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SUMMARY

In the dogfish Scyliorhinus canicula (L .)  an investigation of the 

ve r t ic a l  vestibulo-ocular reflexes (VOR) has been made by recording 

the ver t ica l  eye reflexes and the myographic ac t iv i ty  of the extra­

ocular  muscles (EOM) which induce these reflexes. Control of th is  

re f le x  has been determined by selective  ablation of the d i f fe re n t  

components of  the vestibular  apparatus.

The ph y s io lo g ic a l  p r o f i l e  of  the EOM has been determined by

invest igat ing t h e i r  histochemical, imrnunohistochemical, mechanical

propert ies, th e i r  innervation, and the size of the i r  motor units.  In

the dogfish a l l  six EOM contain TYPE I and TYPE I I  f ibres .  Type I

f ib res  are small, l i e  mostly in the orb i ta l  region, stain negatively

with the Mg^+ activated I ’ m -ATPase, give a posit ive reaction for

the succinate dehydrogenase and stain posit ive with antisera specif ic

fo r  slow f ib re  myosin ( ALO and o<~ SHC). TYPE I I  f ibres are

?+large,  l i e  mostly in the global region, stain posit ively  with Mg'1 

act ivated myosin-ATPase, give a negative reaction for SDH and do not 

stain with ALD and SHC. Both Type I and TYPE I I  f ibres are

innervated by the enplaque and engrappe endplates. Mechanically two 

levels  of response are shown by the EOM fibres and individual twitches 

and te tan ic  contraction is e l i c i t e d  in a l l  the EOM. The size of motor 

units in the^SO, 10 and SR is 9 muscle f ibres per one motor axon, and 

in the  EXT-R is  13 muscle f ib r e s  per one motor axon. In t h e i r  

physiological and mechanical properties, and in the i r  innervation the 

TYPE I ans TYPE I I  f ibres resemble the slow and fa s t f ibres of other 

vertebrates.

_ V -

mATPase = m y o f i b r i l l a r  ATPase___________

*  A b b re v ia t io n s  o f  muscles by i n i t i a l  l e t t e r s :  S u p e r io r  o b l iq u e  

I n f e r i o r  o b l iq u e ,  S u p e r io r  re c tu s ,  E x te rn a l re c tu s .



Vertical  eye reflexes have been studied by f ix in g  the animal in a 

frame and recording eye movements by video and movement transducer 

techniques. Vert ical  eye reflexes are compensatory and vestibular  

e f fects  are strongly shown. Vision is generally weaker and is only 

seen when the animal is provided with a strong visual stimulus. The 

gain of the eye movements is generally smaller during t i l t s  in the 

pitch plane. There is no nystagmus during the ver t ica l  eye ref lexes,  

but i t  occurs in the horizontal VOR. The gain of the eye reflexes is 

s ig n i f ic a n t ly  reduced a f te r  ablation of the ver t ica l  semicircular  

canals and the u tr icu lus .

Myographic recordings in a l l  six EOM have been made during t i l t s  

in the ro l l  and pitch planes and at intermediate angles. Co-activation  

of  the SO and SR combined with  i n a c t i v i t y  o f  10 and^IR induces 

counter-ro l l ing of the down ward eye in the ro l l  plane. Reciprocal 

act ivat ion occurs in the muscles of the upward eye. In the pitch plane 

SO and SR of  the two eyes remain c o - a c t i v a t e d ,  and i t  is  the  

dif ference in the r e la t i v e  strength of f i r in g  of the two EOM which 

induces the observed torsional movement in the two eyes. The action of  

the horizontal EOM s tab i l i zes  the a c t iv i t y  of ver t ica l  EOM in a l l  

planes of the t i l t .  T i l t s  in v e r t i c a l  in te rm e d ia te  planes have 

demonstrated that  t ransi t ions occur in the re lationship  between the 

cycle of t i l t  and the phase of EOM myogram burst.  For r ight  leading 

rotations between t i l t  planes, beginning with r o l l ,  the phase shi f ts  

occur in the l e f t  EOM around 45^ and 225^, and in the r igh t  eye around 

135^ and 315^. Nystagmus is  t o t a l l y  absent dur ing t i l t s  in the  

ver t ica l  plane, although when t i l t e d  in yaws, not only the horizontal  

EOM, but also the ver t ica l  EOM show a nystagmus response. A strong 

tonic f i r in g  is shown by the EOM during s ta t ic  t i l t s .

-VI-
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The control of the ve r t ic a l  VOR by the ver t ica l  semicircular  

canals and the u tr icu lus have been determined by select ive  ablation of 

these two components a t  a range of  f re q u e n c ie s .  The e f f e c t s  of  

utr icu lus ablation are best seen at 0.2Hz, while the semicircular 

canals  a b l a t io n  a f f e c t s  the r e f l e x e s  at 0 .8Hz .  The sequence of  

ablation experiments has ranged from the ablation of a single vert ica l  

canal to the ablat ion of a l l  four ver t ica l  canals and the utr icu lus ,  

and in each has produced a p a r t ic u la r  pattern of EOM f i r i n g  for  t i l t s  

between 0^-360^, which is d i f f e r e n t  from the algebric model of the 

input strength of the ve r t ic a l  semicircular canals. The ablation of a 

single ver t ica l  canal reduces the strength of both the ip s i la te ra l  and 

c o n tra l te ra l  EOM s ig n i f i c a n t ly .  The ablation of poster ior vert ica l  

canal suggests an in h ib i to ry  in teract ion  between the ver t ica l  canal 

outputs. In experiments where only single ver t ica l  canal is l e f t  

in tac t  the myographic response of the EOM in two eyes is controlled by 

contra la tera l  e f fe c ts .  These patterns of EOM f i r i n g  under various 

ablated condit ions d i f f e r  from those predicted by a simple algebric 

model of the input strengths of the 4 ver t ica l  semicircular canals, 

and suggests that  a complex central  wiring exists between d i f fe ren t  

components of the ves t ibu la r  system.
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Chapter 1. GENERAL INTRODUCTION.



GENERAL INTRODUCTION.

The compensatory eye and head movements assist s t a b i l i t y  of gaze 

and of posture. In animals capable of moving both t h e i r  head and eyes 

by a reciprocal coordination of the two, the re t ina l  image s l ip  is 

s tab i l i z ed .  I t  was suggested by Walls (1962) that the requirement for  

image s ta b i l i z a t io n  has in i t i a t e d  the evolution of eye movements. A 

r e la t i v e ly  stable image would be more susceptible for  neural analysis 

than a moving one, and visual performance therefore would be improved.

The experiments performed on vertebrate species have established 

that sensory information which originates in the vestibular  system is 

s ig n i f ic a n t ly  involved in establishing the relationship of the head in 

space (Camis and Creed, 1930). The semicircular canals and labyrinth  

code head posit ion and the angular and l inear  acceleration of the 

head. Angular head a c c e le r a t io n s  are p r i m a r i l y  perceived by the  

s e m ic i rc u la r  canals (Lowenstein & Sand 1940; Egmond, Groen &

Jongkeeys, 1949; Money & Scott,  1962). The u t r ic le  and saccule sense

changes in l i n e a r  v e l o c i t y  o f  the head movements or the s t a t i c  

posit ion of head in space ( Lowenstein & Roberts, 1950; Jongkeeys, 

1950).

The anatomy and physiology of the vestibulo-ocular ref lex (VOR) 

and i ts  components have been extensively studied. Central vestibular  

mechanisms responsible fo r  the processing of vestibular  input and the 

generation of VOR have been thouroughly analysed in mammals (Buttner,

Henn & Young, 1981) in amphibians (Blanks & Precht, 1976) and in f ish

(Allum, Graf,  Dichgans & Schmidt, 1976, Allum & Graf,  1977).

Elasmobranchs such as the lesser-spotted dogfish (Scyliorhinus  

c a n ic u la  ( L . ) )  provide an i n t e r e s t i n g  sub jec t  f o r  comparative  

physiological and neurobiological studies, as these animals possess a 

body form and organization that  re f lec ts  the early developmental
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stages of other higher ver tebrate.  Also the eye reflexes in three 
<*re

dimensions controlled by a small number of discrete  muscles and a 

detai led analysis of the VOR by the extra-ocular  muscles (EOM) can be 

made. Due to an eas ily  accessible labyrinth the eye movements in these 

animals can be induced through several re f lex pathways.

Harris (1965) has recorded and c lassi f ied the eye reflexes in a 

f re e ly  swimming dogfish. He demonstrated f ive  categories of the eye 

movements in a f re e ly  swimming f ish that included compensatory eye 

movements, swimming eye movements, turning eye movements, f ine eye 

movements, and the protective eye ref lexes.

The sense organs of the vestibular  apparatus, especial ly the 

semicircular canals, show marked s im i la r i t i e s  thoroughout vertebrate 

species .  Because o f  these s i m i l a r i t i e s  and due to the easy

access ib i l i ty  of the elasmobranch vestibular  apparatus the studies of 

primary af fe rent  f ib re  responses to physiological stimulation of the 

vest ibular  system in ray and dogfish have been regarded as fundamental 

to understanding of sensory transduction process of semicircular

canals (reveiwed by Lowenstein, 1974; 0' Leary et a l . ,  1974; 0' Leary, 

Dunn, Honrubia, 1976).

The horizontal VOR in vertebrate species have been studied in

d e t a i l  and var ious aspects o f  the system in general and at the  

neuronal level have been worked out.

Horizontal VOR.

Extensive studies of  the horizontal VOR have been made. This

re f lex  is induced by the angular displacement of the cupulo-endolymph 

system of  the h o r i z o n ta l  s e m ic i r c u la r  canals evoked by angular  

acceleration of the head in the horizontal plane (reviewed by Mayne,

1974).
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Harr is  (1965) has in v e s t ig a te d  the h o r i z o n ta l  VOR in the  

elasmobranchs and i t  was concluded that eyes of a f ree ly  swimming 

dogfish were undercompensated by 15^ (during the +25° head rotations  

eyes were counter-rotated by only 10^). His results have suggested a 

contro l  of these eye r e f le x e s  by cen tra l  programming and by the  

vestibular  input.

A more complete and detai led assessment of the horizontal VOR 

were made by Easter  & Johns (1974 ) .  In t h e i r  experiments on the  

goldfish they have compared the eye movements of a v isual ly  deprived 

f ish with the normal animal and have also compared the eye reflexes of  

an intact  f ish a f te r  ablating i ts  functional horizontal semicircular  

canal.  Since the nystagmic response persisted in the absence of the 

horizontal canal but in the presence of vision, these results have 

suggested a possible control of nystagmic eye movements pr imari ly by a 

visual stimulus and to some extent by inputs from the semicircular  

canals. The control of saccadic eye reflexes in the brain stem was 

also determined by Easter (1972).  These studies have concluded that  

the a b i l i t y  to s ta b i l i z e  the re t ina l  image of the environment by means 

of the compensatory eye re f lexes develop very ear ly  in a f ishes l i f e .  

These movements depend c r i t i c a l l y  on non visual signals and to a 

lesser degree on visual signals and i t  has been suggested that the 

neuronal control of these eye movements is exerted by the brain stem 

posterior to the telencephalon.

In monkeys B izz i ,  K a l i l ,  Tagliasco (1971) and Bizzi  et a l . (1972) 

have revealed the nature of the horizontal eye reflexes and have 

concluded that these movements were controlled by proprioceptive  

signals from the neck and the labyrinth without the help of visual  

information.
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Investigation  o f the horizontal ves tib u lo -o cu lar re flexes  at the  

neuronal le v e l.

A con tro l  o f  the v e s t i b u l a r  input  and the generat ion o f

vestibular  reflexes has been studied extensively in the mammals (eg 

Buettner,  Buttner & Henn, 1978), in frogs (Blanks, Pracht & G i r e t t i ,  

1977) and in goldfish (Allum, Graf, Dichgans & Schmidt, 1976).

The existence of ef fe rent  discharges in the vestibular  nerve of  

f rog  during the h o r iz o n ta l  and v e r t i c a l  r o ta t io n s  was f i r s t  

neurophysiologically investigated by Gleisner & Henriksson (1963), and 

Schmidt ( 1 9 6 3 ) .  They demonstrated the generat ion of the

contra latera l  e f fe ren t  impulses as a resu l t  of semicircular canals and 

u t r ic u la r  st imulat ion. Llinas & Precht (1969) have experimentally 

proved in mammals that  not only vest ibular  nystagmus but also the 

o p t o k in e t ic  nystagmus and spontaneous f i x a t i o n  movements are  

correlated with discharge frequency modulation in the peripheral

v e s t i b u l a r  nerve and have suggested the i d e n t i f i c a t i o n  of eye 

movement related neurons among ef fe rent  neurons on the basis of th e i r  

bid irect ional  act ivat ion in response to vestibular  stimuli  or by 

recording from the proximal stump of the vestibular  nerve. Schmidt, 

Wist & Dichgans (1971) have recorded the saccadic eye movements in 

goldfish that resulted from the e f fe rent  frequency modulation in the 

v e s t i b u l a r  nerve .  T h e i r  experimental  work, in which they have 

demonstrated the non-activation of any neuron with ampullo-petal and 

i ts  inh ib i t ion  with ampullo-fugal vest ibu lar  s t im ul i ,  has provided the 

basis for  consideration that phase modulation of these neurons was 

always l inked with the saccadic eye movements and they have not found 

i t  in the pursuit  eye movements and in the slow phases of a nystagmus.

Compensatory eye movements in the monkeys (Skavenki, Robinson,

1973) has been known to be extremely e f fe c t iv e  over a certain range of
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the frequencies (0.01Hz-0.5Hz and up to the rate of 6.5Hz).  They have 

suggested a possible input to the re f lex  by the semicircular canals.  

Fuchs & Kimm (1975) have recorded the unit  a c t iv i t y  in vestibular  

nuclei  of the a le r t  monkeys during horizontal head and eye movements. 

They have discovered the groups of neurons within the vestibular  

nuclei  on the basis of th e i r  functional character is t ics.  The units  

sensit ive to the vestibular stimulus alone and to the eye movements
each f t e

were id e n t i f ie d .  In a le r t  animals an equal number of units o f Atwo 

types were id e n t i f ie d ,  the f i r s t  of these responded to the ip s i la te ra l  

a c c e le r a t io n s  and the un i ts  of  second type responded to the  

contra latera l  acceleration. Based on the behaviour of these two types 

of units i t  was suggested that  discharge patterns of both unit types 

were appropriate to par t ic ipa te  in the compensatory eye movements of 

vest ibu lar  o r ig in .

The spontaneous a c t i v i t y  of semicircular canal afferent  neurons 

enables them to respond in a b id irect ional  manner, increasing t h e i r  

f i r i n g  rate during the head rotat ions in one direct ion and decreasing 

i t  during the rotations in the opposite direction (Lowenstein & Sand, 

1936). In mammals i t  was recorded by Markham, Yagi & Curthoys (1977) 

t h a t  the a b la t io n  of one l a b y r i n t h  reduced the s e n s i t i v i t y  of  

vest ibu lar  neurons to the head ro ta t ion .  Blanks & Precht (1976) have 

suggested t h a t  in cats b i l a t e r a l  i n te r a c t io n s  are more s t ro n g ly  

developed and the reciprocal innervation might have been s ig n i f ican t ly  

involved in determining the rotation responses of central  neurons, to 

supply the animal with accurate b id irectional  information.

Montgomery (1983) has established that at lower frequencies there 

was a larger  phase delay in the response of the central  vestibular  

neurons than that  of primary af ferents  and as a resul t  the phase of  

the v e s t i b u l a r  neuron response was in s e n s i t i v e  to the st imulus
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frequency. While in mammals (Shimazu & Precht, 1965; Johns & Milsum, 

1971; Schinoda & Yoshida, 1974) i t  has been established that the 

rotation responses in the vest ibular  nuclei are essent ia l ly  similar  to 

that of the vestibular  a f ferents .

In goldfish the single unit  a c t iv i t y  in the abducens nucleus has 

been recorded simultaneously along with the eye movements by Gestrin & 

Ster l ing (1977).  In these studies two cel l  types were ident i f ied  as 

possibly to be the motoneurons and i t  was suggested that  the mechanism 

r e g u la t in g  the amplitude and v e l o c i t y  of the slow and fa s t  eye 

movements appear to be d i f f e r e n t .  Fast eye movements are in i t ia te d  by 

simultaneous f i r in g  of a l l  the phasic-tonic ce l ls ,  and therefore the 

amplitude and the veloci ty  of saccades could only be regulated by the 

various parameters of the phasic burst of spikes. Slow movements are 

controlled both by the recruitment and by tonic f i r in g  frequency.

In th e i r  experiments on goldf ish, Allum, Graf,  Dichgans, and 

Schmidt (1976) has established that  responses to horizontal body 

rotation in the dark were s im i la r  to those observed in the vest ibular  

nerve af ferents .  The optokinetic nystagmus response in th is  experiment 

was proved to be d i r e c t i o n  s p e c i f i c ,  but on the con tra ry  the  

v e s t i b u l a r  responses e x h ib i t e d  a ton ic  response to the constant  

veloc i ty .  In the 1 ight^ responses to the body rotations were found to 

combine l ine a r ly  the vest ibu lar  and optokinetic ef fects  to obtain the 

accurate veloci ty  information fo r  the sensory and motor functions.

Montgomery (1983) has reported that the operating frequencies of 

oculo-motor neurons in the carpet shark are considerably lower than 

those reported in other animals. In mammals the oculomotor f i r in g  

rates are highest (Fuchs & Luschei, 1970). In goldfish the f i r in g  

rates are also comparatively high (Hermann, 1971. Gestrin & Ster l ing ,  

1977). The lower f i r i n g  rates in the carpet shark have been thought to
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be correlated with the poorly developed saccadic system in these f ish .

Baarsma & Co llewij in  (1974) have studied the gain and phase of 

the eye reflexes as a function of change in the stimulus frequency and 

they concluded that the phase was very obviously a function of the 

stimulus frequency.

V e rtica l VOR.

Compared to the horizontal VOR, the VOR in the vert ica l  plane has 

been less extensively studied, and only a few reports are available in 

mammals.

Darlot,  Barneo, Tracey (1981) have measured asymmetries in the 

ver t ica l  VOR and have reported that gains measured in the absence of 

the visual stimuli  fo r  ver t ica l  VOR are generally larger for  the 

downward response than the upward response. In th is respect they are 

d i f fe re n t  from horizontal VOR, which are reported to be symmetrical in 

the absence of visual stimuli  (Robinson, 1976. Davis, 1978).

Snider & King (1988) investigated the ver t ica l  vestibulo-ocular  

reflexes in the cat .  Their experiments have described a veloci ty  of 

eye movements immediately a f te r  the onset of head rotation (during the 

f i r s t  2 seconds) and by characterizing the ear ly  time course of VOR 

they have suggested t h a t  only  the f i r s t  few seconds of  VOR are  

necessary fo r  visual s ta b i l i z a t io n .  The reflexes employing visual 

rather  than vestibular  input accurately s ta b i l i z e  the persistent image 

movement across the re t ina  a f te r  this time (also reported in monkeys 

by Miles, Kawano & Optican, 1986).

Synder et a l . (1988) have also reported that ver t ica l  VOR gain 

adaptation in re la t ion  to the head rotation was symmetrical during 

upward and downward rotat ions.

The exist ing l i t e r a t u r e  lacks information about the operation of
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ver t ic a l  VOR in f ish .  Since f ish swimming behaviours are comprised of  

movements about three primary axes the pattern of VOR in the ver t ica l  

plane is equally s ignif icant  and needs to be explained in the ro l l  and 

pitch planes.

Vestbular input to  the EOM response.

The compensatory vert ica l  as well as horizontal eye movements 

induced by the vestibular  apparatus involve a c t iv i t y  carried by VOR to 

the EOM.

Semicircular canal input.

I t  was demonstrated by Cohen, Suzuki, Shanzer, Bender (1964) that  

in mammals the re f lex  contraction of an EOM induced by an e lec t r ica l  

st imulation of a semicircular canal was e f fe c t iv e ly  depressed by 

preceding s t im u la t io n  of  another can a l ,  which has ind ica ted  an 

inh ib i to ry  interaction between the VOR arising from d i f fe ren t  canals.

I to ,  Nisimaru & Yamamoto (1976) have experimentally concluded 

that  in rabbits inhib itory  interaction in the VOR occurs in three 

p ar t ic u la r  combinations of the test ing canals: anter ior  and posterior  

canals of the same side, anter ior  and poster ior canals of the opposite 

side, and horizontal canals of the opposite side.

H ighs te in  (1972, 1973) has recorded i n t r a c e l l u l a r l y  and

e x t r a c e l lu la r ly  from the motoneurons in the I I I r d  and IVth cranial 

nuclei of anaesthetised rabbits and has ident i f ied  f ive  subgroups of  

the neurons innervating the SR, 10, IR and MR and the SO (IV) by t h e i r  

antidromic act ivat ion from the branches of the I I I  and IVth cranial  

nerves.  In the SR, 10, IR and IV subgroups the e f fe c ts  of  the  

i p s i la te r a l  V I I I  nerve stimulation were inh ib itory  producing d i -  

synaptic IPSPS, while the ef fects  of the contra - la tera l  V I I I  nerve
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st imulation were excitatory producing di-synapt ic EPSPS. In the MR 

subgroup a mixture of the EPSPS and IPSPS was produced by V I I I  nerve 

st imulat ion.

I t  was demonstrated by several  authors th a t  the discharge  

frequency in the vestibular  nerve f ibres  from the horizontal canal of 

f ish or frog is increased by the ip s i la te r a l  horizontal acceleration  

and decreased by opposite rotat ion (Lowenstein & Sand, 1940; Ross, 

1936).

The classic studies of the system have demonstrated that the

cupula-endolymph system responds to the changes in angular ve loci t ies  

(Steinhausen, 1931. Lowenstein & Sand, 1940; Precht, Linas & Clarke,  

1971) This system however lacks the in form at ion  about constant

ve loc i t ies  for  motion control,  and therefore the vestibular  system is 

d e f i c i e n t  and supplementary sensory in fo rm at ion  is requ i red .  In 

goldfish i t  was experimentally demonstrated that this supplementary 

in fo rm at io n  about the constant  v e l o c i t y  movement of  the body is  

provided by the visual sense.

The response character is t ics of the af fe rent  nerve f ibres from 

the s e m ic i rc u la r  canals have been determined in a v a r i e t y  of  

v e r te b r a te s  with  regard to  both spontaneous and evoked a c t i v i t y

(Goldberg & Fernandez, 1971; 0? Leary et a l . ,  1974; Blanks, Estes &

Markhem, 1975).

Lowenstein & Sand (1940) f i r s t  reported a class of h igher  

threshold units which are s i le n t  at rest and which discharge only in 

response to rotation in one d irec t ion .  Oman, Frishkop & Goldstein 

(1979) have also reported the rec ru i tm e n t  o f  these un i ts  with  

p ro g re s s iv e ly  la rg e r  sp ike ampl itudes during e x c i t a t o r y  c a l o r i c  

stimulation of semicircular canals. T a g l i t t i ,  V a l l i  & Casella (1973) 

have reported that in frog the e f fe rent  nerve spike size was related  

to the threshold.
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The s e m ic i rc u la r  canal r e f le x e s  in terms o f  t h e i r  input  to  

myographic a c t i v a t i o n  o f  EOM was pred ic ted  by Lowenstein & Sand 

(1940).  Based on these suggestions the ref lex  activat ion of d i f fe re n t  

EOM by d i f fe re n t  combinations of semicircular canals have s t i l l  to be 

experimentally tested. The myographic activat ion of EOM in the ro l l  

and pitch planes needs to be determined. Also these responses have to 

be checked at intermediate planes to determine the integration of  

ver t ica l  canal outputs during the operation of ver t ica l  VOR. Also the 

control of ver t ica l  VOR by the semicircular canals and the utriculus  

needs to be determined.

Possible contribution of the o to l i th  organ.

The low frequency response of the o to l i th  to the sinusoidal ro l l  

t i l t  was der ived by Barmack (1981 ) .  From his experiments he has 

suggested that the utr icu lus would be suitably involved in detecting  

low frequency changes in the head position in the ver t ica l  VOR.

I t  has been considered that  s ta t ic  t i l t  responses or ig inate from 

the o to l i th  organs. I t  was established by Lowenstein & Roberts (1950),  

Fernanedz, Goldberg & Abend (1973) and Loe, Tomko & Werner (1973) in 

recordings from the primary afferents in many vertebrate species that  

f i r i n g  of the utr iculus af ferents  are roughly proportional to the sine 

of the angle of the t i l t .  Also the s ta t ic  t i l t  responses have been 

recorded by Fernandez (1963) and Shimazu & Smith (1971) from single  

bra in  stem v e s t i b u l a r  neurons, and t h e i r  u t r i c u l a r  o r i g in  was 

confirmed by the fact  that  the response persisted at the lowest tested 

frequency of the t i l t  (0 .01Hz).  Within the u t r ic u la r  receptors an 

origin  for  the dynamic response has also been recorded in the ray 

(Lowenstein & Roberts, 1950) and in cat (Vidal ,  Jeannerod, L i fs ch i tz ,  

L e v i ta n ,  Rosenberg & Segundo, 1971) .  This e f f e c t  consisted of  a
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d i r e c t io n a l  component to  the t i l t  response approaching a given 

position from the opposite directions. I t  was suggested that this  

e f fec t  could be due to neural adaptation (Goldberg & Fernandez, 1971).

Schor (1974) has made ex trace l lu la r  recordings in the la tera l  and 

the in fe r io r  vestibular  nuclei of cats and has studied the f i r in g  

patterns of single units using small amplitude sinusoidal ro l l  t i l t s  

at a low frequency range (0 .01Hz- l .0Hz) . He concluded that in the 

majority  of the t i l t - s e n s i t i v e  units f i r in g  rates were increased by 

increasing the frequency of the sinusoidal ro l l  t i l t .  He also checked 

these responses a f te r  plugging the semicircular canals and suggested a 

probable or ig in of these units in the u tr icu lus ,  since they remained 

unchanged in the absence of semicircular canal input. These results 

have been confirmed by Peterson, 1970; Schimazu & Smith, 1971).

L i t t l e  is known about the u t r i c l e  input  to EOM in f i s h ,  the  

nature of these ref lexes and how they a f fec t  the myographic a c t iv i ty  

of EOM in the absence of semicircular canal input.

Physiological p ro f ile  o f EOM.

The EOM are highly organized s tr ia ted  muscles. They are required 

to make extremely  rap id  movements, as when the gaze is suddenly 

shif ted,  or during scanning eye movements. They must also produce 

sustained contractions fo r  long periods, in maintaining the posit ion  

of the eyes during imposed head and body t i l t s .

Six EOM are consistently present in craniates and among fishes 

they are s imi lar  in innervation and in t h e i r  posit ion within the 

o rb i t .  There are two oblique muscles, the superior oblique (SO) and 

the in fe r io r  oblique (10) ,  and four rectus muscles, the superior 

rectus (SR), the in fe r io r  rectus ( IR ) ,  the external rectus (EXT-R) and

the internal rectus ( INT-R).  The motor innervation of EOM is carried
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by three crania l  nerves: branches of the oculomotor nerve (CNI I I )  

innervate 10, SR, IR, and INT-R muscles, SO receives a branch of the 

trochlear  nerve (CN IV) and EXT-R is innervated by the abducens nerve 

(CN V I ) .

Since the eye movements in three dimensions are controlled by EOM 

t h e i r  p h y s io lo g ic a l  p r o p e r t i e s ,  u l t r a s t r u c t u r a l  fea tu res  and 

innervation are s igni f icant  in determining t h e i r  role in d i f fe re n t  

types of eye ref lexes.  The EOM structure and physiology is a well 

studied subject and re f lec ts  the differences related to d i f fe ren t  

modes of l i f e  and re la t iv e  use of the eyes according to the animal7s 

special needs.

The structure of vertebrate skeletal  muscle provides a basis for  

the id e n t i f ic a t io n  of d i f fe ren t  f ib re  types within the EOM. Based on 

differences in the histochemical and immunohistochemical staining,  

u l t ras t ruc tu ra l  features and innervation of the f ib re  types, two main 

f ib re  types have been ident i f ied  and named as slow and fast .

The u l t ra -s t ru c tu ra l  features most commonly used to distinguish  

f i b r e  types inc lude s ize  and shape of  the m y o f i b r i l s ,  amount o f  

sarcoplasm (Hess, 1970), and in case of slow f ibres the absence of M- 

l ine  in the middle of A-band and a wavy Z - l in e .

The work of Peacfjy & Huxley (1962) has ident i f ied  single slow 

f ibres by measuring th e i r  contraction speed in response to d i rect  

e le c t r ic a l  stimulat ion.  In a reveiw by Hess (1970) the muscle f ibres  

that can respond to a nerve stimulation with a prolonged contraction  

and that  usually do not exhib i t  an action potent ia l  have been named as 

slow f ib res .

Certain differences have also been reported in the innervation of  

the two f ib r e  types. According to these reports the slow muscle f ibres  

are innervated by multiple nerve terminals of the engrappe type, while
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the tw i tc h  f ib r e s  have been innervated by a s ing le  end p la te  of  

enplaque type. I t  has also been demonstrated that small motor nerve
Q.

f ib res  innervate slow f ibres ,  whreas large nerve f ibres innervate 

twi tch f ibres (review by Morgan & Proske, 1984).

As fa r  as the physiological p r o f i l e  of the vertebrate slow fibres  

is concerned i t  always re f lec ts  an overal l  high ' t fa t io o f  oxidat ive

metabolism to ATP consumption r a t e .  In the amphibia the consumption 

r a t e  ( r e f l e c t e d  by m-ATPase a c t i v i t y , )  is  extremely  low . Consequently  

metabolic supply capacity is i t s e l f  low compared with that  of most

twitch f ib re s .  Thus mitochondria, oxidat ive enzymes such as SDH, l ip id

droplets and glycogen stores are a l l  sparse (Morgan & Proske, 1984).

However in o th e r  v e r t e b r a t e  c lasses inc lu d in g  both t e le o s t s  and 

elasmobranchs m-ATPase activity^ while less than in fast  fibres^ is

s t i l l  appreciable.  Consequently they have moderate or high levels of

oxidat ive metabolism as indicated by a l l  the above markers (Morgan &

Proske, 1984; Bone, 1966).

