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Summary

This thesis describes the results of an investigation into the design of a parallel recording
system for electron energy loss spectroscopy (EELS). The motivation behind the
construction of such a system is the greatly enhanced detection efficiency which can be
achieved, as compared to conventional serial recording systems. This is of great benefit in
experimental situations where specimen drift, radiation damage, or signal to noise ratio are
limiting factors.

Chapter 1 provides a brief introduction to the method of EELS analysis in the transmission
electron microscope (TEM) and discusses the instrumentation required to generate and record
EELS spectra. Chapter 2 contains a detailed review of the theory of homogeneous field
magnetic sector spectrometers, following the work of Enge, Brown, and Heighway. The
matrix method used to calculate the optical properties of such spectrometers is introduced,
and the focussing coefficients for an arbitrary magnetic sector are derived to second order. A
spectrometer analysis program based on the theory of chapter 2 is described in chapter 3.
The program is used to calculate the aberration coefficients of two well known 2nd order
corrected spectrometer designs [ Shuman 1983, Scheinfein and Isaacson 1984] and hence
determine the nature of the electron intensity distribution at their dispersion planes.

Post-spectrometer magnification of the dispersion plane is required in parallel EELS in order
to overcome the resolution limiting effects of electron scatter within the detector. The
requirement that the magnifications in the dispersive and non-dispersive planes be
independent indicates the use of quadrupole lenses as the magnifying elements. Chapter 4
reviews the theory of quadrupoles and extends the matrix transfer method of chapters 2 and 3
to quadrupole lenses. The design of a four lens quadrupole system suitable for
post-spectrometer magnification in EELS is described in chapter 5. The system can vary the
magnification in the dispersive direction from 5x to 97x (at 100 keV), while maintaining an
almost constant magnification in the non-dispersive direction.

Chapter 6 considers the types of multielement detectors which could be applied to parallel
EELS, and discusses the advantages of using wide aperture linear photodiode arrays
operating in the indirect mode as detection elements. The design and construction of the
instrumentation required to operate two such arrays, manufactured by Reticon and
Hamamatsu, is also reported in this chapter. Experiments on the electrical and optical
performance of both these arrays are described in chapter 7. The results of these experiments



indicate that the Hamamatsu device is the more suitable for detection of EELS spectra.
Chapter 8 contains experimental results on the evaluation of various scintillator screens lai d
on fibre-optic plates directly coupled to the fibre-optic input window of the Hamamatsu
array. The most suitable of the scintillators tested was a screen made from a single crystal of
yttrium aluminium garnet (YAG) polished down to a thickness of 30um. The detective
quantum efficiency of a prototype detector consisting of the Hamamatsu photodiode array
fibre-optically coupled to such a screen is shown to be greater than 0.25 for a range of input
electron doses varying from 40 electrons / channel-second to greater than 108 electrons /
channel-second.

Finally, chapter 9 discusses the implications of the results obtained in this work and
considers improvments that could be made to the prototype detector to form an operational
system.



CHARPTER 1

Electron Energy Loss Spectroscopy and Parallel Detection

Introduction

Electron energy loss spectroscopy (EELS) is a powerful technique for gaining chemical and
structural information from the thin solid specimens used in transmission electron
microscopy (TEM). The general method of EELS is quite simple - a beam of monoenergetic
electrons is incident upon a thin sample, some of the electrons lose energy in traversing the
specimen and the resultant energy loss distribution (spectrum) is obtained by passing the
transmitted electrons through a momentum analysing device (spectrometer). The energy loss
spectrum is characteristic of the area being irradiated and so the elemental composition of the
specimen can be identified. This chapter gives a brief discussion of the physical principles of
electron énergy loss spectroscopy and outlines the information that can be obtained from an
EELS spectrum by quantitative analysis. Further, the necessary instrumentation for
generating and recording the spectrum is described along with factors which affect the
performance of an EELS system. The advantages of recording the spectrum in parallel as
opposed to the more usual serial recording technique are considered, and the difficulties to be
overcome in designing a successful parallel recording system are discussed.

1.1 ELECTRON SCATTERING WITHIN A SOLID

When a fast electron beam enters a specimen, which is thin enough so that most of the beam
is not absorbed, the transmitted electrons can be classified into three main groups:- electrons
that pass straight through the specimen without collision, electrons that undergo elastic
scattering and electrons that are inelastically scattered. The first group of undeviated
electrons can give information only upon the scattering power (and hence thickness) of the
specimen and contains no other useful information, whereas the second two classes are of

much more interest from an analytical point of view.

1.1.1 Elastic scattering

Elastic scattering occurs when an incident electron is deflected by the internal electrostatic
field of an atom 1i.e. the nuclear field modified by the screening effect of the surrounding
electrons. The mass of the nucleus is very much greater than that of the electron and
consequently the latter loses a negligible amount of energy in the collision. Isaacson [1978]



gives an approximate expression for the angular distribution of electrons elastically scattered
through small angles from free atoms :

I (0) _ 1
I 0 (02 + Bg )2

where - Ig1 (0) is the intensity of electrons which are undeviated in scattering
Ig1 (8) is the intensity of electrons elastically scattered through angle 6
B is the characteristic screening angle = A/2na

A is the incident electron wavelength, a is the characteristic atomic radius given by:
-1/4
a = 09a,Z /

where a) is the Bohr radius of the atom and Z is the atomic number. For 100keV incident
electrons a typical scattering angle of ~ 20 mrads per elastic collision is quoted by Egerton
[1982]. If the specimen is crystalline, the angular distribution is peaked at angles satisfying
the Bragg condition, 6=Ad where d is the lattice spacing. Elastic scattering is represented in
the energy loss spectrum by a sharp peak at zero energy loss (Figure 1.1).

1.1.2 Inelastic scattering

Inelastic scattering occurs when an electron interacts directly with one or more atomic
electrons, and since the masses are comparable appreciable energy transfer can occur. If the
scattering takes place from valence electrons the energy transfer is typically 10-100eV per
collision. Valence electron scattering is observed in the energy loss spectrum in the form of
one or more peaks in the 10-100eV range as illustrated in figure 1.1. The probability for
valence electron scattering is comparable to that for elastic scattering, but there is also a
smaller probability that the incident electron may be scattered by an inner shell electron. The
inner shell electron can make a transition to the vacuum continuum or to a vacant energy level
only if the energy transferred exceeds the ionisation energy of that particular shell. Such
events are characterised in the energy loss spectrum by a sharp rise in intensity at an energy
loss equal to the inner shell ionisation energy (Figure 1.1). These sharp rises in the
spectrum are referred to as ionisation edges, and the energy at which the edge occurs is
dependent upon the type of shell (K,L,etc.) and the atomic number of the atom involved.
The energy values are well known for every element and are not greatly affected by the
chemical environment of the atom. Detection of the ionisation edges in an energy loss



Figure 1.1 EELS Spectrum of Yenadium Carbide
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spectrum enables the constituent elements to be identified.

The angle of inelastic scattering is, in general, less than that for elastic scattering and depends
upon the energy lost by the incident electron. Isaacson [1978] gives an approximate
expression for the angular distribution which is valid for small scattering angles:

1) _ 1
WO (e’+el)

where I;n(0) is the intensity of electrons inelastically scattered but undeviated
In(O) is the intensity of electrons inelastically scattered through angle 6
and O = E/pv.

where E is the energy lost by the incident electron of velocity v and momentum p. 0 is
related to the minimum momentum which must be transferred by an incident electron in
losing an amount of energy E through the expression:

Pmin =P Og
For incident electrons of 100keV energy Isaacson [1978] gives Og = 0.137 mrad for a 25
eV loss and 1.37 mrad for a 250 eV energy loss. Thus electrons which lose more energy in
the collision are scattered through larger angles.

