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SUMMARY

Ultimate strength design of reinforced concrete can be carried out using elastic
stress field in conjuction with Wood— Armer yield criterion. This procedure .is
known as Direct Design Method and has shown to produce well designed slabs.
The object of this work is to explore in particular the effect on serviceability
limit and ductility demand of using non elastic stress fields. This is the main
object of the present work.

The work divides into two convenient parts:

i— Determination of elasto—plastic stress fields as input to Wood— Armer
equations. This is accomplished using a nonlinear finite element program based
on Mindlin plate element and Von— Mises criterion.

ii— Assessment of these designed slabs using a nonlinear finite element program
based on 'Layer' approach. This analysis and assessment has been done for slabs
with various boundary conditions and loading systems.

The results show that use of nonlinear stress fields has the following advantages:
—a) The distribution of the design moments (M;,M;) is more uniform.

—b) The congestion of reinforcement is avoided by smoothing out the peaks.

—c) The maximum design moment is reduced by an average of 26%.

—d) The slabs designed by non elastic stress field behaved satisfactorily at the
service load (0.625 x design load) in terms of deflection and steel strain.

—e) The average load at first yield of steel for all the tested slabs was 0.86
times the design load.

—f) The results indicate that the ductility demand is not much different for all
the slabs designed using elastic or non elastic stress field.

—g) The average ultimate load for all the analysed slabs was 1.07 times the

design load.



—h) The sensitivity of the results to the level of plasticity spread was
insignificant.

A second part of this work consists of developing a nonlinear finite element
program for the analysis of reinforced concrete slabs based on Wood— Armer
criterion. This program has the advantage that in terms of the time required for
a full analysis to determine the ultimate load, it is much faster than any standard

nonlinear finite element programs based on layer analysis.



NOTATIONS

Major symbols used in the text are listed below. Others are

defined when they first appear.

{a} Flow vector.
{ap)},{a¢)} Flow vector for positive yield surface and negative

yield surface respectively.

A Area of rigid fegion.

Ag Area of steel in the longitudinal direction.

b Section breath.

bg Body forces.

[B] Strain matrix.

[Bf] Strain matrix associated with flexural deformation.
[Bp] Strain matrix associated with plane stress deformation.
[Bs] Strain matrix associated with shear deformation.

C Shear strain coefficient.

C1,Co Coefficients for the tension stiffening.

D Flexural stiffness per unit width.

[D] Elasticity matrix.

[D'] Instantaneous elasticity matrix.

[D]* Rigidity inplane matrix for cracked concrete.

[Dep] Elasto— plastic stress— strain matrix.

d Effective depth.

d, Depth of neutral axis.

di Thickness of the ith layer.

{di} Displacement vector.

ITI



E Young's modulus.

Ec Young's modulus for concrete.

E; Instantaneous Young's modulus for concrete.

Eg Young's modulus for steel.

EX,Ey Young's modulus in X and Y directions in an anisotropic
plate.

Ev1 An off diagonal term in material properties matrix.

f Load increment.

fo Cylinder compressive strength of concrete.

fee Intermediate surface strength of concrete.

fou Cube strength of concrete.

fq Equivalent biaxial compressive strength of concrete.

fy Yield strength of steel.

fe Tensile strength of concrete.

{F} Vector of nodal forces in the cartesian coordinate system.

{F'} Vector of nodal forces in the local coordinate system (n,t).

G Shear modulus.

h Plate thickness.

H Strain hardening parameter for steel.

I Moment of inertia.

Ier Moment of inertia of a cracked section.

Ig Gross moment of inertia of uncracked section.

Ilere Effective moment of inertia of a section,

[K] Stiffness matrix.

[K] Stiffness matrix related to the local axes.

[Kt] Tangential stiffness matrix.

Ly Length of the slab in X direction.

Ly Length of the slab in Y direction.



m Ratio between tensile and compressive strengths of concrete

M Bending moment at any stage of loading.

[\ P Cracking moment.

Mx,My,Mxy Applied moment components at a point in cartesian
coordinate.

M§,M§ Design moments in X and o directions respectively.

Mgﬁ Design moment in Y direction

M: Flexural yield strength of the section at an yield line.

My, M¢ My Applied moment components at a point in local coordinate

system (n,t).

Mp Plastic moment.

M, ,M, Principal moments.

N Total number of nodal points.

Nj Shape function associated with node i.

P Applied load.

Por Cracking load.

Pgq Design load.

Py First yield load.

Pult Ultimate load.

q Uniformly distributed load intensity.

QX,Qy Shear force components in cartesian coordinate.
S Loaded surface area.

SX,Sy Effective shear moduli in the X and Y directions.
[T] Transformation matrix for cracks.

[Tp] Transformation matrix for boundary condition.
\' Volume of the plate.

U.L.T Ultimate load.

u,v,w Displacements at a point in the plate in (X,Y,Z)



Ugy,Vo1¥Wg

X,¥,2

Zi

a

g

dA

Txy: Yyz
(8}
{er)
{es}

directions respectively.

Displacements at a point in the plate on the reference
plane.

Rectangular cartesian coordinates.

Coordinates of point in X,Y,Z system.

Distance from the reference plane to centre of the ith
layer.

Angle of skew.

Shear retention factor.

Plastic multiplier.

Shear strain components in the cartesian coordinates.
Nodal displacement vector in the cartesian coordinates.
Elastic strain.

Strain vector associated with flexural deformations.

Strain vector associated with shear deformations.

€xs €y Ixy Strain components in cartesian coordinates.

Peak strain,

Plastic strain.

Yielding strain of steel.

Nondimensional local coordinate system.

Angle of principal plane.

Angle of crack with respect to X axis.
Rotations of the normal in the XZ and YZ planes
respectively.

Poisson's ratio.

Transverse shear rotatiqns in the XZ and YZ plane
respectively.

Stress vector.



() Stress at a point.

of Incremental stress associated with flexural deformations.
Og Incremental stress associated with shear deformations.
goct Octahedral normal stress.

Opk Peak stress.

Ox10y,Txy Stress components in cartesian coordinates,

0n,0¢,0nt Stress components in local coordinate system (n,t).

0,,0, Principal stresses.

Toct Octahedral shearing stress.

n Total potential energy.

Mg Total potential energy associated with element e.
{¥} Residual force vector.

Q g,/0,

F Yield function.

K Work hardening parameter.

P1ty Plasticity.

Elt Element .



CHAPTER ONE :

INTRODUCTION

1.1 General introduction:

Reinforced concrete slabs are among the most common structural elements,
relatively thin and flat, whose main function is to transmit loading acting normal
to their plane. Slabs are used as floors and roofs of buildings, as wall in tanks
and buildings, and as bridge decks to carry traffic loads.

To design or analyse a reinforced concrete slab system, there are a number of
possible approaches. These are based on elastic theory, limit analysis theory and
modifications to elastic and limit analysis theory.

A brief summary of the methods of analysis and design is given in this chapter.

Finally the aim of the present work is presented.

1.2 Methods of analysis and design:

1.2.1— Elastic methods:

The classical plate theory applies to isotropic and anisotropic slabs which are
sufficiently thin for shear deformations to be insignificant and sufficiently thick for
the effect of in—plane forces which may cause buckling to be unimportant.

Elastic methods use the biharmonic equation given by:

+ 2.0 + (1.1)




where q = loading imposed on plate per unit area,
w = deflection of plate in direction of loading at point
(X,Y) in Z direction.

D = flexural regidity of the plate.

for the case of isotropic plate, which is the result of the combination of the
equilibrium equations and the constitutive equations of the plate shown in
Fig(1.1).

To solve this equation either the harmonic analysis or numerical methods are

used, and the solution gives a distribution of moments and shears such that:

1— Equilibrium is satisfied at every point in the slab.
2— The boundary conditions are complied with.
3— Stress is proportional to strain; that is, bending moments

proportional to curvature.

Although a lot of work has been done in the past to solve the biharmonic
equation analytically, such as the work by Navier(59) (1820), Levy(ssr”),
Newmark(5¢,63,66), Ritz(59%) and many others, unfortunately, the solution is not
straightforward, and until now the solutions were restricted to very limited shapes
of slabs and loading systems. This is due to the mathematical complications
involved in the solution procedure.

Using the numerical techniques, mainly the finite element method, which is
nowadays the most powerful tool for the solution of engineering problems, such
difficulties can be easily overcome.

However, the elastic methods are further limited by the assumption of linear

elasticity, which consequently limits their use in practical design problems.



1.2.2— Plastic methods (or limit state methods):

The assumption of linear elasticity is valid for low levels of stress, and as
the load increases, concrete cracks due to the limited strength of concrete in
tension, and accordingly, the slab flexural regidity deteriorates. Cracking induces
nonlinearity, and at higher loads, the degree of nonlinearity is increased by
plastification of reinforcing steel. To account for this material changes, plasticity
or limit state theory is used.

In plastic theory it is assumed that the material of the slab is capable of
indefinite plastic straining once the conditions of yielding have been reached.
Any solution to the ultimate load has to satisfy the conditions of classical

plasticity:

1— The equilibrium condition: the internal stresses must be
in equilibrium with the externally applied loads.

2— The mechanism condition: under ultimate load, sufficient
plastic regions must exist to transform the structure into
mechanism.

3— The yield criterion: the ultimate strength of the member

must nowhere be exceeded.

But in general, it is extremly difficult to obtain such a solution analytically, and
two different procedures for obtaining approximate solutions have been proposed
based on the well- known upper bound and lower bound theorems in the theory
of limit analysis. They were originally proposed by Prager, Drucker and many
others. Thus the theory of plasticity permits the structural analyst to establish
bounds on the calculated collapse load and thus ultimately works towards the true

collapse load.



1.2.2.1 Upper bound method:

Upper bound method postulates a collapse mechanism for the slab system at the

ultimate load such that:

a— The moments at the "plastic hinges” are not
greater than the ultimate moments of resistance

of the sections.

b— The collapse mechanism is compatible with the

boundary conditions.

Consequently, the upper bound method gives an ultimate load which is either
correct or too high, but if all the possible collapse mechanisms for the slab
system are examined, the mechanism giving the lowest load is the correct one.
Yield line theory after Johansen(44,14,70) falls into this category.

The method in practice suffers from four main disadvantages as follows:

i) It is difficult to handle cases where a variable reinforcement pattern is used.

if) No information is provided on the forces transmitted to the supports.

iii) This method does not provide any information about the state of stress in
parts of the slab other than at yield lines.

iv) It is not at all easy to use when the mechanism is governed by more than

three geometrical parameters.

In general, this method is mostly used in assessing the strength of existing slabs,

although it can be used as a limited design method.



1.2.2.2 Lower bound method:

Lower bound method postulates a distribution of moments in the slab at the

ultimate load such that the following three conditions are satisfied:

a— Equilibrium condition

b— Yield criterion

c¢— The boundary conditions are complied with.

Then the ultimate load is calculated from the equlibrium equations and the
postulated distribution of moments. For a given slab system, the lower bound
method gives an ultimate load which is either correct or too low; that is, the

ultimate load is never overestimated.

In any lower bound design method, a designer is free to choose any moment
distribution that he wishes, provided that it satisfies the equilibrium of the slab.
The method of slab design proposed by Hillerborg (1956) in its simple version is
suitable for slabs without concentrated supports or re— entrant corners. In this
method the slab is essentially designed as a torsionless grid of beams. Caution is
necessary here because the freedom of choosing the load dispersion which may
depart far from the elastic (working) conditions leading to unserviceability due to
early cracking or large deflections.

For the case of fairly simple slabs this can easily be satisfied by assumed load
distribution to the grillage beams, but in more complex cases either a torsionless
grillage analysis or the strip deflection method of Fernando and Kemp(zs»"’s) can
be used.

In the case of slabs with concentrated loads and supports, several options are
open such as Hillerborg's advanced strip method(32),

The only reason for neglecting the torsional moment in the strip methods is that

it leads to a simple procedure for hand calculations. = Once the calculations



become too complicated because of the boundary conditions and loading systems,
it is convenient to use the computer. Consequently, the twisting moment Mxy is
to be considered. This moment (Mxy) exists in the theory of elasticity and it is
particularly high in the corner regions of slabs simply supported on stiff beams or
walls.

Another lower bound method is that based on elastic stress' field (Direct Design
Approach), where the elastic stress distribution at the ultimate load is used in
conjuction with the yield criterion for reinforced concrete slabs to determine the
steel reinforcement.

This approach was first proposed by Hillerborg(33) and later reconsidered and
restated by Wood(71) for the case of orthogonal steel.

Nielson(58) has also developed equations for the optimum design of orthogonal
steel and subsequently Armer(72) derived equations for the case in which the
steel lies in a predetermined skew directions.

This latter method can be shown to be the most appropriate method for the
purposes of CAD (Computer Aided Design) since the elastic stress analysis is
more conveniently carried out using the finite element method, and the design
equations mentioned above are readily implemented in a computer code to
provide the necessary reinforcement at each point on the slab.

From their experimental work, A.W. Hago(30) and the L.M.A. Hafez(1)
concluded that the direct design method is a highly practical design procedure for

reinforced concrete slabs.



1.3— Purpose _and scope of the present investigation:

So far the work done on the direct design approach was only confined to

the use of elastic stress field. @ However, any stress field satisfying the slab
equilibrium can be used with the direct design method. So the idea of using a
stress field other than elastic might be more meaningful in terms of yielding a
steel layout which can be thought as being more convenient.
The work presented in this thesis attempts to study this idea, by analysing the
results of using non elastic stress field with the direct design method. Two areas
were investigated, first the effect of using non elastic stress field on the
distribution of the resisting moments over the slab and secondly the behaviour of
the slabs so designed.

The non elastic stress field that are possible are :

i— Elastic— plastic stress fields obtained from the analysis of

metallic plates.

ii— Elastic—plastic stress fields obtained from the analysis of
reinforced concrete plates using Wood—Armer criterion:

(My — MMy — M My$ = 0.0

y -
where M; and M; are the design moments which are
predetermined for large sections of the slab.
ili- Any linear combination of the elastic stress field and the
above stress fields.
The present study has been restricted to the exploration of the elasto—plastic
stress field resulting from the analysis of metallic plates, because it can be
obtained by a rational and straightforward method. In addition, it will not

require a predetermination of the steel reinforcement, as in the case of the

analysis of a reinforced concrete plates.



This thesis is organised in seven chapters. Chapter o‘ne'" describes the methods
available for analysing and designing slabs. Chapter tw;o presents a discussion of
the direct design method with its assumptions and applicaﬁons. In chapter three
the finite element method is reviewed with particular reference to the computer
programs used in this study. The results of using the direct design method with
elasto-plastic stress field are presented in chapter four. The predicted behaviour
of the slabs so designed using the nonlinear finite element program, presented in
chapter three, is discussed in chapter five. Chapter six describes a finite element
program based on Wood—Armer criterion, developed to predict the ultimate load
of reinforced concrete slabs. Finally, conclusions and recommendations for the

future work are presented in chapter seven.




M MX)’ 7 = _
X
~ M 6de
A 5 /é ox
dy /////vi = oM, Ox
/ < Xy+6—x Y x
Yo My +OMyg M. . +0Mxyd
y By ) xy*‘6y yay
MOMENTS PER UNIT LENGTH
{dy X
Q = =
S A
///
/V/// ng—gxdx
Y VQy-rQQYdy

Oy

SHEAR FORCES PER UNIT LENGTH

Figure (1-1)



CHAPTER TWO :

DIRECT DESIGN METHOD

2.1 Introduction :

In the previous chapter, the various methods available for the design of
reinforced concrete slabs have been briefly discussed. Since the aim of the
present study is to investigate the direct design method when wused with non
elastic stress field, the first step was then to study this method in detail.

The principle of the direct design approach and the rules used for placing the

reinforcement are discussed in the following sections of this chapter.

2.2 The direct design approach:

The direct design approach is very simple and straightforward. It is a
design oriented method based on plasticity concepts and will satisfy the three
conditions of the theory of plasticity.

The steps in the method will be discussed in relation to these conditions in the

following manner:

2.2.1 The equilibrium condition:

The equlibrium condition for the slab system shown in Fig(1.1) is derived

as follows:

i— For vertical equilibrium:

10



9Qy aQy
0.0 = g.dx.dy + |Qy + .dx|dy + Qy + .dy{dx - Qy.dx -
ox oy
Qy.dy
3Qy 3Qy
therefore : -q = + .. (2.1)
ox oy

ii—- For moment equilibrium about the X axis:

dy aQy 9Qy dy?
0.0 - q.dx.dy.—— + Qy + .dy(dx.dy + dx +
2 ’ oy Ix 2

oM

' aMxy
dyldx - Mxydy + Mxy + dx|dy

My.dy - [My +
ax

oy
therefore, as, dx and dy » 0.0 :

M My

Q = - ... (2.2)
y ay ax

iii— Similarly, moment equilibrium about the Y axis gives:

oM, aMxy
Qy = - .. (2.3
ox oy

These three order differential equilibrium equations can be combined to give a

second order equation relating moments to load intensity as:

11



a7M, azM
y

q-—— _ 2.0 Yoy (2.8
ax?2 ax.9y  dy?

In the direct design procedure the stress distribution should satisfy the equilibrium
equation (2.4) at every point on the slab.

If the stress distribution under the design load is obtained from a finite element
analysis, the equlibrium condition (Eq— 2.4) will automatically be satisfied as the
method is derived from equilibrium considerations. Owing to its simplicity and
versatility, the method can be applied to any type of slab problem with any edge

conditions.

2.2.2 The yield criterion:

The yield criterion defines the behaviour of the slab element under a
" given loading condition and mathematically relates the resisting and applied
moment components at the formation of the yield lines. The stress analysis of
the slab under the ultimate load provides at each point the stress triad M,, My,
and Mxy for laterally loaded plate. To provide the reinforcement to fit the
predicted moment field at ultimate limit state, the steel should be proportioned as
required by the yield criterion.
Accordingly, it becomes necessary to derive the yield criterion in terms of the
three moment components, such as:
F (My,M

M,,M5z,M}) = 0.0 e(2.5)

y Xy y

where M} and M’; are the uniaxial flexural strength of the slab in X-
and Y- directions respectively. The derivation of such yield criterion will be
considered in this section.

Consider the slab element shown in Fig— (2.1) under the moment field

(Mx,My,Mxy) per unit width. The sign convention adopted is such that all

o



moments acting in the element are positive.
Simplifying assumptions are further made, and these can be summarized as

follows:

(1)- The concrete is assumed to have a zero tensile strength.

(2)- Bar diameters are small in comparison with slab depth, and they can carry
stresses only in their original direction. Accordingly, kinking of bars accross a
yield line is not considered.

(3)— The slab element is lightly reinforced, so that compression failure is not
permissible and only ductile failures are allowed. This is necessary for moment
redistribution, so that the slab elements can reach their ultimate strength at
sufficient number of sections, to convert the slab into a mechanism.

(4)— Membrane forces do not exist, it is acknowledged that the co—existence of
such forces with flexural fields on the slab elements, will considerably affect the
resisting moment of the slab element — depending on whether they are

compressive or tensile and the restraints existing at the boundary of the slab.

The basic idea is that, if at any point P in a slab (Fig— 2.2) a line with normal
n and direction t is examined, the normal moment M, , due to the applied
moments (My,My,Myy) must not exceed the value of M, which is the moment of
resistance that the reinforcement in the slab could develop in direction n. This
therefore is a normal moment criterion which is tested in every direction(45),

For generality the yielding criterion will be derived in the following for the case
of skew reinforcement as shown in Fig— (2.2).

