https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

ECOLOGY OF INTERTIDAL MICROORGANISMS AND MULTIVARIATE ANALYSIS OF ANITBIOIIC AND HEAVY MEIAL SUSCEPPIIBIIITY OF DEEP-SEA BACIERIA

Farage H. EL-Ghazzewi-Eddeb

Being a thesis submitted for the degree of Doctor of Philosophy in the University of Glasgow

VOLUME 1

Department of Zoology
University of Glasgow

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10997929
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

邭郡回

In the Name of $\mathcal{A l C a h}$ ，the Benificent， the Merciful

TABLE OF CONIENIS

Page
VOLUNE 1
ACKNOLEDGEMENTS
GENERAL SUMMARY ii
GENERAL INIRODUCTION xv
SECTION 1: Cluster analysis of antibiotic and heavy metal
susceptibility of deep-sea bacteria
INIRODUCTION 1

- Antimicrobial agents sensitivity 1
- Replica plating technique 3
- Cluster analysis 3
- Measurements of similarity and distance 5
- Analysis of data matrix 6
MATERIALS AND MEIHODS 10
- Collection and culture of samples 10
- On ship 10
- In laboratory 16
- Source of bacteria 18
- Overall plan of laboratory experiments 20
- Preliminary experiments 20
- Definitive experiments 24
- Replica plating 28
- Cross-reference cultures 35
- Calculation of $\%$ isolates growing on selective media 35
- Minimum inhibitory concentration (MIC) 35
- Preparation of selective media 38
- Preliminary experiments 38
- Definitive experiments 40
Page
- Procedure used in applying cluster analysis to the deep-sea isolates 42
- Isolates selection 42
- Test selection 43
- Recording data 44
- Coding of data 44
- Computer analysis 46
- Interpretation of results 51
RESULTS 53
- Antinicrobial agents sensitivity 54
- Preliminary experiments 54
- Definitive experiments 57
- Relative toxicity of antibiotics and heavy metals 73
- Analysis of clusters formed at 50% and 72% similarity level 76
- Analysis of clusters formed at 50% similarity level 76
- Non-parametric tests 82
- Number of isolates/group at each site 82
- Number of isolates/group at each depth 85
- Parametric tests 88
- Comparison of the number of isolates/ group at each site and depth 88
- Comparison of variances in the number of isolates/group between different groups: a) for sites b) for depths 91
- Comparison of variances in the number isolates/site with variances in the number of isolates/depth 95
- Clusters formed at 72% similarity level 97
- Statistical analysis of clusters formed at 72\% similarity level 113
- Cluster by sites 113
- Variation in number of isolates between sites for each group 117
- Variation in number of isolates between groups for each site 117
- Comparison of the number of isolates between sampling sites 117
- Cluster by depths 120
- Variation in number of isolates between depths for each group 120
- Variation in number of isolates between groups for each depth 124
- Comparison of the number of isolates between sampling depths 124
- Relationshipbetweenisolatesofeachgroup obtained from sediment, burrow linings and faecal pellets 133
- Description and interpretation of figures 18 to 23 drawn from 72% similarity level data 138
- Variation in the number of sediment isolates between groups at each sampling site 138
- Variation in the number of sediment isolates of each group, between sampling sites 140
- Variation in the number of sediment isolates between groups at each sampling depth 145
- Variation in the number of sediment isolates of each group, between sampling depths 149
- Interrelationshipsbetweensimilaritymeasure, number of isolates/group, number of groups, the coefficient of variation, and the number of single isolates 157
- Clustering of variables 175
DISCUSSION 179
- Antimicrobial agents sensitivity 180
- Preliminary experiments 180
- Definitive experiments 182
Page
- Cluster analysis 189
- Cluster analysis at 50\% similarity level 191
- Varaition in the number of isolates between groups, between sites, and between depths 191
- Comparison offariancesbetween sampling sites and depths for each group 191
- Cluster analysis at 72% similarity level 193
- Statistical analysis of clusters formed at 72\% similarity level 196
- Variation in the number of isolates between groups, between sites and between depths 196
- Comparison of the number of isolates between sampling sites and between depths 199
- Comparison of the number of isolates obtained from sediment, burrow linings and faecal pellets 202
- Clustering of variables 205
SUMMARY 211
SECTION 1 APPENDICES
Appendix A 217
- Toxicity of heavy metals to bacteria 217
- Resistance of bacteria to heavy metals 219
- History of antibiotics 221
- Resistance of microorganisms to antibiotics 221
- Mode of action of antibiotics 225
- Inhibition of cell wall synthesis 225
- Inhibition of cell membrane function 228
- Inhibition of nucleic acid properties and function 232
- Inhibition of protein synthesis 233
Appendix B 250
- Analysis of the normality distribution of the number of bacterial isolates clustered at $50 \% \mathrm{~S}$
Page
and the selection of a suitable transformation method 250
- Analysis of normality 250
- Graphic method for analysing normality 250
- The relationship between mean and standard deviation 251
- The selection of a suitable transformation method 251
Appendix C 277
- Parametricand non-parametricstatistics and the use of Spearman's rank order correlation coefficient 277
Appendix D 280
- Homogeneity of variance 280
- Bartlett's test 280
- Hartley's Fmax-test 280
- Log-anova or Scheffe'-Box test 280
- Levene's test 281
Appendix E 297
- Clustering of variables 297
VOLUME 2
SECIION 2: Annual survey of microorganisms in intertidal sediments and
seawater at Ardmore, Clyde Estuary
INIRODUCTION 320
- Marine bacteria 320
- Yeasts 322
- Fungi 323
- Microorganisms counting 324
- Clyde estuary 325
- Pollution in the Clyde estuary 326Page
- Distribution of marine and estuarine microorganisms in the Clyde sea area 326
MATERIALS AND METHODS 331
- Sampling site and sampling collection 331
- Enumeration of microorganisms 331
- Heterotrophic bacteria 331
- Yeasts and fungi 334
RESULTS 336
- Bacteria 336
- Yeasts 347
- Fungi 359
DISCUSSION 369
- Bacteria 370
(i) Seasonal periodicity and abundance in overlying and interstitial water 370
(ii) Variation in bacterial abundance with sediment depth and seasonal variation between depths 373
- Yeasts 375
(i) Seasonal periodicity and abundance in overlying and interstitial water 375
(ii) Variation in yeast abundance with sediment depth and seasonal variation between depths 377
- Fungi 378
(i) Seasonal periodicity and abundance in overlying and interstitial water 378
(ii) Variation in fungal abundance with sediment depth and seasonal variation between depths 379
SUMMARY 381

SECIION 3: The use of API test kits and their function on marine and non-marine isolates and on sediments

Page
INIRODUCTION 385

- Biochemical tests 385
MATERIALS and METHODS 389
- API ZYM
- Experiment No. 1 389
- Experiment No. 2 389
- Experiment No. 3 391
- Experiment No. 4 393
- API 20E and 20NE
- Experiment No. A 395
- Experiment No. B 396
- Experiment No. C 398
- Experiment No. D 399
RESULTS 400
- Experiment No. 1 400
- Experiment No. 2 400
- Experiment No. 3 407
- Experiment No. 4 418
- Experiment A 432
- Experiment B 432
- Experiment C 449
- Experiment D 450
DISCUSSION 458
- Experiment No. 1 458
- Experiment No. 2 459
- Experiment No. 3 459
Page
- Experiment No. 4 460
- Experiment A 462
- Experiment B 463
- Experiment C 465
- Experiment D 468
SUMMARY 469
APPENDICES
- Section 2 appendix 473
- Section 3 appendix 476
REFERENCES 482

LIST OF TABLES

SECIION 1

Page
Table 1 13
Table 2 21
Table 3 22
Table 4 23
Table 5 27
Table 6 33
Table 7 37
Table 8 65
Table 9 68
Table 10 72
Table 11 74
Table 12 75
Table 13 77
Table 14 78
Table 15 79
Table 16 83
Table 17 84
Table 18 86
Table 19 87
Table 20 89
Table 21 90
Table 22 93
Table 23 94
Table 24 96
Table 25 98
Table 26 99
Table 27 114
Table 28 115
Table 29 116
Table 30 118
Table 31 119
Table 32 121
Table 33 122
Table 34 123
Table 35 125
Table 36 127
Table 37 132
Table 38 134
Table 39 137
Table 40 137
Table 41 144
Table 42 155
Table 43 158
Table 44 160
Table 45 197
SECTION 2
Table 1 337
Table 2 346
Table 3 349
Table 4 353
Table 5 362
Table 6 363
Page
Table 1 390
Table 2 401
Table 3 402
Table 4 405
Table 5 406
Table 6 413
Table 7 414
Table 8 415
Table 9 416
Table 10 417
Table 11 422
Table 12 423
Table 13A 424
Table 13B 424
Table 14A 427
Table 14B 427
Table 15 428
Table 16A 429
Table l6B 429
Table 17 430
Table 18 431
Table 19 434
Table 20 435
Table 21 438
Table 22 439
Table 23 441
Table 24 444
Table 25 445
Table 26 446
Table 27 447
Table 28 452
Table 29 453
Table 30 455
LIST OF FIGURESSECTION 1
Figure 1 11
Figure 2 12
Figure 3 17
Figure $4 A$ 25
Figure $4 B$ 26
Figure 5 29
Figure 6 36
Figure 7 55
Figure 8 56
Figure 9 58
Figure 10 59
Figure 11 60
Figure 12 61
Figure 13 63
Figure 14 64
Figure 15 81
Figure 16 103 103

LIST OF PLATES

SECTION 1
Page
Plate 1: Spade-box corer used to collect undisturbed deep-sea sediment 14
Plate 2: Spade-box corer used to collect undisturbed deep-sea sediment 15
Plate 3: Master replica plates prepared by inoculating 52 isolates and incubated at $10^{\circ} \mathrm{C}$ for 7 days 30
Plate 4: The method used to print master replica plates on velvet square, and how to stamp a series of selective media plates on inoculated velvets 32
Plate 5: Structure of the cell wall of Gram-positive and Gram-negative bacteria 227
Plate 6: Structure of the peptidoglycan in the cell wall of Staphylococcus aureus 229
Plate 7: Structure of the microbial cell membrane 230
SECTION 2
Plates 1 and 2: Study area at Ardmore Point in the Clyde Estuary 333
SECIION 3
Plate 1: API ZYM strips containing sediment from a range of depths ($0,5,10,20$ and 35 cm) 412
Plate 2: API ZYM strips containing untreated, membrane filtered, boiled, and autoclaved overlying water 420
Plate 3: API ZYM strips containing untreated, membrane filtered, boiled, and autoclaved interstitial water 421
Plate 4: Decrease in colour intensity with increasing dilutions of cell suspensions of Vibrio fischeri using the API 20E system 437
Plate 5: API 20E strips inoculated with different dilutions of Micrococcus sp. 437
Plate 6: Decrease in colour intensity with increasing dilutions of cell suspensions of Aeromonas hydrophila using the API 20E system 440
Plate 7: Decrease in colour intensity with increasing dilutions of cell suspensions of Escherichia coli using the API 20E system 440
Plate 8: The difference in API 20E profiles of the strains Vibrio fischeri, Micrococcus, Aeromonas hydrophila, and Escherichia coli after 24 hours 443
Plate 9: API 20NE strips inoculated with different dilutions of Micrococcus sp. 443
Plate 10: API 20NE strips inoculated with different dilutions of Aeromonas hydrophila 448
Plate 1l: API 20NE strips inoculated with different dilutions of Escherichia coli 448
Plate 12: The difference in API 20NE profiles of the strains Vibrio fischeri, Micrococcus, Aeromonas hydrophila, and Escherichia coli after 24 hours 451
Plate 13: The difference in colour intensity in cupules of API 20 E inoculated with a series of dilutions ($10^{0}-10^{-4}$) of Escherichia coli suspensions 451
Plate 14: The difference in colour intensity between 10^{-1} and 10^{-4} dilutions of Escherichia coli suspensions 454
Plate 15: Comparison of the results of the API 20NE system between two workers and two cell concentrations 456Plate 16: Series of photographs of API 20E stripsinoculated with different dilutions of aMicrococcus suspensions. Showing falseresults for the carbohydrate tests due tointerference by the gases produced by thedeveloping reagents466

ACKNOWLEDGENIENIS

I am most grateful to Mr P. S. Meadows for his invaluable supervision, advice and helpful comments on the work reported in this thesis. I would also like to thank Miss J. I. Campbell for her help and kindness during my study in Glasgow.

I am most grateful to Dr R. Millar for his preparation of material for the research cruise during which the deep-sea isolates were obtained. I am also most grateful to him for his training, practical help and criticism during my conduct of the antibiotic and heavy metal susceptibility work. I am also grateful to Dr J. Tait for advice, and for reading large parts of my thesis and correcting grammatical mistakes.

All of the sampling and initial isolation of the deep-sea bacteria on board ship was conducted by Dr J. Tait and Mr P. S. Meadows. I am most grateful to them both for providing me with the initial isolates on which my research work was conducted.

I would like to thank Professor K . Vickerman and Professor R. S. Phillips in whose department this work was carried out.

I thank Dr N. Spurway, Miss D. Deeney, Mr A. Reichelt, Miss A. Tufail, Dr P. Shand, Miss L. Davidson, Dr A. Girling, Dr S. Hussain, Mr M. Hariri, Mr I. Saleh, Dr H. Mgnerbi, Miss P. McLaughlin and Mrs I. Hillal who all discussed many aspects of research with me, and have helped in many other ways.

I acknowledge the practical assistance given by the technical staff of the Zoology department especially Mr G. Brown, Mrs E. Denton, Mr W. Orr, Mr K. Ensor, Mr P. Rickus and Miss C. McLagan. I also thank Miss M. McIlroy and Mr M. Murthy who typed some of the manuscript.

Finally, I wish to thank Professor A. Huni (Marine Biology Research Centre-Tripoli) who offered me the opportunity to come to Glasgow and carry out this work.

Deep-sea bacterial isolates from 5 sites in the N. E. Atlantic have been classified on the basis of their ability to grow in metal and antibiotic containing media at various concentrations, using a replica plating technique. The minimum inhibitory concentrations of antimicrobial agents for bacteria were determined and data submitted to cluster analysis.

Cluster analysis was applied to split up a total of 843 deep-sea isolates into a number of groups depending on their antibiotic and metal salt resistance. Boundary lines were drawn across the dendrogram at different similarity levels and a number of groups were obtained. All groups clustered at or above 72% similarity level were drawn as a shaded triangles in my final diagram of the cluster analysis. The distance measure used in cluster analysis was the Euclidean distance squared. It was also transformed into percentage similarity (\%S).

The maximum number of isolates (107) occurred in cluster 12, while the minimum number (ll) occurred in cluster 11 . Only $1 / 3$ of the clusters contained isolates from all the sampling sites. The number of isolates in each of the groups between sites and between depths was compared. Significant correlations were found between sites 2 and 4 and between sites 4 and 5 . However, a large number of significant correlations were found between the sampling depths.

A total of 561 isolates were obtained from the sediment samples in contrast to 143 and 139 isolates from burrow linings and faecal pellets respectively. The difference between the number of isolates/group in sediment, burrow linings and faecal pellets was analysed. A highly significant variation was found. 11 of the 21 clusters could be presumptively identified as they clustered with the reference cultures used.

Cluster analysis was also applied to antibiotics alone (7 variables), to the heavy metals alone (6 variables) and to the antibiotics and heavy metals together (13 variables). The results showed that antibiotics classified into two distinct clusters due to their mode of action on Gram-positive or Gram-negative bacteria. Heavy metals calssified into one distinct cluster based on the mode of action on bacterial cell. Clustering of antibiotics and heavy metals together showed three distinct clusters and metal resistance was associated with the resistance to antibiotics.

A bacteriological survey of Ardmore Point (Clyde Estuary) has been carried out over a period of 13 months. Samples have been taken monthly using a coring technique. Heterotrophic bacterial, fungal and yeast counts have been made on different media using the spreadplating method.

API ZYM test-kits have been applied to intertidal sediments from Ardmore in an attempt to classify them biochemically by their enzyme reactions. API 20 E and API 20 NE have been applied to marine and non-marine isolates in order to test their accuracy in identifying marine bacteria.

GENERAL SUMMARY

SECTION 1

1- The aim of my work in this section was to study the toxicity effects of heavy metals and antibiotics on deep-sea sedimentary bacteria and to apply a cluster analysis to the data in order to classify the isolates into groups.

Deep-sea bacteria used in this study were obtained from deepsea sediment collected at 5 sites around the Rockall Trough area of the North East Atlantic. Isolates were grown on ZoBell agar medium at $10^{\circ} \mathrm{C}$.

A number of standard reference cultures were also used. These cultures were obtained from the National Collection of Marine Bacteria (NCMB), the National Collection of Industrial Bacteria (NCIB), and the National Collection of Type Cultures (NCTC). Additional isolates were supplied by Professor A. Wardlaw of the department of microbiology at Glasgow University.

Preliminary experiments were conducted to select the suitable concentrations of antimicrobial agents in the definitive experiments.

All antimicrobial agents tested were able to suppress the growth of some members of the bacterial population.

Increasing concentration of the antimicrobial agents were found to decrease the number of isolates which grew.

Mercury was the most toxic metal and manganese the least toxic.

Chloramphenicol and polymyxin B were the most toxic antibiotics and nalidixic acid the least toxic.

The relative toxicity of antibiotics and the relative toxicity of heavy metals were studied using student's t-tests. The
results showed that 5 out of 21 comparisons showed a significant difference in the toxicity between antibiotics while 12 out of 15 comparisons showed a significant difference in the toxicity between metals. Therefore, in general, heavy metals showed more significant difference in the toxicity between pairs of metals than antibiotics. through the antibiotic and metal salt system and a series of "Reference Resistance Profiles" were generated. It was hoped to broadly classify the previously grouped unknown isolates on the basis of their relationship to the reference cultures.

At each similarity level, a number of groups were obtained. For example, at 50% and 72% similarity levels, 11 and 21 groups were obtained respectively.

The results of Chi-square tests to compare the number of isolates between groups for each site, between sites for each group, between groups for each depth, and between depths for each
group at 50% showed highly significant variation in each case. depths was statistically analysed using Bartlett's and F-max tests. The results showed that there were no significant differences between overall site variances and overall depth variances for the 11 groups.

When groups or clusters were compared (using F-ratio) with respect to the variance in the number of isolates present between sites, it was found that only 2 groups were significant (2 and 4). Similarly when groups were compared (using F-ratio) with respect to depth variances, it was found that significant differences occurred in 10 out of 55 comparisons.

The variances of number of isolates/site with variances of number of isolates/depth were compared using F-ratio tests. The results showed that in general, there was no significant differences between site and depth variances for each of the 11 groups (only 2 out of 11 tests were significant).

72\% similarity level was selected to produce my final dendrogram. All groups (21) clustered at or above this level were drawn as shaded triangles of the cluster analysis.

The maximum number of isolates (107) occurred in cluster 12, while the minimum number (11) occurred in cluster 11.

Only $1 / 3$ of the clusters contained isolates from all the sampling sites.

11 of the 21 clusters could be presumptively identified as they clustered with the reference cultures used.

Chi-square tests were used to test the variation in the number of isolates between sites for each group, groups for each site, depths for each group, and groups for each depth at 72\%
similarity level. The results showed that there was statistically significant variation in most of cases.

25and between depths was compared using Spearman's rank order correlation tests. The results showed that only significant correlation were found between sites 2 and 4 and between sites 4 and 5. However, a large number of significant correlations were found between the sampling depths.

A total of 561 isolates were obtained from the sediment samples in contrast to 143 and 139 isolates from burrow linings and faecal pellets respectively.

The difference between the number of isolates/group in the sediment, burrow linings, faecal pellets, and data combined (total) was analysed using Chi-square tests. The results showed that all tests were highly significant.

The difference in the number of isolates between groups for sediment and burrow linings + faecal pellets was analysed using Chi-square tests. A highly significant variation in the number of isolates was found.

29groups for burrow linings and faecal pellets was analysed using Chi-square tests. A highly significant variation in the number of isolates was found.

30- The distance measure used in cluster analysis was the Euclidean distance squared. It has been transformed into percentage similarity $(\% S)$. The difference between these two measures is that "similarity" take values between 1 (i.e. 100\% similarity) and 0 (i.e. 0% similarity), and "distance measure" can take any positive value from 0 (i.e. no difference) upwards as difference increases.

31- The relationships between the percentage similarity and number of isolates/group, the number of groups (including single isolates), the number of groups (excluding single isolates), the number of single isolates and the coefficient of variation of number of isolates/group were studied and the following conclusions were made:
(a) As the percentage similarity increased, the number of isolates/group decreased.
(b) The number of groups including single isolates increased exponentially with increasing percentage similarity.
(c) The number of groups excluding single isolates increased with increasing percentage similarity to 99.9%, after which it decreased again.
(d) The number of single isolates increased with increasing percentage similarity.
(e) The coefficient of variation of number of isolates/group fluctuated with percentage similarity.

32- Similar conclusions can be drawn from the Euclidean distance measure.
(a) As the Euclidean distance increased, the number of isolates/group increased.
(b) Conversely, the Euclidean distance decreased exponentially with the number of groups including single isolates.
(c) Excluding single isolates, the number of groups clustered increased with decreasing Euclidean distance to 0.001 , after which it decreased again.
(d) The number of single isolates decreased with increasing Euclidean distance measure.
(e) The coefficient of variation of number of isolates/group
fluctuated with Euclidean distance.
33Cluster analysis was applied to the antibiotics alone (7 variables), to the heavy metals alone (6 variables), and to the antibiotics and heavy metals together (13 variables).
(a) Clustering of antibiotics, showed that antibiotics classified into two distinct clusters due to their mode of action on Gram-positive or Gram-negative bacteria. Two antimicrobial agents remained unclustered.
(b) Clustering of heavy metals, showed that three metals were clustered in one distinct cluster. The other metals used remained unclustered. Heavy metals were clustered based on the mode of action on bacterial cell.
(c) When cluster analysis was applied to all antimicrobial agents together, it was concluded that there were three distinct clusters and metal resistance was associated with the resistance to antibiotics.

SECIION 2

The aims of my work in this section were to estimate the seasonal viable counts of heterotrophic bacteria, yeasts and fungi in overlying, interstitial waters and sediments (vertical profiles) at Ardmore, Clyde Estuary.

BACTERIA
1- The relationship between numbers of bacteria in overlying and interstitial water at Ardmore Point over a period of thirteen months was studied. The results showed that the numbers of bacteria in interstitial water were higher than that of overlying water.

In overlying water, a peak in bacterial numbers was shown in February 1984, while in interstitial water, number of marked peaks of bacterial numbers were in March and between April-November
1984. sediment depths was studied. The following conclusions were made.
(a) The numbers of bacteria were greatest at the surface sediment and tended to decrease with depth.
(b) At the surface sediment, peaks of high levels of bacteria occurred in February, April, August and November 1984 and in January 1985.
(c) At 5 and 10 cm sediment depth, similar ranges of bacterial numbers occurred.
(i)- At 5 cm depth, three peaks occurred in FebruaryMarch, and August 1984 and in January 1985.
(ii) - At 10 cm depth, two peaks occurred in March and June 1984.
(d) At 20 and 35 cm depth, much lower numbers of bacteria were found than at 5 and 10 cm depth.
(i) - At 20 cm depth, three minor peaks occurred in MarchApril, July-August and in January 1985.
(ii) - At 35 cm depth, only one peak of bacterial numbers occurred in August 1984.

The variation in the numbers of bacteria with depth for each month from February 1984 to February 1985 was studied. The results showed that in general, the patterns of decreasing numbers of bacteria with depth was similar for all months except for surface sediment which showed high levels of bacteria in February, April, August, November 1984 and in January 1985.

The bacterial numbers at each sampling depth were compared using all data collected over thirteen months. This was carried out using regression analyses and sudent's t-tests. The bacterial
numbers at each depth were also plotted against the other depths (e.g. surface against the other depths). The results showed the following.
(i) A direct relationship in bacterial numbers occurred in all cases with only a few exceptions as follows.
(ii) An indirect relationship was found in the comparisons of surface- 10 cm and surface -35 cm depth.
(iii) No significant relationship was found in the $5-10 \mathrm{~cm}$ comparison.
(iv) The t-tests showed a significant difference in bacterial numbers between all depths with the exception of $5-10 \mathrm{~cm}$, where no significant difference was found.

The relationship between the numbers of bacteria (C.F.U.) in overlying and interstitial waters and incubation time (days) for the month of July 1984 was investigated. The results showed that bacteria in overlying water reached a maximum growth after 20 days, while in interstitial water, the maximum growth was after only 7 days.

The relationship between the numbers of bacteria (C.F.U.) in sediment from different depths, and incubation time (days) was also studied. The results showed that in general, there was a decrease in bacterial numbers with sediment depth at each incubation time. In addition at greater sediment depths there was a less pronounced increase in bacterial growth with increasing incubation time. The maximum growth was always reached approximatley after 15 days incubation.

YEASTS

1- The relationship between numbers of yeasts in overlying and interstitial waters at Ardmore Point over a period of thirteen months was studied. The results showed that interstitial water
contained significantly higher numbers of yeasts than overlying water.

In overlying water, 4 peaks of yeast numbers were shown in February, April and August 1984, and in January 1985, while in interstitial water, 3 peaks of yeasts were shown in May, August and October 1984.

The variation in numbers of yeasts in sediment at different depths was studied. The results showed the following conclusions.
(a) The numbers of yeasts were greatest at the surface sediment and in general, tended to decrease with depth.
(b) At the surface sediment, peaks of high levels of yeasts occurred in November with lesser peaks in March and September 1984 and in January 1985.
(c) At 5 cm depth, maximum numbers of yeasts were found in February 1985.
(d) At 10 cm depth, maximum numbers were found in June 1984.
(e) At 20 cm and 35 cm depth, similar curves were found although peaks occurred at slightly different times of the year (August at 20 cm and July at 35 cm).

The variation in the numbers of yeasts with depth for each month from February 1984 to February 1985 was studied. The results showed that in general, the patterns of decreasing numbers of yeasts with depths was similar for all months with the exception of February, March, June, July and August which showed peaks of numbers of yeasts at 10 cm and 20 cm depth.

The yeast numbers at each sampling depth were compared using all data collected over thirteen months. This was carried out using regression analysis and student's t-tests. the yeast numbers at each depth were also plotted against the other depths (e.g.
surface against the other depths). The results showed the following.
(a) Highly inversely significant relationships were found with all the surface comparisons.
(b) There were no significant relationships between all the other depths with exception of $20 \mathrm{~cm}-35 \mathrm{~cm}$ depth which showed a direct significant relationship.

FUNGI

1-
The relationship between numbers of fungi in overlying and interstitial waters at Ardmore Point over a period of thirteen months was studied. The results showed similar seasonal abundance with overlying and interstitial waters and the ranges in fungal abundance were close in both samples.

2-
In general, there were 3 peaks of fungal growth for both overlying water (February, July and November 1984) and interstitial water (February-March, and November 1984).

The variation in the numbers of fungi at different sediment depths was studied. There was no clear decrease in the numbers of fungi with depth. The results also showed at all depths, there were 2 peaks of high numbers of fungi (February 1984 and MayAugust) .

4- The variation in the numbers of fungi with depth for each month from February 1984 to February 1985 was studied. The results showed no clear pattern of decreasing numbers of fungi with depth.

SECTION 3

1- The aim of my work in this section was to apply the API ZYM, API 20E, and API 20NE systems to marine and non-marine samples in a number of experiments. The samples consisted of intertidal sediment and marine and non-marine named bacterial isolates.

An experiment was conducted to determine the quantity of
sediment dispensed from a pasteur pipette into each API ZYM cupule. Statistical analysis using two-way analyses of variance showed that in both the first and second replicate experiments there was no significant variation between drops or pipettes. incubation time of inoculated API ZYM strips using intertidal surface sediment. The results of this experiment suggested that the highest amount of hydrolysed substrate in most cupules occurred in the time between $10-20$ hours of the first incubation and between 5-20 hours of the second incubation time.

Student's t-tests were applied to the data and showed that there were differences between the first incubation times in most cupules. However, in the second incubation times, there was no significant variation.

An experiment was conducted to determine how soon after addition of API ZYM reagents colour developed and reached a maximum intensity. A two-way analysis of variance applied to the data showed possible statistical interaction. Subsequent one-way analyses showed a highly significant variation between cupules at a depth of 5 cm . However, there was no significant variation between cupules at $10 \mathrm{~cm}, 20 \mathrm{~cm}$ and 35 cm depth. At the surface, there was only possible variation between cupules. One-way analyses of variance also showed a significant variation between depths with cupules 2 and 6. However, with cupules 7 and 11, there was no significant variation between depths.

The variation in time at the which maximum score was reached was studied. Two-way analysis of variance showed that there was a significant variation between depths, but that there was no significant variation between cupules. noticed in API ZYM cupules was produced by membrane filterable products and if so, whether these products were heat stable or heat labile. The results showed that for both overlying and interstitial water, there is no difference between control and membrane filtered seawater and no difference between boiled and autoclaved seawater. The results also showed that there are significant differences between the cupules, and the activity is not affected by membrane filtration but is abolished by boiling and autoclaving.

Statistical analysis comparing overlying water with interstitial water (control and membrane filtered) for each cupule, showed a highly significant variation between overlying and interstitial water samples in 3 out of 5 cupules. In these 3 cupules, the activity in the interstitial water was greater than that in the overlying water. marine and non-marine bacteria. The results showed the following conclusions:
(a) The number of cells increased with increasing incubation time up to 12 hours and the non-marine strains showed a greater increase in the number of cells than marine strains.
(b) The log phase of all strains started just before 6 hours, with the exception of Escherichia coli which reached slightly earlier.
(c) The stationary phase of all strains examined was always reached after 12 hours, with the exception of Aeromonas hydrophila which reached the stationary phase after 18 hours.
effect of bacterial cell concentration on the kit-system reaction was also tested. The results showed the following conclusions.
(a) With the API 20E system and after 24 hours, all the strains gave some positive results and in general, the colour intensity decreased with increasing dilutions of cell suspension. The exception to this was Micrococcus sp. which gave negative results with all the tests.
(b) The results with Vibrio fischeri, Aeromonas hydrophila and Escherichia coli showed little change after 48, 72 and 96 hours except in the carbohydrate tests which were affected by the added reagents.
(c) With the API 20NE system and after 24 hours, the marine strains Vibrio fischeri and Micrococcus sp. gave two and one positive result respectively. The non-marine strains Aeromonas hydrophila and Esherichia coli gave numerous positive results.
(d) After 48, 72 and 96 hours of incubation, the strains Vibrio fischeri and Micrococcus sp. showed only a few positive results in the conventional tests. However, after 72 and 96 hours, there were many positive results (growth) in the assimilation tests at the high cell concentrations.
(e) With the strains Aeromonas hydrophila and Esherichia coli, there were more positive results after 48, 72 and 96 hours than at 24 hours. The majority of these positive results were from the assimilation tests.

Preliminary and definitive experiments were conducted to test the effect of the number of Escherichia coli cells and incubation time on the API 20E system. The results demonstrated that colour intensity decreased with increasing dillutions after 24 hours.

GENERAL INIPODDCIION

Microorganisms in soil and sediments belong to many different groups in the plant and animal Kingdoms (ZoBell, 1946; Burges, 1958; Wood, 1965; Alexander, 1977). In the plant Kingdom fungi, algae, bacteria and actinomycetes are the most abundant. In the animal Kingdom protozoa, flagellates and minute metazoan organisms are widely distributed in marine deposits. This study is mainly concerned with marine bacteria. Bacteria living in the sea are different from those in fresh water, and bacteria of the rivers are different from those in lakes (Rheinheimer, 1985). Most of the aquatic bacteria are heterotrophic (i.e. live on organic substances). Bacteria may exist in the water unattached, or attached to solid materials (Meadows, 1964; 1965; Goulder, 1977). Bacteria and fungi play an important role in the food cycle by synthesising cell substances and converting waste or dissolved organic matter into a particular form which can be used as food for the sea bed fauna (ZoBell, 1938; 1946; Wood, 1965; Rheinheimer, 1985).

Observations made during the Galathea Expedition of 1950-1952 demonstrated for the first time the presence of living bacteria in sediment samples obtained at depths greater than 6000 m (ZoBell, 1952 a; 1954). Because of the sampling difficulties, bacteria at this depth have not been extensively studied. At shallower depths, many investigators have reported the presence of living bacteria (Bortholomew and Rittenberg, 1949; Morita and ZoBell, 1955; Meadows and Tait, 1985). ZoBell, (1952a,b) reported that in the period 19481950, bacteria were isolated from sediment obtained from the floor of the Atlantic Ocean and the mid-Pacific Ocean at depths of 5800 and 5300 m respectively. Bortholomew and Rittenberg (1949) reported the presence of Gram-positive, spore-forming, rod-shaped thermophilic bacteria (growth at $60{ }^{\circ} \mathrm{C}$) in deep-ocean bottom cores.

In contrast, in inshore environments, a great deal of work has been done on the bacterial population (Lloyd, 1931; Meadows, 1964; 1965; 1966; Meadows and Anderson, 1968; Anderson and Meadows, 1969; Dale, 1974; Ezura et al., 1974; Litchfield and Floodgate, 1975; Goulder, 1977; Goulder et al., 1979; Anderson et al., 1980; Meadows et al., 1980; Kennedy, 1984).

Bacterial flora have been studied since early times and occurs not only in seawater, but in the mud and sand of the sea bottom. Drew (1911) found that shallow coastal water in the tropics was rich with bacteria. This was because the mud flats below were unusually rich in bacteria. Lloyd (1931) investigated the bacterial content of mud deposits in the Clyde sea area. The author found the numbers of bacteria in mud decreased with increasing sediment depth, and these numbers fluctuated very much in the top mud layers. More recently, Meadows and Tait (1985) found this phenomenon in deep-sea sediments.

Meadows (1964) observed that distilled water induced many bacteria to separate from the surfaces of particles of marine sand. Meadows (1965) continued examining the attachment of aquatic bacteria to surfaces under experimental conditions. The author found that in rivers and estuaries, marine bacteria will only remain attached to solid surfaces when tidal flow produces water of high salinity, while fresh water bacteria will only remain attached up-rivers where salinity is low.

Wright and Coffin (1983) found that the total number of bacteria in the tidal areas of the river estuaries on the East coast of North America, was much higher than in the adjacent limnic and marine areas. The authors deduced that in the warmer seasons, a concentration of nutrients caused by mixing processes, led to this phenomenon.

The total bacterial numbers in coastal waters of the North and Baltic seas, were investigated and were found to range from one hundred thousand to several millions (Rheinheimer, 1985).

Fuller accounts and a more detailed literature review are given in the introduction to sections 1,2 and 3.

Plan of thesis

The work reported in this thesis is divided into three sections as follows:

Section 1

Deep-sea bacterial isolates from 5 sites in the N. E. Atlantic have been classified on the basis of their ability to grow in metal and antibiotic containing media at various concentrations, using a replica plating technique. The minimum inhibitory concentrations of antimicrobial agents for bacteria were determined and data submitted to cluster analysis using the University main frame computer.

Section 2

A bacteriological survey of Ardmore Point (Clyde Estuary) has been carried out over a period of 13 months. Samples have been taken monthly using a coring technique. Heterotrophic bacterial, fungal and yeast counts have been made on different media using the spread-plating method.

Section 3

API ZYM test-kits have been applied to intertidal sediments from Ardmore in an attempt to classify them biochemically by their enzyme reactions. API 20E and API 20NE have been applied to marine and non-marine isolates in order to test their accuracy in identifying marine bacteria.

In each section, the figures, tables and plates are numbered from one onwards. (For example, the reference to figure 5 in section 1 , refers to figure 5 of that particular section).

SECTION 1

Cluster analysis of antibiotic and heavy metal susceptibility of deep-
sea bacteria
combining with cellular proteins and denaturing them (Pelczar and Reid, 1972; Summers and Silver, 1972; Vallee and Ulmer, 1972; Cole, 1977). For example, mercuric chloride inhibits enzymes containing the sulfnydryl grouping. Salts of heavy metals are also protein precipitants, and in high concentrations such salts could cause the death of a cell.

The mode of action of dyes is obscure. however, a reasonable assumption is that their action is through combination with cellular macromolecules (i.e. acridine dyes are known to bind to nucleic acids). In general, Gram-positive bacteria are more susceptible to dyes than Gram-negative. This/probably due to the difference in the cell wall structure of both kinds of bacteria.

A detailed accounts of the action of antibiotics and heavy metals on bacterial cells is given in appendix A p. 217-235.

The aim of my work was to classify by cluster analysis bacterial populations that had been isolated from deep-sea sediments into a number of groups depending on their antibiotic and metal salt resistance. Two series of experiments were conducted for this purpose. The first are called the preliminary series of experiments, the second are called the definitive series. The results of the preliminary experiments were used to select more suitable concentrations of antimicrobial agents in the definitive experiments.

A number of standard reference strains have also been included, so that a series of reference resistance profiles can be generated. It would then be possible to identify the unknown isolates previously grouped on the basis of their relateness to standard reference strains.

For each of the 843 deep-sea isolates and 27 reference cultures, the minimum inhibitory concentration (MIC) with each
antimicrobial agent was determined in order to submit this data to a cluster analysis using the University main frame computer.

One could in future compare deep-sea results with that of shallow water bacteria.

Replica plating technique

The technique used for the antimicrobial agent experiments was the replication of pure cultures onto ZoBell agar plates containing wide ranges of antimicrobial agent concentrations. The technique of replica plating was introduced by Lederberg and Lederberg (1952). It is based on the transfer of isolates from one initial agar plate to a series of selective agar media. Replica plating was used in this study in order to estimate the frequency of antibiotic and metal resistant profiles of the bacteria recovered from deep-sea sediments.

Several studies have been carried out using this rapid and economic technique (Harris, 1963; Corlett et al., 1965; Shiaris and Cooney, 1983). Corlett et al. (1965) used the replica plating technique for a quantitative identification of microbial flora in food. The authors have used the technique in order to allow a large number of isolates examined without an accompanying increase in labofr and inoculate 12 selective media for the identification purpose. Shiaris and Cooney (1983) found that the replica plating method was useful as a tool to screen large number of colonies and to estimate the relative numbers of potential phenanthrene utilizers and cometabolizers in natural populations.

Cluster analysis

In this account, I firstly make some general statments about cluster analysis and its efficiency in identifying bacterial isolates. I then describe the two major parts of any cluster analysis:
similarity coefficients (similarity and distance measure) and the method of clustering (analysis of data matrix). Finally I review some important papers in the field.

Cluster analysis is a branch of numerical taxonomy used to sort out a number of cases into groups depending on the degree of association between members. The method suggested by Sneath (1957a,b) for analysing a large bulk of data was to count the number of similar and dissimilar characters between isolates, and then to sort the isolates into groups whose members have a high percentage of similarities. The method has been used with great success in recent years in microbial classification. The first who applied numerical taxonomy to microorganisms was Sneath (1957a,b) and Sokal and Sneath (1963). Since then remarkable progress has been made by many investigators (Pfister and Burkholder, 1965; Sneath and Sokal, 1973; Bonde, 1975; Hauxhurst et al., 1980; Austin et al., 1981; HolderFranklin et al., 1981; Lee et al., 1981; Sneath et al., 1981; Austin, 1982; Allen et al., 1983; Bridge and Sneath, 1983; Knivett et al., 1983; West et al., 1983; Williams et al., 1983; West et al., 1984; Austin and Moss, 1986; Baya et al., 1986; Gil et al., 1986; Marquez et al., 1987).

Beers et al. (1962) attempted to determine the relationships among 54 strains of bacteria including the gener Achromobacter, Aerobacter, Alcaligenes, Escherichia, Mima, Pseudomonas, Serratia and Streptococcus using computer methods. They suggested that the use of distance rather than similarity values may be better for elucidating relationships among groups of organisms. Bascomb et al. (1973) also applied a computer program to identify 1079 reference cultures of Gram-negative aerobic bateria. A comparison of conventional methods and the computer identification showed that 90.8% of fermentative and

82\% Of non-fermentative isolates could be identified. Friedman et al. (1973) used a fortran computer program to assist in the identification of dextrose-fermenting Gram-negative rods isolated from clinical sources. The program correctly identified the unknown clinical isolates in more than 99\%. The work of Bascomb et al. (1973) and Friedman et al. (1973), therefore, show clearly that between 80% and 99% of bacteria are likely to be correctly identified using the methods of numerical taxonomy.

Measurements of similarity and distance (similarity coefficent). Most clustering techniques begin with the calculation of a matrix of similarities or distances between individuals. In numerical taxonomy, different types of similarity or dissimilarity measures were employed to estimate the relationship between individuals. Clifford \& Stephenson (1975) discussed many of these measures, such as coefficient measures "similarity measures" and Euclidean distance "dissimilarity distance measure". The difference between the two measures is that "similarities" take values between 1 (i.e. 100% similarity) and 0 (i.e. 0% similarity), and "distance measure" can take any positive value from 0 (i.e. no difference) upwards as difference increases.

The coefficient measure used in my study was the squared Euclidean distance as a dissimilarity measure (see materials and methods, p. 47).

Although the Euclidean distance is widely used in clustering techniques, there are many other possible distances. Clifford and Stephenson (1975) state that the similarity measure, correlation coefficient has been used with considerable success in clustering techniques. Wishart (1978) illust\&rate 40 options of similarity coefficients under the procedure CORREL of the CLUSTAN package. Two options are given for some coefficients, one for binary and the other
for continuous data. The reason is that some coefficient measures are restricted only to binary data. Wishart (1978, p. 32, 114) and Everitt (1980, p. 17) state that the Euclidean distance is the most commonly used and familiar measure of dissimilarity between cases or clusters. West et al. (1983) applied a numerical study on species of Vibrio isolated from the aquatic environment and birds in Kent (England). The authors clustered strains by three methods and used Euclidean distance coefficient to calculate the similarity between species. Calculations of the similarity profiles were performed using the CLUSTAN 1C release 2 package (Wishart, 1978) and the three methods gave similar results.

Analysis of data matrix (clustering method). Once the data matrix has been obtained using one of the above methods (distance or similarity measures), there are a number of agglomerative hierarchical and non-hierarchical clustering techniques that can be applied. The hierarchical techniques form an initial partition of N clusters (each individual is a cluster) and in a stagewise manner proceed to reduce the number of clusters one at a time until all N individuals are in one cluster. The non-hierarchical techniques involve the isolation and representation of groups of similar data, the groups not necessarly being conjoined. The following techniques as explained in detail in Everitt (1980,p. 25-34) are the most common hierarchical clustering models:

> 1- Single linkage (Nearest neighbour). 2- Complete linkage (Furthest neighbour). 3- Centroid cluster analysis. 4- Group average method. 5- Ward's method.

The technique of single linkage fuses the individuals according to the distance between their nearest neighbours (minimum distance or maximum similarity). Complete linkage is the opposite of
single linkage technique. It fuses the individuals according to the distance between their furthest neighbours (maximum distance or minimum similarity). Centroid cluster analysis fuses the individuals according to the distance between their centroids, the groups with the smallest distance being fused first. The distance between groups is defined as the distance between the group centroids. Group average linkage defines distance between groups as the average of the distances (average distance or similarity) between all possible pairings of individuals in the two groups.

Ward's method, which was the method I used, has been investigated by many authors (Ward, 1963; Paykel and Rossaby, 1978; Lee et al., 1981) and is described in the materials and methods (p. 48).

Wishart (1978) listed 40 options of similarity coefficients under the procedure CORREL of the CLUSTAN package as mentioned above. If the coefficient has not been specified (for example, ICOEF $=24$ i.e. error sum of squares), then the procedure CORREL substitutes the appropriate distance coefficient (ICOEF $=1$ or 2 i.e. squared Euclidean distance). This is regarded by CLUSTAN as the standard default option. Wishart also states that Ward's method is only meaningful when distance coefficient (squared Euclidean distance) has been computed with the procedure CORREL. Paykel and Rassaby (1978) applied four agglomerative hierarchical methods (including Ward's method) on a sample of 236 suicide attempters. The authors found that Ward's method was the most satisfactory clustering technique.

Much of the literature on cluster analysis has been covered above. However, the following are some additional important papers.

Bacterial populations from different aquatic sources have been studied using different similarity coefficients. Allen et al.
(1983) collected 722 strains from freshwater fish farm and examined the similarity between these isolates and 124 characters using simple matching and Jaccard coefficients. The authors applied the average linkage clustering technique and showed that a similarity level of 70\% or above as calculated with the Jaccard coefficient, 82% of the isolates were recovered in 14 major and 56 minor clusters. Austin et al. (1978) analysed data of 600 isolates from green leaves of Lolium perenne $S 24$ using the simple matching coefficient. The authors concluded from the cluster analysis of average linkage that at a similarity of 80% or above, 74% of the isolates were recovered in six major and 45 minor clusters. Hauxhurst et al. (1980) applied a numerical taxonomic analysis on large population of isolates from the Northwest and Northeast Gulf of Alaska. The workers used the Jaccard similarity coefficient and the single linkage clustering technique. They found that at 70% similarity level, 24 clusters from the Northeast Gulf isolates and 12 clusters from the Northwest Gulf isolates were recovered. Lee et al. (1981) carried out a numerical taxonomic study to evaluate the relationship of group F bacteria to other biochemically similar organisms within the family Vibrionaceae. Lee and his associates clustered their isolates for 114 characters using four clustering methods (single linkage, complete linkage, average linkage and Ward's method). All calculations were carried out using the CLUSTAN 1A (Wishart, 1969) package and results showed very similar pattern. Pfister and Burkholder (1965) examined bacterial isolates from Antarctic and tropical seawaters with a series of characteres. The authors computed the similarity values of 88 isolates from Antarctic, six from tropical water and two yeast cultures according to the simple matching coefficient which includes negative matches. They used the single linkage and results were plotted for different percent similarities at 80% or above. The organisms tested
by Pfister and his co-worker were grouped into nine major clusters. West et al. (1984) examined 18 cultures of phenanthrene degrading isolates from Chesapeake Bay and 21 reference cultures for 123 characteres. The authors analysed their data numerically by the use of simple matching and Jaccard coefficients. They constructed seven clusters by the single and average linkage. Hudson et al. (1986) performed a numerical taxonomy on 45 New Zealand isolates and six nonNew Zealand type isolates. Similarity matrices were calculated with the simple matching (Sokal \& Michener, 1958) and Jaccard (Sneath, 1957) coefficients using the single and the average linkage. The authors constructed seven clusters and found that the majority of the New Zealand isolates did not cluster with non- New Zealand isolates. They also showed that there was a relationship between the composition of the clusters and the temperature and pH of the source of the isolates. Hudson and his co-workers concluded that within New Zealand isolates, the geographical source of the isolates had no bearing on the clusters formed.

SECTION 1

MATERIALS AND MEIHODS

Collection and culture of samples

Deep-sea work was divided into two parts as shown in (Figure 1).
1- Work conducted on ship.
2- Work conducted in laboratory.
1- On ship
Samples were collected at five sites around the Rockall Trough area of the North East Atlantic. Details of the bacteriological sampling at the sites are given in figure 2 and table l. Table 1 also shows the final number of isolates obtained (column 9) and the main frame computer library file name used for storing data on the responses of the isolates to antimicrobial agents (Appendix table 31).

Site 1 (995 m) was on the edge of the Hebridean Shelf. Site 2 $(2170 \mathrm{~m})$ was adjacent to the Anton Dohrn seamount on the Abyssal plain. Site $3(2000 \mathrm{~m})$ was on the North East of the Rockall Bank (South of George Bligh Bank) Site 4 (2200 m) was on the North Feni Ridge just South of Bill Bailey's Bank. Site 5 (1660 m) was on the North Feni Ridge South of Lousy Bank.

Sediment samples were collected using a spade box corer (Plates 1 and 2). Subcoring of the samples was carried out immediately the spade box corer was brought inboard. Subcores were extruded and divided up into the following depth sections: 0 to 1 cm , 2.5 to $3.5 \mathrm{~cm}, 5.0$ to $6.0 \mathrm{~cm}, 10$ to $11 \mathrm{~cm}, 15$ to 16 cm and 20 to 21 cm . These are refered to from now onwards (Table l) as the following average depths: $00.5,03.0,05.5,10.5,15.5$, and 20.5 cm . Samples were also taken from invertebrate burrow linings and faecal pellets at some sites. The faecal pellets and the burrow linings depths are exact (Table 1). Samples were processed (plating out) immediately they were brought inboard. Following plating out using a standard spread plate

Figure 1
Procedure adapted to process the deep-sea samples on ship and in laboratory (see materials and methods p. 10).

Figure 2 Deep-sea sampling sites. Continuous line shows Cruise route.

* = Stations from which bacterial isolates were obtained.
- Other ${ }^{\text {a }}$ smpling sites on Cruise.

Site no.	Position of sites	Water depth (m)	Source of bacteria	Depth code	Sample depth (cia)	Incub. temp. (${ }^{\circ} \mathrm{C}$)	Computer library file name	Final no. isolates
1	$\begin{aligned} & 57^{\circ} 06^{\prime} .790^{\prime \prime} \\ & 09^{\circ} 22^{\prime} .200^{\prime \prime} \end{aligned}$	995	sediment	1	00.5	10	OSBACT. ONE 1	33
			sediment	2	03.0	10	DSEACT.ONE 2	23
			sediment	3	05.5	10	DSBACT.ONE 3	06
			sediment	4	10.5	10	DSBACT-ONE 4	08
			sediment	5	15.5	10	DSBACT.ONE 5	04
			sediment:	6	20.5	10	DSBACT.ONE 6	01
2		2170	sediment	1	00.5	10	OSBACT.TWO 1	22
			sediment	2	03.0	10	DSBACT. TWO 2	33
			sediment	3	05.5	10	DSBACT. TWO 3	31
			sediment	4	10.5	10	CSBACT.TWD 4	09
	- ,		sediment	5	15.5	10	DSBACT.TWO 5	21
	57. 21.510°		sediment	6	20.5	10	DSBACT.TWO 6	20
			faecal pell.		21.0	10	OSEACT.TWO 7	42
			faecal pell.		11.0	04	DSEACT. TWO 8	38
			bside burc.		11.0	10	OSBACT. TWO 9	14
			bside burc.	. B	11.0	04	DSEACT.TWO 10	39
3	-	2000	surface sed.		00.0	10	DSBACT. THPEEE	26
			surface sed.		00.0	04	DSBACT.THREE2	27
			burrow lin.		07.5	10	DSBACT. THREE3	16
			burrow lin.		07.5	10	DSBACT. THREE 4	05
			faecal pell.		07.5	10	DSBACT.THREES	38
			faecal pell.		07.5	04	DSBACT. THREE6	07
			faecal pell.		07.5	04	DSBACT. THREE7	14
			subsurf.sed.	F	07.5	10	- -	-
4	$\begin{aligned} & 56^{\circ} 40^{\prime} .896^{\prime \prime} \\ & 10^{\circ} 29^{\prime} .293^{\prime \prime} \end{aligned}$	2200	sediment	1	00.5	10	DSBACT. FOUR 1	32
			sediment	2	03.0	10	OSBACT.FOUR 2	57
			sediment	3	. 05.5	10	DSEACT.FOUR 3	01
			sediment	4	10.5	10	OSBACT.FOUR 4	06
			sediment	5	15.5	10	DSBACT.FOUR 5	03
			sediment	6	20.5	10	-	-
			burrow lin.	0 mg 3	04.0	10	DSBACT.FOUR 6	35
			sediment	mg 3	04.0	10	DSEACT.FOUR 7	25
			burrow lin.	st4	13.0	10	DSBACT.FOUR 8	39
			sed iment	st4	13.0	10	OSBACT.FOUR 9	32
5		1660	sediment	1	00.5	10	dseact five 1	57
			sediment	2	03.0	10	OSHACT.FIVE 2	30
	$5614.790^{\prime \prime}$		sediment	3	05.3	10	DSBACT.FIVE 3	33
	$09^{\circ} 44^{\prime} .390^{\prime \prime}$		sed iment	4	10.5	10	ISBACT.fIVE 4	14
			sediment	5	15.5	10	OSBACT.FIVE S	02
			sediment	6	20.5	10	- -	-

Table 1
Details of the bacterioloyical sampling at sites $1-5$. It shows the depths, the final
number of isolates obtained (oolum 9) and the mainflame computer library file name
used for stoting data on responses of the isolates to antimicrobial agents.

Plates 1 and 2
Spade-box corer used to collect undisturbed deep-sea sediment.

method (Cruickshank, et al., 1975) on ZoBell agar plates, the plates were incubated at $4^{\circ} \mathrm{C}$ or 10° for 7 days. The composition of the zoBell medium was as follows:

Bacteriological peptone5g
Ferric orthophosphate1g
Bacteriological agar No.115g
85\% Artificial seawater1L
Sterilization of this medium was achieved by autoclaving at $121^{\circ} \mathrm{C}$ for 15 minutes.

Heterotrophic bacterial counts were obtained for each core depth. Counts were also taken from the invertebrate burrow linings and faecal pellets. These counts together with physical and chemical data have been published separately (Meadows \& Tait, 1985). The counts were obtained as follows:

All of the ship board work was conducted by Mr P. S. Meadows and Dr J. Tait because it was not possible for me to join the cruise.

2- In laboratory

At the end of the cruise, the plates were transported to the Zoology Department, Glasgow University. 40 isolates were selected randomly from each depth using a marked grid and random number tables choosing the best serial dilution plates. For example, at station 5 at depth $00.5 \mathrm{~cm}, 20$ colonies from each of the 10^{-2} dilutions were selected and then streaked out onto ZoBell 2216 agar plates. Plates were then stored in polythene bags at $4^{\circ} \mathrm{C}$ or $10^{\circ} \mathrm{C}$ for 7 days. The resubculturing process was carried out 3 times in order to obtain pure cultures.

A series of replica plating techniques on master plates was then carried out on a total of 843 isolates plus 27 reference cultures (Figure 3). These tests fell into two parts - preliminary and

Figure 3
Procedure adapted in the preliminary and definitive experiments to test deep-sea isolates using a range of concentrations of antimicrobial agents. PMRl=preliminary master replica 1, PMR2=preliminary master replica 2, $\mathrm{Te}=$ tetracycline, $\mathrm{Mn}=$ manganese.

definitive experiments. Full details are given below.
The minimum inhibitory concentration (MIC) for each isolate with each antimicrobial agent was determined and the results then analysed by bivariate and multivariate statistics. A full explanation of these procedures are given below.

Source of bacteria

Deep-sea isolates were obtained from the spread plates described above.

Twenty seven standard reference cultures were included in the definitive experiments. These cultures were obtained from the National Collection of Marine Bacteria (NCMB), the National Collection of Industrial Bacteria (NCIB), and the National Collection of Type Cultures (NCTC). Additional isolates were supplied by Professor A. Wardlaw of the Department of Microbiology at Glasgow University and by Dr R. Millar, Zoology department, Glasgow University. The standard reference cultures were:

Source of culture	number of culture	e Name of culture
*NCMB	1493	Planococcus citreus
*NCMB	628	Planococcus sp.
NCMB	308 M	Moraxella
*NCMB	13	Micrococcus sp.
*NCMB	365	Micrococcus sp.
${ }^{\text {N }}$ CMB	35	Coryneform strain
NCMB	8	Coryneform strain
NCMB	1274	Vibrio fischeri
NCMB	9046	Pseudomonas fluorescens
${ }^{*} \mathrm{NCMB}$	320	Pseudomonas sp.
NCMB	19	Alteromonas haloplanktis
NCMB	292	Cytophaga lytica
NCIB	8806	Klebsiella pneumonia
NCIB	9261	Klebsiella pneumonia
NCIB	8805	Klebsiella pneumonia
NCIB	2847	Serratia marcescens
NCIB	8508	Bacillus megaterium
NCIB	8250	Acinetobacter calcoaceticus
NCIB	4175	Proteus vulgaris
NCIB	9240	Aeromonas hydrophila
NCIB	6576	Pseudomonas cleovorans
NCIB	9255	Corynebacterium xerosis
*NCTC	10331	Pediococcus cerevisiae
NCTC	6571	Staphylococcus aureus
NCTC	2665	Micrococcus luteus
**---	----	Staphylococcus albus
**----	\qquad	Bacillus cereus

[^0]
Overall plan of laboratory experiments

As shown in figure 3, a total of 1000 isolates were obtained from the deep-sea sediment samples. 157 isolates were lost during the time of resubculturing mainly due to the fungal contamination. This left 843 isolates.
(i) Preliminary experiments

The purpose of the preliminary experiments was to determine the best range of concentrations of heavy metals and antibiotics. In planning this I considered the concentrations used by other workers. A computer survey was therefore conducted. Representative papers of this survey showing the antibiotic and heavy metal concentrations at which they were used are shown in table 2 and table 3 respectively. The concentration ranges chosen should broadly fulfill two criteria. They should be able to discriminate between different isolates (i.e. results must not be all plus or all minus). Secondly, they should subdivide the bacterial isolates into sensitive and resistant strains.

The most appropriate range of concentrations were ascertained as follows. A 100 of the 843 isolates were randomly selected from different depths and sites using a marked grid under the petri dishes and random number tables. These isolates were inoculated onto two master replica plates called PMRI (Preliminary Master Replica 1) and PMR2 (Preliminary Master Replica 2) (i.e. 50 onto PMRl and 50 onto PMR2) in order to test the concentrations of the antimicrobial agents initially selected.

The concentrations of antimicrobial agents tested on the 50 isolates in PMRI and PMR2 were the same and are shown in table 4. Unfortunately the selective media plates were not dried before being inoculated. Because of this, the isolates tested from PMRI showed confluent growth. This data was therefore discarded. The plates used

Author'sname is year of ipublication	Microorganisms tested	Technique used	Antibiotics tested										
			tested in this study						not tested in this study				
			${ }^{\text {Ch }}$	St	Te	Am	Po	Na	G	K	R	Su	
[Datta (1969)	E.coli	Disk-diffusion	25	15	10	25	25	25	-	25	-	100	25
Davidson \& Summers (1983)	Thiobacilli	Replica-plate	25	-	25	25	-	50	20	50		-	-
Groves \& Young (1975)	Staphylococci	Disk-diffusion	30	-	30	10	-	-	-	-	-	-	-
Kelch \& Lee (1978)	Pseudomonas Moraxella Acinetobacter Flavobacterium cytophaga	30-colony nichrome wire stab replicator	25	10	25	10	-	25	-	25	-	-	-
\{Koditschek \& Guyre (1974a)	Coliform	Disk-diffusion	30	10	30	-	-	30	-	30	-	-	-1
Marques et.al (1979)	Pseudomonas aeruginosa	Disk-diffusion	30	10	30	10	-	30	30	30	-	-	-
Pratt \& Reynolds (1974)	Vibrio Pseudomonas	Spread-plate method	-	-	-		$\begin{array}{r} 0 \\ 50 \\ 100 \end{array}$	-	-	-	-	-	
Quigley \& Colwell (1968)	Pseudomonas aeromonas	Disk-diffusion	30	-	30	-	30	-	-	30	-	-	
'Stewart \& Koditschek (1980)	E.coli	Donor-recipient antibiotic resistance transfer	-	-	40	-	-	40	-	-			!
\|Timoney et.al (1978)	Bacillus sp.	Replica-plate	30	50	30	50	-	-	-	50	-	-	-1

Table 2
Concentrations of antibiotics (mg / l) and techniques used to test the effect of antibiotics on microorganisms. Representative papers.

Ch=Chloramphenicol	St=Streptomycin	Te=Tetracycline
Am=Ampicillin	Po=Polymyxin B	Na=Nalidixic acid
G =Gentamicin	$\mathrm{K}=$ Kanamycin	$\mathrm{R}=$ Rifampin
Su=Sulphathiazole	$\mathrm{F}=$ =Nitrofurantion	

Table 3
Concentrations of metals and techniques used to test the
effect of metals on microorganisms. Representative papers.

$\mathrm{Cd}=$ Cadmium	$\mathrm{Cr}=$ Chromium	Cu=Copper
$\mathrm{Pb}=$ Lead	Mn=Manganese	Hg=Mercury
$\mathrm{Co}=$ Cobalt	Fe=Iron	Te=Tellurium
$\mathrm{Zn}=$ Zinc	Ni=Nickel	Ag=Silver

Antimicrobial agent	Concentration range (mg/l)					
Cadmium	128	64	32	16	8	4
Chromium	128	64	32	16	8	4
Copper	128	64	32	16	8	4
Lead	800	400	200	100	50	25
Manganese	128	64	32	16	8	4
* Mercury	32	16	8	4	2	1
Ampicillin	64	32	16	8	4	2
Chloramphenicol	64	32	16	8	4	2
Polymyxin B	64	32	16	8	4	2
Streptomycin	64	32	16	8	4	2
Tetracycline	64	32	16	8	4	2
Nalidixic acid	64	32	16	8	4	2
Methylene blue	32	16	8	4	2	1

Table 4
Concentrations of antimicrobial agents used in the preliminary experiments.

* After the thesis had prepared it was found that the quoted concentrations of mercury in the preliminary experiments had been calculated incorrectly. The correct concentrations are as follows. 36.8, 18.4, $9.2,4.6,2.3$ and $1.1 \mathrm{mg} / 1$. This does not affect the definitive experiments (see figure 7).
to test the isolates from PMR2 were just dry enough for good results to be obtained except on the plates containing tetracycline and manganese. Two problems arose in the data from PMR2. In some cases the concentrations of antimicrobial agents were not high enough to inhibit a significant proportion of the isolates (ampicillin, streptomycin, nalidixic acid, methylene blue, and chromium). In other cases, there was a very sharp reduction in growth between one concentration and the next (cadmium, copper and lead).

These two problems were solved by increasing the concentrations of antimicrobial agents or expanding the range of concentrations where appropriate. Figures 4 A and 4 B illustrate the two problems and their solutions as models (4 A) and actual results (4 B).
(ii) Definitive experiments

The concentrations used were adjusted as described above, and used to retest the same 100 isolates. These isolates were tested using two master replica plates called MR1 and MR2 (50 onto MRI and 50 onto MR2). The adjusted concentrations of the antimicrobial agents (Table 5) worked well on the isolates from both master replica plates, and gave good results. Before applying these concentrations to the remaining isolates, 27 reference cultures and 12 isolates from MRI and MR2 were selected. The 27 reference cultures were included to aid in the final taxonomic description of the clusters. The 12 isolates from MRI and MR2 were included to allow cross-referencing and accurate comparison between results from different replica plates. The 12 cross-reference isolates were included on master replica plates MR4 to MR21 (i.e. 40 isolates +12 cross-reference isolates per master replica plate). In addition the 27 reference cultures were also included on MR21.

Figure 4 A
Models of bad and good results of the experiments to determine the range and scale of antimicrobial agent concentrations.

A- Preliminary - range is too low (little inhibitory effect).

B- Preliminary - scale needs expansion (sharp reduction in numbers between one concentration and the next).

C- Definitive - range and scale are suitable.

Concentrations of antimicrobial agent

Figure 4 B
Illustrating the results of the experiments to determine the range and scale of antimicrobial agent concentrations.

A- Preliminary - range is too low (little inhibitory effect).

B- Preliminary - scale needs expansion (sharp reduction in numbers between 100 and $200 \mathrm{mg} / \mathrm{l}$).

C- Definitive - range and scale are suitable.

Antimicrobial agent	Concentration range (mg/l)					
Cadmium	128	64	48	32	16	8
Chromium	256	128	64	32	16	8
Copper	128	64	48	32	16	8
Lead	512	256	192	160	128	64
Manganese	4096	2048	1024	512	256	128
Mercury	64	32	16	8	4	2
Ampicillin	256	128	64	32	8	2
Chloramphenicol	64	32	16	8	4	2
Polymyxin B	128	64	32	16	8	4
Streptomycin	256	128	64	32	16	4
Tetracycline	128	64	32	16	8	4
Nalidixic acid	256	128	64	32	16	4
Methylene blue	256	128	64	32	8	2

Table 5
Concentrations of the antimicrobial agents used in the definitive experiments.

In summary, the bacteria on MRI to MR21 were as follows.

The total number of deep-sea isolates is: $(3 \times 50)+(17 \times 40)+13=843$ (see above).

Replica plating

In the preliminary experiments, two master replica plates (PMRI and PMR2) were prepared by inoculating 50 pure cultures previously obtained by repetitive streaking on ZoBell agar plates. In the definitive experiments, the master plates MR1 to MR21 were used to test the deep-sea isolates. These master replica plates were taken two plates at a time (e.g. MRI and MR2, MR3 and MR4, Figure 5). The isolates on each master replica plate were then subcultured onto 7 further plates in exactly the same position as on the master replica plate (e.g. MR1.a, MRI.b, MR1.c, MRI.d, MRl.e, MRI.f and MRI.g, Figure 5). 6 of these 7 plates (e.g. MRla, b, c, e, f, g) were used to inoculate 2 separate antimicrobial agent media using 2 sterilised velvets. The seventh plate (e.g. MRld) was used to inoculate 1 antimicrobial agent medium. These procedure was necessary because there were an odd number of antimicrobial agents - 13. The master plates in the definitive experiments were prepared by inoculating 50 (MR1-MR3) or 52 (MR4-MR21) isolates onto the plate (Plate 3) and

Figure 5
Diagram shows the method used to print master replica plates (MR1 and MR2) on velvets, and how to "stamp" a series of selective media plates on inoculated velvets starting from the highest concentrations and finishing with control plate (C). I - VI = highest - lowest concentration. MRI = Master replica plate No. 1 MR2 = Master replica plate No. 2 $M R 1=M R 1 . a$ to MRI.g MR2 = MR2. a to MR2.g

$\mathrm{Am}=$ Ampicillin	$\mathrm{Cd}=$ Cadmium
$\mathrm{Ch}=$ Chloramphenicol	$\mathrm{Cr}=$ Chromium
$\mathrm{PO}=$ Polymyxin B	$\mathrm{Cu}=$ Copper
$\mathrm{St}=$ Streptomycin	$\mathrm{Pb}=$ Lead
$\mathrm{Te}=$ Tetracycline	$\mathrm{Mn}=$ Manganese
$\mathrm{Na}=\mathrm{Nalidixic} \mathrm{acid}$	$\mathrm{Hg}=$ Mercury

Me = Methylene blue

Plate 3
Master replica plates prepared by inoculating 52 isolates and incubated at $10^{\circ} \mathrm{C}$ for 7 days.

incubating it at $10^{\circ} \mathrm{C}$ for seven days. Following incubation, each master plate was "stamped" onto a velvet square, which had been previously sterilized in a hot air oven at $160^{\circ} \mathrm{C}$ for two hours. The velvet was then used to re-inoculate a series of selective media plates. The order of printing plates started at the highest concentration, worked down the concentrations, and finished with the control plate (Plate 4). The reason for this was to ensure that the higher concentration plates received a good inoculum. Plate printing finished with the control plate in order to make sure that there were still bacterial cells left after stamping the last selective media plate, in other words to insure that all the selective media plates received an inoculum. Plates were then incubated at $10^{\circ} \mathrm{C}$, and results recorded after 7, 14 and 21 days. Cluster analysis was performed using the minimum inhibitory concentration after 14 days. The reasons for 14 days were:

1- All control isolates had grown by 14 days.
2- The potency of antimicrobial agents may have decreased after 14 days.
3- Contamination of some plates with fungi occured after 14 days.
4- Some isolates became dry and changed the readings.
5- Colonies started to spread after 14 days which made it difficult to read the plates.

The replica plating method used in the definitive experiments was the same as that of the preliminary experiments, except that the selective media plates were dried at $37^{\circ} \mathrm{C}$ for one hour (Cruickshank et al., 1975).

Two examples of the recording sheets for the preliminary experiments are shown in table 6. The recording sheets for the definitive experiments were exactly the same.

Plate 4

The method used to print master replica plates on velvet square, and how to "stamp" a series of selective media plates on inoculated velvets.

\downarrow

\uparrow

Control plate

\downarrow

\downarrow

Table 6

Two examples of how the antimicrobial agent results were recorded, using polymyxin B and chromium data after 7, 14 and 21 days. Data for the other antimicrobial agents were recorded in the same way. Each sheet represents one master replica plate. -*+ = no growth after 7 days, intermediate growth after 14 days and extensive growth after 21 days respectively.

Chromium concentration mg/l

	128	64	32	16	8	4 C
01			--	+		+
02	++	+	+	++	+++	++
03	+++	+	+	+	+	++ +
04		-+	-+	-+	++	++
05	*++	++	++	$++$	+	+++ +++
06	++	++	++	+++	+++	+++ +++
07	*++	+	++	+++	+++	+++ +++
08	*++	+++	+	++	++	+++ ++
09			-+	++	++	++ +++
10				***	+++	+++ +++
11	++	+++	+	++	+	+++ +++
12			-	++	++	+++ +
13			--*	-+	++	+++ +++
14			-+	+++	++	+++ +++
15		**+	*+	+	+	+++ ++
16		***	*+	++	++	+ ++
17	*+	+	++	++	++	+++ +++
18	+++	++	+++	++	+	+++ +++
19	*++	++	++	+++	+++	+++
20						-- +
21	--*					$+++$
22	-+	+++	++	+	++	+++
23	--+	--+				
24	**+	-*+	-**	-**	++	+
25	-*+	+	-++	-+	+	
26	-*+	-*+	-++	+	+++	+ ++
27		--*	-**	-+	-+	++
28			--*	-**	+++	$++$
29	-*+	-*+	+	+++	+	+ + +
30	-++	-+	-++	-+	++	+
31	-++	-+	-+	-	++	
32	-	-*+	-+	-+	++	++ ++
33	-*+	-+	-+	-+	++	++ ++
34	-*+	-++	-+	-**		- ***
35	-		-*	-*	-	-****
36	++	+		*	-*	
37	+	++	+	+*+	**	
38	++	+++	+++	+*+	**	+
39	-**	-**	-+	-++	+++	++
40	-	-*+				
41	+	-**				
42	--*	-*+	++	++	++	++ +++
43	*++	*++	+++	+++	+++	++ +++
44	-*+	-++	+++	+++	+++	++ ++
45					+	
46	-	-	++	+	++	++ +++
47	+	-1+	++	++	+++	$+$
48		--*	-**	-**	--	*** +++
49	-	--	+++	++	++	+++ +++
50		-++	+			

	64	32	16	8	4	2	C
01					++	--	
02	+++		++	++	++	++	+
03			+++	+++	++	$+$	++
04			++	++	+++	+++	++
05			+++	++	++	++	+++
06			+++	++	+++	++	++
07	$+$	++	++	++	++	$+$	++
08	--		--*	++	+++	+++	+++
09				++	+++		++
10				--	-	- +	+++
11				++	++	+++	++
12				-	-	-- +	++
13			---	-		-	++
14				+++	+++	+++	++
15				++	+ +	++	++
16			-	+++	++	-- +	+++
17				++	++	++	+++
18				+++	+++	+++	+++
19				++	++	++	++
20					--		++
21							
22		+++	+++	++	+++	+	++
23		++	++	++	++	++	
24	$+$	+++	+++	+	++	++	+++
25	++	+++	+*+	**+	**+	+	+
26		++	+*+	+++	+++		
27		-		++	++	++	++
28							+++
29		*++	*+	++	++	+	+
30		*++	++	*+	+++		+
31	+++	++	**+	+++	++	+	++
32	**+	+++	+++	*+	+++	+++ +	+++
33	**+	--	*++	**+	-	+	++
34		+++	+++	+++	++	++ +	++
35					-	-**	$+$
36	+++	+++	$+$	++	++	++	
37	++	+++	+++	*++	++	+	+++
38	+++	++	++	*++	*+	++	+
39	--*	*++	*++	++	++	+++	++
40		**+	**+	--+		++	
41	+++	+++	+++	++	+++	++	*+
42		+++	+++	+++	+++	+	++
43	-*+	+++	+++	+++	+++	++	++
44			-*+	-*+	+	-+	++
45			-				+
46				--			
47		-		++	++	++	+++
48		$\cdots+$	++	++	++	++ +	++
49						--	++
50					++	++ +	+

Twelve isolates of deep-sea bacteria previously tested with the antimicrobial agents in master replica 1 and 2 , were selected and incorporated as controls for "typing" the remaining isolates of the definitive experiments. The criteria used in selecting these isolates were that they formed reasonable size colonies on replica plates, were resistant to some antimicrobial agents and sensitive to others, and grew within 14 days. The control cultures were distributed on different positions on the master plate as shown in figure 6.

Calculation of $\frac{8}{8}$ isolates growing on selective media

The effect of the antimicrobial agents on growth of each isolate was classified as positive (+), negative (-), or intermediate (*) when compared with the same isolate on the control plate. The scoring system used in the experiments is shown in table 7. The number of organisms growing on a given selective medium at a given concentration was expressed as a percentage of isolates growing on the control plate (Appendix tables l-6). For example, with ampicillin (Figure 8) at a concentration of $2 \mathrm{mg} / 1$, the percentage was calculated as follows. 39 isolates grew on the plate containing $2 \mathrm{mg} / \mathrm{l}$ of ampicillin, while 46 isolates grew on the control plate. Therefore, $39 / 46 \times 100=84.8 \%$ of the 50 isolates on the control grew on the ampicillin plate, at $2 \mathrm{mg} / \mathrm{l}$.

Minimum inhibitory concentration (MIC)

For each of the 843 environmental isolates and 27 reference cultures, the minimum inhibitory concentration (MIC) for each of the 13 antimicrobial agents was defined as the lowest concentration of the antimicrobial agent that inhibited growth. For each antimicrobial agent, if the control plate showed growth (+) then the first concentration which showed intermediate (*) or no growth (-) was

Figure 6
The position of twelve isolates of deep-sea bacteria phenotyped from master replica 1 and 2 and incorporated as controls on master replica plates for "typing" the remaining isolates of the definitive experiments.

Notation		Score	
Control	Experimental	Control	Exper imental
+	+	1	1
+	*	1	0
+	-	1	0
*	+	1	1
*	*	1	1
*	-	1	0
-	+	0	0
-	*	0	0
-	-	0	0

Table 7
Relationship between notation and scoring system used for reading plates after 7, 14 and 21 days incubation.

The following notations were used:

+ = Vigorous growth (Resistant).
- = No growth (Sensitive).
* $=$ Little growth (Intermediate).

The follow scores were used: 1 , 0 .
Control: plates with no antimicrobial agents.
Experimental: plates containing antimicrobial agents.
taken to be the minimum inhibitory concentration. If the control plate showed intermediate growth (${ }^{*}$) then the first concentration of that antimicrobial agent which showed no growth (-) was taken.

Preparation of selective media

Selective media were prepared for the preliminary and definitive experiments by incorporating appropriate quantities of antibiotic and heavy metal stock solutions into molten agar maintained at $50^{\circ} \mathrm{C}$ in a waterbath. The antimicrobial stock solutions were prepared as follows.

A- Preliminary experiments

Ampicillin

Weigh out 0.32 g of ampicillin and dissolve in 100 ml of sterile distilled water.

Chloramphenicol

Weigh out 0.32 g of chloramphenicol and add directly to 100 ml of sterile distilled water.

Polymyxin B

Weigh out 0.32 g of polymyxin B and add directly to 100 ml of sterile distilled water and dissolve.

Streptomycin Sulphate

Weigh out 0.32 g of streptomycin sulphate and add directly to 100 ml of sterile distilled water.

Tetracycline Hydrochloride

Weigh out 0.32 g of tetracycline hydrochloride and add directly to 100 ml of sterile distilled water.

Nalidixic acid

Weigh out 0.064 g of nalidixic acid and dissolve in 2 ml of N NaOH to form the first stock solution. Additional stock
solutions are prepared by serial dilutions with N NaOH (e.g. lml of the first stock solution is added to 1 ml of N NaOH to form the second stock solution, this step is repeated to give 6 concentrations of nalidixic acid).

Methylene Blue

Weigh out 0.16 g of methylene blue and dissolve in 100 ml of sterile distilled water.

Cadmium Chloride $\left(\mathrm{CdCl}_{2} \cdot 2 \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$
Stock solution. Weigh out 1.30 g of cadmium chloride and dissolve in 100 ml of sterile distilled water.

Potassium Chromate $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$

Stock solution. Add 2.390 g of potassium chromate to 100 ml of sterile distilled water and dissolve.

Copper Sulphate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$
Stock solution. Add 0.503 g of copper salt to 100 ml of sterile distilled water and dissolve.

Lead Acetate $\mathrm{Pb}\left(\mathrm{OOCCH}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ Stock solution. Add 7.32 g of lead acetate to 100 ml of sterile distilled water and dissolve.

Manganous Chloride $\left(\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$
Stock solution. Add 2.30 g of manganous chloride to 100 ml of sterile distilled water.

Mercuric Chloride $\left(\mathrm{HgCl}_{2}\right)$

Stock solution. Weigh out 5.0 g of mercuric chloride and dissolve in 100 ml of sterile distilled water. (SAFETY CAUTION: DO NOT AUTOCLAVE ! Never heat to dissolve faster).

B- Definitive experiments

Ampicillin

Weigh out 0.64 g of ampicillin and dissolve in 100 ml of sterile distilled water.

Chloramphenicol

Weigh out 0.32 g of chloramphenicol and add directly to 100 ml of sterile distilled water.

Polymyxin B

Weigh out 0.32 g of polymyxin B, add directly to 100 ml of sterile distilled water and dissolve.

Streptomycin Sulphate

Weigh out 0.64 g of streptomycin sulphate and add directly to 100 ml of sterile distilled water.

Tetracycline Hydrochloride

Weigh out 0.32 g of tetracycline hydrochloride and add directly to 100 ml of sterile distilled water.

Nalidixic acid

Weigh out 0.256 g of nalidixic acid and dissolve in 2 ml of N NaOH to form the first stock solution. Additional stock solutions are prepared by serial dilutions with N NaOH (e.g. lml of the first stock solution is added to lml of N NaOH to form the second stock solution, this step is repeated to give 6 concentrations of nalidixic acid).

Methylene Blue

Weigh out 0.64 g of methylene blue and dissolve in 100 ml of sterile distilled water.

Cadmium Chloride $\left(\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right)$
Stock solution. Weigh out 1.30 g of cadmium chloride and dissolve in 100 ml of sterile distilled water.

Potassium Chromate $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$

Stock solution. Add 2.390 g of potassium chromate to 100 ml of sterile distilled water and dissolve.

Copper Sulphate ($\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$)
Stock solution. Add 2.515 g of copper salt to 100 ml of sterile distilled water and dissolve.

Lead Acetate $\mathrm{Pb}\left(\mathrm{OOCCH}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
Stock solution. Add 4.680 g of lead acetate to 100 ml of sterile distilled water and dissolve.

Manganous Chloride $\left(\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$
Stock solution. Add 18.45 g of manganous chloride to 100 ml of sterile distilled water.

Mercuric Chloride $\left(\mathrm{HgCl}_{2}\right)$

Stock solution. Weigh out 0.43 g of mercuric chloride and dissolve in 100 ml of sterile distilled water. (SAFETY CAUTION: DO NOT AUTOCLAVE ! Never heat to dissolve faster).

