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SUMMARY

Acute elevations of the circulating catecholamines, 
adrenaline and noradrenaline are observed in physiological 
situations such as exercise, posture change and stress. 

Pathological settings such as phaeochromocytoma, heart failure 
and cirrhosis may be associated with chronic increases in plasma 

catecholamines. These high catecholamine levels have been 

associated with decreases in adrenergic receptor responsiveness 
or desensitisation. A reduction in adrenergic receptor density 

or down regulation has also been detected under these conditions. 
However, although the in vitro effects of raised concentrations 
of plasma catecholamines have been widely studied, similar 

investigations in vivo are not so well characterised. In 
addition, some in vivo experimental models (e.g. rat 
phaeochromocytoma) have produced plasma catecholamine levels 

vastly exceeding those found in many pathological settings. 

Therefore, the current investigations principally aimed to 
evaluate the effects of moderate increases in circulating 

catecholamines in vivo on adrenergic receptor function and number 

in a rabbit model.
The first series of experiments were designed to validate 

the methods used and characterise the receptor populations under 
investigation. To begin with, experiments were carried out to 
determine if the pro-aggregatory response to adrenaline in rabbit 

platelets was mediated (like human platelets) by alpha2 

adrenoceptors. The ability of the alpha adrenoceptor 
antagonists, idazoxan, yohimbine and prazosin to inhibit the 

platelet pro-aggregatory responses to adrenaline was recorded and
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IC50 va ûes concentration of antagonist required to produce 

fifty percent inhibition of response) were calculated. The 
alpha2 adrenoceptor antagonists, idazoxan and yohimbine were 
found to be more potent than the alphâ  adrenoceptor antagonist, 

prazosin at inhibiting the platelet pro-aggregatory response to 

adrenaline. Therefore, these results demonstrated that alpha2 
adrenoceptors primarily mediate the platelet pro-aggregatory 
response to adrenaline in the rabbit.

The specificity of [^H] yohimbine binding to alpha2 
adrenoceptors in rabbit platelets and kidney was also determined. 

Displacement assays were performed and the ability of various 
unlabelled alpha adrenoceptor antagonists to compete for [2H] 

yohimbine binding sites was examined and expressed as Kj (a 
measure of affinity) values. Yohimbine was found to have a 

considerably higher potency than prazosin for displacing [ 2H] 
yohimbine binding sites on rabbit platelets. Similarly, in 

rabbit kidney; prazosin and phentolamine were both less potent 
than yohimbine at displacing [%] yohimbine binding. These 

results were consistent with [ H] yohimbine binding to alpha2 
receptors in rabbit platelets and kidney.

Subpopulations of beta adrenoceptors were characterised in 
the platelets, lymphocytes, heart and lung of the rabbit. The 

ability of the beta-j (atenolol or metoprolol) and beta2 
(ICI 118551 ) adrenoceptor selective antagonists to displace the 

beta adrenoceptor selective [125I](-) Iodocyanopindolol (ICYP) 
from its binding sites in platelets and was assessed. ICI 118551 
was found to be more potent than atenolol in displacing [125I](-)
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ICYP specific binding in both tissues. These findings were in
agreement with previous studies showing that the beta

adrenoceptors in rabbit platelets and lymphocytes (like humans)

were largely beta2 in type. In a separate study, the beta^

adrenoceptor selective antagonist, metoprolol had a higher

affinity than the beta2 selective ICI 118551 at inhibiting 
1[ ]((-) ICYP specific binding in rabbit heart and lung. These
results confirmed that both the heart and the lung of the rabbit 

harbour a higher proportion of betâ  adrenergic receptors in the 
rabbit. Interestingly, the proportion of beta  ̂ and beta2 

adrenoceptors in rabbit lung were shown to be quite the inverse 
of most other mammalian species.

The investigations carried out in chapter four examine the 

effects of short term agonist infusion on platelet and vascular 

alpha2 adrenoceptor responses in the conscious rabbit. The first 

agonist to be studied was alpha methylnoradrenaline which is 
selective for alpha2 adrenoceptors. Vasopressor responses to 

bolus injections of alpha methylnoradrenaline (3 ug/kg) were 
measured before and during intravenous infusions of alpha 
methylnoradrenaline (0.5 umol/kg/hr and 2.5 umol/kg/hr) or the 

alpha>| adrenoceptor agonist, phenylephrine (1.8 umol/kg/hr). 
Pressor responses to alpha methylnoradrenaline during alpha 
methylnoradrenaline infusion were decreased within 2.5 minutes of 

infusion and in a dose dependent manner. Similar responses 
during phenylephrine infusion were unchanged. In conjunction 

with the in vivo experiments, in vitro platelet pro-aggregatory 
responses to adrenaline were measured before and at the end of 
2.5, 5 and 10 minute alpha methylnoradrenaline (2.5 umol/kg/hr)
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and 10 minute phenylephrine (1.8 umol/kg/hr) infusions. Similar 

responses were also measured at the end of 10 and 30 minutes 

alpha methylnoradrenaline (0.5 umol/kg/hr) infusion. 
Attenuations in the maximum aggregatory response (Emax) to 

adrenaline were dependent upon both, the dose and the duration of 
infusion. Infusions of phenylephrine had no effect on the 

aggregatory responses to adrenaline. These results were 

consistent with a rapid dose dependent desensitisation of 

platelet and vascular alpha2 adrenoceptors similar to that 
observed in beta adrenoceptor systems.

The effect of acute infusion (10 minute) of alpha 
methylnoradrenaline (2.5 umol/kg/hr) on [%] yohimbine binding to 

rabbit platelets was also examined and there was no significant 
alteration in the concentration of alpha2 receptors. Therefore, 

the acute in vitro reductions in response could not be explained 
in terms of changes in receptor number.

Short term administration of the endogenous catecholamine 
adrenaline (1.5 umol/kg/hr) also caused a reduction in vascular 
pressor responses within 2.5 minutes. These changes were again 

found to be dose dependent as no alterations in pressor responses 

were recorded during 0.05umol/kg/hr adrenaline infusion. 
Platelet pro-aggregatory responses to adrenaline were measured 

before and after ten minute intravenous infusions of adrenaline 
(1.5 umol/kg/hr). Reductions in the pro-aggregatory responses 

were observed in five out of the six animals treated although 
Emax did not significantly change. Thus, short term 
administration of adrenaline may also lead to a rapid

4



desensitisation of alpha2 adrenoceptors.

Acute administration of noradrenaline (0.09 umol/kg/hr) 
produced no alteration in the pressor responses to alpha 
methylnoradrenaline (3 ug/kg) even after one hour of infusion. 

However, an attenuation of response may have been detected if 

infusions had been prolonged or if higher doses of noradrenaline 
had been administered.

In conclusion, short term exposure to alpha 

methylnoradrenaline or adrenaline both resulted in a dose 

dependent desensitisation of the alpha2 adrenoceptor mediated 

responses examined, however the time course of desensitisation 
apparently differed according to the response examined.

Chapters five and six investigate the effects of long term 
administration of the endogenous agonists, adrenaline and 
noradrenaline on adrenergic receptor function and number. In the 

studies described in chapter five, rabbits were treated with 

intravenous infusions of adrenaline (0.05 umol/kg/hr) for ten 
days via osmotic minipumps implanted at the femoral vein. 

Control animals received the vehicle (0.1% ascorbate). Mean 
arterial blood pressure, heart rate and plasma catecholamines 

were measured at five intervals during the period of infusion. 
Eight fold elevations in circulating adrenaline concentrations 

were achieved within 24 hours of commencing infusion and these 
levels were sustained after ten days adrenaline infusion. This 

chronic increase in plasma adrenaline was not accompanied by 

significant changes in the mean arterial blood pressure or heart 

rate. Rabbits were killed after ten days and blood was withdrawn 
for preparation of platelets and lymphocytes. The whole heart,
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lung and one kidney were also collected. Platelet aggregation 

studies were carried out as well as [3h] yohimbine binding 

studies in platelets and kidney. [ I](-) ICYP binding to
platelets, lymphocytes, heart and lung was also quantified at the 
end of infusion. Ten day adrenaline (0.05 umol/kg/hr) infusions 
led to a significant reduction in the maximum aggregatory 

response to adrenaline concomitant with a decrease in alpha2 
adrenoceptor number in platelets but no significant fall in 

kidney alpha2 receptors. There were marked falls in [”* ̂ 1] icyp 
binding to heart and lung without any changes in platelets or 

lymphocytes. The KD values for either [%] yohimbine or [^^1] 
ICYP binding did not significantly alter with long term 

adrenaline treatment. Thus, long term adrenaline induced down 
regulation of adrenergic receptors in the rabbit was dependent 

upon the location and subtype of adrenoceptor.
Similar studies were conducted to determine the effects of 

chronic noradrenaline infusion on the function and density of 
adrenergic receptors in the rabbit (chapter six). Animals were 

treated with intravenous noradrenaline (0.09 umol/kg/hr) or 
ascorbate (0.1%) infusions for ten days via osmotic minipumps 
implanted at the femoral vein. The mean arterial blood pressure, 
heart rate and catecholamine levels were monitored before 

commencing and after 24 hours and ten days infusion. There were 
five fold increases in circulating plasma noradrenaline levels 
after 24 hours of noradrenaline infusion, these levels increasing 
to six fold at the end of ten days infusion. There were no 
significant alterations in blood pressure while a significant
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decrease in the heart rate was evident only after 24 hours 
infusion. Rabbits were killed after ten days and similar 

measurements to those described in chapter five, were taken. A 
significant decrease in the number of alpha2 adrenoceptors in the 

kidney was observed. This down regulation was in marked contrast 

to the lack of alteration in platelet alpha2 receptor number and 

the platelet alpha2 adrenoceptor mediated pro-aggregatory 
response. Long term exposure to noradrenaline also resulted in 

significant reductions in the number of beta adrenoceptors in 
heart and lung with no changes in the density of lymphocyte beta2 
receptors. Therefore, a moderate increase in circulating plasma 
noradrenaline resulted in substantial decreases in adrenoceptor 

number which were confined to solid tissues.
The observed discrepancies between the results following 

long term adrenaline and long term noradrenaline infusions could 
be due to the differing affinities of each agonist for the 

various receptor subtypes.
The final series of experiments (chapter seven) address the 

time course of down regulation in alpha2 adrenoceptor and beta 
adrenoceptor systems. Groups of rabbits were treated with 

intravenous infusions of adrenaline (0.05 umol/kg/hr) for 12 
hours, 24 hours, two, three or ten days using minipumps. Plasma 

concentrations of adrenaline were raised approximately ten fold 
after each duration of adrenaline infusion. At the end of 

infusions, rabbits were killed for removal of blood, heart and 
lung. [%] yohimbine binding studies were carried out in the 

platelets of control and noradrenaline infused animals. The 
first evidence of a decrement in platelet alpha2 adrenoceptor

7



number took place after three days exposure to adrenaline with 
significant decreases obvious by the end of ten days infusion. 
Beta adrenoceptors were quantified in rabbit heart and lung using 
[ 1 251 ] (_) icyp. a trend towards a reduction in heart and lung 

beta adrenoceptor density was apparent within 12 hours exposure 
to adrenaline, these reductions becoming significant following 

ten days of infusion. Therefore, alpha2 adrenergic receptor 

systems could be more resistant to down regulation in response to 

chronic adrenaline infusion.
In conclusion, acute adrenoceptor agonist infusion led to an 

alpha2 adrenoceptor desensitisation without changes in 
adrenoceptor number while chronic agonist infusion reduced both 

adrenoceptor function and number. Reductions in both alpha2 and 
beta adrenoceptor concentration were found to be tissue specific. 

Agonist selectivity, receptor specificity and the rate of 
receptor degradation may all be important factors influencing 

differential changes in adrenergic receptor density in response 

to chronically elevated catecholamines.
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INTRODUCTION



Chapter One
Introduction

1.1 THE HISTORY OF ADRENOCEPTOR CLASSIFICATION
The catecholamines, adrenaline and noradrenaline play an 

important role as key modulators of many physiological events, in 

particular, the regulation of the cardiovascular system. 
Adrenaline functions as a circulatory hormone released from the 
chromaffin cells of the adrenal medulla whilst noradrenaline acts 

primarily as a neurotransmitter released from the postganglionic 
sympathetic nerves. These catecholamines exert their actions on 

target organs by binding with high affinity to specific 
recognition sites; the adrenergic receptors, commonly called 

adrenoceptors. The receptors act as the initial translators of 
extracellular messages by relaying signals so that the 

characteristic cellular response follows.
Dale (1906) first suggested that there may be subtypes of 

adrenergic receptors at myoneural junctions due to the 
differential effects of ergot alkaloids on smooth muscle. Since 

these pioneering studies, considerable advances have been made 
regarding the classification and function of adrenergic 

receptors. The work of Ahlquist in 1948 extended Dale's theories 
by proposing that the different vascular responses to 

catecholamines were mediated through two broad categories of 
receptor population which he designated, alpha and beta. 

Observation of the effects of some sympathomimetic amines on 
certain animal tissues allowed the functions of these receptors 
to be determined. The alpha adrenoceptor was shown to be

10
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associated with excitatory functions such as vasoconstriction and 

stimulation of the uterus whereas, the beta adrenoceptor was 
associated with inhibitory functions like vasodilation and 
inhibition of the uterine and bronchial musculature, with one 
excitatory function, myocardial stimulation.

1.1.1 Beta adrenoceptor subclassification

Further subdivision of beta adrenoceptors was demonstrated 
by Furchgott (1967) and Lands et al (1967a) by examination of the 

relative potency of a series of agonists and antagonists in 
producing specific responses in isolated tissues from the rabbit 

and the guinea pig. These authors concluded that there were two 
different types of beta receptors which they termed beta-j and 

beta2« At beta-j receptors, the efficacy of isoprenaline was 
greater than adrenaline which approximately equalled 
noradrenaline. This subtype was responsible for mediating 

positive inotropic cardiac responses and lipolysis. At beta2 
receptors, controlling broncho-dilatation and vasodilatation, 
isoprenaline was more potent than adrenaline which was 

substantially more potent than noradrenaline (Table 1.1). 
Subsequent validation of this subclassification was shown with 

the development of subtype selective antagonists and the 

pharmacology of beta-j and beta2 receptors was found to be 

identical in all mammalian species (Minneman, 1981).

1.1.2 Alpha adrenoceptor subclassification
In contrast to the beta adrenergic receptors, identification 

of alpha adrenergic receptor subtypes proved to be more difficult 
due to the complex physiological responses elicited via these
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receptors and the slower development of subtype selective drugs.

In 1974, Langer proposed that postsynaptic and presynaptic 
alpha adrenoceptors could be distinguished from each other by 
function and agonist selectivity. Presynaptic alpha 

adrenoceptors were involved in the regulation of transmitter 

(e.g. noradrenaline) release through a negative feedback 
mechanism mediated by the transmitter itself (Starke, 1977). 
Postsynaptic alpha adrenoceptors represented the "classic" 
postjunctional receptors, stimulation of which produced a 
pharmacological effect. In rabbit heart (Starke, 1981) and cat 
spleen (Langer, 1973) the presynaptic alpha adrenoceptors could 
be differentiated from the postsynaptic ones with respect to the 

relative activities of various agonists and antagonists. The 
postsynaptic receptor was classified as an alphaadrenoceptor 

with a relatively high affinity for the antagonist prazosin and 
the agonist methoxamine. Its functions included mediation of 
excitatory responses such as vasoconstriction. The presynaptic 

receptor was termed an alpha2 adrenoceptor and exhibited a high 

affinity for the agonists, clonidine and alpha 
methylnoradrenaline and the antagonist, yohimbine (Starke, 1977; 

Wikberg, 1978).
The existence of alpha2 adrenoceptors outside noradrenergic 

terminal axons at postsynaptic sites (e.g. smooth muscle and 
central nervous system) as well as non-synaptic sites (e.g. 
platelets and adipocytes) imposed limitations on the original 
anatomical subclassification of Langer (1974). Jauering et al 
(1978) showed that noradrenaline responses in human digital
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arteries, unlike visceral arteries, were resistant to blockade by- 

prazosin, implicating the presence of postjunctional alpha2 
receptor. These findings then led to the possibility that both 

alpha-j and alpha2 receptors mediated smooth muscle contraction 

and in particular vasoconstriction (Drew and Whiting, 1979). 
Therefore, alpha receptors are now defined by using 
pharmacological specificity rather than by location (Berthelson 
and Pettinger, 1977; Starke and Langer, 1979). A summary of the 
location and function of alpha adrenergic receptors is given in 
Table 1.1.

1.1.3 Subdivisions of alpha2 adrenoceptors

Over the last few years, there has been increasing evidence 

to suggest that the alpha2 adrenoceptors are not homogeneous. 

Investigations into this possible heterogeneity of alpha2 
adrenoceptors have been facilitated by the use of radiolabelled 

alpha adrenoceptor agonists and antagonists (Section 1.1). In 
1981, Bylund conducted a study to compare the number of binding 

sites for [%] yohimbine and [%] clonidine in several tissues 
and species. He found that by choosing an appropriate tissue and 

species almost any ratio of [ H] antagonist to [ H] agonist could 

be obtained indicating that alpha2 adrenoceptor subtypes may be 
present in some tissues. Similar studies by Dickinson et al 
(1986) demonstrated that alpha2 receptor sites in human spleen, 

kidney, colon and platelets differed significantly from those in 
either rabbit spleen and kidney or in rat brain membranes.
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Table 1.1
Classification of adrenergic receptors

Type Location/Agonist
Potency

Function

Oi -adrenergic NQRADR > ADR >> 
ISO

Vasoconstriction, 
excitation of uterine con
tractions, inhibition of in
testinal peristalsis

OL i adrenergic Postsynaptic Vasoconstriction

a . 2 adrenergic

ADR > NORADR >> 
ISO

Presynaptic

Postsynaptic

Negative feedback 
inhibition of noradrenaline 
release
Vasoconstriction

Nonsynaptic Platelet activation, 
lipolysis, insulin 
release etc.

f t-adrenergic ISO > ADR > 
NORADR

Vasodilatation, inhibition 
of uterine contraction, 
myocardial stimulation

adrenergic ISO > ADR = 
NORADR

Postsynaptic

Positive inotropic cardiac 
responses. Fatty acid 
mobilisation from adipose 
tissue

^2 adrenergic ISO > ADR >> 
NORADR

Bronchodilatation, 
vasodepression

Presynaptic Positivefeedback stimulation 
of noradrenaline release

Postsynaptic Bronchodilatation, vaso
depression, cardiac 
stimulation

Nonsynaptic Platelet inhibition etc.

ADR = Adrenaline 
NQRADR = Noradrenaline 

ISO = Isoprenaline
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Within species and within tissue heterogeneity of alpha2 
receptors has also been observed. Studies by Hamilton et al 

(1988) have shown that [ ■%] idazoxan and [%] yohimbine bind to 
different sites in rabbit forebrain and kidney membranes. 

Differences in radioligand binding between alpha2 adrenoceptors 
in rabbit, kidney and platelet prompted Nahorski and colleagues 
(1 985) to propose that two putative subtypes of this 
adrenoceptor, A and B, existed with different properties 
depending on their locality (Chapter eight). Two subpopulations 

of the alpha2 adrenoceptor have also been identified within 

tissues such as rat cerebral cortex and submandibular gland 

(Bylund, 1985).
The recent advent of quantitative autoradiographic 

techniques has allowed high resolution anatomical data to be 
obtained in certain animal tissues (Altar et al, 1984). Boyajian 

et al (1987) have recently presented evidence of differential 
autoradiographic distributions of [ H] Rauwolscine and [JH] 

Idazoxan in the rat brain indicating the presence of more than 
one alpha2 adrenoceptor subtype within this tissue.

1.1.4 Alphai adrenoceptor subclassification
Alpha-] adrenoceptors have been shown to have different 

pharmacological properties in different tissues. Analysis of the 
pA2 (affinity) values obtained for prazosin and yohimbine against 
alpha*j-adrenergic contractile responses in blood vessels from 

rodents and rabbits suggested the presence of two subtypes of 
this receptor; one with high affinity for prazosin and yohimbine 
and one with lower affinity for these two antagonists (Flavahan
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and Vanhoutte, 1986). These authors demonstrated the existence 

of alpha-] adrenoceptor subtypes in the pulmonary artery of the 

rabbit and dog while, in contrast, Docherty (1987) presented 
results in favour of a homogeneous population of alpha-] 

adrenoceptors in rabbit pulmonary artery. Thus, the presence of 

subdivisions of the alpha.] receptor appears to be equivocal 

(Hieble et al, 1 986). However, a recent study by Han et al 
(1987) provides evidence to suggest that two separate subtypes 

(a1a and a ifc) of the alpha-] adrenoceptor are present in the 
smooth muscle of the rat, each subtype having a different 

function in the control of C a? + release by neurotransmitters and 

hormones.

1.1.5 The history of radioligand binding studies

During the last decade, rapid progress has been made in our 

understanding of receptor mediated events due to the advent of 
radioactively labelled hormone and drug derivatives with high 
specific activity. These radioligands have permitted direct 
identification of adrenergic receptors, quantification and 
determination of drug-receptor affinities. They provide a 

powerful tool for exploration of receptor structure and function 

in normal and pathological situations.
The basic concepts of this technique involves the 

incubation of a cell membrane preparation or whole cells 

(containing the receptors) with the radioactive adrenergic 
agonist or antagonist (radioligand) in the presence and absence 

of a nonradioactive drug that will bind to all the receptors 
being studied (e.g. phentolamine and propranolol for alpha and
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beta receptors respectively). Specific binding is then defined 
by subtraction of the radioactivity observed in the presence of 

this unlabelled compound (nonspecific binding) from that observed 
in its absence (total binding). Radioligands bind to adrenergic 
receptors in a saturable manner with specific binding approaching 
a maximum (Bmax). The concentration of ligand that binds to half 

this number of receptors is the dissociation constant (KD). 
These parameters are derived from the scatchard plot and 
description of this type of analysis has been given in 

Section 2.5. Several experiments have to be carried out to prove 

that tissue bound radioactivity represents receptors.
Thus, Motulsky and Insel (1984) have defined the following 

criteria that must be satisfied to demonstrate that radioligand 
binding sites may be equated with adrenergic receptors:-
1. Specific binding should be saturable and proportional to 

tissue concentration.
2. Binding should be as rapid and reversible as are the 

physiologic responses to the ligand.
3. Unlabelled drugs should compete for radioligand binding with 

appropriate relative potencies as predicted from 

pharmacologic experiments.
4. Alternative methods should yield nearly identical values for 

the equilibrium dissociation constant.
5. The radioligand should remain unaltered during the 

experiment.
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The first successful radioligand binding studies were 

reported in 1974 with the use of [3h](-) alprenolol to measure 

beta adrenergic receptors in turkey erythrocytes (Levitzki et al) 
while corresponding work in alpha receptors was started in 1976 

using [̂ H] dihydroergocryptine (Williams and Lefkowitz; Greenberg 

et al). In some of these earlier investigations, the ligands 
were not highly specific and large amounts would bind to 
nonreceptor proteins (nonspecific binding). Since then, ligands 

with higher affinities for the alpha and beta adrenoceptors have 
been developed. The selective alpha2 antagonist [%] yohimbine 

was introduced in the studies of Motulsky et al in 1980. Binding 
of this ligand to human platelets was shown to be rapid, readily 

reversible and of high affinity for alpha2 adrenoceptors.
1 O CSimilarly, the beta adrenoceptor selective antagonist [’̂ 1] 

iodocyanopindolol (ICYP) was shown to have advantages over 
previously employed beta adrenoceptor ligands. 0 ^ 1 ]  ICYP had 

lower nonspecific binding, a higher specific activity and 
required smaller volumes of blood for lymphocyte studies (Brodde 

et al, 1981a). These ligands have enabled more detailed 
investigation of the molecular and physiological regulation of 

the adrenergic receptors and therefore, more information on the 
underlying mechanisms of disease.