Taking the normal to the yield line at an angle o to the X— axis and considering

the equilibrium of the element shown in Fig— (2.3), we have:

M, = My.cos?¢ + My.sin20 - 2.0 .Mxy.sin0.0050 ....(2.6)

Mt = M,.sin?6 + My.00520 + 2.0 .Mxy.sinO.cos() e (2.7)

13



Figure (2-1) Notation for moments on an element

(positive as shown)

Xy _~>My

Mx1

Xy

=

Xy

Figure (2-2) FElement with skew reinforcement
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M

nt = (Mx—My)sin{).cost) + Mxy(c0520 - sin26) ....(2.8)

the resisting moments at the yield line can be expressed using the Johansen's

"stepped" yield criterion{44) which is based on the following assumptions:

(1)~ The normal moment on a yield line can be obtained by considering each
band of reinforcement in turn, the total effect being the addition of the
individual effects.

(2)~ For each band of reinforcement taken on its own the yield line may be
considered to be divided into small steps parallel to, and at right angles to the
reinforcement, as shown in figure (2.1).

(3)— All reinforcement crossing the yield line is assumed to yield.

(4)- All reinforcement is assumed to stay in its original straight line when the
steel yield, i.e there is no “kinking", or change in direction of the steel in
crossing the yield line.

(5)— When each band of reinforcement is considered on its own, on the small
steps at right angles to the reinforcement there is only a normal moment/unit
width whilst on the steps parallel to the reinforcement there is neither normal
nor twisting moment.

(6)— The values of normal and twisting moments on the yield line are such that
they are equivalent to the components of the normal moment on the steps.

On the basis of these assumptions, the resisting moments can be written as:

My = M% cos20 + MY cos2(8 - ) ... (2.9)

My = M sin26 + MY sin2(8 - @) ....(2.10)

Hence the value of M; obtained from equation (2.9) must always be greater than
that for M, calculated from equation (2.6); that is,

Mp — My 2 0.0 (2.11)
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Substituting Eq— (2.6) and Eq— (2.9) in Eq- (2.11) we have :

Excess strength = (M; - My + M; cos2p)cos 2§ + (M; sin2q — My)sin20 +
2(Myy + M, sinc.cosa)sing.cosg > 0.0

or

F = A.cos?2¢0 + B.sin2¢ + 2.0 .C.cosf.sind > 0.0

where A= M§ - My + M(’;.cosza
<% .
B = M5.sin%a - My

C = Mxy + Mz.sinoe.cosa
dividing by cosé and putting K = tang the latter equation reduces to :
F= A+ BKZ2+ 2CK > 0.0 | ....(2.12)
‘ For optimum steel, excess strength must be a minimum, that is to say :

dF d?F
~-=0 and -————— X 0.0
d tané d tan?2¢

Differentiating Eq— (2.12) with respect to tan@, we have
BK+ C= 00 or K= - C/B ....(2.133)

and B > 0 since M:; sin2a > My

Substituting the values of B and C in Eq- (2.13a), one gets

Mxy + M,’; sino.coso
K= - ....(2.13b)
<% .
My sin?a - My

17



This gives the orientation of the plane of minimum resistance of skew steel. For

the case of orthogonal steel o« = 900 then :

MX
K= - — Y ... (2.13¢)
Mgs - My

Substituting Eq— (2.13a) in Eq-— (2.12) and using equality sign for minimum

resistance, then :

A + B.(—C/B)2 + 2C.(—C/B) = 0.0

or
AB — C2 = 0.0 ‘ ...(2.14)

Substituting the value of A and B in Eq- (2.14), one gets:

(My — My + Mg.cos2a)(Mp.sin 20 — My) = (Myy + M sinc.cose) 2 2 0

or
— (Mg — My + Mg.cos2a)(Mg.sin 2o — My) + (Myy + M_,.sinc.cosa) 2 £ 0

....(2.153)

in order to have a safe design inside the yield surface.

Eq- (2.15a) is the yield criterion for skew reinforced concrete slabs. The yield

criterion of orthogonal steel case (¢ = 909) is given by:
¥ *
-(My — MM , — My) + M

xy? £ 0.0 ....(2.15b)

which is the same equation arrived at by Save(s'), Nielson(SB), Lenschow et

al(49) , and Kernp( 4s),



The extensive experimental work carried out by the research workers, Lenschow
et al(49) , Cardenas and Sozen( 8) , Lenkei(50) , and Salish Jain et al(40) , on
the derived yield criterion for the case of orthogonal steel, confirmed the validity
of this criterion. It has further been established that the yield line orientation do
not necessarily coincide with the principal direction of either the applied or
resisting moments in the case of nonisotropic reinforcement. Consequently,
twisting moments do exist at the yield lines in addition to the flexural moments,
but no decrease in flexural yield capacity due to the interaction between flexural

and torsional moments is observed.

For yield in the negative steel at the top of the slab, similar procedure to the
one just described for positive yield, can be applied.

If the top steel layers are laid in X— and o— directions to provide the resisting
moments M;t and M&! respectively, then the yield condition with negative steel

can be written as:
- (Mt + My — Mgtcos20)(Mitsin2a + My) + (Myy — Myt sina.cosa) £ 0.0
...(2.16a)
If @ = 900 for orthogonal steel case, the yield criterion is given by :
- (Mt + MMt + My) + Myy2 £ 0.0 .e..(2.16b)
where both My and My are negative moments.

Equation (2.15b) and Equation (2.16b) represents a pair of intersecting cones in

the (M, M M y) space, as shown in figure (2.5).
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Figure (2-5) Yield surface
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2.2.3 Design equations:

21

From the yield criterion derived previously the following equations can be

used for design.

a— positive moment fields:
Reffering to Eq— (2.15a):

N (Mxy + Mz cosa.sing) 2 .
M = " + My - Mj.cos?a
Mg sin?a - My
(Mxy + Mz cosa.sina)?
M§ + Mg = " + M, + Mz (1-cos?)
My sin?a - My
d(M¥ + M%)
For a minimum steel = 0.0
d(Mz)
From Eq— (2.18) and Eq— (2.19) we get
" My ) My.cosa + Mxy.sina
My = 7
sin?q sin2x
and since MZ AN [My / sin2a] , thus:
My Mxy + My cota
MY = + '
sin2q sino

e (2.17)

..(2.18)

....(2.19)

....(2.20)



Substituting Eq— (2.20) in Eq— (2.17) we get :

Mxy + My. coto

M;k( = My + My.cot 20 + 2 Mxy coto +

sina
...(2.21)
For orthogonal steel o = 900 the two equations (2.20) and (2.21) will be
reduced to :
My = My + |Myyl ..(2.22)
Mgy = My + Mgyl ea(2.23)

b— negative moment fields:
For negative steel at the top of the slab, similar procedure to the one just
described for positive steel can be applied using the negative yield criterion.

The corresponding Eqns to (2.20) and (2.21) are:

Mxy + My cota
Mt = My + 2 My, cota + My cot2a -

sina
.(2.24)
M Mx + M,, cotwx
MY - y_ ¥ .(2.25)
sin2e sino
For ¢ = 909 :
Mt = M, - | M 2.26
X X | Xy | ....(2.26)
Mgot = My — | Myy | ....(2.27)



c— mixed moment fields:

For positive moment fields if M"; £ 0.0 then from yield criterion equation (2.15a)

(Mxy + My cote) ?
M;E - My + 2 Mxy coto + My cot2¢ +
My
....(2.28)
For orthogonal steel o = 900 =
My, 2
Yy
MY = M, + cee(2.29)
My
If My £ 0.0 then from yield criterion Eq— (2.15a)
- 2
v My.My - My
o
My sin?a + My cos?a + 2 Myy sina.cosa
After rearranging it reduces to :
M (Myy + My cota)?
ME - y + y y
sin%a sinfa (My + 2 My, cota + My cot?a )
and since M; N [My /sin?¢e] thus
1.0 (Myy + My, cota)?
ME - —— | my y v
sin?q My + 2 Mxy cota + My cot?a )

....(2.30)

******



For orthogonal steel o« = 900 »

... (2.31)

For negative moment fields considering the negative yield criterion and following

the same procedure the corresponding expressions for negative steel are:

(Mxy + My. cota)?

M;:t =M, + 2 Mxy.cota + My.cot 200 -

My
....{2.32)
and for ¢ = 900
My 2
Yy
M;‘Et_Mx_ | ....(2.33)
My
1.0 (Myy + My .cota )2
sin2q (M, + 2 M_,,.cotax + M,.cot?a )
X Xy y
....(2.34)
and for ¢ = 9009
Mx 2
Mgkt = My - Y l ....(2.35)
My

If My = 0.0 = M} = 0.0, then no reinforcement is needed.



,2.2.4 Rules for placing reinforcement :

Given the stress field (My,My,My,) with the angle of skew equal o at any
point on the slab, the reinforcements in the X— and o— directions respectively,
will be placed according to the following rules:

a— Bottom steel:

(1) Compute the design moments M; and MZ from Eq—(2.21) and Eq- (2.20).
(2) If M; < 0.0 then set M; = 0.0 and calculate M:; according to Eq— (2.30).

If the calculated value of My is < 0.0, then My = MJ = 0.0 (no reinforcement

o

is needed).

Or,

3) If M(’; < 0.0 then set M; = 0.0 and calculate M; according to Eq— (2.28).
If the calculated My < 0.0 then My = My = 0.0 (no reinforcement is needed).
Or,

(4) If both M; and M; are positive, then adopte the calculated values as the
design moments.

Or,

(5) If both M} and My, are negative then no reinforcement is needed.

b— Top reinforcement:

(1) Compute the design moments Myt and Myt from Eq— (2.24) and Eq—(2.25).
(2) If Myt > 0.0 then set Myt = 0.0 and calculate M}! from Eq—(2.34). If the
resulting value of Mgt is N 0.0 then Myt = M3t = 0.0 (no reinforcement is
needed).

Or,if

(3) M3t N 0.0 then set M3t = 0.0 and calculate M}t from Eq— (2.32). If the
resulting value of My! is N 0.0 then M}! = Mj! = 0.0 (no reinforcement is
needed).

Or,if

(4) both M;t and M;t are negative, then adopt the calculated values as design



moments.
Or, if

(S)both M;t and M;t are positive, then no reinforcement is needed at the top.
For bottom and top reinforcement if the design moments are found to be equal
to zero then the minimum steel may be provided according to the code of

practice( 22),

2.2.5 Multiple load cases:

The above rules apply only when the slab is subjected to a moment field
resulting from a single load -case. In practice, however, many slabs and
particularly bridge decks are subjected to multiple loading. The reinforcement
must then be proportioned to satisfy the multiple moments triads (Mxi’Myi’Mxyi)
i = 1,n produced by the multiple loading, where n is the number of such
loading cases.

(1) Using the design equations (as described previously), for the ith 1oad case,
calculate the corresponding My; and M;i .

(2) Calculate the maximum of all the M;i and M;a taking into consideration all
the load cases. Let these be My .y and Mj_max -

Evidently if we use these as the design moments, then we will get a safe design
but not necessarily an optimum design. So we can move towards an optimum
design as follows:

(3) Assume that in the X— direction we provide My ;... but in the a— direction
we provide M&i so as to satisfy the yield criterion in each case. M;i is given

for each case by:

. 1.0 (Myy + M3y sina.cosa )?
M = — M
i

sin?p (M;"(_max - My + M’&i cos?x )

26



Calculate the maximum of M;ri that satisfies the yield criterion and let it be
MZ —emax- Evidently a safe design is produced if we use My .. in conjuction
with the maximum M(’; —_emax determined so as to satisfy the yield criterion.

(4) A similar procedure to (3) above can be done if we choose M; —max as the
design moment in o— direction, and calculate M;i that satisfy the yield criterion

in each case. M;i will be given by :

(Mxy + Mg—max sino.cosm) 2

X * 2
Mxi = Mx - My_max cos’o -

M*

p-max Sina - My

%*

Let the maximum one that satisfies the yield criterion be My_cmax-

Therefore a better design is to choose that set of design moment where the

(My + Mp) is the smallest.

We can stop at this stage but if need be we can improve on this by assuming
that other combinations are possible and use a simple search technique (i.e
examining the feasible design region as shown in figure (2.6) ). For each load
case, we see if the design moments at the grid points are a better minimum. If
it is not, we reject it. If it is, we check to see if it violates the yield criterion
for the load case considered. If it does, we reject it. If not, we see at which
grid point we can get minimum of (M; + M;). This gives us the optimum
design moments.

The above procedure is adopted for positive steel (bottom Ilayers), the same
procedure can be used for negative steel, in which case, the minimum replaces

the maximum in the above steps.

-~
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2.2.6 The mechanism condition:

At ultimate load it is necessary that the slab must become a mechanism
signifying that the slab cannot carry any further load.
In the direct design approach any stress field in equilibrium with the applied load
is linked with the yield conditions previously derived to provide the necessary
strength . So the necessary strength is made equal to the calculated stress at
every point in the slab. Accordingly, if elastic moment field is used at ultimate
load, almost all the points attain their ultimate strength with a minimum
redistribution of the stresses. Thus converting the slab into a mechanism.
However, if elasto—plastic field of moments is used, then some points of the slab
may start yielding well before the design load is reached. So when elasto—
plastic stress field is used in the design method, the simultaneous yield at the
design load will not happen. This represents the major difference between
designing with elastic and non elastic stress field although in both cases the
mechanism condition is satisfied at design load.
A similar phenomenon is noticed in the case of multiple loading, where all points

of the slab may not reach their ultimate strength at the same level of loading.

2.2.7 Ductility demand:

In the classical plasticity theory it is assumed that the material possesses
unlimited ductility. This means that portions of the slab which yield early on in
the load history continue to deform without any reduction in their ultimate
strength.  Unfortunately, in the case of reinforced concrete slabs this assumption
cannot be accepted without reservation.

What is needed is that the difference between the load at which the first yielding
of the slab occurs at a point and the ultimate load of the whole slab is made as

small as possible. This will reduce the load range during which sections that
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yield early are required to deform at constant stress without loosing their strength
due to strain softening of the concrete.

Theoretically, this ideal situation will be satisfied automatically as all the points of
the slab will yield simultaneously when elastic distribution is used in the design.
However, in practice limitations on the size of bars, spacing of bars for example
prevent the simultaneous yield being reached.

It is possible that the ductility demand increases when elasto— plastic stress field
is used in the design method. The chosen distribution of the stress field over
the elastic range will induce some points to yield before the design load is
reached and also probably at an earlier stage than the one corresponding to an
elastic moment field. Consequently, the difference between the ultimate load and
the onset of yielding could be relatively large in comparison with the design using
elastic stress field and thus it may lead to an indesirable behaviour of the slab.
In other words in the case of elasto— plastic moment field , more ductility may
be required than for the case of elastic moment field, and the difference will
depend upon the degree of plasticity of the moment field chosen in the design
method.

In the present study, this problem will be investigated in detail and an attempt
will be made to see how far we can depart from the elastic distribution without
~ violating the serviceability requirements of the slab.

Another problem which will not be treated here is the one related to the

multiple load cases.

2.2.8 Conclusion:

The rules set in this chapter provide either an optimum design or a close
upper bound to the minimum reinforcement in concrete slabs. These rules will
ensure that the yield criterion is nowhere exceeded, and that a state of yield will

exist in most slab regions, sufficient to convert it into mechanism at design load.



Design for membrane forces and the result of combining bending and membrane
forces have not been mentioned in this chapter for the simple reason that the
present investigation is restricted to the design for bending moments only.

The conditions of equilibrium and boundary conditions will be satisfied by a stress
field obtained from a finite element program, which will be discussed in the next
chapter.

The mechanism condition and ductility demand will be analysed in chapter five.

W



CHAPTER THREE :

THE FINITE ELEMENT METHOD

3.1 Introduction:

In the previous chapter, the rules for designing the reinforcement in concrete
slabs for a given moment triad (My,My,Myy) were established.
The elastic or non elastic moments triads (Mx,My,Mxy) are obtained by means of
a finite element program which will be described in this chapter.
The mechanism condition and ductility demand discussed in the previous chapter
will be investigated for the case of non elastic stress field using a nonlinear finite

element program which also will be described.

3.2 Review of Mindlin finite element program:

As mentioned above, the distribution of the stress field is obtained by a
finite element program which will be discussed in detail here. The finite element
program used in this study is the one given by reference(38) known as Mindlin
program.

As the standard procedure of finite element analysis is well known it is not
described in detail here, but in order to define terms, a brief review of the
method is included. This is done with particular reference to the formulation of
the Mindlin plate bending elements.

The finite element method is an approximation technique which represents
continua by equivalent discrete systems., Consequently, continua with infinite
degrees of freedom are approximated by equivalent systems with finite numbers of

degrees of freedom.
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Thus, a slab to be analysed by finite element method is first divided into a series
of elements of simple geometric shape which are connected at a finite number of
points known as nodal points.  This process is known as discretisation. A
displacement function in terms of the coordinate variables (x,y) and the nodal
displacement parameter (eg.u,v), is chosen to represent the displacement variations
within each element, and, by using the principle of minimum total potential, a
stiffness matrix relating the nodal ‘'forces' to the nodal ‘'displacements' can be
derived. Such a displacement function will try to approximate the actual

displacement field over the whole element.

3.2.1 Mindlin plate elements:

Mindlin plate theory allows for transverse shear deformation effects and
thus offers an alternative to classical Kirchoff thin plate theory.  The main

assumptions are that :

a— Displacements are small compared to the plate thickness.
b— The stress normal to the plate mid— surface is negligible.
c— Normals to mid— surface before deformation remain straight but not necessarily

normal to the mid— surface after deformation.

A typical Mindlin plate is shown in Fig— (3.1)

Finite elements based on Mindlin's assumptions have one important advantage
over elements based on classical thin plate theory. Mindlin plate elements require
only c(0) continuity of the lateral displacement w and the independent rotations
6y and By . However, elements based on the classical Kirchoff thin plate theory
require c(1) continuity. In other words (dw / 3x) and (dw / dy) as well as w
should be continuous accross element interfaces, although this condition is

relaxed in non— conforming plate elements. Thus, it would appear that Mindlin

w
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plate elements are simpler to formulate and they have the added advantage of
being able to model shear— weak as well as shear— stiff plates — if transverse
shear effects are present in the plate they are automatically modelled with
Mindlin plate elements.

Using the well known and tested(24) isoparametric formulations, the eight noded

parabolic elements in the XY plane are chosen (Fig— 3.2) in this study.

3.2.2 Finite element formulation:

On the basis of the Mindlin's assumptions, and with reference to the

figure (3.3) the displacement filed can be written as:

] ( v -

ow
& = 0y | = +o, L. (3.1)

ox

ow

0 + ¢
|7 oy "

where w = independent variation of the lateral displacement,

(BX,Oy) = angles'defining the direction of the line
originally normal to mid— surface of the plate
as shown in Fig— (3.3). They are considered as
average rotations and a correction will be made
subsequently to allow for non- uniform shear
distribution,

(d’x»d’y) = denote the average shear deformations.
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The in— plane strains are given by :

[ 1 [ du 1 [ 90y ]
€x -z
ox ox
ov aoy
€ = = -z
y oy oy
Jdu ov 90y, aay
7xy + -z +
oy Ix oy ox
| ] ! ) A i
..... (3.2)

For plane stress condition, if the stress corresponding to the strains ( fx»fyv')’xy)

are ( ox,(ry,rxy) then,

-ox- ~Ex Ex, Oj-ex-
oy | = | Exy Ey O ey e (3.3)
i Txyj I 0 0 G j ] ‘nyJ

where Ey , Ey , G and Ey, are independent material constants which are
needed to define the elastic properties of the plate.

