VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Menu-Based User Interface Systems:

Theory & Practice

by
Djilali 1DOUGH1L

A Thesis Submitted for the Degree
v of
Master of Science
in the
Department of Computing Science
at

The University of Glasgow

October 1988

© D. 1DOUGH1, 1988

ProQuest Number: 10998206

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10998206

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

ACKNOWLEDGEMENTS

1 would [ike to thank my supervisor Dr. A.C. Kilgour for his
assistance and advice during the last past year. Thanks also go to
Kevin Waite and Cathy Wood for their help and their kindness and
respect they showed to me and my family. My gratitude and all my
respect must gofc the Algerian government, without whose
educational policy and encouragement this present study would not
have been possible. Finally, my gratitude and affection go to my
wife, Sadika and my daughter Schehinez, for their patience,

assistance and support. during the last two years.

Dedication

To my wife Sadika
and our

darling daughter Schehinez

(M.Sc thesis) Menu-Based User Interface Systems: D. Idoughi October 88
Theory & Practice

summary

The thesis discusses the menu selection technique, which is one of the most
commonly used interaction techniques in Human-Computer Interfaces, and continues to
flourish because of its simple interaction format and its adaptability to the many diverse
applications. The ease of use of the technique, particularly by novices, contributes
significantly to the widespread acceptance of menu-based user interface systems, despite
their inherent disadvantages and drawbacks. Chapter One surveys the issues concerning
the design and use of menu-based interfaces, and addresses particularly the navigational
problems encountered by users of menu selection systems, identifying various navigational
aids which help overcome these problems. The chapter concludes with a comparison
between menu-based interfaces and other interface styles (command language, natural
language and form-filling).

Chapter Two describes the practical work of the thesis which consists of
implementing a particularly demanding menu-based interface example involving multiple
menu selections using four different dialogue specification systems. The implementation is
discussed mainly from a menu system designer's view. Strategies to solve or address the
multiple selection mechanism problem as well as some the navigational concepts discussed
in chapter one are devised and used within each the four target systems. Also, some other
related user interface design issues are reported in chapter two.

The principal aim of the work is to investigate the difficulties a dialogue
designer may face in attempting to implement a common type of menu-based interface
using various delivery systems, all of which claim in varying degrees to support
menu-based interactive styles. In the final chapter conclusions are drawn from the practical
work concerning desirable menu support features in user interface implementation systems,

and issues requiring further investigation are identified.

Menu-Based User Interface Systems:
Theory and Practice

Contents bage

Chapter 1. Menu selection systems

1. Introduction......coiiiiiiiiiiiiiiiiiii e e T |
2. Characteristics of Menu-Based Systems........ccuceueereeneeneenennnnnes 4
2.1. Menu CategoTies..coiuuiiiuiiuniiiuiiiniiiniiiiieiniesnseenseaneseans 6
2.1.1. EXpliCit MEeNUS...ccciiiiiiiiiiiiiiiiiiiiiii it eaens 6
2.1.2. Embedded mMeENUS......ccccveuiiuciniiienienienienrennas P
2.2. Menu selection in the context of Hypertext.......cccoevecveeiiensans 7
3. Menu System Design ISSUES.....c.ccooviiiiiiiiiiiiiiiiiiiiniiiniennenennn. 8
3.1. Presentational 1SSUES.......ccccciereeiieiiiiiiiiiiiinniinsrnieneienn 9
311, Tithng. i e e 9
3.1.2. MeENU ItemMS..ciiuiiiiiiniiiiiieeeeieienneincrneeensesansansees 10
3.1.3. Menu 1ayout....cocciiiiiiiiiiiiiiiiiiiiiiiie e eeiaens 13
3.2. Organisational 1SSUES.......ccccieviuiiimiieeiiiierinienninnees eeenes 14
3.2.1. MeENU StTUCLUTES.i.uituinnreniiniineiieiieinerenteneeinesaseens 15
3.2.2. Menu drawbacks.......ccooiiiiiiiiiiiiiienniennns erveeereeeenes 18
3.2.3. Navigation aids and techniques..........cccccceiiiiiiiiniinnns 19

3.3. Functional or Computational iSSUES........c.c.ccceviiirinnanns A |
4. A descriptive/prescriptive model for menu-based interaction.......... .21
5. Menus vs other Interfaces......cccoccocviiiiimiiiiiiiiiiiiniiiiniinnninnen, 24
S5.1.General ..o e 24
5.2. Menus vs Command 1anguages........ccceevviiieriirnnnnnnnenanenens 24
5.3. Menus vs Natural 1anguages.....cccccevvereiiiiiiniiiiiiniinniniannns 26
5.4. Menus vs Form-filling.......cccoovieniiiiiiiiininnnn, 28
6. Examples of menu SyStEmMS.......occeviiiiiiiiiiiiinineeiinnisnieieeenennes 29

Chapter 2. Experimental studies in system use

1. IntroducCtion......ccciiiiiiiiiniiiiiiiiiiiiiiii e eeaens ceeeeanane 31
2. Sample problems........coooiiiiiiiiiiniii cereees .32
3. The SYSteMS.....civieiiuiirriiiiiriniiriiieerianreneneeansesns vereneeeneeenss 35
3.1, Chiskuieiii i e e 36

3.2, GUIAC. ittt e 54

3.3, KM S i 71
3.4, HyperCard.....c.ccooviiiiiiiiiiiiiiiniiniiiicrinnneeeneeeens 96

Chapter 3. Conclusions

L. SUMMATY.c.iiiiiiiiiiiiiiiiiiii ittt ettt ee s eeetessansnnns 116
2. FUIThET WOTK. . uiiiiiiiiiiiiiireiireninessassssscesessssssascnsensessasans 118

References
Appendix A

A.1. The Chisl syntax

A.2. The Chisl preprocessor
Appendix B. The Guide menu commands

Chapter 1

Menu Selection Systems

1. Introduction

In the early development of the computer industry, effort,
research and money were concentrated on the development and
sophistication of the machine's internals and programming languages
and to the efficient use of the cpu and storage media. Early users
were necessarily computer technicians and professionals through
whom other users had to go in order to access the remote computer.
As computer technology has grown faster and become widely
available, and costs have become lower, many areas such as the
commercial, medical and educational spheres have exploited this
technology for different purposes. The next stage has been marked
by a closer move of the computers toward human society in which
they occupy a big place nowadays. There has been a considerable
growth in the number of users without formal training in
programming or computer technology. These users are simply using
the computer as a tool, and are not interested in becoming computer
professionals or in understanding the details of their application
systems. However, although most computer systems are designed to
run essentially autonomously, most provide a means through which
human users and the computer can communicate. This means is
nowadays known as the User Interface .

So, human users and computers communicate through the
user interface whose primary role is to support information exchange
between users and computers. Many names have been assigned to
the communication process. These include Man-Machine

1

Communication, Man-Machine Dialogue, Human-Computer Dialogue
and finally Human Computer Interaction. This stage has also been
characterised by the fact that despite the degree of sophistication of
the machinery and the elaborateness of many computer systems,
problems have arisen at the user interface which have seriously
undermined the effectiveness of the computer as a tool for human
problem-solving. Most of these problems are directly related to the
underlying dialogue between the human user and the computer
system, and have arisen principally because of the lack of attention
paid by the system designers to effective human computer
interfaces.

This can be considered as the starting point of a new era in
which greater attention is paid to the issues which guarantee high
quality user interfaces, and in which research effort is focussed on
attempts to understand the complex interaction of humans and
machines. Contributions to this research are required from different
disciplines such as psychology, human factors, ergonomics and
related fields, and taken together these constitute the area which is
now known as the Human-Computer Interaction. Already
considerable progress has been made and important findings
reported in this new area.

All the HCI specialists were unanimous about the need for
user interface improvements because of the crucial effects of the
interface on user efficiency and the acceptability and therefore
commercial potential of the computer system. One of their major
findings was that the human user has to be taken into account as
well as the computer system in the design process. Previously the

emphasis was on hardware developments, but now the emphasis is

shifting toward human concerns. The result of this change of
emphasis is that greater efforts are being made to make computers
easier to wuse and program by providing better programming
languages, better program development environments. These may
include User Interface Management Systems (UIMS) which are
intended to free the applications programmer from low-level details
so as to be able to concentrate on higher applications specific aspects
of the User Interface, i.e to separate the details of user interaction
from the details of advanced applications [Buxton et al., 83; Bennett,
86]. Generally, a UIMS consists of a package of tools which support
the implementation, debugging and evaluation of interactive
human-computer dialogues [Buxton et al., 83].

The User Interface may be thought of as surface through
which data are passed back and forth between computer and user,
where the data displayed on the workstation provide a context for
interaction [Bennett, 86]. The interaction part of the User Interface is
important since it represents the communication path between the
user and computer. Users' interests are not, in general, concerned
with programming but with the utility of the end product. This will
often depend on how easy the system is to use and is particularly
influenced by its User Interface. There are many techniques
commonly used for communication between humans and computers.
They differ widely in their ease of learning and use and their general
applicability [Brown, 82]. For example, the interface to Unix is very
different from the interface to a Macintosh. The computer system
interface imposes a certain dialogue style on the user. Among the
important and commonly used communication techniques are the

following:

- Command Interfaces : The user types instructions to the computer
in a formally defined command language.

- Natural language Interfaces : The user's command language is a
significant, well defined subset of some natural language such as
English.

- Form-Filling Interfaces : The user issues commands by filling in
fields in one or more forms displayed on the screen.

- Direct Manipulation Interfaces : The user manipulates through a
language of button pushes and movement of a pointing device
such as a mouse, a graphic representation of the underlying data.

- Menu-Based Interfaces : The user issues commands by selecting in
sequence choices from among displayed alternatives. This is the
form of communication or interaction which is the subject of this
thesis.

The literature on the interaction between computers and
human users is large and varied. Therefore, the scope of this thesis is
limited to those elements which relate directly to the design and
implementation of one particular type of wuser interface: the
Menu-Based User Interface .

A broad survey of the characteristics of menu systems as well
the underlying issues involved in ;i Menu-Based User Interface

design are presented in the following sections of this Chapter.

2. Characteristics of Menu-Based Systems

The dialogue part of the Human-Computer Interaction
represents the central aspect of any interactive system. For many
dialogues, the exchange of information can be characterised in terms

of its style, structure and content [Hammond et al., 84]. Only the

menu selection style is fully discussed in this chapter since it
characterises any menu system. A menu-based system or menu
selection system is a system where each user response is predicated
on a set of choices provided by the system. The user is presented
with a sequence of menus, each containing some descriptive text and
a list of items (options).

The user responds by selecting one item, causing the system
to perform an action associated with that item selection. Menu
systems offer a simple interaction format that is adaptable to many
diverse applications. They are primarily used to present information
and to control the actions of computer systems. The user interface
associated with or provided by these systems is said to be
menu-driven in the sense that the user is guided and assisted in the
decision making process or problem solving task. This form of
interaction has several characteristics, including the following: (i)
neither formal training nor memorisation of complex command
sequences are required; (ii) it offers a simple selection mechanism
via some pointing devices (mouse, keystroke); (iii) it simplifies choice
by structuring the user's decision making, thus reducing the risk of
making errors. Therefore, menu based systems appear to be more
appropriate to novice or casual users, and menu interfaces have
become increasingly popular during the last decade as a means of
making the computer more accessible to those with little experience
and/or those who use systems infrequently.

However, if a menu system is well and carefully designed, it
can be appealing to experts as well. As the title of the thesis implies,
the key word is "menu". It represents the central component of a

menu system. Before considering menu system design issues in

detail, a brief description of the categories or types of menus is

given.

2.1. Menu Categories

Menus can be categorised as either explicit or embedded
[Koved & Shneiderman, 86]. The difference lies in the context in
which the menu items are presented. Explicit menus are themselves

subcategorised. Each of these categories is briefly discussed next.

2.1.1. Explicit menus
These are usually characterised by an explicitly enumerated
list of items from which the user selects using one of the selection
mechanisms available. Till recently, a linear organisation of the
menu items was the assumed format in this category. Recently PIE
menus, in which the items are arranged circularly, have been
introduced [Hopkins et al., 87]. For linear menus, a variety of types
may be distinguished, including
ePop-up and Pull down menus, that is menus which appear below
a fixed label on the screen (pull down), or anywhere within a
fixed area, occasionally the whole screen (pop-up), in response to
a click of a pointing device.
ePermanent menus, that is menus which are permanently
displayed so always available to the user.
In general, linear menus are a linear row or column of items.
PIE menus are normally of the pop-up variety. The menu
items are positioned in a circle around the menu centre. The
direction in which the cursor is moved makes the selection, and the

length of motion (i.e. the distance of the cursor from the centre of the

Pie) is available as a second input.

2.1.2. Embedded Menus

The menu items are embedded within the information being
displayed on the screen to the user. In embedded menus, highlighted
or underlined words or phrases within the text become the menu
items and are selectable, using the commonly used touch screen,
cursor and mouse methods. They are more appropriate in some
situations where explicit menus are inefficient particularly in touch
text, spelling checkers and language-based editors [Koved &

Shneiderman, 86].

2.2. Menu Selection in the context of Hypertext

Hypertext is a concept, typically used within the electronic
documentation domain, which allows non-linear organisation of the
underlying material (text/graphics) of a document. It also provides a
communication and thinking tool allowing authoring and design as
well as reading and retrieving. A hypertext system has two main
components: a database and a user interface to the database.