Based on the u l tras tructura l  character is i t ics ,  innervation and 

physiological p ro f i le  of the f ib re  types within the vertebrate groups, 

i t  proves nearly impossible to segregate the muscle f ib re  types as 

t rue slow or true fast  f ibres and various subgroups of the two f ib re  

types have been known to ex is t .  Morgan & Proske (1984) have reviewed 

the slow f i b r e  types among v e r te b ra te s  and proposed d i f f e r e n t  

categories.  1. Fibres that do not propagate action potentials and do 

not relax in the depolarizing solution, are called slow f ibres;  they 

are app aren t ly  m u l t ip ly  in nerva ted .  2.  F ibres th a t  mainta in  a 

contracture but are also able to twitch are called intermediate or 

ton ic - tw itch  f ib re  types. They are also multip ly innervated. 3. Fibres
only

which have'^some fea tu res  o f  the slow f i b r e s ,  l i k e  m u l t ip le
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innervation and which do not respond to a single nerve stimulation  

(non-twitch);  these f ibres appear s t ructura lly  more l ik e  twitch ( fas t )  

muscle. 4. Normal twitch f ib res  which include those with very slow 

contraction speed but which always produce a measurable contraction in 

response to a single nerve impulse.

The f ish myotomes are comprised of slow and twitch f ib res .  The

slow superfic ia l  f ibres are referred to by various authors as red 
HbreA

, and the mass of the myotome is comprised of more deeply located 

twitch f ibres which have been termed white. In many f ish ,  f ibres  

located between the slow (red) and twitch (white) f ibres are 

commonly recognised as intermediate f ibres and are intermediate in 

color (pink) as well as location (Bone, 1978).

In the e x is t in g  l i t e r a t u r e  reports  are a v a i l a b l e  on the  

innervation pattern of the red and white muscle f ib res .  Stanfield  

(1972) has reported that red f ibres in f ish have engrappe endplates 

and are slow-contracting non-twitch f ibres that do not propagate 

action potent ia ls .  The e a r l i e s t  data in this context was provided by 

Hess (1961) in his work on fast  extrafusal f ibres and t h e i r  nerve 

endings in mammalian EOM. He established that engrappe endings occur 

on the slow fibres and the f ibres with enplaque type endings were 

suggested to be fast  f ib res .  Based on the physiological studies in the 

cat (Hess & P i la r ,  1963. Matyushkin, 1961. Bach-Y-Rita & I to ,  1966 and 

in rabbits (Kern, 1965) the f ibres with engrappe nerve endings were 

called slow tonic or slow multi- innervated twitch f ib res .  The f ibres  

with enplaque endings were named fast  twitch f ibres .
bodj U£\U

Peters & Mackay (1961) have named the muscle f ib r e s  of  the  

lamprey as par ieta l  and cen tra l .  Electron microscopic studies have 

revealed that myofibri ls of the par ieta l  muscles are more widely 

separated by the sarcoplasm than those of the central  f ib res .  From
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t h e i r  micrographs i t  appears that both kinds of f ibres have an M-l ine.  

The par ieta l  muscle f ib res  of the lamprey have multip le terminals.  The 

central  f ibres are innervated at both ends. The par ieta l  muscle f ibres  

does not exhibit  folds under the multiple nerve terminals.

In elasmobranchs the red superfic ial  f ibres of the myotome are 

innervated by several small engrappe type terminations and they do not 

have propagated action potent ia ls ,  while the intermediate pink and 

deep white f ibres are innervated by an individual ending located at 

one end of the f ib r e  and have propagated action potentials (Bone, 

(1966).

N ish ihara  (1967) has co r re la te d  the in n erva t io n  with the 

ul t rastructura l  features of the red and white muscle in carp and 

reported  t h a t  both red and white  f ib r e s  have well  developed 

sarcoplasmic reticulum, M-l ines, and tr iads at the level of Z - l ine .  

Both f i b r e  types appear to have m u l t ip le  te rm ina ls  with  smooth 

membranes between nerve terminals and muscle f ib res .  The f ibres do 

d i f f e r  in the d is t r ib u t io n  of th e i r  multiple terminals; the red f ibres  

have densely grouped nerve terminals in some areas. The distance 

between the multip le  nerve terminals is not given. The red f ibres are 

s im i la r  physio logical ly  to slow f ibres ,  the white f ibres to twitch 

f ib res .  However Bergmann (1964) has concluded that i t  is not necessary 

for  red f ibres to be of slow tonic type. In his studies of  the muscle 

f ibres in the dorsal f in  of the sea horse, apparently red in color,  i t  

was demonstrated that  the mechanical properties of these muscles 

showed that they are are fast  enough to be considered as twitch 

f ib res .  Bergman considered the red f ibres in the sea horse to be 

twitch f ibres that  have multiple nerve terminals without sarcolemmal 

infoldings under them and established that slow fibres could sometimes 

be innervated mult ip ly .
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Teravainen (1971) has analysed the lamprey body wall muscle and 

concluded the par ieta l  f ibres stain intensively  for  oxidative enzymes, 

whereas central  f ibres stain weakly (Meyer, 1979). Pre-incubation of 

the t issue at d i f fe ren t  pH values has revealed the acid-resistant  

myosin-ATPase a c t i v i t y  only in the f ibres of the par ie ta l  layer,  which 

are presumably slow f ibres .  The synaptic junctions on par ieta l  f ibres  

were also t y p ic a l ly  of a slow muscle.
n^pisk

In general red muscle is  considered to  be slow. However as 

var ious s tud ies  have suggested in some f i s h ,  red f ib r e s  do not 

const itute  a uniform population but several functional ly  d is t inc t  

f ib r e  types. I t  is l ik e ly  that red f ibres are able to twitch and the 

suggestion has been made, based on the protein composition of red and 

white te leost  muscles, that they should be compared with the slow- 

twitch and fas t  twitch mammalian muscles (Hess, 1970).

F ibres in te rm e d ia te  between the tw i tc h  and t rue  slow f ib r e s  

according to most structural c r i t e r i a  were named as Type 4 by Smith 

and Ovale (1973).  They were ident i f ied  as intermediate on mechanical 

grounds. These f ib r e s  were cha ra c te r ise d  by s ta in in g  weakly f o r  

myosin-ATPase and succinate dehydrogenase and by a low fa t  content, 

low mitochondrial volume, a thick Z - l in e ,  an i r regu lar  M-line and a 

poorly developed sarcoplasmic reticulum.

In a l l  EOM, near the insertion of these muscles with the eye 

b a l l ,  the f ib res  are arranged in two d is t in c t  regions; there is an 

outer region of small f ibres generally recognized as the orb i ta l  

region and an inner region of comparatively large f ibres known as the
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global region.

On the basis of t h e i r  histological p r o f i l e ,  contrac t i le  a c t i v i t y  

(myosin-ATPase),  o x id a t iv e  p o t e n t i a l  (succ ina te  dehydrogenase),  

g l y c o l y t i c  tendencies,  u l t r a s t r u c t u r e  and t h e i r  response to an 

e le c t r ic a l  or mechanical stimulus, several funct ionally  d i f fe ren t  

f ib re  types have been ident i f ied  and c lass i f ied  in vertebrate species 

(Hess, 1963; Zenker and Azenbacher, 1964; D ie te r t ,  1965; P i la r  & Hess, 

1966; Cheng & Brenin, 1966; Mukuno, 1967; M i l l e r ,  1967; Mayer, 1971; 

Kordylewiski, 1974; Davey, Mark, Marotte & Proske, 1975).

Ult rastructura l  studies of lamprey EOM have distinguished three 

(Wita l inski  & Labuda, 1982) f ib re  types. In te leost  EOM two f ib re  

types have been reported (Kilarski & Bigaj ,  1969; Kordylewski, 1974; 

Davey, Mark, Marotte & Proske, 1977). Based on th e i r  histochemical 

p r o f i l e  two f i b r e  types have been known to e x i s t  in amphibians 

(Nowogrodzka-zagorska, 1974) and in grass snake (Wital inski & Loesch,

1975) .  Three f i b r e  types have been i d e n t i f i e d  in the l i z a r d s  

(Kaczmarski, 1969) and in birds (Kaczmarski, 1970). In mammals the 

number varies and ranges up to six (Pachter, Davidowitz & Brenin,

1976). Among these f ib re  systems, the f i r s t  c lass i f ica t ion  in f ish ,  

amphibian and mammalian EOM (reveiwed by Buchthal & Schmalbruch, 1980) 

recognised sm al l ,  o r b i t a l ,  slow Type I f i b r e s  and mostly l a r g e ,  

global,  fast  twitch Type I I  f ibres (Close & Luff,  1974). Several 

subpopulat ions of  these two f i b r e  types have been i d e n t i f i e d  in 

d i f fe re n t  vertebrate groups.

The ph y s io lo g ic a l  s tudies in v e r t e b r a t e  EOM and in dogf ish  

myotomal muscles provide a basis to investigate the number of f ib re  

types present within the dogfish EOM. How do these types compare with 

the other vertebrate EOM in terms of th e i r  enzyme content, contract i le  

p ro p e r t ie s  and innervat ion?  Do both,  or only one f i b r e  type ,
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contribute to the VOR at ver t ica l  plane? Since eye ref lexes a 

horizontal and ver t ica l  planes are reported to be d i f f e r e n t  

interesting to know i f  these differences can also be found i 

structure and physiology of  the horizontal and the ver t ica l  EOM.

: the 

t  is 

i the
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C hapter 2 .  PHYSIOLOGICAL PROFILE OF EOM
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2.1 INTRODUCTION

2 . 1 . A Contrac t i le  and physiological p r o f i l e  of  EOM.

In the EOM as in other s t r ia ted  muscles, the ATP molecule is 

attached to the globular  head region of the myosin molecule and i t  is 

the energy-releasing hydrolysis of ATP that  drives the reaction,  which 

in tu rn  produces the muscle c o n t r a c t i o n .  Barany (1967) has 

demonstrated t h a t  the speed of  muscle c o n t r a c t io n  is  d i r e c t l y  

proportional to i ts  myosin-ATPase a c t i v i t y .

Histochemical procedures have demonstrated the di fferences in 

the myosin-ATPase content of small o rb i ta l  (Type I )  f ibres  and large 

global (Type I I )  f ib res .  The results obtained from lamprey (Wital inski  

& Labuda, 1982) have demonstrated a high myosin-ATPase a c t i v i t y  in the 

thin ( o r b i t a l )  f ib res  and comparatively low a c t i v i t y  in th ick (global)  

f ib res .  On the other hand histochemical data of dogfish myotomal 

muscles (Bone & Chubb, 1978) have indicated a progressive increase in 

myosin-ATPase a c t i v i t y  from the superf ic ia l  red (Type I )  f ib re  layer  

towards the white (Type I I )  f ib re  region. S imilar  results have been 

reported by Johnston, Davison & Goldspink (1977) fo r  carp muscles.

The c la s s i f ic a t io n  of muscle f ib r e  types on the basis of myosin- 

ATPase a c t i v i t y  is sometimes compl icated by the presence of  two 

q u a l i t a t i v e ly  d i f f e r e n t  kinds of myosin-ATPase (Guth & Samaha, 1969). 

The myosin-ATPase isolated from the mammalian slow-contracting soleus 

muscle (known to conta in  98% slow f i b r e s )  shows r e l a t i v e  acid  

s t a b i l i t y  and a lk a l i  l a b i l i t y  of the Ca^+ act ivated myosin-ATPase. 

Conversely the myosin-ATPase of f lex o r  ha l luc is  longus muscle (known 

to have 90% fas t  f ib res )  shows a lk a l i  s t a b i l i t y  and acid l a b i l i t y .

Mammalian EOM are composed of both fast-and slow-contracting  

components. The Type I f ib res  show an a l k a l i  l a b i le  and acid stable

21



myosin-ATPase reaction l ike  slow skeletal  muscle f ib res .  The Type I I  

f ib res  demonstrate a lk a l i  stable and and acid la b i le  myosin-ATPase, 

s im i la r  to that  of fast  skeletal  muscle f ibres (review by Morgan &

Proske 1984^
ra t io  of m-ATPase consumption

Since tbeAoxidat ive potential  determines the resistance of muscle

f ibres  to fa t igue ,  the muscle f ib re  types in vertebrate skeletal  

muscles are widely c lass i f ied  by combining the reaction of myosin-

ATPase with physiological and metabolic properties (Brook & Kaiser,  

1970; Peter,  Barnard, Edgerton, G i l lespie  & Stempel, 1972; Burke, 

Lev ine ,  T s a i r i s  & Zajac I I I ,  1973) .  Based on t h is  scheme a wide

heterogeneity of f ib re  types has been described in skeletal muscles

and EOM of mammalian species (Peachey, Takeichi & Nag, 1974; Alvarado 

& Vonhorn, 1975; V i t a ,  M astag l ia  & Johnston, 1980; Guer itaud,  

Horcholle-bossavit , Thiesson & Tyc-Dumont, 1984). The three most 

generally recognized types are: Type I slow-oxidative belonging to 

slow-contracting fa t igue -res is tan t  motor units; Type 11A fast - tw itch  

g lyco ly t ic /o x id a t ive ,  belonging to fast -contracting fa t igue-res is tant  

motor units and Type 11B fas t - tw i tch  g lycoly t ic ,  belonging to fa s t -  

contracting, fa s t - fa t igu ing  motor units.  In the case of f ish ,  studies 

have been made only fo r  the lamprey EOM, in which small f ibres of the 

orb i ta l  region (Type I )  demonstrate high SDH a c t iv i t y  compared to the 

large f ibres of global region (Type I I ) .

In mammalian skeletal  muscles and EOM, several detai led accounts 

of immunohistochemical staining of f ib re  types have been made and the 

results of these experiments have revealed the nature of the unique 

c o n t r a c t i l e  p ro p e r t ie s  of  f a s t  and slow f i b r e  types (Pierobon-  

B o rm io l i ,  S a r to re ,  Dal 1 a - L i b e r a , V i t a d e l l o  & S c h ia f f in o ,  1981; 

Rowlerson, Pope, Murray, Whalen & Weeds, 1981; Sartore, Mascarello,  

Rowlerson, Gorza, Ausoni, Vianello & Schiaff ino, 1987).
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No imrnunohistochemical staining has been performed on f ish EOM. 

There is also lack of data in the f ish EOM for  the id e n t i f ic a t io n  and 

d e s c r ip t io n  of d i f f e r e n t  f i b r e  types h is to ch em ica l ly  and the  

confirmation of the nature of these types by imrnunohistochemical 

methods.

2 .1 .B  U ltras tru c tu re  d is tin c tio n  of f ib re  types.

The experiments based on ul tras tructura l  studies have revealed 

d i f f e r e n c e s  in m itochondr ia l  d e n s i t i e s ,  pos i t ion  of  t r i a d s  and 

development of sarcoplasmic reticulum (SR) between the two f ib re  

types .  In v e r t e b r a t e s ,  Type I f i b r e s  have a r e l a t i v e l y  p o o r ly -  

developed capac i ty  f o r  aerob ic  and anaerobic metabolism t h e i r  

mitochondrial densities are generally less, the mitochondrial cr is tae  

are poorly developed (Ovale, 1982) and the position of the t r iads is 

at the level of the A/ I  junction (Kilarsk i & Bigaj, 1969).

The u l trastructure  of f ish EOM has been extensively studied in 

Carassius (Davey et a l ,  1975) and carpet shark (Hously & Montgomery, 

1984) .  Type I f i b r e s  in these studies appear to be r ic h  in 

mitochondria, with l i t t l e  SR and infrequent,  dispersed t r iads .  Type I I  

f ibres have regular m yof ib r i ls ,  with extensive SR, t r iads located at 

the Z -d is c  and a pronounced H-band and M - l in e .  However these  

u l t r a s t r u c t u r a l  fea tu re s  of  the carpet  shark muscle were not 

correlated with i ts  con trac t i le  and metabolic properties, so the 

functional signif icance of the differences found in the two f ib re  

types has not been interpreted.

2 .1 .C  Response to  a mechanical stim ulus.

The mechanical responses of isolated red and white f ib r e  bundles 

have been investigated in te leost  fishes (F I i teny & Johnston, 1979).
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The results obtained fo r  mechanical responses of isolated red and 

white f ib re  bundles in teleosts have demonstrated di fferences in the 

pattern of the act ivat ion  of the two f ib re  types. Only white f ibres  

(s im i la r  to Type I I  in case of EOM) responded to a single stimulus. 

The red f ibres (Type I )  responded only at frequencies above 5Hz and 

10Hz. Both f ib re  types were able to produce graded fused te ta n i .  Type 

I f ibres have been iden t i f ie d  in EOM of mammalian species and i t  has 

been suggested that  these slow fibres have mechanical properties  

s im i la r  to those of amphibian slow muscles. Cat EOM gave a fused 

te tan ic  contraction only when stimulated at 30Hz (Hess & P i la r ,  1963; 

Bach-y-Rita & I t o ,  1966, P i la r ,  1967). In some other experiments on 

cat and monkey EOM, no evidence was found for a con trac t i le  component 

which could produce contraction at lower frequencies (Barmack, Bell & 

Renee, 1971; Fuchs & Luschei, 1971) and i t  was suggested that slow 

f ibres were un l ike ly  to contribute any s ignif icant  tension during eye 

movements. The slow f ib res  studied in the EOM of cat and rabbit  gave a 

smooth contraction at a l l  frequencies (Matyushkin, 1964). Maximum 

tension was developed at 100Hz and contributed about 10% of the whole 

muscle tetanic  tension. However there are no data ava ilable  to explain 

the mechanical responses of f ish EOM.

2.1 .D  Innervation.

There is experimental evidence that EOM are provided with more 

than one type of innervation (Bach-Y-Rita, 1971, 1975); polyneuronal 

as well as focal innervation has been found in several vertebrate  

species (Peachy, 1971; Lennerstrand, 1972). In mammalian EOM i t  has 

been reported by Kackzmarski (1974) that Type I f ibres are innervated 

by motor endplates of the engrappe type, while the Type I I  f ibres are 

innervated by single endplates of the enplaque type.
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In a reveiw by Hudson (1969) i t  was suggested that the majority  

of te leost  myotomal muscle f ibres of the slow (Type I )  and fast (Type 

I I )  were both innervated by multiple nerve endings. Only in a few 

te leost  species and in elasmobranchs (Bone, 1964, 1966) and hagfish 

(Jansen, Anderson & Janson, 1963), have fast  (Type I I )  muscle f ibres  

been found with focal innervation.

2 .1 .E  Aims o f the p ro jec t.

Slow and fast  motor units in mammalian EOM have been known to 

have d is t in c t  histochemical prof i les  (Gueritaud et a l , 1984). In f ish  

there  is very l i t t l e  known about f u n c t i o n a l l y  segregated and 

histochemically or mechanically id e n t i f ia b le  motor units.

Although properties of EOM f ib re  types have been studied and 

descr ibed in terms o f  t h e i r  fu n c t io n a l  s i g n i f i c a n c e ,  no d i r e c t  

c o r r e l a t i o n  o f  the p h y s io lo g ic a l ,  c o n t r a c t i l e  and mechanical 

properties has been made with the innervation of these f ib re  types to 

explain the heterogeneity in the responses of EOM. Since eye nystagmus 

is comprised of slow (compensatory) and fast  (nystagmus) responses, 

i t  could be that  two funct ionally  id e n t i f ia b le  components are also 

present in EOM. In the present study an attempt has been made to 

iden t i fy  and segregate these two components.

The size of muscle f ibres and t h e i r  location in the EOM play a 

s i g n i f i c a n t  r o l e  in  d e t e r m in in g  t h e i r  h i s t o c h e m i c a l  and 

imrnunohistochemical properties. A quant i ta t ive  analysis has been made 

to obtain a more detai led picture of the relationship between f ib re  

sizes and t h e i r  physiological p ro f i les .
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2.2 MATERIAL AND METHODS.

2 .2 .A Histochemical procedures.

Dogfish (Scyliorhinus canicula (L )) were anaesthetised with a 

high dose of MS222 (20mg/ l i t re) and dissected immediately to remove 

the EOM from the o rb i t .  The location of EOM within the orb i t  is shown 

in Fig 2 .1 .  The t issue sample was then cut into smaller pieces, which 

were mounted in a drop of Tissue-tek I I  O.C.T compound on a piece of
to o d y  vJCXU

cork. In some cases, as a control,  a piece of la te ra l  ^muscle was 

mounted to g e th er  with  the EOM. The cork piece was immersed in 

isopentane (which i t s e l f  was ch i l led  with l iquid  nitrogen) to rapidly  

freeze the t issue (<2 seconds). Direct  immersion in l iqu id  nitrogen 

actua l ly  cools t issues less rapidly because they become insulated by an 

envelop of nitrogen gas. For short-term storage frozen

blocks were placed in e i ther  the cryostat or in an ordinary deep 

freeze at -20% For long-term storage the frozen blocks were kept in a 

deep freeze at -70^C to maintain the enzymatic a c t iv i t i e s  of the 

muscle f ib res .

The composite blocks of EOM with la tera l  muscle were cut s e r ia l ly  

in a cryostat,  taking sections from near the insertion of EOM with eye 

b a l l .  These were taken up on coverslips and incubated for myosin- 

ATPase, succinate dehydrogenase (SDH) and imrnunohistochemical staining  

procedures.

2 . 2 . A.a Myosin-ATPase staining techniques of Bone & Chubb (1978).  

I n i t i a l l y  the method of Bone and Chubb (1978) used for  staining

of f ish  body wall muscles was tested for  myosin-ATPase staining of

EOM. The following steps were followed:

1. Preincubate the sections in 0.2M di-ethanolamine at pH 10.4 for  1-5

minutes, add 3g of urea for  100ml.
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2. Blot around the sections and back of the coverslip .  Put the

sections in incubating solution (4ml of 0.18 CaCl2 + 36ml 0 . 2M 

di-ethanolamine solution at pH 9.4 and 60.8mg ATP [2-SmMin f ina l  

solution]+ 148mg KCL).

3. Rinse in three changes (30s each) in 0.18M CaCl2 •

4. Transfer to 0.01M C0 CI2 solution fo r  two minutes.

5. Four rinses (30s) each in 0.2M Di-ethanolamine adjusted to pH 9 .0 .

6 . Develop in 2% Ammonium sulphide solution for  two minutes.

7. Tap water r inse.

8 . Fix in 5ml of 4% formaline solution + 42.5ml sea water + 42.5ml

d is t i l e d  water.

9. Mount in glycerol.

In order to avoid the f loa t ing  of sections o f f  the sl ides,  gelatine  

coated sl ides were used.

The second technique tested was that of Snow (1982) which was 

o r ig in a l l y  used for  mammalian (dog ske le ta l )  muscle. Urea (3g for  

100ml) was added to the incubat ing  s o lu t io n .  The method f i n a l l y  

approached was:

2 . 2 . A.b Myosin-ATPase staining with a lka l ine  pre-incubation.

1. Pre-incubate sections fo r  20 minutes in a lka l ine  buffer  (0.075M Na 

Barbital  + 0.01M Na acetate + 0.1M CaCl2 adjusted to pH 9 .4 -10 .4  with 

NaoH + 3g urea for  each 100ml of solut ion).

2.  Incubate sections in a l k a l i n e  b u f f e r  fo r  30 minutes at  room 

temperature. ATP added to incubating solution ie 5mg/lml.

3. Three rinses in 0 . 2M CaCl2 *

4. Put sections in C0 CI2 for  two minutes.

5. D is t i l l e d  water r inse.

6 . Develop in 1% Ammonium sulphide solution for  one minute.

27



7. Tap water r inse.

8 . Dehydrate and mount.

2.2.A.C Myosin-ATPase staining with acid Pre-incubation.

1. Pre-incubate sections for  5 minutes in acid buffer  (0.2M acetate +

3g urea for  100ml adjusted to pH 4.6-6.0 at room temperature.

2. Incubate sections for  60 minutes in solution of 0.075M Na Barbital  

+ 0.01M CaCl2 adjusted to pH 9 .4-10 .4  + 1.5mg ATP at room 

temperature.

3. Rinse in three changes with 0 . 2 M CaCl2 for two minutes.

4. Put the sections in CoCl2 fo r  two minutes.

5. D is t i l le d  water r inse.

6 . Develop in 1% Ammonium sulphide solution for  one minute.

7. Tap water r inse.

8 . Dehydrate sections and mount in histomount.

2.2 .A.d Mg^+ activated m y o f ib r i l la r  (m)lATPasei

The staining technique of Mabuchi & Sreter (1980) was used for  Mg^+ 

a c t iv a te d  m-ATPase which gave the t o t a l  m- -ATPase content of  

EOM f ibres .  I t  involved the following steps:

1. Stock buffer  solution.

40mM Na Barb i ta l .

20mM CaCl2 •

20mM MgCl2 .

Make up to ta l  volume to 50ml + 1.2g urea + add 9mg ATP for  each 10ml 

of the solution.

2. Incubate sections in stock solution from 15-30 minutes.

3. Remaining steps same as in above procedure (Sec. 2 .2 .A .c ) .
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2 .2 .A.e  SDH staining procedure by Pearse (1972).

The stock solution fo r the reaction was succinate b u ffe r, that was made 

up of :

1 Vol 0.2M phosphate b u ffe r  + 0 .2  Na s u c c in a te , f in a l  pH 

adjusted to 7 .6 .

Reaction:

1 Vol Succinate b u ffe r.

1 Vol H2 0.

lmg/lml Nitroblue tetrazolium.

2 .2 .B  Imrnunohistochemical stain ing procedure.

The technique used for immunoperoxidase staining was a simplif ied  

version of the method described by Rowlerson et a l . ,  (1981).

1. Incubate the sections overnight in anti serum ( ALD, *

SHC raised against mammalian tonic f ibres)  d i lu ted 1:2000 in 1% 

albumin containing phosphate buffered saline (PBS).

2. Rinse in PBS + 0.025% Tween 20.

3. Incubate sections in peroxidase labelled anti rabbit  IgG antibody 

(di luted 1:200 in PBS + 1% albumin).

4. Rinse in PBS + 0.025% tween 20.

5. Incubate sections f i n a l l y  in 0.03% H2 02 + PBS + lmg/lml D i -  

aminobenzidine.

6 . Dehydrate through ethyl alcohol and Histoclear .

7. Mount sections in Histomount.

2 .2 .C  Acetyl chol i nestrase staining.

Technique by James Toop (1976).

The six EOM were dissected from the o rb i t ,  and were frozen in
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isopentane ch i l led  with l iquid  nitrogen. The frozen blocks could be 

stored in cryostat,  or deep freeze at ( - 2 0 ^0 ) for  few weeks without  

af fect ing the acetylcholinesterase a c t iv i t y  along the neuromuscular 

junct ions.  The reaction involved the following steps:

1. In cryostat cut sections, 20-100um thick (most often 20um).

2. Pick up sections on sl ides and dry at room temperature.

3. Incubate in acetyl choline medium for  9-12 minutes at 37^C.

Stock solution.

CUS0 4  0.3gm

Maleic acid 1.75gm

Glyceine 0.375g

MgCl2 6 H2 O l.Ogm

IN NaoH 30.0ml

20-25% Na2 So  ̂ 170.0ml

For use d isso lve  about 20mg ace tycho l ine  iodide in 0.1ml  

d i s t i l l e d  water and add 10ml stock solution. Adjust to pH 5.5 with IN 

HC1 before use.

4. Three rinses in d i s t i l l e d  water.

5. I f  necessary to prevent section loss, take sl ides to 100% alcohol,

place in 0.5-1.0% ce l lo id in  (W/V) in 1:1 ether alcohol for 30s.

6 . Rinse three times in d is t l l e d  water.

7. Place in fresh 0.5% K3 Fe (CN)^ for 5-10 min at room temperature.

8 . Rinse three times in d i s t i l l e d  water.

9. Fix sections for 30 minutes at room temperature in e i ther  (a) buffered

formol sal ine at pH 7.0 or (b) buffered formol calcium with cadmium 

and magnesium, adjusted to pH 7.0.

10. Wash in repeated changes of d i s t i l l e d  water for 15-20 minutes.

11. Incubate in fresh 20% aqueous AgN03 containing 0.1% CuSÔ  5 H2 O from
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20-30 minutes at 37^C, a small amount of CaCO3 should be placed in th 

bottom of staining j a r .

12. Rinse in d i s t i l l e d  water for  30-60 seconds fo r  optimal results .

13. Develop in lgm Quinol or Hydro-Quinol and 5gm Na2 S03  in 100ml

d i s t i l l e d  water at room temperature for  as long as necessary to 

demonstrate the innervation. Sections should be evenly golden 

brown a l l  over. Use 2 baths of developer and al low sections to 

remain only 10 seconds in f i r s t  bath.

14. Rinse 3 times in d i s t i l l e d  water.

15. Fix in 5% Sodium Thiosulphate for  1-12 minutes.

16. Rinse 3 times in d i s t i l l e d  water.

17. Dehydrate in graded alcohol,  leave for  15 minutes in a mixture of

equal parts of ether and alcohol to remove c e l lo id in ,  c lear  in 

Histoclear and mount in Histomount.

2 .2 .D  Glutaraldehyde-Cocadylate f ix a tio n  fo r  TEH.

The processing of f ish and dissection were the same as described in 

section 2 . 2 .A.

Stock.

1M Sodium cacodyl ate 

1M Sodium chloride  

1M Calcium chloride

Fixat ion.

1M Na. CaCod 

25% Gluteraldehyde 

1M NaCl 

1M CaCl2

10-15gm in 50ml d i s t i l l e d  H2 0.  

5.844gm in 100ml d i s t i l l e d  H2 0.  

5.549gm in 50ml d i s t i l l e d  H2 0.

10ml.

8 ml.

5ml.

0.05ml.
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F i l tered  sea water 50ml.

D is t i l l e d  water to make up to 100ml.

Buffer.

1M Na CaCod 10ml.

1M NaCl 20ml.

1M CaCl2 50ml.

pH adjusted to 7 .6 .

F i l te red  sea water 50ml.

D is t i l l e d  water is added to make up to 100ml.

Osmium f ix a t io n .

1M Na CaCod 5ml.

4% OSO4 12.5ml.

1M NaCl 7.5ml.

1M CaCl2 0.025ml.

F i l te red  sea water 25.0ml.

pH of the stock solution is maintained at 7.6 before adding 4% OSO4 , 

Two rinses.

EOM fixed in above stock for  100 minutes.

Rinse in d i s t i l l e d  water fo r  70 minutes.

2 d i s t i l l e d  water top rinses.

Dehydration.

30% lOmin.

50% lOmin.

70% lOmin.

90% lOmin.

100% lOmin (2) .

Dried absolute alcohol lOmin.

3 rinses in the Epoxy-propane 5min each rinse.
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1:1 mix of a ra ld i te  + Epoxy-propane (overnight mixing on the rota 

mixer) .

EOM were embedded in the fresh Arald i te  at 60^ fo r  about 48 hours.