These stresses produce the bending and twisting moment stress resultants

(Mx’MysMxy)
_ . (t/ 2 ( 5
Mx Oy
My = Oy dz
Mgy Txy
= - J t / 2 b -l

By substituting the Eq— (3.3) into the previous relation, we obtain:

w
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M, ] [Dy Dy, 0 | [-2964/3x ]
My | = | Dy, Dy O - 36y / dy
90y aby
Myy 0 0 Dyy - +
3y 9x
A 11 ]
....(3.4)
E,.t3 Ey.t3 G.t3
where Dy = ; Dy = —_— ny = —_— and
12 12 12
Ey,.t3
Dy, =
12
The above Eq— (3.4) can be rewritten as :
M = Ds.¢f ....(3.9)
And the shear forces (Qy , Qy) are obtained by the following equation :
Qy Sy O 0y - 9w / 3x
i B I (3.6)
Qy 0 Sy by - ow / oy

where Sy and Sy are the effective shear moduli in the X— and Y- directions

respectively. For an isotropic material

E 5
Sy = Sy =
* y 2 (1 +») 6

where E and » are the Young's modulus and the Poisson's ratio respectively.

Equation (3.6) may be rewritten as :

Q = Dy ¢ . {3.7)



The above two equations (3.5) and (3.7) can be grouped as :

M, D¢ | O €f
|
| ——-
My | = el ey e (3.8)
|
| Myy) i 0 | Dg i €g -
Or in a more general form :
o= D.e ....(3.9)

The governing equilibrium equations can be obtained by minimising the total

potential of the system. The total potential, m , can be expressed as:

v v A

ﬂ--—z—J [U]Tedv—J [6]Tpdv-J [ 6 T qds

....(3.10)

where ¢ and e are the stress and strain vectors respectively, & the displacements
at any point, p the body forces per unit volume and q the applied surface
tractions.
Integrations are taken over the volume V of the structure and loaded surface
area, A.
In the isoparametric formulation, the displacement variation over the element is

defined in terms of the nodal displacement components by the expression :

w
8
0l = 3 Nj.d; ....(3.11)
i=n
L ey.

39



where Nj is the shape function associated with node i , function of ({ , 5 ) and

which are given by Zienkiewicz(74)

& = [ wi, 0 Oyi ]T is the vector of displacements at node i.

The strains within any element can be expressed in terms of element nodal

displacements as :

Bj . 5 .. (3.12)

o~
]
itnmM oo

where B;j is the strain matrix of node i , generally composed of derivatives of

the shape functions:

i T i oNj 1
0 - 0
ox
IN;
0 0 -
Bfi oy
aNi aNi
0 - -
oy 9x
------ - B ... (3.13)
aNi
-Nj 0
ox
Bg
aNi 0 - N
oy
L J L J

B is the strain matrix associated with bending deformation ¢ and Bg; is the
strain matrix associated with shear deformation ¢g .

The equation (3.10) can now be rewritten for each element :

40
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1
ne=—J[ ¢ 7T [ B JT D.B.s® dv-
2 Ve

J[ 5¢ T [ N ] p.av - I[ ¢ JT[ N JT q.ds
Ve Ae

....(3.14a)
where V, is the element volume and A, the loaded element area.
Performance of the minimisation for element e with the nodal displacement &€

for the element result in :

M,
- ([B"pB)sedav - |[[ N JT p.av -
dse
Ve Ve
[ N ]JT q.ds ....(3.14b)
Ae
= Ke® ¢ — Fe ...(3.15)
where F& = | [ N JTp.av+ |[ N JT q.as ....(3.16)
Ve Ae

are the equivalent nodal forces for the element, and

kK = | [ B ]TDBav .. (3.17)
Ve
is termed the element stiffness matrix.
The summation of the terms in Eq- (3.14b) when equated to zero, results in a
system of equilibrium equations for complete continuum. These equations are

then solved by any standard technique to yield the nodal displacements.



Note here, that the stiffness matrix is obtained by Gauss quadrature integration.
A 3 x 3 Gauss rule is used with the flexural strain energy contribution and

2 x 2 Gauss rule with the shear strain energy contribution. This method is
known as ‘'reduced integration' scheme, and has been tested(35) to provide the
correct contribution for the shear components of the stiffness matrix for

rectangular and parallelogram shaped elements.

3.2.3 Plasticity: ¢

In the present program (Mindlin) the material obeys the Von— Mises
criterion given by the equation :

F = My?+ My? — MyMy + 3 Myy? — Mp2 = 0.0 (3.18)

y y P

where ( Mx’My-Mxy ) are the moment triad, and Mp is the plastic moment. It
defines the stress level at which plastic deformation begins. The equation
indicates that when bending moment reaches the yield moment Mp , the whole
section of the plate becomes plastic instantaneously although we know that this is
a convenient fiction since there is always a gradual spread of plasticity over the
depth of plate.

Von— Mises criterion simulates very well metallic materials, and good agreement
with experimental data have been obtained for most metals. However, for
concrete the applicability of Von— Mises criterion is debatable because nonlinear
action in concrete is not caused by actual plastic flow as in metals, but is
dictated by the cumulative effect of microcrack propagation. However, these
reservations are irrelevant in the present context because the object is to obtain
elasto— plastic stress distribution in equilibrium with the applied load, and without
any knowledge of the reinforcement in the slab being analysed. The output from
this analysis will simply serve as input to the determination of the design

moments.
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— Elasto— plastic_stress / strain relation:

For the post yield state, the material behaviour will be partly elastic and partly
plastic. During any increment of stress during the load history, the changes of

strain are :

de = de + dep ....(3.19)
where de. represents the elastic component of the strain and is given by :
dee = [ D 171 do ..(3.20)

where [ D ] is the elastic constitutive matrix,

and dep represents the plastic component of the incremental strain de.

In order to derive the relationship between the plastic strain component dep and
the stress increment do , it will be assumed that the material obeys the flow rule
(normality rule), as shown in Fig— (3.5). The flow rule states that the
incremental strain increment, has a direction normal to the yield surface at the

point considered, and is given by the relation :

oF
dep=d)\———— ....(3.21)
-1y
where d\ is a proportionality constant termed the plastic multiplier.
Thus on use of Eq- (3.19) , Eqg- (3.20) and Eq-— (3.21) the complete

incremental relationship between stress and strain for elasto— plastic deformation is

found to be :
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oF
de =[ D ! do + ax ... (3.22)
:Tg
oF oF oF oF
The vector al = = , , is termed
o0 oM, aMy aMxy

the flow vector.
If the hardening phenomenon is taken into consideration, then the yield function
F in terms of the stresses ¢ and work hardening parameter x is given as :

F(o,x ) = 00

and the total derivative of the yield function is given as :

oF oF
dF = do + d¢ = 0.0 ....(3.23)
J0 oK
or al do — A dx = 0.0
1 oF
with A= - dx ... (3.28)
dx 9K

. Premultiplying both sides of Eq— (3.22) by al D and eliminating aT do using

Eq— (3.24) we obtain the plastic multiplier d\ to be :

al Dde=al D[ D TT1do+ aT Ddxa

then aTDde=d)\{A+aTDa} >

1

il

d\ al D de ....(3.25)

A+ al Da

w



Using Eq- (3.25) into Eq- (3.22) then :

1
d£-=[D]'1d0+ al D de a
A+alDpa

and by premultiplying the above equation by D , we get :

1
D de = do + DaalD
A+ alDa
1
Thus do = de D - DaalbD
A+al Da
Or do = Dep de . ....(3.26)
1
vith Dep= D~ ———— Da al D .(3.27)
A+ al'! Da

Dep represents the elasto— plastic " stress— strain " matrix.

3.2.4 Solution of nonlinear problems:

The solution of nonlinear problems by finite element method is usually
attempted by one of the three following techniques: (see Figure 3.6)
(i) Incremental ( step wise procedure)
(ii) Iterative ( Newton— Raphson method )
(iii) Increment — Iterative ( mixed procedure )
In this program all these three methods are available, and the mixed procedure
will be used in this study where the stiffness matrix is updated for the second
iteration of each load increment only. Consequently economies in computation

time are gained.
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3.2.5 Solution procedure adopted in the Mindlin program:

The solution procedure followed by this program is summarized in the

following two tables:

Table (3.1) Equation solving technique for Mindlin program

(1) Begins new load increment, f = f + & f

(2) Set a f equal to the current load increment vector.

(3) Set 6° equal to 0.0 for the first increment or equal to the total displacement
vector at the end of the last load increment.

(4) Set the residual force vector ¥0 to zero for the first load increment, where
¥ represents the umbalanced load vector given by the difference { K& ¢ — F€ }
(see Eq— 3.15)

(5) Set ¥0 = VY0 + A f

(6) Solve & d0 = -— [ Kt ]'1 ¥0 , Kt represent the old or updated
tangential stiffness matrix.

(7) Set d' = dO® + & d0

(8) Evaluate ¥'(d') ( the current residual force ).

(9) If the solution has converged go to 11 ; otherwise continue.

(10) Iterate until solution has converged.

(11) If this is not the last increment go to 1 ; otherwise stop.

Table (3.20) The iteration loop

(1) Set iteration number i = 1
(2) Solve a dl = — [ Ky T°! ¥, use old or updated Ky .

(3) Set ditl = di + & di .
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(4) For each Gauss point, evaluate the increments in strain resultants :

a Gfi.= Bf (& di)

a esi= BS(Adi)
(5) Using the elastic rigidities estimate at each Gauss point, the increments in
stress resultants and hence the total stress resultants :

aof=Df i > ot = of+ e of

i

a0l = Dg gl 3 ogltT =

Usi + a gd
(6) At each Gauss point depending on the states of O'fi and crfi"" , adjust (Tfi+1

to satisfy the yield criterion and preserve the normality condition.

(7) Evaluate the residual force vector:

pitr o [[ B JT op + [ Bg ]Tas]dA - f
A
(8) If the solution has converged, continue, otherwise set i = i + 1 and go to 2

(9) Move to the next increment.

3.2.6 Convergence criteria:

Because of equilibrium violation, extraneous residual forces develop in
iterative process of solution, The convergence criterion is based on a ‘tolerable’
value of the residual. The criterion employed states that convergence occurs if

the norm of the residual forces becomes less than the tolerance t :



N\ 2

X 100 £ ¢t ....(3.28)

ol N -
1
-
—
o]
o
—

where f is the applied force vector, ¥ is the residual force vector, r denotes the

iteration number and N is the total number of nodal points.

3.2.7 Enhancements to the program:

Some modifications were necessary before the program could be used for
this study. It involved the writing of a code to set up the design of slabs in
accordance to the direct design approach. In consequence the design equations
given in chapter two have been incorporated within Mindlin program in such a
way that at each increment level, the required reinforcement for the slab is
obtained (this task will be detailed in the following chapter).

The moment volume giving the amount of reinforcement for the whole slab at
each stage of loading is also given.
Finally, a mesh generation routine was also added to the program. This saved

time and helped to avoid errors during the rather tedious task of data input.



3.3 Review of the ' LAYER ' program:

3.3.1 Introduction:

In the previous section, a rational manner of obtaining the stress fields
( elastic and non— elastic ) has been established.
To test the slabs designed by the direct design approach using non— elastic stress
field, one can do it theoretically and then confirm the results experimentally.
Analytical procedures which accurately determine stress and deformation states in
reinforced concrete members are complicated due to many factors.
Among them are:
(1) The nonlinear load— deformation response of concrete and difficulty in
forming suitable constitutive relationships under combined stresses.
(2) Progressive cracking of concrete under increasing load and the complexity in
formulating the failure behaviour for various stress states.
(3) Consideration of steel reinforcement and the interaction between concrete and
steel constituents that form the composite system.
(4) Time dependent effects such as creep and shrinkage of concrete.
Because of the complexities, analytical studies on reinforced concrete were based
on either empirical approaches, or on simple analysis assumptions such as those
of linear elastic behaviour for the system. However, finite element method offers

an adaptable means whereby such complex systems can be analysed.

3.3.2 Nonlinear finite _element models:

In this review we limit ourselves to the material nonlinearities because
they occur in all reinforced concrete structures and should be considered in any

accurate rational analysis.
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To model mathematically the nonlinear reinforced concrete behaviour, three areas
must be examined:

(1) Since steel reinforcement is comparatively thin, it is generally assumed capable
of transmitting axial force only and thus, a uniaxial stress— strain relationship is
sufficient for general use.

(2) For concrete, however, a knowledge of multiaxial stress—strain behaviour is
required. Although a variety of models have been proposed, this is still far from
being complete.

(3) The bond slip phenomenon between steel and concrete is not considered.
Most practical applications assume perfect bond.

Once the stress— strain relation of each material is available and a perfect bond is
assumed, steel reinforcement can then be placed in proper positions in concrete
elements. Constitutive equations for the composite response of concrete elements
can then be formulated.

Having derived the nonlinear constitutive relationships, the next step is to solve
the nonlinear problem using the finite element techniques.

In the literature, two distinctly different viewpoints have been reported in an
effort to obtain the necessary constitutive relations. In the first approach,
exemplified by the work of Jofriet and Mc Niece(43) and Bell(5) | a semi—
empirical overall moment— curvature relation is employed which attempts to take
into consideration the Qarious stages of material behaviour.  This approach is
limited due to the assumption of a macroscopic equivalent moment— curvature
relationship.

The second approach is based on idealized stress— strain relations for concrete and
steel, together with some assumptions regarding compatibility of deformation
between the two constituent materials. Cervenka has analysed reinforced concrete
panels under in— plane loads using this technique.

For flexural deformation, material property variation through the thickness must

be taken into account. This can be accomplished in a discretized fashion via a
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layering approach or by the introduction of numerical integration points through
the thickness. The layering concept was applied by Whang(sﬂ) to the
elasto— plastic analysis of shells, and is a physically interpretable special case of
the integration point approach suggested by Marcal(52),

Dotreppe.J.C( 2.0), Johnarry(‘“), Hago.A.W.(29) and L.M.A.Hafez(') and others
have used the layer approach and have reported good agreement with

experimental results. So in this study the layering concept will be used.

3.3.3 Review of the layer approach:

In such models the slab thickness is divided hypothetically into a number
of layers parallel to its middle plane.(Fig 3.7)
Each layer is assumed to be in a state of plane stress condition, and a linear
strain variation with the depth is assumed for the small deflection theory. Each
layer can be of a different material, thus for a reinforced concrete element, each
constituent material is assigned a different layer. Perfect bond between all layers
is normally assumed, although in some cases, bond slip can easily be
accommodated.
The deterioration in the slab stiffness is represented by appropriately changing the
layer properties, whenever nonlinearity occurs. Crack penetration through the slab
can thus be conveniently reflected by this model.
Various layered finite element models have been used al}ld are reported in the
literature such as A.W.Hago's or L.M.A Hafez's models.
In the present study the model given by reference(?) has been used and it is
defined in the followi‘ng.

3.3.3.1 Lavered finite element formulation:

Layer approach is used widely with various types of elements. The first element
used by Wegmuller(sg) is a rectangular element with three degrees of freedom

(Gx,ey,w). The element ignores in— plane effects, and thus assumes a fixed



qejs
3y} jo ssauxyaly)

(30R}JNSPIwW ) 30UBJB }3J

<
X




position of the middle plane of plate, such an assumption will be restricted only
to problems in which membrane forces are negligible or there is little shift in
neutral axis position.

For bending problems, as the cracking progresses deeper into the slab depth, the
neutral axis shifts from its initial position towards the compression face. The
layer approach has been used to solve this problem by taking the effect of
membrane stresses into consideration.

Wegmuller(“), Hand(3'), Johnarry(‘“), Cope(”) and Hago(3°) have used a
rectangular element with five degrees of freedom (u,v,w, ex,ey) at each node.
L.M.A. Hafez(') used an isoparametric eight noded elements with five degrees of
freedom (u,v,w, ax,oy), based on the Mindlin theory. In this study this model is
used.

In the following, formulations are made separatly for each layer.

— Displacement representation:

The displacements u,v,w at any point in the plate with coordinates (x,y,z) can be

expressed as :

u(x,y,z) UU(X,Y) -z ox(X,Y)
v(x,y,z) = | vo(X,¥) - 2z By(x,y) ....(3.29)
v (X,Y,2) wy (x,Y)

where u, , v, and w, represent the displacement at the plate reference in the

X— , Y- and Z— directions respectively.
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So the strain— displacement relationships are given as :

(using the finite element idealization)

- . _
|
aNie | aNie
€x - 0 | O -z
ox | ox
i
aNie :
€ 0 0 0
Y I
dy |
|
8 aNie aNie | aNie
€xy =3 | O -z
i=1 dy ox | oy
T O
: aN;e
Txy 0 0 |~ o - Nj®
|
|
| aNie
Yyz 0 0 :— o 0
] |

Ui

Vi

....(3.30)

In which ey, €y, €xy are the inplane strains components, and Yxy » 7Yyz are the

transverse shear strain components, z is the distance from the reference plane to

the layer centre, as shown in figure (3.7), and N;€ are the usual shape functions.

Eq— (3.30) can be rewritten as :

8
{e)=3
i

for each layer, where B; =

Bi { &1 }

... (3.31)

where Bpj represents the strain matrix associated with plane stress deformation,

and Bf; and Bg; are as defined previously.

a



For linear analysis of uncracked concrete and in the abscence of initial stresses

and strains, the stress— strain relationship for each layer may be written as :

(o}y=[D]{e) .. (3.32)

which is similar to Eq— (3.9), but here the constitutive matrix for a concrete

layer is given by :

1 v 0 0 0
v 1 0 0 0
Ec
D' =
: 1l -v»
- 2
1 - 0 0 0 0
2
5(1 - »)
0 0 0 0
6 x 2
5(1 - »)
0 0 0 0
6 x 2
L J
(3.32)

where E_ is the Young modulus of concrete and » is the Poisson's ratio.

For steel layer [ D'] is given by :

cos‘4n cos2a sin?a cos3a sina 0 0
sin‘a cosa sina O 0
p Es
D'= ——m8w—— cos?a sin2a 0 0
1 - »p2
Symmetric 0 o0
0

...(3.33)
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where p represents the percentage of steel in the direction considered, Eg the
Young's modulus of steel reinforcement, and o the angle of inclination of the
steel to X~ axis measured from X- axis to the steel direction anticlockwise.

Consequently, the stiffness matrix is computed for each layer and then a

summation for all the layers is done :

JJ[B]TD'[B]dx.dy dz ....(3.34)

x

]
—-M 3
i
-

where dz; is the thickness of the ith layer, n is the total number of the layers,
B is the strain matrix and D' is the constitutive matrix depending on the type of
the material and the state of stress (steel or concrete, elastic , cracked or
plastic ) in respect of each layer.

3.3.3.2 Modeling the material:

To trace the nonlinear behaviour of the composite material (reinforced concrete),
uniaxial and biaxial stress— strain relationships for different materials and the
corresponding yield criterion are required in the layer finite element model.

A— Concrete:
A.1- Yield criterion:
Studies of the behaviour of concrete under multiaxial stress states are essential to
develop a universal failure criterion for concrete. For slab studies, in general, a
knowledge of behaviour under biaxial state of stress is sufficient.
From experimental studies, it has been concluded that strength of concrete under
biaxial compression is greater than the uniaxial compressive strength; and the
strength under biaxial tension is independent of the stress ratio in the principal
directions and equal to the uniaxial tensile strength.(Figure 3.8)
Widely accepted experimental data (regarding the strength, deformational
characteristics and microcracking of concrete subjected to biaxial stresses) have

been provided by Kupfer, Hillerdorf, and Rush(48) (Fig— 3.9) and these are
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adopted in this study.

This yield surface can be expressed in terms of octaheral shearing stress criterion

of the form:

Toct = @ + b Opct ....(3.35)
in which 75,4 = the octahedral shearing stress; oyt = the octahedral normal
stress; and a and b = material constants.