1.1, ntitative analysis of EEL r

The information present in an energy loss spectra is sufficient to provide absolute
(standardless) quantitation of the elemental constitution of the sampled area. The
concentration N of a measured element, in atoms per unit area of the specimen is given by
Egerton [1982] as:

1 L(o,A)

Goi(oc,A) Il(oc,A)

where o is the maximum angle of scattering accepted by the spectrometer, A is an energy
range of integration within the spectrum (Figure 1.2), and G is a gain change factor between
the low loss and high loss regions of the spectrum. The parameter ¢;(a,A) is an ionisation
partial cross-section for the edge in question (K or L) which can be calculated knowing the
experimental conditions. Ij(c,A) is the integrated energy loss intensity over an energy range



Figure 1.2 Quantitative Analysis of EELS Spectrum
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A, starting at the zero loss peak. Ii(o,A) is the integrated intensity under the ionisation edge
over the same range A, after subtraction of the background intensity (Figure 1.2). For the
simple case of thin specimens, where there is no multiple scattering, the background under
an isolated ionisation edge can be modelled by a power law decay function AET where E is
the energy loss, and A and r are constants which can be calculated by sampling the
background prior to the edge. This type of analysis depends crucially on achieving a good
pre-edge fit, which means that detection noise and artefacts must be kept to a minimum.
Moreover, the problem is exacerbated if the sample is thicker than the mean free path for
valence electron scattering (~100 nm for 100keV electrons) as multiple valence scattering
causes the background shape to deviate from the AET form, as well as reducing the
ionisation edge height. Another difficulty occurs if two ionisation edges lie very close
together, in which case background subtraction becomes more complicated because the
second pre-edge region is perturbed by the post edge region of the first. Thus the first edge
can be fitted with a normal background, but the background of the following edge does not
follow a simple power law decay as discussed by Chapman et al. [1985].

1.1.4 Other information present in EELS spectra
A detailed inspection of the ionisation edges present in EELS spectra reveals a variety of

structures close to the edge and as far as several hundred electron volts away from the edge.
Figure 1.3 shows that the fine structure near the edge (energy loss near edge structure -
ELNES) has peaks seperated by 1eV or less whereas the oscillatory structure away from
the edge ( extended energy loss fine structure - EXELFS ) varies ona 3-30 eV level.

The ELNES contains information about the local chemical bonding in the specimen, since the
peaks correspond (approximately) to the excitation of an inner shell electron to a bound
excited state rather than the continuum, and the energy levels of the bound states are
influenced by the chemical bonding present. The extended oscillatory structure away from
the edge occurs when an inner shell electron is ejected from an atom with some kinetic
energy such that it experiences elastic collisions with neighbouring atoms, and inelastic
collisions with their electrons. Thus the EXELFS structure gives information about the short

range order around the excited atom.
The book by Egerton [1986] provides a useful introduction to the theory of ELNES and

EXELFS ,
1.2 INSTRUMENTAL CONSIDERATIONS

In any EELS experiment the characteristics of the incident electron probe are of great
importance since they influence the information content of the recorded spectrum. Generally

4
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speaking probe conditions must be optimised in order to obtain the best results. An
important parameter is the probe accelerating voltage - as mentioned before if the specimen is
thicker than the mean free path for valence electron scattering the signal to background ratio
decreases due to multiple scattering events. For this reason EELS analysis is usually done at
the highest accelerating voltage possible, ~100keV for most microscopes. Higher
accelerating voltages are now becoming available on new machines (200-400keV) allowing
thicker samples to be analysed. This is especially useful for EELS analysis of biological
specimens, where preparing sufficiently thin specimens is often difficult.

Other important considerations are factors such as the probe diameter and convergence angle
which influence the spatial resolution and angular distribution of the scattered electrons
respectively. High spatial resolution EELS requires the smallest possible probe diameter at
the specimen. However, obtaining a small probe size generally requires the use of large
convergence angles which increase the angular distribution of the scattered electrons. Thus,
in general, for a fixed spectrometer collection angle the collection efficiency falls as the

spatial resolution is increased.

The amount of time required to collect enough electrons to obtain a good signal to noise ratio
in an EELS experiment is directly proportional to the probe current. Minimising the
collection time is important in high spatial resolution EELS where specimen drift can be a
problem. The maximum probe current which can be used may be limited by the gun
brightness, or the appearance of secondary effects such as specimen contamination or even
specimen damage. As regards the energy resolution of the recorded spectrum the
fundamental limit is the inherent energy spread in the electron probe - this is discussed in the

next section.

1.2.1 _The electron source
The energy spread in the electron beam is dependent upon the type of electron gun used in

the microscope and also on the operating conditions, such as the amount of current drawn
from the filament. For microscopes using standard directly heated tungsten filament guns
this is ~ 1-2¢V, lanthanum hexaboride (LaBg) filaments have a spread of ~1eV, whilst cold
field emission guns have a spread of ~ 0.25 eV. Of course these figures are dependent upon
the stability of the microscope accelerating voltage supply. It is clear that unless some form
of monochromator is placed between the gun and the specimen the 1 eV or better resolution
required for ELNES studies suggests the use of a cold field emission gun. This is the type of
electron source used in the Vacuum Generators HBS analytical scanning transmission



electron microscope (STEM) used for EELS experiments at Glasgow. Field emission guns
have the further advantage that they produce the highest brightness of any of the three
emitters i.e. a field emission gun can produce the highest current densities at the specimen.
Field emission guns also produce the smallest apparent source size, e.g. the 100keV field
emission gun in the HBS5 has ~5nm diameter apparent source diameter compared with
~25um for a typical conventional tungsten filament. This places great demands upon the
mechanical and electrical stability of the gun because the effect of spatial fluctuations cannot
be reduced by using a strongly demagnifying illumination system as in standard
microscopes. Probe diameters of <Inm at the specimen are possible with this machine,
allowing EELS analysis to be done at very high spatial resolution. The main disadvantage of
using field emission guns is the very high vacuum required (<1x10710 torr at the gun) to
prevent positively charged contaminants from being accelerated into the tip and ultimately
destroying it. This means that microscopes using this kind of illumination system must have
their gun sections built to UHV standard which is very expensive. A bonus point is that the
ultra clean vacuum system tends to reduce the amount of contamination occuring at the
specimen. The article by Le Poole [1983] gives a good introduction to electron sources in

the electron microscope.

1.2.2 The spectrometer

The spectrometer is a device which accepts a given angular distribution 3 of electrons
scattered by a point on the specimen, and produces a first order (at least) image of this point
at some dispersion plane, with chromatic aberration producing an image shift Ay for an
energy difference AE (Figure 1.4). In general the dispersion plane is tilted by other
aberrations to some angle M to the optic axis. Depending upon the design of the spectrometer,
the first order focus achieved may be single (point source is imaged to a line) or double
(point source is imaged to a point). The ratio Ay/AE is known as the dispersion and is
generally of the order of 1-Spum/eV for simple spectrometers. It is possible to obtain larger
values of the dispersion by using electrostatic lenses to decelerate the electron beam before
the spectrometer entrance, but this is not often done due to the difficulty of shielding the
required high voltages. The energy resolution of the spectrometer is determined by the ratio
of the dispersion to the full width at half maximum (Y, /2) of the image of the probe formed at
the dispersion plane (Figure 1.5). Y 5, is determined by the combined effects of:

1) The object size (probe diameter) at the specimen multiplied by the magnification
of the spectrometer and any intervening post specimen lenses.

2) Broadening of the image caused by the inherent energy spread of the incident electron



probe.

3) Contributions from any aberrations present in the spectrometer and intervening
lenses.

In the case of microanalysis in the electron microscope the probe diameter can be considered
to be negligible (~ Inm for VG HB5) and it can be assumed that the spectrometer images a
point source, thus only 2) and 3) above need give concern. The broadening caused by 2) is
just the dispersion multiplied by the energy spread of the probe and is a fundamental
resolution limit for any spectrometer. The contribution of 3) is generally more significant
and is discussed in the next section.

1.2.3 Spectrometer aberrations and collection efficiency.

Most spectrometers in use are non-cylindrically symmetric devices and therefore contain
aberrations of all orders. Assuming a first order focus has been achieved then the dominant
aberrations will be of second order. Using the point source assumption the most important
resolution limiting aberrations are proportional to B2 (assuming a circular entrance aperture),
since aberration terms proportional to off-axis distance are negligible (see Chapter 2). This
means that high angular collection efficiency and high energy resolution are generally

incompatible.

The situation is modified in the case of microscopes where the specimen is immersed in the
objective lens field. In this case the portion of field after the specimen can be considered to
act as a separate lens which supplies some favourable degree of angular compression to the
scattered electrons. Of course it is not possible to vary the strength of this 'post-field lens'
without changing the focus of the 'pre-field' or probe forming lens. Some degree of
freedom is possible if, as in the HBS, the height of the specimen in the lens can be varied
using a z lift stage. In this manner the lens strength can be varied and the probe refocussed
by changing the position of the specimen, allowing some control over the post-field
compression and hence the angular distribution of the scattered electrons. Naturally,
changing the lens excitation moves image position, hence defocussing the object for the
spectrometer and reducing the energy resolution, so that this method of varying the angular
distribution of the scattered electrons has very limited use.