1.2 BIOCHEMICAL MECHANISMS OF SIGNAL TRANSDUCTION
The interaction between an agonist and adrenergic receptor 

induces changes that lead to a cascade of events which ultimately 
result in the observed physiologic response. Radioligand binding 
studies have made possible the exploration of molecular details

18



and dissection of the biochemical components involved in these 
steps.

1.2.1 Beta adrenoceptor effector coupling

The fundamental difference between agonist and antagonist 
drugs is that agonists activate a biological process by virtue of 

their binding to receptors whereas antagonists that bind to the 
same receptors cause no such activation. Therefore, there will 

be differences in the way in which agonists, as opposed to 
antagonists, activate beta adrenergic receptors.

Both beta-} and beta2 adrenoceptors stimulate the membrane 
bound enzyme, adenylate cyclase (AC) (Sutherland and Rail, 1960). 

The first step involves binding of the agonist to receptor (R) 

which leads to a conformational change in the receptor molecule 

(r1) so that the agonist-R1 complex can bind to the guanine
1nucleotide protein (Gs) forming a transient agonist-R -G ternary 

complex. Formation of this complex also facilitates the exchange 
of GTP for GDP which then causes a dissociation of G from 

agonist-R1 and allows it to bind to and activate adenylate 

cyclase (AC) (Figure 1.1).
The activated adenylate cyclase stimulates the conversion of

1 1adenosine triphosphate (ATP) to adenosine-3 , 5 -monophosphate or 
cyclic AMP which serves as a "second messenger" for the hormone 

and activates intracellular protein kinases. These then cause 
phosphorylation of enzymes that lead to the cellular response 

such as smooth muscle relaxation.
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Figure 1.1
Hormonal activation of adenylate cyclase 
(adapted from Nahorski and Barnett, 1982)

(1) Agonist binds to receptor R inducing a conformational 

change, R^.
(2) The agonist - R̂  complex then binds to the guanine 

nucleotide protein, G forming the agonist-R'-G ternary 

complex which facilitates the exchange of GTP for GDP on G.

(3) G then dissociates from agonist-R , and binds to and 

activates adenylate cyclase (AC).

(4) Dissociation of G converts R1 into R.
(5) Synthesis of cyclic AMP continues until GTP is hydrolysed by 

the GTPase "turn off" reaction.
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The most extensively studied modulator of binding to 

adrenergic receptors is the guanine nucleotide guanosine 
triphosphate (GTP) (Rodbell, 1980; Hoffman and Lefkowitz, 1980). 

In its absence, agonists discriminate between two classes of 
receptors termed high affinity and low affinity receptors. In 
the presence of GTP, however, only low affinity binding can be 
detected.

In a radioligand binding assay, the ability of agonists to 
promote the formation of a receptor-G-protein complex corresponds 
to the ability of the agonist to form a high affinity state of 
the receptor and is the molecular basis for the "shallow" curves 

that are characteristic of agonists competing against labelled 
antagonist ligands. Addition of GTP to the assay results in a 
shift of the agonist curve to the right and a steepening of the 

curve. This parallels the ability of guanine nucleotides to 
dissociate the receptor-G-protein complex resulting in a 
homogeneous population of receptors with lower affinity for 

agonists. Thus, the shape of an agonist displacement curve and 
the change induced by GTP gives a measure of the relative 
coupling of the receptor to adenylate cyclase (Nahorski and 

Barnett, 1982; Motulsky and Insel, 1982).

1.2.2 Alphap adrenoceptor effector coupling
The coupling mechanisms following activation of alpha2 

adrenoceptors are very similar to those described for the beta 

adrenergic system although the alpha2 receptors are negatively 
coupled to adenylate cyclase (Fain and Garcia-Sainz, 1980). Less
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information is available concerning the hormonal activation of 

alpha2 receptors, however like beta receptors, they exist in both 

high and low affinity states (Bylund and U'Prichard, 1983) with 
antagonists only recognising a homogeneous population of alpha2 
receptors (Nahorski et al, 1985). Guanine nucleotides have also 

been shown to exert important agonist specific regulatory effects 
(Tsai and Lefkowitz, 1979). Inhibition of adenylate cyclase 

occurs through activation of a different guanine nucleotide 
binding protein (Gi) which reduces adenylate cyclase activity 

(Jakobs et al, 1 984). One subunit of this protein is clearly 
distinct from the units making up the protein mediating adenylate 

cyclase stimulation (Jakobs et al, 1985). At present there are 
conflicting opinions regarding the mechanism by which the guanine 

nucleotide protein causes decreases in adenylate cyclase 
activity. However decreases in cyclic AMP levels have been shown 

in platelets, adipocytes, hepatocytes, pancreatic islets, 
cerebral microvessels and cloned neuroblastoma cells (Jakobs 

et al, 1983).

1.2.3 Alphai adrenoceptor effector coupling

In contrast to alpha2 and beta adrenergic receptors, alpha'] 
adrenoceptor activation does not alter intracellular levels of 

cyclic AMP.
Binding of an agonist to the alpha^ receptor activates 

phospholipase C, an enzyme that hydrolyzes the 
phosphatidylinositol-4, 5-bisphosphate (PIP2) to form myo

inositol-1, 4, 5-trisphosphate (IP3) and diacylglycerol (DG) 
(Homey and Graham, 1 985). Availability of IP3 leads to
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intracellular Ca2+ release which can then in turn activate 

cellular responses such as actin-myosin coupling or promotion of 

protein kinase C activation (Michell, 1985). Thus the 
mobilisation of Ca2+ from intracellular vesicles and/or the 

influx of extracellular Ca2+ appears to be linked closely to 
activation of the alpha-j adrenoceptor.

1.3 REGULATION OF ADRENERGIC RECEPTORS
Adrenergic receptors possess the ability to increase (up 

regulate) or decrease (down regulate) the synthesis of their own 
receptor protein in response to drug administration and many 

physiological and pathological settings.
For the purpose of this thesis regulation of adrenergic 

receptors that stimulate (beta) and inhibit (alpt^) adenylate 
cyclase will be examined.

1.3.1 Supersensitivity and Up-regulation
Depletion of catecholamines by destruction of noradrenergic 

neurons or treatment with adrenergic antagonists may lead to a 
supersensitivity of tissues to catecholamines and an up- 

regulation of receptor number (Glaubiger et al, 1978). When 
nerve terminals were destroyed by treatment with 6- 

hydroxydopamine a fall in tissue catecholamines associated with 
an increase in beta adrenoceptors in rat brain has been observed 

(Spom et al, 1976). This increase was accompanied by a rise in 
isoprenaline-stimulated cyclic AMP production. Chronic blockade 

of beta adrenergic receptors resulting from propranolol 
administration resulted in an elevation of beta adrenoceptor
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number in human lymphocytes (Aarons et al, 1980) and a doubling 

of beta receptor density in rat heart (Glaubiger and Lefkowitz,

1977). The "propranolol withdrawal syndrome" has been associated 
with beta adrenergic hypersensitivity, arrhythmias and myocardial 

ischaemia (Alderman et al, 1974) due to persistent up-regulation 

of beta receptors. On withdrawal of propranolol excessive 

numbers of receptors are left exposed to catecholamines 
accounting for the increased sensitivity (Davies and Lefkowitz, 

1981). Another example of up-regulation is in patients with 
orthostatic hypotension who have low concentrations of 

circulating catecholamines and enhanced responses to administered 

catecholamines. In these subjects the number of alpha2 

adrenoceptors on platelets and beta adrenoceptors on lymphocytes 
are several times higher than in normal subjects (Hui and 

Connolly, 1981; Davies et al, 1981).

1.3.2 Desensitisation

The converse of supersensitivity occurs when there is a 

decreased sensitivity to circulating catecholamines, a phenomenon 
known as receptor sub-sensitivity or densensitisation. This 

blunted responsiveness takes place when the adenylate cyclase 

system is subjected to persistent agonist stimulation. 

Desensitisation is thought to represent some sort of homeostatic 
mechanism whereby tissues may be protected from prolonged agonist 

exposure (Catt et al, 1979).
Hormone induced desensitisation may be divided into two 

categories referred to as homologous (agonist specific) and 
heterologous (agonist non-specific). The latter process refers
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to a decreased responsiveness to the desensitising hormone as 
well as to other hormones and in some instances non-hormonal 
stimulators such as guanine nucleotides and fluoride ion. Su and 

colleagues (1976) were among the first to investigate 

heterologous desensitisation using clonal astrocytoma cells. 
Prolonged incubation with either beta adrenergic agonists or 

prostaglandins diminished the subsequent capacity of both 
hormones to elevate intracellular cyclic AMP levels. In this 

form of desensitisation receptor function is shown to be 

regulated by phosphorylation in the absence of receptor 
sequestration or down regulation (Sibley and Lefkowitz, 1985).

Homologous desensitisation leads to an attenuated response 

only to the desensitising hormone. The first stage of this type 
of desensitisation involves a rapid uncoupling of the receptors 

within the plasma membrane which alters the conformational state 
of the receptor so that it is unable to activate adenylate 

cyclase (Homburger et al, 1980). This process has been shown to 
take place within minutes (Staehelin and Simons, 1982). In 

addition to uncoupling from the G protein, the receptors are 
sequestered or "internalised" away from the cell surface into 

endocytotic vesicles which are devoid of adrenylate cyclase 
activity (Stadel et al, 1983). At this stage these redistributed 

receptors have their binding site facing inwards and can still be 
detected by conventional antagonist radioligand binding 

techniques which label total receptor populations. On removal of 

agonist the process may be rapidly reversed with receptors 
reappearing on the cell surface (Sibley and Lefkowitz, 1985). A 
model describing these events is shown in Figure 1.2.
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Figure 1.2

A hypothetical model for catecholamine induced 
homologous desensitisation 

(adapted from Hertel et al, 1983)

The model depicts the binding of agonists (H) to native 

receptors (BARN) leading to rapid uncoupling of receptors 

(BARy), endocytosis to form vesicles containing receptors 

(BARyy), conversion of receptors to a form undetectable in ligand 

binding assays (BARy) and recycling of the modified BAR or new 

synthesis of BAR.
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The first evidence of catecholamine induced internalisation 

of adrenergic receptors came from the in vitro studies of Chuang 
and Costa (1979) when they incubated frog erythrocytes with 
isoprenaline. A loss of beta adrenergic receptors from the 
plasma membrane fraction was associated with an increase in 

binding activity in the cell cytosol. This work was extended to 
demonstrate that the erythrocyte beta receptors were internalised 

subsequent to receptor clustering mediated by transglutaminase 

(Chuang et al, 1980). The development of a hydrophilic beta 

antagonist radioligand [%]CGP-12177 allowed specific measurement 

of cell surface beta receptors to be made (Staehelin et al,
1983). This ligand is membrane impermeant unlike the other more 

lipophilic antagonist radioligands [^^1] ICYP and [ %] DHA which 
assess the total receptor concentration. Recent studies using 
this ligand have presented evidence that agonist modified 
receptors are not "internalised" into endocytotic vesicles but 

are "redistributed" in the plasma membrane with a proportion of 
the cell surface receptors (dependent on the dose and duration of 

agonist exposure) losing the ability to bind [̂ H] CGP (Mahan 
et al, 1985). Another group of workers have demonstrated that 
the first molecular event to take place in the desensitisation 
process is phosphorylation of the agonist occupied receptor by a 

specific beta adrenoceptor kinase (Sibley et al, 1986). This 
phosphorylation results in the functional uncoupling of the 

receptors and triggers their sequestration from the cell surface. 
Dephosphorylation is thought to restore receptor function and 

recycle the receptors back to the cell surface.
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Rapid desensitisation of alpha2 adrenergic receptors has 

been much less extensively studied partly due to the lack of 

development of suitable hydrophilic radioligands. It appears 
that this phenomenon is not a prominent feature of many alpha 
adrenergic responses however rat parotid cells have been shown to 

lose their alpha adrenergic mediated potassium secretory response 
after 2-4 minutes of in vitro exposure to adrenaline 
(Strittmatter et al, 1977).

1.4 Possible modes of homologous desensitisation

Regulation of an adrenergic effect may involve changes in 
receptor affinity or number, altered coupling of receptor to 
adenylate cyclase or other effector mechanisms or alterations at 

more distal steps.

1.4.1 Changes in affinity
Subtle changes in receptor function may be mediated via 

changes in the ratio of high and low affinity states of the 
receptor (Harden et al, 1979). Assessment of changes in affinity 

state may provide information on receptor "status" rather than 
measurement of the total receptor population. Moreover, receptor 

concentration may be unaltered while the proportion of high 
affinity agonist sites of the receptor (closely reflecting the 
coupling to adenylate cyclase) is significantly changed (Davies 
et al, 1981). Alterations in affinity state during agonist 
induced desensitisation have been observed in both beta and 

alpha2 adrenergic systems (Limbird et al, 1980; Michel et al, 

1981).
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Adrenergic receptor affinity may also be modulated by 
cations. It has been observed that a divalent cation such as 

magnesium is necessary for formation of the high affinity 
agonist-beta receptor complex (Tsai and Lefkowitz (1979)). In 

the absence of magnesium, heterogeneity of agonist binding is not 
apparent and even agonist curves are steep, shifted to the right 

and not affected by guanine nucleotides (Hoffman and Lefkowitz, 
1980). In contrast, monovalent cations such as sodium have been 

reported to decrease hormone and guanine nucleotide-induced 
stimulation of adenylate cyclase (Jakobs et al, 1984). Magnesium 

and sodium ions have been shown to have opposite effects in other 
beta adrenergic systems such as the beta adrenoceptor affinity 

for agonists in the membranes of guinea pig lung and S49 lymphoma 

cells. Magnesium ions were found to increase the affinity for 

agonists and were also found to modulate the decrease in affinity 
caused by sodium ions (Minuth and Jakobs, 1986).

Agonist binding to alpha2 adrenoceptors is also shown to be 
modulated by ions. Sodium ions have been demonstrated to mediate 

an agonist specific decrease in alpha2 receptor binding affinity 
in rabbit platelets (Greenberg et al, 1978). In another study 

displacement curves of agonists in competition with [JH] 
Dihydroergocryptine DHE were shifted to the right by sodium ions 

and other univalent cations (Tsai and Lefkowitz, 1978). The site 
of action of sodium ions in regulating alpha and beta 
adrenoceptor binding could be a subunit of the G protein (Northup 
et al, 1983) or, alternatively, the receptors themselves (Minuth 

and Jakobs, 1986).
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1-4.2 Changes in the efficiency of coupling to biologic 
effectors

Alterations in the components making up the adenylate 
cyclase system or transmembrane signalling processes can affect 
the coupling of hormone to receptor and it has become 

increasingly clear that adrenoceptors may alter their coupling 

independently of any change in total receptor density (Su et al, 
1980; Iyengar et al, 1981). Desensitisation of cyclic AMP 

mediated cellular responses could occur through a reduction in 

the rate of cyclic AMP synthesis, enhancement of cyclic AMP 
degradation or egress of cyclic AMP from the cell. The major 

regulating factor appears to be modulation of the rate of 
receptor stimulated cyclic AMP, however cyclic AMP levels are 

also regulated by degradation of the nucleotide catalysed by 
phosphodiesterase. Increases in phosphodiesterase activity have 

been reported following chronic exposure of several cell types to 
catecholamines (Bourne et al, 1973; Browning et al, 1976). 
Closer examination of beta adrenergic receptor coupling 
mechanisms has been made possible due to the availability of a 

toxin produced by the cholera bacillus. Cholera toxin covalently 

modifies the Gs protein and transducin by adding an adenosine 

diphosphate (ADP) ribose to the G protein. The ADP ribosylation 

of Gs inhibits its GTPase activity and prolongs the life of the 
GTP-Gg complex, causing persistent activation of adenylate cyclse 
with continual production of cyclic AMP (Berridge, 1985). 

Similarly, the pertussis toxin has proved a useful inhibitor of 

the alpha2 adrenoceptor transduction process (Ui et al, 1984). 
Pre-treatment of tissue with this bacterial toxin is known to
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block the receptor mediated suppression of adenylate cyclase. 
Furthermore, it is believed that the ability of this toxin to 

inactivate these systems relates to its ability to cause ADP- 
vibosylation of a specific sub-unit of the guanine nucleotide 

binding protein Gj (Nahorski et al, 1985).

1.4.3 Down regulation

Homologous desensitisation may also be associated with an 
actual disappearance or proteolytic degradation of receptor 
protein, known as down regulation. This process usually occurs 

after prolonged periods (hours or days) of agonist stimulation. 
At this stage, receptors cannot be readily recovered, in contrast 

to the earlier uncoupling phase or desensitisation. 
Resensitisation or recovery of receptor number may be a slow and 

gradual process (Scarpace et al, 1985). Dramatic reductions in 
adrenergic receptor concentration may have implications in 

diseased situations where supraphysiological levels of 
catecholamines are often found. A typical example is the 

repeated administration of beta adrenoceptor agonist drugs to 
asthmatic patients which has been shown to result in a 

progressive decrease in the observed therapeutic response due to 
a down regulation of beta adrenoceptors. Attempts to compensate 

for this loss of drug efficacy by administering gradually larger 

doses may increase morbidity and mortality (Connolly and 
Greenacre, 1976). Further examples of beta receptor down 

regulation are given in Section 1.6.
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1.5 Receptor life cycles

The rate of metabolism or turnover of receptors by the cells 

on which they are situated could affect the rate of down 
regulation. Steady state levels of receptor expression in target 

cells are dependent on several intricate cellular processes which 
result in receptor appearance and disappearance from the cell 

surface. Recovery or recycling of receptor protein represents a 

slow process which could result in a period of impaired 

regulation of circulatory control. New receptor synthesis 
involves processing by the golgi apparatus and movement through 

the cell's cytoplasm with ultimate insertion or extemalisation 
of receptors from intracellular pools to the membrane surface.

1.5.1 Measurement of receptor appearance and disappearance
Antagonist studies 

Studies on the metabolism of alpha adrenergic receptors 

involve the use of protein synthesis inhibitors which have been 
shown to delay return of the maximum number of binding sites to 

control levels (Hamilton et al, 1983). An example is the 

selective alpha-j adrenoceptor antagonist, phenoxybenzamine. This 

non-competitive antagonist irreversibly blocks the receptor by 
alkylation, thereby allowing the rate of new receptor synthesis 

to be measured. Studies of this kind have shown that adrenergic 
receptors in the central nervous system turn over more slowly 
than those in peripheral tissues (Hamilton et al 1985). Beta 
receptor turnover has also been investigated using irreversible 

and slowly dissociating beta adrenoceptor antagonists such as
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alprenolol derivatives (Baker and Pitha, 1982). These compounds 
have been useful probes to help gain more insight into the rate 

of beta adrenoceptor synthesis after irreversible antagonism 
(Fraser and Venter, 1980) and the coupling efficiency between 

beta adrenoceptors and adenylate cyclase or physiologic responses 
(Tolkovsky and Levitzki, 1978; Venter, 1979). Cellular 

metabolism of alpha2 adrenergic receptors has been difficult to 

study using irreversible antagonists due to their limited 
specificity.

Agonist studies 

Another approach involves computer analysis of the kinetics 

of receptor loss during agonist infusion and of reappearance of 
receptors upon removal of the agonist (Snavely et al, 1984). 
This method involves application of a steady state model that 
allows estimation of the rate constants for receptor appearance 

and disappearance. Snavely and colleagues (1984) gave continuous 
infusions of isoprenaline to rats via osmotic minipumps and 

determined rates of receptor disappearance and reappearance after 
removal of agonist. Rat renal cortical membranes contain seventy 

percent beta1 and thirty percent beta2 receptors. A similar time 
course of down regulation was observed for both beta adrenoceptor 

subtypes although beta-j receptor recovery was slower. These 
in vivo studies revealed that the basal turnover of beta 
adrenergic receptors is slow while there is an accelerated rate 
of beta receptor reappearance after agonist induced down 
regulation. This model may be widely used in both in vitro and 
in vivo receptor systems and facilitates an understanding of how
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important changes in the rates of receptor loss and recovery may 

be in relation to changes in receptor number that are evoked by 

various stimuli. Thus, the described techniques for agonist and 
antagonist studies may help to further elucidate the molecular 

mechanisms controlling the cellular metabolism of adrenergic 
receptors.

1.6 Beta adrenoceptor down-regulation

1.6.1 In vitro studies

Early investigations of agonist induced beta adrenoceptor 
down regulation were carried out using amphibian and avian 

erythrocytes. Chronic exposure (24 hours) of frog erythrocytes 
to isoprenaline resulted in fifty percent reductions in both the 

total numbers of receptors and the isoprenaline stimulated 

adenylate cyclase activity (Mukherjee et al, 1975; Mickey et al, 
1975). These studies suggested that loss of erythrocyte beta 
receptors was the result of the formation of a slowly reversible 
complex between the catecholamine and receptor. Down regulation 

of beta receptors was also demonstrated in lymphocytes from 
asthmatic patients after prolonged incubation with either 

isoprenaline or terbutaline in vitro (Galant et al, 1978; Tashkin 
et al, 1982). These studies also induced a two step process of 
adenylate cyclase desensitisation accompanied by a slower down 

regulation. These findings differ from those found in response 

to acute infusions of isoprenaline which have been associated 
with a rapid loss of adenylate cyclase activity without a 

reduction in beta receptor number (Krall et al, 1980). The 
majority of in vitro studies on receptor down regulation used
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high concentrations of added catecholamines which resulted in 

grossly unphysiological conditions and were therefore difficult 
to relate to the intact organism. Unresolved issues with 
in vitro experiments were whether down regulation occurred 

in vivo in physiological or pathological settings and whether all 
receptors of a given type were down regulated in a similar manner 
and to a similar extent.