Taking f. as the uniaxial compressive strength of concrete and f4q as the

equivalent compressive strength under biaxial compression, and defining the ratio

m = f; / f; , Eq— (3.35) can be established in the following manner :
a—_Compression— Compression:

(i) For uniaxial compression 7o = [/ 2/ 3] fe and 0oy = —fc / 3, then

+ a ....(3.36)

(ii) For biaxial compression 7oc¢ = [/ 2/ 3] fqand gge¢ = (— 2 fgq )/ 3,

then

fo=-———+a .. (3.37)

- 0.4143 = 0.0 ....(3.38)



(ep}
")

b— Tension— Compression :

(i) For uniaxial compression 74c¢ = [/ 2/ 3] f; and 0gey = — fo / 3

+ a ....(3.39)

(i) For uniaxial tension and with ff = m.f; : 7o¢¢ = [/ 2 / 3] m.f; and

Goct = [mfe] /3

J 2 m.fo.b
mfo=——— +a .. ..(3.40)
3 3

Solving (3.39) and (3.40) then :

Toct l1-m Ooct 2/ 2 m
+ J 2 - = 0.0 ..(3.41)
fo 1l +m fe 3 l+m

c— Tension— Tension:

Since there is no increase in ultimate strength due to biaxial tensile stressing, the

simple circular condition :

2 2
71 , 72
-1.0=0.0 ce. . (3.42)

£y £y

is sufficient.

The resulting yield surface known as the limiting yield surface is shown in Fig—
(3.10). However unlike steel, plasticity in concrete begins well before the limiting
or failure surface is reached. To accomodate this phenomenon into the analysis,
the intermediate loading surfaces given in Fig— (3.10) have been adopted.
Accordingly, the loading surface is divided into initial, subsequent and limiting

vield surface. This was accomplished by simply scaling the yield surface, and is



further explained in the following section.
A.2 Nonlinear constitutive material properties :

A.2.1 — Concrete in _compression:

Experimental results show(64,65) that an initial linear elastic behaviour for
concrete’ under compression is limited only to small load range up to 30% of the
ultimate capacity. Beyond this range nonlinear behaviour is involved.

To deal with the stress— strain relationship of concrete under compressive forces,
there are several possible ways of representing the change in stiffness with
increasing strain. The model proposed by Liu, Nilson and Slate(s1) taking into
account these changes was adopted in this study.

The basic concept of this model is to treat the biaxial stress— strain behaviour of
concrete as an equivalent uniaxial case. According to this approach, the stress in
each principal direction is evaluated solely by the principal strain increment in the
same direction and the corresponding tangent stiffness, which is a function of the
principal stress ratio, accounts for all the biaxial effects.

The relation between stress— strain is of the form :

A+ B.E. ¢
g = ....(3.43)
(1 -».0)(1 + C.e + D.€2)

where A,B,C and D are found from the following conditions on the stress— strain
curve in compression :

(i) For e = 0 > o0=0

do E
(ii) For ¢ = 0 > =
de (1 -».0)

which accounts for biaxial stress by the parameter ! , which is the ratio of
principal stress in the orthogonal direction to the principal stress in the direction

considered ( o1 / o0p ).
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(i) For ¢ = e = o= Opk

(iv For ¢ = ¢pk % (do/ de) =0

where opy and epg are the peak stress in biaxial compression and the strain at
peak stress , respectively.
Substituting the resulting values in Eq— (3.43) and introducing the secant modulus

Eg = opk / €pk , one obtains:

E.¢
o‘ -
r 2 1
1 E € €
(1 - ra)|1 + -2 +
1 -0 Eg €pk €pk
L J
....(3.44)
where o , € = stress and strain, respectively, in biaxial loading,
E = modulus of elasticity of concrete for uniaxial
loading,
vy = Poisson's ratio,

€pk = the strain at maximum stress of concrete for biaxial
compression ( = .0025)

?} = the ratio of principal stress in the orthogonal
direction to the principal stress in the direction
considered. ( = 01 / 03 )

Ey; = secant modulus = opg / €pk

Opk = ultimate strength of concrete for biaxial compression

(taken equal to f., )



This equation describes the stress strain behaviour of concrete in biaxial
compression up to peak strain equal to 0.0025 . Beyond this peak, the equation
ceases to be valid due to strain softening of concrete. Since the major effect on
the response of under reinforced flexural members is due to cracking, post— peak
behaviour of concrete in compression can be safely ignored. Accordingly, in this
study the softening of concrete is neglected by assuming perfectly plastic
behaviour.

For the numerical model, to allow for a gradual reduction of stiffness and also to
overcome the uncertainty always involved in the choice of a single point about
which to make an intermediate stiffness reduction , several intermediate loading
surfaces may be used. This essentially was what has been done by Bell and
Elm(¢) , and Chen et al (9) |

A scheme employing this concept which has been proposed by Johnarry(‘”) is as
follows:

The intermediate surface strength f.. to be used in place of f, in the yield

surface given by the Eq— (3.38) is defined as:

E'C
fee = feo - ft + fe ....(3.45)
Ej
subject that fo. }» f¢
where fco = 0.5f;
E. = initial Young modulus of elasticity,
f = tensile strength of concrete,
E; = instantaneous elasticity modulus.

When a yield condition is satisfied from Eq— (3.38), the instantaneous modulus,

E; , is determined as follows:

do
If €; £ 0.0025 3 E; =

from Eq— (3.44)
dej
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If 0.0025 £ ¢; £ 0.0035 s E; =

If ¢; 2 0.0035 > E;j= 0.0
(*) Note that the Eq— (3.44) was further investigated by Tasuji et al(84) and was

found to represent the behaviour of concrete in both compression and tension.

A.2.2 — Concrete under tensile forces:

In any well designed under— reinforced concrete structure, the cracking of concrete
and tensile yielding of steel reinforcement are the major sources of nonlinearity.
In general, two main approaches have been used to model concrete cracking viz
the discrete and the smeared crack representation.

To produce a more detailed representation of behaviour it would be necessary to
model the discrete nature of cracks and this is not economic or necessary for
slabs. In addition the smeared crack representation is more popular because of
ease of adoption in numerical work and it doesn't require the alteration of the
finite element mesh.

In the smeared crack representation which was used in this model, it is assumed
that at the instant of the crack formation, only the normal stress perpendicular to
the cracked plane and the shear stress parallel to the cracked direction are
released and the other stresses are assumed to remain unchanged.

Before going further into the modeling of crack, we need to define two factors:
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First— The shear retention:

The surfaces of cracks that develop due to excess tensile stress in concrete are
usually rough. When a force V is applied at a crack, both a tangential sliding 6
and a normal displacement w result as shown in Fig— (3.13):

When the normal displacement is restrained by reinforcing bars crossing the crack,
axial tensile stresses will develop in the reinforcement, which will then induce
compressive stresses in concrete. The resistance to sliding will then be provided
by frictional force generated by the compressive stresses in the concrete.

This mecahnism of shear transfer in cracked concrete is called the interface shear
transfer mechanism. So cracked concrete faces are capable of transmitting shear
forces accross cracks by friction, and in order to take the shear stiffness of

concrete into account, a reduced shear modulus G equal to BG is retained in the

stress— strain relationships.
In the model used in this study, AL. Mahaidi's(2) suggestion which states a

hyperbolic variation of G with the friction strain normal to the crack have been

used.
0.4
g = — ....(3.46)
€f / €cr
where €, = concrete cracking strain = f / E; ,
and e = fictitious strain normal to the crack and is given by the following
equation:
¢fic = e€x.Sin?0cp + €y.c08020¢c — €xy-SinOcr.cOSOcr ...(3.47)

where (ex,ey,exy) are the in— plane strains, and 6, is the angle of crack.
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Second— Tension stiffening:

Figure (3.14) shows the physical situation in the vicinity of a crack in a
reinforced tension member, and indicates that at a crack the full load is carried
by the reinforcement only, whereas between the cracks the load is shared between
steel and concrete. This ability of concrete between cracks to share the tensile
load with the reinforcement is termed tension stiffening.

Tension stiffening is dependent on many factors and is adopted in the model used

in this study is the same as given by (13) with reference to Fig— (3.15)

Zone 1 €cr £ € £ Cy.€cr o =2 - fe
€cr
2 -Cl €
Zone Il Cp.€cp € € £ C,. €0 g = ——— Cy - fe
C -Q €er
Zone III € > Coeer o= 0.0

where f; is the tensile strength of concrete and ec, equal to cracking strain
(0.0001).
The coefficient C; = 1.3 and C; = 15.0 were derived empirically to ensure

good predictions for slabs and beams (13).
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In the smeared crack representation many different theories of handling the
formation of cracks and their orientation are used.

In the conventional analysis once a crack forms, it is assumed that the direction
6cr remains constant throughout subsequent analysis, and in some cases a crack
may close, and a new or secondary crack may be formed, but with the restriction
that the second crack is normal to the initial crack direction.

In the other extreme, the concrete is treated as a no— tension material, where
the principal tensile stress is brought back to zero at every stage of the analysis.
And thus, it defines at each stage of the analysis a new crack angle without any
reference to the previous one. (no— memory crack analysis)

This technique is quite simple due to the fact that no modification in the
material stiffness matrix is involved in this type of analysis. It reflects to a
certain extent the physical process of cracking but the lack of dependence on the
loading path is an approximation and leads in some cases to an early yielding of
steel which is presumably due to the release of the concrete tensile stresses.

A better illustration of the problem lies between these two techniques.

In this study the fixed crack analysis has been used by allowing second orthogonal
cracks to occur. A theoretical investigation was carried out by L.M.A.Hafez(1)
on this technique for the analysis of reinforced concrete slabs. She concluded
that the fixed crack analysis is suitable when orthogonal reinforcement case is
used.

Cracking takes place when the stress at a point satisfies the biaxial criterion,
either in tension— tension zone or in tension— compression zone.

In the tension— tension zone, concrete is assumed to crack if the yield criterion
in Eq— (3.42) is violated. Two orthogonal cracks may form if both the principal
stresses exceed the tensile strength of concrete at the same time.

Under tension— compression states of stress, cracking of concrete takes place if
the yield criterion using Eq— (3.41) with f, = f, is violated.

On further loading, concrete which has already cracked in one direction may also
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crack in another direction, which must be at an angle of 30° if no— orthogonal
cracks are considered. Otherwise, if the concrete is subjected to high

compressive stresses parallel to the crack direction, yielding and subsequent

crushing of concrete may occur.

A.2.2.1 Singly cracked concrete:

The cracked concrete is treated as an orthotropic material with axes of orthotropy
parallel and normal to the crack direction. The Poisson effect is neglected due
to the lack of interaction between the two orthogonal directions after cracking and
the modulus of elasticity of concrete normal to the crack direction is reduced to
Zero.

Thus, the total stress at the onset of cracking are given with respect to the local

coordinate system n, t (shown Fig— 3.12)

On [ E. 0 O €n
ot =10 0 O €t e..(3.48)
Tnt 0 0 6G Tnt
L ] L JL |
where E; = modulus of elasticity of concrete,
§ = shear retention factor (0 £ 8 £ 1) ,
G = shear modulus of concrete.

The diagonal term assumed with direction normal to the crack in the above

matrix may then be updated if the tension stiffnening is used.

A.2.2.2 Doubly cracked concrete:

In the model used in this study, concrete is allowed to crack in two orthogonal

directions. Two smeared cracks in two orthogonal directions may develop in a
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reffering to the global (X,Y) coordinate systems can be obtained as :

[0}=D*[e] ....(3.52)

An interesting point to notice with fixed carck analysis is the problem arising
from retaining Txy On cracked planes (8 factor). The fact that Txy ¢'0 on the
cracked plane implies that it is not a principal plane. Therefore there is a
possibility of the true principal plane not coinciding with the assumed crack
plane. Consequently, the angle of crack is not necessarily at right angle to the
previous one , and thus the hypothesis made earlier that we allow only another

set of smeared cracks normal to the initial ones, is violated.
B— Steel :
Figure (3.17) shows three possible representation of reinforcement :

(1) Distributed : The steel is assumed to be distributed over the concrete
element, with a particular orientation o« . A composite concrete— reinforcement
constitutive relation is used in this case, as explained in sec— (3.3.3.1) assuming
full bond. A stiffness matrix is built for the distributed steel separately then
added to the stiffness matrix due to concrete to form the global stiffness matrix

of an element.

(2) An embedded representation may be used in connection with higher order
isoparametric concrete elements. The reinforcement bar is considered to be an
axial member built into the isoparametric element such that its displacements are

consistent with those of the element.

(3) A discrete representation of the reinforcement, using one dimensional

elements, has been most widely used. Axial force members, or bar links, may
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be used and assumed to be pin connected with two degrees of freedom at nodal
points. In some cases the one— dimensional reinforcement elements are easily
superimposed on a two— dimensional finite element mesh.

As mentioned, for surface—type structural members such as plates in which
bending may be important, a layered finite element scheme shown in Fig— (3.18)
is usually adopted. This permits the inclusion of the steel at the proper level in
the surface element. A distributed representation is used for the layer containing
the reinforcement. This is particularly valid for slabs where the reinforcement is
uniformly spread over the whole surface or in bands which may be visualized by
finite element meshes. Consequently, in this study the steel reinforcement is
smeared into equivalent steel layer with uniaxial properties. A typical
stress— strain curve for steel reinforcing bar, loaded monotically in tension, is
shown in Fig- (3.18), and the idealization taken in this model is shown in Fig—
(3.19).

An elastic— plastic behaviour with possible strain hardening is assumed. The

incremental elastic stress— strain relationship is given by:

Ao = Eg.Ae ....(3.53)

and when the uniaxial steel stress reaches its yield value fy , the incremental

elastic— plastic stress— strain relationship takes the form:

Ac = Eg [ 1 — Eg/ (Eg+H)]Ae <. (3.54)

in which H is the strain hardening parameter for steel,and E; is the elastic

modulus for steel material.
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3.3.3.3 Solution of the nonlinear problem :

Since there are a number of different conditions for the two constituent materials
of the plate, it is evident that a step—by—step solution procedure is
required.(Fig— 3.6b)

The present model uses a modified version of the mixed procedure , where a
load is applied in increments and the solution at that load is obtained iteratively
until equilibrium is satisfied to a specific accuracy.

Thus the nonlinear stiffness equation :

F= K. ....(3.55)

where K = stiffness matrix , and §,F = displacement and load respectively.

is solved by a succession of linear approximations.

The stiffness matrix is updated at the first iteration for first increment and
subsequent load increments at iteration number 2, 5, 8, 11, 15 and 20 , so that
the nonlinear effects are reflected more accurately in the stiffness matrix., As the
stiffness matrix is not updated at each iteration, economies in computation are
gained. As additional measure of economy, only the stiffness matrix of the layer
where yielding has occured within the element is updated and added to the

element stiffness using the direct access file.

3.3.3.4 Solution procedure :

The solution procedure remains almost the same as the one described in the first

section of this chapter.
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3.3.3.5 Convergence criterion :

Layer program uses the following criterion to check the convergence of the

solution which is based on the force norms :

M=

[ Fij P2

100 £ tolerence

[\ -

[ Ry ]2

where N is the total number of nodal points of non— zero displacement in the
structure, r denotes the iteration number, Fy; is the residual force at the ith

displacement and R; is the total external applied load at the ith displacement.

3.3.4 Conclusion :

The nonlinear finite element model just reviewed, which is based on the
layer approach , has been tested using experimental data and good agreement

between the predicted behaviour and the experimental results was reported.(')




CHAPTER FOUR :

ELASTO— PLASTIC STRESS FIELD

4.1 Introduction:

In the first section of the previous chapter a reliable finite element program
was presented. In this chapter, the direct design approach using the non— elastic
stress field will be examined. In particular the effect of using non— elastic stress
field on the distribution of the moments of resistance (M;,M;) over the slab
which will be examined.

In order to analyse in detail this effect, some numerical experiments were

conducted using the Mindlin program.

4.2 Description of the analysis:

r

The design procedure used in this study is dependent on the finite element
program (Mindlin) described, and can be summarized as follows:
(1) The geometric details, material properties and the design loads are used as
input data for the program. The program performs an elasto— plastic analysis
on the slab using Von— Mises criterion. The analysis establishes the stress

distribution (My,M Mxy) at each increment of the design load.

y’
(2) Using the design equations (sect.2.2.3) the required resisting moments are
calculated automatically at each increment and at each Gauss point.

The resulting (Mx,My,Mxy) from step one are in equilibrium with the applied

incremental load, let it be a.Pgq , where P4 represents the design load and o 2

1.0 .
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Consequently, in order to obtain a stress field in equilibrium with the design load,
the moment triad obtained from (1) should be scaled by a factor which is equal
tol / «

As a result of these steps, one will obtain a design moment in accordance with
the elastic distribution of the stresses, and a set of alternative design moments in
accordance with non— elastic distribution for each degree of plastification.

Note that for each slab analysed with this program, it is required to define its
plastic moment Mp which is used to define the onset of yielding. The plastic
moment is given by the maximum value of the "Von-— Mises moments" obtained

at each Gauss point over the slab using the Eq- (3.18) :

3
Mp = Max M (Von— Mises) = [Mx2 + Myz - Mx-My + 3.Mxy2 ]

over the whole slab.

where (Mx,My,Mxy) are the elastic moment triad.

4.3 Analysis and results:

A series of slabs with various boundary conditions and differing aspect ratios
were investigated by the technique described in the previous section.
The slabs were all analysed under a uniformly distributed lateral load. Table
(4.1) summarizes the cases considered, and gives the results obtained.
The different levels of plasticity spread are shown in figure (4.1) for a typical
slab. The results for the design moments (M;,M;) are plotted in figures (4.3) to
(4.6), and here only some typical results are presented.
The results for the moment volumes which represent the total volume of
reinforcement (both at top and at bottom) over the structural element to sustain

the design load, given by this analysis have been plotted in figure (4.2).
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In all the figures the following convention has been taken:

EEmmm Simply supported edge
veaseanapaoboee Fixed (clamped) edge
..... Free edge
o ... column

For general use, the results had been expressed in a nondimensional form. The
sign convention for the moments is that those causing tension on the underside of

the slab are positive.

4.4 Discussion of results:

4.4.1 — ILoad deflection curve:

Figure (4.1) shows a typical load— deflection curve obtained from
elasto— plastic analysis (Mindlin program). This curve is used to compute the
different degrees of plasticity or in other terms the percentage of plasticity spread
over the slab. The scaling factor is automatically given by the load— increment
corresponding to each degree of plasticity considered as shown in the figure.

In the present study, the following convention is adopted:

At the onset of -yie]ding the zero percent (0 %) degree of plasticity is assigned,
and at the fully plastic stage (ultimate load reached by the analysis), hundred
percent (100%) of plasticity is assigned. Then from these definitions, the

different degrees of plasticity are calculated in consequence.
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4.4.2 — Table (4.1) and Figures (4.2):

The table (4.1) gives the results obtained for total design moment
volume by using stress values at various levels of plasticity. The last column of
each table shows the (Elastic — Elasto— Plasticymoment volume to elastic moment
volume ratio. Figures (4.2a) to (4.2c) show the variation of the moment volume
as the degree of plasticity is increased.

a— case of simply supported: (SLB.1.)

Figure (4.2a) for the case of SLB.1.A and SLB.1.B, show little variation of the
moment volume with various levels of plasticity.

For the case of SLB.1.C the variation of the moment volume remains
insignificant up to 60% of plasticity spread then it starts to grow up very
smoothly until reaching + 6% at 80% of plasticity spread.

In the case of SLB.1.D the variation of the moment volume shows an increase in
the moment volume as the degree of plasticity grows until reéching + 15% at
84% of plasticity spread.

b— case of fixed edge:

In this case, we notice a considerable increase in the moment volume for
SLB.2.B and SLB.2.C . The change in the moment volume is dramatically
increased in the case of SLB.2.D , where it reaches 50.46% at the level of
93.65% of plasticity spread.

When plasticity spreads to the edges, the rotation at the edge is not zero.
However, the present analysis assumes that the edge rotations equal zero at any
stage of loading.