2 .2 .E Mechanical recordings

Recordings were made in an isolated nerve and muscle preparation 

that  was dissected immediately before the experiment and was l e f t  in 

dogfish saline fo r  the recordings. The motor nerve was stimulated by a 

suction electrode. The t r igger  input to the suction electrode received 

pulses from a pulse generator device. The mechanical response of the 

EOM was recorded by a force transducer. The signal from the force 

transducer was ampl if ied,  and was recorded on an FM tape recorder, or 

a pen recorder.
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2.3 RESULTS.

2 .3 .A Myosin-ATPase a c t iv ity  o f EOM.

Since differences have been found in the l a b i l i t y  of myosin- 

ATPase, depending on the pH of pre-incubation, i . e  a lka l ine /ac id ,  

sections from the same EOM were stained fo r  three d i f fe ren t  reactions

(1) Ca^+- a c t i v a t e d  myosin-ATPase s t a in in g  w ith  a l k a l i n e  p re ­

incubation.
o .

(2) Ca  ̂ -act ivated myosin-ATPase staining with acid pre-incubation.

(3) Mg^+- a c t i v a t e d  myosin-ATPase s ta in in g  which gives the t o t a l  

myosin-ATPase content of f ib res .

In order  to  i d e n t i f y  the f i b r e  types c o r r e c t l y ,  a piece of  

la te ra l  muscle was stained along with the EOM as a control for  a l l  

three reactions described above.

2 . 3 . A.a Alkal ine pre-incubation.

I t  was established in several experiments using a l l  the EOM pre­

incubated at room temperature (20^C) and fo r  a range of pH between 

9 .0 -1 0 .4 ,  that  the best enzymatic a c t i v i t y  and preservation of f ib re  

structure occurred at pH 9 .4 .  At th is pH most of  the small f ibres in 

the o rb i ta l  region were stained dark and most of the large f ibres in 

the global region showed l igh t  staining for  myosin-ATPase (Fig 2 . 2 . A). 

However a few f ibres situated in both orb i ta l  and global regions did 

not f o l l o w  t h is  p a t te r n :  some small o r b i t a l  f ib r e s  were l i g h t l y  

stained and large global f ibres were darkly stained (Fig 2 . 2 . A). The 

reaction did not demonstrate a temperature sen s i t iv i ty :  when repeated 

at a temperature of 4 ^C, the intensity  of the reaction in the small 

orb i ta l  and large global f ibres remained the same as before. I t  was 

established in several d i f fe ren t  experiments that i f  the reaction 

continued a f te r  the standard incubation time (2 0  minutes) the pattern
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and in tensity  of staining among small f ibres of the orb i ta l  region and 

large f ibres of the global region remained unaffected.

In the la te ra l  body wall muscle at pH 9.4 and at room temperature 

the small f ibres of the outermost layer were stained dark and the 

la rge  f ib r e s  o f  the innermost l a y e r  were s ta ined l i g h t  w ith  the  

myosin-ATPase, but in contrast to the EOM there was an intermediate 

layer of f ibres that  was intermediate in size between small and large  

f ibres  and stained r e la t iv e ly  more darkly than the small f ibres of the 

outermost layer (Fig 2 .2 .B ) .

2.3 .A.b Acid pre-incubation.

Sections from the same EOM were pre-incubated at room temperature 

at a range of pH between 4 .6 -6 .0 .  The preservation of muscle f ibres  

varied with pH and a well defined pattern of enzymatic a c t iv i t y  was 

only seen at pH 5 . 0 - 5 . 6 . The small f ibres of the orb i ta l  region which 

stained darkly at a lka l ine  pre-incubation (Fig 2 . 3 . A), and the few 

small f ibres scattered in the global region also stained darkly at pH 

5 .6 .  The majority of poorly defined large f ibres of the global region 

were stained l ig h t  for myosin-ATPase, although again a small number

stained darkly (Fig 2 . 3 . A). With pre-incubation of sections in cold 

media (4^C) a bet ter  preservation of f ib re  structure was observed, but 

in con tras t  to a l k a l i n e  p re - in c u b a t io n  the reac t ion  was not

s ig n i f ic a n t ly  reduced (Fig 2 .3 .B ) .

For la te ra l  body wall muscle unlike EOM at pH 5.6 and at room 

temperature ,  a b e t t e r  p re s e rv a t io n  of  the f i b r e  s t r u c tu r e  was

demonstrated. As with the a l k a l i n e  pH, two le v e ls  of  s t a in in g
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in tensi ty  were seen: the small f ibres of outermost layer and the 

f ibres intermediate in size were stained dark, while the large f ibres  

were stained l ig h t ly  with myosin-ATPase (Fig 2 . 4 . A).

When incubated at 4^C, reaction has demonstrated temperature 

sen s i t iv i ty  and three levels of staining were observed. The f ibres  in 

the outermost layer were stained dark, while the f ibres intermediate 

in size had the darkest reaction. Large f ibres in the innermost layer  

were stained l igh t  (Fig 2.4.B)

2.3.A.C Mg?J>ixicdGJm -ATPase.

The incubation of sections in Mg^+-containing media demonstrated 

the tota l  ATPase content of muscle f ib res .  The majority of small 

f ibres of the orbi ta l  region showed l igh t  or no staining, while the 

majority of large f ibres in the global region were e i ther  stained very 

dark or comparatively darker than m -ATPase negative small orbi ta l  

f ibres (Fig 2 . 5 . A). The staining properties of muscle f ibres were 

l i t t l e  affected by temperature. Di f ferent  incubation times were tested 

and i t  was established in several experiments that staining of f ibres  

continued a f te r  the standard incubation period of 20 minutes. Some 

f ibres in the global region which appeared l igh t  a f te r  30 minutes 

incubation attained maximum staining only a f te r  60 minutes. However 

th is  did not change the overall  staining pattern (Fig 2 .5 .B ) .

With Mg^+-act ivated m -ATPase in la te ra l  body wall muscle, an 

identical pattern of the staining was seen as for  the EOM. The small 

f ib r e s  of  outer  la y e r  and f i b r e s  in te rm ed ia te  in s ize  were both 

stained l ig h t ,  while the large f ibres of the intermediate layer were 

stained comparatively dark with the .  m-ATPase (Fig 2 .5 .C ) .
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2 .3 . SDH stain ing  o f EOM.

An orb i ta l  layer  of SDH posit ive ,  heavily stained small orbi ta l  

f ibres was seen in a l l  EOM, and a few small f ibres lying in the global 

region were also stained dark. In the global region the large f ibres  

were stained l i g h t l y ,  but a few large f ibres lying in the orb i ta l  

region were also stained l ig h t l y  with SDH (Fig 2 . 6 .A, B ) .

In la tera l  body wall muscle three f ib re  types were iden t i f ied  on 

the basis of t h e i r  staining with SDH. The comparatively small f ibres  

in the outermost layer were stained l ig h t ly ,  the f ibres intermediate 

in size were heavily stained (most commonly recognised as pink f ibres  

in the l i t e r a tu r e )  and the large f ibres of the innermost layer were 

l ig h t l y  stained with SDH (Fig 2 .6 .C ) .

2 .3 .C  Type s p e c ific  myosin in EOM determined by imrnunohistochemical 

sta in ing .

The histochemical studies have ident if ied d i f f e r e n t  f ib re  types 

in the EOM. The molecular basis of th e i r  contract i le  properties has 

been in v e s t ig a te d  by s ta in in g  the EOM with  t h e i r  t y p e - s p e c i f i c  

antimyosin sera. The EOM sections were pre-incubated with antibodies 

raised against several an t i fas t  and antislow myosins, but a reasonably 

defined staining pattern was only obtained for t u o  antislow myosin 

antibodies. 1. oc ALD, antislow tonic myosin specif ic  anti sera that

was raised against mammalian slow tonic muscle; 2. SHC antislow

myosin that was raised against the heavy chain portion of slow myosin 

in f ish .

As a control the la te ra l  muscle was also stained for  the two 

antibodies.
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2 .3 .C.a  oC- , ALD.

A posit ive reaction to ALD was obtained in most of the small 

f ibres of orb i ta l  region. In the global region, only small scattered 

f ibres gave a posit ive ALD reaction, while the large f ibres were

oC ALD negative. Hence a small number of f ibres lying adjacent to 

o '- ALD posit ive f ibres were not stained. The p o s s ib i l i ty  that these 

and other unstained f ibres contained a slow myosin that was other than 

tonic was tested by using the other antibody (Fig 2 . 7 . A).

In the la tera l  body wall muscle, as in EOM, the outer layer of  

small f ibres was stained dark with ALD and large f ibres of

global region were stained l ight  (Fig 2 . 8 . A).

2 .3.C.b SHC.

Generally the small f ibres of the orb i ta l  region were posit ively  

stained with SHC and a few small f ibres in global region were

also iden t i f ie d  as e^t SHC posit ive f ib res .  Most of the f ibres in 

the global  region and a few f ib r e s  in the o r b i t a l  region were 

unstained (Fig 2 . 7 . B ) .

With . SHC a similar  pattern of staining was seen in la tera l  

body wall muscle f ibres as in EOM. The small f ibres of the outermost 

layer were stained comparatively dark and the large f ibres of the 

inner layer were stained l igh t  (Fig 2 .8 .B ) .

2 .3 .D . Q u a n t ita t iv e  a n a ly s is  o f h is to c h e m ic a l, o x id a t iv e  and 

immunohistochemical properties o f EOM.

In order  to  examine the r e la t io n s h ip  between f i b r e  s ize  and 

s ta in in g  p r o p e r t ie s  the muscle sections were analysed using a 

quanti ta tive  morphometric method. For each staining reaction an area 

comprised of  both o r b i t a l  and global regions and with a bimodal
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distr ibut ion of staining and size types was selected in the EOM. 

Within this area each f ib re  was traced on the d ig i t i z in g  tab le t  and 

was assigned a code e i th er  as l ig h t l y  or darkly stained f ib r e .  The 

computer programme calculated the area and location of each f ib r e .

The Mg^+- a c t i v a t e d  m -ATPase a c t i v i t y  o f  the EXT-R was 

analysed for quant i ta t ive  studies and to establish a r a t io  between 

small orbita l  and large global f ibres  (Fig 2 .9 .A). Among 465 analysed 

f ibres lying mostly in the orb i ta l  region and a few scattered f ibres  

in the global region, 255 f ibres were stained l ig h t ly  (Fig 2 .10 ) .  In 

terms of area the estimated size range of these f ibres was between
p p

8.32unr-80um. 210 f ibres mostly lying in the global region were 

stained dark with IT) -ATPase (Fig 2.11) and the estimated area of 

these f ibres ranged between 9um^-495um^ (Fig 2 .11) .

From a histogram of  the s i z e  d i s t r i b u t i o n  of  f i b r e s  of  both 

staining types (Fig 2.12) a boundary between f ibres designated as 

small and large f ibres was chosen at 30um^. Segregating f ibres on the 

basis of this c r i te r io n  of size (rather than staining properties)  

generated a d is t r ibut ion  histogram, expressed as stacked histogram 

bars, which demonstrates the strength of the re la tionship  between 

f ib re  size and staining pat tern. Among 465 f ibres analysed, the 281 

f ibres designated as small (s ize range 8.32-30um^) lay mostly in the 

o r b i t a l  region (F ig  2 . 1 2 ) .  255 of  these f ib r e s  showed only weak 

staining for m -ATPase, while 26 small f ibres lying both in the 

o r b i t a l  and global region were s t rong ly  sta ined (F ig  2 . 1 2 ) .  The
p p

remaining 184 f ibres were designated large (size range 30um -495um ) 

and lay mostly in the global region (Fig 2 .12) .  160 of these f ibres  

stained strongly fo r  rn -ATPase, but 24 large f ibres lying both in 

the orbita l  and global regions were weakly stained (Fig 2 .12 ) .

A s i m i l a r  area with  two s t a in in g  and f i b r e  s i z e  types was
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selected and analysed in the EXT-R for SDH staining (2 .9 .B ) .  In this  

muscle 476 f ibres were analysed. In terms of t h e i r  staining pattern 

362 small, mostly orb i ta l  f ibres were stained darkly with SDH (Fig 

2.13) and they ranged in size between 2.85um^-80.5^ (Fig 2 .14 ) .  114 

large mostly global f ibres were stained l ig h t l y  (Fig 2.14) and th e i r  

estimated size range was between 9.21um2-350um2 (Fig 2.14)

Based on the c r i te r ion  of size only and from the histogram of 

staining types (Fig 2.15) the boundary between small and large f ibres  

was taken at 30um^. In th is  analysis,  among 476 f ib res ,  the 370 f ibres  

designated as small (size range 2.85-30um^) lay mostly in the orbi ta l  

region (2 .15 ) .  350 of these f ibres stained strongly for SDH, but 20 

small f ibres lying both in the orbi ta l  and global layers showed no SDH 

r e a c t iv i ty  (Fig 2 .15 ) .  The remaining 106 f ibres designated large (size 

range 30-350um^) lay mainly in the global region (Fig 2 .15) .  95 of 

these f ibres showed no SDH r e a c t iv i t y ,  but 11 large f ibres lying both 

in the orb i ta l  and global regions stained strongly for  SDH (Fig 2.15) .

The 10 s ta ined  w ith  ^  ALD was used f o r  the q u a n t i t a t i v e  

analysis of immunohistochemical staining of the EOM. The area selected 

in t h i s  muscle contained both small and la rge  f ib r e s  with  a 

d i f fe r e n t ia l  staining pattern (2 .9 .C ) .  Within th is  area 762 f ibres  

were analysed fo r  the quanti ta tive  estimation of ^  ALD stain,  of 

which 545 small f ibres mostly lying in the orb i ta l  region were stained 

dark (Fig 2.16) and in terms of area they ranged in size between 

2.17um^-75.5um^ (Fig 2 .17 ) .  217 f ibres lying mostly in the global 

region were stained l igh t  with cK ALD (Fig 2.17) and they ranged in 

size between 21.7um^-220um^ (Fig 2 .17) .

Based on the composite histogram of staining types (Fig 2.18) and 

the c r i te r io n  of size a boundary between small and large f ibres was 

taken at  25um^ and 762 f ib r e s  were analysed.  584 f ib r e s  were
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designated as small (s ize range 2.17-25um^) and lay mainly in the 

orbi ta l  region (Fig 2 .18 ) .  530 of these f ibres stained pos it ive ly  for  

c< ALD, w hi le  54 f ib r e s  ly in g  both in the o r b i t a l  and global  

regions gave a negat ive  r e a c t io n .  The remaining 178 f ib r e s  were 

designated large (size range 25- 220um^), and of these 132 gave a

negative reaction, and only 46 gave a posit ive reaction (2 .18 ) .

A piece of la te ra l  muscle stained for Ca^+ activated myosin-

ATPase at a lka l ine  pH and which contained both small and large f ibres  

was analysed to estimate the ra t io  of f ib re  sizes between EOM and body 

wall muscle and to determine the size related staining properties this  

muscle. The f ib re  area of la te ra l  muscle is eight times greater than 

that  of the EOM. As found by others, three d is t inc t  staining types 

were distinguishable.  Among 76 analysed f ibres 14 f ibres which stained 

dark with the myosin-ATPase were ident i f ied  as TYPE I and th e i r  size  

ranged from from 2000um^-6000um^ (2 .19 ) .  20 f ibres with the largest

area and comparable with the global f ibres in terms of t h e i r  staining 

pattern were stained l igh t  and they ranged in size between 14000unr- 

50000^ (Fig 2 .19 ) .  40 f ibres which have shown an intermediate staining  

for  myosin-ATPase and ranged in size from 6000um^-12000^ (Fig

2 .19 ) .

2.3.E Mechanical recordings.

Iso la ted  nerve-muscle p repara t ions  of  the EOM were used fo r  

mechanical recordings. The stimulation of the motor nerve at various 

frequencies and voltages produced mechanical act ivat ion of the muscle 

f ib res .  These responses were tested over a range of stimulus voltages 

and frequencies.

In a recording from 10 during a frequency ser ies  at  2V, 

in d iv id u a l  tw i tches were e l i c i t e d  at 1Hz (F ig  2 . 2 0 ) ,  an unfused
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tetanic  contraction of muscle f ibres was seen at 10Hz (Fig 2 .20 ) ,  and 

fused tetani occured at greater frequencies. At 20Hz the f ibres were 

activated slowly and gradually to produced a contraction with a force 

plateau of 1.4g. With increasing frequency to 50Hz, and 100Hz,^Fig

2 . 2 0 ) the rate of contraction was greater,  and a stronger force was 

developed. The twitch tetanus ra t io  between 1Hz and 100Hz was 1:3.

A voltage threshold between two levels of f ib re  responses was 

established in a voltage series at 50Hz (Fig 2 .21 ) .  At th is frequency 

a force plateau of an approximately constant value was seen between 

0.3 and 20V. I t  was only when the in fe r io r  oblique was stimulated at 

0.2V that the force declined (Fig 2 .21) .  In a frequency series below 

the voltage threshold (0.2V) very l i t t l e  response was seen e i ther  at 

20Hz (Fig 2.22) or at frequencies above 20Hz (Fig 2 .22 ) .

Experiments on other EOM gave s im i lar  results ,  especial ly in

terms of voltage threshold. However in some cases i t  was found that  

the maximum tetan ic  force was generated at 20Hz and was s l igh t ly

reduced at higher frequencies.

2 .3 .F Motor endplates in EOM.

Two d i f fe re n t  types of nerve ending were commonly seen in a l l  

EOM: enplaque type or single endplates, and engrappe type or multiple  

endplates in which numerous small nerve terminations are distributed  

along the f i b r e s ,  Both of  these types were best def ined in

longitudinal sections. The multiple terminals of the engrappe type 

were seen e i th er  as dist ributed in the form of several t r e e - l i k e

branches (F ig  2 . 2 3 . A) or as one axon with several  unbranched 

terminals(Fig 2 .23 .B) .  One engrappe type ending could be innervating 

two adjacent  f i b r e s  or some f ib r e s  were seen re c e iv in g  m u l t ip le  

multiterminal endplates. In transverse sections the multiterminal  

endings were seen innervating two or three d i f fe ren t  f ibres (Fig
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2 .2 5 .A .B ) .

Enplaque endings were equally abundantly distr ibuted in f ibres .  

In longitudinal sections these endplates appeared as single terminals 

at one end of an axon (Fig 2 .2 4 .A). Some times f ibres with more than

one enplaque endings were also seen adjacent  to each other  (F ig

2 .24 .B) .  Also in some transverse sections enplaque type endings were

seen innervating a single f ib re  only (Fig 2 .25 .C) .

The motor endplates of both single and multiple types were seen 

distr ibuted among populations of small and large f ibres and i t  was 

observed that one type of endplate was not confined to one region

only.

2 .3 .F  EOM motor u n its .

Dogfish EOM are innervated by three cranial  nerves. The motor 

nerve of SO is a branch of CN IV and EXT-R receives a branch of CN 

VI.  The 10, SR, IR and INT-R are innervated by branches of the CN

I I I .

In order to estimate the size of motor units in the EOM, studies 

were made to obtain the muscle f ib re  count within the EOM and the 

motor axon count in the nerves innervating these EOM. In histological  

thin sections of the nerve and the EOM, motor axons and muscle f ibres  

were counted e i th e r  by hand or in one case by the computer assisted 

reconstruction technique. For th is  purpose motor axons were traced on 

the d ig i t i z in g  tab le t  to determine precisely the cross-sectional area 

of axons and the pattern of th e i r  size d is t r ibut ion  within the nerve.

Serial sections of the CN I I I  were taken within the cranium to 

obtain a f ib re  count before the nerve entered in to the orbi t  and 

branched. In a section l ike  th is ,  small and large f ibres were seen to 

be randomly d is t r ibuted .  At th is level 1832 nerve axons were counted
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(Fig 2 .2 6 .A). Another f ib re  count was made in the CN I I I  a f te r  i t  has 

been branched to SR. The CN I I I  at this level was comprised of 279 

axons which ranged in area between 61.56Um^-1860um^ (Fig 2 .26 .B) .  I t  

appeared to have two d is t in c t  halves in which small and large f ibres  

were randomly d is tr ibuted.  The number of muscle f ibres present within

the SR was obtained by extrapolation from the counts made on a l imited
e

region. The number of f ibres prsent within the SR was 2500. Based on 

these counts the average motor unit  size is 9 muscle f ibres per motor 

axon.

The nerve axons in the main branch of the CN I I I  which leads 

towards the 10 were also counted. The number of axons present at this  

level was 300. The approximate number of muscle f ibres present in the 

10 was 2680 f ibres (Fig 2 .26 .C) .  Therefore the estimated motor unit  

size fo r  th is  muscle is also 9 muscle f ibres per motor axon.

Fibre counts were also made in the trochlear nerve ( IV) and the 

abducens nerve (V I ) ,  and these counts were inturn compared with the 

muscle f ib r e  counts.

In sections of the IVth nerve taken jus t  a f te r  i ts  entry into the 

orb i t  476 f ibres were present ( 2 .2 7 .A). In the SO muscle the number of 

f ibres present was approximately 3200, y ie ld ing an estimate for  the 

motor unit  size of 8  muscle f ibres for  one motor axon.

In a section of Vlth nerve taken near the entry of th is nerve in 

to the orb i t  158 f ibres were counted (Fig 2 .27 .B) .  In a cross-section 

of th is  nerve a small part was comprised of only small nerve axons (25 

in number), a feature which was not seen in case of I l l r d  and IVth 

nerves. I t  was found that  in a section of Vlth nerve taken near the 

EXT-R the re  were la rge  number of  axons (2 0 0 ) .  Therefore  the  

p o s s i b i l i t y  th a t  these f i b r e s  may be sensory seems u n l i k e l y .  

Approximately  1800 f i b r e s  were present  in the EXT-R muscle.  The
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estimated motor unit  size of th is  muscle is therefore 13 muscle f ibres  

to one motor axon.

In the case of a l l  three nerves, sections taken close to the EOM 

demonstrated branching of the nerve into separate bundles. In tota l  

these bundles contained a greater number of f ibres than were present 

near the entry of this nerve into the o rb i t .  This suggests that axons 

are branching at th is  point to supply the individual muscle f ibres  

which make up th e i r  motor units.  The nerve f ibres in two EOM were 

seen in forms of several branches innervating the periphery of the EOM 

( 2 . 2 8 . B ) .  In two EOM, th e  10 and SR, th e s e  bundles form 

character is t ic  f la t tened bands over the periphery of the muscle (Fig 

2 .2 8 .B ) .
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2.3.4 DISCUSSION

The number of f ib re  types that can be iden t i f ied  in the EOM is 

based on c r i t e r i a  of u l t ras tructura l  features of the f ib res ,  the i r  

p hy s io log ica l  p r o p e r t i e s ,  e l e c t r i c a l  or mechanical response,  

innervation and on the basis of th e i r  size and location in the EOM.

In this investigation of the histochemical p ro f i l e  of the dogfish 

EOM, based on m -ATPase and SDH reactions, two f ib re  types were 

iden t i f ied :  small o rb i ta l  f ibres that stained negatively with Mg^+-  

activated m -ATPase and stained posit ive with the SDH, and large 

global f ibres that  were stained posit ive with Mg^+-act ivated m.- 

ATPase and negative for  SDH. However some var iations to th is  staining 

pattern were observed among fibres lying both in the orbi ta l  and 

global regions.

Positive staining of small orbi ta l  f ibres with SDH ref lec ts  the 

presence of high levels of oxidative enzymes and thus suggests the 

presence of  a g r e a t e r  number of  mitochondria in these f ib r e s  as 

compared to the large global f ib res .  Number of mitochondria present in 

a muscle f ib re  is associated with i ts  mode of function as slow or fast  

f ib res .  Reports ava ilable  on the u l tras tructura l  p ro f i l e  of the small 

orbi ta l  and large global (also known as red & white f ibres)  have 

demonstrated the mitochondria in greater number within the orbita l  

f ibres (Goldspink, 1972, Davey et a l . ,  1975, Montgomery, 1984). The 

la te ra l  body wall muscle stained along with EOM has shown d i f fe rent  

staining properties and unlike EOM an intermediate layer of f ibres  

with intermediate staining and size was present between small and 

large f ibres (also known as pink f ib res ,  Bone, 1966, Walker, 1970). 

These f ibres were not seen in the EOM.

The tota l  fT) -ATPase content is higher in the large global
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fibres than in small o rb i ta l  f ib res .  Small o rb i ta l  f ibres have also 

demonstrated an a lka l in e  and acid Stabil i ty t 0f  t h e i r  Ca2+ -act ivated  

myosin ATPase • Not only the pH of pre-incubation media but temperature 

and the duration of reaction has also affected the preservation and 

the intensity  of  sta ining.  Differences between the myosin-ATPase 

content of the o rb i ta l  and global region has also been reported in 

other f ish .  In the la te ra l  body wall muscle of f ish the myosin ATPase 

content of the small f ibres has been demonstrated to be three

to four times higher than that of Iqyjefibres (Johnston et a l . ,  1972, 

Nag, 1972). The myosin-ATPase reaction and SDH a c t iv i t y  of small 

f ibres leads to the suggestion that these f ibres are possibly of the 

slow type, while the large global f ibres are of fast type. Further 

evidence was provided by immunohisotchemical s t a in in g .  In these 

studies small o r b i t a l  f ib r e s  were s ta ined p o s i t i v e l y  with two

antibodies specif ic  fo r  slow f ib res .  However with ALD and SHC some of 

the f ibres present in the global region were also stained posit ively  

suggesting a possible occurrence of slow type f ibres also in the 

global region.

Differences in the innervation of the slow and fast f ib re  types 

have been reported in the vertebrate species. Hess (1962),  Stanf ie ld,  

(1972) ,  Eddington & Johnston (1982) have demonstrated th a t  in

mammalian EOM and f ish  la tera l  muscle, fast f ibres were innervated

focal ly  by enplaque endplates, while small f ibres were innervated by 

engrappe endplates. However some var iat ion has also been reported as 

in some teleosts, both red and white f ibres have been reported to

receive multiple endplates (Bone, 1978). In dogfish EOM both engrappe 

and enplaque endplates were d istributed among small orbi ta l  and large 

global f ibres .

Mechanical recordings in the dogfish EOM has revealed two levels
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of response. A th re s h o ld  le v e l  was e s tab lish ed  in the EOM f ib r e  

a c t iv i t y  and two le v e ls  o f  f i b r e  responses were observed a t  the  

voltages above and below threshold. Also individual twitches, unfused 

tetani and fused te ta in c  contractions were observed. Although on the 

basis of these studies the nature of the mechanical response e l ic i te d  

by o r b i ta l  and g lobal f ib r e s  can not be concluded, however a 

suggestion could be made that th is  response may be e l ic i te d  by two 

d iffe ren t f ib re  types. The c lear  segregation is consistent with the 

recruitment of the f ib res  with twitch l ik e  properties above a voltage 

threshold.

Two levels of mechanical response were indicated and based on 

these results i t  can be suggested that tonic response maintained over 

few seconds could have been e l ic i t e d  by the tonic f ib re  activation ,  

while the individual twitches were e l ic i te d  by the activation of the 

TYPE I I  f ib r e s .  Such a suggestion would only be based on an 

assumption, because i t  is not necessary fo r  TYPE I f ibres to always 

contract to n ic a l ly .  Red f ib res  in the te leost fish have been found to

react with a twitch in response to a single stimulus (Granzier, et

a l . ,  1982; Johnston et a l . ,  1982, Akster et a l . ,  1985). The two main

fib re  types (TYPE I & TYPE I I )  can in turn be divided in to subtypes
£

that d i f f e r  in h is o c h e m ic a l , immunohistochemical and mechanical 

p ro fi le  as well as in the type of th e i r  innervation. One subgroup

would be the small f ib res  lying in the global region which remained 

unstained with SDH but stained p o s it iv e ly  with m-ATPase. Based on 

the physiological, u l tra s tru c tu ra l  and functional variations d i f fe re n t  

subgroups of the two f ib r e  types has also been proposed by Johnston et  

al-  (1977), Kyrvi (1977), Akster & Osse, (1978), Ramsdonk et a l . ,

(1980) and Akster (1981).

In dogfish EOM corre la t ion  can be made between the f ib re  size and
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th e i r  physiological p ro f i le .  The majority of small f ibres in the 

o rb ita l  region stained negative with m -ATPase, had high SDH 

a c t iv i ty  stained positive with two slow antibodies and were innervated 

by single and m ultip le  endplates; they resemble Type I f ib res  in the 

EOM and skeleta l muscle of vertebrate species. Large global f ib res  

were stained positive  with Mg^+-activated m-ATPase, had l i t t l e  

SDH a c t iv i t y ,  were not stained with slow antibodies and receive; single  

and m ultip le  endplates; they resemble Type I I  f ibres in the EOM and 

skeletal muscle of other vertebrate species. Location of the two f ib re  

types is s ig n if ic a n t  in determining th e ir  physiological p ro f i le .  The 

m a jo r i ty  o f small f ib re s  ly in g  in the o r b i ta l  region behave 

d i f fe re n t ly  to the large fibres lying mostly in the global region. 

I t  was suggested by Maier et a l . ,  1972 that the arrangement of fib res  

in the o r b i t a l  and global regions is a basic fe a tu re  o f a l l  

vertebrate EOM. S im ilar results have been reportd by Kaczmarski, 

1970a, Kordylewski, 1974, Zagorska, 1974, Housley et a l , 1984).

Based on the quantita tive  data in the present studies a strong 

re lationship  has been demonstrated between the f ib re  size and th e ir  

physiological properties. In the quantitative analysis obtained for  

three d if fe re n t  reactions i t  was c lear ly  demonstrated that size and 

location of the f ib re  types were the factors that influenced th e ir  

oxidative and co n trac t i le  properties and only a small number of f ibres  

did not follow th is  scheme.

I t  was suggested by Zagorska (1974) th a t  in amphibians fa s t  

f ib res  are responsible for fast movements of the eye b a l l ,  while slow 

tonic f ibres are responsible fo r the continuous slow contractions of 

EOM required to maintain the eye ball in a constant position, also 

very p rec ise  slow movements could have been achieved by t h e i r  

a lte rnate  activation  and in h ib it io n .
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In dogfish EOM the Size of motor units is an average of 8 muscle 

f ib res  for 1 motor axon in the SR , 10 and SO, while in the EXT-R 

motor unit size is 13 muscle f ibres fo r 1 motor axon. The size of EOM 

motor units in vertebrates is smaller compared with the motor units 

size in the skeletal muscles (Buchthal & Schmalbv^jch, 1980). Eye 

movements are achieved and controlled by the six EOM. I t  is inevitab le  

that th e ir  morphology and physiological p ro f i le  would re f le c t  the type 

of eye movements present in that species. The physiological p ro f i le  

and morphology of the six EOM has not shown any differences between 

horizontal and ve rt ic a l  muscles. In a l l  six muscles the TYPE I & TYPE 

I I  f ib res  were present consistently in the orbita l and global regions.