In order to improve the collection efficiency without sacrificing energy resolution it is often
possible to provide some limited form of second order aberration correction to the



spectrometer thus allowing larger collection angles to be used. Another solution to the same
problem is to interpose one or more post specimen lenses (PSLs) between the specimen and
the spectrometer. This technique has been developed by Buggy and Craven [1981] on the
Glasgow HBS5 where there are three post-specimen lenses between the objective lens and the
spectrometer. By varying the strength of these lenses a large angular distribution from the
specimen can be compressed to match a smaller spectrometer collection angle (Figure 1.6).
Further, the effective object position for the spectrometer is controlled by the strength of the
lenses, and the effective source size is determined by the spherical and chromatic aberrations
of the post specimen lenses (assuming the combined magnification is small). If these lens
aberrations are too large the performance of the spectrometer will suffer, as the effective
source size may become large enough so that the uncorrected axial aberrations of the
spectrometer become dominant. The combination of a large angular acceptance second order
corrected spectrometer along with two post specimen lenses seems to provide an optimum
solution to the problem of obtaining good collection efficiency along with high energy

resolution in EELS experiments.

1.2.4 Recording the energy loss spectrum

The spectrometer forms an energy loss spectrum at a dispersion plane some distance from its

exit face. This dispersion plane will in general be oriented at some angle 1 to the optic axis,
as shown in figure 1.4. Physically, the spectrumis a distribution of electron intensity vs
distance ( o energy) which varies on a scale of ~107 electrons/sec at the zero loss peak down
to ~10 electrons/sec at the far energy loss end (Figure 1.1). This means that any detection
system must be capable of recording signals with a dynamic range ~108.

The most common method of recording the spectrum is to scan the spectrometer exit beam
across a slit placed at the dispersion plane, behind the slit lies the electron detector - generally
a block of scintillator placed in front of a photomultiplier tube (Figure 1.7). This technique is
known as serial collection and is the method currently used at Glasgow. It has the
advantages of simplicity, low detector noise, sensitivity independent of energy loss (since
each data channel is sampled by the same detector), and large dynamic range.

There are two methods of scanning the electron beam across the slits. Scanning can be done
either using scan coils after the spectrometer or, in the case of a magnetic sector, by changing
the excitation of the magnet itself. The former technique is used at Glasgow, with the
advantage that scanning is fast and hysteresis free. Unfortunately the tilted dispersion
plane of the Glasgow spectrometer (Figure 1.4) means that the spectrum becomes
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defocussed as the scan moves away from the central ray, and consequently it is necessary to
refocus the spectrum to compensate. Changing the spectrometer excitation, although slower,
has a great advantage - aberrations which are proportional to the energy difference from the
central ray, such as the dispersion plane tilt, are nullified so that the spectrometer image is
always focussed in the plane of the slits.

It is usual to record the high signal intensities present in the low loss region of the spectrum
by digitising the analogue output of the photomultiplier. The much smaller signal levels
present in the far energy loss can be recorded using an increased photomultiplier gain G
controlled by the high voltage bias applied to the tube, or alternatively the photomultiplier
gain can be left constant and the far energy loss signal detected using a digital pulse counting
system, with pulse height discriminators to eliminate spurious counts due to dark noise in the
photomultiplier tube. The latter allows single electron detection for far energy loss signals
and is the method used at Glasgow. Both signals (analogue counts and digital counts) are
then combined using an algorithm developed by Craven and Buggy [1984] in such a way as
to produce the complete spectrum.

The major drawback of serial collection is its inherently low collection efficiency. For
example in a spectrum consisting of 1000 data channels each channel contains only 0.1% of
the total available signal. If the spectrum could be recorded in a parallel manner (ie. all
channels simultaneously) by some multielement detector, the collection efficiency could be
improved by up to 1000 times, thus an equivalent spectrum could theoretically be recorded
1000 times faster with the specimen receiving only 1/1000 of the total electron dose. This
would be of enormous benefit in cases where radiation damage, specimen contamination,

stage drift or signal to noise ratio are the limiting factors.

1.2.5 Design_specifications of a parallel detection system.

There are many technical difficulties to be overcome in designing a high performance parallel
recording system, and the major requirements of such a system are outlined below:

1) High dynamic range and linear response to cope with the rapid change of signal
intensity with energy loss.

2) Good energy resolution to make use of ELNES information.

3) Low noise detection system. A suitable detector will have many hundreds of individual



detection elements so that channel to channel variations in sensitivity and linearity must
be kept to a minimum.

The dynamic range of a typical EELS spectrum is ~108; no solid state detector currently
available is capable of this level of performance, so that the spectrum has to be recorded in
discrete sections - the number of which depends upon the maximum dynamic range of the
device. A major problem concerning energy resolution is the scattering of 100keV electrons
as they strike the solid material of the detector. Lateral spreading is of the order of 10-50um
depending upon the elemental composition (eg. the spread in silicon is ~30pum). Therefore
the energy resolution of a solid state detector placed directly at the dispersion plane would be
limited to between 5 and 25 eV, assuming a spectrometer dispersion of 2um/eV.

One solution to this problem is to provide some form of post spectrometer electron optical
magnification of the dispersion. Such an optical system should not introduce any significant
aberrations or artefacts into the spectrum, and should be capable of varying the dispersion
over a wide range to suit the geometry of the detector used. Another difficulty encountered
with parallel detection has already been mentioned - for a typical first order focussing
spectrometer, such as the magnetic sector spectrometer currently installed on the HBS, the
dispersion plane is not perpendicular to the optic axis of the spectrometer but is tilted by the
second order aberrations to some angle 1 (Figure 1.4). This makes any post spectrometer
magnification of the dispersion plane very difficult, so it is desirable that the second order
aberrations can be corrected so that N=0°.

At the time of writing there are several prototype parallel detection systems operating in
different laboratories, [Egerton and Crozier 1987, Monson et al. 1982, Shuman 1981,
McMullan et al. 1985, Bourdillon et al. 1985] and one system is soon to be commercially
available [Krivanek et al. 1987]. All of these designs are different and it is clear that much
work remains to be done to arrive at the optimum detection system. The following chapters
identify the problems encountered in the design of parallel recording systems for EELS and
hopefully provide some insight into the most practical solutions.
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CRAPTER 2

Homogeneous field magnetic sector spectrometers - theory

Introduction

The design’ of a successful parallel recording system for EELS requires calculation of the
optical properties of the spectrometer, in order to determine the electron intensity distribution
at the spectrometer dispersion plane. Knowledge of this distribution is essential to optimise
both post-spectrometer coupling optics and the geometry of the detector used. This chapter
is mainly a review of the theory of homogeneous field magnetic sector spectrometers based
on the work of Brown, Enge, Penner, and Heighway, and is included in order to provide a
background and a consistent notation for the equations used later in the thesis. In particular
the treatment draws heavily on the articles by Enge [1964,1967] and figures 2.8, 2.9, 2.10,
2.12,2.13,2.14 and 2.18 are essentially taken from these papers.

2.1 SPECTROMETER TYPES

The two types of energy analyser most commonly considered in electron energy loss
spectroscopy are the homogeneous field magnetic sector (Figure 2.1) and the Wien filter
(Figure 2.2). Other types are discussed in the review article by Pearce-Percy [1978].

2.1.1 The Wien Filter
In its simplest form the Wien filter consists of uniform electric E and magnetic B fields

crossed perpendicularly. The particle beam to be analysed is injected along the normal to the
E - B plane so that the force on an electron moving with velocity v is the Lorentz force:

F = -e[E+ (vxB)) (2.1)

For a particle moving along the x axis with velocity v, such that v=IE/BI the net force is zero
and there is no deflection. All other velocities will be deflected to form an energy spectrum,
or more accurately a momentum spectrum. Note that focussing only occurs in the horizontal
(x-y) plane so that a point source forms a line image. In order to achieve stigmatic focussing
the electrostatic plates can be curved to introduce a component of E in the z direction. This
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component will cause vertical focussing to occur, allowing point to point imaging. The main
disadvantage of the Wien filter is the complication of generating two separate fields,
especially at higher beam voltages where electrical breakdown may occur.

2.1.2 The magnetic sector

The optical properties of magnetic sectors have been studied in great detail, principally
because of their use in high energy particle accelerators. The theoretical studies are more
complete than those of the Wien filter and this, allied to a simpler construction, has led to a
wide acceptance of the design - particularly in commercial applications. This is the type of
spectrometer which will be considered in detail here.

2.2 MATRIX FORMALISM

Prior to a discussion of the optical properties of magnetic sectors it will be useful to introduce
the matrix method of calculation first used in ray optics and later introduced to charged
particle optics by Penner [1961]. The advantage of this approach is that complex transport
systems consisting of many elements can be analysed simply, with clear reference to the
physical parameters involved.