1.6.2 In vivo studies

Adrenergic agonist therapy in asthmatic patients has also 
been shown to down regulate beta adrenergic receptors in vivo. 

Aarons et al (1983) showed that asthmatic or healthy subjects 

treated with terbutaline or ephedrine for eight days had fewer 

lymphocyte beta receptors compared to those found before 

treatment.
The frog erythrocyte model has also been investigated with 

respect to in vivo treatment with isoprenaline. Mickey et al 
(1975) showed that changes in vitro paralleled those in vivo 

resulting in a fifty percent decline in the isoprenaline 
stimulated adenylate cyclase activity associated with a fall in 
beta adrenoceptor number. Isoprenaline has also been 

administered in vivo in rats by continuous infusion (4-7 days) 

from osmotic minipumps. The subsequent in vitro responsiveness 
to the same agonist was decreased and correlated with a fifty 

percent loss in the number of beta adrenoceptor sites (Chang 
et al, 1982; Kenakin and Ferris, 1983). Thus, reductions in 
responsiveness corresponded with reduced beta receptor density in 

both in vitro and in vivo studies however the time courses for
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receptor degradation may differ. A longer time course of down 

regulation may occur in vivo due to a lower concentration of the 
agonist in proximity to the receptor with infusion into an intact 

animal compared to the concentrations that can be achieved in 
cell culture (Snavely et al, 1985).

Several in vivo studies of beta adrenoceptor down regulation 

have presented evidence in support of differential regulation of 

the beta-j and beta2 adrenoceptor subtypes. Drug selectivity may 
be one possible explanation for this subtype specific down 
regulation. Long term infusions (fourteen days) of various 

catecholamines via minipumps into rats resulted in subtype 
selective down regulation of the beta adrenoceptor subtypes in 
renal cortical membranes (Snavely et al, 1985). In this study, 
adrenaline infusion produced a seventy five percent decrease in 

beta2 receptor density as might be expected, considering its 
higher affinity for the beta2 adrenoceptor (Lands et al, 1967b). 

Likewise, noradrenaline infusion led to a more marked down 
regulation of beta-j receptors and isoprenaline infusion down 

regulated both beta-] and beta2 adrenoceptors to a similar extent, 
as would be predicted by their relative affinities for the beta 

adrenoceptor subtypes (Minneman et al,1981).
However, a recent study by Cohen and Schenck (1987) revealed 

a selective down regulation of vascular beta-] adrenergic 
receptors following prolonged isoprenaline infusion in rats. 

These authors proposed that vascular beta1 receptors are 
considerably more susceptible to down regulation than are beta2 
adrenergic receptors. Further discussion of the independent
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regulation of beta adrenoceptor subtypes is given in chapters 
five and six.

1 Alpha2 adrenoceptor down regulation

There is less information available regarding the mechanisms 
of down regulation of alpha2 adrenergic receptors. Blood 

platelets have been widely adopted as a model of alpha2 
adrenoceptor systems in other organs and tissues due to their 

accessibility and ease of sampling. Cooper et al (1 978) 

demonstrated a reduction in [3H] DHE dihydroergocryptine (DHE) 
binding to human platelets comparable with a fall in adrenaline 
induced aggregation after prolonged incubation with adrenaline 

in vitro. However a later study by Karliner and colleagues 
(1982) reached opposite conclusions with [%] yohimbine binding 

to platelets following in vitro incubations with catecholamines. 

They observed a "pseudo" down regulation and two fold increase in 

Kd resulting from retained agonist. These conflicting findings 
could be due to the use of different ligands to measure these 

alpha2 receptor populations. Motulsky and Insel (1982) suggested 

that [%] DHE may bind to more sites than [%] yohimbine in 
platelets however, later studies by Pfeifer and others (1984) 

showed the number of alpha2 adrenoceptor sites to be compatible 

for the two ligands.
This controversy of opinion also featured in the _in vivo 

agonist regulation of alpha2 adrenoceptors. Treatment of 
hypertensive patients with alpha2 adrenergic agonists for several 
days to weeks have demonstrated either no change (Motulsky et al, 
1983; Boon et al, 1983) or a thirty percent decrease in platelet
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alpha2 receptor number (Brodde et al, 1982).

Platelet alpha2 adrenoceptors have also been quantified 
in vivo in experimental animals. Administration of clonidine for 
four days to dogs resulted in no modification in the total

-Dnumbers of [JH] yohimbine binding sites (Villeneuve, 1985b). 
Down regulation of adipocyte alpha2 adrenergic receptors also did 

not occur when hamsters were treated with clonidine or adrenaline 
(Pecquery et al, 1984; Villeneuve, 1985a).

Thus, alpha2 adrenergic receptors appear to be less 
susceptible than beta adrenergic receptors to down regulation. 

Although protein degradation may play a limited role in the 
agonist regulation of alpha2 receptors, it is possible that 

changes distal to the receptor may predominate, such as changes 
in affinity state or cyclic AMP levels.

1.8 Physiological situations associated with acute
elevations of catecholamines 

Elevated concentrations of the major catecholamines, 
adrenaline and noradrenaline have been reported in physiological 
settings such as stress, physical exercise and postural changes. 
Alterations in the central nervous system activity accompanying 

stress may also lead to changes in the density of beta adrenergic 
receptors. For example, high blood levels of catecholamines 

during stress may lead to a decrease in the density of beta 
receptors located on the peripheral side of the cerebral 

vasculature (Minneman et al, 1981).
Dynamic exercise is known to rapidly and vigorously increase 

plasma noradrenaline and adrenaline levels (Christensen and
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Galbo, 1983). These high circulating catecholamines have been 

associated with acute changes in lymphocyte beta adrenoceptor 

number and responsiveness (Brodde et al, 1984). De Blasi and 
others (1986) have shown that moderate exercise leads to 

increased isoprenaline stimulated cyclic AMP accumulation without 

any changes in lymphocyte beta receptor density. These authors 

also reported increases in beta adrenoceptor responses following 
upright posture for three hours however these observations 

contrasted with earlier findings of Sowers et al (1983) who found 
that acute postural changes and circadian fluctuations in plasma 
catecholamines in the physiological range did not change beta 
adrenoceptor numbers in human lymphocytes.

1.9 Pathological conditions associated with chronic
elevations of plasma catecholamines

1.9.1 Phaeochromocytarna
Phaeochromocytoma is a catecholamine secreting tumor of the 

adrenal medulla which produces plasma concentrations of 
adrenaline and noradrenaline vastly exceeding those found in 

normal situations. This excessive production of catecholamines, 
particularly noradrenaline, is usually associated with 

hypertension due to alpha adrenoceptor stimulation mediating 
vasoconstriction and beta adrenoceptor stimulation causing 

cardiac arrhythmias. However, these elevations in blood pressure 
are sometimes lower than might be anticipated (Bravo et al, 1979) 

and may be due to reduced responsiveness of adrenergic receptors

(Lefkowitz, 1982).
In man, phaeochromocytomata have been associated with
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reductions in lymphocyte beta adrenoceptor density (Greenacre and 
Connolly, 1978; Valet et al, 1987) while extensive studies with 
transplantable tumors in rats have demonstrated down regulation 
of renal, cardiac and adipocyte beta adrenoceptors (Snavely 

et al, 1982; Tsujimoto et al, 1984). Selective changes in beta-i 

and beta2 adrenoceptor density have been observed in many of the 
animal studies of this diseased situation and these have been 
discussed in chapters five, six and eight. Changes in alpha2 
adrenergic receptors have also been reported in association with 

the chronically elevated catecholamines in phaeochromocytoma. A 
fifty percent decrease in human platelet alpha2 adrenoceptors was 
observed by certain groups (Davies et al, 1981; Brodde and Bock,

1984) while others have shown a lack of change in human platelet 

alpha2 receptor number in this condition (Jones et al, 1985a; 

Valet et al, 1987). Possible resistance of alpha2 adrenoceptors 
to down regulation is discussed in chapter six.

1.9.2 Heart failure
Beta adrenergic and alpha adrenergic receptors are present 

in the myocardial cells (Ahlquist, 1948; Benfey, 1982) and serve 
as transducers linking hormone mediated chemical signals to the 

mechanical event of augmented cardiac contractility. Congestive 
heart failure may be characterised by attenuated myocardial 

inotropy associated with decreased cardiac beta adrenoceptors and 
responsiveness to beta adrenoceptor agonists (Thomas and Marks,

1978). It has been suggested that systemic changes such as 
elevated circulating noradrenaline levels may contribute to the 
down regulation of cardiac and lymphocyte beta receptors during
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heart failure (Colucci et al, 1981).

These findings were supported by Brodde and co-workers 
(1986) while quantifying beta adrenoceptors in explanted hearts 

from patients with end stage heart failure. This group 

demonstrated a selective down regulation of cardiac beta-j 
receptors and postulated that these results were due to raised 
plasma noradrenaline concentrations.

In experimental animals with heart failure, myocardial 

adrenergic receptors were shown to be increased (Karliner et al, 
1 980; Vatner et al, 1 985) or unchanged (Ho et al, 1 980). 

However, recent studies by Fan et al (1987) reported reduced 
numbers of beta adrenoceptors in the failing right ventricles of 
dogs. Whether these decreases in beta receptor density are an 
example of down regulation in response to high circulating 

catecholamines remains to be determined.

1.9.3 Cirrhosis
Plasma noradrenaline levels are raised in patients with 

cirrhosis (Burghard et al, 1982; Henriksen et al, 1984). The 
characteristic haemodynamic disturbance associated with this 

disease is that of a hyperdynamic circulation with diminished 
peripheral vascular resistance. It is possible, therefore, that 

there is an impaired haemodynamic response to noradrenaline which 
in turn could be in part to desensitisation of adrenergic 

receptors. There is a scarcity of information on changes in 
adrenoceptor function and number during this condition, however 

there have been two conflicting reports concerning alterations in 
lymphocyte beta2 adrenoceptor density. Gerber and colleagues
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(1986) proposed that an observed reduction in lymphocyte beta2 
receptors in patients with severe ascites could be interpreted as 
down regulation while MacGilchrist (1988) found an absence of 

alteration in lymphocyte beta2 adrenoceptors or platelet alpha2 

receptors in similar studies. Therefore, it remains debatable 
whether changes in adrenoceptor number contribute to the 
decreased vascular resistance observed in cirrhosis.
1.10 Scope of the thesis

The studies described in this thesis were designed to 
investigate the effects of acute and chronic agonist treatment on 
adrenoceptor function and number in a rabbit model. Several 

studies have focused on the in vitro effects of raised 
concentrations of plasma catecholamines on adrenergic receptor 

responsiveness and density. However, similar investigations 
in vivo have been less widely reported. When in vivo studies 

have been undertaken, very large increases in plasma 

catecholamines were achieved. In animal models of 
phaeochromocytoma, plasma noradrenaline levels were often found 

to be highly elevated (50-200 fold). Thus, the principal 

objectives of the present studies were to examine changes in 
adrenoceptor function and number in response to modest rises (10 

fold) in circulating plasma catecholamines in a rabbit model.
A range of tissues were used throughout the course of the 

following studies. The circulating blood elements (platelets and 
lymphocytes) were taken due to the ease of sampling and to make 

comparisons with human studies. Tissues (heart, lung and kidney) 
wprp also used for comparisons between tissues and blood elements
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and extrapolation to tissues in human studies. In addition to 
looking at the number of binding sites in platelets, the pro- 

aggregatory response to adrenaline was examined so that changes 
in receptor number could be related to changes in function. In 

other studies, pressor responses to alpha adrenoceptor agonists 

were examined to give a measure of postsynaptic alpha 
adrenoceptor function.

To begin with, it was necessary to define the adrenoceptor 

populations within the tissues used. The first studies (chapter 

three) aimed to provide evidence that the pro-aggregatory 

response of rabbit platelets to adrenaline is mediated by alpha2 
adrenoceptors. Displacement binding assays were also carried out 

to characterise the adrenoceptor subpopulations in the various 

tissues used.
In chapter four the effects of acute infusions of three 

different adrenoceptor agonists (alpha methylnoradrenaline, 

adrenaline and noradrenaline) on alpha2 adrenoceptor responses 

were assessed. Changes in vascular pressor responses to alpha 
adrenoceptor agonists and changes in platelet aggregation were 

used to determine the time courses of vascular and platelet 
alpha2 adrenoceptor desensitisation. If changes in response were 

observed further investigation of these responses was then 
required to examine if alterations were dependent on dose and/or

duration of infusion.
The purpose of the investigations undertaken in chapter five 

was to evaluate the effects of long term (10 day) intravenous 
ini pump infusions of the endogenous agonist, adrenaline on 

adrenergic receptor function (measured by platelet aggregation)

43



and number (measured by radioligand binding). These studies 
particularly focused on whether down regulation was confined to 
certain tissues or subtypes of adrenoceptor.

In a separate study, ten day intravenous minipump infusions 

of the other main endogenous agonist, noradrenaline were given to 
groups of rabbits (chapter six) and changes in the function and 

concentration of adrenoceptors observed as described for the 
studies in chapter five. Tissue and subtype variations in 
susceptibility to down regulation were again examined.

The main objective of the final set of studies was to 

ascertain the time course of down regulation in alpha2 and beta 
adrenoceptor systems in response to long term administration of 

adrenaline. Differences in the rates of alpha2 and beta 
adrenoceptor down regulation were observed with particular 

emphasis on estimation of the critical time for receptor 

degradation in each system.
The final chapter aims to make a comparison of the findings 

for acute and chronic adrenaline and noradrenaline treatments 

together with proposals for future work.
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SUMMARY OF AIMS
CHAPTER THREE:

To define the methods used in this thesis.

Firstly, to provide evidence that the pro—aggregatory 

response of rabbit platelets is mediated through activation 

of alpha2 adrenoceptors. Secondly, to provide evidence that 

[ H ] yohimbine binding corresponds to alpha2 adrenoceptor 

sites in rabbit platelet and kidney. Thirdly, to 
characterise the beta adrenoceptor subpopulations in rabbit 
platelets, lymphocytes, heart and lung.

CHAPTER FOUR:

To examine the effects of agonist infusions on platelet 
and vascular alpha2 adrenoceptors.

CHAPTER FIVE:
Examination of the effects of chronic (10 day) 

adrenaline infusions on the function and number of 

adrenergic receptors.

CHAPTER SIX:
An examination of the effects of chronic (10 day) 

infusions of noradrenaline on adrenergic receptor function 

and number.

CHAPTER SEVEN:
An investigation to determine the time course of alpha2 

and beta adrenoceptor down regulation in response to 

adrenaline infusion.
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CHAPTER EIGHT:

A general discussion/comparison of the effects of acute 

and chronic administration of the agonists studied on 
adrenoceptor function and number.

Proposals for future studies.

46



CHAPTER TWO

GENERAL MATERIALS AND METHODS
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Chapter Two 

General Materials and Methods

The animal studies described in this thesis were carried out 
using male New Zealand White rabbits weighing 2 - 3 kg. Groups 
of six or more animals were used for all experiments.

2.1 Measurement of blood pressure and heart rate

A catheter was inserted into the central artery of the ear 

under local anaesthesia (2% lignocaine) for direct monitoring of 

mean arterial pressure (mmHg) via a Statham P231D transducer 
connected to a Grass polygraph recorder. The heart rate 

(beats/min.) was counted directly from the pressure trace. All 
animals were allowed to rest unrestrained for one hour prior to 

readings being taken.

2.2 Plasma catecholamines

Arterial blood samples (5 mis) were removed into lithium 

heparin tubes and plasma harvested after immediate centrifugation 

at 1700 g for five minutes at 4°c. Samples were stored at -70°C 

and assayed by a sensitive radioenzymatic assay (COMT)(Peuler and 
Johnson, 1977) with inter-assay coefficients of variation for 

adrenaline and noradrenaline of 13% and 10%.

2.3 Preparation of blood elements and tissues for 

adrenoceptor studies

2.3.1 Platelet preparation for aggregation studies
Whole blood was anticoagulated with sodium citrate 

(3.8% w/v, 1 volume to 9 volumes of blood). Platelet-rich plasma
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(PRP) was prepared by centrifugation of blood at 150 g for 15 

minutes at 20°c. An aliquot (10 mis) of PRP was aspirated into a 

polyethylene tube which was kept tightly capped at room 

temperature to minimise the air-platelet interface. Further 
centrifugaion of whole blood at 1700 g produced platelet poor 
plasma (PPP) which was used as a reference sample. Platelet 
aggregation was performed as described in Method 2.4.

2.3.2 Preparation of platelets for receptor binding studies
An aliquot (20 mis) of PRP was aspirated free from the red

cells and centrifuged at 1700 g for 15 minutes at 4°C to produce 

a platelet pellet. This pellet was suspended in 0.1% EDTA, 
150 mM NaCl Buffer, pH 7.4 to give a platelet concentration of 
100 x 1 0^/litre for alpha2 adrenoceptor binding and 
200 x 10^/litre for beta adrenoceptor binding as determined by 

Coulter counting. If necessary, platelets were washed with the 

resuspension buffer to remove any retained agonist.

2.3.3 Preparation of lymphocyte membranes
After collection of PRP, the remaining red cells were used 

to isolate lymphocytes according to the method of Boyum (1968). 
The red cells were diluted with Hanks balanced salt solution and 

carefully layered onto a Ficoll/Hypaque solution (6%/10%) and the 

samples centrifuged at 400 g for 40 minutes at 20°C. The 

lymphocyte band was harvested by aspiration and a broken cell 
lysate prepared by a modification of the method of Aarons and 

Molinoff, (1982). The lymphocyte band was resuspended in 30 mM 
NaCl and centrifuged at 180 g for ten minutes at 4°C to remove 

remaining red blood cells by hypotonic lysis. The pellet was
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resuspended in ice cold distilled water and centrifuged at

50.000 g for 45 minutes at 4°C. The final pellet was resuspended 
in 2 ml of ice cold assay buffer (150 mM NaCl with 12.5 mM MgCl2,
1.5 mM EDTA buffered with 50 mM Tris HC1, pH 7.4) and stored at - 
70°C until assayed.

2.3.4 Preparation of kidney, heart and lung membranes 

Tissues were chopped up finely in ice cold 0.32 M sucrose
(40 mis), then homogenised using a Brinkman Polytron at setting 6 

and centrifuged at 400 g for 15 minutes at 4°C. The pellets 

consisting of fibrous tissues, red cell and other high density 

debris were discarded and the supernatant recentrifuged twice at
50.000 g for 15 minutes at 4°C. The resulting membranes were 

washed in cold tris HCl 50 mM buffer both times and were finally 
resuspended in 50 mM Tris HCl buffer pH 7.5 and assayed at a wet 

weight concentration of 25 mg/ml (kidney) or stored at -70°C 

(heart and lung).

2.4 Measurement of platelet aggregation
Platelet aggregation was quantified by the standard 

turbidometric method of Born (1962) measuring the change in light 

transmission through the sample with time in a Payton dual
channel aggregometer. This instrument was set so that PRP gave

10% and PPP 90% light transmittance and performed at 37°C with a

stir speed of 800 rpm.
Rabbit platelets fail to aggregate to adrenaline alone 

(Section 3.1.1) therefore the potentiation of the pro-aggregatory 
response to 1 uM adenosine diphosphate (ADP) was measured
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according to the method of Grant and Scrutton (1980). Before 

additions of agonist were made, saline (50 ul) was added to the 

PRP (450 ul) in one channel and L-propranolol, 1 uM (50 ul) added 
into the other channel to eliminate any inhibitory beta 
adrenoceptor effects (Kerry and Scrutton, 1983).

In vitro additions (50 ul) were made of (-) adrenaline 

bitartrate (0.1 nM - 100 uM) followed by addition (50 ul) of 
adenosine diphosphate (1 uM) thirty seconds later. These 

aggregating agents and their dilutions were prepared from stock 

solutions (stored at -70°C) and dissolved in 0.9% saline with 

1 mM ascorbic acid. The maximum change in optical density (max. 

O.D) was recorded in terms of light transmittance units per 
minute. The sigmoidal dose response relationship was fitted to a 

generalised model of the Hill equation by non linear least 

squares fitting procedure (Figure 2.1). Parameter values were 

obtained for Emax, the maximum rate of primary aggregation 

(cm) and C5q, the concentration of adrenaline required to produce 
50% maximum aggregation (uM) and 7 the slope of the dose 

response relationship:-

Emax (C/Ccq) 7
Effect = -----------------------

1 + (C/C50) 7

2.5 Alpha2 adrenoceptor binding assay on whole platelets

and kidney membranes 
Aliquots of tissue suspension (0.8 ml) were incubated for 24 

minutes at 25^C with eight concentrations of [ H] yohimbine 

(90 Ci/mmol) (Jones et al, 1986) 1.2 - 25 nM in triplicate.
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Figure 2.1

A typical dose response curve showing the pro-aggregatorv 

response of rabbit platelets to adrenaline (1CT4-10~1 ̂M),

The parameters derived from the Hill equation were:-

Emax (cm) = 44 +_ 5

C5Q(uM) = 0.3 + 0.2
7  = 1.1 + 0 .6

The results shown here are for one rabbit.
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Specific binding was defined as total minus non specific binding 

and was saturable over the range of concentrations used. The non 

specific binding was determined in the presence of 10 uM 
phentolamine.

Incubations were terminated by filtration with 20 ml of ice 

cold tris HCl (50 mM, pH 7.5) through Whatman GFC (platelets) or 

GFB (kidney) filters using a millipore multiport filtration 

apparatus (Alexander et al, 1978). The filters were dried 

overnight at room temperature and the bound radioactivity was 

determined by liquid scintillation counting at an efficiency of 
36%. Saturation binding isotherms were analysed by plotting 

free/bound radioactivity vs free using least squares fitting to 
obtain values for the antagonist dissociation (KD, nM) and the 

maximum number of binding sites (Bmax, f moles/10^ platelets or 
fmoles/mg protein). Specific binding of [̂ H] yohimbine 

equilibrated by ten minutes and was stable for 40 minutes 
(Figure 2.2). The protein concentration was assessed 

calorimetrically using the method of Lowry (1951).
The intra assay and inter assay coefficients of variation 

for platelet [3H] yohimbine binding (Bmax) were 4.4% and 14.8% 

respectively.
For analysis of ligand binding data in this thesis, Hane 

plots of Free/Bound vs Free were used in preference to plots of 
bound/free vs bound (Scatchard, 1949). Both plots linearise the 

binding isotherm but in Hane plots the variable with the greatest 
error (bound ligand) only contributes to the vertical coordinate. 
In the Scatchard plot the bound concentration affects the
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Figure 2.2

The time course for equilibration of specific [%] yohimbine 

binding.