In other v e r te b ra te s  there  is  nystagmus in v e r t ic a l  plane  

(D arlo t, Barneo & Tracey, 1981; Synder & King, 1988) but th is  is not 

known fo r  d o g fish , so i t  is important to determine before any 

conclusion can be drawn. An a l te r n a te  p o s s ib i l i t y  is  th a t  the  

horizontal nystagmus, which is known to occur in a l l  vertebrates  

including dogfish involves not only the EXT-R and INT-R but the 

v ert ic a l  EOM as w e ll ,  perhaps as stab liz ing  elements. In order to 

discriminate between these two p o s s ib i l i t ie s  a study has been made of 

VOR in the ve rt ic a l  plane (Chapter 3) and of EOM myographic a c t iv i ty  

(Chapter 4 ) .
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Fig 2.1 The dogfish EOM as seen (A) behind the eye 

(modified from Rowett (1965) and (B) in the o rb i t .



Fig 2 .2 .A The Ca^+ activated myosin-ATPase staining o f the 

SR at pH 9 .4  at room temperature.

Sale bar = 750urn

Fig 2 .2 .B  The la te ra l  body wall muscle is stained with Câ  

activated myosin-ATPase for pH 9.4 at room temperature, 

Scale bar = 900um
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Fig 2 .3 .A

Fig 2 .3 .B

The SR is stained with Ca^+ activated myosin ATPaseJ

Iroom temperature fo r  pH 5 .6 . J
•1

Scale bar = 350um |

The SR is stained with Ca^+ activated myosin-ATPasefi 

pH 5.6 at temperature of 4®C.

Scale bar = 600um



F ig  2 .4 .

Fig 2.4.

A The la te ra l  body wall muscle is stained with Ca^+ 

activated myosin-ATPase at romm temperature at pH 5.6. 

Scale bar = 900um

?+B The la te ra l  body wall muscle is stained with Ca*- 

activated myosin-ATPase at 4^C for pH 5 .6 .

Scale bar = 900um
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11 CM

Fig  2 . 5 . A

.5.B

The SR is stained with Mg^+ activated -ATPasef

room temperature fo r 20 minute incubation.

Scale bar = 400urn

The SR is stained with -  Mg^+ activated ftr-ATPase 

at room temperature a f te r  30 minutes incubation.

Scale bar = 350um

2 +Fig 2 .5 .C  The la te ra l  body wall muscle is stained with Mg 

activated m -ATPase at room temperature.

Scale bar = 900um



Fig 2 .6 .A

Fig 2 .6 .B

The EXT-R is  s ta in e d  w ith  SDH a t room tem perature.

S cale  b a r = 450um

The SDH staining of SR and IR at room temperature. 

Scale bar = 800um

Fig 2 .6 .C  The SDH staining o f la te ra l  muscle at room 

temperature.

Scale bar = 900um
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F ig  2 .7 .A  The 10 is  s ta in e d  fo r  . d .  ALD a t room temperature.

S cale  b a r = 300um

Fig 2 .7 .B  The SR is  stained with SHC at room temperature. 

Scale bar = 150urn



Fig 2.8 .A

Fig 2 .8 .B

The la te ra l  body wall muscle is stained with <<x 

at room temperature.

Scale bar = 900um

The la te ra l  muscle is  stained with cK SHC at 

room temperature.

Scale bar = 900um
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F ig  2 .9 .A

Fig 2 . 9 . B

The EXT-R is stained fo r  Mg2+ activated m- 

ATPase.

Scale bar = 250um

The EXT-R is stained fo r  SDH. 

Scale bar = 250um

Fig 2 .9 .C  The 10 is stained fo r  ALD. 

Scale bar = 315um



F ig  2 .1 0 The d ig it ised  image of Mg2+ activated 01 -ATPase 

stain ing. ^ i  ^



Histochemical stain for 
myosin ATP'ase activity, EX T-R

Red = negative reaction 
Blue = positive reaction



Fig 2.11.A The d ig it is e d  image o f small o rb ita l f ib res

Fig 2.11.B The d ig it ised  image o f large global f ib res



SMALL ATPase NEGATIVE FIBRES, EXT-R

LARGE ATPase POSITIVE FIBRES, EXT-R



F ig  2 .1 2 The histogram of small o rb ita l and large global 

showing d is tr ib u tio n  of these f ib res  according 

th e i r  staining properties.
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Fig 2.13 The d ig it ised  image of SDH staining in the EXT-R.



Histochemical stain for 
SDH activity

Red = positive reaction 
Blue = negative reaction



SMALL SDH-POSITIVE FIBRES^ EXT-R

LARGE SDH-NEGATIVE FIBRES^XT-R



Fig 2 .1 4 .A The stain ing pattern of small o rb ita l f ib re s .

Fig 2 .14 .B  The stain ing pattern o f large global f ib re s .



F ig  2 .1 5 The histogram o f two f ib re  types fo r SDH staining
t

showing the d is tr ib u tio n  of o rb ita l and global fibres 

according to th e ir  s ta in ing  properties.



Number of fibres



The d ig it is e d  iraage^



Immunohistochemical stain with 
antiserum specific for tonic fibre myosin

Red = positive reaction 
Blue = negative reaction



Fig  2 .1 7 .A

Fig 2.17.B

The d is trib u tio n  of fib re s  fo r  p o s itiv e  

s ta in in g .

The d is trib u tio n  of fib re s  fo r negative  

s ta in in g .

c( ALD

:> ALD



<? 
0

ALD-POSITIVE FIBRES, 10

ALD-NEGATIVE FIBRES, 10



Ffg 2 .18  The histogram ^of two _ fib re  types in the 10

th e ir  d is tr ib u tio n  fo r <p( ALD s ta in in g .



Number of fibres



Fig 2.19 The histogram o f three f ib re  types showing their 

d is trib u tio n  fo r  SDH stain ing in the la te ra l muscle.
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F ig  2 .2 0 The frequency series performed 

mechanical recordings from 10.

at 2V in the
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Ffg 2.21 The voltage series performed at 50Hz to  establish the

threshold value in mechanical recordings from 10.
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F ig  2 .1 5 The histogram of two f ib re  types fo r SDH staining 

showing the d is tr ib u tio n  of o rb ita l and global fibres 

according to th e ir  s ta in in g  properties .



Number of fibres



Fig 2 .16  The d ig it is e d  image o f c / ALD sta in ing  in the 10.



Immunohistochemical stain with 
antiserum specific for tonic fibre myosin

Red = positive reaction 
Blue = negative reaction



F ig  2 .1 7 .A

Fig 2.17.8

The d is trib u tio n  o f fib re s  fo r  p o s itiv e  0C ALD 

sta in in g .

The d is tr ib u tio n  o f f ib re s  fo r  negative oC ALD 

s ta in in g .



ALD-POSITIVE FIBRES, IQ

ALD-NEGATIVE FIBRES, 10



Fig 2 .18  The histogram of two f ib re  types in the 10 showing

th e ir  d is tr ib u tio n  fo r  o( ALD s ta in in g .
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Fig 2 .19  The histogram o f th ree  f ib r e  types showing their 

d is trib u tio n  fo r  SDH sta in in g  in the la te ra l muscle.
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F ig  2 .2 0 The frequency series performed at 2V in the 

mechanical recordings from 10.
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Fig 2.21 The voltage series performed at 50Hz to  establish the

threshold value in mechanical recordings from 10.
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F ig  2 .2 2 The frequency series performed at 0.2V i 

recordings from 10.

mechanical



FREQUENCY SERIES AT 0.2V

_ 10. Hz

20 Hz
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F ig  2 .2 3 The engrappe endplates in long itud ina l sections of 

SO.

Scale bar = 75un



ENGRAPPE ENDPLATE



F ig  2 .2 4 The enplaque endplates in the longitudinal sections 

of SO.

Scale bar = 80un
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F ig  2 .2 5 The engrappe and enplaque endplates in the 

transerverse sections o f SO.

Scale bar = 70um



ENGRAPPE ENDPLATE

ENGRAPPE ENDPLATE



F ig  2 .2 6 .A

Fig 2 .2 6 .B

Fig 2.26.C

The se c tio n  o f CN I I I  in  th e  cranium .

S cale  b a r = 60um

The section of CN I I I  a f te r  branching to  SR. 

Scale bar = 40um

The section o f CN I I I  branch to 10. 

Scale bar = 32um
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F ig  2 .2 7 .A  The sec tio n  o f CN IV  a f t e r  i t s  e n try  in to  th e  o rb it .

S ca le  b a r -  25un

Fig 2 .27.B The section o f CN VI a f te r  i ts  entry in 

o rb it .

Scale bar = 19un

to the
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F ig  2 .2 8 .A The s e c tio n  o f  CN VI near EXT-R.

S ca le  b a r  = 35ua

Fig 2.28.B The branches of CN IV are shown to  

periphery of SO.

Scale bar = 450um

be innervating the
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CHAPTER 3 .  VERTICAL EYE REFLEXES.
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3.1 INTRODUCTION.

The control of eye movements among vertebrates is well studied

and most of the s ig n if ic a n t  aspects of th is  system have been analysed 

and worked out in d e ta i l  in humans and in mammalian species and to  

some extent in the b irds, amphibians and fishes (Fuchs & Kim, 1975. 

Collew ijin , 1977. Barmack, 1981. Montgomery, 1983. Dieringer & Precht, 

1986. Easter, 1975. Harr is , 1965).

Compensatory eye and head movements assist s t a b i l i t y  of gaze and 

of posture. These reflexes are in i t ia te d  by the head accelerations and 

by re tina l image s l ip ,  resu lting  from the d r i f t s  of the eye and from 

the passive displacements of the head positions at rest.

The eye movements e x h ib i te d  by various animals in the  

horizontal and v e r t ic a l  planes include slow pursuit eye movements. 

Fast f l ic k s  of eye called  saccades are voluntary eye movements made to  

bring a new p a r t  o f  the  v is u a l f i e l d  in to  the fovea l re g io n .

Nystagmus is a fas t  f l i c k  of eyes made to bring the eye back to i ts

original position . Optokinetic nystagmus is observed when the animal

is provided with some kind of visual stimulus. Another kind of the eye 

movement, commonly known as compensatory eye movements, is induced by 

vestibular s t im u l i .

The responses o f the v e s t ib u la r  re f le x e s  in r e la t io n  to  the  

horizontal head position has been determined by Montgomery (1983). His 

work has described the re la tionsh ip  between the e le c tr ic a l  stimulation  

of the abducens nerve and the horizontal vestibulo-ocular re flexes .

In fish the slow pursuit compensatory eye movements have been 

roost extensively studied in the goldfish (Easter, 1972; Hermann & 

Constantine, 1971). The horizontal compensatory eye movements in the 

9old fish have been studied by Easter, Pamela, Johns & Heckenlively,
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(1974). They have also compared the horizontal eye reflexes of in ta c t  

f ish w ith  the same re f le x e s  in  the gold f is h  a f t e r  a b la t in g  i t s  

horizonta l s e m ic irc u la r  c a n a ls .  This comparison has provided an 

insight into the control of eye reflexes in the horizontal plane by 

the horizontal canals. The v e r t ic a l  canal input to these horizontal 

reflexes and to the ve rt ica l compensatory eye movements s t i l l  needs to  

be determined.

Harris (1965) has also studied the operation of the vestibu lo -  

ocular reflexes in the dogfish in the horizontal plane. In his work on 

the dogfish ( Squalus acanthiasl the eye movements of f re e ly  swimming 

fish were recorded and c la s s if ie d  to determine the in teraction  of 

labyrinthine reflexes and the body movements as they affected the eye 

movements during swimming. His work has provided a good base to extend 

these studies to the eye reflexes of these fish  in other planes and to  

determine the control of these eye movements more d ire c t ly  by ablating  

different combinations of the v e r t ic a l  semicircular canals.

3.1 .b Aims o f the present p ro je c t.

The aim o f  t h is  p a r t  o f  the  p ro je c t  were to  determ ine the  

vertical eye reflexes of the dogfish fo r  low (0.2Hz) and high (0.8Hz) 

frequencies by t i l t i n g  the animal in the ro l l  and pitch planes, and to  

determine the visual contribution to these eye movements. This was 

determined by record ing  in c o n t r o l le d  l i g h t  co n d it io n s  and by 

providing the animal w ith  v is u a l  s t im u l i  ( te s ts  f o r  o p to k in e t ic  

nystagmus).

The control of eye movements by ve rt ic a l  semicircular canals was 

further investigated by recording eye movements a f te r  the ablation of 

different combinations of the v e r t ic a l  semicircular canals.
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3.2 MATERIALS AND METHODS.

For recording the eye movements, an anaesthetised (0.02% MS222 

20mg/l) dogfish was pithed and decerebrated. To hold the body of the 

animal s t i l l  the f ish  was restrained in an specia lly  designed frame 

assembly and the eye lids  were c a re fu l ly  removed. This operation 

proved essential to observe the eye movements. The f ish  was then 

brought back to  the  sea w ate r  tank and l e f t  u n t i l  i t  recovered  

completely ( ty p ic a l ly  l / 2 h r - l h r ) .

3 .2 .A Recordings in the in ta c t f is h .

The eye movements were e i t h e r  f i lm ed  by a v ideo camera or  

recorded by the automatic movement monitor.

By using a video camera the animal was filmed e ith e r  from the 

front (in r o l l )  or from the side ( in  pitch) during imposed ve rt ica l  

body t i l t s .  T i l t s  of +25^ were generated by a DC motor device for a 

range of frequencies (0.2Hz, 0.3Hz, 0.5Hz, 0.8Hz). Two sticks with a 

bright marking point at th e i r  ends were fixed on the cornea of each 

eye using c y n o a c r y la t e  g lu e  f o r  r e c o r d in g  from  both eyes 

simultaneously. A bright marker on the corneal surface was used fo r  

recording from the side of the animal. A reference point on the bar 

holding the animal's body was used as a marker to define the body 

t i l t s .  To discrim inate between the compensatory eye movements and 

visually-evoked eye reflexes the f ilm ing  was performed both in white 

light and in dim red l ig h t .  Precautions were taken to block the other 

sources of l ig h t .  Under these conditions the animal's eye showed no 

visually-evoked responses.

Tests for optokinetic nystagmus.

In the in t a c t  animal the  v is u a l ly -e v o k e d  eye r e f le x e s  were
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further checked by performing tests fo r optokinetic  nystagmus. In 

these experiments a striped drum mounted on horizontal bearings was 

rotated around the head of the animal in the following tests:

A. Striped drum rotated around the stationary animal in the frame.

B. Striped drum and the frame ( ie  animal) rotated together.

C. Striped drum rotated around stationary animal.

3.2.B Recordings in the operated f is h .

A ser ies  o f  op e ra tio n s  was performed on the  anaes the tised

decerebrated dogfish in which the vestibular apparatus was exposed by 

slicing through the cartilag inous roof of the auditory capsule. A fte r  

this operation the f ish  was l e f t  in the sea water tank to recover f o r  c l 

few hours. Recordings were then made f i r s t l y  with the semicircular  

canals in tact but exposed. In a series of subsequent experiments

d if fe re n t  combinations o f  the v e r t ic a l  s e m ic irc u la r  canals were 

ablated and the eye movements were recorded using the video technique.

3.2.C Analysis.

The data from the video tape were analysed by an image analyser 

(HV110). Crosswires superimposed on the video image were moved by a 

joystick  to l i e  in tu rn  over the t ip  o f the eye s t ic k  and the  

reference mark fo r  the body. The XY coordinates of these points 

obtained from a series of frames were than sent to an especia lly

designed computer programme on the BBC micro which was programmed to

reconstruct the curves fo r  the movements of the body and the eyes in 

space. The eye movements were also calculated r e la t iv e  to the body 

movements to give a d ire c t  measure of the th e ir  compensatory responses 

by subtracting the eye movement curves from the body curve. The stored 

values for these curves were p lotted  on a XY p lo t te r  (Epson HI-80)
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Data from the movement monitor were analysed to provide the 

measure of both the amplitude of the eye movements and its  phase 

relationships to  the body movements, in the white l ig h t .  They also  

provided the only method to  compare responses o f the eyes in white  

lig h t, and in dim red l ig h t .
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3.3 RESULTS.

3.3.A Recordings in the intact fish, in light.

In the in tac t  f ish  recordings were made in the l ig h t  to measure 

the compensation and phase position of the l e f t  and r ig h t eyes in the 

roll and pitch planes for t i l t s  at 0.2Hz and 0.8Hz. Data represented 

in this section were obtained from 8 f is h .

3 .3 .A.a Compensation in r o l l .
o

In the ro l l  plane fo r t i l t s  of an amplitude of +22 at a frequency 

of 0.2Hz the two eyes undercompensated, the average gain being 0 .65 .  

At this frequency the two eyes were in phase with the body. (Fig

3 .1 .a)

For t i l t s  at 0.8Hz the average gain fo r the two eyes was 0 .6  and 

in contrast to the t i l t s  at 0.2Hz at th is  frequency the r ig h t and l e f t  

eyes were phase advanced re la t iv e  to the body movement by 7.2^ (Fig

3.1 .b ) .

3.3.A.b Compensation in p itch .

In the pitch plane recordings were made ind iv idu a lly  fo r  the l e f t  

and' right eyes. For the t i l t s  at 0.2Hz and 0.8Hz the average gain fo r  

the two eyes was 0 .5 ,  and they were in phase with the body movement 

(Although measures of 0.2Hz sometimes showed a phase lag of up to 14^) 

Fig 3 .1 .c , d, e, f .

3.3.B Recordings in the in ta c t f is h ,  in dim red l ig h t .

3.3.B. a Compensation in r o l l .

For t i l t s  in the ro l l  plane, in dim red l ig h t  the compensation in 

the two eyes was bette r  than observed in the white l ig h t .  For t i l t s  at 

0-2Hz the average gain fo r  the two eyes was 0 .68 . The eyes phase
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lagged the body t i l t  by an average of 11® (Fig 3 . 2 . a ) .  For t i l t s

at 0.8Hz the gain of the response was an average 0 .5 .  The two eyes 

were advanced in phase r e la t iv e  to the body by an average of 18® (Fig

3.2.b ) .

3.3.B.b Compensation in p itch .

For t i l t s  in the pitch plane l e f t  and r igh t eyes had an average 

gain of 0.6 fo r t i l t s  at 0.2Hz, fo r  t i l t s  at 0.8Hz an average gain of  

0.5 was recorded in two eyes (Fig 3 .2 .c ,  d, e, f ) .

3.3.C Tests fo r  op tokinetic  nystagmus.

3.3.C.a Visual stimulus opposing eye movement.

Recordings were made during the simultaneous ro l l  of striped drum 

and the frame ( ie  animal), through an amplitude of +22. At 0.2Hz the  

average gain of the two eyes was 0.62 and the two eyes were in phase 

with the body (Fig 3 . 3 . a ) .

For t i l t s  at 0.8Hz the average gain fo r the two eyes was 0 .6  and 

they were phase advanced by 22®.

3 .3 .C. b Visual stimulus re in forc ing  eye movement.

When the animal was ro l led  inside the sationary drum, fo r  the 

t i l t s  at 0.2Hz the average gain of the two eyes was 0.73 and at th is  

frequency the two eyes were in phase w ith  the body (F ig  3 . 3 . c ) .  

For t i l t s  at 0.8Hz the gain o f the response was reduced (to  an average 

of 0.49) and as fo r  low frequency t i l t s  the two eyes were in phase 

with the body (Fig 3 .3 .d ) .
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3.3.C.C Visual stimulus re in forc ing  eye movements ( tes t  in dim red 

l ight)

In th is  te s t  fo r  checking the v isua lly  evoked responses in which 

the animal was ro l led  inside the stationary drum, the average gain of 

the r ight and l e f t  eyes was 0 .79 , and at th is  frequency the two eyes 

were in phase with body (Fig 3 .3 .e ) .

For t i l t s  at 0.8Hz the average gain of the two eyes was 0.67 and

as fo r  low frequency t i l t s  the  two eyes were in phase w ith  body

(3 .3 . f )

3 .3 .C. d Test fo r  optokinetic  nystagmus (visual stimulus on ly ).  

Recordings were made by ro ta ting  a striped drum around the head

of stationary animal. The pattern of eye movements during th is  te s t

was not very c le a r ,  although there was an indication of a deviation in

the two eyes as a resu lt  of following the striped drum.

3.3.D Recordings a f te r  the ab lation  experiments.

3.3.D.A Left an te r io r  and posterior vert ica l canals ablated.

In the experim ents in which recordings were made a f t e r  the  

ablation of l e f t  an te r io r  and posterior ve rt ic a l  canals, fo r  t i l t s  at 

0.2Hz the l e f t  eye (ablated side) gain was reduced to 0.57 while in 

the right eye the gain, at 0 .71 , measured close to i ts  value in the 

intact animal. The r ig h t  eye was in phase with body, while l e f t  eye 

lagged in phase by 25.2° (Fig 3 . 4 . a ) .

For t i l t s  at 0.8Hz l e f t  eye gain was severely reduced (0.17) and 

i t  was in phase with body, while in the r igh t eye the gain was 0.60  

and i t  lagged in phase by 10.8^ (Fig 3 .4 .b ) .

Similar d e f ic i ts  occurred fo r  the l e f t  eye during t i l t s  in the
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pitch plane. For t i l t s  at 0.2Hz l e f t  eye gain was 0.55 and i t  lagged 

in phase by 10.8^, and in r ig h t eye at th is  frequency a gain of 0.59  

was obtained and i t  was in phase with body (Fig 3 . 4 . c ) . For t i l t s  at 

0.8Hz gain of the r ig h t eye was 0.57 and as fo r  low frequency t i l t s  i t  

was in phase with the body, while l e f t  eye gain was 0.33 and i t  was in 

phase with body (Fig 3 . 4 . d ) .

3 .3 .D . b A ll four v e rt ic a l  canals ablated, u t r ic u l i  in ta c t .

A fter the ablation of the four v e r t ic a l  canals, recordings were 

made in the r ig h t  and the l e f t  eyes at the ro l l  and pitch planes. Gain 

remained r e la t iv e ly  high fo r  t i l t s  at 0.2Hz (0.46 fo r  r ig h t eye, 0.61 

for l e f t  eye), but was s ig n if ic a n t ly  reduced at 0.8Hz (0.21 and 0.18  

in the l e f t  and r ig h t  eyes respectively) (Fig 3 . 5 . b ) .

S im ilar d ifferences were obtained for t i l t s  in the pitch plane at 

low and high frequencies. For t i l t s  at 0.2Hz r ig h t eye gain was 0 .63 ,  

while for t i l t s  at 0.8Hz a gain of 0.13 was recorded (Fig 3 .5 .d ) .  In 

the l e f t  eye f o r  t i l t s  a t  0.2Hz a gain o f  0 .5  was recorded (F ig  

3 .5 .e ) .

3 . 3 . D . C  All four v e r t ic a l  canals and r ig h t u tr icu lus  ablated.

The eye movements were recorded in f ish  a f te r  the ablation of a l l  

four vert ica l canals and the r ig h t u tr icu lus  with the l e f t  horizontal 

canal and the l e f t  u tr icu lus in ta c t .  For t i l t s  at 0.2Hz and 0.8Hz

there was an almost to ta l  absence of the response in the r igh t eye

(ablated s ide ) .  However in the l e f t  eye ( in ta c t  side) fo r  t i l t s  at 

0.2Hz gain of 0.53 was obtained and i t  lagged in phase by 21.6^. For

t i l t s  at 0.8Hz gain in the l e f t  and r ig h t  eyes was reduced to 0.15

(Fig 3 .5 .a ,b ) .

In the pitch plane fo r  t i l t s  at 0.2Hz a gain of 0.23, and fo r
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t i l t s  at 0.8Hz a gain of 0.18 was recorded (Fig 3 .6 .c ,d ) .  In the l e f t  

eye fo r  t i l t s  at 0.2Hz l e f t  eye gain was 0.42 and i t  lagged in phase 

by 7.2® (Fig 3 .6 .e ) .  In the l e f t  eye fo r  t i l t s  at 0.8Hz gain of 0.22  

was obtained (Fig 3 . 6 . f ) .
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3.4 DISCUSSION.

In the present study of the ve rt ic a l  VOR of restrained f ish  in 

the in tact condition were recorded at two stimulus frequencies 0.2Hz & 

0.8Hz. The eye movement studies of a f re e ly  swimming dogfish (H arris ,  

1965) and studies made by e le c t r ic a l  stimulation of the abducens nerve 

to e l i c i t  horizontal eye mo\ieime.7\te(Montgomery, 1983) have demonstrated 

that the oculomotor system of these fish  operate at considerably lower 

frequencies than those reported in mammals and in goldfish (goldfish:  

Hermann, 1971, Gestrin & S te r l in g ,  1977).

For t i l t s  in the ro l l  and pitch planes at 0.2Hz and 0.8Hz, in 

white l ig h t  and in dim red l ig h t ,  gain of the dogfish eyes is nearly
iVie

similar and compensation in the dark was/^same as seen in the white 

light which suggests that vision ( i f  present) is not dominantly shown 

in the vert ica l eye re flexes .

Tests were also made to obtain the optokinetic nystagmus response 

during vert ica l VOR. The visual input given in combination with the 

vestibular input fa i le d  to suppress the vestibu lar influence and in 

this test at low and high frequency t i l t s  in the two eyes reflexes of  

nearly equal gain va lue was e l i c i t e d  as observed during o th e r

recordings in the in ta c t  f is h .

Another t e s t  in v o lv in g  frame r o l l  ( ie  an im al) in s id e  the  

stationary drum was made to observe i f  dogfish eyes followed the

striped drum pattern . In th is  te s t  fo r  low frequency t i l t s  highAgain 

values were observed than seen in other experiments, which suggests 

that there may be v i s u a l l y  evoked responses invo lved  in these

reflexes, which are shown only when the animal is  provided with a

strong visual stimulus.

Also in these two tests  the movement of the two eyes was in phase 

with that of the body , which re f le c ts  another property of the VOR
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system in which v is u a l  and v e s t ib u la r  r e f le x e s  i f  op e ra tin g

simultaneously tend to induce phase locking of the eyes to the body.
i-evotviy\g

Another tes t  made to obtain optokinetic nystagmus involved* a 

striped drum ro l l  around the head of a stationary  animal. The eye 

reflexes of animal during th is  recording suggested a l i t t l e  following  

of the striped drum pattern , but no f l i c k  at the end of th is  movement. 

Results o f these experim ents show a s trong , dominant v e s t ib u la r  

influence during the v e r t ic a l  eye reflexes, although a weak visual 

response may be present under the in f lu e n c e  o f a strong v is u a l  

stimulus even in the dim red l ig h t .

In a l l  these recordings there was a general tendency towards a 

phase lag in the two eye^at low frequency t i l t s ,  while fo r  most of the 

recordings in white l ig h t  and in dim red l ig h t  fo r  t i l t s  at 0.8Hz, the 

two eyes phase advanced the body phase position . These differences are 

may be due to differences in the semicircular canal and utricu lus  

input on to the eye re f lex es .

In these experim ents sm a lle r  gains o f  the  eye r e f le x e s  were 

recorded in the pitch plane than observed in r o l l ,  which suggests that  

the eye movements during the pitch t i l t s  may be very small and of less 

significance to the animal.

In a l l  these experiments eye movements were recorded over a time 

period of 3-5 minutes, and during th is  time there was no indication of 

gain adaptation a f te r  the f i r s t  few seconds of the response and an 

approximately s im ila r  gain value was obtained even a f te r  f i r s t  few 

minutes of the recording.

In a ll  these recordings unequal gain values have been observed in 

the right and l e f t  eyes. The s l ig h t ly  unequal gain values fo r  the 

right and le f t  eyes have also been recorded in other f ish  (Easter et

1974.1).
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Compensation in the two eyes was never absolute and a gain value 

less than 1.0 was obtained fo r  recordings in the r o l l  and pitch plane, 

at two t i l t  frequencies and in white l ig h t  and dim red l ig h t .  The gain 

value less than 1.0 is d i f f i c u l t  to in te rp re t  in th is  case. Harris  

(1965) and E a s te r  e t  a l . ,  (1974 I )  have exp la in ed  the p a r t i a l  

compensation consistently  observed in f re e ly  swimming dogfish and 

goldfish during horizontal VOR. Part ia l  compensation was favoured in 

freely swimming animals because an absolute compensation during 

swimming would only s ta b i l iz e  objects at i n f i n i t y .  In case of dogfish 

in the present project a possible answer could be that in a l l  these 

case fish was subjected to an angular t i l t  of (±25^) which exceeded 

the capacity of the oculomotor system to fo llow .

The dogfish eyes did not show nystagmic response during v e rt ic a l  

VOR and eye movements observed in the present study were s t r ic t l y  

compensatory. Poorly developed saccadic systems have been reported in 

Cephalloscvl1ium and Squalus (Harris , 1965; Montgomery, 1983) during 

horizontal VOR. Harris (1965) has concluded tha t in dogfish the eye 

movements during swimming are p rim arily  compensatory and saccades were 

only observed to occur ju s t  before f ish  turns. In mammals and birds  

nystagmus is common during horizontal and v e r t ic a l  VOR (Snyder & King, 

1988; Anastasio & Correia, 1988).

A series of operations was performed on dogfish to establish the 

variations in gain and phase position of the two eyes a f te r  ablating  

different components of the ves tibu lar system. In these experiments 

after ablation o f the l e f t  ( ip s i la t e r a l )  p a ir  of canals the l e f t  eye 

gain for 0.8Hz t i l t s  declined from 0.7 to 0.17 in the ro l l  plane. For 

t ilts  in the pitch plane a f te r  ablation a gain of 0.33 was recorded in 

the eye of the ablated side at 0.8Hz. The in ta c t  side eye was l i t t l e  

affected by the ablation and i t  showed s im ila r  value of gain fo r  t i l t s
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at 0.2Hz and 0.8Hz in the ro l l  and pitch planes. The results of th is  

experiment suggest a predominant but not to ta l  ip s i la te ra l  control of 

the l e f t  eye response by the sem icircular canals. In experiments 

where a l l  four vert ica l canals were ablated, gain declined to 0.21 & 

0.18 in the l e f t  and r ig h t eyes respective ly  for t i l t s  at 0.8Hz. 

However fo r  t i l t s  at 0.2Hz l i t t l e  varia tions were observed in the gain 

of the two eyes compared to the in tac t  condition.