2.2.1 __Transfer matrix of a drift space
Consider a field free region of length D (Figure 2.3). A particle enters the region at position

(xq:z¢) With gradient x('. As there are no forces actingin this region the particle gradient
will be unchanged at z, and the equations describing its position are:

1 X0

>
]

t
+ on

[ '
XI—XO

These linear equations can be conveniently expressed in matrix form as:

MRk

where the 2x2 matrix is known as the transfer matrix of a drift space of length D.

12



r
4 } M = xh;' &]
. ///____
Z=2
2=7, L
- D

rigure 2.4  Thin Lens

Figure 2.5  Thick Lens




2.2.2 Transfer matrix of a thin lens

A thin lens is a focussing device such that the gradient of a ray or particle entering the lens is
altered whilst the position measured from the optic axis is unchanged. This requires that the
principal planes are coincident at the centre of the lens. Of course, for true lens action the
change in gradient must be proportional to the distance off axis at which the ray enters the
lens. Figure 2.4 shows a particle entering a thin lens with coordinates (xg-X() and leaving
with coordinates (x1,%,") where x; = x. The equation of a thin lens is:

1/p+1/q=1/f 2.2)

where p and q are the object and image distances respectively, and f is the focal length. The
trajectory equations are simply:
X; = X,

X =—x0/f+x0

So that the transfer matrix for the lens action between the princip planes is thus:

Xl 1 0 XO
) Il Ot Y X -
1 f 0

Note that in both the above cases the determinant of the transfer matrix is unity. This is true
generally and is a manifestation of Liouville's theorem of conservation of phase space area.
For a proof of the above see Brown [1967].

2.2.3 Transfer matrix of a thick lens
The focussing elements of electron optical systems cannot in general be considered to act as

thin lenses. Figure 2.5 is a schematic of a thick lens, in this case equation (2.3) above does
not hold. However, if two planes Pjand P, located at distances z; and z, from the lens
boundaries are introduced, it is always possible to find values for z; and z, such that:

1/(p+zl) + 1/(q+22) =1/f

When this equation holds P; and P, are known as the principal planes. The matrix

formulation for a thick lens becomes:
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XI A B XO

x| ~lc o] |xg @4
A B 1zl |1 O [1 z
c ol o i 2ol lo 1 @.5)

i.e. the thick lens is equivalent to a thin lens flanked by two drift spaces, and again the

where:

determinant is unity.

2.2.4 Transfer matrix of an optical system
Now consider the simplest optical system (Figure 2.6) of two drift spaces of length p and g,

separated by some focussing element - the complete transfer from object to image is
obtained by multiplying together the respective transfer matrices.

[ [

Assuming that the two planes of interest Z, and Z; are conjugate (see below) then p is the
object distance, counted positive towards the left starting from the entrance plane, and q is
the image distance counted positive towards the right starting from the exit plane. It is
important to note the order in which the matrices are multiplied together - starting from the
image point and working back towards the object.

2.2.5 Optical characteristics
Multiplying out equation (2.6) gives:

fal
I

(A+Cq)x,+ [Ap+ B+ q(Cp+ D)Ix, (2.7a)
'= Cx,+ (Cp+ D)xj (2.7b)

el
]

These relations reveal all the first order characteristics of the system :
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1) Object / Image Conjugation - point to point focussing requires that image position x, is
independent of the initial gradient X. From equation (2.7a) the condition is:

Cpq+ Ap+Dg+B = 0 (2.8)
2) Image Position - if the object position is known then (2.8) gives:
qQ =-(Ap+B)/(Cp+ D) (2.9)
3) Magnification . Assuming the conjugation relation (2.9) is satisfied then:
M= x/%x, = A+ Cq
ie. M

A-C[(Ap+B)/(Cp+ D)]
or M

(AD-BC)/(Cp+ D)

but (AD-BC) is simply the determinant of the focussing element transfer matrix and from
before must be unity. Therefore:

M= 1/(Cp+D) 2.10)

Complex systems with more than one element are handled in exactly the same manner by
multiplication of the appropriate transfer matrices.

2.3 OPTICAL PROPERTIES OF MAGNETIC SECTORS

The literature contains many studies of the optical properties of magnetic sectors, eg. Penner
[1961], Brown [1967,1980] one of the clearest and most comprehensive being that by Enge
[1967]. This section essentially follows his treatment.

2.3.1 General representation of sector properties

Figure 2.7 represents an arbitrary magnetic sector which is mirror symmetric about a
horizontal plane - i.e. the plane of the paper. For convenience this plane is known as the
median plane and the direction of the field B is perpendicular to the median plane, in what is
known as the vertical plane. An arbitrary median plane ray, called the central ray, is chosen
to define the origin of the coordinate systems, having a given position and direction at the
input and a given momentum. The entrance coordinate system (x(,¥(,2) is constructed as
shown with the x direction perpendicular to the median plane, while the exit coordinate
system (x;,¥1,Z;) has the z axis displaced such that it coincides with the central ray after its

deflection through the magnet. Given the entrance coordinates (x,y(,Z), the slopes xy'=

15
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dx¢/dzg, yo'= dyy/dz; and the momentum deviation & = Ap/p of an arbitrary ray, the

problem is to determine the exit position (x1,¥1521) and gradients x,', y;". That is to obtain
functions £, such thatat z;=0:

V. /R = £(y,/R, y5, %,/ R, x, 3) (2.11a)
y,' = £,(¥y/R, y5 x5/ R, x, 8) (2.11b)
X, /R = fs(yo/R’ yO', xo/ R, X4, o) (2.11¢c)
X, = f, (¥y/R, vy %, /R, x;, 8) (2.11d)

where yg, ¥¢'s X, X' are specified at zy= 0. Note that in order to make the above equations
dimensionless all lengths (x,y) have been divided by the orbit radius of the central ray, R
(Figure 2.7). It is reasonable, in electron microscopy, to assume that the parameters yo/Rs
xo/R, ¥o's Xo'» and & are all very much smaller than unity. For example in STEM the
diameter of the probe which forms the object for the spectrometer may be as small as 1nm
and the collection angle is normally < 5 mrads. The entire electron energy loss spectrum
covers ~ 2000 eV, so that at an operating voltage of 100kV 8. is of the order of 0.01. It
is therefore feasible to expand equations (2.11) in a Taylor series about the central ray :

- [l sl s

1 1
+ —27[ 2nd order terms ] + §T[ 3rd order terms ] + (2.12a)

[z s e

+ —[ 2nd order terms ] + [ 3rd order terms ] + o (2.12b)
1 ax1 . axl ﬁ[ ] ; axl . ax1[8]
R ayo R 8y
L T 2nd order terms ] +i[ 3rd order terms | + (2.12¢)
+ -2—‘[ nd order 77 | 3rd order terms | + ... .
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. Rg)y(:[y(,] axll 1+ Raxl[ ] ax1[ 1+ axl[a]]

[ 2nd order terms ] + — [ 3rd order terms ] + ... (2.12d)

where all partial derivatives are evaluated at X0=Yo= X0 = Yo = 8 = 0. Now the median plane
symmetry of the magnet places some restrictions upon the allowable Taylor coefficients i.e.