Some possible schemes to overcome this problem were proposed such as by
W.Duncan and T.Johnarry(21) but this is still far from complete and further
work needs to be done in this specific area.

The case of clamped edge slabs will not be considered further in this study.



¢— case of SLB.3: (Three sides simply supported, one side free)

In this case the variation of the moment volume with the degree of plasticity is

negligible.

4.4.3 Isometric views:

Figure (4.3a) shows the distribution of the bottom design moment M; over
the slab as a function of the degree of plasticity spread.
The important points which can be seen from this figure are :
(i) The peak shown at the corner of the slab or the peak shown at the centre of
the plate, tend to flatten as the degree of plasticity spread goes up.
At the corner for example, the maximum design moment as shown in Table
(4.2a) has decreased by 15.4% at a level of plasticity of 17.5% and by 30.43%
at a level of 70% of plasticity spread from the elastic stress field case.
One important practical advantage of using non elastic stress field is that it leads
to more convenient layout of bars. For example the area covered by the design
moment at the corner has grown considerably as shown in the Table (4.2a) ,
where for the case of elasto— plastic stress field at a level of 52.5% is about 15
times the area covered by the design moment given by the elastic stress field.
The same phenomenon is repeated at the centre of the slab, but here the design
moment has increased slightly as the degree of platicity goes up , an average of
2% was recorded.
This is due to the fact that in a simply supported slab the twisting moment Mxy
is very large at the corners and in consequence the yielding starts in this region
of the slab. Since we have noticed a decrease in the design moment at the
corners of the plate so the increase of the design moment at the centre of the
plate was expected in order to maintain equilibrium.
However, the design moment (the one corresponding to non elastic stress field )

is covering a broader area of the slab than the one corresponding to elastic stress
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field.(as shown in the Table 4.2b)

(ii) the distribution of the design moment tends to be more uniform as the
degree of plasticity spread goes up.

(iii) Apart from the practical benefit of having a uniform distribution of the
design moment, there is another advantage which is related to the choice of bar
diameters and their distribution to envelope the theoretical design moment.
Obviously, the more uniform distribution pattern the more close envelope of the

design moment can be obtained.

Figure (4.3b) shows the distribution of the top reinforcement over the slab as a
function of the degree of plasticity spread. Similar conclusions are drawn from
this figure and also they can be easily checked through the figures (4.4) to (4.6)

where two other types of slab have been analysed.

4.5 Conclusions:

On the basis of the results presented, the following conclusions can be
drawn:
(1) The use of non elastic stress field with the direct design method has shown
to have some advantages which are:
(i) The design moment distribution is more uniform.
(ii) the peaks are smoothed out whith the consequence that congestion of
reinforcement is avoided. Thus, it is also easier in this case to approximate the
design moment envelope by a real choice of reinforcing bars.
(ili) In some cases and in some particular regions of a slab the design moment
reduces considerably and remains largely constant over a broad area of the slab.
(2) As far as the economy on steel areas is concerned, the difference between
the moment volumes obtained by using elastic stress field and by non elastic

stress field in the direct design method is not significant.
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TABLE (4-1)
% of Moment Volume
Case|Boundary condition|plasticity / q.Ly* Ratio*®
x E+04 x 100
Elastic 806 .464 0.00 %
N 21.28 % 804 .20 - 0.28 %
< N
E N — 42.55 % 800.46 -0.75 %
N N
_ 3 \ .
A L - 63.83 % 795.36 -1.40%
85.11 % 797.66 -1.10 %
o Elastic 1599.82 0.00 %
’ g 19.35 % 1596.94 -0.18 %
a "
— 7 7 38.71 % 1590. 88 - 0.56 %
8] Als)
G% : z“‘ 58.06 % 1585.38 - 0.91 %
e ceacd 77.42 % 1470.67 - 8.78 %
] “q Elastic 2286.34 0.00 %
Eﬂ z : 28.57 % 2286.39 + 0.00 %
r3 7 AN 57.14 % 2339.10 +2.31 %
wn 4 / ,
] 4 80.95 % 2423 .34 +5.99 %
7. 4
AL A ElaStic 3416'22 O'OO %
\ 12.90 % 3429.76 + 0.40 %
N
O 32.26 % 3503.19 +2.55 %
- \
m \ 51.61 % 362464 +6.10 %
1 M
W A 70.97 % 3790.80 + 10.96 %
\ 83.87 % 3937.06 +15.25 %
T 96.77 % 4146.50 +21.38 %
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TABLE (4-1) continued

% of Moment Volume
Case |Boundary condition{plasticity / q.Ly4 Ratio*
x E+04 x 100
Elastic 303.00 0.00 %
10.61 % 308.17 + 1.71 %
25.76 % 318.07 + 4.97 %
<J
Qd 40.91 % 328.25 + 8.33 %
A .
1 56.06 % 340.09 + 12.24 %
(Up)]
84.85 % 372.74 + 23.02 %
JAARA Elastic 574.48 0.00 %
0 j ¢ 34.25 % 620.98 +8.18 %
g % gm 61.64 % 725.38 + 26.30 %
- —
e g 89.04 % 768.24 + 33.76 %
R
SRR 97.92 % 790.24 + 37.59 %
Elastic 786.86 0.00 %
SOOI 000 6.85 % 800.16 + 1.69 %
) 34.25 % 843.560 + 7.20 %
g% i 61.64 % 926.77 + 17.78 %
X
X
U% ™ 75.34 % 995.00 + 26.45 %
% 89.04 % 1096.87 + 39.40 %
zwwx.wwvw 94.52 % 1145.22 + 45.54 %
) J Elastic 1160.67 0.00 %
% i ém 7.94 % 1161.18 +0.04 %
v 1 39.68 % 1225.07 +5.55 %




TABLE (4-1) continued

% of Moment Volume
Case |Boundary condition|plasticity / q.Ly4 Ratio*
x E+04 x 100
71.43 % 1370.68 + 18.09 %
87.30 % 1605.42 + 38.32 %
93.65 % 1746.37 + 50.46 %
Elastic 1154 .46 0.00 %
12.02 % 1157.85 + 0.29 %
<T| 4 24.05 % 1166.47 +1.04 %
7
M) v
. 7 - 52.10 % 1201.29 + 4.06 %
D 7
- E ) )
N g 72.14 % 1241.15 + 7.51 %
- 84.17 % 1280.22 + 10.89 %
R Elastic 3637.33 0.00 %
o 18.87 % 3631.72 - 0.15 %
SR
M| 0 37.74 % 3646.12 +0.24 %
93 56.60 % 3368.35 + 0.85 %
D)
SN 75.47 % 3701.65 +1.77 %
Elastic 7645 .81 0.00 %
Ay 18.87 % 7639.78 - 0.08 %
\
37.74 % 7625.70 - 0.26 %
O]\ 56.60 % 7595.00 - 0.66 %
N7 « 69.18 % 7559.60 -1.14 %
-
g -1.50%
N 75.47 % 7532.51
Ty 88.05 % 7475.70 -2.27 %
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TABLE (4.1) continued

% of Moment Volume
Case |Boundary condition|plasticity / q.Ly“ Ratio®
x E+04 x 100
A Elastic 19857.78 0.00 %
=) \ 28.57 % 19839.85 - 0.09 %
M
Clj ™M 57.14 % 19746.03 - 0.57 %
__J N
W) 71.43 % 19668.94 -0.96 %
_ 82.14 % 19539.16 -1.63 %
|
* : (Elastic — Elasto—plastic)moment volume / Elastic moment volume

Table (4.2a) Reduction of the peak design moment (pt.A Fig— (4.3a) and

the increase of the area covered by this design moment.

% Design Moment Area Covered by
of Moment M¥* ratio® Desi;:e Moment Area
plasticity (units) x 100 (A in units) ratio®
Elastic 15.00 0.00 % 3 x 3= 9 1.00
17.50 % = 13.00 -15.38 % 8 x 8 = 64 7.11
35.00 % = 12.00 - 25.00 % 11 x 11 = 121 13.44
52.50 % = 11.10 - 35.14 % [11.5]2 = 132.3 14,72
70.00 % = 11.50 - 30.43 % 13 x 13 = 169 18.78
* : (Elasto—plastic — Elastic)design moment / Elasto—plastic design moment

® : (Area covered by elastic / Area covered by elasto—plastic )design moment
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Table (4.2b) Reduction of the peak design moment (pt.B Fig— (4.3a) and

the increase of the area covered by this design moment.

% Design Moment Area Covered by
of Moment M* ratio® .the Area
Design Moment
plasticity (units) x 100 (A in units) ratio®
Elastic 16.00 0.00 % 3 x 3= 9 1.00
17.50 % = 16.00 0.00 % 5 x 5= 25 2.78
35.00 % = 16.20 + 1.25 % 5 x 5= 25 2.78
52.50 % = 16.50 + 3.12 % 6 x 6 = 36 4.00
70.00 % = 16.50 +3.12 % 8 x 8= 64 7.11

Table (4.3a) Reduction of the peak design moment (pt.A Fig— (4.4a) and

the increase of the area covered by this design moment.

% Design Moment Area Covered by
of Moment M* ratio® Desi;:e Moment Area
plasticity (units) x 100 (A in units) ratio®
Elastic 12.00 0.00 % 3 x 3= 9 1.00
28.00 % = 10.20 -17.65 % 9 x 9= 81 9.00
46.00 % = 9.50 - 26.32 % 11 x 11 = 121 13.44
60.00 % = 9.50 -33.33 % 12 x 12 = 144 16.00
82.00 % = 8.50 - 41.18 % 14 x 14 = 196 21.78
* : (Elasto—plastic — Elastic)design moment / Elasto—plastic design moment

® : (Area covered by elastic / Area covered by elasto—plastic)design moment
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Table (4.3b) Reduction of the peak design moment (pt.A Fig— (4.4b) and

the increase of the area covered by this design moment.

% Design Moment Area Covered by
of Moment M* ratio* ,the Area
Design Moment
plasticity (units) x 100 (A in units) ratio®
Elastic 11.75 0.00 % 2 x 2= 4 1.00
28.00 % = 10.20 -15.20 % 6 x 6 = 36 9.00
46.00 % = 9.30 - 26.34 % 10 x 10 = 100 25.00
60.00 % = 8.80 - 33.52 % [10.5]2 = 110.3 27.56
82.00 % = 8.00 - 46.87 % 12 x 12 = 144 36.00

Table (4.4a) Reduction of the peak design moment (gt.A Fig— (4.5a) and

the increase of the area covered by this design moment.

% Design Moment Area Covered by
of Moment M* ratio* Desi;lle Moment Area
plasticity (units) x 100 (A in units) ratio®
Elastic 40.00 00.00 % 2 x 2= 4 1.00
20.00 % = 40.00 - 00.00 % 4 x 4 = 16 4.00
40.00 % = 35.00 - 14.29 % 4 x 5 = 20 5.00
60.00 % = 32.50 - 23.08 % 6 x 6 = 36 9.00
80.00 % = 30.00 - 33.33 % 7 x 7= 49 12.25
* : (Elasto—plastic — Elastic)design moment / Elasto—plastic design moment

® : (Area covered by elastic / Area covered by elasto—plastic )design moment
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Table (4.4b) Reduction of the peak design moment (pt.A Fig— (4.5b) and

the increase of the area covered by this design moment.

% Design Moment Area Covered by
£ M t M* * the
o oment M ratio Design Moment Area
plasticity (units) x 100 (A in units) ratio®
Elastic 8.00 00.00 % 1 1.00
20.00 % = 8.00 - 00.00 % 1 x 3= 3 3.00
40.00 % =z 7.00 -14.28 % 1 x 9= 9 9.00
60.00 % = 6.00 -33.33% |1.5x 8= 12 12.00
80.00 % = 6.00 -33.33% 1.7 x 8= 13.6 13.60

Table (4.52) Reduction of the

eak design _moment

t A Fig— (4.6a) and

the increase of the area covered by this_design moment.

% Design Moment Area Covered by

. * . % the

of Moment M ratio Design Moment Area

plasticity (units) x 100 (A in units) ratio®
Elastic 10.60 0.00 % 2 x 2= 4 1.00
24.00 % = 8.80 - 20.45 % 6 x 14 = 84 21.00
52.00 % = 8.20 -29.27 % 7 x 15 = 105 26.25
72.00 % = 7.50 - 41.33 % 7 x 26 = 186 45.50
* : (Elasto—plastic — Elastic)design moment / Elasto—plastic design moment

® : (Area covered by elastic / Area covered by elasto—plastic)design moment
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FIGURE (4-3a): DISTRIBUTION OF

THE BOTTOM DESIGN MOMENT M§

q =0.15 N/ mm?

E = 27580 N / mm?

v =0.15

Mp = 254920 N.mm / mm

t = 300 mm
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FIGURE (4-5a): DISTRIBUTION OF

THE BOTTOM DESIGN MOMENT M§ .
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CHAPTER FIVE :

NONLINEAR ANALYSIS

5.1 Introduction:

In the previous chapter, it has been shown that the use of the elasto—
plastic stress field in the direct design method presents many practical advantages.
Here the behaviour of the slabs so designed is studied in detail using the layer
approach reviewed in chapter three.

A series of numerical experiments using the layered finite element program will
be conducted on a number of rectangular slabs.

The slabs were all designed by the direct design method using the non elastic
stress field, except the first of each series which was designed using the elastic
stress ‘field. This was intended for comparison with the direct design method
using non elastic stress field.

The main objective of these numerical experiments is to study the service and
ultimate behaviour of the slabs when using non elastic stress field. By varying
the reinforcement in accordance with the design moments (M;,M;), which
depends on the state of the stress field chosen (elastic or elasto— plastic with
different degrees of plasticity), the resulting behaviour in particular ductility
demand and serviceability behaviour is studied.

The variables in the study are:
a— Loading and boundary conditions,

b— reinforcement layout (which result by varying the degree

of plasticity of the stress field)
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The slabs in this study can be divided into three series:

Test series 1 : Includes five simply supported square slabs

under a uniform distributed load.

Test series 2 : Includes five simply supported square slabs

loaded by four point loads.

Test series 3 : Includes five square slabs simply supported
at the edges plus a central column
support, subjected to a uniform

distributed load.

5.2 Designation of slabs studied:

The numerical test slabs in test series 1 and 3 were designed to carry
uniform loads only and in test series 2 the slabs were designed to carry point
loads.

In each run, the slab was first designed for a specific ultimate load using the
direct design method discussed in chapter four (using non elastic stress field) by
means of Mindlin program (see Chapter three,sect— 1).

All the safety factors on the design load and the materials were taken as unity,

the slab was then analysed under an incremental load till failure. This would

constitute a full computer experiment.

3.3 Proportioning and loading:

The span depth in each case was taken as span / 20 . The definition of

the term "span" used in calculating the depths depends on the boundary
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conditions of the problem. For slabs supported along four edges, the span length

was taken as the length of the short side of the slab. For other cases involving

free edges, the span length was taken as the length of the longer free edge.

An arbitrary design load was chosen, and an elasto— plastic analysis for the slab
under the design .load was obtained from the Mindlin program.(Chapter
three,sect-2).

The output from such analysis would include the elastic design moments (M;,M;),
as well as elasto— plastic design moments at different levels of plasticity spread
under the design load.

Finally the required steel areas in the X- and Y- directions respectively were
calculated on the assumption of a rectangular stress block with an average stress
in the block equal to 0.667 x cube strength of concrete (or approximately
0.83 x cylinder strength) and the stress in the steel equal to the yield strength

fy.
This assumption leads to the equation for the calculation of the steel area Ag to

resist a given design moment M* .

:
feu d 3 M¥
Agt = —|10-]1.0 - —— e . (5.1)
fy 1.5 foy.d
where Ag = area of steel per unit width to resist M*,
d = effective depth of the slab,

foy = cube strength of concrete,
fy = yield strength of steel,

M* = design moment per unit width.

The value of the required area for each element of the finite element mesh of
. * .
the slab is obtained by either averaging the design moments M~ obtained at each

. . *
Gauss point of the element, or, by taking the maximum design moment M~ over




each element.

The severity of the variation of the design moment M* over the whole slab will
give an idea about what to adopt for the design moment, average or maximum
values.

The effect of using the average values or the maximum values of the design
moment M* over each element for the slabs studied in this chapter are given in
figures (5.1) to (5.3). On the basis of these plots, the slabs studied in test series
1 are designed using the maximum value of the design moments over each

element and the average value of the design moments has been used in designing

the slabs in test series 2 and 3.

5.4 Steel layout:

For a better appreciation of the different steel patterns used in this study
which vary with respect to the degree of plasticity of the stress field, the
different distributions of the design moment are shown in figures (4—3a) to

(4— 5b).

3.5 Analysis:

For each numerical experiment, the deformational behaviour resulting from
various changes in the slab material due to progressive cracking and yielding
under imcreasing loading, has been traced using the nonlinear finite element
program, described in chapter three.

All the slabs are doubly symmetric, therefore only one quadrant was analysed
using 4 x 4 subdivisions.

For all tested models, the slab thickness was divided into six concrete layers, plus
two concrete layers representing the covers of steel, plus two to four steel layers

as might be required by the reinforcement present.
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All experiments were assigned the following material properties:

MATERIAL PROPERTIES Test series 1&3| Test series 2
Concrete compressive strength,f., 47.7 N/mm2 44 .2 N/mm?2
Concrete tensile strength, f, 3.5 1 3.4 1
Young's modulus for concrete, E¢ 27580.0 21500.0 u

[ I Il steel, Eg 206800.0 214000.0
Poisson's ratio for concrete, » 0.15 0.15

Yielding strength of steel, fy 303.4 1 460.0

All experiments were designed to study the effect of taking non elastic stress field

in the direct design method, on the behaviour of the slabs.

The slabs tested in "Test series 1" were simply supported with Ly / Ly =10,
and subjected to a uniform distributed load of 0.15 N/mm?2 .
The slabs tested in "Test series 2" were simply supported with Ly / Ly = 1.0,

and subjected to four point loads of 52.5 KN each.

The slabs tested in "Test series 3" were simply supported on all the edges plus a
central column support, subjected to a uniformly distributed load of
0.17 N/mm?2 .

As recommended in reference (1) , a load increment size of 0.10 P, (the
cracking load of the slab) was the maximum value used, for all slabs. A
maximum number of S50 iterations was given at each increment. This was
required only when the nonlinearity becomes important. 2 x 2 sampling points

were used in each element. An average of 5.5% of the tolerance was adopted

and near failure an average of 4.5% was allowable. A value of 0.4 of the shear

retention is adopted during all the numerical experiments while the tension
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stiffening has been ignored. The hardening parameter of steel has been ignored

too. The fixed crack analysis (orthogonal) was used. Finally, for nonlinear

solution, the combined algorithm where the stiffness matrix is updated at the 1St
iteration for 15! increment and subsequent load increments at iteration number

2,5,8,11,15 and 20 was used.

In every test, the following aspects of structural behaviour have been investigated:

1— Deflections :

Short term deflections under increasing load till failure. For simplicity, only the
point of maximum deflection which will be considered.

2— Redistribution of internal stresses :

The redistribution of bending moments in the reinforcement directions due to
material nonlinearity will be considered.

3— Cracking and vyielding :

A quantitative measure of cracks is not feasible by the present model, since the
model employs a smeared crack approach. But, since crack widths can be
related to steel strains ,they can be used as a measure of the crack widths.