The volume of stock solutiós (ml) of the antimicrobial agents added to the volume of molten agar and the final concentrations (mg/l) used in the preliminary and definitive experiments are given in appendix tables 7-8 and 9-10 respectively.

The following example (copper sulphate in definitive experiment) shows the way in which the volume of stock solution was calculated.

The molecular weight of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=249.7 \mathrm{~g} / 1$
The molecular weight of $\mathrm{Cu} \quad=63.54 \mathrm{~g} / 1$
If I need $128 \mathrm{mg} / 1$ in the agar. This equivalent to:
$12.8 \mathrm{mg} / 100 \mathrm{ml}$ agar.
If I put 2 ml of stock solution into 100 ml , I will need 12.8 mg of Cu^{2+} in 2 ml stock solution.

$$
\begin{array}{rl}
12.8 \mathrm{mg} \mathrm{cu}^{2+} / 2 \mathrm{ml}=6 & .4 \mathrm{mg} \mathrm{Cu}^{2+} / \mathrm{ml} \\
& =6.4 \times 1000 \mathrm{mg} \mathrm{Cu}^{2+} / 1 \\
& =6400 \mathrm{mg} \mathrm{Cu}^{2+} / 1 \\
& =6.4 \mathrm{~g} \mathrm{cu}^{2+} / 1
\end{array}
$$

Let $\mathrm{x}=$ concentration in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} / 1$ which is equivalent to 6.4 g $\mathrm{Cu}^{2+} / 1$.

If $249.7 \mathrm{~g} / 1 \mathrm{CuSo}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}-\cdots-{ }^{-} 63.54 \mathrm{~g} / 1 \mathrm{Cu}^{2+}$

Therefore, $\quad x=\frac{249.7}{63.54} \times 6.4$
$=25.15 \mathrm{~g} \mathrm{CuSO} 4.5 \mathrm{H}_{2} \mathrm{Og} / 1$
$=2.515 \mathrm{~g} \mathrm{CuSO} 4.5 \mathrm{H}_{2} \mathrm{Og} / 100 \mathrm{ml}$ This is the concentration
of stock solution if I need 2 ml of it contains $12.8 \mathrm{mg} \mathrm{Cu}{ }^{2+}$.

Procedure used in applying cluster analysis to the deep-sea isolates
To apply numerical taxonomy to a bacterial population, there are several stages needed to reach the point where all the bacterial isolates are classified into taxa. These stages include strain and test selection, coding data and their entry into the computer, data analysis and interpretation of results.

1- Isolates selection
1000 deep-sea isolates were selected from deep-sea sediments as shown in figure 3. During the re-subculturing processes, 157 isolates were lost mainly due to fungal contamination. This left 843 pure deep-sea isolates. A Full explanation on how the bacterial isolates were selected is given in the materials and methods (p. 16).

2- Test selection

The tests used can be observational tests such as colony size, colour, shape, biochemical tests such as fermentation of carbohydrate, indole and nitrate reduction, or sensitivity tests such as susceptibility to antibiotics and metals. I used the sensitivity of isolates to a range of antimicrobial agents.

Six antibiotics, six heavy metals and one dye with six concentrations were selected to test the sensitivity of the deep-sea isolates. The names and concentrations of the antimicrobial agents used in the preliminary and definitive experiments are shown in tables 4 and 5 respectively. The criteria used to select the antibiotics and heavy metals were as follows.

Antibiotics were used because they inhibit the growth of some bacteria and do not completely affect others due to their resistance. This enabled me to classify deep-sea isolates into groups according to their sensitivity and resistant. It also gave me information regarding the relative sensitivity of deep-sea bacteria from different depths and sites to selected antibiotics. Antibiotics were selected by their specific mode of action on cell wall (ampicillin), cell membrane (polymyxin B), nucleic acid (nalidixic acid) or cell protein (chloramphenicol, streptomycin, tetracycline) synthesis (Appendix A p. 225-235).

Heavy metals were used because they are essential to microorganisms in trace quantities, but at higher concentrations have antibacterial properties. They are also of economic importance, and with the exception of manganese, are not normally found in large quantities in the deep-sea. In addition, heavy metals have been used by a number of other workers for taxonomic analysis (Austin et al. 1977; Mallory et al. 1977; Timoney et al. 1978).

3- Recording data

Sensitivity profiles of all isolates were recorded as extensive growth (+), intermediate growth (*) or no growth (-). An example of the recording sheets are shown in table 6 pages 33 and 34. As mentioned above, the minimum inhibitory concentration (MIC) was defined for each isolate with each antimicrobial agent. This data was recorded in an n (row) x t (column) table, where n is the isolate number and t is the MIC for each of the antimicrobial agents (Appendix table 31).

4- Coding of data

Deep-sea isolates were coded from number 1 to 843 . Site number, source of sample and the incubation temperatures were also recorded with the isolate number (Appendix table 31). There were three sources of sample - sediment, burrow linings and faecal pellets. These were coded respectively as $1,2,3$. Not all this information was used by the computer. The only categories used by the computer were the isolate number and the minimum inhibitory concentration of antimicrobial agents. The final n (rows) $x t$ (columns) matrix contained 870 strains (843 deep-sea isolates +27 reference cultures $=$ 870 see p. 28) and 13 unit characters (6 antibiotics, 6 metals and 1 dye).

Each of the 870 strains is a row. Each of the 13 characters is a column. Each row is sometimes called a case, and each column is sometimes called a variable.

Missing values present difficulties in the interpretation of the classification of the results. It is not however, worthwhile excluding a whole case just because of one or two missing values. There are several acceptable ways of dealing with this problem. The first is to exclude the isolates with missing data from the analysis.

This seems to me to be a rather inefficient way of proceeding because it is not efficient to exclude many cases due to few missing characters.

The second way is to include the isolates with missing data and to use some sort of mean value for the missing data. There are two ways of doing this. In the first, the mean value which takes the place of the missing value is the mean of all the data in that column for all the isolates. However, I have been slightly more restrictive than this: I have replaced missing data in a particular strain by the mean value of the data for the other isolates from the same site and depth.

I realised after I had conducted the cluster analysis that 5 isolates as shown in the table below, had all 13 missing values replaced by mean values and should not therefore have been included. However, these isolates only represent 0.59% of the 843 isolates and this small percentage will not significantly affect the weight of the clusters obtained.

The number of isolates, the number of missing values and the percentage of information (MIC) missing per isolate are shown as follows.

No. isolates	No. missing values	Total No. missing values	\% of information (MIC) missing per isolate
178	1	178	$1 / 13 \times 100=7.7$
43	2	86	$2 / 13 \times 100=15.4$
25	3	75	$3 / 13 \times 100=23.1$
21	4	84	$4 / 13 \times 100=30.8$
7	5	35	$5 / 13 \times 100=38.5$
9	6	54	$6 / 13 \times 100=46.2$
12	7	104	$7 / 13 \times 100=53.8$
13	9	72	$8 / 13 \times 100=61.5$
8	10	130	$10 / 13 \times 100=69.2$
13	11	96	$11 / 13 \times 100=84.6$
16	12	65	$12 / 13 \times 100=92.3$
8	13		$13 / 13 \times 100=100$

Total number of isolates have missing data $($ column 1) $=358$
Total number of missing values (column 3) $=1239$
Total number of information units (MIC) including missing values

$$
\begin{aligned}
& =843 \text { (case) } \times 13 \text { (variable) } \\
& =10959 \\
& =1239 / 10959 \times 100 \\
& =11.3 \%
\end{aligned}
$$

The percentage of missing values $=1239 / 10959 \times 100$

5- Computer analysis

Many different programs have been used to sort Operational Taxonomic Units (OUT's) into groups or clusters. In microbiology these OUT's are usually isolates. Data for these analyses are arranged in a table of n rows and t columns. Each row represents an OUT. Each column represents a variable. The value of the variable in the table
is either continfous or discontinfous data (binary data). An example of 4 continfous data is the minimum inhibitory concentration presented in my data. An example of discontinfous data is presence/absence ($+/-$).

The initial stage in the computer analysis is to compare the data for each OUT (isolate) with every other OUT. This results in the calculation of a similarity or dissimilarity value for each pair of isolates. This value can take a number of forms. For example, it can be a Euclidean distance, a matching coefficient, error sum of squares and so on. I used the Euclidean distance squared for three reasons. Firstly, it was readily available on the Clustan 1 C release 2 package Wishart (1978). Secondly, Wishart regards the Euclidean distance squared as the most commonly used measure of dissimilarity between clusters. Thirdly, the Euclidean distance squared is one of the distance measures that can be used in Ward's method which Wishart regards as "possibly the best of the hierarchical options" available.

The Euclidean distance is defined as the square-root of the sum of squares of the differences between the values of the variables for two cases. For example, if the variables of two cases x and y as the following:

$-\infty$				
case x	2	1	3	4
case y	4	6	3	2
$(x-y)$	2	5	0	2
$(x-y)^{2}$	4	25	0	4

Therefore, Euclidean distance $=\sqrt{33}=5.745$
Once all the squared Euclidean distances between every pair of isolates has been obtained, they are entered into a triangular table or matrix. Each element of the matrix measures the similarity between two individuals. Although there may be initial confusion as to
the reasons for a triangular and not a square table, if a square table is used, data are included twice. The following example shows this.

triangular

Ward's hierarchical clustering method was then applied to the data in the triangular similarity matrix to obtain cluster dendrograms. The application of Ward's method to my data resulted in a dendrogram containing a number of groups including all the isolates.

Ward's method employs the sum of squared distances from each individual to the centroids of its cluster. For example, given a set of values of a single variable (1, 2, 7, 9, 12) for 5 individuals (A, $B, C, D, E)$, to use the mean value to represent all the scores rather than to consider each individual separately. Ward (1963) proposed that at each stage of an analysis the loss of information that results from the grouping of individuals into one cluster with a mean of 6.2 can be quantified by the error sum of squares.

At each stage in the analysis, every two clusters whose fusion yields the least increase in the error sum of squares are joined together. For example, at stage one eacn individual is regarded as a single member group and its E.S.S. is zero. At stage two the two individuals whose fusion results in the minimum increase in E.S.S. form the first group. For the data shown in the example above these are individuals A and B and their E.S.S. is 0.5. At the next stage individuals C and D fuse to form the second group, where E.S.S. is 2. This increases the total E.S.S. to 2.5. Next, individual E joines the group formed by C and D, and the E.S.S. of this group is 8. The total
E.S.S. is now $2.5+8=10.5$. Finally, the two remaining groups (A, B) and (C, D, E) are fused and their E.S.S. is 302. The E.S.S. of all the individuals as one group is thus $10.5+302=312.5$. The following calculations show the procedure carried out by the computer in order to fuse the individuals into groups.

A	B	C	D	E
1	2	7	9	12

The error sum of squares (E.S.S.) is given by

$$
\text { E.S.S. }=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

where x_{i} is the score of the ith individual.
$A, B=(1-1.5)^{2}+(2-1.5)^{2}=0.5$
$A, C=(1-4)^{2}+(7-4)^{2}=18$
$A, D=(1-5)^{2}+(9-5)^{2}=32$
$A, E=(1-6.5)^{2}+(12-6.5)^{2}=60.5$
$B, C=(2-4.5)^{2}+(7-4.5)^{2}=12.5$
$B, D=(2-5.5)^{2}+(9-5.5)^{2}=24.5$
$B, E=(2-7)^{2}+(12-7)^{2}=50$
$C, D=(7-8)^{2}+(9-8)^{2}=2$
$C, E=(7-9.5)^{2}+(12-9.5)^{2}=12.5$
$D, E=(9-10.5)^{2}+(12-10.5)^{2}=4.5$

	$A+B$	C	D
3	7	9	12

$A+B, C=(3-5)^{2}+(7-5)^{2}=8$
$A+B, D=(3-6)^{2}+(9-6)^{2}=18$
$A+B, E=(3-7.5)^{2}+(12-7.5)^{2}=40.5$

\cdots	$A+B$	$C+D$
	16	12

```
\(C+D, E=(16-14)^{2}+(12-14)^{2}=8\)
\(C+D, A+B=(16-9.5)^{2}+(3-9.5)^{2}=84.5\)
```

	$A+B$	$C+D$	E
A+B	-		
C+D	84.5	-	
E	40.5	8^{*}	-

A+B	C+D+E
3	28

$A+B, C+D+E=(3-15.5)^{2}+(28-15.5)^{2}=312.5$

	$A+B$	$C+D+E$
$A+B$	-	
C+D+E	312.5	-

* = The minimum error sum of squares.

6- Interpretation of results

Once cluster analysis had been applied to the data (870 isolates: 870 cases (rows) and 13 antimicrobial agents were 13 variables (columns)) I obtained a 5 metre $x 4$ metre dendrogram by
sellotaping together sheets from the computer print out. This contained isolates on the x -axis and the distance measure on the y axis. The distance measure was transformed into a corresponding set of values for a similarity function using the equation $\% S=1 /(1+d) x$ 100. Similarity levels of $50,60,72,80,90,96,97,98,99,99.5$, 99.9 and 100% were selected and marked on the dendrogram using a marker pen. The number of groups and members of each group were defined at each of these levels. The number of single isolates not clustered with any other members at each similarity level was also obtained.

One of the main difficulties facing me in this study was the presentation of results from the very large dendrogram that I obtained. The dendrogram - being $5 \mathrm{~m} \times 4 \mathrm{~m}$ - needed a large room to view it. I used the floor of the Zoology department museum.

A boundary line was drawn across the dendrogram at 72% similarity level. All groups clustered at or above this similarity level were drawn as a shaded triangles in my final diagram of the cluster analysis. Clusters or groups were labelled "1" to "21". Numbers of isolates in each group including standard reference cultures were also included in the shaded dendrogram as shown in the results.

I have justified the choice of similarity level of 72% on page 193.

SECTION 1

RESULIS

The results of this section are divided into the following parts:

1- Antimicrobial agents sensitivity (p. 54 to 75).
A- Preliminary experiments
B- Definitive experiments

2- Analysis of clusters formed at 50% and 72% similarity levels (p. 76 to ll2).

A- Analysis of clusters formed at 50% similarity level.
B- Clusters formed at 72% similarity level.
3- Statistical analysis of clusters formed at 72% similarity level (p. 113 to 137).

A- Cluster by sites.
(i) Variation in number of isolates between groups for each site.
(ii) Variation in number of isolates between sites for each group.
(iii) Comparison of the number of isolates between sampling sites.

B- Cluster by depths.
(i) Variation in number of isolates between groups for each depth.
(ii) Variation in number of isolates between depths for each group.
(iii) Comparison of the number of isolates between sampling depths.

C- Relationship between isolates of each group obtained from sediment, burrow linings and faecal pellets.

4- Description and interpretation of figures 18 to 23 drawn from 72% similarity level data (Tables 28 and 29).

A- Variation in the number of sediment isolates between groups at each sampling site (p. 138 to 139).
B- Variation in the number of sediment isolates of each group, between sampling sites (p. 140 to 145).

C- Variation in the number of sediment isolates between groups at each sampling depth (p. 145 to 149).

D- Variation in the number of sediment isolates of each group, between sampling depths (p. 149 to 156).

5- Interrelationships between similarity measure, number of isolates/group, number of groups, the coefficient of variation, and the number of single isolates (p. 157 to 174).

6- Clustering of variables (p. 175 to 178).

1-Antimicrobial agents sensitivity

A- Preliminary experiments

The results obtained in the preliminary experiments (with 100 isolates) show that different patterns of resistance to metals were observed. For example, cadmium, copper and lead showed a sharp reduction between one concentration and the next (e.g. 32-64, 32-64 and $100-200 \mathrm{mg} / 1$ respectively) whereas chromium and mercury showed a gradual decline in the number of bacteria growing at higher concentration (Figure 7). Only two of the antibiotics, polymyxin B and chloramphenicol were able to discriminate clearly between sensitive and resistant groups of bacteria (Figure 8). The dye methylene blue showed no consistent results between different concentrations (Figure 8).

With the antimicrobial agents, cadmium, chromium, ampicillin,

Figure 7
Histograms from the preliminary experiments showing the percentage of deep-sea isolates growing on media containing cadmium $\left(\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right)$, chromium $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$, copper $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$, lead $\mathrm{Pb}\left(\mathrm{OOCCH}_{3}\right) \cdot 2 \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and mercury $\left(\mathrm{HgCl}_{2}\right)$ at a range of concentrations (mg/l). Data from master replica 2 only-50 isolates (materials and methods, p. 17). \% are calculated as $\%$ of number of isolates growing on control plate for each antimicrobial agent tested (Appendix Table 1, p. 236).

Figure 8

Histograms from the preliminary experiments showing the percentage of deep-sea isolates growing on media containing ampicillin, chloramphenicol, polymyxin B, streptomycin, nalidixic acid, and methylene blue at a range of concentrations (mg / l). Data from master replica 2 only-50 isolates (materials and methods, p. 17). \% are calculated as \% of number of isolates growing on control plate for each antimicrobial agent tested (Appendix Table 2, p. 237).

Concentration of antimicrobial agent (mg/l)
polymyxin B and nalidixic acid, it was found that increasing the incubation time led to an increase in the number of isolates growing on selective media. For example, in (Figure 7, chromium) at concentrations $16,32,64$ and $128 \mathrm{mg} / 1$, there is difference in the bacterial growth between 7, 14 and 21 days.

B- Definitive experiments

The results of the preliminary experiments recorded in figures 7 and 8 enabled me to choose a more appropriate range of concentrations for the antimicrobial agents used in the definitive experiments (see materials and methods p. 24). The concentrations used in the definitive experiments are shown in table 5. The original data are shown in appendix table 31.

I will now describe in detail the results of part of the definitive experiments based on 100 of the 843 isolates, which demonstrate the percentage of deep-sea bacteria growing on media containing antibiotics and heavy metals at various concentrations. This is followed by a short comment on methylene blue and by an account of the relative toxicity of the antibiotics and heavy metals.

Antibiotics

The results shown in figures 9 and 10 (MR1), 11 and 12 (MR2)
show a consistent trend in that the number of isolates grown on media containing antibiotics decreased with increasing antibiotic concentrations except in the case of methylene blue.

It can also be seen that the percentage of isolates growing increased with increasing incubation time. However, this increase in growth did not always occur in the presence of low concentrations of antibiotics. For example, with ampicillin (2 and 8mg/l), tetracycline (4,8 and $16 \mathrm{mg} / \mathrm{l}$), and nalidixic acid ($4 \mathrm{mg} / 1$) in master replica 1 and

Figure 9

Histograms from the definitive experiments showing the percentage of deep-sea isolates growing on media containing ampicillin, chloromphenicol, polymyxin B, streptomycin, and tetracycline at a range of concentrations (mg/l). Data from master replica 1 only-50 isolates (materials and methods, p. 17). \% are calculated as \% of number of isolates growing on control plate for each antimicrobial agent tested (Appendix Table 3, p. 238).

Figure 10
Histograms from the definitive experiments showing the percentage of deep-sea isolates growing on media containing nalidixic acid and the dye methylene blue at a range of concentrations (mg/l). Data from master replica 1 only-50 isolates (materials and methods, p.l7). \% are calculated as $\%$ of number of isolates growing on control plate for each antimicrobial agent tested (Appendix Table 3, p. 238).

Percentage of deep sea isolates growing on selective media

Figure 11
Histograms from the definitive experiments showing the percentage of deep-sea isolates growing on media containing ampicillin, chloramphenicol, polymyxin B, streptomycin and tetracycline at a range of concentrations (mg/l). Data from master replica 2 only-50 isolates (materials and methods, p. 17). \% are calculated as $\%$ of number of isolates growing on control plate for each antimicrobial agent tested (Appendix Table 4, p. 239).

Concentration of antimicrobial agent (mg/l)

Figure 12
Histograms from the definitive experiments showing the percentage of deep-sea isolates growing on media containing the antibiotic, nalidixic acid and the dye, methylene blue at a range of concentrations (mg/l). Data from master replica 2 only-50 isolates (materials and methods, p. 17). \% are calculated as $\%$ of number of isolates growing on control plate for each antimicrobial agent tested (Appendix Table 4, p. 239).

Percentage of deep sea isolates growing on selective media

with ampicillin ($2 \mathrm{mg} / 1$) and tetracycline ($4 \mathrm{mg} / \mathrm{l}$) in master replica 2. there is little difference between the 7,14 and 21 day counts. This lack of difference should be contrasted with the very marked differences between the counts on days 7,14 and 21 at the higher concentrations of the same antimicrobial agent. The reasons of the differences in growth between incubation times with antibiotics and heavy metals are discussed in the discussion on p. 187, 188.

The antibiotics chloramphenicol and polymyxin B inhibited a larger number of isolates from growing than the other antibiotics used. These two antibiotics are therefore the most effective antibiotics, and this agrees with the reports in the literature (Washington, 1969; McNicol, 1980).

Heavy metals

Figures 13 (MR1) and 14 (MR2) show the percentage of deep-sea isolates growing on media containing the 6 metals tested. In general, as with antibiotics there was a decrease in percentage of isolates growing with increasing heavy metal concentrations. The decrease in growth of deep-sea isolates with increasing metal concentrations appeared to be greatest with cadmium, manganese and mercury. Of these metals, mercury was the most effective metal. In contrast, at low test concentrations of chromium, copper and lead, there was only a slight decrease in the number of isolates growing on selective media. However, when high concentrations were reached, a significant decrease in growth was observed even with these metals.

Unlike antibiotics, there was no apparent general increase in the number of isolates grown on selective media with increasing incubation time. This difference between the growth at 7, 14 and 21 days in the presence of antibiotics and heavy metals is shown in tables 8 and 9 respectively. Here I have expressed each percentage

Figure 13

Histograms from the definitive experiments showing the percentage of deep-sea isolates growing on media containing cadmium $\left(\mathrm{CaCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right)$, chromium $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$, copper $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$, lead $\mathrm{Pb}\left(\mathrm{OOCCH}_{3}\right) 2 \cdot 3 \mathrm{H}_{2} \mathrm{O}$, manganese $\left(\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$, and mercury $\left(\mathrm{HgCl}_{2}\right)$ at a range of concentrations (mg/l). Data from master replica 1 only-50 isolates (materials and methods, p. 17). \% are calculated as $\%$ of number of isolates growing on control plate for each antimicrobial agent tested (Appendix Table 5, p. 240).

Figure 14
Histograms from the definitive experiments showing the percentage of deep-sea isolates growing on media containing cadmium $\left(\mathrm{CaCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right)$, chromium $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$, copper $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$, lead $\mathrm{Pb}\left(00 \mathrm{CCH}_{3}\right) \cdot \cdot 3 \mathrm{H}_{2} \mathrm{O}$, manganese $\left(\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$, and mercury $\left(\mathrm{HgCl}_{2}\right)$ at a range of concentrations(mg / l). Data from master replica 2 only-50 isolates (materials and methods, p. 17). \% are calculated as $\%$ of number of isolates growing on control plate for each antimicrobial agent tested (Appendix Table 6, p. 241).

Table 8
The percentage of number of isolates growing at various concentrations (mg/l) of antibiotics and methylene blue dye after 7, 14 and 21 days.For each master replica plate, the 14 and 21 day counts were calculated as a percentage of the 7 day count which was regarded as being 100% (see $P .71$). Blanks shown in the table, mean that no growth was obtained at these concentrations.

Antimicrobial agent	Master replica	Plate count	Concentration (mg/l)					
			2	8	32	64	128	256
		7	100	100	100	100	100	100
	1	14	95	100	101	101	111	121
		21	95	100	101	106	119	130
Ampicillin		7	100	100	100	100	100	100
	2	14	98	165	109	119	137	572
	1	21	98	210	164	135	148	572
			2	4	8	16	32	64
		7	100	100	-	-	-	-
	1	14	153	93	-	-	-	-
		21	148	180	-	-	-	-
Chloramphenicol		7	100	100	100	-	-	-
	2	14	147	173	186	-	-	-
	1	21	155	173	232	-	-	-

Table 8 cont'd.

Antimicrobial agent	Master replica	Plate count			centr	ion		
Polymyxin B	1		4	8	16	32	64	128
		7	100	100	100	100	100	100
		14	100	120	118	153	132	95
		21	110	146	149	167	178	178
	2	7	100	100	100	100	100	100
		14	191	287	223	286	239	191
		21	187	280	218	279	233	233
Streptomycin	1		4	16	32	64	128	256
		7	100	100	100	100	100	100
		14	126	105	105	105	200	100
		21	127	107	108	114	219	292
	2	7	100	100	100	100	100	-
		14	103	100	156	213	191	-
		21	103	100	163	213	290	-
Tetracycline	1		4	8	16	32	64	128
		7	100	100	100	100	100	100
		14	95	95	98	123	132	150
		21	95	95	98	123	148	150
	2	7	100	100	100	100	100	100
		14	100	102	107	140	260	299
		21	100	108	122	140	290	201

Table 8 cont'd.

Table 9
'The percentage of number of isolates growing at various concentrations (mg/l) of heavy metals after 7,14 and 21 days. For each master replica plate, the 14 and 21 day counts were calculated as a percentage of the 7 day count which was regarded as being 100% (see P. 71). Blanks shown in the table, mean that no growth was obtained at these concentrations.

$\begin{aligned} & \text { Antimicrobial } \\ & \text { agent } \end{aligned}$	Master replica	Plate count	Concentration (mg/l)					
Cadmium			8	16	32	48	64	128
	,	7	1100	100	100	100	100	-
	1	14	93	93	93	109	116	-
		21	93	98	93	93	163	-
		7	100	100	100	100	-	-
	2	14	106	112	127	601	--	-
	,	21	104	107	121	571	-	-
Chromium			8	16	32	64	128	256
		7	100	100	100	100	100	100
	1	14	95	102	95	105	107	117
		21	102	97	104	99	101	111
		7	100	100	100	100	100	100
	2	14	107	118	100	117	104	100
	1	21	109	118	100	117	104	100

Table 9 cont'd.

Antimicrobial agent	Master replica	Plate count			centr	tion		
Copper	1		8	16	32	48	64	128
		7	100	100	100	100	100	-
		14	1101	100	99	129	93	-
		21	98	98	99	131	109	-
	2	7	1100	100	100	100	100	100
		14	98	98	104	106	96	87
		21	\| 98	100	107	109	105	174
Lead	1		64	128	160	192	256	512
		7	100	100	100	100	100	100
		14	103	87	99	94	95	91
		21	103	99	99	97	99	91
	2	7	100	100	100	100	100	-
		14	100	89	100	106	100	-
		21	100	89	100	106	112	-
Manganese	$1 \begin{aligned} & \\ & \\ & 1\end{aligned}$		128	256	512	1024	2048	4096
		7	100	100	100	100	100	-
		14	103	100	100	125	138	-
		21	101	95	104	127	132	-
	2	7	100	100	100	100	100	100
		14	104	105	145	181	241	194
		21	107	109	145	181	435	195

Table 9 cont'd.

पद 女 -

growth as a percentage of the 7 day value in appendix tables 3-6. For example, consider the 7,14 and 21 days, percentages for ampicillin at a concentration of $2 \mathrm{mg} / \mathrm{l}$. These are $24 / 38=63.2 \%, 24 / 40=60 \%$ and $24 / 40=60 \%$ (Appendix table 3). The percentages in table 8 for these data were then calculated as:

$$
\begin{aligned}
& 63.2 / 63.2 \times 100=100 \% \text { (7days) } \\
& 60 / 63.2 \times 100=95 \% \text { (} 14 \text { days) } \\
& 60 / 63.2 \times 100=95 \% \text { (} 21 \text { days) }
\end{aligned}
$$

Wilcoxon's matched pairs tests were applied to the data in tables 8 and 9 to compare the percentage of bacterial growth found at 14 days high concentrations with that at 14 days low concentrations firstly for antibiotics (Appendix table ll) then for heavy metals (Appendix table 12). The same procedure was carried out with the 21 day counts (Appendix tables 13 and 14). The results of these tests are summarised in table 10. With the antibiotics, significant differences were found between high and low concentrations for both incubation times. However, With the heavy metals, there was only a significant difference at 21 days, and this was close to being non-significant (0.05>P>0.025) .

Methylene blue dye

When the dye methylene blue was used as selective media, no consistent trend in the decrease in number of isolates with increasing concentrations was obtained. For example, with master replica plate 1 (Figure 10), there was not a clear decrease in the percentage of deep-sea isolates with increasing methylene blue concentration. In master replica 2 (Figure 12), the decrease in percentage of isolates grown was more appearent.

Subject	Comparison	Negative ranks(R-)	Size of sample	P
Antibiotics	14 days (high concentrations) 14 days (low concentrations)	4.5	9	$0.025>P>0.01$
Antibiotics	21 days (high concentrations) 21 days (low concentrations)	0	10	P<0.001
Heavy metals	14 days (high concentrations) 14 days (low concentrations)	15	11	$\mathrm{P}<0.05$
Heavy metals	21 days (high concentrations) 21 days (low concentrations)	14	12	$0.05>P>0.025$

Table 10
Summary of the results of Wilcoxon's matched pairs test (appendix tables $11,12,13$ and 14 p. 246, 247, 248 and 249 respectively) to compare bacterial growth found at high and low concentrations of antimicrobial agents, at both 14 and 21 day counts.

Relative toxicity of antibiotics and heavy metals

The order of toxicity of antibiotics and heavy metals was investigated by obtaining the overall mean and standard deviation of the minimum inhibitory concentration (MIC) of the antibiotics and heavy metals for the 843 isolates tested (Table 11). The lower the mean of MIC, the more toxic antibiotic or metal. The relative toxicity of antibiotics and the relative toxicity of heavy metals were studied using student's t-tests. Table 12 (i) and (ii) shows the t-test values between pairs of antibiotics or pairs of metals and letters showing the significance levels of t-test values. 5 out of 21 comparisons showed a significant difference in the toxicity between antibiotics while 12 out of 15 comparisons showed a significant difference in the toxicity between metals. Therefore, in general, heavy metals showed more significant difference in the toxicity between pairs of metals than antibiotics.

Antimicrobial agent	Minimum inhibitory concentration (MIC) (mg/l) Mean Standard deviation	
Chloramphenicol	6.668	9.252
Polymyxin B	58.339	84.053
Tetracycline	109.037	87.022
Ampicillin	115.971	183.788
Streptomycin	138.759	152.107
Methylene blue	182.566	213.822
Nalidixic acid	186.669	179.874
Mercury	24.131	31.287
Cadmium	29.453	31.562
Copper	81.798	52.247
Chromium	188.745	188.728
Lead	321.634	169.859
Manganese	2041.398	1963.746

Table 11
Overall mean and standard deviation of minimum inhibitory concentrations of antibiotics and heavy metals for the 843 isolates tested (see appendix table 31).
(i)

	ANTIBIOTICS						
	Ch	Po	Te	Am	St	MB	Na
Ch	-	J	N*	J	M*	L^{\star}	M*
Po	1.833	-	H	G	I	I	J
Te	3.509	1.257	-	A	D	G	H
Am	1.782	0.8555	0.1023	-	C	F	F
St	2.600	1.388	0.5088	0.2866	-	D	E
MB	2.466	1.622	0.9555	0.7086	0.5008	-	N*
Na	2.998	1.939	1.166	0.8247	0.6102	4.406	-

(ii)

HEAVY METALS

	Hg	Cd	Cu	Cr	Pb	Mn
Hg	-	C	M*	M*	${ }^{*}$	M*
Cd	0.3592	-	L*	L*	N*	M*
Cu	2.841	2.573	-	I	${ }^{*}$	M^{*}
Cr	2.581	2.497	1.638	-	I	M*
Pb	5.167	5.074	4.049	1.570	-	M*
Mn	3.081	3.073	2.993	2.817	2.617	-

Table 12
Student's t-tests on the relative toxicity of antimicrobial agents. Lower triangles: Student's t-test values between pairs of antibiotics (i) and heavy metals (ii). Upper triangles: letters showing the significance level of t-test values in the lower triangles. * =toxicity is significantly different.

Significance levels:
$\mathrm{A}=\mathrm{P}>0.90$
$\mathrm{F}=0.50>P>0.40$
*K $=0.05>P>0.025$
$B=0.90>P>0.80$
$\mathrm{G}=0.40>P>0.30$
$*_{\mathrm{L}}=0.025>\mathrm{P}>0.01$
$C=0.80>P>0.70$
$H=0.30>P>0.20$

* $\mathrm{M}=0.01>P>0.001$
$D=0.70>P>0.60$
$I=0.20>P>0.10$
$*_{N}=P<0.001$
$\mathrm{E}=0.60>P>0.50$
$J=0.10>P>0.05$

2- Analysis of clusters formed at 50% and 72% similarity levels

A numerical analysis was applied on 843 deep-sea isolates in order to classify them into taxa. By drawing a boundary line across the dendrogram at different levels of similarity, the OUTs (isolates) were clustered in different groups or clusters. For example, at a similarity level of 50% or above, 11 clusters were obtained while at a similarity level of 72% or above, the isolates were recovered in 21 clusters. I shall deal with the 50% similarity level data first, and the 72% similarity level data second.

A- Analysis of clusters formed at 50% similarity level

It is important to note that throughout the following analysis, the original data being analysed is the number of isolates in each group obtained from the cluster analysis, at different sites and different depths.

The 843 isolates were classified into 11 groups at the 50% similarity level. The number of isolates/group are shown in table 13 and range from 19 in group 11 to 201 in group 5. The groups were then further subdivided by distinguishing the number of isolates at each site and the number of isolates at each depth. For successive groups in turn these data are shown in table 14 for the sites and table 15 for the depths. For example, of the 51 isolates in group 1, 10 occurred at site 1 (all depths combined), 5 at site 2 (all depths combined), and so on to site 5. Similarly, of the 51 isolates in group 1, 19 occurred at the surface (all sites combined), 10 occurred at 0.5 cm (all sites combined), and so on to depth 20.5 cm .

Data on the number of isolates/group/site and the number of isolates/group/depth were analysed statistically. Before statistical analysis were conducted, the data on sites (Table 14) and depths (Table 15) were tested for normality by a graphical method (Sokal and

Group	Total no. isolates in group
1	140
2	38
3	68
4	201
5	87
6	34
7	54
8	68
10	19
11	

Table 13
Total number of isolates/group clustered at 50% similarity level.

Table 14: Number of bacterial isolates/group at each site (e.g. no. isolates/group/site). Untransformed data. Cluster analysis at 50% similarity level.

Group:	00.0	00.5	03.0	04.0	05.5	Dept 07.5	(cm) 10.5	11.0	13.0	15.5	20.5	Total iof iso in group
1	19	10	10	0	1	6	0	1	0	3	1	51
2	3	14	21	5	4	27	0	53	11	0	2	140
3	2	5	2	5	2	3	0	10	9	0	0	38
4	20	8	4	8	3	10	9	2	1	3	0	68
5	6	14	24	8	37	16	23	26	14	18	15	201
6	2	10	11	8	5	8	3	20	14	4	2	87
7	0	23	8	0	2	0	0	1	0	0	0	34
8	0	15	16	0	2	0	1	12	8	0	0	54
9	0	31	17	1	6	9	0	2	0	2	0	68
10	1	14	28	19	9	0	1	3	7	0	1	83
11	1	0	3	6	0	0	0	2	7	0	0	19

Table 15: Number of bacterial isolates/group at each depth (e.g. no. isolates/group/depth). Untransformed data. Cluster analysis at 50\% similarity level.

Rohlf, 1981, p. 117-126) and by the relationship between the mean and standard deviation (Snedecor and Cochrane, 1967, p.325). When the data was plotted against percent cumulative frequency on a probability scale paper (Appendix figure 2A, sites; Appendix figure 3A, depths) and the relationship between mean and standard deviation was analysed (Appendix figure 4A, sites; Appendix figure 5A, depths), both sites and depths showed non-normal distributions. A series of transformations using square-root (Appendix table 16, sites; and Appendix table 17 , depths) and $\log _{10}$ (Appendix table 18 , sites; Appendix table 19, depths) were therefore applied to the data in order to obtain a normal distribution. The graphs obtained are shown in appendix figures $2 B$ and $2 C$, (sites) and appendix figures $3 B$ and $3 C$, (depths). When regression analysis was applied to the untransformed, square-root and $\log _{10}$ transformed data on sites and on depths (Appendix tables 20 and 21 respectively), the nighest correlation coefficient (r) was found with the square-root data for both sites and depths (0.9871, (Appendix table 22) and 0.9963, (Appendix table 23) respectively). For the mean and standard deviation data, the lowest correlation coefficient was found with the square-root transformed data in most cases (Appendix tables 24 and 25). Therefore, the squareroot transformation was selected as the most satisfactory transformation (Appendix B p.25l). Parametric analyses of the data were conducted after this transformation had been applied, while nonparametric tests were applied only to the untransformed data. I shall firstly deal with the non-parametric tests and then with the parametric tests. A flow chart showing the procedure I adopted in these analyses is given in figure 15.

Figure 15
Flow chart outlining the statistical analyses applied to the data
for the bacterial isolates clustered at 50% similarity level.

Non-parametric tests

(i) - Number of isolates/group at each site (Table 14)

The data in table 14 were analysed by a series of Chi-square tests to answer two questions. The first question was: is there any difference between the number of isolates at each site within a given group? In other words for group 1, are the numbers $10,5,25,4$ and 7 (Table 14 row l) significantly different from each other? The results of these 11 Chi-square tests, one for each group, are shown in table 16 where it can be seen that all the Chi-square tests are highly significant. This means that the isolates in each of the 11 groups are not distributed randomly between the sites. The Chi-square values in table 16 show that the greatest variation between sites occurred in group 5 ($\mathrm{X}^{2}=102.9$) and the least variation between sites occurred at group 3 ($x^{2}=18.58$). It is also interesting to note that some groups had no isolates at site 1 (e.g. groups 2, 3, 6 and 8), whereas other groups had a relatively large proportion of the isolates at site 1 (e.g. group $1,10 / 51=208$; group4, $11 / 68=168$; group 9, $34 / 68=50 \%$).

The second question was: is there any difference in the number of isolates between groups at each site? In other words for site 1 are the numbers $10,0,0,11, \ldots . . .3^{3}, 3,3$ (Table 14 column 1) significantly different from each other? The results of these 5 Chi-square tests, one for each site, are shown in table 17 where it can be seen that all the Chi-square tests are highly significant. This means that the isolates at each of the sites are not distributed randomly between the groups. The Chi-square values in table 17 show that the greatest variation between groups occurred at site 2 ($\mathrm{X}^{2}=345.6$) and the least variation between groups occurred at site 5 ($X^{2}=77.02$) .

Group	Site					No. isolates in group	\% of isolates in group	x^{2}	d.f.	P	
	1	2	3	4	5						
1	10	5	25	4	7	51	6.0	28.90	4	P	< 0.001
2	0	65	30	32	13	140	16.6	85.64	4	P	< 0.001
3	0	12	5	15	6	38	4.5	18.58	4	P	< 0.001
4	11	9	29	12	7	68	8.1	22.88	4	P	< 0.001
5	7	92	22	43	37	201	23.8	102.9	4	P	< 0.001
6	0	36	10	27	14	87	10.3	46.39	4	P	< 0.001
7	6	4	0	4	20	34	4.0	34.82	4	P	< 0.001
8	0	23	0	25	6	54	6.4	56.19	4	P	< 0.001
9	34	6	9	6	13	68	8.1	40.68	4	P	< 0.001
10	3	15	1	50	14	83	9.8	93.57	4	P	< 0.001
11	3	2	1	13	0	19	2.3	29.16	4	P	< 0.001

[^1]| Site | Group | | | | | | | | | | | No. isolates at site | $\%$ of isolates at site | x^{2} | d.f. | P | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | | | | |
| 1 | 10 | 0 | 0 | 11 | 7 | 0 | 6 | 0 | 34 | 3 | 3 | 74 | 8.8 | 146.6 | 10 | | < 0.001 |
| 2 | 5 | 65 | 12 | 9 | 92 | 36 | 4 | 23 | 6 | 15 | 2 | 269 | 31.9 | 345.6 | 10 | P | < 0.001 |
| 3 | 25 | 30 | 5 | 29 | 22 | 10 | 0 | 0 | 9 | 1 | 1 | 132 | 15.7 | 122.8 | 10 | | < 0.001 |
| 4 | 4 | 32 | 15 | 12 | 43 | 27 | 4 | 25 | 6 | 50 | 13 | 231 | 27.4 | 118.2 | 10 | P | < 0.001 |
| 5 | 7 | 13 | 6 | 7 | 37 | 14 | 20 | 6 | 13 | 14 | 0 | 137 | 16.3 | 77.02 | 10 | P | < 0.001 |

Cluster analysis at 50% similarity level.
(ii)- Number of isolates/group at each depth (Table 15)

The data in table 15 were analysed by a series of Chi-square tests to answer a similar pair of questions. The first question was: is there any difference between the number of isolates at each depth within a given group? In other words, for group 1 are the numbers 19, 10, $10,0, \ldots . . .0,3,1$ (Table 15 row 1) significantly different from each other? The results of these 11 Chi-square tests, one for each group, are shown in table 18 where it can be seen that all the Chi-square tests are highly significant. This means that the isolates in each of the 11 groups are not distributed randomly between the depths. The Chi-square values in table 18 show that the greatest variation between depths occurred at group $2\left(\mathrm{X}^{2}=202.2\right)$ and the least variation between depths occurred at group 3 ($\mathrm{X}^{2}=34.50$). It is also interesting to note that some groups had no isolates at the sediment surface (0 cm), (e.g. groups 7, 8 and 9), whereas other groups had a relatively large proportion of the isolates at the sediment (e.g. group 1, 19/5l=37\%; group 4, 20/68=29\%).

The second question was: is there any difference in the number of isolates between groups at each depth? In other words, for surface sediment (0 cm), are the numbers $19,3,2, \ldots0,1,1$ (Table 15 column l) significantly different from each other? The results of these 11 Chi-square tests, one for each depth, are shown in table 19 where it can be seen that all the Chi-square tests are highly significant. This means that the isolates at each of the depths are not distributed randomly between the groups. The Chi-square values in table 19 show that the greatest variation between groups occurred at 11 cm depth ($\mathrm{X}^{2}=214.0$) and the least variation between groups occurred at 13 cm depth $\left(X^{2}=45.96\right)$.
Table 18: Chi-square comparisons of the variation between depths for each group. Cluster analysis at 50% similarity level.

[^2]
Parametric tests

(i)- Comparison of the number of isolates/group at each site and depth

 The following parametric analyses were concerned with the variances in the number of isolates/group between sites or depths. It is important to note that the variance ratios used to analyse these variances are calculated from the larger variance/the smaller variance. A computer program "F-ratio" was developed to calculate the variance ratio test (Appendix table 26). The flow diagram used to develop the program is shown in appendix figure 7. An example of the calculation performed by the computer is given in appendix table 27.Table 20A, shows the mean, standard deviation and the variance of the number of isolates/site for groups 1-11. The largest variance occurred in group 2 (7.546) and the smallest variance occurred in group 4 (1.100). The variances between sites for each group were analysed by Bartlett's and F-max tests in order to see whether they were homogeneous between the groups. In other words, for the 11 groups, are the numbers 1.371, 7.546, 5.272, 1.272 (Table 20A column 3) significantly different from each otner? The results of Bartlett's and F -max tests are shown in table 20B where it can be seen that with both tests, the difference between site variances for each group were not significant. This means that at each site, there is the same pattern of change in the number of isolates with depth (i.e. homogenous between sites with regard to depth distribution).

Similarly, table 21A shows the mean, standard deviation and the variance in the number of isolates/depth for groups 1-11. The largest variance occurred in group 2 (4.211) and the smallest variance occurred in group 11 (0.6153). The variances of depths for each group were analysed in the same way as with sites (Bartlett's and F-max tests) in order to determine the homogeneity of variances between

B

Table 20: Table A: mean, standard deviation and variance of number of bacterial isolates/site for groups $1-11.6$ Square-root $(x+0.5)$ transformed data from appendix table 16 p .267 . Cluster analysis at 50% similarity level. Table B: Bartlett's Chi-square and $\mathrm{F}_{\text {max }}$ tests (Sokal \& Rohlf, 1981, Box 13.1, p. 404, 405) for the homogeneity of variance.

A

Group	Mean	Standard deviation	Variance	d.f.
1	1.919	1.264	1.598	10
2	3.066	2.052	4.211	10
3	1.795	0.8968	0.8043	10
4	2.369	1.085	1.177	10
5	4.223	1.018	1.036	10
6	2.754	0.9514	0.9052	10
7	1.411	1.327	1.761	10
8	1.890	1.421	2.019	10
9	2.058	1.640	2.690	10
10	2.395	1.594	2.541	10
11	1.292	0.7844	0.6153	10

B

Homogeneity of variance test	Test value	d.f.	P
Bartlett Chi-square	16.64	10	$0.10>\mathrm{P}>0.05$
$\mathrm{~F}_{\text {max }}=$Large variance			
Small variance	6.844	11,10	$\mathrm{P}>0.05$

Table 21: Table A: mean, standard deviation and variance of number of bacterial isolates/depth for groups 1-11. Square-root ($x+0.5$) transformed data from appendix table 17 p. 268. Cluster analysis at 50% similarity level. Table B: Bartlett's Chi-square and $\mathrm{F}_{\text {max }}$ tests (Sokal \& Rohlf, 1981, Box 13.1, p. 404,405) for the homogeneity of variance.
groups. In other words for the 11 groups, are the numbers 1.598, 4.211, 2.541, 0.6153 (Table 21A, column 3) significantly different from each other ? The results of Bartlett's and F-max tests are shown in table $21 B$ where it can be seen that with both tests, there were no significant differences between depth variances. This means that the depth variances for each group were homogeneous. In other words, if one select any sampling depth and looks at the variation in number of isolates between sites then it will be the same pattern of change at all depths.

(ii)- Comparison of variances in the number of isolates/group between different groups: (a) for sites (b) for depths

The variance in the number of isolates/group were compared beween different groups at all the sites. In other words in table 20A, the variance in the number of isolates in group l (1.371) was compared with the variance in the number of isolates in group 2 (7.546) and then the variance of group 1 (1.371) was compared with the variance of group 3 (1.578) and so on. These comparisons were carried out using the variance ratios for each pair of groups. For the above instance, the larger variance/the smaller variance; 7.546/1.371=5.504 and $1.578 / 1.371=1.151$.

Similarly, the variance in the number of isolates/group at all depths were compared between different groups. In other words in table 21A, the variance in the number of isolates in group 1 (1.598) was compared with the variance in the number of isolates in group 2 (4.211) and then the variance of group 1 (1.598) was compared with the variance of group 3 (0.8043) and so on. These comparisons were carried out using the variance ratios for each pairs of groups. For the above example, the larger variance/ the smaller variance; 4.211/1.598=2.635, $1.598 / 0.8043=1.987$. The results of all site and depth comparisons are
shown in table 22. This table consists of an upper and a lower table. The upper table shows variance ratios for the number of isolates/site along with letters showing the significance of these variance ratios, while the lower table shows variance ratios for the number of isolates/depth along with letters denoting levels of significance. With sites, there was only one significant variance ratio. This occurred between groups 4 and 2 (6.86). With depths however, there were ten significant differences between groups. These occurred between groups 4-2, 9-3, 10-3 and 8-11 (all $0.05>\mathrm{P}>0.025$); 5-2, 6-2, $9-11$ and $10-11(a l 1 \quad 0.025>P>0.01) ; 3-2(0.01>P>0.001)$ and $11-2$ ($0.005>P>0.001$) .

The number of letters showing the significance level; A, B, C,......... G, H were counted for both sites and depths. For example, as can be seen in the upper table 23, with sites there were no A letters, 25 B letters, 21 C letters and so on. Similarly, with depths, there were no A letters, 19 B letters, 17 C letters and so on. Chisquare tests were conducted to answer the question: is there any difference between the significance levels of variance ratios for the number of isolates/site and significance levels of variance ratios for the number of isolates/depth ? In other words, are the numbers 0,25 , $21, \ldots . . .0$. 0 (upper table 23, row 1) significantly different from the numbers $0,19,17, \ldots . .1,1$ (upper table 23, row 2)? The results of the Chi-square test showed that there was no significant difference between sites and depths ($0.90>P>0.80$; upper table 23).

The total number of significant and non-significant variance ratios for sites and depths were also counted. With sites, there were 54 non-significant and only 1 significant variance ratio. With depths, there were 45 non-significant and 10 significant variance ratios. Chisquare tests were conducted in order to answer the question: is there

Table 22: Lower triangles: variance ratios between pairs of groups clustered by sites (i) and depths (ii) at 50% similarity level. Upper triangles: letters showing the significance level of the variances in the lower triangles.

Significance levels.

$0.75>\mathrm{P}>0.50=\mathrm{A}$	$0.05>\mathrm{P}>0.025=\mathrm{E}$
$0.50>\mathrm{P}>0.25=\mathrm{B}$	$0.025>\mathrm{P}>0.01=\mathrm{F}$
$0.25>\mathrm{P}>0.10=\mathrm{C}$	$0.01>\mathrm{P}>0.005=\mathrm{G}$
$0.10>\mathrm{P}>0.05=\mathrm{D}$	$0.005>\mathrm{P}>0.001=\mathrm{H}$

(i) Sites

Groups

	1	2	3	4	5	6	7	8	9	10	11
1		D	B	B	D	C	B	C	B	C	B
2	5.504		D	E*	B	B	C	B	C	B	D
3	1.151	4.782		B	C	C	B	C	B	C	B
4	1.246	$6.86 *$	1.435		D	C	B	C	B	D	B
5	4.680	1.176	4.066	5.833		B	C	B	C	B	D
6	3.098	1.776	2.692	3.862	1.510		C	B	C	B	C
7	1.381	3.986	1.110	1.721	3.389	2.244		C	B	C	B
8	3.297	1.669	2.864	4.109	1.419	1.064	2.388		C	B	C
9	1.393	3.951	1.210	1.736	3.359	2.224	1.009	2.366		C	B
10	3.845	1.431	3.341	4.793	1.217	1.241	2.785	1.166	2.760		D
11	1.078	5.932	1.241	1.156	5.044	3.340	1.4882	3.553	1.502	4.145	

(ii) Depths

Groups

	1	2	3	4	5	6	7	8	9	10	11
1		D	C	B	B	C	B	B	C	C	D
2	2.635		G*	E*	F*	F*	D	C	C	C	H^{*}
3	1.987	5.236*		B	B	B	C	D	E*	E*	B
4	1.358	3.578*	1.463		B	B	B	C	C	C	C
5	1.542	4.065*	1.288	1.136		B	C	C	D	D	C
6	1.765	4.652*	1.125	1.300	1.145		C	C	D	D	B
7	1.102	2.391	2.189	1.496	1.700	1.945		B	B	B	D
8	1.263	2.086	2.510	1.715	1.949	2.230	1.147		B	B	E*
9	1.683	1.565	3.345*	2.285	2.597	2.972	1.528	1.332		B	F*
10	1.590	1.657	3.159*	2.159	2.453	2.807	1.443	1.259	1.059		F*
11	2.597	6.844*	1.307	1.913	1.684	1.471	2.862	3.281*	4.372*	4.130	

[^3]

Table 23: Upper table: Number of Chi-square comparisons at different significance levels (A, B, C, D, E, F, G, H) for sites and depths. Lower table: Chi-square comparisons between total number of significant and non-significant variance ratios for sites and depths (see table 22(i) and (ii)).

Significance levels.

$0.75>\mathrm{P}>0.50=\mathrm{A}$	$0.05>\mathrm{P}>0.025=\mathrm{E}$
$0.50>\mathrm{P}>0.25=\mathrm{B}$	$0.025>\mathrm{P}>0.01=\mathrm{F}$
$0.25>\mathrm{P}>0.10=\mathrm{C}$	$0.01>\mathrm{P}>0.005=\mathrm{G}$
$0.10>\mathrm{P}>0.05=\mathrm{D}$	$0.005>\mathrm{P}>0.001=\mathrm{H}$

any difference in the significant and non-significant variance ratios between sites and depths ? In other words, are the numbers 54 and 1 (lower table 23, row l) significantly different from the numbers 45 and 10 (lower table 23, row 2) ? As expected, the results of Chisquare showed that there were significant differences between sites and depths with regard to the total number of significant and nonsignificant variance ratio tests (0.01>P>0.001; lower table 23).

(iii)- Comparison of variances in the number of isolates/site with variances in the number of isolates/depth

The variance ratio test was used to compare the variance in the number of isolates/site with the variance in the number of isolates/depth for each of the 11 groups clustered at 50% similarity level. Variances were calculated on square-root transformed data fron appendix tables 16 and 17. The results of this comparison are shown in table 24. It is important to note that the variance ratio is equal to the larger variance/ the smaller variance and as shown in table 24, in some cases (e.g. group 2), the larger variance (7.546) is found in the site column while in other cases (e.g. group l), it occurs in the depth column (4.211). Column 2 shows the site variances and column 4 shows the depth variances. In each of these columns there were 11 values. In the site column (column 2), there were eight groups with larger variances $(2,3,5,6,7,8,10$ and 11) and three groups with smaller variances (1,4 and 9). When the variance ratios were calculated for the site and depth variances (Table 24), the results showed that groups 5 (6.193) and 6 (4.693) had the largest variance ratio and therefore they were significant $(0.01>P>0.005 ; 0.025>P>0.01$ respectively).

In the depth column (column 4), there were three groups with larger variances (1,4 and 9) and eight groups with smaller variances

Group	No. isolates/site No. isolates/depth				F-ratio	d.f.		P	
	Variance	d.f.	Variance	d.f.		Numerator	Denominator		
1	1.371	4	1.598	10	1.166	10	4	0.50	> $\mathrm{P}>0.25$
2	7.546	4	4.211	10	1.792	4	10	0.25	> $\mathrm{P}>0.10$
3	1.578	4	0.8043	10	1.962	4	10	0.25	> $\mathrm{P}>0.10$
4	1.100	4	1.177	10	1.070	10	4	0.75	> $\mathrm{P}>0.50$
5	6.416	4	1.036	10	6.193	4	10	0.01	> $\mathrm{P}>0.005$
6	4.248	4	0.9052	10	4.693	4	10	0.025	> $\mathrm{P}>0.01$
7	1.893	4	1.761	10	1.075	4	10	0.50	> $\mathrm{P}>0.25$
8	4.520	4	2.019	10	2.239	4	10	0.25	> $\mathrm{P}>0.10$
9	1.910	4	2.690	10	1.408	10	4	0.50	> $\mathrm{P}>0.25$
10	5.272	4	2.541	10	2.075	4	10	0.25	> $\mathrm{P}>0.10$
11	1.272	4	0.6153	10	2.067	4	10	0.25	> $\mathrm{P}>0.10$

Table 24: F-ratios comparing variances of No. isolates/site with variances of No. isolates/depth, for each of the 11 groups. Variances calculated on square-root ($x+0.5$) transformed data from appendix tables 16 and 17. Groups obtained from cluster analysis at 508 similarity level. F-ratio $=$ large variance/small variance. In some cases above (e.g. group 2), the larger variance is found in the site column while in others (e.g. group 1), it occurs in the depth | $\dot{5}$ |
| :--- |
| $\stackrel{y}{3}$ |
| 8 |

($2,3,5,6,7,8,10$ and 11). According to the variance ratio values all these groups were not significant. Table 25 summarises the above fiñdings.

B- Clusters formed at 72% similarity level

The 72% similarity level data are shown as original data in appendix table 28 and as a dendrogram in figure 16. The details of the clusters and the sites and depths from which the isolates come are shown in table 26. For example, in cluster 1, there were 11 isolates from site 1 and 5 isolates from site 2 and so on. Another example, 78\% of the isolates in cluster 1 were obtained from sediment while 22% were from faecal pellets. These information were obtained from appendix table 28.

I shall now describe each of the clusters in the dendrogram using the information in table 26 and figure 16.

Cluster 1 was formed at $79.4 \% \mathrm{~S}$. It contained 32 isolates and the reference culture of Planococcus citreus (NCMB 1493). The isolates in this group came from different sites and depths (site 1 (ll isolates) at depths of $3 \mathrm{~cm}, 5.5 \mathrm{~cm}$ and 7.5 cm ; site 2 (5 isolates) at depths of $0.5 \mathrm{~cm}, 11 \mathrm{~cm}$ and 20.5 cm ; site 3 (5 isolates) at a depth of 7.5 cm ; site 4 (4 isolates) at depths of 3 cm and 15.5 cm ; and site 5 (7 isolates) at a depth of 0.5 cm). 78% of the isolates in this group were obtained from sediment and 22% came from faecal pellets.

Cluster 2 contained 19 isolates formed at 94.6% S. None of the reference cultures were clustered in this group. The most important aspect of this cluster was that all the isolates came from the surface sediment $(0 \mathrm{~cm})$ of site 3 .

Cluster 3 contained 41 isolates clustered at 73.48 S. None of

Table 25: Summary of table 24 representing the significant and nonsignificant groups and number of larger and smaller variances of No. isolates/site/depth for each of the 11 groups clustered at 50\% similarity level.

Table 26
Details of clusters formed at 72% S. The similarity level, number of isolates in each cluster, site and depth from where isolates were obtained, the percentage of isolates from each source and reference cultures clustered with groups are shown. Three sources were
 parentheses are numbers of isolates clustered from sites (e.g. in cluster 1 there were 11 isolates from site 1, 5 isolates from site 2).

Table 26 cont'd.

Table 26 cont'd.

Table 26 cont'd.

Figure 16
Simplified dendrogram (continued on next 3 pages) showing the relationship between clusters of deep-sea bacteria based on the Euclidean distance coefficient and Ward's method of clustering. Distance has been transformed into percentage similarity. Numbers of isolates in each cluster are shown (more details in appendix table 28). Reference cultures are also shown and their names are listed in table 45.

Figure 16
Simplified dendrogram (continued on next 3 pages) showing the relationship between clusters of deep-sea bacteria based on the Euclidean distance coefficient and Ward's method of clustering. Distance has been transformed into percentage similarity. Numbers of isolates in each cluster are shown (more details in appendix table 28). Reference cultures are also shown and their names are listed in table 45.

the reference cultures were clustered in this group. Most of these isolates came from site $3(29$ isolates) at depths of 0 cm and 7.5 cm . This was followed by site 2 (5 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$, 5.5 cm and 11 cm ; site 4 (5 isolates) at depths of $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 13 cm ; and site 5 (2 isolates) at a depth of 0.5 cm . Most of the isolates (66\%) in this group were obtained from faecal pellets, followed by 27% from sediment and only 7% from burrow linings.

Cluster 4 contained 52 isolates clustered together at 82.8\% S. None of the reference cultures were clustered in this group. The isolates in this group came mainly from site $2(36$ isolates $)$ at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}, 11 \mathrm{~cm}$ and 20.5 cm ; followed by site 5 (9 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 5.5 cm ; and then site 4 (6 isolates) at depths of $0.5 \mathrm{~cm}, 4 \mathrm{~cm}$ and 13 cm ; and site 3 (l isolate) at surface sediment $(0 \mathrm{~cm}) .358$ of the isolates in this group were obtained from sediment, 35\% from burrow linings and 30% from faecal pellets.

Cluster 5 was formed at 88.4% S. It contained 47 isolates and the reference cultures of Pseudomonas fluorescens (NCMB 9046) and Alteromonas haloplanktis (NCMB 19). The isolates in this group came from site 2 (24 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}, 11 \mathrm{~cm}$ and 20.5 cm ; site 4 (21 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 13 cm ; and site 5 (2 isolates) at depths of 0.5 cm and 3 cm . Most of the isolates (57%) in this group were obtained from sediment, followed by 34% from faecal pellets and 9% from burrow linings.

Cluster 6 contained 24 isolates clustered together at 80.6% S. None of the reference cultures were clustered with these isolates. The isolates in this group came from site 2 (9 isolates) at depths of 3 cm and 11 cm ; site 3 (2 isolates) at depths of 0 cm and 7.5 cm ; site 4 (7 isolates) at depths of $0.5 \mathrm{~cm}, 4 \mathrm{~cm}$ and 13 cm ; and site 5 (6 isolates)
at depths of 0.5 cm and $5.5 \mathrm{~cm} .50 \%$ of the isolates were obtained from sediment samples and 33% were from faecal pellets. Only 17% were obtained from burrow linings.

Cluster 7 was formed at $91.4 \% \mathrm{~S}$, and contained 14 isolates. None of the reference cultures clustered with it. The isolates in this group came from site 2 (3 isolates) at a depth of 11.0 cm , site 3 (3 isolates) at depths of 0 cm and 7.5 cm , and site 4 (8 isolates) at depths of 4 cm and 13.0 cm . Most of the isolates (868) in this group were obtained from burrow linings. Only 7% came from faecal pellets and the same percent came from burrow linings.

Cluster 8 was formed at 85.6% S. It contained 23 isolates and the reference cultures of Micrococcus sp. (two strains, NCMB 13, NCMB 365) and Coryneform strain NCMB 8. The isolates in this group came from all sites (site 1 (4 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}, 5.5 \mathrm{~cm}$ and 15.5 cm ; site 2 (5 isolates) at depths of $0.5 \mathrm{~cm}, 5.5 \mathrm{c}$ and 11 cm ; site 3 (4 isolates) at depths of 0 cm and 7.5 cm ; site 4 (3 isolates) at depths of 0.5 cm and 3 cm ; and site 5 (7 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$, 5.5 cm and 10.5 cm). 82% of the isolates in this group were recovered from sediment samples, while only 9% were recovered from burrow linings and the same percent from faecal pellets.

Cluster 9 was formed at 87.6% S. It contained 45 isolates and the reference culture of Pediococcus cerevisiae (NCTC 10331). The isolates in this group came from site 1 (7 isolates) at a depth of 10.5 cm ; site 2 (4 isolates) at depths of $0 \mathrm{~cm}, 10.5 \mathrm{~cm}$ and 15.5 cm ; site 3 (25 isolates) at depths 0 cm and 7.5 cm and site 4 (9 isolates) at depths of 4 cm and 13 cm . 80% of the isolates were obtained from sediment samples. 4% and 16% of the isolates were recovered from burrow linings and faecal pellets respectively.

Cluster 10 comprised 59 isolates clustered at 87.3% S. No reference cultures clustered with it. Most of the isolates in this group came from site 2 (35 isolates) at depth range $0.5 \mathrm{~cm}-20.5 \mathrm{~cm}$. In order of decreasing abundance these were followed by site 4 (ll isolates) at depths of $0.5 \mathrm{~cm}, 4 \mathrm{~cm}, 10.5 \mathrm{~cm}$ and 13 cm ; site 5 (7 isolates) at depths of $3 \mathrm{~cm}, 5.5 \mathrm{~cm}$ and 10.5 cm ; site 3 (5 isolates) at depths of 0 cm and 7.5 cm ; and site 1 (1 isolate) at a depth of 15.5 cm . Most of these isolates (75\%) were obtained from sediment samples. 12% of the isolates were recovered from burrow linings and 13% from faecal pellets.

Cluster 11 was formed at 88%. It contained 11 isolates and the reference culture of Cytophaga lytica (NCMB 292). Most of these isolates came from site 3 (7 isolates) at depths of 0 cm and 7.5 cm ; followed by site 1 (2 isolates) at a depth of 0.5 cm ; and site 2 and 4 (both 1 isolate) at depths of 5.5 cm and 0.5 cm respectively. These isolates were obtained from sediment samples (64\%) and faecal pellets (36\%).

Cluster 12 comprised 107 isolates clustered together at 72.4% S. No reference cultures were clustered with this group. The isolates came from different sites and depths. Most isolates came from site 2 (51 isolates) at depth range of $5.5 \mathrm{~cm}-20.5 \mathrm{~cm}$; followed by site 4 (24 isolates) at depth range of $0.5 \mathrm{~cm}-13 \mathrm{~cm}$; and then site 5 (20 isolates) at depth range of $0.5 \mathrm{~cm}-15.5 \mathrm{~cm}$. Other isolates from site 3 (8 isolates) at 0 cm and 7.5 cm ; and site 1 (4 isolates) at $0.5 \mathrm{~cm}, 10.5 \mathrm{~cm}$ and 20.5 cm were also clustered in this group. The isolates in this group were obtained from sediment samples (70\%), burrow linings (22\%) and faecal pellets (8\%).
and the reference culture of Serratia marcescens (NCIB 2847). The isolates in this group came from site 2 (5 isolates) at depths of $5.5 \mathrm{~cm}, 10.5 \mathrm{~cm}$ and 11 cm ; site 3 (2 isolates) at depths of 0 cm and 7.5 cm ; site 4 (7 isolates) at a depth of 3 cm ; and site 5 (10 isolates) at depth range $0.5 \mathrm{~cm}-15.5 \mathrm{~cm}$. The isolates in this group were recovered from sediment samples (83\%), followed by faecal pellets (13\%) and then burrow linings (4\%).

Cluster 14 was formed at 75% S. It comprised 87 isolates and the reference culture of Aeromonas hydrophila (NCIB 9240). The isolates in this group came from 4 sites; site $2(36$ isolates) at depth range $0.5 \mathrm{~cm}-20.5 \mathrm{~cm}$; site 3 (10 isolates) at depths of 0 cm and 7.5 cm ; site 4 (27 isolates) at depth range of $0.5 \mathrm{~cm}-13.0 \mathrm{~cm}$; and site 5 (14 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$ and $5.5 \mathrm{~cm} .55 \%$ of the isolates in this group were obtained from sediment samples, while 38% and 7% were obtained from burrow linings and faecal pellets respectively.

Cluster 15 was formed at 78.5% S. It contained 34 isolates and the reference culture of Vibrio fischeri (NCMB 1274). Most of the isolates in this group came from site 5 (20 isolates) at depths of 0.5 cm and 3 cm ; followed by site 1 (6 isolates) at depths of 0.5 cm and 5.5 cm , and then site 2 (4 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 11 cm ; and then site 4 (4 isolates) at depths of 0.5 cm and 3 cm . Almost all the isolates (97\%) in this group were obtained from sediment samples. Only one isolate (3\%) came from faecal pellets.

Cluster 16 contained 54 isolates clustered together at 84.1% S. This group contained none of the reference cultures. The isolates in this group came from 3 sites. Most of the isolates came from sites 2 and 4. Site 2 (23 isolates) came from depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}, 10.5 \mathrm{~cm}$ and 11 cm ; site 4 (25 isolates) from depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 13 cm ; and
site 5 (6 isolates) from depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 5.5 cm . A total number of 39 isolates (72\%) were obtained from sediment samples. In addition, 9 (17\%) and 6 (11\%) isolates were obtained from burrow linings and faecal pellets respectively.

Cluster 17 was formed at 85.2% S. It contained 27 isolates and the reference culture of Pseudomonas cleovorans (NCIB 6576). The isolates in this group came mainly from site 1 (27 isolates) at depths of 0.5 cm and 3 cm ; followed by site 2 (4 isolates) at the same depths, then sites 3, 4 and 5 (all 2 isolates) at $7.5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 0.5 cm depth respectively. Almost all the isolates (938) were obtained from sediment samples, while only 7% came from faecal pellets.

Cluster 18 was formed at 79.6% S. It comprised 41 isolates and the reference cultures of Coryneform strain (NCMB 35), Pseudomonas sp. (NCMB 320) and Proteus vulgaris (NCIB 4175). The isolates came mainly from site 1 (17 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}, 5.5 \mathrm{~cm}$ and 15.5 cm ; followed by site 5 (11 isolates) at depths $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 5.5 cm ; site 3 (7 isolates) at a depth of 7.5 cm , site 4 (4 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm ; and site 2 (2 isolates) at a depth of 11.0 cm . The isolates (78\%) from sites 1,4 and 5 were obtained from sediment samples while the isolates (22\%) recovered from sites 2 and 3 were from faecal pellets.

Cluster 19 contained 30 isolates clustered together at 90.8% S. This group contained none of the reference cultures. The isolates in this group came mainly from site 4 (21 isolates) at depths of $0.5 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 13 cm ; and site 2 (8 isolates) at depths of 3 cm and llcm. Only 1 isolate came from site 5 and this was from 0.5 cm depth. 90% of these isolates were obtained from sediment samples, while 3 isolates (10\%) came from burrow linings.

Cluster 20 was formed at 86.38 S. It comprised 53 isolates and the reference culture of Planococcus sp. (NCMB 628). Most of the isolates in this group came from site 4 (29 isolates) at depths of $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 13 cm ; site 5 (13 isolates) at depths of 0.5 cm , and 5.5 cm . 7 isolates were recovered from site 2 at depths of $0.5 \mathrm{~cm}, 10.5 \mathrm{~cm}, 11 \mathrm{~cm}$ and 20.5 cm . A few isolates came from site 1 (3 isolates) at a depth of 0.5 cm . 1 isolate from site 3 at a depth of 0 cm were also clustered in this group. Most isolates in this group were obtained from sediment samples (72\%) although some came from burrow linings (24\%) and faecal pellets (48).

Cluster 21 contained 19 isolates clustered together at 82.1\% S. This group contained none of the reference cultures. The majority of the isolates in this group came from site 4 (13 isolates) at depths of 4 cm and 13 cm .3 isolates were also collected from site 1 at a depth of $3 \mathrm{~cm}, 2$ isolates from site 2 at a depth of 11 cm , and 1 isolate from site 3 at a depth of 0 cm . In this group, 12 (63\%) out of 19 isolates were obtained from burrow linings while 6 (32\%) and 1 (5\%) isolate were recovered from sediment samples and faecal pellets respectively.

The results of this cluster analysis showed that at 728 S or above, 11 of the reference cultures were clustered together in a separate group. These cultures are Morexalla (NCMB 308), Klebsiella pneumonia (3 strains NCIB 8805, 8806, 9261), Bacillus megaterium (NCIB 8508), Bacillus cereus, Corynebacterium xerosis (NCIB 9255), Acinetobacter calcoaceticus (NCIB 8250), Micrococcus luteus (NCTC 2665), Staphylococcus aureus (NCTC 6571) and Staphylococcus albus.

Having described each of the clusters in turn, I shall now describe the overall structure of the cluster dendrogram and the similarity level at which the clusters joined.

Cluster 1 was joined with cluster 2 at 55.28 S. Cluster 3 was joined with cluster 4 at 61.3% S. Cluster 5 was connected with clusters 3 and 4 at 49.8% S and these in turn joined up with clusters 1 and 2 at $32.4 \% \mathrm{~S}$. Clusters 6 and 7 were joined at $69.7 \% \mathrm{~S}$ and these two clusters in turn joined up with clusters 1 to 5 at $0.45 \% \mathrm{~S}$.

Cluster 8 was joined with cluster 9 at 52.28 S. Cluster 10 was connected with cluster 11 at 66.2% S. Cluster 12 was joined with clusters 10 and 11 at 63.18 S and these clusters $(10,11,12)$ in turn connected up with cluster 13 at 56.3% S. These four clusters (10,11 , $12,13)$ joined with clusters 8 and 9 at $46.7 \% \mathrm{~S}$.

Cluster 14 was joined with cluster 15 at 48.7% S and these two clusters joined cluster 16 at 41.6% S. These three clusters (14, 15,16) in turn joined up with clusters ($8,9,10,11,12,13$) at 3.68 S. Cluster 17 was joined to cluster 18 at 58.2% S. Cluster 19 was joined to cluster 20 at 60.4% S. These four clusters were connected up with cluster 21 at 15.18 S .

Clusters 17 to 21 were joined to clusters 8 to 16 at $1.55 \% \mathrm{~S}$ and these in turn joined up with clusters 1 to 7 at 0.28% S.

3- Statistical analysis of clusters formed at 728 similarity level

The 843 isolates obtained from the different sites and different depths were classified into 21 groups at 72% similarity level. Of these, 561 were obtained from sediment, 143 from burrow linings and 139 from faecal pellets. Sections A and B (p. 113-133) deal with the 561 isolates from sediment. Section C (p. 133-137) deals with comparisons between the 561, 143 and 139 isolates from the three sources.

The 561 isolates are shown in table 27 and these range from 1 in group 7 to 75 in group 12. The groups were then further subdivided by distinguishing the number of isolates at each site and the number of isolates at each depth. For successive groups in turn these data are shown in table 28 for the sites and table 29 for the depths. For example, of the 25 isolates in group 1 , 10 occurred at site 1 (all depths combined), 4 at site 2 (all depths combined), and so on to site 5 where 7 isolates occurred. Similarly, of the 25 isolates in group 1 , none occurred at the surface sediment, 10 occurred at 0.5 cm (all sites combined), 10 occurred at 3 cm (all sites combined), and so on to depth 20.5 cm . The results in this analysis are divided into two parts.
(A) Cluster by sites. (B) Cluster by depths.

A- Cluster by sites
Statistical analyses were carried out on the data to determine three main factors:
i) Whether there is a significant variation in the number of isolates between sites for each group.
ii) Whether there is a significant variation in the number of isolates between groups for each site.
iii) Whether there is a correlation in the number of isolates between the five sites.

Group	Total no. isolates in group
1	25
2	19
3	11
4	18
5	27
6	12
7	1
8	19
9	36
10	44
11	7
12	75
13	20
14	49
15	33
16	39
17	23
18	32
19	27
20	38
21	6

Table 27
Total number of isolates/group clustered at 72% similarity level. 561 isolates from sediment.

Group	Site					Total
	1	2	3	4	5	
1	10	4	0	4	7	25
2	0	0	19	0	0	19
3	0	3	2	4	2	11
4	0	4	1	4	9	18
5	0	6	0	19	2	27
6	0	2	1	3	6	12
7	0	0	1	0	0	1
8	4	3	2	3	7	19
9	7	4	17	8	0	36
10	1	28	1	7	7	44
11	2	1	3	1	0	7
12	4	35	1	15	20	75
13	0	2	1	7	10	20
14	0	17	2	16	14	49
15	6	3	0	4	20	33
16	0	11	0	22	6	39
17	17	4	0	2	0	23
18	17	0	0	4	11	32
19	0	7	0	19	1	27
20	3	5	1	11	18	38
21	3	1	1	1	0	6

Table 28
Number of bacterial isolates/group at each site (e.g. no. isolates/group/site). Cluster analysis at 72% similarity level. This data is also presented in figure 19. 561 isolates from sediment.

Group	Depth (cm)											Total
	0.0	0.5	3.0	4.0	5.5	7.5	10.5	11.0	13.0	15.5	20.5	
1	0	10	10	0	1	0	0	0	0	3	1	25
2	19	0	0	0	0	0	0	0	0	0	0	19
3	2	3	3	2	1	0	0	0	0	0	0	11
4	1	4	5	0	3	0	0	1	3	0	1	18
5	0	7	13	0	0	0	0	0	6	0	1	27
6	1	5	2	1	2	0	0	0	1	0	0	12
7	1	0	0	0	0	0	0	0	0	0	0	1
8	2	8	4	0	3	0	1	0	0	1	0	19
9	18	0	0	8	0	0	8	0	0	2	0	36
10	1	4	4	3	11	0	5	0	2	8	6	44
11	3	3	0	0	1	0	0	0	0	0	0	7
12	1	5	12	3	21	0	14	0	1	9	9	75
13	1	2	8	0	4	0	4	0	0	1	0	20
14	4	9	11	3	5	0	3	0	8	4	2	49
15	0	8	8	0	17	0	0	0	0	0	0	33
16	0	15	16	0	2	0	1	0	5	0	0	39
17	0	14	9	0	0	0	0	0	0	0	0	23
18	0	17	6	1	6	0	0	0	0	2	0	32
19	0	4	21	0	0	0	0	0	2	0	0	27
20	1	10	7	5	9	0	1	0	4	0	1	38
21	1	0	3	1	0	0	0	1	0	0	0	6

Table 29
Number of isolates/group at each depth (e.g. no. isolates/group/depth). Cluster analysis at 72% similarity level. 561 isolates from sediment.
(i)- Variation in the number of isolates between sites for each group

The data in table 28 were analysed by a series of Chi-square tests to answer the question: is there any difference between the number of isolates at each site within a given group ? In other words for group 1 , are the numbers $10,4,0,4$ and 7 (Table 28 , row 1) significantly different from each other ? The results of these 21 Chi-square tests, one for each group, are shown in table 30 where it can be seen that a highly significant variation between sites was found with most of the groups (15 out of 21 groups). However, a nonsignificant variation was found between sites in groups 6 $(0.10>P>0.05)$ and $3,7,8,11$ and $21(a l l 0.50>P>0.30)$.
(ii) Variation in the number of isolates between groups for each site

The data in table 28 were analysed by a series of Chi-square tests to answer the question: is there any difference in the number of isolates between groups at each site ? In other words for site l, are the numbers $10,0,0, \ldots . .0,3,3$ (Table 28, column 1) significantly different from each other ? The results of these 5 Chisquare tests, one for each site, are shown in table 31 where it can be seen that at all sites a highly significant variation was found between groups ($\mathrm{P}<0.001$).
(iii) Comparison of the number of isolates between sampling sites

The difference in the number of isolates/group between different sites was studied. In other words in table 28 , the number of isolates in each group at site $1(10,0,0, \ldots . . .3,3)$ was compared with the number of isolates in each group at site $2(4,0,3$, 4, 5, 1) and then the number of isolates in each group at site 1 was compared with the number of isolates in each group at site

Group	1	2	Site 3	4	5	Total	x^{2}	d.f.	P
1	10	4	0	4	7	25	11.20	4	$0.05>\mathrm{P}>0.02$
2	0	0	19	0	0	19	76.00	4	P < 0.001
3	0	3	2	4	2	11	4.000	4	$0.50>\mathrm{P}>0.30$
4	0	4	1	4	9	18	13.67	4	$0.01>\mathrm{P}>0.001$
5	0	6	0	19	2	27	47.26	4	$\mathrm{P}<0.001$
6	0	2	1	3	6	12	8.833	4	0.10 > P > 0.05
7	0	0	1	0	0	1	4.000	4	$0.50>\mathrm{P}>0.30$
8	4	3	2	3	7	19	3.895	4	$0.50>\mathrm{P}>0.30$
9	7	4	17	8	0	36	22.06	4	$\mathrm{P}<0.001$
10	1	28	1	7	7	44	56.45	4	$\mathrm{P}<0.001$
11	2	1	3	1	0	7	3.714	4	$0.50>\mathrm{P}>0.30$
12	4	35	1	15	20	75	49.47	4	$\mathrm{P}<0.001$
13	0	2	1	7	10	20	18.50	4	$\mathrm{P}<0.001$
14	0	17	2	16	14	49	27.02	4	$\mathrm{P}<0.001$
15	6	3	0	4	20	33	36.85	4	$\mathrm{P}<0.001$
16	0	11	0	22	6	39	43.18	4	$\mathrm{P}<0.001$
17	17	4	0	2	0	23	44.17	4	P < 0.001
18	17	0	0	4	11	32	34.56	4	$\mathrm{P}<0.001$
19	0	7	0	19	1	27	49.11	4	$\mathrm{P}<0.001$
20	3	5	1	11	18	38	25.16	4	$\mathrm{P}<0.001$
21	3	1	1	1	0	6	4.000	4	$0.50>\mathrm{P}>0.30$

Table 30: Chi-square comparisons of the variation in number of isolates between sites for each group in turn using the sediment source only. Cluster analysis at 72% similarity level. 561 isolates from sediment.