Results were expressed as the mean for two experiments in 

duplicate.
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vertical and the horizontal axes (Hamilton et alf 1984). Both 

plots are shown for comparison with the methods for deriving the 

parameters, Bmax and Kq from the regression analysis in 

Figure 2.3. The binding data from one sample of rabbit platelets 
is illustrated in Figure 2.4.

2.6 Beta adrenoceptor binding assay on whole platelets,
lymphocyte, heart and lung membranes

Intact platelets were resuspended in 0.1% EDTA, 150 mM NaCl 
buffer, pH 7.4 and assayed on the day of preparation

(Section 2.3.3) while lymphocyte heart and lung membranes were 

thawed and recentrifuged at 50,000 g for 15 minutes at 4°C in ice 
cold incubation buffer. Aliquots (100 ul) of lymphocytes, lung 

(15 - 30 ug protein), heart (30 - 50 ug) and platelets
(200,000/ul) were incubated with eight concentrations of

[ 1 25j ] (_) iodocyanopindolol (ICYP) (Amersham, U.K. 

2200 Ci/mMol) 10 - 150 pM according to the method of Brodde et al 

(1982). Incubations were for 60 minutes at 25°C and terminated 
by addition of 10 ml of incubation buffer and vacuum filtration 

over Whatman GFB (lymphocytes, heart and lung) and GFC 

(platelets) glass fibre filters. The radioactivity of the wet 
filters was determined in a gamma counter (Berthold model LB2100)

at an efficiency of 80%.
Non specific binding of [125I] ICYP was defined as 

radioactivity bound to membranes which was not displaced by 1 uM 

L—Propranolol. Specific binding was defined as total 

radioactivity minus non specific binding and equilibrated by 60 

minutes (Figure 2.5). The dissociation constant (pM) and 

maximum number of binding sites Bmax (fmoles/mg protein,
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ANALYSIS OF RADIOLIGAND BINDING DATA

Bound

-curd . S22S - Ko2cund
F r - e  Krr

Sloce 1,/kd
Intsrceo’ x cxis Emax 
Interceot y axis Bmax

SIcceFr?«
Bound Intsrcsst x axis -Kj 

Intercast y axis K»

Free

Figure 2.3

The classical scatchard analysis (A) and the Hane plot (B). 

Bmax = The maximum number of binding sites 
or receptors

The equilibrium dissociation constant 
or the affinity of the ligand for the 
receptor

56



B
o

u
n

d
/F

re
e

A
140 -I

I 120 -
o
"3335 1C0- TOTAL

CO
2  8 0 -
■rio
2 6 0  -.= 40 ~ 
I SPECIFIC

[ ^H] Yohimbine free

B C
BOUND/FREE vs BOUND FREE/BOUND vs FREE

3.9 0.61

Bmax = 32.4 = 3.7 

Kq = 7.5 = 1.3nM 

R = 0.92
Bmax = 32.01 = 2.7 

K0 = 7.4 = 1.2nM 

R = 0.98

3 .3 - 0 .5 2 -

2.7 - § 0.43 -

2.1 - 0.34 -

1.6 0.25
3.5 6.3 9.2 12 2014 17 0.92 2.8 4 .8 6.8

Bound Free Cone

Figure 2.4

Scatchard analysis of [3H] yohimbine binding to rabbit platelets.

A = The saturation binding isotherm
B = The classical scatchard plot
C = The Hane plot
Results shown here are for one rabbit.
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Figure 2.5

The time course for equilibration of specific [**̂ 1̂ ] 

Iodocyanopindolol binding 4o Vyep-'rt ,

Results were expressed as the mean for two experiments in 

duplicate.
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fmoles/109 platelets) were calculated from plots of free/bound vs 

free ICYP by least squares fitting of the regression analysis 

(Figure 2.6). Protein concentration was determined by the method 
of Lowry (1951).

2.7 Materials

This section covers the materials used in all the studies 
carried out in this thesis. New Zealand White rabbits were 

obtained from Cheshire rabbit farms in Tarporley. The 

radioactively labelled antagonists, [0-methyl-3H] yohimbine, [3H] 

- Dihydroalprenolol and [125I] Iodocyanopindolol were supplied by 

Amersham International U.K. Ficoll/Hypaque solution (for 
lymphocyte isolation) was supplied by Pharmacia, Uppsala in 
Sweden and Hanks buffer from Gibco, Scotland. Alzet osmotic 
minipumps were obtained from Scientific Marketing, London. The 

following drugs were all purchased from Sigma : (-) adrenaline 
bitartrate, (+_ noradrenaline HCL, phenylephrine HCL, isoprenaline 

HCL, alpha-methyl noradrenaline HCL, and adenosine 5'-diphosphate 

disodium salt. Phentolamine mersylate was obtained from Ciba- 

Geigy laboratories, Horsham, West Sussex, 1-propranolol and 
metoprolol from ICI, Macclesfield, Cheshire. Most drugs were 

prepared in Tris HCl buffer (50 mM) pH 7.5 apart from catechol 
containing compounds which were dissolved in ascorbic acid 

(114 uM) to reduce oxidation of the catechol moiety.

2.8 Statistics
The majority of experiments were analysed using the 

Wilcoxon—Mann Whitney n o n —parametric test for unpaired data. 

This test is employed when the data do not conform to a normal
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Scatchard analysis of 0  25I] (-) Iodocyanopindolol binding to 

rabbit heart membranes.
A = The saturation binding isotherm
B = The classical scatchard plot
C = The Hane plot
Results shown here are for one rabbit.
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distribution.

Groups of six or more animals were used for all studies and 

results were expressed as the mean +_ standard deviation. 
Alternative statistical tests have been carried out in chapter 
seven and are described therein.
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Chapter Three

Specificity of Platelet Aggregation and Radioligand Binding

3-1 Evidence that rabbit platelet aggregation is mediated
by alphao adrenoceptors

3.1.1 Introduction

Marked species variations exist in the response of blood 
platelets to catecholamines (Grant and Scutton, 1980). Human 
platelets aggregate and secrete their contents when stimulated by 

adrenaline (O'Brien, 1963) while platelets from most other 
mammalian species fail to aggregate on exposure to adrenaline 

even in the presence of other excitatory agonists e.g. rat 
platelets (Yu and Latour, 1977). Dog and rabbit platelets 

however, exhibit a pro-aggregatory response to a sub-maximal 
concentration of an excitatory agonist such as adenosine 5' 

diphosphate (ADP), this response being potentiated by prior 
addition of adrenaline (Meyers et al, 1983; Drummond, 1976) 

(Figure 3.1).
Previous investigations using selective alpha adrenoceptor 

agonists and antagonists have demonstrated that the aggregatory 
response of human platelets, and the pro-aggregatory response of 

rabbit platelets to adrenaline are both mediated by alpha2 
adrenoceptors (Hsu et al, 1979; Grant and Scrutton, 1980). Beta 
adrenoceptors; mediating inhibition of platelet function by 
adrenaline are also present on human, rabbit and rat platelets 

(Mills and Smith, 1971; Yu and Latour, 1977). The current study 
aims to provide further evidence to confirm that rabbit platelet 

aggregation is mediated by alpha2 adrenoceptors.
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Figure 3.1

Tracings showing the potentiation by adrenaline (0.01 1 00 uM)
of the pro-aggregatory response of rabbit platelets to ADP.

The maximum change in optical density was recorded in the
presence and absence of propranolol (1 uM).

A = Absence of propranolol
B = Presence of propranolol

ADR = Adrenaline
ADP = Adenosine diphosphate

64



3.1.2 Methods

A group of four rabbits were used in these experiments. 

Platelets were prepared for aggregation studies as previously 
described (Section 2.3.1 and 2.4). Platelet rich plasma (450 ul) 

was added to the cuvette followed by 50 ul of propranolol to 
eliminate beta adrenoceptor effects. Then additions (50 ul) of 
the alpha adrenoceptor antagonists, idazoxan (0.1 - 10 uM), 
yohimbine (0.5 - 100 uM) and prazosin (100 and 500 uM) were made 

thirty seconds before the agonist, adrenaline (7.6 uM) was added 
(50 ul). Finally, additions (50 ul) of ADP (1 uM) were made and 
inhibition of the platelet pro-aggregatory responses to 

adrenaline was then recorded for each alpha adrenoceptor 
antagonist. The concentration of antagonist required to produce 
fifty percent inhibition or IC q̂ was then calculated.

The non-parametric Wilcoxon test was employed for analysis in 
this chapter (Section 2.7). All results are expressed as means _+ 

standard deviation.

3.1.3 Results
A highly significant difference in IC50 (uM) was 

demonstrated for the alpha-] antagonist, prazosin (> 750, 
p < 0.001), in comparison with the values for the alpha2 
antagonists, yohimbine (1.2 _+ 1.7) and idazoxan (1.1 +_ 1.4) which 
were not significantly different from each other.

3.1.4 Discussion
These results demonstrated that the alpha2 antagonists, 

idazoxan (R X 781094) and yohimbine were more potent than the 
alpha-] antagonist prazosin at inhibiting the platelet aggregatory
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response to adrenaline in the rabbit. These findings were 
consistent with those of Grant and Scrutton (1980) who showed 
that the aggregatory responses to adrenaline and UK-14304 in 
rabbit platelets were blocked by yohimbine but not by prazosin or 

indoramin. Thus, the present data agree with previous findings 
that the pro-aggregatory response of rabbit platelets to 

adrenaline is mediated primarily by alpha2 adrenoceptors.

3.2 Specificity of [3H] Yohimbine binding to alpha2
adrenoceptors in platelets and kidney

3.2.1 Introduction

Historically, the two antagonists most commonly used to 

discriminate between alpha adrenergic receptor subtypes have been 
the alpha2 adrenoceptor antagonist, yohimbine and the alpha-j 
adrenoceptor antagonist, prazosin. Yohimbine is approximately 
one hundred times more potent at human platelet alpha2 
adrenoceptors than prazosin (Hoffman, 1979a).

-DExtensive studies have reported [ H] yohimbine binding to be 

saturable of high affinity for alpha2 adrenoceptors with low non
specific binding (Langer, 1974; Bennett, 1978; Daiguji et al, 
1981). The potency of non-radioactive compounds in competition 
with [3h] yohimbine binding to intact platelets has been shown to 

be stereoselective as expected for alpha2 adrenergic receptors 
with rank order - yohimbine > dihydroergocryptine > phentolamine 

> prazosin > propranolol (Motulsky et al, 1980).
To confirm the specificity of [3H] yohimbine binding to 

alpha2 adrenoceptors in rabbit platelets and kidney, displacement
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assays were performed and the ability of various unlabelled 

antagonists to displace [ 3H] yohimbine binding was examined.

3.2.2 Methods

Whole platelets and kidney membranes were prepared as 

described in methods 2.3.1, 2.3.2 and 2.3.4 (n = 3). Specific 

[ H] yohimbine binding was then measured in the absence and 
presence of increasing concentrations (8 - 10) of alpha 
adrenoceptor antagonist drugs. The displacement curves were then 
fitted using non-linear least squares fitting to find the 
concentration of cold drug which reduced binding by 50% (IC50) 

and the slope or Hill coefficient of the curve. These parameters 
was used to determine the Kj (nM) (a measure of affinity) 
according to the equation of Cheng and Prusoff (1973):

  + 1

Where S is the concentration of [ H] yohimbine in the assay 

(6.25 nM) and KQ is the equilibrium dissociation constant for 
[%] yohimbine binding obtained from saturation experiments.

3.2.3 Results
Specific binding of [3H] yohimbine to rabbit platelets was 

consistent with binding to alpha2 adrenoceptor sites since the 
K j (nM) for the alpha-, antagonist prazosin (4375 ±  1105) was 

substantially greater than the Kj for the selective alpha2 
antagonist, yohimbine (5.9 +_ 0.7). Similarly, for rabbit kidney, 
the K j for prazosin was considerably greater than the K j for the
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alpha2 antagonists, yohimbine (13 + 2) or phentolamine 

(106+^13). The displacement curves are illustrated in 
Figures 3.2 and 3.3 and the summary of results in Table 3.1.

Table 3.1

Kj (nM) values for G! -adrenoceptor antagonists 
competing with [3H] yohimbine

Antagonist
Tissue Yohimbine Phentolamine Prazosin

Platelet 5.9 + 0.7 - 4375 +1105
Kidney 13 + 2 106 + 13 < 5000

Results are expressed as mean _+ S.D. for a group of three 
rabbits.

3.2.4 Discussion

The present results show that the alpha2 antagonist, 
yohimbine was highly potent at displacing [JH] yohimbine from its

•3binding sites and confirm that [JH) yohimbine is binding to 

alpha2 adrenoceptors in rabbit platelets and kidney. The values 
were consistent with previous reports on the selectivity of [3H] 
yohimbine binding (Motulsky et al, 1980; Daiguji et al, 1981).

3.3 Specificity of beta adrenoceptor binding

3.3.1 Introduction
Beta-j and beta2 adrenoceptors are not only organ- 

specifically distributed but both subtypes may co-exist in a 
single organ (Daly and Levy, 1979). Beta adrenoceptor antagonist
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Figure 3.2

Displacement curves for alpha adrenergic antagonists competing 

for [_%] yohimbine binding to rabbit platelets.
• Yohimbine 

O Prazosin 

Results are the mean for three rabbits.
Kj (nM) values are shown in Table 3.1.

The Hill coefficients did not differ significantly 
from one.
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Displacement curves for alpha adrenergic antagonists competing 

with _[%]_ Yohimbine binding to rabbit kidney.
• Yohimbine 
□  Phentolamine 

O Prazosin

Results were expressed as the mean for three rabbits.

Kj (nM) values are shown in Table 3.1.

The Hill coefficients did not differ significantly 

from one.
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drugs with different affinities for betâ  and beta2 adrenoceptors 

have been used to characterise the subtypes within tissues. The 
beta-j selective antagonists, metoprolol, atenolol and practolol 

and the beta2 selective antagonist, ICI 118551 have frequently 

been used to define beta adrenoceptor sub-populations (Jones 
et al, 1986; Brodde et al, 1983).

In the rabbit, platelets and lymphocytes have been shown to 
contain exclusively beta2 adrenoceptors (Jones et al, 1 985b; 

Hamilton et al, 1986) while those in the heart were predominantly 
beta-j in type (Brodde et al, 1982). In contrast to most other 
species, the beta adrenoceptors in rabbit lung also contain a 
majority of beta-j receptors (Rugg et al, 1978; Brodde et al, 

1983).
This study aimed to substantiate these findings by carrying 

out displacement studies to characterise the sub-populations of 
beta adrenoceptors in the platelets, lymphocytes, heart and lung 

of the rabbit.

3.3.2 Methods
Platelets, lymphocytes, heart and lung tissues were prepared 

according to Methods 2.3.1, 2.3.2, 2.3.3 and 2.3.4 (n = 3). The 
beta adrenoceptor ligand [125I] Iodocyanopindolol was 

then used to measure specific binding in the absence and presence 

of 10 - 15 doses of the beta2 adrenoceptor antagonist, ICI 118551 

and the beta-] adrenoceptor antagonists, atenolol and metoprolol. 
Displacement curves were constructed and Kj (nM) values 

calculated where applicable as described in Section 3.2.2.
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3.3.3 Results

Platelet and Lymphocyte

These studies suggest that rabbit platelets contain 

exclusively beta2 adrenoceptors indicated by the low K j value for 

the beta2 adrenoceptor selective ICI 118551 (151 + 67 nM) and the 

higher value the beta-j selective atenolol (5843 + 633 nM). 
Rabbit lymphocytes were also shown to contain largely beta2 

adrenoceptors, Kj values were 0.98 + 0.8 nM for ICI 118551 and 
5707 +_ 769 nM for atenolol. The results are illustrated as 
displacement curves in Figures 3.4 and 3.5.

3.3.4 Heart and Lung

In the rabbit heart and lung calculation of Kj values for 

metoprolol and ICI 118551 was not valid due to the shallow 
displacement curves for the inhibition of [”*^1] ICYP binding by 

metoprolol and ICI 118551 indicating the presence of more than 
one subtype of beta adrenoceptor in these tissues. However, 

there were rightward shifts in the displacement curves for 
inhibition of [1 5̂I] ICYP binding by ICI 118551 compared to the 

inhibition curves for metoprolol in the heart (Figure 3.6). In 

this tissue, IC5Q values were 2 x 10"11M for metoprolol 

compared to 8 x 10~7M for ICI 118551. In the rabbit lung, 
corresponding IC^q values were 4 x 10 ^M for metoprolol in 

comparison to 1 x 10_6M for ICI 118551 (Figure 3.7). Therefore 
these results demonstrated that the beta-, adrenoceptor selective 

antagonist metoprolol was more potent than the beta2 selective 

antagonist, ICI 118551 in displacing [^^1] ICYP from beta 

adrenoceptor binding sites in rabbit heart and lung.
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Figure 3.4

Displacement curves for beta adrenergic antagonists competing 
with 0 25j] icyp binding to rabbit platelets.

• ICI 118551 

O Atenolol 
Results are expressed as the mean for three rabbits.

Kj values are shown in Table 3.2.

The Hill coefficients did not differ significantly 

from one.
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Figure 3.5

Displacement curves for beta adrenergic antagonists competing 
with _[J 2^1] jCYP binding to rabbit lymphocyte membranes.

• ICI 118551 

O Atenolol

Results are expressed as the mean for three rabbits.

Kj values are shown in Table 3.2.

The Hill coefficients did not differ significantly 

from one.
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Displacement curves for beta adrenergic antagonists competing 

with 0  ̂ 1] ICYP binding to rabbit heart membranes.
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O ICI 118551 

Results are expressed as the mean for three rabbits.
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Displacement curves for beta adrenergic antagonists competing 

with 0  ̂ 1] ICYP binding to rabbit lung membranes.

A Metoprolol 

B ICI 118551 

Each point indicates the mean for three rabbits.
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3.3.5 Discussion

The present findings were consistent with others (Hamilton 
et al, 1986a; Jones et al, 1985b) showing that rabbit platelets

a.nd lymphocytes harbour a homogeneous population of beta2 
adrenoceptors.

The data for rabbit heart suggests a predominance of the 

beta-] adrenoceptor in this tissue which would be consistent with 

previous investigations (Brodde et al, 1981b; Jones et al, 

1985b). These earlier studies also revealed that the highest 

number of beta2 receptors were localised in the right atrium 

while the ventricles contained nearly exclusively beta-] 
adrenoceptors. Beta adrenoceptors in the human heart are also 

shown to be largely beta-] in type (Brodde et al, 1986).

The higher potency of metoprolol for the beta adrenoceptors 

in rabbit lung suggests that there may be a higher proportion of 

beta-j adrenoceptors within this tissue. Although, Hoftsee 

analysis was not employed in the present studies to determine the 

proportions of beta-] and beta2 adrenoceptor sub-types in rabbit 

lung, previous studies have confirmed a preponderance of beta-] 
receptors in this tissue. Indeed, Rugg et al (1978) demonstrated 

that rabbit lung contained approximately sixty percent beta-] 

adrenoceptors and forty percent beta2 receptors. Further 

evidence was provided by Brodde et al (1983) who found a ratio of 

80% beta-j : 20% beta2 receptors in lung membranes of the rabbit.
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Interestingly, these relative proportions are quite the inverse 

of most other mammalian species including humans (Engel et al, 

1981) which show a predominance of beta2 adrenoceptor in the 

lung.
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CHAPTER POUR

CHANGES IN ADRENOCEPTOR FUNCTION AND 

NUMBER DURING ACUTE AGONIST INFUSION
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Chapter Four 

Changes in Adrenoceptor Function and 
number during Acute Agonist Infusion

4.1 Introduction

Agonist induced attenuation of physiological responsiveness 
or desensitisation may or may not be accompanied by a decrement 

in adrenoceptor number. Long term agonist stimulation has been 

associated with decreased responsiveness concurrent with a 
decrease in adrenergic receptor density (Mickey et al, 1975; 

Scarpace and Abrass, 1982) while short term manipulations of 

plasma agonist concentrations are shown to desensitise adrenergic 
responses without degradation of receptor protein (Harden et al, 

1979; Strasser et al, 1985).

Acute elevations of circulating plasma catecholamines occur 

in physiological settings such as posture change, exercise and 
stress (Section 1.8). Alterations in beta adrenoceptor response 

without changes in total receptor density have been recorded in 
these situations (Sowers et al, 1983; De Blasi et al, 1986). 

Also, acute isoprenaline infusions in man led to a fall in 
isoprenaline dependent cyclic AMP production in lymphocytes at 

forty and sixty minutes of infusion without significant changes 
in receptor number (Krall et al, 1 980). This early 

desensitisation of beta adrenoceptors was shown to involve a 

rapid uncoupling of the beta receptor from adenylate cyclase 

which took place within 2-3 minutes (Staehelin and Simons, 1982; 

Hertel et al, 1983). Although there have been many reports 
concerning the acute desensitisation of beta adrenoceptors
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(linked to stimulation of adenylate cyclase) fewer studies have 

focused on the short term agonist regulation of alpha2 

adrenoceptors (linked to inhibition of adenylate cyclase). A 

study by Jones et al (1986) revealed that acute agonists 

infusions (60-120 minutes) in man could be correlated with an 

attenuation of the platelet aggregatory response to adrenaline 

and a reduction in the ability of adrenaline to reduce cyclic AMP 
levels. These workers also found a lack of change in the number 

of [3H] yohimbine binding sites in platelets. This agonist 

induced attenuation of platelet aggregatory responses to 

adrenaline has been observed by several investigators (O'Brien, 
1964; Cooper et al, 1978; Hollister et al, 1983) although the 
mechanisms remain unknown.

The following studies address the short term agonist 

regulation of vascular and platelet alpha2 adrenoceptors in the 

rabbit. Alpha2 receptors are located postsynaptically as well as 

presynaptically on vascular smooth muscle (Drew and Whiting, 

1979; Hamilton and Reid, 1980). Changes in blood pressure during 

alpha2 adrenoceptor agonist infusion are mediated through these 

receptors (Hamilton and Reid, 1980). Alpha2 adrenergic receptors 

are also present on the cell surface of platelets and function to 
mediate the aggregatory response to adrenaline (Grant and 
Scrutton, 1979). Vascular and platelet aggregatory responses 

have been used to investigate the effects of three different 

agonists on adrenergic receptor function. The first agonist to 
be studied was alpha methylnoradrenaline which is selective for 

alpha2 adrenoceptors and possesses very weak alpha-] and beta 
adrenoceptor activity. This agonist was chosen i n  preference to
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clonidine which is a partial agonist at the alpha2 receptor and 

acts on central alpha2 receptors as well as peripheral alpha-] and 

alpha2 adrenoceptors. The second series of experiments examines 
the effects of acute infusion of the endogenous non—selective 

adrenoceptor agonist, adrenaline and compares adrenoceptor 
responses with those resulting from acute alpha 
me thy Inor adr ena 1 ine infusion. The third agonist tested was 

noradrenaline using the same dose as that used in the long term 
infusions (Chapters five and six). A summary of the experimental 
protocol is shown in Figure 4.1.