Accordingly steel strains will be investigatéd in this study.
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5.6 _Results, discussions and conclusions:

5.6.1 Test series 1:(SLB.1.A)

This series include tests on slabs which are simply supported along all edges.
Five runs, SLB.1.A.0, SLB.1.A.1, SLB.1.A.2, SLB.1.A.3 and SLB.1.A.4 were
performed. The results are shown in figures (5.4) to (5.8), and for convenience

a summary is given in tables (5—1) and (5—2)
5.6.2 Conclusions:

(1) The service behaviour of all the slabs in this series was satisfactory. The
deflection limit of span / 250 has been reached at an average of 70% of the
design load. This gives a high service load in terms of deflections.
If we take now the percentage of plasticity of the stress field as a variable, the
deflection at service load (0.625 x design load) shows a uniform decrease as this
percentage goes up. (of about 5.2% in general) as shown in Fig— (5—19).

In terms of steel strains, all the slabs in this series have recorded first yielding
beyond 65% of the design load. Again as shown in table (5—1) and Fig—
(5—20), the maximum steel strain has decreased as the percentage of plasticity of

the stress field increases.

(2) This series of tests show that in general the difference between the design
load (or ultimate load as it is a lower bound method) and the onset of yielding
in any particular element is not particularly sensitive to the level of plasticity

spread adopted.

(3) The slabs designed by non elastic stress field have recorded a slightly higher
ultimate load than the one designed by elastic stress field ( around 4% higher).

This is due to the fact that we have put more steel at the centre of the plate.
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TABLE (5—-1) "SLB—-—1- A"

CASE [% of p1'Y| Dgg (s1)| Deg (d) |eg1 / €, | €4 / € U.L.T
SLB.1.AO| 0.00 % | 17.71 mm| 50.36 mm .972 4.406 1.025
SLB.1.Al| 17.50 % | 17.23 mm| 54.05 mm . 945 4.613 1.000
SLB.1.A2| 35.00 % | 16.89 mm| 48.09 mm .912 4.019 1.075
SLB.1.A3| 52.50 % | 17.38 mm| 46.87 mm .933 4.031 1.075
SLB.1.A4| 70.00 % | 15.86 mm| 46.22 mm .868 3.928 1.125

61 = 5000 / 250 = 20 mm ; Service Load = 0.625 x design load ; e = max
steel strain at service load ; e¢q = max steel strain at design load ; €, = yielding
strength of steel = .145E—02 ; Dgg(sl) = max deflection at service load ; Deg (d)

= max deflection at the design load ; U.L.T = ultimate load / design load.

Table (5—2): The difference between the ultimate load (P ) and
the yielding load (Py) divided by the design load. (Py — Py) ! Pyt

EIt.

Case No

Elastic 5.00 % 5.00 % 5.00% | 15.00 % | 20.00 % | 30.00 %

17.50 %] 5.00 % 5.00 % 5.00 % | 15.00 % | 15.00 % | 32.00 %

35.00 %| 7.50 % 2.50 % 2.50 % | 15.00 % | 20.00 % | 32.50 %

52.50 % 2.50 % 2.50 % 2.50 % | 10.00 % | 20.00 % | 30.00 %

70.00 %| 5.00 % 0.00 % 0.00 % 5.00 % | 12.50 % | 27.50 %

w
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Figure (5—8) Spread of yield (yielding load / design load)
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5.6.3 Test series "2":

This series include tests on slabs which are simply supported along all the edges
but loaded with four point loads. Five runs, SLB2.A.1 , SLB2.A.2 , SLB2.A3
and SLB2.A.4 were performed. The results are shown in Figures (5—9) to
(5—13), and are summarized in tables (5—3) and (5—4).

5.6.4 Conclusions:

(1) The service behaviour of all the slabs in this series was satisfactory. The
deflection limit of span / 250 was reached at an average of 60% of the design
load. This gives a reasonable service behaviour in terms of deflections. Here
again the deflection at service load has decreased slightly as the degree of
plasticity of the stress field increases (see table 5—3 and figure 5—19). Steel
strain curves show an onset of yielding of an average of 75% of the design load,
and the maximum steel strain in the case of non elastic stress field is in general

less than that of an elastic stress field as shown in figure (5— 20).

(2) In general the yielding load recorded during the numerical experiments for the
slabs designed by non elastic stress field has been higher than the one

corresponding to elastic stress field.

(3) Table (5—4) shows that the difference between the ultimate load and the
onset of yielding remained in general stable as the degree of plasticity of the
stress field increases. This difference at the centre of the plate (under the design

load) is larger than the one at the corners.

(4) As far as the ultimate load is concerned, the slabs designed by non elastic
stress field have recorded an ultimate load slightly smaller than the one of an
elastic stress field (= 4%), this is due to the fact of smoothing the peak under

the point load.
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TABLE (5-3) "SLB— 2 —

All

141

CASE |% of pltY| Deg (s1)| Dop (d) |egy / €0 | €4 / €0 U.L.T
SLB.2.A0| 0.00 % [ 9.10 mm| 38.29 mm 722 3.254 1.120
SLB.2.A1| 27.00 % | 9.05 mm| 50.31 mm 724 4.256 1.090
SLB.2.A2| 45.00 % | 8.90 mm| 29.93 mm 714 2.471 1.060
SLB.2.A3| 61.00 % | 8.70 mm| 29.82 mm 14 2.523 1.060
SLB.2.A4| 82.00 % | 7.60 mm| 37.76 mm .697 4.069 1.090

651 = 1980 / 250 = 8.0 mm ; Service Load = 0.630 x design load ; €5 = max

steel strain at service load ; e¢q = max steel strain at design load ; e, = yielding

strength of steel = .215E—02 ; Dgs(s]) = max deflection at service load ; Dgg(d)

= max deflection at the design load ; U.L.T = ultimate load / design load.

Table (5—4): The difference between the ultimate load (Pyj ¢ ) and

the yielding load (Py) divided by the design load. (P, — Py) ! Pypt
Elt.
1 2 6 11 12 16
No
Case
Elastic 16.00 % 4.00 % 16.00 % 16.00 % 16.00 % 16.00 %
27.00 %| 13.00 % | 10.00 % | 16.00 % | 16.00 % | 16.00 % | 16.00 %
45.00 %| 13.00 % 4.00 % 16.00 % 25.00 % 25.00 % 25.00 %
61.00 %] 10.00 % 4.00 % 16.00 % 16.00 % 16.00 % 16.00 %
82.00 %| 12.00 % | 12.00 % | 16.00 % | 16.00 % | 16.00 % | 16.00 %
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5.6.5 Test series"3"

This series include the tests SLB.3.A.0, SLB.3.A.1, SLB.3.A.2, SLB.3.A.3, and

SLB.3.A.4 . The slabs were all simply supported at the edges plus a central
column support. The slabs were designed for a uniform distributed load of 0.17
KN/mm2 - The results are shown in figures (5—-14) to (5—-18) and again

summarized in tables (5—5) and (5— 6).

5.6.6 Conclusions:

In this series of numerical experiments, the effect of using non elastic stress field
in the direct design method on the service behaviour has been found to be

satisfactory.

(1) The deflection limit of span / 250 has not been reached. However, this
deflection has increased of an average of 17% as the degree of plasticity of the
stress field is increased (see figure 5—19).

In terms of steel strains, the bottom steel has yielded just near failure at 1.17
the design load in the case of elastic stress field and didn't yield in the
remaining cases of non elastic stress field. However, for the top steel the onset
of yielding has been recorded between 60% and 70% of the design load, which is
satisfactory too.

The maximum steel strain at service load has increased as the degree of plasticity
increases (see figure 5—20). This is due to the fact that we have put less steel
at the top near the column.

In general this series of slabs have behaved differently from the previous slabs

tested. This is due to a general early yielding of the whole slab.

(2)The difference between the ultimate load and the onset of yielding remained in

general stable as the degree of plasticity of the stress field increases and in all

cases it didn't exceed 25%.
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(3) In terms of ultimate load, a negligible reduction of the ultimate load in

comparison with the one of elastic stress field (= 4%) is noticed.
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TABLE(S"S)"SLB—B,—A"

CASE |% of pl®¥| Dop (sU)| Deg (d) |egp / €, €q / €, | U.L.T
SLB.3.A0O| 0.00 % | 2.67 mm| 6.61 mm| .645 1.880 1.170
SLB.3.Al| 20.00 % | 3.13 mm| 9.53 mm| .724 2.593 1.012
SLB.3.A2| 40.00 % | 3.14 mm{ 9.90 mm| .731 2.809 1.012
SLB.3.A3| 60.00 % | 3.11 mm| 9.14 mm| .731 2.655 1.047
SLB.3.A4| 73.33 % | 3.14 mm| 10.28 mm| .741 3.055 1.047

81 = 5000 / 250 = 20 mm ; Service Load = 0.610 x design load ; €] = max
steel strain at service load ; €4 = max steel strain at design load ; ¢,

strength of steel = .145E—02 ; Dgs(sl) = max deflection at service load ; Dgs(d)

= max deflection at the design load ; U.L.T = ultimate load / design load.

Table (5—6): The difference between the ultimate load (Py) ) and
the yielding load (Py) divided by the design load. (Pyq — Py) / Pyjt

(b) = bottom steel ; (t) = top steel

yielding

¢ 1(b) 2(b) 6(b) 11(t) 12(t) 16(t)
Case
Elastic / 4.00 % / 11.00 % | 21.50 % /
20.00 % / 18.00 % / 21.50 % | 21.50 % /
40.00 %| 18.00 % 7.50 % / 21.50 % | 21.50 % /
60.00 %| 18.00 % [ 11.00 % / 21.50 % | 21.50 % /
73.33 %| 18.00 % | 11.00 % | 4.00 % | 25.00 % | 25.00 % /
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(b) = bottom steel ; (t) = top steel |

i C. L
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SLB.3.A1 (E—P stress field of 20% plasticity)

Figure (5— 18) Spread of yield (yielding load / design load)
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CHAPTER SIX :

ELASTO—~ PLASTIC ANALYSIS OF REINFORCED CONCRETE SLABS

BASED ON WOOD-ARMER YIELD CRITERION.

6.1 Introduction:

In the previous chapter a detailed nonlinear analysis has been carried out in
order to predict the behaviour of the slab both at service load and ultimate load.
Such analysis gives realistic evaluation of deflections, stresses and strains for the
whole range of loading till failure. This has been made by modelling the
nonlinear behaviour of the individual material of which a reinforced concrete slab
is made.

In general, such analysis is research rather than practical analysis oriented. One
important aspect that will concern any designer is to find out the ultimate load of
a given reinforced slab without going into details of cracks etc. Consequently, a
development of a simple computer program to predict the ultimate load of
reinforced concrete slabs is undoubtedly useful.

This chapter summarizes the steps of the development of such finite element
program and some examples demonstrating the accuracy of this program will be

given as well.

6.2 Program:

.

The structure of the program developed in this study is same as the Niindlin

program (see sec.3.2). A flow chart of this program is given in figure (6—1).

Originally Mindlin program used Tresca and Von Mises laws, which closely

approximate metal behaviour.
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The yield criterion which can be shown to be easy to implement in such finite

element program and which has been proved to give good results, is Wood—

Armer criterion (Sec.2.2.2).

The derivation of this yield criterion was given in detail in Sec(2.2.2), and the

finite element formulation in chapter three. Therefore only the mathematical

formulation of the yield criterion and the alterations made in consequence will be

given in the following.

6.2.1 The mathematical formulation of the vyield criterion:

(i) F4 = -(Mib— M, + Mzb.cosza)(Mgb.sinza - M

y) +

(Mxy + Mgb.sincx.cosa)2 £0 ....(6.1)

* * *
Fy = —(Mzt + My - M3'.cos2a) (Mzt.sin%x + My) +

(Mxy
where Fy

i

%
(M, My)

(My, My, Myy)

M*t sina.cosa) £ 0.0 e (6.2)
(84

yield function (i = 1 for bottom steel and

2 for top steel ),

= Representing moments developed by the reinforcement

in the slab in X— and o— direction respectively.
This will be provided as Input Data to the program.
stands for bottom steel

stands for top steel

Direct bending moments and twisting moment resulting
from the analysis

direction of the skew reinforcement taken as
clockwise from the X— axis (o = 90° for the cé;e

of orthogonal reinforcement).
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(ii) The normality rule:

oF,

M,

oFq

ap =

aMy

oF

My,

L

+ (MzP.sin%a - M)

+ (M;Eb - M, + Mzb.cosa)

2(Myy + MXP. sina.cosa)

which is an outward normal vector.

-
oFy

M,

8F2

ag =
oM

oFy

My

*
-(Mc,,t .sin2a + My)

-(MEt + My - MXt. cosa)

2(Mxy - Mgt.sina.cosa)

which is an outward normal vector.

6.2.2 Alterations to the Mindlin program:

The main subroutines which have been modified are subroutine FLOWMP,

subroutine INVMP and subroutine RESMP.

....(6.3)

....(6.4)

Subroutines INPUT and STIFMP have

been only accomodated to these changes.(All these subroutines are presented in

the appendix A )

i— Subroutine FLOWMP:

H

This subroutine evaluates the following prameters for both F{ and Fj:

(o
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— Flow vector a (ap and ay)

— the vector D.a

— the scalar al.D.a and a / al.D.a
where D is the constitutive elastic matrix.

ii—_Subroutine INVMP:

This subroutine evaluates the following parameters:

F1 as given by Eq— (6.1)

FBT1 = MiP - My + MXP.cos2a

FBI2 = MiP.sin2a - M,

Fo9 as given by Eq— (6.2)

FTPl = M;‘;t + My - Mgt.cosza

*
FTP2 = M3*.sin%a + My

The above equations represent the conditions of yielding, ie yielding occurs if :

F1 >0 or,
FBT1 £ 0 or, ... for positive yield surface
FBT2 £ 0
or )
r Fp >0 or,
FTP1 £ 0 or, ... for negat ive yield surface
FTP2 < 0

In addition to the check for yielding, this subroutine is called to evaluate the
reduction factor 'ALPHA' once yielding occurs.
'‘ALPHA' is a factor by which the stress components (Mx,My,Mxy) are rultiplied

to determine what fraction of the stresses will be requested to keep on the yield

surface.
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iii— Subroutine RESMP:

This subroutine evaluates the residual forces as:

r
[fe] - [ B JT of av ....(6.5)
A® '

where B = strain matrix and of = stress at Gauss point (My,My,Myy), at the
iteration (r) for the element (e).

One feature of this subroutine is that after evaluating the incremental stress

(de,dMy,dey) it checks if :

(1) F1(My + dMy , My + dMy , Myy + dMyy)
FBT1(My + dM,) .... have been violated

FBTZ(My + dMy)

or

(2) Fp(My + dMy , My + dMy , Myy + dMyy)

FTP1 (M, + dM,) .... have been vioalted

FTP2(My + dMy) J

If the latest checks are positive in respect of one or both functions (F{ and Fop),
the stresses are corrected and brought on to the yield surface by allowing plastic

strain.

Example of stress correction:

Step— 1— Computation of ALPHA:

Fj = —(M} — ALPHA*M, + Mg.cos2a)(Mg.sin%a — ALPHA*M,) +

(ALPHA*M,, + Mp.sina.coso)?2 = 0.0

Xy
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* * * * * . * * .
Let A* = My + Mg.cos?2a , B® = M,sin2a and C° = M,.sina.cosa

Then Fq reduces to :

ALPHA2(My,? = M,.M,) + ALPHA(A*.My + B*M, + 2.C*.Mxy) +

(z2 — A*.B*) = 0.0

Thus with Al = M,,2 - M

y
Bl = A*.M

XMy

% *
y + B¥.My + 2.C% .My

Cl = Cc*2 - pA* B*

the solution of the second order equation gives:

-Bl * / Bl? - 4Al.Cl
ALPHA, , = ... (6.6)
2A1

ALPHA is then chosen such as the following condition is verifed :

ALPHA x M, = M§b + Mgb.cosza
and
ALPHA x My A Mgb.sinz.a

The same procedure as above is used with F, in the case of negative yield

surface (top steel).

Step— 2— Computation of the part of the stress which causes elastic strains only

on_the_vyield surface:

A = (1 — ALPHA)do§ + of — 1) — dof ... (6.7)

A

where dog =d\ D a
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where d\ = plastic multiplier (as given in 3.2.3)

D matrix of elastic regidity.

a = flow vector (as defined in sect.6.2.1)

Step— 3— Computation of the total stress of :

o' = (6 = 1 + dof )JALPHA + [(1 — ALPHA)¢* — 1 + dof)~

d\ D a ] ....(6.8)
This represents the correct stress ¢ at the iteration r .
Note that with plate bending cases the term stress ¢ stand for the bending and

twisting moments (Mx,My,Mxy).

iv— Curved boundaries:

To allow slab systems presenting curved or inclined boundary supports to be
analysed by 'WOOD-— ARMER' program, the necessary changes have been
incorporated within this program.

These changes consist of transforming the variables at nodes of curved or inclined

boundary to (w,8y,8y) see Fig— (6—3), using the transformation matrix, [Ty ], so

that:
Pj P; Wi Wi
Cni | = [To ]| Cxi and | Oxi| = [Tp]| Oni oo . (6.9)
Cei L Cyi ] eyi O 1

where (P;,Cp;,Cyj) and (Pi,Cxi,Cyi) are the vectors of the nodal force andr nodal
couples related to the local axes (n,t) and the global axes (x,y) respectively,
(wi,oxi,eyi) and (wj,0pj, 0t are the vectors of displacements related to the global

axes (x,y) and local axes (n,t) respectively, and finally [Ty ] is the transformation
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matrix given by :

1 0 0
[Ty ] 0 cosa®  -sino® ..e..(6.10)
0 sino® cosa™

o is the angle of inclination of the curved or inclined edge to X axis.

Since the nodal forces and displacements are linked through the stiffness matrix

by :
[ Py ] [ wi ]
Cxi | =[K 1| oxi ... (6-11)
i Cyi | | oyl

where [K] is the stiffness matrix, and the equivalent expression with respect to

the local axes (n,t) is given as:

[ Pi ] [ wi |
Cai | = [K J'| 6ni .. (6-12)
| Ct? ) LOtiJ
where [K]' = [Tp]T [K] [Tp] .. .(6—13)

Thus the steps used in the solution can be summarised as follows:

(1) For any node to be restrained in local directions, transform the applied nodal

forces to coincide with the local axes.

(2) Transform the relevant element stiffness submatrices according to (6—13).



Y Z

plate edge

Figure (6— 3) Positive directions of

moment and couple vectors,



(3) Assemble the loads and stiffnesses in the usual way and solve for the
displacements. The resulting displacements and reactions are then transformed to

the global axes (x,y) before evaluating the stresses.

6.3 Convergence study:

In order to have confidence in the accuracy of the results obtained from the
finite element analyses, a convergence study in the elastic— plastic domain must
be carried out. The main objective of this part of the work is to reduce the
computer cost while maintaining good accuracy. The sensitivity of the solution of
the mesh size and convergence tolerance were studied for the case of a simply
supported square slab under a uniformly distributed load. The slabs were
orthogonally reinforced using the direct design method with elastic stress field.

6.3.1 Mesh size:

Figure (6—4a) shows the load— displacement curves for the 2 x 2 , 4 x 4 and

6 x 6 element meshes for the simply supported square slab.

172

The curves show that there isn't a great difference between using 4, 16 and 36

elements.

This is due to the fact that the design method used evaluates the reinforcement
with the ultimate flexural moments (M;,M;), so that all points of the slab start
yielding at about the same load and with small redistribution the whole slab will
turn into a mechanism simultaneously and then fails.

6.3.2 Tolerance:

The convergence criterion used in this program is the same as the one given by
Eq- (3.28) which is based on a ‘tolerable' value of the residual forces.
Figure (6—4b) depicts load— displacement curves for three different values of

tolerance : t; = 5%, ty = 2% and t3 = 1%. Here also the results in respect

to the ultimate load are not greatly affected.

The error on the ultimate load (P ) was 2.2% when 5% of tolerance is used.
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So we can conclude that a tolerance value of 4% is sufficient to evaluate the

ultimate load with good accuracy.