Hypertext systems use the menu selection technique as a
fundamental mode of user control in navigating through the
information space. A hypertext system may therefore be regarded as
a menu selection system. However, the reverse is not always true. To
qualify as a hypertext system, a menu system must exhibit the main
hypertext features, which are the following:

- the database is a network of textual/graphical nodes

- windows on the screen correspond to nodes in the database on a

one to one basis

standard window operations are supported

windows contain link icons which point to nodes in the database

the user can easily create new nodes and new links to new

nodes or to existing nodes

the database can be browsed in three ways: link following, string
searching and graphical browsing.

One of the most important characteristics of a hypertext
system is its linking capabilities. Unlike selections in menu selection
systems, links in hypertext systems can be of several functions and
of different types. There are many systems which do not qualify as
hypertext systems because of their lack of either the underlying
database (eg. window systems) or the interface to the database (eg.
DBMS).

Menu selection is a method of communication with a system,
whereas hypertext is a tool using this method as its means of
interaction. Finally, since a hypertext system is a menu system,
therefore hypertext designers have to consider most of the design
‘issues inherent in menu selection systems (discussed below) as well
as those special to hypertext. When it comes to the use of any
hypertext system, both writing and reading are allowed, but
generally in separate modes normally called author/writer and
browser/reader respectively. However, in considering the design
and use of a menu-based system below, these two modes will be

referred to as the designer and user modes respectively.

3. Menu System Design Issues

It is not yet known what are all the issues or factors that

must be taken into account in order to achieve an effective menu

system, and less is known about what will guarantee the ease of
learning and use of such system. However, many psychological,
cognitive and human factors studies have been conducted in this
direction and these have produced results which can be considered
at this stage as guidelines. Many of these results are common to the
design of interactive systems in general. Only those concerned with
menu systems are discussed in this chapter. Design issues are
considered in relation to the presentational, organisational and

functional aspects of the interface.

3.1. Presentational issues

These issues are concerned with all the presentation aspects
of the interface, that is how text, options and graphics should be
presented to the user. Therefore, attention is focussed on the

constituents of a menu.

3.1.1. Titling

Choosing a title for a menu is as difficult as choosing a title
for a book [Shneiderman, 86]. Different menus need different titles,
therefore choosing a consistent title for a menu becomes a serious
issue to consider. The importance of this issue has been
demonstrated by several studies. Titles can be used to help the user
understand the context of the menu, and to indicate the distance
(level) from the main menu, so reducing the disorientation problem
in deep menus and enhancing the user's confidence. In a recent
study on the effects of the presence/absence of menu titles (showing
the path of previous selections) on the search time and accuracy,

Gray [86] found that the subjects searched more accurately with

titled than with untitled menus, but titles gave no benefit in search
time. Previous selections as titles could also be of great benefit from
the navigation point of view [Apperley & Spence, 83]. Besides the
contextual and navigational help aspects of menu titles, title
placement is also an important parameter to consider. For example,
left justification has been found to be preferable with slow display

rates.

3.1.2. Menu Items

Menu items should fit logically into categories and have
readily understood meanings so that users are confident in making
their selections, and have a clear idea of what will happen when they
make a choice. The design issues concerned with menu items are
very important because the overall design of the menu system itself
is based on them. The issues involved range from phrasing the menu

items to sequencing and selecting them.

ePhrasing menu items

Menu items should be written such that comprehensibility,
clarity and non-ambiguity are assured. This is not as simple as it
appears to be. However, following some appropriate guidelines such
as using familiar and consistent terminology, distinguishing between
items and using consistent and concise phrasing may help lead to
better results in user performance. A consequence of bad phrasing of
the menu items is ambiguity, which is a major drawback in menu

systems.

10

*Sequencing menu items

The second issue concerning menu items is the presentation
issue, in other words how should the items be presented to the user.
Should they be in alphabetical, logical (functional) or random order?
If the items have a natural ordering sequence, the design decision is
straightforward, but in other cases, the designer needs to choose
between the major ordering sequences (alphabetical, functional and
random). The importance of this issue has led to the investigation of
the effect of item ordering on search performance. Card [1982]
reported that people performed better with alphabetical
arrangements than functional which in turn was better than random.
Snowberry et al [83a] also found evidence that a categorical
arrangement results in a more accurate and rapid search
performance than a random arrangement. In contrast Schultz [87]
found no significant overall advantage of alphabetical over random
ordering of menu selections apart from during the initial blocks of
trials, and then only when a deep structure was presented. The issue
of sequencing or organising the menu items is directly relevant to

the semantic organisation of the user's task.

eSelecting menu items

After the phrasing and ordering of menu items comes the
issue of item selection, that is what kind of selection mechanism is
suitable or appropriate for the menu items in question. This
represents the central aspect of the menu system for most users. The
major existing selection mechanisms are on-screen direct pointing
(touch panel), off-screen pointer manipulation (mouse) and typed

identification (keyboard). The most commonly used selection

11

technique is still the keyboard, despite the growing availability of
the mouse on most recent workstations. Therefore, choosing the most
appropriate selection technique for the task at hand becomes an
issue. For systems using the keyboard as a means of item selection,
the menu designer has to decide between different alternatives such
as sequential numbering or lettering the items. Each of these has
advantages as well as disadvantages depending on the task at hand
and the user who is going to carry out this task. Perlman [84] studied
the effects of type selector on the selection times (user think times)
and found that compatible letters (a compatible letter is the first
letter of the menu item it is paired with eg. p for print) were the best
selectors followed by compatible numbers (a compatible number is
the ordinal alphabetical position of the initial letter of the menu item
eg. 4 for Debug) whereas for incompatible selectors, the trend was
just reversed. Another advantage of compatible lettering is to permit
typeahead selections (below). However, it was found that compatible
lettering selectors were useful only if the designer has full control
over the contents of menus (static menus). In other cases (dynamic
menus) compatible lettering could lead to the worst case. Therefore
incompatible (nonmnemonic) letters and numerical selections are
preferable for dynamic menus.

With recent workstations, there is a tendency to use selection
techniques other than keyboard, in particular the mouse, which has
become the most used pointing device. This widespread use of a
mouse might be expected to be motivated by the best selection
performance. Surprisingly, however, Karat et al [86] have just proved
the opposite. They found that the touch panel technique led to better

performance, followed by the keyboard, and the mouse gave the

12

poorest performance and was the least preferred device. 'n Menu

systems using the mouse as a pointing device, only a single selection

mechanism, that is a rigid sequence of single selections have to be
made before seeing a menu at lower levels of the menu structure.

However, with the keyboard as a means of the selection technique

some features that facilitate speed in a menu system can be used

such as:

- typeahead : to go directly to a desired menu by typing in a
sequence of type selectors (characters or numbers). This
technique is also known as the BLT approach [Shneiderman, 86].

- use of menu names

- macros , which allow regularly used paths to be recorded and
used as a single option when invoked.

Highlighting the menu items is another issue to consider in
the menu system design process, but too little work has been done

on the effects of different highlighting techniques.

3.1.3. Menu Layout

Beside the issues previously discussed, another important
consideration in the presentation layer of the interface is the menu
layout, that is how many items or how much information should be
presented to the user and how menus are related together. As with
most interactive systems, the screen (menu) display is a key
component of successful design. Dense or cluttered displays can
provoke anger, and inconsistent format can inhibit performance.
Menus should be designed such that the information displayed
provides cognitive assistance to the user. Since a screen is the

predominant element of the user interface that a user comes in

13

contact with, many user activities are involved such as reading,
visual scanning, remembering and recalling. Therefore all these
processes become part of the screen design process. Information and
layout considerations are design functions that impact on the ability
of the user to scan and digest the screen content, and poor design
contributes to user frustration and fatigue, and can inhibit
performance [Hodgson et al., 85]. Screen layout design is a difficult
task because the demands of each task and user community are so
varied and difficult to measure. However, there are experimental
findings and guidelines which can lead to sensible and acceptable
design. The major principles are visual clarity and memory load
optimisation. These two principles are both involved in the menu size
issue. The effect of menu size on user performance has been
demonstrated by several studies. Miller [81] and Snowberry et al
[83a) found that search time and accuracy increased if the menu size
was increased. Perlman [84] also found that menu size has a linear
effect on the time it takes to find an item and this effect is larger if
the list is random. There is also an effect of menu size on response
time [Norman, 87]. And finally, the effect of menu size on the menu

structure is also important (see next section).

3.2. Organisational issues

Unlike the menu system components previously discussed,
which the wuser sees and deals with directly, the following
components are not necessarily visible to the user. However, the
issues within this "inner part” of the interface are as important as the
presentational issues. The major issues are the way the menus (or

rather the information composing the menus) are structured, and the

14

way they are accessed and navigated.

3.2.1. Menu Structures

In some situations, the task domain may need only single
menus with one or more screens which consist mainly of some items
of instructions to choose from, as in online quizzes and document
processing packages, for example. However, even with these simplest
menus, some of the presentational issues (discussed earlier) are still
under the designer's consideration. An application requiring the user
to make one decision at a time, such as selecting the print
parameters in a document printing package, may need a linear
sequence of menus to guide the user through this decision-making
process. Other organisational issues relevant to such cases are
concerned mostly with movement through the sequence of menus,
for example moving backward, or forward and giving a clear sense of
progress within this sequence.

For a relatively more complex task, where neither single
menus nor a linear sequence of menus are appropriate, a more
suitable way of guiding the user through the problem solving task is
through the use of menu trees or hierarchically structured menus.
Menu trees are primarily used to offer or provide a step-by-step
guidance to the user. The menu structure can have one or more
menu levels, each consisting of a set of items from which the user
selects to proceed to the next level, and repeating the process till the
user's goal is met. It is obvious that structuring the menus in a
hierarchical manner needs great consideration of the presentational
issues discussed earlier in order to assure better user performance

and optimum use of the hierarchical structure.

15

One of the very important issues in designing hierarchical
structures is the question of depth (number of levels) versus breadth
(number of items per menu), i.e how many items each level should
have for a given task. At least three effects can be attributed directly
to the depth/breadth tradeoff. These are visual scanning, memory
load and disorientation problems (which themselves represent
important issues to consider in menu design). Many studies have
demonstrated the importance of the depth versus breadth issue and
have studied its effects on user performance. In two different studies
which consisted of assessing user performance in retrieving items
from four configurations (64 items with 1 level, 8 items with 2
levels, 4 items with 3 levels, 2 items with 6 levels) of a tree
structured menu system containing 64 target items, Miller [81] and
Snowberry et al [83a] found that the goal acquisition times were
faster with the intermediate levels of breadth and slower with the
extreme ones, while the accuracy decreased when the depth was
increased, that is the deepest structure was the least accurate. These
results suggest an advantage of a broader structure over a deeper
one. However, it is not always appropriate to choose a broader
structure for some applications where the depth alternative is not
only an issue but a task requirement. In these cases it is necessary to
provide additional support to reinforce the semantic grouping at all
menu levels in order to facilitate performance accuracy.

Although tree structures are very appealing because they are
the most natural structures for organising levels of abstraction, and
the command-language for navigating them is simple, they suffer
from the disadvantage that the tree structure is a function of the few

specific criteria that are used to creating it [Conklin, 87], and it is

16

often necessary to force a hierarchical organisation upon a task or
domain which does not fit logically and naturally into such an
organisation. One solution is to allow the information elements or
task components to be structured into multiple hierarchies and allow
cross-references between them, resulting in a network structure.
However, network structures may introduce new problems not found
with hierarchical menus. The complexity of menu network structures
may make the understanding or modification of the overall menu
system virtually impossible [Brown, 82]. There may also be
disorientation and lack of flexibility in the order in which the
information is received by the user.

Some approaches have been devised to overcome the
complexity problem of menu networks. Brown [82] adopted the
approach called structured subgraphs and which is inspired by the
top-down structured programming methodology. Part of this
approach is discussed in Chapter Two when considering KMS, since it
a typical example of a menu network system. Arthur [85] proposed
an approach which is based on partitioning the conventional,
monolithic frame (menu) network into a set of hierarchically
structured, disjoint networks that preserve the original network
topology while reducing its overall complexity and size.

There is no perfect menu structure that matches every
person's knowledge of the application domain. The initial design of
the structure can be motivated by some the principles discussed
above, and can be improved over time to meet the user's and task

requirements.

17

3.2.2. Menu Drawbacks
Although a menu system is relatively easy to write and
implement compared with other interactive systems, it does not
necessarily follow that this kind of system is the easiest to learn or
interact with. Poor design in a menu system can lead to bad user
performance because of the many problems that can be encountered
by the user. These problems are likely to be of two main categories,
namely problems caused by a poorly designed presentation layer,
and problems of menu structure. A poorly designed presentation
layer may involve cognitive mismatches caused by the organisation
and categorisation of the information. The following problems form
principally this category:
- ambiguity in choices or selections
- overlapping categories
- extraneous items
- conflicting classification in the same menu
- unfamiliar jargon
- generic items
- weak association between descriptor terms (higher levels) and
target words (lower levels)
- visual scanning and memory load problems.
The problems related to traversal or movement in the menu
structure may include:
- uncertainty in the users about their current position and about
how to move to another state,
- artificially imposed hierarchies, that is hierarchical relationships
between menu items where no real hierarchy exist

- inflexibility

18

3.2.3. Navigation Aids and Techniques

Two main solutions have been proposed to the problems
mentioned above. To avoid problems due to cognitive mismatch,
Shneiderman [86] suggested guidelines which are useful for semantic
grouping in menu structures. These are:

- create groups of logically similar items

- form groups that cover all possibilities

- make sure that items are not overlapping
- use familiar terminology.