4.2 Alpha methylnoradrenaline infusions
In vivo studies Methods 

The following experiments used groups of 6-10 rabbits. One 

arterial and two venous catheters were inserted into vessels of 
the ears under local anaesthesia (2% lignocaine). The mean 

arterial blood pressure (mmHg) and heart rate (beats/min) were 
monitored via an arterial line as described in Section 2.1. One 

venous catheter was used for administration of drugs to permit 
continuous infusion using a Perfusor infusion pump, while bolus 

injections were given by the second catheter. Rabbits were left 

unrestrained for one hour prior to all recordings.

4.2.1 Specificity of vascular responses to O imethy 1
noradrenaline and phenylephrine during alpha 

adrenoceptor agonist infusion 
In the conscious rabbit, phenylephrine and alpha 

methylnoradrenaline show alpha-, and alpha2 adrenoceptor
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selectivity respectively (Hannah et al, 1984).

In order to examine the effects of alpha methylnoradrenaline 

and phenylephrine infusions on alphâ  and alpha2 adrenoceptors, 
responses to bolus doses of phenylephrine and alpha 
methylnoradrenaline were examined before and during infusion of 
the drugs.

The bolus dose of phenylephrine (10 ug/kg) or alpha 

methylnoradrenaline (3 ug/kg) was selected after pilot 
experiments designed to find the dose that evoked a rise in the 

mean arterial pressure of 25-30 mmHg. Three consistent 
measurements of the acute pressor response were obtained and then 

phenylephrine (1.8 umol/kg/hr) or alpha methylnoradrenaline 
(2.5 umol/kg/hr) was infused through the other venous catheter. 

Ten minutes into this infusion, a further intravenous bolus dose 
of phenylephrine or alpha methylnoradrenaline was administered 

and the rise in mean arterial pressure recorded. Four sets of 

rabbits were studied with six in each group as outlined below: -

1. Alpha methylnoradrenaline infusion + alpha 

methylnoradrenaline bolus injection.

2. Alpha methylnoradrenaline infusion + phenylephrine bolus 

injection.
3. Phenylephrine infusion + alpha methylnoradrenaline bolus 

injection.
4. Phenylephrine infusion + phenylephrine bolus injection.

Values for mean arterial pressure and heart rate were

obtained at all times examined.
In a separate group of animals, changes in blood pressure
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and heart rate were monitored before commencing and after five 
minutes infusion of each of the alpha2 agonists.

4.2.2 Time and dose effects

Alpha methylnoradrenaline, 0.5 umol/kg/hr or 2.5 umol/kg/hr 

was infused intravenously into groups of rabbits and the pressor 

responses to further intravenous doses of alpha 

methylnoradrenaline (3 ug/kg) examined before commencing and 
after 2.5, 5 and 10 minutes of infusion.

4.2.3 In vitro studies - Platelet aggregation

In conjunction with the in vivo studies, experiments were 

carried out to examine the effects of alpha methylnoradrenaline 
infusion on the platelet pro-aggregatory responses to adrenaline. 

Groups of rabbits (6-8) received intravenous infusions of alpha 
methylnoradrenaline (0.5 umol/kg/hr or 2.5 umol/kg/hr) via a 

Perfussor infusion pump and blood (10 mis) was withdrawn from an 

arterial line before infusion and after 2.5, 5 or 10 minutes 

infusion with 2.5 umol/kg/hr alpha methylnoradrenaline or after 
ten or 30 minutes infusion with 0.5 umol/kg/hr. Another set of 

rabbits were given ten minute phenylephrine (1.8 umol/kg/hr) 

infusions and 10 mis of blood removed at the end of infusion.

Platelets were prepared and aggregation experiments 

performed according to Methods 2.3.1 and 2.4. Additions (50 ul) 

of propranolol (1 uM) were made to all cuvettes to eliminate any 

beta adrenoceptor effects. Hill plot analysis was also carried 
out to obtain estimates for the parameters Emax (the maximum 

change in optical density, cm) and C^q (the concentration of 

adrenaline required to produce 50% response).
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4 • 2 • 4 Measurement of plasma alpha me thy ladr ena 1 ine levels

Blood samples (2.5 mis) were withdrawn into ice cold 

heparanised tubes and plasma harvested following centrifugation 

(1700 g) at 4°c for five minutes. This plasma was then stored at 

-70°C until measurement of alpha methylnoradrenaline levels was 

made by high pressure liquid chromatography (H.P.L.C.) (Howes 
et al, 1 985).

Plasma alpha methylnoradrenaline levels were measured by 

reverse phase H.P.L.C. The method was modified from that of 
Jenner et al (1981). Plasma (1 ml) was mixed for 30 minutes with 
1 M Tris (1 ml) containing 2% EDTA. 20 mg of alumina and 4 ng 

dihydroxylbenzylamine as the internal standard. The alumina was 

washed with 10 mis of water and alpha methylnoradrenaline eluted 
with 130 ul of 0.2 M perchloric acid. The sample (120 ul) was 

injected onto a 25 cm x 4.5 mm column lane packed with 5 micron 
octadecylsilane. The mobile phase consisted of 70 mM potassium 

dihydrogen phosphate, 3 mM octanesulphonate and 0.4 mM EDTA 
pH 2.2. The flow rate was 1 ml/min and the working potential 

+0.7 V. The retention time for alpha methylnoradrenaline was 

1 7.5 minutes.

4.2.5 [3H] Yohimbine binding to platelets
Arterial blood samples (15 mis) were withdrawn from six 

rabbits before and at the end of ten minutes intravenous infusion 
of alpha methylnoradrenaline. Intact platelets were prepared 

(Section 2.3.1) and [3H] yohimbine binding to rabbit platelets 
was assessed as previously described in Sections 2.3.2 and 2.5.
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Statistical analysis was performed using the non-parametric 
Wilcoxon test (Section 2.8) and all results expressed as means + 
standard deviation.

4.2.6 Responses to alpha methylnoradrenaline during acute 
adrenaline infusion

Rabbits were prepared for in vivo studies as described in 

Section 4.2 (n = 8 ). Pressor responses to alpha 

methylnoradrenaline (3 ug/kg) were recorded before and at the end 

of 2.5 and ten minutes of a ten minute adrenaline 
(1.5 umol/kg/hr) infusion.

Vascular responses were also measured using a lower infusion 

rate of adrenaline. Pressor responses to bolus injections of 

alpha methylnoradrenaline (3 ug/kg) were recorded at the end of 

2.5, 10, 30 and 60 minutes of a 2-3 hour intravenous infusion of 
adrenaline (0.05 umol/kg/hr) Control animals received 2-3 hour 

infusions of the vehicle, 0.1% ascorbate and pressor responses to 
alpha methylnoradrenaline were recorded as described for the 

treated animals. All rabbits were allowed to recover to baseline 
blood pressure and heart rate between bolus injections. Arterial 

blood samples (2.5 mis) were withdrawn at the end of ten minutes 
adrenaline (1.5 umol/kg/hr) infusion and forty-five mintues 

adrenaline (0.05 umol/kg/hr). Plasma adrenaline concentrations 
were then assessed according to Method 2.2. Blood pressure and 

heart rate changes throughout the agonist infusions v je rt also 
examined and a comparison made with long term agonist infusions 

at the same dose.
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Platelet aggregation 

Eight rabbits were treated with ten minute adrenaline 
(1.5 umol/kg/hr) infusions and arterial blood samples (12 mis) 

removed before and at the end of each infusion. Platelet rich 

plasma was then prepared according to Section 4.2.3 and pro- 

aggregatory responses to adrenaline measured in the presence of 
propranolol (1 uM).

4.2.7 Responses to alpha methylnoradrenaline during
noradrenaline infusions 

Animals were prepared for infusions as described in 

section 4.2. Pressor responses to bolus injections of alpha 
methylnoradrenaline (3 ug/kg) were recorded following 2.5, 10, 30 

and 60 minutes of a 2-3 hour intravenous infusion of 
noradrenaline (0.09 umol/kg/hr). Similar pressor responses were 

measured in control animals which received intravenous ascorbate 
(0.1%) for 2-3 hours. Blood was removed for measurement of 

plasma noradrenaline levels as described in method 2.2.

4.3 Results

4.3.1 Alpha methylnoradrenaline infusions
Effect of infusion of phenylephrine and

a  methylnoradrenaline on the mean arterial pressure and 

heart rate
There were similar significant blood pressure rises of 

approximately 25 mmHg after the five minute infusions of 
phenylephrine (1.8 umol/kg/hr) and alpha methylnoradrenaline
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(2.5 umol/kg/hr). No significant alterations in the heart rate 

were detected after five minute infusions of either agonist 

(Table 4.1). The lower dose of alpha methylnoradrenaline caused 
a rise of 8 + 4 mmHg in the mean arterial pressure.

Table 4.1

Haemodynamic changes after five minute infusions of 

phenylephrine and alpha methylnoradrenaline

Phenylephrine 
(1.8 umol/kg/hr)

OL -Methylnoradrenaline 
(2.5 umol/kg/hr)

Mean
arterial
pressure
(mmHg)

Baseline 

85 + 11

5 min 

106* + 10.8
Baseline 
75 + 10

5_ min 

*100 + 13

Heart
rate
(beats/
min)

215 + 31 155 + 37 218 + 28 189 + 54

Results are expressed as mean +_ S.D. for six rabbits.

* P < 0.01

Effect of alpha methylnoradrenaline infusions on the 

pressor responses to alpha adrenoceptor agonists 

A significant (P < 0.01) attenuation of the pressor response 

to alpha methylnoradrenaline during an alpha methylnoradrenaline 

infusion was observed when compared to pre-infusion values.
However, there were no changes in the phenylephrine 

responses after ten minutes1 administration of alpha 
methylnoradrenaline, nor were there any changes in the alpha 
methylnoradrenaline responses, before and during phenylephrine 

infusion despite the rise (25 mmHg) in blood pressure
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(Table 4.2).

4*3.2 Time .an<̂. dose effects of alpha methylnoradrenaline 
infusion

The pressor responses evoked by alpha methylnoradrenaline 
(2.5, 5 and 10 minute) during alpha methylnoradrenaline infusion 

(2.5 umol/kg/hr) were all significantly reduced (P < 0.001) in 

comparison with baseline values. The maximum attenuation of 52% 
was achieved with 2.5 minutes of infusion (27 _+ 2.8, baseline 

compared to 12.6 +_ 1.9, treated). The baseline pressor responses 
did not differ significantly between groups (23.7 _+ 12.6 compared 

to 28.6 _+ 4.9 compared to 28.6 _+ 4.9 mmHg for 2.5, 5 and 10 
minutes respectively) and were therefore combined for clarity 

(Figure 4.2).
These decreases in vascular responsiveness were dose related 

as responses to alpha methylnoradrenaline (0.5 umol/kg/hr) were 

also significantly reduced (P < 0.01) although to a lesser extent 
(28%). There were no alterations in alpha methylnoradrenaline 
responses during phenylephrine infusions (Figure 4.2).

4.3.3 Plasma alpha methylnoradrenaline levels
Circulating plasma concentrations of alpha 

methylnoradrenaline (2.5 umol/kg/hr) reached steady state levels 
by 2.5 minutes of alpha methylnoradrenaline infusion 

(395 _+ 74 nM). Similarly, plasma concentrations of alpha 
methylnoradrenaline (0.5 umol/kg/hr) attained steady state levels 

by five minutes of infusion (118 +_ 40) (Table 4.3).
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Hg
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PRE 2.5 10 30 PRE 2.5 5 10 PRE 10
DURATION OF INFUSION (min )

Figure 4.2

Pressor responses to alpha methylnoradrenaline during alpha 

adrenoceptor agonist infusions

a. Alpha methylnoradrenaline infusion, 0.5 umol/kg/hr.

b. Alpha methylnoradrenaline infusion, 2.5 umol/kg/hr.

c. Phenylephrine infusion, 1.8 umol/kg/hr.

| [ Response before infusion

Response during infusion 

* P < 0.01
Results were expressed as the mean _+ standard deviation for 

groups of six animals.
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Table 4.3
Plasma alpha methylnoradrenaline levels during 

alPha methylnoradrenaline infusion

Time
(min)

Plasma alpha methylnoradrenaline 
concentrations (nM)

0.5 umol/kg/hr 2.5 umol/kg/hr

2.5 9 6 + 9 395 + 74
5 118 + 40 374 + 73
10 125 + 34 322 + 76
15 - 391 + 94
30 122 + 24

Results are expressed as the mean +_ standard deviation for groups 

of five rabbits.

- = not measured.

4.3.4 The effect of alpha methylnoradrenaline infusions on 

platelet aggregatory responses to adrenaline 
The maximum aggregatory response (Emax, cm) to adrenaline 

was significantly reduced (P < 0.001) after five and ten minute 
infusions of alpha methylnoradrenaline (2.5 umol/kg/hr). C q̂ 

(the dose of adrenaline required to produce a half maximal 
response) values (nM) were found to be significantly increased 

(P < 0.001) following 2.5, 5 and 10 minute alpha
methylnoradrenaline infusion. These results are shown in 

Table 4.4 and Figure 4.3. The lower infusion rate of alpha 
methylnoradrenaline (0.5 umol/kg/hr) only produced a significant
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q  40 -
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10"1°10"9 10”8 10”7 10"s 10"8 10”4
ADR [M]

80 n

6 0 -

50 -

O 4 0 -

20 -

10 -

10"10 10 9 1 0 '8 10”7 10"6 10”5 10”4
ADR [M]

B

10”1°10”9 10”8 10”7 10"6 10”5 10” 
ADR [M]

D

10”1°10"9 10 8 10"7 10”6 10 s 10"4
ADR [M]

Figure 4.3

Platelet pro-aggregatory responses to adrenaline following acute 
alpha adrenoceptor agonist infusions

A 10 min. phenylephrine infusion, 1.8 umol/kg/hr

B 2.5 min. a methylnoradrenaline infusion, 2.5 umol/kg/hr

C 5 min. a  methylnoradrenaline infusion, 2.5 umol/kg/hr
D 1 0 min. a  methylnoradenaline infusion, 2.5 umol/kg/hr

O Response before infusion
9 Response during infusion

Results were expressed as the mean _+ standard deviation for 

groups of six animals.
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(P < 0.01) decrease in Emax after 30 minutes' infusion 

(Figure 4.4, Table 4.4). Ten minute infusions of phenylephrine 
had no effect on aggregatory responses to adrenaline and the 
responses to ADP alone were not significantly changed before and 

after any of the infusions The slope of each dose response curve 
did not differ significantly from 1.0.

4.3.5 r3H] Yohimbine binding to platelets

Acute (ten minute) intravenous administration of alpha 

methylnoradrenaline (2.5 umol/kg/hr) failed to alter [3H] 
yohimbine binding to rabbit platelets. Values were 20.6 + 2.4 

before infusion compared to 20. 2 + 1.8 fmoles/109 platelets, 
after infusion. There was also no evidence of a change in the KD 

(8.1 +_ 3. 2 before compared to 7.3 + 1.6 nM after infusion). 
These results are illustrated in Figure 4.5.

4.3.6 Alpha methylnoradrenaline responses during acute 

adrenaline infusions
Plasma adrenaline levels were raised approximately thirty 

fold aften ten minutes adrenaline (1.5 umol/kg/hr) infusion 
(1.1 +_ 0.3 nM in controls compared to 30.6 +_ 9.1 nM in treated 
animals). These high circulating levels of adrenaline were 

associated with a significant reductions (P < 0.01) in the 2.5 

minute pressor response to alpha methylnoradrenaline (3 ug/kg) 
from 32.1 ± 2  mmHg in ascorbate infused animals compared to 

12 + 8 mmHg in the adrenaline infused animals. Ten minute 
adrenaline infusions at the same dose resulted in no further 
attenuation of pressor responses to alpha methylnoradrenaline
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Figure 4.4

Platelet pro-aggregatorv responses to adrenalins following acute 
alpha methylnoradrenaline infusions

A 10 min. a  methylnoradrenaline infusion (0.5 umol/kg/hr)

B 30 min. a methylnoradrenaline infusion (0.5 umol/kg/hr)

O Response before infusion 

• Response during infusion

Results were expressed as the mean _+ standard deviation for 

groups of six animals.
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Figure 4.5

[ ] Yohimbine binding to whole platelets at the end of a ten

minute infusion of alpha methylnoradrenaline
| | Eefore infusion 
ĵ l At the end of infusion 

Arterial blood samples (15 mis) were removed after ten minutes of 

alpha methylnoradrenaline (2.5 umol/kg/hr) infusion.

The results shown are expressed as mean _+ standard deviation for 

six animals.
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04 ± 3 in. ascorbate treated animals compared to 20 + 6 mmHg in 
the adrenaline treated animals) (Figure 4.6). The lower dose of 

adrenaline (0.05 umol/kg/hr) produced approximately eight fold 

elevations in plasma adrenaline concentration (1.6 + 0.2 nM 

before compared to 12.7 + 2.1 nM after 45 minutes infusion). 

There were no significant alterations in the pressor responses to 
alpha methylnoradrenaline (3 ug/kg) at any of the times examined 
during these infusions (Figure 4.6).

Platelet aggregation

There was a reduction in the aggregatory responses to 

adrenaline in five out of six of the animals infused with 

adrenaline, 1.5 umol/kg/hr, however the maximum aggregatory 

response (Emax, cm) to adrenaline not significantly
attenuated (44 +_ 16 before infusion compared to 28 +_ 5 at the end 

of infusion) (Figure 4.7). Similarly, there were no significant 

changes in C^q (uM) (0.4 _+ 0.3 before infusion in comparison to

1.2 _+ 1.7 post infusion) or the primary ADP responses (32 _+ 21 
before infusion in comparison to 29 _+ 10 post infusion).

4.3.7 Responses to alpha methylnoradrenaline during 

noradrenaline infusions
Plasma noradrenaline concentrations were 2.1 +_ 1.1 nM before 

infusion and 18 + 8.2 nM after 45 minutes of noradrenaline

(0.09 umol/kg/hr) infusion.
Vascular pressor responses (2.5, 10, 30 and 60 minute) to 

alpha methylnoradrenaline (3 ug/kg) during administration of a 
low dose of noradrenaline (0.09 umol/kg/hr) did not differ

99



A

30 -

20 -

UJ

= -v ‘lt / 4 ' 'Yj»* '

f e

10 -
fW M

|■
2.5 min 10 min

B

BASELINE 2.5 min 10 min 30 min I hr

Figure 4.6

Vascular pressor responses to alpha methylnoradrenaline during 

acute a^mrbate and adrenaline infusions
A Adrenaline infusion, 1.5 umol/kg/hr (P < 0.01)

B Adrenaline infusion, 0.05 umol/kg/hr

| | Response during ascorbate infusion 
^  Response during adrenaline infusion

a« t'l’ip mean + standard deviation forResults were expressed as tne mean jr o

groups of six rabbits.
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Platelet pro-aggregatory responses to adrenaline at the end of 

ten minutes adrenaline infusion
• Response before infusion

O Response at the end of infusion 

The rate of adrenaline infusion was 1.5 umol/kg/hr. Results were 

expressed as the mean +_ standard deviation for groups of (o 

rabbits.
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significantly from responses during ascorbate (0.1%) infusions 

(Figure 4.8). Baseline pressor responses between control and 

treated animals were not significantly different for each group.

4*3.8 Changes in blood pressure and heart rate during

umol/kg/hr adrenaline and 0.09 umol/kg/hr 
noradrenaline infusions

Infusions of adrenaline (0.05 umol/kg/hr) and noradrenaline 
(0.09 umol/kg/hr) both elicited an increase in blood pressure of 

approximately 10 mmHg within 2.5 - 3 minutes. During both 

adrenaline and noradrenaline infusion approximately 50% of the 
rabbits recovered back to normal baseline blood pressures within 

one hour while the remainder maintained the initial rise of 
10 mmHg. During noradrenaline infusion, the elevation in blood 
pressure was accompanied by a reduction in heart rate of 

approximately 30-40 beats/min.

4.4 Discussion

Short term treatment with alpha methylnoradrenaline in the 

rabbit caused rapid in vivo and in vitro attenuations of alpha2 
adrenoceptor mediated responses. These changes were dependent on 

both the dose and duration of alpha methylnoradrenaline infusion.
Phenylephrine and alpha methylnoradrenaline infusions led to 

similar rises in the mean arterial pressure although there were 
no reductions in the pressor response to alpha 

methylnoradrenaline during phenylephrine infusion. These results 

suggest that the observed attenuation in vascular response was 

specific for alpha2 adrenoceptor mediated responses and not a 

consequence of either a rise in blood pressure or a compensatory
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Vascular pressor responses to alpha methylnoradrenaline during 

noradrenaline infusion
| | Response during ascorbate infusion

Response during noradrenaline infusion 

The rate of noradrenaline infusion was 0.09 umol/kg/hr.

Results were expressed as the mean ±  standard deviation for 

groups of six rabbits.
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baroreflex mechanism. In the in vivo studies, administration of 

alpha methylnoradrenaline produced a rapid (2.5 minute) 

desensitisation of postsynaptic alpha2 a(̂ renoceptor mediated 
responses which was dose related. These findings were of a 

similar time scale to those observed during the early phase of 

homologous desensitisation in beta adrenoceptor systems 
(Staehelin and Simons, 1982; Toews and Perkins, 1984). in these 

studies, the beta adrenoceptors appeared to be functional 
although sequestered away from guanine nucleotide proteins and 
adenylate cyclase (Strasser et al, 1985).

Decreases in the alpha2 adrenoceptor mediated platelet 
aggregatory responses to adrenaline were also observed and found 

to be dependent on both the dose and the duration of infusion. 