In another recording in which v e r t ic a l  semicircular canals were 

ablated along with the u tricu lus of r ig h t side a reduction in the gain 

value was observed in the ablated side eye at low and high frequency 

t i l t s ,  while in the in tact side eye the gain value remained unchanged 

for low frequency t i l t s .

The s ig n if ic a n t ly  reduced gain in the two eyes a f te r  ablation of 

semicircular canals mainly fo r  t i l t s  at 0.8Hz suggests a possible  

activation of th is  system at f a i r l y  high frequencies. Also the results  

of utriculus ablation suggest ac tiva tion  of the utricu lus component 

mainly at lower frequencies (0.2Hz and below).

This study represents prelim inary investigations of the vertcal  

VOR studied by recording eye movements. The detailed analysis of the 

operation and control of these reflexes has in turn been made by 

recording myographically from the EOM, which provides more d irec t  

information about v e rt ic a l  vestibu lo -ocu lar reflexes in the in ta c t  and 

ablated animals (Chapter 4 & 5 ) .
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F ig  3 .1

GAIN

RIGHT EYE 

LEFT EYE

The v e rt ic a l  eye movements of in tac t  f ish  are recorded in 

l ig h t .  Data from 8 animals is represented as mean and 

standard deviation values

(a) 0.2Hz in the ro l l  plane (b) 0.8Hz in the r o l l  plane.

(c) 0.2Hz in the pitch plane (d) 0.8Hz in the pitch plane.

(e) 0.2Hz in the pitch plane (d) 0.8Hz in the pitch plane.

Every 50th frame analysed for t i l t s  at 0.2Hz. Every 8th frame

anlysed fo r t i l t s  at 0.8Hz.

Curve o ffse t  fo r  curve one = 25^.

Curve o ffse t  fo r  curve two = 25^.

Curve o ffs e t  fo r  curve three = 50^.

ROLL 0.2Hz 0.8Hz PITCH 0.2Hz 0.8Hz

0.60 0.60 0.51 0.49

0.70 0.60 0.50 0.50

*  Curve one = r e la t iv e  to  space 

Curve two = r e la t iv e  to  body
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F ig  3 .2

GAIN

RIGHT EYE 

LEFT EYE

The eye movements of in ta c t  f ish  are recorded in dim red 

l ig h t .  Data from 4 animals presented as mean and standard 

deviations values.

(a) For t i l t s  at 0.2Hz in ro l l  (b) For t i l t s  at 0.8Hz in 

ro l l  plane.

(c) For t i l t s  at 0.2Hz in pitch plane (d) For t i l t s  at 

0.8Hz in pitch plane.

(e) For t i l t s  at 0.2Hz in the pitch plane ( f )  For t i l ts  at 

0.8Hz in the pitch plane.

ROLL 0.2Hz 0.8Hz PITCH 0.2Hz 0.8Hz

0.66 0.61 0.50 0.52

0.71 0.59 0.46 0.52
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Fig 3 .3  Tests fo r  optokinetic nystagmus in the in ta c t fis h .

(a) Simultaneous ro l l  o f the s triped  drum and animal for 

t i l t s  at 0.2Hz and (b) 0.8Hz.

(c) Animal ro ll  inside the s ta tion ary  drum in white light 

fo r  t i l t s  at 0.2Hz and (d) 0.8Hz.

(e) Animal ro l l  inside s ta tion ary  drum fo r  t i l t s  at 0.2Hz 

in dim red lig h t and ( f )  0.8Hz

GAIN SIMULTANEOUS ROLL OF DRUM AND ANIMAL. 0.2Hz 0.8Hz

RIGHT EYE 0.59 0.68

LEFT EYE 0.69 0.52

GAIN ANIMAL ROLL INSIDE THE STATIONARY DRUM, IN WHITE LIGHT.

RIGHT EYE 0.76 0.47

LEFT EYE 0.70 0-52

GAIN ANIMAL ROLL INSIDE THE STATIONARY DRUM, IN DIM RED LIGHT.

RIGHT EYE 0.77 0-69

LEFT EYE 0.81 0.65



A
m

p
lit

u
d
e
 

(d
e
g
re

e
s
) 

A
m

p
lit

u
d
e
 

(d
e
g
re

e
s
) 

A
m

p
lit

u
d
e
 

(d
e

g
re

e
s
)

a
60 i

40-

20-

-20-

-40
3 02 01 0

Number of frames

C

Number of frames

e

Number of frames

-o- BODY 
LEFT EYE 

-o- FUGKTEYE

80 1

-20
-40

-60
0 1 0 2 0

BOOY 
LEFT EYE 
RIGHT EYE

40-

20-

-20-

-40-

-60
0 1 0

BOOY 
LEFT EYE 
RIGHT EYE

60 T

40 *

20-

-20 -

-40-

-60
0 1 0 3 02 0

Number of frames

d
8 0 -i

-20-
-40 -

-60
0 1 0 2 0 3 0

Number of frames

f
60 i

4 0 -

20-

-20-

-40 -

-60
3 02 01 0

Number of frames

0.2Hz 0.8Hz



F ig  3 .4

GAIN

RIGHT EYE 

LEFT EYE

The eye movement recordings in f ish  a f te r  ablating left 

ip s i la te ra l  p a ir  of canals.

(a) For t i l t s  at 0.2Hz in the ro l l  plane (b) For t i l ts  at 

0 .8  Hz in the ro l l  plane.

(c & e) For t i l t s  at 0.2Hz in the pitch plane, (d & f) For 

t i l t s  at 0.8Hz in the pitch plane.

ROLL 0.2Hz 0.8Hz PITCH 0.2Hz 0.8Hz

0.71 0.60 0.59 0.57

0.57 0.17 0.55 0.33
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F ig  3 .5

GAIN

RIGHT EYE 

LEFT EYE

The eye movement recordings a f te r  ablating vertical 

semicircular canals.

(a) For t i l t s  at 0.2Hz in the ro l l  plane (b) For t i l t s  at

0.8Hz in the ro l l  plane.

(c & e) For t i l t s  at 0.2Hz in the pitch plane (d & f) For

t i l t s  at 0.8Hz in the pitch plane.

ROLL 0.2Hz 0.8Hz. PITCH 0.2Hz 0.8Hz.

0.46 0.18 0.63 0.13

0.61 0.21 0 .5
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F ig  3 .6

GAIN

RIGHT EYE 

LEFT EYE

The eye movement recordings a f te r  ablating four vertical 

canals and the utricu lus of r ig h t side.

(a) For t i l t s  at 0.2Hz in the ro l l  plane (b) For t i l t s  at 

0.8Hz in the ro l l  plane.

(c & e) For t i l t s  at 0.2Hz in the pitch plane (d & f) For 

t i l t s  at 0.8Hz in the pitch plane.

ROLL 0.2Hz 0.8Hz PITCH 0.2Hz 0.8Hz

0.23 0.18

0.53 0.15 0.42 0.22
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CHAPTER 4 . COORDINATED ACTIVATION OF THE EOM.
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4.1 INTRODUCTION.

I t  is the coordinated action of EOM which induces eye movements. 

During eye movements the  a c t i v i t y  o f EOM can be measured by EMG 

electrodes inserted in to  the muscle. Depending on the in te n s ity  of  

contraction, the discharge frequency of indiv idual units and overall 

unit a c t iv i ty  of EOM varies , and th is  can be used in assessing the 

contributions of ind iv idual EOM to given eye movements. The location, 

innervation, physiological p r o f i le  and mechanical responses of the six  

EOM have been discussed in Chapter 2.

The pattern of coordinated activation of the six EOM has been 

widely studied in vertebrates. In man (Boeder, 1962) fo r  horizontal 

eye reflexes, they can be divided in to three d is t in c t  muscle groups. 

The l in e  o f a c t io n  o f  the two h o r iz o n ta l  EOM (EXT-R & INT-R) is  

coincident with the horizontal plane of eye: each of these EOM induces 

the horizontal ro ta tion  of eye ball when the eye is in a s tra igh t  

forward position. The INT-R rotates the eye medially or ro s t ra l ly  and 

EXT-R rotates the eye la t e r a l l y  or caudally. The SR and IR have a 

complex movement divided into horizonta l,  v e r t ic a l  and torsional 

components. In terms of horizontal eye movements the SR and IR induce 

a rotation of the eye about the line  of sight in the horizontal plane. 

The plane of action of SO and 10 makes an angle of about 51® with the 

line of sight when the eye is in a s tra igh t forward position , and the 

resulting horizontal component is an abduction. This decreases to zero 

when the line  of action o f the muscles becomes p a ra l le l  to the l in e  of

sight and the horizontal components of SO & 10 are same.

In vert ica l eye re flexes  the SR, IR, SO & 10 play major roles.

When the eye is in a s tra ig h t  forward position the contraction of SR

elevates i t ,  while contraction of IR depresses i t .  The SO and 10 

primarily induce counter ro ta tion  of the eye b a l l .  The SO makes the
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eye r o t a te  inward ( in t o r s io n )  and 10 ro ta te s  the eye outward 

(extorsion). The contraction of e ith er  of the horizontal muscles (EXT- 

R & INT-R) in the v e r t ic a l  plane acts to increase the elevation i f  the 

eye ball is elevated. When the eye ball is depressed the contraction  

of these two muscles acts to depress i t  fu r th e r .

Horizontal eye reflexes of fre e ly  moving and restrained animals 

have been described in a l l  vertebrates (H arr is ,  1965; Easter, et a l . ,  

1974a,b; Hermann & Constantine, 1971; C o llins , 1977, Carpenter, 1977, 

Robinson, 1981; Montgomery, 1983).

In his experiments on dogfish Montgomery (1980) sampled the 

a c t iv it ie s  of horizontal canal primary a f fe re n ts ,  vestibu lar neurons 

and neurons in the auricu lar lobe of cerebellum, during horizontal 

head ro ta tio n . He also recorded the eye reflexes to abducens nerve 

s tim u la t io n  and determined the t r a n s f e r  c h a r a c t e r is t ic  o f the  

oculomotor system in the d irec t  horizontal VOR (Montgomery, 1983).

Our only knowledge of ve rt ic a l  VOR in f ish  is in d ire c t ,  being 

based upon the sensory recordings from the isolated labyrinth made by 

Lowenstein & Sands (1 9 4 0 ) .  From these r e s u l t s ,  and from general 

observations, they have predicted the ac tiva tion  pattern of a l l  the 

EOM in re la t io n  to the stimulation of individual canals. Despite the 

fact that the labyrin th  and EOM of elasmobranchs are eas ily  accessible  

and provide an ideal system in which to work out the connections 

between ves tib u la r  input and responses of EOM, no fu rther work has 

been done to check these predictions experimentally.

4.2 Aims of the project.

Since very l i t t l e  is known about the function of f ish  horizontal 

and vert ica l VOR and much of th is  re l ies  upon predictions rather than 

actual recordings. I have recorded the myographic a c t iv i ty  of a l l  s ix
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EOM o f  the dogfish  w h ile  p ro v id in g  p h y s io lo g ic a l  s t im u l i  to  the  

vestibular system for ro l l  and p itch . In some experiments the response 

of EOM was also checked for yaws in order to observe the differences  

in EOM responses between the ve rt ic a l  and horizontal planes.

A t r a n s i t i o n  in  th e  respo nse  o f  EOM is  a f u n c t io n a l

characteris tic  that occurs in between r o l l  and pitch t i l t s .  The

animal was therefore also t i l t e d  at intermediate angles in each 90^ 

quadrant to determine exactly at which point th is  t ra n s it io n  occurred. 

In th is  way a detailed  analysis of the changes in coupling of VOR

between r o l l  and pitch has been made.
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4.2 Materials and methods.

30 dogfish approx im ate ly  lm in length were used f o r  these  

experiments. The anaesthetised (MS222, 2mg/l) pithed dogfish was 

decerebrated and held in a frame assembly, that was designed to hold 

the head and body of the animal s t i l l  (F ig  4 . 1 . A ).  The EOM were 

exposed by cutting the upper and lower eye l ids  and a piece of skin 

behind the eyes. The myographic e lec tro d es  were prepared from 

stainless steel insect pins by insulating  them with epoxy resin except 

for the t ip  and baking them in an oven at 60^ fo r  about 48 hours. The 

electrodes were advanced through the o rb ita l membrane so that the t ip s  

lay near the insertions of EOM, although in a few experiments the 

electrodes were in s e r te d  more deeply in order to  check i f  any 

difference in the myographic response occurred. To hold the electrodes  

f irmly in position , the wires attached to these electrodes were glued 

on to the head of the animal. During the operation the bleeding was 

controlled by cauterising the blood vessels (although i t  was found 

that excessive blood flow ra re ly  occurred) and the g i l l s  of f ish  were 

kept s l ig h t ly  moist. The animal was then l e f t  in sea water to recover. 

A deeply anaesthetised f ish  took about an hour to recover normal 

breathing movements. I f  water flow was maintained th is  preparation  

could then las t  fo r as long as a week, and usually the f ish  was l e f t  

overnight before  experim ents were begun, since the myographic  

responses became larger a f te r  th is  time. The inner frame assembly was 

fixed into an outer frame tha t  pivoted on horizontal bearings inside  

the tank, allowing t i l t s  to be delivered to the animal in any v e r t ic a l  

plane (Fig 4 .1 .B ) .  The connection was made through a v e rt ic a l  bar th a t  

could be rotated f re e ly  through 360^; furthermore the v e r t ic a l  p ivot  

projected through the midpoint between the vestibu lar organs, so tha t  

all the t i l t s  were centred at th is  point. The sinusoidal o s c il la t io n s
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of the body were generated by a DC motor connected through a drive arm 

to the outer frame. The myographic a c t iv i ty  of the EOM made during the 

t i l t s ,  together with the potentiometer signal ind icating  angular

movement of the frame were stored on a FM tape recorder.

To tes t  responses in d i f fe re n t  vert ica l planes, the f ish  was

rotated in 45^ increments beginning at ro l l  (designated 0^) in a

right-leading d irection  (Fig 4 .5 ) .

4.2.B Analysis of the data.

The data from the tape recorder were analysed f o r  the  phase 

position of muscle f i r in g  in the t i l t  cycle. The myographic signals  

were fed through a window discriminator which was set to  pick up a l l  

the spikes above the noise level and to convert the a c t iv i t y  to a 

series of TTL pulses. The stimulus waveform was fed through a zero- 

point crossing device, which produced a TTL pulse at a chosen point on 

successive cycles of the waveform. These pulses were fed to a Tuscan 

S100 computer which was programmed to generate post stimulus time 

histograms. By setting  the time in terval to equal the cycle period and 

triggering from the stimulus pulses, phase histograms of myographic 

activ ity  were accumulated over ten cycles of body o s c i l la t io n .  For

some purposes the myographic a c t i v i t y  was passed through an EMG 

integrator, with the time constant set to 20ms, and the integrated

signals were in tu rn  fed to  a computer in te r f a c e  (CED 1401) fo r

averaging. From the phase histogram a number of s ta t is ic a l  parameters 

could be c a lc u la te d .  For most purposes the c i r c u l a r  mean o f  the

distribution was used to express the phase position of EOM a c t iv i ty  

relative to the angles of body t i l t s ,  and the to ta l  number of TTL 

pulses counted in the bursts was used to express the strength of the 

response.
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4.3 RESULTS.

As demonstrated in Chapter 2 the compensatory eye movements in 

the ro l l  plane are achieved by an upward counter-ro ll  of the downward 

eye and a downward counter-ro ll  of upward eye. T i l t s  in the pitch  

plane induce torsional counter-rotation of both eyes, which move 

con jugate ly  to  compensate fo r  the head up and head down t i l t s .  

Myographic recordings of EOM have been made to demonstrate the pattern  

of muscle activation  in the two eyes which bring these movements 

about. Data are represented as EMG records of EOM, phase histograms of 

EOM a c t i v i t y  accumulated over ten cyc les o f s inuso ida l body 

osc il la tions , or averaged integrated signals. The measures of c irc u la r  

mean value derived from phase histograms have been used fo r comparing 

the phases of EOM f i r in g  under d i f fe re n t  experimental conditions.

The f ish  were t i l t e d  at a range of frequencies between 0.2Hz and 

0.8Hz, many of which bring both components of the vestibu lar system in 

to action (see Chapter 5 ) .

The myographic record of each EOM in the ro l l  and pitch plane 

was comprised of separate populations of small and large units that  

were active during the t i l t  in one d irec t io n . Generally the burst was 

in it ia ted  by the units smallest in s ize , and the largest units f ire d  

near the peak of displacement.

There appeared to be no d ifference in the re la t iv e  contributions  

of small and large units to the myographic bursts at low (0.2Hz) and 

high (0.8Hz) frequencies. Therefore no obvious corre la t ion  between the  

dominant component o f  the  v e s t ib u la r  system a c t in g  a t  a given  

frequency and a p a r t ic u la r  population of motor units .
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4 .3 .A EOM a c tiv a tio n  in r o l l .

During a r ig h t  side down t i l t  (second h a l f  o f  the phase 

histogram) that induced an upward counter-ro ll  of the r ig h t eye and 

downward counter ro l l  of the l e f t  eye, the SO and SR of the r igh t eye 

were co-activated , the SO activated around a mean phase position of  

0.62 and the IR f ire d  around a mean phase of 0 .65, while the r igh t 10 

and IR were s i le n t  (Fig 4 .2 ) .  In the l e f t  eye the SO and SR were both

s i l e n t ,  w h ile  the l e f t  10 and IR were c o -a c t iv a te d .  The l e f t  10

discharged around a mean phase of 0.65 and the l e f t  IR discharged

around a mean phase of 0.70 (Fig 4 .2 ) .

In a l e f t  side down t i l t  (the f i r s t  h a lf  of the phase histogram) 

the reciprocal pattern of the muscle activation  was produced. The 

le f t  SO and SR f ire d  together, the l e f t  SO f i r in g  around a mean phase 

of 0.19 and the l e f t  IR f i r in g  around mean phase of 0 .22 , while l e f t

10 and IR were s i le n t  (Fig 4 .2 ) .  In the r ig h t eye the SO and SR were

silent in th is  h a lf  of the t i l t ,  while the 10 and IR were coactivated. 

The r ig h t  10 f i r e d  around a mean phase o f  0 .31  and the r ig h t  IR 

discharged around a mean phase of 0.21 (Fig 4 .2 ) .

The horizontal EOM EXT-R and INT-R were also recorded in the ro l l

plane. In the r ig h t  side down t i l t  of the body the EXT-R of the r ig h t  

eye f ired  at a mean phase of 0 .60 , while the INT-R of r igh t eye in 

this h a l f  o f  the  t i l t  was s i l e n t .  In the l e f t  eye the EXT-R was 

inactivated while the INT-R was activated and i t  f ire d  around a mean 

phase of 0.78 (Fig 4 .3 ) .  In a l e f t  side down t i l t  the reciprocal 

pattern of muscle ac tiva tion  was produced: the EXT-R was activated and 

INT-R was inactivated  in the l e f t  eye, while the EXT-R was inactivated  

and INT-R was activated in the r ig h t eye (Fig 4 .3 ) .
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4.3.B P itch .

T i l t s  in the pitch plane induce torsional counter-rotation of  

both eyes, which move conjugately to compensate fo r  the head up and 

head down t i l t s .  During a head down t i l t  (second h a lf  of the phase 

histogram in Fig 4 .4) the SO and SR of both eyes co-contracted. The SO 

in the r ig h t and l e f t  eyes f i r e d  around a mean phase of 0 .65 , while  

the r ight SR f ire d  around a mean phase of 0.57 and the l e f t  SR f ire d  

around mean phase of 0 .78 . The 10 and IR of both eyes were s i le n t  

(Fig 4 .4 ) .  In a head up t i l t  the SO and SR of both eyes were s i le n t ,  

while the 10 and IR o f the two eyes c o -co n trac ted , the  r ig h t  10 

discharging around a mean phase of 0.31 and l e f t  10 f i r in g  around mean 

phase of 0 .19 . The r igh t and l e f t  IR discharged around mean phase of 

0.22 (Fig 4 .4 ) .

Among horizontal muscles, a s im ila r  change in th e ir  discharge was 

observed compared with that in the r o l l .  In pitch plane the EXT-R and 

INT-R of both eyes s t i l l  contracted in antiphase to each other. The 

EXT-R of both eyes co-contracted on head down t i l t ,  while the INT-R of  

both eyes were s i le n t  in th is  h a lf  of the t i l t  (Fig 4 .3 ) .  In a head up 

t i l t  the INT-R of the two eyes were co-contracted and EXT-R of the 

left and r ig h t eyes were s i le n t  (Fig 4 .3 ) .

4.3.C Transition o f EOM between r o l l  and p itch .

A trans it ion  must occur between the patterns of ac tiva tion  of EOM 

seen in ro l l  (Section 4 . 3 . A) and pitch (4 .3 .B ) .  In order to determine 

the exact angle at which t ra n s i t io n  occurred a number of experiments 

were performed in which f ish  were also t i l t e d  in intermediate v e r t ic a l  

planes (Fig 4 .5 ) .  Data were obtained fo r a l l  six EOM fo r  a series of  

imposed body t i l t s  in v e r t ic a l  planes between 0® and 360^. Recordings 

were made at every 45^, and the t r a n s i t io n  angle was assessed
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precisely by moving in smaller increments (5^-15^) to e i th e r  side of 

these 45^ angles. The myographic a c t iv i ty  of the EOM at the angle of 

trans ition  was generally  composed of simultaneous f i r in g  of small and 

large units continuously through the cycle of t i l t  ( ra th e r  than as a 

burst in one h a lf  c y c le ) .  Transitions were passed w ith in  one 15^ 

increment, and where the tested position did not exactly coincide with 

the null point, a somewhat increased level of f i r in g  was superimposed 

on one h a lf  of the continuous f i r in g .  However in some cases there was 

an indication of somewhat increased level of f i r in g  in e i th e r  the 

f i r s t  or second h a lf  of the cycle, indicating a s l ig h t  o f fs e t  e i th e r  

towards the pre-or p o s t- tran s it io n  angles.

4 .3.C.a Response o f  SO.

4 .3 .C .a . I  SO response in r o l l  ( 0 ° ) ,  0.2Hz, 0.8Hz.

As described above (Section, 4 .3 .A) in r o l l ,  the l e f t  SO f ire d  to  

a le f t  side down t i l t ,  while the r ight SO was s i le n t  in th is  h a lf  of 

t i l t  (Fig 4 .6 ) .  The r ig h t  SO was activated during a r ig h t  side down 

t i l t  and i t  compensated the r ig h t  eye downwards, while the l e f t  SO was 

silent in th is  h a l f  of the t i l t  (Fig 4 .6 ) .  There was no change in the 

phase of l e f t  and r ig h t  SO f i r in g  as a result of changing stimulus 

frequencies at th is  plane of the t i l t  (4 .6 ,  4 .7 ) .

4 .3 .C .a . i i i  SO response at 45^, 0.2Hz.

To an imposed body t i l t  at 45^ (Fig 4 .6 ) ,  there was an ind ication  

of f i r in g  in the l e f t  SO, but in contrast to that at 0^ th is  f i r in g  

was not confined to a p a r t ic u la r  phase of t i l t .  Both small and large  

units f ired  continuously to t i l t s  on both sides, suggesting that th is  

angle was close to the t ra n s i t io n .  To determine the exact angle at 

which the phase of l e f t  SO f i r in g  shifted to the other h a l f  of t i l t ,



recordings were made 15® before (30®) and a f te r  (60®) 45® and i t  was 

established that at th is  frequency tran s it io n  occured between 45® and 

60®. At 60® a comparatively stronger response was e l ic i te d  at the 

phase position of 0.63 rather than at the phase position of 0.13

observed at 0® (Fig 4 .6 ) .

There was no change in the phase of r ig h t  SO at th is  angle of the 

t i l t  and i ts  burst had a mean phase position of 0.63 same as at 0®). 

However i t  was consistently  recorded in several experiments that the 

right SO demonstrated i ts  strongest myographic response at th is  angle 

(Fig 4 .6 ) .

4 .3 .C. a . iv SO response at 45®, 0.8Hz.

For t i l t s  at an angle of 45® and frequency of 0.8Hz the phase of 

the SO burst in the l e f t  eye was already shifted  from the value of 

0.21 at 0® to a value of 0 .61 . I t  was determined by t i l t i n g  at angles 

between 0® and 45® that the tra n s it io n  occured at 30®, where the l e f t  

SO f ired  continuously throughout the t i l t  cycle (Fig 4 .7 ) .  There was

no change in the phase o f  the r ig h t  SO a t  t h is  ang le . However a

stronger myographic response of r igh t SO was seen than observed at

other angles (Fig 4 .7 ) .

4.3.C.a.v SO response to pitch (90®), 0.2Hz.

The pattern of SO ( l e f t  & r ig h t)  f i r in g  has been described in 

section 4 .3 .B . There was no change in the phase of r ig h t and l e f t  SO 

response at th is  angle and both EOM f ire d  to a head down t i l t  fo r  

t i l t s  at 0.2Hz and 0.8Hz (F ig 4 .4 ) .

4 .3 .C .a .v ii  SO response at 135®, 0.2Hz.

For the low frequency t i l t  at 135® the l e f t  SO retained i ts  mean
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phase p o s it io n  o f  0 . 6 3  and i t s  response a t t h is  frequency was 

g en era lly  s tro n g e r  than observed a t  o th e r  angles (F ig  4 . 6 ) .  The 

myographic a c t iv i t y  of the right SO showed that i t  was approaching the 

transition  angle (Fig 4 ,6 ) .  To determine the angle of tra n s it io n  

exactly the f ish  was t i l t e d  15° before (120°) and a f te r  (150°) 135°. 

I t  was established In several recordings that at 120® the r igh t SO 

discharge had a mean phase of 0.65 and the tra n s it io n  occurred at  

150®. A fter th is  angle the r ight SO burst had a mean phase of 0.09 ( ie  

on other side of the stimulus curve) (Fig 4 .6 ) .

4 .3 .C .a .v i i i  SO response at 135°, 0.8Hz.

As found at 45® fo r  the l e f t  SO at th is  frequency, the tra n s it io n  

for the r ig h t SO had already been passed fo r  a t i l t  in the 135® plane. 

Therefore at th is  angle o f  t i l t  the r ig h t and l e f t  SO were activated  

in antiphase to each other. I t  was r e p e t i t iv e ly  observed in several 

experiments that the r ig h t SO changed i ts  phase of f i r in g  to the other 

side of stimulus curve at an angle between 120® and 135® and not a f te r  

135° (Fig 4 .7 ) .

4 .3 .C .a .ix  SO response at 180®, 0.2Hz, 0.8Hz.

At th is  angle of the t i l t  there was no change in the phase of the 

right and l e f t  SO and they were activated in antiphase to each other 

(Fig 4 .6 , 4 .7 ) .  However th e ir  phase positions re la t iv e  to the stimulus 

monitor were d i f fe re n t  from those calculated fo r  0® as an inev itab le  

consequence of the ro tation  of the f ish  w ithin the t i l t i n g  frame (see 

section 3 .2 ) .  Thus at 0® the extreme l e f t  side down t i l t  position is  

represented as 0.25 phase position while at 180® the l e f t  side down 

position is represented as 0.75.

4.3.C.a.x SO response between 180® and 360®, 0.2Hz, 0.8Hz.
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Recordings were also made between the angles of 180® and 360® to  

determine the fu r th e r  t r a n s i t io n s  in phase o f  l e f t  and r ig h t  SO 

responses. I t  was recorded in several experiments that t i l t s  at these 

angles demonstrate a mirror-image pattern of trans ition  in the phase 

of r ig h t  and l e f t  SO at low (0 .2 H z )  and high (0 .8H z) frequency.  

Therefore the trans it ion  in the phase of l e f t  SO occurred a f te r  225® 

(in between 225® and 240®) at 0.2Hz, and fo r  t i l t s  at 240® l e f t  SO 

discharged in phase with the r ig h t  SO (Fig 4 .6 ) .  With a stimulus 

frequency of 0.8Hz the tra n s it io n  in the f i r in g  of l e f t  SO occurred 

before 225®. For t i l t s  at 210® i t  f i r e d  continuously on both sides of 

the t i l t  cycle, although a comparatively strong response was e l ic i t e d  

near i ts  orig ina l phase position (Fig 4 .7 ) .  For t i l t s  at 270® SO in 

the r ig h t and l e f t  eyes were activated in phase.

The tra n s it io n  in the f i r in g  of r ig h t  SO occurred at 330® fo r  

t i l t s  at 0.2Hz (Fig 4 .6 ) .  For t i l t s  at 0.8Hz i t  shifted in i t s  phase 

at 300® and at 295® the r ig h t  SO discharged in phase with the l e f t  SO 

(Fig 4 .7 ) .  At 360® (0®) the l e f t  SO discharged around a mean phase 

position of 0.3 and the r ig h t  SO discharged at a mean phase of 0 .6  

(Fig 4 .6 , 4 .7 ) .

The c irc u la r  mean phase values derived from the analysed phase 

histograms of EOM myographic a c t iv i t y  have been plotted against the 

angles of t i l t s  between 0® and 360 ® (Fig 4 .13 , 4 .14 ) .

Using the same procedure to establish tra n s it io n s , the a c t iv i t y  

of the other f iv e  EOM were analysed.

4.3.C.b Transition  in 10 response between 0® & 180®, 0.2Hz, 0.8Hz.

For t i l t s  at 0®, with stimulus frequency of both 0.2Hz and 0.8Hz 

the 10 from the r ig h t and l e f t  eyes were activated in antiphase to  

each other. The r ig h t 10 f i re d  around a mean phase position of 0.31
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( i . e  during r ig h t side up t i l t )  and the l e f t  10 discharged around mean

phase of 0.65 ( i . e  during l e f t  side up t i l t ,  Fig 4 .8 ) .

With a stimulus frequency of 0.2Hz the trans ition  in the phase of 

le f t  10 occurred ju s t  beyond 60®, at th is  angle of t i l t  the l e f t  10 

f ired  to a mean phase of 0 .18 . At high frequency t i l t s  the tra n s it io n  

in the phase of the l e f t  10 occurred before 45® and at th is  plane l e f t  

10 discharged to a mean phase of 0.18 (Fig 4 .8 ) .  There was no change 

in the phase of r ig h t 10 at th is  angle of t i l t  and at 45® i t  f i r e d  

towards a mean phase of 0.32 (Fig 4 .8 ) .

At 90® the 10 from r ig h t  and l e f t  eyes were activated in phase

with each other during head up t i l t  (Fig 4 .8 ) .