The other type of solutions consist mostly of a set of
navigation aids and techniques that have been the results of many
experimental studies. One suggestion that might solve some of the
problems mentioned earlier is to increase the amount of information
per menu [Miller, 81; Snowberry et al.,, 83a] but not to the extent of
increasing the visual scanning and memory load problems and the
response time. This is particularly relevant in menu systems with
large and deep menu structures.

As the depth of a menu system structure grows and becomes
larger, it becomes increasingly difficult for the user to maintain a
sense of position in the menu structure and the risk of getting lost
increases. Many menu systems have adopted different alternatives
to overcome these problems. Some have adopted the method of an
index such as: Prestel whereas some other systems use a map to
show the underlying menu structure. Bellingsley [82], in a study on
the effects of providing a map of the hierarchical structure and a
semantically organised index, found that the presence of a map of
the overall structure helped users develop a mental model of the

underlying structure and led to a better performance over the index

19

method. An advantage for the map over other forms of training in

menu learning has also been reported by Shneiderman [86]. It seems

that offering a spatial map can help the user develop a better mental
model and can thus assist in overcoming many of the problems
above. However, other menu systems and their designers rely on

other means and strategies developed to this end. Apperley et al [83]

proposed some navigation techniques based on the following

concepts.

- Stability, that is the user should be given the possibility to cancel
any choice and return to the state prior to its use by making the
selections bistable (active and inactive).

- awareness of state, that is the current choices as well as the
choices which led to the current ones (previous choices) should be
displayed to the user allowing him/her to cancel, back up, and
select again (incremental and selective retreat).

- parameter nodes, which permit a set of choices which are merely
parameter definitions and which all lead to the same subsequent
node to be replaced by a single parameter node. This is
particularly convenient where the number of choices is large, and
it also assists in avoiding artificially imposed hierarchies.

Other techniques proposed by Hepe et al [85] include:

- instantiation, which consists of displaying all subordinate nodes of
each label after the label of the current node. Snowberry et al [85]
called this upcoming selections. It is not only useful to increase
the user's understanding of the category label but increases
search accuracy as well. |

- sideways viewing, which consists of displaying not only the

upcoming selections (lower levels) but also selections from the

20

superior node to the other nodes at the same level (nearby levels).
This enhances the user's confidence in selection, since it gives a

better perception of the user's location within the menu structure.

3.3. Functional or Computational Issues

The attractiveness and acceptability of a menu system
depends heavily on the speed at which users interact with the
system, that is the pace of interaction. This is characterised by the
system response time, and the display rate. These two factors are
very important in menu system design because they influence other
design issues such as user expectations, speed of task performance
and error rates. Novice users prefer slower interaction together with
more informative and complete displays, whereas more experienced
users would prefer rapid interaction and less disruptive information.
Rapid interaction can increase productivity and user performance
but may also increase errors in consequence. Therefore, how can the
designer choose the most appropriate interaction pace when each
variable affects the other? In any case such a decision must be made
to maximise user performance and satisfaction [Norman, 87]. The
effects and the relationships between the different variables have

been the subject of many different studies.

4. A descriptive/prescriptive model for menu-based interaction

Interactive system design is a very difficult task in general
because it involves so many factors which the designer cannot pin
down by an algorithm or a systematic method. Moreover, the
interface requirements that support user interaction increase in

sophistication and complexity, making the human-computer

21

interaction process even more difficult to understand. However,
people who are concerned with designing and building interactive
systems and have a lot of experience in this field have produced a
number of ideas and suggestions which are purely the results of
their long and rich experience. Guedj [80] suggested to setting up of
guidelines intended to improve the quality of interactive systems,
and since then many others have followed up this suggestion.
Another approach which offers better control over the
interaction process is the use of models which can be formally
specified in order to allow the precise description of the external
behaviour of the system regardless of its internal implementation
[Jacob, 83; Arthur, 86].
For menu-based user interface systems, Arthur [86] proposed a
model that characterises menu-based interaction. It is designed to
provide a basis for achieving understanding of the capabilities and
the limitations of menu-based interaction systems. Arthur suggests
that any menu system is minimally characterised by:
- a finite set of frames each consisting of a sequence of options
- a set of user responses
- a mapping from each frame/response pair to another frame.
Systems displaying only these three characteristics are said to
be information systems or information retrieval systems, because
their main function is to provide the users with information.
Examples include most the videotext systems such as: Prestel and
Ceefax. If these three characteristics are extended with a set of
actions associated with frame item selection, then such systems are
said to be task-oriented systems. Menu systems that provide user

response facilities such as response reversal and item selection

22

histories need another discriminating element which is the
incremental history sequence. Therefore, five discriminating
elements have been identified to characterise menu systems. These
five elements represent the model components. Any menu-based
interaction can be modelled and specified by the following S5-tuple :
M= (F, R, A, H, T) where,
- F is a finite set of frames
- R is a finite set of user responses
- A is a finite set of actions that support system and task-oriented

operations
- H is a set of all sequences over F x R x A , that the set of all

possible history sequences
- T is a transition that maps F x R x Hinto A x F x H as follows:

let h be an element of H and define :

app: Hx (FxRxA)—->H

app (h, y) is the sequence obtained when the 3-tuple y is

appended to H. Vf,f e F,re R,ae A and h, h' € H then

T (f, r, h) = (a, f, h'), where h' = app (h, (f, 1, a)).

This model represents a basic framework within which some
important menu system concepts can be described such as :
- user movement within a menu system
- the incremental history sequence
- the current state of the menu system
The menu systems used in the practical work described in

chapter 3 could all be described within this framework, but such a
description is not presented here, since the main purpose of the
practical work was to explore empirical properties of the various

systems which are not captured by Arthur's model.

23

5. Menus vs other Interfaces
5.1. General

This section discusses the merits of three different kinds of
interface (command language, natural language and form-filling)
relative to the menu-based interface. Different communities of users
with different needs may have different objectives in using the
computer. The way the computer is used or exploited depends on the
task, type and knowledge of the user. Different human-computer
interfaces are needed for different groups of users. For example, text
editing and interacting with an operating system are usually most
appropriately achieved via command language interface, because of
the wide range of capabilities and operations required by this type of
application. Menu or natural language interfaces would not be
appropriate for these applications. One of the most appropriate
domains for a natural language interface is querying databases,
where the query language consists mainly of a subset of a given

natural language such as English.

5.2. Menus vs Command languages

Generally, command language interfaces are used by
experienced and knowledgeable users in a task domain such as
interaction with an operating system. Users can specify their
operations directly simply by typing the names of the commands
along with their parameters, and are therefore offered a vast range
of possible intentions that can be realised, as well as freedom in
accomplishing their goals within the capability of the system. With
menu interfaces on the other hand, possible processing goals are

completely prespecified in advance, and users need only select a

24

permissible sequence to accomplish their goals. Command language

interfaces require users to learn and memorise several commands

and there is usually no online reminder of the set of possible actions.

This leads to many known problems and difficulties with these

interfaces. Possible techniques for overcoming problems associated

with the command language interface (such as the memorisation and
learning problems) include

- commands as prompts : this approach is close to but more compact
than a standard numbered menu, and preserves screen space for
task-related information.

- command menus : a list of descriptive items that can be selected
by single letter presses. This is known as a hierarchical command
language and analogous to the typeahead (BLT) approach
to menu selection.

- pop-up or pull-down command menus : the menu items are
commands which are selected via a pointing device, a mouse. The
Apple Macintosh interface is a typical example.

From this perspective, a menu-based interface is an interface
in which commands are presented via menus. This is a menu-driven
interface. Norman [87] reported five attributes on which the
comparison between these two types (menu-driven and non
menu-driven) of interface could be based. These are as follows:

- speed of use : slow for large and hierarchically organised menu
interfaces, but faster with command language interfaces.

- prior knowledge required : too much demanded with CL
interfaces, whereas menu interfaces are in principle
self-explanatory.

- ease of learning : high in menu interfaces because they involve

25

recognition rather than recall, and facilitate exploration and
discovery of system options. In CL interfaces, on the other hand,
learning is harder because of the numerous names and syntax to
be memorised and recalled, and there is no simple way for
exploring the system. .
- errors : erroneous actions are difficult to determine and recover
from in menu interfaces, whereas errors in illegal commands are
easy to detect and correct.
- most useful for : menu interfaces are more suitable for beginners

and infrequent users while CL interfaces are useful for expert

uscrs.

5.3. Menus vs Natural languages

It might be expected that communicating with the computer
in a natural language such as English would be the most natural,
simple and powerful human-computer interface. Many natural
language interfaces have been designed and built, but applied only to
specific domains where the results are not as satisfying as
anticipated. A common application of natural language interfaces is
in querying databases in which the query language consists of a
subset of English that is translated by grammars to a formal query
language such as SQL [Simmons, 86]. In a Natural Language Interface
(NLI), the users are assumed to be knowledgeable about the task
domain but intermittent about the syntactic details of the query
[Shneiderman, 86]. However, like most human-computer interfaces
such as menu and command language interfaces, NL interfaces
present many problems and difficulties as well. Tennant et al [83]

reported the following problems that NLI suffer from:

26

- typing and formulating questions in a way that the system can
understand is necessary
- high failure rates which often frustrate users
- users often do not use features of the system because they are
unaware of them
- systems are expensive to build and require a large amount of
memory.
Simmons [86] associated the following additional problems with NLI:
- lack of feedback for misformulation of the queries
- user expectations are poorly met
- lack of understanding of human intentions
A possible solution to some of these problems is proposed by
Thompson and which consists of the adoption of menu control
[Simmons, 86], where users select whether to formulate an enquiry
or to supply data. A menu then shows how a command may begin,
and selecting an option causes a new menu to appear showing
choices for possible continuations. This method keeps the user in the
English subset and ensures that the user's queries remain in the
semantic and pragmatic bounds of the system. Moreover, selection
by mouse gives the added advantages of largely eliminating typing
problems and ensures error free-use, accompanied by a satisfactory
feedback showing the user the resulting translation to a simple
formal language. This hybrid form of interface is called by Tennant
et al [83], a menu-based natural language interface. In Tennant's
comparison between conventional and menu-based natural
interfaces the advantages of the menu-based approach over the

conventional one are summarised as follows:

27

conventional menu-based

10-15% failure rate 0% failure rate

typing required selection through pointing.
possible spelling errors no spelling errors

hard to create a sentence easy to recognise a sentence

1-30 man/months per application 1-30 man/hours per application

large memories small memories

However, this does not mean that this approach will always be
preferred, or will replace the conventional one in all circumstances
because conventional natural language interfaces can cover more
design possibilities within an application domain than are possible
with menu based interfaces. Also there are many applications which
either cannot be done with menu interfaces, or long and complex

menu search requires more effort than typing.

5.4. Menus vs Form-filling

For some tasks, requesting the user to type in various values in
various fields of a single display may be more appropriate than the
use of menus. An interface that allows the use of a keyboard as a
means for its input and the display of various fields in which the
values and options are specified and entered is called a form-filling
interface.

Menus and forms are both input mechanisms. The difference
lies in the way input is used. Forms are integrators of information
while menus are displays of discriminating alternatives [Perlman,
84]. A form can be viewed as a menu with random access of fields

via cursor movements. Unlike values in menus, which are assumed to

be valid prior to selection, values in forms are validated. As with
menu selection interfaces, form-filling interfaces also have their

associated design guidelines [Shneiderman, 86].

6. Examples of menu systems

The best examples of menu systems are the systems known
generically as of videotext or viewdata, in which the TV screen is
used to display data or information organised into frames or pages.
They are on-line information retrieval services. A typical version of

videotext is given next under the name of Prestel.

6.1. Prestel

A Prestel database contains many thousands of information
pages, where the key to information retrieval is the indexing method.
A Prestel page is the smallest item of information which a user can
address directly. A page is a screenful with up to ten links to any
other page. Index pages are called routine pages which lead to end
pages which contain information rather than routing choices. But
each page can be extended over up to 26 additional display
screenfuls, each called a frame. A frame is identified by its parent
page number plus a following alphabetic character (a to z). Frames
can only be reached via their parent pages. There are no jump or
reverse procedures for finding frames. Frames permit a logical topic
to be extended over more than the capacity of a single screenful.
Prestel uses also the combined printed directory with the numbered
choices approach.
As mentioned before, hypertext systems are also menu systems, and

apart from the systems which are discussed in chapter two, the

29

following is also a typical hypertext and menu system.

6.2. TIES or HyperTIES

This is a typical example of a menu system which uses the
hypertext approach. The University of Maryland Interactive
Encyclopaedia System [Conklin, 87] is an information retrieval
system which allows users to explore information resources in an
easy and appealing manner. The basic units in the system are short
articles which are interconnected by any number of links (selection).
The links are highlighted words or phrases in the article text
(embedded menus). The user activates the links by touching them by

a finger or using the arrow keys to jump to them. Activating a link

causes the article about that topic to appear in its own window on

the screen.