Rightward shifts in the dose response relationships and 

reductions in Emax were detected following five and ten minute 
infusions of alpha methylnoradrenaline (2.5 umol/kg/hr) but only 

after thirty minute infusions of alpha methylnoradrenaline 
(0.5 umol/kg/hr). In contrast to the in vivo data, there were no 

significant changes in the aggregatory responses to adrenaline 
after the 2.5 minute alpha methylnoradrenaline infusions 

(2.5 umol/kg/hr). However, other investigators have shown that 

desensitisation of platelet aggregatory responses occurs only 

half maximally within 3-5 minutes with maximum attenuation being 

reached by 20 minutes (Motulsky et al, 1986). This discrepancy 

with the present in vivo data could be due to some reversal of 
desensitisation occurring during the preparation of blood samples 

for in vitro platelet aggregation studies. Another possible 

factor is that the vascular alpha2 receptors could be more
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s u s c e p t ib le  to  d e s e n s it is a tio n . The observed  d ecreases  in  

a g g re g a to ry  responses could  n o t be a ttr ib u te d  to  flu c tu a tio n s  in  

c ir c u la t in g  p la s m a  a lp h a  m ethylnoradrenaline le v e ls  con sidering  

t h a t  s te a d y  s ta t e  c o n c e n tra tio n s  w ere a c h ie v e d  w ith in  2.5  

m in u tes , n o r co u ld  th ey  be due to  re te n tio n  o f ag o n ist (K a rlin e r  

e t  a l ,  1982) s in c e  th e re  were no s ig n ific a n t a lte ra tio n s  in  th e  

p rim a ry  responses to ADP.

No changes in specific [̂ H] yohimbine binding were found 

after ten minute infusions of alpha methylnoradrenaline therefore 
reductions in total receptor number were unlikely to be an 

explanation for the acute in vitro reductions in response. 

Desensitisation of human platelet alpha2 adrenoceptors without 

changes in platelet alpha2 receptor density has been observed by 
Jones and colleagues (1985a) during short term agonist treatment.

Reductions in the pressor response to alpha 

methylnoradrenaline (2.5 and 10 minutes) during adrenaline 

(1.5 umol/kg/hr) infusion were of the same magnitude as those 
evoked during alpha methylnoradrenaline (2.5 umol/kg/hr) 

infusion. This attenuation of response was also found to be dose 
dependent demonstrated by the lack of change in blood pressure 

responses during administration of the lower dose of adrenaline 

(0.05 umol/kg/hr). However, a reduction in response was observed 

in sixty-six percent of these animals after one hour of 
adrenaline (0.05 umol/kg/hr) infusion and it is possible that a 

significant attenuation of responses would have been observed if 

the infusions had been continued for longer. These experiments 

suggest that acute exposure to adrenaline may also be causing
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doss and tims dspsndsnt dsssnsitisation of alpha.2 adrenergic 

receptors. Pressor responses to alpha methylnoradrenaline during 
administration of noradrenaline (0.09 umol/kg/hr) were unchanged. 
This may be related to the relatively low dose infused and to the 

duration of infusion. It would have been interesting to have 

prolonged the infusion times for noradrenaline as well as 
adrenaline.

The initial increase in blood pressure noted during 2-3 hour 

infusions of the lower infusion rate of adrenaline and 
noradrenaline was likely to be caused by vasoconstriction due to 

stimulation of postsynaptic alpha-j and alpha2 adrenoceptors. Two 
hours into infusion the blood pressure had returned to 

pretreatment baseline values in fifty percent of the rabbits. In 

the animals treated chronically with adrenaline (0.05 umol/kg/hr) 

or noradrenaline (0.09 umol/kg/hr), no increase in blood pressure 
was observed after twenty-four hours of infusion (Sections 5.3.2 

and 6.3.2). It is possible that desensitisation of vascular 
alpha adrenoceptors occurred during the first twenty-four hours 
of infusion in these animals. This could be caused by either 
uncoupling from second messengers or a degradation of receptor 

protein. The bradycardia observed during exposure to 

noradrenaline could be due to a baroreflex mediated mechanism 
compensating for the elevation in blood pressure. A reduction in 

heart rate has also been observed after twenty four hours 

infusion of noradrenaline (0.09 umol/kg/hr).
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Clearly, further experiments are warranted to determine the 
molecular mechanisms involved in the acute desensitisation of 
alpha2 adrenergic receptors.
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CHAPTER FIVE

CHANGES IN ADRENERGIC RECEPTOR FUNCTION 

AND NUMBER FOLLOWING LONG TERM ADRENALINE INFUSION
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Chapter Five 

Changes. ill Adrenergic Receptor Function 
and Nvgber Following Long Term Adrenaline Infusion

5.1 Introduction

Repeated administration of adrenergic agonist drugs to 
patients may be associated with a progressive decrease in the 

observed therapeutic response due to down regulation of 
adrenergic receptors (Section 1.4.3). Attempts to compensate for 

this loss of drug efficacy by administering gradually larger 

doses may increase morbidity and mortality (Connolly and 
Greenacre, 1976).

There is a relative paucity of information concerning the 

long term effects of the endogenous agonist, adrenaline on 
adrenoceptor function and number. In one study Tsuj imoto and 

Hoffman (1984) treated rats with adrenaline for seven days 

resulting in 70 fold elevations in plasma adrenaline and marked 

reductions in heart and lung beta adrenoceptors. In a similar 
investigation, elevated adrenaline levels in rats caused down 

regulation of beta adrenergic receptors in renal cortical 

membranes (Snavely et al, 1985) however the decrease in beta 

adrenoceptors was selective for the beta2 subtype of the 

receptor.
There have been many conflicting reports concerning the

relationship between chronic agonist administration and alpha2

adrenoceptor regulation (Section 1.7). Some workers have reported

a decrease in platelet alpha2-adrenoceptors on 
chronic treatment with clonidine (Brodde et al, 1982) 

while others have
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failed to find any alteration in platelet alpha2 adrenoceptor 

number during treatment of hypertensive patients with another 

alpha2 adrenoceptor agaonist guanabenz (Motulsky et al, 1983). 
There were also no changes in platelet alpha2 receptor density 

observed following long term adrenalins infusion either in humans 

(Roberts et al, 1986; Pfeifer et al, 1984) or in dogs (Villeneuve 

et al, 1985a). Thus, further examination of alpha2 adrenoceptor 
regulation in response to chronic agonist treatment is warranted.

In the present studies, the effects of chronic adrenaline 
infusion on adrenoceptor function and number was examined. 

Alterations in alpha2 adrenoceptor response were assessed by 
platelet aggregation studies and changes in alpha2 receptor 

number in platelet and kidney, by radioligand binding. Tissues 
containing both homogenous populations (platelets and 

lymphocytes) and mixed populations (heart and lung) of beta 
receptors were also used to evaluate the effects of long term 

adrenaline infusion in vivo on beta adrenergic receptor number in 

the rabbit.
Adrenaline was administered using osmotic minipumps which 

infuse the given drug at a constant rate over the duration of 

treatment. This technigue avoids the use of intermittent drug 

infusions which may be short lived and fail to detect slowly 
developing changes in adrenoceptor concentration (Chang et al, 

1982).

5.2 Methods
T en . day infusions of adrenaline (0.05 umol/kg/hr) were given

to groups of rabbits (n = 10) via osmotic minipumps type
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2002 (Figure 5.1). Control animals (n = 10) received the vehicle 
(0.1% acorbate) by the same method.

5.2.1 The dose of adrenaline

In the treated rabbits, the objective was to raise plasma 
adrenaline levels approximately ten fold. The dose was 

determined by clearance calculations (Fitzgerald et al, 1979).

Infusion rate
Clearance = ------------------

Steady state - basal

The clearance of catecholamines in rabbits was shown to be 
5 1/kg/hr (Hamilton and Reid, 1983). In the basal state, the 

concentration of adrenaline in rabbit plasma is approximately 
1.0 nM (Deighton et al, 1986). The rate of infusion for a 2.5 kg 

rabbit was 1 5.2 ug/kg/hr or 0.05 umol/kg/hr. Therefore steady 

state levels of adrenaline were expected to be approximately 

10 nM over the period of infusion.

5.2.2 Blood pressure, heart rate and catecholamines
Basal monitoring of the mean arterial pressure (mmHg) and 

heart rate (beats/min) was undertaken (Section 2.1) in 

conjunction with removal of blood (5 mis) for simultaneous 

measurement of adrenaline and noradrenaline concentrations 

(Section 2.2). These recordings were then repeated at 1, 4, 7 

and 10 days of adrenaline or ascorbate infusion.

5.2.3 Femoral vein cannulation
A venous catheter was inserted into the peripheral ear vein 

under local anaesthesia (2% lignocaine). Animals were then
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Figure 5.1

A cross section of the osmotic minipump 

Thin tubing (1 mm diameter) was tied securely to the 

delivery portal for intravenous cannulation.
The pumps were used to deliver adrenaline (0.05 umol/kg/hr) 

or ascorbate (0.1%) at a constant rate of 0.5 ul/hr for 10 days.

112



anaesthetised with sodium pentobarbitone (60 mg/kg) and shaved at 
the upper, inner aspect of the thigh to allow a small incision to 

be made. The femoral vein was isolated and cannulated towards 
the heart with the distal end of the cannula attached securely to 

the osmotic minipump which was embedded in the muscle. The wound 

was then closed and animals left to recover from the anaesthetic. 

The minipump was left in place for the ensuing ten days to infuse 
either the drug or the vehicle at a constant rate of 0.5 ul/hr.

5.2.4 Preparation of blood elements and tissues for 
adrenoceptor studies

On day eleven of infusion, rabbits were killed via an 

intravenous overdose of sodium pentobarbitone (60 mg/kg) and 

blood (60 - 80 mis) was withdrawn immediately by cardiac puncture 
together with collection of whole heart, lung and one kidney. 

Intact platelets were prepared for aggregation studies and [%] 

yohimbine binding as described in Sections 2.3.1, 2.3.2, 2.4 and 
2.5. Kidney membranes were also prepared for [3H] yohimbine 

binding. In addition, lymphocyte, heart and lung membranes were 
prepared and [125I) ICYP binding carried out according to 

Methods 2.3.3, 2.3.4 and 2.6.

5.2.5 Statistics
The non—parametric Wilcoxon test was employed for unpaired 

data (Section 2.8). All results are quoted as means ±  standard 
deviation. In all experiments groups of six or more animals were

studied.
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5.3 Results

5.3.1 Catecholamine levels

Plasma adrenaline levels, before starting the infusion were

1.4 + 1.5 nM with approximately eight fold elevations at 24 hrs. 

of adrenaline treatment (9.2 + 3.2 nM). These raised levels were 

sustained through to day 10 (10.3 + 5.7 nM) with there being no 

significant alterations in the concentrations of noradrenaline 

during adrenaline infusion (Figure 5.2). There were also no 

changes in adrenaline levels during infusions of the vehicle, 

1.3 +_ 0.8, basal compared to 1.8 + 1.6 after five days and 
0.8 +_ 0.6 nM after ten days of ascorbate infusion.

5.3.2 Blood pressure and heart rate

The mean arterial blood pressure and heart rate did not 

alter significantly from 84 +_ 5.2 (mmHg) and 210 31.2
(beats/min) before compared to 80.9 _+ 9.4 and 227 +_ 27.2 

respectively on day 10 of adrenaline infusion (n = 10). The 

profile for control animals was similar; values were 77.2 +_ 9.7 

mmHg and 226 _+ 16.4 beats/min before to 76.1 _+ 8.5 mmHg and
215.7 _+ 9.7 beats/min on day 10 of ascorbate infusion. These 

results and those obtained for intermediate recordings are shown 

in Figure 5.3.

5.3.3 Platelet aggregation
The effects of long term adrenaline treatment (10 days) on 

the platelet pro-aggregatory responses to adrenaline are 

illustrated in Figure 5.4 (n = 8). There were parallel rightward 

shifts in the dose response curves with significant decreases in
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I
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Figure 5.2

The effects of a JjO day adrenaline infusion (0.05 umoles/kg/hr) 

on catecholamine levels (nM).
Blood samples (5 mis) were removed before and 1, 4, 7 and 10

days into infusion.
Results were expressed as the mean _+ standard deviation for

groups of ten animals.
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Figure 5.3

Effects of a J_0 day adrenaline infusion on blood pressure (A) 

(mmHg) and heart rate (B) (beats/min). Recordings were made 

before and after 1, 4 , 7 and 10 days of infusion.

O Control

• Adrenaline treated 

Results were expressed as the mean ±  standard deviation for 

groups of nine rabbits.
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The effects of in vitro additions of adrenaline (0.001 1QQ uM) 

on the ADP induced platelet aggregation following a J_0 day 

adrenaline infusion.

O Control 
• Adrenaline treated 

Results were expressed as the mean _+ standard deviation for 

eight rabbits.
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Emax (cm) from 50 + 3 before infusion to 36 + 2 post infusion 

(p < 0.001). A slight but not significant fall was observed in 

the C5Q (uM) from 2.1 + 3.7 to 0.9 + 0.4 after adrenaline 

infusion. The aggregatory responses to ADP alone did not 
significantly change from 34 + 22 (control) to 35 + 10 (post 
infusion).

5.3.4 Alpha2 adrenoceptor number in platelets and kidney 

Chronic adrenaline administration caused a significant
reduction in [JH] yohimbine binding to rabbit platelets (23 _+ 4 

before compared to 10 + 1 fmoles/109 platelets after infusion, 

p < 0.001) without significant alterations in kidney membranes 

(99 _+ 33 before compared to 77 +_ 27 fmoles/mg protein after 

infusion). The KD (nM) did not change significantly for either 

tissue as shown, together with the changes in Bmax, in 

Figure 5.5.

5.3.5 Beta adrenoceptor density in platelet, lymphocyte, 

heart and lung
Specific [125I] Iodocyanopindolol (ICYP) binding to 

platelets did not alter significantly from control (0.7 + 0.4) 
compared to treated animals (0.5 +_ 0.2). Similarly, [^^1] ICYP 

binding to lymphocytes resulted in no changes between control 
(5 + 2) and ten day adrenaline treated animals (6 +_ 3)

(Figure 5.6).
In contrast, a significant and marked reduction of

approximately 50% was revealed in [ I] ICYP binding sites in
rabbit heart and lung following chronic adrenaline infusion.
Bmax (fmoles/mg protein) in heart from control animals was 18 +_ 5
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Changes in alpha adrenoceptor number (Bmax) and the equilibrium 

dissociation constant, Kq (nM) in intact platelets and kidney 

membranes following a J_0_ day infusion of adrenaline.
| | Control

Adrenaline Treated 

* P < 0.001

Alpha2 adrenoceptor binding sites were quantified using [%] 

yohimbine.
Results were expressed as the mean _+ standard deviation for 

six rabbits.
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Changes in beta adrenoceptor density (Bmax) and equilibrium 

dissociation constant, _Kq (pM) in intact platelets and lymphocyte 

membranes following a. JJ3 day adrenaline infusion.
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Beta adrenoceptor binding sites were quantified using 
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Results were expressed as the mean _+ standard deviation for 

six rabbits.
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Changes in beta adrenoceptor density (Bmax) and equilibrium 

binding constant Kq (pM) in heart and lung membranes following a 

10 day infusion of adrenaline.
| | Control 
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*  P < 0.001

Beta adrenoceptor binding sites were quantified [125I] ICYP. 

Results were expressed as the mean _+ standard deviation for 

six rabbits.
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compared to 9 + 3 in treated rabbits (p < 0.001). Bmax from 

control lungs was 84 + 13 with significant falls to 46 + 10 

fmoles/mg protein in treated animals (p < 0.001). The KD (pM) 
was not significantly different between control and treated 
animals for all four tissues (Figures 5.6 and 5.7).

5.4 Discussion

Moderate increases in circulating plasma adrenaline for ten 

days led to an attenuation of the aggregatory response of rabbit 

platelets to adrenaline. These alpha2 adrenoceptor mediated 

reductions in response were accompanied by a fall in the density 

of platelet alpha2 adrenoceptors. The present findings were 
consistent with other studies which demonstrated desensitisation 

of alpha2 receptors with concomitant decreases in receptor number 

(Cooper et al, 1978; Brodde, 1983). In contrast there was a lack 

of alteration in the number of kidney alpha2 adrenoceptors. 

Snavely et al, (1983) also recorded an absence of down regulation 

of renal cortex alpha2 receptors in rats with phaeochromocytoma. 
These authors postulated that differences in susceptibility to 
down regulation may occur between tissues. Moreover, in the 

current studies, intravenous infusion would achieve high and 

sustained levels of circulating adrenaline in proximity to 

platelets, while adrenaline levels at kidney receptor sites would 

not be so high. Further discussion of these results is given in 

chapter eight where the effects of chronic administration of 

adrenaline and noradrenaline are compared.
In this study a tissue specific reduction in beta adrenergic 

receptor concentration was also demonstrated following prolonged
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exposure to adrenaline. Significant falls in beta adrenoceptor 

density were observed in heart and lung membranes without 

comparable reductions in beta2 receptors in platelets or 

lymphocytes. These conflicting results for beta adrenoceptor 

changes were unlikely to be due to differences in tissue drug 

levels as the platelets and lymphocytes would have been exposed 
to the highest concentrations of the drug. Secondly, the down 
regulation was unlikely to be an artifact due to retained agonist 

(Karliner et al, 1982) considering that the binding data for 

heart and lung show no increase in the KD after infusion. The 

extensive washing in hypotonic Tris HC1 buffer should remove 
retained catecholamines (Cheung et al, 1984). Lastly, these 

findings cannot be interpreted on the basis of adrenaline's 
differing affinities at the beta-j and beta2 subtypes of the 

receptor as if this was the case, a significant decrease in 

lymphocyte beta2 receptor number would have been expected (Aarons 

et al, 1983). Tissue selective changes in beta adrenoceptor 

number were also observed when adrenaline was infused into rats 

for seven days (Tsujimoto and Hoffman, 1984). No alterations in 
the beta adrenoceptor number in mesenteric artery were found in 

contrast to the striking down regulation in lung (both largely of 

the beta2 subtype). In another animal model where there were 

high levels of circulating catecholamines, Torda and colleagues 

(1981) reported a decrease in beta adrenergic receptor density in 

rat spleen, but not in lung after immobilisation stress. The 

beta adrenoceptors in rabbit heart and lung are eighty percent 

beta-| in type while those in the platelets and lymphocytes are 

almost exclusively beta2 in type (Section 3.3.3). Thus, it is
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possible that the present results could reflect a beta-,

adrenoceptor selective down regulation, however, the proportions

of beta-j and beta2 a<̂renocePtors within the same tissue were not 
determined in these studies.

Increased levels of circulating adrenaline have been 
reported to cause elevations in blood pressure in the rat 

(Majewski et al, 1981), both by acting at post synaptic alpha-] 

and alpha2 adrenoceptors and at putative presynaptic beta2 
adrenoceptors to enhance noradrenaline release. Although 

adrenaline also acts at presynaptic alpha2 adrenoceptors to 
inhibit noradrenaline release which would also tend to lower 

blood pressure. In this study, there were no significant changes 
in the mean arterial pressure and heart rate during adrenaline 

infusion and plasma noradrenaline was unchanged. The earliest 
measurements of blood pressure and heart rate were made 24 hrs 

after commencing infusion and it is possible that desensitisation 

and down regulation of alpha adrenoceptors had occurred during 

this time.
Thus, in conclusion, chronic adrenaline infusion in rabbits 

resulted in a reduction in alpha2 adrenoceptor mediated platelet 
aggregation together with tissue selective decreases in both 

alpha2 and beta adrenergic receptor number. Extrapolations of 
binding data to other tissues containing similar adrenoceptor 

populations should be exercised with caution due to the wide 
differences in susceptibility to down regulation. Furthermore 

agonist efficacy and differential accessibility of receptors to 

agonists could both influence down regulation.
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CHAPTER SIX

CHANGES IN ADRENERGIC RECEPTOR FUNCTION AND 

NUMBER FOLLOWING LONG TERM NORADRENALINE INFUSION
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Chapter Six

Oranges in Adrenergic Receptor Function and Number 

Following Long Term Noradrenaline Infusion

6.1 Introduction

Changes in adrenoceptor response and number following 

chronic infusions of adrenaline have been assessed in chapter 

five. However, raised circulating plasma concentrations of the 
other main endogenous agonist, noradrenaline may be more common.

Studies using in vitro techniques have documented 

alterations in adrenergic responses subsequent to noradrenaline 
treatment. Twenty-four hour exposure of guinea pig vas deferens 

to noradrenaline elicited a long term in vitro desensitisation 
without any changes in alpha adrenoceptor number (Takeyasu et al, 

1982). Alterations in adrenoceptor concentration have been 

recorded in in vivo diseased situations such as phaeochromocytoma 

and heart failure (Sections 1.9.1 and 1.9.2) when plasma 
noradrenaline levels were high and greater than that of 

adrenaline (Hermann and Mornex, 1964). Several of these 

investigations revealed a down regulation of alpha2 and beta 

adrenoceptors and this down regulation was found to be selective 

for certain tissues and/ or subtypes of adrenoceptor. Brodde and 

colleagues (1 986) observed a selective loss of 
adrenoceptors in explanted hearts from patients with end stage 

heart failure. Similarly, a preferential decrease (64%) in betâ  
adrenoceptors without changes in the beta2 receptor population 

was demonstrated in the renal membranes of rats harbouring
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phaeochromocytoma (Snavely et al, 1982).

There still remains a certain amount of controversy 

surrounding alterations in alpha2 adrenoceptor density in 
response to raised plasma noradrenaline and further investigation 

is required. Some workers report a down regulation of platelet 

alpha2 receptors in human phaeochromocytoma (Davies et al, 1981; 
Brodde and Bock, 1984) while, more recently, others have failed 

to show any differences in human platelet alpha2 receptors (Valet 

et al, 1987) or rat mesenteric artery (Tsujimoto et al, 1987) in 
the same diseased condition.

Plasma levels of noradrenaline were 50-70 fold greater than 

basal values in most experimental models and in some studies 
plasma noradrenaline levels as high as 200 times normal were 

reported (Tsujimoto et al, 1987). It would, therefore, be 

interesting to explore the effects of moderate increases in 

circulating noradrenaline (10-20 fold) on adrenergic responses.
The principal objectives of the present study were to 

evaluate the effects of ten day noradrenaline infusions on alpha2 
adrenergic receptor function, alpha2 adrenoceptor and beta 

adrenoceptor number in certain tissues of the rabbit. Osmotic 

minipumps were used to achieve moderate intravenous elevations of 

noradrenaline. A comparison of the results obtained following 
chronic adrenaline and noradrenaline administration are discussed 

in chapter eight.

6.2 Methods
A group of twelve rabbits were given long term (10 day) 

intravenous noradrenaline infusions (0.09 umol/kg/hr) using
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minipumps implanted at the femoral vein (Section 5.2.2). Control 

animals received minipumps containing the vehicle (0.1% 
ascorbate) using the same mode of delivery.

