j'2 | m 5 | n 2) -  (m 2 | m 5 | j 2){ j2 | ^7 I ^ 2)
E 232 n2

(5.40)

From  the  discussion of subsection 1.2.1, (5.38) m ay be seen to  be a function  of exclu­

sively tim e-odd p a rts  and  thus m ay only give a non-zero result for chiral molecules 

in  degenerate sta tes while, as we shall show la te r, (5.40) is dependent on bo th  

tim e-even and  tim e-odd p arts  and  m ay be applied  to  any pair of chiral molecules.

The calculation of reta in ing  the  first te rm  in the expansion in  kjnR

gives a result identical to  (4.10).

5.2 .5  O rien ta tion a l averages

It is possible to  perform  an average over all o rien tations of the  dispersion energy 

expressions derived in the preceding two subsections. For the p roduct of th e  first
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rank  tenso r com ponents Pa and  Qp we have

{ P olQ q ) =

It m ay also be shown th a t

Soiy R ps  &a p  —

Ray TfiS ̂ Oifi ̂ y6 — 

Pay -1/35 ̂ a/3 ̂ y6 —

2
R 2
_ 2_
~ R 4
j6_
R 6

and

^aS^yf3X^afi^y6 — 2

M aking use of (5.41) to  (5.43) we o b ta in  the  following results:

E  = -
- —  r  e  (367x3e2%cR2 Jo — 1
°  J l  >J2 ^ (kl n , +  u2)(k l n 2 +  ™2)

u R  u 2R 2 u 3R 3 u^R*.

X  k J1 n i  k j 2rl2 l ( ™ i  | M  I i i ) | 2 | ( ^ 2  I M  I J 2 ) | 2  [ d i t

-^=?wave- zone
E

2ZKc*[SL)a[SL) 
647x3e2R 7

where

( S L )a

-r=near-zone
E

2 y ^  \ {n 1 M l i ) l 2 
3 7 "

- 3 / i
167r3e?i?6

poo
/  ai(iZi)o;2(m)d'a 

Jo

where

a(2u) E
jn

3/i (ojL — a; l(« | a* I i ) l :

E  = -

J  '  3 n

f^o

2 )

f  E { < i7l ,7? V V .

u6e~2uR
18e07r3/icJR4 .

°  J l  > J2

4 6 3
r  +  - r ^  +

‘2
J i  n i +  u 2 ) ( k i „ 2 + « 2 )

IT u3R  u4K 2l

(5.41)

(5.42a)

(5.42b)

(5.42c)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)
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X««l I P I I TO | ™l) ) ( ( » 2  I ft | ja).(i2 I TO I n2))\du

(5.49)

-jplwave-ztme   ftaK C3 (?li | /A j j l ) - ( j l  | TO | Tl\j

~  “ 3^  ^
x E  I TO | n ,)  (5_50)

J2  J 2 n 2

r G[ { iu) G3{ i u) du  (5 -5 i )

w here

G '(itt) =  - T  T - r ^  I m ( ( n M j ) . ( j \ m \n)) (5.52)
\  jn  )

We note th a t (5.45) and  (5.47) are the  fam iliar C asim ir-Polder and  London ex­

pressions for the spacially averaged non-discrim inatory  dispersion in terac tion  in the 

wave-zone and near-zone respectively [61,62,67]. F urtherm ore , (5.50) and  (5.51) are 

the  s tan d ard  results for the  spacially averaged discrim inatory  dispersion in teraction  

in  the  wave-zone and  near-zone respectively [53,61].

A lthough these averaged expressions are of use in  m any situa tions, it should 

be m entioned th a t the assum ption  of com pletely free ro ta tion  is not always appro ­

p ria te . Spin-spin coupling via the m agnetic dipoles of the  unpaired  electrons on 

each molecule could lead to  certain  in term olecular configurations being energeti­

cally favoured if the spin is in tu rn  fixed in the m olecular fram e th rough  spin-orbit 

coupling. In th is case it would be necessary to consider a quan tum -sta tis tica l aver­

age weighted by the m agnetic dipole-dipole in teractions. This particu la r o rien tating  

m echanism  is peculiar to  molecules w ith  unpaired  spins. A nother possible m echa­

nism  which would h inder free ro ta tion , and  do so m ore effectively th a n  the  purely 

m agnetic in teraction , would be the  coupling of perm anen t electric dipole m om ents. 

In  short, m eaningful averaging calculations m ust take account of all significant cou­

pling mechanism s.
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5 .2 .6  T im e reversa l ch aracter istics o f  m atr ix  e lem en ts

T he d iscrim inatory  and  non-d iscrim inatory  p a rts  of the  com plete po ten tia l are 

a  function of b o th  tim e-even and  tim e-odd con tribu tions which m ay be identified 

by noting from  (5.19) and  (5.37) th a t

poo

E 17117712 ,771772

+ b (u ,R ) (& la/3) - n( iu ) (a 2̂ n (m)]du  (5.53a)

and

poo _

J o

^ d ( u , R ) ( G la^ n{iu )(G2̂ n(iu)]du (5.53b)

From  (5.21) and  (5.38), the  leading term s of the  non-d iscrim inatory  and  discrim ­

ina to ry  p a rts  in  the  wave-zone are a function of the s ta tic  lim its of (<5a/g)+n(a;) 

and  (Ga/3)mn(^ )  for each molecule. (It is clear th a t there  can be no s ta tic  lim it 

of and  ( G ^ ) - n( o;)). Therefore, to  a first approxim ation , the non-

d iscrim inatory  in terac tion  consists of purely tim e-even p a rts , while th e  d iscrim ina­

to ry  in teraction  consists of purely tim e-odd p arts . These leading term s are depen­

dent on R ~7. A m ore rigorous calculation of the  d iscrim inatory  dispersion energy 

in  the wave-zone gives (5.40) which reveals a fu rth er term , dependent on R ~9 and 

com posed of bo th  tim e-odd and tim e-even p a rts . This explains the apparen t asym ­

m etry  in form  of the  previously pred ic ted  expressions for the  d iscrim inatory  and 

non-discrim inatory  energies in the wave-zone. Clearly, if tim e-odd contribu tions 

are forbidden, which is a valid assum ption  for ground s ta te  even-electron system s,

the  leading term s in the  d iscrim inatory  and  non-discrim inatory  in teractions are

dependent on R ~9 and  R ~ 7 respectively.
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5.3 D iscu ssion

M ost theoretical trea tm en ts  to  da te  have been concerned w ith  sm all molecule 

in teractions, based on the  assum ption  of one point chiral field per molecule. Yet, 

the  m ost strik ing and  effective exam ples of chiral d iscrim ination are to  be found in 

biomolecules. Such molecules are often in  possession of m any localised chiral centres 

som etim es com bined w ith a delocalised chirality  associated w ith  secondary helical 

s truc tu re . It is easy to see th a t the  form er type of chirality  m ay be trea ted  as an 

extension of the  simple tw o-centre in teraction  discussed here, w here a sum m ation  

over pairw ise in teractions would be necessary to  determ ine the  in term olecular or 

in tram olecular d iscrim inatory  dispersion energy. The la tte r  type of chirality  requires 

a different approach , not dependent on point chiral sources. C raig and  Schipper have 

addressed the  problem  of w hat they call environm ental chirality, th a t is chirality  

resulting  from  th e  helical disposition of individual sites which m ay be locally achiral 

[56]. T hey suggest a m odel in which a  sm all te st system  in terac ts  w ith  the  chiral 

field produced by a la ttice  of m om ents which sim ulate the helical s tru c tu re  of the 

biomolecule. In biosystem s the relevant localised chiral entities are functional groups 

a ttached  to  a m acrom olecular fram ework. For such groups anchored to  a large 

molecule, freedom  of m ovement of one group relative to  ano ther can be severely 

restric ted , even for wave-zone separations. This consideration, along w ith  the fact 

th a t m any biochem ical processes involve the  form ation of radicals, underlines the 

po ten tia l im portance in the biological context of the fixed o rien ta tion  expressions 

here developed. In particu la r, the novel tim e-odd te rm  in R ~ 7 in the  discrim inatory  

dispersion in teraction  in the wave-zone m ay be significant in odd-electron system s, 

possibly orders of m agnitude larger th a n  the  spin-independent te rm  in R ~9.

In conclusion, it should be em phasized th a t our trea tm en t is no t applicable to 

the ubiquitous substra te-recep to r ‘lock and  key’ type of in teraction , for which the 

proxim ity of the in teracting  molecules requires th a t the actual physical extension of
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the  molecules be taken  in to  account, invalidating th e  po in t chiral source assum ption. 

For such cases, a developm ent of the  m odel proposed by C raig and  Schipper would 

seem germ ane.
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A p p en d ix  A

T he irreducible spherical tensor no ta tion  provides an  elegant a lternative  to  the  

C artesian  form alism , and  is particu la rly  su itab le for the  concise expression of higher 

order in teractions between a molecule and its environm ent. Use of the  no ta tion  

allows full advantage to  be taken  of the  sim pler ro ta tio n a l transfo rm ation  p roper­

ties of irreducible spherical tensor com ponents and  of the  W igner-Eckart theorem  

[28,29,31]. This theorem  facilitates the evaluation of a general m a trix  elem ent of an 

irreducible tensor operato r by expressing it as the p roduct of a 3 — j  sym bol which 

describes entirely  the  dependence of the  general m a trix  elem ent on its com ponent 

indices and  a reduced m atrix  elem ent which is independent of transfo rm ation  p ro p ­

erties. Let T£  be an irreducible spherical tensor o pera to r of rank  k and  com ponent 

index q which operates w ith in  a system  w ith  eigenstates |n , J M )  where J ,  M  are the 

angu lar m om entum  quan tum  num bers and  n  represents any o ther quan tum  num bers 

required to  specify the  s ta te , then , from  the W igner-Eckart theorem  [33,34]

/
( n , J M  | T fc | n ' , J ' M ') =  ( - 1 ) 7- M

J  k J '  .
n , J \ \ T \ \ n ,  J' )  (A .l)

\ - M  q M ‘

A m odification of the  W igner-Eckart theorem  for axially sym m etric system s w ith 

ro ta tio n a l s ta tes  characterised  by qu an tu m  num bers J ,  K  and  M  is given by (1.16). 

An irreducible tensor operato r can be constructed  from  tensor operators T ( l ) fel
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and  T{2)kl using [26]

[ f (  i)*1 x =  ^ 2 ( —i ) ki~k2~, (2k  + 1)2
5192

x k2 M f ( l ) ‘; f ( 2 ) ^  (A.2)
\  qi Q2 -q

Since th e  C artesian  coordinates (or angular m om entum  com ponents) transfo rm  u n ­

der a  ro ta tio n  such th a t they span  the  T>1 irreducible rep resen ta tion  of the  ro ta tio n  

g roup, it follows th a t the  nine com ponents of a general second rank  tensor transfo rm  

as

V 1 ® V 1 = V°  +  V 1 +  V 2 (A .3)

and  the  27 com ponents of a general th ird  rank  tensor as

V 1 ® V 1 0  V 1 = V°  +  3D 1 +  2 V 2 +  V 3 (A.4)

Sets of irreducible com ponents for general first and  second rank  tensors are readily  

available in  the  lite ra tu re . To construct sets of irreducib le com ponents for a general 

th ird  rank  tensor we could m ake use of (A.2) w ith  ki =  1 and  k2 = 0 ,1 ,2 . However, 

the  th ird  rank  optical activ ity  tensor operato r A a w ith  which we are concerned is, 

as a consequence of th e  sym m etry  properties of the  quadrupole m om ent, sym m etric 

and  traceless in its last two subscrip ts. A second ran k  sym m etric traceless tensor 

spans exclusively the 'V2 p a r t of V 1 0  T>1. T hus by tak ing  k\ =  1 and  only k2 = 2 

in  (A .2) we m ay ob ta in  the  com plete set of 15 independent com ponents for A ajg7.