The tran s it io n  in the phase of the r ight 10 with both low and 

high stim ulus frequency occurred a t 120®. At 135® the r ig h t  10 

discharged around mean phase position of 0.65 (Fig 4 .8 ) .

At 180®, and fo r both low and high stimulus frequencies, r ig h t  

and l e f t  10 were activated in antiphase to each other, the r ig h t  10 

discharging around a mean phase of 0.68 and the l e f t  10 around a mean 

phase of 0.22 (Fig 4 .8 ) .

The c irc u la r  mean value obtained from the phase histograms of I0R 

and I0L has been p lotted  fo r  the t i l t  angles between 0® and 360® (Fig  

4.13, 4 .14 ) .

4.3.C.C Transition  in SR response between 0® and 180®, 0 .2H z, 0 .8H z.

For t i l t s  at 0®, and with stimulus frequency o f both 0.2Hz and 

0.8Hz the r ig h t  SR f i re d  around a mean phase position o f 0.51 ( i . e  

during right side down t i l t )  and the l e f t  SR discharged around a mean 

phase o f 0.21 ( i . e  during l e f t  side down t i l t ,  Fig 4 .9 ) .

The tra n s it io n  in the f i r in g  o f the l e f t  SR with low frequency 

t i l t s  occurred at 60®, While with high frequency t i l t s  i t  occurred at

79



30® (Fig 4 .9 ) .  A fte r  the t ra n s it io n  the l e f t  SR discharged at a mean 

phase of 0.65 (Fig 4 .9 ) .

For t i l t s  in pitch at 90® the SR of the l e f t  and r igh t eyes were 

co-activated during a head down t i l t  (around a mean phase of 0.54) fo r  

low and high frequency t i l t s  (Fig 4 .9 ) .

With a stimulus frequency of 0.2Hz the tra n s it io n  in the phase of  

right SR f i r in g  occurred at 150®, while fo r  t i l t s  at a frequency of  

0.8Hz the r ig h t SR shifted  in i ts  phase of f i r in g  at 135® (Fig 4 .9 ) .  

After the tra n s it io n  the r ig h t  SR f ire d  around a mean phase position  

of 0.18 (Fig 4 .9 ) .

For t i l t s  at 180®, with both low and high stimulus frequencies

the r ig h t SR f ire d  at a mean phase of 0.20 (now representing a r ig h t

side down t i l t )  and the l e f t  SR discharged around mean phase of 0.58

(now representing a l e f t  side down t i l t  ) (Fig 4 .9 ) .

4.3.C.d Transition  in the IR response between 0® and 180®, 0.2Hz, 

0.8Hz.

In the r o l l  p lane a t stim ulus frequenc ies  o f both 0.2Hz and 

0.8Hz, the IR from the two eyes were activated in antiphase to each

other, The r igh t IR discharged around a mean phase of 0.21 ( i . e  during

a right side up body t i l t  ) and the l e f t  IR discharged at a mean phase 

of 0.7 (during a l e f t  side up body t i l t ,  Fig 4 .1 0 ) .

At low frequency t i l t s ,  the tra n s it io n  in the f i r in g  of the l e f t  

IR occurred between the angles of 45® and 60® (Fig 4 .1 0 ) ,  while fo r  

High frequency t i l t s  i t  occurred a t  75® (F ig  4 . 1 0 ) .  A f te r  i t s  

transition the l e f t  IR discharged in phase with the r ig h t IR around a

mean phase position of 0 .25 (Fig 4 .1 0 ) .

For t i l t s  in the pitch plane at 90® the r ig h t  and l e f t  IR were 

co-activated during a head up t i l t  (Fig 4 .1 0 ) .
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The tra n s it io n  in the phase of r ig h t IR f i r in g  at low stimulus 

frequency occurred at 120®, while at high frequency i t  occured between 

120® and 135®. A fte r  i ts  t ran s it io n  the r ig h t IR discharged around a 

mean phase position of 0.67 (4 .1 0 ) .

For t i l t s  a t  180® the r ig h t  and l e f t  IR were a c t iv a te d  in  

antiphase to each other, the r ig h t IR discharging around a mean phase 

position of 0.65 (now representing r ig h t side up t i l t )  and the l e f t  IR 

discharged at a mean phase of 0.25 (now representing l e f t  side up 

t i l t .

3 .3 .C .e  Transition  in the response o f INT-R between 0® and 180®, 

0.2Hz, 0.8Hz.

For t i l t s  in r o l l  plane at 0® the INT-R of the l e f t  and the r igh t  

eyes were activated in antiphase to each other. The r ig h t  INT-R f ire d  

around a mean phase of 0.17 ( i . e  during r ig h t side up) and the l e f t  

INT-R discharged around a mean phase position of 0.65 ( i . e  during a 

le f t  side up t i l t ) .  There was no varia t ion  in the f i r in g  pattern and 

mean phase values of the two E0M by varying stimulus frequency from 

0.2Hz to 0.8Hz (Fig 4 .11 , 4 .12 ) .

At the angle of 45®, fo r t i l t s  at 0.2Hz the r ig h t and l e f t  E0M 

were activated in antiphase. I t  was established in several recordings 

that the tra n s it io n  in the phase of l e f t  INT-R occurred at 55® (Fig

4.11). With a stimulus frequency of 0.8Hz the tra n s it io n  in the phase 

of le f t  INT-R occurred at 65®, and at th is  angle the r ig h t and l e f t  

INT-R were activated in phase at a mean phase position of 0.18 (Fig

4.12).

For the t i l t s  in pitch plane at 90® and with stimulus frequencies 

of 0.2Hz and 0.8Hz the l e f t  and r ig h t INT-R were activated in phase 

during a head up t i l t  (Fig 4 .1 2 ) .
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The t r a n s i t io n  in the phase o f r ig h t  INT-R f i r i n g  w ith  the  

stimulus frequency o f 0.2Hz occurred at 150° (F ig  4 .1 1 ) .  With a 

stimulus frequency of 0.8Hz the r ig h t  INT-R sh ifted  in the phase of 

i ts  f i r in g  at 165®. A fter the tra n s it io n  the r ig h t INT-R discharged 

at a mean phase position of 0.68 ( f ig  4 .1 2 ) .

As in the r o l l  plane (0®) the r ig h t  and l e f t  INT-R discharged in 

antiphase to each other at 180®, the mean phase value of 0.18 fo r  the

le f t  INT-R burst now representing the activation  of the l e f t  side up

t i l t  and the mean phase of 0.68 fo r  the r ig h t INT-R now representing

activation on the r ig h t side up t i l t  (Fig 4 .1 2 ) .

4 .3 .C .f  T rans ition  in the response o f EXT-R between 0® and 180®, 

0.2Hz, 0.8Hz.

In the ro l l  plane (0®) the r ig h t  and l e f t  EXT-R were activated in 

antiphase: the r ig h t EXT-R f i r in g  around a mean phase position of 0.71  

( i .e  during a r ig h t side down t i l t )  and the l e f t  EXT-R f i r in g  around a 

mean phase position of 0.16 ( i . e  during a l e f t  side down t i l t )  with 

stimulus frequencies of 0.2Hz and 0.8Hz (Fig 4 .11 , 4 .12 ) .

For t i l t s  at 45®, and with a stimulus frequency of 0.2Hz the 

transition in the phase of l e f t  EXT-R occurred at 50® (Fig 4 .1 1 ) .  With 

a stimulus frequency of 0.8Hz the l e f t  EXT-R shifted  in i ts  phase of  

fir ing at 60® (Fig 4 .1 2 ) .  A fte r  the tra n s it io n  the r igh t and l e f t  EXT- 

R discharged in phase with each other around a mean phase position of  

0.70. For t i l t s  in the pitch plane, and with stimulus frequencies of  

0.2Hz and 0.8Hz r ig h t and l e f t  EXT-R were co-activated during a head 

down t i l t  (Fig 4 .1 2 ) .

The tra n s it io n  in the phase of the r ig h t EXT-R with a stimulus 

frequency of 0.2Hz occurred between 120® and 135® (Fig 4 .1 1 ) .  With a 

stimulus frequency of 0.8Hz the tra n s it io n  in the phase of r igh t EXT-R
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occurred at 150®. A fter the tra n s it io n  r ig h t EXT-R discharged around a 

mean phase position of 0.19 (Fig 4 .1 2 ) .

For t i l t s  in the ro l l  plane at 180° the l e f t  EXT-R f ire d  around a 

mean phase position of 0.7 ( i . e  during a l e f t  side down t i l t )  and 

r ight EXT-R discharged around a mean phase position of 0.19 ( i . e  

during a r ig h t side down t i l t  ) (Fig 4 .1 2 ) .

4.3.D Analysis of integrated phase p lo ts .

In some recordings where myographic a c t i v i t y  in two E0M was 

e l i c i t e d  in phase, small phase d i f fe re n c e s  were no ticed  a t  the  

beginning of a burst. EMG signals fed through an in tegrator were used 

to analyse these differences in burst onset.

Recordings were made in the r ig h t  and l e f t  SR fo r t i l t s  in the 

pitch plane. A phase advance of 10.8® was observed in the a c t iv i t y  of 

right eye over the l e f t  eye fo r t i l t s  at 0.2Hz. For t i l t s  at 0.8Hz the 

right SR phase advanced the myographic a c t iv i ty  of l e f t  SR by 21.6® 

(4 .15).

In recordings from rig h t and l e f t  SO fo r  t i l t s  in the 90® plane 

the bursts of two E0M were in i t ia te d  in phase fo r  t i l t s  at 0.2Hz, 

while during t i l t s  at 0.8Hz SO in the l e f t  eye was advanced in phase 

over the l e f t  eye by 21.6® (Fig 4 .1 5 ) .

In the two EOM for t i l t s  at 270® SO in the r ig h t eye was advanced 

in phase over the l e f t  eye by 28.8®. For t i l t s  at 0.8Hz in the same 

plane SO in the r ig h t eye was advanced in phase by 46.8® (4 .1 6 ) .

Recordings were also made in the r ig h t  SO and r ig h t SR fo r  t i l t s

at 0® plane. SO in the r ig h t  eye phase advanced by 21.6® the SR in the

right eye fo r  t i l t s  at 0.2Hz and 0.8Hz (4 .1 6 ) .
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4 .3 .E. Tonic a c t iv i t y  o f  the EOM.

In order to determine the tonic level of fir ing^recordings in the 

l e f t  and r ight SO were made during ramp t i l t s .  In the f i r s t  experiment 

ramp t i l t s  of an amplitude of 0®, 15®, 30®, 45®, 60®, 75® were imposed 

towards r igh t side down and myographic response in the l e f t  and r ig h t  

SO was recorded. No myographic response was e l ic i t e d  in the l e f t  SO 

during this h a l f  of the t i l t  (Fig 4 .17 ) .  In the r ig h t  SO there was an 

indication of the tonic f i r in g  at 0®, however a f te r  the f ish  was 

t i l te d  to 30® and the frame was held in that position a continuous 

f ir in g  was seen tha t lasted during the f i r s t  60 seconds of that hold.

A few small u n i ts  were seen at the beginning o f  the burs t  th a t  uo,s 

followed by units of the large size mostly (Fig 4 .1 7 ) .  The myographic 

response was strongest at 75® r ig h t side down.

In the myographic a c t iv i t y  of the l e f t  SO during l e f t  side down 

t i l t s ,  recordings were made at 20®, and 60®. The myographic a c t iv i t y  

of the SO fo r  t i l t s  at 20® and 60® was comprised of mostly large  

individual units tha t were also s im ilar  in s ize , although few small 

units were also seen. For t i l t s  at 60® l e f t  side down tonic units were 

bigger than those tha t  f ire d  at 20® l e f t  side down (Fig 4 .1 8 ) .

4.3.F Nystagmus response.

Since nystagmus was not seen in the horizontal EOM fo r  t i l t s  in 

the vertica l plane, recordings during horizontal imposed body t i l t s  

were made to observe the nystagmus response.

The basic pattern in horizontal muscles is tha t there is ton ic  

activity (representing nystagmus slow phase) during ro ta tion  in one 

direction ( r ig h t  side leading fo r  r ig h t INT-R (Fig 4.19) but phasic 

bursts (representing nystagmic f l ic k s )  during ro ta tion  in the opposite
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direction ( r ig h t  side t r a i l in g  fo r  r ight INT-R in Fig 4 .1 9 ) .

In association with these a c t iv i t ie s ,  the v e r t ic a l  muscles show 

r e l a t i v e l y  to n ic  f i r i n g  fo r  both ro ta t io n s  (F ig  4 . 1 9 ) ,  which is  

interrupted at times when there is a nystagmus f l i c k  (4 .2 0 ) .
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4.4 DISCUSSION.

The myographic recordings were made from six EOM during imposed 

vertica l body t i l t s  at low (0.2Hz) and high frequency (0 .8Hz). The EOM 

a c t iv i ty  in the ro l l  and pitch planes has provided a pattern of the 

coordinated a c t iv i t y  of ve rt ic a l  and horizontal EOM fo r  counter­

ro l l in g  and torsional eye movements in the ro l l  and pitch planes.

During a side-down r o l l  t i l t  the SO and SR in the downward eye 

were co-contracted, while 10 and IR remained in ac t ive , which brought 

about an upward counter-ro ll  of the th is  eye. A reciprocal pattern of  

SO, SR, 10 & IR a c t iv a t io n  in the upward eye induced a downward 

counterroll in tha t eye. T i l t s  in the pitch plane induced torsional 

counter-ro lling  o f both eyes, which moved in the same d irection  as

each other. For a head up pitch the 10 and IR of both eyes were co-

ajivated while SO and SR in these two eyes remained s i le n t .  The head

down pitch has induced a reciprocal pattern of the EOM ac tiva tion , SO

and SR were co-contracted while 10 and IR were remained inactive . The 

observed pattern was d if fe re n t  from what was expected in the pitch  

plane, and co-contraction of the SR and IR was not observed to occur 

exactly fo r  t i l t s  at 90® plane. However in recordings in which the  

myographic a c t iv i t y  of these EOM was recorded at each 15® increment 

between the ro l l  and pitch planes i t  was consistently seen that phase 

shift in the myographic a c t iv i ty  of these EOM occurred a f te r  90® 

(120®, 135®, 150®, 165®, depending on the t i l t  frequency). To explain  

this unexpected pattern of v e rt ic a l  EOM activation  in the pitch plane, 

eye movements, and the re la t iv e  strength of EOM f i r in g  in th is  plane 

should be considered of primary s ignificance. As the study of eye 

movements in dogfish (section 3.4) has demonstrated that in the pitch  

plane gain of eye movements is always lower than that observed during 

the counter-rotation of eyes, so i t  could be that torsional movements
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are generally  small and can be achieved by differences in the re la t iv e  

strength of SO, SR, 10 and IR f i r in g  rather than th e ir  phase position .

The contraction of the horizontal EOM is known to provide fixed  

pivot points to s tab lize  the coordinated action of the ve rt ica l EOM 

(Boeder, 1961). In studies of the dogfish EOM, EXT-R and INT-R were 

recorded fo r  t i l t s  in the ro l l  and pitch planes and at intermediate  

angles. The EXT-R and INT-R share the same tra n s it io n  points, so that  

they d ischarge in antiphase to  each o th e r  in a l l  p lanes . The 

contraction of EXT-R accompanies the a c t iv i ty  of SO and SR while the  

INT-R f i r in g  has accompanied the a c t iv i ty  of 10 and IR. I t  therefore  

seems that th e i r  s ta b i l iz in g  function is part it ioned  and i f  we only 

think of t i l t  in a given plane each o f the horizontal muscles is  

activated a l te rn a t iv e ly  to s ta b i l iz e  the a c t iv i ty  of ve rt ica l EOM.

The induced v e rt ic a l  t i l t s  at d i f fe re n t  intermediate planes have 

reflected the nature of successive changes that occur in coupling of 

the VOR as the plane of t i l t  is changed. T i l t s  around the 45^ plane 

induced a tors ional counter-ro lling  in the l e f t  eye as well as in the  

right eye, which is a result of a t ra n s it io n  in the phase of l e f t  EOM 

as compared to that observed fo r  t i l t s  in the ro l l  plane. S im ilar  

shift  in the phase of right EOM was observed around 135**. Certain  

differences in the tran s it io n  angles in the myographic a c t iv i ty  of  

same EOM were observed fo r t i l t s  at 0.2Hz and 0.8Hz. The o ffs e t  of  

transition  a t the same planes of t i l t  while recording within the other 

half c i r c le  (180**-36Q**) and the tra n s it io n  occurring consistently at  

same planes o f t i l t  in a l l  experiments make i t  convincingly possible  

that these d i f fe re n c e s  were re a l  and not due to  experim enta l  

artefacts. For t i l t s  at 0.2Hz there was a general tendency fo r  the  

transition to occur a f te r  the tra n s it io n  at 0.8Hz had passed.

In the myographic a c t iv i ty  of v e r t ic a l  EOM (SOR & SOL, SOR & SRR)
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fo r  t i l t s  in the planes where peaks of th e ir  bursts were in phase, 

small differences were observed in the phase of two EOM f i r in g  at the 

in i t ia t io n  of th e i r  burst, which suggest subtle differences in the 

input from vestibu lar components to the myographic a c t iv i ty  of these 

EOM.

During the ramp-and-hold t i l t s ,  tonic discharge that was in most 

cases composed of units of one size was recorded in a l l  EOM. This 

tonic a c t iv i ty  was greatly  enhanced in a hold during bigger angular 

t i l t s .  EOM f ire d  strongly in t i l t s  towards th e ir  exc ita tory  sides.

There was a t o t a l  absence o f the nystagmus response in the  

vertica l as well as in the horizontal EOM during t i l t s  in the v e r t ic a l  

plane. However when a f ish  was subjected to the t i l t s  in horizontal  

plane nystagmus was observed in the vert ica l (SO, 10, SR, IR) as well 

as in the horizontal (EXT-R, INT-R) EOM. In a fre e ly  swimming dogfish 

fast f l ic k s  of eyes are made at the end of each turn to ensure the 

required compensation. This compensation is prim arily  achieved by the 

action of horizontal EOM but the presence of the nystagmus response in 

the vert ica l EOM at the same time might have a s ta b i l iz in g  a f fe c t  to  

the a c t iv i ty  o f the horizontal EOM.

The myographic a c t iv i t y  of EOM as a result of t i l t s  in the r o l l  

and pitch planes and at intermediate angles in the in tac t  f ish  has 

given an in s ig h t  to  the coord inated  a c t iv a t io n  o f EOM during  

compensatory eye re f lexes . The control of EOM a c t iv i ty  by ves tib u la r  

components has been studied by recording myographically from the EOM 

after ablating d i f fe re n t  combinations of the v e rt ic a l  sem icircular  

canals in the presence or absence of u tricu lus . These experiments are 

discussed in Chapter 5.
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Fig 4.1. The frame assembly designed to hold the animal body for 

the t i l t s  in the r o l l  and pitch planes and at the inter­

mediate angles.

(A) Side view.

(B) Plane of the t i l t  apparatus.

(C) Apparatus during a c irc u la r  t i l t .  Fish is shown during 

a rotation at 20^.
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Fig 4.2 The pattern of ac tiva tion  of the v e r t ic a l  EOM (SO, SR, 10 

& IR) in the r ig h t and l e f t  eyes is presented as phase 

histograms of the EOM a c t iv i t y  accumulated over ten cycles 

of sinusoidal body o s c il la t io n s  in the r o l l  plane.
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Fig 4.3 The pattern of ac tiva tion  of the horizontal EOM (EXT-R,

INT-R) in the r ig h t  and l e f t  eyes is presented as phase

histograms in the  r o l l  and p itc h  p lanes fo r  t i l t s  at

0.8Hz.
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Fig 4 .4  The v e rt ic a l EOM a c t iv ity  is  presented as phase histograms 

in the r o l l  and p itch  planes fo r  t i l t s  a t 0.8Hz.
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Fig 4 .5  The angular t i l t s  o f  the dogfish in the ro l l  and pitch 

planes and at interm ediate angles.
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The SOR and SOL a c t iv i t y  fo r  t i l t s  at 0.2Hz is illustrated 

by phase histograms at the planes of 0 ° ,  60°, 150°, 180°, 

240°, and 330°.
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F ig  4 .7 The SOR and SOL a c t iv i t y  is  presented as phase histograms 

at the planes of 0 ° ,  30°, 120°, 180°, 210°, 300° for t ilts  

at 0.8Hz.
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Fig 4.8 The phase histograms o f the  

presented fo r  t i l t s  a t 0.8Hz 

180® planes.

IOR and IOL a c t iv ity  are 

in  the 0 ° ,  45°, 90°, 135°,
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F ig  4 .9 The phase histograms o f the SRR and SRL a c t iv ity  are 

presented fo r  t i l t s  in  the 0®, 45®, 90®, 135®, 180® planes 

a t the frequency o f 0 .8H z.
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4

Fig 4.10 The myographic a c t iv i t y  of the IRL is shown fo r  t i l t s  at 

0.2Hz and 0.8Hz in the 0 ° ,  90°, 45°, 60° planes.
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F ig  4 . The myographic a c t iv i t y  o f the EXT-R (R) and INT-R (R) is 

shown fo r  frequency o f 0.2Hz in the t i l t  planes of 0®, 

45°, 90°, 120°, 180°.
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F ig  4 . The a c t iv i ty  of EXT-R and INT-R in the r ig h t and le f t  eyes 

is i l lu s t ra te d  by phase histograms fo r  t i l t s  at 0.8Hz in 

the 0 ° .  60°, 90°, 150° and 180° planes.
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F ig  4 . The c i rc u la r  mean values derived from the phase histograms 

of the EOM a c t iv i t y  are plotted against the planes of t i l t  

between 0® and 360® fo r  t i l t s  at 0.2Hz.
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F ig  4 . The c i rc u la r  mean values derived from the phase histograms 

of EOM a c t iv i t y  are p lotted against the planes of t i l t  

between 0^ and 360^ for t i l t s  at 0.8Hz.



F ig  4 . The integrated a c t iv i t y  o f  the SOR, SOL and SOR, SRR is 

averaged over ten cycles fo r  t i l t s  at 0.2Hz and 0.8Hz in 

the 0° and 270^ planes.
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F ig  4 . The integrated a c t iv i t y  of the SOR, SOL and the SRR, SRL 

is shown fo r  t i l t s  in the pitch plane at frequency of 

0.2Hz and 0.8Hz.



Fig 4 .17  The myographic a c t iv ity  o f SO in  the r ig h t  and the le ft  eyes 

during r ig h t side down t i l t  a t 0®, 15®, 30®, 45®, 60® and 75°,





F ig  4 . The tonic a c t iv i ty  of SO in the l e f t  eye during a le f t  side 

down t i l t  at 0®, 20® and 60® l e f t  side down and 40® left side 

up t i l t .
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Fig 4.19 The myographic a c t iv i t y  of INT-R, IR, SR, and SO in 

the r ig h t  eye during an imposed horizontal body t i l t  

at approximately 0.2Hz.



4

Fig 4.20 The myographic a c t iv i ty  of INT-R and SR in the right eye

during the slow phase of nystagmus response in a horizontal 

ro ta tio n .
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Chapter 5 . THE CONTROL OF EOM RESPONSE..
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5.1 INTRODUCTION.

The compensatory vert ica l as well as horizontal eye movements are 

induced by the vestibu lar apparatus and the a c t iv i ty  is carried by 

the VOR to the EOM.

In one of the e a r l ie s t  experiments Lee (1894, 1895) found that in 

f ish  mechanical stimulation of individual ampullae evoked two kinds of 

re f le x  response of the eyes depending on the in tens ity  of stimulus. 

The two reflexes corresponded to responses to rotations in opposite 

directions in the plane of semicircular canal concerned. Maxwell 

(1920) observed only one kind o f r e f le x  response from each 

semicircular canal when the ampulla was d ire c t ly  stimulated or a f te r  

u n ila te ra l  l iga turing  of an ampullae, and the fish being rotated in 

opposite d irections in the appropriate plane. Also in amphibians 

McNally & Ta it  (1925, 1933) have established that the individual 

semicircular canal responds in one d irection  only. Lowenstein and Sand 

(1936) recorded the a c t iv i ty  of the horizontal ampulla of f ish  and 

concluded th a t  the the two opposite  h o r iz o n ta l  ampullae work 

antagonis tica lly  and that the re f le x  responses of normal f ish  must 

depend upon the balance of the a ffe ren t discharges from l e f t  and r ig h t  

vestibu lar apparatus. The results of these experiments provide an 

incomplete view of the reflexes of semicircular canals and nothing has 

been reported about the change in myographic a c t iv i ty  of EOM during 

imposed head and body t i l t s  of the in tact animal and following the 

l iga tur ing  of e ith e r  a l l ,  or d i f fe re n t  combinations of semicircular  

canals.

The e a r l ie r  experiments on the re f le x  responses of semicircular  

canals have also revealed the d ifference between the mode of function  

of the h o r iz o n ta l  and v e r t ic a l  ca n a ls .  In the h o r iz o n ta l  canals
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exc ita t ion  occurs when the ampulla follows the canal during angular 

displacement, the stimulus being an ampullo-petal in e r t ia l  movement of 

the endolymph. In the v e r t ic a l  canals exc ita tion  occurs by angular 

displacements in which the ampulla is leading, the stimulus being 

ampullo-fugal in e r t ia l  movement of endolymph (Ross, 1936).

Some other aspects of the VOR which have been determined in f ish  

include the investigation of the VOR in sea lamprey by Carl et a l . 

(1 9 7 6 ) .  T h e ir  experim ents have demonstrated th a t  mechanical 

stimulation of the vestibu lar system or e le c tr ic a l  stim ulation of the 

vestibu lar nerves produced stereotyped conjugate eye movements and 

appropriate e le c t r ic a l  a c t iv i t ie s  in individual EOM. They have also 

observed that no in h ib it io n  of discharges in the motor nerves was 

observed during stim ulation of opposing reflexes. They concluded that  

these p rim it ive  reflexes of the lamprey probably correspond to the 

simple excitatory  pathways from single ampulla to individual EOM of 

higher vertebrates.

The detailed analysis of the function of sem icircular canals was 

made by Lowenstein & Sand (1940), and they have investigated the 

a c t iv i ty  of indiv idual semicircular canals in a preparation of the 

isolated labyrin th . The e ffec ts  of t i l t s  about v e r t ic a l ,  long itud ina l,  

and transverse axes were determined. They concluded tha t horizontal 

canals respond to ro ta tion  about the vert ica l primary axis , but are 

unaffected by rotations about the horizontal primary axes. In contrast  

to th is  they found that the anterior and posterior v e r t ic a l  canals 

respond to rotations about a l l  three primary axes. Lowenstein & Sand 

(1940) have predicted the combined reflexes of a l l  sem icircular canals 

during rotation about the three primary axes: they suggested that fo r  

t i l t s  in the v e r t ic a l  ro l l  plane they are la te r a l ly  synergic, whereas 

for t i l t s  at the  p itc h  p lane they were t ra n s v e rs e ly  s yn erg ic .



Lowenstein & Sand (1940) also predicted the re f lex  effects  onto the 

EOM evoked by the integrated action of the semicircular canals during 

induced body t i l t s  in vert ica l and horizontal planes, suggesting a 

possible input to each EOM. Although th e ir  results are consistent with 

the pattern of semicircular canal activation  and a possible control of 

EOM responses by each can a l,  these p re d ic t io n s  have never been 

experimentally tested by recording myographically from EOM.

In mammals responses of oculomotor units to stimulation of single  

semicircular canals were studied in guinae pigs by Manni and Desole 

(1964). Their experiments have established that given units of the 

ocuTomotor nuclei were involved in three types of nystagmus brought 

about by separate stimulation of the three semicircular canals. These 

studies have established that there is a s t r ic t  re lationship between a 

given semicircular canal and a p a r t ic u la r  pa ir  of EOM. Szentagothi 

(1964) has performed experiments on isolated semicircular canals of 

dog. He stimulated the cris tae  by inducing a r t i f i c i a l  endolymphatic 

currents and concluded that there was a localized projection between

( i )  the posterior ampulla and the ip s i la te ra l  SO and contra la tera l IR

( i i )  the an te r io r  ampulla and the ip s i la te ra l  SR and contra latera l 10

( i i i )  the horizontal ampulla and the ip s i la te ra l  INT-R and contra­

la te ra l  EXT-R. These experiments have confirmed the results obtained 

by F lurr (1959) in cat a f te r  stimulating the ampullar nerves. Cohen, 

Suzuki, Shazner & Bender (1964) have stimulated the ampullar nerves 

in monkeys and obtained a s im ila r  pattern of EOM ac tiva t ion . Their  

results were d i f fe re n t  from the above experiments in the respect that  

they have a lso  reported  a weaker c o n tra c t io n  o f  two o ther EOM. 

Stimulation of the l e f t  an terior canal was not only accompanied by a 

strong contraction of the l e f t  SR and r ig h t 10 but also by a weaker 

contraction of l e f t  SO and r ig h t SR. In these experiments, although
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myographic activation  of d i f fe re n t  EOM as a resu lt of mechanical 

stimulation of semicircular canals has been described, i t  s t i l l  needs 

to  be determined how these responses match w ith  the myographic 

a c t i v i t y  o f  EOM as a r e s u l t  of p h y s io lo g ic a l  s t im u la t io n  o f  

semicircular canals, and how th is  response a lte rs  following the 

elim ination of one or both ip s i la te ra l  and contra latera l canals.

The u t r ic le  is generally considered to be the receptor system 

monitoring position in space by having a discharge a c t iv i t y ,  the 

frequency of which is a function of the angle of deviation of head 

from i ts  normal position . The s ta t ic  and dynamic behaviour of the 

u t r ic le  has been extensively studied in mammals, amphibians and fish  

(Lowenstein & Roberts, 1949, 1950; Vidal et a l . ,  1971; Lowenstein & 

Saunders, 1975)

Lowenstein and Roberts (1949) have recorded the a c t iv i ty  of the 

u t r ic le  in the ray. They have observed that the response of u t r ic u la r  

units to a change of angular head position around a horizontal axis 

decayed within 30-60 seconds a f te r  the end of movement. Recording from 

the vestibu lar nerve of cat, Vidal et al (1971) found the u t r ic le

receptors to exh ib it  both s ta t ic  and dynamic charac te r is t ics , the

re la t iv e  proportion of which varied from c e ll  to c e l l .

In dogfish the u t r ic le  input to EOM responses by physiological 

stimulation in the absence of semicircular canals s t i l l  needs to be 

determined.

5.1.B Aims o f the pro jec t.