Table 31: Chi-square comparisons of the variation in number of isolates between groups for each
site in turn using the sediment source only. Cluster analysis at 72% similarity level. Five
1×21 Chi-square tests. 561 isolates from sediment.
$3(0,19,2, \ldots . .1,1)$ and so on until all sites were compared with each other. These comparisons were carried out using the nonparametric Spearman's rank order correlation coefficient (r_{s}). The results of these comparisons are shown in table 32. This table consists of sites compared, Spearman's correlation coefficient and student's t-tests used to obtain the significance levels. A summary of the significance levels of these rank correlations are shown in table 33. A non-significant correlation was found between all sites with the exception of sites 2-4 and 4-5 which showed a significant correlation ($\mathrm{P}<0.001$ and $0.05>\mathrm{P}>0.02$ respectively).

B- Cluster by depths
Data on the number of isolates clustered by depths was statistically analysed to determine three main factors in a similar way to the analysis of clustering by sites.
i) Whether there is a significant variation in the number of isolates between depths for each group.
ii) Whether there is a significant variation in the number of isolates between groups for each depth.
iii) Whether there is a correlation in the number of isolates between the 11 depths.
(i)- Variation in the number of isolates between depths for each group

The data in table 29 were analysed by a series of Chi-square tests to answer the question: is there any difference between the number of isolates at each depth within a given group ? In other words for group 1 , are the numbers $0,10,10, \ldots \ldots .3$ and 1 (Table 29, row 1) significantly different from each other ? The results of these 21 Chi-square tests, one for each group, are shown in table 34 where it can be seen that a highly significant variation in the number

Sites compared	Spearman rank correlation (r_{s})	t	d.f.	P
$1-2$	-0.0405	-0.1767	19	0.90 > $\mathrm{P}>0.80$
1-3	-0.2092	-0.9324	19	0.40 > $\mathrm{P}>0.30$
$1-4$	-0.1665	-0.7359	19	$0.50>\mathrm{P}>0.40$
$1-5$	0.1413	0.6219	19	$0.60>P>0.50$
$2-3$	-0.2396	-1.076	19	$0.30>\mathrm{P}>0.20$
$2-4$	0.8112	6.047	19	$\mathrm{P}<0.001$
2-5	0.3814	1.798	19	0.10 > $\mathrm{P}>0.05$
$3-4$	-0.3290	-1.519	19	0.20 > $\mathrm{P}>0.10$
3-5	-0.2462	-1.107	19	$0.30>\mathrm{P}>0.20$
4-5	0.4613	2.267	19	$0.05>\mathrm{P}>0.02$

Table 32: Spearman's rank correlation comparing between no. isolates in the 21 groups (table 28) for each pair of sites. Cluster analysis at 72% similarity level. $t=$ student's t-test. 561 isolates from sediment.

Sites

Table 33: Triangle showing the signifiance level of Spearman's rank correlation between no. isolates at each pair of sites (table 28. Cluster analysis at 72% similarity level. * = statistically significant result. 561 isolates from sediment.

Significance levels:
$\mathrm{A}=\mathrm{P}>0.90$
$\mathrm{H}=0.30>\mathrm{P}>0.20$
$B=0.90>P>0.80$
$I=0.20>P>0.10$
$C=0.80>P>0.70$
$J=0.10>P>0.05$
$\mathrm{D}=0.70>\mathrm{P}>0.60$
*K $=0.05>\mathrm{P}>0.025$
$E=0.60>P>0.50$
*L $=0.025>\mathrm{P}>0.01$
$\mathrm{F}=0.50>\mathrm{P}>0.40$
*M $=0.01>P>0.001$
$\mathrm{G}=0.40>\mathrm{P}>0.30$
${ }^{*} \mathrm{~N}=\mathrm{P}<0.001$

Depth (cm)
Group
$0.0 \quad 00.503 .0 \quad 04.0 \quad 05.5 \quad 07.5 \quad 10.5 \quad 11.0 \quad 13.0 \quad 15.5 \quad 20.5 \quad$ Total $\quad X^{2}$ d.f. P

| 1 | 0 | 10 | 10 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 1 | 25 | 67.04 | 10 | $P<0.001$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 193.1 | 10 | $P<0.001$ |
| 3 | 2 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 16.00 | 10 | $0.10>P>0.05$ |
| 4 | 1 | 4 | 5 | 0 | 3 | 0 | 0 | 1 | 3 | 0 | 1 | 18 | 20.35 | 10 | $0.05>P>0.02$ |
| 5 | 0 | 7 | 13 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 27 | 75.50 | 10 | $P<0.001$ |
| 6 | 1 | 5 | 2 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 12 | 20.83 | 10 | $0.05>P>0.02$ |
| 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10.10 | 10 | $0.50>P>0.30$ |
| 8 | 2 | 8 | 4 | 0 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 19 | 36.58 | 10 | $P<0.001$ |
| 9 | 18 | 0 | 0 | 8 | 0 | 0 | 8 | 0 | 0 | 2 | 0 | 36 | 102.5 | 10 | $P<0.001$ |
| 10 | 1 | 4 | 4 | 3 | 11 | 0 | 5 | 0 | 2 | 8 | 6 | 44 | 29.00 | 10 | $0.01>P>0.001$ |
| 11 | 3 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 24.27 | 10 | $0.01>P>0.001$ |
| 12 | 1 | 5 | 12 | 3 | 21 | 0 | 14 | 0 | 1 | 9 | 9 | 75 | 68.77 | 10 | $P<0.001$ |
| 13 | 1 | 2 | 8 | 0 | 4 | 0 | 4 | 0 | 0 | 1 | 0 | 20 | 36.47 | 10 | $P<0.001$ |
| 13 | 1 | 0 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 6 | 17.50 | 10 | $0.10>P>0.05$ |
| 14 | 4 | 9 | 11 | 3 | 5 | 0 | 3 | 0 | 8 | 4 | 2 | 49 | 28.17 | 10 | $0.01>P>0.001$ |
| 15 | 0 | 8 | 8 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 106.0 | 10 | $P<0.001$ |
| 16 | 0 | 15 | 16 | 0 | 2 | 0 | 1 | 0 | 5 | 0 | 0 | 39 | 106.5 | 10 | $P<0.001$ |

Table 34: Chi-square comprisons of the variation in number of isolates between depths for each group in turn using the sediment source only. Cluster analysis at 72% similarity level. 561 isolates from sediment.
of isolates occurred in most of the groups ($\mathrm{P}<0.001$). Groups 4 and 6 showed a variation with a significance level of $0.05>P>0.02$ while groups 10,11 and 14 showed a significance level of $0.01>P>0.001$. A non-significant variation in the number of isolates between depths was found only with groups 3 and 21 (both $0.10>p>0.05$) and 7 ($0.50>P>0.30$).
(ii)- Variation in the number of isolates between groups for each depth

The data in table 29 were analysed by a series of Chi-square tests to answer the question: is there any difference in the number of isolates between groups at each depth ? In other words for the surface sediment, are the numbers $0,19,2, \ldots0,1$ and 1 (Table 29, column 1) significantly different from each other ? The results of these 11 Chi-square tests, one for each depth, are shown in table 35 where it can be seen that a highly significant variation in the number of isolates occurred between the groups ($\mathrm{P}<0.001$) for all depths with the exception of the llcm depth which showed a nonsignificant variation ($0.70>\mathrm{P}>0.50$) .
(iii) - Comparison of the number of isolates between sampling depths

The difference in the number of isolates/group between different depths was studied. In other words in table 29, the number of isolates in each group at 0 cm depth ($0,19,2, \ldots \ldots .1$, 1) was compared with the number of isolates in each group at 0.5 cm depth (10 , $0,3, \ldots \ldots .10,0)$ and then the number of isolates in each group at 0 cm depth was compared with the number of isolates in each group at 3 cm depth $(10,0,3, \ldots . . .7,3)$ and so on until all depths were compared with each other. These comparisons were carried out using the non-parametric Spearman's rank order correlation coefficient $\left(r_{s}\right)$. The

Depth:	No. isolates in group																							Total	x^{2}	d.f.		P
00.0	019	9	2	1	0	1	1		2	8	1	3	1	1	4	0	0	0	0	0	1			56	213.6	20		< 0.001
00.5	100	0	3	4	7	5	0		8	0	4	3	5	2	9	8	15	14	17	4	10			128	83.25	20		< 0.001
03.0	100	0	3	5	13	2	0		4	0	4	0	12	8	11	8	16	9	6	21	7			142	94.68	20		< 0.001
04.0	0	0	2	0	0	1	0		0	8	3	0	3	0	3	0	0	0	1	0	5			27	67.92	20		< 0.001
05.5	10	0	1	3	0	2	0		3	0	1	1	21	4	5	17	2	0	6	0	9			86	167.3	20		< 0.001
07.5	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	-		-
10.5	0	0	0	0	0	0	0		1	8	5	0	14	4	3	0	1	0	0	0	1			37	137.7	20		< 0.001
11.0	0	0	0	1	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0			2	18.10	20		.70>P>0.50
13.0	0	0	0	3	6	1			0	0	2	0	1	0	8	0	5	0	0	2	4			32	74.17	20		< 0.001
15.5	3	0	0	0	0	0			1	2	8	0	9	1	4	0	0	0	2	0	0			30	97.97	20	P	< 0.001
20.5	1	0	0	1	1	0			0	0	6	0	9	0	2	0	0	0	0	0	1			21	104.0	20		< 0.001

Table 35: Chi-square comparisons of the variation in number of isolates between groups for each depth in turn using the sedinent source only. Cluster analysis at 728 similarity level. 561 1solates from sediment.
results of these comparisons are shown in table 36. This table consists of depths compared, Spearman's correlation coefficient and student's t-tests used to obtain the exact significance levels. A summary of the significance levels of these correlations are shown in table 37. It is important to note that there was no comparison between the depth 7.5 cm and the other depths because none of the isolates were clustered from this depth in any of the groups.

In general, 11 of the comparisons were significant and 34 were not significant. The details are as follows.

In the comparison between 0 cm and the other depths (Table 36), there were non-significant correlations in all cases with the exception of $0-0.5$ and $0-3 \mathrm{~cm}$ depth which showed a significant correlation ($0.01>P>0.001$ and $\mathrm{P}<0.001$ respectively).

In the comparison between 0.5 cm and the other depths, nonsignificant correlations were found in all cases with the exception of 0.5 - 3 cm depth which showed a significant correlation of $0.01>P>0.001$.

In the comparison between 3 cm and the other depths, nonsignificant correlations were found in all cases with the exception of the depths 3-13cm which showed a significant correlation ($0.01>P>0.001$) .

In the comparison between 4 cm depth and the other depths, non-significant correlations were found an all cases with the exception of $4-10.5$ and 4-15.5cm depth which showed a significant correlation ($0.01>P>0.001$ and $0.5>P>0.02$ respectively).

In the comparison between 5.5 cm depth and the other depths, there were significant correlations between all depths with the exception of $5.5-11$ and $5.5-13 \mathrm{~cm}$ depth which showed a nonsignificant correlation ($0.60>P>0.50$ and $0.30>P>0.20$ respectively).

Depths compared	Spearman rank correlation (r_{s})	t	d.f.	P
0-0.5	-0.5856	-3.149	19	$0.01>\mathrm{P}>0.001$
0-3	-0.6664	-3.896	19	$\mathrm{P}<0.001$
0-4	-0.3757	1.767	19	0.10 > $\mathrm{P}>0.05$
0-5.5	-0.0595	-0.2596	19	$0.80>\mathrm{P}>0.70$
0-7.5	-	-	-	-
0-10.5	0.3241	1.493	19	$0.20>\mathrm{P}>0.10$
0-11	0.0281	0.1226	19	$\mathrm{P}>0.90$
0-13	-0.1609	-0.7108	19	$0.50>\mathrm{P}>0.40$
0-15.5	0.1506	0.6640	19	$0.60>\mathrm{P}>0.50$
0-20.5	-0.0196	-0.0853	19	$\mathrm{P}>0.90$

Table 36: Spearman's rank correlation comparing between no. isolates in the 21 groups (Table 29) for each pair of depths. Comparison tables are on 6 pages. Cluster analysis at 728 similarity level. $t=$ Student's t test. 561 isolates from sediment.

Table 36 cont'd.

Depths compared	Spearman rank correlation (r_{s})	t	d.f.	P
0.5-3	0.6350	3.583	19	0.01 > $\mathrm{P}>0.001$
0.5-4	-0.0334	-0.1457	19	0.90 > $\mathrm{P}>0.80$
0.5-5.5	0.4300	2.076	19	$0.10>\mathrm{P}>0.05$
0.5-7.5	-	-	-	-
0.5-10.5	0.0127	0.0555	19	$\mathrm{P}>0.90$
0.5-11	-0.2830	-1. 286	19	0.30 > $\mathrm{P}>0.20$
0.5-13	0.3430	1.592	19	$0.20>\mathrm{P}>0.10$
0.5-15.5	0.1616	0.7137	19	$0.50>P>0.40$
0.5-20.5	0.2443	1.098	19	0.30 > $\mathrm{P}>0.20$

Table 36 cont'd.

Depths compared	Spearman rank correlation ($\left.\mathrm{r}_{\mathrm{S}}\right)$	t	$\mathrm{d} . \mathrm{f}$.	P
$3-4$	-0.1602	-0.7075	19	$0.50>\mathrm{P}>0.40$
$3-5.5$	0.2453	1.103	19	$0.30>\mathrm{P}>0.20$
$3-7.5$	-	-	-	-
$3-10.5$	0.1570	0.6928	19	$0.50>P>0.40$
$3-11$	-0.1480	-0.6522	19	$0.60>P>0.50$
$3-13$	0.5540	2.901	19	$0.01>P>0.001$
$3-15.5$	0.1669	0.7380	19	$0.50>P>0.40$
$3-20.5$	0.3891	1.841	19	$0.10>P>0.05$

Table 36 cont'd.

Depths compared	Spearman rank correlation (r_{s})	t	d.f.	P
4-5.5	0.3460	1.607	19	$0.20>\mathrm{P}>0.10$
4-7.5	-	-	-	-
4-10.5	0.5503	2.873	19	0.01 > P > 0.001
4-11	-0.0447	-0.1949	19	$0.90>\mathrm{P}>0.80$
4-13	0.2134	0.9520	19	$0.40>\mathrm{P}>0.30$
4-15.5	0.4622	2.272	19	$0.05>P>0.02$
4-20.5	0.3836	1.811	19	$0.10>\mathrm{P}>0.05$
5.5-7.5	-	-	-	-
5.5-10.5	0.4848	2.416	19	$0.05>\mathrm{P}>0.02$
5.5-11	-0.1231	-0.5405	19	$0.60>\mathrm{P}>0.50$
5.5-13	0.2551	1.150	19	$0.30>\mathrm{P}>0.20$
5.5-15.5	0.4878	2.435	19	$0.05>\mathrm{P}>0.02$
5.5-20.5	0.4712	2.329	19	$0.05>\mathrm{P}>0.02$

Table 36 cont'd.

Depths compared	Spearman rank correlation (r_{s})	t	d.f.	P
10.5-11	-0.2457	-1.105	19	$0.30>\mathrm{P}>0.20$
10.5-13	0.2724	1.234	19	$0.30>\mathrm{P}>0.20$
10.5-15.5	0.6854	4.103	19	$\mathrm{P}<0.001$
10.5-20.5	0.4134	1.979	19	$0.10>\mathrm{P}>0.05$
11-13	0.0446	0.1945	19	$0.90>\mathrm{P}>0.80$
$11-15.5$	-0.2455	-1.104	19	$0.30>P>0.20$
11-20.5	0.0641	0.2801	19	$0.80>\mathrm{P}>0.70$
13-15.5	0.0181	0.0791	19	P > 0.90
13-20.5	0.6249	3.489	19	$0.01>\mathrm{P}>0.001$
15.5-20.5	0.5243	2.684	19	$0.02>\mathrm{P}>0.01$

Table 37: Triangle showing the significance level of Spearman's rank correlation between no. isolates at each pair of depths (Table 29). Cluster analysis at 72% similarity level. Significance levels see Table 33. * = Statistically significant result. 561 isolates from sediment.

In the comparison between 10.5 cm depth and the other depths, non-significant correlations were found in all cases with the exception of $10.5-15.5 \mathrm{~cm}$ which showed a highly significant correlation ($\mathrm{P}<0.001$).

In the comparison between 11 cm depth and the other depths, non-significant correlations were found in all cases.

In the comparison between 13 cm depth and the other depths, non-significant correlations were found between the depths 13 15.5 cm ($\mathrm{P}>0.90$). However, there was a significant correlation between the depths $13-20.5 \mathrm{~cm}(0.01>P>0.001)$.

In the comparison between 15.5 cm and 20.5 cm depths, significant correlation was found between the two depths (0.02>P>0.01) .

C- Relationship between isolates of each group obtained from sediment, burrow linings and faecal pellets

The deep-sea isolates used in my study were obtained from three different sources; sediment (561), burrow linings (143) and faecal pellets (139). Table 38 shows the number of isolates/group in each of these sources. The data are also plotted in figure 17 to make visual comparisons easy.

A total of 561 isolates obtained from the sediment source were clustered in 21 groups at 72% similarity level. The number of isolates/group was in the range 1 to 75 (Table 38, rowl). For example, group 7 showed the lowest number of isolates (1) and group 12 showed the highest number of isolates (75).

The 143 isolates obtained from animal burrows were clustered in 14 out of 21 groups. The number of isolates/group was in the range 1 to 33 ('Table 38, row 2). A large number of isolates were clustered

Table 38: Number of bacterial isolates in sediment, burrow linings and faecal pellets for
the 21 groups clustered at 72% similarity level. This data is also plotted in Figure 17, p.135.

Figure 17
Histograms showing the distribution of isolates in sediment, burrow linings and faecal pellets between the 21 groups obtained at 72% similarity level. This data is also presented in table 38.

in groups 4, 7, 10, 12, 14, 16, 20 and 21.
The 139 isolates collected from faecal pellets were clustered in almost all the groups (19 out of 21). The number of isolates/group was in the range 1 to 27 (Table 38, row 3).

The data in table 38 were firstly analysed to test whether there was any difference between the number of isolates/group in the sediment, burrow linings, faecal pellets, and data combined (total). This was done by applying four $1 \times 21 \mathrm{Chi}$-square tests to the data. The results of these Chi-square tests are shown in table 39. All 4 tests were highly significant. The order of significance is data combined ($X^{2}=279.3$), burrow linings ($X^{2}=231.3$), sediment (X^{2} $=215.6$), and faecal pellets ($\mathrm{X}^{2}=131.0$).

The data in table 38 were then analysed using Chi-square tests in order to answer the question: is there any difference in the number of isolates between groups for sediment and burrow linings + faecal pellets ? In other words, are the number $25,19,11, \ldots \ldots .$. 38, 6 (Table 38, row 1) significantly different from the numbers 7, 0 , 30, 34, 20 15, 13 (Table 38 row $2+3$) ? The result of Chisquare tests are shown in table 40 where it can be seen that a highly significant variation in the number of isolates occurred between sediment samples and burrow liningstfaecal pellets ($\mathrm{P}<0.001$).

Similarly, the data in table 38 were analysed using Chisquare tests in order to answer the question: is there any difference in the number of isolates between groups for burrow linings and faecal pellets ? In other words, are the numbers $0,0,3,17, \ldots \ldots .13,12$ (Table 38 row 2) significantly different from the numbers 7, 0, 27, 17, $16, \ldots . .$. 2, 1 (Table 38, row 3) ? The result of Chi-square tests are shown in table 40 where it can be seen that a highly significant variation in the number of isolates occurred between burrow linings and faecal pellets ($P<0.001$).

	x^{2}	d.f.	P
Sediment	215.6	20	$P<0.001$
Burrow linings	231.3	20	$P<0.001$
Faecal pellets	131.0	20	$P<0.001$
Total	279.3	20	$P<0.001$

Table 39
Statistical comparison of number of isolates in groups 1 to 21 for sediment, burrow linings, faecal pellets and data combined (total). Four 1×21 Chi-square tests.

Data compared	x^{2}	d.f.	P
$\text { Sediment vs } \begin{gathered} \text { Burrow linings } \\ + \\ \text { Faecal pellets } \end{gathered}$	147.2	20	P<0.001
Burrow linings vs Faecal pellets	148.0	19	$\mathrm{P}<0.001$

Table 40
Statistical comparison of number of isolates in groups 1 to 21 between sediment and burrow linings + faecal pellets and between burrow linings and faecal pellets. The number of isolates in group 2 for both burrow linings and faecal pellets were zero, therefore, group 2 was excluded from the analysis. One 2×21 and one 2×20 Chi-square tests.

4- Description and interpretation of figures 18 to 23 drawn from 728 similarity level data (Tables 28 and 29).

A- Variation in the number of sediment isolates between groups at each sampling site

The following refers only to the 561 isolates obtained from the sediment and not to isolates from burrow linings or faecal pellets. The number of isolates from each of the five sites (Table 28) was plotted against groups separately (Figure 18). Chi-square tests showed that at all sites, there was a highly significant variation between groups (all $\mathrm{P}<0.001$, table 31). Most of the isolates from site 1 were clustered in groups 1, 9, 15, 17 and 18. The number of isolates was in the range 0 to 17 .

At site 2, most of the isolates were clustered in groups 5, $10,12,14,16,19$ and 20. The number of isolates was in the range 0 to 35. The highest number of isolates from this site was at groups 10 and 12.

At site 3, there was a very small number of clustered isolates with the exception of groups 2 and 9 where 19 and 17 isolates were clustered respectively. The number of isolates was in the range 0-19.

At site 4, a large number of isolates were clustered in a wide range of groups $(5,9,10,12,13,14,16,19$ and 20$)$. The number of isolates was in the range $0-22$.

At site 5 , clustering occurred in most of the groups (1, 4, $6,8,10,12,13,14,15,16,18$ and 20). The number of isolates was in the range $0-20$.

Figure 18
Histograms showing the distribution of isolates in sediment between groups for each site at 72% similarity level.

B- Variation in the number of sediment isolates of each group, between sampling sites

The following refers only to the 561 isolates obtained from the sediment and not to isolates from burrow linings or faecal pellets. The number of isolates for each group at each site are presented in table 28 (p. 115) and plotted in figure 19. In general, for each group, isolates were found at 3 or more of the sites with the exception of groups 2 and 7 where isolates occurred only at site 3 . Only 4 groups ($8,10,12$ and 20) had isolates that came from all 5 sites. The total number of isolates was greatest at site 4 (154), followed by sites 2 and 5 (both 140), then site 1 (74) and site 3 (53) (Table 31 p. 119) and figure 19). Chi-square tests applied to the data showed that significant variation occurred between sites for each group in 15 out of 21 cases (Table 30 p. 118).

I then decided to analyse the distribution of the isolates in each group between the different sites and then to assess whether there was a relationship between the number of sites at which isolates were found in a particular group and the percentage similarity at which that group was formed.

Table 41 gives a summary of the group number, percentage similarity, number of isolates in group and the number of sites at which isolates in group were found. According to sites, groups were classified into 4 categories. Category 1 contained 1 group with isolates found at 1 site. Category 2, contained 4 groups (5, 7, 16 and 19) with isolates obtained at 3 sites. Category 3, contained 9 groups $(3,4,6,9,11,13,14,15$ and 21) with isolates obtained from 4 sites. Category 4, contained 7 groups ($1,8,10,12,17,18$ and 20) all with isolates obtained at 5 sites.

The relationship between the percentage similarity at which groups were clustered and the number of sites at which isolates of

Figure 19
Histograms showing the distribution of isolates between sampling sites for each of the 21 groups at 72% similarity level. The data in this figure were taken from table 26.

Sites

Table 41
A summary of the group number, percentage similarity, number of isolates in group and the number of sites at which isolates in group were found. $V=$ specific sites at which isolates were found.
groups were found was investigated by regression analysis, fitting the equation $y=b x+c$ to the data in table 41. The results are shown in figure 20. A significant negative relationship was found between the percentage similarity and the number of sites $(y=-3.1350 x+96.6686$, $r=-0.4991,0.05>P>0.02)$. This means that the fewer the sites contributing isolates to a particular group, the higher the similarity at which that group was formed.

C - Variation in the number of sediment isolates between groups at each sampling depth

The following refers only to the 561 isolates obtained from the sediment and not to isolates from burrow linings or faecal pellets. The number of isolates obtained from various sediment depths were plotted against the groups (Figure 21 and table 29). In almost all cases (9 out of 10 groups) highly significant variation was found between groups at each depth (Table 35). With the surface sediment $(0 \mathrm{~cm})$, the isolates were clustered in a narrow range of groups (Figure 21). A large number of isolates were clustered in groups 2 and 9. The number of isolates found at this depth ranged from 0 to 19.

The isolates from 0.5 cm depth were scattered over almost all the groups, and ranged from 0 to 17.

The highest number of isolates occured at 3 cm depth (142), and clustering was found in almost all the groups. The number of isolates found at this depth ranged from 0 to 21.

At 4 cm depth, clustering occurred in only 9 of the 21 groups, and the number of isolates found was in the range from 0 to 8.

At 5.5 cm depth, clustering occurred in more than half of the groups (14 out of 21). The number of isolates ranged from 0 to 21 .

At 7.5 cm depth, no clusters occurred, and no isolates were

Number of sites

Figure 20
Relationship between the percentage similarity at which groups were clustered and the number of sites at which isolates in groups were found. Regression equation $y=-3.1350 x+96.6686$, Correlation coefficient $(r)=-0.4991, P=0.05>P>0.02$.

Figure 21
Histograms showing the distribution of isolates between the 21 groups for each of the 11 depths at 72% similarity level.

${ }^{20}$. 0.5 cm depth

Number of isolates

Groups

found.

At 10.5 cm depth, clustering occurred in 8 of the 21 groups, and the number of isolates ranged from 0 to 14.

At llcm depth, clustering occurred in only 2 groups, with one isolate in each group.

At 13 cm depth, clustering occurred in 9 of the 21 groups, and the number of isolates ranged from 0 to 8.

At 15.5 cm depth, clustering occurred in 8 of the 21 groups, and the number of isolates ranged from 0 to 9 .

At the maximum depth of 20.5 cm , clustering occurred in 7 of the 21 groups, and the number of isolates ranged from 0 to 9 .

D- Variation in the number of sediment isolates of each group, between sampling depths

The following refers only to the 561 isolates obtained from sediment and not to isolates from burrow linings and faecal pellets. The numbers of isolates for each group at each sampling depth are presented in table 29 (p. 116) and plotted in figure 22. Significant variation was found between depths with each group in most cases (18 out of 21 , table 34). For groups 2 and 7, isolates were found at the sediment surface only. At groups 10,12 , and 14 , isolates were found at nine of the eleven sampling depths. With the other groups, isolates were found at depths between these two extremes (Figure 22). Figure 22 also shows the number of isolates plotted against sampling depths for pooled data from all the groups. The maximum and minimum number of isolates (142 and 0 respectively) were found at depths of 3 cm and 7.5 cm respectively. In general, however, there was a pronounced decrease in the number of isolates found with increasing depth below 3 cm .

Figure 22
Histograms showing the distribution of isolates between depths for each of the 21 groups at 72% similarity level.

Depths (cm)

As with the sites, I then decided to analyse the distribution of the isolates in each group between the different depths and then to assess whether there was a relationship between the number of depths at which isolates were found in a particular group and the percentage similarity at which that group was formed.

Table 42 gives a summary of the group number, percentage similarity, number of isolates in group and the number of depths at which isolates were found. According to depths, groups were classified into 8 categories. Category 1 contained group 2 with isolates found at 1 depth. Category 2, contained group 17 with isolates obtained at 3 depths. Category 3 contained groupe 11 and 15, both with isolates found at 4 depths. Categories $4,5,6$ and 8 contained groups (7, 19, 21), $(5,9,16),(1,4,18)$ and $(10,12,14)$ respectively with isolates from 5, 6, 7, and 11 depths respectively. Category 7, contained groups $3,6,8,13$ and 20 with isolates obtained from 8 depths.

The relationship between the percentage similarity at which groups were clustered and the number of depths at which isolates of groups were found was investigated by regression analysis fitting the equation $y=b x+c$ to the data in table 42. The results are shown in figure 23. A significant negative correlation was found between the percentage similarity and the number of depths $(y=-1.2247 x+92.2347$, $r=-0.5065,0.02>P>0.01)$. This means that, as with the sites, the fewer the depths contributing isolates to a particular group, the higher the similarity at which that group was formed.

Table 42
A summary of the group number, percentage similarity, number of isolates in group and the number of depths at
which isolates were found. $\checkmark=$ specific depths at which isolates were found.

Number of depths

Figure 23
Relationship between the percentage similarity at which groups were clustered and the number of depths at which isolates in groups were found. Regression equation $y=-1.2249 x+92.2347$, Correlation coefficient $(r)=-0.5065, ~ P .=0.02>P>0.01$.

5- Interrelationships between similarity measure, number of isolates/group, number of groups, the coefficient of variation, and the number of single isolates

The distance measure used for computation in cluster analysis was the Euclidean distance squared. It has been transformed into percentage similarity ($\% \mathrm{~S}$). The relationships between the percentage similarity and the number of isolates/group, the number of groups (including single isolates), the number of groups (excluding single isolates), the coefficient of variation and the number of single isolates were studied. The following paragraphs describe the results of these investigations.

Table 43 shows the percentage similarity of $50,60,72,80$, 90, 96, 97, 98, 99, 99.5, 99.9 and 100% and the Euclidean distance corresponding to each of these similarity levels. The total number of groups including single isolates (i.e. single isolates considered as groups) and the total number of groups excluding single isolates (i.e. single isolates not considered as groups) are also shown. It is important to note the effect of single isolates on the number of groups at each similarity level, therefore, the number of single isolates was determined at each level and these are also shown in this table.

As the percentage similarity increased, the number of isolates/group decreased (Figure 24, using data from table 44). This decrease occurred in almost linear way from 50 to 100% similarity. It was also interesting to note that standard deviation also decreased with an increase in percentage similarity.

The number of groups, including single isolates, increased exponentially with increasing percentage similarity (Figure 25, using

\% S	Euclidean distance	Total No. groups including single isolates	No. groups excluding single isolates	No. single isolates
50	1.003	11	11	0
60	0.679	16	16	0
72	0.388	21	21	0
80	0.257	28	28	0
90	0.107	47	47	0
96	0.042	97	96	1
97	0.031	122	117	5
98	0.020	172	149	23
99	0.010	265	183	82
99.5	0.005	366	199	167
99.9	0.001	562	157	405
100	0.00	682	105	577

Table 43: Similarity levels ranging from 50 to 100% and equivalent Euclidean distances. The total number of groups, both excluding and including single isolates, is also shown as are the number of single isolates at each \% similarity.

FIGURE 24
Relationship between No. bacterial isolates/ group (mean \pm standard deviation) and percentage similarity.

\% S	Euclidean distance	$\log _{10} \%$ S	$\log _{10}(\mathrm{E} . \mathrm{d}+1)$	Total No. groups incl. single isol.	$\begin{aligned} & \text { No. isol./ } \\ & \text { group } \\ & (\bar{x} \pm \text { s.d. }) \end{aligned}$	Coefficient of variation
50	1.003	1.699	0.3017	11	$\begin{gathered} 76.64 \\ \pm \\ 50.07 \end{gathered}$	65.33
60	0.679	1.778	0.251	16	$\begin{gathered} 52.69 \\ \stackrel{ \pm}{ \pm} \\ 39.55 \end{gathered}$	75.06
72	0.388	1.857	0.1424	21	$\begin{gathered} 40.14 \\ \pm \\ \stackrel{ \pm}{3.11} \end{gathered}$	57.57
80	0.257	1.903	0.0993	28	$\begin{gathered} 30.11 \\ \pm \\ 16.99 \end{gathered}$	56.43
90	0.107	1.954	0.0441	47	$\begin{gathered} 17.91 \\ \stackrel{ \pm}{13.15} \end{gathered}$	73.42
96	0.042	1.982	0.0179	97	$\begin{gathered} 8.670 \\ \pm \\ \hline 6.829 \end{gathered}$	78.77
97	0.031	1.987	0.0133	12	$\begin{array}{r} 6.910 \\ \pm \\ 5.863 \\ \hline \end{array}$	84.85
98	0.020	1.991	0.008	172	$\begin{aligned} & 4.901 \\ & \pm \\ & 4.238 \end{aligned}$	86.47
99	0.010	1.996	0.0043	265	$\begin{gathered} 3.177 \\ \pm \\ \frac{ \pm}{2.724} \end{gathered}$	85.74
99.5	0.005	1.998	0.00217	366	$\begin{gathered} 2.301 \\ \pm \\ 2.001 \end{gathered}$	86.96
99.9	0.001	2.000	0.00043	562	$\begin{gathered} 1.500 \\ \pm \\ \hline 1.140 \end{gathered}$	76.00
100	0.00	2.000	0.000	682	$\begin{aligned} & 1.235 \\ & \pm \\ & 0.7682 \end{aligned}$	62.20

Table 44: Similarity levels and $\log _{10}$ similarity levels from 50 to 100%, and equivalent Euclidean distances and $\log _{10}$ Euclidean distances. Total number of groups including single isolates, number of isolates/group ($\bar{x} \pm$ s.d.) and coeffient of variation are also shown at each \% similarity.

[^4]Relationship between No. groups clustered (including single isolates) and percentage similarity.
data from table 43). Between 50 and 90% similarity, the increase in the number of groups was gradual, but after 90% similarity it was very rapid. For instance, at 90% the number of groups was 47 but at 100% it had increased dramatically to 682. Percentage similarity was transformed into logarithm $\left(\log _{10}\right)$ and the relationship with the number of groups, including single isolates, was plotted. The results (Figure 26, using data from table 44) showed that there was no change in this relationship. For example, between $\log _{10}$ percentage similarity 1.699 and 1.954 the increase in the number of groups was gradual but after 1.954 it was rapid.

The number of groups, excluding single isolates, increased with increasing percentage similarity to 99.5%, after which it decreased again (Figure 27A, using data from table 43). Between 50 and 90% similarity, the increase was relatively gradual but from 90 to 99.5% it was very dramatic. Figure 27B, shows the same data, but the percentage similarity axis has been expanded to allow the decrease in the number of groups after 99.5 to be examined more closely. It can be seen that the decrease in the number of groups occurring after 99.5% is even more dramatic than the increase to this similarity level.

The number of single isolates increased dramatically with increasing percentage similarity after 968 similarity (Figure 28A, using data from table 43). Up to 96% similarity, no single isolates were found. In figure 28B, the percentage similarity axis (x-axis) of figure 28A has been expanded to enable the increase in the number of isolates after 96% similarity to be seen more clearly. Figure 28B, shows that between 96 and 98% the increase in the number of single isolates is gradual, but after 98% the increase becomes very rapid especially between 99.5 and 100% similarity.

FIGURE 26

Relationship between No. groups clustered (including single isolates) and $\log _{10}$ percentage similarity.

Percentage similarity

FIGURE 27
A- Relationship between No. groups (excluding single isolates) and percentage similarity.

B- Shows the peak on graph (A) on an expanded scale to improve resolution.

FIGURE 28
Percentage similarity

A- Relationship between No. single isolates and percentage similarity.

B- Shows the curve on graph (A) on an expanded scale to improve resolution.

The coefficient of variation fluctuated with percentage similarity (Figure 29, using data from table 44). In this figure, it can be seen that the data are bimodal i.e. havetwo peaks. These peaks occur at 60% and 99.5% similarity. After 99.5% there is a sharp decrease in the coefficient of variation to 100% similarity. At 72% and 80% similarity, there is a trough in the data.

Similar conclusions can be drawn from the Euclidean distance measure. This is to be expected because the similarity index is derived from the Euclidean distance squared. They are as follows.

As the Euclidean distance increased, the number of isolates/group increased (Figure 30, using data from table 44). This increase occurred in an almost linear way from 1.003 (50\%S) to 0 (100% S). It was also interesting to note that standard deviation also increased with an increase in Euclidean distance.

Conversely, the Euclidean distance decreased exponentially with an increase in the total number of groups including single isolates (Figure 31, using data from table 43). Between 1.003 and 0.107 Euclidean distance, the increase in the number of groups was gradual, but after 0.107 it was very rapid. For example, at 0.107 the number of groups was 47, but at 0 Euclidean distance it had increased dramatically to 682. Euclidean distance was transformed into logarithm $\left(\log _{10}\right)$ and the relationship with the number of groups including single isolates was plotted. The results (Figure 32, using data from table 44) showed that there was no change in the relationship. For instance, between $\log _{10}$ Euclidean distance (0.3017 and 0.0441), the increase in the number of groups was gradual but after 0.0441 it was very rapid.

Excluding single isolates, the number of groups clustered

FIGURE 29

Relationship between coefficient of variation of No. isolates/ group and percentage similarity.

FIGURE 30
Relationship between No. bacterial isolates/ group (mean \pm standard deviation) and Euclidean distance.

Relationship between No. groups clustered (including single isolates) and Euclidean distance.

FIGURE 32

Relationship between No. groups clustered (including single isolates and $\log _{10}$ Euclidean distance.
increased with decreasing Euclidean distance to 0.005 , after which it decreased again (Figure 33, using data from table 43). Between 1.003 and 0.107 Euclidean distance, the increase in number of groups was relatively gradual but from 0.107 to 0.005 , it was very dramatic. Figure 33B, shows tha same data, but the Euclidean distance axis (x-axis) of figure 33 A has been expanded to allow the decrease in the number of groups after 0.005 to be examined more closely. It can be seen that the decrease in the number of groups occurring after 0.005 is oven more dramatic than the increase to this Euclidean distance value.

The number of single isolates increased with decreasing Euclidean distance measure after 0.107 as shown in figure 34 and table 43. Up to 0.042 Euclidean distance, no single isolates were found. In figure 34 B , the Euclidean distance axis (x-axis) of figure 32 A has been expanded to enable the increase in the number of single isolates after 0.042 to be seen more clearly. Figure 34 B , shows that Between 0.042 and 0.020 , the increase becomes very rapid especially between 0.005 and 0 .

The coefficient of variation fluctuated with Euclidean distance (Figure 35 and table 44). In this figure, it can be seen that the data are bimodal i.e. have two peaks. These peaks occur at the Euclidean distances 0.679 and 1.998. After 1.998 there is a sharp decrease in the coefficient of variation to 0 Euclidean distance. At The Euclidean distances 0.388 and 0.257 , there is a trough in the data.

FIGURE 33

A- Relationship between №. groups (excluding single isolates) and Euclidean distance.

B- Shows the peak on graph (A) on an expanded scale to improve resolution.

FIGURE 34
A- Relationship between No. single isolates and Euclidean distance.

B- Shows the curve on graph (A) on an expanded scale to improve resolution.

FIGURE 35
Relationship between coefficient of variation of No. isolates/ group and Euclidean distance.

6- Clustering of variables

The dendograms in figure 36 show clustering of antibiotics alone, metals alone and antibiotics and metals together. These dendrograms were drawn using the matrix data generated by the computer. An example of calculating the correlation coefficient matrix between clusters of heavy metals is shown in appendix table 29. Pictorial representaion of the relationship between clusters of antibiotics and heavy metals together is shown in figure 37. This was redrawn from the diagrams generated by the computer. An example of clustering of heavy metals alone is shown in appendix table 30. Clustering of antibiotics showed that there were two distinct clusters: cluster 1 contained two antibiotics, polymyxim B and nalidixic acid with an overall correlation of 0.4540 ; cluster 2 contained three antibiotics, streptomycin, tetracycline and ampicillin with an overall correlation of 0.3645 . These two clusters joined together at a correlation of 0.3643 . Methylene blue and chloramphomical were unclustered.

Cluster analysis of metals showed that there was probably one cluster formed at the 0.4023 correlation level, which contained three metals, mercury, copper and lead. Manganese, cadmium and chromium were unclustered.

It was concluded from the dendrogram showing cluster analysis of all antimicrobial agents, that there were three distinct clusters. Cluster 1 formed at correlation level of 0.3650 and contained polymyxin B, nalidixic acid and chromium. Cluster 2 included the antibiotics, streptomycin, tetracycline and ampicillin. These clusters formed at a correlation level of 0.3645 , and joined cluster 1 at 0.3643 correlation level. Cluster 3 included five antimicrobial agents, mercury, copper, lead, methylene blue and manganese. This cluster formed at 0.3331 correlation level and joined the clusters 1

Figure 36
Simplified dendrogram showing the relationship between clusters of antibiotics alone, heavy metals alone and antibiotics and metals together based on the correlation coefficient and single linkage method of clustering (BMDPIM - cluster analysis of variables). These dendrogram were drawn using the matrix data generated by the computer. An example of calculating the correlation coefficient between clusters of heavy metals is shown in appendix table 29. Numbers. on the dendrogram represent the correlation coefficients between clusters.

Figure 37

Pictorial representation of the relationship between clusters of antibiotics alone, heavy metals alone and antibiotics and metals together based on the correlation coefficient and single linkage method of clustering (BMDPlM-cluster analysis of variables). These were redrawn from the diagrams generated by the computer. An example of clustering of heavy metals alone is shown in appendix table 30 . The values in these diagrams are the correlation coefficient scaled 0 to 100 according to the table shown on p. 302 .
and 2 at a correlation level of 0.3130 . Only cadmium and chloramphenicol, were unclustered.

SECTION 1

DISCUSSION

The discussion in this section is divided into the following parts:

1- Antimicrobial agents sensitivity.
A- Preliminary experiments.
B- definitive experiments.
2- Cluster analysis.
A- Cluster analysis at 50\% similarity level.
(i) Variation in the number of isolates between groups, between sites, and between depths.
(ii) Comparison of variances between sampling sites and depths for each group.

B- Cluster analysis at 72% similarity level.
3- Statistical analysis of clusters formed at 72% similarity level.
A- Variation in the number of isolates between groups, between sites and between depths.

B- Comparison of the number of isolates between sampling sites and between depths.

C- Comparison of the number of isolates obtained from sediment, burrow linings and faecal pellets.

4- Clustering of variables.

1- Antimicrobial agents sensitivity

A- Preliminary experiments

Characterisation of bacteria according to their susceptibility to antimicrobial agents has been carried out by many investigators (Corlett et al., 1965; Gilardi, 1971; Colwell and Kettling, 1974; Friedman and Maclowry, 1973; Darland, 1975; Sielaff et al., 1976; Timoney et al., 1978; Jones, 1986). Resistance and sensitivity of microbial populations varies according to the sources. For example, Timoney et al. (1978) found that populations of resistant Bacillus sp. were much greater in sediments contaminated with high concentrations of mercury and other heavy metals than in sediments containing low levels of heavy metal pollutants.

Bacterial populations can be divided into groups on the basis of their relative susceptibility to various antimicrobial agents. For example, Pratt and Reynolds (1974) studied methylene blue and polymyxin B as potentially effective agents for characterising marine bacterial populations. The methylene blue selected for oxidative oxidase-positive motile rods and against fermentative oxidase-positive rods. The antibiotic polymyxin B selected for some non-pigmented fermentative bacteria and for pigmented (yellow, orange, pink) nonfermentative Gram-negative rods. Pratt and Reynolds (1974) also made the important observation that pigmented bacteria failed to grow on media without polymyxin and were inhibited by the growth of polymyxinsensitive non-pigmented rods.

In general, the trend obtained with the metals and antibiotics was a decrease in the percentage of bacterial isolates growing on media containing increasing concentrations of antimicrobial agents (see p. 55 and 56, Figures 7 and 8). This trend was not always clearly evident in the preliminary study (e.g. ampicillin, streptomycin, nalidixic acid and methylene blue, figure 8), probably
for two reasons. Firstly, the order of inoculation was from the highest concentration to the lowest concentration; this probably resulted in a slightly higher inoculum being present on the former plates. Secondly, the presence of moisture on the plates may have had the effect of lifting more cells off of the velvet and hence led to a higher inoculum. These two factors probably caused variation in the density of the inoculum and this in turn produced inconsistent results (p. 56, Figure 8, ampicillin and nalidixic acid). To alleviate the effect of moisture, the plates were dried at $37^{\circ} \mathrm{C}$ for one hour in all the definitive experiments according to Cruickshank et al. (1975). Drying the plates produced reliable relationships between antimicrobial agent concentrations and the percentage of bacterial isolates growing. Therefore the first hypothesis (i.e. order of inoculation) was not important.

In the preliminary series of experiments, different patterns of resistance to metals were observed. For example, chromium and mercury showed a gradual decline in the number of isolates growing at higher concentrations of metal, while cadmium, copper and lead showed a rapid reduction between one concentration and the next (p. 55, Figure 7). These two problems were solved in the definitive experiments by increasing the concentration or expanding the range of concentrations of metals where appropriate (see materials and methods, p. 24).

Only two of the antibiotics in the preliminary study (polymyxin B and chloramphenicol) proved to be successful in discriminating between bacterial isolates under test conditions. It appears from the preliminary experiments that concentrations of most of the antibiotics were not high enough to inhibit a significant proportion of isolates. This problem was solved by extending the range
of concentrations showed no discrimination between the isolates (see materials and methods p. 24). When the antibiotic concentrations were increased in the definitive experiments, more discrimination between the isolates was shown (see figures 9, 10, 11, and 12).

The random fluctuation shown by the dye methylene blue might be interpreted as indicating that this selective agent is not suitable for differentiating between isolates in the replica plate method used in my study. Pratt and Reynolds (1974) noted a similar effect. They used a modified disk-diffusion method and showed that methylene blue inhibited the growth of 15 out of 20 cultures of marine bacteria and that the degree of inhibition varied between the cultures. The fact that Pratt and Reynolds and I both obtained similar effect using different techniques is important, because it shows variability is independent of a particular technique.

B- Definitive experiments

The choice of concentrations of antimicrobial agents used to divide bacterial communities varies considerably in the published literature (Tables 2 and 3). The concentrations of antibiotics used by different authors ranges from $10 \mathrm{mg} / 1$ to $100 \mathrm{mg} / 1$, and of metals from $0.002 \mathrm{mg} / \mathrm{l}$ to $3200 \mathrm{mg} / \mathrm{l}$. I chose concentrations in my experiments that fell within those reported in the literature (see materials and methods p. 21 and 22).

Antibiotics

The trend found in my experiments was that the number of isolates grown on selective media decreased with increasing antibiotic concentrations. McNicol (1980) studied isolates from samples collected at the Jones Falls, Eastern Bay, Bloody Point and Chesapeake Beach stations of upper Chesapeake Bay during 1978-79 cruises on the R. V. Ridgely Warfield. The author employed antibiotics and heavy
metals using three different methods: direct plating, replica plating, and minimum inhibitory concentration (MIC). All three methods showed similar qualitative results. Resistant and sensitive organisms could be distinguished by a concentration of $20 \mathrm{ug} / \mathrm{ml}$ for the antibiotics ampicillin, chloramphenicol, nalidixic acid, penicillin, streptomycin and tetracycline. The concentration of $20 \mathrm{ug} / \mathrm{ml}$ of antibiotics chosen by McNicol as the best dose to use to divide natural bacterial populations into sensitive and resistant strains is within the range of concentrations I used in my study.

Some bacteria grew even at the highest concentration of antibiotics that I used. These therefore, are by definition resistant isolates in my experiments. The reasons for resistance to antibiotics are discussed in the appendix A p. 221.

Figures 9, 10, 11, and 12 (p. 58, 59, 60, and 61 respectively) show that prolonged incubation time often led to an increase in the number of bacteria grown on antibiotic selective media. This increase in growth which is quantified in tables 8 and 10 (p. 66 and 72) may be due to the increase of the lag phase period caused by the effect of high concentrations of antibiotics.

The antibiotics chloramphenicol and polymyxin B inhibited the growth of large numbers of isolates, and appear to be the most toxic antibiotics. McNicol (1980) (see above) found that chloramphenicol and tetracycline were the most inhibitory drugs and streptomycin was the least inhibitory. This author did not study the antibiotic polymyxin B. I found that chloramphenicol and polymyxin B were the most effective antibiotics followed by tetracycline, ampicillin, streptomycin, and nalidixic acid (Table 1l, p. 74). McNicol and I therefore agree that chloramphenicol is the most toxic antibiotic.

Washington (1969) studied the antimicrobial susceptibility of clinical Enterobacteriacea and non-fermenting Gram-negative bacilli

This author found that at $20 \mathrm{ug} / \mathrm{ml}$, chloramphenicol inhibited 90% or more of Escherichia coli, Salmonella, Citrobacter, Proteus mirabilis, Pseudomonas maltophilia, and Pseudomonas pseudomallei. I found that $16 \mathrm{mg} / \mathrm{l}$ of chloramphenicol inhibited 100% of my isolates in master replica 1 (i.e. 0% growth). Washington (1969) also found that polymyxin B was very active against members of the family Enterobacteriaceae with the exception of Arizona, Serratia, and species of Proteus other than Proteus mirabilis and proteus providence. 93% of Pseudomonas aeruginosa were inhibited by $5 \mathrm{gg} / \mathrm{ml}$ and 52% of Pseudomonas maltophilia were inhibited by $20 \mathrm{ug} / \mathrm{ml}$. In contrast, I found that $16 \mathrm{mg} / 1$ inhibited 57.1% of the isolates in master replica 1 (i.e. 42.9% growth) and $4 \mathrm{mg} / \mathrm{l}$ inhibited 48.6% of the isolates (i.e. 51.4\% growth) (see appendix table 3). From Washington's results, it appears that the degree of activity of polymyxin B varied between the species of Pseudomonas, because $5 \mathrm{ug} / \mathrm{ml}$ inhibited 93% of Pseudomonas aeruginosa while $20 \mathrm{ug} / \mathrm{ml}$ inhibited only 52% of Pseudomonas maltophilia.

Heavy metals

The actual concentrations at which the inhibition of microbial growth occurs varies according to the organism, the metal and the chemical and physical composition of the medium. For example, for any given metal the toxic concentration for different organisms may vary over a wide range. Thus with copper, the inhibitory concentration of the following species are: green algae ($1 \times 10^{-7} \mathrm{M}$); Pseudomonas, a common soil bacterium ($5 \times 10^{-4} \mathrm{M}$); Ferrobacillus (0.2 M) and some strains of fungi (1.0M), (Sadler and Trudinger, 1967).

It is also well known that many bacterial isolates are resistant to heavy metals such as mercury, copper, cadmium, chromium, lead, nickel, cobalt and arsenic (Smith, 1967; Hedges and Baumberg,

1973; Summers and Lewis, 1973; Walker and Colwell, 1974; Doyle et al., 1975; Groves and Young, 1975; Mitra et al., 1975; Baldry et al., 1977; Fujiwara et al., 1977; Nakahara et al., 1977; Summers and Jacoby, 1978; Summers et al., 1978; Lighthart, 1980; Alking et al., 1982; Olson and Thornton, 1982; Bopp et al., 1983; McEntee et al., 1986; Trevors et al., 1986).

In general, mercury and silver are the most toxic metals and manganese and zinc are the least toxic. Sadler and Trudinger (1967) found that mercury, cadmium, lead, ferrous iron, copper and zinc have decreasing toxicity to Escherichia coli in that order. Duxbury (1981) tested the order of toxicity of several heavy metals toward bacteria obtained from soil situated in bushland 180 km south of Sydney. The author had suggested that metals tested probably fall into broad categories of toxicity: high toxicity e.g. mercury, intermediate toxicity e.g. cadmium, and low toxicity e.g. cobalt, copper, nickel and zinc. Lester et al. (1979) studied the influence of $50 \mathrm{mg} / \mathrm{l}$ of cadmium, chromium, copper, and lead on bacterial species originally isolated from activated sludge. The authors found that the response of population was found to vary for each metal and the most toxic metal was copper followed by cadmium, lead and chromium. Lighthart (1980) states that the extent to which cadmium inhibits growth is dependant on the bacterial and chemical species involved. This author found that Escherichia coli inhibition was a function of the cadmium-ion concentration and irrespective of the presence of citrate as a medium component. However, with Pseudomonas sp., the cadmium inhibition was a function of both the cadmium-ion and the presence of citrate. With no citrate present, inhibition of this organism occurred only at relatively high cadmium-ion concentrations (above $10^{-4} \mathrm{M}$). However, when citrate was added to the same cadmium-containing medium,
inhibition was observed at lower cadmium-ion concentrations $\left(10^{-7} \mathrm{M}\right)$. My results show that the order of toxicity of heavy metals is: mercury, cadmium, copper, chromium, lead, and manganese (Table 11). This agrees with Sadler and Trudinger (1967) who found that mercury and cadmium are very toxic to microorganisms, but they and I disagree about the order of copper and lead.

My results also agree with Duxbury and Bicknell (1983) who tested the toxicity of various metals towards bacterial populations from natural and metal polluted soils. They found that mercury, cadmium and copper have decreasing toxicity in that order. This is the same order as in my experiments. Bitton and Freihofer (1978) found that copper was much more toxic to Klebsiella aerogenes than cadmium. This may have been due to the very strong binding of copper by yeast extract (Ramamoorthy and Kushner, 1975). Ramamoorthy and Kushner studied the binding of heavy metal ions to a number of bacterial growth media. They found that all media bound large amounts of Hg^{2+}, Pb^{2+}, and Cu^{2+}, but much less Cd^{2+}. 80 ppb or less remained as free cations in the solution after adding 20 ppm of $\mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}$, or Cu^{2+}. This might suggest that such ions enter bacterial cells as organic complexes, or that bacterial cells can compete successfully with growth media for bound ions. An earlier study was made by Abelson and Aldous (1950) who reported that the order of decreasing toxicity of nickel, cobalt, cadmium, zinc and manganese for Escherichia coli was in that order. They also reported that the toxicity of these cations is lowered in the presence of magnesium. If magnesium is not present in the medium, these elements are toxic at very low levels.

Adaptation of bacteria to heavy metals is more likely than adaptation to antibiotics since the chances of previous exposure to these metals in the form of heavy metal pollutants are greater than the chances of previous exposure to antibiotic pollutants -even in the
deep-sea (Pfister and Burkholder, 1965).
Tornabene and Edwards (1972), Vaituzis et al. (1975), and Timoney et al. (1978) are examples of papers on the adaptation of bacteria to heavy metals. Tornabene and Edwards (1972) found that Micrococcus luteus and Azotobacter sp. immobilized large quantities of lead in media containing lead salt. The authors also found that fractions of cell wall and cell membrane contain 99.3 and 99.1% of the lead associated with Micrococcus luteus and Azotobacter sp. respectively. The remaining lead is found associated with the cytoplasmic fractions. Vaituzis et al. (1975) found that most cultures which adapt to growth in the presence of HgCl_{2} exhibit extensive morphological changes. They suggested that in the presence of toxic levels of mercury, reduction of the mercury concentration to a definit threshold level, either by metabolic or chemical volatilization, permits growth of the organism. Timoney et al. (1978) found that the number of resistant Bacillus isolates was much greater in sediments containing high concentrations of mercury and other heavy metals than in sediments from areas where heavy metal concentrations were found to be low.

The bacterial isolates from natural environments may already be adapted to antimicrobial agents because they have encountered them in the field, or show progressive adaptation during exposure to antimicrobial agents in the laboratory. Since the chances of previous exposure to metals in the form of heavy metal pollutants are greater than that of antibiotics, I would expect my isolates to be adapted to heavy metals but not to antibiotics when collected. My results with heavy metals show that there was no general increase in the percentage of isolates growing with increasing incubation time (Figures 13 and 14). This suggests that bacteria may have adapted to heavy metals in
deep-sea (Pfister and Burkholder, 1965).
Tornabene and Edwards (1972), Vaituzis et al. (1975), and Timoney et al. (1978) are examples of papers on the adaptation of bacteria to heavy metals. Tornabene and Edwards (1972) found that Micrococcus luteus and Azotobacter sp. immobilized large quantities of lead in media containing lead salt. The authors also found that fractions of cell wall and cell membrane contain 99.3 and 99.1% of the lead associated with Micrococcus luteus and Azotobacter sp. respectively. The remaining lead is found associated with the cytoplasmic fractions. Vaituzis et al. (1975) found that most cultures which adapt to growth in the presence of HgCl_{2} exhibit extensive morphological changes. They suggested that in the presence of toxic levels of mercury, reduction of the mercury concentration to a definit threshold level, either by metabolic or chemical volatilization, permits growth of the organism. Timoney et al. (1978) found that the number of resistant Bacillus isolates was much greater in sediments containing high concentrations of mercury and other heavy metals than in sediments from areas where heavy metal concentrations were found to be low.

The bacterial isolates from natural environments may already be adapted to antimicrobial agents because they have encountered them in the field, or show progressive adaptation during exposure to antimicrobial agents in the laboratory. Since the chances of previous exposure to metals in the form of heavy metal pollutants are greater than that of antibiotics, I would expect my isolates to be adapted to heavy metals but not to antibiotics when collected. My results with heavy metals show that there was no general increase in the percentage of isolates growing with increasing incubation time (Figures 13 and 14). This suggests that bacteria may have adapted to heavy metals in
the field. In contrast, the extended lag phase observed in my results with antibiotics (Figures 9, 10, 11, and 12) suggests that bacteria may have adapted to these antibiotics in the laboratory.

Zevenhuizen et al. (1979) explained the extended lag phase as a process of competition between adaptation and death. Mitra et al. (1975) found high accumulations of the cadmium ion in Escherichia coli cells when a concentration of $3 \times 10^{-6} \mathrm{M}$ was used. They observed that Escherichia coli exhibited a physiological adaptation mechanism to cadmium, which is indicated by an extended lag phase. Mitra and his associates explaned lag phase as a reversible process of accomodation to the presence of Cd^{2+} during which cells required viability involving the exclusion of the ion from the cell and reversal of damage caused by prior exposure to the ion. More recently, Alking et al. (1982) made similar observations on Klebsiella aerogenes. The authors concluded that on solid media containing different concentrations of cadmium, adapted cells of Klebsiella aerogenes showed a far greater tolerance to cadmium than did unadapted cells (not previously exposed to cadmium). Kim (1985) observed that the inhibition of growth of natural bacterial populations was stronger in lm subsurface water than in the neuston (neuston are those plankters that live attached within about 100-1000 um of the air-sea interface; includes some bacteria, protozoa, phytoplankters, and insects; Levinton, 1982; Meadows and Campbell, 1987). Several possible reasons were given for this, one reason was the enrichment of organic substances in the surface microlayers may have resulted in the formation of complexes with heavy metals and thus decreased their toxicity. A second reason was the bacteria may have adapted to the continuous presence of heavy metals in the surface microlayers.

2- Cluster analysis

The taxonomy of ecologically important species can be described by application of a number of numerical procedures to taxonomic data gathered for bacteria isolated from the natural environment. Cluster analysis is one procedure that is being used more frequently in recent studies, and has been found to be very useful for studying large collections of unidentified bacteria. Most studies have been concerned with medically important species (Fontaine et al., 1986; Pretorius et al., 1986). However, a number of workers have used multivariate methods (e.g. cluster analysis) to group together bacteria from a range of aquatic environments.

Colwell and Liston (1961) were the first workers applied adansonian principles to marine bacteria. Adansonian principles that based on the early ideas of Adanson (1727-1806) (Everitt, 1980 p. 4). In this method all characteristics are given equal weight and division into taxa is based on the correlated features. Colwell and Liston (1961) applied this technique to derive a taxonomy of the Pseudomonas-Achromobacter group of Gram-negative, asporogenous , rodlike bacteria. They found that 54 out of 58 Pseudomonas strains tested in an analysis of 80 bacterial cultures clustered into 4 large groups. The validity of the general method was tested by an analysis of 40 well defined strains representative of different genera and families of the Pseudomonadales and the Eubacteriales. The analysis clearly separated groups which are recognized to be taxonomically distinct. Floodgate and Hayes (1963) applied adansonian classification to analyse the morphological, cultural, and biochemical features of 62 yellow pigmented marine bacteria. The authors found that in terms of the overall similarity, the organisms examined fell into two large groups. Hansen et al. (1965) used cluster analysis to perform a
quantitative taxonomic analysis for 20 strains of marine Pseudomonas piscicida bacteria. Pfister and Burkholder (1965) applied cluster analysis to bacteria isolated from Antarctic and tropical seawaters near Puerto Rico. The results of these analyses showed that 9 groups were distinguished. Quigley and Colwell (1968) used cluster analysis to identify bacteria from deep-sea sediment samples collected at depths from 9,400 to $10,400 \mathrm{~m}$ in the Philippine and Marianas Trench of the Pacific Ocean. Colwell and Kettling (1974) used cluster analysis to study the hydrostatic pressure tolerance of deep-sea bacteria isolated from a sediment collected in the Virgin Island Basin of the Atlantic Ocean at a depth of 4000 m . The taxonomic analysis showed that isolates clustered into two groups and identified as Vibrio and Acinetobacter. Boeye and Aerts (1976) isolated 138 strains from North sea sediments and grouped them into six groups using cluster analysis. Austin et al. (1977) clustered and presumptively identified bacteria from Chesapeake Bay based on their resistance to specific heavy metals. Mallory et al. (1977) subjected 162 strains of bacteria from Chesapeake Bay water and sediment to taxonomic analysis and were able to assign some species to particular areas based on their nutrient requirements. Baya et al. (1986) clustered and identified bacteria from polluted and unpolluted Atlantic Ocean samples based on their resistance to antibiotics. These studies show that the application of cluster analysis and similar techniques to marine isolates gives realistic clusters, and that these clusters can be useful in analysing the different types of bacteria in a range of marine environments.

In my study, I combined the selective agents (antibiotics and heavy metals) of Austin et al. (1977) and Baya et al. (1986) and clustered my isolates with regard to their resistance to both antibiotics and heavy metals.

A- Cluster analysis at 50\% similarity
(i) Variation in the number of isolates between groups, between sites and between depths

The results of Chi-square tests to compare the number of isolates between sites for each group (Table 16), groups for each site (Table 17), depths for each group (Table 18), and groups for each depth (Table 19) showed that, in each case, highly significant variation was found. This means that the isolates in each of the 11 groups are not distributed randomly between the sites and between the depths. This also means that isolates at each of the sites and depths are not distributed randomly between the groups. Cluster analysis of bacteria based on antibiotic and metal tolerance produces groups containing species that are physiologically similar with respect to these factors. One would expect to find that each bacterial group is adapted to different physico-chemical and nutritional parameters. These parameters are likely to be affected by differences in sediment properties such as particle size, organic carbon level, and Eh, between sites and between depths. It is known that these properties vary between sampling sites and with sediment depth, both in estuaries (Moshiri and Crumpton, 1978) and in the deep-sea (Meadows and Tait, 1985). The significant differences in the numbers of isolates between groups, sites and depths, found in my study, may have been due to the variation in these sediment properties.
(ii) Comparison of variances between sampling sites and depths for

each group

Tables 20 A and 21 A show for each group the mean, standard deviation and the variance of number of isolates/site and number of isolates/depth respectively. The variances of number of isolates in both tables were analysed in two ways. Firstly, to see whether the
overall variances were homogeneous between the groups. Secondly, to compare the variances of number of isolates for each pair of groups for both sites and depths.

Firstly, I used Bartlett's and F-max tests in order to determine the homogeneity of variances between groups for sites and depths. In other words for the 11 groups, are the numbers 1.371, $7.546,$. 5.272, 1.272 (Table 20 A column 3, sites) significantly different from each other ? and also are the numbers 1.598, 4.211, 2.541, 0.6153 (Table 21 A column 3, depths) significantly different from each other ? The results of Bartlett's Chi-square and F-max tests for both sites and depths are shown in tables 20 B and 21 B respectively where it can be seen that there were no significant differences between overall site variances and between overall depth variances for the 11 groups.

Secondly, I used the variance ratios to compare the variances of number of isolates/site or /depth between different groups. For example, in table 20 A (sites), the variance in the number of isolates in group 1 (1.371) was compared with the variance in the number of isolates in group 2 (7.546) and then the variance of group 1 (1.371) was compared with the variance of group 3 (1.578) and so on. The same procedures were carried out with depths. The results of all site and depth comparisons are shown in table 22. With sites, it was found that only groups 2 and 4 were significantly different (2% of comparisons). With depths however, it was found that significant differences occurred in 10 out of 55 comparisons i.e. 18% (significant differences were found between groups 4 and 2; 5 and 2; 3 and 2; 9 and 3; 6 and 2; 11 and 2; 10 and 3; 9 and 11; 8 and 11; and 10 and 11). This means that the variance between depths is greater than between sites. This in turn may mean that the sediment is more heterogeneous vertically at each site than it is horizantally between sites. This is a little
surprising because the sites are many kilometres apart while the depths are only centimetres apart.

B- Cluster analysis at 728 similarity

The results of the numerical study of 843 deep-sea isolates and 27 reference cultures using the Euclidean distance coefficient and Ward's method of clustering produced a large dendrogram ($5 \mathrm{~m} \times 4 \mathrm{~m}$). Boundary lines were drawn across the dendrogram at similarity levels of $50,60,72,80,90,96,97,98,99,99.5,99.9$ and 100%, in order to obtain the number of groups at each level. 72% similarity level was selected to produce my final dendrogram. This similarity level was selected because it is within the range ($70-85 \%$) used by many authors Quigley and Colwell, 1968; Austin et al., 1977; Mallory et al., 1977; Austin et al., 1978; Hauxhurst et al., 1980; Austin et al., 1981; Austin, 1982; Knivett et al., 1983; Allen et al., 1983; Hudson et al., 1986; Baya et al., 1986; Austin and Moss, 1986; Gil et al., 1986; Marquez et al., 1987) and produces reasonable numbers of groups and reasonable numbers of isolates/group. There was also an indication of good environmental separation according to sites and depths (e.g. the isolates in group 2 were all obtained from surface sediment of site 3). All groups clustered at or above this level were drawn as shaded triangles in my final dendrogram of the cluster analysis (Figure 16). 21 groups were defined at 72% similarity level from the 843 isolates. The results of the numerical study were summarised in table 26 (p. 99102).

Some important points can be taken from this table. The maximum number of isolates found (107) occurred in cluster 12, while the minimum number (11) occurred in cluster 11. Only $1 / 3$ of the clusters contained isolates from all the sampling sites.

I have ranked each site using (a) number of clusters and (b)
maximum number of isolates at each site. I have also summarised the data in table 26 to show the differences between the sites as follows.

Site number	number of clusters	maximum number of isolates in a cluster
1	$20(11$ (1)	$27(4)$
2	$17(3)$	$51(1)$
3	$20(1=)$	$29(2=)$
4	$16(4)$	$29(2=)$
5	$20(5)$	

Ranks = ()

As can be seen in the table above, sites 1 to 5 can be ranked in the order $5,1=, 3,1=$, and 4 according to the number of clusters at that site and in the order $4,1,2=2=$, and 5 according to the maximum number of isolates in a cluster. The two rankings broadly agree with each other. Site 2 is ranked first in both rankings, either alone or with another site. This shows that isolates from this site occur in a high number of clusters (i.e. 20 out of 21) and have the highest number of isolates in a cluster. Isolates from site 4 occur in the same number of clusters as site 2 but site 4 has a lower number of isolates per cluster than site 2. Site 3 has a lower number of clusters (17 clusters) than sites 2 and 4 (both 20 clusters) but has the same number of isolates as site 4 . Site 5 , has a fairly moderate number of clusters (16 clusters) and the least number of isolates in a cluster.

The clusters can be grouped according to the source of isolates (sediment, burrow linings, and faecal pellets) in them as follows.

sed. $=$ sediment, burr. =burrow linings , faec. $=$ faecal pellets
14 clusters contained isolates from sediment + burrow linings + faecal pellets, 5 clusters contained isolates from sediment + faecal pellets. Only l cluster contained isolates from sediment and sediment + burrow linings. No clusters were formed entirely of isolates from burrow linings, faecal pellets, or burrow linings + faecal pellets.

A total of 27 reference cultures were used in my study. The number of deep-sea isolates in each cluster with the reference cultures are shown in table 45. The reference cultures helped in the presumptive identification of 11 out of 21 clusters. The presumptive identification of these 11 clusters are shown in the table below. The clusters contain bacteria that have antibiotic and heavy metal sensitivities close to that of the reference cultures with which they cluster.

Some important points can be made from the table below. As an example, the isolates in groups 11 and 17 which are related to Cytophaga lytica and Pseudomonas cleovorans respectively were isolates clustered at close similarity levels (88 and 85 respectively) and obtained from a depth range of surface to 7.5 cm . They also obtained from sediment and faecal pellets but not from burrow linings.

Cluster No.	Presumptive identification
1	Planococcus citreus
5	Pseudomonas fluorescens, Alteromonas hydrophila
8	Micrococcus, Corynform
9	Pediococcus cerevifiae
11	Cytophaga lytica
13	Serratia marcescens
14	Aeromonas hydrophila
15	Vibrio fischeri
17	Pseudomonas cleovorans
18	Coryneform, Pseudomonas, Proteus vulgaries
20	Planococcus sp.

3- Statistical analysis of clusters formed at 728 similarity level

A- Variation in the number of isolates between groups, between sites and between depths

Chi-square tests were used to test the significance of the variation in the following:
(i) The number of isolates between sites for each group in turn (Table 30).
(ii) The number of isolates between groups for each site in turn (Table 31).
(iii) The number of isolates between depths for each group in turn (Table 34).
(iv) The number of isolates between groups for each depth in turn (Table 35)

The results of these Chi-square tests showed that there was

Cluster NO.	No. isolates	No. ref. strains	Name of reference cultures in cluster
1	32	1	Planococcus citreus (NarB 1493)
2	19	-	
3	41	-	
4	52	-	
5	47	2	Pseudomonas fluocescens (NCMB 9046)/Altecomonas haloplanktis (NCMB 19)
6	24	-	.
7	14	-	
8	23	3	Micrococussp. (NCAB 13)/Microooccussp. (NOMB 3651/Corymeform (NOMB 8)
9	45	1	Pediocoocus cerevisiae (NCTC 10331)
10	59	-	
11	11	1	Cytophage lytica (NCr8 292)
12	107	-	
13	24	1	Sercatia marcescens (NCIB 2847)
14	87	1	Aeromonas tyydrophila (NCIB 9240)
15	34	1	Vibrio fischeri (NOMS 1274)
16	54	-	
17	27	1	Pseudomonas cleovocans (NCIB 6576)
18	41	3	Coryneform (NOPB 35)/Pseudomonassp. (NCMB 320)/PCoteus valgar is (NCIB 4175)
19	30	-	
20	53	1	Planocoocussp. (MO4B 628)
21	19	-	
			Morexalla (NCHB 308)/Klebsiella pneumonia (NCIB 8806)/Klebsiella pneumonia (NCIB
Cluster co	ntains		8805)/Klebsiella pneumonia (NCIB 9261)/Bacillus megaterium (NCIB 8S08)/Corynebacterium
only ceference culcures			xerosis (NCIB 9255)/Micrococcus lutcus (NCTC 2665)/Bacillus cereus/Staphyloooocus auceus
			(NCTC 6571)/Staphylocoocus albü/Acinetobactec calooaceticus (NCIB 8250).
Clusters formed at 721 S and the number cultures in each cluster ace also show.			

statistically significant variation in most of cases. The number of significant Chi-square tests is summarised in the following taple.

	Chi-square tests	
(i)	15	Number of significant
(ii)	5	0
(iii)	18	0
(iv)	9	1

The variation between groups, between sites, and between depths in my data probably indicate geographical and microtopographical changes in sediment properties. A wide variation in the local concentrations of the major biochemical fractions (proteins, carbohydrates and extractable lipids) exists within marine sediments (Brock, 1966; Krauskopf, 1979; White et al., 1979; Battersby and Brown, 1982; Maxwell and Wardroper, 1982; DeLong and Yayanos, 1986; Meadows and Campbel1, 1987). Decreases in protein and carbohydrate levels, and increases in lipid levels with increasing sediment depth have been observed in deep-sea sediments from some areas (Lindblom, 1963). Similar changes in sediment physico-chemical properties such as Eh, chlorophyll, and sulphide levels have been reported as occurring over a few millimetres in intertidal and deepsea sediments (Anderson and Meadows, 1978; Anderson et al., 1981; Meadows and Tait, 1985)). Anderson and Meadows (1978) found that intertidal sediment properties such as Eh, total carbon, organic carbon, total nitrogen, heterotrophic bacterial content and chlorophyll can change notably over short distances in the sediment. The authors also showed the effect of bioturbation structures such as animal burrows on these properties. More recently, Meadows and Tait
(1985) reported a decrease in bacterial abundance with sediment depth in deep-sea sediment from the North East Atlantic. They also found that Eh, and shear strength have been correlated with depth and with burrow systems. Bioturbation therefore has dramatic effects on the properties of deep-sea sediments. Decreases in easily utilizable organic matter occur below the sediment surface and this food limitation controls the basic depth distribution of microbial activity.

B- Comparison of the number of isolates between sampling sites and between depths

The difference in the number of isolates/group between different sites and depths was studied. For example, in table 28 (sites), the number of isolates in each group at site 1 (10, $0,0, \ldots . . .3,3)$ was compared with the number of isolates in each group at site $2(4,0,3,4, \ldots . .5,1)$ and then the number of isolates in each group at site 1 was compared with the number of isolates in each group at site $3(0,19,2, \ldots . .1,1)$ and so on until all sites were compared with each other. The same procedures were carried out with depths. These comparisons are aimed at answering the question: is there any correlation between the number of isolates in each of the groups between sites and between depths ? They were conducted using the non-parametric Spearman's rank order correlation coefficient. The results of these comparisons between sampling sites and between depths are shown in tables 32 and 36 and summarised in figures 38 and 39 respectively.

Significant correlations were only found between sites 2 and 4 and between sites 4 and 5. However, a large number of significant correlations were found between sampling deptns (ll out of 34 comparisons) .

Figure 38
Diagram of the relationships in number of isolates between sampling sites. Significant correlations are indicated by solid lines. Values on the solid lines are Spearman's correlation coefficient. Significance levels as shown in table 32.

Figure 39
Diagram of the relationships in number of isolates between sediment depths (cm). Significant correlations are indicated by solid lines. Values on the solid lines are Spearman's correlation coefficient. Significance levels of correlations as shown in table 36.

Although there are a number of studies on marine isolates using multivariate methods such as cluster analysis (see p. 7-9), there have been no comparative studies similar to mine using heavy metals and antibiotics on deep-sea sedimentary isolates. Meadows and Tait (1985) sampled bacteria from the same sites in the North East Atlantic but did not use cluster analysis. They found variations between sites and between sampling depths. Bacterial numbers ranged from 2.8×10^{2} to 6.5×10^{4} c.f.u/g dry sediment (surface counts) between sites and decreased dramatically with increasing sediment depth (10 ${ }^{2}$ $10^{5} \mathrm{~g}^{-1}$ dry sediment to ca. $1 \mathrm{~g}^{-1}$ dry sediment at depths of 20 cm). Aller and Yingst (1980) found differences in sediment bacterial numbers between sites in Long Island Sound, USA, and also found dramatic decreases in bacterial numbers with increasing sediment depth at each site. They found corresponding decreases in sulphate reduction, ammonia production and ATP levels with increasing sediment depth. In conclusion, they suggested that bacterial distribution patterns were related to changes in chemical parameters and nutrient availability in the sediment.

C- Comparison of the number of isolates obtained from sediment, burrow linings and faecal pellets

Table 38 shows the number of isolates in sediment, burrow linings, and faecal pellets for the 21 groups clustered at 72% similarity level. As can be seen in this table, a total of 561 isolates were obtained from the sediment samples in contrast to 143 and 139 isolates from burrow linings and faecal pellets respectively. The data in table 38 were analysed in three ways. Firstly, to test whether there was any difference between the number of isolates/group in sediment, burrow linings, faecal pellets, and data
combined (total). Secondly, to test whether there was any difference in the number of isolates between groups for sediment and burrow linings + faecal pellets. Thirdly, to test whether there was any difference in the number of isolates between groups for burrow linings and faecal pellets. These comparisons were carried out using Chisquare tests. The results show highly significant variation in each case (Tables 39 and 40).

High levels of organic material occur in the surface layers of marine sediments and these levels generally decrease exponentially with depth (Moshiri and Crumpton, 1978). Anderson, Boonruang and Meadows (1981) studied the relationships between chlorophylls, carbon, nitrogen, and heterotrophic bacteria in an intertidal sand sediment. The authors found a reduction in chlorophyll, carbon, nitrogen, and heterotrophic bacteria with depth. They also found that all these variables were strongly correlated with each other with the exception of heterotrophic bacteria. The authors think that the lack of correlation between bacterial counts and any other assayed parameter may reflect the limitations of dilution plate counting procedure which substantially underestimates numbers of viable heterotrophic bacteria in natural environments. Therefore, my sediment samples taken from near the sediment surface are likely to contain high numbers of bacteria. Fairly similar numbers of isolates were found between burrow linings and faecal pellets. Some of these samples were taken at depths where the surrounding sediment contained very low bacterial counts. The burrow linings and faecal pellets therefore stimulate the growth of bacteria at these depths. This may be caused by several factors including the availability of oxygen for growth resulting from irrigation of burrows by their inhabitants, and the high organic levels present in burrow linings and faecal pellets (Yingst and Rhoads, 1980). Some macrofauna such as Arenicola marina actively
stimulate the growth of bacterial populations in their burrow linings to augment their food supply (Hylleberg, 1975; Meadows and Campbell, 1987). The respiratory currents produced in the burrow by the animal encourage bacterial growth. Interestingly enough, there are often high numbers of particular species of meiofaunal organisms in the burrows of animals that may be feeding on these bacterial populations (Reise, 1985; Meadows and Campbell, 1987) although some burrowing organisms appear to produce antimicrobial agents (King, 1986; Meadows 1986). Saccoglossus kowalewskii produces high concentrations of 2, 4dibromophenol (DBP) in its mucus which then becomes incorporated into the lining of the animal's burrow and inhibits aerobic bacterial growth. Faecal pellets are also expected to have high bacterial counts, because of the high bacterial biomass present in animal guts (Meadows and Tait, 1985; Velji and Albright, 1986).

Of the 21 clusters or groups obtained at 72% similarity level, all of these contained isolates from the sediment source. Only 14 and 19 clusters contained isolates from the burrow linings and faecal pellets respectively. These findings may reflect a more specialised and narrower range of bacteria living on burrow linings and faecal pellets. The high abundance found in the sediment is probably related to the higher nutritional and oxygen levels in the sediment, particularly at the sediment surface.

4- Clustering of variables

Firstly I applied cluster analysis in order to classify isolates (cases) according to their response to antimicrobial agents. I then carried out further cluster analysis to classify the antimicrobial agents (variables) themselves according to their overall minimum inhibitory concentrations. This numerical analysis was conducted in three different ways. Firstly, to the antibiotics alone (7 variables), secondly, to the heavy metals alone (6 variables), and thirdly, to the antibiotics and heavy metals together (13 variables).

Clustering of antibiotics showed that there were two distinct clusters: cluster 1 contained polymyxin B and nalidixic acid, cluster 2 contained streptomycin, tetracycline and ampicillin. Methylene blue and chloramphenicol remained unclustered.