In  specialising to  a th ird  rank  tensor w ith the sym m etry  properties of A a^  we 

note , from

V 1 ® V 2 =  V 1 +  V 1 +  V 3 (A .5)

th a t th e  degeneracies in  D 1 and  T>2 are removed and  T>Q vanishes.

A lthough G ray and  Lo have constructed  spherical com ponents from  th e  C arte ­

sian com ponents of Aa^7, the  results are presented in reducible, and therefore not 

im m ediately  useful, form  [29].
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A .l  Irreducible sets  o f ten sor com p on en ts

T he required  sets of irreducible spherical com ponents for the  th ird  rank  ten ­

sor operato r A a^7 are presented. For com pleteness, sets for first and  second rank  

tensors are also listed. We choose to  w rite these in term s of a com m on exam ple 

of each tensor type. T hus, the  electric dipole opera to r jla exemplifies a first rank  

tensor operato r and  th e  polarizability  opera to r a ap exemplifies a second rank  tensor 

operato r. However, these first and  second ran k  sets are com pletely general and  m ay 

be used for any tensor operato r of app rop ria te  rank. Specifically, th e  sets for the 

optical activ ity  tensor Ga/3 are identical in  form  to  those given for a a@.

It should be m entioned th a t the  usual s ta tem en t of the C ondon and  Shortley 

phase convention

=  ( - 1  (A .6)

is replaced for spherical tensor com ponents by the  rela tion

T L  = ( - l ) n+<- m2 £  (A.7)

w here n  is th e  rank  of the  associated C artesian  tensor, which follows from  (1.2) and

(2.1) in  S tone’s p aper on the construction  of irreducible tensor com ponents [28].

F irs t rank  tensor:

i ~  i^y)  (A .8a)

=  l*z (A .8b)

fx_ i =  — — ifAy) (A.8c)

Second rank  tensor:



T h ird  rank  tensor



”i~2z(AXyZ “1“ AyZX A AZXy)]

— 2 \ / 3 0 ^ ^ y!/:E ^ ^ xvy 7AXZZ 8AZZX

A^(2AXXy — 2AyXX -- 7AyZZ — 8AZzy)]

Aq   —̂ ==(3AZXX A 2A xxz -\- 3AZyy A 2Ayyz)

A _i — 2-\/30 [2 Ayy33 7AXZZ 8AZZX

—i(2A xxy — 2AyXX — 7Ayzz — 8Azzy)] 

1

2 7 3 1
2i(A XyZ A AyZX A Azxy)j

A3 —  [0/1 _l_ A — 9A — 4-**_2 — /—L xx2 1 ■rizxx Ĵ'r2-yyz zyy

A_3 2 \/2

-f"i(2^xxy -{- 2j4yx3; -f- Ayz; )]

(A.IOj)

(A.IOk)

(A.101)

(A.10m) 

(A.IOn) 

(A.IOo)
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Rotational Raman Optical Activity in Chiral 
Symmetric Tops

L. D. Barron and C. J. Johnston
Chemistry Department, The University, Glasgow G12 8QQ, UK

A theory of rotational Raman optical activity in chiral symmetric top molecules is presented. The required rotational 
transition polarizability and optical activity tensors are calculated using irreducible tensor methods for axially 
symmetric systems. Selection rules on optically active rotational Raman scattering are found to be basically the 
same as for conventional rotational Raman scattering, namely A J = 0 , ± 1 , ± 2  with AA = 0 , but in addition to 
possessing an anisotropic polarizability, the molecule must be chiral and must possess an anisotropy in the electronic 
optical activity tensors. A measure of this optical activity anisotropy is provided by the dimensionless circular 
intensity difference in a resolved rotational Raman band or in the envelope of unresolved bands provided the envelope 
is resolved from the central sharp Rayleigh line. A group polarizability model is used to calculate the rotational 
Raman optical activity in a chiral (D 3) conformation of triphenylborane.

INTRODUCTION

In the past decade, conventional natural optical activity 
m easurem ents, associated with electronic transitions of 
chiral m olecules, have been augm ented with vibrational 
optical activity m easurem ents using both infrared cir­
cular dichroism  (IR C D )1' 4 and Raman optical activity 
(R O A ).5' 8 The form er m easures a small difference in the 
absorption o f left and right circularly polarized infrared 
radiation, the latter a small difference in the Raman 
scattering o f right and left circularly polarized visible 
radiation, and both provide detailed and com plem entary 
new stereochem ical inform ation. It is now time to discuss 
the further possibility o f optical activity in pure ro ta­
tional transitions.

A lthough rotational structure has been seen in gas- 
phase vibrational IRCD  spectra,9 it is not likely that 
IRCD will yield pure rotational optical activity spectra, 
since the lowest frequency so far reached is ca 
600 cm ' 1.10 On the other hand, the Ram an approach, 
since it excites with visible light, suffers no frequency 
lim itations and so pure rotational Raman optical activity 
m easurem ents should be feasible, given the right sample. 
Here we present a m odel calculation of rotational ROA 
in a chiral symmetric top molecule.

Even though they cannot usually be applied directly 
to an actual chiral molecule, simple models have been 
of great value in the developm ent of theories of conven­
tional electronic and vibrational optical activity since 
they provide physical insight into the generation of the 
phenom ena by archetypal chiral structures and often 
serve as the basis for more sophisticated theories.11 The 
chiral symmetric top serves this purpose for theories of 
rotational optical activity, which justifies the detailed 
developm ent below even though suitable chiral sym­
metric top molecules are rare so that the explicit results 
are likely to have limited direct applicability. However, 
since the rotational states o f asymmetric top molecules 
are written in a symmetric top basis, the results provide 
a first step towards the calculation of rotational ROA 
in chiral asymmetric tops, which is likely to be more 
im portant from the experim ental standpoint.

The results also illum inate a fundam ental problem in 
the theory o f the quantum  states o f chiral objects. It has 
been suggested that rotating achiral molecules, even 
symmetric or spherical tops, are optically active, 12’13 with 
counter-rotating pairs constituting enantiom ers.14 This 
view has been criticized by applying the fundam ental 
symmetry operations o f space inversion and time 
reversal to the corresponding rotational quantum  states, 
which shows that rotating achiral molecules are not truly 
chiral objects.11,15,16 If an achiral molecule prepared in 
a pure rotational quantum  state can be properly regarded 
as a chiral object, it should support the pseudo-scalar 
rotational ROA observable. However, our results show 
that this is definitely not the case: the rotational quantum  
states by themselves introduce no new source of chirality. 
(The optical rotation observable invoked in Refs 12-14 
is actually magnetic, or Faraday, rotation which is a 
tim e-odd axial vector and so is completely different from 
the natural optical rotation observable, which is a time- 
even pseudo-scalar. There will be a corresponding mag­
netic ROA observable that can be supported  by rotating 
achiral molecules, but this is not considered here.)

THEORY

The circular intensity difference

M ost of the m aterial o f this and the next sub-section 
has already been given elsewhere (see the detailed refer­
ences for the various form ulae), but is included here for 
completeness.

O ur m easure o f Rayleigh and Raman optical activity 
is a dim ensionless circular intensity difference (C ID ) 
given by

Aa = ( /« - /« ) / ( /* +  'a) (1)
where /*  and  /£  are scattered intensities with a-polariz- 
ation in right and left circularly polarized incident light 
(see Refs 17 and  18 for a discussion o f other conven­
tions). The C ID s have been developed in terms of
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Figure 1. The geom etry for polarized light scattering at 90°.

m olecular property tensors by using a semi-classical 
theory in which the origin of scattered light is considered 
to be the fields radiated by the electric and magnetic 
multipole moments induced in a molecule by the 
incident light wave. For a plane-wave light beam of 
angular frequency co incident along the z direction and 
scattered at 90° along y (Fig. I), the polarized (x) and 
depolarized (z)  Rayleigh circular intensity sums and 
differences are found to b e 11,19'20

4 p( 0 )2

lx + + + ’ ' ') (2a)32ir cy 
4 £ < 0)2

l f + l ^ =  -  - °2— —( a „ a *  +  a  a*  +  • • ■) (2b)
32tt cy

4 £<0 )2

I* ~ 1* = T T T T T P m  (ca  v a  *« ■+ <ixyG*y + a ^ G * ,  
loir c y

-Ctxy^*z + ̂ xx^*z)+W Re (oixxAtiy
01 xyA xzx  0 L x y ^ x x y  Q - x x ^ y x y )  "h " ' '] (2c)
4 £ < 0)2

I * - I r = , / 92' l ~2 [Im (ca^ a^  + a^G ^  + a^G ^  loir c y
+ a r>, # ^ - a zx<̂*x) + 5a) Re ( a rxA?Iy

-*zyMzx + a.zyS&tiy-*zxd%) + - ’ *] (2d)

The complex polarizability and optical activity tensors 
are written as sums o f real (unprim ed) and imaginary 
(prim ed) parts:

otaB otag i(xap (3a)

G aP = G aP -  iG'afi (3b)

A a$y /4a07 L4aP7 (3c)

^a0 = Gfap + iG'afi (3d)

J^a07 ^4a07 4" lAaBy (3e)

A tilde ( ~ ) denotes a complex quantity. Tim e-depen­
dent perturbation theory provides the following quan­
tum m echanical expressions:11,21

a « e  = 7  I  2^ ~  ~~2  R e  « ” 1 p U . / ) 0 1 m - p 1 » ) )  (4a)rl j*n Cl)J„ 'I!
2  ^

< & = ~ T  I  2 ^  -'2lm«/ilp.al;)0'litp|w» (4b)
rl j * n m jn ^

Ca0 = T I  - r £L-2 Re(<«lfiaP>01mpl«>) (4c)
* j  * n U>jn G>

- — Im((rt|fjLa|y')01m&|n)) (4d)

^ap^ = 7  I  ~ i * * — Re ((n|p.aly )0 'lQ p » )  (4e)
n j* n

2 ^
A'afiy= —r I  i Im «n|pLal;)0 lQ 3» )  (40R j*n bijn (i)

where <njn = a>, -  a)*, and (xQ, ma and 0 aB are the electric 
dipole, magnetic dipole and traceless electric quad­
r u p le  moment operators, respectively, defined by

M'a X îa (5a)
I

m« = I ^ e « P 7 r%PL (5b)

©ap = 21  c<(3rt r^ -  r28ap) (5c)
I

particle i at r, having charge e, and linear momentum 
p, (we use a cartesian tensor notation in which 8aP is 
the unit symmetric second-rank tensor, eaPy is the unit 
antisymmetric third-rank tensor and a repeated Greek 
suffix in the same term denotes a sum m ation over the 
Cartesian com ponents").

If  the initial state |n) is non-degenerate, and no static 
external magnetic fields are present, it can be shown 
from time reversal argum ents that only a aB, G 'aP and 
AaPy survive [see Eqns (11) below]. For scattering from 
isotropic fluids it is necessary to average Eqns (2) over 
all orientations of the chiral molecule, and the corre­
sponding polarized and depolarized Rayleigh CID s are 
found to b e11,19

A (9Q°) — 3VJota0ea-ya/4-y&p) (6a)
c (  7 a X(ia ^  +  a xxa * ^ )

A (90°) =  ~ **<»<»~ (6b)
2c(3ox^ o ^ - a KXo * J

However, we are concerned here with rotational Raman 
scattering and so must extend the formalism to 
accom m odate transition tensors. Also, the CID s in 
specific resolved rotational Ram an bands m ust be calcu­
lated in place of the isotropic averages [Eqns (6)], but 
we shall see that Eqns (6 ) provide a valuable check on 
the results.