Although semicircular canal reflexes in terms of th e i r  input to  

myographic activation  of EOM have been predicted by Lowenstein and

Sand (1940), these predictions were not experimentally tested and 

proved in the f is h .  In the present project the recordings of EOM in

!
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in ta c t  f is h  have been compared w ith  those determined a f t e r  the  

ablation of d i f fe re n t  canals to investigate  how the actual pattern of 

EOM f i r in g  corresponds to the model proposed by Lowenstein.

Very l i t t l e  is known about the u t r ic le  input to EOM, the nature 

of these reflexes or how they a f fe c t  the myographic a c t iv i ty  of EOM 

a f te r  e lim inating  the semicircular canals. In th is  project control 

experim ents were performed a t  d i f f e r e n t  frequenc ies  of t i l t  to  

determine i f  canal and u t r ic le  input could be segregated by th is  

f a c t o r .  The EOM responses at these d i f f e r e n t  frequencies were 

determined in the in tact fish and following the elim ination of e i th e r  

d i f fe re n t  combinations of v e r t ic a l  canals or a l l  four canals. Also the 

change in responses of EOM was determined by u n ila te ra l and b i la te ra l  

ablation of the u tr ic u le .
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5.2 MATERIALS AND METHODS.

Experiments were performed on 12 dog fish . Under anaesthesia  

(MS222) each dogfish was decerebrated and pithed, and the body of  

animal was then held in a specia lly  designed frame assembly (see 

section 3 .2 ) .  While operating, the g i l l s  of deeply anaesthetised fish  

were kept moist. In preparation fo r  the surgical procedures, the 

semicircular canals were exposed by s lic ing  through the cartilaginous  

roof of the auditory capsule. The electrodes were than inserted in the 

EOM to  record i t s  myographic response (sec t io n  3 . 2 ) .  A f te r  the  

operation the f ish  was l e f t  in a sea water tank for?few hours to  

recover completely. A fte r  recovery, the f i r s t  recordings were made 

with the ves tibu lar system exposed but in ta c t.  The animal was t i l t e d  

in the ro l l  (0^) and pitch (90^) planes and the tra n s it io n  in the 

response of EOM was determined by t i l t i n g  the animal at each 45^ in 

between ro l l  and pitch (see section 4.2 for de ta ils  of the especially  

designed frame assembly and fo r  the description of t i l t  planes). In a 

s e r ie s  o f p i l o t  experim ents the s e m ic irc u la r  canals were e i t h e r  

ligatured by tying a thread across the canals to block the f lu id  

movements in the canals, or by ablating the canals by removing the 

exposed segment. Since no differences in the myographic responses of 

EOM was observed in the above two procedures, the l a t t e r  was adapted

as a standard procedure since i t  was more rapid and simple to execute.

D iffe ren t combinations of canals were ablated in each experiment. To 

id en t ify  the differences between the canal and u t r ic le  input a l l  

animals were t i l t e d  at both low (0.2Hz) and high frequency (0.8Hz) 

with an amplitude of +25^. In these experiments a f te r  e lim inating the 

four ve rt ic a l  canals, u n i la te ra l  and b i la te ra l  ablation of the u t ic le

was performed to check the u t r ic u la r  responses.



5.3 RESULTS.

5 .3 .A SO response in in ta c t f is h ,  canals exposed.

Before the  a b la t io n  o f  s e m ic irc u la r  canals  and u t r i c u l i ,  

recordings were made in the in tac t  animal with exposed semicircular  

canals. The results  of these experiments have established that the EOM 

response was not a f fe c te d  by th is  op era tio n  and the myographic 

a c t iv i ty  of EOM was s im ila r  in i ts  strength and phase position to that  

of the unoperated f ish  as described in the Chapter 4 (Fig 5 .1 .A, B ) .

The myographic a c t iv i ty  of SO in the r ig h t and l e f t  eyes in the 

roH  and pitch planes have been discussed in section 4 .3 .A and 4 .3 .B .  

The tran s it io n  in the response of the r ight and l e f t  SO was determined 

by t i l t i n g  the animal in intermediate planes (see section 4 .3 .C . I )  

(Fig 5 .1 .A .B ).

A co n tro l experiment was designed to determ ine the r e l a t i v e  

contribution of u t r ic u la r  and semicircular canal inputs to the VOR of 

the EOM at d i f fe re n t  stimulus frequencies. This was achieved by a 

series of operations to ablate the canals on the l e f t  and r ig h t sides. 

In th is  experiment i n i t i a l l y  the animal was t i l t e d  in the ro l l  plane 

(0°) for a range of frequencies, 0.2Hz, 0.4Hz, 0.6Hz, 0.8Hz, while  

myographic recordings were made in the SO of the r ig h t  and l e f t  eyes 

(Fig 5 .2 ) .

In the f i r s t  operation the two ip s i la te ra l  canals of l e f t  side 

were ablated. One hour a f te r  the operation recordings were made at a 

series of stimulus frequencies. The l e f t  SO exhibited no change in i ts  

phase position and in the strength of myographic discharge fo r  t i l t s  

at and below 0.2Hz, but at frequencies greater than 0.2Hz no burst was 

e l ic i te d  in th is  muscle during a l e f t  side down t i l t .  The r ig h t SO was 

unaffected  by th is  opera tion  and discharged s tro n g ly  a t  a l l
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frequencies during a r ig h t side down t i l t  (Fig 5 .3 ) .

In the second operation the two ipsi la te ra l  canals of the r igh t  

side were ablated and as before the myographic a c t iv i ty  of r ig h t and 

l e f t  SO was recorded 60 minutes a f te r  the operation. Both r ig h t and 

l e f t  SO were activated with a strong myographic discharge (as in the 

in ta c t  f ish )  fo r  t i l t s  at 0.2Hz, but at frequencies greater than 0.2Hz 

no myographic response was e l ic i te d  by the r ig h t and l e f t  SO during 

r ig h t  side down and l e f t  side down t i l t s  (Fig 5 .4 ) .

The control experiment has established that at a frequency of 

0.2Hz (and below), the myographic response of the EOM was not affected  

by ablation of the ve rt ica l sem icircular canals, but at frequencies 

greater than 0.2Hz no EMG were e l ic i t e d  a f te r  the ab lation, which 

suggests an ac tiva tion  of two d i f fe re n t  parts of the vestibu lar system 

a t low and high frequency t i l t s .  Based on the re s u lts  of t h is  

experiment, recordings were made only at frequency of 0.2Hz and 0.8Hz 

in a l l  other experiments.

5 .3 .B . Single canal ab lation .

In a s e r ie s  of experiments only one s e m ic irc u la r  canal was 

ablated leaving three vert ica l sem icircular canals, the horizontal 

canals and the u t r ic u l i  in ta c t .  In d i f fe re n t  experiments each o f the 

four v e r t ic a l  canals was in d iv id u a lly  ablated.

5 .3 .B .a  Anterior canal ablated.

A fte r  th is  operation, in which e ith e r  the l e f t  an terio r or r ig h t  

anter io r  canal was ablated, fo r  t i l t s  at 0.2Hz strong myographic 

discharges were e l ic i te d  at each angle, whereas fo r  t i l t s  at 0.8Hz 

a comparatively weak response was e l ic i t e d  by the r ig h t and l e f t  SO at 

the r o l l  p lane (0^ , 180^) and the  maximum number of spikes was
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e l ic i t e d  only at the pitch plane (90®, 270®) (Fig 5 .5 .A, 5 . 6 . A). 

A fte r  ablation of the l e f t  an te r io r  canal no response was e l ic i t e d  by 

th e  l e f t  SO a t  th e  an g le s  o f  120®-145® ( t r a n s i t i o n  in  th e  

co n tra la tera l SO) Fig 5 .5 .A.

T i l t in g  at 0.8Hz a f te r  the ablation of r ig h t an terio r canal, the 

l e f t  SO discharged with a comparatively strong myographic a c t iv i t y  in 

contrast to the weak myographic discharge at the tra n s it io n  angles 

(30®, 45®) in the in tact f is h .  The r ig h t SO f ire d  weakly at th is  angle 

of t i l t  and only a few spikes were e l ic i te d  at 15®-45® (before and 

a f t e r  the  t r a n s i t i o n ) .  At the t r a n s i t io n  angle o f the r ig h t  SO 

(120®-145®) the l e f t  SO f i r e d  s t ro n g ly ,  but weak myographic  

discharges were e l ic i te d  by the ip s i la te ra l  SO at these angles of the 

t i l t  (Fig 5 .6 .A ) .

For t i l t s  at 0.2Hz and 0.8Hz there was no change in the phase of 

the f i r i n g  o f  e i th e r  SO a t  the r o l l  and p itc h  p lanes , and the  

t ra n s it io n  in the SO f i r in g  occurred at the same angles as in the 

in ta c t  f ish  (Fig 5.5 .B , 5 .6 .B ) .

5 .3 .B .b  Posterior canal ab la tion .

By ablation of a single posterior canal leaving two an te r io r  

canals and one posterior canal in ta c t ,  strong myographic a c t iv i t y  was 

e l ic i te d  at each angle fo r the t i l t s  at 0.2Hz. For the t i l t s  at 0.8Hz 

(in contrast to the ablation of an terio r canal, section 5 .3 .B .a )  the 

maximum number of spikes was only e l ic i te d  at the intermediate angles. 

A weaker myographic discharge was observed by the two EOM at the r o l l  

and pitch planes (Fig 5 .7 .A, 5 . 8 . A).

A fte r  the ablation of the r ig h t posterior canal the ip s i la te r a l  

SO to the ablated side discharged strongly at 30® (tra n s it io n  in the 

contra latera l SO). The myographic response of the con tra la tera l SO to
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the ablated side at th is  angle was comprised of a strong discharge on 

both sides o f the s tim u lus  curve . At 120^ ( t  ran si t i  on in the  

ipsi la te ra l  SO to the ablated side ) the two EOM f ire d  strongly (in  

contrast to the weak f i r in g  of the r igh t SO at t ra n s it io n  in the 

in tact f is h ) .  S im ilar e ffe c ts  were recorded in the ip s i la te ra l  SO to  

the ablated side and co n tra la tera l SO to the ablated side a f te r  the 

ablation of l e f t  posterior canal (Fig 5 .7 .A, 5 .8 .A).

After the operation the phase of r igh t and l e f t  SO f i r in g  in the 

ro l l  and pitch planes, and the angles at which the t ra n s it io n  occurred 

remained the same as in the in tact fish (Fig 5 .7 .B , 5 .8 .B ) .

5 .3 .C  Two v e rt ic a l sem icircu lar canals ablated.

In a series of experiments a pa ir  of semicircular canals was 

ablated in d i f fe re n t  combinations leaving two v e r t ic a l  canals and the 

u t r i c u l i  i n t a c t .  The a b la t io n  was preceded by the myographic  

recordings of the EOM. The combinations of the canals ablated during 

these experiments were:

A. Two an ter io r  v e r t ic a l  canals ablated.

B. Two posterior canals ablated.

C. The diagonal p a ir  of canals ablated.

D. The ip s i la te ra l  canals ablated.

5 .3 .C .a  Two a n te r io r  canals ab lated , SO.

Results were obta ined  f o r  the SO in the two eyes. A f t e r  the

ablation fo r  t i l t s  at 0.2Hz as in the in tact f ish  strong myographic

discharges were e l ic i t e d  at a l l  the planes. For t i l t s  at 0.8Hz an 

overall weaker myographic a c t iv i t y  was e l ic i te d  at each angle as 

compared to the in ta c t  condition. Strong a c t iv i ty  was e l ic i t e d  by the  

two SO at the r o l l  plane (0 ° ,  180°). In the r ig h t SO a double burst
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was e l ic i te d  at the ro l l  plane and a strong second burst was also 

e l ic i te d  around i ts  t ran s it io n  angles. The two SO f ire d  strongly at 

the pitch plane (90^, 270^). At the intermediate planes the l e f t  SO 

discharged strongly around the trans ition  angles of the r ig h t  SO (Fig 

5.9.A.B)

5 .3 .C .b  Two a n te rio r canals ablated, 10.

Results  were obtained fo r  the r ig h t  and l e f t  10 a f t e r  the  

ablation of the two an terio r canals. A fter the ablation fo r  t i l t s  at 

low and high frequencies the trans ition  in the two 10 occurred at the 

same planes as in the in tact f is h .  For t i l t s  at 0.8Hz weak myographic 

a c t iv i ty  was e l ic i t e d  in the two 10 at the ro l l  and pitch planes.

There was a to ta l  in h ib it io n  of the myographic a c t iv i ty  at the null 

points of one 10, while the other discharged strongly at these planes 

of the t i l t  (Fig 5 .10 .A .B ).

5.3.C .C  Two p o s te rio r canals ablated, SO.

Results were obtained fo r  the r ight and the l e f t  SO a f te r  the

ablation of the posterior vert ica l canals. For low frequency t i l t s  the

strength of the response and the planes of the t i l t s  at which the

tran s it io n  occurred were the same as in the in ta c t  f is h .  For t i l t s  at 

0.8Hz the planes at which phase sh ifts  occurred were not affected by 

the ab la tion , although an overall weaker a c t iv i t y  was e l ic i t e d  in the 

SO. In the two SO stronger discharges were only observed at the ro l l  

and the pitch planes. As in section 5 .3 .C .a  a f te r  the ablation a to ta l  

i n h ib i t io n  o f  the myographic discharges was recorded around the  

t ran s it io n  angles of one SO, while the other discharged strongly at  

these angles of the t i l t  (Fig 5 .11.A .B).
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5 .3 .C .d  Diagonal p a ir  ablated, SO.

Results were obtained fo r  the l e f t  and the r ig h t SO a f te r  the 

ablation of the l e f t  an terio r and r igh t posterior canals. For the 

t i l t s  at 0.8Hz few spikes were e l ic i te d  in the l e f t  SO at the r o l l  

plane (0^, 180^). For the t i l t s  at the pitch plane strong myographic 

discharges were e l ic i te d  in the l e f t  SO, i ts  myographic a c t iv i ty  being 

t o ta l ly  inh ib ited  around the tra n s it io n  angles. At the tra n s it io n  

angles of the r ig h t SO weak a c t iv i ty  was e l ic i te d  in the l e f t  SO. For 

t i l t s  at 0.8Hz a weaker response was e l ic i te d  in the r ight SO at the

ro l l  and pitch planes. There was no a c t iv i ty  in the r ight SO at i ts

tra n s it io n  planes, while at the null points of the l e f t  SO the maximum 

number spikes was e l ic i te d  in the r ig h t  SO (Fig 5 .12 .A .B).

5 .3 .C .e  Ip s i la te r a l  p a ir  ab lated, SO.

A fte r  the ablation of the v e rt ic a l  canals of the l e f t  side, fo r  

t i l t s  at 0.2Hz strong myographic a c t iv i ty  was e l ic i te d  in the r ig h t

and l e f t  SO and the trans ition  in the response of the two SO occurred

at the same planes as in the in ta c t  f is h .

For t i l t s  at 0.8Hz in the r ig h t SO the planes at which tra n s it io n  

occurred remained same as in the in ta c t  f i s h .  Strong myographic  

discharges were recorded in the r ig h t SO at a l l  the t i l t  planes. At 

the in te rm e d ia te  planes the r ig h t  SO discharged s tro n g ly  a t  i t s  

t rans ition  angles (Fig 5 .1 3 .A).

For t i l t s  at 0.8Hz weak a c t iv i t y  was e l ic i te d  in the l e f t  SO at  

a l l  p lan es . A ra th e r  unusual p a t te rn  o f myographic a c t i v i t y  was 

recorded in the l e f t  SO fo r  t i l t s  at the ro l l  plane: instead of f i r in g  

at the phase of 0.12 (as at low frequency t i l t s ,  and as in the in ta c t  

fish) i t  now f ire d  at the phase of 0.63 (in phase with the r ig h t  SO). 

The two SO stayed in phase at each plane of the t i l t  between 0^-360^
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and the tra n s it io n  in the phase of l e f t  SO now occurred at the same 

angle as that of the r ig h t SO (Fig 5 .13 .B ).

5 .3 .D . S ingle v e rtic a l canal in ta c t .

A fte r  the ablation of the three v e r t ic a l  semicircular canals only 

one an te r io r  or posterior canal was l e f t  in tac t  and recordings were 

made in the SO ip s i la te ra l  and SO con tra la tera l to the in ta c t  side.

5 .3 .D .a .  Single anterior canal in ta c t .  SO.

With only one an terio r canal in tac t  fo r t i l t s  at 0.2Hz which 

ac tiva te  the u t r ic u la r  reflexes (section 5 .3 .A) strong myographic 

discharges were e l ic i te d  at each angle and the phase of the two SO 

f i r in g  at the ro l l  and pitch planes remained the same as in the in ta c t  

f i s h .  However fo r  t i l t s  a t  0.8Hz a g e n e ra l ly  weaker myographic  

response was e l ic i te d  in the SO of both sides.

Results fo r  both in tac t r ig h t an ter io r  and in tact l e f t  an te r io r  

canals were very s im ila r  (Fig 5.14.A.B & 5.15.A .B ). Very few spikes 

were e l ic i t e d  by e ith e r  SO at the ro l l  plane. In the SO ip s i la te r a l  to  

the in ta c t  side no response was e l ic i te d  at the pitch planes (90^, 

270^) and at the angles in between 90^-180^, w h ile  in the  SO 

con tra la tera l to the in tac t side the maximum number of spikes was 

e l ic i t e d  at the pitch plane and strong a c t iv i ty  was recorded fo r  the 

t i l t s  at 135^-180®. At the null points of the SO contra la tera l to the 

in tac t  side strong a c t iv i ty  was e l ic i te d  by the SO ip s i la te ra l  to  the  

in tac t  side (Fig 5.14.A.B & 5 .15 .A .B ).

5 .3 .D .b . Single an ter io r  canal in ta c t ,  10.

R esu lts  were obtained from the  r ig h t  10 w ith  only th e  r ig h t  

a n t e r io r  canal i n t a c t .  For t i l t s  a t  0 .8Hz very weak myographic
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discharges were e l ic i t e d  at the ro l l  plane in th is  ip s i la te ra l  10 and 

a comparatively stronger response was e l ic i te d  at the pitch plane. A 

double burst and strong myographic discharges was e l ic i te d  at the 

planes of 45® and 225®. Near the trans ition  angle of the ip s i la te ra l  

10 (135®-180®) no response was recorded and i t  proved impossible to

precisely determine the angle at which the tra n s it io n  occurred (Fig 

5.16.A.B)

5.3 .D .C . Single an ter io r  canal in ta c t ,  SR.

Results were ob ta ined  from the r ig h t  SR w ith  only the r ig h t  

an ter io r  canal in ta c t .  For t i l t s  at 0.8Hz weak myographic a c t iv i ty  was 

e l ic i te d  at the ro l l  and pitch planes and no myographic discharges 

were recorded between the angles of 90®-180®. A comparatively stronger 

response was e l ic i te d  at the angles of 45®-60® (Fig 5 .17 .A .B ).

5 .3 .D .d . Posterior canal in ta c t ,  SO.

Results were obtained in the SO ip s i la te ra l  and con tra la tera l to  

the single in tac t posterior semicircular canal. For t i l t s  at 0.8Hz 

there was no change in the phase (compared with the in ta c t  f is h )  of 

e ith e r  SO at the ro l l  and pitch planes. A weaker myographic a c t iv i t y  

was recorded in both SO at the ro l l  and pitch planes (Fig 5 .18 .A .B ).

I t  was not possible to determine the tran s it io n  angles precisely  

since near and at the null points of the two EOM no response was 

e l ic i t e d .  At the null points of the ip s i la te ra l  SO a comparatively 

better response was e l ic i t e d  by the contralateral SO (Fig 5 .18 .A .B ).

5 .3 .D .e . Posterior canal in ta c t ,  SR.

For t i l t s  at 0.8Hz w ith  r ig h t  p o s te r io r  canal in t a c t  weak 

myographic discharges were e l ic i t e d  in the r ig h t ( ip s i la te r a l  SO) at
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the ro l l  and pitch planes and a comparatively strong response was

e l ic i te d  at the angles of 45^-60^ (Fig 5 .19 .A .B ).

5 .3 .D . f .  Single posterior canal in ta c t ,  10.

With a single in ta c t  posterior canal and fo r  t i l t s  at 0.8Hz, weak 

myographic discharges were e l ic i te d  in the ip s i la te r a l  10 at the ro l l  

and pitch planes. In the contralateral 10 a weak myographic a c t iv i ty  

was e l ic i te d  fo r  t i l t s  at the ro l l  plane, but a comparatively strong 

response was recorded at the p itc h  ang les . Strong myographic

discharges were e l ic i t e d  in the contra la tera l 10 around the null 

points of the ip s i la te r a l  10 (Fig 5 .20.A .B ).

5 .3 .E . Four v e r t ic a l canals ablated, u t r ic u li  in ta c t , SO, 10, SR.

A f te r  the  a b la t io n  o f  the four v e r t ic a l  c a n a ls ,  w ith  the  

horizontal canal and the u t r ic u l i  in ta c t ,  recordings were made at

0.2Hz and 0.8Hz. At 0.2Hz myographic discharges were e l ic i t e d  at each

angle and the tra n s it io n  in the f i r in g  of EOM was observed at the

expected angles (section 3 .3 .C ) .  For t i l t s  at 0.8Hz e i th e r  no response 

was e l ic i te d  in the EOM recorded during these experiments or in some 

cases a very weak response was indicated at th is  frequency by the 

f i r in g  of a few units (Fig 5 .21 ) .

5 .3 .F . S ingle u tric u lu s  in ta c t, SO.

The myographic recordings in the SO of the r ig h t  and l e f t  eyes 

were made a f te r  ab lating four vert ica l semicircular canals and the

utriculus of one side. In these experiments myographic response in the

EOM was only observed fo r  the t i l t s  at 0.2Hz and only a few spikes 

were e l ic i te d  in the SO of both sides in the ro l l  and pitch plane. In

the pitch plane weak a c t iv i ty  was e l ic i te d  in the ip s i la te r a l  SO.
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while in the contra latera l SO a comparatively strong response was 

e l ic i t e d .  A strong response was e l ic i t e d  in the contra latera l SO at 

the tra n s it io n  angles of the ip s i la te r a l  SO , while at the angles 

where tra n s it io n  in the con tra la tera l SO was expected to occur i ts  

myographic a c t iv i ty  was t o ta l ly  inh ib ited  (Fig 5 .22 .A .B ).

5 .3 .G . U n ila tera l ablation of the u tr icu lus  and vert ica l canals.

A fte r  the un ila te ra l ablation of the l e f t  utricu lus and v e r t ic a l

semicircular canals recordings were made in only the r ig h t and l e f t  

SO. For t i l t s  at 0.2Hz weak myographic discharges were e l ic i te d  in the 

co n tra la tera l SO at the ro l l  and pitch planes. In contrast to th is ,  

very strong myographic a c t iv i ty  was recorded in the ip s i la te ra l  SO at 

th is  plane of the t i l t .  The myographic a c t iv i t y  of the con tra la tera l  

SO was t o t a l l y  inhib ited around i ts  t ra n s it io n  angles while a maximum 

number of spikes was e l ic i te d  in the ip s i la te r a l  SO at these planes of 

the t i l t .  At the null points of the ip s i la te r a l  SO a weak myographic 

response was e l ic i te d  in the con tra la tera l SO (Fig 5 .23.A .B ).

5.3 .H  Two u t r ic u li  ablated.

A fte r  ablating the four v e r t ic a l  canals and the two u t r ic u l i  

recordings were made for the t i l t s  at 0.2Hz and 0.8Hz. There was a 

to ta l  absence of the myographic response at a l l  angles of the t i l t s  

(Fig 5 .2 4 ) .

5 .3 .1  Modelling o f the sem icircu lar canal system.

A model of the vestibu lar system was constructed by using the 

existing knowledge about the s e n s it iv i ty  of the h a ir  ce ll  receptors to  

f lu id  flow. The following assumptions were made in constructing the  

model.

105



1. A l l  receptors  in the macula o f  a canal respond to  the same 

d irection  of f lu id  flow.

2. Due to th e ir  spontaneous a c t iv i t y ,  macula receptors are capable of 

signa lling  both d irections of f lu id  flow by an increase or reduction 

in th e i r  f i r in g  leve l.

3 . As demonstrated by the ablation experiments there is a drive from a 

canal to the contra latera l EOM which incorporates a sign inversion. 

The strength of th is  drive is less than that to the ip s i la te ra l  EOM.

4. Considering t i l t s  in d if fe re n t  v e rt ic a l  planes, the hydromechanics 

of a closed canal d ic ta te  that the force acting on the cupula varies  

with the sine of the angle.

Based on these assumptions a computer model was constructed of 

the e f fe c ts  of the s e m ic irc u la r  canal system on the f i r i n g  o f  a 

p a r t ic u la r  muscle in one eye (the SO of r ig h t eye was se lected). For 

one h a lf  cycle of the sinusoidal t i l t  (side down which causes ampullo 

-fugal in e r t ia l  movement of the f lu id  flow in a canal, which in turn  

excites the macula receptors) the strength of an input from a canal 

and i ts  anatomical plane were input variables. A rb itra ry  values of 

strength of 1 and 0 .5  were assigned fo r the canals ip s i la te ra l  and 

con tra lte ra l to the selected EOM respective ly , and a value of 0 was 

entered fo r  each ablated canal. The planes of canals were designated 

45^ fo r  r ig h t an terio r canal , 135^, r ig h t posterior canal, 225^ fo r  

l e f t  posterior canal and 315^ fo r  l e f t  an terio r canal, using the long 

axis of the body as a reference.

The computer programme calculated the strength of input from each 

functional canal for a l l  possible v e r t ic a l  planes of t i l t  (every 2® 

round the c i r c le ) .  In addition, the algebric sum of these inputs was 

calculated. Data are presented as plots (Fig 5.25 & 5.26) in which 

positive values represent stimulatory drive from the sem icircular
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canal system to produce contraction of the selected EOM fo r  one ha lf  

cycle of the t i l t .  Negative values represent the same stimulatory  

drive for the other h a l f  cycle of t i l t ,  and thus the point at which

the curve crosses the orig in  is equivalent to the point of phase

reversal of the EOM response with changing planes of t i l t .  Thus the

curve produced by the model represents both the amplitude and phase of 

the VOR stimulus.

5 .3 .J Myographic a c t iv ity  to  s ta t ic  t i l t s  in the EOM a f te r  ab lating  

four v e rtic a l canals and the r ig h t u tricu lu s .

The myographic a c t i v i t y  in the r ig h t  SO to s t a t i c  t i l t s  was

recorded a f t e r  a b la t in g  a l l  fo u r  v e r t ic a l  canals and the r ig h t

u tr icu lus . A fter ab lation no response was seen in the EOM u n ti l  the 

60^ r igh t side down and head down t i l t  was passed. For angular t i l t s  

greater than 60^ strong myographic discharges were e l ic i t e d .  During a 

side down t i l t  only individual units of one size was f ire d  and the 

maximum a c t iv i ty  was e l ic i te d  at 90^ r igh t side down (Fig 5 .2 7 ) .

During t i l t s  in the pitch plane a strong myographic response was

e l i c i t e d  fo r  90^ head down t i l t .  F ir in g  in the p i tc h  p lane was 

d if fe re n t  from that observed during ro l l  t i l t s  in respect that units  

of two sizes were seen and no single units were seen in th is  recording 

(Fig 5 .28 ) .
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5.4 DISCUSSION.

Results obtained in Chapter 3 (section 3.4) have demonstrated 

differences in the operation of ves tibu lar  system at low (0.2Hz) and 

high (0.8Hz) frequency t i l t s .  The same frequencies were selected to  

stimulate the animal a f te r  ablating d i f fe re n t  combinations of the 

v ert ic a l  semicircular canals and the u tr icu lu s . Further confirmation  

of the a lte rn a te  dominant activation  of the utricu lus and semicircular  

canals at 0.2Hz and 0.8Hz was provided by the control experiment in 

which myographic response of the r ig h t and l e f t  SO was f i r s t  recorded 

in the in ta c t  f ish  followed by ablation of the l e f t  ip s i la te ra l  p a ir  

of v e r t ic a l  canals and a l l  four v e r t ic a l  canals. The persistence of 

the myographic a c t i v i t y  in the EOM o f  the in ta c t  side a t a l l  

frequencies and an abo lition  of the EMG a c t iv i t y  in SO of the ablated  

side at frequencies above 0.2Hz in f i r s t  case, and a general absence 

of the myographic a c t iv i ty  in the r ig h t and l e f t  SO at frequencies 

above 0.2Hz a f te r  ablating ve rt ica l semicircular canals leads to the 

suggestion that utricu lus input is dominantly shown in the myographic 

a c t iv i ty  o f EOM fo r  t i l t s  at 0.2Hz. Results of the control experiment 

have also suggested that EOM myographic patterns comprised of both 

small and la rg e  un its  is common to  both the u t r i c u l a r  and the  

semicircular canals reflexes. As the r e la t iv e  contribution of small 

and large units in the SO f i r in g  and the mean phase position of the 

r ight and l e f t  SO f i r in g  was unaffected even a f te r  the ablation o f  

semicircular canals, i t  may be concluded tha t the main differences in  

the EOM myographic a c t i v i t y  a f t e r  a b la t io n  occur  in the general  

strength o f  f i r i n g .  Therefore to determine the control of EOM response 

in these  exp erim ents , changes in the s tre n g th  o f f i r i n g  may be 

considered to  be of primary s ignificance, although the re l& tive  phase 

of the EOM f i r in g  in the ro l l  and pitch planes and at intermediate
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angles must also be considered.

When considering  the responses o f the s e m ic irc u la r  canal 

receptors induced by the t i l t ,  the canals l i e  in anatomical planes 

intermediate between the major axes of the body. Therefore t i l t  in a 

spatia l plane which corresponds to the anatomical plane of a canal 

produces maximum f lu id  movement. T i l t s  in a plane orthogonal to the 

anatomical plane of the canal produces minimum f lu id  movement. Between 

these extremes the strength of th is  stimulus vector varies as a sine  

fu n c t io n .  Movement in one d i r e c t io n  in the plane o f  maximum 

s e n s i t i v i t y  causes e x c i t a t io n  o f  the receptors  in the c r i s t a e .  

Movement in the opposite d irection  in th is  plane causes in h ib it io n  of 

f i r in g  by reversing the f lu id  movement across the canal and reduce 

below a level of spontaneous a c t iv i t y  which occurs in the absence of 

s t im u la t io n .  Based on t h is  mechanism an a lg e b r ic  model o f  th e  

function of semicircular canal was prepared and results obtained

during these experiments were compared with th is  model (model is

described in section 5 .3 .1 ) .