I firstly consider possible explanations as to why polymyxin B and nalidixic acid clustered together in cluster 1. The mode of action of polymyxin B and nalidixic acid is different. However, most marine bacteria are Gram-negative, and both antibiotics are active antimicrobial agents against Gram-negative bacteria. Polymyxins are bactericidal against most Gram-negative bacteria (Viljanen et al., 1986). Feingold et al. (1974) studied the action of polymyxin B on cell membranes. They found that bacteria varied in their susceptibility to this antibiotic, depending on whether they were Gram-positive or Gram-negative. Gram-positive bacteria were relatively resistant to the lethal action of polymyxin B, whereas the cytoplasmic membrane of Gram-negative bacilli were damaged. Nalidixic acid is also an active antimicrobial agent against Gram-negative bacteria (Franklin and Snow, 1971). It acts by inhibiting DNA replication enzymes (Edwards, 1980). The above study shows the importance of Gram-reaction classification and the relative effect of antibiotics on bacteria depends on the Gram-reaction of the bacteria being studied

Cluster 2 contained streptomycin, tetracycline and ampicillin. Streptomycin and tetracycline act by inhibiting the protein synthesis of sensitive bacteria. Both antibiotics inhibit the 30 s ribosomal subunit of both Gram-positive and Gram-negative bacteria. Ampicillin is an antibiotic known to inhibit the cell wall of Gram-positive bacteria. The reason for this/that the composition of the cell wall is different between the Gram-positive and Gram-negative bacteria. For example, Gram-negative bacteria possess a lipid-rich layer surrounding the cell wall called the outer membrane (Hammond and Lambert, 1978). The layer is not present in Gram-positive bacteria.

Streptomycin and tetracycline clustered together probably because they both inhibit the 30 s ribosomal subunit of Gram-positive and Gram-negative bacteria. However, it is unclear why ampicillin clustered with streptomycin and tetracycline, since the mode of action of ampicillin is different from that of the other two antibiotics.

It was not surprising that methylene blue remained unclustered. It's behaviour as an antimicrobial agent was inconsistent throughout my study. The antibiotic chloramphenicol was also unclustered. There are probably two reasons for this. Firstly, the mode of action of chloramphenicol is different from the other antibiotics. It inhibits the 50 s ribosomal subunit of both Grampositive and Gram-negative bacteria. Secondly, the toxicity of chloramphenicol is significantly different from the other antibiotics (Table 12 i).

Clustering of heavy metals showed that there was one cluster formed at the 0.4023 correlation level. This cluster contained three metals; mercury, copper and lead. The metals manganese, cadmium and chromium remained unclustered.

The metals mercury, copper and lead were clustered together
possibly because they share a similar mode of action. Ramamoorthy and Kushner (1975) studied the binding of heavy metal ions to a number of bacterial growth media. They found that all media bound large amounts of $\mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}$, and Cu^{2+}, but much less Cd^{2+}. 80 ppb or less remained as free cations in the solution after adding 20 ppm of $\mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}$, or Cu^{2+}. This might suggest that such ions enter bacterial cells as organic complexes, or that bacterial cells can compete successfully with growth media for the bound ions. Bubela (1970) studied chemical and morphological changes in Bacillus stearothermophilus induced by copper. The morphological changes were reversible when transformed to copper free media. The author concluded that the morphological changes may be indicative of alterations in the cell wall-membrane structure. Vaituzis et al. (1975) showed that growth of some strains of mercury resistant bacteria at high levels of mercury was associated with characteristic morphological changes. Onset of growth and cell division was delayed and there were irregularities associated with cell wall and cytoplasmic membrane synthesis and functions. Tornabene and Edwards (1972) found that Micrococcus luteus and Azotobacter sp. immobilized large quantities of lead in media containing lead salt. The authors also found that fractions of cell wall and cell membrane contain 99.3 and 99.1% of the lead associated with Micrococcus and Azotobacter respectively.

Cadmium is an important environmental pollutant exerts its toxic effects over a wide range of concentrations. In most cases, bacteria and fungi appear to be resistant to this element (Trevors et al., 1986). The reason that cadmium remained unclustered is probably because the ability of cadmium ions to bind organic molecules is different from the other metals (Ramamoorthy and kushner, 1975) (see above). Mitra et al. (1975) observed a prolonged lag phase in their
batch cultures of Escherichia coli supplemented with cadmium. They suggested that accommodation of Escherichia coli to the presence of Cd^{2+} involves exclusion of the ion from the cell and reversal of damage caused by prior exposure to the ion. Alking et al. (1982) reported similar results with the culture Klebsiella derogenes. They suggested that the formation of CdS was probably the most important reason of detoxification in this organism.

The metal manganese also remained unclustered probably because of it's interference with physiological processes. Adams and Ghiorse (1985) determined the influence of Mn^{2+} on growth of Leptothrix discophora strain. The authors suggested that the decrease in cell yield observed at low and moderate concentrations of Mn^{2+} was related to the formation of manganese oxide, which may have bound cationic nutrients essential to the growth of Leptothrix discophora. These inhibitory effects could be caused by Mn^{2+} interference with physiological processes requiring divalent cations such as Mg^{2+}.

Chromium not being clustered with the other metals may be explained by its unusual valency states. Chromium exists in valencies from -2 to +6 , but in the environment only Cr^{+3} and Cr^{+6} are of significance (National Research Council, Committee on Biologic Effects of Atmospheric Pollutants, 1974). There are several studies on the effect of chromium on microorganisms. However, these do not appear to have direct relevant to the importance of valency in determining the toxicity of chromium. Wong et al. (1982) studied the effect of chromium and manganese on Thiobacillus ferrooxidans. The author found that the growth of this culture at pH 2.5 is inhibited by concentrations of $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ greater than $1.5 \times 10^{-2} \mathrm{M}$ or by concentrations of MnSO_{4} greater than 0.6 M . Earlier study on the effect of chromium and copper on Klebsilla aerogenes was conducted by Baldry et al. (1977). The authors found that the action of chromic chloride
on Klebsiella aerogenes (NCIB 418) was very slight but potassium chromate and cupric sulphate were much more toxic. In my study potassium chromate ($\mathrm{K}_{2} \mathrm{CrO}_{4}$) was used.

Clustering of all antimicrobial agents together. Cluster analysis of all the antimicrobial agents together was conducted because resistance to heavy metals is often associated with resistance to antibiotics (Varma et al., 1976; Summers et al., 1978; Calomeris et al., 1984). This analysis showed that there were three distinct clusters. Cluster 1 contained polymyxin B, nalidixic acid and chromium. Cluster 2 included streptomycin, tetracycline and ampicillin. Cluster 3 included mercury, copper, lead, methylene blue, and manganese.

There have been a number of previous studies in this field (see appendix A p. 219-225) but none of these studies have used multivariate methods such as clustre analysis. The following are examples. Nakahara et al. (1977) studied the linkage of mercury, cadmium and arsenate and drug resistance of clinical isolates of Pseudomonas aeruginosa. They found that 99.8% of the 787 isolates tested were metal resistant. Most of these metal resistant isolates were multiple metal and antibiotic resistant, whereas only 19% of the isolates were metal resistant but drug sensitive. Calomeris et al. (1984) studied the association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. They concluded that relation of metal tolerance to multiple antibiotic resistance varied among isolates from different distribution waters. Resistant bacillus populations have a greater frequency in sites polluted by high concentrations of mercury and other heavy metals than unpolluted sites, and ampicillin follows the same trend (Timoney et al., 1978). Baldry et al. (1977) studied the chromium and copper
sensitivity and tolerance in Klebsiella aerogenes. They found that Cu^{2+}-resistance was associated with increased resistance to chloramphenicol and increased sensitivity to streptomycin but the sensitivity to nalidixic acid was unchanged. In contrast, $\mathrm{CrO}_{4}{ }^{2}-$ resistant organisms were resistant to nalidixic acid but not to the other three antibiotics. This agreed with my results when chromium was clustered in the same group with polymyxin B and nalidixic acid.

SECTION 1

SUMMARY

The aim of my work in this section was to study the toxicity effects of heavy metals and antibiotics on deep-sea sedimentary bacteria and to apply a cluster analysis to the data in order to classify the isolates into groups. sea sediment collected at 5 sites around the Rockall Trough area of the North East Atlantic. Isolates were grown on ZoBell agar medium at $10^{\circ} \mathrm{C}$.

A number of standard reference cultures were also used. These cultures were obtained from the National Collection of Marine Bacteria (NCMB), the National Collection of Industrial Bacteria (NCIB), and the National Collection of Type Cultures (NCTC). Additional isolates were supplied by Professor A. Wardlaw of the department of microbiology at Glasgow University.

Preliminary experiments were conducted to select the suitable concentrations of antimicrobial agents in the definitive experiments.

All antimicrobial agents tested were able to suppress the growth of some members of the bacterial population.

Increasing concentration of the antimicrobial agents were found to decrease the number of isolates which grew.

Mercury was the most toxic metal and manganese the least toxic.

Chloramphenicol and polymyxin B were the most toxic antibiotics and nalidixic acid the least toxic.

The relative toxicity of antibiotics and the relative toxicity of heavy metals were studied using student's t-tests. The results showed that 5 out of 21 comparisons showed a significant
difference in the toxicity between antibiotics while 12 out of 15 comparisons showed a significant difference in the toxicity between metals. Therefore, in general, heavy metals showed more significant difference in the toxicity between pairs of metals than antibiotics. with each antimicrobial agent was defined as the lowest concentration of antimicrobial agent that inhibited growth. It varied from one antimicrobial agent to another. deep-sea isolates into a number of groups depending on their antibiotic and metal salt resistance.

A total of 27 standard reference cultures were also put through the antibiotic and metal salt system and a series of "Reference Resistance profiles" were generated. It was hoped to broadly classify the previously grouped unknown isolates on the basis of their relationship to the reference cultures. For example, at 50% and 72% similarity levels, 11 and 21 groups were obtained respectively.

The results of Chi-square tests to compare the number of isolates between groups for each site, between sites for each group, between groups for each depth, and between depths for each
group at $50 \% \mathrm{~S}$ showed highly significant variation in each case. depths was statistically analysed using Bartlett's and F-max tests. The results showed that there were no significant differences between overall site variances and overall depth variances for the 11 groups.

When groups or clusters were compared (using F-ratio) with respect to the variance in the number of isolates present between sites, it was found that only 2 groups were significant (2 and 4).

Similarly when groups were compared (using F-ratio) with respect to depth variances, it was found that significant differences occurred in 10 out of 55 comparisons.

The variances of number of isolates/site with variances of number of isolates/depth were compared using F-ratio tests. The results showed that in general, there was no significant differences between site and depth variances for each of the 11 groups (only 2 out of 11 tests were significant).
72% similarity level was selected to produce my final dendrogram. All groups (21) clustered at or above this level were drawn as shaded triangles of the cluster analysis.

21- The maximum number of isolates (107) occurred in cluster 12, while the minimum number (1l) occurred in cluster 11.

Only $1 / 3$ of the clusters contained isolates from all the sampling sites.

11 of the 21 clusters could be presumptively identified as they clustered with the reference cultures used.

Chi-square tests were used to test the variation in the number of isolates between sites for each group, groups for each site, depths for each group, and groups for each depth at 72% similarity level. The results showed that there was statistically
significant variation in most of cases. and between depths was compared using Spearman's rank order correlation tests. The results showed that only significant correlation were found between sites 2 and 4 and between sites 4 and 5. However, a large number of significant correlations were found between the sampling depths.

A total of 561 isolates were obtained from the sediment samples in contrast to 143 and 139 isolates from burrow linings and faecal pellets respectively.

The difference between the number of isolates/group in the sediment, burrow linings, faecal pellets, and data combined (total) was analysed using Chi-square tests. The results showed that all tests were highly significant.

The difference in the number of isolates between groups for sediment and burrow linings + faecal pellets was analysed using Chi-square tests. A highly significant variation in the number of isolates was found.

Similarly, the difference in the number of isolates between groups for burrow linings and faecal pellets was analysed using Chi-square tests. A highly significant variation in the number of isolates was found.

The distance measure used in cluster analysis was the Euclidean distance squared. It has been transformed into percentage similarity ($\% S$). The difference between these two measures is that "similarity" take values between 1 (i.e. 100% similarity) and 0 (i.e. 0% similarity), and "distance measure" can take any positive value from 0 (i.e. no difference) upwards as difference increases.

The relationships between the percentage similarity and number of isolates/group, the number of groups (including single isolates), the number of groups (excluding single isolates), the number of single isolates and the coefficient of variation of number of isolates/group were studied and the following conclusions were made:
(a) As the percentage similarity increased, the number of isolates/group decreased.
(b) The number of groups including single isolates increased exponentially with increasing percentage similarity.
(c) The number of groups excluding single isolates increased with increasing percentage similarity to 99.9%, after which it decreased again.
(d) The number of single isolates increased with increasing percentage similarity.
(e) The coefficient of variation of number of isolates/group fluctuated with percentage similarity. Similar conclusions can be drawn from the Euclidean distance measure.
(a) As the Euclidean distance increased, the number of isolates/group increased.
(b) Conversely, the Euclidean distance decreased exponentially with the number of groups including single isolates.
(c) Excluding single isolates, the number of groups clustered increased with decreasing Euclidean distance to 0.001 , after whicn it decreased again.
(d) The number of single isolates decreased with increasing Euclidean distance measure.
(e) The coefficient of variation of number of isolates/group fluctuated with Euclidean distance. Cluster analysis was applied to the antibiotics alone (7 variables), to the heavy metals alone (6 variables), and to the antibiotics and heavy metals together (13 variables).
(a) Clustering of antibiotics, showed that antibiotics classified into two distinct clusters due to their mode of action on Gram-positive or Gram-negative bacteria. Two antimicrobial agents remained unclustered.
(b) Clustering of heavy metals, showed that three metals were clustered in one distinct cluster. The other metals used remained unclustered. Heavy metals were clustered based on the mode of action on bacterial cell.
(c) When cluster analysis was applied to all antimicrobial agents together, it was concluded that there were three distinct clusters and metal resistance was associated with the resistance to antibiotics.

APPENDIX

Toxicity of heavy metals to bacteria

Heavy metals are well known to be toxic to microorganisms and to inhibit microbial growth as their concentration increases. There are a large number of reviews on various aspects of the effects of heavy metals on microorganisms (Sadler and Trudinger, 1967; Vallee and Ulmer, 1972; Austin et al., 1977; Gadd and Griffiths, 1978; Summers, 1978; Sterritt and Lester, 1980).

Heavy metals in general act as a result of their affinity for chelating agents. This affinity may indicate their comparative toxicity (Albert, 1975). In decreasing order of affinity this series is: $\mathrm{Fe}^{3+}, \mathrm{Hg}^{2+}>\mathrm{Cu}^{2+}, \mathrm{Al}^{3+}>\mathrm{Ni}^{2+}, \mathrm{Pb}^{2+}>\mathrm{Co}^{2+}, \mathrm{Zn}^{2+}>\mathrm{Fe}^{2+}, \mathrm{Cd}^{2+}>$ $\mathrm{Mn}^{2+}>\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}$.

Chelating agents are substances that form a soluble complex with metals and which thus prevent them from forming insoluble complexes with phosphates (Stanier et al., 1980).

The toxic concentration of metals varies from species to species. This is a well known phenomenon and has often been reported (Babich and Stotzky, 1977a,b; Zevenhuizen et al., 1979; Ligthart, 1980; Wong et al., 1982).

Generally, mercury and silver are the most toxic metals and manganese and zinc are the least toxic. For example, mercury, cadmium, lead, ferrous iron, copper and zinc have decreasing toxicity to Escherichia coli in that order (Sadler and Trudinger, 1967).

Certain metals have different toxicities in seawater and fresh water. For example, the toxicity of mercury to Aeromonas sp. and the bacteriophage 0 llm15 of Staphylococcus aureus was less in seawater than in lake water (Babich and Stotzky, 1979).

Within one species some strains are more sensitive to heavy
metals than others. Ross and Old (1973) studied the effect of mercuric chloride on isolates of the fungus Pyrenophora avenae obtained from oat seeds. 41 isolates were studied and appeared to separate into three groups - a resistant group of 18 isolates, a sensitive group of 13 isolates, and 10 isolates of intermediate resistance.

Some heavy metals are known to characteristic morphological and biochemical changes. Bubela(1970) studied chemical and morphological changes in Bacillus stearothermopilus induced by copper. The morphological changes were reversible when transformed to copper free media. Bubela compared copper-grown and normal cells by infrared spectra of freeze-dried whole cells and cellular fractions. He also examined cellular extracts by ultraviolet, infrared and mass spectroscopy, and by gas and thin layer chromatography. He concluded that "copper induces the production of an esterified aromatic dicarboxylic and probably phthalic or isophathalic acid in the cells and the morphological changes may be indicative of alterations in the cell wall-membrane structure". Vaituzis et al. (1975) showed that growth of some strains of mercury resistant bacteria at high levels of mercury was associated with characteristic morphological changes. Onset of growth and cell division was delayed and there were irregularities associated with cell wall and cytoplasmic membrane synthesis and functions.

The toxicity of heavy metals to bacteria may also depend on many environmental factors. For example, toxic effects on activated sludge processes were decreased by increasing the suspended solids concentration (Lamb and Tollefson, 1973). Babich and Stotzky (1977a,b) found that the toxicity of cadmium to the species they studied seemed to be pH dependent. These authors also reported that Actinomycetes were more tolerant to cadmium than Gram -negative bacteria which were more tolerant than Grame-positive bacteria. As a final example,

Calomiris et al. (1984) showed that positive correlations between tolerance to high levels of $\mathrm{Cu}^{2+}, \mathrm{Pb}^{2+}$, and Zn^{2+} and multiple antibiotic resistance occurred among bacteria from distribution waters but not among bacteria from raw waters.

Resistance of bacteria to heavy metals

Heavy metal salts are common in aquatic environments and can reach high concentration. They accumulate through (i) volcanism which is responsible for Oceanic and atmospheric concentration of mercury, cadmium, copper, zinc and silver (Boutron and Lorius, 1979; Mukherji and Kester, 1979); (ii) leaching of metal ora-rich soil (Tonomura and Kanzaki, 1969); and (iii) industrial plant wastes (Summers et al. 1978).

It is well known that many bacterial isolates are resistant to heavy metals (Summers and Silver, 1972; Nelson et al., 1973; Walker and Colwell, 1974; Hamdy and Noyes, 1975; Nakahara et al., 1977). Resistant strains can arise either by chromosomal mutation (Traub and Kleber, 1977) or by extrachromosomal genetic elements called plasmids (Smith, 1967; Dyke et al., 1970; Hedges and Baumberg, 1973; Bopp et al., 1983). Plasmids are small extrachromosomal circular DNA molecules capable of autonomous replication in the host cell. Plasmids also can be infectiously transferred by means of bacteriophages from a resistant bacterial species to sensitive species (Stanier et al., 1980, p. 462, 488).

Plasmid-specified chromate resistance has been reported for both Pseudomonas aeruginosa (Summers and Jacoby, 1978) and Streptococcus lactis (Efstathious and Mckay, 1977). In each case, the plasmid-bearing strain is approximately 10 -fold more resistant to chromate than in the plasmidless strains. Capsular material in some species may also aid in metal resistance. Azotobacter sp. having a
large quantity of capsular material were found by Tornabene and Edwards (1972) to be more efficient in immobilising lead than Micrococcus luteus.

Resistance to heavy metals is often found associated with resistance to antibiotics (Varma et al., 1976; Summers et al., 1978; Calomeris et al., 1984). Nakahara et al. (1977) studied the linkage of mercury, cadmium, and arsenate and drug resistance of clinical isolates of Pseudomonas aeruginosa. They found that 99.8% of the 787 isolates were metal resistant. Most of these metal resistant isolates were multiple metal and antibiotic resistant, whereas only 19% of the isolates were metal resistant but drug sensitive. Calomiris et al. (1984) studied the association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. They concluded that relation of metal tolerance to multiple antibiotic resistance varied among isolates from different distribution waters. They also reported that bacteria from distribution waters exhibited unique patterns of metal and antibiotic resistance. Resistant Bacillus populations have a greater frequency in sites polluted by high concentrations of mercury and other heavy metals then unpoluted sites, and ampicillin follows the same trend (Timoney et al., 1978).

The presence of one microorganism can greatly influence the activity of another under different conditions. For example, Escherichia coli caused a decrease in the sensitivity of Staphylococcus aureus to mercuric chloride when the two strains were mixed (Stutzenberger and Bennett, 1965). The protective effect carried by Escherichia coli was due to the production of extracellular glutathione and hydrogen sulphide in the medium, also to an unequal distribution of the inhibitor between the two species. Temple and Roux (1964) demonstrated that Desulphovibrio desulphuricans decreased the
sensitivity of Pseudomonas aeruginosa to the inhibitory concentration of mercury of the latter strain when both of them were mixed. These authors suggested that hydrogen sulphide produced by the sulphate reducer nutralized the toxicity of mercury to the Pseudomonas.

History of antibiotics

Antibiotics are substances produced by microorganisms that inhibit the growth of or kill other species of microorganisms (Edwards, 1980).

It is generally accepted that antibiotics were discovered in 1929, when Alexander Fleming investigated penicillin from fungal penicillium sp. (Fleming, 1929). Following that, in 1939, Rene Dubos isolated gramicidin and tyrocidin from Bacillus brevis (Dubos, 1939) and streptomycin was discovered by Schatz, Bugie and Waksman in 1944 (Waksman, 1949).

Many thousands of antibiotics have been isolated and identified since 1940 - the beginning of the antibiotic revelution. This still continues either as the production of antibiotics from microorganisms naturally or by the synthetic production of antibiotics from chemicals (Pelczar and Reid, 1972).

Resistance of microorganisms to antibiotics

The occurence of antibiotic resistant strains of bacteria has increased significantly in recent years, and antibiotic resistant mutants can occur spontaneously without prior exposure to antibiotics. This phenomenon is well known, and has been described by a number of workers (Luria and Delbruck, 1943; Demerec, 1948; Lederberg and Lederberg, 1952).

Microorganisms can exhibit resistance to antibiotics through biochemical, physiological and morphological modifications as follows. Microorganisms can inactivate the drug by producing enzymes.

For example, Escherichia coli strains (Abraham and Chain, 1940), Bacillus cereus (Pollock et al., 1956), Staphylococcus eureus (Richmond, 1965) and Bacillus 1icheniformis (Pollock, 1965) carry chromosomal genes for the enzyme β-lactamase which hydrolyses the β lactam ring present in penicillin (Appendix figure 1).

The following four paragraphs are based on Hammond and Lambert (1978, Ch.8) and on Kagan (1980, Ch.1).

Microorganisms can resist drugs by changing their permeability to the drug. For example, tetracyclines accumulate in sensitive bacteria. Resistance to polymyxins is also associated with a change in permeability of the cell to the drugs.

Microorganisms may develop an altered structural target for the drug. For instance, chromosomal resistance to aminoglycosides is associated with the alteration of the target (receptor) on the 30 s subunit of the bacterial ribosome.

Microorganisms may show enhancement of alternative metabolic pathways. For example, bacteria which are resistant to sulfonamide do not need extracellular para-amino benzoic acid, but can utilize preformed folic acid.

Microorganisms can develop new enzyme functions in the presence of antibiotics. For example, in some sulfonamide-sensitive bacteria, tetrahydropteroic acid synthetase has a much higer affinity for sulfonamide than for paraaminobenzoic acid, while in sulfonamide resistant mutants, the opposite is the case.

Several investigators have reported that the transposition of a discrete piece of DNA carrying an antibiotic-resistant gene between replicons in microorganisms can occur. (A replicon may be regarded as a genetic element of DNA which is capable of independent replication Hayes, 1964). Transposition of this sort between replicons has been

Appendix Figure 1

General structure of penicillin
reported in the structural genes of ampicillin resistance (Heffron et al., 1975; Bennett and Richmond, 1976; Rubens et al., 1976; Heffron et al., 1977) and for tetracycline resistance (Kleckner et al., 1975). The ampicillin resistant determinants of the plasmid RP4 can be transposed onto various other replicons genetically unrelated to RP4 (Hedges and Jacob, 1974).

Some microorganisms may change their characteristics under changing environmental conditions. For example, resistance to penicillin and tetracycline in Staphylococcus aureus is carried by two different plasmids (May et al., 1964; Asheshov, 1966). Only 12 of the 50 strains tested by Asheshov showed a loss of penicillin resistance when incubated at $43-44^{\circ} \mathrm{C}$. In addition three of these 12 strains had lost tetracycline resistance. Both resistant determinants were lost independently. However, penicillin resistance was lost only in strains that were also resistant to tetracycline, and vice versa.

Polluted sites may play an important role in the transfer of antibiotic resistance genes. Koditschek and Guyre (1974) studied the antimicrobial resistant coliforms obtained from sediment and overlying water in a sewage sludge bed and found that some of the isolates were able to transfer antibiotic resistance (by conjugation) into recipient strains of Salmonella gallinarum. There are many other examples. Timoney et al. (1978) showed that ampicillin resistance in bacterial strains obtained from sediment near a sewage sludge dump was significantly greater than for strains obtained from control sediments. Marques et al. (1979) isolated Pseudomonas aeruginosa from polluted soils, and found these strains were able to transfer antibiotic resistance. In a later paper, Stewart and Koditschek (1980) showed that antibiotic resistance could be transferred from donor to recipient strains of Escherichia coli that had been inoculated into sterilized sewage sludge sediment from U.S. Environmental Protection

Agency Station NYB 44 (Lat: $40^{\circ} 25^{\prime} 54$ ", Long: $73^{\circ} 45^{\prime} 00^{\prime \prime}$). Resistance of bacteria to antibiotics may vary among isolates. Niemi and co-workers (1983) studied antibiotic resistance among fecal coliforms isolated from 14 water samples and found that there was a significant variation in the incidence of resistant strains among isolates. This variation was not connected with water source or pollution. They also concluded that there was a significant correlation between the frequency of Klebsiella species and the incidence of ampicillin resistance in water samples.

Mode of action of antibiotics

The effective agent of antibiotics must reach the pathogen in a high enough concentration either to inhibit its growth (bacteriostatic) or to kill it (bacteriocidal). Most antibiotics act in one of four major ways: inhibition of cell wall synthesis (e.g. Penicillins including Ampicillin), inhibition of cell membrane function (e.g. Gramicidins, Oligomycin, Polymyxin B), inhibition of nucleic acid synthesis (e.g. Nalidixic acid, Rifampicin) or inhibition of protein synthesis (e.g. Chloramphenicol, Streptomycin, Tetracycline). The antibiotics that I have used in typing deep-sea bacteria act in one of the four ways and are Ampicillin, Polymyxin B, Nalidixic acid, Chloramphenicol, Streptomycin and Tetracycline. The following four subsections outline the four major ways in which antibiotics act in more details.

Inhibition of cell wall synthesis (Ampicillin in this study)

The cell wall of bacteria is a rigid structure which maintains the shape of bacterial cell. The bacterial cell wall possesses a high internal osmotic pressure which is required for the cell to function. In Gram-positive bacteria the internal osmotic
pressure of the cell is higher than that of Gram-negative bacteria (Kagan, 1980). The composition of the cell wall is different between the two groups. for example, Gram-negative bacteria possess a lipidrich layer surrounding the cell wall called the outer membrane (Hammond and Lambert, 1978). The layer is not present in Gram-positive bacteria (Plate 5). Hugo and Stretton (1966) showed that increasing the lipid content of Bacillus subtilis, Staphylococcus aureus and Streptococcus faecalis increased the resistance of these organisms to a number of penicillins.

Many antibioticspare well known as inhibitors of bacterial cell wall synthesis, but the most selective inhibitors are penicillins and cephalosporins, which are bactericidal to growing cells (kagan, 1980). They inhibit the terminal cross-linking of the peptidoglycan in the cell wall. Peptidoglycan is a complex cross-linked network composed of sugar chains (glycans) which are made up of the amino sugars N -acetylglucosamine and N -acetylmuramic acid (Hammond and Lambert, 1978).

Benzylpenicillin and all derivatives of 6-aminopenicillanic acid (6-APA) are bactericidal antimicrobial agents. They cause spheroblast formation in bacteria in a similar way to that caused by lysozyme. However, unlike lysozyme which directly attacks the cell wall by its mucopeptidase activity, penicillins interfere with the formation of mucopeptide, thus inhibiting cell wall formation. This causes lysis of the bacterial cell and accounts for the bactericidal action of penicillins (Pitton, 1972).

The work of several experimenters supports this mode of action. Park (1952) detected an accumulation of N -acetylmuramic acid derivatives within Staphylococcus aureus cells growing in penicillincontaining media. Lederberg (1956) found that some bacteria

Plate 5

Structure of the cell wall of Gram-positive and Gram-negative bacteria (Hammond and Lambert, 1978).

(Escherichia coli and Salmonella typhimurium) formed spheroplasts when grown in a 10% sucrose media containing penicillin. Mandelstam and Rogers (1959) found that penicillin did not inhibit the synthesis of cytoplasmic proteins but inhibited the incorporation of specific amino acids into the cell wall.

Based on the above experiments, Pitton (1972, p.33) outlines the current hypothesis for the exact mode of action of penicillin, which the states is that penicillin prevents one of the final reactions in cell wall formation. Pitton (1972) suggests that penicillin inhibits polymerization of the mucopeptide peptidoglycan by stopping the linking between the pentaglycine parts of the molecules with the $\mathrm{D}-\mathrm{alanines}$ in the tetrapeptides of adjacent glucosaminemuramic acid chains (Plate 6).

Inhibition of cell membrane function (Polymyxin B in this study)

One of the major problems in studying the mode of action of antibiotics on the cell membrane is that the structure and functions of normal membranes are still not fully known. Many types of model membranes have been proposed to show the distribution of protein Components in the lipid bilayer (for example the Danielli and Davson mosaic membrane model (Edwards, 1980)).

In general, bacterial cell membranes can be regarded as asymmetric lipid bilayers in which synthesised protein are dissolved. The lipid molecule is composed of two parts - a polar hydrophilic group (water-loving) and nonpolar hydrophobic group (water hating). The structure of bacterial cell membrane is shown in Plate 7. It has been reported that the membranes are composed of approximately $30-40 \%$ lipid, 50-60\% protein and $0-10 \%$ carbohydrate (Schmit et al., 1974).

Several investigators have reviewed the mode of action of antibiotics on cell membrane function (Few, 1955; Newton, 1956;

Plate 6

Diagram showing the structure of the peptidoglycan in the cell wall of Staphylococcus aureus. Glycan chains are composed of N -acetylglucosamine (G) and N -acetylmuramic acid (M). Tetrapeptide chains attached to each M are cross-linked by peptide bridges containing pentaglycine. The amino acids are L-alanine (Ala), D-glutamine (Glu), L-lysine (Lys), Dalanine (Ala), and glycine (Gly). Arrows indicate points where antibiotic breaking the linkage between the pentaglycine parts of the molecules with the D-alanines in the tetrapeptides of adjacent glucosamine-muramic acid chains (modefied from Hammond and Lambert, 1978).

Plate 7

Diagram showing the generalised morphology of the microbial cell membrane (Hammond and Lambert, 1978).

Feingold et al., 1974; Meyers et al., 1974). Antibiotics which effect the cell membrane may be divided into three groups (i) those which disorganise membrane structure (ii) those which alter membrane permeability, and (iii) those affecting membrane enzyme systems. Group (i) will be explained in detail because it contains the antibiotic polymyxin B used in this study. Group (ii) and (iii) will not be discussed here extensively, but full details can be found in Gottlieb and Shaw (1967), Hunter and Schwartz (1967) and Edwards, 1980).

Polymyxins are bactericidal against most Gram-negative bacilli. Feingold et al. (1974) studied the action of polymyxin B on cell membranes. They found that bacteria were varied in their susceptibility to this antibiotic. These workers also found that Grampositive bacteria were relatively resistant to the lethal action of polymyxin B, whereas the cytoplasmic membrane of Gram-negative bacilli were damaged. HsuChen and Feingold (1973) studied the selectivity of polymyxin on bacteria. They concluded that the susceptibility of bacterial membranes to polymyxins depends on the presence of target molecules such as phosphatidyl ethanolamine, and on a threshold density of these molecules on the membrane surface. They also concluded that the effect of polymyxin B on liposomes was proportional to increase in the molar percent of Escherichia coli phospholipid percent. These workers suggested that the selective toxicity of polymyxins may depend on the absence of lecithin from the bacterial cell membrane. However Pache et al. (1972) studied the interaction of polymyxin B on artificial lecithin-water membrane systems and concluded that polymyxin interacts with lecithin, and does so by an electrostatic interaction between the amino group of the antibiotic and the phosphate group of the lecithin.

Several antibiotics can effect bacterial cells by altering
link DNA, some cause strand breaks in DNA, and some inhibit DNA replication and transcription enzymes.

An example is rifampicin which is very active against Grampositive bacteria. This antibiotic is widely used clinically, especially in cases of tuberculosis. It inhibits RNA synthesis in susceptible cells but does not affect DNA or protein synthesis in vitro. Specifically, rifampicin inhibits bacterial growth by binding strongly to DNA-dependent RNA-polymerase of sensitive bacteria (Edwards, 1980).

Some drugs can affect DNA properties, such as ethidium and acridines. They increase the viscocity of DNA. Other effects of the drugs upon DNA include a decrease of the sedimentation coefficient and an increase in the thermal stability of DNA.

Nalidixic acid, which was used in my study, is an active antimicrobial agent for treatment of Gram-negative bacterial infections of the urinary tract (Franklin and Snow, 1971). It acts by inhibiting DNA replication enzymes (Edwards, 1980, p. 158, 185).

Inhibition of protein synthesis (Chloramphenicol, Streptomycin, Tetracycline in this study)

Proteins are defined as polymers made up of chains of amino acids joined together by peptide bonds (Hammond and Lambert, 1978). Synthesis of proteins occurs on ribosomes at a varied rate depending upon the system. (For example, β-galactosidase is synthesised in bacteria at a rate which approaches 15 amino acids polymerized per second (Edwards, 1980)).

Many drugs can inhibit protein synthesis in bacteria. Antibiotics inhibiting protein synthesis in bacteria can be divided into two types, inhibitors of the 30 s ribosomal subunit, and inhibitors of the 50 s ribosomal subunit. Garvin et al. (1974) studied
the effect of streptomycin or dihydro-streptomycin binding to 16 s RNA or to 30 s ribosomal subunits. They suggested that streptomycin binds to 16 s RNA or to the 30 s ribosomal subunit at the same site on the RNA chain. Dihyro-streptomycin, has the same bactericidal effect as streptomycin, binds to the same site, but has a lower affinity for that site. Garvin et al. (1974) also suggested that drug binding by streptomycin to 16 s RNA was reversible, but that drug binding to the 30 s subunit was irreversible even after withdrawal of the drug.

Other antibiotics, for example tetracycline, inhibit the 30 s ribosomal subunit. A number of investigators have studied tetracyclines and their effects on bacterial cells (Gale and Folkes, 1953; Benbough and Morrison, 1965; Holmes and Wild, 1966; Suzuki et al., 1966; Kagan, 1980). Benbough and Morrison (1965) studied the bacteriostatic activities of some tetracyclines. They suggested that chlorinated tetracyclines could inhibit the growth of the organisms examined by acting on $D-g l u t a m a t e ~ a c c u m u l a t i o n ~ d u r i n g ~ a e r o b i c ~$ conditions. De-Zeeuw (1968) found that the net accumulation of tetracyclines by Escherichia coli occurs in two separate stages as the concentration is increased. The first stage occurs at concentrations less than the bacteriostatic level and involves adsorption onto the surface of the cell. At concentrations above the bacteriostatic level, the second stage occurs and involves penetration of the cell membrane by the tetracycline molecules. Kagan (1980) states that tetracyclines bind to the 30 s subunit of microbial ribosomes. They inhibit protein synthesis by preventing the attachment of aminoacyl tRNA to ribosomes. Some antibiotics inhibit the 50 s ribosomal subunit. One example is chlormphenicol, which is mainly used as a bacteriostatic drug. Addition of chloramphenicol to bacterial cultures at inhibitory concentrations results in inhibition of protein synthesis. This
phenomenon has been described by many investigators (Lacks and Gros, 1959; Vazquez, 1964; Das et al., 1966). Julian (1965) showed that chloramphenicol at a very high concentration strongly inhibited the synthesis of longer peptide chains, but formation of di-and tripeptides were not affected. Das et al. (1966) studied the inhibition of protein synthesis by chloramphenicol in Escherichia coli cells. They found that the drug does not affect the association between mRNA and ribosomes. Its primary mode of action is to block the attachment of new amino acids to the growing protein chains that are attached to the ribosomes.

$\begin{gathered} \text { Antimicrobial } \\ \text { agent } \end{gathered}$	Master replica plate	Plate (days)	Concentration (my/1)					
Cadmium	2	7	128	64	32	16	8	4
			0/44(08)	0/44(08)	11/44(25.08)	38/44(86.48)	40/44(90.98)	42/44(95.58)
		14	0/45(08)	1/45(2.228)	17/45 (37.88)	41/45(91.18)	43/45 (95.68)	44/45 (97.88)
		21	0/45(08)	1/45(2.229$)$	23/45 (51.10)	41/45(91.18)	43/45 (95.68)	44/45(97.88)
Chranium	2	7	8/47(17.08)	14/47(29.88)	20/47(42.68)	28/47(59.68)	38/47(80.98)	40/47(85.18)
		14	19/48(39.68)	24/48(50.08)	37/48(77.18)	38/48(79.28)	40/48(83.38)	43/48(89.68)
		21	28/48(58.36)	32/48(66.73)	37/48(77.18)	41/48(85.48)	43/48(89.64)	45/48 (93.88)
copper	2	7	0/38(00)	0/38(08)	27/38 (71.21)	30/38 (78.98)	36/38(94.78)	38/38 (1008)
		14	0/39(08)	1/39(2.568)	30/39 (76.98)	32/39 (82.18)	36/39 (92.36)	39/39(12008)
		21	0/39 (08)	1/39(2.566)	32/39(82.18)	33/39 (84.64)	37/39(94.99)	39/39 (1008)
Lead	2		800	400	200	100	50	25
		7	0/38(08)	0/38(08)	0/38(08)	33/38(86.88)	38/38 (1008)	38/38(1009)
		14	0/401 08)	0/40(08)	2/40(5.08)	38/40(95.08)	39/40(97.58)	39/40(97.58)
		21	0/43(08)	0/43(08)	4/43(9.308$)$	40/43(93.08)	41/43(95.38)	43/43(1008)
Mercury	2	714	32	16	8	4	2	1
			9/43(20.98)	25/43(34.98)	28/43(65.18)	39/43(90.78)	39/43(90.78)	39/43(90.78)
			9/43(20.98)	15/43(34.98)	28/43(65.18)	39/43(90.78)	39/43(90.78)	40/43(93.08)
			9/43(20.98)	16/43(37.20)	32/43(74.48)	39/43(90.78)	39/43(90.78)	41/43(95.38)

Antinicrobial agent
Master replica plate

Appendix Table 2: The number of isolates yrowing at various concentrations (mp/1) of antibiotics and anethylene blue dye after 7 ,
14 and 21 days. The number is expressed as a percentage of the isolates growing on the control plate (see materials and
methods, p. 35). Data from preliminary maser replica (PMR ${ }_{2}$).

Appendix Table 3

The number of isolates growing at various concentrations (mg/l) of antibiotics and methylene blue dye after 7, 14 and 21 days. The number is expressed as a percentage of the isolates growing on the control plate (see materials and methods p. 35). Data from definitive master replica 1 (MRI).

Antimicrobial agent	Master replica plate	Plate count (days)			Concentrat	on (mg/1)		
Ampicillin	1		256	128	64	32	8	2
		7	11/38(28.98)	12/38(31.68)	15/38(39.58)	16/38(42.18)	19/38 (50.08)	24/38 (63.28)
		14	14/40 (35.08)	14/40(35.08)	16/40 (40.08)	17/40(42.58)	20/40 (50.08)	24/40 (60.08)
		21	15/40 (37.58)	15/40(37.58)	17/40(42.58)	17/40(42.58)	20/40(50.08)	24/40(60.08)
Chloramphenicol	1		64	32	16	8	4	2
		7	0/33(08)	0/33(08)	$0 / 33(08)$	0/33(08)	1/33(3.08)	3/33(9.18)
		14	0/36(08)	0/36(08)	0/36(08)	0/36(08)	1/36(2.88)	5/36 (13.98)
		21	0/37(08$)$	0/37(08)	0/37(08)	0/37(08)	2/37(5.48)	5/37(13.58)
Polymyxin. ${ }^{\text {a }}$	1		128	64	32	16	8	4
		7	3/33(9.18)	5/33(15.28)	8/33(24.28)	12/33(36.38)	11/33(33.38)	17/33(51.58)
		14	3/35(8.68)	7/35 (20.08)	13/35(37.18)	15/35(42.98)	14/35(40.08)	18/35 (51.48)
		21	6/37(16.23)	20/37(27.08)	15/37(40.58)	20/37 (54.18)	18/37 (48.68)	21/37 (56.88)
Streptomycin	1		256	128	64	32	16	4
		7	1/41(2.438$)$	4/41(9.758)	18/41(43.98)	19/41 (46.38)	21/41(51.28)	23/41 (56.18)
		14	1/41(2.438)	8/41 (19.58)	19/41 (46.3*)	20/41 (48.88)	22/41(53.78)	29/41 (70.78)
		21	3/42(7.18)	9/42(21.48)	21/42 (50.08)	21/42(50.08)	23/42 (54.88)	30/42(71.48)
Tetracycline	1		128	64	32	16	8	4
		7	7/40(17.58)	18/40 (45.08)	17/40 (42.58)	33/40(82.58)	36/40(90.08)	39/40(97.58)
		14	11/42(26.28)	25/42 (59.58)	22/42 (52.48)	34/42(81.08)	36/42 (85.78)	39/42(92.98)
		21	11/42(26.28)	28/42 (66.73)	22/42 (52.4t)	34/42 (81.08)	36/42 (85.78)	39/42(92.98)
Nalidixic acid	1		256	128	64	32	16	4
		7	6/43(14.08)	13/43(30.28)	22/43(51.28)	36/43(83.78)	41/43(95.38)	43/43(1008)
		14	7/45(15.68)	19/45 (42.2v)	33/45 (73.38)	38/45 (84.48)	42/45 (93.38)	44/45 (97.88)
		21	10/45 (22.29)	22/45 (48.91)	36/45 (80.09)	42/45 (93.38)	44/45 (97.88)	44/45 (97.88)
Methylene-slue	1		256	128	64	32	8	2
		7	12/45 (26.78)	18/45 (40.08)	20/45 (44.48)	21/45 (46.78)	23/45 (51.18)	25/45 (55.68)
		14	13/45(28.98)	21/45 (46.78)	22/45(48.98)	22/45 (48.98)	23/45 (51.18)	25/45 (55.68)
		21	22/45(48.93)	22/45(48.98)	23/45(51.18)	23/45 (51.18)	23/45(51.18)	25/45 (55.68)

Appendix Table 4

The number of isolates growing at various concentrations (mg/l) of antibiotics and methylene blue dye after 7, 14 and 21 days. he number is expressed as a percentage of isolates growing on the control plate (see materials and methods, p. 35). Data from definitive master replica 2 (MRI).

Antimicrobial agent	Master ceplica plate	Plate count (days)			Concentrat	ion (m9/1)		
Ampicillin	2		256	128	64	32	8	2
		7	2/42(4.888)	9/41(221)	12/41(29.34)	14/41(34.18)	15/41(36.61)	34/41(82.98)
		14	12/43(27.98)	13/43(30.2v)	15/43(34.91)	16/43(37.21)	26/43(60.5)	35/43(81.48)
		21	12/43(27.98)	14/43(32.61)	17/43(39.50)	24/43(55.88)	33/43(76.78)	35/43 (81.48)
Chloramphenicol	2		64	32	16	8	4	2
		7	0/39(08)	0/39(0)	0/39(03)	2/39(5.138)	7/39 (17.98)	12/39 (30.88)
		14	0/42(06)	2/42(4.768)	6/42(14.31)	4/42(9.528)	13/42(319)	19/42 (45.28)
		21	0/42(08)	2/42(4.88)	9/42(21.44)	5/42(11.98)	13/42(31)	20/42 (47.68)
Polymyxin. ${ }^{\text {a }}$	2		128	64	32	16	8	4
		7	2/42(4.761)	2/42(4.768)	2/42(4.761)	3/42(7.141)	3/42(7.148)	4/42(9.523)
		14	4/44 (9.098)	5/44(11.48)	6/44(23.63)	7/44 (15.93)	9/44 (20.58)	8/44(18.28)
		21	5/45 (11.21)	3/45(11.28)	6/45(13.36)	7/45(15.68)	9/45 (208)	8/45(17.88)
Streptornycin	2		256	128	64	32	16	4
		7	0/44(08)	1/44(2.34)	6/44(13.68)	15/44(34.18)	38/44 (86.48)	38/44(86.48)
		14	0/45(003)	2/45(4.43)	13/45 (28.99)	24/45 (53.32)	39/45 (86.73)	40/45 (88.92)
		21	1/45(2.228)	3/45(6.678$)$	13/45 (28.98)	25/45 (55.61)	39/45 (86.78)	40/45 (88.98)
Tetracycline	2		128	64	32	26	8	4
		7	2/41(4.888)	10/41(24.48)	25/41(618)	27/41(65.98)	38/41 (92.78)	41/41 (1008)
		14	6/41 (14.63)	26/41 (63.48)	35/41 (85.41)	29/41(70.76)	39/41 (951)	41/41(1008)
		21	12/41(29.38)	29/41(70.78)	35/41 (85.41)	33/41(80.58)	41/41 (1003)	41/41(1008)
Nalidixic acid	2		256	128	64	32	16	4
		7	0/35(01)	7/35(201)	8/35 (22.98)	14/35 (401)	20/35 (57.18)	33/35 (94.38)
		14	5/38 (13.26)	11/38(28.98)	13/38 (34.21)	24/38 (63.28).	32/38 (84.28)	37/38(97.48)
		21	5/38(13.2v)	11/38(28.99)	15/38 (39.51)	27/38 (71.28)	$36 / 38$ (94.78)	37/38(97.48)
Methylene-blue	${ }^{2}$		256	128	64	32	8	2
		7	21/43(48.8i)	21/43(48.88)	14/43(32.61)	14/43(32.68)	27/43 (62.88)	40/43(93.08)
		14	26/44 (59.10)	25/44 (56.83)	32/44(72.78)	28/44 (63.61)	37/44(84.18)	42/44 (95.58)
		- 21	26/44 (59.18)	25/44(56.88)	34/44(77.34)	31/44(70.58)	39/44 (88.68)	42/44(95.58)

Antimicrobial agent	Master replica plate	Plate count (days)			Concentrat	ion (my/l)		
Ampicillin	2		256	128	64	32	8	2
		7	2/41(4.888)	9/41(223)	12/41(29.36)	14/41 (34.18)	15/41 (36.68)	34/41(82.98)
		14	12/43(27.98)	13/43(30.21)	15/43(34.91)	16/43(37.21)	26/43(60.54)	35/43(81.48)
		21	12/43(27.93)	14/43(32.62)	17/43(39.50)	24/43(55.81)	33/43(76.78)	35/43(81.48)
Chloramphenicol	2		64	32	16	8	4	2
		7	0/39(08)	0/39(08)	0/39(0)	2/39 (5.138$)$	7/39 (17.91)	12/39 (30.89)
		14	0/42(06)	2/42(4.76i)	6/42(14.38)	4/42(9.528)	13/42(31)	19/42 (45.28)
		21	0/42(08)	2/42(4.83)	9/42 (21.43)	5/42(11.92)	13/42(319)	20/42(47.68)
Polymyxin. ${ }^{\text {a }}$	2		128	64	32	16	8	4
		7	2/42(4.761)	2/42(4.761)	2/42(4.761)	3/42(7.142)	3/42(7.148)	4/42(9.523)
		14	4/44 (9.098)	5/44(11.48)	6/44 (13.64)	7/44(15.93)	9/44 (20.58)	8/44(18.28)
		21	5/45(11.10)	5/45(11.16)	6/45(13.38)	7/45 (15.68)	9/45 (208)	8/45(17.88)
Streptonycin	2		256	128	64	32	16	4
		7	0/44(08)	1/44(2.36)	6/44(23.68)	15/44 (34.13)	38/44 (86.48)	38/44 (86.48)
		14	0/45(08)	2/45 (4.41)	13/45 (28.91)	24/45 (53.38)	39/45 (86.78)	40/45 (88.91)
		21	1/45(2.223)	3/45(6.678)	13/45 (28.96)	25/45 (55.68)	39/45 (86.78)	40/45 (88.97)
Tetracycline	2		128	64	32	16	8	4
		7	2/41(4.888)	10/41(24.41)	25/41(610)	27/41 (65.98)	38/41 (92.78)	41/41(1008)
		14	6/41 (14.68)	26/41 (63.48)	35/41 (85.48)	29/41(70.78)	39/42 (958)	41/42 (1008)
		21	12/41(29.34)	29/41 (70.74)	35/41 (85.41)	33/41(80.58)	41/41(1003)	41/41 (1008)
Nalidixic acid	2		256	128	64	32	16	4
		7	0/35 (08)	7/35 (208)	8/35 (22.98)	14/35 (403)	20/35 (57.18)	33/35 (94.38)
		14	5/38(13.28)	11/38 (28.91)	13/38(34.26)	24/38 (63.28).	32/38 (84.28)	37/38 (97.48)
		21	5/38(13.26)	11/38(28.93)	15/38(39.5V)	27/38 (71.18)	$36 / 38$ (94.78)	37/38(97.48)
Methylene-Blue			256	128	64	32	8	2
		7	21/43(48.8V)	21/43(48.88)	14/43(32.61)	14/43(32.68)	27/43(62.88)	40/43(93.08)
		14	26/44 (59.13)	25/44 (56.80)	32/44(72.71)	28/44 (63.63)	37/44(84.28)	42/44 (95.58)
		21	- 26/44(59.18)	(25/44 (56.88)) $34 / 44$ (77.34)	31/44 (70.58)	39/44 (88.61)	42/44 (95.58)

Appendix Table 5

The number of isolates growing at various concentrations (mg/l) of heavy metals after 7, 14 and 21 days. The number is expressed as a percentage of the isolates growing on control plate (see materials and methods, p. 35). Data from definitive master replica 1 (MRI).

Antimicrobial agent	Master replica plate	Plate count (days)			Concenteati	ion (my/l)		
Cadmium	1		128	64	48	32	16	8
		7	0/40(08$)$	4/40(10.09)	6/40(15.01)	9/40(22.58)	20/40(50.08)	28/40 (70.08)
		14	0/43(08)	5/43(11.68)	7/43(16.38)	9/43(20.98)	20/43(46.58)	28/43(65.18)
		21	0/43(00)	7/43(16.3V)	7/43(16.38)	9/43(20.98)	21/43(48.88)	28/43(65.18)
Chroinium	1		256	128	64	32	16	8
		7	6/29 (20.7)	18/29 (62.23)	21/29 (72.48)	24/29 (82.88)	24/29(82.88)	26/29(89.78)
		14	8/33(24.20)	22/33(66.70)	25/33 (75.88)	26/33(79.82)	28/33(84.82)	28/33(84.88)
		21	8/35(22.91)	22/35 (62.93)	25/35 (71.41)	30/35(85.78)	28/35 (80.08)	32/35(91.48)
Copper	1		128	64	48	32	16	8
		7	0/40(08)	15/40 (37.51)	18/40(45.01)	31/40(77.58)	38/40(95.08)	37/40(92.59)
		14	0/43(01)	15/43(34.91)	25/43(58.11)	33/43(76.78)	41/43(95.31)	40/43(93.08)
		21	0/44 (00)	18/44(40.93)	26/44(59.10)	33/44(76.71)	41/44(93.28)	40/44 (91.01)
Lead	1		512	256	192	160	128	64
		7	2/37(5.88)	20/37 (54.13)	25/37 (67.61)	30/37(81.11)	29/37 (78.41)	36/37(97.38)
		14	2/41(4.98)	21/41(51.20)	26/41 (63.41)	33/41(80.51)	28/42 (68.38)	41/41 (1004)
		21	2/41(4.98)	22/41 (53.70)	27/41(65.91)	33/41(80.51)	32/41(78.01)	41/41(1008)
Manganese	1		4096	2048	1024	512	256	128
		7	0/42(00)	8/42(19.03)	12/42(28.6t)	23/42 (54.82)	37/42(88.28)	36/42(85.78)
		14	0/42(001)	11/42(26.20)	15/42(35.78)	23/42 (54.81)	37/42 (88.10)	37/42(88.18)
		21	2/44(2.31$)$	11/44(25.08)	16/44 (36.41)	25/44 (56.81)	37/44(84.13)	38/44(86.41)
Mercury	1		64	32	16	8	4	2
		7	0/39(0)1	0/39100)	7/39(17.91)	10/39 (25.68)	10/39 (25.60)	25/39 (64.11)
		14	0/39(0)1	0/39(0)	7/39 (17.91)	11/39(28.28)	11/39 (28.24)	28/39 (71.83)
		- 21	0/41(08)	0/41(01)	7/41(17.14)	(11/41(26.88)	(11/41(26.88)	29/41(70.71)

Appendix Table 6

The number of isolates growing at various concentrations (mg/l) of heavy metals after 7, 14 and 21 days. The number is expressed as a percentage of the isolates growing on the control plate (see materials and methods, p. 35). Data from definitive master replica 2 (MR2) .

Antimicrobial agent	Master replica plate	Plate count (days)			Concentrat	on (mg/l)		
Codinium	2		128	64	48	32	16	8
		7	0/43(08)	0/43(08)	1/43(2.338)	11/43 (25.68)	25/43(58.18)	36/43(83.78)
		14	0/43(08)	0/43(08)	6/43(148)	14/43 (32.68)	28/43(65.18)	38/43(88.48)
		21	0/45(08)	0/45 (08)	6/45 (13.38)	14/45 (31.18)	28/45 (62.21)	39/45 (86.78)
Chromium	2		256	128	64	32	16	8
		7	6/49 (12.28)	26/49 (53.18)	29/49 (59.28)	36/49 (73.58)	39/49 (79.68)	44/49 (89.88)
		14	6/49 (12.28)	27/49 (55.18)	34/49 (69.48)	36/49 (73.58)	46/49 (93.98)	47/49 (95.98)
		21	6/49 (12.28)	27/49 (55.18)	34/49 (69.48)	36/49 (73.58)	46/49 (93.98)	48/49 (988)
Copper	2		128	64	48	32	16	8
		7	2/40(5.008)	29/40(72.58)	32/40(808)	35/40 (87.58)	39/40 (97.58)	40/40 (1008)
		14	2/46(4.358)	32/46 (69.68)	39/46 (84.88)	42/46 (91.38)	44/46 (95.78)	45/46 (97.88)
		21	4/46(8.78)	35/46 (76.18)	40/46 (878)	43/46 (93.58)	45/46(97.98)	45/46 (97.88)
Lead	2		512	256	192	160	128	64
		7	0/39(081	26/39 (66.78)	33/39 (84.68)	35/39 (89.78)	37/39 (94.98)	39/39 (1008)
		14	0/39 (08)	26/39 (66.78)	35/39 (89.78)	35/39 (89.78)	33/39 (84.68)	39/39 (1008)
		21	0/39(08)	29/39 (74.48)	35/39 (89.78)	35/39 (89.78)	33/39 (84.68)	39/39 (1008)
Manganese	2		4096	2048	1024	512	256	128
		7	1/30(3.338)	2/30(6.678)	8/30 (26.78)	16/30 (53.38)	23/30 (76.78)	29/30 (93.58)
		14	2/31(6.458)	5/31 (16.18)	15/31 (48.48)	24/31 (77.48)	25/31 (80.68)	30/31 (96.88)
		21	2/31(6.58)	9/31 (29.08)	15/31 (48.48)	24/31 (77.48)	26/31 (83.98)	31/31(1008)
Mercury	!		64	32	16	8	4	2
		7	0/38(08)	4/38 (10.58)	11/38 (28.98)	16/38(42.18)	17/38 (44.78)	28/38 (73.78)
		14	0/39(08)	5/39 (12.88)	11/39 (28.28)	17/39 (43.68)	17/39 (43.68)	29/39 (74.48)
		- 21	(0/39(08)	- 5/39 (12.88)	11/39 (28.28)	20/39 (51.38)	20/39 (51.34)	32/39 (82.18)

Antimicrobial agent	Vol. stock solution (ml)	Vol. agar (ml)	Final concentration (mg/l)
Ampicillin	2	100	64
	1		32
	0.5		16
	0.25		8
	0.125		4
	0.06		2
Chloramphenicol	2	100	64
	1		32
	0.5		16
	0.25		8
	0.125		4
	0.06		2
Polymyxin B	2	100	64
	1		32
	0.5		16
	0.25		8
	0.125		4
	0.06		2
Streptomycin sulphate	2	100	64
	1		32
	0.5		16
	0.25		8
	0.125		4
	0.06		2
Tetracycline hydrochloride	2	100	64
	1		32
	0.5		16
	0.25		8
	0.125		4
	0.06		2
Nalidixic acid	0.2	100	64
	0.2 from		32
	0.2 serial		16
	0.2 dilution		8
	0.2 of N NaOH		4
	0.2		2
Methylene blue	2	100	32
	1		16
	0.5		8
	0.25		4
	0.125		2
	0.06		1

Appendix Table 7

Volume of stock solutions (ml) of the antibiotics and dye
added to the volume of molten agar and the final concentrations (mg / l) used in the preliminary experiments.

Appendix Table 8

Volume of stock solution (ml) of heavy metals added to the volume of molten agar and the final concentrations (mg/l) used in the preliminary experiments.

* See table 4 P. 23.

Antimicrobial agent	Vol. stock solution (ml)	Vol. agar (ml)	Final concentration (mg/l)
Ampicillin	4		256
	2		128
	1		64
	0.5	100	32
	0.125		8
	0.031		2
Chloramphenicol	2		64
	1		32
	0.5		16
	0.25	100	8
	0.125		4
	0.062		2
Polymyxin B	4		128
	2		64
	1		32
	0.5	100	16
	0.25		8
	0.125		4
Streptomycin sulphate	4		256
	2		128
	1		64
	0.5	100	32
	0.25		16
	0.0625		4
Tetracycline hydrochloride	4		128
	2		64
	1		32
	0.5	100	16
	0.25		8
	0.125		4
Nalidixic acid	0.2		256
	0.2 from		128
	0.2 serial		64
	0.2 dilution	100	32
	0.2 of N NaOH		16
	0.2		4
Methylene blue	4		256
	2		128
	1		64
	0.5	100	32
	0.125		8
	0.031		2

Appendix Table 9

Volume of stock solutions (ml) of the antibiotics and dye added to the volume of molten agar and the final concentrations (mg/l) used in the definitive experiments.

Antimicrobial agent	Vol. stock solution (ml)	Vol. agar (ml)	Final concentration (mg/l)
Cadmium chloride	2	100	128
	1		64
	0.75		48
	0.50		32
	0.25		16
	0.125		8
Potassium chromate	4	100	256
	2		128
	1		64
	0.50		32
	0.25		16
	0.125		8
Copper sulphate	2	100	128
	1		64
	0.75		48
	0.50		32
	0.25		16
	0.125		8
Lead acetate	2	100	512
	1		256
	0.75		192
	0.625		160
	0.50		128
	0.25		64
Manganous chloride	4	100	4096
	2		2048
	1		1024
	0.5		512
	0.25		256
	0.125		128
Mercuric chloride	2	100	64
	1		32
	0.5		16
	0.25		8
	0.125		4
	0.0625		2

Appendix Table 10

Volume of stock solutions (ml) of the heavy metals added to the volume of molten agar and the final concentrations (mg/l) used in the definitive experiments.

Appendix Table 11

Wilcoxon's matched pairs test for comparing the difference between 14 day counts of bacterial growth at low and high concentrations of antibiotics.

Appendix Table 12
Wilcoxon's matched pairs test for comparing the difference between 14 day counts of bacterial growth at low and high concentrations of heavy metals.

Appendix Table 13

Wilcoxon's matched pairs test for comparing the difference between 21 day counts of bacterial growth at low and high concentrations of antibiotics.

NO.	Subject	21 days (high conc.)	$\begin{aligned} & \text { ts } 21 \text { days } \\ & \text { (low conc.) } \end{aligned}$	\|Difference	+ve	-ve
1	Cadmium	163	93	+ 70	9	
2		571	104	+467	12	
3	Chromium	111	102	+ 9	1.5	
4		100	109	- 9		1.5
5	Copper	109	98	+ 11	3.5	
6		174	98	+ 76	10	
7	Lead	91	103	- 12		5.5
8		112	100	+ 12	5.5	
9	Manganese	132	101	+ 31	8	
10		195	107	+ 88	11	
11	Mercury	96	110	- 14		7
12		122	111	+ 11	3.5	
Size of sample $=12$					$\mathrm{R}+=64$	$\mathrm{R}-=14$

Appendix Table 14
Wilcoxon's matched pairs test for comparing the difference between 21 day counts of bacterial growth at low and high concentrations of heavy metals.

APPENDIX B

Analysis of the normality distribution of the number of bacterial isolates clustered at 50% S and the selection of a suitable

transformation method

1- Analysis of normality

There are several methods available for determining whether data is normally distributed. These include the following.

A- Graphic method for analysing normality

Two graphic methods can be used to analyse for normality. The first method is the cumulative percentage method. This is based on the frequency distribution table prepared prior to any step. This method is used when n is greater than 50 . The second method is the rankits method. This is used when n is less than 50 (Sokal and Rholf, 1981, p. 117-126).

In this study, n was always greater than 50 , and therefore the first method was applied. Sokal and Rholf (1981) give the procedure for the use of the cumulative percentage method in Box 6.3 p. 120 and 121 .

After the frequency distribution table was prepared (Appendix tables 15 A and 15 B$)$, the number of isolates/group/site or isolates/group/depth (x-axis) was plotted against the percent cumulative frequency (y-axis) on a propability scale. Although a straight line can be fitted to the points by eye (Sokal and Rholf, 1981, p. 120), it is more accurate to use regression analysis. I obtained the (x, y) pairs for the regression analysis as follows. The x value was read directly from the x-axis. The y value was obtained by measuring its hight above an arbitrary line drawn parallel to the x axis. I only included points located between the cumulative
frequencies of 2% to 89%. This more conservative, and therefore safer than the 25% and 75% recommended by Sokal and Rholf (1981) who state that "in drawing the line, most weight should be given to the points between cumulative frequencies of 25% and $75 \%^{\prime \prime}$.

B- The relationship between mean and standard deviation

Snedecor and Cochrane (1967, p. 325) state that one of the features of non-normal distribution is that the variance is related to the mean. The mean (x-axis) and the standard deviation (y-axis) of the number of isolates/group/site or isolates/group/depth grouped by cluster analysis at 50% similarity level, were therefore plotted against each other. If the number of isolates is normaly distributed, there will be no significant relationship between the mean and standard deviation.

2- The selection of a suitable transformation method

The best transformation was chosen as follows. The untransformed data, the square-root $(x+0.5)$ and the $\log _{10}(x+0.5)$ transformed data were put through procedure A and B above. The graphs obtained for A are shown in appendix figures 2 and 3 and for B in appendix figures 4 and 5. Firstly, consider the graphic analysis of the untransformed data. It can be seen that the "square-root" transformation is the best transformation because it gave the best fit of points on the regression line. Secondly, consider the relationship between the mean and the standard deviation; it can be seen that there is no significant relationship between the mean and standard deviation. Therefore, The square-root method was selected as the method of transformation before parametric statistical analysis was carried out.

Appendix Table 15 A
Frequency distribution table of the number of isolates/group/ site. The transformations $\sqrt{x+0.5}$ and $\log _{10}(x+0.5)$ were applied to the data to determine the best fit.

No. isolates/ group	$\sqrt{x+0.5}$	$\begin{aligned} & \log _{10} \\ & (x+0.5) \end{aligned}$	f	Cumulative frequencies F	Percent cumulative frequencies
0	0.707	-0.301	7	7	12.7
1	1.225	0.176	2	9	16.4
2	1.581	0.398	1	10	18.2
3	1.871	0.544	2	12	21.8
4	2.121	0.653	3	15	27.3
5	2.345	0.740	2	17	30.9
6	2.550	0.813	5	22	40.0
7	2.739	0.875	3	25	45.5
8	2.915	0.929	0	25	45.5
9	3.082	0.978	2	27	49.1
10	3.240	1.021	2	29	52.7
11	3.391	1.061	1	30	54.5
12	3.536	1.097	2	32	58.2
13	3.674	1.130	3	35	63.6
14	3.808	1.161	2	37	67.3
15	3.937	1.190	2	39	70.9
16	4.062	1.217	0	39	70.9
17	4.183	1.243	0	39	70.9
18	4.301	1.267	0	39	70.9
19	4.416	1.290	0	39	70.9
20	4.528	1.312	1	40	72.7
21	4.637	1.332	0	40	72.7
22	4.743	1.352	1	41	74.5

Appendix Table 15 A cont'd.

No. isolates/ group	$\sqrt{x+0.5}$	$\begin{aligned} & \log _{10} \\ & (x+0.5) \end{aligned}$	f	Cumulative frequencies F	Percent cumulative frequencies
23	4.848	1.371	1	42	76.4
24	4.950	1.389	0	42	76.4
25	5.050	1.407	2	44	80.0
26	5.148	1.423	0	44	80.0
27	5.244	1.439	1	45	81.8
28	5.339	1.455	0	45	81.8
29	5.431	1.470	1	46	83.6
30	5.523	1.484	1	47	85.5
31	5.612	1.498	0	47	85.5
32	5.701	1.512	1	48	87.3
33	5.788	1.525	0	48	87.3
34	5.874	1.538	1	49	89.1
35	5.958	1.550	0	49	89.1
36	6.042	1.562	1	50	90.9
37	6.124	1.574	1	51	92.7
38	6.205	1.585	0	51	92.7
39	6.285	1.597	0	51	92.7
40	6.364	1.607	0	51	92.7
41	6.442	1.618	0	51	92.7
42	6.519	1.628	0	51	92.7
43	6.595	1.638	1	52	94.5
44	6.671	1.648	0	52	94.5
45	6.745	1.658	0	52	94.5
46	6.819	1.667	0	52	94.5
47	6.819	1.667	0	52	94.5
48	6.964	1.686	0	52	94.5

Appendix Table 15 A cont'd.

No. isolates/ group	$\sqrt{x+0.5}$	$\log _{10}(x+0.5)$	f	Cumulative frequencies F	Percent cumulative frequencies
49	7.036	1.695	0	52	94.5
50	7.106	1.703	1	53	96.4
51	7.176	1.712	0	53	96.4
52	7.246	1.720	0	53	96.4
53	7.314	1.728	0	53	96.4
54	7.382	1.736	0	53	96.4
55	7.450	1.744	0	53	96.4
56	7.517	1.752	0	53	96.4
57	7.583	1.760	0	53	96.4
58	7.649	1.767	0	53	96.4
59	7.714	1.775	0	53	96.4
60	7.778	1.782	0	53	96.4
61	7.842	1.789	0	53	96.4
62	7.906	1.796	0	53	96.4
63	7.969	1.803	0	53	96.4
64	8.031	1.810	0	53	96.4
65	8.093	1.816	1	54	98.2
66	8.155	1.823	0	54	98.2
67	8.216	1.829	0	54	98.2
68	8.276	1.836	0	54	98.2
69	8.337	1.842	0	54	98.2
70	8.396	1.848	0	54	98.2
71	8.456	1.854	0	54	98.2
72	8.515	1.860	0	54	98.2
73	8.573	1.866	0	54	98.2
74	8.631	1.872	0	54	98.2

Appendix Table 15 A cont'd.

No. isolates/ group	$\sqrt{x+0.5}$	$\begin{aligned} & \log _{10} \\ & (x+0.5) \end{aligned}$	f	Cumulative frequencies F	Percent cumulative frequencies
75	8.689	1.878	0	54	98.2
76	8.746	1.884	0	54	98.2
77	8.803	1.889	0	54	98.2
78	8.860	1.895	0	54	98.2
79	8.916	1.900	0	54	98.2
80	8.972	1.906	0	54	98.2
81	9.028	1.911	0	54	98.2
82	9.083	1.916	0	54	98.2
83	9.138	1.922	0	54	98.2
84	9.192	1.927	0	54	98.2
85	9.247	1.932	0	54	98.2
86	9.301	1.937	0	54	98.2
87	9.354	1.942	0	54	98.2
88	9.407	1.947	0	54	98.2
89	9.460	1.952	0	54	98.2
90	9.513	1.957	0	54	98.2
91	9.566	1.961	0	54	98.2
92	9.618	1.966	1	55	100.0

Appendix Table 15 B
Frequency distribution table of the number of isolates/group/ depth. The transformations $\sqrt{x+0.5}$ and $\log _{10}(x+0.5)$ were applied to the data to determine the best fit.

No. isolates/ group	$\sqrt{x+0.5}$	$\log _{(x+0.5)}$	f	Cumulative frequencies F	Percent cumulative frequencies
0	0.707	-0.301	33	33	27.3
1	1.225	0.176	11	44	36.4
2	1.581	0.398	12	56	46.3
3	1.871	0.544	8	64	52.9
4	2.121	0.653	3	67	55.4
5	2.345	0.740	4	71	58.7
6	2.550	0.813	4	75	62.0
7	2.739	0.875	2	77	63.6
8	2.915	0.929	7	84	69.4
9	3.082	0.978	4	88	72.7
10	3.240	1.021	5	93	76.9
11	3.391	1.061	2	95	78.5
12	3.536	1.097	1	96	79.3
13	3.674	1.130	0	96	79.3
14	3.808	1.161	5	101	83.5
15	3.937	1.190	2	103	85.1
16	4.062	1.217	2	105	86.8
17	4.183	1.243	1	106	87.6
18	4.301	1.267	1	107	88.4
19	4.416	1.290	2	109	90.1
20	4.528	1.312	2	111	91.7
21	4.637	1.332	1	112	92.6
22	4.743	1.352	0	112	92.6

Appendix Table 15 B cont'd.

No. isolates/ group	$\sqrt{x+0.5}$	$\begin{aligned} & \log _{10} \\ & (x+0.5) \end{aligned}$	f	Cumulative frequencies F	Percent cumulative frequencies
23	4.848	1.371	2	114	94.2
24	4.950	1.389	1	115	95.0
25	5.050	1.407	0	115	95.0
26	5.148	1.423	1	116	95.9
27	5.244	1.439	1	117	96.7
28	5.339	1.455	1	118	97.5
29	5.431	1.470	0	118	97.5
30	5.523	1.484	0	118	97.5
31	5.612	1.498	1	119	98.3
32	5.701	1.512	0	119	98.3
33	5.788	1.525	0	119	98.3
34	5.874	1.538	0	119	98.3
35	5.958	1.550	0	119	98.3
36	6.042	1.562	0	199	98.3
37	6.124	1.574	1	120	99.2
38	6.205	1.585	0	120	99.2
39	6.285	1.597	0	120	99.2
40	6.364	1.607	0	120	99.2
41	6.442	1.618	0	120	99.2
42	6.519	1.628	0	120	99.2
43	6.595	1.638	0	120	99.2
44	6.671	1.648	0	120	99.2
45	6.745	1.658	0	120	99.2
46	6.819	1.667	0	120	99.2
47	6.892	1.677	0	120	99.2

Appendix Table 15 B cont'd.

No. isolates/ group	$\sqrt{x+0.5}$	$\log _{10}(x+0.5)$	fCumulative frequencies F	Percent cumulative frequencies
48	6.964	1.686	0	120

Appendix Figure 2

Relationship between the number of bacterial isolates/group/site (Table 14) (x-axis), and their cumulative percent (y-axis on probability scale). A: Untransformed data, B: (square-root $x+0.5$) transformed data and $C:\left(\log _{10} x+0.5\right)$ transformed data. Arbitrary scale on the right hand Y -axis=cm on original size of graph. This linear cm scale was used to obtain y values for the regression analysis. Cluster analysis at 50% similarity level.

Untransformed data of number of isolates/group/site

Square-root(x+0.5) transformed data of number of isolates/group/site

Abstract

Appendix Figure 3 Relationship between the number of bacterial isolates/group/depth (Table 15) (x-axis), and their cumulative percent (y-axis on probability scale). A: untransformed data, B: (square-root $x+0.5$) transformed data and $C:\left(\log _{10} x+0.5\right)$ transformed data. Arbitrary scale on the right hand y-axis=cm on original size of graph. This linear cm scale was used to obtain y values for the regression analysis. Cluster analysis at 50% similarity level.

Untransformed data of number of isolates/group/depth

Square-root $(x+0.5)$ transformed data of number of isolates/group/depth

$\log _{10}(x+0.5)$ transformed data of number of isolates/group/depth

Appendix Figure 4

Number of bacterial isolates/group/site. Relationship between the mean (x-axis) and standard deviation (y-axis) of A: Untransformed data, B: (square-root $x+0.5$) transformed data. and $C:\left(\log _{10} x+0.5\right)$ transformed data. The five points on each graph are the means and standard deviations for the five sites. Cluster analysis at 50% similarity level.

Appendix figure 5

Number of bacterial isolates/group/depth. Relationship between the mean (x-axis) and standard deviation (y-axis) of A: untransformed data, B: (square-root $x+0.5$) transformed data, and $C:\left(\log _{10} x+0.5\right)$ transformed data. The 11 points on each graph are the means and standard deviations for the 11 depths. Cluster analysis at 50% similarity level.

Group	1	2	Site 3	4	5
1	3.240	2.345	5.050	2.121	2.739
2	0.7071	8.093	5.523	5.701	3.674
3	0.7071	3,536	2.345	3.937	2.550
4	3.391	3.082	5.431	3.536	2.739
5	2.739	9.618	4.743	6.595	6.124
6	0.7071	6.042	3.240	5.244	3.808
7	2.550	2.121	0.7071	2.121	4.528
8	0.7071	4.848	0.7071	5.050	2.550
9	5.874	2.550	3.082	2.550	3.674
10	1.871	3.937	1.225	7.106	3.808
11	1.871	1.581	1.225	3.674	0.7071

Appendix Table 16: Number of bacterial isolates/group at each site (e.g. no. isolates/group/site), table 14. Square-root ($x+0.5$) transformed data. Cluster analysis at 50% similarity level.

Group	Depth (cm)										
	00.0	00.5	03.0	04.0	05.5	07.5	10.5	11.0	13.0	15.5	20.5
1	4.416	3.240	3.240	0.7071	1.225	2.550	0.7071	1.225	0.7071	1.871	1.225
2	1.871	3.808	4.637	2.345	2.121	5.244	0.7071	7.314	3.391	0.7071	1.581
3	1.581	2.345	1.581	2.345	1.581	1.871	0.7071	3.240	3.082	0.7071	0.7071
4	4.528	2.915	2.121	2.915	1.871	3.240	3.082	1.581	1.225	1.871	0.7071
5	2.550	3.808	4.950	2.915	6.124	4.062	4.848	5.148	3.808	4.301	3.937
6	1.581	3.240	3.391	2.915	2.345	2.915	1.871	4.528	3.808	2.121	1.581
7	0.7071	4.848	2.915	0.7071	1.581	0.7071	0.7071	1.225	0.7071	0.7071	0.7071
8	0.7071	3.937	4.062	0.7071	1.581	0.7071	1.225	3.536	2.915	0.7071	0.7071
9	0.7071	5.612	4.183	1.225	2.550	3.082	0.7071	1.581	0.7071	1.581	0.7071
10	1.225	3.808	5.339	4.416	3.082	0.7071	1.225	1.871	2.739	0.7071	1.225
11	1.225	0.7071	1.871	2.550	0.7071	0.7071	0.7071	1.581	2.739	0.7071	0.7071

[^5]| Group | 1 | 2 | Site
 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.021 | 0.7400 | 1.407 | 0.6530 | 0.8750 |
| 2 | -0.3010 | 1.816 | 1.484 | 1.512 | 1.130 |
| 3 | -0.3010 | 1.097 | 0.7400 | 1.190 | 0.8130 |
| 4 | 1.061 | 0.9780 | 1.470 | 1.097 | 0.8750 |
| 5 | 0.8750 | 1.966 | 1.352 | 1.638 | 1.574 |
| 6 | -0.3010 | 1.562 | 1.021 | 1.439 | 1.161 |
| 7 | 0.8130 | 0.6530 | -0.3010 | 0.6530 | 1.312 |
| 8 | -0.3010 | 1.371 | -0.3010 | 1.407 | 0.8130 |
| 9 | 1.538 | 0.8130 | 0.9780 | 0.8130 | 1.130 |
| - 10 | 0.5440 | 1.190 | 0.1760 | 1.703 | 1.161 |
| 11 | 0.5440 | 0.3980 | 0.1760 | 1.130 | -0.3010 |

Appendix Table 18: Number of bacterial isolates/group at each site (e.g. no. isolates/group/site), table 14. $\log _{10}(x+0.5)$ transformed data. Cluster analysis at 50\% similarity level.

Group	Depth (cm)										
	00.0	00.5	03.0	04.0	05.5	07.5	10.5	11.0	13.0	15.5	20.5
1	1.290	1.021	$1.02{ }^{\prime}$	-0.3010	0.1760	0.8130	-0.3010	0.1760	-0.3010	0.5440	0.1760
2	0.5440	1.161	1.332	0.7400	0.653	1.439	-0.3010	1.728	1.061	-0.3010	0.3980
3	0.3980	0.7400	0.3980	0.7400	0.3980	0.5440	-0.3010	1.021	0.9780	-0.3010	-0.3010
4	1.312	0.9290	0.6530	0.9290	0.5440	1.021	0.9780	0.3980	0.1760	0.5440	-0.3010
5	0.8130	1.161	1.389	0.9290	1.574	1.217	1.371	1.423	1.161	1.267	1.190
6	0.3980	1.021	1.061	0.9290	0.7400	0.9290	0.5440	1.312	1.161	0.6530	0.3980
7	-0.3010	1.371	0.9290	-0.3010	0.3980	-0.3010	-0.3010	0.1760	-0.3010	-0.3010	-0.3010
8	-0.3010	1.190	1.217	-0.3010	0.3980	-0.3010	0.1760	1.097	0.9290	-0.3010	-0.3010
9	-0.3010	1.498	1.243	0.1760	0.8130	0.9780	-0.3010	0.3980	-0.3010	0.3980	-0.3010
10	0.1760	1.161	1.455	1.290	0.9780	-0.3010	0.1760	0.5440	0.8750	-0.3010	0.1760
11	0.1760	-0.3010	0.5440	0.8130	-0.3010	-0.3010	-0.3010	0.3980	0.8750	-0.3010	-0.3010

Appendix Table 19: Number of bacterial isolates/group at each depth (e.g. no. isolates/group/depth),
table $15 . \log _{10}(x+0.5)$ transformed data. Cluster analysis at 50% similarity level.