Rotational Raman transition tensors

The circular intensity sum and difference [Eqns (2)] can 
be applied to Raman optical activity by replacing the 
property tensors a a p , etc. by corresponding transition 
tensors (a aB)mrtt etc., between different initial and filial 
m olecular states |n) and |m). These transition tensots 
have the quantum  m echanical form s"

t z   ̂ - l  r  U m M j ) ( j M n )La a0Jmn ~ 2- -------------------------
R L <̂jn — W

, <™|)*pi;>0 V > > l  (7a)
J
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r  \ - I  V r <mI^Jj){j\m*\*)
ft j*n,m L tojn ~ (l)

4*
Oijm +  <*>

(7b)

(A \ - i  V f<ml>jLal-/)0'lQjn^O0'y/mn » 2* I
ft ji* n,m L Mjn ^

, (wlQjyxyl^iw)
(Dim +W (7c)

and can be written as follows in terms o f explicit real 
and imaginary parts:

(®as)mn (®ag)mn f(®a (l) 
1 ^ 1

(8a)

LaBimn -> l* / \ .2ft J*„,m {ii)Jn —U))((0ym +(o)

* [(wJn "b W;>n ) Re (<m|p.a|;)0'|M-el«)

+ ( m! V*\j>0'lHal *» + (2<0 + 0)rim )

x R e  «m |jjia|» 0 V p |n )

-<"*|»ip|7)01m.«I«))] (8b)

(^ap)mn Z
1

m" 2 h  j J ^ , m (ojjn -  ai)(ix>jm  4- w)

x[(a)^ +  o)ym) Im « m|p.a|;')0'|p.p| n)

+ <w|M-p|y>0lM-J«)) + (2w + o»„m) 

x Im ( ( H n J O O W n )

— <m|(Xp|y)0 'lM'«|r»))] (8c)

with sim ilar expressions for (G a&)mn and (A aP7)m„ in 
which pLP is replaced by ma and &fiy, respectively.

These transition tensors can be generated by taking 
matrix elements of corresponding effective oper­
ators.11,16,22 Thus the effective polarizability operator is

&*{i = K f i  + &afi (9a)

= +  (9b)

« a e =  - 5(M-a O “jip -M.pO“ p,a) (9c)

where

°  { h - W + H ^  H - W - h a )
(9d)

W  is the average o f the energies W„ and Wm o f the 
initial and final states. By summing over a com plete set 
o f states \j)(j\  inserted after O, and using the approxim a­
tion oijn =  <D;m, it is easily verified that (m |a ap|n) generates 
the complex transition polarizability ( a ap)mn [Eqn (7a)]. 
Similarly, the effective optical activity operators are

Gap = Ga0 4- GO0 ( 10a)

Ga& = 5(^0^ ma 4- rrtpO ita) ( 10b)

Gap= -  m&0 ~iia) ( 10c)
A A + A _

Aa0̂  Aa0-y4- Aa0.y ( 10d)

Aafiy = i ( ^a O  0 0 7  4- 007O p,a) ( 10e)

AZ&y= -l(M.aO '0 p 7- 0 0 7O_|Xa) ( 10f)

(The notation for these operators is slightly different to 
that in Refs 11,16 and 22; also we have corrected some 
sign errors.)

These effective polarizability and optical activity 
operators have certain well defined characteristics:1 l l6-22 
thus a ^3 is Herm itian, has even parity and is time-even;

is anti-H erm itian, has even parity and is tim e-odd; 
G^p is H erm itian, has odd parity and is tim e-odd; G~e 
is anti-H erm itian, has odd parity and is time-even; AZ&y 
is Herm itian, has odd parity and is time-even; and AZ$y 
is anti-H erm itian, has odd parity and is time-odd. This 
classification is im portant when considering the various 
light-scattering and optical activity phenom ena that each 
operator can generate, and leads to the following funda­
mental properties of the transition tensors:11,16,

(m |a 0p|/i> = (0 n|ct0a|0 m) = (© m |aa0|0 n)* ( 11a)

(m |G a0|n )=  - ( 0 m |G ap|0n>* ( l ib )

(m|Aa07|rt) = (©m|Aa07|0n)* (11c)

where 0  is here the time reversal operator (not to be 
confused with the electric quadrupole m oment). One 
im portant consequence of Eqns (11) is that, for an 
even-electron system, only the real parts ( a a0)m„ and 
(A aP7)mn o f <m |aap|n)Aand (m |A a37|n> and the imaginary 
part (G'ap)mn of (m |G ap|n> survive (assuming no static 
external magnetic field is present). The situation for 
odd-electron systems is more complicated and will not 
be elaborated here.

The B om -O ppenheim er approxim ation is now intro­
duced so that each state is written as a product of 
electronic, vibrational and rotational parts:

I j )  \jejvjr) I j 'in tjr) ( 1 2 )

where |y'int) is the internal m olecular vibronic state. In 
the usual theory of rotational Raman scattering,23,24 the 
rotational contributions to the transition frequencies in 
the transition polarizability are neglected and the closure 
theorem  invoked with respect to the com plete set o f 
rotational states associated with every electronic-vibra- 
tional state, which enables the transition polarizability 
to be w ritten11 (for an even-electron system):

(milltmr|aap|nintnr> = (mr|(aap)m.m<lJ n r> (13)

where

 ̂ J i m -

x Re « m int|p,a|jinl)Oint|p.p|n int»  (14)

is an internal transition tensor that acts as an operator 
on the rotational states. The space-fixed axes a , 0 , . . .  can 
then be related to molecule-fixed axes a ',  3 ' , . . .  using 
direction cosines such as laa- between the a  and a ' axis 
so that Eqn (13) becomes

<Wrl(a«p)minlnim|n r) = (« a-pO m,nln,nl(w r| /a a /pp| ltT) (15)

the rotational transition being effected by the direction 
cosine operators. A sim ilar development is possible for 
the transition optical activity tensors. However, the com­
plexity of the rotational Raman optical activity calcula­
tion w arrants a more sophisticated approach utilizing
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Table I. Rotational Raman factors, D lJ K JK

K -  1

K +1

J - 1 j  j +1

{J + K ) { J  + K - 1 )  { J + K ) ( J - K  + \) ( J - K  + } ) ( J - K + 2 )

2 J ( 2 J + \ )  2 J ( J  +1) 2(J  +1 ) (2 J  +1)

J 2 - K 2 I K 2 [(J-t -1)2 - * 2]

J{ 2 J  +1)  (J  + 1 ) ( 2 J  +  1)

( J - K ) ( J - K - 1) ( J - K ) ( J + * - H )  (J + K + ^ ) ( J  + K + 2 )

2 J ( 2 J  +1)  2 J ( J + 1 )  2 ( J + 1 ) ( 2 J + 1 )

irreducible spherical tensor operators, to which we now 
turn.

M atrix elements and intensity factors

Symmetric top rotational matrix elements can be 
obtained by using the following extension o f the W igner- 
Eckart theorem  to axially symmetric systems (within the 
C ondon and Shortley phase convention extended to 
general spherical tensor com ponents):25-27

where

( n \  T q\n, J K M )

= i■ J+J-K-K

J ’
- K ’

( - D  

k
K ’- K

J ~m [(2J'+ 1 )(2 /+  1)]i/2 

k Jy \ /  J'  k  j \  
K / V - M ' q M J

(16)

where J, K, M  are the usual set o f symmetric top ro ta­
tional quantum  num bers, n denotes the internal (vibra­
tional-electronic) states, and  T k is the qth com ponent 
of the rank-fc set o f tensor operators expressed in 
irreducible spherical form  with respect to space-fixed 
axes. A bar over the operator indicates that it iŝ  defined 
with respect to molecule-fixed axes, so that <n'| T’̂ '-ac! 
is an internal matrix elem ent [and would be an analogue, 
in a spherical basis, o f ( a e,'P’) m.ni„ini in Eqn (15), for 
example].

Since we are calculating intensities, and the m agnetic 
substates are degenerate if no external static m agnetic 
field is present, considerable simplification is possible 
by invoking the following sum :26

- fc. -  r ~ w v , 2  {2J'+ 1 ) ( 2 / +  1)X  \ ( n ' , J ' K 'M ’\ T k\n ,JK M )\2 =
2k +1

* { - K -  K ' - K  (17)

Each of the 2J  +1 values of M  in the initial state is 
equally probable, so the associated “ intensity factor” is 
obtained by dividing Eqn (17) by ( 2 /+ 1 ) :

2k _ (2j-+d/ r  k J  y
, ) j k  j k  (2fc +  i)  V - K ’ K ' - K  k )

x | ( n ' | f ‘K- .K|n)|2 (18)

Similar results are given in Refs 23 and 28. We now write 

1
( Iq) j  K\JK 2 k + l

\(n’\T kK.„K\n)\2D kr K, JK (19a)

(19b)

is actually the factor bJj*c  o f Placzek and Teller29 when 
k = 2. This treatm ent can therefore be correlated with 
the traditional theory o f rotational Ram an scatter­
ing,23,24,29-31 except that we can autom atically accommo­
date antisym m etric scattering by taking intensity factors 
with k =  1. We require the factors D)-k >j K with k = 
0, 1, 2: using the form ulae given by E dm onds32 for the 
first few 3j  symbols, we find for k  = 0 tha t only D 0JK̂JK =  1 
is allowed, and for k  =  1 and  2 we find the factors listed 
in Tables 1 and 2, respectively. The properties o f the 3j  
symbol enable the following properties o f D )  k <jk to 
be deduced:

Dkjk _ n kK'.JK ~ U J -K .J-K

(2/+  1)D;.k. = ( 2 J ' + 1 ) D) ^ , k .

X Dj k j k  = 1
J'

I  D j  k ,jk =  I  D ) ’ K \ jk

(20a)

(20b)

(20c)

=  (2J '+  l ) / ( 2k +  1)

(for fixed MC =  K ' -  K )  (20d)

Placzek and Teller’s factor bj*K- has equivalent 
properties.24,29

We now invoke irreducible spherical tensor versions 
of the effective polarizability and optical activity 
operators (9) and (10). Since each operator in the p rod­
ucts o f the form  a 2, a  G  and a  A  that contribute to the 
circular intensity sums and differences connects the same 
set o f initial and final states |n, J K M ) and \ n \  J 'X 'M ') ,  
the same spherical com ponents must be specified in each 
term. The rotational angular mom entum  aspects o f  each 
transition tensor (i.e. the external part) is independent 
o f the physical nature o f the tensor operator, so we can 
write intensity factors [Eqns (19)] for each type o f 
Raman scattering contribution:

[Ikq(a-2)]jK,JK
1

2k + 1 K n '|a K-_K|n)| D j k .jk (21a)

[ / ! ( a G ) ] , KVK 

I
2 k +  1 (n'\a K-..K\n)(n'\G K'-ic\n)* Dj-icjk (2 lb)
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Table 2. Rotational Raman factors D 2J K j K

K - 2

K  -1

K + 1

K +2

K - 2

K -1

K + 1

K + 2

(J + K) (J + K -  ] ) {J + K - 2 ) { J  + K - 3 )  (J + K) { J  + K - 2 ) [ J 2 + { K - 1 ) 2] 3 [ J2 - { K - 1  )2H (y +1 )2 -  (K -  1 )2]
4 J ( J  -  1 )(2J +1 ) (2J -1 )  2 J ( J  + 1 )(J -  1)(2J +1) 2J ( J  +1 )(2 J  - 1  )(2J + 3)

( J 2 - K 2)(J + K - ] ) ( J  + K - 2 )  (J + K) ( J + K ~' \ ) (J -  2K + ])2 3(2K -  1 )2(J + K) {J  -  K  +  1)

-  1 ) (2J +1 ) (2J - 1) 2 J ( J  +1 ) (J  -  1)(2J +1)  2 J ( J  +1 ) (2J - 1  )(2J +3)

3 ( J 2 - K 2) [ ( J - \ ) 2 - K 2] 3 K 2( J 2 - K 2) [ J { J + ] ) - 3 K 2]2

2 J ( J  -  1 )(2J +1 ){2J -  1) J ( J  +1) ( J  - 1  ) (2J +  1) J ( J  + 1) (2 J  -  1)(2J +3)

( J 2 -  K 2)(J -  K -  \ )(J -  K -  2) (J -  K) (J -  K - } ) ( J  + 2 K  + ]}2 3(2K +  1 )2(J  -  K) ( J + K + 1)