6.4 Numerical application:

The object of this section is to demonstrate the reliability of the developed
computer program ‘WOQOD- ’ARMER' and to conduct some selected numerical
experiments.

The basic idea is that if over a wide range of experimental problems this model
can produce an accurate prediction for the ultimate load, the program can then
be used to predict the ultimate load of similar problems.

6.4.1 A simply supported slab_under a central point load:

This experimental slab is taken from tests performed by the Portland Cement
Association in 1954. Results for this test may be found in reference (20).

The slab is 1828.8 mm square, 139.7 mm thick and is reinforced with an
isotropic mesh of 0.99% reinforcing steel.(Fig— (6—5))

The load is centrally applied on a small column cast integrally with the slab as is
also shown in figure (6—5). While figure (6—6) shows the grid used in the
finite element analysis, together with the material properties.

In the nonlinear solution, the combined algorithm was used, with the maximum
number of iterations limited to 50. A convergence force tolerance of 3.5% was
adopted. The average number of iterations to reach the specified convergence
tolerance varied from 2 to 5. The load was applied in 11 increments as shown
in the load— displacement curve (Fig.6—7).

This figure shows also the ultimate load predicted, which was 1.5% higher than
the experimental failure load. While figure (6—8) shows the spread of ye';el‘,lding.

(The Gauss points which were at a yielding prior failure)

1

=

4

S5
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Figure (6— 5) Loading system and reinforcement mesh for

the simply supported square slab.
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6.4.2 Hago's slab:

The model No.3 of the five slabs tested by Hago(30) has been chosen for this
analysis.

The slab is 2100 x 2160 mm square and is simply supported along each edge to
give 1900 x 1960 mm spans. The thickness of the slab is 100 mm, with
orthotropic reinforcement as shown in Fig— (6—9). The slab was loaded with
four point loads as shown in Fig— (6—9c ).

Figure (6—9d ) shows the grid used in the finite element solution together with
the material properties.

Taking advantage of symmetry, only one quarter of the plate using 2x2 element
mesh was analysed. This subdivision is dictated by the idealization of the steel
reinforcement.

The combined algorithm was used to solve the nonlinear equations, with the
maximum number of iterations limited to 50. A convergence force tolerance of
3.5% was adopted. The specified convergence tolerance was reached with an
average number of iterations of 2. The load was applied in 11 increments as
shown in figure (6—10). This figure shows the load— displacement curve and
from which we can see the ultimate load reached. This was 6% less than the
experimental one.  This is due to the fact that within this program the check of
yielding is done for each Gauss point and thus the subdivision of the slab into
finite element meshes and their equivalent design moments computed from the
steel areas provided, have an important effect on the ultimate load.

Figure (6—11) shows the spread of yielding for this example which represents the

yielding lines constituting the mechanism pattern.

=3
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6.5 Conclusion:

This finite element program presented in this chapter proved to be an
interesting tool for predicting failure load of reinforced concrete slabs
Furthermore the cost of this analysis in terms of time processing is much cheaper
than the layer program for example.

The analysis of the two experimental slabs have given a result which is close to
the experimental but during other numerical tests the results were far from the
experimental failure load.  This shows that a detailed investigation into this
problem is necessary but because of lack of time it has prevented further

investigations.
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CHAPTER SEVEN :

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

7.1 General conclusions:

From the theoretical investigations reported in this thesis, the following

conclusions can be drawn:

1— The use of non elastic stress field with the direct design method has shown
the following practical advantages :

1—a) The distribution of the design moments (M;,M;) is more uniform.

1;-b) The congestion of reinforcement is avoided due to the fact that peaks are
smoothed out. Since design moment surface presents large flat area, this leads to
convenient layout of reinforcement.

1—c) In general the maximum design moment is reduced by an average of 26%
of the design moment associated with elastic stress field. Additionally it covers in
average an area 15 times broader than the elastic design moment area.

1—d) The total design moment volume is not sensitive to the degree of plasticity

spread.

2— The conclusions drawn from the nonlinear analysis conducted on the slabs
designed by the elasto— plastic stress field are as follows:

2—a) The results indicate that at service load (0.625 x design load) the limiting
deflection of span / 250 has not been reached for all the tested slabs except in
the series No.2, in which the deflection at service load was about 11% more than
the span / 250 . This is due to a general early yielding of the slab.

2—b) No steel yielded within the service load limit. The average load at first
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yield of steel for all the tested slabs was 0.86 times the design load.

2—c) Compared to the slabs using elastic stress field , the yielding load (Py) has
increased by an average of 2% for the test series”1" and decreased by an
avearge of 5.2% in the case of test series 2 and 3 .

These results indicate also that the ductility demand is not much different for all
the slabs designed by elasto— plastic stress field.

2—d) The average ultimate load for all the analysed slabs was 1.07 times the
design load. This confirms that this method is a lower bound method.

2—e) In general the sensitivity of the results to the level of plasticity of the

stress field used in the design was insignificant.

3— The elasto~ plastic analysis based on Wood— Armer criterion (Wood— Armer
program) proved to be  an interesting tool of predicting failure load of
reinforced concrete slaBS with a reasonable accuracy. This analysis is, for
example much cheaper than the layer program in terms of time processing. But
although the good agreement reached for the two experimental slabs analysed, this

program needs further arrangements.

7.2 Recommendations for futur work:

1— The investigation presented in this thesis pertains only to non elastic stress
field obtained from the analysis of metallic plates. It is recommended to extend
this work to other possible non elastic stress fields such as :

Elastic—plastic stress fields obtained from tﬂe ana'lysis of reinforced concrete plates

using Wood— Armer criterion:

(M = My(My — My) — My? = 0.0

* are the design moments which are predetermined for large

%
where My and My

sections of the slab.
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2— Slab systems presenting fixed edge boundaries have not been considered in
this study due to the difficulty of simulation of these boundaries beyond the
elastic conditions. It is recommended to investigate this problem in detail in
order to be able in the future to analyse clamped edge slabs using finite element

programs.

3— Since the service and ultimate behaviour of the tested slabs have been
checked numerically only, it is recommended to carry out an experimental work
to confirm the results obtained in this thesis.

4—The deflections predicted by Wood— Armer program are not real due to the
fact that the matrix of elastic rigidities is not affected by the deterioration of the
concrete properties (cracking). It is recommended to take into account the
cracking of concrete within this program by gsing a pseudo thickness of the slab

-

as given in the appendix. This pseudo— thickness (hp) simulates the cracked

concrete in the elasto plastic analysis.
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PROGRAM WXA
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C

C**% ELASTO PLASTIC ANALYSIS OF NON-LAYERED REINFORCED

C*** CONCRETE SLABS USING WOOD-ARMER YIELD CRITERION

C

T o s T T b T T o S o o S S S A s S S A S e R A XXX XA XA Xk kA A hd X
p ‘

Cx*%* THIS PROGRAM HAS BEEN DEVELOPED BY Mr M.BENREDOUANE

C¥*%* AT THE DEPARTEMENT OF CIVIL ENGINEERING AT

C*%%* GLASGOW UNIVERSITY 1987,/1988

C

(ot R e D D D D T B R R R R R R T T R R R R T o L R T S ]
COMMON/BLOC6 /KINCS (20) , SHAPE(8) , NPLOT , MNODE
COMMON/TAPE/IREW1 , IREW2 , IREW4 , IREWS,

AREW1 (46656) , AREW2 (53120) , AREW4 (640) , LREW8 (8640)
COMMON/DAT/BEETA , CBEETA , C2BEETA, SBEETA, S2BEETA, CSBEETA
COMMON/DATA/1BOU(80) , BOUNG(80) , I CHANG (64)

DIMENSION ASDIS(867),COORD(289,2),ELOAD(64,27),
PSTNI(5,576) ,ESTIF(27,27),
EQRHS (10) , EQUAT(80,10) ,FIXED(867),
IFFIX(867) ,GLOAD(80) ,GSTIF(3240) ,LNODS (64,9) ,LOCEL(27),
MATNO(64) ,NACVA(80) ,NAMEV(10) ,NCDIS (4) ,NCRES (4) ,
NDEST(27) ,NDFRO(64) ,NOF1X(80) ,NOUTP(2) ,NPIVO(10),
POSGP(4) ,PRESC(80,3),PROPS(10,8) ,REFOR(867),
RLOAD(64,27),STRSG(5,576) , TOFOR(867),
TDISP(867),TLOAD(64,27) , TREAC(80,3) ,VECRV(80),
WEIGP(4) ,BRMX(64) , BRMY(64) , TRMX(64) , TRMY(64) ,
GPCODS (64,2,9) ,KIS(576)
c )
C*%% PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONS
C
CALL DIMMP (MBUFA,MELEM,MEVAB, MFRON, MMATS ,MPOIN,
MSTIF,MTOTG,MTOTV,MVFIX, NDIME, NDOFN,
NPROP, NSTRE)
C
C#*% CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA
C
CALL INPUT (COORD, IFF1X, LNODS ,MATNO , MELEM, MEVAB,
MFRON, MMATS ,MPOIN,MTOTV ,MVFIX, NALGO,
NDFRO, NDIME , NDOFN, NELEM, NEVAB,
NGAUS , NLAPS , NINCS , NMATS , NNODE , NOFI X,
NPOIN, NPROP, NSTRE, NSTR1, NSWIT, NTOTG,
NTOTV, NTYPE, NVFIX, POSGP, PRESC, PROPS ,
WEIGP, BRMX, BRMY, TRMX, TRMY, INMESH,

INCVRT)

C

C¥%% INITIALIZE ARRAYS TO ZERO

C

CALL ZEROMP (ELOAD, PSTNI ,MELEM,MEVAB,MTOTG, )

MTOTV,MVFIX, NDOFN, NELEM, NEVAB, NGAUS:,
NTOTG, NTOTV, NVFIX, STRSG, TDISP, TFACT,
TLOAD, TREAC)

C

C¥x%%



Cde

Chkes

Cdx

Ckk

Cekk
Ckk

Cekes
Chk

Chek

Ciesese

Ckk
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CALL MINDPB (IFDIS, IFFIX, IFRES,LNODS ,MELEM, MTOTV,

- NCDIS,NCRES,NELEM, NTYPE)
COMPUTE LOAD AFTER READING RELEVANT EXTRA DATA

CALL LOADPB (COORD, LNODS ,MATNO,MELEM, MMATS ,MPOIN,
NELEM, NEVAB, NCAUS , NNODE , NPOIN, PROPS,
RLOAD, NOFIX, NVFIX)

LOOP OVER EACH INCREMENT
DO 70 TINCS=1,NINCS
READ DATA FOR CURRENT INCREMENT

CALL INCREM (ELOAD, FIXED, 1 INCS ,MELEM,MEVAB,MITER,
MTOTV,MVFIX, NDOFN, NELEM, NEVAB, NOUTP,
NOFIX, NTOTV,NVFIX, PRESC,RLOAD, TFACT,
TLOAD, TOLER)

LOOP OVER EACH ITERATION

DO 90 IITER-=1,MITER
PRINT#*, ' IINCS=' IINCS,'*** [IITER= ', 1ITER

CALL ROUTINE WHICH SELECTS SOLUTION ALGORITHM VARIABLE
KRESL

CALL ALGOR (FIXED, 1INCS, 1 ITER,KRESL,MTOTV, NALGO,
NTOTV)

CHECK WHETHER A NEW EVALUATION OF THE STIFFNESS MATRICES
IS NEEDED

IF(KRESL.EQ.1)

.CALL STIFMP (COORD, PSTNI , I INCS , LNODS , MATNO, MELEM,
MEVAB,MMATS ,MPOIN,MTOTG, NELEM,
NEVAB, NGAUS , NNODE , PROPS , STRSG, BRMX , BRMY,
TRMX, TRMY, KIS, GPCODS , NOFIX, NVFIX)

SOLVE EQUATIONS

CALL FRONT (ASDIS ,ELOAD,EQRHS , EQUAT ,ESTIF,FIXED,
IFFIX, INCS,1ITER,GLOAD,GSTIF,KRESL,
LNODS, LOCEL ,MBUFA,MELEM, MEVAB,MFRON,
MSTIF,MTOTV,MVFIX, NACVA, NAMEV, NDEST,
NDOFN, NELEM, NEVAB, NNODE, NOF1X, NPIVO,
NPOIN,NTOTV,TDISP, TLOAD, TREAC, VECRV, NVFIX)

CALCULATE RESIDUAL FORCES

CALL RESMP (ASDIS,COORD, ELOAD,PSTNI ,LNODS ,
MATNO,MELEM,MMATS ,MPOIN,MTOTG,MTOTV,
NELEM, NEVAB, NGAUS , NNODE, PROPS,
STRSG, BRMX, BRMY, TRMX, TRMY, KIS, I INCS)

CHECK FOR CONVERGENCE
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CALL CONVMP (ASDIS ,ELOAD, I 1TER, IFDIS, IFRES,LNODS,
MELEM, MEVAB,MTOTV,NCHEK, NCDIS , NCRES,
NDOFN, NELEM, NEVAB, NNODE, NPOIN, NTOTV,
REFOR, TOFOR, TDISP, TLOAD, TOLER)

C
C¥%** OUTPUT RESULTS IF REQUIRED
C
IF(IITER.EQ.1.AND.NOUTP(1).GT.0)
.CALL OUTMP (PSTNI, I ITER,MTOTG,MTOTV,MVFIX, NELEM,
NGAUS , NOFIX, NOUTP, NPOIN, NVFIX, STRSG,
TDISP, TREAC, NCHEK, GPCODS ,KIS)
C

C¥%* [F SOLUTION HAS CONVERGED STOP ITERATING AND OUTPUT
C*** RESULTS

C
IF(NCHEK.EQ.0) GO TO 100
90 CONTINUE
C
Ck%x
C
IF(NALGO.EQ.2) GO TO 100
STOP
100 CALL OUTMP (PSTNI, IITER,MTOTG,MTOTV,MVFIX, NELEM,
. NGAUS , NOFIX, NOUTP,NPOIN, NVFIX, STRSG,
. TDISP,TREAC, NCHEK, GPCODS ,KIS)
70 CONTINUE
20 CONTINUE
10 CONTINUE
STOP

END



SUBROUTINE FLOWMP (ABETA1l,ABETA2,ABETA3,AVECT1,AVECT2,AVECT3,

DMATX, DVECT1 ,DVECT2 , DVECT3,
BRMX, BRMY ,
TRMX, TRMY, STEMP, IELEM, KIS ,KCAUS)
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C**********************************************************************

" C

C¥%%* DETERMINES YIELD FUNCTION DERIVATIVES FOR MINDLIN PLATES
Cx WOOD-ARMER CRITERIA

C
Gl b b st s b b b o s S b b o sl s st b s st ab s ot s st s st st s st s b ab s st s s ok s e e db ok ok o e e e kot
C
COMMON/DAT /BEETA , CBEETA, C2BEETA , SBEETA, S2BEETA , CSBEETA
DIMENSION AVECT1(5),DMATX(3,3),DVECT1(5),AVECT3(5),DVECT3(5),
BRMX(64) , BRMY(64) ,KIS(576),
STEMP(5) ,AVECT2(5) ,DVECT2(5) , TRMX(64) , TRMY(64)
C
XX=BRMX ( I ELEM)+BRMY ( 1 ELEM) *C2BEETA
YY=BRMY (1 ELEM) *S2BEETA
ZZ=BRMY ( 1 ELEM) *CSBEETA
XX1=TRMX( 1 ELEM) ~TRMY (1 ELEM) *C2BEETA
YY1=TRMY ( 1 ELEM)*S2BEETA
ZZ1=TRMY (1 ELEM) *CSBEETA
c

C*¥**DETERMINE THE VECTOR DERIVATIVE OF F FOR WOOD ARMER
C*** CRITERIA

C
GOTO (1,2,3) KIS(KGAUS)
C
C**% A VECTOR FOR YIELD1
C
1 AVECT1(1)=+(YY-STEMP(2))
AVECT1 (2)=+(XX-STEMP(1))
AVECT1 (3)=+2.0%(STEMP(3)+2ZZ)
C
C*%% DETERMINE THE VECTOR D*A and 1/A'DA
C

DENOM1=0.0

DO 120 ISTRE=1,3

DVECT1 (ISTRE)=0.0

DO 110 JSTRE=1,3
110 DVECT1(ISTRE)=DVECT1(ISTRE)+DMATX(I1STRE, JSTRE)*AVECT1 (JSTRE)
120 DENOM1=DENOM1+AVECT1 (1STRE)*DVECT1 (ISTRE)

ABETA1=1.0/DENOM1

RETURN

o
C*%% VECTOR A FOR YIELD2
c
2 AVECT2 (1)=-(YY1+STEMP(2))

AVECT2 (2)=-(XX1+STEMP(1))

AVECT2 (3)=+2.0%(STEMP(3)-ZZ1)
c
Cxx* DETERMINE THE VECTOR D*A and 1/A'DA :
C ®

DENOM2=0.0 -
DO 1202 ISTRE=1,3
DVECT2 (ISTRE)=0.0
DO 1102 JSTRE=1,3
1102 DVECT2(ISTRE)=DVECT2 (1STRE)+DMATX(ISTRE, JSTRE)*AVECT2 (JSTRE)
1202 DENOM2=DENOM2+AVECT2 (1STRE)*DVECT2 (ISTRE)



C

ABETA2=1.0/DENOM2
RETURN

Cx** VECTOR A WHEN YIELD1=YIELD2=0.0

C
3

135
130

AVECT3 (1)=(YY-STEMP(2))~(YY1+STEMP(2))
AVECT3(2)=(XX-STEMP(1)) - (XX1+STEMP(1))
AVECT3(3)=2.0%(STEMP(3)+ZZ)+2.0*(STEMP(3)-ZZ1)

DENOM3=0.0

DO 130 ISTRE=1,3

DVECT3 (ISTRE)=0.0

DO 135 JSTRE=1,3

DVECT3 (1STRE)=DVECT3 (I1STRE)+DMATX( ISTRE, JSTRE) *AVECT3 (JSTRE)
DENOM3=DENOM3+AVECT3 ( 1 STRE) *DVECT 3 ( I STRE)

ABETA3=1.0/DENOM3

RETURN

END
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SUBROUTINE INVMP (STEMP,YIELD1, YIELD2, BRMX, BRMY, TRMX, TRMY,

IELEM, ALPHA KIS ,KYIELD, IND, FBT1,
FBT2,FTP1,FTP2,KGAUS)

G A A A A A A A A X A A A AR XA XA AR XA LA L LT LA h A X hhhhddx

C
Cxs

Cx¥k
C

CALCULATE YIELD VALUES FOR BOTTOM AND TOP STEEL RESP.
EVALUATION OF THE REDUCTION FACTORS ALPHAB & ALPHAT IF NEEDED

b bbb ol ol s sl b st bl ol b b b b b bbb s b b e b b b b oot e e e e e e e b e bk

Chs

Cess

Cievk

COMMON/DAT/BEETA, CBEETA,, C2BEETA, SBEETA, S2BEETA,, CSBEETA
DIMENSION STEMP(5),BRMX(64),BRMY(64),

. TRMX(64) , TRMY(64) ,KIS(576)

XX=BRMX ( 1 ELEM)+BRMY ( 1 ELEM) *C2BEETA
YY=BRMY ( IELEM) *S2BEETA

ZZ~BRMY (1 ELEM) *CSBEETA
XX1=TRMX( 1ELEM) ~TRMY ( | ELEM) *C2BEETA

YY1=TRMY( IELEM)*S2BEETA

ZZ1=TRMY (1ELEM)*CSBEETA

WOOD-ARMER CREITERION FOR ORTHOGONALLY REINFORCED SLABS

POSITIVE YIELD SURFACE (BOTTOM STEEL)