Site	Untransformed data		Square-root transformed data		$\log _{10} \underset{\text { data }}{\text { transformed }}$	
	$\overline{\mathbf{x}}$	s.d.	$\overline{\mathrm{x}}$	s.d.	$\overline{\mathrm{x}}$	s.d.
1	6.727	9.911	2.215	1.598	0.472	0.668
2	24.46	29.10	4.341	2.592	1.144	0.496
3	12.00	12.14	3.025	1.919	0.746	0.696
4	21.00	15.75	4.330	1.738	1.203	0.375
5	12.45	9.812	3.355	1.368	0.958	0.478

Appendix Table 20: Number of bacterial isolates/group for each of the five sites. Mean and standard deviation of untransformed, squareroot " $x+0.5$) transformed and $\log _{10}(x+0.5)$ transformed data. Cluster analysis at 50% similarity level.

Appendix Table 21: Number of bacterial isolates/group for each of the 11 depths. Mean and standard deviation of untransformed, squareroot $(x+0.5)$ transformed and $\log _{10}(x+0.5)$ transformed data. Cluster analysis at 50% similarity level.

Appendix Table 22: No. bacterial isolates)/group/site. Regression analysis applied to untransformed, square-root ($\mathrm{x}+0.5$) transformed, and $\log _{10}(x+0.5)$ transformed data (Appendix Figure 2). The regression analysis was performed on values of y measured on a cm linear scale (see Appendix Figure 2, legend p. 259). $r=$ correlation coefficient. Cluster analysis at 50% similarity level.
Regression equation r Student's.t d.f. P

| Untransformed |
| :--- | :--- | :--- | :--- | :--- | :--- |
| data |$\quad y=0.3942 x+3.274 \quad 0.9878 \quad 34.16 \quad 29 \quad \mathrm{P}<0.001$

Square-root
$(x+0.5) \quad y=2.719 x-0.89770 .9963 \quad 62.43 \quad 29 \quad P<0.001$ transformed data

```
Log}10(x+0.5
    transformed y = 9.501x - 0.2755 0.9223 12.85 29 P < 0.001
    data
```

Appendix Table 23: No. bacterial isolates/group/depth. Regression analysis applied to untransformed, square-root $(x+0.5)$ transformed, and $\log _{10}$ $(x+0.5)$ transformed data (Appendix Figure 3). The regression analysis was performed on values of y measured on a cm linear scale (see appendix figure 3 legend p. 262). r = correlation coefficient. Cluster analysis at 50\% similarity level.
Untransformed $\quad y=0.9634 x+0.57750 .8638 \quad 2.970 \quad 3 \quad 0.10>P>0.05$ data

Square-root $\begin{array}{lllllll}(x+0.5) & y & =0.2712 x+0.9065 & 0.5288 & 1.079 & 3 & 0.40>P>0.30\end{array}$ transformed data

```
Log}10(x+0.5
    transformed y =-0.3961x + 0.0909-0.8773 3.166 3 0.10>P>0.05
    data
```

Appendix Table 24: Number of bacterial isolates/group/site. Regression analyses applied to the five values (one/site) of the mean (x) and standard deviation (Y). Three regression analyses were conducted, on the untransformed, the square-root transformed and $\log _{10}$ transformed data. Cluster analysis at 50% similarity level. $r=$ correlation coefficient.

```
Regression equation r Student's.t d.f. P
```

Untransformed $\quad y=0.5234 x+4.293 \quad 0.6541 .2 .594 \quad 9 \quad 0.05>P>0.02$
data
Square-root
$(x+0.5) \quad y=0.1531 x+0.99170 .4402 \quad 1.471 \quad 9 \quad 0.20>P>0.10$
transformed data
$\log _{10}(x+0.5)$
$\begin{array}{llllll}\text { transformed } \quad y=-0.0241 x+0.5662 & -0.3525 & 1.130 & 9 & 0.30>P>0.20\end{array}$ data

Appendix Table 25: Number of bacterial isolates/group/depth. Regression analyses applied to the 11 values (one/depth) of the mean (x) and standard deviation (y). Three regression analyses were conducted, on the untransformed, the square-root transformed and the $\log _{10}$ transformed data. Cluster analysis at 50\% similarity level. $\mathrm{r}=$ correlation coefficient.

APPENDIX C
 Parametric and Non-Parametric Statistics and the use of Spearman's Rank Order Correlation Coefficient

Statistical tests are divided into two parts, parametric and non-parametric. Parametric tests include Pearson's product moment correlation coefficient and linear regression. Non-parametric tests include Spearman's rank correlation and Kendall's tau correlation, $2 \mathrm{x} n \mathrm{X}^{2}$ tests. The difference between parametric and non-parametric statistics is that parametric techniques involve assumptions of normality about the distribution of a sample population, while nonparametric techniques require far fewer assumptions about the data. Cohen \& Holliday (1984) state the advantage of using non-parametric statistics is they are simple and quick to apply under a wide range of conditions. However, their disadvantage is that they are less powerful. The greater the ability of a test to reject a false hypothesis, the greater its power.

In general, various correlation coefficients are used to test whether there is a significant relationship between two variables. These correlation coefficients can be either parametric or nonparametric, depending on whether the data is normal or not. The parametric correlation coefficient is Pearson's product moment correlation coefficient and the non-parametric correlation coefficients are Kendall's coefficient of rank correlation and Spearman's coefficient of rank correlation (Snedecor and Cochran, 1967, p. 172-188, 193-195; Sokal and Rholf, 1969, p. 495-515, 532537). The range of all three correlation coefficients varies from +1 to -1 . Values close to +1 indicate a strong direct relationship between the two variables, and values close to -1 indicate a strong inverse relationship. Values close to 0 indicate that there is no
statistical relationship between the two variables. Appendix figure 6 illustrates different degrees of correlation between two variables. Kendall's and Spearman's coefficients are equally powerful but both are less powerful than Pearson's coefficient (c. 90\%). Kendall's coefficient is more difficult to compute than Spearman's.

The non-parametric correlations that I have investigated in my thesis have all been statistically analysed using Spearman's rank order correlation coefficient. This test uses the differences in the ranks of the two variables and applies the following equation:

$$
r_{s}=\frac{1-6 d^{2}}{n\left(n^{2}-1\right)}
$$

where d^{2} is the sum of the squares of the differences between ranks of corresponding values x and y, and n is the number of pairs of x and y values.

There are two methods for testing the signficance of Spearman's rank order correlation coefficient depending on the size of the sample. Shaw \& Wheeler (1985) state that for small samples ($n<10$), it is best to use prepared tables (Cohn and Holliday, 1984. Appendix 9, p. 335 or Shaw \& Wheeler, 1985. Appendix IX p. 352). For large samples $(n \geqslant 10) \quad r_{S}$ is converted to a t value using the formula:

$$
t=r_{s} \quad \begin{array}{r}
n-2 \\
1-r_{s}^{2}
\end{array}
$$

Degrees of freedom are calculated by d.f. $=n-2$ where n is the number of ranks being compared.

B

E

Appendix Figure 6
Illustrates the way in which values of correlation (r) indicate the degree of relationship between two variables (x and y). (A) r is tve and fairly large; (B) $r=+1$; (C) $r=-$ l; (D) r is -ve and fairly large; (E) and (F) r is approximately 0.

APPENDIX D

Homogeneity of variance

There are several methods available for testing the homogeneity of variance. Snedecor and Cochran (1980, p. 252-254) and Sokal and Rohlf (1981, Box 13.1 p. 404-407) explain in detail the procedure of the following methods:

1- Bartlett's Test

Sokal \& Rohlf (1981) used an F-test in order to test the homogeneity of variances of two samples prior to applying other statistics. Bartlett's test for the homogeneity of variance is often suggested for comparing more than two samples. The final stage of the statistics is a Chi-square test. The disadvantage of this test as well as all the other tests is that it is very sensitive to departures from normality.

2- Hartley's F-max test

This variance ratio or F -test is a quick, simple test that works on the ratio of the largest to the smallest of several sample variances. The F -value is found from the F -distribution table for the significance level corresponding to the numerator and denominator degrees of -freedom.

3- Log-anova or Scheffe'-Box test

This test requires some data preparation before it can be used. It is based on randomly dividing the $\left(\mathrm{n}_{\mathrm{i}}\right)$ observations in each group into (m_{i}) subsamples. The number of subsamples, m_{i}, should be approximately equal to the square-root of n_{i}, and the number of observations (i.e. readings) in each subsample of each group should be about the same. The sample variance $s^{2} i j$ is calculated separately for each of the subsamples and then its natural $\log \left(\ln =\log _{e}\right)$ is taken.

An analysis of variance is then conducted on the \ln (variance)/d.f., of each variance, where d.f. = degrees of freedom (i.e. $n-1$) of that variance. The final stage of this test is to find the variance ratio from the analysis of variance and then the significance level.

4- Levene's Test

Levene's test of homogeneity of variance is a test based on dividing the mean of the observations by each individual observation for several classes and then applying an analysis of variance to the mean deviations. Snedecor \& Cochran (1980, p. 253) state that Levene's test is much less sensitive to non-normality of data than is Bartlett's test.

Appendix Table 26

Computer program "F-ratio" for calculations of the variance ratio test (Sokal and Rohlf, 1981, Box 8.1, p. 190 and table 16 in Rohlf and Sokal, 1969).

```
10 FEM *** F-ratio, F. EDDEE, DEC. 1985 ***
20 LFFINT CHF*(27);"1";CHFif(10)
30 CS ==CHF专(126)+CHF:(28)
40 FRINT CSF
50 FFINT "THIS FFROGFAMME CALCLLATES THE VAFIANCE FATIO TEST"
60 FFINT "(SOKAL & ROHLF, 1981. BOX 8.1, F.190"
70 FFINT "AND TABLE 16 IN FOHLF & SOKAL, 1969)"
80 LPRINT "THIS FFOGRAMME CALCULATES THE VAFIANCE FATIO TEST"
90 LFRINT "(SOKAL & ROHLF, 1981. EOX 8.1, F.190"
100 LFRINT "AND TABLE 16 IN FOHLF & SOKAL, 1969)"
110 FFINT:FFINT
120 LFRINT:LFFINT
130 LFFiINT
140 FRINT
150 INFUT "COMFARISON :";T*
160 INFUT "LAFGEF VAFIANCE ";L
170 INFUT "n FOR LARGER VAFIIANCE ";A
180 INFUT "SMALLER VARIANCE ";S
100 INFUT "n FOR SMALLER VARIANCE "; B
200 LFFINT "COMPARISON :";T$
210 LFFINT
220 LFFINT "LAFGER VARIANCE = ":L
230 LFFIINT "n FOR LARGER VARIANCE = ":A
240 LPFIINT "SMALLER VARIANCE = ";S
250 LPFINT "n FOR SMALLEF VAFIANCE = ":B
260 C = A-1
270 D = E-1
280 F = L/S
290 FFIINT
300 FFINT "d.f FOR LARGER VAFIANCE ";C
310 FFIINT "d.f FOR SMALLEF VAFIIANCE ";D
320 FFINT
3SO FFINT "F-ratio ";F
$40 LPFINT
35O LFFFNT "d.f FOR LAFGEF VARIANCE ";C
S60 LFFINT "d.f FOR SMALLEF VAFIANCE ":D
$70 LFFRINT
380 LFRINT "F-ratio = ";F
390 A末= = "WITH d.f"
400 FFiINT A* "= "; "("C ","D")"
410 FFINT "-
420 LFFINT AF "= "; "("C ","D")"
430 LFFINNT "
440 FRINT "DO YOU WISH TO CONTINUE, Y/N":INFUT E&:IF E:="Y" THEN GOTO
150
450.END
```


APPENDIX FIGURE 7

A flow diagram of the programme calculating the variance ratio test (Sokal \& Rohlf, 1981. Box 8.1, p. 190 and Table 16 in Rohlf \& Sokal, 1969) .

Appendix Table 27

Example of calculating the variance ratio using "F-ratio" computer program.

```
THIS FROGFiAmME CALCLLATES THE vAFilaNCE FATIO TEST
(SOKAL & FDHLF, 1981. BOX 8.1, F.190
AND TAELE 1% IN FOHLF % SOKAL, 1969)
COMFARISON :DEEF-SEA EACTEFIA
LARGER VARIIANCE = 927
n FOF LARGEF VARIANCE = ?
SMALLEF VAFIANCE = 456
O FOR SMALLER VARIANCE = 6
d.f FOF LARGEF VAFIANCE B
d.f FOF SMALLEF VAFIANCE 5
F-ratio = 2.0329
WITH d.f= ( 8, 5)
COMPARISON :DEEP-SEA EACTEFIA
LAFGEFi VAFIIANCE = 82
I FOR LAFGEF VARIANCE = 8
SMALLEF VARIANCE = GE
n FOR SMALLER VAFIANCE = 6
d.f FOR LARGEF VAFIANCE }
d.f FOR SMALLEF VARIANCE S
F-ratio = 1.26154
WITH d.f= (7 , 5)
COMFAFISDN :DEEF-SEA EACTEFIA
LAFIGEF VARIANCE = 64
n FOF LARGER VAFIIANCE = 5
SMALLEF VAFIANCE = SS
n FOR SMALLER VARIANCE = 4
d.f FOR LAFGEF UAFIIANCE 4
d.f FOF SMALLEF VAFIANCE J
F-ratio = 1.82857
WITH d.f= ( 4, 3 )
```


Appendix Table 28

A breakdown of the contents of each of the 21 clusters formed at 728 similarity level. Column $1=$ isolate number, column $2=$ sampling site (1-5), column $3=$ sediment depth (cm), column $4=$ incubation temperatures (4 or $10^{\circ} \mathrm{C}$) and column $5=$ source of sample ($1=$ sediment, $2=$ burrow linings, $3=$ faecal pellets).

CLUSTER 2

329	3	0.0	4	1	330	3	0.0	4	1	335	3	0.0	10	1
340	3	0.0	4	1	336	3	0.0	4	1	331	3	0.0	4	1
348	3	0.0	4	1	332	3	0.0	4	1	333	3	0.0	4	1
334	3	0.0	4	1	350	3	0.0	4	1	341	3	0.0	4	1
337	3	0.0	4	1	342	3	0.0	4	1	344	3	0.0	4	1
343	3	0.0	4	1	345	3	0.0	4	1	347	3	0.0	4	1
346	3	0.0	4	1										

6	2	0.5	10	1	357	4	4.0	10	1	176	2	11.0	10	2
485	3	7.5	10	3	752	4	13.0	10	2	86	4	3.0	10	1
88	4	3.0	10	1	109	2	3.0	10	1	349	3	0.0	4	1
651	3	7.5	4	3	228	5	0.5	10	1	645	3	7.5	4	3
646	3	7.5	4	3	166	2	11.0	10	2	308	3	0.0	10	1
387	4	4.0	10	1	204	2	5.5	10	1	643	3	7.5	10	3
644	3	7.5	10	3	220	5	0.5	10	1	486	3	7.5	10	3
487	3	7.5	10	3	490	3	7.5	10	3	491	3	7.5	10	3
492	3	7.5	10	3	496	3	7.5	10	3	493	3	7.5	10	3
494	3	7.5	10	3	499	3	7.5	10	3	503	3	7.5	10	3
489	3	7.5	10	3	500	3	7.5	10	3	498	3	7.5	10	3
504	3	7.5	10	3	797	3	7.5	4	3	495	3	7.5	10	3
502	3	7.5	10	3	507	3	7.5	10	3	510	3	7.5	10	3
509	3	7.5	10	3	508	3	7.5	10	3					

CLUSTER 4

33	2	20.5	10	1	636	5	5.5	10	1	163	2	11.0	10	2
170	2	11.0	10	2	168	2	11.0	10	2	552	5	3.0	10	1
167	2	11.0	10	2	309	3	0.0	10	1	174	2	11.0	10	2
760	4	13.0	10	2	363	4	4.0	10	2	425	4	13.0	10	1
229	5	0.5	10	1	433	2	0.5	10	1	689	2	11.0	4	2
698	2	11.0	4	2	699	2	11.0	4	2	744	2	11.0	4	3
108	2	3.0	10	1	690	2	11.0	4	2	737	2	11.0	4	3
702	2	11.0	4	2	703	2	11.0	4	2	707	2	11.0	4	2
154	2	11.0	10	3	157	2	11.0	10	1	156	2	11.0	10	2
182	2	11.0	10	3	186	2	11.0	10	3	158	2	11.0	10	3
159	2	11.0	10	3	183	2	11.0	10	3	160	2	11.0	10	3
184	2	11.0	10	3	187	2	11.0	10	3	188	2	11.0	10	3
682	2	11.0	4	2	683	2	11.0	4	2	704	2	11.0	4	2

cluster 4 cont'd.

739	2	11.0	4	3	745	2	11.0	4	3	177	2	11.0	10	3
543	5	5.5	10	1	265	5	3.0	10	1	548	5	5.5	10	1
526	4	0.5	10	1	563	4	13.0	10	1	738	2	11.0	4	3
572	4	13.0	10	1	245	5	0.5	10	1	257	5	3.0	10	1
268	5	3.0	10	1										

CLUSTER 5

9	2	0.5	10	1		39	2	11.0	10	3	32	2	20.5	10	1
47	2	11.5	10	3	527	4	0.5	10	1	528	4	0.5	10	1	
517	4	0.5	10	1	522	4	0.5	10	1	564	4	13.0	10	1	
570	4	13.0	10	1	565	4	13.0	10	1	581	4	3.0	10	1	
580	4	3.0	10	1	582	4	3.0	10	1	583	4	3.0	10	1	
584	4	3.0	10	1	585	4	3.0	10	1	413	4	13.0	10	1	
416	4	13.0	10	1	734	2	11.0	4	3	515	4	0.5	10	1	
716	2	11.0	4	3	718	2	11.0	4	3	726	2	11.0	4	3	
730	2	11.0	4	3	731	2	11.0	4	3	717	2	11.0	4	3	
719	2	11.0	4	3	724	2	11.0	4	3	733	2	11.0	4	3	
747	2	11.0	4	3	721	2	11.0	4	3	732	2	11.0	4	3	
411	4	13.0	10	1	587	4	3.0	10	1	445	2	3.0	10	1	
451	2	3.0	10	1	452	2	3.0	10	1	111	2	3.0	10	1	
696	2	11.0	4	2	736	2	11.0	4	3	551	5	3.0	10	1	
375	4	4.0	10	2	385	4	4.0	10	2	697	2	11.0	4	2	

CLUSTER 6

-23	5	0.5	10	1	784	4	13.0	10	2	768	4	13.0	10	2
102	2	3.0	10	1	110	2	3.0	10	1	301	3	0.0	10	1
537	5	5.5	10	1	64	5	0.5	10	1	151	2	11.0	10	3
155	2	11.0	10	3	152	2	11.0	10	3	179	2	11.0	10	3
178	2	11.0	10	3	180	2	11.0	10	3	181	2	11.0	10	3

cluster 6 cont'd.

388	4	4.0	10	1	420	4	13.0	10	1		218	5	0.5	10
384	4	4.0	10	2	511	4	0.5	10	1	532	5	5.5	10	1
224	5	0.5	10	1	360	4	4.0	10	2	648	3	7.5	4	3

CLUSTER 7

172	2	11.0	10	2	173	2	11.0	10	2		759	4	13.0	10
175	2	11.0	10	2	320	3	7.5	10	2	339	3	0.0	4	1
650	3	7.5	4	3	772	4	13.0	10	2	353	4	4.0	10	2
770	4	13.0	10	2	356	4	4.0	10	2	751	4	13.0	10	2
771	4	13.0	10	2	778	4	13.0	10	2					

CLUSTER 8

2	2	0.5	10	1	35	2	11.0	10	3	37	2	11.0	10	3
94	4	3.0	10	1	432	2	0.5	10	1	464	4	0.5	10	1
52	5	0.5	10	1	615	5	10.5	10	1	840	1	3.0	10	1
95	4	3.0	10	1	137	1	0.5	10	1	624	5	5.5	10	1
260	5	3.0	10	1	232	5	0.5	10	1	326	3	7.5	10	2
68	5	0.5	10	1	321	3	7.5	10	2	479	1	5.5	10	1
194	2	5.5	10	1	802	1	15.5	10	1	219	5	0.5	10	1
294	3	0.0	10	1	298	3	0.0	10	1					

CLUSTER 9

-22	2	10.5	10	1	501	3	7.5	10	3	391	4	4.0	10	1
403	4	4.0	10	1	338	3	0.0	4	1	808	3	7.5	10	2
471	1	10.5	10	1	472	1	10.5	10	1	474	1	10.5	10	1
789	4	13.0	10	2	28	2	15.5	10	1	799	3	7.5	4	3
800	3	7.5	4	3	302	3	0.0	10	1	305	3	0.0	10	1
304	3	0.0	10	1	303	3	0.0	10	1	29	2	15.5	10	1
300	3	0.0	10	1	327	3	0.0	10	1	476	1	10.5	10	1
792	3	7.5	4	3	404	4	4.0	10	1	405	4	4.0	10	1

cluster 9 cont'd.

410	4	4.0	10	1	288	3	0.0	10	1	406	4	4.0	10	1
389	4	4.0	10	1	291	3	0.0	10	1	793	3	7.5	4	3
402	4	4.0	10	1	795	3	7.5	4	3	796	3	7.5	4	3
475	1	10.5	10	1	477	1	10.5	10	1	478	1	10.5	10	1
290	3	0.0	10	1	292	2	0.0	10	1	295	3	0.0	10	1
293	3	0.0	10	1	296	3	0.0	10	1	297	3	0.0	10	1
299	3	0.0	10	1	307	3	0.0	10	1	306	3	0.0	10	1

CLUSTER 10

10	2	3.0	10	1	14	2	3.0	10	1	214	2	5.5	10	1
779	4	13.0	10	2	562	4	13.0	10	1	277	2	20.5	10	1
622	4	10.5	10	1	153	2	11.0	10	3	801	1	15.5	10	1
15	2	5.5	10	1	195	2	5.5	10	1	198	2	5.5	10	1
208	2	5.5	10	1	199	2	5.5	10	1	769	4	13.0	10	2
200	2	5.5	10	1	121	2	15.5	10	1	271	2	20.5	10	1
126	2	15.5	10	1	278	2	20.5	10	1	279	2	20.5	10	1
282	2	20.5	10	1	31	2	20.5	10	1	791	3	7.5	4	3
191	2	5.5	10	1	203	2	5.5	10	1	757	4	13.0	10	2
419	4	13.0	10	1	612	5	10.5	10	1	629	5	5.5	10	1
25	2	15.5	10	1	27	2	15.5	10	1	122	2	15.5	10	1
26	2	15.5	10	1	118	2	15.5	10	1	392	4	4.0	10	1
393	4	4.0	10	1	400	4	4.0	10	1	764	4	13.0	10	2
311	3	0.0	10	1	312	3	7.5	10	2	319	3	7.5	10	2
313	3	7.5	10	2	45	2	11.0	10	3	49	2	11.0	10	3

205	2	5.5	10	1	461	4	0.5	10	1	289	3	0.0	10	1
794	3	7.5	4	3	805	3	7.5	10	3	641	3	0.0	4	1
655	3	7.5	4	3	656	3	7.5	4	3	642	3	0.0	4	1
664	1	0.5	10	1	666	1	0.5	10	1					

16	2	5.5	10	1	212	2	5.5	10	1	213	2	5.5	10	1
575	2	10.5	10	1	286	2	20.5	10	1	637	5	5.5	10	1
781	4	13.0	10	2	192	2	5.5	10	1	201	2	5.5	10	1
272	2	20.5	10	1	274	2	20.5	10	1	287	3	0.0	10	1
408	4	4.0	10	1	595	4	3.0	10	1	606	4	3.0	10	1
596	4	3.0	10	1	602	4	3.0	10	1	614	5	10.5	10	1
613	5	10.5	10	1	609	5	10.5	10	1	610	5	10.5	10	1
628	5	5.5	10	1	24	2	10.5	10	1	632	4	10.5	10	1
755	4	13.0	10	2	750	5	15.5	10	1	725	2	11.0	4	3
746	2	11.0	4	3	130	2	15.5	10	1	273	2	20.5	10	1
780	4	13.0	10	2	215	2	5.5	10	1	756	4	13.0	10	2
131	2	15.5	10	1	281	2	20.5	10	1	280	2	20.5	10	1
285	2	20.5	10	1	44	2	11.0	10	3	60	5	0.5	10	1
556	5	3.0	10	1	649	1	20.5	10	1	383	4	4.0	10	2
536	5	5.5	10	1	193	2	5.5	10	1	196	2	5.5	10	1
197	2	5.5	10	1	631	4	10.5	10	1	473	1	10.5	10	1
207	2	5.5	10	1	621	4	10.5	10	1	603	4	3.0	10	1
611	5	10.5	10	1	210	2	5.5	10	1	633	4	10.5	10	1
634	4	10.5	10	1	283	2	20.5	10	1	211	2	5.5	10	1
216	2	5.5	10	1	19	2	5.5	10	1	729	2	11.0	4	3
124	2	15.5	10	1	129	2	15.5	10	1	762	4	13.0	10	2
396	4	4.0	10	1	775	4	13.0	10	2	116	2	15.5	10	1

cluster 12 cont'd.

117	2	15.5	10	1	120	2	15.5	10	1	123	2	15.5	10	1
206	2	5.5	10	1	323	3	7.5	10	2	722	2	11.0	4	3
723	2	11.0	4	3	788	4	13.0	10	2	728	2	11.0	4	3
18	2	5.5	10	1	161	2	11.0	10	3	382	4	4.0	10	2
390	4	4.0	10	1	267	5	3.0	10	1	314	3	7.5	10	2
315	3	7.5	10	2	523	4	0.5	10	1	538	5	5.5	10	1
237	5	0.5	10	1	264	5	3.0	10	1	688	2	11.0	4	2
269	5	3.0	10	1	430	4	13.0	10	1	741	2	11.0	4	3
695	2	11.0	4	2	709	2	11.0	4	2	700	2	11.0	4	2
705	2	11.0	4	2	701	2	11.0	4	2	708	2	11.0	4	2
107	2	3.0	10	1	549	5	5.5	10	1	810	3	7.5	10	2
807	3	7.5	10	2	809	3	7.5	10	2	811	3	7.5	10	2
557	5	3.0	10	1	558	5	3.0	10	1	608	5	10.5	10	1
669	1	00.5	10	1	670	1	0.5	10	1					

CLUSTER 13

17	2	5.5	10	1	591	4	3.0	10	1	598	4	3.0	10	1
605	4	3.0	10	1	597	4	3.0	10	1	599	4	3.0	10	1
604	4	3.0	10	1	630	5	5.5	10	1	749	5	15.5	10	1
727	2	11.0	4	3	21	2	10.5	10	1	59	5	0.5	10	1
318	3	7.5	10	2	51	5	0.5	10	1	748	2	11.0	4	3
735	2	11.0	4	3	559	5	3.0	10	1	623	5	5.5	10	1
592	4	3.0	10	1	607	5	10.5	10	1	640	3	0.0	4	1
616	5	10.5	10	1	620	5	10.5	10	1	625	5	5.5	10	1

CLUSTER 14

5	2	0.5	10	1	185	2	11.0	10	3	639	3	0.0	4	1
753	4	13.0	10	2	783	4	13.0	10	2	773	4	13.0	10	2
231	5	0.5	10	1	262	5	3.0	10	1	364	4	4.0	10	2
652	3	7.5	4	3	806	3	7.5	10	3	23	2	10.5	10	1

cluster 14 cont'd.

576	2	10.5	10	1	30	2	20.5	10	1	164	2	11.0	10	2
169	2	11.0	10	2	40	2	11.0	10	3	429	4	13.0	10	1
354	4	4.0	10	2	401	4	4.0	10	1	409	4	4.0	10	1
202	2	5.5	10	1	710	4	5.5	10	1	284	2	20.5	10	1
568	4	13.0	10	1	422	4	13.0	10	1	423	4	13.0	10	1
127	2	15.5	10	1	209	2	5.5	10	1	540	5	5.5	10	1
310	3	0.0	10	1	578	2	10.5	10	1	424	4	13.0	10	1
427	4	13.0	10	1	785	4	13.0	10	2	440	2	0.5	10	1
453	2	3.0	10	1	436	2	0.5	10	1	671	2	11.0	4	2
119	2	15.5	10	1	128	2	15.5	10	1	125	2	15.5	10	1
782	4	13.0	10	2	165	2	11.0	10	2	171	2	11.0	10	2
366	4	4.0	10	2	371	4	4.0	10	2	488	3	7.5	10	3
42	4	11.0	10	3	412	4	13.0	10	1	679	2	11.0	4	2
421	4	13.0	10	1	754	4	13.0	10	2	266	5	3.0	10	1
675	2	11.0	4	2	676	2	11.0	4	2	677	2	11.0	4	2
678	2	11.0	4	2	680	2	11.0	4	2	99	4	3.0	10	1
359	4	4.0	10	2	395	4	4.0	10	1	235	5	0.5	10	1
236	5	0.5	10	1	672	2	11.0	4	2	512	4	0.5	10	1
681	2	11.0	4	2	691	2	11.0	4	2	692	2	11.0	4	2
673	2	11.0	4	2	674	2	11.0	4	2	513	4	0.5	10	1
546	5	5.5	10	1	71	5	0.5	10	1	324	3	7.5	10	2
316	3	7.5	10	2	317	3	7.5	10	2	322	3	7.5	10	2
325	3	7.5	10	2	253	5	3.0	10	1	254	5	3.0	10	1
221	5	0.5	10	1	442	2	3.0	10	1	448	2	3.0	10	1
256	5	3.0	10	1	270	5	3.0	10	1	259	5	3.0	10	1

CLUSTER 15

36	2	0.5	10	1	67	5	0.5	10	1	454	2	3.0	10	1
466	4	0.5	10	1	484	1	5.5	10	1	41	2	11.0	10	3

cluster 15 cont'd.

114	2	3.0	10	1	661	1	0.5	10	1	553	5	3.0	10	1
658	1	0.5	10	1	58	5	0.5	10	1	246	5	0.5	10	1
249	5	0.5	10	1	251	5	3.0	10	1	482	1	5.5	10	1
241	5	0.5	10	1	243	5	0.5	10	1	662	1	0.5	10	1
146	1	0.5	10	1	263	5	3.0	10	1	255	5	3.0	10	1
238	5	0.5	10	1	244	5	0.5	10	1	233	5	0.5	10	1
239	5	0.5	10	1	242	5	0.5	10	1	234	5	0.5	10	1
100	4	3.0	10	1	514	4	0.5	10	1	520	4	0.5	10	1
240	5	0.5	10	1	248	5	0.5	10	1	250	5	0.5	10	1
261	5	3.0	10	1										

CLUSTER 16

12	2	3.0	10	1	766	4	13.0	10	2	456	2	0.5	10	1
458	4	0.5	10	1	468	4	0.5	10	1	758	4	13.0	10	2
763	4	13.0	10	2	103	2	3.0	10	1	444	2	3.0	10	1
457	4	0.5	10	1	469	4	0.5	10	1	463	4	0.5	10	1
465	4	0.5	10	1	449	2	3.0	10	1	455	2	0.5	10	1
20	2	10.5	10	1	112	2	3.0	10	1	113	2	3.0	10	1
77	4	3.0	10	1	447	2	3.0	10	1	415	4	13.0	10	1
428	4	13.0	10	1	450	2	3.0	10	1	459	4	0.5	10	1
460	4	0.5	10	1	555	5	3.0	10	1	569	4	13.0	10	1
593	4	3.0	10	1	600	4	3.0	10	1	62	5	0.5	10	1
66	5	0.5	10	1	594	4	3.0	10	1	601	4	3.0	10	1
75	4	3.0	10	1	414	4	13.0	10	1	693	2	11.0	4	2
518	4	0.5	10	1	519	4	0.5	10	1	544	5	5.5	10	1
530	5	5.5	10	1	521	4	0.5	10	1	711	2	11.0	4	3
720	2	11.0	4	3	712	2	11.0	4	3	713	2	11.0	4	3

cluster 16 cont'd.

694	2	11.0	4	2	685	2	11.0	4	2	715	2	11.0	4	3
CLUSTER 17														
3	2	0.5	10	1	4	2	0.5	10	1	10	2	0.5	10	1
11	2	3.0	10	1	843	3	7.5	10	3	815	1	3.0	10	1
824	1	3.0	10	1	135	1	0.5	10	1	150	1	0.5	10	1
136	1	0.5	10	1	144	1	0.5	10	1	149	1	0.5	10	1
142	1	0.5	10	1	147	1	0.5	10	1	57	5	0.5	10	1
65	5	0.5	10	1	140	1	0.5	10	1	92	4	3.0	10	1
93	4	3.0	10	1	143	1	0.5	10	1	839	1	3.0	10	1
816	1	3.0	10	1	822	1	3.0	10	1	830	1	3.0	10	1
820	1	3.0	10	1	821	1	3.0	10	1	838	3	7.5	10	3

CLUSTER 18

53	5	0.5	10	1	55	5	0.5	10	1	139	1	0.5	10	1
524	4	0.5	10	1	525	4	0.5	10	1	69	5	0.5	10	1
657	5	3.0	10	1	141	1	0.5	10	1	56	5	0.5	10	1
638	5	5.5	10	1	134	1	0.5	10	1	659	1	0.5	10	1
145	1	0.5	10	1	542	5	5.5	10	1	189	2	11.0	10	3
190	2	11.0	10	3	842	1	15.5	10	1	668	1	0.5	10	1
541	5	5.5	10	1	547	5	5.5	10	1	841	1	3.0	10	1
843	1	15.5	10	1	87	4	3.0	10	1	386	4	4.0	10	1
252	5	3.0	10	1	497	3	7.5	10	3	505	3	7.5	10	3
506	3	7.5	10	3	258	5	3.0	10	1	480	1	5.5	10	1
481	1	5.5	10	1	833	3	7.5	10	3	836	3	7.5	10	3
837	3	7.5	10	3	138	1	0.5	10	1	665	1	0.5	10	1
667	1	0.5	10	1	660	1	0.5	10	1	817	1	3.0	10	1
663	1	0.5	10	1	798	3	7.5	4	3					

45	5	0.5	10	1	516	4	0.5	10	1	590	4	3.0	10	1
417	4	13.0	10	1	706	2	11.0	4	2	573	4	3.0	10	1
574	4	3.0	10	1	588	4	3.0	10	1	589	4	3.0	10	1
101	2	3.0	10	1	115	2	3.0	10	1	418	4	13.0	10	1
529	4	0.5	10	1	446	2	3.0	10	1	76	4	3.0	10	1
83	4	3.0	10	1	82	4	3.0	10	1	89	4	3.0	10	1
84	4	3.0	10	1	90	4	3.0	10	1	98	4	3.0	10	1
78	4	3.0	10	1	380	4	4.0	10	2	79	4	3.0	10	1
351	4	4.0	10	2	441	2	3.0	10	1	467	4	0.5	10	1
104	2	3.0	10	1	105	2	3.0	10	1	106	2	3.0	10	1

CLUSTER 20

61	5	0.5	10	1	133	1	0.5	10	1	132	1	0.5	10	1
81	4	3.0	10	1	85	4	3.0	10	1	97	4	3.0	10	1
80	4	3.0	10	1	566	4	13.0	10	1	579	4	3.0	10	1
162	2	11.0	10	3	577	2	10.5	10	1	531	5	5.5	10	1
533	5	5.5	10	1	627	5	5.5	10	1	535	5	5.5	10	1
635	5	5.5	10	1	545	5	5.5	10	1	550	5	5.5	10	1
70	5	0.5	10	1	72	5	0.5	10	1	74	4	3.0	10	1
539	5	5.5	10	1	367	4	4.0	10	2	434	2	0.5	10	1
91	4	3.0	10	1	534	5	5.5	10	1	352	4	4.0	10	2
787	4	13.0	10	2	376	4	4.0	10	2	398	4	4.0	10	1
394	4	4.0	10	1	397	4	4.0	10	1	399	4	4.0	10	1
407	4	4.0	10	1	73	5	0.5	10	1	148	1	0.5	10	1
373	4	4.0	10	2	275	2	20.5	10	1	374	4	4.0	10	2
378	4	4.0	10	2	276	3	0.0	10	1	361	4	4.0	10	2
377	4	4.0	10	2	370	4	4.0	10	2	368	4	4.0	10	2

cluster 20 cont'd.

561	4	13.0	10	1	571	4	13.0	10	1

CLUSTER 21

43	2	11.0	10	3	46	2	11.0	10	1	328	3	0.0	4	1
790	1	3.0	10	1	828	1	3.0	10	1	814	1	3.0	10	1
355	4	4.0	10	2	362	4	4.0	10	2	358	4	4.0	10	1
372	4	4.0	10	2	767	4	13.0	10	2	774	4	13.0	10	2
379	4	4.0	10	2	381	4	4.0	10	2	761	4	13.0	10	2
777	4	13.0	10	2	765	4	13.0	10	2	786	4	13.0	10	2
776	4	13.0	10	2										

APPENDIX E

Clustering of variables

It is usual to apply cluster analyses to cases (rows) not to variables (columns). However, I was able to find a program that would cluster using the variables. This was the BMDP (P1M) program. I applied the program three times: to the antibiotics alone (7 variables), to the heavy metals alone (6 variables), and to the antibiotics and heavy metals together (13 variables).

The program PIM procedures illustrating the clustering process were shown in appendix table 30.

Appendix Table 29

An example of calculating the correlation coefficient matrix for the clustering process of heavy metals based on the single linkage method. $d=$ distance, $\max =$ maximum distance.

	Cd	Cr	Hg	Cu	Mn	Pb
Cd	0					
Cr	0.1423	0				
Hg	0.2005	-0.2757	0			
Cu	0.2958	-0.0756	0.4152	0		
Mn	0.2954	0.0857	0.2232	0.3331	0	
Pb	0.3073	-0.0213	0.3566	0.4023	0.2812	0

$\mathrm{d}(\mathrm{Hg}, \mathrm{Cu}) \mathrm{Mn}=\max \{\mathrm{dHgMn}, \mathrm{d} \mathrm{CuMn}\}=\mathrm{d}$ CuMn $=0.3331$
$\mathrm{d}(\mathrm{Hg}, \mathrm{Cu}) \mathrm{Pb}=\max \{\mathrm{dHgPb}, \mathrm{d} \mathrm{CuPb}\}=\mathrm{d} \mathrm{CuPb}=0.4023$
$\mathrm{d}(\mathrm{Hg}, \mathrm{Cu}) \mathrm{Cd}=\max \{\mathrm{d} \mathrm{HgCd}, \mathrm{d} \mathrm{CuCd}\}=\mathrm{d} \mathrm{CuCd}=0.2958$
$d(\mathrm{Hg}, \mathrm{Cu}) \mathrm{Cr}=\max \{\mathrm{d} \mathrm{HgCr}, \mathrm{d} \mathrm{CuCr}\}=\mathrm{d} \mathrm{HgCr}=-0.2757$

	Cd	Cr	(HgCu)	Mn	Pb
Cd	0				
Cr	0.1423	0			
(HgCu)	0.2958	-0.2757	0		
Mn	0.2954	0.0857	0.3331	0	
Pb	0.3073	-0.0213	0.4023	0.2812	0

$\mathrm{d}(\mathrm{HgCu}, \mathrm{Pb}) \mathrm{Mn}=\max \{\mathrm{d} \mathrm{HgCu}-\mathrm{Mn}, \mathrm{d} \mathrm{PbMn}\}=\mathrm{d} \mathrm{HgCu}-\mathrm{Mn}=0.3331$
$\mathrm{d}(\mathrm{HgCu}, \mathrm{Pb}) \mathrm{Cd}=\max \{\mathrm{d} \mathrm{HgCu}-\mathrm{Cd}, \mathrm{d} \mathrm{PbCd}\}=\mathrm{d} \mathrm{PbCd}=0.3073$
$\mathrm{d}(\mathrm{HgCu}, \mathrm{Pb}) \mathrm{Cr}=\max \{\mathrm{d} \mathrm{HgCu}-\mathrm{Cr}, \mathrm{d} \mathrm{PbCr}\}=\mathrm{d} \mathrm{HgCu}-\mathrm{Cr}=-0.2757$

	Cd	Cr	(HgCuPb)	Mn
Cd	0			
Cr	0.1423	0		
(HgCuPb)	0.3073	-0.2757	0	
Mn	0.2954	0.0857	0.3331	0

$d(H g C u P b, M n) C d=\max \{d H g C u P b-C d, d M n C d\}=d H g C u P b-C d=0.3073$
$\mathrm{d}(\mathrm{HgCuPb}, \mathrm{Mn}) \mathrm{Cr}=\max \{\mathrm{d} \mathrm{HgCuPb}-\mathrm{Cr}, \mathrm{d} \mathrm{MnCr}\}=\mathrm{d} \mathrm{HgCuPb}-\mathrm{Cr}=-0.2757$

	Cd	Cr	(HgCuPbMn)
Cd	0		
Cr	0.1423	0	
(HgCuPbMn)	0.3073	-0.2757	0

d (HgCuPbMn, Cd) Cr=max $\{d$ HgCuPbMn-Cr, d CdCr \}=d $\mathrm{HgCuPbMn}-\mathrm{Cr}=-0.2757$

Finally, Cr joined the metals $\mathrm{Hg}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Mn}$ and Cd at a correlation measure of -0.2757 .

Appendix Table 30

The program "BMDPlM-cluster analysis of variables" procedures illustrating the clustering process of heavy metals based on the single linkage method.

```
IPAGE 1 EMOPIM
    BMDP1M - CLUSTER ANALYSIS OF VARIAELES
    BMDP STATISTICAL SOFTHARE, INC.
    1964 HESTUOOD BLVD. SUITE 202
    (213) 47S-5700
    PROGRAM REVISED OCTOBER 1983
    MANUAL REVISED -- 1983
    COPYRIGHT (C) 1983 REGENTS OF UNIVERSITY OF CALIFORNIA
    TO SEE REMARKS AND A SUMMARY OF NEW FEATURES FOR
    THIS PROGRAM, STATE NEUS. IN THE PRINT PARAGRAPH.
CTHIS VERSION OF BMOP HAS BEEN CONVERTED FOR USE ON
    ICL 2900 COMPUIERS BY THE PROGRAM LIBRARY UNIT,
    UNIVERSITY OF EDINEURGH. TEL O31-6O7 108%.
    PROGRAM IS PLU VERSION 7.O.
    ADRIL 14, 1986 AT 14:24:06
    PROGRAM CONTROL INFORMATION
    /PROBLEM TITLE IS 'DSBTAX'.
    IINPUT VARIABLES ARE 13.
    FORMAT IS '(17X,7F4,F6,3F4,F5,F4)'.
    /VARIAELE NAMES ARE AMPIC,CHLOR,POLYB,STREP,NALAC,TETRA,METBL,CADM,CHRO,
                MERC, COPP,MANG,LEAD.
    USE=C ADK, CHRO, NERC, COPP,MANG,LEAD.
    IPRINT CORRELATION.
        SHADE.
    IEND.
    PRORLEM TITLE IS
    DSBTAX
    NUMBER OF VARIAELES TO READ IN. . . ... . . . . 13
    NUMBER OF VARIABLES ADOED OY TRANSFORMATIONS.: - O
    TOTAL NUMBER OF VARIABLES.............. 13
    NUMEER OF CASES TO READ IM. . . . . . . . . . . TO END
```



```
    MISSING VALUES CHECKED BEFORE OR AFTER TRANS. . NEITHER
    BLANKS ARE. . . . . . . . . . . . . . . . . . . MISSING
    INPUT FILE. . . . . . . . UNIT S S.. . . . .
    REHIND INPUT UNIT PRIOR TO READING. . DATA. . . . NO
    NUMBER OF UORDS OF OYNAMIC STORAGE. . . . . . . . 14998
    NUMBER OF CASES DESCEIGED BY INPUT FORMAT.... 1
    variables to ee uSEd
        8 CADM 1 O CHRO 10 MERC 11 COPP
        13 LEAD
1PAGE 2 BMDPIM DSBLAX
OINPUT FORMAT IS
    (17x,7F4,F6,3F4,F5,F4)
MAXIMUM LENGTH DATA RECORD IS 72 CHARACTERS.
TPAGE 3 BMDDIM DSBTAX
```


Appendix Table 30 (con'd.)

Appendix Table 30 (con'd.)

ABSOLUTE VALUES OF CORRELATIONS IN SORTED AND SHADED fORM

+	8	CAOM	x
+			0
+			*
+	10	MERC	+ x
+			0
$+$			*
+	11	Copp	XXX
+			NOO
+			- *
+	13	LEAD	XXXX
$+$			NOOO
+			**
+	12	MANG	$x \times x \times x$
$+$			$N \mathrm{ONO}$
+			*
+	9	CHRO	-X. - $\mathrm{X}^{\text {d }}$
+			N 0

Appendix Table 30 (con'd.)

| | THE ABSOLUTE VALUES OF |
| :--- | :--- | :--- |
| THE MATRIX ENTKIES HAVE SEEN PRINTEDABOVE IH SHADED FORM | |
| ACCORDING TO THE FOLLOUING SCHEME | |

NUMRER OF INTEGER UORDS OF STORAGE USED IN PRECEDING PROBLEM 834 CPU TIME USED 7.0SS SECONDS

1PAGE 10 BMDPIM
BROPIM - CLUSTER ANALYSIS OF VARIABLES
APRIL 14, 1986 AT 14:24:20
nO MORE CONTROL LANGUAGE.
PROGRAK TERMINATED
ENO OF LISTING OF FILE: GBZVZ8. CLUMETAL(1,*,1) FOR USER :GEZV28 AT 1986/06/16_-15:14:27

Appendix Table 31
Data on the responces (MIC) of 843 deep-sea isolates and 27 reference cultures to antibiotics and heavy metals. Site number, depth (cm), source of sample and incubation temperatures are also shown.
Isolate No.
Site
Depth
Incub.temp.
Source

Minimum inhibitory concentration (MIC)

Antibiotics

Heavy metals

Am Ch Po St Na To Me Cd Cr Hr Cu Mn Pb
001200.5101 002200.5101 003200.5101 004200.5101 005 200.5101 006200.5101 007200.5101 0082 U0. 5101 009200.5101 0102 J0. 5101 011203.0101 012203.0101 013203.0101 014203.0101 015235.5101 016205.5101 017205.5101 018205.5101 019205.0101 U20 210.5101 021210.5101 022210.5101 $\begin{array}{lll} \\ ن 23 & 2 & 10.5101\end{array}$ 024210.5101 025215.5101 026215.5101 027215.5101 023215.5101 ن29 215.5101 030220.5101 031220.5101 032220.5101 033220.5101 034220.5101 035211.0103 036211.0103 037211.0103 038211.0103 039211.0103 040211.0103 041211.0103 042211.0103 043211.01 C 3 044211.0103 $045<11.0103$ 346211.0101 047211.0103 048211.0103 049211.010 s $050<11.0103$ 051500.5101 052500.5101 053500.5101 054500.5101 055500.5101 056540.5101 0575100.5101
$\begin{array}{lllllll}512 & 008 & 004 & 128 & 512 & 128 & 512\end{array}$

512002256256128128512 512002004064512128512 512 نก8 $\cup 0412 \varepsilon \quad 512128512$ $\begin{array}{llllllll}\text { COd ưO } & 128 & 004 & 512 & 128 & 102\end{array}$ $\begin{array}{llllllll}\text { UCB } & 004 & 032 & 128 & 256 & 032 & 008\end{array}$ 512402 u43 128512128512 512002004128256128512 032004004123032256512 $512 \quad 432 \quad 058 \quad 25 t 512128512$ 512002004256512128512 098002049222016141390 002002032016256032002 $096<02064016256032032$ 035032076055137078002 002 UC4 $076004<56032 C 02$ $002032040 \quad 055 \quad 256078512$ 002002128032128128042 002 CO2 070 O 0551 ? 8 078 042 $002004130013<32008512$ CO2 003 U04 $00412812 \varepsilon 512$ $00200300400412812 \varepsilon 002$ $002 \quad 002130 \quad 0 C 4133057 \quad 002$ 002004130016016032002 $003 \quad 604$ U28 $004064 \quad 064 \quad 002$ 503002023 <51 095 046002 UCS 002 U28 051 C70 046002 002002004064 C64 256 002 CO2 002 ט08 128128256002 $04200<021052081004063$ 032002004032032128016 $128 \quad 002004064064256512$ 032002004256256064128 $512004004128 \quad 664 \quad 256512$ $512002 \quad 250 \quad 128128256512$ $\begin{array}{lllllll}512 & 004 & 604 & 032 & 128 & 256 & 512\end{array}$ 512002256128128256512 512002128128128256512 064002 U08 032032 256 512 008002 u04 064064 C1t C08 512 OC2 $128256 \quad 256256512$ $003005054 \quad \cup 64054032008$ $\begin{array}{lllllll}\text { UC2 } & 002 & 064 & 128 & 064 & 109 & 187\end{array}$ $\begin{array}{lllllll}002 & 0 & 05 & 064 & 128 & 064 & 008 \\ 187\end{array}$ $\begin{array}{lllllll}0 & 0 & 064 & 256 & 256 & 064 & 006\end{array}$ URL GCE UE4 くSE 250 COE 187 $\begin{array}{lllllll}364 & \mathrm{U} & \mathrm{U} 08 & \mathrm{~J} 64 & 064 & 12 \mathrm{E} & 512\end{array}$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 193 | 032 | 054 | 128 | 128 | 064 | 187 | UC2 $002064 \quad 256 \quad 256 \quad 032 \quad 187$ $\begin{array}{lllllll}002 & 005 & 064 & 256 & 250 & 004 & 187\end{array}$ UC8́ UOÓ J04 $256 \quad 016 \quad 256.512$ $\begin{array}{lllll}512 & 002074 & 128 & 256 & 064128\end{array}$ $\begin{array}{lllllll}512 & 002 & 004 & 128 & 128 & 064 & 128\end{array}$ $\begin{array}{lllllll}064 & 008 & 004 & 064 & 064 & 128 & 512\end{array}$ $512002004128 \quad 256128128$ $\begin{array}{lllllll}512 & 002 & 054 & 128 & 512 & 064 & 128\end{array}$ $31900213 \geq 4064512256512$

0322560040644096512
0162560040480512512
0325120040642048512
0485120040642048512
0532030040641024512
1282500041284096512
0322560040644096512
0325120040644096512
0640080321284096512
0325120040642048512
0325120041282048512
0501730471401024229
0082560020480512128
0082560470640512128
0080970050610483160
0080970020320256128
0080970020320256128
0162560020480256512
0082500050610128100
0151340050641024267
0162560041280512512
0162560041280512512
$\begin{array}{llllll} & 008 & 134 & 002 & 032 & 0736 \\ 0 & 267\end{array}$ 0321340160480128192 0082070020480472128 ЈCة 2070020390472064 0082076020640472128 0485120040640512192 348 5120640640512192 0240400060410932135 0320400040320512256 1280640321284096512 0482560161284 C96 256 1281280321284096512 $048256004128 \quad 0512256$ $128 \quad 128$ < 321281024512 016256 G04 1280256256 1282560321234096512 $064016 \quad 0321284096512$ $016 \quad 195$ © $16063210<4 \quad 256$ 032256 v02 1?3 1C24 192 $\cup 16064010<481024512$ OGष் 0950421073446128 ucs 09S 0020640128192 $008512 C 04$ 'j4 0512 19? $040 \quad 0950426103446192$ 048032 C33 1234096512
 j08 250 002 C 320512128 040256002 ©32 6512128 0160320021280256512 $048256004 C 480256512$ 0482500040482048512 0160320021282048512 $048256023 \mathrm{Cb4} 2048512$ 0482560236542048128 $016256023<322282256$
058500.5101 059500.5101 060500.5101 061500.5101 062500.5101 063500.5101 064500.5101 065500.5101 066500.5101 067500.5101 068500.5101 069500.5101 070500.5101 071500.5101 072500.5101 073500.5101 074403.0101 075403.0101 076403.0101 077403.0101 078403.0101 079403.0101 080403.0101 081403.0101 082403.0101 083403.0101 084403.0101 085403.0101 086403.0101 087403.0101 088403.0101 089403.0101 090403.0101 091403.0101 092403.0101 093403.0101 094403.0101 095403.0101 096403.0101 097403.0101 098403.010 1 099403.0101 100403.0101 101203.0101 102203.0101 103203.0101 104203.0101 105203.0101 106203.0101 107203.0101 108203.0101 109203.0101 110203.0101 111203.0101 112203.0101 113203.0101 114203.0101

319002004032256194128 008004004064032128512 008032004032064128064 032002004128256064128 008002004128032128512 032002004128064128512 064002004256032128128 319032016199216256512 002004004128016256512 256032016004064128512 512002004032256128128 256002004128256128128 319004004128064256166 064005024199216194166 002005004199004194166 319002064016216194166 032004256032016064128 128004004064016032512 032002004064032128512 032002004032064128512 032002004032064128512 032011004064032032512 008011004064064064032 008064004032177128032 008016004064177128512 008002004064016128512 002011032083177004338 077011032083177090004 002002256016512008004 002002256032512008008 002002256016512090004 002064004032177128512 077011032083177090338 032002256004256256002 512004004032177128512 512008004032128064512 512008004064064008512 512011004064016064004 512008004128128128016 032008004032004016004 002032032032177128338 128002004032177016032 512002004032064016032 032002004256016256512 032002004256032256512 098002004128032256512 008004008256016256512 032004004032016256512 064002004064016128512 002002004064512256002 008004004256016128032 032002256032512064002 256004064256064128512 008002004128016141512 008002256032097064390 098002256004032064512 512002256222032256512

0482560040321024256 0320640642560256512 0320320161280128256 0642560230642048512 0320320232561024512 0640160641288192512 0640640161288192512 0322560321282282512 0320640231281024512 0642560041281024512 0645120041280256512 0640320041282048512 0640320322562282512 0322640231061024371 0332560230642282371 0082560231062282064 0321280161282048512 0160320041281024512 0080320021281810512 0160320021281024256 0160320041282048256 0160320041282048128 0081280021282048385 0161280040931810512 0161280041281810512 0161280041281810512 0172560131281810385 0172560131281810385 0085120021284096385 0085120021281810385 0085120020644096385 0161280081281810512 0172560020931810385 0082560020081810256 0322560161281810512 0322560321281810256 0322560160080512256 0480080641280512512 0485120321284096385 0482560321281810512 0321280321281810256 0322560641281024512 0322560641281024512 1281281282562048512 0641281282568192512 0162560161281024128 0161280642562048128 1281281282562048160 0161280642562048160 0321280162560512512 0161280642564096512 0325120040084096160 1281281282568192512 0501280642564096256 0160640161401024229 0162560161401024128 0322560470641024128
$115 \quad 203.0 \quad 101$ 116215.5101 117215.5101 118215.5101 119215.5101 120215.5101 121215.5101 122215.5101 123215.5101 124215.5101 125215.5101 126215.5101 127215.5101 128215.5101 129215.5101 130215.5101 131215.5101 132100.5101 133100.5101 134100.5101 135100.5101 136100.5101 137100.5101 138100.5101 139100.5101 140100.5101 141100.5101 142100.5101 143100.5101 144100.5101 145100.5101 146100.5101 147100.5101 148100.5101 149100.5101 150100.5101 151211.0103 152211.0103 153211.0103 154211.0103 155211.0103 156211.0103 157211.0101 158211.0103 159211.0103 160211.0103 161211.0103 162211.0103 163211.0102 164211.0102 165211.0102 166211.0102 167211.0102 168211.0102 169211.0102 170211.0102 171211.0102

002002256256064141512 003002028032090004002 003002064016090004002 003002064032064004002 002002028064064004002 002002032016064032002 003002028051090046002 003002028051090046002 003002004256064032002 003002032032090016002 003002032016090004002 003002028051090004002 002002032016256016002 008002032051064004002 003002032004090046002 003002028051090046002 003002004032064008002 008002064128128064008 008002008064256064064 341003123273425166196 512002008128512128512 512002016064512128512 512002016032425004196 341002123512512166002 341002004128128128008 032002004128512064512 341002123128256016002 512002004256512064512 512002256032128256512 512002008064512128512 512002008032512128128 512002004256512128008 512002004256512128512 341002008032128064002 512002004032512128512 512002004064512128512 008004004128016064187 032008004128016128187 002002128004512032004 032016004128032064187 008016008128032064187 032004004128016064187 032008004128032064187 032016004128032128187 032004004128032128187 032008004128032128187 002002128004128032016 002002128004128032002 021003152067268054002 021002032016128016002 032002128032128032002 008002256016128054002 002002064016128032002 021003004067268054002 002002064016128016002 021003152067268054002 008002128032128032002

0322560471282208512 0152560020390256128 0152560020390256128 0152560020080512128 0152560020321024160 0081280020320256160 0150080040390472064 0152070020390472128 0152560020080128128 0152560020390128128 0082560020481024128 0150160020320512128 0080080020321024128 0082560020481024128 0082560020390128064 0150160020390128064 0080080020320128192 1282560161282048512 0322560160642048512 0080160020882048371 0322560160642048512 0322560160482048512 0431700160880512371 0322560160642048128 1282560160642048512 0322560080642048512 0080640020482048512 0322560081282048512 0162560161282048512 0322560080482048512 0482560080642048512 0322560161281024512 0322560161282048512 0321280081282048192 0322560160642048512 0322560161282048512 0320321281288192512 0320320641288192512 0321280420640512192 0480320641284096512 0400320641288192512 0320320641284096512 0480320641284096512 0480320641284096512 0480320641284096512 0480320641284096512 0481280420640256512 0400320161282048256 0261390110624096240 0081390110481024160 0082560110641024160 0082560110324096128 0081390110624096128 0261390110624096240 0261280020641024160 0261390110624096240 0082560040321024128
172211.0102 173211.0102 174211.0102 175211.0102 176211.0102 177211.0103 178211.0103 179211.0103 180211.0103 181211.0103 182211.0103 183211.0103 184211.0103 185211.0103 186211.0103 187211.0103 188211.0103 189211.0103 190211.0103 191205.0101 192205.5101 193205.5101 194205.5101 195205.0101 196205.5101 197205.5101 198205.0101 199205.0101 200205.5101 201205.5101 202205.0101 203205.5101 204205.5101 205205.5101 206205.5101 207205.5101 208205.5101 209205.5101 210205.5101 211205.5101 212205.5101 213205.5101 214205.0101 215205.5101 216205.5101 217500.5101 218500.5101 219500.5101 220500.5101 221500.5101 222500.5101 223500.5101 224500.5101 225500.5101 226500.5101 227500.5101 228500.5101

008002256032512128002 128016256032512128002 002004128032128032002 008002256256512064002 008002256256512064002 032008004128256128187 032008004128032128187 032008004128032128187 128016004016064128064 128008004064064128187 032008004064064064187 032004004128032128187 032004004128032128187 032002128016512064004 032004004064032128187 032004004064032128187 032004004128032128187 128002064016512128002 128002064016512128002 035005076055016078042 002002076128256256002 064005076055064064002 512002076055256256032 035004076055137078042 035002076055128032002 002002064032128064002 035005076055137078002 035002076004016004002 002005076055032078002 002005076055256256002 035002076055032008002 035002032004032078002 002002064032256128002 064004076512256256512 064004076128064256002 035002076055064016002 035005076004137004002 002002064016256004002 002002064004016004016 002002076016016004002 002002076004256004002 002002076016256004002 002002076004256004032 008002128032016004002 002002064016004004002 512002008256512064032 512008004512064256512 512002004128512064032 008002004032016064008 008002004512016256008 512002032512512256512 512002004256512128128 512002004016064256512 512002004256512064032 512002004128512128032 512002004128512256032 008002004032512256032

0480640161288192256 0480640111288192256 0261280110324096240 0640640160328192512 0320320160624096512 0480320641284096512 0480320641288192512 0320320641288192512 0320320641288192512 0480950641288192512 0320320641284096512 0480320641284096512 0480160641284096512 0320950421281024512 0480080421284096512 0480950421284096512 0480950641284096512 0320320021282048192 0320320421282048192 0080970050610483160 0080080040480256160 0080080080480256160 0082560041280256064 0080080050610483160 0080320020610256160 0080320020640256160 0080080050080483160 0080080020610483160 0080080050080483160 0080320020160256064 0080970050081024160 0080970020610483128 0085120040644096128 0085120161280256192 0082560320640256256 0080080020320256256 0080080050080483160 0080080021281024064 0080320020640256128 0080080021280256160 0080320040640256128 0080080021280256160 0080970050640483160 0080080020160128064 0080080021280128160 0325120160644096256 0160080642568192256 0085120080640256064 0165120080484096256 0161280021281024256 0325120160324096256 0485120160484096256 0081280642568192064 0085120080484096064 0085120080484096064 0485120080484096064 0485120160484096256
229500.5101 230500.5101 231500.5101 232500.5101 233500.5101 234500.5101 235500.5101 236500.5101 237500.5101 238500.5101 239500.5101 240500.5101 241500.5101 242500.5101 243500.5101 244500.5101 245500.5101 246500.5101 247500.5101 248500.5101 249500.5101 250500.5101 251503.0101 252503.0101 253503.0101 254503.0101 255503.0101 256503.0101 257503.0101 258503.0101 259503.0101 260503.0101 261503.0101 262503.0101 263503.0101 264503.0101 265503.0101 266503.0101 267503.0101 268503.0101 269503.0101 270503.0101 271220.5101 272220.5101 273220.5101 274220.5101 275220.5101 276300.0101 277220.5101 278220.5101 279220.5101 280220.5101 281220.5101 282220.5101 283220.5101 284220.5101 285220.5101

008002004004016064008 064004064512256256512 032005032256256256032 512005256512064256032 512005016128256256032 512005016128128128032 128005008256064256032 128005016256064256032 032055008032064256032 512005032256512256032 512005016128256256032 512005008512064256032 512005256512032256032 512005032256256256008 512005256512256256008 512005016128512256032 512005008512064256032 512005008032256128008 512005008512512256032 512005004256064256032 512005008064256256008 512005008128064256032 512012016128256256008 032012008128512256032 172012027190244074115 172012027190244074115 512012016512512256032 064012008512032256032 512012008256128256032 512012008128256256032 008012004512016064032 512012008016256256032 512012016256256256008 008012008128512256032 512012016128512256008 008012004004032256115 032012004128032256032 032012004128244074032 032012004064244128032 064012004512032256032 002012004128032256032 008012004512032256032 002002016064128032002 002002128064128256002 002002064032064077002 002002016032128256002 002004064064064032002 032004256004004008002 042002016032256016002 002004004032004004002 002002004032004004002 002002016032004004002 032004004004064008002 002002016016004004002 002002064008002008002 002002016032004128002 002002004032004004002

0080080162564096064 0162560041284096064 0325120081281024512 0082560081280256512 0325120641281024512 0325120080641024512 0160640641281024512 0320640641281024512 0080160321280256512 0085120080321024512 0325120080321024512 0081280641281024512 0082560041281024256 0325120081281024512 0162560080641024256 0165120080321024512 0642560641284096512 0482560080321024160 0322560160644096512 0320640641281024512 0161280040321024160 0320640641281024512 0485120160321024160 0165120081282048512 0241600241011431381 0241600241011431381 0322560040641024512 0320640641281024512 0320640642564096512 0325120080642048512 0320640641281024512 0160320641280512256 0161280160481024512 0165120080641024512 0162560080641024512 0160320161280256512 0320640321284096512 0160640641281024512 0160640161280256512 0640640642564096512 0320640322560512512 0321280642561024512 0080160040480512064 0080320020160256064 0080640020160128064 0080160020160128064 0080160020162048064 0140080020082048128 0080080020160512064 0080080020160512064 0080080040160512064 0080080020160128064 0080080020080128135 0080160020160512064 0080160020160256064 0080160020481024064 0080160020480128064
286220.5101 287300.0101 288300.0101 289300.0101 290300.0101 291300.0101 292200.0101 293300.0101 294300.0101 295300.0101 296300.0101 297300.0101 298300.0101 299300.0101 300300.0101 301300.0101 302300.0101 303300.0101 304300.0101 305300.0101 306300.0101 307300.0101 308300.0101 309300.0101 310300.0101 311307.5102 312307.5102 313307.5102 314307.5102 315307.5102 316307.5102 317307.5102 318307.5102 319307.5102 320307.5102 321307.5102 322307.5102 323307.5102 324307.5102 325307.5102 326307.5102 327300.0101 328300.0041 329300.0041 330300.0041 331300.0041 332300.0041 333300.0041 334300.0041 335300.0041 336300.0041 337300.0041 338300.0041 339300.0041 340300.0041 341300.0041 342300.0041

002002004032256004002 002002004032004178002 032008004016016032002 002008256512016256002 002008016016016256002 002002004032004004002 002004016016032256002 032004016016032256002 512002064016032256008 002008032016016256008 002004064016032256002 002008016032032256002 512004016016016256002 002004008016016256002 002016064032064032002 032008032512032256512 008008064016032256008 008008064032032256008 002008064032016256008 002008064016032256008 002008064016032256008 002008064016016256002 008002256032064004002 002006066016032004002 002008128032064004008 002002064032128256002 158002008032128256002 158002008016128128002 008002004064178004002 158004004016178064032 $\begin{array}{llllll}158 & 002004 & 082 & 178 & 154 & 057\end{array}$ $\begin{array}{llllll}158 & 002 & 004 & 082 & 178 & 154 \\ 057\end{array}$ 008008016016016064512 158002008032128256002 064002256032512256008 512004064064256256002 $\begin{array}{llllll}158 & 004 & 038 & 082 & 178 & 154 \\ 057\end{array}$ $\begin{array}{lllll}158 & 004 & 038 & 082 & 178 \\ 154 & 057\end{array}$ 002002038082178154057 158002038082178154057 512002016512128004002 032002008032128004002 006008156418497148038 002008256512512256008 002008256512512256008 002004256512512256008 002008256512512064008 002004256512512064008 002002256512512064008 002008256512512256008 002004256512512256008 002008008512512128008 032004004032512256008 032004004032512256256 002008256512512256008 002008004512512128008 002008064512512128008

0080160020480128064 0080160080320128064 0325120040480256256 0085120080480256128 0085120040480256128 0085120020080128128 0085120040480256128 0085120020480256128 0085120020480128128 0085120040480256128 0085120040480256128 0085120040480256064 0085120020480256064 0085120020480128064 0325120080640512160 0640321281288192512 0165120080480512192 0165120040480512256 0165120040480512192 0165120020480512192 0165120160160128192 0165120020320128064 0085120020084096128 0081280160484096064 0080080020080983064 0082560040480512256 0082560020480512128 0082560020480512128 0080640641280256512 0080320241280256512 0082430240801071346 0312430240801071346 0080320641280256512 0082560020480512128 2562560321288192512 0165120641280128512 0312430240801071346 0312430240160128346 0312430240801071346 0312430020801071346 0085120020320512256 0085120020160512160 0204090080933564292 0085120081284096256 0085120081284096256 0085120081284096192 0085120081284096192 0085120041284096192 0085120041284096192 0085120081284096256 0085120081284096256 0085120081284096512 0165120080480256512 0165120082568192512 0085120081284096256 0085120081284096256 0085120080484096512
343300.0041 344300.0041 345300.0041 346300.0041 347300.0041 348300.0041 349300.0041 350300.0041 351404.0102 352404.0102 353404.0102 354404.0102 355404.0102 356404.0102 357404.0102 358404.0101 359404.0102 360404.0102 361404.0102 362404.0102 363404.0102 364404.0102 365404.0102 366404.0102 367404.0102 368404.0102 369404.0102 370404.0102 371404.0102 372404.0102 373404.0102 374404.0102 375404.0102 376404.0102 $377404.0 \quad 102$ 378404.0102 379404.0102 380404.0102 $381404.0 \quad 102$ 382404.0102 383404.0102 384404.0102 385404.0102 386404.0101 387404.0101 388404.0101 389404.0101 $390404.0 \quad 101$ 391404.0101 392404.0101 393404.0101 394404.0101 395404.0101 396404.0101 397404.0101 398404.0101 399404.0101

002008064512512064008 002008064512512128008 002008064512512064008 002004064512512064008 002004064512512064008 002008256512512256008 006006156032512128008 006006156512512064008 002020008016004016512 002020256032256016002 091020044030071004008 002020004016004016008 002020008064004008002 032032008016256016128 032002008128256016008 008020044004032029130 008020004064064016130 512020064016032016512 128020032032004016008 002020008016128016002 002032008016032016128 002002256004256008008 256016256016004008256 002004032016128016008 128032064016004256048 002016004016032016128 128016004016032016128 128016004016128016008 008002004016032016008 002020044030071029130 512032044016128016008 002020064016004016002 032016008016032016512 002002064016032008002 256016004016016016008 002002004016016016002 002020044004071029002 032016004016032016512 091020044004071004130 008002008032032016002 256016008032032016048 512128064256128256512 008020004016064008512 002004256016512016002 008002128032128016008 002004008016128016002 002002032016128016008 032002016064128016002 002002064032032004008 004002032016032004008 004002032004032004002 002002064032032008008 008002004032032012008 002002032004032004002 002002064032032004002 002002064016032004002 002002064032032016008

0085120080484096512 0085120080484096512 0082560080484096256 0082560080324096256 0082560080484096256 0085120160644096256 0085120081284096256 0085120080324096192 0640080160082048192 0082560040642048192 0211260120628192064 0080320020321024192 0081260040082869512 0082560160328192256 1282560080644096512 0212560040622869256 0082560080321024512 0082560640328192256 0080320020622048192 0082560161282869512 0081280320084096256 0085120040621024512 0080160040622048256 0082560081281024256 0080320320622048512 0080160321282048256 0160080160642048256 0480080160622048256 0082560040321024256 0211260040622869279 0210320320622048064 0210320040082048128 0162560160084096256 0082560020082048256 0080080040622048256 0080640020082048128 0210080120622869064 0080160161282048256 0211260120622869064 0080640041280128512 0080160041280128256 1280320041288192512 0080320041284096256 0085120040642048192 2562560040644096256 0080160040648192512 0085120040320128192 0642560040640128512 0085120020640128512 0082560020160512256 0082560020160512256 0162560020162048256 0482560080161024512 0082560040160128256 0082560040162048256 0162560040162048256 0085120020162048256
$400404.0 \quad 101$ 401404.0101 402404.0101 403404.0101 404404.0101 405404.0101 406404.0101 407404.0101 408404.0101 409404.0101 410404.0101 411413.0101 $412413.0 \quad 101$ 413413.0101 414413.0101 415413.0101 416413.0101 417413.0101 418413.0101 419413.0101 420413.0101 $421413.0 \quad 101$ 422413.0101 423413.0101 424413.0101 425413.0101 426413.0101 $427413.0 \quad 101$ 428413.0101 429413.0101 430413.0101 431200.5101 432200.5101 433200.5101 434200.5101 435200.5101 436200.5101 437200.5101 438200.5101 439200.5101 440200.5101 441203.0101 442203.0101 443203.0101 444203.0101 445203.0101 446203.0101 447203.0101 448203.0101 449203.0101 450203.0101 451203.0101 452203.0101 453203.0101 454203.0101 455200.5101 456200.5101

004002032004032004032 002002004004032004008 002002064004032128002 002004051032032004008 002002051004032004002 002002051004032004002 002002051004128004008 002008051032032004008 002004004032256004002 002002032004004004002 002002032004032004002 032004004512032256512 008004004064032016064 032004004256016128512 008064004128016128512 002004004032032083512 032004008256032064512 032008004256032064512 032004016512032064512 008004004064016064064 008008004128032064032 008008004128032083002 008004004128016083008 008008004064032016032 008016004128032008256 032004004004016064002 002004009004004083002 008004004128016032128 008016009032016064512 002009032004109004002 016009009124109083256 064004004256032128128 512002128032064128512 064002004256032128128 064002016256032256128 064004004256032128128 064004008256032256128 064002128256064256128 064004004256032032128 064002128256032256128 064004004256064064128 064002004256064032512 064004004512032128128 064002004256064032128 064002004512032256512 064002004512032256512 064008004512032128512 064002004016032128512 064008016512032256256 064002004256064016512 064008004064032032512 064004004512032256512 064004004512032256512 064002004064064016256 512002016064128032512 064008032256512064512 064004004256128064512

0082560020160512256 0160320020161024256 0085120040160128256 0085120040160128512 0085120040160512256 0085120020160512256 0165120020160256256 0085120020162048512 0080160040160128256 0080160020481024256 0085120020160512256 0480320320164096512 0080320040161024512 0480320320164096512 0080320080161024512 0160160321281024256 0480160321284096512 $048016032128 \quad 2048512$ 0480160641282048512 0080640041280512256 0480160321288192512 0080160081281024512 0080160041281024256 0080640041281024256 0080640041281024256 0080160080164096256 0080320020882269064 0080640081281024256 0320160080481024256 0080320190161024192 0230310020880256361 $\begin{array}{llllll}128 & 128 & 064 & 128 & 2048 & 160\end{array}$ 0080640040320512160 1280640641284096256 1280640641282048512 0480080641280512256 1280640641281024256 0081280040320512256 0320080641282048256 0082560040320512192 0080080080641024160 0640640040322048160 0480080641281024160 0481280040320512160 0321280321281024256 1280640641284096512 0320640641282048256 0080640321281024256 1280640641281024256 0165120080321024256 0160080321281024256 1280640641284096512 1280640641284096512 0322560080321024256 0322560080321024256 0322560641281024256 0321280641281024256
457400.5101 458400.5101 459400.5101 460400.5101 461400.5101 462400.5101 463400.5101 464400.5101 465400.5101 466400.5101 467400.5101 468400.5101 469400.5101 470415.5101 471110.5101 472110.5101 473110.5101 474110.5101 475110.5101 476110.5101 477110.5101 478110.5101 479105.5101 480105.5101 481105.5101 482105.5101 483105.5101 484105.5101 485307.5103 486307.5103 487307.5103 488307.5103 489307.5103 490307.5103 491307.5103 492307.5103 493307.5103 494307.5103 495307.5103 496307.5103 497307.5103 498307.5103 499307.5103 500307.5103 501307.5103 502307.5103 503307.5103 504307.5103 505307.5103 506307.5103 507307.5103 508307.5103 509307.5103 510307.5103 511400.5101 512400.5101 513400.5101

256008016064064032512 008008004256032032512 064004004064032032512 032008004128032032512 064002004128128016512 002008004016016032256 256008004256016032512 256002004032016032256 256008004256016032512 256016004128064032512 256004004256016064512 032016008256064016512 256004008128032064512 512012008040512256512 002002064016256064002 064002064016256064002 002002038004174065002 002002064016512128002 002002004016032004008 002002004016128064002 002002032016016064002 002002032016016064002 512002032128512128032 512002016128512128032 512002004128512128032 512002016256512128008 512002016128512128008 512004256256128128512 032004256016512064008 064002004064064128256 032002004064064128256 032004004016128128002 032004004032128128256 032004004032064128256 032002008032064128256 032002004032064128256 032002004032032128256 032002004032032128256 032004004032064128008 032004016032064128256 032008128032512128008 032004032032128128256 032002004032032128256 032004004032128128256 008002004032128128008 008002004032032128008 008002004032032128256 008002004032032128512 032002128004512128128 256002128016512128064 008002004032032128064 008002004032128128064 032002004032032128064 008002004032032128064 512032128256256128512 008016016256128064128 008032032064128128256

0480640321281024256 0320640641281024256 0160320641281024256 0320160321281024256 0085120040160512064 0080080040160512064 0080160040321024256 0642560040160512256 0320080641281024256 0162560081281024256 0320160641282048256 0160080161281024256 0160080641281024256 0165120160964096512 0085120160640256064 0085120080640256256 0170080110320293128 0485120040640256128 0325120321280256064 0085120160640512064 0085120020480256064 0085120020480256128 1285120080640256512 1285120080642048512 1285120080642048512 1285120161281024064 1285120081284096512 0645120081281024512 $128 \quad 2560641284096512$ 1285120081284096512 1285120081284096512 0085120641281024064 1285120081284096512 1285120081284096512 1285120081284096512 1285120041284096512 1285120041284096512 1285120041284096512 1285120081284096512 1285120081284096512 $128512064128 \quad 2048512$ 1285120041284096512 1285120041284096512 1285120041284096512 0645120041280512512 0645120041284096512 0645120041284096512 0645120041284096512 0165120021282048512 0645120021282048512 0645120021284096512 0645120041284096512 0645120041284096512 0645120041284096512 0321280641288192512 0160640641281024512 0080320081281024512
514400.5101 515400.5101 516400.5101 517400.5101 518400.5101 519400.5101 520400.5101 521400.5101 522400.5101 523400.5101 524400.5101 525400.5101 526400.5101 527400.5101 528400.5101 529400.5101 530505.5101 531505.5101 532505.5101 533505.5101 534505.5101 535505.5101 536505.5101 537505.5101 538505.5101 539505.5101 540505.5101 541505.5101 542505.5101 543505.5101 544505.5101 545505.5101 546505.5101 547505.5101 548505.5101 549505.5101 550505.5101 551503.0101 552503.0101 553503.0101 554503.0101 555503.0101 556503.0101 557503.0101 558503.0101 559503.0101 560503.0101 561413.0101 562413.0101 563413.0101 564413.0101 565413.0101 566413.0101 567413.0101 568413.0101 569413.0101 570413.0101

512002008064256064008 064016016256128064512 128032016128128128512 064016008128128064512 128016004256128128512 128008016256128064512 512004008016256016002 002064008256128128512 128008008128128064512 256002004016256064002 512032004256128128128 512004032016128064256 128008008064128128128 032008004064128064512 032008016064128064512 032016008512256064512 128008008256128064512 002002004016256016157 512004128512128128512 $\begin{array}{llllllllllll}135 & 007 & 028 & 148 & 128 & 085 & 157\end{array}$ 002016256148240085157 002007028148240032002 135002028016004064002 128008008512256128128 135007028148256064157 135007028148016004157 002002128032256032002 128002016032512064032 512002032064512128032 128008032256256256032 128016008256128064512 135007028004240064002 128032016256128128256 256002016064512064157 064004004128128256032 064002016064512064032 032032004032064064032 256008008256128128512 064032032128256064115 512002032128512064512 002008008256256128512 032032004128128128512 032008004016128128115 002002256004512128032 002002256004512128032 002008008032256128512 032016004190256074115 016009009004032083256 008002008016256016064 008004004064128128032 064016032128128128512 008008004128128128512 032004004032128064008 002008008128256064512 002008016128128128032 002008008128128128512 032016032128128128512