Yi/R= £, (y/R, yg, x/R, %, 8) = £, (yy/R, y4» -Xy/R, X4, 8) (2.132)

x,/R=f, (y4/R, Yos x,/R, x4, d)= -1, ( Yo/ R ¥gs Xo/R, Xy d) (2.13b)

Expanding equations (2.12a-d) to second order and eliminating all terms which do not
satisfy the symmetry conditions (2.13a,2.13b) gives :

3 9 d
i | i)y, yl bl y*[ ] (2.14a)
R ByO "R ay "R 35
R y yO 1 ayl ]2 Rayl rXO 1 ayl [ ]Z
1752 7 IR 2Ra ¥ _ 2Ra == R 5g2
[ 2
7y, a0 22 [yo] [355]
AR T R ay 93 R ay 'aa
L

. Yol . 9 ayl
[1% [1]

Zayl

yo

_] 1823/1 213y1[]2

2 882

ayl . Yy % ayl y05 ayl 'S
+ [ ]+R8x08x0’ R %0 ay 98 dy 08 [yo ]
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S a’“[""] CIN]H EAER TN
=] L]=2° *o 1 iy
R | o, |R| "Roxg = Oaa ®O|*R s L0 (2.140)
+ y° 0 yO o 1 y
ayoax ay ax Rayoax [ 0 0]

\ 0x,; [Xol ax'1 82X1[ 0 ]

x=[ R 22+ =[x T1]+|r 5 5 (2.14d)
Y1 9| R axo[ o] 9x 38 9x;20 [XO ]

" ax Yo %o Bzxi 50 Bzx'

1R 0[ e IR yo R a ax [yo ]

2.3.2 First order matrix transformations
Considering the first order coefficients only, equations (2.14 a-d) are linear and can be

rewritten in matrix form:

-y17 y
R y

' = y’
¥q y
[ O ] 0

k<Iv~<

<

o <

and similarly for the vertical plane:

> | >

i}

"

5

»

1 1y,
5 || ’®
L1y, (2.15)
5
1|13
X
R 2.16)
X 1
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The partial derivatives that appear in the Taylor expansion have been written in abbreviated
form and are known as ‘focussing coefficients'. For example:

_}Lz_l_i y_‘=R_all'_ Y_layl
y' Ry, y 3y, 5 R 3
x 1 0x x'_Raxl‘
x' R ox, x E

Note that to first order the motions in the x and y planes are independent of each other. The
values in the third row of equation (2.15) reflect the fact that static magnetic fields cannot
alter the scalar momentum of charged particles.

2.4 DERIVATION OF MATRIX COEFFICIENTS FOR
HOMOGENEOUS FIELD MAGNETIC SECTORS

There are two methods to obtain analytical expressions for the focussing coefficients (y/y)
etc. The simplest calculation, as carried out by Penner [1961], is a geometrical analysis
based on the fact that all trajectories within a sector are arcs of circles. This procedure is not
capable of handling the effects of extended fringe fields however, and it is more useful to
solve the trajectory equations for the motion of an electron through a sector magnet. Figure
2.8 shows a typical magnet with entrance and exit faces normal to the central ray and
constant field [BI=By,. R is the bending radius of the central ray and r (=R+y) describes the
position of an arbitrary ray. As before it is assumed that the deviations from the central ray

are small ie. y/R << 1.

2.4.1 Derivation of equations of motion

Using the cylindrical coordinate system (r,0,x) defined in Figure 2.8 consider motion in the

median plane. The Lorentz force is:
F =-e(vxB) where

B (1,6,x) = B(0,0,B)

carging out the vector product gives the components of the force acting:

Fr = -erGB0
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F0 = erBO

F =0

X

where the dot stands for time derivative and - ¢ is the charge on an electron. Now from
Newton's second law:

i . - .
Et-(mr)=mr6 - erdB, (2.17)

ie. mass x radial acceleration = mass x centripetal acceleration - Lorentz force . Equating
the rate of change of angular momentum to the moment of the angular force gives:

d 2 -
5 mr0) =1 F =errB, (2.18)
Rewrite (2.17) as:

r=r102— —e-réB0
m

r=162+ 0rh (2.19)

where @ = -eBy/m is the ‘cyclotron' frequency of a particle in the central orbit. Rewrite
(2.18) as:

d 2 .
-af(re)—-mrr
d 2/ __cod [r2+c]
T T =7F

0 =-

wle
H

[+

' Now when r =R, the radius of the central ray then:

0=-0
¢ =R
substituting r = (R+y) :
1
= - o 1+
0 2



Assuming y <<R gives to first order :
6 = ) [ 1—-3-/-]
R

which is inserted into equation (2.19) together with r=R +y to give:

— + 0y =0 (2.20)

This is the Kerst - Serber equation governing the excursion of a particle from the central ray
in the median plane. The particle executes harmonic motion in the radial direction about the
central ray, so it can be said that the magnet has a positive focussing action in the median
plane. Motion in the x direction is dependent upon the r component of the magnetic field
B(r,0,x), for the case of a homogeneous field sector this is, of course, zero (Figure 2.8).
Thus the simple sector discussed has no focussing properties in the x direction and would
image a point source to a line, however it is quite possible to introduce a component of B, by
tapering the polefaces of the magnet - and indeed this is a common approach in high energy
particle accelerators. However, there are simpler ways of introducing a vertical focus which
are discussed in later sections.

2.4.2 The matrix coefficients
The time dependence can be eliminated from equation (2.20) by introducing a new

independent variable z= Rt where z is the distance along the central ray from the entrance of

the magnet.
z=Rowt
dz = Rodt
dz’= Rwdt
substituting in (2.20) gives :
d2 2
R2m2—¥-+coy=0 or:
2
dz
2
E—Z + 2 =0 2.21)
dz R
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The solution of equation (2.21) is:

— 1 Z
Y = yusin(z+7)
Which has a derivative with respect to z :

, yA z
y = _R—COS(T{-+ Y)

Now at the magnet entrance z=0 so :
Yo = Y sin(Y)

y
Yo = —Récosw)

Also at the exit z=®R, where ® is the spectrometer bend angle so :
B . OR
yl - yASHl(‘_ﬁ_'*' 'Y)
= y,sinycos @+ y, sin®cosy

= yocos®+ y, Rsin®

B @R
yl = _ITCOS(T+ 'Y)
= %cos@cosy - -}l%-sin(l)sin’y

y
= yO' cos P - T{Qsind)

These expressions can now be written in simple matrix form :

y
ﬁ cos® sind® =0
R R
= @ ® (2.22)
yl. -sin cos yo'

The equivalent transfer matrix for the vertical or x plane is of course that of a drift space of
lengthL=@R:
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X
- (2.23
" o 1]],. )

Notice that the determinants of (2.22) and (2.23) are unity. Equation (2.22) shows that the
magnet is behaving as a thick lens in the median plane and, referring back to section 2.2.3
the distances of the principal planes from the sector boundaries, z; and z, are found to be :

2

_Zl _ Z, B _(l-cos(D)
R R sin @
and the focal length is :
-1; = sin ®

2.4.3 The effects of momentum variation
The coefficients (y/8) and (y'/8) of equation (2.6) still remain to be calculated. To find the
effect of a momentum change Ap, notice that this new momentum must correspond to a new

equilibrium orbit with radius :
1‘8 = R + Vs
For the central ray :
2
mRv = -evB, therefore Py = -¢ByR
Now :
Pt Ap = -eBOr8
= -eBO(R+ ya)
= -eB,R(1+ ya/R)
SO :
§ = — ==L or y = RJ (2.24)
Py R 3

This new momentum causes the particle to exhibit harmonic motion about the new

equilibrium orbit (Figure 2.9). For the particle with initial conditions yy =0, yo' = 0,
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P=Po+Ap, the new orbit can be found from the transfer matrix (2.22). With respect to the
new equilibrium orbit the particle enters the sector at yy'* = 0, yo* = -yg = -R8. The transfer

matrix describing the position of this particle at the magnet exit with respect to the new
equilibrium orbit is :

S
y -
-1 cos® sind _Z_S
R _ R
* -sin® cos® 0
Y1
SO :
*
¥y s
T~ R cos O
y
yl'* = Es sin @
Now comparing the displacements y* with the central ray :
*
T - -E+ "y ie. ] - --ﬁ-cosfb+—ﬁ-
y
X_l = T{Q( 1- cos®)
= 8(1-cos®)
* . \ Vs .
yl' = yl' ie. y, = —RQ sin ®
= 0 sin®

so the complete first order horizontal transfer matrix becomes :

- y - ] . [ yo T
-1% cos® sin® 1-cosd T
y, | = |sin® cos ® sin® Yo (2.25)
5 [ 0 0 1 11 s
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Fiqure 2.9  Folded Out Motion Of Particle With Momentum P+ AP After Enge [1967]
With Reference To The Central Ray
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2.8 THE EFFECTS OF TILTED ENTRANCE AND EXIT PLANES

Figure 2.10a shows a magnet where the central ray does not enter and exit normal to the pole
boundaries. The entrance angle o is the angle between the normal to the pole boundary and
the central ray in entrance space, and P is the corresponding angle at the exit side. Both o

and f are defined as positive when the normals are on the outside of the beam with respect
to the centre of curvature.

2.5.1 _The median plane.