The phase p lot and curve fo r  the strength of r igh t SO response in 

the in ta c t  f ish  (Fig 5.1) follows the r igh t anterior canal curve in 

the model (Fig 5.25, A), but compared with the combined e f fe c t  of a l l  

four v e r t ic a l  canals (F ig  5 .2 5 .B )  the SO response in the a c tu a l  

recordings is d i f fe re n t .

The series of ablation experiments ranged from the ablation of 

single ve rt ic a l  canal to ablation of a l l  four ve rt ica l canals. The 

ablation of r ig h t an terio r canal results  in 50% reduction in the

strength of EOM f i r in g  as compared with the in tac t  animal. In the

model the summed effec ts  of con tra la tera l in tact canals and the in ta c t  

ip s i la te ra l  canal response is d i f fe re n t  from the observed response in 

the EOM.
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The myographic a c t iv i t y  of the r ight and l e f t  SO is s ig n if ic a n t ly  

reduced a f te r  ablating a posterior canal. This e f fe c t  is unexpected 

and can not be explained by the model, since input from the in tac t  

an ter io r  canal should be strong and as the model predicts there should 

be a l i t t l e  reduction in the strength of SO f i r in g  as a resu lt  of th is  

a b la t io n .  A f te r  the a b la t io n  o f  p o s te r io r  canal 4 peaks in the  

discharge of ip s i la te ra l  SO were seen at i ts  own tra n s it io n  point and 

at the trans it ion  point of contra la tera l SO. A s im ilar  pattern of the 

EOM discharge was also seen in the contra latera l SO. Results of th is  

operation suggest that where input from the posterior canal is strong 

on to the con tra lte ra l eye response i t  reduces the size of peak, but 

even where input from the  p o s te r io r  canal is  weak bursts  in the  

i p s i l a t e r a l  SO are reduced which suggest th a t  th ere  may be an 

inh ib ito ry  cross-coupling to output pathways from other canals. Lack 

of modulation of f i r in g  of the canal during t i l t  may in h ib it  other 

outputs but they cause peaks of f i r in g  when th e ir  input are stronger. 

Contralateral in h ib it io n  w ith in  the vestibu lar neurons located in the 

la te ra l  vestibu lar nucleus was f i r s t  described by De v ito  et a l . ,

(1956). Moruzzi & Pompeiano (1957) and Bat in i ,  Moruzzi, Pompeiano

(1957) have suggested th a t  v e s t ib u la r  nuc le i are sub jec ted  to  

in h ib i t io n  a r is in g  from the c o n t r a l te r a l  la b y r in th  by studying  

postural changes a f te r  the in terruption of the vestibu lar nerve.

A fter the ablation o f two anterior canals, myographic a c t iv i t y  in 

the r ig h t and l e f t  SO is stronger than observed a f te r  the ablation of 

a single an terio r canal, while the model has predicted a comparatively 

weaker a c t iv i ty  in the absence of these two canals.

For the a b la t io n  o f  diagonal p a i r  ( l e f t  a n t e r io r  and r ig h t  

poterior canal),  the model predicts 90^ phase s h if t  in the response of 

right SO which is not seen in the results and the phase of r ig h t  SO is

110



the same as seen in the in tact f is h .

The ablation of an ip s i l te r a l  pa ir  of canals has resulted in 90^ 

phase s h i f t  in the myographic a c t i v i t y  o f the l e f t  SO which is  

contradictory to the predictions of model as i t  predicts a phase s h i f t  

of 45^ only.

In the experiments where only a single v e r t ic a l  canal was l e f t  

in ta c t ,  the e ffec ts  from ip s i la te ra l  canals are generally  weaker and 

comparatively stronger a c t iv i ty  is e l ic i te d  in the con tra la tera l EOM. 

This contradicts the prediction made fo r the in ta c t  animal where 

ip s i la te ra l  e ffec ts  are strongest.

The unexpected pattern of EOM a c t iv i ty  as a resu lt  of d i f fe re n t  

ablation experiments suggests a complex wiring between d if fe re n t  

components of the v e s t ib u la r  system. The p a t te rn  o f  myographic 

a c t i v i t y  obta ined in the in ta c t  f is h  is  indeed s im i la r  to  th a t  

p red ic ted  by Lowenstein & Sand (1940) in as f a r  as they made 

predictions only fo r  the ro l l  and pitch t i l t s .  Experiments on the 

dogfish show that control to the EOM a c t iv i ty  is much more complex and 

must be affected by central in te rac tion .

In experiments where only one canal was l e f t  in ta c t  the presence 

of the myographic a c t iv i ty  in the r igh t and l e f t  EOM suggests both 

ip s i la te ra l  and con tra la tera l control of th is  a c t iv i t y  by a single  

in tact canal. This control may be achieved by spontaneous a c t iv i ty  of 

the vestibu lar sensory receptors.

The myographic recordings made in the absence of four v e rt ic a l  

canals and u n i la t e r a l  a b la t io n  of the u t r ic u lu s  a lso  suggest a 

contra latera l control of the EOM a c t iv i ty  by the u tr icu lus  input.

I l l



Number of spikesPhase position

Phase position Number of spikes

-v
09
D
<I>
O

O
tno

p
ro
cnoo oo

©

to
o

09
O

09
o>

ro
o

CO

<D
O

oo ooo
o

to
o

09
o

ro

o

09
o>

♦ *

8 8  
r ~  XI

m g

0 0

0.2HZ 
0.8H

z
3000 

-i 
3000



Fig 5 . 1 . A The t o t a l  number o f  spikes in  the myographic response of

the SOR and SOL, summed over ten cyc le  o f  s inusoidal  t i l t

p l o t te d  against  the  plane o f  t i l t .

5 .1 .A.a 0.2Hz

5.1.A.b 0.8Hz

Fig 5.1 .B  The c irc u la r  mean values derived from the phase histogram 

of the SOR and SOL burst p lotted  against the plane of 

t i l t .

5 .1 .B .a  0.2Hz

5 .1 .B.b 0.8Hz



Fig 5 .2  The myographic recordings 

in the in ta c t  f is h .

5 .2 .a 0.2Hz

5.2 .b  0.4Hz

5 .2 .c 0.6Hz

5 .2 .d  0.8Hz

of SOR and SOL in the ro l l  plane



SO
R





Fig 5.3 The myographic recordings in the SOR and SOL in the roll 

plane a f te r  ablating the l e f t  v e r t ic a l  semicircular 

canals.

5 . 3 . a 0.2Hz

5 .3 .b 0.4Hz

5 . 3 . C  0.6Hz

5 .3 .d 0.8Hz



♦

Fig 5 .4  The myographic recordings in the SOR and SOL in the roll 

plane a f te r  ablating the v e r t ic a l  semicircular canals of 

the l e f t  and r igh t sides.

5 . 3 . a 0.2Hz

5 .3 .b  0.4Hz

5 . 3 . C  0.6Hz

5 .3 -d 0.8Hz
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Fig  5 . 5 . A The to ta l  number of spikes in the myographic response

plotted against the plane of t i l t  between 0°-360° after

ablating l e f t  a n te r io r  v e r t ic a l  canal fo r  t i l t s  at 0.8Hz.

Fig 5 .5 .B  The c irc u la r  mean value in the phase of SOR and SOL 

plotted  against the plane of t i l t  a f te r  ablating  

l e f t  an terio r v e r t ic a l  canal fo r  t i l t s  at 0.8Hz,



Fig 5 .

Fig 5.6

.A The to ta l  number of spikes as 5 .1 .A p lo tted  against the

plane of t i l t  a f te r  ablating r ig h t  a n te r io r  vertical

canal fo r  t i l t s  at 0.8Hz.

.B The c i rc u la r  mean value plotted against the plane of 

t i l t  a f te r  ablating the r igh t a n te r io r  v e r t ic a l  canal 

fo r  t i l t s  at 0.8Hz.
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Fig 5 .7

Fig 5 .7

.A The number of spikes is p lo tted  against the plane of

t i l t  a f te r  ablating l e f t  pos terio r v e r t ic a l  canal for

t i l t s  at 0.8Hz.

.B The c irc u la r  mean value p lo tted  against the plane of 

t i l t  a f te r  ablating the l e f t  pos ter io r  vert ica l canal 

fo r  t i l t s  at 0.8Hz.



Fig 5 .8 .A The number of spikes p lo tted  against the plane of t i l t

a f te r  ablating r ig h t  posterior v e r t ic a l  canal for

t i l t s  at 0.8Hz.

Fig 5 .8 .B The c irc u la r  mean value is p lotted  against plane of 

t i l t  a f te r  ab lating r ig h t  posterior v e r t ic a l  canal for 

t i l t s  at 0.8Hz.
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Fig 5 .9 .A The number of spikes p lo tted  against plane of t i l t  

a f te r  ablating two an te r io r  v e rt ic a l  canals fo r  t i l t s



Fig 5 .

Fig 5.

.A The number of spikes plotted against plane o f t i l t

a f te r  ablating two an ter io r  v e r t ic a l  canals fo r  t i l t s

at 0.8Hz.

•B The c irc u la r  mean value is p lo tted  against plane of 

t i l t  a f te r  ablating two a n te r io r  v e r t ic a l  canals for 

t i l t s  at 0.8Hz.
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Fig 5 .

Fig 5.

.A The number of spikes is p lotted  against the plane of

t i l t  a f te r  abalting two posterior v e r t ic a l  canals for

t i l t s  a t  0.8Hz.

.B The c i rc u la r  mean value is p lotted  against plane of 

t i l t  a f te r  ablating two posterior v e r t ic a l  canals for 

t i l t s  at 0.8Hz.



Fig  5 .

Fig 5.

.A The number of spikes is p lotted  against plane of body 

t i l t s  a f te r  ablating diagonal ( l e f t  an terior and right 

posterior) p a ir  of v e r t ic a l  canals for t i l t s  at 0.8Hz.

.B The c irc u la r  mean value is p lo tted  against plane of 

body t i l t  a f te r  ablating diagonal ( l e f t  an terio r and 

r ig h t  posterior) p a ir  of v e r t ic a l  canals fo r  t i l t s  at 

0.8Hz.
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5 .1 3 .A The number of spikes is plotted against the plane of 

body t i l t  a f te r  aba lting  l e f t  ip s i la te r a l  pa ir  of 

vert ica l canals fo r  t i l t s  at 0.8Hz.

5.13.B The c irc u la r  mean value is p lotted  against the plane of 

body t i l t  a f te r  aba lting  l e f t  ip s i la te r a l  pa ir  of 

vert ica l semicircular canals fo r  t i l t s  at 0.8Hz.
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5 .1 4 .A The number of spikes is plotted against the plane of

body t i l t  a f te r  ablating l e f t  an te r io r  and two

posterior v e r t ic a l  canals fo r  t i l t s  at 0.8Hz.

5.14.B The c i rc u la r  mean value is p lotted  against the body 

t i l t s  a f te r  ablating l e f t  a n te r io r  and two posterior 

v e r t ic a l  canals fo r  t i l t s  at 0.8Hz.



5 .1 5 .A The number of spikes is plotted against the plane of 

body t i l t  a f te r  ablating r ig h t  an te r io r  and two 

posterior ve rt ica l semicircular canals fo r  t i l t s  at 

0.8Hz.

5 .15.B  The c irc u la r  mean value is p lo tted  against the plane of 

body t i l t  a f te r  ablating r ig h t  a n te r io r  and two 

posterior ve rt ic a l  canals fo r  t i l t s  at 0.8Hz.
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5 .1 6 .A The number of spikes p lo tted  against the plane of body

t i l t  a f te r  ablating l e f t  an te r io r  and tw posterior

ve r t ic a l  canals fo r  t i l t s  at 0.8Hz.

5.16.B The c irc u la r  mean value is p lotted  against the plane of 

body t i l t s  a f te r  ab lating l e f t  an te r io r  and two 

posterior v e rt ic a l  canals fo r  t i l t s  at 0.8Hz.



Ph
as

e 
po

sit
io

n 
Nu

m
be

r 
of 

sp
ik

es

LEFT ANTERIOR AND TWO POSTERIOR
CANALS ABLATED, SO

3000 n

2000 -

•o- SOR
SOL1000-

3 6 01 8 0 2 7 0
Plane of tilt

1 .00 i

0.25-

0.00
3 6 02 7 01 8 0

Plane of tilt



5 .1 7 .A The number of spikes is plotted against the plane of

body t i l t s  a f te r  ablating l e f t  an te r io r  and two

posterior v e r t ic a l  canals fo r  t i l t s  at 0.8Hz.

5.17.B The c irc u la r  mean value is p lotted  against the plane of

body t i l t  a f te r  abalting l e f t  an te r io r  and two

posterior v e r t ic a l  canals fo r  t i l t s  at 0.8Hz.
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Fig 5 .1 8 .A The number of spikes is p lo tted  against the plane of

body t i l t  a f te r  ablating two a n te r io r  and le f t

posterior canal fo r  t i l t s  at 0.8Hz.

Fig 5.18.B The c irc u la r  mean value is p lo tted  against the plane of

body t i l t  a f te r  abalting two a n te r io r  and le f t

posterior canals for t i l t s  at 0.8Hz.
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5 .1 9 .A The number of spikes is p lo tted  against the plane of

body t i l t  a f te r  abalting two an terio r and right

posterior v e rt ic a l  canals fo r  t i l t s  at 0.8Hz.

5.19.B  The c irc u la r  mean value is  p lo tted  against the plane of

body t i l t  a f te r  ab lating  two an terio r and right

posterior canals.
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5 .2 0 .A The number of spikes is plotted against the plane of

body t i l t  a f te r  ablating two a n te r io r  and le f t

posterior v e r t ic a l  canals fo r  t i l t s  at 0.8Hz.

5.20.B The c irc u la r  mean value is plotted against the plane of

body t i l t  a f te r  abalting two an te r io r  and le f t

posterior v e r t ic a l  canals fo r  t i l t s  at 0.2Hz.



Fig 5 .2 1 .A The number of spikes is plotted against the plane of

body t i l t  a f te r  ablating four v e r t ic a l  canals for t i l t s

at 0.2Hz and 0.8Hz.

Fig 5.21.B The c i rc u la r  mean value is p lotted  against the plane of 

body t i l t  a f te r  abalting a l l  four v e r t ic a l  canals for 

t i l t s  at 0.2Hz and 0.8Hz.
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Fig 5 .22.A  The number of spikes is p lotted against the plane of

body t i l t  a f te r  abalting four v e r t ic a l  canals and

the utricu ius of r ig h t side fo r  t i l t s  at 0.2Hz.

Fig 5.22.B  The c irc u la r  mean value is p lotted against the plane of

body t i l t  a f te r  ab lating four v e r t ic a l  canals and the

utricu lus of r ig h t side fo r  t i l t s  at 0.8Hz.
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M g 5.

5.23.B

.A The number of spikes is p lotted against the plane of 

body t i l t  a f te r  abalting a n te r io rr  and posterior  

vert ic a l  canals and the utr icu lus  of r ig h t  side for 

t i l t s  at 0.8Hz.

The c irc u la r  mean value is p lotted against the plane of 

body t i l t  a f te r  ab lating an te r io r  and posterior  

vert ic a l  canals and the u tr icu lus  of r ig h t side.



Fi g 5 . 2 4 . A

Fig 5.24.B

The number of spikes plotted against the plane of body

t i l t  a f te r  ablating a l l  four v e r t ic a l  canals and the

u t r ic u l i  o f both sides fo r  t i l t s  at 0.2Hz and 0.8Hz.

The c irc u la r  mean value plotted against the plane of body 

t i l t  a f te r  ablating four v e r t ic a l  canals and the u tr icu li  

of both sides fo r  t i l t s  at 0.2Hz and 0.8Hz.
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Fig 5.25 In the algebric model of v e r t ic a l  semicircular  

canals the input strength of canals is plotted  

against the plane of t i l t .  Properties of the model 

are described in the te x t  (section 5 .3 .1 ) .

A. Input strength of four v e r t ic a l  canals in the 

in tac t  f is h .

B. Resultant curve of the combined inupt strength 

of each ve rt ica l canal in 5 .2 5 .A.

C. Curve obtained a f te r  ab lating  l e f t  an terio r and 

r ig h t posterior ve rt ic a l  canals.

D. Resultant curve obtained a f te r  ablating right

ip s i la te ra l  pa ir  of canals.

E. Resultant curve a f te r  ab lating  l e f t  ip s i la te ra l  

p a ir  of canals.

F. Resultant curve a f te r  ablating two anterior

v e rt ic a l  canals.

G. Resultant curve a f te r  ab lating two posterior

ve rt ic a l  canals.

RA = Right anterior  

RP = Right posterior  

LA = Left anterior  

LP = Left posterior
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Fig 5.26 In the algebric model of semicircular canals the 

input strength is p lotted  against the plane of 

t i l t .

A. Resultant curve a f te r  ablating l e f t  an te r io r  & 

two posterior ve rt ic a l  canals.

B. Resultant curve a f te r  ablating two an te r io r  &

le f t  posterior v e rt ic a l  canals.

C. Resultant curve a f te r  ablating r igh t an te r io r  & 

two posterior v e rt ic a l  canals.

0. Resultant curve a f te r  ablating r ig h t posterior  

& two an ter io r  v e r t ic a l  canals.

E. Resultant curve a f te r  ablating l e f t  an te r io r

ve rt ic a l  canal.

F. Resultant curve a f te r  ablating l e f t  posterior

ve rt ic a l  canal.

G. Resultant curve a f te r  ablating r ig h t an ter io r

v e rt ic a l  canal.

H. Resultant curve a f te r  ablating r ig h t posterior  

v ert ic a l  canal.



Fig 5.27 The recording o f myographic a c t iv i ty  in the SOR a f te r  

ablating four v e r t ic a l  canals and the r ig h t  utricu lus  

recordings made at 0®, 15®, 30®, 45®, 60®, 80®, 90® 

r ig h t side down t i l t s  at 0.2Hz, response in the SOR 

is only e l ic i t e d  a f te r  60® t i l t  is passed.
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Fig 5.28 The myographic a c t i v i t y  of SOR, recorded at 0®, 15®, 30®, 

45®, 60®, 90®, 135® head down t i l t s  a f te r  the ablation of 

four ver t ica l  semicircular canals and the right 

utr iculus fo r  t i l t s  at 0.2Hz. Myographic response in the 

SOR only appeared a f te r  f ish was t i l t e d  90® head down.
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GENERAL DISCUSSION.

Vertical  and horizontal VOR are eye reflexes to an angular head 

acceleration which s tab i l i ze  the vision against head movement. In 

dogfish the eye movements are produced by the coordinated act ivat ion  

of six EOM. The physiology, mechanical properties and innervation play 

a s i g n i f i c a n t  r o le  in determin ing the kind of  eye r e f le x e s  a 

par t ic u la r  animal can produce.

Physiological p r o f i l e  of the EOM.

As dem on stra ted  by t h e  i m p l i c a t i o n  o f  h i s t o l o g i c a l ,  

histochemical, immunohistochemical and mechanical techniques, two 

f ib r e  types are consistently present in a l l  six EOM (Chapter 2 ) .  TYPE 

I f ibres are small, l i e  mostly in the orb i ta l  region, stain negative 

with fH-ATPase and are SDH pos it ive .  TYPE I I  f ibres are large, l i e  

mostly in the global region, give posit ive staining with m -ATPase 

and are SDH negative. In studies of the mechanical response of EOM, 

two levels of contractions were consistently  observed which may have 

been e l ic i t e d  by the two d i f fe ren t  f ib r e  types.

The majority of TYPE I f ibres  in a l l  EOM stain posit ive with the 

two slow antibodies specif ic fo r  tonic type myosin ( d  ALD & d  

SHC) which suggests th a t  m a j o r i t y  of  these f ib r e s  are to n ic  in  

nature. TYPE I I  f ibres give a negative reaction to this slow antibody.

Subgroups of TYPE I and TYPE I I  are consistently present in a l l  

EOM. TYPE I and TYPE I I  f ibres in dogfish EOM have typical properties  

of  slow and f a s t  or  f a s t  t w i t c h  f i b r e  types known to present  in

vertebrate EOM and skeletal muscle (Bone, 1966; Hess, 1967; Hidaka &

Toida, 1969; Mayer, 1971; Alvaredo & Vanhorn, 1975; Ovalle,  1978;

G i l l y  & Hui, 1980; Altringham & Johnston, 1982; reviewed by Morgan &
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Proske, 1984; Sartore et a l , 1987; Akster et a l . ,  1988).

The majority of the TYPE I f ibres are confined in the orb i ta l  

region, while majority of TYPE I I  f ibres are present in the global 

region. The morphology and physiological p ro f i l e  of the horizontal  

(EXT-R & INT-R) and ver t ica l  (SO, SR, 10, IR) muscles is consistent

with the presence of TYPE I and TYPE I I  f ibres in the orb i ta l  and

global regions.

The size of motor units in the dogfish EOM is one motor axon per 

9 f ib r e s  and one motor axon per 13 f ib r e s  in the SO and EXT-R. 

Compared with the large motor units present in vertebrate skeletal  

muscle, smaller motor units are a character is t ic  feature of the EOM 

(reviewed by Buchtchal & Schmalbipuch, 1980) which shows an e f f i c i e n t  

motor control system which enables the eyes to perform precise and 

various kinds of movements ranging from compensatory eye reflexes to 

the nystagmus response.

The heterogenous structure of the EOM comprised of TYPE I slow

and TYPE I I  fast  f ib re  types (Chapter 2) is the same as reported in

the amphibian and mammalian species (Bach-Y-Rita & Lennerstrand, 1975; 

Morgan & Proske, 1984). Two levels of response are also shown in the 

myographic a c t iv i t y  of the individual EOM, where units of two size are 

consistently present in the burst of EOM f i r in g  (Chapter 4 ) .  Also 

during the hold of a t i l t  a strong level of tonic f i r i n g  is seen. In 

the v e r t i c a l  plane the EOM response is mostly comprised of  slow 

bursts,  although in the horizontal plane there are separate slow and 

fast  phases in the a c t i v i t y  of the horizontal and the ver t ica l  EOM. 

Consider ing the heterogenous p r o f i l e  of  the EOM i t  is  e n t i r e l y  

possible that the two levels of EOM a c t iv i t y  shown in the ver t ica l  and 

horizontal VOR are contributed by the TYPE I and TYPE I I  f ib res .  

However i t  is not confirmed that  TYPE I ,  slow tonic f ibres  in the
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orbi ta l  region are responsible for  the tonic units f i r in g  in the 

ver t ica l  plane, or that the phasic f i r in g  in the horizontal plane 

during fast eye f l i c k s  results from the activat ion of TYPE I I  f ibres  

in the global reg ion .  An experimental  con f i rm at ion  can only be 

obtained by recording in t r a c e l lu la r ly  from the selected TYPE I and 

TYPE I I  f ib res ,  and back f i l l i n g  these f ibres with an in t r a c e l lu la r  

dye. These label led f ibres can than be stained histochemically and 

immunohistochemically to determine th e i r  physiological p r o f i l e .

V e rtica l eye re fle x e s .

In the present investigation of the vert ica l  VOR, eye reflexes to 

an imposed ver t ica l  body t i l t  have been determined (Chapter 3 ) .  Eye 

reflexes in th is  plane are only compensatory and resul ts suggest a 

strong vestibular  input in to them.

Ablat ion  o f  u t r ic u lu s  and the s e m ic i rc u la r  canals provide  

evidence for  the strong vestibular  influence, where a f te r  ablation of 

these two components the gain is s ign i f ican t ly  reduced and very small 

or no eye movements are seen under d i f fe ren t  ablation conditions.  

Relative gain values seen in the white l igh t  and in the dim red l igh t  

show very small var iat ions.  Weak visual input is present in the 

ver t ica l  VOR, although these af fects  are generally suppressed by the 

strong vestibular  influences and are only seen when the animal is 

provided with a strong visual stimulus. Some e f fe c t  of visual input 

is suggested in the tests to establish the optokinetic nystagmus, 

where higher gain values were shown in the tests where the visual 

stimulus is reinforcing eye movements in the dim red l ig h t .  As these 

f i s h  of ten  l i v e  in the deep sea environment under poor l i g h t  

condit ions t h is  shows an adapta t ion  to th a t  environment.  In 

experiments where the f ish is provided with a visual stimulus alone in
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the absence of vestibular  e f fec ts ,  small deviations of the eyes occur 

fol lowing the striped drum pattern, as reported in other vertebrates 

is seen (Hood & Leech, 1974; Baarsma & Co l lew i j in ,  1974; Gutman, Zeilg 

& Bergmann, 1964).

Coordinated ac tiva tio n  o f the EON in v e r t ic a l VOR.

The smaller gain values consistently observed in the pitch plane 

show t h a t  the amplitude of  eye movements in the p i tc h  plane is  

comparat ive ly  sm al le r  than those observed dur ing the r o l l  t i l t s  

(Chapter 3 ) .  The myographic a c t i v i t y  of the ver t ica l  EOM (Chapter 4) 

shows that t h e i r  coordination in the pitch plane is unexpected and 

does not f i t  with the predictions made by Lowenstein & Sand (1940).  

The SO and SR in the two eyes are actual ly  activated together, and 

therefore the torsional counter- rol l ing of the two eyes in the pitch 

plane is achieved by the difference in the re la t iv e  strength of the SO 

and SR f i r i n g ,  rather than th e i r  antagonistic e f fec ts .  The pattern of  

EOM a c t i v a t io n  in the r o l l  plane is  the same as pred ic ted  by 

Lowenstein & Sand (1940): the counter ro l l  of an eye during the side 

down ro l l  t i l t  is induced by the co-contraction of the SO and SR while 

10 and IR remain inact ive.  The myographic a c t i v i t i e s  of the horizontal  

EOM s ta b i l i z e  the action of the ver t ica l  EOM in the ro l l  and pitch 

planes.

Vestibular nystagmus in the ver t ica l  plane is known to occur in 

other vertebrates (Dar lot,  Barneo & Tracey, 1981; Correia,  Perachio & 

Eden, 1985, Synder & King, 1988) but is t o t a l l y  absent in the dogfish 

ver t ica l  eye ref lexes.  In the myographic a c t i v i t y  of the EOM during 

the ver t ica l  VOR nystagmus is not seen. However in the horizontal VOR 

v e r t i c a l  EOM are grouped with the h o r i z o n ta l  EOM to  produce a 

nystagmus response. The nystagmus in the ver t ica l  EOM may have a
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s t a b i l i z i n g  a f f e c t  to  th e  response  o f  h o r i z o n t a l  EOM.

The pattern of EOM activation at intermediate angles between the 

r o l l  and pitch planes gives insight to the integration of the ver t ica l  

canal outputs during the operation of ver t ica l  VOR. The EOM a c t iv i t y  

is coordinated to compensate the eye ref lexes as they are affected by 

the t i l t s  in the ro l l  and pitch planes and at intermediate planes. The 

phase s h i f t  in the myographic a c t i v i t y  of the EOM in the l e f t  eye 

occurs around 45^, while phase s h i f t  in the myographic response of the 

EOM in the r ight  eye occurs around 135^.

Control o f the v e rt ic a l VOR.

The dogfish control of the ver t ica l  VOR has been determined by 

the select ive ablation of the ve r t ic a l  semicircular canals and the 

utr icu lus .  Subtle differences in the semicircular canals and utriculus  

input to the EOM are shown by the smaller phase differences in the 

beginning of a burst in the t i l t  planes where peaks of the myographic 

a c t iv i t y  are in phase. These e f fects  are best seen a f te r  the ablation  

of the ver t ica l  semicircular canals which resul ts in a s igni f icant  

reduction of the gain of eye movements only fo r  t i l t s  at 0.8Hz, while  

a f te r  the ablation of utriculus gain d e f ic i t s  are greater at 0.2Hz.  

The var iations in the strength of EOM f i r i n g  a f te r  the ablation of  

canals are strongly seen at 0.8Hz, while s im i la r  d e f ic i ts  in the EOM 

a c t i v i t y  a f t e r  the u t r i c u lu s  a b la t io n  are best seen at 0 .2H z .  

Therefore these two frequencies represent the range in which d i f fe ren t  

components of the vestibular  system natura l ly  operate.

Ip s i la te ra l  ablation of the ver t ica l  semicircular canals or the 

utr iculus results in a s ign i f icant  reduction of e i ther  in the gain of  

ip s i la te ra l  eye movement or in the strength of EOM f i r i n g .  Therefore 

the ip s i la te ra l  ablation is most e f fe c t i v e ly  seen in the vert ical  eye
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ref lexes and in the myographic a c t i v i t y  of the EOM.

The algebric model predicts the input strength of the ver t ica l  

semicircular canals during t i l t s  between the 0^-360^. However i t  f a i l s  

to explain the pattern of EOM a c t iv i t y  obtained a f te r  the ablation of  

semicircular canals (Section 5.4) which is dis-proportionate to i ts  

predicted algebric e f fe c t .  1. The ablation of a single ver t ica l  canal 

is most e f fe c t ive  and resul ts in s ign i f ican t  reduction in the strength 

of  EOM f i r i n g .  2.  The a b la t io n  o f  the p o s te r io r  v e r t i c a l  canal  

suggests an inhib itory  cross-coupling to output pathways from the 

other canals. 3. In the experiments where only a single ver t ica l  

canals is  l e f t  i n t a c t  a c o n t r a l a t e r a l  control  which d r ives  the  

response of both eyes is indicated. Thus the results obtained in 

d i f fe re n t  ablation experiments suggest a complex wiring between the 

d i f fe re n t  control components of the vestibular  system. When a single  

canal is ablated e i ther  some functional abnormalities are introduced 

in the operation of the VOR, or a complex control is exerted cen tra l ly  

which af fects the myographic a c t i v i t y  of the EOM.

Prospects.

The experiments described in th is  thesis,  p a r t ic u la r ly  those on 

the re f lex  responses of the EOM to vestibular  stimuli under a var ie ty  

of operated condit ions, demonstrate the many advantages offered by 

t h i s  decerebrated dogfish p rep a ra t io n  f o r  the study o f  the VOR. 

F i r s t l y  the preparation lasts several days and the eye reflexes remain 

consistent over th is period. All  the EOM are accessible and can be 

recorded m yo g ra p h ic a l ly . The v e s t i b u l a r  system is also e a s i l y  

accessible and allows the ablation to be simply performed. These 

factors have allowed a large body of the data to be obtained on the 

c o rd in a t io n  of  the EOM f o r  an ex tens ive  range of  the st imulus
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conditions in the intact  animal and under a large number of ablated 

conditions. Such a comprehensive set of data does not appear to have 

been obtained previously in any vertebrate species. For these reasons 

th is  preparation has great potential  for  use in the investigation of  

the central  neuronal pathways which control the VOR.
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