0080640040161024512 0160320641284096512 0080160081282048512 0160160641284096512 0080160081281024512 0080320641281024512 0320640040161024512 0160640641281024512 0080080641284096512 0321280040160256512 0080320081282048512 0480640041282048512 0080080641284096512 0320080641284096512 0320080081284096512 0160160081282048512 0160640641281024512 1280640020642048348 0480320321288192512 0080550300661879348 0080640320661879128 0250160020661879348 0250640020660256192 0480320641288192512 0080320020320256512 0250550300322048512 0081280020321024256 0481280040322048512 0481280040322048512 0320320641284096512 0080320641281024512 0080550300081879256 0160320641281024512 0080640040322048512 0160320641284096512 0161280040320256512 0160160080641879256 0320080080324096160 0161280020644096256 0161280040321024160 0160640081281024512 0320320320321024160 0160320040320128160 0082560020320256160 0082560020320256160 0160320020320512160 0081600020320512160 0230310190162269064 0230640020320512160 0160320081284096512 0480320641284096512 0160640081284096512 0080160081282048512 0160160321281024512 0160320040641024160 0160320040641024256 0320160641284096512
571413.0101 572413.0101 573403.0101 574403.0101 575210.5101 576210.5101 577210.5101 578210.5101 579403.0101 580403.0101 581403.0101 582403.0101 583403.0101 584403.0101 585403.0101 586403.0101 587403.0101 588403.0101 589403.0101 590403.0101 591403.0101 592403.0101 593403.0101 594403.0101 595403.0101 596403.0101 597403.0101 598403.0101 599403.0101 600403.0101 601403.0101 602403.0101 603403.0101 604403.0101 605403.0101 606403.0101 607510.5101 608510.5101 609510.5101 610510.5101 611510.5101 612510.5101 613510.5101 614510.5101 615510.5101 616510.5101 617510.5101 618510.5101 619510.5101 620510.5101 621410.5101 622410.5101 623505.5101 624505.5101 625505.5101 626505.5101 627505.5101

016009009004109083256 032008016128128128032 032016016128256128512 032016008128256128512 002002256016256057008 002002130013103057008 002002130016128016008 002002256032032032008 008008016064256128008 032032016128256128512 008016016128128128512 008032008128256128512 008016004128256128512 008016016128256128512 008016016128256128512 002011032083177008512 064032016512128128512 008016016128256128512 008032016128256128512 008032016128064128512 032004008064256064512 008002008064128064512 002004004016128064512 008002008064128128512 032008004064256064002 032004008064256064002 032004008064128128512 032002016064256064512 032002016064128128512 032002016064128064512 008002016016128256512 032004004256256016002 032004016064128064002 032004008064128064512 032004008256256064512 008002008064256064008 008002016016128064512 002002256016512004002 256008032004256004002 256002016128256064032 008002008128128064002 008002008128128064064 084004128147256061002 008004128147256008002 512002016064256004128 008004008256128064512 008002008256128064256 008002008256128064256 008002016256128064256 008016008256256256512 002002032016064012002 002004032016256016002 008002004064256128512 512002008064256008002 032004016256256128512 135007008512240016157 135007004148240004157

0230310020082269064 0480080641284096512 0160320041282048512 0160320081282048512 0150320020480256064 0151340050640786267 0080640020322048256 0080640020321024064 0160320041282048512 0160320080644096512 0160320080644096512 0160320080644096512 0160320041284096512 0160320081284096512 0160320081284096512 0161120130934096128 0160320080164096512 0080080081282048512 0080160081282048512 0080160080482048512 0080160080640256256 0080160080640512256 0320320640641024256 0080160080641024512 0080320080080256256 0081120080640256256 0080160080640256256 0080160080640256256 0080160080640256256 0080160080641024256 0080160080641024512 0170160080480256256 0080160080640256256 0080080080160256192 0080080020160256256 0080320080640256256 0160320320640512192 0080280220320256160 0320320040320256256 0480320220320405256 0160080160640256256 0160080020640512256 0210080220480405243 0080080220080256243 0480320040320256256 0160080160480512256 0160640161280512256 0160320320640512256 0160640321280512256 0160320641280512256 0080320160320256256 0080320160080512064 0160320640480512256 0162560040160512160 0320080641280512128 0250550300660512348 0250550300661879348
628505.5101 629505.5101
630505.5101
631410.5101
632410.5101
633410.5101
634410.5101
635505.5101
636505.5101
637505.5101
638505.5101
639300.0041
640300.0041
641300.0041
642300.0041
643307.5103
644307.5103
645307.5043
646307.5043
647307.5043
648307.5043
649120.5101
650307.5043
651307.5043
652307.5043
653307.5043
654307.5043
655307.5043
656307.5043
657100.5101
658100.5101
659100.5101
660100.5101
661100.5101
662100.5101
663100.5101
664100.5101
665100.5101
666100.5101
667100.5101
668100.5101
669100.5101
670100.5101
671211.0042
672211.0042
673211.0042
674211.0042
675211.0042
676211.0042
677211.0042
678211.0042
679211.0042
680211.0042
681211.0042
682211.0042
683211.0042
684211.0042

135007004004240085157 002002004004240085002 008002016064128128512 008002128016066032002 002002128016004004002 004003077016004004002 004003064016004004002 008002004128128085002 064008004256256128032 002002008016256064032 512002004128512085032 032002256016512128032 002002008016128128512 006002256512512054002 008002256512512064008 008002008016256128032 008002016016256128256 002002128016512128008 002002128016512128008 512016256512512128046 512016256256256128128 002004004032128064128 002004256256512128128 002002256256512128032 002002256256512064128 512016256256512128256 512016256032512128256 002002256512512064032 002002256512512064032 128002064032256064128 512004256256512256512 512004256256512256032 256002256512512256128 512002128256128256256 512004256512512256128 064008256512512256008 128004256512512256008 512002256512512256008 128004256512512256008 512004256512512256008 064002256032512256008 008002256256512256008 032002256016512256008 064008008064016256128 008004064256064256128 256008004256028071128 256008004256028071128 008008004064016128128 008004004064016128128 008004004032064128128 008004004032016064128 008004004032016064032 008004004032016064128 032004016256032064128 008016008256016256128 008004004256032128128 008004004256032064512

0250080640080256160 0080080320660512348 0080080300080256160 0080320020080256160 0080320160080128192 0080320020320282128 0080320100180256160 0080160320041879348 0480160321284096192 0080320080080128064 0480550160641879192 2560320161281024192 0320640160480512160 0320160040160256192 0080320080080512192 0325120080084096192 0165120160644096160 0322560080644096160 0322560080644096160 1282560230644096160 $\begin{array}{llll}128 & 512 & 032 & 128 \\ 8192 & 192\end{array}$ 0160160160160128160 0165120080648192160 0165120080644096160 0085120080321024160 0165120161284096160 0160640322564096160 0160160140080128064 0080160140080128064 0640640120642048512 0480640120641024512 0480640121282048512 0485120121282048192 0160320120481024160 0480640120321024192 0320640121282048192 0480640121280256128 0480640120482048192 0480640121280256192 0480640120482048192 0480640121282048192 0480640120320256160 0480640121280256160 0320641280641024192 0320161280641024512 0480161280641024512 0320161280641024512 0320641280321024512 0320640640321024512 0320640640641024512 0320640640641024512 0320160640641024512 0320161280641024512 0320161280641024512 0320641280324096512 0320641280324096512 0320641280641024512
685211.0042 686211.0042 687211.0042 688211.0042 689211.0042 690211.0042 691211.0042 692211.0042
693211.0042
694211.0042
695211.0042
696211.0042
697211.0042
698211.0042
699211.0042
700211.0042
701211.0042
702211.0042
703211.0042
704211.0042
705211.0042
706211.0042
707211.0042
708211.0042
709211.0042
710405.5101
711211.0043
712211.0043
713211.0043
714211.0043
715211.0043
716211.0043
717211.0043
718211.0043
719211.0043
720211.0043
721211.0043
722211.0043
723211.0043
724211.0043
725211.0043
726211.0043
727211.0043
728211.0043
729211.0043
730211.0043
731211.0043
732211.0043
733211.0043
734211.0043
735211.0043
736211.0043
737211.0043
738211.0043
739211.0043
740211.0043
741211.0043

032004004256016064512 008004004256016064512 008004004256016004512 031008064256016256002 031016032256016128064 031004004128016064032 031004032256016064064 031004008256016008064 031004004128032064512 031004004256032008512 008002004256032128256 032016004256032064512 008004004128032008512 008002004128032008256 008016016256032008256 002016064256032008064 032004004128032008064 008016016256032008064 032007004128032008064 008008008256032008256 008016004256032008064 008004004128032008512 032004004128032008064 031004004128032008064 031004004064064008256 041002055016032051002 032016008256128128512 032004004256128128512 032004004256128128512 032004004256128128512 032004008256016128512 032004008256128128512 032008008256128128512 032004008256128128512 032004004256128128512 032004016256128128512 032002004256128128512 032002256016128016002 032002256016128016002 032004004256128128512 002002256016064016008 032004008256128128512 029002256016064016512 002002256016064016128 008002128016064016008 032004008256128128512 032004008256128128512 032004032256128128512 032004004256128128512 032004004256016128512 032004008256016128512 032004008256128128512 008004004128016128032 032004004064128128032 032004004256128128128 032008004256128128128 032004004256128128256

0320640640641024512 0320161280641024512 0320161280641024512 0480641280320256512 0320641280644096192 0160640641284096512 0160641280641024512 0320641280641024512 0320641280641024512 0320641280641024512 0320641281280256512 0320640641284096192 0320641281284096192 0320641281284096256 0320161281284096256 0320641281280256512 0320640641280256512 0320641281284096512 0320641281284096512 0320641281284096512 0320641281280256512 $032064128128 \quad 2048512$ 0320641281284096512 0320641281280256512 0480641281280256512 0080640020081046192 0320640641281024512 0320640641281024512 0320640641281024512 0320640641281024512 0320640641281024512 0320640641284096512 0320640641284096512 0320640641284096512 0320640641284096512 0320640641281024512 0320640651284096512 0292560020320128192 0292560020320128192 0320640641284096512 0290160020320128256 0320640641284096512 0160640020320128256 0162560020320128392 0082560020320128160 0320640641284096512 0320640641284096512 0320640641284096512 0320640641284096512 0320640641284096512 0320640641280256192 0320640641284096192 0320640641284096512 0320640641284096512 0320640641284096512 0320640641282048128 0320640641280256392
742211.0043
743211.0043
744211.0043
745211.0043
746211.0043
747211.0043
748211.0043
749515.5101
750515.5101
751413.0102
752413.0102
753413.0102
754413.0102
$755413.0 \quad 102$
756413.0102
$757413.0 \quad 102$
758413.0102
759413.0102
760413.0102
761413.0102
762413.0102
763413.0102
764413.0102
765413.0102
766413.0102
767413.0102
768413.0102
769413.0102
770413.0102
771413.0102
772413.0102
773413.0102
$774413.0 \quad 102$
775413.0102
776413.0102
777413.0102
778413.0102
779413.0102
780413.0102
781413.0102
782413.0102
783413.0102
784413.0102
785413.0102
786413.0102
787413.0102
788413.0102
789413.0102
790103.0101
791307.5043
792307.5043
793307.5043
794307.0043
795307.5043
796307.5043
797307.5043
798307.5043

032008008256128128256 032008004256128128256 032008004256128128256 064004004256128128256 008002256016064016002 032004004256128128512 032004004256128128512 002004004032016061512 002004064032032061002 008002091032256004111 002002128032512016032 008008008256512064064 008002008128032016008 008002091032032064002 008002128032064004002 032002016032016016002 008008032256016064512 128008128004512004002 002002016032128032008 002003128032256045002 008002091064032128111 008004032256032128512 002002016004032032002 015003091072197045111 128008128256032064512 015003004072004045111 008008004064032256512 002002128016064008002 015002091016128064002 008002256032256032008 008002256256512064512 008004256256512064064 015002004016064004111 002002016016256064002 015003091072197045111 015003091072197045008 002002128016256064002 015003128032256008002 015002064016128004002 002002064004256008002 015002091032064004002 015002091072512008008 008008004032032128512 015003004032032008256 015003008064197045111 002003128032512008002 002002256032032008002 002002256032512045002 465015210355064234415 032004016004016155002 008004008004016128002 008004008016016128002 002004256512512064008 008004016016032128008 032004016004032128008 032004008032128256512 002002256512512155008

0320640641280256064 0320640641280256064 0320640641284096128 0320640641284096512 0080320520320128128 0320640641284096512 0160640041280256392 0080080020080128243 0080640020080128243 0082560070648192160 0481280020084096512 0081280080641024192 0081280020641024512 0080080020160128160 0080080080640128064 0081280040480512192 0081280161281024192 0080080020088192256 0081280020644096256 0321630070542752143 0082560020640128128 0080320160641024192 0322560020160512192 0161630070542752064 0171280161281024256 0081630070542752143 0160080160648192192 0080080020480512128 0171630160328192128 0165120040168192064 0165120321288192256 0161280041281024256 0081280040082752160 0172560021280128128 0170080070542752143 0171630070542752143 0085120080648192192 0171280020540512128 0080320040480128064 0081280040080128064 0082560080321024160 0170080020081024128 0160080160648192512 0160080160641024128 0171630070542752143 0082560020542048064 1282560020320128064 0175120020080128256 $083444027070 \quad 2874128$ 0160080040320512160 0165120040320512064 0165120040320128064 0385120020080128064 0165120040640128160 0165120040320128192 0165120041284096192 0080080020322048192
799307.5043 800307.5043 801115.5101 802115.5101 803415.5101 804415.5101 805307.5103 806307.5103 807307.5102 808307.5102 809307.5102 810307.0102 811307.5102 812103.0101 813103.0101 814103.0101 815103.0101 816103.0101 817103.0101 818103.0101 819103.0101 820103.0101 821103.0101 822103.0101 823103.0101 824103.0101 825103.0101 826103.0101 827103.0101 828103.0101 829103.0101 830103.0101 831307.5103 832307.5103 833307.5103 834307.5103 835307.5103 836307.5103 837307.5103 838307.5103 839103.0101 840103.0101 841103.0101 842115.5101 843115.5101 *844 999.9999 *845 999.9999 *846 999.9999 *847999.9999 *848999.9 999 *849 999.9999 *850 999.9999 *851 999.9999 *852 999.9999 *853 999.9999 *854999.9 999 *855999.9999

008004008004032256008 008004008016064256002 032002008004512128032 512004013032512213002 512016128064512256512 512008256016512256512 002002256512512032002 064002256512512032008 020002034016512004002 008002064004512032002 020002034004512023022 032002034004512032002 020002004004512023002 512016256512512256512 512016256512512256512 465002004355425234002 512016256156512256512 512004256512512256512 512004256512512256002 512004256128256256512 512004256512512256512 512064256512512256512 512064256512512256512 512008256512512256512 512032256512512256512 512008256128512256512 512008256128256256512 512008256512512256512 512008256512512256512 008015210355425234415 512004256128512256512 512008256512512256512 064004256512512256512 032004064064512256512 512016008256512256128 512016016256512256512 512004256512512256512 512016256032512032008 512004128032512256008 512016256512512256512 512002016064128032512 512032016128032032002 032002016004512256002 032002016032512256002 032003016004512256008 256002256032512032008 008004256032032128008 256002256064128064008 299026088107016128125 299002032016512032002 008002256016128032008 512002256004512064002 512002008128032064008 512128032512128256512 512016032256032256512 299016088512256064002 512002256016512032002

0325120040320512192 0325120080320512192 0161280160320512064 0110880020210128288 0165120161284096512 0165120160644096512 0165120020080256064 0085120020081024064 0160160040320256512 0165120040320256512 0160260040320256512 0162560040320256512 0160260040320256512 0485121281284096512 0485120160644096512 0834440020702874367 0325120641282048512 0485120080642048512 0485120160642048256 0165120160644096064 0485120160644096064 0485120640322048512 0485120320322048512 0485120160322048512 0485120320324096512 0325120320322048512 0321280321284096512 0325120641284096064 0325120321284096064 0834440020702874064 0165120080324096512 0165120080322048512 1285120641284096512 1285120081284096512 0485120641282048512 0485120161282048512 0235120641284096512 0165120041282048512 0165120041282048512 0085120081282048512 0165120020322048192 0080160020640128512 0080320041282048512 0080080020162048288 0081280020162048512 0325120041282048512 0085120041280512192 0085120081284096512 0081660040581616299 0080080020160128160 0085120040642048512 0160160040080128160 0160160080321024160 0080160020324096128 0160640041284096512 0080160020580128256 0160080041280256160

*856999.9999	299026088004263102125	(1660020581616299
*857999.9999	512128032512512256512	0081280021282048128
*858999.9999	512026004107263032125	0080160040581616299
*859 999.9999	256008004107263064002	0080080040581616128
*860 999.9999	064016032016512256512	0085120020080128512
*861999.9999	299026008004512102002	0080080020581616064
*862999.9999	299026088107263102125	0121660040581616299
*863 999.9999	299026088107263016125	0121660040581616299
*864 999.9999	008026088107263102125	0121660040581616299
*865999.9999	512004016004004064256	0082560040082048256
*866999.9999	299008016004128102008	0081280040082048512
*867999.9999	299026088004263102125	0121660040581616299
*868999.9999	299026008004512102125	0081660040081616299
*869999.9999	064128004107256102008	0080160020081616299
*870999.9999	064002004004032102002	0480640040321024512

* $=$ Reference cultures.

9, 99, $99.9=$ Codes for the computer.

Annual survey of microorganisms in intertidal sediments and seawater at Ardmore, Clyde Estuary

SECIION 2

INIRODUCTION

Marine bacteria

Bacteria living in the sea are different from those in fresh water and bacteria of the rivers are different from those in lakes (Rheinheimer, 1985). Most of the aquatic bacteria are heterotrophic (i.e. they live on organic substances). Morphologically, the majority of aquatic bacteria have their equivalent amongst the basic types of terrestrial bacteria (i.e. rods, cocci, commas or spirals).

The majority of marine bacteria are Gram-negative. Moriarty and Hayward (1982) studied an Australian coast sediment and found that 90% of Gram-negative bacteria in the aerobic surface zone ($0-1 \mathrm{~cm}$) and 70% in the underlying anaerobic zone ($20-21 \mathrm{~cm}$). Most marine bacteria are motile. ZoBell (1946a) found that $75-85 \%$ of pure cultures examined for this feature possess flagella. The author also studied the growth of bacteria and found that marine bacteria generally grow more slowly than soil bacteria. For example, the maximum number of visible colonies of marine bacteria incubated at optimal temperature was reached after $14-18$ days, while soil bacteria was only after 2-7 days. Most of aquatic bacteria are facultative anarobes, but they prefer the presence of oxygen (Rheinheimer, 1985).

There seems to be a large proportion of proteolytic (proteindecomposing) bacteria in marine habitats. ZoBell (1938; 1946a) carried out a study on the bacterial flora of marine sediments and found that a large number of bacteria were proteolytic as indicated by their ability to liquefy gelatin and to release ammonia or hydrogen sulphide from proteinaceous substances. On the other hand, saccharolytic (sugar-decomposing) bacteria play an important role, but it is rather smaller in the sea than in the other habitats. Other organisms
decompose materials of high molecular weight like cellulose, agar, chitin or hydrocarbons and phenols. ZoBell (1938) found that lipoclastic bacteria which liberate the fatty acids from various lipids and utilize the glycerol are widely distributed in bottom deposits. He suggested that may they play an important role in the genesis of petroleum. The process of denitrification (reduction of nitrate via nitrite to free nitrogen) in the sea is carried out by the denitrifying bacteria. Sulphate reduction also is a process following nitrate reduction in sediment. This process is carried out by the genus Desulphovibrio. Few bacteria able to produce methane (Toerien and Hattingh, 1969) as the result of stepwise degradation of simple organic compounds such as ethanol to H_{2} and acetic acid followed by the reduction of CO_{2}. The process of methane production is carried out by methanogenic bacteria and become in significant quantities only after the sulphate reduction process is complete.

Bacteria may live in the water free or attached to some solid substances. Therefore, the microbiology of intertidal sediments has been given considerable attention and several investigators have studied the attachment of microorganisms onto the surface of sand grains (Anderson and Meadows, 1965; 1969; 1978; Anderson et al. 1981; Dale, 1974; Deans et al. 1982; Fukami et al. 1983; Goulder, 1977; Meadows, 1965; Meadows and Anderson, 1966; 1968).

Bacteria and fungi in the sea play a very important function in the food cycle by synthesising cell substances and converting waste or dissolved organic matter into a particular form which can be used as food for the fauna of the sea bed (Rheinheimer, 1985; Wood, 1965; ZoBell, 1938; 1946). The importance of microorganisms in feeding most of the marine animals such as invertebrates has been reported in extensive literature (Christian and Welzel, 1978; Gray, 1966; Meadows and Williams, 1963; Meadows, 1964a; Meadows and Campbell, 1972;

Wilson, 1955). Some animals in the sea may live almost entirely on bacteria and fungi which contain high protein value. For example, sponges take up bacteria and digest them. In addition, bacteria and fungi affect the formation of sediments. For example, colonization by microorganisms destroy partly if not completely the suspended particles if they are used for food. The growth of microorganisms however may modify the marine sediment properties. Webb (1969) showed that the presence of bacterial films change the size, shape and adhesion of particles as well as their geometrical arrangement. Fungi are also able to hold together a number of particles and unite them using rhizoids or hyphae (Rheinheimer, 1985).

Yeasts

Yeasts have served humansfor many centuries by fermenting fruit juices, bread and many other food. The important of the yeasts today has become greater than in earlier eras because of the development of fermentation processes and also for synthesising certain vitamins, fats and proteins from simple sugars. Other species however, cause diseases for many plants and animals. Kreger-van Rij (1973) defined yeasts as "those fungi which in a stage of their 1ife cycle , occur as single cells, reproducing by budding or fission". Kohlmeyer and Kohlmeyer (1979) isolated 177 species from seawater, sediments, plants animals and organic matter in the marine habitats. They classified their species into obligate and facultative groups. The authors defined obligate marine yeasts as "those yeasts that thus far, have never been collected anywhere but in the marine environment. Whereas facultative marine yeasts are also known from terrestrial habitats".

During the past twenty years, many investigators have studied the occurrence and distribution of yeasts in marine environments
(Ahearn et al. 1968; Buck, 1975; Combs et al. 1971; Roth et al. 1962; Taysi and Van Uden, 1964; Van Uden and Castelo-Granco, 1963). Ahearn et al. (1968) studied the ecology of 1000 yeasts from aquatic regions of South Florida. They found the highest yeast densities in freshwater. The recovery of yeasts per sample decreased from 100% to approximately 70% with lowered organic content, increasing salinity and distance from land. Taysi and Van Uden (1964) also found the numbers of yeasts and yeast species decreased with increasing distance from estuaries. Roth et al. (1962) investigated the ecology of yeasts obtained from various marine substrates. They found that most of the yeasts present in all the environments they studied, were oxidative and asporogenous forms which require one or two vitamins for their growth. Roth and his co-workers also found the number of yeast flora on marine vegetation was low and consistent with the species obtained from surrounding waters and sediments.

Fungi

Generally, living organisms have been divided into two Kingdoms: the plant Kingdom and the animal Kingdom. However, biologists found that it might be more important to recognise at least four major divisions: the animal Kingdom, the Kingdom of green plants, the fungal Kingdom and the Kingdom of bacteria (Ingold, 1961). The fungal Kingdom which I am concerned with here is a large one, forming 50,000 to 100,000 known species. It includes the moulds which grow on ed dump/organic materials.

Fungi differ fundamentally from green plants in their lack of chlorophyll (i.e. they are unable to photosynthesise their own organic food from carbon dioxide and water). According to Moor-Landecker (1982) fungi are heterotrophic organisms which must consume organic matter. They live either as saprophytes (i.e. digest and consume dead
organic matter as plants or animals) or as parasites (i.e. assimilate tissues of living plants and animals).

Fungi are divided into two divisions; marine and terrestrial species. The ecological definition of marine fungi is as follows. Obligate marine fungi are those that grow and sporulate exclusively in marine or estuarine habitats. Facultative marine fungi are those from fresh water or terrestrial milieux able to grow (and possibly also to sporulate) in marine environments (Kohlmeyer and Kohlmeyer, 1979). The marine fungi occur as parasites on plants and animals in all marine environments. Although the distribution of fungi is mainly limited by dissolved oxygen and the temperature of the water, organic substances such as algae, marsh plants and plant litter accumulated along the shores also play an important role in providing nutrients for fungi.

Microorganism counts

There are various techniques available for the enumeration of microorganisms in aquatic environments. These techniques include direct counts of stained cells (e.g. epifluorescence and immunofluorescence), indirect counts by dilution and growth of bacteria on solid media (e.g. plate counts and most probable number determinations), and other chemical methods. These latter can include measuring a unique bacterial component, such as lipopolysaccharide (LPS) or muramic acid in mixed population (Costerton and Geesey, 1979). The method used in this study was the plate count technique. This technique has been used to estimate the viable counts of microorganisms. Several advantages and disadvantages were listed by Buck (1979). This author described the advantages of plate counts as convenient, simple, economic, a good source of viable organisms and a semiquantitative method for both horizontal and vertical environmental profiles. The disadvantages of this technique are that it gives viable
counts only and that it may select particular physiological types of bacteria. Other problems that can occur with plate counts are clumping and aggregation, and the effects of dilution pipetting and counting.

Clyde Estuary

The Clyde sea area can be divided into three parts, the Firth, the sea Lochs and the Estuary. The hydrography, geology and biology of the Clyde Estuary have been studied by several investigators such as Collar (1974), Deegan (1974) and Smyth (1974) respectively. The estuary of the River Clyde comprises two distinct parts; an upper shallow drowned estuary, and the lower Firth of Clyde. This represents a total area of over $2,500 \mathrm{Km}^{2}$ contained in a series of deep glaciated basins separated by shallow sills (Anon, 1974). Generally it can be described as partially or well mixed in terms of water circulation. As well as the River Clyde, three major tributaries discharge freshwater to the upper estuary (collar, 1974). The River Kelvin enters at 3.2 Km , the Carts at 10.4 Km and the Leven at 22.2 Km below Glasgow Br idge.

In comparison with other estuaries in the United Kingdom, the Clyde has a relatively small tidal range. The admiralty tide tables quote mean ranges at the entrance to the dredged channel (mouth of the estuary) of 3.08 m Springs and 1.89 m Neaps, rising to 4.11 m Springs and 2.40 m Neaps at Glasgow Bridge.

Input of sediment to the estuary occur from many sources. 87.5% of the annual inflow of sediment is riverborne, 6.25% comes as dredged spillage, and another 6.25% from solids discharged at sewage works (collar, 1974).

pollution in the Clyde Estuary

The Clyde estuary receives many pollutants at various places along its length. Most of these discharges are organic materials, heavy metals and some other substances. These discharges of pollutants have three main sources; (1) domestic sewage and industrial effluent from urban places carried by the River Clyde and its tributaries; (2) dumping of sludge and sewage off Garroch Head; and (3) the enrichment of the Irvine Bay area through the discharge from industrial plants (Heath, 1974). In addition to these sources power stations also release some radioactive materials into the estuary.

The upper estuary receives an average input of $0.41 \times 10^{6} \mathrm{~m}^{3} /$ day of treated sewage and $0.59 \times 10^{6} \mathrm{~m}^{3} /$ day of untreated and partially treated sewage (Anon. 1974). These flows may be compared with a daily input of $22.3 \times 10^{6} \mathrm{~m}^{3}$ of freshwater, of which $9.2 \times 10^{6} \mathrm{~m}^{3}$ is discharged via the Clyde, Cart, Kelvin and Leven. The lower estuary receives untreated and partially treated sewage from a population of 150,000 people estimated at $0.045 \times 10^{6} \mathrm{~m}^{3} /$ day. During periods of low flow in the summer, the estuary can become totally deoxygenated for a distance of over 20 Km downstream of the tidal weir (Glasgow city centre). Reports conducted by the Clyde River Purification Board reported other problems of pollution in the Clyde area (Collar, 1974).

Distribution of marine and estuarine microorganisms in the Clyde sea area

Environmental variables have a dominant effect on the qualitative and quantitative abundance of marine microorganisms in estuaries and the intertidal zone. Physical and chemical factors such as tides, concentrations of suspended solids, pollution, sunlight, and fluctuations in salinity and temperature, may influence vertical and seasonal variations in the population density of microorganisms in the
open seas on coasts, and in estuaries (ZoBell, 1946; Brock, 1966; Campbell, 1982; Rheinheimer, 1985).

Many investigators have studied seasonal variations of microorganisms and factors related to these differences (Lloyd, 1930; Meadows and Anderson, 1966; 1968; Stevenson et al., 1973; Dale, 1974; Ezura et al., 1974; Anderson and Meadows, 1978; Bent and Goulder, 1981). Bent and Goulder (1981) studied seasonal variation in the population density and activity of heterotrophic bacteria. They found that density and activity of attached bacteria showed seasonal variations according to the concentration of suspended solids (low in summer and high from autumn to spring). However, the same authors state that free bacteria showed no seasonal variation and were not dependent on suspended solids. During an investigation of the factors related to the distribution of bacteria in intertidal sediments, Dale (1974) studied the bacterial numbers in intertidal sediments and the factors related to their distribution. He found that numbers of bacteria ranged from 1.17×10^{8} to $9.97 \times 10^{9} \mathrm{~g}^{-1}$ dry sediment. He also found that there was a strong relationship (high correlation) between bacterial numbers and particular sediment properties such as, grain size, organic carbon content and total nitrogen. Hagler and Mendonca-Hagler (1981) studied quantitatively and qualitatively the yeast populations of marine and estuarine sites around Rio de Janeiro (Brazil). They found that the mean total yeast counts were 2880 C.F.U./l00ml for very polluted sites, 202 C.F.U./100ml for moderately polluted sites, and 3 C.F.U./l00ml for lightly polluted and unpolluted sites. The authors concluded that the total yeast counts were positively correlated with increased pollution levels. For example, Candida krusei and other phenotypically similar yeasts were prevalent as a group in polluted estuarine water but rare in unpolluted seawater. Hagler and his co-worker found that the most frequently
isolated genera in polluted estuary water were Candida, Rhodotorula, Torulopsis, Hanseniaspora, Debaryomyces and Trichosporon.

A number of microbiological studies have been carried out in the Clyde sea area. Most of these studies have been done by the former Royal technical College, University of Strathclyde, by the University of Glasgow, and by the Millport marine station (Ellis, 1925; 1926; 1929; Lloyd, 1929; 1930; Ellis, 1932; Ross and Morris, 1965; Meadows and Anderson, 1966; 1968; Morris, 1968; Anderson and Meadows, 1969; Lloyd and Morris, 1971; Lloyd et al., 1971; Anderson and Meadows, 1978; Anderson et al., 1981).

Lloyd (1930) studied vertical, seasonal and diurnal variations in bacterial populations in water samples obtained from Loch Striven, Loch Long, and Greenock. Water samples were also taken from Cumbrae Deep,aplace used for the dumping of Glasgow sewage (activated sludge). She concluded that bacterial numbers were greater in surface waters and decreased with increasing depths. Lloyd also found that Loch Long water contained more bacteria than Loch Striven, and that there was little pollution in both lochs. However, due to the presence of pollution in the sewage sludge at Cumbrae Deep and in the river off Greenock, bacterial numbers were higher at these two sites than in the lochs. Lloyd (1931) examined marine mud samples from Loch Striven Head, Clapochlar, Carroch-Corrie and Kames Bay in the Clyde sea area. She found that bacterial numbers decreased with increasing sediment depth, and that these numbers fluctuated near the surface of the mud but were more constant in the deeper layers of mud. The predominant microorganisms found were water bacteria of the Achromobacter and Chromobacterium types, and large spore forming bacilli similar to common soil bacteria. Factors affecting the bacterial content of muds were also discussed by this author.

Anderson and Meadows have studied microorganisms in Clyde sediments in a series of papers. Meadows and Anderson (1968) studied bacteria on sand grains from littoral (i.e. intertidal) and sublittoral environments. They found microbial colonies in hollows and on flat surfaces of sand grains, but in general, microorganisms did not colonize surfaces subject to abrasion. Anderson and Meadows (1969) continued this work by studing the number of bacteria attached to the surfaces of sand grains from intertidal beaches between Wemyss Bay and Troon on the Ayrshire coast (Scotland). They found that total and viable numbers of bacteria on the surfaces of sand grains showed high variation, but viable counts varied more. Estimated counts varied from 2 to $241 \times 10^{3} \mathrm{~g}^{-1}$ dry sand. The authors also suggested that tides, rain water and run-off from the land will decrease the number of bacteria on the surfaces of intertidal sand grains. Anderson and Meadows (1978) reported that shallow water and intertidal marine sediments are heterogeneous and consist of several microenvironments. Sediment properties such as Eh, total carbon, organic carbon, total nitrogen, heterotrophic bacterial content and chlorophyll content can change notably over short distances in the sediment. Bioturbation structures such as animal burrows were shown to affect these properties. Meadows and Anderson (1966) found that a wide range of microorganisms occur on marine and fresh water samples in conjunction with organic material. In general in marine sediments, microbial numbers are higher at mid-tide level and at low-tide level than at high-tide level. These workers correlated their results with an increase in the surface area of sand grains down the shore. They also found a similar pattern with an increase in the surface area of fresh water sand grains.

Ross and Morris (1965) investigated the yeast flora of marine fish in the Clyde Estuary. They isolated a total of 189 yeasts from 16
fish species. The isolates from marine fish were found to comprise six genera, Debaryomyces, Torulopsis, Candida, Rhodotorula, Pichia and Cryptococcus, and 17 species within these genera. They also found that D. kloeckeri was the most abundant species in all geographical sampling sites, whereas the occurrence and proportion of isolates of other species varied in each area. The highest numbers of bacteria and fungi are almost always found in the top few centimetres of the sediments and mostly at the sediment surface. In the uppermost zone ($0-1 \mathrm{~cm}$) of mud sediments of the middle Kiel Bay, total numbers of bacteria found were $46.7-77.7 \times 10^{9} \mathrm{~g}^{-1}$ dry sediment (Rheinheimer 1985) .

The objectives of the work reported in this section were to estimate the seasonal viable counts of heterotrophic bacteria, yeasts and fungi in overlying, interstitial waters and sediments (vertical profiles) at Ardmore point in the Clyde Estuary.

SECTION 2

MAIERTALS AND MEIHODS

Sampling site and sampling collection

Samples were collected from intertidal sediments (vertical profiles), interstitial and overlying water at Ardmore Point in the Clyde Estuary (National grid reference $55^{\circ} 58^{\prime} 23^{\prime \prime} \mathrm{N}, 04^{\circ} 41^{\prime} 77^{\prime W} \mathrm{~W}$. Ardmore Point is situated approximately four miles East of Helensburgh on the North bank of the Clyde Estuary. It is shown in figure 1 and plates 1 and 2.

Samples were taken monthly from February 1984 to February 1985 in order to study the seasonal abundance of heterotrophic bacteria, fungi and yeasts. Interstitial water samples were taken after digging a hole in the sediment and overlying water was collected from about one metre water depth using sterile plastic universal containers. Undisturbed sediment samples were obtained using the technique of coring. The core was pushed into the sediment to the required depth and then removed after digging away the surrounding sediment to free it. The core was then split at the site and exterior surfaces of its sub-fractions were removed using a sterile spatula (in order to reduce the possibility of extraneous contamination). Sediment was sampled from $0,5,10,20$ and 35 cm and transferred into sterile universal containers. Duplicate samples were kept overnight at $4^{\circ} \mathrm{C}$ and subsequently processed.

Enumeration of microorganisms

Heterotrophic bacteria

The enumeration of heterotrophic bacteria present in a specific quantity of sediment and water was carried out using the following dilution technique and surface plate counts on solid agar media.

Figure 1
Diagram showing the location of Ardmore Point Clyde
Estuary) .

Plates 1 and 2:
Study area at Ardmore Point in the Clyde Estuary.

Plate 1

Plate 2

A lg sample of sediment or 1 ml sample of water was diluted with 9 ml of sterile 75% seawater in a sterile universal container. Sediment samples were mixed for 10 seconds using a vortex mixer. Shaking served both to break up clumps of bacteria in the sediment and to separate bacteria attached to sediment particles. Serial dilutions to a concentration of 10^{-3} were made from the first container. Surface plate spreading using 0.1 ml aliquots of each dilution were made on culture plates of ZoBell marine agar medium. Plates were previously dried at $37^{\circ} \mathrm{C}$ for 60 minutes to allow better adsorption of the 0.1 ml aliquot and to prevent confluent growth of bacteria. Replicate plates were made for each dilution and plates incubated at $10^{\circ} \mathrm{C}$. Colony forming units on plates were recorded after 3, 5, 7, 10, 15,20 and 25 days incubation.

Numbers of bacteria were calculated per gram wet weight sediment and converted to per gram dry weight using the water content values obtained separately for the same sediment samples. For water samples, numbers of bacteria were expressed as colony forming units/ml (C.F.U.). A computer program "Bact" was developed to calculate the numbers of heterotrophic bacteria per gram dry weight sediment or per ml water (Appendix table 1). The flow diagram used to develop the program is shown in appendix figure l. An example of the calculation performed by the computer is given in appendix table 2.

Yeasts and Fungi

Yeasts and fungal abundance were determined using the method described for bacterial counts, except that Sabouraud dextrose agar was used to culture fungi and Potato dextrose agar for yeasts. These two media were supplied by Oxoid Ltd. Their composition is as follows:

Sabouraud dextrose agar	Potato dextrose agar		
Mycological peptone	10 g	Potato Extract	4 g
Dextrose	40 g	Dextrose	20 g
Agar No. 1	15 g	Agar No. 1	15 g
pH 5.6 (approx.)		pH 5.6 (approx.)	

The computer program "Bact" developed to calculate the numbers of heterotrophic bacteria was also used to calculate the numbers of yeasts and fungal colony forming units per gram dry weight sediment or per ml water.

SECTION 2

RESULITS

BACIERIA

The mean and standard deviation of the bacterial colony forming units (C.F.U.) per gram dry weight sediment or per ml water calculated by the computer program "Bact" is given in table 1.

Figure 2 shows the number of bacteria in overlying and interstitial waters at Ardmore Point (Clyde Estuary) from February 1984 to February 1985. In general, interstitial water showed higher numbers of bacteria than overlying water. In overlying water, the number of bacteria was in the range $5.250-58.75 \times 10^{3} \mathrm{ml}^{-1}$. while in interstitial water the range was $6.525-131.5 \times 10^{3} \mathrm{ml}^{-1}$.

Overlying water showed a peak in bacterial numbers in February 1984 followed by a decrease in the number of bacteria until May after which fluctuation occurred. Interstitial water showed a marked number of peaks of high bacterial numbers early in March and between April-November 1984. This was followed by a decrease in bacterial numbers from November 1984 to February 1985.

The results in figure 3 show the variation in the number of bacteria at different sediment depths at Ardmore point during the year from February 1984 to February 1985. In general, the number of bacteria was greatest at the surface sediment and tended to decrease with depth. The number of bacteria ($\mathrm{g}^{-1} \mathrm{dry}$ sediment) at the depths 0 , $5,10,20$ and 35 cm was in the range $13.48-325.9 \times 10^{3}, 4.984-21.23$ $\mathrm{x} 10^{3}, 2.449-28.52 \times 10^{3}, 0.3722-7.882 \times 10^{3}$ and $0.4910-8.160 \times 10^{3}$ respectively.

At the surface sediment, high levels of bacteria occurred in February 1984 followed by a sharp decrease to a very low level in March. This decrease did not occur at the other depths for the same
$+$
TABIE 1 ：Bacterial colony forming units（ $\mathrm{x} 1 \mathrm{O}^{3}$ ）per ml water or per gran dry weight of sediment（mean \pm standard deviation）for the armual survey

	Feb 1984	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan 1985	Feb
0．W．	58.75 \pm 21.39	17.68 \pm 2.990	11.68 \pm 1.814	5.250 \pm 0.9469	9.275 \pm 1.595	9.300 \pm 2.486		6.775 \pm 0.1477	11.10 \pm 0.5477	13.88 \pm 3.711	16.15 \pm 2.661	11.70 \pm $\frac{1.175}{}$	$\begin{gathered} 13.33 \\ \pm \\ \frac{}{2.185} \end{gathered}$
I．W．	$\begin{gathered} 65.00 \\ \pm \\ 36.67 \end{gathered}$	75.50 \pm 11.68	$\begin{gathered} 10.45 \\ \pm \\ \hline 1.237 \end{gathered}$	$\begin{gathered} 95.25 \\ \pm \\ \hline 19.82 \end{gathered}$	$\begin{gathered} 71.25 \\ \stackrel{+}{13.50} \end{gathered}$	$\begin{gathered} 79.00 \\ \pm \\ 20.07 \end{gathered}$	$\begin{gathered} 131.5 \\ + \\ 19.60 \end{gathered}$	$\begin{aligned} & 63.00 \\ & \frac{+}{14.51} \end{aligned}$	$\begin{gathered} 106.0 \\ \frac{ \pm}{16.25} \end{gathered}$	$\begin{gathered} 37.75 \\ \pm \\ \frac{ \pm}{23.51} \end{gathered}$	$\begin{gathered} 22.08 \\ \pm \\ \frac{5.557}{} \end{gathered}$	$\begin{aligned} & 8.850 \\ & \frac{+}{1.277} \end{aligned}$	$\begin{aligned} & 6.525 \\ & \frac{+}{1.443} \end{aligned}$
S．S．	195.6 \pm 34.56	26.91 \pm 7.229	$\begin{gathered} 325.9 \\ \frac{+}{61.22} \end{gathered}$	$\begin{gathered} 18.29 \\ \pm \\ \frac{5.232}{} \end{gathered}$	$\begin{gathered} 17.29 \\ \pm \\ \frac{1.540}{} \end{gathered}$	$\begin{gathered} 24.10 \\ \frac{ \pm}{2.457} \end{gathered}$	$\begin{gathered} 115.0 \\ \pm \\ \frac{ \pm}{23.84} \end{gathered}$	$\begin{gathered} 13.48 \\ \pm \\ \frac{2.217}{} \end{gathered}$	$\begin{gathered} 15.85 \\ \frac{ \pm}{3.435} \end{gathered}$	$\begin{gathered} 88.47 \\ \pm \\ 13.98 \end{gathered}$	$\begin{gathered} 25.72 \\ \pm \\ \stackrel{1}{.417} \end{gathered}$	$\begin{gathered} 129.7 \\ \pm \\ 7.206 \end{gathered}$	$\begin{gathered} 26.06 \\ \pm \\ \hline 2.013 \end{gathered}$
	21.23 \pm 22.77	20.77 \pm 9.674	9.491 $+\quad 1.867$	4.984 \pm 1.762	7.898 \pm -.447	9.970 \pm 4.466	16.12 $1 . \overline{3} 30$	$\begin{aligned} & 8.126 \\ & \pm \\ & \hline 2.652 \end{aligned}$	$\begin{aligned} & 5.835 \\ & \pm \\ & \hline 0.4637 \end{aligned}$	$\begin{gathered} 11.14 \\ \pm \\ 0.3577 \end{gathered}$	$\begin{aligned} & 7.659 \\ & \pm \\ & \hline 0.7345 \end{aligned}$	$\begin{aligned} & 8.136 \\ & \frac{ \pm}{1.258} \end{aligned}$	$\begin{gathered} 18.97 \\ \pm \\ \pm .934 \end{gathered}$
10 cm	$\begin{gathered} 2.449 \\ \frac{+}{3.463} \end{gathered}$	$\begin{gathered} 28.52 \\ \pm \\ 5.063 \end{gathered}$	$\begin{aligned} & 7.485 \\ & \pm \\ & \pm .1739 \end{aligned}$	$\begin{aligned} & 3.383 \\ & + \\ & 1.653 \end{aligned}$	$\begin{gathered} 25.18 \\ + \\ 14.39 \end{gathered}$	$\begin{aligned} & 7.696 \\ & \pm \\ & \hline \mathbf{1 . 4 0 4} \end{aligned}$	$\begin{gathered} 5.916 \\ + \\ 3.191 \end{gathered}$	$\begin{aligned} & 4.827 \\ & \pm \\ & \hline 0.5250 \end{aligned}$	$\begin{aligned} & 3.725 \\ & \pm \\ & 0.08925 \end{aligned}$	$\begin{aligned} & 3.640 \\ & \pm \\ & \hline 1.658 \end{aligned}$	$\begin{aligned} & 5.437 \\ & \pm \\ & \hline \frac{.048}{} \end{aligned}$	$\begin{aligned} & 6.040 \\ & \pm \\ & \hline 0.2643 \end{aligned}$	$\begin{aligned} & 3.214 \\ & \pm \\ & \hline 0.6993 \end{aligned}$
20 cm	3.621 \pm 0.08695	7.882 \pm 3.716	6.276 \pm 5.120	0.4275 \pm 0.08636	0.5722 \pm 0.5263	7.260 \pm 2.675	5.647 + 1.042	0.9835 \pm 0.6955	1.870 \pm 0.8816	$\begin{aligned} & 3.083 \\ & \pm \\ & \hline 0.5232 \end{aligned}$	4.434 \pm 0.9715	$\begin{aligned} & 6.651 \\ & \pm \\ & \hline 0.9669 \end{aligned}$	$\begin{aligned} & 2.389 \\ & \pm \\ & \frac{1.299}{} \end{aligned}$
35 cm	0.4910 \pm 0	2.802 \pm 1.551	0.9741 \pm 0.6888	$\begin{aligned} & 2.461 \\ & \pm \\ & \hline 2.088 \end{aligned}$	$\begin{gathered} 0.7885 \\ \pm \\ \hline 0.08578 \end{gathered}$	$\begin{gathered} 5.316 \\ \pm \\ \frac{ \pm}{2.679} \end{gathered}$	$\begin{aligned} & 8.160 \\ & \frac{+}{1.722} \end{aligned}$		$\begin{aligned} & 0.5012 \\ & \pm \\ & \hline-.1772 \end{aligned}$	$\begin{aligned} & 0.5451 \\ & \pm \\ & \hline 0.08566 \end{aligned}$	1.604 \pm 0.1745	2.223 \pm 1.347	$\begin{aligned} & 0.6231 \\ & \pm \\ & 0.1762 \end{aligned}$

Figure 2
Bacterial colony forming units /ml of overlying and interstitial waters from February 1984 to February 1985 at Ardmore Point (Clyde Estuary).

Figure 3
Bacterial colony forming units/g dry weight of sediment at different depths ($0,5,10,20$ and 35 cm) from February 1984 to February 1985 at Ardmore Point (Clyde Estuary) •

Month
period. Separate peaks also occurred in April, August, and November 1984, and in January 1985.

At 5 and 10 cm depth, similar ranges of bacterial numbers occurred although peaks were found in different months at the two depths. At 5 cm depth, three major peaks occurred in February-March, and August 1984 and in January 1985. A minor peak also occurred in November 1985. At l0cm depth, only two major peaks were found, in March and June 1984. At 20 and 35 cm depth, much lower ranges of bacterial numbers were found than at 5 and 10 cm depth. At 20 cm depth, three minor peaks occurred in March-April 1984, July-August 1984, and in January 1985. In general, at 35 cm depth, only one peak occurred, and this was in August 1984.

The variation in the number of bacterial colony forming units with depth for each month from February 1984 to February 1985 is shown in figure 4. In general, the pattern of decreasing numbers of bacteria with depths was similar for all months with the exception of the surface sediment which showed high levels of bacteria in February, April, August, November 1984 and in January 1985. These levels fell dramatically to 5 cm depth. In March and June, there was a slight increase in the number of bacteria at the 10 cm depth.

The bacterial numbers at each sampling depth were compared using all data collected over the thirteen months. This was done using regression analyses and student's t-tests. Figures 5 and 6 and table 2 show the results of these comparisons. In figure 5, the bacterial numbers found at the sediment surface over the thirteen months were plotted against the bacterial numbers found at the other depths over the same period. Figure 6 shows the same plots but comparing all the other depths. A direct relationship in bacterial numbers occurred in all cases with only a few exceptions. In the comparisons surface-10cm and surface -35 cm , an inverse relationship was found. No significant

Figure 4

Relationships between bacterial colony forming units/g dry weight of sediment and sediment depth from February 1984 to February 1985 at Ardmore Point (Clyde Esuary). Graphs are on 3 pages.

Bacterial colony forming units/g dry sediment ($\left.\begin{array}{ll} & 10^{3}\end{array}\right)$

Bacterial colony forming units/g dry sediment ($\left.\begin{array}{ll} & 10^{3}\end{array}\right)$

Bacterial colony forming units/g dry sediment $\left(\begin{array}{ll}X & 10^{3}\end{array}\right)$

Figure 5
Relationship between bacterial colony forming units/g dry weight of surface sediment and colony forming units/g dry weight of sediment at $5,10,20$ and 35 cm depth. y-axis is surface sediment, $x-$ axis is the other depths. Each point represents data for one month.

Figure 6
Relationship between bacterial colony forming units/g dry weight of sediment at each depth and the other depths. y-axis $(5,10$, 20 cm), x -axis ($10,20,35 \mathrm{~cm}$). The figures at the top of each graph are the depths compared. For example, $5-10 \mathrm{~cm}$ means 5 cm data on y -axis and 10 cm data on x -axis. Each point represents data for one month.

Data	Regression equation	t-test	d.f.	P
S.S-5cm	$Y=3.183 x+41.81$	2.603	12	$0.05>P>0.02$
S. $5-10 \mathrm{~cm}$	$Y=-2.290 x+97.59$	2.645	12	$0.05>P>0.02$
S. $\mathrm{S}-20 \mathrm{~cm}$	$Y=13.79 x+24.66$	2.902	12	$0.02>P>0.01$
S.S-35cm	$Y=-1.992 x+82.84$	2.937	12	$0.02>P>0.01$
$5-10 \mathrm{~cm}$	$Y=0.1328 x+10.47$	1.291	12	$0.30>P>0.20$
$5-20 \mathrm{~cm}$	$Y=0.7957 x+8.449$	5.184	12	P<0.001
$5-35 \mathrm{~cm}$	$Y=0.3663 x+10.79$	5.865	12	P<0.001
$10-20 \mathrm{~cm}$	$Y=0.6525 x+5.716$	1.891	12	$0.1>P>0.05$
$10-35 \mathrm{~cm}$	$Y=0.1883 x+7.874$	2.579	12	$0.05>P>0.02$
$20-35 \mathrm{~cm}$	$Y=0.5747 x+2.706$	2.619	12	$0.05>P>0.02$

Table 2

Results of regression analyses and student's t-tests applied to data to compare numbers of bacteria present at the different sampling depths. S.S = surface sediment. The regression plots are shown in figures 5 and 6.
relationship was found in the $5-10 \mathrm{~cm}$ comparison. The t-tests showed a significant difference in bacterial numbers between all depths with the exception $5-10 \mathrm{~cm}$, where no significant difference in bacterial numbers was shown ($0.30>\mathrm{P}>0.20$)

Figure 7 shows the relationship between the numbers of bacteria (C.F.U.) in overlying and interstitial waters and incubation time (days) for the month of July 1984. Interstitial water contained much higher numbers of bacteria than overlying water (Table 3). It was also found that bacteria in overlying water reached a maximum growth after 20 days incubation, while in interstitial water, the maximum growth occurred after only 7 days. This suggested that prolonged incubation time was very important to ensure the maximum phase of bacterial growth.

Figure 8 shows the relationship between the numbers of bacteria (C.F.U.) in sediment from different depths, and incubation time (days). Surface sediment contained more bacteria than the other depths (twice to four times as much approximately). In general, there was a decrease in bacterial numbers with sediment depth at each incubation time (Table 3). In addition, at greater sediment depths there was a less pronounced increase in bacterial growth with increasing incubation time. However, the maximum growth was always reached approximately after 15 days incubation.

YEASTS

The mean and standard deviation of the yeast colony forming units (C.F.U.) per gram dry weight sediment or per ml water calculated by the computer program "Bact" is given in table 4.

Figure 9 shows the relationship between numbers of yeasts in overlying and interstitial water at Ardmore Point from February 1984 to February 1985. Interstitial water contained significantly higher

Figure 7
Relationship between bacterial colony forming units/ml of overlying and interstitial waters and the incubation time (days) for July 1984.

Table 3
The numbers of bacteria (mean \pm s.d.) for July 1984 obtained from each sampling depth after incubation times of 3 to 25 days. This data is plotted in figures 7 and 8.

Sample	Incubation time (days)	No. bacteria (C.F.U.) (mean \pm s.d.)
	3	3.000 ± 0.8160
	5	3.750 ± 0.9570
	7	8.500 ± 6.856
Overlying water	10	23.25 ± 6.397
	15	59.50 ± 27.26
	20	87.50 ± 20.50
	25	93.00 ± 24.86
	3	368.0 ± 47.46
	5	381.8 ± 53.93
	7	392.3 ± 53.45
Interstitial wate	er 10	392.8 ± 53.45
	15	393.0 ± 53.81
	20	393.5 ± 54.09
	25	394.3 ± 54.30
	3	107.3 ± 36.75
	5	172.4 ± 24.94
	7	184.8 ± 30.53
Surface sediment (0 cm depth)	10	202.0 ± 30.25
	15	212.2 ± 28.20
	20	217.8 ± 25.91
	25	224.0 ± 22.65

Table 3 cont'd.

Sample	Incubation time (days)	No. bacteria (C.F.U.) (mean \pm s.d.)
	3	26.26 ± 27.45
	5	45.09 ± 54.09
	7	49.66 ± 50.86
5 cm depth	10	59.37 ± 62.96
	15	75.92 ± 63.77
	20	80.49 ± 57.31
	25	91.90 ± 41.17
	3	32.09 ± 29.18
	5	32.09 ± 29.18
	7	38.97 ± 19.45
10 cm depth	10	48.71 ± 5.673
	15	64.19 ± 6.483
	20	68.77 ± 12.96
	25	71.06 ± 12.96
20 cm depth	3	47.26 ± 33.42
	5	50.07 ± 34.21
	7	50.63 ± 33.42
	10	52.86 ± 36.60
	15	55.69 ± 32.62
	20	61.32 ± 24.66
	25	66.94 ± 24.66

Table 3 cont'd.

Sample	Incubation time (days)	No. bacteria (C.F.U.) (mean \pm s.d.)
35 cm depth	3	33.16 ± 18.47
	5	35.97 ± 20.66
	7	36.53 ± 19.87
	10	42.15 ± 15.11
	15	42.15 ± 15.11
	20	42.15 ± 15.11
	25	48.89 ± 24.64

Figure 8
Relationship between bacterial colony forming units/g dry weight of sediment ($0,5,10,20$ and 35 cm) and incubation time (days) for July 1984.

	Feb 1984	Nar	Apr	Nay	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan 1985	Feb
0.W.	3.250	0.7000	3.250	0.1500	0.3500	0	1.550	0.4500	0.4000	1.200	1.750	4.350	1.950
	\pm		\pm	\pm	\pm	$0^{ \pm}$	+	\pm	\pm	\pm	\pm	\pm	\pm
I.W.	9.800	7.150	2.500	57.00	18.75	17.10	119.0	54.50	84.50	8.250	11.15	3.450	2.200
	\pm				\pm	-	\pm	\pm	\pm				
	4.384	3.606	0.9899	7.072	2.051	4.384	$4 . \overline{247}$	13.43	6.364	0.06986	1.202	0.9192	0.8485
S.S.	18.24	19.84	18.19	15.30	6.836	10.98	87.59	19.92	12.79	46.74	10.24	25.14	12.76
	$\frac{ \pm}{9.022}$	\pm		+			+			+	\pm	$+$	\pm
			2.858	5.832	0.568	7.9	. 29	0.03	3.6	5.666	4.952	7.110	2.090
5 cm	0.5774	2.157	0.3143	0.1869	1.516	3.344	1.599	2.313	3.147	1.899	2.467	2.288	10.49
	\pm	$\stackrel{ \pm}{1.482}$	\pm	$\stackrel{ \pm}{0.08811}$	\pm	\pm	$\frac{ \pm}{1.862}$	$\stackrel{ \pm}{2.210}$	$\frac{ \pm}{2.596}$	\pm	\pm	$\stackrel{+}{0.7192}$	$\stackrel{ \pm}{0.44}$
10 cm	4.019	3.036	1.104	0	17.19	3.352	2.745	1.423	0.6944	0.5553	0.8649	2.304	1.360
	\pm	\pm	\pm		\pm		\pm						
	2.842	0.5238	0.6941	0	3.684	4.564	1.984	0.9628	0.08928	0.0618	0.5242	$\overline{1.145}$	0.1748
20 cm	2.700	2.383	0.4827	0	0.1861	9.090	7.488	0.8606	1.309	1.233	1.311	1.865	1.103
		\pm			\pm	\pm			\pm	\pm	\pm	\pm	\pm
	2.778	1.987	0.5120	0	0.08772	6.125	$6 . \overline{7} 71$	0.3477	0.4408	0.1744	0.7948	0.7032	1.213
35 cm	0.6138	0.3046	0.1826	0	0.1820	5.805	1.096	1.181	0.6265	0.3028	0.3701	2.350	0.2493
	\pm	\pm			-			-			+		
	0.3472	0.08615	0.08610	0	0.2573	0.9505	0.1722	0.08792	0.7088	0.2570	0^{-}	2.066	0.1762

TABLE 4 : Yeast colony forming units ($\mathrm{x} 10^{3}$) per ml water or per gram dry weight of sediment (mean \pm standard deviation) for the annual survey at Ardmore Point (Clyde estuary).
O.W. and I.W. are overlying and interstitial waters respectively. S.S. is surface sediment. $5,10,20$ and 35 cm are vertical sediment depths.

Figure 9
Yeast colony forming units/ml of overlying and interstitial waters from February 1984 to February 1985 at Ardmore Point (Clyde Estuary)
numbers of yeasts than overlying water. The number of yeasts in overlying water was in the range $0-4.350 \times 10^{3} \mathrm{ml}^{-1}$ while interstitial water showed a range of $2.200-119.0 \times 10^{3} \mathrm{ml}^{-1}$.

Overlying water showed 4 peaks in the numbers of yeasts. These occurred in February, April, and August 1984 and in January 1985.

Interstitial water showed 3 peaks. These occurred in May, August and October 1984.

Figure 10 shows the variation in the numbers of yeasts in sediment at different depths during the year. The numbers of yeasts were greatest at the surface sediment and in general tended to decrease with depth although some peaks were found at different depths. The numbers of yeasts (g^{-1} dry sediment) at the depths 0,5 , 10,20 and 35 cm were in the range $6.836-46.74 \times 10^{3}, 0.1869-10.49 \times 10^{3}$, $0-17.99 \times 10^{3}, 0-9.090 \times 10^{3}$ and $0-5.805 \times 10^{3}$ respectively.

Maximum yeast numbers (peaks) occurred at different months of the year at different sediment depths. In the surface sediment, maximum numbers were found in November with lesser peaks in March, and September 1984 and in January 1985. At 5cm depth, maximum numbers occurred in February 1985. At 10 cm depth, maximum numbers were found in June 1984. At 20 and 35 cm depth, similar curves were found although peaks occurred at slightly different times of the year (August at 20 cm depth, and July at 35 cm depth).

The variation in the numbers of yeasts with depth for each month from February 1984 to February 1985 is shown in figure ll. In general, the pattern of decreasing numbers of yeasts with depths was similar for all months with the exception of February, March, June, July and August which showed peaks of maximum numbers of yeasts at 10 cm and 20 cm depth.

Figure 10
Yeast colony forming units/g dry weight of sediment at differnt depths ($0,5,10,20$ and 35 cm) from February 1984 to February 1985 at Ardmore Point (Clyde Estuary).

Figure 11
Relationship between yeast colony forming units/g dry weight of sediment and sediment depths from February 1984 to February 1985 at Ardmore Point (Clyde Estuary). Graphs are on 2 pages.

Yeast colony forming units/g dry sediment ($\mathrm{X} 10^{3}$)

Yeast colony forming units/g dry sediment (X 10^{3})

Comparisons in the numbers of yeasts present (C.F.U.) at each sampling depth were carried out using regression analysis and student's t-tests in the same manner as that conducted with bacteria (see page 340). The results of these comparisons are shown in figures 12 and 13 and table 5. Highly significant inverse relationships were found with all the surface comparisons (all $\mathrm{P}<0.001$). A significant direct relationship was found in the $20-35 \mathrm{~cm}$ comparison ($0.05>\mathrm{P}>0.02$). The other comparisons ($5-10 \mathrm{~cm}, 5-20 \mathrm{~cm}, 5-35 \mathrm{~cm}, 10-20 \mathrm{~cm}$ and $10-35 \mathrm{~cm}$) were not significant $(0.80>P>0.70,0.90>P>0.80,0.20>P>0.10$, $0.70>P>0.60$, and $0.20>P>0.10$ respectively).

FUNGI

The mean and standard deviation of the fungal colony forming units (C.F.U.) per gram dry weight sediment or per ml water calculated by the computer program "Bact" is given in table 6.

Figure 14 shows the numbers of fungal colony forming units in overlying and interstitial water at Ardmore Point from February 1984 to February 1985. The highest numbers of fungi in overlying water were found in February 1984, while in interstitial water the highest numbers occurred in March 1984. Apart from these differences, similar seasonal abundance curves were found with overlying and interstitial water, and the ranges in fungal abundance were close (overlying water, $0-4.250 \times 10^{3}$, interstitial water, $0-2.500 \times 10^{3}$ C.F.U. ml^{-1}). In general, there were 3 peaks of fungal growth for both overlying and interstitial waters. With overlying water, peaks occurred in February, July and November 1984. With interstitial water, peaks occurred in February-March and November 1984.

Figure 15 shows the variation in the numbers of fungi in sediment at different depths. No clear decrease in the numbers of fungi with depth was found. In general, at all depths, there were two

Figure 12
Relationship between yeast colony forming units/g dry weight of surface sediment and colony forming units/g dry weight of sediment at $5,10,20$ and 35 cm depth. y -axis is surface sediment, x -axis is the other depths. Each point represents data for one month.

Figure 13
Relationship between yeast colony forming units/g dry weight of sediment at each depth and the other depths. y axis ($5,10,20 \mathrm{~cm}$), x-axis ($10,20,35 \mathrm{~cm}$). The figures at the top of each graph are the depths compared. For example, $5-10 \mathrm{~cm}$ means 5 cm data on y-axis and 10 cm data on x-axis. Each point represents data for one month.

Data	Regression equation	t-test	d.f.	P
S. $\mathrm{S}-5 \mathrm{~cm}$	$Y=-0.5686 x+18.78$	4.908	12	$\mathrm{P}<0.001$
S. $\mathrm{S}-10 \mathrm{~cm}$	$Y=-0.3413 x+14.95$	4.480	12	P<0.001
S. S-20cm	$Y=-0.8948 \mathrm{x}+19.43$	4.824	12	$\mathrm{P}<0.001$
S. $\mathrm{S}-35 \mathrm{~cm}$	$Y=-0.7941 x+18.17$	5.584	12	P<0. 001
5-10 cm	$Y=-0.0660 x+2.671$	0.3658	12	$0.80>P>0.70$
$5-20 \mathrm{~cm}$	$Y=0.0265 x+2.423$	0.1455	12	$0.90>P>0.80$
$5-35 \mathrm{~cm}$	$Y=0.1332 x+2.334$	1.779	12	$0.20>P>0.10$
$10-20 \mathrm{~cm}$	$Y=-0.0895 x+3.245$	0.4740	12	$0.70>P>0.60$
$10-35 \mathrm{~cm}$	$Y=-0.0879 x+3.128$	1.468	12	$0.20>P>0.10$
$20-35 \mathrm{~cm}$	$\mathrm{Y}=1.363 \mathrm{x}+0.9179$	2.479	12	$0.05>P>0.02$

Table 5

Results of regression analyses and student's t-tests applied to data to compare numbers of yeasts present at the different sampling depths. S.S $=$ surface sediment. The regression plots are shown in figures 12 and 13.

	Feb 1984	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan 1985	Feb
0.W.	4.250 +	0.2500 +	0	0								0	0
	2.051	0.07071	0	0	0	0.07071	0.07071	$\overline{0.1414}$	0.07071	0.07071	0	0	0
I.W.	1.400 \pm	2.500 \pm	0	0	0.1000 \pm		0		0		0.1500 +	0	0
	1.414	0.9899	0	0	0	$\overline{0.1414}$	0	0.07071	0	0.6364	0.07071	0	0
S.S.			0	0			0		0	0			0
	0.2734	$\overline{0.5631}$	0	0	0.2844	4.640	0	0	0	0	0	0.09480	0
5 cm		0.3698 \pm	0	0	0.2527 \pm	0.8051 \pm		0	0	0	0	0	0
	7.439	0.1743	0	0	0.1787	0.4379	0.08369	0	0	0	0	0	0
10 cm	4.395	1.049	0	0	0.2481	0.2483	0	0	0	0	0	0	0
	5.388	1.309	0	0	0.1754	0.3511	0	0	0	0	0	0	0
20 cm	2.823	1.222	0	0	0.8684	0.2440	0.4297	0	0.1247	0	0	0	0
	2.256	1.210	0	0	0.17754	0.1725	0.2604	0	0	0	0	0	0
35 cm	7.243	0.5482	0	0	0.3033	0.7943	0	0.3109	0.1253	0	0	0	0
	\pm								\pm				
	1.215	0.0 .4307	0	0	0.0887	0.6049	0	0.2638	0	0	0	0	0

TABLE 6 : Fungal colony forming units ($\mathrm{x} 10^{3}$) per ml water or per gran dry weight of sediment (mean \pm standard deviation) for the annual survey at
Ardmore Point (Clyde estuary).
O.W. and I.W. are overlying and interstitial waters respectively. S.S. is surface sediment. 5,10,20 and 35 cm are vertical sediment depths.

Figure 14
Fungal colony forming units/ml of overlying and interstitial waters from February 1984 to February 1985 at Ardmore Point (Clyde Estuary).

Figure 15
Fungal colony forming units/g dry weight of sediment at different depths (0, 5, 10, 20 and 35 cm) from February 1984 to February 1985 at Ardmore Point (Clyde Estuary).
peaks of high numbers of fungi, early in the year 1984, in February, and at the middle of the year, in May-August.

The fluctuation in the numbers of fungi with depth, for each month from February 1984 to February 1985 is shown in figure 16. Unlike the results of the bacterial and yeast numbers, there was not a clear pattern of decreasing numbers of fungi with depth. In some months (February, March, June, July, August, September and October 1984) both increases and decreases were observed with increasing sediment depth. In the other months, very few or no fungi observed.

Figure 16

Relationship between fungal colony forming units/g dry weight of sediment and sediment depth from February 1984 to February 1985 at Ardmore Point (Clyde Estuary). Graphs are on 2 pages.

Fungal colony forming units/g dry sediment $\left(\begin{array}{ll}X & 10^{3}\end{array}\right)$

Fungal colony forming units/g dry sediment ($\begin{array}{ll} & 10^{3}\end{array}$)

SECTION 2

DISCUSSION

The intertidal zone is an extremely complex environment. Wave action and tidal activity cause movement of the upper-most sediment layer and this results in resuspension of fine sediment particles and other sedimented material into the water column. Water and sediments (especially muddy ones) are relatively rich in organic material. Although organic carbon exists in both interstitial water and overlying water, the concentration of particulate oryanic carbon is generally at least three orders of magnitude greater in interstitial than in overlying water (Meyer-Reil et al., 1978). This situation is often reflected by the quantity and variety of microorganisms present in each habitat (Fukami et al., 1983). It is generally accepted that only about 20% of bacteria in the water column are cells that are usually attached to solid particles, in contrast to more than 99% attached cells in sediment (Meyer-Riel et al., 1978). The attached bacteria in sediments are usually found in depressions and crevices on the surface of the sediment particles (Meadows and Anderson, 1966).

The work in this section was concerned with investigating two main subjects related to microbial numbers in the Clyde Estuary.
(i) Whether there are seasonal patterns in the abundance of bacteria, yeasts and fungi in the estuary and whether there are significant differences between the overlying water and sediment pore water (interstitial water) in terms of microbial abundance. The effect of incubation time of cultures on the results of bacterial counts was also studied.
(ii) Whether microbial abundance in the sediment varies with depth into the sediment. Seasonal variation in microbial growth at specific depths was also studied.

The above two subjects were studied separately with respect to bacteria, yeasts and fungi, and will be discussed separately below, in that order.

1- BACTERIA

(i) Seasonal periodicity and abundance in overlying and interstitial water

My results showed that significantly higher bacterial numbers occurred in the interstitial or pore water than in the overlying water. This is a fairly widely accepted phenomenon (Hayes, 1964; Novitsky, 1983) and has been noted in earlier studies carried out in other areas. ZoBell and Feltham (1942) working in Mission Bay, California, found that there were thousands of bacteria per ml of overlying water, in contrast to millions of bacteria in the same volume of mud. Meyer-Riel et al. (1978) found that bacterial numbers in Baltic sea sediment were three orders of magnitude higher than those found in the water above. High bacterial numbers in sediment are thought to result from high levels of organic matter in the sediment (Hayes, 1964; Gerba and McLead, 1976). This organic matter is replenished to a great extent by sedimentation of plant and animal materials from the water column. Other factors in estuaries such as dilution by incoming water, tend to decrease the amount of bacteria present in overlying water even more, relative to sediment (Ketchum et al., 1952).

My studies showed that there were seasonal variations in the numbers of bacteria present in both the overlying and interstitial waters at Ardmore Point. In overlying water a peak occurred in February 1984, while in interstitial water peaks occurred in March 1984 and April-November 1984. Many workers have studied seasonal variations in bacterial numbers in other areas. Ezura et al. (1974)
found that viable bacterial counts in water and mud samples from Akkeshi Bay, Japan, attained a maximum in summer and decreased in the cold water season. Bent and Goulder (1981) found no seasonal variation in free bacteria in the Humber Estuary although attached bacteria had a clear seasonal abundance pattern. Kenyon et al. (1984) working off the Californian Coast found that Vibrio cholerae showed a 5 to 56fold increase in numbers over the summer months when water temperatures rose by approximately 2 to $5^{\circ} \mathrm{C}$. Rheinheimer (1985) quotes seasonal variations in bacterial numbers in the Western Baltic, where two peaks occur. The first peak occurs in Spring (April/May), the other in Autumn (October/November). Laanbroek and Verplanke (1986) studied the seasonal changes in percentage of attached bacteria in the tidal Oosterschelde basin and in the stagnant but saline lake Grevelingen, delta area of the rivers Rhine. They found that the percentage of attached bacteria enumerated in subsurface water (lm below the water surface) and deep-water (lm above the sediment) appeared to be highly dependent upon the season.

Many suggestions have been given to account for seasonal periodicity in bacterial numbers. Goulder (1976), Goulder (1977), Bent and Goulder (1981) and Laanbroek and Verplanke (1986) consider that attached bacterial numbers vary with the concentration of suspended solids in the estuary. ZoBell and Feltham (1942) state that bacterial numbers are affected by depth, tidal cycles, temperature and amount of organic matter present. Fukami et al. (1983) found that bacterial numbers were correlated with the concentration of particulate organic carbon present in the water. Dale (1974) found a strong relationship between the number of bacteria present and sediment grain size, organic carbon content and total nitrogen content. Ezura et al. (1974) found a correlation between bacterial numbers and ammonia , seston-
carbon and chlorophyll a levels in seawater. Sieburth (1967) found that bacterial numbers were related to water temperature. Kenyon et al. (1984) also found that the number of Vibrio cholerae in seawater was significantly related to water temperature. Erkenbrecher and Stevenson (1977) found that bacterial numbers in Salt-March Creeks were influenced by the tidal cycle and the particulate organic carbon content of the water.

My results showed that maximum bacterial growth was attained quicker on agar plates with interstitial water as the inoculant than with overlying water (7 days for interstitial water compared with 20 days for overlying water). This is almost certainly due to the much higher concentration of bacterial cells in the interstitial water sample initially, compared to the overlying water.

I also studied the effect of increasing incubation time on the growth of bacteria from different depths in the sediment to ensure that counting was carried out when the bacteria had reached a phase of maximum growth. I found that, in general, bacteria from surface sediment did not reach their maximum growth phase as quickly as bacteria from underneath the sediment surface. In general, the time taken to reach maximum growth decreased with increasing depth into the sediment, although the 20 cm and 35 cm curves were similar to each other. A number of factors may be responsible for these findings. Firstly, there may be a change in the composition of the bacterial population with increasing depth into the sediment with only specialised fast growing species occurring deep in the sediment. Secondly, the level of nutrients in the media may favour the growth of bacteria from specific depths in the sediment and delay the growth of bacteria from other levels.
(ii) Variation in bacterial abundance with sediment depth and seasonal variation between depths

My results showed that in general, at the sediment surface, high bacterial counts in the approximate range $14-326 \times 10^{3} \mathrm{~g}^{-1}$ dry sediment occurred in most months. These counts fell dramatically to 5$21 \times 10^{3} \mathrm{~g}^{-1}$ dry sediment at 5 cm depth. This count remained approximately the same to a depth of 10 cm after which a further, though less dramatic decrease in numbers occurred $\left(0.5-8 \times 10^{3} \mathrm{~g}^{-1} \mathrm{dry}\right.$ sediment at 35 cm). Seasonal variation in bacterial abundance occurred at all depths and there were usually 2 or 3 peaks in abundance. However, there were differences in the timing of the peaks between different months.

Decrease in bacterial abundance with depth in marine sediments was first recognised in the Clyde Sea Area by Lloyd (1931). The author found levels of $70-300 \times 10^{3} \mathrm{~g}^{-1} \mathrm{dry}$ sediment at the sediment surface falling to $58 \times 10^{3} \mathrm{~g}^{-1}$ dry sediment at 30 cm depth. More recent studies in the Clyde Estuary have been conducted by Anderson et al. (1981). They found levels of approximately $40 \pm 24 \times 10^{4}$ g^{-1} dry sediment at the sediment surface decreasing to $11 \pm 12 \times 10^{4} \mathrm{~g}^{-1}$ dry sediment at a depth of 10 cm . This phenomenon has been noted in other intertidal and nearshore areas (Hayes, 1964, Collins, 1977). ZoBell and Feltham (1942) working in Mission Bay, USA, found levels of 172-400 $\times 10^{3} \mathrm{~g}^{-1}$ dry sediment at the sediment surface decreasing to $8.2-62 \times 10^{3} \mathrm{~g}^{-1}$ dry sediment at $85-90 \mathrm{~cm}$ depth. Meadows and Tait (1985) reported a similar exponential decrease in bacteria abundance with sediment depth in deep-sea sediment from the North East Atlantic (c. $10^{2}-10^{5} \mathrm{~g}^{-1}$ dry sediment at the sediment surface falling to $\mathrm{c} .1 \mathrm{~g}^{-1}$ dry sediment at 20 cm depth).

Several reasons have been put forward for the exponential
decrease in bacterial numbers commonly observed in marine sediments. Rheinheimer (1985) states that it is caused by a decrease in nutrient concentration and faunal activity with depth into the sediment. The decrease in bacterial numbers with depth may also be caused by high levels of hydrogen sulphide produced at depth by specialised sulphate reducing bacteria (Fenchel and Riedl, 1970). High levels of bacteria at the sediment surface at particular times of the year may result from fallout from phytoplankton blooms which temporarily increase the organic nutrient level of the surface sediment and facilitate bacterial growth (Hayes, 1964; Wolter, 1982; Linley et al., 1983; Lancelot and Billen, 1984; Rheinheimer, 1985). Peaks in bacterial numbers at depths in the sediment may be due to the presence of animal burrows in the sediment which contain high levels of bacteria in their linings. Anderson and Meadows (1978) found high levels of bacteria in burrows of Nereis diversicolor in the Clyde Estuary (c. $15 \times 10^{7} \mathrm{~g}^{-1}$ dry sediment). These levels were close to levels found at the sediment surface (c. $18 \times 10^{7} \mathrm{~g}^{-1}$ dry sediment) and were much higher than that found in sediment close to the burrow (c. $1 \times 10^{7} \mathrm{~g}^{-1}$ dry sediment). Meadows and Tait (1985) found that deep-sea burrows contained high levels of bacteria relative to surrounding sediment at the same depth. ZoBell (1938) suggests that burrowing animals may also be important for transferring aerobic bacteria from the sediment surfaces to depths in the sediment. The activities of burrowing animals may have been responsible for producing peaks in my data at certain depths in the sediment. Bacteria may also be carried from the surface to depths in the sediment by water draining through the sediment during low tide. Anderson and Meadows (1969) suggest that run-off from the land and rain water may wash bacteria from the surface of sand grains.

When I applied regression analysis and t-tests to my data to
assess whether specific sediment depths were related in terms of bacterial abundance, I found the following. Surface-5cm and surface20 cm had a direct relationship, i.e. as bacterial abundance at the first depth increased or decreased, bacterial abundance at the other depth varied in the same way. Surface- 10 cm and surface -35 cm had an indirect relationship, i.e. as bacterial abundance increased or decreased at one depth, it changed in the opposite way at the other depth. Comparisons between all the other depths showed a direct relationship. The reason for the above findings are not clear but may result from several factors such as changes in particle size with sediment depth and the rate of transfer of organic material and other nutrients between sediment depths in the interstitial water. Bioturbation may be important in influencing particle size and nutrient transfer between sediment depths. Burrowing animals are known to rework sediments and alter their particle size distribution (Fager, 1964; Rhoads, 1974). Burrows also play an important role in sediment pore-water chemistry and can alter fluxes of ions between sediment depths and across the sediment-water interface (Aller, 1980).

2- YEASTS
(i) Seasonal periodicity and abundance in overlying and interstitial water

My results showed that significantly greater numbers of yeasts were present in interstitial than in overlying water (2.2-119 $x 10^{3} \mathrm{ml}^{-1}, 0-4.350 \times 10^{3} \mathrm{ml}^{-1}$ respectively). I can find no references in the literature to work in which the number of yeasts in overlying water is compared to interstitial water. However, it is generally accepted that yeast abundance in seawater is influenced to a great extent by organic content (Fell and Van Uden, 1963; Van Uden and

Castelo-Branco, 1963; Ahearn et al. 1968; Ahearn, 1973; Fell, 1974). Since sediments generally contain levels of particulate organic matter much in excess of that found in overlying water (Meyer-Reil et al. 1978) it would be expected that the above results would be obtained.

I found that peaks of yeast abundance occurred in overlying water, in February, April and August 1984, and in January 1985. In interstitial water, peaks occurred in May, August and October 1984, and were more dramatic than those found with overlying water. Peaks in yeast abundance may be related to several factors. Increases in input of organic material to the environment in terms of pollution and phytoplankton blooms may increase yeast numbers. Spencer et al. (1970) found that seasonal variation in yeast abundance in the Saskatchewan river was directly related to the input of sewage to the river. Hagler and Mendonca-Hagler (1981), working in Brazilian estuaries and coastal sites, found 2880 C.F.U./l00ml water in heavily polluted areas, 202 C.F.U./l00ml water in moderately polluted areas and 3 C.F.U./100ml water in lightly polluted areas. These workers also found that high yeast numbers coincided with algal blooms. Morris (1968) stated that high yeast levels are possibly related to high levels of phytoplankton waste products present in the water after blooms. Meyers et al. (1967) found that seasonal peaks in yeast numbers in the North sea coincided with the end of dinoflagellate blooms.