J ( J  - 1  )(2J +1 ) (2J - 1 )  2 J { J  + 1) ( J  - 1 ) ( 2 J  +1)  2 J ( J + 1 ) ( 2 J - 1 ) ( 2 J + 3 )

(J  -  /C)(J -  K -  1)(J  -  K -  2 ){J - K - 3 )  {J -  K) (J -  K - 2 ) [ J 2 - ( K  + 1)2) 3 [ J 2 -  [K +1 )2][(J +1 )2 -  (K +1 )2]
4 J{ J  -  1 )(2J +1 )(2J - 1) 2J ( J  +1 )(J -1  ) (2J +1) 2 J ( J  +1 )(2J -1  )(2J +3)

j■
J + 2

[ ( J  + 1)2 - ( K - 1 ) 2] ( J - K  + 1 ) ( J - X + 3 )  [J -  K +} ) ( J  -  K +2) ( J  -  *  + 3) (J  - X  +4)

2 J ( J +- \ ) ( J  +2) ( 2J + 1) 4 ( J  + 1 ) ( J  + 2) (2J + 1) (2 J  +3)

(J + 2K) 2{J -  K + 1)(J -  K + 2) [(J +1 )2 -  K 2)(J -  K + 2 ) ( J  - K +  3)

2 J [ J  +1){J  +2) (2J  +1)  ( J  + 1 ) ( J  + 2) (2J  + 1 ) ( 2 J  +3)

3 K 2[(J + 1)2 -  K 2] 3[(J + 1)2 - X 2] [ ( J + 2 ) 2 - X 2]

J ( J  +1) ( J  +2) ( 2J  +1) 2{J + 1)(J +2 ) (2 J  + 1 ) ( 2 J  +3)

[ J - 2 K ) 2{J + K  + 1)(J + K + 2 )  [(J +1 )2 -  K 2](J + X + 2 ) ( J  + K  +3)

2 J ( J  + 1 )(J  +2} {2J  +1)  (J  +1 )(J +2) ( 2J +1 )(2 J  +3)

[ ( J  +  1)2 - ( X  -t-1)2] ( J  +  X + 1) ( J  +  X +  3) V  +  X - H ) ( J  +  X + 2 ) ( J  +  X + 3 ) ( J + X + 4 )

2 J ( J  + \ ) { J  +2) ( 2J  +1)  4( J  +1 ){J +2) ( 2J  + 1)(2J +3)

[ I q ( C L A ) ] j K \ J K

— 7 ~ ( n \o‘-K--K\n)(n '\A)C- K\n)*D j -k - JK (21c)
2 k +  1

Selection rules for optically active scattering therefore 
devolve entirely upon the internal parts o f the matrix 
elements.

It rem ains to^convert the cartesian com ponents of the 
tensors a aP, GaP and AaP>, specified in the circular 
intensity sums and differences [Eqns (2)] into irreducible 
spherical form. Second-rank sets are readily available, 
but appropria te  third-rank sets are hard to find. Stone33,34 
has provided systematic procedures for converting 
between cartesian and spherical tensors, but in this in­
stance we found it easier to generate the required third- 
rank sets using the following equation for constructing 
irreducible tensor operators from products of two 
arbitrary tensor operators 7(1 )k' and 7 ( 2 ) of  rank k, 
and k2:}$

[ T ( l ) k|  x T ( 2 ) ltl] 5

x 7(1)5; 7 (2)5’ (22)

Since

S' x S 1 x © 1 = 2i° + 3 S 1+ 2 S 2 + a 3 (23)

where 2ik is the irreducible representation o f the proper 
rotation group o f dim ension k, it follows that a general 
third-rank tensor has 27 independent com ponents with 
three degenerate first-rank and two degenerate second- 
rank sets. Fortunately, AaP7 is symmetric and traceless 
in its last two subscripts [from the properties o f the 
quadrupole mom ent, Eqns (5)], and since a second-rank 
symmetric traceless tensor spans 2>2, it follows from

<3)x x Q)2 = + 0)2+ Q)3 (24)

that A a&y has just 15 independent com ponents with no 
degeneracies. Thus, by taking = 1 and k 2 = 2 in Eqn 
(22), it is possible to obtain unique irreducible sets for 
AaP> that can be readily interconverted between car­
tesian and spherical form. The required sets for a aP and 
Aa37 are listed in the A ppendix; we have not given the 
sets for G aP since these are identical in form with a aP 
(polar and axial tensors have identical transform ation 
properties under proper rotations). C hiu36 listed 
equivalent sets, but with different constants and phase 
factors, which he used for a discussion of new selection 
rules for higher order rotational Raman scattering 
processes.

Symmetric top selection rules

We first apply these results to derive the selection rules 
for conventional pure rotational Raman scattering in

212 JOURNAL OF RAMAN SPECTROSCOPY, V O L 16, NO. 3, 1985



ROTA T IO N A L RA M A N  O PTIC A L ACTIVITY IN C H IR A L  SY M M ET R IC  TOPS

symmetric tops. This means that the initial and final 
internal states |n) and |n ') correspond to the molecule 
in its ground vibrational and electronic level; however, 
in order to accom m odate the possibility o f antisym m etric 
scattering we allow the electronic state to be degenerate 
so that |n) and |n ') could correspond to different com ­
ponents. Denoting the molecule-fixed principal axes by 
X ,  Y  and Z, with Z  as the symmetry axis, the only 
non-zero symmetric polarizability com ponents are 
a zz = ctii and a xx = a  Yy = so that only the following 
internal symmetric irreducible spherical operator com ­
ponents survive;

SS= -v'35

2
a o = "7= (a n ~ a ±) 

v 6

(25a)

(25b)

where a  = i ( a Xx +o‘yy +  a z z )  is the mean polarizability. 
It follows from Table 4 in Ref. 11 that the only non-zero 
antisym m etric polarizability com ponent is a XY = - a  y x ; 
however, this is not supported by all symmetric tops, 
only those belonging to point groups C 3 , S 6 ,  C 4 ,  S 4 ,  C 4hy 

C6, C i h  and C 6 h . The corresponding internal antisym ­
metric irreducible spherical operator com ponent is 
therefore

a 0 ~  ( a X Y  — “  v x ) (26)

However, since the antisym m etric part [Eqn (9c)] o f the 
effective polarizability operator is tim e-odd, further con­
siderations are required in order to know if a particular 
molecule can support antisymmetric scattering, in par­
ticular the behaviour of the electronic state under time 
reversal." 22,37 An earlier discussion of antisymmetric 
rotational Ram an scattering did not invoke time reversal 
arguments and so the conclusions are m isleading.23

A consequence o f Eqns (25) and (26) is that K ' -  K  = 
0 in the intensity factors [Eqns (21)]. Using the factors 
D j  k  ,j k  listed in Tables 1 and 2, the non-zero intensity 
factors for conventional Ram an scattering are found to 
be as follows:

(c) A / = -1 ,  A X = 0 : 

[75(a2)]/-i#c.yic =

(d) Ay = +2, A/C =0:

[I2qi -̂2)]j + 2KJK

( J + K ) ( J - K )
6 / ( 2 /+ I)

x K /i 'la x v -a y x In )!2 (27f)

2 K 2( J + K ) ( J - K )
5 / ( / +  1 )(2 /+  1 )( / — 1)

x K n 'l& .- o J n )!2 (27g)

( / +  K +  l ) ( / + K + 2 ) ( / - K  +  ! ) ( / -  K  + 2 ) 
5 ( / + l ) ( /  +  2 ) ( 2 /+ l ) ( 2 /  +  3)

x | ( n ' | a , | - a j n )|2 (27h)

(e) A / = - 2 ,  A X = 0 :

U 2q{°.2)]j-2KJK
( / + / £ ) ( / + * - ! ) ( / - * ) ( / - * - ! )

5/(2/ + 1)(/ -  1 )(2/ -  I)
x K n '|a „ - a i |n )|2 (27i)

Hence the well known selection rules for symmetric 
scattering, namely A/ = 0, ± 1, ± 2; AX = 0 ; with A/ = ±  I 
forbidden if K  = 0. The selection rules for antisymmetric 
scattering also follow immediately, namely A/ = 0, ± 1; 
AX=0; with A/ = 0 forbidden if X=0. A part from 
these selection rules we see that, within the B om -O ppen- 
heimer approxim ation, the generation o f antisymmetric 
rotational Ram an scattering does not depend on the 
nature of the rotational transition; it requires degeneracy 
in the electronic state. However, if the Coriolis coupling 
between the electronic m otion and the m olecular ro ta­
tion is taken into account, antisym m etric scattering is 
possible even if the electronic state is non-degenerate.38

These selection rules also apply to v ibration-rotation 
Raman scattering in fundam entals o f totally symmetric 
modes o f vibration. Selection rules for non-totally sym­
metric fundam entals are more com plicated because 
additional com ponents m ust be included in the polariza­
bility operators.23,24,28-31

[a) A / = 0, A K = 0 :

[7 ̂ (<x2)]yAc,y/c = 3 |(n '|a |n )|2 (27a)

u ; ( a 2) w =

[I2q{CL2)]jK̂ JK =

2 K :
K f l 'l a x y - a y x M 2 (27b)3 / ( / +  1)

2[3K 2- / ( / + l )]2
1 5 / ( / + l ) ( 2 /  + 3 ) ( 2 / - l )  

x |< n ' | a | | - a j n >|2 (27c)

(b) A / = + l ,  AX = 0 :

( J + K  + l ) ( J - K  + \)
[ I  q ( c t ~ ) ] j  + ! K J K  —

[ / 5 ( a 2 ) ] j  +  l K . J K  ~

6( / +  1)(2/ +  1) 

la xv — Q-yxlrt)|2 (27d)

2 K 2( J +  K  +  1 ) ( / - X  +  1)
5 / ( /  +  2 ) ( /+  1 )(2 /+  1) 

x |( n '|a 1, - d x|n )|2 (27e)

Rotational Raman optical activity

The ROA is calculated by converting the products o f 
cartesian tensor com ponents in the circular intensity 
sums and differences [Eqns (2)] into irreducible 
spherical operator form (using the relationships in the 
Appendix) and interpreting each term as a correspond­
ing intensity factor [Eqns (21)]. The non-zero ROA 
contributions have the following form:

i(!<iSGS* + !«oGo* + a]Gl*
+ S i 2Gi*2) 

i(2a oGi* +
S „ G *  -- :(5 !G !*  + a L ,G L U 5 ;G ;*  + 5 i ,G i ': )

(28a)

otn 6 * r -  J(2a iG i*  + a lG l*  + a i 2Ci*2) (28b)

(28c)

5..vG ?,-K a!G :* + aLlGL1 + o;G5* + a i ,G ^ )
(28d)
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a xxA*yz -  [i(a\A \*  + a i2A 2*2) -  a20A 20*] (28e)
2V6

ZxyAZc,* + ol12AI*2- - ^ ol10A 10*̂ J (28f)

<*zxA?zŷ  + i.A il

5 * vA ? „ h . —
4v 6 L

(aiA|* + ai,A!*)
V 5

a f

(28g)

-4=(a|A!* + al.,^i.1)
V5

(28h)

By interpreting a$G $* and a J a J *  as [ I q( aG) ]r K -jK 
and [ / 5(a A )] ; 'KVK and neglecting the antisymmetric 
scattering contributions (which is always valid at trans­
parent frequencies, irrespective of the nature o f the 
initial and final vibrational-electronic states) ,11,22 the 
ROA intensity factors to be used in Eqns (2) are found 
to be as follows:

Im (ttxx^xx^’ ^xyC/xy)-*

45( 7(ai| — aj_)(G[| — G'L) D 2 /^jK + 45aG  D y^y*] (29a)

Im ( a IXG*x + a zyG*y) -*

T3(a ll — a x ) ( 0 ?[| — G' l ) D 2j i ^ j k  (29b)

Jttf Re (ttXxAxyz Q-xyAxxz)
^(o(a|| — a L)( A \ yz ~ A.y z x ) D 2,k,jk (29c)

icu RQ (a:xA t y - a :yA f zx) ^

— i 5tu(a|| — olx ) ( A x y z  ~ A Yz x ) D 2j'k,jk  (29d)

where G' = j( G'x x  + G'yy +  G'zz)- Similarly, the 
required conventional intensity factors are

ax * a«  + axyttJy -*

& 7 (a , |— a ±)2D 2,K,jK ■i"45a2D5'K>/K] (30a)

^zxttfx + ~ 0tx)2^rK,-^K (30b)

We have specialized here to the case of pure rotational 
Raman scattering, so that a y -a .,.,  etc., are the corre­
sponding tensors for the molecule in the ground vibra­
tional-electronic state.