The major purpose of this work and the thesis as a whole, is to
investigate the functionality and limitations of a number of dialogue
specification systems, from the point of view of a designer wishing to
build a menu-based interface. Mostly the work involves
implementation of a particularly demanding example involving
multiple menu selections. And in order to get a deeper insight into
the properties and limitations of these dialogue specification systems,
practical work was carried out implementing sample problems and

concepts. This work is described in the following chapter.

30

Chapter 2

Experimental Studies In System Use

1. Introduction

This chapter discusses the practical work which was carried
out as part of the investigation of menu systems. The work consisted
mainly of implementing some practical examples using four different
menu-based dialogue specification systems. Each of these
incorporates some important concepts and principles which give the
underlying system its own type and style. However, the differences
in type or style focussed on in this thesis are those relevant to
menu-based user interface systems or hierarchically organised
dialogues.
The practical examples to be implemented were chosen with the aim
of highlighting the relationship between the underlying systems and
hierarchically based systems. Additional aims were to discover
whether the multiple menu selection mechanism adopted by some
menu-driven systems such as the Dining Out In Carlton system
described in [Hepe et al., 85] was achievable or not, to see whether
the implementation of certain important navigational concepts was
possible or not, and finally to investigate the extent to which the
hypertext concept may influence the design of menu selection
systems. A wide range of issues involved in the design of user
interfaces arose in the course of implementing the examples using
the target systems and these issues are discussed together with the

difficulties and deficiencies encountered during those experiments.

31

The chapter is partitioned as follows: section 2 gives an outline
of the examples as well as their special properties which represent
the different sample problems to be implemented using the target
systems, section 3 gives full details of each of the four experiments,

including a detailed description of the different target systems used.

2. Sample problems

In chapter One, some drawbacks were mentioned which
many menu systems suffer from and which represent the main
disadvantages of such systems. Chapter One also described proposed
solutions to these problems, several of which have been successfully
applied in many applications [Hepe et al., 85; Apperley and Spence,
83; Apperley and Field, 84]. Typically, these techniques relate to the
navigation around a given dialogue structure. In order to illustrate
the importance of these techniques, the task of designing and
prototyping a user interface to two menu-based examples was
carried out. The examples chosen for this purpose were Dining QOut
In Carlton [Hepe et al., 85] and the On Line Library based on the CR
classification scheme [CR, Acm press, 88].

The Dining Out In Carlton example gives scope for use of all
the navigation aids and techniques discussed in Chapter One as well
as a multiple selection mechanism, and the principal reason for
choosing it was to investigate how easily these navigational
techniques as well as its multiple selection property can be
implemented in each of the selected dialogue specification systems.

The descriptions of the two examples are given below.

32

2.1. Description of the "Dining Out In Carlton" example

It is a hierarchically organised information system. It was
originally devised to provide information about restaurants for the
experimental viewdata system described by Apperley and Field [84].
It operates at three levels : < a menu of restaurant attributes,

 a list of available restaurants,
» the restaurant's information page.

The first menu consists of a set of attributes where the
user's choice is a combination of selection of three attributes. This
multiple menu selection scheme represents a special property of the
example and which makes a challenge for conventional menu
specification systems. The attributes used are cuisine, location and
price range. This selection leads to the corresponding alphabetically
ordered menu (page) where only one item is chosen or selected.
Thereafter, the corresponding third level menu which represents the
information page of the specific restaurant chosen is displayed. A
valuable feature is also included allowing the user to bypass making
a decision for all parameters in order to browse the available target
space. This facility is known as the Skip-to-target-level option. One
other valuable option named any which gives added freedom to the
user who has a specific value of an attribute in mind but does not
care about the other parameters in order to skip to the target level is
also added. Attribute selection is achieved by the user pointing to the
attribute name with a light pen. The selected attribute name is then
highlighted.

As well as providing information, another purpose was to
provide a working demonstration of most of the techniques

employed to remove the inherent disadvantages of classical menu

33

based information systems. In the implementation discussed here,
only the sideways viewing technique has been omitted (See [Hepe et

al., 85] for more details).

2.2, Description of the On-Line library example
This example is typically based on the CR classification
scheme [CR, Acm press, 88]. This scheme is mainly aimed to classify
and structure all the information contained within the computing
field. The classification scheme consists of two parts:
» a numbered tree containing unnumbered subject descriptors,

+ a general terms list

The tree an 1 criptor,

The tree consists of eleven first level options and one or two
more numbered levels under each of these.
The set of children of all first and second level options begins with an
option named "General" and ends with an other named
"Miscellaneous". The first level options have letter designations (A
through K) with numerals used for the second and third levels. A set
of subject descriptors is associated with most leaves of the tree.
These are essentially fourth level options intended to subdivide the
subject area denoted by the leaves into subareas. Cross-references
between the options within the tree structure are also supported in

this scheme.

The General Terms list

Typically many areas of the computing field share a

common set of General Terms. Therefore grouping reviews in CR

34

according to the General Terms is another way of organising the
information retrieval task. Examples are: algorithms, design, etc...

This general Terms list represent the keywords within this example.

3. The Systems

The four dialogue description systems considered for
practical work in this thesis were: Chisl [Wood et al., 88], Guide
[Brown, 86], KMS [Akscyn et al., 88] and HyperCard (released by
Apple and developed by Bill Atkinson, [Apple Macintosh HyperCard
User's Guide, 87]).

The very first step relating to the use of each system was to
acquire and wunderstand all the underlying features, concepts and
mechanisms concerning the design of an eventual menu-based
system. The respective outcomes of this step as well as the
description of each system are discussed in each subsection of this
chapter.

The idea behind the objective of carrying out the task of
designing and prototyping a menu-based user interface to the
examples chosen was not the use of the end products themselves, but
rather the investigation and consideration of the underlying concepts
which compose each of the target system and the way the design and
implementation of the above examples are achieved. Each experience

is discussed from both the designer's and the user's perspectives.

35

3.1. Chisl

1. Features of the Chisl specification.
Among the key features of Chisl are the following:
i. Chisl is a graphical dialogue specification language which
allows:
» the creation of hierarchically organised dialogues,
 the dynamic reconfiguration of a dialogue specification
without requiring recompilation.
ii. A dialogue consists of sequence of dialogue units hierarchically
structured. Each dialogue unit is specified and stored in a separate
file in a human readable form. The filename is used to identify the
dialogue unit. A dialogue unit consists of a set of options which are
selectable either by the user, the application program or Chisl
itself.
iii. An option consists of:
« an option name: identifies the option and holds information
about the option type,
e a location: the initial coordinates of a selectable screen
object, but optional,
o a condition: a boolean expression such that if is evaluated as
true, the option is selected,
« an action sequence: a list of actions carried out when the
option is selected.
A dialogue unit may also have an entry action which will be carried

out once when the dialogue unit is first activated.

36

The syntax of an option is as follows:
<selection condition>[<location>]<option name><action sequence>;
An option is either local or global.

* local: when declared or defined in a DU (Dialogue Unit), a
local option is selectable or legal only in the DU in which it is
declared. If while in a lower level dialogue unit a local
option is chosen from further up the hierarchy, then the
dialogue will back up to the chosen level of the selected
option.

» global: a global option is exported to each DU called from the
DU where the option is declared even if that DU is
deactivated or exited. A local option, on the other hand, is
selectable only as long as the DU in which it is declared
remains active.

iv. The interpretation and execution of a dialogue specified in the
Chisl language is performed by the Chisl interpreter Chip. The
execute function of Chip is called recursively each time an
activated dialogue unit is encountered within the selected option.
v. Chip uses a condition satisfier to evaluate the selection

conditions of the options which are tested in the following order:

1. global option exported to the current level;
2. local options at the current level,
3. local options at successively higher levels along the
activation path, back to the root.
The Chisl system can be classified as a hierarchically based dialogue

system and appears to be well suited for the implementation of

menu based user interface systems.

37

2. Experience of using the Chisl System.

This section describes the task of designing and
implementing a menu based user interface to the Dining Out In
Carlton example using the Chisl system. Two approaches are devised
for this purpose which consist of using the Chisl specification

language as well as a preprocessor.

2.1. Design and Implementation

This section discusses the design and use of the Dining Out

In Carlton example using the Chisl system. The attribute values
considered here for illustration are: ¢ Cuisine: French, Italian

e Location: Carlton, Abbeywell

e Price: 3-10, 10-15
Only a few attributes are considered in this example in order to

generate small dialogue units.

2.1.1. Using Chisl specification language

The menu of attributes should be displayed first in order to
allow the user to select three attributes in any order achieving
therefore the special property of the Dining Out In Carlton example.

This is how it is done when using the specification language
(See Appendix A for more details on the Chisl syntax). First of all,
the display should be done by the "Root" dialogue unit, let's call this
dialogue unit: "Root". The attribute values or items are considered as
local buttons or options and identified by the attribute values

themselves. So,ﬁ‘the contents of this dialogue unit in the present

example would be:

38

{B_French} X0Y6 B_French assign(reg97,French);
{B_Italian} X0Y7 B_Italian assign(reg97,lItalian);
{B_Carlton} X20Y6 B_Carlton assign(reg98,Carlton);
{B_Abbeywell} X20Y7 B_Abbeywell assign(reg98,Abbeywell);
{B_3-10} X40 Y6 B_3-10 assign(reg99,3-10);
{B_10-15} X40Y7 B_10-15 assign(reg99,10-15);
{B_quit} X0 YO B_quit% quit();

{B_Show-List} X10Y10 B_Show-List% assign(reg91,View);

{(reg97=French) AND (reg98=Carlton) AND (reg99=3-10) AND (reg91=View)}
View reset(reg91) DI[];

{(reg97=Italian) AND (reg98=Abbeywell) AND (reg99=10-15) AND (regd1=View)}
View reset(reg91) D2[];

The execution of the Root dialogue (above) by the Chisl intrepreter

Chip issuing the following command: "Framex Root " will generate the

—_—

display of figure 1.1.

PSR

@ G

figure I1.1. Display of the attributes (main menu)

For simplicity, we suppose that only two selections (a combination of

3 options) have associated menus of available restaurants. So, two

39

dialogue wunits could be called or activated whenever the
corresponding selection condition becomes true, which means:
(1) if (reg97=French) AND (reg98=Carlton) AND (reg99=3-10) AND
(reg91=View) then the dialogue unit D1 is activated, or
(2) if (reg97=Italian) AND (reg98=Abbeywell) AND (reg99=10-15)
AND (reg91=View) then the dialogue unit D2 is activated.
These two selection conditions illutrate perfectly the multiple menu
selection property of the Dining Out In Carlton example.

Each dialogue unit is specified in the same way as the Root
dialogue unit. Only the dialogue unit D1 is considered here for

illustration. So, D1 may look like:

{B_1.Frenchl-Carlton-3-10} X0 Y9 B_1.French-Carlton-3-10
assign(regl,item1);
{B_2.French2-Carlton-3-10} X0 Y10 B_2.French2-Carlton-3-10
assign(reg2,item?2);
{B_Show-Info-Page} X20Y0 B_Show-Info-Page%
assign(reg90,0K);
{(regl=item1) AND (reg90=0K)} OK reset(reg90) DI1[];
{(reg2=item2) AND (reg90=0K)} OK reset(reg90) DI12[];

This means, that the dialogue unit D1 displays a menu of
two local options (items) and one global option. The execution of this
dialogue unit together with the root dialogue unit by the Chisl
interpreter will generate the display of figure 1.2. This execution can
be achieved without necessarily issuing explicitly the execution
command. This can be done simply by selecting the "New Root "

option (figure 1.1) which invokes the Chisl interpreter to execute the

updated dialogue in consequence.

40

Startup Frame : Root,
Default Option < None
B

*THIS IS A 3-ATTRIBUTES INFORMATION SYSTEM®

8 This 1s the list availsble
I
:

(@uTt) (Ghou-List) (Skip-To-Target-tevel) (Shou-Iafo-fage)

figure 1.2. Display of the available list amdg

So, if iteml and the global option are selected (identified by
registers "regl" and "reg90") then the dialogue unit DIl is activated,
the information page corresponding to the item chosen
(1-French-Cardlton-3-10) is displayed, or if the item2 is selected
then the dialogue unit DI2 is activated instead.

Let's consider the dialogue unit DII. D11 will display the
information page where the target information is always retrieved.
Usually, the information page which is the main concern of the
information system provider contains a large amount of information.
There are many ways of presenting or displaying this page on the
screen providing better layout and greater clarity. So, doing this
using the Chisl specification language will lead to larger dialogue

units and require great attention to writing a more accurate dialogue

specification.

41

The dialogue unit D11 could be specified as follows:

ENTRY message(0,15,13,"THIS IS THE INFORMATION PAGE")

message(1,15,14," ")
message(2,10,15," CHEZ MAXIM(****)")
message(3,10,16," ")

message(4,5,17,"SOUP ")

message(5,5,18,"~.~.~

{B_Dummy} X0 Y13 B_Dummy assign(reg92,Dummy);

The execution of this dialogue unit together with the two

ey -

dialogue units already specified above by Chip will generate the

display of figure 1.3.

This is the 11st avaflable

THIS IS THE INFORMATION PAGE

CHEZ MAXIM(****)

(@) Grou-iist) (kip-to-farget-tevel) (Shou-Tnfe-Fage)

figure 1.3. Display of the information page

42

As we can see from this dialogue unit (D71), all the layout of the
information page should be done explicitly by the means of a
pre-defined routine message which takes as arguments: the message
identifier, the (X,Y) coordinates of the first character of the text and
the text to be displayed. Finally, the dummy option is added so that
the dialogue unit can be exited when selecting an option from the
upper level in the hierarchy (a deficiency in the present version of
Chisl).