Increases in temperature may affect yeast numbers at particular times of the year. Van Uden and Costelo Branco (1963) found that temperature affected the numbers of yeasts in water samples taken along the Californian coast. Seshadri and Sieburth (1971) detected maximum yeast numbers on seaweed samples from Narrangansett Bay, USA. during the warmest months of the year. Fell (1974) related the distribution and abundance of yeasts in the South Indian, South Pacific and South Atlantic oceans to several factors, including
temperature.
Changes in salinity can affect yeast numbers in marine environments, and may cause variations in numbers throughout the year. Seasonal changes in input of fresh water to estuaries from rivers and from run-off can alter salinity significantly. Ahearn et al. (1968) compared yeast abundance in water samples taken from rivers, estuaries and coastal sites around Florida. They found highest yeast numbers in fresh water, than in estuaries or coastal water. Combs et al. (1971) had similar results when they compared yeast abundance in long Island Sound and Housatonic River Estuary, USA. Higher levels occurred in the estuary than in the coastal samples.
(ii) Variation in yeast abundance with sediment depth, and seasonal

variation between depths

My results showed that in general, for each month there was a decrease in yeast numbers with depth. The decrease was most dramatic between the surface and 5 cm depth $\left(6.836-46.74 \times!0^{3}\right.$ and 0.1869-10.49 $x 10^{3} \mathrm{~g}^{-1}$ dry sediment respectively). After 5 cm , the decrease in numbers was more gradual. However, in three months, June, July and August, peaks were found at depths in the sediment, but these months were exceptions to the pattern described above. The greatest variation in yeast numbers between months occurred at the sediment surface. Similar variations in yeast numbers occurred below 10 cm depth.

Most of the literature concerned with yeasts from the marine environment, describes yeasts isolated from water samples. Very few workers have looked at yeast populations in marine sediments. ZoBell (1938) isolated bacteria and actinomycete-like organisms from deep-sea sediment collected along the Californian coast, but could not find any yeasts or mould fungi. Fell and Van Uden (1963) found that yeast numbers decreased with sediment depth in estuaries, coastal and deep-
sea sediments although they found a few yeast abundance peaks at some sediment depths. They noted that yeasts occurred at greater sediment depths in estuarine sediments than in coastal sediments. The authors suggested that the decrease in yeast numbers with depth was due to decreasing O_{2} levels, and that higher wave agitation and sedimentation in estuaries promoted yeast numbers. Rheinheimer (1985) states that yeasts generally occur in the topmost few centimeters of marine sediments. The decrease in yeast numbers with depth that I found at Ardmore Point is probably caused by a decrease in organic matter with sediment depth. This trend may be altered by localised phenomena such as the presence of animal burrows containing faeces where yeast levels are high (Fell and Van Uden, 1963).

As with the bacterial data, sediment depths were compared in terms of C.F.U. g^{-1} dry sediment using regression analyses and t tests. Direct relationships were found between the surface and all the other depths. When the depths were compared with each other, no significant relationship was found between them with the exception of the $20-35 \mathrm{~cm}$ comparison where a direct relationship occurred. These findings probably result from a combination of several factors such as changes in particle size with sediment depth, exchange of organic nutrients between depths and across the sediment-water interface, and bioturbation effects.

FUNGI

(i) Seasonal periodicity and abundance in overlying and interstitial water

My results showed that, in general, unlike bacteria and yeasts, fungal abundance in overlying and interstitial water were similar. Seasonal variations in fungal abundance in overlying and
interstitial water were also similar apart from only small differences in time between some peaks. For example, the highest numbers of fungi in overlying water occurred in February 1984 while the highest numbers in interstitial water occurred in March.

I can find no previous reference in the literature to studies in which fungal abundance in interstitial and overlying water are compared. Indeed very little is known about factors responsible for establishing distribution patterns of fungi in marine environments (Johnson, 1968). Salinity and temperature have been tentatively explored as factors determining the distribution and occurrence of saprobic fungi in salt water (Sparrow and Johnson, 1961; Ritchie and Jacobson, 1963; Johnson, 1968; Sparrow, 1968).

It is not clear why similar fungal numbers were found in interstitial and overlying water. One would expect to find the highest numbers in interstitial water due to the correspondingly greater organic matter levels. Elliott (1930) found higher fungal numbers in organic rich sediments than in organic poor sediments. My results may have been influenced by the presence of spores or conidia of terrestrial fungi in the overlying water. It is stated by Elliott (1930) that terrestrial spores or conidia that are washed into saltmarshes can retain their viability for years.
(ii) Variation in fungal abundance with sediment depth, and seasonal variation between depths

No clear variation in the numbers of fungi with sediment depth was found. The depth profiles showed large fluctuations between months. However, fungal abundance peaked at similar times of the year at all depths (February and May-August).

Varying accounts have been given of seasonal periodicity in marine fungi. Borut and Johnson (1962) found no seasonal variation in
fungal abundance in a North Carolina estuary. However, Elliott (1930) found higher numbers of Dovey salt marsh fungi in June than in other months.

Little information is given in the literature on the variation in fungal abundance with sediment depth. Elliott (1930) looked at variations in the species present at particular depths but did not study changes in abundance. Litchfield and Floodgate (1975) carried out a study on the bacteriology of Irish sea sediments, and mentioned finding higher numbers of fungi in deeper sediment layers than at the surface. They suggested that the fungi had come from soil drainage and laid dormant as spores. It is difficult to put forward suggestions for the erratic depth profiles that were found in my study.

SECTION 2

SUMMARY

The aims of my work in this section were to estimate the seasonal viable counts of hetrotrophic bacteria, yeasts and fungi in overlying, and interstitial waters and sediments (vertical profiles) at Ardmore, Clyde Estuary.

BACIERIA

l- The relationship between numbers of bacteria in overlying and interstitial water at Ardmore Point over a period of thirteen months was studied. The results showed that the numbers of bacteria in interstitial water were higher than that of overlying water.

2- In overlying water, a peak in bacterial numbers was shown in February 1984, while in interstitial water, anumber of marked peaks of bacterial numbers occurredin March and between April-November 1984.

3- The variation in the numbers of bacteria at different sediment depths was studied. The following conclusions were made.
(a) The numbers of bacteria were greatest at the surface sediment and tended to decrease with depth.
(b) At the surface sediment, peaks of high levels of bacteria occurred in February, April, August and November 1984 and in January 1985.
(c) At 5 and 10 cm sediment depth, similar ranges of bacterial numbers occurred.
(i) - At 5 cm depth, three peaks occurred in FebruaryMarch, and August 1984 and in January 1985.
(ii)- At 10 cm depth, two peaks occurred in March and June 1984.
(d) At 20 and 35 cm depth, much lower numbers of bacteria were found than at 5 and 10 cm depth.
(i)- At 20 cm depth, three minor peaks occurred in March-

April, July-August and in January 1985.
(ii)- At 35 cm depth, only one peak of bacterial numbers occurred in August 1984.

4The variation in the numbers of bacteria with depth for each month from February 1984 to February 1985 was studied. The results showed that in general, the patterns of decreasing numbers of bacteria with depth was similar for all months except for surface sediment which showed high levels of bacteria in February, April, August, November 1984 and in January 1985.

5- The bacterial numbers at each sampling depth were compared using all data collected over thirteen months. This was carried out using regression analyses and student's t-tests. The bacterial numbers at each depth were also plotted against the other depths (e.g. surface against the other depths). The results showed the following.
a) A direct relationship in bacterial numbers occurred in all cases with only a few exceptions as follows.
(i) An inverse relationship was found in the comparisons of surface- 10 cm and surface- 35 cm depth.
(ii) No significant relationship was found in the $5-10 \mathrm{~cm}$ comparison.
(iii) The t-tests showed significant differences in bacterial numbers between all depths with the exception of $5-10 \mathrm{~cm}$, where no significant difference was found.
$6-$ The relationship between the numbers of bacteria (C.F.U.) and incubation time (days) was investigated for overlying and interstitial waters collected in July 1984. The results showed that bacteria in overlying water reached a maximum growth after 20 days, while in interstitial water, the maximum growth occurred after only 7 days. 7The relationship between the numbers of bacteria (C.F.U.) in sediment from different depths, and incubation time (days) was also
studied. The results showed that in general, there was a decrease in bacterial numbers with sediment deptn at each incubation time. In addition at greater sediment depths there was a less pronounced increase in bacterial growth with increasing incubation time. The maximum growth was always reached approximatley after 15 days incubation.

YEASTS

1- The relationship between numbers of yeasts in overlying and interstitial waters at Ardmore Point over a period of thirteen months was studied. The results showed that interstitial water contained significantly higher numbers of yeasts than overlying water.

In overlying water, 4 peaks of yeast numbers were shown in February, April and August 1984, and in January 1985, while in interstitial water, 3 peaks of yeasts were shown in May, August and October 1984.

3- The variation in numbers of yeasts in sediment at different depths was studied. The results showed the following conclusions.
(a) The numbers of yeasts were greatest at the surface sediment and in general, tended to decrease with depth.
(b) At the surface sediment, peaks of high levels of yeasts occurred in November with lesser peaks in March and September 1984 and in January 1985.
(c) At 5 cm depth, maximum numbers of yeasts were found in February 1985.
(d) At 10 cm depth, maximum numbers were found in June 1984.
(e) At 20 cm and 35 cm depth, similar curves were found although peaks occurred at slightly different times of the year (August at 20 cm and July at 35 cm). The variation in the numbers of yeasts with depth for each month from February 1984 to February 1985 was studied. The results
showed that in general, the patterns of decreasing numbers of yeasts with depths was simılar for all months with the exception of February, March, June, July and August which showed peaks of numbers of yeasts at 10 cm and 20 cm depth.

5- The yeast numbers at each sampling depth were compared using all data collected over thirteen months. This was carried out using regression analysis and student's t-tests. the yeast numbers at each depth were also plotted against the other depths (e.g. surface against the other depths). The results showed the following.
(a) Highly inversely significant relationships were found with all the surface comparisons.
(b) There were no significant relationships between all the other depths with exception of $20 \mathrm{~cm}-35 \mathrm{~cm}$ depth which showed a direct significant relationship.

FUNGI

1- The relationship between numbers of fungi in overlying and interstitial waters at Ardmore Point over a period of thirteen months was studied. The results showed similar seasonal abundance with overlying and interstitial waters and the ranges in fungal abundance were close in both samples.

2- In general, there were 3 peaks of fungal growth for both overlying water (February, July and November 1984) and interstitial water (February-March, and November 1984).

3- The varlation in the numbers of fungi at different sediment depths was studied. There was no clear decrease in the numbers of fungi with depth. The results also showed at all depths, there were 2 peaks of high numbers of fungi (February 1984 and May-August).

4- The varlation in the numbers of fungi with depth for each month from February 1984 to February 1985 was studied. The results showed no clear pattern of decreasing numbers of fungi with depth.

SECTION 3

The use of API test-kits and their function on marine and non-marine isolates and on sediments

SECTION 3

INIRODUCTION

Biochemical tests

Many methods have been used to identify bacteria from different sources, including, conventional biochemical tests and testkits.

Identifying bacteria using conventional tests is often time consuming. These tests usually involve detecting one or more bacterial enzymes by colour changes or gas formation according to enzyme activity (Shewan and Hodgkiss, 1954; Kovacs, 1956; Gaby and Hadly, 1957; Shewan et al., 1960; Leifson, 1963). However, identification of bacteria nas been greatly simplified by the developement of new testkits for routine bacteriological work.

Many investigators have used the test-kits systems. The systems used todate are API 20E (Holmes et al., 1978; Edberg et al., 1979; Aldridge and Hodges, 1981; Rüger, 1981; Holmes et al., 1982; MacDonell et al., 1982; O'Reilly et al., 1984). API 20B (Rüger, 1981), API ZYM (Smith et al., 1972; Humble et al., 1977; Tharagonnet et al., 1977; Hofstad, 1980; Waitkins et al., 1980; Kelley, 1982; O'Reilly et al., 1984), Minitek (Back and Oberhofer, 1978; Retter and Bannatyne, 1981; Rüger, 1981), MICRO-ID (Aldridge et al., 1978; Edberg et al., 1979), R/B tubes (Nord et al. 1974), and Entero-set 20 (Aldridge and Hodges, 1981). Appendix p. 476 gives further particulars about the API ZYM, 20E, 20NE, 20B, 50CH, and Minitek systems.

The API ZYM system is in increasing use at the moment to detect bacterial enzymes and to identify bacteria and I shall review some of the studies that have been conducted using it. Humble et al. (1977) used the API ZYM system to detect enzymes for 18 clinical bacterial isolates from several species. They reported in this
preliminary study that the API ZYM system produced results that may be useful in the identification of a variety of bacteria. Tharagonnet et al. (1977) studied the use of API ZYM system in the identification of Gram-negative anaerobes from human sources. The method has also been used by Waitkins et al. (1980) who identified Streptococci by the same technique. The API ZYM system however, can not differentiate between certain groups of bacteria. Hofstad (1980) used the technique to identify many species of Bacteroides and Fusobacterium. He found that the system only discriminated between certain Bacteroides species but did not discriminate between Fusobacterium species.

Over the past few years, other biochemical test-kits have been widley used in clinical laboratories. Aldridge and Hodges (1981) studied the degree of accuracy and reproducibility of Entero-set 20, API 20 E and conventional media systems for identification of members of the family Enterobacteriaceae collected from clinical sources. They showed that both systems performed with a high degree of accuracy and reproducibility when compared with conventional tube media. Holmes et al. (1982) used the API 20E for biotyping the clinical strains of Haemophilus influenzae. They concluded that API 20E provided 100% correlation with the conventional methods. Edberg et al. (1979) evaluated the ability of the MICRO-ID, API 20E, and the conventional media system to identify members of the Enterobacteriaceae. Edberg and his associates found that MICRO-ID compared quite favorably with conventional methods. They also found that the MICRO-ID and the API 20 E agreed on the genus and species names in 85.7% of cases. Nord et al. (1974) studied the accuracy of five test-kits; API, Auxotab, Enterotube, Patho-Tec and R/B tubes in trials to identify members of Enterobacteriaceae. They found that the API system was the most reliable technique followed by Enterotube, R/B, Patho-Tec and Auxo-Tab in that order. Although these systems showed reasonable
reproducibility in this study some questionable results ard problems have been shown by the API system. For example, O'Reilly et al. (1984) tried to evaluate the systems API 20E and API ZYM for clinical purposes. They succeeded in characterising ard differentiating 30 Haemophilus and 6 Actinobacillus strains, but they reported that identification and nomerclature proved difficult in some cases. This may be due to defects in some of the test media in the available kits. Holmes et al. (1978) examired 206 strains of Enterobacteriaceae using the API 20E system and conver.tional media. They suggested that slight modification of either the kit or the reagent might further improve its diagnostic performance. Holmes and his co-workers determired ritrate reduction in 86 strains using the API 20 E system and the reagents of Crosby (1967). Only 10 strains gave a negative result. When these 10 strains were re-tested with the same techrique but using the reagents recommended by the manufacturer, 6 strains gave a positive result and 4 were regative. The authors therefore recommended that the marufacturer of the API system should consider recommending the reagents of Crosby (1967) to future users of the API 20E system. Earlier studies by Leifson (1963) showed that the irdicator bromthymol blue, used ir the API $20 E$ system to detect acid production from carbohydrates, is toxic to many marine bacteria and this point should be taker into consideration as well.

There is very little literature and some critisism on the applicability of the commercially available test-kits to marire bacteria (Gauthier and Clement, 1978; Pyle and Shotts, 1980; Rüger, 1981; MacDorell et al., 1982). Rüger (1981) compared the API 20B, API 20E, API 50E ard Miritek with conventional methods for differertiating marine ard terrestrial strairs of Alchigenes, Bacillus ard Vibrio.

With the strair/Alcaligeres, orly the Miritek system agreed with the
conventional method while with the other two strains, all test systems showed reliable results. The author reported that the media of the commercially available kits are not suitable for marine bacteria. He therefore substituted Leifson's (1963) MOF media for the media of API 20B, API 50E and Minitek. With the API 20E, sterile seawater (17%) was used as the test medium instead of the distilled water recommended by the manufacturer. MacDonell et al. (1982) evaluated the influence of nine chemical inoculation diluents on the biochemical profiles of 30 marine and estuarine cultures including Vibrio, Aeromonas, Allomonas and Phtobacterium using the API 20E system. The authors showed that the API 20E system, modified by the use of marine salts diluent prepared with the salinity adjusted to 20% and incubated at $22^{\circ} \mathrm{C}$, can provide a rapid characterisation of marine and estuarine bacteria.

The manufacturer of the API test-kits state that API ZYM kits are applicable to specimens such as body fluids and soil. There appears, however, to be no published work on the applicability of the commercially available API ZYM test-kits to intertidal sediments, or to overlying and interstitial seawater.

The aim of the work reported in this section was to apply the API ZYM, API 20E and API 20NE micromethod systems to marine and nonmarine samples in a number of experiments. The API 20E and API 20NE systems were applied to marine and non-marine bacterial strains in order to study the accuracy and reproducibility of these kits in identifying marine bacteria. The API ZYM was used in an attempt to classify sediments only, and was not used with bacterial strains.

SECTION 3

API ZYM

EXPERIMENT NO. 1

Aim of experiment

The aim of this experiment was to determine the degree of variation in the quantity of sediment dispensed by (a) successive drops from a given pasteur pipette following one filling, and (b) drops from different pipettes.

Materials and methods

Sediment samples were taken from the surface of a core collected from Ardmore Point and carefully washed into 5 ml bijou bottles with sterile artificial seawater. Four drops were then dispensed from a pasteur pipette into each of four weighed metal foil cups. This process was repeated twice using the same pipette. The whole procedure was also repeated twice using two separate pasteur pipettes. Twelve drops were therefore dispensed from each pasteur pipette (Table 1). Samples were dried in the oven at $60^{\circ} \mathrm{C}$ for 24 hours. After drying, sediment was kept in a desiccator until cooled and then weighed in order to calculate the dry weight of sediment obtained from each drop. This value was then used to determine the amount of inoculum dispensed from the pasteur pipette used in the inoculation.

EXPERIMENT NO. 2

Aim of experiment

The aim of this experiment was to determine the optimum incubation time of inoculated API ZYM strips using surface sediment samples.

| | Pasteur pipette (A) | Pasteur pipette (B) | Pasteur pipette (C) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | I | II | III | I | II | III | I | II | III |
| First drop | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Second drop | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Third drop | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Fourth drop | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

Table l: Experimental procedure used to determine the degree of variation in the quantity of sediment dispensed by (a) successive drops from a given pasteur pipette following one filling, and (b) drops from different pipettes. For each pipette, three replicates were used.

Materials and methods

Sediment samples were collected at Ardmore Point and transported to the laboratory for analysis. Approximately 3 g of sediment were suspended in 3 ml of sterile artificial membrane filtered seawater. Two drops of sediment suspension were dispensed into each cupule using a pasteur pipette. Two replica strips and one control, containing only sterile filtered seawater, were used for each incubation time. Incubation times of $2.5,5,10$ and 20 hours were tested both before and after addition of ZYM A and B reagents. Figure 1 shows the procedure adopted to the API ZYM experiments.

EXPERIMENT NO. 3

Aim of experiment

The aim of this experiment was to determine how soon colour developed after addition of reagents and how soon it reached a maximum intensity. Sediment from a range of sediment depths was used in this experiment.

Materials and methods

Sediment was collected from Ardmore Point using a sediment corer. The sediment core was kept at $4^{\circ} \mathrm{C}$ overnight then subdivided. 3 g samples of sediment were taken from $0,5,10,20$ and 35 cm and washed separately into 5 ml bijou bottles using 3 ml of membrane filtered sterile seawater (0.45um). After shaking to resuspend sediment, each cupule of the API strip was inoculated with two drops of the suspension using a pasteur pipette. After 12 hours incubation at $10^{\circ} \mathrm{C}$, one drop from each reagent of ZYM A and B was dispensed into each cupule. Colour development for the duplicate tests were recorded 5, 15, $30,60,120,300$ and 720 minutes after the addition of reagents. The strips were set up at staggered times to allow readings to be taken at the correct time intervals.

Figure 1
Flow diagram showing procedure adopted in the API ZYM experiments.

EXPERIMENT NO. 4

Aim of experiment

The aim of this experiment was to test whether colour present in API cupules was produced by membrane filterable products and if so, whether these substances were heat stable or heat labile.

Materials and methods

Samples of overlying and interstitial water were collected and brought to the laboratory for immediate processing. Each sample was subdivided into four parts (Figure 2) and treated as follows:
l- Control sample (untreated).
2- Filtered through a 0.22 um membrane filter.
3- Membrane filtered, boiled for 15 minutes, cooled and re-filtered.

4- Membrane filtered, water was autoclaved at $121^{\circ} \mathrm{C}$ for 15 minutes cooled and re-filtered using the same size of filter as described above.

Two drops of treated samples were dispensed into each API ZYM cupule using a pasteur pipette. About 5 ml of tap water was dropped into the incubation trays to provide a humid atmosphere. Following inoculation of all the strips, plastic lids were placed on the trays and then they were incubated for 12 hours at $10^{\circ} \mathrm{C}$. Following incubation, one drop of reagent ZYM A and one drop of reagent ZYM B were added into each cupule. Trays were then re-incubated for 6 hours at $10^{\circ} \mathrm{C}$. All strips were then read against a reading scale and results were recorded.

Figure 2
Flow diagram showing how overlying and interstitial water samples were subdivided and treated before being tested using the API ZYM system.
Overlying and interstitial water

API 20E and 20NE

EXPERTMENT A

Aim of experiment

The aim of this experiment was to test the effect of bacterial cell concentrations or the API system. It is important to obtain a growth curve showing the phase at which the culture must be inoculated into the API system.

Materials and methods

Preparation of broth medium
The cultural broth medium used in this experiment was seawater yeast peptore medium. The composition of this medium was as follows:

The ingredients of this medium were dissolved by boiling 3-5 minutes than filtered using Millex-HA 0.45um and the pH was adjusted to 7.5. Sterilization was achieved by autoclaving at $121^{\circ} \mathrm{C}$ for 15 mirutes.

Culture method

The marine strains, Vibrio fischeri and Micrococcus sp. and the non-marine strains, Aeromonas hydrophila and Escherichia coli were used. These cultures were resubcultured on ZoBell agar and ircubated at $20^{\circ} \mathrm{C}$ for 7 days. Good-sized distinct colonies was picked up from each culture and inoculated into 5 tubes of l0ml seawater yeast peptone medium. Two uninoculated tubes containing medium were used as controls to obtain "blark" readings. Followirg inoculation, the tubes were incubated at $20^{\circ} \mathrm{C}$ and turbidity readings were taken every 6
hours. These readings were compared with MacFarland barium sulphate tubes until peak growth had clearly been reached. Figure 3 shows the procedures adopted in this experiment.

EXPERTMENI B

Aim of experiment

The aim of this experiment was to test how the API 20E and API 20NE systems work with marine and non-marine bacteria in relation to the oxidase reaction. This experiment also tested the effect of bacterial cell concentration on the kit-system reaction.

Materials and methods

The marine strains, Vibrio fischeri (oxidase positive) and Micrococcus sp. (oxidase negative) and the non-marine strains, Aeromonas hydrophila (oxidase positive) and Escherichia coli (oxidase negative) were resubcultured on ZoBell agar and incubated at $20^{\circ} \mathrm{C}$ for 48 hours. For the API 20E, each isolate was inoculated into sterile universal bottles containing 9 ml sterile artificial seawater adjusted to 20% salinity. The concentration of the bacterial suspension was adjusted so that it's turbidity was equivalent to that of the No. 5 MacFarland tubes. A series of dilutions were made and API 20E strips were inoculated from each dilution. For the API 20NE, each isolate was inoculated into 3 ml of 8.5% sterile NaCl as the initial suspension and a series of dilutions were made after the cell concentration was adjusted to 5 on the MacFarland turbidity scale. Using sterile pipettes, the first 8 tests of the API 20NE strip were inoculated with the saline suspension. $200 \mu \mathrm{l}$ of the remaining saline suspension was transferred by micropipette into the assimilation medium provided. The 12 assimilation tests were inoculated with the medium filling both the

Figure 3
Flow diagram showing procedure adopted in experiment to test the effect of bacterial cell concentrations on the API system and obtaining a growth curve. $\mathrm{OX}=$ Oxidase test.
tube and cupule sections of the microtubes so as to leave a flat or slightly convex surface. Following inoculation, some tests were covered with mineral oil and strips were incubated at $20^{\circ} \mathrm{C}$. After 24 , 48, 72 and 96 hours, the strips were read and the results recorded.

EXPERIMENT C

Aim of experiment

The aim of this experiment was to test the effect of the number of Escherichia coli cells and incubation time on the API 20E system.

Materials and methods

This study was divided into two experiments, preliminary and definitive experiments.

Prelimirary experimert

Tubes containing Escherichia coli used in the growth curve experiment (see above, experiment A) were used in the preliminary study to test the effect of bacterial cell numbers and incubation time on the API 20E tests. The procedure was carried out with centrifuging tubes containing culture. The cultures were centrifuged at 1250 ' g ' for 15 mirutes. The supernatant was ther removed and 10 ml of sterile artificial seawater was added and the tubes shaker to re-susperd the bacterial cells. Two dilutions, 1:10 and 1:100, were used to iroculate 2 API strips. Following inoculation, strips were incubated at $20^{\circ} \mathrm{C}$ for 24 hours before being read. The cupules containing no added reagents were cut off and reircubated prior to reading after 48 and 96 hours.

Definitive experiment

One colony of Escherichia coli was inoculated into 10 ml of seawater yeast peptone broth ard ircubated at $20^{\circ} \mathrm{C}$ for 12 hours. The
inoculated medium was centrifuged for 15 minutes at 1250 ' g ' to spin down the supernatant and the sedimented culture was ther washed into loml sterile artificial seawater (20%). A series of dilutions were made from this culture (10° to 10^{-4}) and duplicate strips of API 20E were inoculated from each dilutior. Following inoculation, strips were incubated at 20° and readings were taken after 24 hours. Tests containing no added reagents were cut off and reincubated at $20^{\circ} \mathrm{C}$ for further readings at 32,48 ard 72 hours.

EXPERIMENT D

Aim of experiment

The aim of the experiment was to test whether the API 20NE system produced replicable results with the \bar{k} marine isolate Aeromonas hydrophila when used by two separate workers.

Materials and methods

Four strips of API 20NE were inoculated with Aeromonas hydrophila. Bacterial cell concentrations equivalert to 0.5 and 5 on. the MacFarland barium sulphate scale tubes were prepared and used to inoculate strips. This preliminary study was carried out by 2 workers and personal error was avoided by alternating tasks. Following inoculation, strips were incubated at $20^{\circ} \mathrm{C}$ and readings were taker. after 24,48 and 120 hours.

Note:

MacFarlard barium sulphate stardard set. Difco Laboratory, Detroit, Michigan, U.S.A. Set of 10 tubes. Code no. 0691-32-6.

SECTION 3

RESULTS

Experiment 1

The results of the two replicate experiments are presented in table 2, and their statistical analysis is shown in table 3. The original results are given in appendix tables 1 and 2.

The variation in the amount of sediment dispensed in metal foil from the three pasteur pipettes was tested using two two-way analyses of variance.

In the two-way analysis comparing drops against pipettes (Table 3), no significant variation was found in the first replica experiment between drops and pipettes (both, $0.50>P>0.25$).

In the second replica experiment, there was also no significant variation between drops (Factor $A ; 0.75>P>0.50$) and pipettes (Factor B; 0.50>P>0.25).

Experiment 2

The results of this experiment suggested that the highest amount of hydrolysed substrate occured after $10-20$ hours in the first incubation time and $5-20$ hours in the second incubation time at $10^{\circ} \mathrm{C}$ as shown in figure 4 and appendix table 3.

Student's t-tests comparing the quantity of hydrolysed substrate in each API cupule at the first and second incubation times were carried out. The results are given in tables 4 and 5.

In general, differences were found between the first incubation times in all the cupules except between 10×20 in cupule 2; 2.5×5 in cupule $7 ; 2.5 \times 5,2.5 \times 20$ and 5×20 in cupule $8 ; 2.5$ $\times 5,2.5 \times 20$ and 5×20 in cupule $9 ; 2.5 \times 5$ in cupule 11 and 2.5×5 and 10×20 in cupule 12 .

In the second incubation time, no significant variation was

Replicate Experiment 1

Drop	Pipette I	Pipette II	Pipette III	
	X s.d.	$\overline{\mathrm{X}}$ s.d.	$\overline{\mathrm{X}}$	s.d.
1	0.01695 ± 0.002148	0.01631 ± 0.003881	0.01871	± 0.002420
2	0.01620 ± 0.003340	0.02013 ± 0.001362	0.01666	± 0.01289
3	0.02267 ± 0.008604	0.008843 ± 0.001914	0.0878	± 0.1215
4	0.01183 ± 0.007896	$0.005583+0.001636$	0.02076	+0.006639

Replicate Experiment 2

Prop	Pipette I	Pipette II	Pipette III		
	$\overline{\mathrm{X}}$	$\mathrm{s.d}$.	$\overline{\mathrm{X}}$	$\mathrm{s.d}$.	$\overline{\mathrm{X}}$
1	0.01873 ± 0.003435	0.01904	± 0.001314	0.01750	± 0.004908
2	0.02449 ± 0.01113	0.02474	± 0.01341	0.01645	± 0.0007550
3	0.02056 ± 0.002565	0.01508	± 0.002690	0.02101	± 0.004699
4	0.02094 ± 0.0007353	0.01524	± 0.004695	0.01768	± 0.005575

Table 2: Weights (g) of intertidal sediment obtained from disposable glass Pasteur pipettes in the first, second, third and fourth drops from one filling. Means \pm s.d. of 3 replicate readings.

Replicate Experiment 1

Sum of squares (SS)	Mean squares (MS)	d.f.	F	Probability (P)	
Factor A	3.982×10^{-3}	1.327×10^{-3}	3	1.051	$0.50>P>0.25$
Factor B	3.690×10^{-3}	1.845×10^{-3}	2	1.461	$0.50>P>0.25$
A/B interaction	7.363×10^{-3}	1.227×10^{-3}	6	-0.9716	$0.50>P>0.25$
Error	3.031×10^{-2}	1.263×10^{-3}	24		
Total	0.04535		35		

Replicate Experiment 2

	Sum of squares (SS)	Mean squares (MS)	d.f.	F	Probability (P)	
Factor A	8.535×10^{-5}	2.845×10^{-5}	3	0.7915	$0.75>P>0.50$	
Factor B	6.522×10^{-5}	3.261×10^{-5}	2	0.9072	$0.50>P>0.25$	
A/B interaction	1.868×10^{-4}	3.113×10^{-5}	6	0.8660	$0.75>P>0.50$	
Error	8.626×10^{-4}	3.594×10^{-5}	24			
Total	1.200×10^{-3}		35			

Table 3: Pasteur pipette experiments 1 and 2. Two way analyses of variance testing differences between weights of sediment in drops l-4 (Factor A) from 3 pipettes (Factor B).

Figure 4
Amount of hydrolysed substrate (nanomoles) in API ZYM cupules at each first and second incubation times (2.5, 5, 10 and 20 hours). First incubation time $=$ before addition of reagents, second incubation time $=$ after addition of reagents. Vertical lines represent the amount of hydrolysed substrate at the second incubation time. At each cupule, the lst and 2 nd lines represent 2.5 hours of second incubation time (replicates a and b); the 3 rd and 4 th lines represent 5 hours (replicates a and b); the 5th and 6th lines represent 10 hours (replicates a and b) and the 7th and 8th lines represent 20 hours of second incubation (replicates a and b).
(uo!feqnou! fsd!t) 49° Z

Cupule number (substrate number)

10h (first incubation)

Cupule number (substrate number)

Cupule Number	First incubation Time Comparison (hour)	Student t	d.f.	Probability (P)
2	2.5×5	3.347	14	$0.01>\mathrm{P}>0.001$
	2.5×10	10.69	7	$\mathrm{P}<0.001$
	2.5×20	10.69 *	7	$\mathrm{P}<0.001$
	5×10	3.000 *	7	$0.02>\mathrm{P}>0.01$
	5×20	3.000 *	7	$0.02>\mathrm{P}>0.01$
	10×20	0	14	$\mathrm{P}>0.9$
6	2.5×5	2.731 *	8	$0.05>\mathrm{P}>0.02$
	2.5×10	16.99	7	$\mathrm{P}<0.001$
	2.5×20	48.97 *	7	$\mathrm{P}<0.001$
	5×10	1.983 *	7	$0.1>\mathrm{P}>0.05$
	5×20	11.06 *	7	$\mathrm{P}<0.001$
	10×20	748.4	14	$\mathrm{P}>0.001$
7	2.5×5	0.2069	14	$0.9>\mathrm{P}>0.8$
	2.5×10	4.254 *	7	$0.01>\mathrm{P}>0.001$
	2.5×20	5.121	14	$\mathrm{P}<0.001$
	5×10	4.249 *	7	$0.01>\mathrm{P}>0.001$
	5×20	5.061	14	$\mathrm{P}<0.001$
	10×20	3.416 *	7	$0.02>\mathrm{P}>0.01$
8	2.5×5	0	14	$\mathrm{P}>0.9$
	2.5×10	3.035	14	0.01 > P > 0.001
	2.5×20	0.4745	14	$0.7>\mathrm{P}>0.6$
	5×10	3.035	14	$0.01>\mathrm{P}>0.001$
	5×20	0.4745	14	$0.7>\mathrm{P}>0.6$
	10×20	3.360 *	11	0.01 > P > 0.001
9	2.5×5	0.7977	14	$0.5>\mathrm{P}>0.4$
	2.5×10	9.350 *	7	$\mathrm{P}<0.001$
	2.5×20	1.270 *	11	$0.3>\mathrm{P}>0.2$
	5×10	16.79	7	$\mathrm{P}<0.001$
	5×20	0.6061	14	$0.6>\mathrm{P}>0.5$
	10×20	22.96	7	$\mathrm{P}>0.001$
11	2.5×5	1.158	14	$0.3>\mathrm{P}>0.2$
	2.5×10	10.48	14	$\mathrm{P}<0.001$
	2.5×20	8.034 *	7	$\mathrm{P}<0.001$
	5×10	6.298 *	10	$\mathrm{P}<0.001$
	5×20	3.981	7	$0.01>\mathrm{P}>0.001$
	10×20	7.000 *	7	$\mathrm{P}>0.001$
12	2.5×5	1.002 *	7	$0.4>P>0.3$
	2.5×10	3.199 *	8	$0.02>\mathrm{P}>0.01$
	2.5×20	22.96 *	7	$\mathrm{P}<0.001$
	5×10	3.416 *	7	$0.02>\mathrm{P}>0.01$
	5×20	394.9 *	7	$\mathrm{P}>0.001$
	10×20	0.6832*	7	$0.6>\mathrm{P}>0.5$

Table 4: Students t-tests comparing the amount of hydrolysed substrate in each API ZYM cupule at each first incubation time. First incubation time $=$ before addition of developing reagents. * = unequal variance ttest.

Cupule Number	Second incubation Time Comparison (hour)	Student t	d.f.	Probability (P)
2	2.5×5	0.5239	14	$0.7>\mathrm{P}>0.6$
	2.5×10	0.8509	14	$0.5>\mathrm{P}>0.4$
	2.5×20	0.8509	14	$0.5>\mathrm{P}>0.4$
	5×10	0.2977	14	$0.8>\mathrm{P}>0.7$
	5×20	0.2977	14	$0.8>\mathrm{P}>0.7$
	10×20	0	14	$\mathrm{P}>0.9$
6	2.5×5	0.1855	14	$0.9>\mathrm{P}>0.8$
	2.5×10	0.4906	14	$0.7>\mathrm{P}>0.6$
	2.5×20	0.4906	14	$0.7>\mathrm{P}>0.6$
	5×10	0.3011	14	$0.8>\mathrm{P}>0.7$
	5×20	0.3011	14	$0.8>\mathrm{P}>0.7$
	10×20	0	14	$\mathrm{P}>0.9$
7	2.5×5	0.1057	14	P > 0.9
	2.5×10	0.7157	14	$0.5>\mathrm{P}>0.4$
	2.5×20	1.077	14	$0.3>\mathrm{P}>0.2$
	5×10	0.8129	14	$0.5>\mathrm{P}>0.4$
	5×20	1.159	14	$0.3>\mathrm{P}>0.2$
	10×20	0.4752	14	$0.7>\mathrm{P}>0.6$
8	2.5×5	0.9165*	10	$0.4>\mathrm{P}>0.3$
	2.5×10	2.593	14	$0.05>\mathrm{P}>0.02$
	2.5×20	2.593	14	$0.05>\mathrm{P}>0.02$
	5×10	1.048	14	$0.4>P>0.3$
	5×20	1.048	14	$0.4>\mathrm{P}>0.3$
	10×20	0	14	P >0.9
9	2.5×5	0.3489	14	$0.8>\mathrm{P}>0.7$
	2.5×10	0.3839	14	$0.8>\mathrm{P}>0.7$
	2.5×20	0.5932	14	$0.6>\mathrm{P}>0.5$
	5×10	0.7234	14	$0.5>\mathrm{P}>0.4$
	5×20	0.9285	14	$0.4>\mathrm{P}>0.3$
	10×20	0.2072	14	$0.9>\mathrm{P}>0.8$
11	2.5×5	0.1012	14	$\mathrm{P}>0.9$
	2.5×10	0.4441	14	$0.7>\mathrm{P}>0.6$
	2.5×20	0.4441	14	$0.7>\mathrm{P}>0.6$
	5×10	0.4840	14	$0.7>\mathrm{P}>0.6$
	5×20	0.4840	14	$0.7>\mathrm{P}>0.6$
	10×20	0	14	$\mathrm{P}>0.9$
12	2.5×5	0.3567	14	$0.8>\mathrm{P}>0.7$
	2.5×10	0.3567	14	$0.8>\mathrm{P}>0.7$
	2.5×20	1.158	14	$0.3>\mathrm{P}>0.2$
	5×10	0	14	$\mathrm{P}>0.9$
	5×20	0.8721	14	$0.4>\mathrm{P}>0.3$
	10×20	0.8721	14	$0.4>\mathrm{P}>0.3$

Table 5: Students t-tests comparing the amount of hydrolysed substrate in each API ZYM cupule at each second incubation time. Second incubation time $=$ after addition of developing reagents. $*=$ unequal variance $t-$ test.
found except in cupule 8 (2.5×10 and 2.5×20). The original results are shown in appendix table 3.

Experiment 3

The results of this experiment showed that some colour development of surface sediment was noticed immediately after reagents were added. Colour developed more slowly and to a lesser degreein deep than in surface sediment as shown in figure 5 and plate l. Even after 12 hours of incubation, the amount of substrate hydrolysed by surface sediment was generally greater than for deep sediment.

The variation in nanomole scores between sampling depths and between number of cupules (Table 6) was tested statistically using a two-way analysis of variance. The results of this analysis are shown in table 7. Possible statistical interaction was found ($0.10>\mathrm{P}>0.05$); therefore breakdown one-way analyses of variance were carried out. The results of these analyses are shown in table 8. A highly significant variation between cupules was found at a depth of 5 cm ($\mathrm{P}<0.001$). At depths of $10 \mathrm{~cm}, 20 \mathrm{~cm}$ and 35 cm , no significant variation between cupules was found (all, $0.50>P>0.25$). With the surface sediment, only possible variation between cupules was found (0.10>P>0.05) .

A significant variation between depths was found at cupule 2 ($0.01>P>0.005$) and cupule 6 ($0.005>P>0.001$). At cupule 7 and 11 , no significant variation between depths was found (both $0.25>P>0.10$)

The variation in time at which maximum scores were reached (Table 9) was analysed statistically using a two-way analysis of variance. The results are shown in table 10. A significant variation was found with depth (Factor $A ; 0.05>P>0.025$). No significant variation between cupules was found (Factor B; $0.75>P>0.50$).

Figure 5

Relationship between the quantity of hydrolysed substrate in API ZYM cupules (2, 6, 7 and 11) and time. a- (0) surface sediment. b- (Δ) sediment from 5 cm depth.
c- (\mathbf{A}) sediment from 10 cm depth.
d- (m) sediment from 20 cm depth.
e- (•) sediment from 35 cm depth.
(Cupule 2)

Time (minutes)

30 (Cupule 7)
Time (minutes)
(səjomoueu) ełestsqns peskjospKy to Kł!fueno
(səjomoueu) əfeдtsqns paskioıpky to Kt!fueno

Plate 1

API ZYM strips containing sediment from a range of depths $(A=$ surface sediment, $B=5 \mathrm{~cm}, C=10 \mathrm{~cm}, D=20 \mathrm{~cm}$ and $E=35 \mathrm{~cm}$)

$$
0090999939090999 \text { 9090 }
$$

1200 m

Sample depth (cm)	Replica	Cupule number			
		2	6	7	11
0	1	40	40	10	40
	2	40	30	5	20
5	1	20	10	-	10
	2	20	10	2.5	10
10	1	5	5	-	10
	2	20	10	5	30
20	1	10	5	2.5	10
	2	5	5	2.5	5
35	1	5	5	2.5	5
	2	10	5	2.5	10

Table 6: Shows the maximum nanomole scores for each strip (replicas 1 and 2) for cupules 2, 6, 7 and 11. - = zero score.

Table 7: Two-way analysis of variance on maximum nanomole scores for each strip (replicas 1 and 2) for cupules 2, 6, 7 and 11. Factor $A=$ sediment depths (surface sediment, $5 \mathrm{~cm}, 10 \mathrm{~cm}, 20 \mathrm{~cm}$ and 35 cm), Factor B $=$ cupules (2, 6, 7 and ll).

Table 8: One-way analysis of variance on maximum nanomole scores for each strip (replicas 1 and 2) for cupules 2, 6, 7 and 11 .

Sample depth (cm)	Replica	Cupule number			
		2	6	7	11
0	1	30	120	60	30
	2	120	30	5	15
5	1	15	120	-	15
	2	5	15	5	15
10	1	5	15	-	60
	2	60	60	720	720
20	1	5	5	120	5
	2	5	5	120	5
35	1	300	120	300	30
	2	720	120	300	300

Table 9: Time in minutes at which maximum score was reached for each strip separately (replicas 1 and 2) for cupules 2, 6, 7 and 11. $=$ no reading because zero score throughout experiment.

Table 10: Two-way analysis of variance on time at which maximum score was reached (replicas 1 and 2) for cupules 2, 6, 7 and 11. Factor $A=$ sediment depths (surface sediment, $5 \mathrm{~cm}, 10 \mathrm{~cm}, 20 \mathrm{~cm}$ and 35 cm), Factor B $=$ cupules (2, 6, 7 and 11).

Experiment 4

The results of this experiment showed higher intensity colour in cupules containing untreated and membrane filtered samples than in samples exposed to heat (boiled or autoclaved), especially in interstitial water samples (Figure 6).

In gereral, there was little difference in the amourt of hydrolysed substrate (colour) betweer the cupules containing untreated and membrane filtered overlying water (Plate 2), while there was a variation in the intensity of colour with untreated and membrane filtered interstitial water (Plate 3). For example, most cupules containing overlying water contained 5 ranomoles of hydrolysed substrate (Table 1l) but in interstitial water samples, the range was from 5 to 30 ranomoles as shown in table 12.

The sigrificarce of the results were tested by a series of two-way ard ore-way aralyses of variarce, as follows.

Firstly, four two-way analyses of variance were conducted, two on the overlying water results and two on the interstitial water results. The first of each pair compared control with membrane filtered water (Factor A) and cupules 2, 4, 6, 7, and 11 (Factor B). The secord of each pair compared boiled with autoclaved water (Factor A) and cupules $2,4,6,7$, and 11 (Factor B).

In the two-way analysis comparing control and membrane filtered overlying water agairst cupule rumber (Table 13A), significant variation was found betweer cupules (Factor B; $0.01>P>0.005$) but not between treatments (control vs filtered water) (Factor A; $0.50>P>0.25$).

Similarly, in the two-way analysis comparing boiled and autoclaved overlyirg water against cupule number (Table l3B), highly significant variation was found between cupules (Factor B; P<0.001) but rot between treatments (boiled vs autoclaved water) (Factor A;

Figure 6

Effect of membrane filtration and heat on quantity of hydrolysed substrate in cupules 2, 4, 6, 7 and 11 for overlying and interstitial water. \quad = control, $\square=$ membrane filtered, $\quad \ell=100^{\circ} \mathrm{C}$ heat, $\quad=121^{\circ} \mathrm{C}$ heat (autoclave).

Plate 2

API ZYM strips containing overlying water. $A=$ untreated (control), $\mathrm{B}=$ membrane filtered, $\mathrm{C}=$ boiled, and D = autoclaved.

D

C

B

A
100000000000000000000

Plate 3

API ZYM strips containing interstitial water. $A=$ untreated (control), $B=$ membrane filtered, $C=$ boiled, and D = autoclaved.

A

B

Table 11: Amount of hydrolysed substrates (nanomoles) in API ZYM cupules $(2,4,6,7$ and 11) inoculated with overlying water samples. $A=$ control, membrane filtered. $B=$ boiled, autoclaved.

B

Table 12: Amount of hydrolysed substrates (nanomoles) in API ZYM cupules $(2,4,6,7$ and 11) inoculated with interstitial water samples. $A=$ control, membrane filtered. $B=$ boiled, autoclaved.

Table 13A: Two-way analysis of variarce comparing control and membrane filtered overlying water against cupule rumber. Factor $A=$ treatmen.ts (control, membrane filtered), Factor $B=$ cupule number (2,4,6,7 and 11).

Table 13B: Two-way analysis of variance comparing boiled and autoclaved overlying water against cupule number. Factor $A=$ treatments (boiled, autoclaved), Factor $B=$ cupule number $(2,4,6,7$ and 11$)$.
p>0.75).
In the two-way analysis comparing control and membrare filtered interstitial water against cupule number (Table 14A), highly significant variation was found between cupules (Factor B; P<0.001) but not between treatments (control vs filtered water) (Factor A; $0.25>P>0.10)$.

Similarly, in the two-way analysis comparing boiled and autoclaved interstitial water agairst cupule number (Table 14B), highly significant variation was found between cupules (Factor B; $\mathrm{P}<0.001$) but not between treatmerts (boiled vs autoclaved water) (Factor A; P>0.75).

These four two-way aralyses of variance show that for both overlying water and interstitial water, there is no difference betweer. control and membrane filtered seawater and no difference between boiled and autoclaved seawater. This allowed me to combine the control and membrane filtered data together and to combine the boiled and autoclaved data together for further statistical analyses. These analyses were designed to fird out whether there was ary differerce between the control + membrane filtered results and the boiled + autoclaved results for the different cupules.

A two-way analysis of variance was applied to the overlying water comparing control + membrare filtered with boiled + autoclaved water (Factor A) and cupules (Factor B). Factor A and Factor B were both highly significart (Table 15).

A similar two-way aralysis of variance was applied to the interstitial water data, however in this case there was highly significant interaction between the two factors (Table 16A). Five breakdown one-way analyses of variance were therefore applied to each of the five cupules. Each of these compared control + membrane
filtered water with boiled + autoclaved water. Four out of five comparisons were statistically significant (Table l6B) and showed that the cupules containing control or membrane filtered had more activity (deeper colours) than the cupules containing boiled or autoclaved water.

The overall conclusions from these statistical analyses are as follows. There are sigrificant differences betweer the cupules. The activity is not affected by membrane filtration but is abolished by boiling or autoclaving.

Firally, the variation in colour developmert found with overlying and interstitial water (control and membrane filtered) (Table 17) was tested statistically using a one-way analysis of variarce. The results of this analysis are shown in table 18. A highly significant variatior betweer overlying and interstitial water samples was found at cupules 2,6 and 11 (all, $P<0.001$). No significant variation between both samples was found at cupule $4(0.25>P>0.10)$ and cupule 7 ($\mathrm{P}>0.75$) . This means that the activity tested for by cupules 2,6 , and 11 , but not by cupules 4 and 7, is greater in interstitial water than in overlying water.

Table 14A: Two-way aralysis of variarce comparing control ard membrare filtered irterstitial water against cupule rumber. Factor $\mathrm{A}=$ treatmerts (control, membrare filtered), Factor $B=$ cupule rumber ($2,4,6,7$ and 11).

Table 14B: Two-way analysis of variarce comparir.g boiled ard autoclaved interstitial water agairst cupule rumber. Factor $A=$ treatinents (boiled, autoclaved), Factor $B=$ cupule rumber $(2,4,6,7$ ard 1l).

Table 15: Overlying water. two-way (2×5) aralysis of variance (4 observations/cell) comparing control + membrane filtered (2 x $2=4$ observation.s/cupule) and boiled + autoclaved ($2 \times 2=4$ observations/ cupule) water against cupule number. Factor $A=$ treatments (cor.trol + membrane filtered and boiled + autoclaved), Factor $B=$ cupule rumber (2, 4, 6, 7 and 11).

Table 16A: Interstitial water. Two-way (2×5) analysis of variance (4 observations/cell) comparing cortrol + membrare filtered (2 + 2=4 observations/cupule) and boiled + autoclaved ($2+2=4$ observations/ cupule) water against cupule rumber. Factor $A=$ treatments (control + membrane filtered and boiled + autoclaved), Factor $B=$ cupule rumber ($2,4,6,7$ and il).

Table 16B: Interstitial water. Breakdown one-way (1×2) analysis of variance (4 observations/cell) comparing control + membrane filtered with boiled + autoclaved water for cupules $2,4,6,7$ and 11 .

Cupule	O.W. ($\mathrm{c}+\mathrm{m} . \mathrm{F}$.		I.W. ($\mathrm{c}+\mathrm{m} . \mathrm{F}$)	
2	5.001	5.001	20.001	20.001
	4.999	4.999	19.999	19.999
4	5.001	5.000	10.001	10.000
	4.999	10.000	9.999	5.000
6	5.001	5.001	30.001	30.001
	4.999	4.999	29.999	29.999
7	5.001	5.001	5.001	5.001
	4.999	4.999	4.999	4.999
11	2.500	2.500	5.001	5.001
	2.499	2.499	4.999	4.999

Table 17: Amount of hydrolysed substrates (nanomoles) in API ZYM cupules $(2,4,6,7$ and 11) inoculated with overlying and interstitial water (control, membrane filtered). O.W. = overlying water, I.W. = interstitial water, $\mathrm{C}=$ control, and M.F. = membrane filtered.

Table 18: One-way analysis of variance comparing colour development between overlying and interstitial water (control, membrane filtered).

Experiment A

The bacterial growth rate of the marine strains, Viorio fischeri, Micrococcus and the non-marine strains, Aeromonas hydrophila, and Escherichia coli was determined (Figure 7) after 6, $12,18,24,30$ and 36 hours. It was found that the number of cells increased with increasing incubation time up to 12 hours, but there was a greater increase in the number of cells with the non-marine strains than with the marine strains. For example, Escherichia coli and Aeromonas hydrophila showed an average number of cells after 12 hours of 54×10^{7} and 24×10^{7} respectively, whereas Vibrio fischeri and Micrococcus showed only an average number of 15×10^{7} (Table 19).

In general, the log phase of all strains started just before 6 hours, with the exception of Escherichia coli which reached this stage slightly earlier.

The stationary phase of Vibrio fischeri, Micrococcus and Escherichia coli was always reached after 12 hours. The strain of Aeromonas hydrophila used in the experiment had a transitional period between it's log and stationary phases. The stationary phase was reached after 18 hours.

Experiment B

The results of this experiment are divided into two parts as follows:
l- API 20E system.
2- API 20NE system.

1- API 20E system

The results of the API 20E system showed that after 24 hours of incubation, the strain Vibrio fischeri gave some positive results (Table 20). The glucose test showed positive results after 24 hours, therefore developing reagents were added. It was also found in some

Figure 7

Bacterial growth rate of the marine strains, Vibrio fischeri, Micrococcus sp. and the non-marine strains, Aeromonas hydrophila and Escherichia coli after 6, 12, 18, 24, 30 and 36 hours.

Conc. Incub. ONPG ADH LDC ODC CIT $\mathrm{H}_{2} \mathrm{~S}$ URE TDA IND VP GEL GLU MAN INO SOR RHA SAC M time (hr)																							
5	24	+	-	+	+	-	-	+w	-	-	-	-	+	+	-	-	-	-	-	+	-	+	+
	48		-	+	+	-	-	-				-		+	+	+	+	+	+	$+$	+		
	72		-	+	+	-	-	-				-		$+$	+	+	+	+	+	+	+		
	96		-	+	+	-	-	-				-		$+$	$+$	$+$	$+$	$+$	$+$	+	+		
0.5	24	+	-	+	$+$	-	-	+w	-	-	-	-	+	$+$	-	-	-	-	-	+	-	+	+
	48		-	$+$	+	-	-	-				-		+	+	+	+	$+$	+	+	+		
	72		-	$+$	+	-	-	-				-		$+$	+	+	$+$	$+$	+	+	+		
	96		-	$+$	$+$	-	-	-				-		$+$	$+$	$+$	$+$	$+$	+	+	+		
0.05	24	+	-	+	+	-	-	-	-	-	-	-	+	+	-	-	-	-	-	+	-	+	+
	48		-	$+$	+	-	-	-				-		$+$	$+$	$+$	$+$	$+$	$+$	$+$	+		
	72		-	+	$+$	-	-	-				-		+	+	$+$	$+$	+	+	+	+		
	96		-	+	$+$	-	-	-				-		$+$	+	$+$	+	$+$	$+$	+	+		
0.005	24	$+$	-	+	+	-	-	-	-	-	-	-	+	+	-	-	-	-	-	+	-	+	+
	48		-	+	$+$	-	-	-				-		+	+	$+$	+	-	$+$	+	+		
	72		-	+	$+$	-		-				-		+	+	$+$	+	-	+	+	+		
	96		-	+	+	-	-	-				-		$+$	$+$	$+$	+	-	+	$+$	+		

n
tests that there was a decrease in the colour intensity with increasing dilutions of cell suspension. This was obvious after 24 hours with the tests ONPG, lysine decarboxylase (LDC), ornithine decarboxylase (ODC) and urease (URE) as shown in Plate 4.

The strain Micrococcus sp. gave no positive results in all the tests as shown in table 21 and Plate 5.

With the strain Aeromonas hydrophila, there were some positive results (Table 22). In some tests, the colour intensity decreased with increasing dilutions of cell suspension (e.g. saccharose (SAC), glucose (GLU), and gelatinase (GEL) as shown in Plate 6.

The strain Escherichia coli, showed positive reactions in some tests (Table 23). In several tests, the colour intensity decreased with increasing dilutions of cell suspension. This was very clear in Plate 7 with the arabinose (ARA), melibiose (MEL), rhamnose (RHA), lysine decarboxylase (LDC) and ONPG tests.

After 48, 72 and 96 hours incubation, the strain Vibrio fischeri, Aeromonas hydrophila and Escherichia coli showed little change in the results except for the carbohydrate tests. This can be interpreted as an effect from the reagents added after 24 hours.

The strain Micrococcus sp. showed no reaction except for the carbohydrate tests which showed positive reactions only after 96 hours. This change proved that the recommended reagents added after 72 hours affected the carbohydrate tests.

In general, after 24 hours, the difference between API 20E profiles (Plate 8) of the four strains inoculated with concentrations equivalent to 5 on the MacFarland scale was as follows.

Plate 4

Decrease in colour intensity with increasing dilutions of cell suspensions of Vibrio fischeri using the API 20E system. Arrows (left to right) show the tests ONPG, lysin decarboxylase (LDC), ornithine decarboxylase (ODC) and urease (URE) respectively. 24 hours reading. $A=5, B=0.5$, $C=0.05$, and $D=0.005$ on the MacFarland scale.

Plate 5

API 20E strips inoculated with different dilutions of Micrococcus sp., showing no positive results after 24 hours. The neutral, yellow and blue coloured cupules are negative in these strips. Compare plate 5 with plates $4,6,7$, and 8. $A=5, B=0.5, C=0.05$, and $D=0.005$ on the MacFarland scale.

Conc. Incub. ONPG ADH LDC ODC CIT H2S URE TDA IND VP GEL GLU MAN INO SOR RHA SAC time (hr)																							
5	24	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-		
	48	+	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-		
	72	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	96		-	-	-	-	-	-				-		$+$	$+$	$+$	+	+	$+$	$+$	$+$		
0.5	24	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-		
	48	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-		
	72	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	96		-	-	-	-	-	-				-		+	$+$	+	$+$	$+$	$+$	+	$+$		
0.05	24	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-		
	48	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-		
	72	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	96		-	-	-	-	-	-				-		$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$		
0.005	24	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-		
	48	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-		
	72	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	96		-	-	-	-	-	-				-		+	$+$	+	+	-	+	+	+		

API 20 E profiles of the marine species Micrococcus obtained after 24,48 , 72 and 96 hours
readings were taken where blanks occur in the table. Readings were only taken immediately after the
addition of reagents, and not before or after. + =positive reaction, - =negative reaction.

positive, - =negative reaction.

Plate 6

Decrease in colour intensity with increasing dilutions of cell suspensions of Aeromonas hydrophila using the API 20E system. Arrows (left to right) show the tests gelatinase (GEL), glucose (GLU), and saccharose (SAC) respectively. 24 hours reading. $A=5, B=0.5, C=0.05$, and $D=0.005$ on the MacFarland scale.

Plate 7

Decrease in colour intensity with increasing dilutions of cell suspensions of Escherichia coli using the API 20E system. Arrows (left to right) show the tests ONPG, lysine decarboxylase (LDC), rhamnose (RHA), melibiose (MEL), and arabinose (ARA) respectively. 24 hours reading. $A=5, B$ $=0.5, C=0.05$, and $D=0.005$ on the MacFarland scale.

Conc. Incub. ONPG ADH LDC ODC CIT H2S URE TDA IND VP GEL GLU MAN INO SOR RHA SAC time (hr)																							
	24	+	-	+	-	-	-	-	-	$+$	-	-	t	$+$	-	$+$	$+$	-	$+$	-	$+$	-	+
5	48		-	+	-	-	-	-				-		+	t	+	+	+	+	-	+		
	72		-	t	-	-	-	-				-		$+$	$+$	$+$	+	$+$	+	-	+		
	96		-	+	-	-	-	-				-		+	+	$+$	+	+	+	-	+		
0.5	24	t	-	-	-	-	-	-	-	$+$	-	-	$+$	$+$	-	t	$+$	-	-	-	-	-	$+$
	48		-	$+$	-	-	-	-				-		$+$	$+$	$+$	$+$	-	$+$	-	$+$		
	72		-	+	-	-	-	-				-		+	+	$+$	$+$	-	$+$	-	+		
	96		-	+	-	-	-	-				-		$+$	$+$	+	$+$	-	+	-	+		
0.05	24	-	-	-	-	-	-	-	-	+	-	-	+	+	-	$+$	$+$	-	-	-	-	-	+
	48		-	+	-	-	-	-				-		$+$	$+$	$+$	$+$	+	$+$	-	$+$		
	72		-	$+$	-	-	-	-				-		+	$+$	$+$	$+$	+	+	-	$+$		
	96		-	$+$	-	-	-	-				-		+	$+$	+	$+$	+	+	-	+		
0.005	24	-	-	-	-	-	-	-	-	$+$	-	-	+	$+$	-	$+$	$+$	-	-	-	-	-	+
	48		-	t	-	-	-	-				-		+	$+$	+	$+$	$+$	+	-	$+$		
	72		-	$+$	-	-	-	-				-		$+$	$+$	$+$	$+$	$+$	+	-	$+$		
	96		-	$+$	-	-	-	-				-		$+$	+	+	+	+	+	-	+		

API 20 E profiles of the non-marine species Escherichia coli obtained after $24,48,72$ and
96 hours at bacterial cell concentrations equivalent to $0.005,0.05,0.5$ and 5 on the MacFarland
scale. No readings were taken where blanks occur in the table. Readings were only taken immediately
after the addition of reagents, and not before or after. $+=p o s i t i v e$ reaction, $=$ negative reaction.

Strain tested	test result	
	+ve (+)	-ve (-)
Vibrio fischeri	9	13
Micrococcus	0	20
Aeromonas hydrophila	11	11
Escherichia coli	10	12

2-API 20NE system

The results of the API 20NE system showed that after 24 hours of incubation, the strain Vibrio fischeri gave only two positive tests (urease and PNPG) as showr in table 24. The urease test was only positive at the cell suspension concertration equivalent to 5 ard 0.5 on the MacFarland scale.

The strair Micrococcus sp. showed only one positive result in the PNPG test (Table 25 and Plate 9). In this test, the colour intensity decreased with increasirg dilution of cell suspension (i.e. decreasing the cell concentration).

The nor-marine strains, Aeromonas hydrophila and Escherichia coli showed numerous positive tests after 24 hours (Tables 26 and 27 and Plates 10 and 11 respectively). In general, Aeromonas hydrophila showed more positive tests than Escherichia coli. Almost all the assimilation tests with the two strains were positive (+), weak positive (+/-) or very weak positive ($-/+$) results. The glucose test with Aeromonas hydrophila was negative. However, with Escherichia coli, the test showed positive results at the high cell concentration. With the aesculin (ESC), it was vice versa.

After 48, 72 and 96 hours of incubation, the strain Vibrio fischeri showed few positive tests at the high cell concentration.

Plate 8

The difference in API 20E profiles of the strains Vibrio fischeri (A), Micrococcus sp. (B), Aeromonas hydrophila (C), and Escherichia coli (D) after 24 hours. Bacterial cell concentrations equivalent to 5 on the MacFarland scale.

Plate 9

API 20NE strips inoculated with different dilutions of Micrococcus sp., showing only one positive result in the PNPG test. Arrow shows the PNPG test. 24 hours reading. $A=$ $5, B=0.5, C=0.05$, and $D=0.005$ on the MacFarland scale.

the addition of reagents, and not before or after.
Conc. Incub. NO_{3} TRP GLU ADH URE ESC GEL PNPG GLU ARA MNE MAN NAG MAL GNT CAP ADI MLT CIT PAC
time (hr)
=very weak positive, - =negative reaction.

-/+ =very weak positive, - =negative reaction.

$=$ negative reaction.

Plate 10
API 20NE strips inoculated with different dilutions of Aeromonas hydrophila, showing many positive results in the assimilation tests (these positive results appear as turbidity and cannot be seen in the photograph). Arrow shows the aesculine (ESC) test. 24 hours reading. $A=5, B=0.5$, $C=0.05$, and $D=0.005$ on the MacFarland scale.

Plate 11

API 20NE strips inoculated with different dilutions of Escherichia coli, showing many positive results in the assimilation tests (these positive results appear as turbidity and cannot be seen in the photograph). Arrow shows the glucose (GLU) test. 24 hours reading. $A=5, B=0.5, C$ $=0.05$, and $D=0.005$ on the MacFarland scale.

With the strain Micrococcus sp., there were very few positive reactions in the conventional test. However, after 72 and 96 hours , there were many positive reactions (growth) in the assimilation tests at the high cell concentration (i.e. 5 and 0.5 on the MacFarland scale).

With the strain Aeromonas hydrophila and Escherichia coli, there were more positive reactions than at 24 hours. The positive results were almost all from the assimilation tests. These were very clear-cut after 48 hours (i.e. there was no difference in the test results between 48,72 and 96 hours).

In general, after 24 hours, the difference between the API 20NE profiles (Plate 12) for the four strains inoculated with concentration equivalent to 5 on the MacFarland scale was as follows.

strain tested	test result			
	$\begin{aligned} & +v e \\ & (+) \end{aligned}$	$\begin{gathered} \text { weak +ve } \\ (+/-) \end{gathered}$	$\begin{aligned} & \text { very weak +ve } \\ & (-/+) \end{aligned}$	$\begin{aligned} & \text {-ve } \\ & (-) \end{aligned}$
Vibrio fischeri	2	0	0	18
Micrococcus sp.	1	0	0	19
Aeromonas hydrophila	10	2	1	7
Escherichia coli	9	1	0	10

Experiment C
The results of this experiment was divided into two parts: preliminary and definitive.

Preliminary experiment

Only two dilutions $\left(10^{-1}, 10^{-2}\right)$ were used in the preliminary experiment. The results showed that there was very little difference in colour intensity between dilutions after 24 hours. For example, the

ONPG test showed positive results at the first dilution $\left(10^{-1}\right)$, while at 10^{-2} it showed a weak positive result (Table 28). This phenomenor also occurred after 48 and 96 hours with the melibiose and arabinose. It was observed from the results that the gelatinase test was positive at 10^{-1} after 24 hours. However, it was negative at 10^{-2} dilution. In general, in this preliminary study, there was an indication of the effect of bacterial cell concentration on the biochemical tests in the cupules. In other words, the colour intensity decreased with increasing dilutions.

Definitive experiment

In the definitive experiment, a series of dilutions were made from 10° to 10^{-4} and duplicate strips of API 20E were inoculated from each dilution. In this experiment, the developing reagents were added after 24 hours and results demonstrated in general, that colour intensity decreased with increasing dilutions of cell suspension. Prolonged incubation time to 48 hours improved some tests at low cell concentrations and caused a change to positive (Table 29). The differences ir colour intensity between some tests of API 20E are showr in Plate 13. The difference in colour intensity betweer. 10^{-1} and 10^{-4} dilutions is shown in Plate 14.

The definitive experiment results agreed with the API profiles with the exception of the oxidase test which showed a very weak positive result.

Experiment D

The bacterial cell concentrations used in this experiment were equivalent to 0.5 and 5 on the MacFarland scale. The results of this experiment (Table 30) showed that cell concentrations of 5 on the MacFarland scale was much better than 0.5 . This can be observed in Plate 15 with the gelatir. (GEL) and aesculin (ESC) which showed a

Conc. Incub. ONPG ADH LDC ODC CIT $\mathrm{H}_{2} \mathrm{~S}$ URE TDA IND VP GEL GLU MAN INO SOR RHA SAC time (hr)																							
10^{-1}	24	+	-	-	-	-	-	-	-	-	-	$+$	+	+	-	+	+	+	-	-	+	+	+
	48		-	+	-	-	-	-				+		+	-	+	+	+	+	-	+		
	96		-	+	-	+	-	-				+		+	-	+	+	+	+	-	+		
10^{-2}	24	+	-	-	-	-	-	-	-	-	-	-	+	+	-	+	+	+	-	-	+	+	+
	48		-	+	-	-	-	-				$+$		+	-	+	+	+	+w	-	+w		
	96		-	$+$	-	$+$	-	-				+		$+$	-	$+$	+	+	+w	-	+w		

API 20 E profiles of Escherichia coli species obtained in the preliminary experiment after
24,48 and 96 hours at 10^{-1} and 10^{-2} dilutions. No readings were taken where blanks occur in the
table. Readings were only taken immediately after the addition of reagents, and not before or after. + =positive reaction, tw =weak positive, - =negative reaction.

> API 20 E profiles of Escherichia coli species obtained in the definitive experiment after
$24,32,48$ and 72 hours at a series of dilutions $\left(10^{0}-10^{-4}\right)$. Duplicate strips were used. w=weak
reaction. No readings were taken where blanks occur in the table. Readings were only taken
immediately after the addition of reagents, and not before or after. ++w =weak positive reaction in the two strips, -- =negative reaction.

Plate 14
The difference in colour intensity between $10^{-1}(\mathrm{~A})$ and 10^{-4} (B) dilutions of Escherichia coli suspensions.

API 20 NE profiles of the Aeromonas hydrophila species to test whether the system produced
replicable results when used by two separate workers. Bacterial concentrations used were equivalent to 0.5 and 5 on the MacFarland scale. No readings were taken where blanks occur in the table. Readings were only taken immediately after the addition of reagents, and not before or after. +

[^6]
diffusion of black pigments. Some of the assimilation tests also showed positive growth, e.g. glucose (GLU), maltose (MAL) and malate (MLT). The results of these tests can only be noticed as turbidity (bacterial growth). 48 hours of incubation showed more positive tests than that of 24 hours. According to the API quality control profiles, the results of this experiment were not completely identical.

SECTION 3

DISCUSSION

API ZYM is a technique has been used by several investigators to identify clinical microorganisms (Washington et al., 1971; Smith et al., 1972; Tharagonnet et al., 1977; Hofstad, 1980; Waitkins et al., 1980). However, I can find no previous published application of this technique to seawater and sediment although it has been used for several years by Mr Meadows's research group.

The accuracy of the technique has been studied by several investigators using different groups of bacteria. Smith et al. (1972) used the API system for identification of Enterobacteriaceae. They found that the accuracy of identification of the system was 96.4%. These results agreed with the studies made on Enterobacteriaceae by Washington et al. (1971) who found the accuracy of identification on initial testing was nearly 90% and 93% in the repeat experiment. Tharagonnet et al. (1977) used the API ZYM system to identify anaerobic Gram-negative organisms from human sources. They found that the technique distinquished clearly between the different genera and species and seemed to be reliable for identification of that particular group of organisms.

The results of this section can be summarized and discussed as follow:

I- Experiment 1
The variation in the amount of sediment dispensed in metal foil from 3 pasteur pipettes was tested. It was found that there was no significant variation between drops and pipettes in the two replica experiments. These results show that replicable amounts of sediment can be dispensed using the pipette tecinnique.

II- Experiment 2

The results of this experiment showed that the highest amount of hydrolysed substrate in most cupules occured in the time between 10-20 hours of the first incubation and between 5-20 hours of the second incubation time. In general, there were differences between the first incubation times in most of the API cupules. However, between the second incubation times, the variation was not significant except in one cupule.

The amount of hydrolysed substrate may vary depending on many factors such as the sample to be tested, the amount of sample dispensed in the cupules and incubation time and temperature. In this study, sediment was used to determine the optimum incubation time of the API ZYM, so the highest reaction between the sediment enzymes and substrates was recorded within the time mentioned above. There appeared to be a reduction in colour intensity in some cupules after 10 hours during the first incubation time (e.g. cupule 9 and 11). This may be due to some enzymes losing their activity after a particular time and under certain conditions. Reichardt et al. (1967) pointed out that the enzymes they examined lost half of their activity after exposure for 3.2 days at $18^{\circ} \mathrm{C}$.

III- Experiment 3

The results of this experiment showed that in general, colour developed more slowly and to a lesser degree in deep than in surface sediment.

The occurence of various cell-free enzymes in aquatic environments has been tested by several investigators (Harvey, 1925; Berman, 1970; Hanson and Kim, 1970). Berman (1970) determined alkaline phosphatase activities in lake waters. He found that there were seasonal fluctuations in enzyme activity. Hanson and Kim (1970)
determined the activities of some cell-free enzymes dissolved in oceanic and saline lake environments. They found that some enzymes e.g. alkaline phosphatase, and amylase had significant activity levels. The authors also found that some of the enzymes exhibited a diverse activity related to pH and salt concentration. In my experiment the amount of hydrolysed substrate varied from one cupule to another, also from one sample to another (e.g. colour intensity with surface sediment higher than with deep sediment). This phenomenon may be due to the effect of many factors on the activity of sediment enzymes reacting with the cupule substrates. These factors include the pH of the sediment and the substrates. The higher numbers of microorganisms present in surface sediment may also affect the activity of enzymes. Reichardt et al. (1967) found that there was a correlation between the concentration of free enzymes and the numbers of phytoplankton and bacteria.

IV- Experiment 4

This experiment showed that a higher intensity of colour was reached in the cupules containing untreated (control) and membrane filtered (0.22 um) seawater than in the cupules containing boiled $\left(100^{\circ} \mathrm{C}\right)$ or autoclaved $\left(121^{\circ} \mathrm{C}\right)$ seawater for 15 minutes. This phenomenon was clearer with interstitial water than with overlying water.

Some workers have studied the cell-free enzymes released from living or dead organisms in aquatic environments (Harvey, 1925; Reichardt et al., 1967; Hanson and Kim, 1970; Kim and ZoBel1, 1974; Thompson and Eribo, 1984). Many microorganisms have the ability to produce extracellular enzymes. Thompson and Eribo (1984) studied the ability of the fungi Rhizopus and Mucor to release extracellular enzymes into the culture medium. They found that phosphatase was released into the medium by all the fungi examined. However, some
species produced more phosphatase enzyme than others. They also found that most of the fungi they studied were able to produce many other enzymes. Hanson and Kim (1970) studied the activity of a range of cell-free enzymes including alkaline phosphatase and amylase in the marine environments, and demonstrated the ecological importance of cell-free enzymes. Kim and zoBell (1974) discussed the effect of pressure, temperature, pH and salinity of the oceanic environment on the activities of cell-free enzymes including some recovered from saline lakes, seawater and marine sediments and some prepared from microbial cells. They found that types and concentrations of the cellfree enzymes were influenced by the sampling sites, the dominant types of life in that environment, and the density of the life forms. For example, alkaline phosphatase showed varying optimum pH depending on the sampling sites.

Overlying water showed less intensity of colour than interstitial water. This may due to the enzymes dissolved in overlying water being more diluted than those in interstitial water. Kim and ZoBell (1974) pointed out that one of the problems in preparing cellfree enzymes from seawater samples was that enzymes dissolved in seawater are highly diluted. The higher intensity of colour in the cupules containing untreated and membrane filtered samples may indicates that the concentration of the enzymes in these samples is high. It also demonstrates that enzymes are present in solution in seawater and can pass through a membrane filter (0.22 um). The lower intensity of colour presented in the cupules containing boiled $\left(100^{\circ} \mathrm{C}\right)$ and autoclaved $\left(120^{\circ} \mathrm{C}\right)$ seawater, is evidence for the inhibition of enzyme activity by heat. For example, Reichardt et al. (1967) found that optimum activity of alkaline phosphomonoesterases occurred at a temperature of $27^{\circ} \mathrm{C}$. They also found that about 75% of the activity of
this enzyme was inhibited after 10 minutes at $100^{\circ} \mathrm{C}$.

V- Experiment A

Bacterial reproduction occurs by binary fission (i.e. one cell divides, producing two cells). The increase in bacterial numbers is by geometric progression, i.e. $1,2,4,8,16$. The time interval required for the cell to divide or for the population to double, is known as the generation time. Not all bacteria have the same generation time. For example with Escherichia coli, it may be 15 to 20 minutes, while Mycobacterium tuberculosis is several hours (Pelczar and Reid, 1972). Similarly the generation time is not the same for a particular bacterium under all conditions. It is strongly dependent on many factors such as rutrients ir the medium, temperature, gases required, and pH.

After bacterial cells were inoculated into the medium, there was an initial period of what appears to be ro growth (lag phase), followed by rapid growth (log phase), which started just before 6 hours. This stage was followed by a leveling off (stationary phase) which started after 12 hours, except for Aeromonas hydrophila which started after 18 hours. As a firal stage, a decline ir the viable population must occur after a particular time. This stage had not appeared after 36 hours, as shown in figure 7. The reason for this was probably because cells were dying at the same rate as new cells were being produced. This may be due to the presence of high nutrient levels in the media or because this bacterial species dies slowly.

The strain Aeromonas hydrophila showed a transitional period (curved portion) between the \log and stationary phases. This represents the time required before all the cells enter the rew phase. This may mean that not all the cells of Aeromonas hydrophila were in the same physiological condition towards the end of \log phase.

From the results, the following conclusions can be made with regard to future experiments of this kind. Firstly, API strips should be inoculated with cell suspension while the bacteria are in the log phase (i.e. between 6 and 12 hours). Secondly, bacteria of the species tested should be inoculated before 36 hours (i.e. stationary phase) because bacteria can resume reproduction, i.e. re-enter \log phase when fresh media and optimal physical conditions are supplied.

VI- Experiment B

The API 20E system is designed for rapid differentiation and identification of bacteria belonging to the Enterobacteriaceae family. The API 20NE system is designed for the identification of Gramnegative rods not belonging to the Enterobacteriaceae family. Both of these systems have identification codes based on how fast positive results occur in the test-kits. Because marine bacteria generally require low growth temperatures and prolonged incubation times, the identification codes are not very suitable for use with marine environmental isolates. The API 20NE system is a relatively new system and there is little evidence so far to indicate that marine bacteria can be handled in the same way as clinical isolates. I have therefore tried to test both systems with marine and non-marine strains in relation to the oxidase test, which is necessary for the the API 20NE system. In addition, I have tested the effect of cell concentration on these two systems.

There are rare reports of the application of commercially available test-kits to marine bacteria. Gauthier and Clement (1978) studied 10 marine bacterial strains through several API systems. The authors compared their results with the conventional tests and found these systems allowed to define to a certtain extent, the limits of applicability of such micromethods to the taxonomic study of
hetrotrophic bacteria isolated from seawater. Pyle and Shotts (1980) reported that the API 20E system gave reasonably differentiation with pathogenic flexibacteria from non-marine cold- and warmwater fish. The authors found only two dubious results. These occurred with glucosefermentation and gelatin liquification.

When bacterial strains are to be characterised by the API 20E system, the manufacturer's recommended procedure is to prepare a cell suspension in sterilised distilled water and to inoculate the various biochemical test cupules. I substituted the distilled water with sterile artificial seawater, adjusted to 20% salinity. Rüger (1981) used sterile seawater adjusted to a salinity of 17% as the test medium instead of distilled water. MacDonell et al. (1982) tested the applicability of the API 20E system in conjunction with various diluents for use in identifying marine and estuarine bacteria. The authors concluded that marine salt diluent prepared with the salinity adjusted to 20%, yielded the largest fraction of positive tests, while the $0.85 \% \mathrm{NaCl}$ diluent consistently yielded the smallest proportion of positive tests. Therefore, the authors recommended the use of marine salt adjusted to a salinity of 20% for characterising both marine and estuarine isolates. Because of the optimal growth temperature of marine bacteria, I have chosen an incubation temperature of $18^{\circ} \mathrm{C}$ and incubation periods of $24,48,72$ and 96 hours. The API 20E system contains bromthymol blue as an indicator to detect acid production from carbohydrates. This indicator is known to be toxic to a number of marine bacteria (Leifson, 1963), therefore the system is not suitable for differentiating marine bacteria unless this indicator is replaced with another indicator such as phenol red. Leifson (1963) compared several indicators and found that phenol red was the most satisfactory and at a concentration of 0.001%, has no toxic effect on marine bacteria. Some of the API tests need additional
developing reagents prior to reading (indole, nitrate reduction, Voges Proskauer). These tests must be performed last since these reactions release gaseous products which interfere with other tests such as the carbohydrate tests. This can be seen in the series of photographs shown in Plate 16, where the colour of carbohydrate tests (negative) changes to positive with increasing the incubation time.

My results with Aeromonas hydrophila using the API 20E system agree with the results of MacDonell et al. (1982), with the exception of citrate and Voges Proskauer tests. With API 20E galleries, the marine and non-marine isolates tested gave negative results for citrate utilization, $\mathrm{H}_{2} \mathrm{~S}$, urease and tryptophan deaminase. All the marine and non-marine strains gave negative reactions with the gelatinase test, with the exception of Aeromonas hydrophila which gave positive results. MacDonell et al. (1982) explained the divergent results in some tests as an interaction between the diluent and the biochemical tests in the cupules.

VII- Experiment C

The results of the preliminary experiment showed that there was very little difference in colour intensity between the 10^{-1} and 10^{-2} dilutions after 24 hours. The variation in colour was not very pronounced but there was an indication that colour intensity is affected by the cell concentration of cell suspension. This would have to be tested using more than two dilutions. In the definitive experiment, where a series of dilutions were made, the decrease in colour intensity with increasing dilution of cell suspension was very clear (e.g. arabinose, rhamnose, glucose, indole and ONPG as shown in Plate 13.