FBT1=XX-STEMP(1)
FBT2=YY-STEMP(2)
YIELDl=-(FBT1*FBT2)+( (STEMP(3)+ZZ)**2)

NEGATIVE YIELD SURFACE(TOP STEEL)

FTP1=XX1+STEMP(1)
FTP2=YY1+STEMP(2)
YIELD2=- (FTP1*FTP2)+( (STEMP(3)-ZZ1)**2)

IND INDICE FOR COMPUTING THE REDUCTION FACTOR OR NOT

IF (IND.EQ.0) RETURN
GOTO(1,2,3) KYIELD

EVALUATE THE REDUCTION FACTOR FOR BOTTOM STEEL

A=(STEMP(3)*STEMP(3) ) - (STEMP(1)*STEMP(2))

B=XX*STEMP (2)+YY*STEMP (1)+2.0%ZZ*STEMP(3)

C=ZZ*ZZ-XX*YY

Z=MAX(A,B,C)

A=A/Z

B=B/Z

c=C/Z

DELTA=(B*B) - (4 . 0%A*C)

IF(DELTA.LT.0.0.AND.DELTA.GE.~-0.1) DELTA=0.0

ALFA1=( -B+SQRT(DELTA))/(2.0%A)

ALFA2=( -B-SQRT (DELTA))/(2.0%A) |
X=ALFA1*STEMP(1) :
Y=ALFA1*STEMP(2)

X2=ALFA2*STEMP(1)

Y2=ALFA2*STEMP(2)

IF(X.LE.XX.AND.X2.LE.XX.AND.Y.LE.YY.
* AND.Y2.LE.YY) THEN

ALPHAB=MAX (ALFA1,ALFA2)



C
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ELSE IF(X.LE.XX.AND.Y.LE.YY) THEN
ALPHAB=ALFA1l

ELSE

ALPHAB=ALFA2

END IF

ALPHA=ALPHAB

KIS (KGAUS)=1

RETURN

C**%* REDUCTION FACTOR FOR YIELD2 (TOP STEEL)

C
2

C

A=STEMP (3)*STEMP (3) -STEMP(1)*STEMP(2)
B=- (XX1*STEMP(2)+YY1*STEMP(1)+ZZ1*STEMP(3)*2.0)
C=ZZ1*ZZ1-XX1*YY1
Z=MAX(A,B,C)
A=A/Z
B=B/Z
Cc=C/Z
DELTA=B*B-4 . O%AXC
IF(DELTA.LT.0.0.AND.DELTA.GE.-0.1) DELTA=0.0
ALFAl=(-B+SQRT(DELTA))/(2.0%A)
ALFA2=(-B-SQRT(DELTA) ) /(2.0%A)
X=ALFA1*STEMP(1)
Y=ALFA1*STEMP(2)
X2=ALFA2*STEMP (1)
Y2=ALFA2*STEMP (2)
V=-xx1
=-YY1
IF(X.GE.V.AND.X2.GE.V.AND.Y.GE.W.AND.Y2.GE.W) THEN
ALPHAT=MAX (ALFA1,ALFA2)
ELSE IF(X.GE.V.AND.Y.GE.W) THEN
ALPHAT=ALFA1
ELSE
ALPHAT=ALFA2
END IF
ALPHA=ALPHAT
KIS (KGAUS)=2
RETURN

Cx*% REDUCTION FACTOR WHEN BOTH YIELDl1 AND YIELD2 ARE VIOLATED

C
3

A=STEMP (3)*STEMP (3) -STEMP(1)*STEMP(2)

B=XX*STEMP (2)+YY*STEMP(1)+2.0%STEMP(3)*ZZ

C=ZZ*ZZ-XX*YY -

Z=MAX(A,B,C)

A=A/Z

B-B/Z

c=C/Z

DELTA=B*B-4 . 0%A*C

IF(DELTA.LT.0.0.AND.DELTA.GE.-0.1) DELTA=0.0
ALFA1=(-B+SQRT (DELTA))/(2.0%A)

ALFA2=(-B-SQRT (DELTA))/(2.0%A) |
X=ALFA1*STEMP (1) £
Y=ALFA1*STEMP(2)

X2=ALFA2*STEMP (1)

Y2=ALFA2*STEMP (2)

IF(X.LE.XX.AND.X2.LE.XX.AND.Y.LE.YY.
%* AND.Y2.LE.YY) THEN

ALPHAB=MAX (ALFA1,ALFA2)



ELSE I1F(X.LE.XX.AND.Y.LE.YY) THEN

ALPHAB=ALFA1

ELSE

ALPHAB=ALFA2

END IF

ALPHA1=ALPHAB

A=STEMP (3)*STEMP (3) -STEMP (1) *STEMP(2)
B=- (XX1*STEMP (2)+YY1*STEMP (1)+2.0*STEMP (3)*ZZ1)
C=ZZ1*ZZ1 -XX1*XX1

Z-MAX(A, B, C)

A=A/Z

B-B/Z

Cc=C/Z

DELTA=B*B-4 . 0%*A*C
IF(DELTA.LT.0.0.AND.DELTA.GE.-0.1) DELTA=0.0
ALFA1=(-B+SQRT(DELTA))/(2.0%A) :
ALFA2=(-B-SQRT(DELTA))/(2.0%*A)
=ALFA1*STEMP (1)

Y=ALFA1*STEMP (2)

X2=ALFA2*STEMP (1)

Y2=ALFA2*STEMP(2)

V=-XX1

W=-YY1

IF(X.GE.V.AND.X2.GE.V.AND.Y.GE.W.AND. Y2 .GE.W) THEN

ALPHAT=MAX(ALFAl,ALFA2)

ELSE IF(X.GE.V.AND.Y.GE.W) THEN
ALPHAT=ALFA1l

ELSE

ALPHAT=ALFA2

END IF

ALPHA2=ALPHAT

ALPHA=MAX (ALPHA1 ,ALPHA2)
IF(ALPHA.EQ.ALPHAl) KIS (KGAUS)=1
IF(ALPHA.EQ.ALPHA2) KIS (KGAUS)=2
RETURN

END
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SUBROUTINE RESMP (ASDIS , COORD, ELOAD, PSTNI , LNODS ,

MATNO, MELEM, MMATS ,MPOIN, MTOTG, MTOTV,

NELEM, NEVAB, NGAUS , NNODE , PROPS,,

STRSG, BRMX, BRMY, TRMX, TRMY, KIS, I INCS)
C*****************v‘r*x**v\'*****7‘(****7‘:7\'******v'r****************************
C
Cx** EVALUATES EQUIVALENT NODAL FORCES FOR THE STRESS RESULTANTS
C*** IN MINDLIN PLATES DURING EP ANALYSIS
C
Gk b Rt v b s ot 3ok o s oh v ob o 2k 3 v oh S o T o o ab b o s db b o o S b kol b sl b v b s b e s b b b b e s e e e e v

DIMENSION ASDIS(MTOTV),AVECT(5),CARTD(2,9),AVECT3(5),DVECT3(5)
COORD(MPOIN,2) ,DERIV(2,9),DESIG(5),DEVIA(4),
DVECT(5) ,AVECT1(5) ,AVECT2(5) ,DVECT1(5) ,DVECT2(5),
ELCOD(2,9),
ELDIS(3,9),ELOAD(MELEM, 27) ,PSTNI (5,MTOTG) ,GPCOD(2,9),
LNODS (MELEM, 9) , MATNO(MELEM) , POSGP (&) ,
PROPS (MMATS, 8) , SCTOT(5) , SHAPE(9) , SIGMA(5),
STRES(5),STRSG(5,MTOTG) ,WEIGP(4),
DFLEX(3,3),DSHER(2,2),BFLEI(3,3),BSHEI(2,3),
DUMMY (3,3),FORCE(3) ,DGRAD(6) ,

) BRMX(64) , BRMY(64) , TRMX(64) , TRMY(64) ,KIS(576)

DO 680 ILI=1,576

680 KIS(ILI)=0
DO 10 IELEM=1,NELEM
DO 10 IEVAB=1,NEVAB
10 ELOAD(IELEM, IEVAB)=0.0

KGAUS=0

LGAUS=0

DO 20 1ELEM=1,NELEM

LPROP=MATNO( I ELEM)

b

C
C*x** COMPUTE COORDINATE AND INCREMENTAL DISPLACEMENTS OF THE
C ELEMENT NODAL POINTS
C
) DO 190 INODE =1,NNODE
LNODE=1ABS (LNODS (I ELEM, INODE) )
NPOSN=(LNODE-1)*3
DO 30 IDOFN=1,3
NPOSN=NPOSN+1
30 ELDIS(IDOFN, INODE)=ASDIS (NPOSN)
DO 180 IDIME=1,2
180 ELCOD(IDIME, INODE)=COORD(LNODE, IDIME)
190 CONTINUE
KGASP=0
CALL MODPB (DFLEX, DUMMY, DSHER, LPROP , MMATS , PROPS ,
. 0, 1, 1)
CALL GAUSSQ (NGAUS , POSGP,WEIGP)
DO 40 IGAUS=1,NGAUS
DO 40 JGAUS=1,NGAUS
KBOT=0
KTOP=0
NT IME=0
KGAUS=KGAUS+1 {
EXISP=POSGP (IGAUS) i
ETASP=POSGP (JGAUS) .
CALL SFR2 (DERIV,ETASP,EXISP,NNODE, SHAPE)
KGASP=KGASP+1
CALL JACOB2 (CARTD, DERIV, DJACB, ELCOD, GPCOD, IELEM,
KGASP,NNODE, SHAPE)
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DAREA=DJACB*WEIGP (1GAUS)*WEIGP (JGAUS)

CALL GRADMP (CARTD, DGRAD, ELDIS, 3,NNODE)
CALL STRMP (CARTD, DFLEX, DGRAD, DSHER , ELD1 S , NNODE,,
SHAPE, STRES, 1, 0)

DO 150 ISTRE=1,3
DESIG(ISTRE)=STRES (I1STRE)
SIGMA(ISTRE)=STRSG(ISTRE,KGAUS)+STRES (I STRE)
150  CONTINUE
CALL INVMP (SIGMA,YIELD1, YIELD2, BRMX, BRMY, TRMX, TRMY,
i IELEM,ALPHA,K1S,0,0,FBT1,FBT2,FTP1,FTP2,KGAUS)
500  IF(YIELD1.GT.0.0.0R.FBT1.LT.0.0.0R.FBT2.LT.0.0) KBOT=1
IF(YIELD2.GT.0.0.0R.FTP1.LT.0.0.0R.FTP2.LT.0.0) KTOP=1
C
Cx*¥% CHECK IF THIS GP STILL ELASTIC OR NO CORRECTION ON THE STRESSES 1S
NEEDED
C
IF(KBOT.EQ.0.AND.KTOP.EQ.0) GOTO 50
C
C*%% CHECK IF THIS GP HAS YIELDED IN RESPECT OF BOTTOM STEEL
C
IF(KBOT.EQ.1.AND.KTOP.EQ.0) CALL INVMP (SIGMA,YIELD1,YIELD2,BRMX,
BRMY, TRMX, TRMY, 1ELEM,ALPHA ,K1S,1,1,FBT1,FBT2,FTP1,FTP2,KGAUS)
C
C*** CHECK IF THIS GP HAS YIELDED IN RESPECT OF TOP STEEL
C
IF(KBOT.EQ.0.AND.KTOP.EQ.1) CALL INVMP (SIGMA,YIELD1,YIELD2,BRMX,
BRMY, TRMX, TRMY, IELEM, ALPHA ,K1S,2,1,FBT1,FBT2,FTP1,FTP2,KGAUS)
C
C*%% CHECK IF THIS GP HAS YIELDED IN RESPECT OF BOTH BOTTOM AND TOP STEE
L
C
IF(KBOT.EQ.1.AND.KTOP.EQ.1) CALL INVMP (SIGMA,YIELD1,YIELD2,BRMX,
BRMY, TRMX, TRMY, 1ELEM, ALPHA,K1S,3,1,FBT1,FBT2,FTP1,FTP2,KGAUS)
60 ASTEP=50.0
C*** ASTEP HAS BEEN SET ARBITRARILY
DO 70 ISTRE=1,3
SGTOT (1STRE)=(STRSG(ISTRE,KGAUS)+STRES (1 STRE) ) *ALPHA
STRES (I STRE)=( (STRSG(ISTRE ,KGAUS)+STRES (ISTRE) )*(1.0-ALPHA) )/
ASTEP
70 CONTINUE
DO 650 ISTEP=1,50
CALL FLOWMP (ABETA1,ABETA2,ABETA3,AVECT1,AVECT2,AVECT3,DFLEX,
* DVECT1,DVECT2,DVECT3,
. BRMX, BRMY, TRMX, TRMY, SGTOT, 1ELEM, K1S,KGAUS)
GOTO (1,2,3) KIS(KGAUS)
2 DO 11 ISTRE=1,3
AVECT (I STRE)=AVECT2 (1STRE)
11 DVECT (1STRE)=DVECT2 (ISTRE)
ABETA=ABETA2
GOTO 80
1 DO 22 ISTRE=1,3
AVECT (1STRE)=AVECT1 (ISTRE)
22 DVECT (1STRE)=DVECT1 (ISTRE)
ABETA=ABETAl
GOTO 80
3 DO 33 ISTRE=1,3
AVECT (1STRE)=AVECT3 (ISTRE)
33 DVECT (1STRE)=DVECT3 (ISTRE)
ABETA=ABETA3
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80 AGASH=0.0
DO 100 ISTRE=1,3
100  AGASH=AGASH+AVECT (1STRE)*STRES (I STRE)
DLAMD=AGASH*ABETA
IF(DLAMD.LT.0.0) DLAMD=0.0
DO 110 ISTRE=1,3
110 SGTOT(ISTRE)=SGTOT (1STRE)+STRES (I STRE) -DLAMD*DVECT ( I STRE)
650  CONTINUE
CALL INVMP (SGTOT,YIELD1,YIELD2,BRMX, BRMY, TRMX, TRMY, [ELEM,
, ALPHA,K1S,0,0,FBT1,FBT2,FTP1, FTP2 ,KGAUS)
IF((YIELD1.GT..1E+00.0R.YIELD2.GT. .1E+00.0R.FBT1.LT.0.0.0R.
FBT2.LT.0.0.OR.FTP1.LT.0.0.0R.FTP2.LT.0.0).AND. (
NTIME.LT.1010)) THEN
C*x** THIS LAST CHECK HAS BEEN SET ARBITRARILY TO GIVE GOOD RESULT
NTIME=NT IME+1
DO 450 ISTRE=1,3
STRES (I STRE)=SGTOT (ISTRE) -STRSG (1 STRE, KGAUS )
450  SIGMA(ISTRE)=SGTOT(1STRE)
KBOT=0
KTOP=0
GOTO 500
ELSE
CONTINUE
END IF
DO 400 ISTRE=1,3
PSTNI (ISTRE,KGAUS)=PSTNI (1STRE, KGAUS ) +DLAMD*AVECT ( 1 STRE)
400  DESIG(ISTRE)=SGTOT(ISTRE)-STRSG(ISTRE,KGAUS)
50 DO 120 ISTRE=1,3
SGTOT (1STRE)=STRSG(ISTRE,KCAUS)+DESIG(1STRE)
120  STRSG(ISTRE,KGAUS)=SGTOT (I1STRE)
C
C**% CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE
C ELEMENT NODES
C
250  CONTINUE
DO 140 INODE=1,NNODE
C¥#*% ZERO FORCE VECTOR

CALL VZERO (3, FORCE)

CALL BMATPB (BFLEI , DUMMY, BSHEI , CARTD, INODE, SHAPE,

. 0, 1, 0)

FORCE(2)=(BFLEI (1,2)*SGTOT(1)+BFLEI (3,2)*SGTOT(3) ) *DAREA

) +FORCE(2)

FORCE(3)=(BFLEI (2,3)*SGTOT(2)+BFLEI (3, 3)*SGTOT (3) ) *DAREA
+FORCE(3)

IPOSN=( INODE-1)*3+1
DO 135 IDOFN=2,3
IPOSN=I1POSN+1
135 ELOAD(IELEM,IPOSN)=ELOAD(IELEM,lPOSN)+FORCE(lDOFN)
140 CONTINUE
40 CONTINUE
C
Cx*%* CALCULATE FORCES ASSOCIATED IF(I1ELEM.EQ.1) WITH SHEAR DEFORMATION
C

NGAUM=NGCAUS -1

CALL GAUSSQ (NGAUM, POSGP, WEIGP)
C
Cx¥* ENTER LOOPS FOR AREA NUMERICAL INTEGRATION
C

KGASP=0
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C

DO 310 ISTRE=4,5

DO 300 IGAUS=1,NGAUM
DO 300 JGAUS=1,NGAUM
LCAUS=LCAUS+1
EX1SP=POSGP (1GAUS)
ETASP=POSGP (JCAUS)

CALL SFR2 (DERIV,ETASP,EXISP, NNODE, SHAPE)
KGASP=KGASP+1
CALL JACOB?2 (CARTD, DERIV, DJACB, ELCOD, GPCOD, 1 ELEM,

KGASP, NNODE, SHAPE)

DAREA=DJACB*WEIGP ( IGAUS)*WEIGP (JGAUS)

CALL GRADMP (CARTD, DGRAD, ELDI S, 3, NNODE)
CALL STRMP (CARTD, DFLEX, DGRAD, DSHER, ELDI S, NNODE,
SHAPE, STRES,, 0, 1)

SGTOT (ISTRE)=STRSG(ISTRE, LCAUS)+STRES (ISTRE)
STRSG(ISTRE, LCAUS)=SGTOT (1STRE)

C*x*%* CALCULATE THE EQUIVALENT NODAL FORCES

C

DO 320 INODE=1,NNODE

Cx** ZERO FORCE VECTOR

315
320
300

20

CALL VZERO(3,FORCE)
CALL BMATPB (BFLEI , DUMMY, BSHEI , CARTD, 1 NODE, SHAPE,
0, 0, 1)

FORCE(1)=(BSHE1(1,1)*SGTOT(4)+BSHEI (2,1)*SGTOT(5) )*DAREA

+FORCE(1)

FORCE(2)=(BSHEI (1,2)*SGTOT (4) )*DAREA+FORCE(2)

FORCE (3)=(BSHEI (2, 3)*SGTOT(5) ) *DAREA+FORCE(3)
1POSN=( INODE-1)*3

DO 315 IDOFN=1,3

1POSN=IPOSN+1

ELOAD( 1 ELEM, [ POSN)=ELOAD( I ELEM, 1 POSN)+FORCE ( 1 DOFN)
CONTINUE

CONT INUE

CONT I NUE

RETURN

END
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APPENDIX (B)

CALCULATION OF THE PSEUDO THICKNESS (hp)

€
LI L E
. (d - an )
h d 2
Ag
. ¢« o » T
€
s
For equilibrium: C = T
v 1/2 €c.Eq.dp = Ag.Eg. €g eee.(1)
Eg €s € °
L dp = 2 . Ag = 2.m.Ag. .o (2)
Ec €c €c
where m = modular ratio = Eg/E..
But from the strain diagram:
€ d -
S - on e (3)
€c dn

» di + 2.m.Ag.dp - 2.m.Ag.d = 0 oo (8)
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Solving gives:

dp = (- m.Ag + / (m.Ag)? + 2(m.Ag)d ) RN ¢))

The gross mement of inertia is

bh3 h
+ (m - 1)Ag (d -
12 2

)? eet.(6)

and the fully cracked transformed section gives:

b.dy?

Ior + m.Ag(d - dp)? )

3

Then by assuming I, = (b.hp3) / 12 , a pseudo-thickness (hp) of a

cracked section is calculated from:

3/2
hp - [(12 lep) / b] veea(8)

GLASGOW
UNIVERSITY
LIBRARY