As has been demonstrated in this exercise, the multiple menu
selection property was possible using Chisl. Moreover, options from
three different levels of the dialogue (figure 1.3) are made available
to the user, which illustrates the instantiation or upcoming selection
technique (chapter 1). Finally, since the first level options are always

available, therefore, the parameter node concept is also possible.

After having specified all the dialogue units, the dialogue is
hierarchically organised (figure 1.4). The hierarchical nature of this
dialogue structure arises from the fact that the dialogue units are

called from within an action sequence.

43

D21 D22 D11 D12

figure 1.4. Hierarchical Dialogue structure.

As consequence of experience in using Chisl, an auxiliary goal
was formulated. The new objective was to provide a means of
specifying a dialogue without necessitating the learning of a formal
specification language, the aim being to avoid the misleading
impression of the system's functionality given by the Chisl
specification. This new goal led to the construction of a preprocessor:
the Chisl preprocessor. The preprocessor specifications are given in
appendix A. The design and implementation of the same dialogue or

example using the preprocessor are discussed next.

2.1.2. Using the preprocessor
With this method, the user, instead of specifying the dialogue

in terms of dialogue units and the Chisl specification language, has to
specify the dialogue in terms of ordinary text files called the

PreChisl DU files (See Appendix A). These files are translated into the

Chisl specification language for later interpretation and execution by
the Chisl interpreter Chip. Three types of files have to be specified or
created because there are three levels in the hierarchical structure of

the example.

i. The attributes file
This file contains all the information related to the options to
be displayed (attributes) at the first level. Let's call this file F. In the

present example, its content would be:

- French, Carlton, 3-10, Italian, Abbeywell, 10-15 represent the
options names (attributes).

- Fl1, F2 are PreChisl DU files, containing textual information about
the list of restaurants which will be displayed at level 2.

- iconl, icon2, icon3, icon4, icon5, icon6 represent the names of files
containing the icons to be displayed upon a selection of the
corresponding option in order to indicate the selected state of the

option since this facility is not available in the current version of

45

the Chisl system.
- D1, D2 are the Chisl DU files into which F1, F2 are translated

respectively.

ii. The PreChisl D 1
F1, F2 are of this type. Only F1 is considered here. F1 is:

1.Frenchl-Carlton-3-10
F11
D11
2.French2.Carlton-3-10
F12
D12

- F11, F12 are PreChisl DU files of type2, files containing detailed
textual information about a specific item at level 2.

- "1.Frenchl-Carlton-3-10", "2.French2.Carlton-3-10" are the two
items displayed upon the selection of the three attributes (French,
Carlton, 3-10), that is the local options at level 2.

- D11, D12 are the Chisl DU files into which F11, F12 are translated

respectively.

iii. The PreChisl DU _files type2
F11, F12 are files of type2. Only F11 is considered .

This file is an ordinary text file which can contain any text. No special
format is required for this type of file, since the content of this file

represents the information page. This file is exactly displayed as it is

written. So, by this means, it is much easier to modify or add items of

information. F11 may look like:

46

THIS IS THE INFORMATION PAGE

CHEZ MAXIM (%

SOUP
1o o
2

APPETISERS
Lo 7777
2,

MAIN COURSE
L e
2

DESSERTS
Lo 7

As can be seen from this example, the file structure (figure 1.5) is

equivalent to the dialogue structure (figure 1.4) which is being built

using the preprocessor.

/ \ :file type!

F

Q)

b

F2

O : file type2

Figure 1.5. Hierarchical PreChisl DU file structure

47

2.1.3. Invocation of the preprocessor

When all the textual files are created, the dialogue is built
and subsequent communication between the user and the system is
via the user interface generated by the Chisl system, as illustrated by
the figures above. The command: "PreChisl F Root " takes two file
names (F and Root) as arguments. F is the name of a file containing
textual information about the attributes (see Appendix A) to be
displayed as the main menu options. Root is the name of a file which
will become the Chisl root dialogue unit. The information contained
within the file F will be translated into the Chisl specification
language within the dialogue unit Root. Thereafter, issuing the
command: "Framex Root " will invoke the Chisl interpreter to
execute the prespecified and translated dialogue. This will result in
the displays of the figures 1.1, 1.2 and 1.3.

The user makes his choice of parameters, after which a list
of available restaurants is displayed. Thereafter the user can
selectively retreat to change any of the three parameters. This
results in an updated list based on the new value and the other
(unchanged) attributes values. At the third level of the hierarchy, the
user can also either return to the first or second level in the
hierarchy by either selecting one option from the main menu options
(displayed by the root dialogue unit) or an option displayed by one

of the second level dialogue units.

The current implementation of the Chisl system does not
provide an implicit way for displaying a history of the selected items
or the current path. However, this is achieved in an explicit way by

displaying an icon for each attribute upon its selection in a separate

graphical window (figure 1.2).

48

3. Discussion

The two versions of the "Dining Out In Carlton" example (the
version described in [Hepe et al., 85] and the one prototyped in Chisl)
are discussed in terms of differences and improvement.

The major difference resides in the way in which the
techniques discussed earlier are illustrated and exploited, and the
user interface supported or generated for each version.

In the first version described in [Hepe et al., 85], most of the
navigational aids are used apart from the sideways-viewing one
which is quite difficult to achieve within the conventional display
used. Moreover, the user interface is organised in such a way that:

At level 1, the user is presented with the display of

figurel.6 from which he selects a combination of three

options (attributes) leading him to level 2.

Dining Out In Carlton

cuisine locaation price(f)

French Carlton 3-10
Itaalian Abbeywell 10-15

Select an option, or

View the list of restaurants.
Quit the restaurant giude.

Figure 1.6. Display of option menu at level 1.
<At level 2, the user is presented with the display of
figurel.7 which replaces the first display. At this level, the
user can either select an option which will lead him to the

third level or return back to the option menu.

49

Dining Out In Carlton

French
Carlton
3-10

You have selected ;

1.French1 Carlton 3-10,
2.French2 Carlton 10-15

Select arestaurant from list
Return to the option menu, or
Quit the restaurant guide.

Figure 1.7. Display of a list of restaurants at level 2.

*At level 3, the user is presented with the information page
of a specific restaurant chosen at level 2 together with the

options allowing him to return to either of the previous

levels.

It is clear that the user is presented with only one display at a time
where the backtracking option is necessary for navigating or moving
through the system hierarchy. In a hierarchically organised system
where the backtracking option is the only means for navigation, it is
hard for the user to see and understand the efficiency and the
powerful navigational aids provided by those techniques. However,
in the version prototyped using Chisl, some of these techniques, such

as parameter nodes and selective retreat, are automatically
supported or provided by the Chisl system. This is due to the more

flexible way in which local and global options are handled as already

50

demonstrated. Moreover, the instantiation technique is better
illustrated when using the Chisl system since the user can see
instances from all the three levels simultaneously (see figure 1.3). By
this means, the user can navigate more accurately and rapidly
through the system hierarchy. More important is the fact that the
user is given the opportunity to cancel any doubtful choice and
change his choice, since the option menu is always available to him
(see figures).

Finally, the sideways viewing technique which has been
omitted in the original or first version, could be easily included in the
second version. This could be achieved for example by displaying all
the nearby menus (level 2) in a second interaction window. So, if an
option is selected from that window, the menu to which this option
belongs could be displayed in the principal interaction window. But,
and unfortunately, the present version of the Chisl system (still in
the process of development) does not handle or support the case of
displaying and selecting from another window apart from the control

panel window. This has prevented the realisation of the idea above.

4. Difficulties and Deficiencies in Chisl.
This section outlines some difficulties and problems

encountered during the above experience in using Chisl.
1. Only one string of characters is allowed to represent an option.

2. An option is identified only by the string, so no identical strings

are used.
3. A dialogue unit must have at least one local option in order to be

exited.

51

4. Nonexistence of a primitive or a function which allows the
removal of a button as for example for a message.

5. The option or button selected should remain highlighted as long as
it is activated.

6. Sometimes, an infinite loop situation could happen, when for
example in a parent dialogue unit one or more test conditions are
found always to be true when calling another dialogue unit where no
test condition is true. This may be due to the misuse of the registers.
7. Sometimes, the error messages displayed by the Chisl interpreter
do not seem to be very explicit.

8. The number of the registers manipulated is limited. So in a very
large dialogue the situation of lack of resources could happen where
for example more registers are required.

However, some of these problems have been solved in later versions

of the Chisl system.

5. Summary

One of the major difficulties in the Chisl system is the
hierarchical structure of the dialogues and the specification language
itself. In the beginning it was quite difficult to map the user interface
design requirements onto the Chisl specification language, but, after a
period of time using the system a better perception of Chisl was
acquired. The use of the Chisl system would highlighted the privilege
of one class of users (knowledgeable) from another (novice or
casual). Nevertheless, many of the techniques mentioned in chapter
One have been implemented in the chosen example and some

important concepts are well handled by the Chisl specification

language.

52

In the course of carrying out this exercise, the need became clear for
an additional tool to simplify the creation and editing of menu
structures of the type required by the exercise, and a preprocessor
for this purpose was constructed. This had the added advantage of
relieving the dialogue designer from the need to have a detailed
understanding of Chisl syntax (The long-term aim of the Druid
project, whose work produced the Chisl language, is to provide
high-level graphical tools for editing all aspects of a dialogue

specification).

FRERR RS

53

3.2. Guide

1. Description of Guide
Originally, Guide was designed typically for electronic or
interactive documentation purposes and first applied to the Unix
documentation [Brown, 86]. It is an interactive computer-based
document system, whose user interface exploits hypertext concepts,
eg. links (Chapter One). Guide may thus be considered to be a
"hypertext computer-based document" system. It allows users to
build their own documents interactively by providing a simple way
for selective display of information and for creating material that can
be so displayed. Guide, as a tool and as a hypertext system, can be
used for: storing, cataloguing, cross-referencing, structuring,
prototyping and retrieving information
Guide is available commercially for both the Apple Macintosh
and IBM PC-compatible micros from Office Workstations Ltd. of
Edinburgh, who ported and developed the system originally
implemented on Sun workstations by Prof. Peter Brown of University
of Kent. The experiments described here were carried out using the
Sun version, which has some minor differences from the Apple and
PC versions supplied by OWL.
In the Sun version, Guide provides a special command dialogue
within which many important hierarchical structure concepts are
embedded. Some major concepts and principles of the Guide

philosophy and which are common to many hypertext systems are

discussed.

54

2. Concepts and Principles
2.1. Buttons
One of the most important features of Guide is the notion of a
button (which in the hypertext terminology introduced in chapter 1
is simply called a link). Guide offers two major types of button or
link:
ereplace-button : causes the button to be completely replaced by
the text and/or picture pointed to by the button when it is
selected. There are three kinds of replace-buttons:

definition-button: the replacement associated with the

replace-button applies not only to the button itself but can also
be employed by other usage-buttons and/or glossary-buttons
(See below) that match the same name.

local-button: the replacement applies only to the button itself.

usage-button: the replacement is created dynamically (eg, using
the definition or the result of running a shell-script).
A group of replace-buttons may be organised such that all the
buttons are replaced by one button's replacement. These buttons
form an enquiry. The replacements of this kind of buttons are
displayed within the principal frame-of-view (below). These buttons
are made emboldened when created.
eglossary-button, the replacement of a glossary-button is called a
definition. Whenever a glossary-button is selected, its associated
definition is displayed in a separate area called a glossary-view
(See below) and the original button still remains. This is the
difference between these two types of button. A Guide
document may contain several occurrences of the same
glossary-button. Moreover, several different glossary-buttons
share the same name, that is they have different

may
definitions. A glossary-button is underlined when created.

55

2.2. Views

Unlike many other hypertext systems, Guide does not support
heavy use of windows that have one-to-one correspondence with
nodes in the database (chapter 1). Instead Guide has adopted the
'split screen' display concept and generates different, independent
areas called views or frame-of-views.

In the Sun implementation, a Guide screen consists mainly of
one Sun View window which may be divided into different views
(see figures). It is screen-based, that is it provides a convenient user
interface by displaying a whole screenful of information, menus,

etc...together with a scrolling mechanism for each view.

2.3. Editing
Guide allows the capability of editing by providing the user
with some facilities in order to manipulate the material to be edited.
Guide provides two types of editing :
eTextual editing, the usual way of editing.
eStructural editing, only possible in author or design mode where
the underlying structure is made visible. This allows the author to
identify the types of buttons where each structure (button and its
replacement) is delimited by special characters. Buttons
(structures) can only be created in author mode using an
additional menu which consists of a set of commands (see
Appendix B). The way the buttons and replacements are
constructed is made invisible to the reader (user). Guide
distinguishes an ordinary text file from a source file in such a way

the former does not contain any structuring (no underlying

structure visible to the reader).