Prolonged incubation time affected the results of some tests, especially at low concentrations of cell suspension. This was because

Plate 16
Series of photographs of API 20E strips inoculated with different dilutions of a Micrococcus suspension. These show false positive results (yellow colour) for the carbohydrate tests (bracketed) due to interference by the gases produced by the developing reagents added to the indol, nitrate reduction, and Voges Proskauer test cupules. Reagents added after 48 hours, and photographs were then, taken after $0,2.30,5$ and 24 hours respectively as shown on next two pages. $A=5, B=0.5, C=0.05$, and $D=0.005$ on the MacFarland scale.

2.30 hr

there were not enough bacterial cells to utilize the test substrates very quickly.

Since some reactions release gaseous products which interfere with other tests, precautions had to be taken during the experimental procedure. Those cupules containing added reager.ts were therefore cut from the API strips before the other tests were reincubated. This gave results that agreed with the API profiles.

Vlll- Experiment D

The cell concentration of Aeromonas hydrophila equivalent to 5 on the MacFarland scale gave better results than those given at 0.5 on the scale. This may be due to the differences in the number of cells able to hydrolyse the substrates ir the API 20NE cupules. Plate 15 shows the number of cells at the concertration of 5 that were able to hydrolyse the gelatin (GEL) ard aesculin (ESC) using the protease and β-glucosidase enzymes, thereby producing black pigments. It was noticed that fungal colonies grew in the cupule containing arabinose (ARA). Contamination may have occurred during addition of reagents or when the galleries were being photographed. The reasons for the differences obtained between these test results and the API profiles are not clear.

SECTION 3

SUMMARY

1-
The aim of my work in this section was to apply the API ZYM, API 20E and API 20NE systems to marine and non-marine samples in a number of experiments. The samples consisted of intertidal sediment and marine and non-marine named bacterial isolates.

2-
An experiment was conducted to determine the quantity of sediment dispensed from a pasteur pipette into each API ZYM cupule. Statistical analysis using two-way analyses of variance showed that in both the first and second replicate experiments there was no significant variation between drops or pipettes.

3- An experiment was carried out to determine the optimum incubation time of inoculated API ZYM strips using intertidal surface sediment. The results of this experiment suggested that the highest amount of hydrolysed substrate in most cupules occurred in the time between 10-20 hours of the first incubation and between 5-20 hours of the second incubation time.

Student's t-tests were applied to the data and showed that there were differences between the first incubation times in most cupules. However, in the second incubation times, there was no significant variation.

4- An experiment was conducted to determine how soon after addition of API ZYM reagents colour developed and reached a maximum intensity. A two-way analysis of variance applied to the data showed possible statistical interaction. Subsequent one-way analyses showed a highly significant variation between cupules at a depth of 5 cm . However, there was no significant variation between cupules at 10 cm , 20 cm and 35 cm depth. At the surface, there was only possible variation between cupules. One-way analyses of variance also showed a significant variation between depths with cupules 2 and 6. However,
with cupules 7 and 11, there was no significant variation between depths.

The variation in time at the which maximum score was reached was studied. Two-way analysis of variance showed that there was a significant variation between depths, but that there was no significant variation between cupules.

5- An experiment was conducted to test whether the colour noticed in API ZYM cupules was produced by membrane filterable products and if so, whether these products were heat stable or heat labile. The results showed that for both overlying and interstitial water, there is no difference between control and membrane filtered seawater and no difference between boiled and autoclaved seawater. The results also showed that there are significant differences between the cupules, and the activity is not affected by membrane filtration but is abolished by boiling and autoclaving.

Statistical analysis comparing overlying water with interstitial water (control and membrane filtered) for each cupule, showed a highly significant variation between overlying and interstitial water samples in 3 out of 5 cupules. In these 3 cupules, the activity in the interstitial water was greater than that in the overlying water.

6- An experiment was conducted to determine the growth rate of marine and non-marine bacteria. The results showed the following conclusions:
(a) The number of cells increased with increasing incubation time up to 12 hours and the non-marine strains showed a greater increase in the number of cells than marine strains.
(b) The \log phase of all strains started just before 6 hours, with the exception of Escherichia coli which reached slightly
earlier.
(c) The stationary phase of all strains examined was always reached after 12 hours, with the exception of Aeromonas hydrophila which reached the stationary phase after 18 hours. An experiment was conducted to test how well the API 20E and API 20NE systems work with marine and non-marine bacteria. The effect of bacterial cell concentration on the kit-system reaction was also tested. The results showed the following conclusions.
(a) With the API 20E system and after 24 hours, all the strains gave some positive results and in general, the colour intensity decreased with increasing dilutions of cell suspension. The exception to this was Micrococcus sp. which gave negative results with all the tests.
(b) The results with Vibrio fischeri, Aeromonas hydrophila and Escherichia coli showed little change after 48, 72 and 96 hours except in the carbohydrate tests which were affected by the added reagents.
(c) With the API 20NE system and after 24 hours, the marine strains Vibrio fischeri and Micrococcus sp. gave two and one positive result respectively. The non-marine strains Aeromonas hydrophila and Esherichia coli gave numerous positive results.
(d) After 48, 72 and 96 hours of incubation, the strains Vibrio fischeri and Micrococcus sp. showed only a few positive results in the conventional tests. However, after 72 and 96 hours, there were many positive results (growth) in the assimilation tests at the high cell concentrations.
(e) With the strains Aeromonas hydrophila and Esherichia coli, there were more positive results after 48,72 and 96 hours than at 24 hours. The majority of these positive results were
from the assimilation tests.

8- Preliminary and definitive experiments were conducted to test the effect of the number of Escherichia coli cells and incubation time on the API 20E system. The results demonstrated that colour intensity decreased with increasing dillutions after 24 hours. Prolonged incubation time to 48 hours improved the results of some tests at low cell concentrations and caused a change to positive.

9- An experiment was carried out to test whether the API 20NE non
system produced replicable results with the $/$ marine strain Aeromonas hydrophila when used by two separate workers. The results showed that cell concentrations of 5 on the MacFarland scale were much better than 0.5. The results also showed that 48 hours of incubation produced more positive tests than 24 hours.

Appendix Table 1

Computer program "BACT" for calculations of the numbers of heterotrophic bacteria per gram dry weight sediment or per ml water.

```
    10 REM *** EACT, F. EDDEB, OCT. 1984 ***
    20 FRINT:FFFINT
    80 LFFINT CHF#(27):"1";CHF$(10)
    40 CS ==CHR %(126)+CHF青(28)
    50 FFIINT CS:
    6O FRINT"THIS FROGFAMME CALCULATES NUMBEFS OF HETEFOTFOFHIC EACTEFIA"
    70 FFINT"FER GRAM DFY SEDIMENT OF FEFF ml WATEF(C.F.U. =COLONY FOFMMING"
    BO FFINNT"UNITS)"
    9 0 ~ F R I N N T : F R I I N T ~
    100 LFFRINT"THIS FROGRAMME CALCULATES NUMEEFS OF HETEFOTFOFHIC EACTEFIA
    "
    110 LFRINT"FEF GFAM DFY SEDIMENT OF FEF ml WATER(C.F.U. =COLONY FORMING
    |
    120 LFFIINT"UNITS)"
    130 LFFINT:LFFINT
    140
    LFFINT"-
    A=0:E=0:C=0:D=0:N=0:T=0:F=0:U=0
    INFUT"SAMFLE DETAILS(FEMEMBEF TO SFECIFY SEDIMENT OF WATEF;)=" ";A幸
    INFUT"NUMBEF OF FEFLICATE FLATES= ";N
    INFUT"ENTEF WEIGHT OF DFY SEDIMENT (IF WATER COUNTS ENTEF 1)= ":C
    INFUT"DILUTION FACTOF= ";E
    FRINT
    LFFINT"SAMFLE DETAILS(FEMEMBEF TO SFECIFY SEDIMENT OF WATEF:)= ":Aま
    LFRINT"NUMBER OF FEFLICATE FLATES= ";N
    LFFINT"ENTEF WEIGHT OF DFY SEDIMENT(IF WATEF COUNTS ENTEF 1)= ":C
    LFRINT"DILUTION FACTOR= ";B
    LFFRINT:LFFIINT
    :
    :
    FEM"LINES 280-390 AFE A LOOF"
    FOF J=1 TO N
    LFFINT
    FRINT
    INFUT"NUMEEF OF COLONIES FEEF FLATE= ";A
    LFRINT"NUMBEF OF COLONIES FEF FLATE= ";A
    D=(A*B)*10/C
    T=T+D
    F=F+D*2
    FFRINT"C.F.U.FEF GFAM DFY SEDIMENT OR FER mI WATEF= ";D
    LFRINT"C.F.U.FEE GRAM DFY SEDIMENT OR FER ml WATER= ":D
    NEXT J
    :
    :
    M=T/N
    U=SQFi((F-T\cdots2/N)/(N-1))
    LFRINT:LFRINT
    FFINT:FFIINT
    FRINT"C.F.U.FEF GFAM DFY SEDIMENT OF FEF ml WATEF"
    FFINT"MEAN= ";M
    FRINT"STANDARD DEVIATION= ":U
    FE:INT"--
    -------"
    LFFINT"C.F.U.FEF GFAM DFY SEDIMENT DF PEF ml WATER"
510 LFFINT"MEAN= ":M
520 LFFINT"STANDAFD DEVIATIDN= ":U
SSO LFFINT"-
540 FFIINT"DO YOU WISH TO CONTINUE,Y/N":INFUT A&:IF A&="Y" THEN GOTO 15
0
550 END
```


Appendix Figure 1
A flow diagram of the programme calculating the numbers of heterotrophic bacteria per gram dry weight sediment or per ml water (if water counts enter l as dry weight input). C.F.U. = colony forming units.

Appendix Table 2

Example of calculating the numbers of heterotrophic bacteria per gram dry weight sediment or per ml water using "BACT" computer program.

THIS FROGFAMHE CALCULATES NUMEEFS OF HETEROTFOFHIC EACTEFIA FEF GFAM DFY SEDIMENT OF FEFi ml WATEF (C.F.U. =COLONY FOFMING UNITS)

```
SAMFLE DETAILS(FEMEMEER TO SFECIFY SEDIMENT OR WATER)= FEB. BACT.D.W
NUMEEF OF FEFLICATE FLATES= J
ENTEF WEIGHT OF DFY SEDIMENT(IF WATEF COUNTS ENTEF; 1)= 1
DILUTION FACTOF=}10
NUMEEE: OF COLONIES FEF PLATE= 65
C.F.U.FEF GFAM DFY SEDIMENT OR FEF mI WATEF=}=6500
NUMEEF OF COLONIES FEF FLATE= }8
C.F.U.FEF GFAM DFY SEDIMENT OF FER ml WATEF= 87000
NUMEEF OF COLONIES FEF FLATE= 97
C.F.U.FEF GFAM DFY SEDIMENT OF FEEF ml WATEF= 97000
C.F.U.FER GFiMM DFY SEDIMENT OF FEF ml WATER
MEAN= 8.S000
STANDAFD DEVIATION= 16S70.3
SAMFLE DETAILS(FEMEMEEF TO SFECIFY SEDIMENT OF WATEF)= FEG.FUN.S.S
NLMEEF: OF FEFLICATE FLATES= Z
ENTEF WEIGHT OF DFY SEDIMENT(IF WATEF COUNTS ENTEF 1)= .7542
DILUTION FACTOF:= 10
NUMEER OF COLONIES FER FLATE= 154
C.F.U.FER GFAM DFY SEDIMENT OR: FEF ml WATEF= 20419
NLIMEER OF CDLONIES FER PLATE= 164
C.F.U.FEF GFIAM DFY SEDIMENT OF FEF ml WATEF= 21744.9
NUMBER OF COLONIES FER FLATE= 137
C.F.U.FEFF GFAM DFY SEDIMENT DF FEF mI WATEF=}=18164.
C.F.U.FER GFAM DFY SEDIMENT OF FEF ml WATEF
MEAN= 20109.6
STANDAFD DEVIATION= 1809.88
```


ENZYMATIC REACIIONS

API ZYM

The API ZYM system is a semiquantitative micromethod which was originally designed to detect enzymatic activities in a variety of specimens, such as tissues, cells, bacterial fluids, microorganisms and soil. It allows the systematic and rapid study of 19 enzymatic reactions using very small quantities of sample. The API ZYM gallery has 20 microtubes. The bottom of 19 of the microtubes is specially made to contain enzymatic substrate and buffer impregnated into inert supportive fabric, while cupule No. 1 contains no substrate and is used as a control. Enzymatic activity is revealed after addition of suitable developing indicators.

API 20E

The API 20E system is a standardized, miniaturized version of conventional procedures for the identification of Enterobacteriaceae and other Gram-negative bacteria. It is a microtube system designed for the performance of 23 standard biochemical tests from a single colony of bacteria on plating medium.

Studies made with cultures isolated from clinical samples have considered API 20E as the most complete commercially available system for identification of Enterobacteriaceae (full details in section three introduction). This system combined with clear-cut results, ease of reading and interpretation.

API 20NE

The API 20NE system is a standardized micromethod combining 8 conventional tests and 12 assimilation tests for the identification of Gram-negative rods not belonging to the family of Enterobacteriaceae. For example, Acinetobacter, Aeromonas, Flavobacterium, Moraxella, Pseudomonas and Vibrio.

The API $20 N E$ strip consists of 20 tubes and cupules containing dehydrated media and substrates. The principle of the technique is to inoculate the conventional tests with a bacterial suspension in saline which reconstitutes the media. During the incubation period metabolism produces colour changes that are spontaneous or develop after addition of suitable developing reagents. The assimilation tests are inoculated with a minimal saline suspension added to the assimilation medium provided and the bacteria only grow if they are capable of utilizing the corresponding substrate. Turbidity acts as an indicator of bacterial growth.

API 20B

The API $20 B$ is a system has been designed to study heterotrophic, aerobic bacteria and of their distribution in the environment (water, air, and soil). The API gallery consists of 20 microtubes containing dehydrated substrates which enable 22 biochemical tests to be obtained. In addition, other microscopic observation tests (morphology, motility) are recommended to be carried out. The results of these test-kits are obtained as a characteristic numerical profile of the strain studied.

API 50CH

The API 50CH is a system can be used to study assimilation, oxidation or fermentation of substrates by a wide range of microorganisms. The principle of the technique is to prepare a standardized bacterial suspension in the medium recommended for a particular strain and then use it to inoculate the API 50 CH strips.

Minitek

The Minitek system utilizes paper discs impregnated with appropriate biochemicals. The discs are dispensed into the Minitek
plate and a suspension of the test organism in the appropriate Minitek broth is added. The Minitek plates are then incubated and after the addition of the appropriate reagents, the discs are examined for specific colour reactions. Colour chart cards are supplied by the manufacturer as an aid to read the organism reactions. The Minitek qualitative procedure is based upon establised biochemical methods for the differentiation of microorganisms according to their metabolism of certain substrates by bacteria. The Minitek set provide consumable products suffecient to differentiate up to 50 isolates in the Minitek system.

| Drop | Pipette I | | | Pipette II | | | Pipette III | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.01716 | 0.01898 | 0.01470 | 0.01249 | 0.01620 | 0.02025 | 0.2149 | 0.01753 | 0.01710 |
| 2 | 0.01260 | 0.01679 | 0.01920 | 0.01920 | 0.02169 | 0.01949 | 0.01837 | 0.02862 | 0.0030 |
| 3 | 0.01755 | 0.01785 | 0.03260 | 0.00678 | 0.01056 | 0.00919 | 0.01889 | 0.2281 | 0.01641 |
| 4 | 0.00309 | 0.01845 | 0.01395 | 0.00710 | 0.00385 | 0.00580 | 0.01850 | 0.02823 | 0.01554 |

Appendix Table 1: Replicate experiment 1. Four drops of sediment dispensed from different
pasteur pipettes following one filling into each of four weighed metal foil cups.

| Drop | Pipette I | Pipette II | | | Pipette III | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.02067 | 0.01476 | 0.02075 | 0.02045 | 0.01882 | 0.01785 | 0.01183 | 0.02026 | 0.02040 |
| 2 | 0.03725 | 0.01680 | 0.01942 | 0.01960 | 0.03996 | 0.01467 | 0.01575 | 0.01635 | 0.01725 |
| 3 | 0.02093 | 0.02292 | 0.01783 | 0.01807 | 0.01286 | 0.01430 | 0.02610 | 0.01684 | 0.02008 |
| 4 | 0.02128 | 0.02010 | 0.02145 | 0.01995 | 0.01522 | 0.01056 | 0.01770 | 0.01210 | 0.02325 |

Appendix Table 2: Replicate experiment 2. Four drops of sediment dispensed from different
pasteur pipettes following one filling into each of four weighed metal foil cups.

Appendix Table 3: Amount of hydralysed substrates (nanomoles) in API ZYM cupules $(2,6,7,8,9,11$ and 12) at each first and second incubation times. First incubation time $=$ before addition of developing reagents, Second incubation time $=$ after addition of developing reagents.

REFERENCES

ABElSON, P. H. and ALDOUS, E. (1950). Ion antagonism in microorganisms: interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc and manganese. Journal of Bacteriology. 60: 401-413.

ABRAHAM, E. P. and CHAIN, E. (1940). An enzyme from bacteria able to destroy penicillin. Nature, London. 28: 837.

ADAMS, L. F. and GHIORSE, W. C. (1985). Influence of manganese on growth of a shathless strain of Leptothrix discophora. Applied and Environmental Microbiology. 49: 556-562.

AHEARN, D. G. (1973). Effects of environmental stress on aquatic yeast populations. p.433-439. In: Estuarine microbial ecology. Stevenson, L. H. and Colwell, R. R. (eds.), The Belle W. Baruch Library in Marine Science, No. 1, University of South Carolina Press, Columbia.

AHEARN, D. G., ROTH, F. J. Jr., and MEYERS, S. P. (1968). Ecology and characterisation of yeasts from aquatic regions of South Florida. Marine Biology. 1: 291-308.

ALBERT, A. (1975). Selective toxicity. 6th edition. Chapman and Hall, London.

ALDRIDGE, K. E. GARDNER, B. B., CLARK, S. J., and MATSEN, J. M. (1978). Comparison of Micro-ID, API 20E, and conventional media systems in identification of Enterobacteriaceae. Journal of Clinical Microbiology. 7: 507-513.

ALDRIDGE, K. E., and HODGES, R. L. (1981). Correlation studies of Entero-Set 20, API 20E, and conventional media systems for Enterobacteriaceae identification. Journal of Clinical Microbiology. 13: 120-125.

ALEXANDER, M. (1977). Introduction to soil microbiology. Wiley, New York

ALKING, H., KOK, K., VAN HEERIKHUIZEN, H., and VAN'T RIET, J. (1982). Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via formation of cadmium sulphide. Applied and Environmental Microbiology. 44: 938944.

ALLEN, D. A., AUSTIN, B., and COLWELL, R. R. (1983). Numerical taxonomy of bacterial isolates associated with a freshwater fishery. Journal of General Microbiology. 129: 2043-2062.

ALLER, R. C. (1980). Relationships of Tube-Dwelling benthos with sediment and overlying water chemistry. p. 285-308. In: Marine benthic dynamics. Tenore, K. R. and Coull, B. C. (eds.), The Belle W. Baruch Library in Marine Science, University of South Carolina Press, Columbia.

REFERENCES (cont'd.)

ALLER, R. C. and YINGST, J. Y. (1980). Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA. Marine Biology. 56: 29-42.

ANDERSON, J. G., and MEADOWS, P. S. (1965). Microorganisms and organic matter attached to the surface of marine sand grains. Journal of General Microbiology. 41: 3.

ANDERSON, J. G., and MEADOWS, P. S. (1969). Bacteria on intertidal sand grains. Hydrobiologia. 33: 33-46.

ANDERSON, J. G., and MEADOWS, P. S. (1978). Microenvironments in marine sediments. Proceedings of the Royal Society of Edinburgh B. 76: 1-16.

ANDERSON, J. G., BOONRUANG, P., and MEADOWS, P. S. (1981). Interrelationships between chlorophylls, carbon, nitrogen and heterotrophic bacteria in an intertidal sediment transect. Marine Ecology Progress Series. 6: 277-283.

ANON. (1974). Introduction: general information about Clyde sea area. p. 3-5. In: The Clyde Estuary and Firth. The Natural Environment Research Council Publications, Series C, No. 11.

ARCURI, E. J., and EHRLICH, H. L. (1977). Influence of hydrostatic pressure on the effect of the heavy metal cations of manganese, copper, cobalt and Nickel on the growth of three deep-sea bacterial isolates. Applied and Environmental Microbiology. 33: 282-288.

ASHESHOV, A. H. (1966). Loss of antibiotic resistance in Staphylococcus aureus resulting from growth at high temperature. Journal of General Microbiology. 42: 403-410.

AUS'IIN, B. (1982). Taxonomy of bacteria isolated from a coastal, marine fish-rearing unit. Journal of Applied Bacteriology. 53: 253-268.

AUSTIN, B., ALLEN, D. A., MILLS, A. L., and COLWELL, R. R. (1977). Numerical taxonomy of heavy metal-tolerant bacteria isolated from an estuary. Canadian Journal of Microbiology. 23: 14331447.

AUSTIN, B., GOODFELLOW, M., and DICKINSON, C. H. (1978). Numerical taxonomy of phylloplane bacteria isolated from Lolium perenne. Journal of General Microbiology. 104: 139-155.

AUSTIN, B. HUSSONG, D., WEINER, R. M., and COLWELL, R. R. (1981). Numerical taxonomy analysis of bacteria isolated from the completed "Most probable numbers" test for Coliform bacilli. Journal of Applied Bacteriology. 5l: 101-112.

AUSTIN, D. A., and Moss, M. O. (1986). Numerical taxonomy of redpigmented bacteria isolated from a lowland river, with the description of new taxon, Rugamonas rubra gen. nov., sp. nov. Journal of General Microbiology. 132: 1899-1909.

REFERENCES (cont'd.)

BACK, A. E., and OBERHOFER, T. R. (1978). Use of Minitek system for biotyping Haemophilus species. Journal of Clinical Microbiology. 7: 312-313.

BABICH, H., and S'TOTZKY, G. (1977a). Sensitivity of various bacteria, including Actinomycetes, and fungi to cadmium and the influence of pH on sensitivity. Applied and Environmental Microbiology. 33: 681-695.

BABICH, H., and STOTZKY, G. (1977b). Effects of cadmium on fungi and on interactions between fungi and bacteria in soil: Influence of Clay minerals and pH. Applied and Environmental Microbiology. 33: 1059-1066.

BABICH, H. and STOTZKY, G. (1979). Differential toxicity of mercury to bacteria and bacteriophages in seawater and lake water. Canadian Journal of Microbiology. 25: 1252-1257.

BALDRY, M. G. C., HOGARTH, D. S., and DEAN, A. C. R. (1977). Chromium and copper sensitivity and tolerance in Klebsiella (Aerobacter) aerogenes. Microbios Letters. 4: 7-16.

BASCOMB, S., LAPAGE, S. P., CURTIS, M. A., and WILLCOX, W. R. (1973). Identification of bacteria by computer: Identification of reference strains. Journal of General Microbiology. 77: 291315.

BATTERSBY, N. S., and BROWN, C. M. (1982). Microbial activity in organically enriched marine sediments. p. 148-170. In: Sediment microbiology. Nedwell, D. B., and Brown, C. M. (eds.), Special Puplicatioins of the Society of General Microbiology, No. 7, Academic Press, London.

BAYA, A. M., BRAYTON, P. R., BROWN, V. L., GRIMES, D. J., RUSSEKCOHEN, E., and COLWELL, R. R. (1986). Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Applied and Environmental Microbiology. 51: 1285-1292.

BEERS, R. J., FISHER, J., MEGRAW, S., and LOCKHART, W. R. (1962). A comparison of methods for computer taxonomy. Journal of General Microbiology. 28: 641-652.

BENBOUGH, J., and MORRISON, G. A. (1965). Bacteriostatic actions of some tetracyclines. Journal of Pharmacy and Pharmacology. 17: 409-422.

BENNETT, P. M., and RICHMOND, M. H. (1976). Translocation of discrete piece of deoxyribonucleic acid carrying an amp gene between replicons in Escherichia coli. Journal of Bacteriology. 126: 1-6.

BENT, E. J., and GOULDER, R. (1981). Planktonic bacteria in the Humber estuary; Seasonal variation in population density and heterotrophic activity. Marine Biology. 62: 35-45.

BERMAN, T. (1970). Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnology and Oceanography. 15: 663-674.

BITTON, G. and FREIHOFER, V. (1978). Influence of extracellular polysacchrides on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microbial Ecology. 4: 119-125.

BOEYE, A., and AERTS, M. (1976). Numerical taxonomy of bacillus isolates from North sea sediments. International Journal of Systematic Bacteriology. 26: 427-441.

BONDE, G. J. (1975). The genus bacillus: An experiment with cluster analysis. Danish Medical Bulletin. 22: 41-63.

BOPP, L. H., CHAKRABARTY, A. M., and EHRLICH, H. L. (1983). Chromate resistance plasmid in Pseudomonas fluorescens. Journal of Bacteriology. 155: 1105-1109.

BORTHOLOMEW, J. W., and RITTENBERG, S. C. (1949). Thermophilic bacteria from deep ocean bottom cores. Journal of Bacteriology. 57: 658.

BORUT, S. Y., and JOHNSON, T. W. (1962). Some biological observations on fungi in estuarine sediments. Mycologia 54: 181-193.

BOUTRON, C. and LORIUS, C. (1979). Trace metals in Antarctic snows since 1914. Nature, London. 277: 551-554.

BRIDGE, P. D., and SNEATH, P. H. A. (1983). Numerical taxonomy of Streptococcus. Journal of General Microbiology. 129: 565-597.

BROCK, T. D. (1966). Principles of microbial ecology. Prentice Hall. Englewood Cliffs, New Jersey.

BUBELA, B. (1970). Chemical and morphological changes in Bacillus stearothermophilus induced by copper. Chemico-Biological Interactions. 2: 107-116.

BUCK, J. D. (1975). Distribution of aquatic yeasts- effect of incubation temperature and chloramphenicol concentration on isolation. Mycopathologia 56: 73-79.

BUCK, J. D. (1979). The plate count in aquatic microbiology. p. 19-28. In: Native aquatic bacteria: Enumeration, activity, and ecology. Costerton, J. W., and Colwell, R. R. (eds.), American Society for Testing and Materials, Philadelphia.

BURGES, A. (1958). Microorganisms in the soil. Hutchinson University Library, London.

CALOMIRIS, J. J., ARMSTRONG, J. L., and SEIDLER, R. J. (1984). Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Applied and Environmental Microbiology. 47: 1238-1242.

CAMPBELL, R. (1982). Microbial ecology. Blackwell Scientific publications, Oxford.

REFERENCES (cont'd.)

CHRISTIAN, R. R., and WETZEL, R. L. (1978). Interaction between substrate, microbes, and consumers of spartina detritus in estuaries. p. 93-1l3. In: Esuarıne interactions. Wiley, M. L. (ed.) Academic Press, New York and London.

CLIFFORD, H. T., and STEPHENSON, W. (1975). An introduction to numerical clissification. Academic press, London.

COHEN, L., and HOLLIDAY, M. (1984). Statistics for social scientists. Harper and Row, London.

COLE, M. A. (1977). Lead inhibition of enzyme synthesis in soil. Applied and Environmental Microbiology. 33: 262-268.

COLLAR, R. H. F. (1974). The River Clyde Estuary: Current knowledge of water and sediment movement. p. 10-13. In: The Clyde Estuary and Firth. Natural Environment Research Council Publications, Series C, No. 11.

COLLINS, G. V. (1977). Methods in sedıment microbiology. p. 219-272. In: Advances in aquatic microbiology. Droop, M. R. and Jannasch, H. W. (eds.), Academic Press, London.

COLWELL, R. R., and KETTLING, R. C. (1974). Isolation and characterisation of some deep-sea bacteria. p. 227-241. In: Effect of the ocean environment on microbial activities. Colwell, R. R., and Morita, R. Y. (eds.), University Park Press, Baltimore.

COLWELL, R. R. and LISTON, J. (1961). Taxonomic relationships among the Pseudomonads. Journal of Bacteriology. 82: 1-14.

COMBS, T. J., MURCHELANO, R. A., and JURGEN, F. (1971). Yeasts isolated from Long Island Sound. Mycologia 63: 178-181.

CORLETT, D. A. Jr.s LEE, J. S., and SINNHUBER, R. O. (1965). Application of replica plating and computer analysis for rapid identification of bacteria in some foods. Applied Microbiology. 13: 808-817.

COSTERTON, J. W., and GEESEY, G. G. (1979). What populations of aquatic bacteria should we enumerate ? p. 7-18. In: Native aquatic bacteria: Enumeration, activity, and ecology. Costerton, J. W., and Colwell, R. R. (eds.), American Society for Testing and Materials, Philadelphia.

CROSBY, N. T. (1967). The determination of nitrite in water using Cleve's acid, l-naphthylamine-7-sulphonic acid. Proceedings of the Society for Water Treatments and Examination. 16: 5155.

CRUICKSHANK, R., DUGUID, J. P., MARMION, B. P., and SWAIN, R. H. A. (1975). Medical microbiology. 12th Edition, Vol. II. Churchill Livingstone, London and New York.

REFERENCES (cont'd.)

DALE, N. G. (1974). Bacteria in intertidal sediments: Factors related to their distribution. Limnology and Oceanography. 19: 509518.

DARLAND, G. (1975). Discriminant analysis of antibiotic susceptibility as a means of bacterial identification. Journal of Clinical Microbiology. 2: 391-396.

DAS, H. K., GOLDSTEIN, A., and KANNER, L. C. (1966). Inhibition by chloramphenicol of the growth of Nascent protein chains in Escherichia coli. Molecular Pharmacology. 2: 158-170.

DEANS, E. A., MEADOWS, P. S. and ANDERSON, J. G. (1982). Physical, chemical and microbiological properties of intertidal sediments and sediment selection by Corophium volutator. Internationale Revue der Gesamten Hydrobiologie. 67: 261-269.

DEEGAN, C. E. (1974). Geological investigations in the Firth of Clyde made by the Institute of Geological Sciences. p. 6-9. In: The Clyde Estuary and Firth. Natural Environment Research Council Publications, Series C, No. 11.

DELONG, E. F. and YAYANOS, A. A. (1986). Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Applied and Environmental Microbiology. 51: 730737.

DEMEREC, M. (1948). Origin of bacterial resistance to antibiotics. Journal of Bacteriology . 56: 63-74.

DE-ZEEUW, J. R. (1968). Accumulation of tetracyclines by Escherichia coli. Journal of Bacteriology. 95: 498-506.

DOYLE, J. J., MARSHALL, R. T., and PFANDER, W. H. (1975). Effects of cadmium on the growth and uptake of cadmium by microorganisins. Applied Microbiology. 29: 562-564.

DUBOS, R. J. (1939). Studies on a bactericidal agent extracted from a soil Bacillus. Journal of Experimental Medicine. 70: 1-10.

DUBOS, R. J., HOTCHKISS, R. D., and COBURN, A. F. (1942). The effect of gramicidin and tyrocidine on bacterial metabolism. Journal of Biological Chemistry. 146: 421-426.

DUXBURY, T. (1981). Toxicity of heavy metals to soil bacteria. FEMS Microbiology Letters. 11: 217-220.

DUXBURY, T. and BICKNELL, B. (1983). Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biology and Biochemistry. 15: 243-250.

DYKE, K. G. H., PARKER, M. T., and RICHMOND, M. H. (1970). Penicillinase production and metal-ion resistance in Staphylococcus aureus cultures isolated from hospital patients. Journal of Medical Microbiology. 3: 125-136.

REFERENCES (cont'd.)

EDBERG, S. C., ATKINSON, B., CHAMBERS, C., MOOR, M. H., PALUMBO, L., ZORZON, C. F., and SINGER, J. M. (1979). Clinical evaluation of the MICRO-ID, API 20E, and conventional media systems for identification of Enterobacteriacceae. Journal of Clinical Microbiology. 10: 161-167.

EDWARDS, D. I. (1980). Antimicrobial drug action. Macmillan Press, London.

EFSTATHIOUS, J. D., and MCKAY, L. L. (1977). Inorganic salts resistance associated with a Lactose-fermenting plasmid in Streptococcus lactis. Journal of Bacteriology. 130: 257-265.

ELLIOTT, J. S. B. (1930). The soil fungi of the Dovey salt marshes. Annals of Applied Biology. 17: 284-305.

ELLIS, D. (1925). An investigation into the cause of blackening of the sand in parts of the Clyde Estuary. Journal of the Royal Technical College, Glasgow. 1: 144-156.

ELLIS, D. (1926). Part I - Thioporphyra volutans (Ellis) A new genus of Sulphur bacteria: Part II- The Sulphur bacteria as aids in the study of polluted waters. Journal of the Royal Technical College, Glasgow. 1: 165-177.

ELLIS, D. (1929). A bacteriological investigation into the state of pollution of the Clyde at Port Glasgow, Greenock and Gourock. Journal of the Royal Technical College, Glasgow. 2: 129-142.

ELLIS, D. (1932). The dilution of sewage in the sea. Journal of the Royal Technical College, Glasgow. 2: 698-707.

ERKENBRECHER, C. W., and STEVENSON, L. H. (1977). Factors related to the distribution of microbial biomass in salt-marsh-Creeks. Marine Biology. 40: 121-125.

EVERITT, B. (1980). Cluster analysis. 2nd edition. Heinemann Ltd., London.

EZURA, Y., DAIKU, K., KIMURA, T., and SAKAI, M. (1974). Seasonal differencs in bacterial counts and heterotrophic bacterial flora in Akkeshi Bay. In: Effects of the ocean environment on microbial activities. Colwell, R. R. and Morita, R. Y. (eds.), University Park Press, Baltimore.

FAGER, E. W. (1964). Marine sediments: Effects of a tube-building polychaete. Science, New York. 143: 356-359.

FEINGOLD, D. S., HSUCHEN, C. C., and SUD, I. J. (1974). Basis for the selectivity of action of the polymyxin antibiotics on cell membranes. Annals New York Academy Sciences. 235: 480-490.

FELL, J. W. (1974). Distributions of yeasts in the water masses of the Southern oceans. p. 510-523. In: Effects of the ocean environment on microbial activities. Colwell, R. R., and Morita, R. Y. (eds.), University Park Press, Baltimore.

FELL, J. W., and VAN UDEN, N. (1963). Yeasts in marine environments. p. 329-340. In: Symposium on marine microbiology. oppenheimer, C. H. (ed.), Charles C. Thomas, Springfield.

FENCHEL, T., and RIEDL, R. J. (1970). The sulphide system: a new biotic community underneath the oxidised layer of marine sand bottoms. Marine Biology. 1: 225-268.

FEW, A. V. (1955). The interaction of polymyxin E with bacterial and other lipids. Biochimica et Biophysica Acta. 16: 137-145.

FLEMING, A. (1929). On the antibacterial action of cultures of a penicillium with special reference to their use in the isolation of B. influenze. British Journal of Experimental Pathology. 10: 226-236.

FLOODGATE, G. D. and HAYES, P. R. (1963). The adansonian taxonomy of some yellow pigmented marine bacteria. Journal of General Microbiology. 30: 237-244.

FONTAINE, E. A. R., BRYANT, T. N., TAYLOR-ROBINSON, D., BORRIELLO, S. P., and DAVIES, H. A. (1986). A numerical taxonomic study of anaerobic Gram-negative bacilli classified as Bacteroides ureolyticus isolated from patients with non-gonococcal urethritis. Journal of General Microbiology. 132: 31373146.

FRANKLIN, T. J. and SNOW, G. A. (1971). Biochemistry of antimicrobial action. 3rd edition. Chapman and Hall, London.

FRIEDMAN, R. B., BRUCE, D., MACLOWRY, J., and BRENNER, VEE. (1973). Computer-assisted identification of bacteria. American Journal of Clinical Pathology. 60: 395-403.

FRIEDMAN, R., and MACLOWRY, J. (1973). Computer identification of bacteria on the basis of their antibiotic susceptibility patterns. Applied Microbiology. 26: 314-317.

FUJIWARA, K., IWAMOTO, M., TODA, S., and FUWA, K. (1977). Characteristics of Escherichia coli B resistant to cobaltous ion. Agricultural and Biological Chemistry. 41: 313-322.

FUKAMI, K., SIMIDU, U., and TAGA, N. (1983). Distribution of heterotrophic bacteria in relation to the concentration of particulate organic matter in seawater. Canadian Journal of Microbiology. 29: 570-575.

FUNG, D. C., AND MILLER, R. D. (1973). Effect of dyes on bacterial growth. Applied Microbiology. 25: 793-799.

GABY, W., and HADLY, C. (1957). Analytical laboratory test for the identification of Pseudomonas aeruginosa. Journal of Bacteriology. 74: 356-358.

GADD, G. M., and GIFFITHS, A. J. (1978). Microorganisms and heavy metal toxicity. Microbial Ecology. 4: 303-317.

REFERENCES (cont'd.)

GALE, E. F., and FOLKES, J. P. (1953). The assimilation of amino-acids by bacteria: Action of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochemical Journal. 53: 493-498.

GARVIN, R. T., BISWAS, D. K., and GORINI, L. (1974). The effects of streptomycin or dihydrostreptomycin binding to 16 s RNA or to 30s ribosomal subunits. Proceedings of the National Academy of Sciences of the United State of America. 71: 3814-3818.

GAUTHIER, M. J., and CLEMENT, R. (1978). Essais d' application de miromethods a l'etude taxonomique de bacteries heterotrophic marines. Revue de l'Institute Pasteur de Lyon 11: 35-53.

GERBA, C. P., and MCLEOD, J. S. (1976). Effect of sediments on the survival of Escherichia coli in marine waters. Applied and Environmental Microbiology. 32: 114-120.

GIL, M. C., DE LA ROSA, M. C., MOSSO, M. A. and GARCIA ARRIBAS, M. L. (1986). Numerical taxonomy of bacillus isolated from orally administered drugs. Journal of Applied Bacteriology. 6l: 347-356.

GILARDI, G. L. (1971). Antimicrobial susceptibility as a diagnostic aid in the identification of non-fermenting Gram-negative bacteria. Applied Microbiology. 22: 821-823.

GOTTLIEB, D., and SHAW, P. D. (1967). Antibiotics: Mechanism of action. vol. I. Springer-Verlag, New York.

GOULDER, R. (1976). Evaluation of media for counting viable bacteria in estuaries. Journal of Applied Bacteriology. 41: 351-355.

GOULDER, R. (1977). Attached and free bacteria in an estuary with abundant suspended solids. Journal of Applied Bacteriology. 43: 399-405.

GRAY, J. S. (1966). The attractive factor of intertidal sands to Protodrilus symbioticus. Journal of the Marine Biological Association of the United Kingdom. 46: 627-646.

GROVES, D. J. and Young, F. E. (1975). Epidemiology of antibiotic and heavy metal resistance in bacteria: resistance patterns in Staphylococci isolated from populations not known to be exposed to heavy metals. Antimicrobial Agents and Chemotherapy. 7: 614-621.

HAGLER, A. N., and MENDONCA-HAGLER, L. C. (1981). Yeasts from marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Applied and Environmental Microbiology. 41: 173-178.

HAMDY, M. K. and NOYES, O. R. (1975). Formation of methyl mercury by bacteria. Applied Microbiology. 30: 424-432.

HAMMOND, S. M., and LAMBERT, P. A. (1978). Antibiotics and antumicrobial action. Edward Arnold, London.

REFERENCES (cont'd.)

HANSEN, A. J., WEEKS, O. B., and COLWELL, R. R. (1965). Taxonomy of Pseudomonas piscicida (Bein) Buck, Meyers and Leifson. Journal of Bacteriology. 89: 752-761

HANSON, R. B., and KIM, J. (1970). Activities of cell-free enzymes dissolved in the marine environment. Bacteriological Proceedings. 1970: 27.

HARRIS, P. J. (1963). A replica plate culture technique. Journal of Applied Bacteriology. 26: 100-101.

HARVEY, H. W. (1925). Oxidation in seawater. Journal of the Marine Biological Association of the United Kingdom. 18: 953-969.

HAUXHURST, J. D., KRICHEVSKY, M. I., and ATLAS, R. M. (1980). Numerical taxonomy of bacteria from the Gulf of Alaska. Journal of General Microbiology. 120: 131-148.

HAYES, F. R. (1964). The mud-water interface. Oceanography and Marine Biology an Annual Review. 2: 121-145.

HAYES, W. (1964). The genetics of bacteria and their viruses. Blackwell Scientific Puplications, Oxford.

HEATH, G. W. (1974). Synopsis. p. 1-2. In: The Clyde Estuary and Firth, an assessment of present knowledge compiled by members of the Clyde study group. The Natural Environment Research Council Publication. Series C, No. 11.

HEDGES, R. W., and BAUMBERG, S. (1973). Resistance to arsenic compounds conferred by a plasmide transmissible between strains of Escherichia coli. Journal of Bacteriology. 115: 459-460.

HEDGES, R. W. and JACOB, A. E. (1974). Transposition of ampicillin resistance from RP_{4} to other replicons. Molecular and General Genetics. 132: 31-40.

HEFFRON, F., SUBLETT, R., HEDGES, R. W., JACOB, A., and FALKOW, S. (1975). Origin of the TEM Beta-lactamase gene found on plasmids. Journal of Bacteriology. 122: 250-256.

HEFFRON, F., RUBE, C., and FALKOW, S. (1977). Transposition of a plasmide deoxyribonucleic acid sequence that mediates ampicillin resistance: Identity of laboratory constructed plasmids and clinical isolates. Journal of Bacteriology. 129: 530-533.

HOFSTAD, T. (1980). Evaluation of the API ZYM system for identification of Bacteroids and Fusobacterium species. Medical Microbiology and Immunology. 168: 173-177.

HOLDER-FRANKLIN, M. A., THORPE, A., and CORMIER, C. J. (1981). Comparison of numerical taxonomy and DNA-DNA hybridization in diurnal studies of river bacteria. Canadian Journal of Microbiology. 27: 1165-1184.

REFERENCES (cont'd.)

HOLMES, R., DEFRANCO, L. M., and OTTO, M. (1982). Novel method of biotyping Haemophilus influenzae that uses API 20E. Journal of Clinical Microbiology. 15: 1150-1152.

HOLMES, I. A., and WILD, D. G. (1966). Consequences of inhibition of Escherichia coli by tetracycline antibiotics. Nature, London. 210: 1047-1048.

HOLMES, B., WILLCOX, W. R., and LAPAGE, S. P. (1978). Identification of Enterobacteriaceae by the API 20 E system. Journal of Clinical Pathology. 31: 22-30.

HUDSON, I. A., MORGAN, H. W., and DANIEL, R. M. (1986). A numerical classification of some Thermus isolates. Journal of General Microbiology. 132: 531-540.

HUGO, W. B., and STRETTON, R. J. (1966). The role of cellular lipid in the resistance of Gram-positive bacteria to penicillins. Journal of General Microbiology. 42: 133-138.

HUMBLE, M. W., KING, A., and PHILLIPS, I. (1977). API ZYM: a simple rapid system for the detection of bacterial enzymes. Journal of Clinical Pathology. 30: 275-277.

HUNTER, F. E., and SCHWARTZ, L. S. (1967). Gramicidins. p. 642-648. In: Antibiotics: Mechanism of action. Gottlieb, D. and Shaw, P. D. (eds.), vol. I, Springer-Verlag, New York.

HSUCHEN, C. C., and FEINGOLD, D. S. (1973). The mechanism of polymyxin B action and selectivity toward biologic membranes. Biochemistry. 12: 2105-2111.

HYLLEBERG, J. (1975). Selective feeding by Abarenicola pacifica with selective notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia 14: 113-137.

INGOLD, C. T. (1961). The biology of fungi. Hutchinson Educational, London.

JOHNSON, T. W. Jr., (1968). Saprobic marine fungi. p. 95-104. In: The fungi. Ainsworth, G. C., and Sussman, A. S. (eds.), vol. III, Academic Press, London.

JONES, J. G. (1986). Antibiotic resistance in aquatic bacteria. Journal of Antimicrobial Chemotherapy. 18: 149-154.

JULIAN, G. R. (1965). ${ }^{14}$ C Lycine peptides synthesised in an in vitro Escherichia coli system in the presence of chloramphenicol. Journal of Molecular Biology. 12: 9-16.

KAGAN, B. M. (1980). Antimicrobial therapy. 3rd edition. W. B. Saunders Company, London.

KELLEY, R. W. (1982). Phenotypic differentiation of some of the Veillonella species with the API ZYM system. Canadian Journal of Microbiology. 28: 703-705.

REFERENCES (cont'd.)

KENYON, E. J., PIEXOTO, R. D., AUSTIN, B., and GILLIES, C. D. (1984). Seasonal variation in numbers of Vibrio cholerae (Non-01) isolated from California coastal waters. Applied and Environmental Microbiology. 47: 1243-1245.

KETCHUM, B. H., AYERS, J. C., and VACCARO, R. F. (1952). Processes contributing to the decrease of coliform bacteria in a tidal estuary. Ecology 33: 247-258.

KIM, S. J. (1985). Effect of heavy metals on natural populations of bacteria from surface microlayers and subsurface water. Marine Ecology Progress Series. 26: 203-206.

KIM, J., and ZOBELL, C. E. (1974). Occurrence and activities of cellfree enzymes in oceanic environments. p. 368-385. In: Effect of the ocean environment on microbial activities. Colwell, R. R. and Morita, R. (eds.), University Park Press, Baltimore.

KING, G. M. (1986). Inhibition of microbial activity in marine sediments by a bromphenol from a hemichordate. Nature, London. 323: 257.

KLECKNER, N., CHAN, R. K., TYE, B., and BOTSTEIN, D. (1975). Mutagenesis by insertion of drug-resistance element carrying an inverted repetition. Journal of Molecular Biology. 97: 561-575.

KNIVETT, V. A., SHAH, H. N., MCKEE, A. S., and HARDIE, J. M. (1983). Numerical taxonomy of some non-saccharolytic and saccharolytic Bacteroides species. Journal of Applied Bacteriology. 55: 71-80.

KODITSCHEK, L. K., and GUYRE, P. (1974a). Antimicrobial resistant Coliforms in New York Bight. Marine Pollution Bulletin. 5: 71-74.

KOHLMEYER, J., and KOHLMEYER, E. (1979). Marine mycology: The Higher fungi. Academic Press, New York.

KOVACS, N. (1956). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, London. 178: 703.

KRAUSKOPF, K. B. (1967). Introduction to geochemistry. Mc Graw-Hill, New York.

KREGER-VAN RIJ, N. J. W. (1973). Endomycetales, basidiomycetous yeasts, and related fungi. p. 11-32. In: The fungi. Ainsworth, G. C., Sparrow, F. K., and Sussman, A. S. (eds.), vol. IV A, Academic Press, New York.

LAANBROEK, H. J., and VERPLANKE, J. C. (1986). Seasonal changes in percentages of attached bacteria enumerated in a tidal and a stagnant coastal basin: relation to bacterioplankton productivity. FEMS Microbiology Ecology. 38: 87-98.

REFERENCES (Cont'd.)

LACKS, S., and GROS, F. (1959). A metabolic study of the RNA-amino acid complexs in Escherichia coli. Journal of Molecular Biology. 1: 301-320.

LAMB, A., and TOLLEFSON, E. L. (1973). Toxic effects of cupric, chromate and chromic ions on biological oxidation. Water Research. 7: 599-613.

LANCELOT, C., and BILLEN, G. (1984). Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton blooms in the southern bight of the North Sea. Limnology and Oceanography. 29: 721-730.

LARDY, H. A., CONNELLY, J., and JOHNSON, D. (1964). Antibiotics as tools for metabolic studies: II- Inhibition of phosphoryl transfer in metochondria by oligomycin and aurovevtin. Biochemistry 3: 1961-1968.

LARDY, H. A., and McMURRAY, W. C. (1959). The mode of action of oligomycin. Federation Proceedings. 18: 269.

LARDY, H. A., WITONSKY, P., and JOHNSON, D. (1965). Antibiotics as tools for metabolic studies. IV- Comparative effectiveness of oligomycins A, B, C and rutamycin as inhibitors of phosphoryl transfer reactions in mitochondria. Biochemistry 4: 552.

LARSON, M. H., and PETERSON, W. H. (1960). Chromatographic study of the oligomycin complex produced under various conditions of fermentation. Applied Microbiology. 8: 182.

LEDERBERG, J. (1956). Bacterial protoplasts induced by penicillin. Proceedings of the National Academy of Sciences. (Washington) 42: 574-577.

LEDERBERG, J., and LEDERBERG, E. M. (1952). Replica plating and indirect selection of bacterial mutants. Journal of Bacteriology. 63: 399.

LEE, J. V., SHREAD, P., FURNISS, A. L., and BRYANT, T. N. (1981). Taxonomy and description of Vibrio fluvialis sp. nov. (Synonym group F Vibrios, group EF6). Journal of Applied Bacteriology. 50: 73-94.

LEIFSON, E. (1963). Determination of carbohydrate metabolism of marine bacteria. Journal of Bacteriology 85: 1183-1184.

LESTER, J. N., PERRY, R., and DADD, A. H. (1979). The influence of heavy metals on a mixed bacterial population of sewage origin in the chemostat. Water Research. 13: 1055-1063.

LEVINTON, J. S. (1982). Marine ecology. Prentice-Hall, New Jersey. p. 163-164.

LIGHTHART, B. (1980). Effects of certain cadmium species on pure and litter populations of microorganisms. Antonie Van Leeuwenhoek 46: 161-167.

REFERENCES (cont'd.)

LINDBLOM, G. P. (1963). The distribution of major organic nutrients in marine sediments. p. 205-2l2. In: Symposium on marine microbiology. Oppenheimer, C. H. (ed.). Charles C. Thomas Publisher. Springfield.

LINLEY, E. A. S., NEWELL, R. C., and LUCAS, M. I. (1983). Quantitative relationships between phytoplankton, bacteria and heterotrophic microflagellates in shelf waters. Marine Ecology Progress Series. 12: 77-89.

LITCHFIELD, C. D., and FLOODGATE, G. D. (1975). Biochemistry and microbiology of some Irish sea sediments: II- Bacteriological analyses. Marine Biology. 30: 97-103.

LLOYD, B. (1929). Preliminary note on a marine chromogenic microorganism. Journal of the Royal Technical College, Glasgow. 2: 142-151.

LLOYD, B. (1930). Bacteria of the Clyde sea area: A quantitative investigation. Journal of the Marine Biological Association of the United Kingdom. 16: 879-908.

LLOYD, B. (1931). Muds of the Clyde sea area. II. Bacterial count. Journal of the Marine Biological Association of the United Kingdom. 16: 751-765.

LLOYD, B. and MORRIS, E. O. (1971). An apparatus for measuring microbial growth or survival in the marine environment. Marine Biology. 10: 295-296.

LLOYD, G. I., MORRIS, E. O., and SMITH, J. E. (1971). A study of the esterases and their function in candida lipolytica, Aspergillus niger and yeast-like fungus. Journal of General Microbiology. 63: 141-150.

LURIA, S. E., and DELBRUCK, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491-5ll.

MACDONELL, M. T., SINGLETON, F. L., and HOOD, M. A. (1982). Diluent composition for use of ARI 20E in characterising marine and estuarine bacteria. Applied and Environmental Microbiology. 44: 423-427.

MALLORY, L. M., AUSTIN, B., and COLWELL, R. R. (1977). Numerical taxonomy and ecology of oligotrophic bacteria isolated from the estuarine environment. Canadian Journal of Microbiology. 23: 733-750.

MANDELSTAM, J., and ROGERS, H. J. (1959). The incorporation of amino acids into the cell-wall mucopeptide of Staphylococci and the effect of antibiotics on the process. Biochemical Journal. 72: 654-662

MARQUES, A. M., CONGREGADO, F., and SIMON-PUJOL, D. M. (1979). Antibiotic and heavy metal resistance of Pseudomonas aeruginosa isolated from soils. Journal of Applied Bacteriology. 47: 347-350.

REFERENCES (cont'd.)

MARQUEZ, M. C., VENTOSA, A., and RUIZ-BERRAQUERO, F. (1987). A taxonomic study of heterotrophic halophilic and nonhalophilic bacteria from a solar saltern. Journal of General Microbiology. 133: 45-56.

MAXWELL, J. R., and WARDROPER, A. M. K. (1982). Early transformations of isoprenoid compounds in surface sedimentary environments. p. 203-229. In: Sediment microbiology. Nedwell, D. B., and Brown, C. M. (eds.), Special Puplications of the Society of General Microbiology. No. 7, Academic Press, London.

MAY, J. W., HOUGHTON, R. H., and PERRET, C. J. (1964). The effect of growth of elevated temperatures on some heritable properties of Staphylococcus aureus. Journal of General Microbiology. 37: 157-169.

MCENTEE, J. D., WOODROW, J. R., and QUIRK, A. V. (1986). Investigation of cadmium resistance in an Alcaligenes sp. Applied and Environmental Microbiology. 51: 515-520.

MCNICOL, L. A. (1980). Concordance of heavy metal and antibiotic resistance on plasmids of Chesapeake Bay bacteria. Water Resources Research Centere, Technical Report No. 58. University of Maryland.

MEADOWS, P. S. (1964 a). Experiments on substrate selection by Corophium volutator: Films and bacteria on sand particles. Journal of Experimental Biology. 4l: 499-5ll.

MEADOWS, P. S. (1965). Attachment of marine and freshwater bacteria to solid surfaces. Nature, London. 207: 1108.

MEADOWS, P. S. (1986). Biological activity and seabed sediment structure. Nature, London. 323: 207.

MEADOWS, P. S., and ANDERSON, J. G. (1966). Microorganisms attached to marine and fresh water sand grains. Nature, London. 212: 1059-1060.

MEADOWS, P. S., and ANDERSON, J. G. (1968). Microorganisms attached to marine sand grains. Journal of the Marine Biological Association of the United Kingdom. 48: 161-175.

MEADOWS, P. S., and CAMPBELL, J. I. (1972). Habitat selection by aquatic invertibrates. p. 271-382. In: Advances in marine biology. Russel, F. S., and Yonge, M. (eds.), vol. 10, Academic Press, London and New York.

MEADOWS, P. S., and CAMPBELL, J. I. (1987). An introduction to marine science. 2nd edition. Blackie, Glasgow.

MEADOWS, P. S., and Tait, J. (1985). Bioturbation, geotechnics and microbiology at sediment-water interface in deep-sea sediments. p.191-199. In: Proceedings of the 19th European Marine Biology Symposium. Gibbs, P. E. (ed.), Cambridge University Press, Cambridge.

REFERENCES (cont'd.)

MEADOWS, P. S., and WILLIAMS, G. R. (1963). Settlement of Spirorbis borealis Daudin larvae on surfaces bearing films of microorganisms. Nature, London. 198: 610-611.

MEYERS, S. P., AHEARN, D. G., GUNKEL, W. and ROTH, F. J. Jr. (1967). Yeasts from the North sea. Marine Biology. 1: 118-123.

MEYERS, E., PARKER, W. L., and BROWN, W. E. (1974). EM49: A new polypeptide antibiotic active against cell membranes. Annals New York Academy Sciences. 235: 493-501.

MEYER-REIL, L. A., DAWSON, R., LIEBEZEIT, G., and TIEDGE, H. (1978). Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying water. Marine Biology. 48: 161-171.

MITRA, R. S., GRAY, R. H., CHIN, B., and BERNSTEIN, A. I. (1975). Molecular mechanisms of accommodation in Escherichia coli to toxic levels of Cd^{2+}. Journal of Bacteriology. 121: 11801188.

MOOR-LANDECKER, E. (1982). Fundamentals of the fungi. 2nd edition. Prentice-Hall, Englewood Cliffs, New Jersey.

MORIARTY, D. J. W., and HAYWARD, A. C. (1982). Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments. Microbial Ecology. 8: 1-14.

MORITA, R. Y., and ZOBELL, C. E. (1955). Occurrence of bacteria in pelagic sediments collected during the mid-Pacific expedition. Deep-sea Research. 3: 66-73.

MORRIS, E. O. (1968). Yeasts of marine origin. Oceanography and Marine Biology an Annual Review. 6: 201-230.

MOSHIRI, G. A., and CRUMPTON, W. G. (1978). Some aspects of redox trends in the bottom muds of a mesotrophic Bayou Estuary. Hydrobiologia 57: 155-158.

MUKHERJI, P., and KESTER, D. R. (1979). Mercury distribution in the Gulf stream. Science, New York. 204: 64-67.

NAKAHARA, H., ISHIKAWA, T., SARAL, Y., KONDO, I., KOZUKUE, H., and SILVER, S. (1977). Linkage of mercury, cadmium and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Applied and Environmental Microbiology. 33: 975976.

NATIONAL RESEARCH COUNCIL, Committee on Biologic Effects of Atmospheric polltants (1974). Chromium. National Academy of Sciences. Washington.

NELSON, J. D., BLAIR, W., BRINCKMAN, F. E., COLWELL, R. R., and IVERSON, W. P. (1973). Biodegradation of phenylmercuric acetate by mercury-resistant bacteria. Applied Microbiology. 26: 321-326.

NEWTON, B. A. (1956). The properties and mode of action of the polymyxins. Bacteriological Reviews. 20: 14-27.

NIEMI, M., SIBAKOV, M., and NIEMELA, S. (1983). Antibiotic resistance among different species of faecal coliforms isolated from water samples. Applied and Environmental Microbiology. 45: 79-83.

NORD, C., LINDBERG, A. A., and DAHLBACK, A. (1974). Evaluation of five test-kits- API, Auxo-Tab, Enterotube, Patho-Tec, and R/B for identification of Enterobacteriaceae. Medical Microbiology and Immunology. 159: 211-220.

NOVITSKY, J. A. (1983). Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax Harbour, Canada. Applied and Environmental Microbiology. 45: 1753-1760.

OLSON, B. H. and THORNTON, I. (1982). The resistance patterns to metals of bacterial populations in contaminated land. Journal of Soil Sciences. 33: 271-277.

O'REILLY, T., ROSENDAL, S., and NIVEN, D. F. (1984). Porcine haemophilis and actinobacilli characterisation by means of API test strips and possible taxonomic implications. Canadian Journal of Microbiology. 30: 1229-1238.

PACHE, W., CHAPMAN, D., and HILLABY, R. (1972). Interaction of antibiotics with membranes: Polymyxin B and gramicidines. Biochemica et Biophysica Acta. 255: 358-364.

PARK, J. T. (1952). Uridine-5'-pyrophosphate derivatives. Journal of . Biological Chemistry. 194: 877-884.

PAYKEL, E. S., and RASSABY, E. (1978). Classification of suicide attempters by cluster analysis. British Journal of Psychiatry. 133: 45-52.

PELCZAR, M. J., and REID, R. D. (1972). Microbiology. 3rd edition, McGraw-Hill, New York.

PFISTER, R., and BURKHOLDER, P. R. (1965). Numerical taxonomy of some bacteria isolated from Antarctic and tropical seawaters. Journal of Bacteriology. 90: 863-872.

PITTON, J. S. (1972). Mechanisms of bacterial resistance to antibiotics. Reviews of Physiology Biochemistry and Pharmacology. 65: 15-93.

POLLOCK, M. R. (1965). Purification and properties of penicillinases from two strains of Bacillus licheniformis: a chemical, physichemical and physiological comparison. Biochemical Journal. 94: 666-675.

POLLOCK, M. R., TORRIANI, A., and TRIDGELL, E. J. (1956). Crystalline bacterial penicillinase. Biochemical Journal. 62: 387-391.

REFERENCES (cont'd.)

PRAIT, D., and REYNOLDS, J. (1974). Selective media for characterising marine bacterial population. p. 258-267. In: Effect of the ocean environment on microbial activities. Colwell, R. R., and Morita, R. (eds.), University Park Press, Baltimore.

PRETORIUS, I. S., DE KOCK, M. J., BRITZ, T. J., POTGIETER, H. J., and LATEGAN, P. M. (1986). Numerical taxonomy of alpha-amylase producing Bacillus species. Journal of Applied Bacteriology. 60: 351-360.

PYLE, S. W., and SHOTTS, E. B. (1980). A new approach for differentiating flexibacteria isolated from cold-water and warm water fish. Canadian Journal of Fishery and Aquatic Sciences. 37: 1040-1042.

QUIGLEY, M. M., and COLWELL, R. R. (1968). Properties of bacteria isolated from deep-sea sediments. Journal of Bacteriology. 95: 211-220.

RAMAMOORTHY, S. and KUSHNER, D. J. (1975). Binding of mercuric and other heavy metal ions by microbial growth media. Microbial Ecology. 2: 162-176.

REICHARDT, W., OVERBECK, J., and STEUBING, L. (1967). Free dissolved enzymes in Lake waters. Nature, London. 216: 1345-1347.

REISE, K. (1985). Tidal flat ecology. Springer-verlag, Berlin.
RETTER, M. E., and BANNATYNE, R. M. (1981). A comparison of conventional and Minitek systems for biotyping Haemophilus influenzae. American Journal of Clinical Pathology. 75: 827-829.

RHEINHEIMER, G. (1985). Aquatic microbiology. 3rd edition. John Wiley and Sons, Chichester.

RHOADS, D. C. (1974). Organism-sediment relations on the muddy sea floor. Oceanography and Marine Biology an Annual Review. 12: 263-300.

ROSS, S. S., and MORRIS, E. O. (1965). An investigation of the yeast flora of marine fish from Scottish coastal waters and a fishing ground off Iceland. Journal of Applied Bacteriology. 28: 224-234.

ROSS, I. S. and OLD, K. M. (1973). Mercuric chloride resistance of Pyrenophora avenae. Transactions of the British Mycological Society. 60: 293-300.

ROTH, J. F. Jr., AHEARN, D. G., FELL, J. W., MEYER, S. P., and MEYER, S. A. (1962). Ecology and taxonomy of yeasts isolated from various marine substrates. Limnology and Oceanography. 7: 178-185.

RICHMOND, M. H. (1965). Wild-type variants of exopenicillinase from Staphylococcus aureus. Biochemical Journal. 94: 584-593.

REFERENCES (cont'd.)

RITCHIE, D., and JACOBSOHN, K. M. (1963). The effects of osmotic and nutritional variation on growth of a salt-tolerant fungus, Zalerion eistla. p. 286-299. In: Symposium on marine microbiology. Oppenheimer, C. H. (ed.), Charles C. Thomas, Springfield.

RUBENS, C., HEFFRON, F., and FALKOW, S. (1976). Transposition of a plasmide deoxy-ribonucleic acid sequence that mediates ampicillin resistance: Independence from host rec. functions and orientation of insertion. Journal of Bacteriology. 128: 425-434.

RUGER, H. J. (1981). Comparison of the API and Minitek identification systems with conventional methods for differentiating marine bacteria. Veroffentlichungen des Institute fuer Meeresforschurg Bremerhaven. 19: 21-34.

SADLER, W R., and TRUDINGER, P. A. (1967). The inhibition of microorganisms by heavy metals. Mineralium Deposita 2: 158168.

SCHATZ, A., BUGIE, E., and WAKSMAN, S. A. (1944). Streptomycin, a substance exhibiting antibiotic activity against Grampositive and Gram-negative bacteria. Proceedings of the Society for Experimental Biology and Medicine. 55: 66-69.

SCHMIT, A. S., PLESS, D. D., and LENNARZ, W. J. (1974). Some aspects of the chemistry and biochemistry of membranes of Grampositive bacteria. Annual New York Academy Sciences. 235: 91104.

SESHADRI, R., and SIEBURTH, J. M. (1971). Cultural estimation of yeasts on seaweeds. Applied Microbiology. 22: 507-512.

SHAW, P. D. (1967). Oligomycin complex, rutamycin and aurovertin. In: Antibiotics: Mechanism of action. Gottlieb, D., and Shaw, P. D. (eds.), vol. I. Springer-Verlag, New York.

SHAW, G., and WHEELER, D. (1985). Statistical techniques in geographical analysis. John Wiley and Sons, Chichester.

SHEWAN, J. M., HOBBS, G., and HODGKISS, W. (1960). A determinative scheme for the identification of certain genera of Gramnegative bacteria with special reference to the Pseudomonadaceae. Journal of Applied Bacteriology. 23: 379390.

SHEWAN, J. M., and HODGKISS, W. (1954). A method for the rapid differentiation of certain non-pathogenic, Asporogenous bacilli. Nature, London. 173: 208-209.

SHIARIS, M. P., and COONEY, J. J. (1983). Replica plating method for estimating phenanthrene-utilizing and phenenthrenecometabolzing microorganisms. Applied and Environmental Microbiology. 45: 706-710.

REFERENCES (cont'd.)

SIEBURTH, J. M. (1967). Seasonal selection of estuarine bacteria by water temperature. Journal of Experimental Marine Biology and Ecology. 1: 98-121.

SIELAFF, B. H., JOHNSON, E. A., and MATSEN, J. M. (1976). Computerassisted bacterial identification utilizing antimicrobial susceptibility profiles generated by Autobac l. Journal of Clinical Microbiology. 3: 105-109.

SMITH, D. H. (1967). R-Factors mediate resistance to mercury, nickel and cobalt. Science, New York. 156: 1114-1116.

SMITH, P. B., TOMFOHRDE, K. M., RHODEN, D. L., and BALOWS, A. (1972). API System: a multitube micromethod for identification of Enterobacteriacea. Applied Microbiology. 24: 449-452.

SMYTH, J. C. (1974). Flora and fauna of the Clyde Estuary. p. 40-42. In: The Clyde Estuary and Firth. Natural environment Research Council Publications, Series C, No. 11.

SNEATH, P. H. A. (1957 a). Some thoughts on bacterial classification. Journal of General Microbiology. 17: 184-200.

SNEATH, P. H. A. (1957 b). The application of computers to taxonomy. Journal of General Microbiology. 17: 201-226.

SNEATH, P. H. A., and SOKAL, R. R. (1973). Numerical taxonomy. Freedman, San Francisco.

SNEATH, P. H. A., STEVENS, M., and SACKIN, M. J. (1981). Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek. 47: 423-448.

SNEDECOR, G. W., and COCHRAN, W. G. (1967). Statistical methods. 6th edition. IOWA State University Press.

SNEDECOR, G. W., and COCHRAN, W. G. (1980). Statistical methods. 7th edition. IOWA State University Press.

SOKAL, R. R., and MICHENER, C. D. (1958). A statistical methods for evaluating systematic relationships. University of Kansas Science Bulletin. 38: 1409-1438.

SOKAL, R. R., and ROHLF, F. J. (1969). Biometry. lst edition. W. H. Freeman and Company, San Francisco.

SOKAL, R. R., and ROHLF, F. J. (1981). The principles and practice of statistics in biological research. 2nd edition. W. H. Freeman and Company, San Francisco.

SOKAL, R. R., and SNEATH, P. H. A. (1963). Principles of numerical taxonomy. W. H. Freedman and Company, San Francisco.

SPARROW, F. K. Jr. (1968). Ecology of freshwater fungi. p. 41-83. In: The fungi. Ainsworth, G. C., and Sussman, A. S. (eds.), vol. III, Academic Press, London.

SPARROW, F. K. Jr., and JOHNSON, T. W. Jr. (1961). Fungi in oceans and estuaries. Weinheim, New York.

SPENCER, J. F. T., GORIN, P. A. J., and GARDNER, N. R. (1970). Yeasts isolated from the South Saskatchewan, a polluted river. Canadian Journal of Microbiology. 16: 1051-1057.

STANIER, R. Y., ADELBERG, E. A., and INGRAHAM, J. L. (1980). General microbiology. 4th edition. Macmillan, London.

STERRITT, R. M., and LESTER, J. N. (1980). Interactions of heavy metals with bacteria. The Science of the Total Environment. 14: 5-17.

STEVENSON, L. H., MILLWOOD, C. E., and HEBELER, B. H. (1973). Aerobic, heterotrophic bacterial populations in estuarine water and sediments. In: Effects of the ocean environment on microbial activities. Colwell, R. R., and Morita, R. Y. (eds.), University Park Press, Baltimore.

STEWART, K. Ro, and KODITSCHEK, L. (1980). Drug-resistance transfer in Escherichia coli in New York Bignt sediment. Marine Pollution Bulletin. 11: 130-133.

STUTZENBERGER, F. J., and BENNETT, E. O. (1965). Sensitivity of mixed populations of Staphylococcus aureus and Escherichia coli to mercurials. Applied Microbiology. 13: 570-574.

SUMMERS, A. O. (1978). Microbial transformations of metals. Annual Review of Microbiology. 32: 637-672.

SUMMERS, A. O. and JACOBY, G. A. (1978). Plasmide- determined resistance to boron and chromium compounds in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 13: 637640.

SUMMERS, A. O., JACOBY, G. A., SWARTZ, M. N., MCHUGH, G., and SUTTON, L. (1978). Metal cation and oxyanion resistances in plasmides of Gram-negative bacteria. p. 128-131. In: Microbiology. Schlessinger D. (ed.), American Society of Microbiology, Washington.

SUMMERS, A. O. and LEWIS, E. (1973). Volatilization of mercuric chloride by mercury-resistant plasmid bearing strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Journal of Bacteriology. 113: 1070-1072.

SUMMERS, A. O., and SILVER, S. (1972). Mercury resistance in a plasmide-bearing strain of Escherichia coli. Journal of Bacteriology. 112: 1228-1236.

SUZUKI, I., KAJI, H., and KAJI, A. (1966). Binding of specific sRNA to 30s ribosomal subunits: Effect of 50 s ribosomal subunits. Proceedings of the National Academy of Sciences (Washington). 55: 1483-1490.

REFERENCES (cont'd.)

TAYSI, I., and VAN UDEN, N. (1964). Occurrence and population densities of yeast species in an estuarine marine area. Limnology and Oceanography. 9: 42-45.

TEMPLE, K. L., and LE ROUX, N. W. (1964). Syngenisis of sulphide ores: desorption of adsorbed metal ions and their precipitation as sulphides. Economic Geology and the Bulletin of the Society of Economic Geologists. 59: 647-655.

THARAGONNET, D., SISSON, P. R., ROXBY, C. M., INGHAM, H. R., and SELKON, J. B. (1977). The API ZYM system in the identification of Gram-negative anaerobes. Journal of Clinical Pathology. 30: 505-509.

THOMPSON, D. P., and ERIBO, B. E. (1984). Extracellular enzyme production by Rhizopus and Mucor species on solid media. Canadian Journal of Microbiology. 30: 126-128.

TIMONEY, J. F., PORT, J., Giles, J., and SPANIER, J. (1978). Heavy metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Applied and Environmental Microbiology. 36: 465-472.

TOERIEN, D. F., and HATTINGH, W. H. J. (1969). Anaerobic digestion I. The microbiology of anaerobic digestion. Water Research. 3: 385-416.

TONOMURA, K., and KANZAKI, F. (1969). The reductive decomposition of organic mercurials by cell-free extract of a mercury resistant Pseudomonas. Biochimica et Biophysica Acta. 184: 227-229.

TONOMURA, K., NAKAGAMI, T., FUTAI, F., and MAEDA, K. (1968). Studies on the action of mercury-resistant microorganisms on mercurials. Journal of Fermentation and Technology. 46: 506512.

TORNABENE, T. G., and EDWARDS, H. W. (1972). Microbial uptake of lead. Science, New York. 176: 1334-1335.

TRAUB, W. H., and KLEBER, I. (1977). Non-specific resistance of Serratia marcescens against antimirobial agents. Chemotherapy. 23: 436-541.

TREVORS, J. T., STRATTON, G. W., and GADD, G. M. (1986). Cadmium transport, resistnce, and toxicity in bacteria, alge, and fungi. Canadian Journal of Microbiology. 32: 447-464.

TYNECKA, Z., and SZYMONA, O. (1966). The effect of mercuric ions on growth and respiration of 2 coagulase-positive Staphylococcus aureus strains. Acta Microbiologica Polonica. 15: 293-304.

VAITUZIS, Z., NELSON, J. D., WAN, L. W., and COLWELL, R. R. (1975). Effects of mercuric chloride on growth and morphology of selected strains of mercury-resistant bacteria. Applied Microbiology. 29: 275-286.

REPERENCES (cont'd.)

VALLEE, B. L., and ULMER, D. D. (1972). Biochemical effects of mercury, cadmium and lead. Annual Review of Biochemistry. 4l: 91-128.

VAN UDEN, N., and CASTELO BRANCO, R. (1963). Distribution and population densities of yeast species in Pacific water, air, animals, and Kelp of Southern California. Limnology and Oceanography. 8: 323-329.

VARMA, M. M., THOMAS, W. A., and PRASAD, C. (1976). Resistance to inorganic salts and antibiotics among sewage-borne Enterobacteriaceae and Achromobacteriaceae. Journal of Applied Bacteriology. 41: 347-349.

VAZQUEZ, D. (1964). Uptake and binding of chloramphenicol by sensitive and resistant organisms. Nature, London. 203: 257-258.

VELJI, M. I., and ALBRIGHT, L. J. (1986). Microscopic enumeration of attached marine bacteria of seawater, marine sediment, Faecal matter, and Kelp blade samples following pyrophosphate and ultrasound treatments. Canadian Journal of Microbiology. 32: 121-126.

VILJANEN, P., KAYHTY, H., VAARA, M., and VAARA, T. (1986). Susceptibility of Gram-negative bacteria to the synergistic bactericidal action of serum and polymyxin B nonapeptide. Canadian Journal of Microbiology. 32: 66-69.

WAITKINS, S. A., BALL, L. C., and FRASER, C. A. M. (1980). Use of the API ZYM system in rapid identification of alpha and nonhaemolytic Streptococci. Journal of Clinical Pathology. 33: 53-57.

WAKSMAN, S. A. (1949). Streptomycin: Nature and practical applications. Bailliere Tindall and Cox, London.

WALKER, J. D., and COLWELL, R. R. (1974). Mercury-resistant bacteria and petroleum degradation. Applied Microbiology. 27: 285-287.

WALLACE, C. S., and BOULTON, D. M. (1968). An information measure for classification. Computer Journal. 11: 185-194.

WARD, J. H. Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association. 58: 236-244.

WASHINGTON, J. A. (1969). Antimicrobial susceptibility of Enterobacteriaceae and non-fermenting Gram-negative bacilli. Mayo Clinic Proceedings. 44: 811-824.

WASHINGTON, J. A., PAULINE, K. W., and MARTIN, W. J. (1971). Evaluation of accuracy of multitest micromethod system for identification of Enterobacteriaceae. Applied Microbiology. 22: 267-269.

REFERENCES (cont'd.)

WEBB, J. E. (1969). Biologically significant properties of submerged marine sands. Proceedings of the Royal Society of London B. 174: 355-402.

WEST, P. A., LEE, J. V., and BRYANT, T. N. (1983). A numerical taxonomic study of species of Vibrio isolated from the aquatic environment and birds in Kent, England. Journal of Applied Bacteriology. 55: 263-282.

WEST, P. A., OKPOKWASILI, G. C., BRAYTON, P. R., GRIMES, D. J., and COLWELL, R. R. (1984). Numerical taxonomy of phenanthrenedegrading bacteria isolated from the Chesapeak Bay. Applied and Environmental Microbiology. 48: 988-993.

WHITE, D. C., BOBBIE, R. J., KING, J. D., NICKELS, J., and AMOE, P. (1979). Lipid analysis of sediments for microbial biomass and community structure p. 87-103. In: Methodology for biomass determinations and microbial activities in sediments. Litchfield, C. D., and Seyfried, P. L. (eds.), American Society for Testing and Materials, Philadelphia.

WILLIAMS, S. T., GOODFELLOW, M., ALDERSON, G., WELLINGTON, E. M. H., SNEATH, P. H. A., and SACKIN, M. J. (1983). Numerical classification of Streptomyces and related genera. Journal of General Microbiology. 129: 1743-1813.

WILSON, D. P. (1955). The role of microorganisms in the settlement of Ophelia bicormis savigny. Journal of the Marine Biological Association of the United Kingdom. 34:531-543.

WISHART, D. (1969). Mode analysis: A generalization of nearest neighbour which reduces chaining effects. p. 282-308. In: Numerical taxonomy. Cole, A. J. (ed.), Academic Press, New York.

WISHART, D. (1978). CLUSTAN user manual, 3rd edition. Inter-University Research Councils Series Report No. 47, Program Library Unit, Edinburgh University.

WOLTER, K. (1982). Bacterial incorporation of organic substances released by natural phytoplankton populations. Marine Ecology Progress Series. 7: 287-295.

WONG, C., SILVER, M., and KUSHNER, D. J. (1982). Effects of chromium and manganese on Thiobacillus ferrooxidans. Canadian Journal of Microbiology. 28: 536-544.

WOOD, E. J. F. (1965). Marine microbial ecology. Chapman and Hall, London and New York.

YAYANOS, A. A. (1986). Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proceedings of the National Academy of Sciences of the United States of America. 83: 9542-9546.

REFERENCES (cont'd.)

YINGST, J. Y., and RHOADS, D. C. (1980). The role of bioturbation in the enhancement of microbial turnover rates in marine sediments. p. 407-422. In: Marine benthic dynamics. Tenore K. R., and Coull, B. C. (eds.), University of South Carolina Press, Columbia.

ZEVENHUIZEN, L. P. T. M., DOLFING, J., ESHUIS, E. J., and SCHOLTENKOERSELMAN, I. J. (1979). Inhibitory effects of copper on bacteria related to the free ion concentration. Microbial Ecology. 5: 139-146.

ZOBELL, C. E. (1938). Studies on the bacterial flora of marine bottom sediments. Journal of Sedimentary Petrology. 8: 10-18.

ZOBELL, C. E. (1946 a). Marine microbiology. Chronica Botanica Company, Waltham, Mass.

ZOBELL, C. E. (1946). Studies on redox-potential of marine sediments. Bulletin of the American Association of Petroleum Geologists. 30: 477-513.

ZOBELL, C. E. (1952a). Bacterial life at the bottom of the Philippine Trench. Science, New York. 115: 507-508.

ZOBELL, C. E. (1952b). Dredging life from the bottom of the sea. Research Reviews. Office of the Naval Research. Washington. p. 14-20.

ZOBELL, C. E. (1954). The occurrence of bacteria in the deep-sea and their significance for animal life. International Union of Biological Sciences Series B, No. 16, p. 20-24.

ZOBELL, C. E., and FELTHAM, C. B. (1942). The bacterial flora of a marine mud flat as an ecological factor. Ecology 23: 69-78.

[^0]: * $=$ Cultures from Microbiology Department at Glasgow University.
 **= Cultures from Dr R. Millar, Zoology Department, Glasgow University

[^1]: Table 16: Chi-square comparisons of the variation between sites for each group.
 Cluster analysis at 50% similarity level.

[^2]: Table 19: Chi-square comparisons of the variation between groups for each depth. Data as in table
 18. Cluster analysis at 50% similarity level.

[^3]: Significant

[^4]: FIGURE 25

[^5]: Appendix Table 17: Number of bacterial isolates/group at each depth (e.g. no. isolates/group/depth),
 table 15. Square-root $(x+0.5)$ transformed data. Cluster analysis at 50% similarity level.

[^6]: =positive reaction, +/- =weak positive, -/+ =very weak positive, - =negative reaction.