We can now write down the polarized and depolarized 
CID s Ar and A, [Eqn (1)] associated with the different 
allowed rotational Ram an transitions.
(a) Rayleigh line (A / = 0, A X = 0 ):
For a molecule in a particular state | JKM ):

[3 X 2- / ( / + 1 )]2
A* = -  { 4 5 aG ' +

/ ( / +  \ ) (2J  + 3)(2J  - 1)

7(°t|| — a x)(G || — G'j.) +  ^ (ay — ctj_)(AXYz  ~ A Yz x )

x \4 5 a  +
7[3 K 2- J ( J + D ]L y ( a , | - a x)2|

y ( / + l ) ( 2 /  + 3)(27

2[(G[| — G'±) — ^o)(A XYz ~ A Yz x )] 
c( a , - a j

(31a)

(31b)

Clearly, A* is independent of tem perature, but Ax, since 
it is a function of J  and X, is tem perature-dependent 
and a quantum  statistical average should be taken. 
However, a useful approxim ate result can be obtained 
if X  = 0 and J  > 3, for then

[3 X 2- 7 ( / - H )]2 1
/ ( / + l ) ( 2 /  +  3 ) ( 2 / - l ) S*4

so that

2{45aG ' +  if7 (a ll- a x)(Gfl - G l )
^  ______________ +  jfa>(a| |  — cl1. ) ( A X y z  ~  A Yz x ) ] }

c[45a2 + | ( a il- a j 2]

with increasing tem perature.
(b) Raman lines (A / = ±1, ±2; AX = 0):

(32)

A *  =
2[7(G|j G 'J  + yaiAKYz ~ A Yz x ) 

7 c ( a , | - a x) (33a)

A _ ^[(^fl G[) ht)(AXYz  ~ Ayzx)] (33^)
c(o i||-a J

In the case that the separate transitions are not re­
solved, the total scattered intensity from the Rayleigh 
line and all the rotational Ram an lines is m easured. This 
means that, for each initial state | JK) ,  we must sum the 
intensity factors over all the allowed transitions to final 
states | J' fC) ,  and then take a quantum -statistical average 
of the resulting expressions over all possible initial states 
| J K)  using

X ,e
-W/kT (34)

where X U) is the value of the quantity X  in the yth 
quantum  state. Since AX - 0 ,  the use o f the sum rule 
[Eqn (20c)] gives a constant result for each intensity 
factor ( Iq) j  K,jK [Eqn (21)] when summed over all 
allowed final states \ J ' K )  for a given initial state |/X>, 
which means that when the average [Eqn (34)] over all 
initial states | J K)  is taken a tem perature-independent 
result is obtained. Specifically, the unresolved CID s are 
found to be

Ar =

2[45oG ' + 7 ( o , - o J ( G i - G i )
 + |u)(a|l ~otj.)( A x rz  ~ A y z x TI

c[45a2 +  7 (a ,|—o t j 2]
(35a)

and

* 2[(Gj) — G'± ) — 6<ti(AXYz  — A y z x ) ]
Ar =  “----------     (35b)

c ( a | , - a j

These results are precisely the CID s [Eqns (6 )] for an
isotropic fluid in the case o f axial sym m etry11 and so
conform  to the ‘principle o f spectroscopic stability’.39

Notice that the nature o f the initial and final rotational 
quantum  states does not influence the Ram an optical 
activity. The latter is determ ined solely by the nature of 
the internal vibrational-electronic states, and so the 
structure m ust be chiral in order that the same com ­
ponents o f polar and axial tensors such as a afJ and G ^  
have the sam e transform ation properties.11
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DISCUSSION

In molecules sufficiently large to be chiral, it is unlikely 
that the separate rotational Ram an transitions would be 
resolved. However, the separate transitions all show the 
same CID s [Eqns (33)], so it is sufficient that the 
envelope of unresolved rotational Ram an bands be 
resolved from the central sharp Rayleigh line, since this 
has a different polarized C ID  [Eqn (31a)], although the 
depolarized C ID  [Eqn (31b)] is the same. Thus if the 
polarizability anisotropy ( a (| - a x) were known from 
other m easurem ents (such as depolarization ratio or 
Kerr effect), it would be possible to extract from the 
polarized and depolarized C ID s of the unresolved ro ta­
tional Ram an bands values for the two optical activity 
anisotropies ( G f |- G x) and ( A Xyz ~ A y z x ).

Chiral symmetric top molecules belong to point 
groups C„ or D„ with n > 2. An example with D 3 sym­
metry is triphenylborane shown below. The minimum

energy conform ations o f this molecule are known to* be 
chiral, with the arom atic rings constituting a left- or 
right-handed propeller (that shown above is left­

handed), but unfortunately they are unresolvable.40 
Nonetheless, it provides an instructive exam ple for an 
explicit calculation of rotational Raman optical activity. 
This is perform ed in the Appendix using a group 
polarizability model in which the optical activity effects 
originate in the origin-dependence o f the tensors G „3 
and AbPv

Unfortunately, examples of chiral symmetric top 
molecules that are sufficiently simple for useful rota­
tional Raman features to be observable are hard to find. 
Any chiral molecule sufficiently small and volatile is 
likely to be an asymmetric top. Asymmetric top 
wavefunctions depend only on the quantum  num bers J  
and M  and so have definite parity. They are usually 
written as linear com binations of definite parity pairs 
o f symmetric top functions ( \ JKM)  alone has mixed 
parity),27,41 and so intensity factors corresponding to 
transitions between asymmetric top states reduce to 
weighted sums o f intensity factors between symmetric 
top states. However, because the principal inertial and 
principal polarizability axes no longer coincide in most 
chiral asym m etric tops, transitions with AX =  ± 1 ,± 2  
are now allowed in addition to those with AX =  0, which 
are the only ones allowed in a symmetric top. Hence 
the theory o f rotational ROA in a general chiral asym­
metric top is much more complicated, and  is deferred 
to a later paper along with discussion o f ro tation-vibra- 
tion ROA.
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APPENDIX

Irreducible sets of tensor components required 
in the text

It is im portant to realize that the usual statem ent o f the 
C ondon and Shortley phase convention

y L m =  ( - D my | *
applies only to the spherical harm onics Y ‘m. For general 
spherical tensor com ponents the corresponding state­
ment is

r'_m = ( - i ) n+,' mT'*

where n is the rank of the associated cartesian tensor, 
which follows from Eqns (1.2) and (2.1) in Stone’s 
paper.33 As well as the required third-rank sets, we have 
also given the corresponding first- and second-rank sets 
for com pleteness, even though these are com pletely 
standard.
(a) First-rank tensor, exemplified by the electric dipole 
moment operator. Only one set, spanning SJ1, can be 
constructed.

n! = — t=(m.* + i'm.,,)
y/l

M<-i

The inverse relationships are 

1

(b) Second-rank tensor, exemplified by the effective 
polarizability operator a aP. The effective electric d ipo le- 
m agnetic dipole optical activity operator G aP has the 
same form. Three sets can be constructed, spanning ££°, 

and S 2.

1
«o= - ^ ( a »  + a w + oi::)

P>o — M*z

I
T i

a i  = — ( a xy- a yx)
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O - i  =

o !* ^  ̂ a ** ”  ayy + ^ ayx +

a i = - “ [a ** + a » + ,’(ay* + a *y)]

<*o = ^ [ 2 a . z -(o t„  + a ,y)]

a-i = 2[a « + a z* ~ <(ay, + a ty)]

0 —2 2  fO x X  O  yy i(c ty x 4 "  Ql Xy  )  ]

The inverse relationships are as follows:

axx = 2  ̂~ ' y j ( a o + v/2oo) + (a2 + a i 2)j 

a yy=  ^ - ^ j ( a o  + >/2ao) + (a2 + ai2) j

a “ = V J ( a ”- v ! a ”)

O x y =  ~ 2  ^ ^ a ®+ ( 0 2 _ a - 2)]

O x z =  - ■ [ ( O l - O - l W O l + O - l ) ]  

Oyx=^[v/2 a i - ( a ^ - a 2_2)]

OyZ =-[(a2 + ai,) + (al -  a!.,)]

arx = --[(a?-ai,)-(a|4-ai,)]

ozy =~[(a2 + ai|) —(a{ -ai,)]

(c) Third-rank tensor, exemplified by the effective elec­
tric dipole-electric  quadrupole operator AaPv For a 
general th ird-rank tensor, seven sets can be constructed 
corresponding to 3f°, 33>l, 23>2 and 2i3, but since AaP7 
is symmetric and traceless in the last two subscripts, the 
degeneracies in 3s1 and 3>2 are removed and 3 °  vanishes.

A\

■ - 4

~ l =  ~  Vw

ll   \ l  , n [̂ XXX "1" Ayyx "b AZZX 4" i(Ayyy 4" A*Xy 4" Ajxy)]

An = \  l ~ ( Azxx Ajufg 4* AZyy AyyZ )

Al  . = ~ \ l  — [Axxx + AyyX + AZZX

l( Ayyy 4" A ^ y  "I" A  jjy ) ]

A j  ~  [ A XXZ ~ A ZXX ■+* A Zyy Ayj

1(2 Axxy ~~ AXyZ AyZX)1

A] = - p  [ A ^  4- A zzx + 2A xyv -  A
y/6

xyy n yyx

"b 1 ( Ayyy 4* A zzy 4" 2AyXX A^y )] 

A(J l( A XyZ AyZX)

A - | f— [A XXX +  A ZZX 4* 2 A  xyy AyyX
f t

i ( Ayyy 4" A ZZy 4" 2A yXX A XXy ) ]

A _ 2 [ A XXZ A ZXX 4" A Zyy AyyZ

4” i{2AZXy A XyZ AyIX)]

A3 2s^2  ̂̂  ̂ yyx A  xyy A xxx i(2 A xxy 4- A yxx A yyy)]

A2 2^ ^  AzXX 2 AyyZ A Zyy

4- 2 i (A xyz 4- A yzx 4- A „ y)]

A 3 =  —4 =
2>/30

[7 Axxx 4" 5 A Xyy 4- 2 Ayyx ^ A ZZX

4- J (7  Ayyy 4" 5 Ay** 4" 2Axxy 8 Ajjy ) ]

Aq ~ ŷ—  (3 Axxx "1" 2 Axxx "1” 3Axyy 4* 2Ayyj)

A i i = -  [7  A,** +  5 AXyy 4- 2 Ayyx -  8 A zzx

1(7 Ayyy 4" 5 AyxX "1" 2Axxy _  8AZ2y)]

1
A —2 [2Axxr "h Ajxx 2Ayyx A Zyy

2V3

-2i(Axyx + Ayzx "1" AZXy )]

a!3 — 2J 2 ^ ^ yyx ^xyy ~
+ i(2Axxy + AyxX Ayyy)]

The inverse relationships, specifying only the 15 
independent cartesian com ponents, are as follows:

2V2
( A j - A i , )

= V^A‘+i4',)
+ -i=(A> + A i3)]

[V !‘Vx 2J1
(AI A i,)  — jA ~ A 2\ + A i,)

4-
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‘4“ y= 2J 2 £ I
(Ai + A M - ^ f A f - A i . )  

5 v 3

+ _ ( a ?+ a 11) - ( a J+ a 3_3)
v 15

Axyy=4=C  — 7==( A{ — A i.,)+ -j= (A 2 +  A i,)  
v 2L J l S  v3

h— — (A 2 -  A i,)  +  -  (A 3 -  A i3) l  
2v l 5  2 J

A VXx
v 2

= ( a !+ a ' , ) —
LV15 V3

—- = ( A 2 + A i,)H —(Aj + A i3) l  
2V15 2 J

A;ZX = ~= 
v2

- ( A } - A i , ) + - i = ( A f  +  A i 1) 
20 V12

- - = ( A 2- A i , )
Vl5

(Aj +  A i,)  — - = ( A f - A i , )
V12

+ - = ( A 2 +  A 
V 15 ■->]

+ ̂ ( A 2 +  A i2)

4 = ___n Vy Z

2

-f--y=(A2 + A i2)

A , „  — -

-  y j ^ K  ~ A o+ J = ( A \  -  A i2)

1
0+  V $  A° + J g ( A 2~  A i2)

]

]

- - ^ ( A i  +  A i , ) ]

A * , = ~ [ a | + j = ( A l  + A i 2) + j = ( A | - A i 2) j  

' [-y2(Al + A i2) - ( A l - A i ;)]

1

+-^=(A 2+ A i 2)

‘4“ y 2V3

^ y r x
2

Al  -  j =  (A i+ Aij) -  j =  (A\  -  A i2)

The rem aining cartesian com ponents can be obtained 
from Aafiy = Aa7f} and Aa{J|J = 0.