56

2.4. Replacements

Unlike many other interactive systems, Guide provides three
useful mechanisms whereby buttons are replaced automatically on
loading. Each mechanism meets a different user need, but only two of
these are worth considering in the present discussion. These concern
the automatic selection of the buttons with specific properties or
unasked replacements. They are:

*Asking-level and User-level

Each replace-button has an asking-level (a digit between 0 and 3).
It is set to 1 by default at creation. The asking-level can be
changed by the end-user. Associated with each user is a user-level
which is set to 1 by default. The user can change his user-level by
specifying it in the command which is used to load the source file.
This mechanism implies that all the replace-buttons for which the
asking-level is less than the current user-level are automatically
replaced (without asking the reader). It is mainly used to control
some buttons such that the end-user or reader may not be aware
of. This mechanism can be regarded from the designer's point of
view as one of many important techniques for accommodating

different communities of wusers with different needs and

requirements.

ePreset replacement

Unlike the first mechanism, this one is principally useful from the
user's perspective since it gives the opportunity to have some sort
of control over individual local and definition replace-buttons.
Presetting a button means not only is the button itself replaced but
all the replace-buttons of the same name are automatically
replaced too. This can also be preplanned by the author. More

details about Guide and its concepts can be found in [Brown, 87].

57

2.5. The command dialogue

All the structural editing and authoring are achieved via a
special set of menu commands which represent the menu
specification language of Guide. The description of these commands is
given in appendix B. The underlying principles of the menu
specification language language are explored by considering the

implementation of an example.

3. Experience of using the Guide system

A different example was chosen for examination instead of
the Dining Out In Carlton example previously discussed in the Chisl
section, because of the unsuitability of Guide for that application.
This inappropriateness arises mainly because the notion of buttons
and their replacements does not fit well with the requirements of the
main menu in the example, which consists of a set of attributes that
can be selected in any order and in any number (1, 2 or 3). This
means that neither the different types of buttons nor their
combination can be used to achieve the multiple attribute selection
property of the Dining Out In Carlton example. However, if the main
menu is considered as a multi-level menu attribute, the notion of
buttons may apply but still in a rather inappropriate manner. In
principle the example could be implemented in a purely hierarchical
fashion, although this would impose an unnatural constraint on the
attribute selection scheme, and would lead to a combinatorial
explosion in the overall structure. This is the main reason why
another example had to be considered instead. The example used
was the On-Line Library already described in chapter 1.
The following section discusses the major points involved in the
design and implementation of a Guide interface to the On-Line

Library example, and outlines the important steps in the

58

implementation.

3.1. Design and Implementation

This section illustrates Guide from the designer's perspective,
in particular how the information handled within the On-Line library
example is structured and presented to the end user, and how the

menu specification language provided is exploited for such purpose.

3.1.1. Entering the design (author) mode

Guide uses the end user (reader) mode as its default mode,
where only a set of menu commands (see figure 1b in Appendix B)
are available. Therefore selecting the author option from this menu
switches to the author mode making available an extra set of options

(see figure 2b in Appendix B).

3.1.2. Authoring and Design

This has much to do with structuring and representing the
material to be displayed and accessing the information to be
retrieved. The hierarchical organisation of the menu items implied
by the CR classification scheme should be displayed in the principal
view accordingly, that is the four menu levels of the On-Line Library
example should be displayed such that whenever a menu item is
selected, its corresponding lower level options are displayed within
the principal view. To meet this requirement, This menu item should
be created as a local replace-button, and its lower level options as its
replacements. All the four level menus are created in the same
manner. In order to make the display clear, the menu items are
displayed such that the hierarchical structure of the menus is well
reflected (see figures) on one hand. On the other hand, menu items

not already selected (emboldened) are distinguished from the menu

59

items already selected (plain text) which themselves appear within
the displayed replacement (See [Brown, 87] for more details on the
creation of local replace-buttons). Figure 2.1 illustrates the first level
menu (main menu) of the example in author mode.

All the options of the fourth level (subject descriptors) should
lead to the display of their respective target information when
selected. Instead of displaying the target information within the
principal view which may render it clutter and inadequate for visual
scanning and reading, it is displayed in a different view
(glossary-view). To this end, all the fourth level options are created
as glossary-buttons and their respective target information is created
as their definitions. These definitions are created in special
definition-file called the glossary.guide file (See [Brown, 87] for the
creation of glossary-buttons and their definitions). There are some
other menu items which do not have any further associated options
such as: "General" and "Miscellaneous"”. These options are also created
as glossary-buttons (see figure 2.2). So far, only hierarchical
organisation is illustrated. Since cross-references exist in the CR
classification scheme and in order to distinguish them within the
prototype, references are put between brackets (see figures). A
cross-reference means jumping from one node to another node. In
this example, a cross-reference is represented by a button, when
selected, brings up a set of options of an already existing node within

the tree structure. Therefore, to meet this requirement,

cross-references are created as usage-buttons, because a

usage-button uses a definition of an already existing button (See
[Brown, 87] for the creation of usage-buttons).
This is how all the information is structured and presented to

the user. In author display, the underlying structures are made

visible to the designer helping therefore the authoring and the

60

design of the prototype. The figure 2.4 shows the main menu in
author display. Each structure is delimited by two special characters,

in this case B and its mirror image for a button.

shetltoo!l = /bin/ceh

Quit New Read-on Save Block-edit Author

A.GENERAL LITERATURE

B. HARDWARE

"C.COMPUTER SYSTEM ORGANIZATION
D. SOFTWARE

E.DATA

F.THEORY OF COMPUTATION
'G.MATHEMATICS OF COMPUTING
H.INFORMATION SYSTEMS
J.COMPUTING METHODOLOGIES
K.COMPUTER APLLICATIONS
L.COMPUTING MILIEUX

figure 2.1. main menu in (e deq display R
|
The possibility of switching to the reader display while prototyping
the user interface to the On-Line Library example is a very helpful

and useful facility allowing the designer to see the prototype as the

reader would see it.

3.1.3. Saving the prototype
After having built the prototype, this has to be saved. It can

be saved either as a source file or as an ordinary text file. In this

case it is saved as a source file with all its underlying structures. The

name of the source file in which the four level menus are saved is

library.gu and the definitions are saved in the glossary.guide

source file.

61

3.2. Using the prototype example
This focuses mostly on the reader's perspective, in particular how
users move around the information space to reading and finding

information.
3.2.1. Entering the user's (reader) mode
There are different ways to enter the reader mode. But only two are

considered in the present discussion

i. by starting a Guide session

The user loads the source file by issuing the following command:
guide library.gu . Therefore, the display of figure 2.4. appears on

the screen. The default mode is reader mode as said before.

shelltool = /bin/csh !
Quit New Read-on Save Block-edit Reader e

+Local +Definition +Usage +Action +Glossary

+Enquiry Change-button Destruct Extend Find :
HEEA.GENERAL LITERATURER
| BB.HARDWARER
| Bc.coMPUTER SYSTEM ORGANIZATIONS
Bp. SOFTWARER]
BE.oatall
BF.THEORY OF COMPUTATIONE
(B1G.MATHEMATICS OF COMPUTINGE
BIH.INFORMATION SYSTEMS
BJ.COMPUTING METHODOLOGIESH

BIK.COMPUTER APLLICATIONSE
BL.COMPUTING MILIEUXE]

ain menu) 1 aulfio~ ‘L“"f"wa

figure 2.2. First level of menus (m

ii. within _a_Guide session

During a Guide session, switching to reader mode (if not already in)

is by selecting the reader command from the menu of figure 2b in

Appendix B.

62

The first case is likely to be the normal and usual way of entering

reader mode.

3.2.2. Reading and Retrieval

Retrieving information is the main purpose in using the
prototype. Retrieving all the books covering a specific topic in the
computing field or finding all the books written by a given author
both are examples of information retrieval task that a user is likely
to be carrying out. Guide provides two strategies or ways for

information retrieval task, these are:

1. link following or item selection

The information seeking process can start from the main menu

(see figure 2.1} by selecting the appropriate menu items till the
'target information is found.
Let's consider the following example, selecting the menu item.. .. -~
labelled "H.INFORMATION SYSTEMS" from the main menu (figure 2.1)

will cause an extra menu items to be displayed as in figure 2.3.

shelitool - /bin/csh L
Quit New Read-on Save Block-edit Author

A.GENERAL LITERATURE

8. HARDWARE

C.COMPUTER SYSTEM ORGANIZATION
D.SOFTWARE

E.DATA

F.THEORY OF COMPUTATION
G.MATHEMATICS OF COMPUTING

H.Information Systems HO.General
H1.Models & Principles

H2.Datbase Management(E.S)
H3.Information Storage & Retrieval
H4.Information Systems Applications

H5.Miscelianeous
bt sl bbbl

J.COMPUTING METHODOLOGIES
K.COMPUTER APLLICATIONS

figure 2.3. Second level of menus

63

Therefore selecting

to the display of figure 2.4.

Quit Mew Read-on Save Block-edit Author
'

A.CENERAL LITERATURE

8. HARDWARE

C.COMPUTER SYSTEM ORGANIZATION

D. SOFTWARE

£.0ATA

F.THEURY OF COMPUTATION

G.MATHEMATICS OF COMPUTING

H.Information Systems HO.General

Hl.models & Principles H10.Generz!

HilSystem & Information theory(E.Q
H12 User Machine systes
HimMiscellaneous

H2.Datbase Management(E.S)
H3.Information Storsge A& Retrieval
H4.Information Systems Applicatfons
H5 Misceltaneous

J.COMPUTING METHOOCLOGIES

K.COMPUTER APLLICATIONS

L.COMPUTING HMILIEUX

figure 2.4. third level of menus

for example "H1.Models and Principles" leads

Finally selecting for example "H10.General" will lead to the display

of figure 2.5.

shelltosl = /bin/esh

| Quit MNew Read-on Save B8lock-edit Author

F.THEORY OF COMPUTATION
G.HATHEMATICS OF COMPUTING

H.Information Systems HO.General
Hl.models & Principles H10.General
H11.Systew & Information theor{E. 4
H12.Usar Machine system
Hle Misceitaneous

H2.Catbase Management(E.S)
H3.Information Storage & Rstrieval
H4.Information Systems Applications
H5 Miscattaneous

6056
6049
6047

6043
s8a1
5831
5746
s74s

| 5744

Data Bases Brighton, Sept. 1-4 1987

Clvan (H33) o ¥
0.ANorwan & S.W.Draper (ds} {D22) User Centersd System Design
.M. Stocker & W.Xent (ds) (AO0) Procsedings of the Thirtesath Internationai Coafersace an Vary Lerge

#.A Bernstein ot al (H22) Concurrency Control and Recovery in Systeas {;

L.Winfield (H12) Homan Resources and Computing
E. a0 wnd Datab Syst Concepts snd Issues (mweOvarnightas)

THMerrett (H20) Relationsl Information Systems
P M Stocker ot sl (ds) (H20) Databases - Role and Structurs
M.LBrodée st sl (H20) On C: tual or

from Actiticial e

figure 2.5.

Programsing Lanquages

Display of the target information

64

As it is illustrated by the figures displayed above, some of the
navigation techniques mentioned in chapter One are well handled.
The figures highlight the availability of more than one level of menu
items at a time, illustrating therefore, the instantiation or upcoming
selections technique on one hand. On the other hand, nearby menu
items are also made available and selectable, thus illustrating the
sideways viewing technique. Moreover, these two techniques could
fully and completely illustrated if the user sets his user-level to the
highest level, and all the menu items are automatically replaced, thus
the whole structure is made available and visible. Finally, the

parameter node concept would have no sense in this example.

. string searching

In this case the information seeking process can be restricted to a
string search. This implies that the string to be searched or found
within the information space has to be specified. However, there
are different ways of doing so in Guide. Typically this is
expressed by the fact that the find command can be invoked
differently. This method is more appropriate for searching for
general terms which are the keywords within the information
space of the example. This is achieved by selecting the find
command from the command dialogue (See figure 2b in
AppendixB), and by typing in the string to be searched for in a

prompt frame-of-view provided for this purpose.

4. Discussion
The previous sections have been mostly on the Guide tool

concepts and principles and the design and implementation of a

particular application encompassing these principles and highlighting

the underlying specifications of the prototype built. The discussion in

65

this section will principally focus on the major design issues raised
during this particular experience. These issues concern typically the

following points.

4.1. The command dialogue

The menu commands provided have been used to construct
the menu-based prototype as shown in the previous sections.
Therefore, the concepts embedded within this command language
seem to be attractive for hierarchically structured systems, but
non-hierarchical structures are also supported. Moreover, it enables
a number of features that overcome many of the objections to
hierarchically organised systems such as instantiation and upcoming
selections (Chapter 1) to be realised or achieved. It can be considered
as a menu specification language embedded within the run-time
environment. This helps increase the flexibility and efficiency of the
prototype creation and use. There is no particular specification
syntax to learn. However, some negative effects due to the misuse
and mishandling of those concepts may occur. Some of the merits of

command menus are also discussed in (chapter 1).

4.2. Structure and navigation concepts

Unlike many other systems, Guide does not include the
concept of a browser which is usually used to give a global view of
the structure or a part of it as a means for traversing the structure
and especially when it grows more complex, but instead it uses the
scrolling mechanism.

Instances are made selectable at any time. Moving up and down the

menu structure are straightforward. Although Guide does not

provide explicit Goback , Goto and Cancel as in other systems, upper

level menu items are available, and upon selection, the user moves

66

up the hierarchy thus performing the Goback action as in Chisl. Also,
the Goto action is catered by the fact that usage-buttons can just do
that (cross-references). Moreover, Cancelling a menu item is simply
done by undoing its replacement, therefore returning to a state prior
to its use.