The effect of positive angles o and B on median plane focussing is to reduce the overall
focussing strength. Looking at the entrance side, figure 2.10a shows that positive o tends to
remove some of the field traversed by particles with positive y, and to add more field for the
inside rays - obviously this is a defocussing effect. Tilting the poleface is equivalent to
superimposing a double sector magnet (Figure 2.10b) at the entrance, with the field direction
reversed above and below the central ray as shown. This field is of the same strength as the
main field and the radius of curvature of the particle is therefore the same as before (Figure
2.10c). If y is small, i.e. small deviation from the central ray, arc dl is short so that the
particle y component is approximately unchanged upon traversing the magnet. Thus the
entrance sector,and hence the tilted poleface acts as a thin divergent lens. From Figure 2.10c:

dl ~ y,tana
The radius of curvature of the trajectory is R since IBl = B,. Hence :
d = RY ~ y,ana
Yo
Y = —tanQ
R an

where ¥ is the angle of deflection. Now if ¥ is small then tan ¥ ~ ¥ =y,' so that the

transfer matrix for the thin lens can be written as :

F y ] [ Yy ]
1 20
x 1 0 O R
1 = 1 0 '
y, | = | o | Y (2.26)
0 0 1
5 )

The non-zero exit angle has an identical effect except o is replaced by P in the transfer
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matrix. The complete transfer matrix in the median plane is found by multiplying together the
three individual matrices starting from the exit face ie. :

v ] . : 'y

El 1 0 O0]]|cos® sind® 1-cos®d 1 o o] |2

R

yrl =B 1 of]-sin® cos® sind ||mna 1 0 '

1 Yo
0 0 1 0 0 1 0 1

[ 5 ] - - 0 [ &

Which gives for the first order median plane matrix

S [ cos(® - o) S
¥y E— sin® 1-cos® Yo
— cos —

R R

= -sin(@-a-B) cos(®@-P) . (2.27)
Y1 L b sin®+ (1- cos®) tanf | | 7o
cosa cosf3 cosp
) [ 5
0 0 1

2.5.2 Motion in _the vertical plane

It has been shown that a simple sector with straight edge polefaces normal to the direction of
the central ray acts as a drift space in the vertical plane and a thick lens in the median plane.
Figure 2.11a shows a vertical plane cross-section through the magnet poles at the exit face.
The field well inside the magnet is constant , B,. However, at the polefaces the field cannot
rise instantaneously from zero and there exists a region known as the fringing field zone
where B is not constant. Qutside the prism the field lines are curved and lie in planes
perpendicular to the polefaces (Figure 2.11b) and a component of B in the z direction
appears. This component affects the second order focussing properties in the median plane .
For B = 0 however, B, must still be zero because the field lines lie in planes perpendicular to
the r direction. In the case of non-zero 3 the magnetic lines of force in the fringe field lie in
planes perpendicular to the tilted poleface, so that B,, can be further resolved into components
B¢ and B;, where s is the direction normal to the poleface (Figure 2.11c). The vertical

motion is determined by the x component of Newtons' second law :

F = S(mX) = er6B (see 2.4.1)
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Figure2.11a Fringe Field In The Vertical (z-x) Plane At Exit Face

Figure 2.11b Fringe Field At Exit Fece Of Magnet With No Poleface Rotation
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Fiqure"Z.Hc Fringe Field In Median Plane Of Magnet With Rotated Poleface
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Now since the motion is mainly in the z direction v~r d6/dt so :

€

X = —v B
m T
Remembering that :
B mv
I
gives :
B v2
= -t
B, R
and eliminating the time dependence as before gives :
dzx B Br
dz? ByR
dx 1
(2] - ot [
P B.R (2.28a)
z

B, can be found from Maxwells' equation Curl B =0 which gives :

OB, BBX
7{ =

; J. B, dz and from Fig.2.10c
X

JBxdz ~ yOBOtanoc (r-R)BOtanoc

%(r-R)BOtana - B, tano

to first order. It is now possible to write :
—a- J B dz = B tana
X T

0
JB dz
T

The field symmetry about the median plane means that at x = 0 (i.e. on the median plane) the
component B, must be zero so that the constant C = 0. Now using equation (2.28a) :

xBOtanoc+ C
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A[E]--Ls
dz = 'BO-R OxtanOL

, t
Afx] = - - ;na (2.28b)

This shows that the tilted entrance face behaves like a thin lens, which is focussing when o
> 0 and defocussing when o < 0 - the opposite to the horizontal plane case. The effect of the
exit angle P is identical. The total transfer matrix for vertical plane focussing is found by
multiplying equation (2.23) by the appropriate thin lens matrices :

L }
1
. 1 0 1 o 1=
o tanf 11 ]0 1}]-tana 1 o
1] 0
( X X
-EI 1-Ptano ) _ﬁQ
= 2.29)
X, J -tano-tanf+®tanatanf  1-Ptanf X,

Note that the tilted polefaces correspond to the introduction of a quadrupole component to the
entrance field (see chapter 4).

2.6 THE EFFECTS OF EXTENDED FRINGING FIELDS

All of the first order calculations in the previous sections assumed that the electron beam
moves from a field free region to a region of constant field B over a very short distance. In
this way the effects of tilting the polefaces could be examined by considering the equivalent
thin lens properties. These calculations are known as SCOFF (sharp cut off fringing field)
calculations. In this type of calculation the effect of the fringing field is approximated by
displacing the magnetic field boundary from the poleface edge. There are empirical methods
for determining the approximate distance between the polepiece edge and the effective field
boundary, but the essential thing about SCOFF calculations is that the transition from
constant field to zero field is considered to occur over a vanishingly small distance. This is,
of course, only an approximation as real sector magnets have fringe fields where B rises
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from zero to its constant value over a considerable distance - comparable to the polepiece
gap. The influence of this extended fringing field (EFF) upon the optical properties of the
sector is not negligible and must be considered in any accurate design.

2.6.1 Field curves and semiempirical approximations

The shape and extent of the fringing field depends upon the geometry of the sector in
question, the shape and position of the field producing coils, and the presence of any external
field clamping devices. As such it is obvious that to develop a general theory to cover all
possible situations would be very difficult; consequently semiempirical methods of
calculation are usually adopted. Figure 2.12 shows a typical fringing field curve plotted
against s', the distance from the pole edges in units of the gap width D. The field BX’O is the
x component of the magnetic field measured in the median plane normal to the polepiece
boundary and midway between the corners of the polepieces. Enge [1967] provides an
analytical expression for this type of curve :

h(s) = B, o/ By = 1/(1+exp(9)) 2.31)

where : S Cotcys+ c2s2 + c3s3 (2.32)
The constants ¢, have to be determined for each particular case. The variable s in equation
(2.31) is again the distance along the normal in units of D, but the origin for s has been
placed at the 'virtual field boundary' (vfb) i.e. the point where :

vfb oo

J B o (SCOFF) ds' = J B, , (EFF) ds'

0 0
(Figure 2.12). This means that the pole edges are at negative s. Theratio B y / By can be
expressed by a function h(s) where :

lim h(s) = 0 and 1lim h(s) =1

S -vyo0 S —>-00

1.e. J h(s)ds ~ s, for large s,
5
This means that the angle of deflection of particles going through this fringing field is nearly
identical to that of a SCOFF field terminating at s=0. Off the median plane, the x component
of the field is modified, and there will also be a y and z component. Figure 2.13 defines the

coordinate systems. The dimensionless coordinate s is found by noting :
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Figure 2.12 Example Fringe Field Curve Taken From Enge[1967
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. Z y
ZCosP + vys —t 2
B y sinf Ds Ds
(Ds)’ = 22+

zcosP + y sinp
D

= 8

in the exit coordinate system (subscripts 1 have been dropped). Off the median plane, the
field components can be expressed in the form of a Taylor series in x. Symmetry conditions
imply that By (x) = By(-x), so the expansion for By can contain only even powers of x
(Figure 2.11a). Similarly By(x) = ~By(-x) and B,(x) = -B,(-x) so that By and B, expansions
contain only odd powers of x. To first order :

B, =B, (2.332)
[ 0B
VA
B, = x|5= (2.33b)
- x=0
[ OB
x,0
B, = x|— ] (2.33¢)

where (2.33c¢) is obtained from (2.33b) using curl B=0. From the definition of h(s) :

B, = Byh(s)

9B.0_ g dh(s) ds
dz 0 ds dz
B - xB dh(s) cosp

_ 2.34

where B, was obtained using equation (2.33c). In a similar manner it can be shown that :
dh(s)
ds