6.2.1 Dose of noradrenaline

The aim, as in the previous study, was to cause a tenfold 

increase in circulating levels of the catecholamine under 

investigation. The dose was estimated using clearance 

calculations as described in Section 5.2.1. Rabbit basal plasma 

noradrenaline is approximately 2 nM (Brown et al, 1987) therefore 

to achieve approximately 20 nM plasma concentrations, a dose of 
46 ug/hr would be administered. For a 2.5 kg rabbit the rate of 
infusion is 18.5 ug/kg/hr or 0.09 umol/kg/hr.

6.2.2 Measurements taken during the infusion

The experimental design was similar to that described for 
the long term adrenaline infusions (Section 5.2) however the 

protocol has been summarised in Figure 6.1.
The mean arterial pressure (mmHg) and heart rate (beats/min) 

were monitored at specific intervals in conjunction with 

measurement of plasma catecholamines. Rabbits were killed on 

day ten with an intravenous overdose of sodium pentobarbitone 
(60 mg/kg). Whole blood (80 mis) was withdrawn immediately from 

the heart followed by removal of whole heart, lung and kidney. 
Platelets and lymphocytes were prepared for binding studies as 

described in Sections 2.3.1, 2.3.2 and 2.3.3. Heart, lung and 
kidney were also prepared for ligand binding according to the 

methodology in Section 2.3.4.
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Platelet aggregatory responses to adrenaline were quantified 
for groups of eight rabbits after ten day ascorbate or 

noradrenaline infusions (Method 2.4). These experiments were 

accompanied by measurement of [3H] yohimbine binding to platelets 

and kidney (Section 2.5) together with [125I] Iodocyanopindolol 

(ICYP) binding to lymphocytes, heart and lung all in groups of 

six rabbits (Section 2.6). [3H] Dihydroalprenolol (DHA) (0.15 -
7.2 nM) binding to lung membranes was carried out for a group of 

four rabbits, these assays following the techniques described for 
[ 3H] yohimbine binding to the kidney.

Statistical analysis was performed using the Wilcoxon test 

(Section 2.8).

6.2.3 Statistics
Results were analysed using the non-parametric Wilcoxon test 

(Section 2.7) for unpaired data. All numbers are quoted as means 

+ standard deviation with six or more animals in each group.

6.3 Results

6.3.1 Catecholamine concentrations
Circulating plasma noradrenaline levels in the treated 

animals (n = 12) were 3.1 + 2.07 nM (basal) rising to 

14.7 + 10.7 nM after 24 hours infusion and 17.0 +_ 5.6 nM after 
ten days noradrenaline treatment. There were no significant 

alterations in adrenaline concentrations during the noradrenaline 
infusions r̂id no changes in catecholamine levels throughout the 

ascorbate infusion (Figure 6.2).
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131

^



6.3.2 Blood pressure and heart rate responses

Chronic noradrenaline administration in this model resulted 
in no significant differences in the mean arterial pressure 

(Figure 6.3). There were also no changes in the heart rate after 

ten days noradrenaline although a significant decrease was 
observed after 24 hours (233 + 27, basal compared to 202 + 21 , 
treated, P < 0.01).

6.3.3 Platelet aggregation responses

The effects of chronic intravenous noradrenaline infusion on 
the ADP induced aggregation to adrenaline (in the presence and 

absence of propranolol) are illustrated as dose response curves 
in Figure 6.4. No significant changes in Emax (cm) were observed 

between the control and the treated animals, nor were there any 

differences in C^q (nM) as shown in Table 6.1. There were

also no significant alterations in the responses to ADP 

(Figure 6.5).

6.3.4 [%] Yohimbine binding to platelet and kidney
After ten days noradrenaline infusion a significant 

reduction in [̂ H] yohimbine binding to kidney membranes was 

observed (93.4 + 38, control compared to 30.4 15.7, treated,
fmoles/mg protein, P < 0.01) without comparable falls in the 

platelet (22.7 _+ 4, control compared to 27.0 ±  6.2, treated, 
fmoles/109 platelets, n = 6). The KD did not significantly 

change for either tissue (Figure 6.6).
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Figure 6.5

Platelet aggregatory responses to ADP in control and 

noradrenaline infused rabbits
□  CONTROL

NORADRENALINE TREATED 

Noradrenaline was infused at 0.09 umol/kg/hr.

(Results are expressed as the mean ±  standard deviation for 

eight rabbits).
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Changes in alphas adrenoceptor density (Bmax) and the 
dissociation constant (Kp) in whole platelets and kidney 

membranes from control and ten day noradrenaline treated rabbits. 
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Noradrenaline was infused at 0.09 umol/kg/hr.

(Specific binding was measured using C HJ Yohimbine and 

results expressed as mean _+ standard deviation for six animals).
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6.3.5 [125I] Iodocyanopindolol binding to lymphocytesr heart
and lung

There were no significant changes in the maximum number of 
binding sites (Bmax) in lymphocyte membranes (5.1 + 1.7 control 

compared to 3.6 0.4, treated fmoles/mg protein, n = 5)
following chronic noradrenaline exposure in the rabbit.

These findings were in contrast to the highly significant

fall in specific binding (73%) found in heart membranes
(16.1 _+ 4, control compared to 4.3 + 1.8, treated, P < 0.001,

fmoles/mg protein, n = 8). Similarly, significant decreases
resulted in specific binding (47%) to lung membranes

(75.2 18.3, control and 40.0 + 18.8, treated, fmoles/mg

protein, n = 9, P < 0.01). The KD (pM) was also reduced

significantly for heart and lung tissues (Figure 6.7). Using
another beta adrenoceptor specific ligand, [2H]

dihydroalprenolol, a significant loss of lung, beta receptors

(66%) resulted with no alteration in the KQ which was 1.7 +_ 0.7

in controls compared to 1.9 + 0.4 nM in noradrenaline treated 
f^ax values were 286+123 in controls compared toanimals.
96+10 in the treated animals (fmoles/mg protein).

6.4 Discussion
Prolonged administration of the endogenous agonist, 

noradrenaline in rabbits, resulted in tissue specific decreases 

in both alpha 2 and beta adrenergic receptor number. The absence 

of an alteration in the alpha2 adrenoceptor concentration in 

platelets was consistent with there being no alteration in 

function as measured by platelet aggregation. These results were 
comparable with studies showing the alpha2 receptor to be more

138



LYMPHOCYTE

|  2 5  -i
o
a  2 0 -
a»
E 15 -

|  1 0 -
E
*  5 -
to
E
to

T

22%

H EART

50

40 -

2
a 30 -

Q
* 20 -

10 -

70 1

60 -

50 -

4 0 -

2 30 -a.a
* 20 -

10 -

I

L

120 - i

o 100 A

6 0  H

20 -)

120

100 H

80  -

a  60  -  a
*  4 0  -

20 H

Figure 6.7

Changes in beta adrenoceptor density (Bmax) and dissociation 

constant (Kp) in lymphocyte, heart and lung membranes from 

control and noradrenaline treated animals 
Q  CONTROL
gH NORADRENALINE TREATED

■Jf P < 0.001

Noradrenaline was infused at 0.09 umol/kg/hr.

Specific binding was assessed using [125I] ICYP and results 

expressed as mean +_ standard deviation for a group of six 

rabbits.

139

7



resistant to down regulation in the face of high circulating 

noradrenaline (Snavely et al, 1982; Jones et al, 1985a). There 

were, however, marked reductions in the density of kidney alpha2 

receptors in this study. These findings were in contrast to 

those of Snavely et al (1985) who observed a fall in alpha-, 

receptors without concomitant changes in alpha2 adrenoceptors in 
rat renal cortex during similar increments in plasma 

noradrenaline. Possible reasons for these tissue selective 
decreases in alpha2 receptor number are discussed in chapter 
eight.

Profound reductions in beta adrenoceptor number were 

observed for heart and lung, both of which contain largely beta-, 
adrenoceptors in the rabbit (Section 3.3.1). This down 

regulation was in accordance with other studies in which raised 

plasma noradrenaline levels caused a fall in beta-, adrenoceptor 

density (Tsujimoto et al, 1984; Brodde et al, 1986). Contrasting 

results were obtained for the lymphocyte showing an absence of 

change in the number of beta2 adrenoceptors following 
noradrenaline infusion. These findings could be explained by 

considering that noradrenaline may possess a lower affinity for 

the beta2 than the beta-, subtype of the receptor. It has been 

postulated that the beta2 receptors are extra junctional receptors 
particularly sensitive to the hormone, adrenaline, whereas the 

beta-, receptors are postsynaptic junctional receptors 
particularly sensitive to neurotransmitter noradrenaline released 

from the sympathetic nerve endings (Ariens and Simonis, 1983). 
The beta2 adrenoceptor could be less susceptible to down 

regulation as described previously in section 5.4. Beta2
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adrenoceptor resistance to down regulation has been shown in 

situations other than phaeochromocytoma and heart failure when 
noradrenaline levels have also been high. In one such study 

conducted by Minneman et al (1979), repeated treatment with the 

tricyclic antidepressant desmethylimipramine to adult rats for 
ten days caused a forty percent decrease in the density of beta-, 

adrenergic receptors in the cerebral cortex without concurrent 

falls in the density of beta2 receptors. Thus there may be 

independent regulation of the beta-, and beta2 subtypes of the 
beta adrenergic receptor.

No alterations in the KD values for [̂ 23I] icyp binding were 

observed in lymphocyte membranes at the end of ten days 
noradrenaline infusion however, significant reductions were 

demonstrated in heart and lung. No changes in affinity were 

noted when the infusions were repeated using another beta 

adrenoceptor selective ligand, [3H] DHA, yet there was a similar 

significant loss of beta adrenoceptors sites. Therefore, the 

current findings could be attributed to an artifact of the 
ligand, [125I] ICYP related to its very high affinity for the 

beta adrenoceptor. Tsuji et al (1987) also observed a 

significant decrease in the KQ with this ligand and differences 

in Kĵ  have also been encountered while using other iodinated 
ligands (Hedberg and Mattson, 1981). Reasons for these 

discrepancies remain to be fully resolved.
Chronic noradrenaline infusion did not significantly alter 

the blood pressure at each of the recorded intervals. Infusions 
of this agonist would, however, be expected to produce a rise in
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blood pressure by acting via alpha-] and alpha2 postsynaptic 

adrenoceptors causing vasoconstriction (Reid and Hamilton, 1980), 

Increases in blood pressure have been recorded by Tsujimoto et al 
(1984) in rat phaeochromocytoma, however they achieved forty fold 
elevations in plasma noradrenaline, considerably higher than the 

present study. Earlier investigations (chapter four) examined 

acute administration of this agonist (2-3 hr infusion) and there 
was an initial rise in blood pressure which then returned to pre

infusion levels after approximately two hours of infusion in 

fifty percent of the animals. These observations suggested a 

rapid desensitisation of adrenoceptors. This diminished 
responsiveness, followed by down regulation would explain the 

lack of changes in blood pressure, although measurement of 

adrenoceptor changes in blood vessels would have helped to 

clarify the present findings. A significant fall in the heart 

rate was observed at twenty-four hours. The reason for this is 

unknown but it could be an adaptive mechanism resulting from an 

initial rise in blood pressure during noradrenaline infusion.

Therefore, in summary, these studies are in support of 
others which suggest that noradrenaline induced down regulation 

of beta-] and beta2 adrenoceptors does not always run in parallel.
Furthermore, platelet alpha2 adrenoceptors appear to be more 

resistant to down regulation than kidney alpha2 receptors in 

response to noradrenaline infusion.
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Chapter Seven 
The Time Course of and

Beta Adrenoceptor Down Regulation

7.1 Introduction

A variety of drugs, diseases and physiologic states are 
associated with either an up regulation or a down regulation of 

adrenergic receptors and there is now an extensive supply of 

literature available to describe these changes. However there 

has been less mechanistic information documenting the time 

courses of adrenoceptor degradation and subsequent resynthesis 

under these conditions. Adrenoceptor down regulation has been 
implicated in certain clinical situations, for instance, the 

beneficial actions of some antidepressant drugs may be partly 

due to a progressive desensitisation of beta adrenergic receptors 
(Dye et al, 1983). Also, the degree of heart failure has been 

associated with a progressive decrease in beta adrenoceptor 
number (Fowler et al, 1986). The factors responsible for the 

rate at which these receptors are lost and the mechanism through 
which the extent of receptor loss is controlled are unknown. Su 

et al (1980) have suggested that the rate of receptor loss may be 
dependent on the extent of the initial uncoupling reaction while 

Pittman et al (1 984) observed that the rate at which 
adrenoceptors were lost was correlated with the efficacies of the 

agonists used for desensitisation.
Agonist promoted down regulation of receptors has provided a

useful tool for examination of changes in receptor expression
J3 w-ecep-ta/'

with time (Mahan et al, 1987). The t 1/2 forAdown regulation was
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four hours during in vitro incubation of cardiac myocytes with 

high concentrations of isoprenaline (1 umol/litre) (Karliner 
st al, 1986). However the rates of in vivo adrenoceptor down 
regulation tend to be much slower as the receptors are less 

accessible to agonists. Indeed a half lifs of twelve hours has 

been recorded for renal cortical beta receptor down regulation 

in vivo in the rat (Snavely et al, 1984) (Section 1.4.3). These 

authors suggest that agonist induced up and down regulation of 

adrenoceptors may be more relevant to in vivo receptor regulation 

and function than the irreversible antagonists which have 
frequently been used to examine receptor turnover.

The studies so far described in this thesis have assessed 
changes in receptor number in response to ten minute and ten day 

agonist infusions resulting in either no change or approximately 

fifty percent decreases in receptor number respectively. The 
current investigation aims to examine the course of in vivo down 

regulation with time by measuring the degree of receptor 

reduction after different durations of adrenaline infusion in the 

rabbit. Particular interest lay with examination of any 

differences in alpha2 and beta adrenergic receptor systems as 

well as the critical time at which receptor degradation began to 

take place. Quantification of platelet alpha2 adrenoceptors 

together with heart n̂d lung beta adrenoceptors was carried out 
beginning with ten day administration of adrenaline and 

progressively decreasing infusion time down to twelve hours. 
Adrenaline was administered using osmotic minipumps at all 

infusion times.
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7.2 Methods
Groups of rabbits (n = 6) were treated with adrenaline 

(0.05 umol/kg/hr) for 12 hours, 24 hours, 2, 3 or 10 days via 

osmotic minipumps implanted at the femoral vein. The control 

animals for each group (n = 4-8) received the vehicle, 0.1% 

ascorbate. The minipumps were primed at 37^C to ensure that 

infusion commenced as soon as they were implanted for the early 
time points. Arterial blood samples (5 mis) were removed before 

and at the end of each adrenaline infusion for measurement of 
plasma catecholamine levels (Section 2.2). Recordings of the 

mean arterial blood pressure (mmHg) and heart rate (beats/min.) 
were obtained before and at the end of 24 hour and ten day 

infusions (Section 2.1). When infusions were completed, rabbits 
were killed with an intravenous overdose of sodium pentobarbitone 

(60 mg/kg) and blood (80 mis) was rapidly withdrawn by cardiac 
puncture together with collection of the whole heart and lung. 

Platelets were prepared and [3H] yohimbine binding performed as 

described in Sections 2.3.1., 2.3.2., 2.4 and 2.5. Heart and 

lung membranes were prepared for [125I] ICYP binding according to

Methods 2.3.4 and 2.6.
Statistical analysis was carried out using a two way 

analysis of variance (ANOVA). This test examined the individual 
gf fscts of treatment and time as well as an interaction of the 

two. in all three cases, Bonferoni multiple comparisons were 

calculated to see where the differences lay.

146



7.3 Results

7.3.1 Haemodynamic measuremends

Plasma concentrations of adrenaline were raised 
approximately tenfold after each group of timed adrenaline 

infusions (Figure 7.1). The plasma adrenaline levels at the end 

of 12 hours adrenaline infusion may have been higher due to 

anaesthetic effects. There were no significant changes in the 

mean arterial blood pressure (mmHg) or heart rate (beats/min.) at 
the times recorded as previously illustrated in Figure 5.3.

7.3.2 Radioligand binding
[ 125i ] icyp binding to heart and lung

1 9RA significant decrease in [ ] ICYP binding to heart was

apparent after ten days adrenaline infusion (18 +_ 4 in controls

compared to 9 + 3 in treated animals, P < 0.001) (Figure 7.2).
1 9RThere were also significant falls in [ " I ] ICYP binding to lung 

following both two and ten day infusions of adrenaline (83 +_ 14 
in controls compared to 53 +_ 9 after two days adrenaline infusion 

and 86 14 compared to 46+10 after ten days adrenaline

infusion) (Figure 7.3). Although similar reductions in specific 

binding were apparently reached at other intermediate times 
between 24 hrs n̂d ten days for both tissues, the results failed 

to achieve significance at the 5% level. However, large 
differences in the 95% confidence intervals were observed as 

illustrated in Figures 7.4. The KD (PM) values did not 
significantly alter between control and treated animals at all

infusion times (Table 7.1).
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[3H] Yohimbine binding to platelets 

[3H] Yohimbine specific binding was significantly reduced by 

ten days adrenaline infusion (22 + 5 in controls compared to 

10 +_ 1). (P < 0.01) (Figure 7.5). The two way analysis of 

variance yielded a significant difference between control and 

adrenaline treated groups over time with no significant 

alterations detected between the platelet control groups. The 
first suggestion of a reduction in platelet alpha2 adrenoceptor 

number occurred after three days of adrenaline infusion. Large 

differences in the confidence intervals at this time indicated a 

trend towards significance (Figure 7.6). There were no 
significant changes in the KD for any of the tissues studied 

(Table 7.1). The reductions in alpha2 and beta adrenoceptor 

density with time were finally expressed as a percentage of the 

control values as shown in Table 7.2.
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Table 7.2
Reductions in adrenoceptor mjnber _(%)_ with different durations

of adrenaline infusion

12 hr 24 hr 2 day 3 day 10 day

Platelet alpha2 
adrenoceptors

0 0 0 36 57

Heart beta 
adrenoceptors

19 44 44 37 50

Lung beta 
adrenoceptors 23 32 36 14 45

The treated animals were comprised of groups of six while 
controls numbered between four and eight. Each value was 
expressed as a percentage of the control group.

7.4 Discussion

The present studies suggest that there may be differences in 

the rates of alpha2 and beta adrenoceptor down regulation during 
in vivo agonist exposure. There was a twenty percent diminution 

of beta adrenergic receptors in both heart and lung within twelve 

hours of adrenaline treatment whereas a decrease in platelet 

alpha2 adrenoceptor density was not detected until the end of 
three days' exposure to adrenaline. These studies suggest that 

disappearance of beta adrenoceptors began to take place earlier 

than twelve hours of adrenaline infusion thus further 

investigations to examine the effects of shorter adrenaline 

infusions would be useful. Similarly, the alpha2 adrenoceptor 

changes suggest that the critical time of receptor disappearance

156



may be estimated by carrying out adrenaline infusions for times 

between two and three days. These findings are consistent with 
previously reported time courses for in vivo agonist promoted 

adrenoceptor down regulation. A reduction in [125I] ICYP binding 

to renal cortex was observed within twelve hours of a three day 

isoprenaline infusion in rats (Snavely et al, 1984). However a 
much slower rate of down regulation was recorded by Brodde and 

co-workers (1982) during the treatment of hypertensive patients 
with clonidine for seven days. A reduced concentration of 

platelet alpha2 adrenoceptors was revealed within three days of 
clonidine infusion in these studies. Differences in the time 

course of alpha2 and beta adrenoceptors in these studies may have 
been related to differences in the doses together with 

differences in the agonist efficacy and intrinsic activity. More 

conclusive evidence of a differential down regulation of alpha 
and beta adrenoceptors could be achieved with assessment of 
agonist induced alterations in alpha2 and beta adrenergic 

receptors within the same tissue. It has been suggested that in 
some tissues, the end organ response may depend on the ratio of 

alpha2/beta adrenoceptors (Hamilton et al,1986a). If down 

regulation of the two subtypes of adrenoceptor occurred at 

different rates, the ratio of alpha2/beta adrenoceptors would 
change which in turn would modify tissue responses. In such 

tissues, responses would depend on both the extent and rate of 

desensitisation of alpha2 and beta adrenoceptors.
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In summary, the current findings strongly suggest that 

alpha2 adrenergic receptor systems are more resistant to down 

regulation in the face of high circulating plasma adrenaline.
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CHAPTER EIGHT

GENERAL DISCUSSION, CONCLUSIONS AND FUTURE CONSIDERATIONS
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Chapter Eight

General Discussion, Conclusions and Future Considerations 

In the rabbit, short and long term intravenous infusion of 
alpha adrenoceptor agonists revealed reductions in alpha2 

adrenoceptor function, however only long term administration of 

agonist led to decreases in the density of alpha2 adrenergic 

receptors. These findings were in accordance with those obtained 

during acute and chronic agonist treatment in man (Brodde et al, 
1982; Davies et al, 1982; Jones et al, 1985a).

Acute administration of alpha methylnoradrenaline led to a 

rapid dose and time dependent densensitisation of platelet and 

vascular alpha2 adrenergic receptors in the rabbit. Short term 

infusions of the endogenous agonist, adrenaline (1.5 umol/kg/hr) 
also caused a similar rapid reduction in platelet and vascular 

alpha2 adrenoceptor mediated responses. The lower rate of 
adrenaline (0.05 umol/kg/hr) infusion failed to produce an 

attenuation of the vasopressor responses which were measured up 

to one hour into infusion. It is possible that the time course 

of desensitisation could be slower during these relatively low 

dose infusions and with continuation of infusion times, a 

decrease in vascular responsiveness could be seen.
One other group have reported a rapid (2-4 minute) time and 

mnrpnfrgf j op dependent desensitisation of alpha adrenoceptors 

during incubation of rat parotid cells with adrenaline 

(Strittmatter et al, 1977). It is postulated that this early 
loss of responsiveness may represent an "internalisation" of 

receptors similar to that observed in beta adrenoceptor systems.
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Toews and Perkins (1984) measured the competition by beta 

adrenergic agonists and antagonists for [^^i](-) pindolol 

binding sites on intact cells (human astrocytoma and rat glioma) 
using short term binding assays. The change in the ligand 

binding properties of the receptor was found to be rapid (t 1/2 - 
1-2 min), reversible and dose dependent.