However, some negative effects may become important issues
when considering the information space as a whole and the
movement around it. In effect, if the information to be displayed to
the user in not well laid out even for simpler hierarchical structures
which are the most natural way of organising the information, it will
be difficult to grasp and understand the overall structure, let alone
the navigation aids and concepts embedded within that structure.
Sometimes, organisational links may point to pieces of information
which when combined together form a hierarchical structure which
is not visible at all to the user when displayed because of the linear
display of the information. It is only the display which is linear but
not the underlying structure. This does not help the user develop a
suitable mental model of the underlying structure. Therefore, the
getting lost problem known with many other systems becomes an
issue. Furthermore, by traversing down through the levels of menus
and moving around the information space the user may forget the
original context in which the material was retrieved, because there is
no way for providing cues or displaying selected records (history
selection). The approach used in KMS for such a purpose is to assign
an asterisk (*) for a previously selected item such that when you go
back up a level, you easily recognise the item previously selected,

therefore avoiding to selecting it if another search path is required.

In Guide you have to rely on your memory in order not to follow the

same path again. This makes the memory overload problem another

issue. but it is not as severe as is found in other systems supporting a
b

67

heavy use of windows (or frames in KMS and Cards in HyperCard).

4.3. The User Interface

From the user's point view, any user interface created with
the Guide tool is characterised primarily by its simplicity and
ease-of-use. This is due mainly to the "frame-of-view" concept and
the selection mechanism used (click on a mouse button).

From the designer's point of view, however, Guide does not
provide enough facilities to help the menu designer to conduct and
design a well and efficient menu-based user interface. Guide is
lacking techniques which might help increase the visual scope of the
user and which addresses the problem of cognitive layout of user
interfaces [Norman et al.,, 86]. This may result from the limited text
editor (highlighting facilities not available) used and also from the
concept of replace-buttons and their replacements which do not
allow much freedom in the way the information (surface layout) is
presented. This issue concerns typically the way in which the user
views and cognitively processes information presented in the
different views which may compose the user interface. Therefore the
designer has to consider very carefully the surface layout from
which the user's mental model (cognitive layout) is derived. A
broken visual scope of a Guide display may cause confusion,

disorientation and difficulty in locating needed information on the

display.

Unlike many other menu systems, the number of menu items which

can be generated becomes a less important issue because of the
scrolling mechanism used. Extended menus [Shneiderman, 86] may
also benefit from this scrolling capability, thus speeding usage.

Finally, I believe that more functionality and appropriate techniques

68

are needed to be added to those already supported in order to
generate more flexible, consistent and efficient menu-based user

interfaces despite their simplicity and ease-of-use.

4.4. Reconfigurability

Most of the prototyping is carried out during the design process. The
behaviour of the Guide interface and more exactly the way the
information is made accessible and displayed to the user may be
more or less modified dynamically and tailored to meet the different
needs of different users exploiting the Ask-level and User-level
concepts discussed above. Since structural and textual editing are the
only operations that are involved in the prototyping process, then
the behaviour and the interface and the changes made to it are
rather restricted and limited. End users as well as designers may be
involved in the modification and reconfiguration. However, the
interface designer has the possibility to protect the interface from
being modified and changed. Moreover, there is no way of changing
the internal specification of the interface nor can the command
language used to build it be extended or respecified. This point is
common to many systems eg. KMS. It is obvious then Guide can be
regarded as a user interface style dependent creator tool. It enforces

a particular interface style, like many other systems eg. Chisl and

KMS.

5. Summary

Another system which belongs to the family of systems that

may be regarded as user interface management systems has been

studied and investigated. This analysis has shown that creating menu

systems using Guide is possible but not to the extent of supporting

the full range of conceptual operations that the user requires for a

69

given range of tasks. This is mainly due to the lack of functionality of
the design tool and inappropriate exploitation of the various concepts
embedded within the provided design environment. It may also
result from the fact that creating menu-based user interfaces is not
what Guide was intended for. In spite of this, some interesting design
issues with their respective consequences have been raised. Some
are common to many design tools and some others are purely typical
to Guide such as: no explicit navigation commands, support for
navigation aids aimed at overcoming the drawbacks of hierarchically
organised structures, dynamic prototyping, and equal opportunities
to designers as well as end users. Finally, I believe that more power
and control over the Guide design environment is the key to a better

achievement of its stated intentions.

TR

70

3.3. KMS

1. Description of the KMS system

There is no unique way of categorising KMS, since it
combines features from many types of software such as word
processors, database systems, document management and
information management systems. It can be described as:

» a spatial database system for managing (representing, accessing
and using) all kind of knowledge which might be called:
free-format

information (information which does not fit predefined patterns),
* a computer-based document storage and training systems,

* an electronic communication system via messages and discussion
frames. In other words, it can be described as distributed
hypertext system for managing knowledge in organisations.

KMS is claimed by its suppliers to be a general purpose
human computer interface system. It is based on the Zog approach to
human-computer interaction developed at Carnegie Mellon
University and used on the aircraft carrier USS CARL VINSON
[Robertson et al., 81]. It uses primarily on the concept of menu
selection, with a large database of menus and rapid response to
selections. This makes the KMS Interface a particular style or type of
interface. But, when considering the retrieval and the structure sides

of the interface, KMS is best described as an information retrieval

system.

2. Concepts and Principles
In this section, the major components which define or

characterise the particularity of the KMS system and all the systems

similar to KMS (based on common principles) are identified.

n

2.1. The Database

On the storage and the knowledge management sides, KMS is
mostly characterised by its database whose design is based on some
uncommon notions (different from the traditional ones). The

following are worth mentioning:

Large size : The KMS database may be large enough in order to
accommodate many thousands of frames without affecting the
responsiveness of the system.

Shared bv multiple users : The KMS database accommodates

simultaneous use by many different users so that it can provide a
simple but rich means of communication among the users.
Menus : A KMS database consists of a set of menus, whereas in a
more conventional database, this can a set of records. In KMS
terminology, a menu is called a frame. A frame is displayed in a
KMS window which can have only two sizes: half or the whole
screen.It has : » a unique name displayed in the upper right
corner,
« a set of options,

e a menu of global commands at the bottom.

ﬁtem-selected frame-id

-+ Inext]Goto] *-**

A frame format

It contains objects which are of three types:

« items : text items or points,

« connected objects : items that are connected by lines and may be

72

simple or complex,
e sets : items and connected objects that are enclosed in a
rectangle.
Each frame belongs to a frameset (set of frames). All the frames in a
frameset share a name prefix, that is the frames have the names as

frameset-name i, where "i" is the creation order of the frame.

Generality of representation : The KMS database is designed to

handle all kind of knowledge. It integrates text, graphics and
images in frames which are WYSIWYG screen-sized chunks of
information. So, frames can be created , edited, modified and
saved. There is no separate editor. In effect, KMS is good at
handling free-format information.

Network | Tree structures : A KMS database can have a network

structure in which data items can be linked to others data items in
the database. Links are the interconnections between frames that
are the essence of KMS.
Any item can be linked to another frame. This operation involves
changing the item's link property. The links between frames are
very important because they allow
o frames to be arranged into hierarchies or network structures.
o creation of cross-references between related frames.

Frames can be linked together to form a Hypertext-like database

(Chapter 1). Links can also have attached procedures to be executed

when selected.

2.2. User Interaction

This section outlines some important concepts which govern

the KMS User Interface and the User Interaction. These are:

Menu selection : Almost all interaction with the KMS user interface

is done by making selections from the currently displayed menus.

73

Except when using the editor and answering for system prompt.

Fast response and Browsing : Upon an item selection, a new menu

(frame) appears instantly (about 1s on average). Rapid navigating
makes it easy to browse through large portions of the database and
quickly move around within a smaller groups of menus. There are
three ways for navigating a KMS database:

«Clicking on an item that's linked to a frame using the left button
of the mouse which is labelled Goto whenever the cursor moves
close enough the item.

*Going back, to a frame displayed earlier by clicking the left
button of the mouse which is labelled Back when the cursor is in
empty space.

+Clicking on one of the navigation command items at the bottom of
the frame using any button of the mouse. Some of these are: Goto ,

Next, Previous .

Direct manipulation : The KMS system uses the direct manipulation
approach to handle most editing operations which are performed
directly on objects using the mouse buttons together with

WYSIWYG features.

2.3. Functional extension
KMS provides some mechanisms for extending the system to
allow new functions to be added. This is governed by the following

principles

Mapping data structures : The data structure of a new application
should be mapped into frame formats and interconnection
structures within the database.

Embedded programs : Programs that are needed to implement new

functions are written in a special way that allows them to be

embedded within the system, so that they can be used without

74

having to leave the system. These programs can be invoked via
active menu selections (items with associated actions).

Environment frames : These are special frames from which the

programs are invoked and controlled.

3. Experience in using the KMS system

Since, KMS supports only a single selection mechanism, it is
apparently clear that the multiple attribute selection property of the
Dining Out In Carlton example would not be achievable. Moreover,
the achievement of some of the important navigation concepts
(chapter 2) would be very difficult because of the unavailability of
the required underlying language constructs. However, the concept of
rapid response to item selection as well as large frame display in
KMS might be helpful and appeared to provide a reasonable solution
to achieve the stated goals. Therefore, the strategies devised to
exploit the concepts for a design and implementation of a user
interface to the Dining Out In Carlton example as well as the
application of the key design issues described in chapter One are

discussed next.

3.1. Design and implementation

Instead of considering the full complexity of the Dining Out
In Carlton example, a simpler exercise with the same multi-attribute
selection property is discussed. Let's consider two attributes namely
A and B and their respective values are A/ ,A2 ,Bl and B2 .

But, before going through this exercise in detail,
rementioning some of the important steps of a similar exercise in
Chisl at this point will serve as a reminder.

In effect, this is what the main menu would look like if implemented
in Chisl:

75

Al Bl
A2 B2
Showlist

A selection of a combination of (A,B) in any order, or one of (A,B),
or none of (A,B) would lead to the display of the corresponding
menu (level 2).

» The user's choice is taken into account if and only if he issues
the showlist option (the user is responsible for his choice).

 The displayed menu has a limited number of options where only
one selection is made.

e Every time an item is selected, it is highlighted as feedback.

» It is possible to have more than one combination of (A,B) that do
not have corresponding menus, for which a warning message is
displayed.

o The structure of the example is hierarchically organised.

For this particular example, n=2 (number of attributes).

The maximum number of frames that can be generated is
then: 1+ 4 + nl + n2 + n3 + n4

This means, from the main menu (level 1), four other frames are

possible (level 2), "ni " is the number of frames (number of options)

generated from frame "i" at level 2. These frames represent the level

3 of the hierarchy.

In general, the maximum number is :

n m
1+ T IAj I+, | Fj| where: | Aj | represents the number of values ?f atn'ibute Aj
F1 o=l | F; | represents the number of options in frame

F; (level 2)
m=T IAj l, j=1,n

Actually, thinking about implementing the example using KMS

suggested two possible approaches which are discussed separately.

76

The first approach

This approach discusses attempts to follow the same
methodology used in the Chisl implementation. An important feature
of the Chisl application 1is the availability of the main menu at all
times. Following this approach, the first thing to do is to add to the
Home frame (as described in section 3.2) a new item called
Examplel, which will be an index entry to the example's database.
The very first link to the database leads to the creation of a new
frameset (if desired) which will have a unique name. Alternatively,
the item may link to a new frame within an existing frameset.
Assume a new frameset is being created with the name of EX. So far,
a new KMS database is being created and accessed whenever the
item Examplel is selected. As stated from the previous sections,

every time a frame is created within the frameset EX , that frame is
identified by its unique name in the upper right corner EXi where

"i" is the order in which the frame is created. For example EX1 , EX2

and so on.

So, the main menu (first frame) within the frameset EX is EX/ .

EXI may look like :
examplel EX1

A B
Al B1
A2 B2

It is also stated that only one item is selected at a time and only one
frame is displayed at a time .

The selection of one item at a time implies that at least 3 selections
(2 for selecting the 2 attributes and 1 for selecting one option which

is about to have detailed information) are needed to meet the

retrieval task goal.
The single selection of either Al or A2 or Bl or B2 means that 4

different frames, each of which is linked to one one of the 4 items

77

above have to be created. The first two levels of the structure are as

follows:
examplel EX1
A B
.Al .Bl
.A2 .B2
global commands
Al EX2 A2 EX3 Bl EX4 B2 EX5
A B A B A B A B
Al Bl Al B1 Al B1 Al Bl
A2 B2 A2 B2 A2 B2 A2 B2
figure 3.1

The dots (.) mean that the items have frames linked to them.
Figure 3.1. shows that one of the attributes values has already been
selected. The selection of each of the four attribute values would lead
to the display of a frame making available the other attributes of the
main menu selectable. At this level, a second attribute has to be
selected, this achieving the required 2 attribute selection before
meeting the retrieval task goal.
At the second level, two different frames have to be created from
each frame . This means for example, from the frame EX2 , two
frames linked respectively to BJ and B2 have to be created and
identified by EX6 and EX7. So selecting A/ at EXI would leads to
the display of EX2 and selecting B/ or B2 would leads to the
display EX6 or EX7 performing 2 attribute selection in consequence.
At frame EX2 for example selecting A2 would mean
cancelling the previous item (Al) and this would lead to the frame
EX3 , thus, the link to the frame EX3 from A2 at EX2 has to be
created or added. This shows that there is no way of cancelling a

selection after it has been done before seeing the frame which is

78

linking to ..e. the selective retreat (chapter 2) facility is not
supported in KMS. This is because, the selection is directly taken into
account and the display is immediately performed. This does not
allow much time for decision making. So, the next level (third level)
in the frameset (database) structure consists of 8 frames which are
respectively (EX6, EX7), (EX8, EX9), (EX10, EX11), (EX12, EX13). At
this level, let's consider only one frame for discussion eg. EX6. EX6

would look like:

B1 EX6
A B
Al B1
A2 B2
-
optl . opt3
opt2 . opt4

The contents of the frames of level 3 are different from those of the
frames of upper levels, because at this level a limited number of
options (requiring detailed information) is also added. This third
level is very much like the level 2 in the Chisl implementation.
Different numbers of options are available within each frame. So, all
the frames linked to those options have to be created. These frames
will represent the level 4 of the structure and which also represent
the target frames.