B, = —B,sinp (2.35)

y D

2.6.2 _ Calculation of trajectories (median plane)
For the purposes of calculation it can be assumed that the EFF trajectory well inside the

magnet coincides with that of the SCOFF central ray which is a circle segment inside the
virtual field boundaries (Figure 2.13) and straight lines, tangents to the circle, outside these
boundaries. The radius of curvature in the EFF fringing field is larger than that for the
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SCOFF case (as B X’O(EFF)< B, for s > 0), so the real (EFF) trajectory will start to diverge
from the SCOFF line when the field begins to decrease (exit side). It will still be curving
towards the SCOFF ray after the virtual field boundary and will eventually leave the fringing
field parallel to the SCOFF ray, as both particles will have traversed the same field integral.
The entrance trajectories obey similar restrictions. Since, to first order, the ray gradients
remain unchanged the only effect to calculate is the entrance and exit displacements Ay, and
Ay,. Field symmetry about the median plane implies that any differences between median
plane motion and motion in any y-z plane off the median plane must be of second and higher

even orders in x. Such factors can be neglected at present by assuming that x=0 always.
Now on the median plane :

eliminating the time dependence gives:

2d ev,
— = = B,
‘4

writing :
mv’ : B
= T

it is possible to write v ~ v, as the motion under consideration is very largely in the z
direction. Substituting this expression in above gives :

2
dy _ _°% _ .k (2.36)
Az -eR B, R
From equation (2.31) h is a function of s and :
iz = -2 ds (2.37)
cosp
so integrating (2.36) gives :
J‘ y _ h (s) D S
7 R cosp
-S
13’_| ] _‘.lll _ J.h(s)ds
dz Iy dz lg RcosB
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where the gradient dy/dz at-s, is the slope of both the EFF and SCOFF trajectories at the

position s = -s,, inside the magnet where the rays coincide. The SCOFF fringing field
function can be written as :

hy(s) = 1 fors<0
ho(s) =0 fors>0
and the difference in slopes between the EFF and SCOFF rays is :
s
[g_z ] [% - -RD J(ho- h) ds
EFF SCOFF cos 5
and remembering that :

Ih(s)ds =8,
-Sl

it is obvious that for s = o the difference in slope is zero. Integrating again :

S S S

2 S
D
sz ii-—);dz - ” Jh(s)ds]dz
b dz by R cosP by
2 S S
g -y, = D2 jds (h,- h) ds
|S ISl Rcosﬁ_51 5

substituting for dz. The left hand term y |g; is the position of both the EFF and SCOFF
trajectories at s = -s;. The difference in position between the EFF and SCOFF rays after they

have passed through the fringing field is :

D2
Yepp © Yscorr = T3 b = Ay, where:
R cos B
b s
I = st J(ho-h)ds
'Sl '51

Similarly at the entrance :
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D’I

Ayo = ;
R cos’o

The integral Iy should be obtained experimentally for each sector under consideration.
Enge[1967] gives some values for typical sector designs of the order of 0.4 - 0.9. The effect
of the extended fringing field on the horizontal plane focussin g 1s to produce a zeroth order
(i.e. independent of y,z,y',z',5 ) displacement to the beam. Thus, if the sector is aligned
with respect to this new centre line all the first order horizontal plane matrix coefficients
calculated before are valid.

2.6.3 Vertical (x) plane motion

Vertical focussing effects occur because of the existence of a component of By in the fringing
field, i.e. the region where dh/ds is non-zero. The focussing force is proportional to
(dh/ds)tan y where v is the angle between the normal to the field boundary and the velocity
vector of the particle (Figure 2.14). Therefore the focussing forces are largest in the region
where dh/ds is greatest. The SCOFF approximation has h(s) as a step like function at the
virtual field boundary, so dh/ds is non-zero over a very localised region. For the SCOFF
exit fringing field y = f in the region of maximum dh/ds - i.e. the virtual field boundary
(Figure 2.13). The extended fringing field is different, however, as when the particle passes
through maximum dh/ds it has not yet experienced the full angle of deflection, so thaty < 3
and consequently the focussing force is less. There is no change to first order in the exit
coordinates for the EFF and SCOFF rays in the vertical plane if the fringe field is still
considered to be a thin lens for z focussing (see section 2.6.4). Let Y describe the direction
of the beam as projected down on the median plane, and z describe the length of path along
this projection (Figure 2.14). Consider a particle moving parallel to the median plane outside

the exit field i.e. at z = o, X = X, dx/dz = 0. Equations (2.36) and (2.37) can be rewritten

as .
dy _ h()
dZ R
dz = —]-)—— ds
cosy

Integrate this last equation once through the fringe field region :
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(o=

Jcosvdv = -g fh(s)ds

H

Now fors =co,y=f so:

siny = sinf- -II% J. h (s) ds (2.37a)
Replace B by yin equation (2.35) to give :

By =D Bo sin 7%
Newtons' Law for motion in the x direction is :

vszl--z-)E I T Box sin y-cE

2 a2 mD ds

Now substitute mv, ~mv=-eBjR:

i x ___dh

; = o WY 5

and integrating this expression through the fringing field using the previous expression for
dz:

5 - J —tan ydh (2.38)
solve this by successive approximation by writing x =x, and y= B atlarges:

o0 [o=] oo

JCOSBdsJ—thdh

—_—
&
Il

D tan
e 28 [
cos B ¢
Dtan
x = BJhd
RcosB

34



Substitute this expression into (2.38) together with an expression for tan y obtained from
equation (2.37a) :

tany = tanf - thds
cos B RS
o co [ oo
dx X Dtan B
— = EIJ -2 Jhds tanB-—PT— hds
d R cos B . Rcos'B §

and it can be shown that the total change in slope through the exit fringing field is :

[dx] 'El anB- 2 1+Sln2B]thJhds

cos B

to first order. The reduction in vertical focussing implied by the above equation is small
when D/R is small, and can be expressed as a decrease in the exit angle 3 so that the effective
exit angle is written as :

.2
DL (1+sinB)
tanf} = tanf- 2

R 0053[3

where I is given by :

= J dh J. hds
s, 8
Assuming that the fractional term above is small it is possible to simplify the equation to :

DL+ sinB) 239

R cos

and similarly for the entrance side :

.2
DI, ( 1 +sin'a) (2.40)

(XV = a -
Rcos o

The reduction in vertical focussing is accounted for if the poleface rotation angles o and B in
the vertical transfer matrix are replaced by the effective angles ot and B,
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2.6.4 Fringe field clamping

The previous section provides integral expressions for the effective entrance and exit angles
o, B which are used to account for the loss in vertical focussing caused by the presence of
extended fringing fields. Enge[1964] has calculated values of the integrals I; and I,
pertaining to specific pole geometries and coil arrangements. However, it is clear that precise
determination of the position of the virtual field boundaries and evaluations of the integral
equations (2.39),(2.40) for an arbitrary design requires experimental measurement of the
fringe field component Bx,o' Another problem is that realistic fringe fields have a long tail at
low field strength which extends far out from the magnet. The vertical focussing occurs

through the action of the component of B, in the fringing field (section 2.6.3) and from

equation (2.35) By is proportional to dh}zs)/ds. Thus, if dh(s)/ds is non-zero over an
extended region then so is By and the fringe field cannot be considered to act as a thin lens
for vertical focussing. To overcome these problems it has become common practice to
employ a technique known as 'field clamping' first developed in high energy physics. The
clamp is a piece of high permeability material placed near the edge of the magnet with a hole
to allow passage of the beam (Figure 2.15a). Such a clamp behaves as a 'magnetic short
circuit' and acts to terminate the fringe field in a shorter distance. Figure 2.15b illustrates the
action of the field clamp in 'collecting' field lines. As can be seen from figure 2.15b the
clamp tends to extract field lines from the pole gap and the field strength between the poles

falls off earlier causing the virtual field boundary to move closer to the mechanical boundary.

Investigations of the design of field clamps have been carried out with reference to sector
magnets used in particle accelerators by many authors, including Hubner and Wollnik
[1970]. Generally, it must be pointed out that many of the factors considered in these papers
are concerned with saturation effects due to the high magnetic fields used in these machines
(i.e. ~ 10000 gauss). Some designers, such as Crewe et al. [1971] and Egerton [1980],
have applied these designs directly to EELS spectrometers, even following the high energy
practice of rounding the edges of the sector polefaces. It has been shown by Braams
[1964] that this practice causes the field inside the magnet to fall off even sooner. The theory
is that by constructing the correct curvature [Steffen 1965] the virtual field boundary can be
made coincident with the mechanical boundary thus simplifying the calculations. In practice
the required hyperbolic surface is approximated by a 459 taper of the pole edges. There are

two objections to this:

1) By reducing the field in the gap the integral I is increased and h(s) is made to vary over a
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Figure 2.15a Magnetic Fringe Field Clamp (After Heighway)
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larger distance - thus violating the thin lens criterion of the fringe field calculations.