The development of a hydrophilic alpha2 adrenoceptor ligand 
analogous to the beta adrenoceptor antagonist [̂ H] CGP-12177 

would allow measurement of cell surface alpha2 receptors to be 
made. Other techniques such as differential centrifugation have 

been used to examine the mechanisms of beta adrenoceptor 
desensitisation and might also be applied to studies of alpha2 

adrenoceptor desensitisation (Sibley et al, 1986). However, the 

location of the sequestered beta adrenergic receptors in 

desensitised cells is not yet known with certainty. Evidence has 

accumulated that the sequestered beta receptors can be recovered 

in small vesicular membrane particles and it is not yet clear 

whether these light membrane particles actually represent 

endocytotic vesicles or whether they might be a sequestered 
domain of the plasma membrane (Mahan et al, 1985; Sibley et al, 

1 986). Future studies may involve more detailed exploration of 

the mechanisms involved in alpha2 adrenoceptor desensitisation.

When agonist infusions were extended to ten days, decreases 
in adrenergic receptor number were observed which were tissue 

specific. Chronic adrenaline infusions led to a decrease in the 

density of alpha2 receptors in platelets without concomitant 
reductions in the kidney. These findings were in contrast to 
those found during long term noradrenaline infusion when a
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significant decrement in kidney alpha2 adrenoceptor number was 

observed, without comparable changes in the alpha2 receptors in 
platelets (Table 8.1). A possible explanation of these opposing 

results for the two agonists could be the existence of 

subpopulations of the alpha2 adrenoceptor, each agonist 
possessing a preferential affinity for one type. A report by 

Nahorski and colleagues (1985) outlines differences between 

species in the rank order of potency of antagonists determined by 
displacement binding experiments. These workers proposed that 
two separate subtypes (A and B) of the alpha2 adrenoceptor could 

be discriminated, rabbit platelets containing predominantly the A 
type while rat and rabbit kidney were found to be largely B in 

type. A later study by the same group (Cheung et al, 1986) 

revealed that adrenaline had a higher affinity than noradrenaline 

for the A subtype in human platelets (with similar Kj values to 
rabbit platelets) and noradrenaline had a higher affinity than 

adrenaline for the B subtype in rat and rabbit kidney. Thus, the 
possible existence of discrete subgroups of alpha2 receptors in 

the platelet and kidney may help to explain these results. 
Indeed, over the last few years, evidence indicating 

pharmacologic heterogeneity of alpha2 adrenoceptors has 

mounted (section 1.1.3). Further investigations using both 
pharmacologic and autoradiographical techniques will help to 

achieve a clearer definition of alpha2 adrenoceptor subgroups.
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Desensitisation and down regulation in response to agonist 

stimulation does not appear to be a ubiquitous feature of alpha2 
adrenoceptor systems (Insel and Mo tul sky, 1987). Indeed, within 

the present studies, long term exposure to noradrenaline failed 

to alter either the aggregatory response to adrenaline or the 

concentration of platelet alpha2 recePtors. However, chronic 
administration of adrenaline was associated with a decrease in 

alpha2 adrenoceptor response and number. Thus, adrenaline may be 

more important in the regulation of platelet alpha2 adrenoceptor 

number. Other drugs and hormones have been reported to cause 

tissue specific changes in alpha2 adrenoceptor number. Oestrogen 

treatment in rabbits increases the number of alpha2 adrenoceptors 
in the uterus and bladder (Elliot et al, 1980; Roberts et al, 

1977) but decreases that in the platelet and causes no change or 
a relatively small decrease in number in brain, spleen and kidney 

(Mishra et al, 1985; Roberts et al, 1979) while treatment with 
the antidepressant, amitriptyline has been reported to attenuate 

responses to intracistemal clonidine and reduce the density of 

alpha2 receptors in the high affinity state in rabbit hindbrain 

without causing concomitant changes in platelet alpha2 
adrenoceptor number or aggregation (Hamilton et al, 1986b). Thus, 

the usefulness of the alpha2 adrenoceptor in platelets as a model 
for alpha2 adrenoceptors in other organs and tissues remains 

equivocal. In addition to alpha2 adrenoceptor subtypes, drug 

efficacy, differential accessibility of the receptor to drugs and 
hormones and differences in the rate of metabolism of the 
receptor by the cells on which they are situated could all affect 
the rate of desensitisation and down regulation and contribute to
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apparent tissue selectivity.

Tissue specific alterations in beta adrenoceptor density 

were also demonstrated in these investigations. Long term 

administration of both adrenaline and noradrenaline caused 

striking reductions in beta adrenoceptor density in heart and 

lung (Table 8.2), both these tissues containing a majority of 

beta-j receptors in the rabbit (chapter three). No decrease in 

lymphocyte beta 2 adrenoceptor number was found during long term 

treatment with either adrenaline or noradrenaline. These results 
were surprising considering that the desensitisation and down 

regulation of lymphocyte beta2 receptors in response to chronic 
agonist treatment in asthmatic patients has been well documented 

(Connolly and Greenacre, 1976; Galant et al,1978; Tashkin et al, 
1982). In the present studies it is possible that infusion of a 

higher dose of adrenaline could have produced a decrease in 

lymphocyte beta2 adrenoceptor number. In a separate study 
utilising the present model, Deighton et al (1987) found the 

beta2 adrenoceptors in rabbit skeletal muscle to be down 
regulated in response to chronic adrenaline infusion but not 
noradrenaline infusion. These results were, as expected, 

considering that adrenaline has potent beta2 adrenoceptor 
activity and noradrenaline is relatively selective for beta-| 

receptors (Minneman et al, 1981). Thus, down regulation of beta2 
receptors following long term exposure to adrenaline may be 

tissue specific. Several investigators have, however 

acknowledged that the beta2 adrenoceptor could be less 
susceptible than the beta-] receptor to agonist promoted down
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regulation. Indeed, the resistance of beta2 adrenoceptors to 
down regulation has been found in tissues such as rat brain 

(Minneman et al, 1979), vascular smooth muscle (Cohen and 
Schenck, 1987) and mesenteric artery (Tsujimoto and Hoffman,

1984). These examples, together with several others, have been 

summarised in Table 8.3. This proposed independent regulation of 

beta-j and beta2 adrenoceptors is compatible with reports which 
suggest that the two receptor subtypes may be differently coupled 
to adenylate cyclase (Dickinson and Nahorski, 1983; Gille et al,

1985). Moreover, functional studies carried out by Broadley and 

co-workers reveal that beta-j adrenoceptors may be innervated 

receptors while beta2 adrenoceptors are non-innervated (possibly 

hormonal) receptors.
In the present studies, it would have been interesting to 

assess the relative proportions of both beta-] and beta2 

adrenoceptors in heart and lung in control and adrenaline treated 

animals. The extent of agonist induced changes in beta-] and 
beta2 receptors within the same tissue may then be determined. 

Alterations in the balance of these two receptor subtypes in the 
affected tissues could produce alterations in the tissue 

selectivity of beta^ and beta2 subtype selective agonists and 

antagonists.
Before leaving the subject of beta adrenoceptor down 

regulation, the usefulness of the peripheral beta2 adrenoceptors 
in blood lymphocytes as a model for beta adrenoceptor changes in 

less easily accessible tissues must be considered. Studies 
undertaken in man have examined the validity of using lymphocyte 

beta2 receptors as an index of changes in beta adrenoceptor
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number in the heart. One group (Michel et al, 1986) concluded 

that changes in lymphocyte beta2 adrenoceptors can be taken as 

representative for changes in beta-j and beta2 receptors in solid 
tissues only when these changes are caused by non-selective beta 

adrenergic agents (e.g. isoprenaline or propranolol). However, 

if subtype selective drugs are applied, changes in lymphocyte 

beta2 adrenoceptors mirror precisely changes in beta2 
adrenoceptors in solid tissues but only very slightly changes in 

beta-| adrenoceptors. In contrast, however, human studies by 

Hausen et al (1983) and animal studies by Jones et al (1985b) 

have both demonstrated no correlation between changes in receptor 
density in lymphocyte and cardiac membranes. In the present 

investigations, changes in the concentration of lymphocyte beta2 
receptors could be used as a marker of changes in solid tissues 

following chronic noradrenaline infusions, however caution is 

advised when extrapolating binding data from lymphocytes to solid 

tissues. Finally, it is important to consider that lymphocytes 

are composed of B cells and different subsets of T cells which 

contain different densities of beta2 adrenoceptors (Landman 
et al, 1984). Therefore, it is possible that changes in 

lymphocyte beta2 adrenoceptors could be caused by a shift in the 
distribution of the different subsets of cells and not by (patho) 

physiological or pharmacological influences.
There were no long term changes in either the blood pressure 

or the heart rate during intravenous administration of adrenaline 

and noradrenaline in these studies although acute infusions of 

both agonists evoked an initial rise in the mean arterial 
pressure which could be attributed to vasoconstriction due to
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stimulation of postsynaptic alpha-| and alpha2 aĉrenocePtors. 

Fifty percent of these animals recovered baseline blood pressures 
within one hour. In the chronic agonist infusion studies, there 

were no differences in blood pressure between ascorbate and 

agonist treated animals after twenty four hours or ten days of 
infusion (sections 5.3.2 and 6.3.2). It is likely that 

prolonged exposure to adrenaline and noradrenaline resulted in a 
desensitisation and down regulation of vascular adrenoceptors. 

Thus, measurement of adrenoceptor density in isolated blood 

vessels under these conditions would be an interesting subject of 

further research. In contrast, Tsujimoto et al (1984) observed 
increases in blood pressure in rats implanted with 
phaeochromocytoma. However this hypertensive effect was only 

recorded at plasma noradrenaline levels considerably greater 

(forty fold) than those achieved in the present study.
In conclusion, differences in the regulation of alpha2 

adrenergic receptors in different tissues may be consistent with 

the presence of further subtypes of this adrenoceptor in rabbit 

platelet and kidney. Furthermore, tissue selective changes in 
beta adrenoceptor density during chronic agonist infusion 

demonstrate that down regulation of beta adrenoceptor subtypes 

does not always run in parallel.
Further studies are warranted to elucidate further the 

observed regulatory phenomena and gain more knowledge of the 

underlying mechanisms of diseases associated with abnormal 

catecholamine levels.
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SUMMARY of conclusions

The first set of investigations (chapter three) demonstrated 

that the platelet pro-aggregatory response to adrenaline is 

mediated through activation of alpha2 adrenoceptors in the 

rabbit, [ H] Yohimbine was shown to bind to sites corresponding 

to alpha2 adrenoceptors in rabbit platelets and kidney. 
Displacement studies using [125I] ICYP revealed that rabbit 

platelets and lymphocytes contain largely beta2 adrenoceptors 

while the heart and lung were both predominantly beta-j 
adrenoceptor in type.

Acute administration of the agonists alpha 

methylnoradrenaline and adrenaline led to a rapid dose and time 
dependent desensitisation of platelet and vascular alpha2 

adrenoceptors without any change in the density of alpha2 
receptors in platelets (chapter four). These results may be 

consistent with the rapid dose and time dependent internalisation 
of adrenoceptors which has been reported in beta adrenoceptor 

systems.
Ten day infusions of adrenaline (chapter five) were 

associated with decreases in platelet alpha2 adrenoceptor pro- 

aggregatory responses to adrenaline and platelet alpha2 receptor 

number without any alteration in the number of alpha2 receptors 
in kidney. There were opposing findings following ten day 

infusions of noradrenaline (chapter six)7 reductions in alpha2 
adrenoceptor density being confined to the kidney only. 

Contrasting results for these two agonists may be consistent with 

the presence of further subtypes of alpha2 adrenoceptor in rabbit

platelet and kidney.
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Both chronic adrenaline and chronic noradrenaline infusions 
caused significant falls in beta adrenoceptor density in rabbit 

heart and lung without concurrent changes in lymphocyte beta2 
receptor number. Thus, in this rabbit model the beta2 

adrenoceptor appears to be more resistant to agonist promoted 
down regulation.

The final set of studies (chapter seven) present evidence to 

suggest that there may be differences in the rates of alpha2 and 
beta adrenoceptor down regulation in response to adrenaline 

infusion. Platelet alpha2 adrenoceptors were found to be more 

resistant than the beta adrenoceptors of heart and lung to 

adrenaline promoted down regulation. Thus, in tissues harbouring 
both types of adrenoceptor, long term treatment with agonists may 

affect the ratio of alpha2 and beta adrenoceptors which in turn 

would modify tissue responses.
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sxistsnce of betâ j and beta2 adrenoceptors m  mammalian 

lung : evidence from direct binding studies. Mol. 

Pharmacol. 14 : 996-1005.

198



Scarpace, P.J. and Abrass, I.B. (1981). Thyroid hormone 

regulation of rat heart, lymphocytes and lung beta 
adrenergic receptors. Endocrinology 108 : 1007-1011.

Scarpace, P.J. and Abrass, I.B. (1982). Desensitisation of 

adenylate cyclase and down regulation of beta adrenergic 
receptors after in vivo administration of beta agonist. J. 

Pharmacol. Exp. Ther. 223, No. 2 : 327-331 .

Scarpace, P.J., Baresi, L.A., Sanford, D.A. and Abrass, I.B.

(1985). Desensitisation and resensitisation of beta 
adrenergic receptors in a smooth muscle cell line. Mol. 

Pharmacol. 28 : 495-501.

Scatchard, G. (1949). The attraction of proteins for small 

molecules and ions. Ann. NY. Acad. Sci. 51 : 660-672.

Sibley, D.R. and Lefkowitz, R*J. (1985). Molecular mechanisms of 

receptor desensitisation using the beta adrenergic receptor 

coupled adenylate cyclase system as a model. Nature 

317 : 124-129.
Sibley, D.R., Strasser, R.H., Benovic, J.L., Daniel, K. and 

Lefkowitz, R*J. (1986). Phosphorylation/dephosphorylation 

of the beta adrenergic receptor regulates its functional 
coupling to adenylate cyclase and subcellular distribution. 

Proc. Natl. Acad. Sci. USA. 83 : 9408-9412.

Snavely, M.D., Mahan, L.C., O'Conner, D.T. and Insel, P.A. 
(1983). Selective down-regulation of adrenergic receptor 

subtypes in tissues from rats with phaeochromocytoma. 

Endocrinol. 113 : 354-360.

199



Snavely, M.D., Motulsky, H.J., O'Connor, D.T., Ziegler, M.G. and 

Insel, P.A. (1982). Adrenergic receptors in human and 

experimental phaeochromocytoma. Clin. Exp. Hyperten. 
A4 : 829-848.

Snavely, M.D., Ziegler, M.G. and Insel, P.A. (1984). A new 

approach to determine rates of receptor appearance and 
disappearance in vivo. Mol. Pharmacol. 27 : 19-26.

Snavely, M.D., Ziegler, M.G. and Insel, P.A. (1985). Subtype- 
selective down regulation of rat renal cortical alpha and 

beta adrenergic receptors by catecholamines. Endocrinol. 
117 : 2182-2189.

Sowers, J.R., Connelly-Fittinghoff, M., Tuck, M.L. and Krall, 

J.F. (1983). Acute changes in noradrenaline levels do not 

alter lymphocyte beta adrenergic receptor concentrations in 

man. Cardiovasc. Res. 17 : 184-188.

Sporn, J.R., Harden, T.K., Molinoff, P.B. and Wolfe, B.B. (1976). 

Beta adrenergic receptor involvement in 60H DA induced 
supersensitivity in rat cerebral cortex. Sci. 1 94 : 624-

626.
Stadel, J.M., Nambi, P., Shorr, G.L., Sawyer, D.F., Caron, M.G. 

and Lefkowitz, R.J. (1983). Catecholamine-induced 

desensitisation of turkey erythrocyte adenylate cyclase is 

associated with phosphorylation of the beta adrenergic 

receptor. Proc. Natl. Acad. Sci. USA. 80 : 3173-3177.
Staehelin, M. and Simons, P. (1982). Rapid and reversible 

disappearance of beta adrenergic cell surface receptors. 

EMBO Journal 1 : 187-190.

200



Staehelin, M., Simons, P., Jaeggi, K. and Wigger, N. (1983). 

CGP-12177 : a hydrophilic beta adrenergic receptor 

radioligand reveals high affinity binding of agonists to 
intact cells. J. Biol. Chem. 258 : 3496-3502.

Starke, K. (1977). Regulation of noradrenaline release by 

presynaptic receptor systems. Rev. Physiol. Biochem. 
Pharmacol. 77 : 1-124.

Starke, K. (1 981). Alpha adrenoceptor subclassification. Rev. 
Physiol. Biochem. Pharmacol. 88 : 199-236.

Starke, K. and Langer, S.Z. (1979). A note on terminology for 

presynaptic receptors. In: Langer, S.Z., Starke, K. and

Dubocovich, M.L. (eds.) Presynaptic receptors. Pergamon 
Press, Oxford, 1-3.

Strasser, R.H., Cerione, R.A., Codina, J., Caron, M.G. and 

Lefkowitz, R*J. (1985). Homologous desensitisation of the 

beta adrenergic receptor : functional integrity of the 

desensitised receptors from mammalian lung. Mol. Pharmacol. 

28 : 237-245.
Strittmatter, W.S., Davis, J.N. and Lefkowitz, R.J. (1977). 

Alpha adrenergic receptors in rat parotid 
cells : Desensitisation of receptor binding sites and 

potassium release. J. Biol. Chem. 252 : 5478-5482.

Su, Y.F., Cubeddu, L. and Perkins, J.P. (1976). Regulation of 

adenosine 3' : 5’monophosphate content of human astrocytoma 
cells : Desensitisation to catecholamines and 

prostaglandins. J. of Cyclic. Nucleotide Res. 2 : 257-270.

201



Su, Y.F., Harden, T.K. and Perkins, J.P. (1980). Catecholamine 

specific desensitisation of adenylate cyclase z evidence for 
a multistep process. J. Biol. Chem. 255 : 7410-7419.

Sutherland, E.W. and Rail, T.W. (1 960). The relation of 

adenosine-3',5f-phosphate and phosphorylase to the actions 

of catecholamines and other hormones. Pharmacol. Rev. 
12 : 265-299.

Takeyasu, K., Higuchi, H., Fujita, N., Uchida, S. and Yoshida, H.

(1982). Desensitisation of the alpha adrenergic receptor 
system in guinea pig vas deferens. Life Sci. 31 : 89-100.

Tashkin, D.P., Conolly, M.E. and Deutsch, R.l. (1 982). 

Subsensitisation of beta adrenoceptors in airways and 

lymphocytes of healthy and asthmatic subjects. Am. Rev. 

Respir. Dis. 125 : 185-193.

Thomas, J.A. and Marks, B.H. (1978). Plasma norepinephrine in 

congestive heart failure. Amer. J. Cardiol. 41 : 233-243.

Toews, MX. and Perkins, J.P. (1984). Agonist-induced changes in 

beta adrenergic receptors on intact cells. J. Biol. Chem. 

259 : 2227-2235.
Tolkovsky, A.M. and Levitzki, A. (1978). Mode of coupling 

between the beta adrenergic receptor and adenylate cyclase 

in turkey erythrocytes. Biochem. 17 : 3795-3810.

Torda, T., Yamaguchi, T., Hirata, F., Kopin, I.J. and Axelrod, J. 
(1981). Quinacrine blocked desensitisation of adrenoceptors 

after immobilisation stress or repeated injection of 

isoproterenol in rats. J. Pharmacol. Exp. Ther. 216 : 334- 

338.

202



Tsai, B.S. and Lefkowitz, R.J. (1978). Agonist-specific effects 

of monovalent and divalent actions on adenylate cyclase- 
coupled alpha adrenergic receptors in rabbit platelets. 
Mol. Pharmacol. 14 : 540-548.

Tsai, B.S. and Lefkowitz, R.J. (1979). Agonist-specific effects 

of guanine nucleotides on alpha adrenergic receptors in 
human platelets. Mol. Pharmacol. 16 : 61-68.

Tsuji, K., Tsutsumi, S., Ogawa, K., Miyazaki, Y. and Satake, T.

(1987). Cardiac alpha and beta adrenoceptors in 
rabbits : effects of dietary sodium and cholesterol. 
Cardiovasc. Res. 21 : 39-44.

Tsujimoto, G. and Hoffman, BJB. (1984). Desensitisation of beta 

adrenergic receptor mediated vascular smooth muscle 

relaxation. Mol. Pharmacol. 27 : 210-217.

Tsujimoto, G., Honda, K., Hoffman, B.B. and Hashimoto, K. (1987). 
Desensitisation of postjunctional alpha-j and alpha2 

adrenergic receptor mediated vasopressor responses in rat 
harboring phaeochromocytana. Circul. Res. 61 : 86-98.

Tsujimoto, G., Manger, W.M. and Hoffman, B.B. (1 984). 
Desensitisation of beta adrenergic receptors by 

phaeochrarocytcma. Endocrinol. 114 : 1272-1278.

Ui, M., Katada, T. and Murayana, T. (1984). Islet-activating 

protein, pertussis toxin : A specific uncoupler of receptor- 
mediated inhibition of adenylate cyclase. Adv. Cyclic 

Nucleotide Res. 17 : 145-151.

203



Valet, P., Damase-Michel, C., Chamontin, B., Durand, D., 

Gaillard, G., Salvador, M. and Montastruc, J.L. (1987). 

Adrenoceptors in the diagnosis of phaeochromocytoma. 
Lancet 2(1): 337.

Vatner, D.E., Vatner, A.M., Fujii, A.M. and Homey, C.J. (1985). 

Loss of high affinity cardiac beta adrenergic receptors in 
dogs with heart failure. J .  Clin. Invest. 76 : 2259.

Venter, J.C. (1979). High efficiency coupling between beta 

adrenergic receptors and cardiac contractility : Direct 

evidence for "spare" beta adrenergic receptors. Mol. 
Pharmacol. 16 : 429-440.

Villeneuve, A., Berlan, M., Lafontan, M. and Montastruc, J. 

(1985a). Characterisation of dog platelet alpha adrenergic 
receptor : lack of in vivo down regulation by adrenergic 

treatments. Comp. Biochem. Physiol. 81 : 181-187.

Villeneuve, A., Carpene, C., Berlan, M. and Lafontan, M. (1985b). 

Lack of desensitisation of alpha2 mediated inhibition of 
lipolysis in fat cells after acute and chronic treatment 

with clonidine. J. Pharmacol. Exp. Therap. 233 : 433-440.
Wikberg, J. (1978). Differentiation between pre- and post

junctional alpha receptors in guinea pig ileum and rabbit 

aorta. Acta. Physiol. Scand. 103 : 225-239.
Williams, L.T. and Lefkowitz, R.J. (1976). Alpha adrenergic 

receptor identification by [3H] dihydroergocryptine binding. 

Science 192 : 791-793.
Yu, S.K. and Latour, J.G. (1977). Potentiation by alpha and 

inhibition by beta adrenergic stimulations of rat platelet 

aggregation. Thrcmbos. Haemostas. 37 : 413-422.

,___________ 204
I GLASGOW
UR’YFRSnY

[I'BP.A.RY