Figure 2. The geom etry of triphenylborane in a left-handed propel­
ler conformation. uu u2 and u3 are unit vector* along the effective 
six-fold sym m etry axes of the arom atic rings.

Rotational Raman optical activity of triphenylborane

We use a group polarizability model in which the 
polarizability and optical activity tensors o f the molecule 
are written as sums over a convenient set o f local bond 
or group tensors, taking care to include the origin- 
dependent parts o f and Aap7:11

“ap = Z a

= £ (GU ~ ■ J
Aap7 = t  [ A iafty + $(R  1(Ja ia>-I- R ia8 -  R i#a,aiSp7)]

where a ia8, G 'a8 and A, are the tensors pertaining to 
group / and  referred to a local origin on i, and R t is the 
vector from the m olecular origin to the local group 
origin. Here we take the set o f groups i to be the three 
arom atic rings, neglecting for simplicity the three B-C 
bonds (which contribute only to the Ram an intensity, 
not the optical activity). Figure 2 shows the geometry 
o f a chiral conform ation o f the triphenylborane m olecule 
in which the three arom atic rings constitute the blades 
o f a left-handed propellor. The arom atic rings are 
assum ed to retain the same symmetry as free benzene, 
so that each has a six-fold symmetry axis perpendicular 
to the plane: this enables us to drop the intrinsic optical 
activity tensors GJa8 and A Ia8> of each arom atic ring, and 
to  write each polarizability tensor in the form 11

a <a# = a iO -K,)5ap + 3a(K,u^u%

where u{ is a  unit vector along the principal symmetry 
axis and

K =  ( a u - c tx) /3 a

is a dim ensionless polarizability anisotropy. The 
molecule-fixed axes X , Y, Z  are taken to coincide with 
the principal inertial axes with origin at the centre o f 
mass. Each group unit vector v, makes an angle <J> with 
the Z  axis. Labelling the three groups 1,2 and 3, we have

R t = R L

u,a = Ja sin <J> + K a cos 4>
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u2a= / a s in < l) --y a sin<t) +  ^ a  cos<|)

V3 1
u3a = —  Ja sin <}> -  -  Ja sin <|> + K a cos <t>

where f, J , K  are unit vectors along X, Y, Z  and R = \Rt\ 
is the distance from the centre of each arom atic ring to 
the m olecular centre o f mass.

We now obtain

= la/K,(3 cos 2<}) -Hi)
C | | - G 1  =  I ( G U - G ' X X )

I

= — ^cuRa,K, sin 2<t>

Axyz ~ A yxz — Z (AixYZ — A iYZX)
i

= —^RctjKj  sin 2<j> 

a  =  j a aa =  3 a ,

G '  =  3 ^  =  0

Using these results in the CID s [Eqns (33)] for the 
rotational Ram an lines, we obtain

_  48trR sin 2<J>
~ 7 \(3  cos 2<J>+ 1)

A -  4ttR  sin 2<j)
\(3  cos 2<t>+I)

This expression for A z also applies to the Rayleigh line 
and to the unresolved band, but the corresponding polar­
ized C ID s are, from Eqns (32) and (35a),

__ 4 8 ttR k 2(3  cos 2<t>+ 1) sin 2$
x ~ ~  \ [ 3 2 0  +  7 k 2(3  c o s  2<t>+ l ) 2]

and

_  48-irRK?(3 cos 2<J>+ 1) sin 24>
x ”  \[80  + 7 k 2(3 cos 2<t>+ l )2]

To estimate the m agnitudes, we use the following 
values: |k ,|= 0 .1 8  (from light-scattering data on ben­
zene);42 R = 0 .3 n m  and <J> = 30° (from x-ray d a ta );43 
\  = 500 nm. This gives Ax = -4 .48  x 10-3 and Az = 
-2.61 x 10~3 for the Ram an lines, A* =  -1 .97  x 10~s and 
Az = -2.61 x 10-3 for the Rayleigh line and Ax =  
-7 .80  x lO -5 and Az = -2.61 x 10-3 for the unresolved 
band. Triphenylborane is actually a very favourable 
example: more typical values might be an order o f 
m agnitude smaller. However, most of these param eters 
should still be m easurable, since scanning ROA instru­
ments can detect A values down to ca 10-4 and optical 
m ulti-channel instrum ents down to ca 10-5.7,8
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The time-odd part of the molecular optical activity tensor is shown to 
provide new contributions to the discriminating dispersion interaction between 
chiral molecules in degenerate states. Detailed calculations on a hypothetical 
odd-electron chiral transition metal complex of 0*  symmetry indicate that the 
new discriminating contributions could be within an order of magnitude of the 
conventional discriminating contributions. In the near zone, the new contribu­
tions have the usual R ~ 6 dependence, but in the wave zone they depend on 
R ~ 7, unlike the conventional discriminating contributions which depend on 
R ~ 9.

1. Introduction
Among the unique proparties of chiral molecules are their discriminatory inter­

actions [1]. In particular, the difference in the interaction energy between pairs of 
chiral molecules with the same absolute configuration and pairs with opposite 
absolute configurations has attracted much attention recently [1-5]. Although 
chiral discrimination in the dispersion interaction is expected to be weaker than in 
other interactions such as ‘con tac t’, electrostatic and hydrogen bonding, it is uni­
versal. The purpose of this article is to discuss additional contributions to the 
discriminating dispersion interactions between chiral molecules in degenerate states, 
particularly Kramers degeneracy associated with an odd num ber of electrons.

Molecules in degenerate quantum  states can support, in addition to the usual 
range of time-even property tensors, time-odd property tensors that generate new 
phenomena [6- 8]. Although phenomena that are linear in time-odd property 
tensors, such as the Faraday effect, are only manifest in the presence of some 
time-odd influence such as a magnetic field, phenomena that are quadratic in such 
tensors do not require a time-odd influence. Antisymmetric light scattering provides 
a good example [6-10]. Buckingham and Joslin [11] have discussed spin-dependent 
dispersion forces between alkali metal atoms which originate in the same property 
and transition tensors as antisymmetric scattering, namely the time-odd parts of the 
polarizability. Although the existence of analogous contributions to discriminating 
dispersion interactions between odd-electron chiral molecules originating in the 
time-odd parts of the optical activity tensors was m ooted several years ago [12, 7], 
the detailed theory has not been developed previously.

2. The near-zone limit: single-centre formalism
The near-zone limit refers to separations R  of the interacting pair that are much 

smaller than the wavelengths characteristic of the molecular electronic transitions so
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that retardation effects can be neglected in the calculation of dispersion interactions 
[5]. This situation is conventionally treated using second-order perturbation theory
[13].

The wavefunctions are written as simple products \ n i n2} of the separate wave- 
functions | n t > and | n2> of molecules I and 2. The perturbation ham iltonian is taken 
to be the operator equivalent of the dipole-dipole interaction energy for two neutral 
charge and current distributions [13, 7]

where

• /*« =  Z  ei \ >  (2.2 a)
i

m.  =  I  + (2.26)

are the electric and magnetic dipole moments for the collection of charges et with 
mass m, and orbital and spin angular m om enta I, and s { and ^-factor gh and

T', =  7>a =  Va V/lJ r 1 =  (3Ra R ,  -  R 26 ")R  ~ 5, (2.2 c)

where R =  R 2 — R x is the vector from the origin on molecule 1 to that on 2. The 
dipole dispersion energy is then [13]

T- 2  *,!»»"»>. (Z3)

j i  *  "2

It is well-known that, using the identities

_ 1 _____ 2 P°° A B  2 f°° u2
A + B  7T Jo (X2 -h u2\ B 2 +  u2) “ it Jo (A 2 +  u2XB2 +  u2) *  ( }

with A  >  0, B  >  0, the dispersion energy (2.3) can be separated into single-centre 
contributions involving the individual molecular dynamic polarizability tensors at 
imaginary frequencies [13]

U =  “ ( 4^ )  ( Z c ) 7*' TyS 1  +  « iJfrWiJM*)] du, (2.5)

where [13, 7]

= 1 I  2 ^ " ; t 2 Re « n I Ij><j I I"» = « ( 2 . 6  a)
n i** 03j* ~~ 03

2 co
=  -  7  I  71  Im « n  | /ia |;><j I I n »  =  - a'^co), (2.6 6)

” j*n 03jn 03

with cu =  iu.
Interference between the electric and magnetic dipole-dipole interaction oper­

ators generates the following contribution to the discriminating dispersion inter-
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action between two chiral molecules [14, 15, 5]

4 ireo /\4*}  l H a h n + m lvn)
j l*H2

X K«1 *2 I U J l X j J l  I «1, "*2, I «2>

+ < « i'j2 l"»ia"i2j ; i ; 2><y'i;2 l ^ i y^ 2j '» i « 2>)|- (2.7)

Again using the identities (2.4), this can be separated into single-centre contributions

u ' =  _ ( 4 ^ ) f e ) ( ; ) 7;# r "  I *  cc ‘> ^ te>+ v j w i j w du’ <2-8>

where

= 7 X  "2 Re « n I n* I;></' I**/»I"»> (2.9 a)
ft j*n tOjH ^0

G'Xfi(co) =  -  £ £  — — 2 Im « n I ly><; I"»/»I" »  (2.9 b)
ft j*n tOjn 0)

are the optical activity tensors [13, 7].
We now consider the encounter of two molecules, each with an odd number of 

electrons. For simplicity we shall consider only the case of a twofold Kramers 
degeneracy with effective spin states | S, M s)  =  | ± ■£>, a =  | | ,  -jr> and 0 =
| ■£, — ■£> being the conventional shorthand. Although the electronic wavefunctions 
are not usually antisymmetrized since the indistinguishability of electrons plays little 
role in determining intermolecular interactions at the separations we are consider­
ing, antisymmetrization is essential for any discussion of spin-dependent features. 
Thus in the absence of a magnetic field, and neglecting exchange interactions, there 
are four degenerate zeroth-order eigenfunctions: a singlet and three triplets. As we 
shall see, the dispersion interaction will lift some of this degeneracy. Assuming C 
symmetry for the interacting pair, which obtains for two unlike atom s or two unlike 
molecules which have effectively spherical symmetry (e.g. belonging to cubic point 
groups), the singlet transforms as Z + and the triplets as 2 “ and IT±1. In terms of 
one-electron spin states quantized along the intermolecular axis, the singlet state is

| I * > - 4 ( l « , f c > ( 2.10a)

and the three triplet states are

|n + 1> = |aia2>, (2.10h) 

<2l0c)

(2.1 0 e)
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The dispersion energy of molecules encountering in these eigenstates is [11]

For simplicity, we have not specified explicitly the spatial parts of the states. Intro­
ducing symmetric ( +  ) and antisymmetric ( — ) transition polarizability tensors

The transition polarizabilities (2.12) are not quite as general as corresponding 
Raman transition polarizabilities [7] because | n> and | m ) m ust have the same, or 
nearly the same, energy.