2) Secondly, the original purpose of rounding the polefaces was to remove edge effects
whereby the shape of the fringe field was altered by local saturation near the sharp edge
of the pole corner [Braams 1964]. It is true that these local saturations occur at fields very
much smaller than that required to saturate the main body of the spectrometer, but even so
they are very unlikely to occur in microscopy where the main field is so weak (~100
gauss). Also it is not clear that replacing one 90° edge with two 459 corners gives much
improvement.

2.6.5 Empirical methods for determining fringe field integrals.

Heighway [1975] has provided semiempirical expressions for evaluating fringe field effects
in clamped dipole magnets with pole gap to bending radius ratios D/R < 0.55 and poleface
rotations -45°< ¢, <450, The geometry of the clamp is as shown in Figure 15a. Integral
equations (2.39 )and (2.40) are replaced by:

. 2
sz[_’)-Ck_D_(_liS_nis_). (2.41)

R cosf

with a similar expression for a.,. The coefficient k replaces the integral I of Enge and the
coefficient C is a correction factor. Both C and k are experimentally determined parametric
functions of B, D/R, and t/D where t is the clamp to poleface distance. Heighway gives the
expression for k as:

2
k = 01326+ 0.0842[ ]_t)_ ] +0.00805 [ % ] (2.42)

The equivalent expression for the correction coefficient C has eighteen terms, which are
listed in the above reference, however the value of C is of the order unity. The location of the

virtual field boundary is described by:

2
e D t D t

where R, is the radius of curvature of the poleface. In the case of the straight edge magnets
considered up to now R, — eo. For the curved faces described in section 2.7.2 the field

clamp is curved also, so that its center of curvature coincides with that of the poleface.

The above equations were derived using sector magnet fields varying between 8000 and
15000 gauss. How well they apply to the low field conditions of EELS is open to question,
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however several successful spectrometers have been designed using these results [Shuman
1980, Scheinfein and Isaacson 1984].

2.7 SECOND ORDER COEFFICIENTS.

The previous sections have derived expressions for the first order focussing coefficients
including the effects of tilted polefaces and extended fringe fields. The remaining thirty
second order coefficients in equations (2.14 a-d) must now be considered. There are twelve
median plane coefficients (i.e. independent of x and x'), and eighteen others concerned with
motion off the median plane. A brief outline of the calculations will be given in the next
sections, based on the derivations of Brown [1964] and Enge [1967].

2.7.1 __Median plane coefficients of second order
These coefficients can most readily be derived from geometrical considerations. Figure 2.16

shows the trajectory of the central ray in the median plane of a sector magnet with no rotation
of the polefaces. Also shown is an arbitrary ray, A with entrance coordinates (y;,y;',0). It
is assumed that the trajectory of the central ray is an arc of radius R centre O, and the
trajectory of the arbitrary ray is also an arc, of radius R(1+ 8) (see equation (2.24)) centre P.
In the following calculations all quantities y, y', d are considered small as before. It is
convenient to replace the ray gradient y' used in the previous sections with an equivalent
small angle 6 and use the relation y' = tan 6 ~ 0. The bend radius R is normalised to unity
for convenience. Applying the sine rule to triangles OPQ and OPR gives:

1+
o 2 148 (2.44a)
sin (© +6,) sin 6, sin @
l+y 1+8
z = - = (2.44b)
sin (w-¢+6,) sin(®w-0) sin 6,
Solving these equations together with expressions obtained using the cosine rule:

[a]” = (1+8)"+ (1+y,)"- 2(1+8)(1+y,)cos 8, (2.44¢)

2 2 2

(1+8) - (l+y,)-a
cos® = - (2.44d)

TZ2a(l+x,)

gives the required expressions for y, and 6, to second order in the terms y;, 6, and 0.
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. 1
Y, = ¥, 08¢ + Bsing + 3(1-cos¢) - > ylzsinzq) + %Bzcos ¢ (1-cosd)

1 2.2 .
Eﬁzsm o + y,Osindcosd + y18sin2q) + 0dsind (1-cosd) (2.45a)

. . 1
0, -y sin¢ +6, cos ¢+ dsin¢- Eefsinq)- stin¢+y18sinq) (2.45b)

The three remaining focussing coefficients y 12, ¥19, and 638 in the expansion for 8, are all
identically zero. The above equations (2.45a,b) describe the first and second order optical
properties in the median plane of the simple magnet shown in figure 2.16. Note that the first
order coefficients are the same as those in equation (2.25).

7.2 fficien f neral r n

As described before the provision of a vertical focus requires that the polefaces of figure 2.16
be rotated at angles o and 3. This modifies some of the first order median plane coefficients
(see equation (2.27)) and the second order coefficients derived above will also be changed.
In order to obtain the best performance from a spectrometer, it is desirable to have some
degree of control over the magnitude of the second order focussing coefficients (see chapter
3). This can be done either by placing multipole corrector lenses before and after the magnet
[Tang 1981] or by curving the poleface boundaries to the appropriate arcs of circles [Kerwin
1949]. Figure 2.17a depicts the entrance side of such a magnet. The input face is rotated at
an angle o to provide vertical focussing and has a radius of curvature R; which is defined as
positive as shown. The centre of curvature is at point (Z;;,Y ;). The Y axis is coincident
with the poleface of the equivalent straight edge sector with no poleface tilt (Figure 2.16.).

The modified first and second order median plane coefficients can be derived by calculating a
transformation which transforms the initial conditions (y,0,0) of a ray entering the magnet
of figure 2.17a at position (y,6) to an equivalent input condition (y;,6;) which results in
the ray following an identical trajectory inside the magnet of figure 2.16 (see Figure 2.17b.).
A similar approach calculates the transformation at the output face (Figure 2.17c.). Here the
problem is to transform from coordinates (y,.8,) for a ray exiting from the magnet of Tigure
2.16 to the coordinates (ys3,93) corresponding to the actual exit conditions as shown.
Combining the three solutions gives the first and second order median plane focussing

coefficients for an arbitrary sector magnet with curved and rotated polefaces.

2.7.3 Entrance and exit transformations.
Figure 2.17a shows an arbitrary ray intersecting the curved poleface at position (Za,Y A).
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Figure 2.173 Geometry Of Curved And Rotated Entrance Face
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The linear equation of the trajectory before it crosses the magnet boundary is :
y =z6,+ y, (for small 8) (2.46)

The equation of the poleface is:

2

X (2.47)

(y+Rlsin0L)2+ (z-Rlcosoc)2 = R

The simultaneous solution of (2.46) and (2.47) gives the intersection point (Z A>Y A)- The
equation of the circular trajectory A inside the magnet is :

[y-(YA- (1+5) coseo)]2+ [z- Z,+ (1+9) sineo)]2= [1 +8]2 (2.48)

i.e. a circle of radius (1+ &) intersecting the poleface at (Z A+ Y 5). Solving equation (2.48) for
y at z=0 gives the expansion for y, in terms of Y,, Z,, & and 8. Substitution of the
equations for Y, and Z, obtained from the simultaneous solution of (2.46) and (2.47) gives
the required expansion for y; in terms of y, 6 and 6. The expansion for 6; can be obtained
in a similar manner using tan 8, = dz/dx at z=0. The results are:

I 2 2

yl = yO - E yo tan & (249&)

11y ;
0, = yjano + 6+ 5 EOI- sec oL + ¥ P Otanzoc - y Otanct (2.49b)
Similarly for the exit side (Figs. 2.17c, 2.17d), the equations to be solved are:

Y3 = Yg- Zp8, (2.50a)
2 . an2 2

(z +R2cos|3) +(y+ R251n[3) = R, (2.50b)

2 2
(z- (1+9) sin92)2 + (y-(¥,- (1+ 9) 00562)) = (1+9) (2.50c)

The solutions are:

1 o
Y3 = Yyt 5 ¥, tnB (2.512)

2
1 2 3 1 y2 3
0= yanP + 0, = yjan B + 5[§;] secB - y B tanB - y,StanB  (2.51b)

Three transformations have been derived:

y1 = ¥q (%0:80:9) 8, = 6; (x0.80,9)
Y2 = ¥p (x0:80:9) 0, = 6, (x,8¢.%)
¥3= Y3 (XO?e()’S) 93 = 63 (Xo,eo,a)
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Figure 2.17c QOeometry Of Curved And Rotated Fxit Face
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The required transform is:

Y3 =Y (XO:GO,S) 63= 0 (x0,90,5)

which is obtained by the following procedure - substitute equations (2.49a,b) into equations
(2.45a,b) giving y,, 6, in terms of ¥ and 6. Substitution of the resultant expressions into

equations (2.51a,b) provides the complete first and secon