If the odd-electron molecules are chiral there will, in addition, be analogous 
discriminating dispersion interactions for pairs encountering in the singlet and 
triplet states (2.10). Specifically,

u ( n +l) = m - l) = u :

U( I * )  =  U

*1*2. *1*2 ’ ( 2 . 1 1 a )

(2.116)

where

x y  <m l m 2 | f i 2t  \ j J 2 X J J 2 1 ftl, 0 2 i I ” 1 *2>

jl *"1. «l
(2.11c)

(a«*)m»M = J

x « w | / i j ; > < / |^ |n >  +  < m |/i,|;> < /l/< « |n »  =  W*)*«M, (2.12a)

(O
COfH -  CO,2

X ( < m  I I j > < j  I Hf  I n> -  <m | ^  \ j > < j  \ \ ia | n »  =  -(a*«)m«M> (2.12 6)

we obtain

x [(ar.r)m1»,(j«Xa2+J » '2«2(IM) +  (a iJ« i» ,(i'uXa2,,)m2,,2('«)] du. (2.13)

mim2» n\rt2

X [(G ur)mini(iuXG2,J « 2«2(lM) +  (G rjm 1„1('aXG2_#Jm2, 2(««)] du, (2.14)

where

x « m | | j > < / 1 | w >  +  < m I | j > < / 1 / z . I n » ,  (2.15a)
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(Ga/jLnM = £ V COl„ ~ CD,2

x « m \ p a\ jy<j \mfi\ny -  <m\mfi\jy<j\ pa\n)), (2.15ti)

are transition optical acitvity tensors. Because products of transition moments con­
taining different operators are involved, these transition optical activities do not 
have well-defined behaviour under perm utation of the tensor subscripts, unlike the 
transition polarizabilities (2.12).

Further development of the one-centre contributions (2.13) and (2.14) to the 
dispersion interaction between odd-electron molecules is facilitated by a consider­
ation of the behaviour of the transition polarizability and optical activity tensors 
under time reversal.

It is easy to deduce the behaviour under time reversal of the basic polarizability 
and optical activity tensors (2.6) and (2.9) from simple classical arguments [16, 6, 7] 
based on a consideration of the contributions of these tensors to the oscillating 
electric dipole moment induced in a molecule by the electric and magnetic field 
vectors E and B of a light wave:

Classical time reversal involves replacing t by — t everywhere, from which it follows 
that is time-even so that the real and imaginary polarizabilities and must 
be time-even and time-odd, respectively; whereas the real and imaginary optical 
activities G3fi and G3f must be time-odd and time-even. It is the imaginary part G3fi 
that is responsible for conventional optical activity phenom ena such as optical 
rotation: the real part is responsible for exotic effects such as gyrotropic birefrin­
gence [17] and magneto-chiral birefringence and dichroism [18] which require the 
presence of a static magnetic field or some other time-odd influence.

Useful relationships between components of the corresponding transition tensors 
involving various degenerate states can be deduced from a consideration of the 
behaviour of states and operators under the quantum-mechanical time reversal 
operation © that first takes the complex conjugate of a wavefunction and then 
reverses the sign of the time coordinate. The two orthogonal spin states a and P 
provide an im portant example: it can be shown that (with a particular choice of 
phase) [19]

3. Optical activity and time reversal

Pa ~  ^afi Efi + ^  a«0 Bp +  ^  G'ap + ----- (3.1)

© a =  P, &P = —a. 

Time-even (+ )  and time-odd ( —) operators are defined by

(3.2)

®/4(±)©_1 = ± ^ (± )f- (3,3)
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The transition tensors (2.12) and (2.15) can be generated by taking matrix elements 
of the corresponding effective operators [7, 9, 12]

W  is the average of the energies W„ and Wm of the initial and final states. By 
summing over a complete set of states \j}<j\ inserted after 0, it is easily verified that

It has been shown that the product of two non-commuting hermitian operators with 
well-defined behaviour under time reversal does not itself have well-defined behav­
iour but can be written as the sum of a time-even and a time-odd operator [19]. By 
extending these considerations to the operators (3.4), it can be shown that is 
time-even and hermitian, is time-odd and anti-hermitian, <3^ is time-odd and 
hermitian, and is time-even and anti-herm itian [7, 12]. Then using the result

Chiu [20] has also used time reversal arguments to discuss aspects of natural 
optical activity in degenerate states, but his approach is rather different.

In what follows, we use the terms time-even and time-odd transition tensors to 
refer to  tensors generated by time-even and time-odd operators, respectively. This 
terminology is rather loose, because the behaviour of the associated matrix element 
is only that of the operator for diagonal transitions.

= 2 (/̂ a 0 + Up + 0V«), (3.4 a) 

(3.4 6)

and

(3.4 c) 

(3.4 d)

where

(3.4 e)

= Km | Kn I *>.

(Giu®)-<«i<sji»>.
( G iU © )  =  Km  | | n>.

(3.5 a) 

(3.5 6) 

(3.5 c) 

(3.5 d)

<0 a | i ( ± ) | © 6> =  ± < 6 |A (± ) |a > ,

we obtain the following general relationships

(3.6)

(&ap)mn (®â )®ii®iii (^a^OmOii > 

(®a/>)m* (^a^)owem >

(Gap)mn = — = — (̂ â )Smea*

(g ; 0) mm — ( ^ a ^ ) e a e m  ~  ( ^ a # ) o m e N  •

(3.7 a) 

(3.76) 

(3.7c) 

(3.7 d)
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An im portant characteristic of these transition tensors is the existence or other­
wise of a static limit. Thus the transition tensors generated by the hermitian oper­
ators and remain finite as a> -*• 0, whereas those generated by the 
anti-hermitian operators and vanish. We shall see that this has im portant 
consequences for chiral discrimination in the wave-zone limit.

4. The singlet and triplet dispersion energy
We now apply the results of the previous section to simplify expressions for the 

singlet and triplet dispersion energy of pairs of chiral molecules in twofold Kramers- 
degenerate states. Using (3.2) in (3.7), we find for the transition polarizability

(aa^)±l/2±l/2(W) = (aâ )T 1/2 T l/zi.03)*

± 1/2 ± = — (aâ )T 1/2 T mi03)’

(a j ^ ) ± l / 2 ? l / 2 ( W) =  — (a s^)* 1/2 ± l/2 (<y)» 

(a a ^ )± l/2 T  l/li0*) =  1/2 ± l/2 (Ct>)*

(4.1a) 

(4.1 b) 

(4.1 c) 

(4.1 d)

Similarly, we find for the transition optical activity

(^«^)±l/2±l/2(ai) = — 1/2 T l/2(a,)>

( ^ « ^ ) ± l /2 ±  l/2 (a>) =  1/2 T l/2 ( tU)»

( ^ ^ ) ± 1 / 2 T  l/2 (CtJ) =  1/2 ± l/2 (Ct>)*

(^ 3 ^ )± 1 /2 T 1 /2 ( (U) =  ~  (^ a ^ )*  l /2 ± l /2 ( <a)-

(411 e) 

(4 .1 /)  

(4.19) 

(4.1 h)

The polarizability dispersion energy contributions are then

U (U +) =  C / ( n _ )

X [ ( a r j+1/2 + i/2(*wXa2+jJ +1/2 + 1/2M  

+  (a l«r) + l /2  + l/2 (IMXa 2 # J + l /2  + l/2 ( ,M)]  du, (4.2 a)

x  C(a U ,)+  1/2 + l/2 ( iUXa 2 | J + 1/2 + 1/2(,M) 

~  (a l«7) + 1/2 + l/2 ( ,MXa 2*J + 1/2 + l/2 ( ,t t) 

T  (a U r) + 1/2 -  l /2 (IUXa 2/u)+ 1/2 -  1/2(im)

± («i«y) +1/2 - i/2(*wXaJ#J t 1/2 - i/2(*m)] du, (4.2 b)
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and the discriminating optical activity contributions are

U'(U+) =  U'{U.)

00

x [ ( G r j + i/2 + 1/2(mXG2g + l/2 + l/2(i«)

+  (Gf. y)+ 1/2 + i/2(^XG2" ,) +1/2 + l/2(iu)] du, (4.2 c)

u:(xr) = oo

X [ — (Gf.y)+ 1/2+ l/2(lMXG2#J+ 1/2+ 1/2(,U) 

■*“ (Glay) + 1/2 + 1/2(IUXG2#<) + 1/2 + 1/2(IU) 

i  (G*ay)+ 1/2- 1/2(,UXG2̂ + 1/2- 1/2(,U)

+ (Giar)+i/2-i/2(iuXG2w)+ i/2-i/2(,m)] du. (4.2 d)

Notice that the contributions from the time-odd tensors a~fi and G*fi disappear 
when summed over the singlet and the three triplet states.

In general, the calculation of optical activity parameters for specific chiral mol­
ecules is difficult and the results often unreliable. However, it is possible to calculate 
meaningful relative magnitudes of the time-odd and time-even contributions to the 
chiral discrimination because the interference terms that the chiral distortion 
induces between the electric and magnetic dipole transition moments have the same 
reduced matrix elements in the two contributions. It is instructive to take as a model 
a hypothetical chiral odd-electron transition metal complex of symmetry 0*. Large 
spin-orbit coupling in the charge-transfer states of iridium (IV) hexahalide com­
plexes generates significant antisymmetric scattering contributions to resonance 
Raman processes from the time-odd part of the transition polarizability (ct^),*, [7, 9, 
10], and similar mechanisms will generate time-odd transition optical activity com­
ponents in corresponding chiral complexes.

We take the same pattern of sp in-orbit levels as is found in IrBr£~ in aqueous 
solution (figure) [21]. The first few electric dipole-allowed transitions in the parent 
Of complex are

These all become magnetic dipole-allowed as well in the hypothetical chiral O* 
complex. The first transition U'g(2T2g)« - Eg(2T2g) is forbidden because both terms 
originate in the same orbital configuration. Using H arnung’s version of the W igner- 
Eckart theorem for the octahedral double group 0*  [22, 7], we find the following 
transition polarizability and optical activity tensor patterns:

e 'h2t 2,), E;(2T2,,).-E;;(2r2,) and u:(2t 2j ^ e ; ( 2t ^ .

{a) E" intermediate level

(i) « , ) * »
Com m on factor | <£"(n) || n  || £"(/)> fcojjhico2,, — co2)
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The first few electric dipole-allowed transitions between the spin-orbit levels of [IrBr6] 2

§ 0 0 \ A  0 0 \ /0  0 0 \ /0  0 0)
o i  o o i  o o o o o o o
o o i /  \ o  o i / \ o  o o /  \ o  o o/
+ i  — 2 + i  i

(ii) (â L,
Com m on factor | <£"(n) || p || £"(/)> l^ /^ c o j ;  — a>2)

I

+ i - + *
(iii) (GiL,

/ o  -  7 o\

0 0

0 0

0 0

i \ / o
°  - 3

0 0

Com m on factor |<£"(n) || p  || £"(/)> I I <£"(«) II m || £"(/)> I -  a>2)

I o w „  _ i

\

° \  I 

0

0 0 0
\ I

i \
3 
1 
3

0 0

_ i \
3
1
3

(iv) (Ĝ U
Com m on factor ] <£"(«) || p || £"(/)> I I <£"(*) II m || £"(/)> I -  a>2)

(4.3 a)

(4.3 b)

(4.3 c)
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i  0 0 
0 i  0 

0 0

+  i< -  +  i

(ft) (/' intermediate level

(i) w u
Common factor | <E"(n) || n  || £/'(/)> |2wJB/ft(cu?, — oj2)

t  0 0 0 0 0 
0 0 0 (4.3 d)

0 0 0

0 0 i

(4.3 «)

(ii) ( « i ) -

Common factor | <£"(n) || || U'(j)} \2a)lh{(o2n — co2)

/» - I

0 0

0 0

0 0 -s\
0 0

_1
2

s \

o - -

\-
0

(4 .3 /)

+ i« -  + ±
(u iM G J u

Com m on factor | <£'(«) || M II U'(J)> I I <*"(«) II w II U'(J)> I -  " 2)

/o - i  o\ I
6

0 0 

0 0
/

0 0 0

0 0

0 0 -  -

0
\

6

0 - i

1 0

s \

(4.3 g)

+ i - - i+ * -  + i
(»v) (g ; ^

Com m on factor | <£"(«) IIMII G'(/)> 11 <£"(m) II m || U'(j)} \ <o/ti(co% -  (a2)

0 0 \  A  0 0 \  /0  0 0 \ /0  0 0̂
0 * 0  0 * 0  0 0 0  0 0 0  
0 0 i / \ 0  0 | / \ 0  0 0 / \ o  0 Oj

+ *♦■+* -*< — * — * ♦ -+ *  +*<— *

(4.3 h)
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We have assumed that the electric and magnetic dipole moment reduced matrix 
elements are pure real and pure imaginary, respectively. Notice that these tensor 
components accord with the relationships (4.1).

An interesting feature of these transition tensor components is that, unlike the 
case of atomic Na where the contributions to the time-odd (antisymmetric) tran­
sition polarizability associated with transitions from the ground level to the
spin-orbit split components of a given excited level (e.g. ZPV2, 2P3/2 2S l/2) would
sum to zero if the splitting were zero [ 11], the corresponding contributions in 
IrBrg" do not cancel. For example, it has been shown that [23, p.488]

| (E"g{2Tlg) || fj. || £ :(2T2u)> I2 =  2 1 ( E g{2T2g) || p || U'u(2T2u)>\2 (4.4)

and so from (4.3 b) and (4.3/) we see that the contributions to from the pair
of spin-orbit components E" and U'u deriving from the excited level 2T2u (figure) 
would by no means sum to zero. Indeed, looking at the spin-orbit components U’u 
and E'u deriving from the 2T \ lJ excited level, we see that there is no cancellation at 
all since only U’u contributes to ( a " ^ ,  transitions to E'u being electric dipole- 
forbidden. In order to obtain a rough estimate of the relative magnitudes of the 
contributions from the time-even and the time-odd transition tensors to the disper­
sion interaction we shall therefore consider, for simplicity, just the U ' j f T ^ )  excited 
level.

For the situation where the two interacting molecules are held in fixed orienta­
tions relative to each other, we refer the property tensors of each to a common axis 
system X, Y, Z attached to the pair. Taking Z to be along the vector R connecting 
the two local origins, we have from (2.2 c)

T*fiTy6GityG2fi =  /? - 6[G l;rjf G2xx +  G1yyG2yy +  4 G lzzG2zz 

+ ^lxr^2xr + G1yxG2yx 
~  2 (G i„ G 2„  +  GlzxG2zx

+  G l r z G 2 r z  +  G l z r G 2 z r ) ] -  ( 4 . 5 )

If the principal axes of the two molecules have different orientations with respect to 
the reference axes, GlaS will not in general be the same as G2m$. But for simplicity we 
take the case where the principal axes of the two molecules have the same orienta­
tions. Considering just the U'(2T {̂ )  excited level (the subscripts ' g '  and ‘u ’ are 
retained in the orbital term symbols to indicate the OJ parentage of the spin-orbit 
levels in 0 *) we use (2.4), (4.3 g), (4.3 h) and (4.5) to write

TzpTyj j* (Gity)+xi2 + ij2{^)(G2ft) +lj2 + l/2 (iu) du

= !< £ "(% )m u t/'(2n ‘.’)>i2i<£"(2r 2,)iimiic/'(2n ‘.’)>i2. <4-m

T „T rf j ’ (G lay) +■ 1/2 + 1/z(iu)(G2ti) + l/2 + ll2(iu) du

= -  6 h l *6co I < £ '(! T;,) | |» II t/-(2n , ’)> I21 <E"(2r 29) II m || m 2A ‘J »  I2. (4.66)
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etc. The total discriminatory dispersion energy may now be written V  — 
U'0( 1 +  A'/4), where A' characterizes the additional contributions from the time-odd 
tensors and takes the values —1, — |  for the states | E +>, | I I ± l>, | X “ >, respec­
tively, and

v . ,  > V M  i
4nE0J \4 n J  6hR6coU'

x \{E"{2T2g)\\n\\ U'(2T \ ^ ) \ 2 \{E"(2T2t).\\m\\ U’(2T[")>\2. (4.7a)

Similarly, the total non-discriminatory dispersion energy may be written U =  
U0(l + A/4), where A characterizes the additional contributions from the time-odd 
tensors taking the same values as A' above, and

- ( i ) 2 T 2 ^ l< r ,2 ^ )ll^ l u ',2T' “)>l‘ (4-76>

The sign difference between U0 and U'0 reflects the fact that the conventional 
contribution (i.e. from time-even tensors) to the non-discriminatory dispersion inter­
action is attractive (negative), whereas the conventional contribution to the discrimi­
natory dispersion interaction is repulsive (positive) between pairs of chiral molecules 
of the same species and same enantiom er provided the two molecules have the same 
orientation relative to the reference axes [2, 5, 15].

The results of our model calculation indicate that contributions from time-odd 
tensors to the dispersion energy, both non-discriminatory and discriminatory, could 
be within an order of magnitude of the conventional contributions from time-even 
tensors for pairs of molecules with large spin-orbit coupling. This contrasts with the 
case of interacting pairs of alkali metal atoms, where the additional contributions 
are expected to be four orders of magnitude smaller in the most favourable cases 
[11]. Notice, however, that the sum of the contributions from the time-odd tensors 
over the four possible states I Z * )  and | n ± 1 > of the interacting pair is zero, as 
anticipated quite generally from (4.2).

The isotropic case, where the molecules are free to rotate relative to each other, 
requires further consideration. In atoms, the 1 molecule-fixed ’ axes can be chosen to 
coincide with the space-fixed axes so that orientational averaging is irrelevant; and, 
as discussed by Piepho and Schatz [23, p. 89], this is usually also the case for 
molecules belonging to the cubic point groups since the Zeeman effect is usually 
isotropic. This implies that the above results for oriented molecules of cubic sym­
metry should correlate with the isotropic case. Thus averaging each tensor com­
ponent in (4.5) independently using isotropic averages such as <aâ > =  <xdafi, where 
a =  3(3** +  3tyy +  «zz)» we recover the same dispersion energies as before, but 
summed over the singlet and three triplet spin states so that the contributions from 
the time-odd tensors in U =  U0(l -1- A/4) and U' =  U’0( 1 -l- A'/4) vanish (this corre­
sponds to the fact that each time-odd tensor component has a zero classical iso­
tropic average).

5. The wave-zone limit: retardation effects
At separations much larger than the wavelengths of the molecular transitions, 

the finite speed of propagation of light leads to a cancellation of the ordinary
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dispersion energy varying as R ~ 6, being replaced by an interaction dom inated by a 
term varying as R ~ n [24]. This Casim ir-Polder potential is derived using quantum  
electrodynamics.

We consider first just the contributions from time-even tensors. Thus starting 
from equation (7.4.9) of Craig and Thirunam achandran [5] and retaining only the 
terms corresponding to contributions from virtual photons with energies much less 
than the molecular transition energies, the wave-zone non-discriminatory dispersion 
energy is found to be

and we have generalized to a transition energy as in (2.13). The superscript SL 
indicates the static limit {co -*• 0) of the tensor. In the isotropic case where the two 
molecules are free to rotate independently, this expression reduces to the usual 
C asim ir-Polder expression if m =  n [5, 24]

Similarly, the discriminatory dispersion energy between a pair of chiral molecules at 
the wave-zone separation is

X (3R % ySf> -  5R*S„ T„ +  5R ‘ T„ r wX ^ , , K X „ , ,  (5.1)

where

s „  -  V. V„ R =  ( R % ,  -  R , R f ) R - 3

U

-  21R*{T„S„ + S „ T t i ) +  45R 2S „ S „  +  8 l£„„£W iR „ R , i r 2]

X S  . 2  2  «">1 I R l . IJ 2 X J 2  I ml, I " l > -  <ml I m l,  U'l><Jl I Rl.  I" , »
il n CUf.H.

X I  IT T "  « m21 M2y \ j2 X j 2 1 m2* I «2> -  <m2 1 m2t \ j 2}<j2 1 p 2 \ n2»i, nj 2 n UJj2„2

-  [14R 6TlvTfid -  21 R \ T aySf,s +  Sxy T$i) +  45R 2SayS$i

x (<ml \ p l9\ j l X j i \ m l, \ n i '> +  < m i\ m i f \ j l y<jl I Mi.l « t »

x « m 2 \p 2r\j2}<j2 \m 2t\n2'> + <m2 \m 2i\ j2X j 2 \p 2i\n2))>. (5.3)
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Again, in the isotropic case with m =  n, this reduces to a standard expression [5]

»-(iXsXw)
X I  2 Im KWllPl.L/lX/llWl.lWl))

j i n ^ j i n

* I  rr~i— Im « n21 m2, l;'2></21 mi, I «2»- (5.4)
jl n

We now consider the new contributions from time-odd tensors. Unlike the 
near-zone situation, these have a different R-dependence from the corresponding 
time-even tensors. Thus there is a non-discriminatory term looking similar to (5.3) 
but involving only electric dipole interactions [25]: we have not bothered to write it 
down because the dependence on R ~ 9 ensures that it will usually be of no signifi­
cance relative to the conventional contribution (5.1). On the other hand, the contri­
bution from time-odd tensors to the discriminatory dispersion interaction looks 
similar to (5.1), including a dependence on R -7

-  5R*(T„Sm +  S„y rw) + 6R 2S „ S U

-  (5-5)
Since the conventional wave-zone discriminatory dispersion energy (5.3) depends on 
R ~ 9, this additional contribution between odd-electron chiral molecules could be 
several orders of magnitude larger.

A full quantum-electrodynamical treatm ent that gives complete expressions con­
taining both time-even and time-odd tensors in the near zone and the wave zone 
(including some other new terms) is given elsewhere [25].

6. Discussion
We have shown that, in favourable cases, there are additional contributions to 

the discriminating dispersion interaction between odd-electron chiral molecules 
encountering in spin eigenstates of the interacting pair that are within an order of 
magnitude of the conventional contribution. In the near zone these new contribu­
tions, which originate in the time-odd part of the molecular optical activity tensor, 
have the same R ~ 6 dependence as the conventional contributions arising from the 
time-even part. But in the wave zone, the new discriminating contributions depend 
on R “ 7, unlike the conventional discriminating contributions which depend on 
R ~ 9 : this is because the time-even part (G^)*, of the optical activity tensor does not 
have a static limit (like the time-odd part (ocs~;)mil of the polarizability tensor), 
whereas the time-odd part (G^)** does have a static limit (like the time-even part 
(oc*fi)mn of  the polarizability tensor).

Unfortunately these new discriminating contributions mutually cancel when 
summed over the singlet and the three triplet eigenstates of the interacting pair. 
However, since the dispersion interaction lifts some of the degeneracy of these states 
(we have seen that Z 7 split apart), there should be a small residual effect arising
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from population differences. In the hypothetical chiral 0 * complex considered 
above, this would reduce the conventional repulsive discriminating contribution to 
the dispersion interaction between pairs of chiral molecules of the same enantiomer 
and reduce the attractive discriminating contribution between pairs of opposite 
enantiomers. On the other hand there is the interesting possibility of manipulating 
the discriminating dispersion interaction with a magnetic field: since the field would 
split the n  ± ! states, we would expect the effects described in the previous sentence 
to be enhanced.

The magnetic field dependence of the wave zone discriminating dispersion inter­
actions in R ~7 could have interesting consequences in biological systems.

We thank the Science and Engineering Research Council for a Research Stu­
dentship for C.J.J.
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