As in level 2 (figure 3.1), selecting B2 at EX6 would mean
cancelling B , then the link to the frame EX7 has to be created. Note
that A/ and A2 are not selectable, but remain visible only for
keeping the main menu visible at any time. Using this approach, the
number of frames composing the first three levels is : 1 + 4 + 8 = 13

frames. The number of frames in the last level (level 4) depends on

the number of options at level 3.

79

In this example we have 2 attributes (n=2), so the number of levels
generated is 4.

In general, for n attributes, the number of levels which will be
generated is n+2.

At level 2 we have P = 2 I A; | frames, where |A; | is the number of
1=1n values of attribute A;

So, if P increases then the structure get broader, and if n
increases then the structure gets deeper. This means, at least (n + 1)
decision levels are required before retrieving the target. This
approach has exploited the rapid response to item selection to
simulate the multi-attribute selection property of the example and it
is shown that this may lead to a huge and complex structure. From
the frame builder's (system designer) point of view this situation
may become frustrating, irritating and time consuming. The structure
generated in this approach is a network structure.

What has been discussed so far is the way the frameset (database)
structure is generated and what's the impact of the idea of attributes
on the database structure which might be very huge and complex.
Therefore, another attempt to reduce the complexity and the size of

the structure is carried out and which is discussed in the second

approach.

Second approach
In this approach, the structure of the database is reduced in

complexity and size. This is due to the decision making process
offered by the frame builder, which affects the way the main menu
is presented. In effect, instead of having a decision point as a single
attribute value, a decision point in this approach is taken to be a
combination of different values of the attributes eg. (Al1,B1), (Al,
B2) and so on. This approach is another way of simulating the
multiple attribute selection property. Thereafter, the main menu

80

may look like:

examplel EX1

main menu

1.A1-B1 2.Al1-B2
2.A2-B1 3.A2-B2

The limitation of one selection (one attribute combination) at a time
implies that 4 frames have to be created (as in the first approach).
But this number can be further reduced if only the items which are
really needed can have their corresponding frames created. This
means for example if (A2-B2) does not lead anywhere or is not a
decision point then this item should be removed from the main
frame. This will generate only 3 frames instead of 4. This removal is
also motivated by the fact that the combinatorial method might
cause the cluitering of the screen. However, an item can be added
when needed.

Assume only 3 items (combinations) are available at this stage. Thus
only 3 frames have to be created from EXI .

In this approach, two design alternatives emerged and considered

eAlternative#l

If the number of items in the main menu is very small and if it is
possible to fit them altogether with the frame options within the
display of this frame then the implementation of the parameter node

concept is possible. This is illustrated below:

81

examplel EX1
main menu

iteml .item2
item3

global commands

\ 4
iteml EX2 item2 EX3 item3 EX4
.optll
.opt12 item1 H——P .opt21 ¢———P| .op31
.opt13 .item2 .opt22 Aiteml .opt32 Jitem1
Jitem3 .opt23 item2 .opi33 Adtem2
.opr24 .item3 item3

N~ S

At level 2, the frames of the next (third) level or those corresponding
to the options available have to be created and the cross-reference
links for the main menu items have to be added as well.

Let's consider EX2 for explanation.

item1 EX2
.optll .
.0pt12 iteml
.opt13 [tem2
.item3

Item2 and item3 are linked respectively to EX3 and EX4 . Selecting
item2 at EX2 would mean cancelling the previously selected
combination (iteml) and therefore changing the node or the path in
the tree structure, in this case jumping to the frame EX3 . This
alternative illustrates the concept of parameter node in the sense
that selecting another combination at any frame of level 2, would
lead to the display of a frame which would have been displayed

when selecting the same combination but at the first level (main

82

menu), this is to say, no explicit backtracking is necessary. Note that
creating frames causes the increase of the depth of the structure, and
creating links means creating cross-references to the adjacent

frames.

eAlternative#2

When the number of items in the main menu is large, the
fitting of this menu within any frame becomes inappropriate and
inadequate. This means a purely hierarchical structure is created by
allowing a single selection, and a different display for each frame.
Therefore, the navigation or movement through the hierarchical
structure is purely based on the navigation techniques or commands
available in KMS.

The point discussed so far relates to one of the important
design issues, a menu based system designer has to consider. This
issue is obviously the user interface structure. Two approaches are
given highlighting or illustrating this point and different structures
are constructed in this experiment. For this particular example, no
one seems to be better or more appropriate than the other since each
of them has its advantages and disadvantages. Therefore, the choice
of the structure depends on the scope of its application.

Beside the importance of the user interface structure, there
are also many other important design issues to consider, especially
the one related to the presentation layer of the user interface. KMS
provides valuable techniques and facilities that can be used by the
menu system designer to improve the presentation layer of the
interface. These include the highlighting techniques and the direct
manipulation features of the KMS system.

The concepts of frame and rapid response to item selections

can be exploited if help facilities are needed to be included within

83

the Dining Out In Carlton example. However, giving instructions and
providing help facilities for the example designed can have its impact
on the overall structure. In effect, on-line instructions and help
facilities can be provided within different frames. There could be an
instruction or a help frame for each menu item. This means that a
whole help structure must be created and can be huge and complex
itself. Meanwhile, some other design features are purely under
control and restriction of KMS . For example , the display rate and
response time are important features of KMS that can not be handled
by the menu system designer. Moreover, handling error messages,
and allowing typeahead and short cuts schemes (chapter 1) cannot

be achieved within KMS.

3.2. Using the example
This part of discussion will focus mostly on the way the user
interacts with the KMS environment within which the previous

example is implemented and how information is retrieved.

3.2.1.Starting KMS

In the KMS version 4D available on the Sun-3 workstation, users
must enter KMS directly from the basic Unix shell. KMS can not be
run from within the Sun View environment.

To start KMS: The user types the word kms <CR>. After a few

seconds :

« The screen is divided into three windows, one small across the
top for messages from KMS, and two large windows. In each of
the large window a KMS frame is displayed.

« The home frame is in the left window, it is the base of operations
in KMS. It serves as a top-level index to the user's area of the

KMS database. This frame is automatically displayed whenever

84

KMS is entered. The first time the user runs KMS, a home frame
is created for him/her. The frame will be called
user-login-namel . But in (section 3.1.), the item index examplel
is created from the frame builder's home frame. This frame is
very much like the Home Card in HyperCard (next target system)

* On the right window is one of the KMS information frames,
which indexes some interesting features which can be used later
by the user (on-line tutorial).

Throughout all this discussion, I have considered the frame
builder (menu system designer) to be different from the system user
(end user). Their home frames are different. But let's assume that
the item index examplel is added to the user's home frame. This
means that the user can access the example's database directly from
his/her home frame. However, this is not the only way for accessing
the database, going directly either to the frame builder's home frame
or the example's main frame (EXI) if their names are known to the
user is also possible. Assuming the example's database is accessed,
from the user's home frame by clicking on the item reading

examplel to display the main frame EXI from where the

information seeking process begins.

3.2.2. Browsing and retrieving

There are two different ways for accessing and retrieving

information within a KMS database.

(i) item selection

The information seeking process can start from the main frame
(EX1) by selecting appropriate menu items or browsing through

the information space by selecting the navigation commands till

the target information is found.

85

(1i) string searching

The example's database may also be searched for a specific
string. This can be used via the search facility available within
KMS, and if the string is found a frame containing all the
occurrences of the string is created. These occurrences serve as

links to the frames containing the strings.

4. Discussion

This section focuses mostly on what might be called the
limitations or deficiencies of the KMS Interface and their impacts on
both the application designer and the end user. Finally, some possible
improvements based on recent research findings are discussed.
The major points considered are as follows:

- Frame and Commands concepts

Selection mechanism concept

System structure and navigation concepts

!

Interface modification and interface level

Error messages, error prevention and error recovery

Frame and Commands concepts

While interacting with the KMS environment, I found that
the commands and the KMS concept of frame easy to use. Whereas,
differentiating or distinguishing between frames was quite difficult
except by the frame names and the contents of the frames.

This fact has also been reported in Mantei's work on disorientation
problem in the Zog system [Mantei, 82]. 1 believe, however, this is
due in part to the similarities of the frames (standardised frames) t.e.
same formats, same commands, same location on one hand. On the

other hand. to the very rapid display of the frames.

80

Yet, another major component which is worth considering within the
KMS concept of frame is the use or presence of a standard set of
commands at the bottom of the screen (frame) and the commands
associated with the mouse cursor (labels). I found that the
availability of the same set of commands at the bottom of the frame
confusing, misleading and error-prone especially in the very first
time (beginning users). This is due because, some commands are
made available in inappropriate context such as: save and rest
(restore), where there is no change made to the current frame,
undelete , where is nothing to undelete, home , where you are
already in the home frame and finally, previous , next where there
is neither next nor previous frame to go to.

So, in order to prevent the user from any confusion and
allow the dialogue to be more appropriate and more efficient, I
believe, either removing these commands and make them visible
only when needed and appropriate or make them unselectable
(mouse not sensitive to these commands) could greatly enhance the
user interaction with the system. The idea is well supported by
Lieberman since it is used in his EZwin kit which is used to
implementing a wide variety of interfaces [Lieberman, 85]. He also
stated in his paper that using the mouse to select a command or
displayed object in situations where it is inappropriate is a common
source of error in menu systems, thus he suggested a dynamic
control of mouse sensitivity or command visibility in order to
prevent erroneous selections and which KMS does not handle very
efficiently. Another drawback of the mouse sensitivity in the KMS
interface is the negative effect of the immediate selection response,
providing no cancelling or undoing the action taken.

When in empty space, the cursor is associated with three

commands which are back ,line and rect (rectangle). Unlike the

87

goto and create commands there is no implicit cancel to these
commands. However, cancelling them is possible whenever another
command is pressed at the same time which causes the system to
ignore the function of the buttons pressed. This is not apparent at all
to the user (I discovered it myself accidentally).

Another inconsistency concerning the "dialogue manager” is
that when the cursor moves close to the frame name (upper right
corner), the cursor is associated with four commands which are goto ,
move , delete and copy. The inconsistency concerns the first three
commands, in effect when clicking on goto, the command is
highlighted but nothing happen, when clicking on move, the
command is also highlighted and a warning message which says the
frame name can't be moved is displayed. Finally, when the delete
command is selected, a prompt waiting for a yes/no to delete the
contents of the frame, even the frame is empty (the contents has
already been deleted or just created) is displayed. Once again, these
commands should be removed or be context sensitive as it is stated
before. In addition to all this, there is no way neither for aborting a

command nor undoing the effect of some unwanted commands.

Selection _mechanism concept

It is stated in the previous sections that single menu
selection, and the display of one frame at a time represent the
central aspect of the user interaction with the KMS interface.

From my own experience with the KMS interface, hence
gaining more familiarity with it, I found the Interface rather
restrictive and limited concerning the user's activities. This particular
style is forced upon the application designer. In effect, the specific
application carried out has used only a single menu selection scheme.

Adopting this selection style together with the mouse as a pointing

88

device, KMS does not allow either the application designer nor the
end user to use none of the type-ahead or short-cuts schemes.

However, KMS uses direct access and rapid response as its
strategy. This implies that the frame should be known. Moreover,
rapid response can have its negative effect on novice users who have
not enough time to build a cognitive representation of KMS frameset.
Mantei [82] reported that there were more complaints of users
becoming lost at 9600 baud than at 1200 baud. As a consequence of
all this and especially after carrying out the exercise, I believe that a
multiple menu selection mechanism is more appropriate for the tasks
that require several menu selections and these menu selections
should be made bistable (chapter 1). Moreover, these multiple menu
selections should taken into account only upon the user's
confirmation.

Part of this idea is supported and evaluated in Dunsmore's
study and reported by Shneiderman [86] where most of the subjects
have preferred the highlight-return form to the item-return and
immediate response forms. With this form, the errors made were
very fewer but slightly slower than the immediate response form
(the form KMS adopted).

Finally, to my knowledge, apart from Brown's work on
controlling the complexity of menu networks, little work has been
done on systems which permit multiple selections from the same
menu, which could be in my opinion of a great importance for the
design of user interfaces. In his paper Brown [82] presented some
basic but very important structures that arise in most menu systems.
These are inspired by top-down structured programming

techniques, and include I OF N , modelled by the case structure. The

idea of a multiple selection scheme is also supported as he extended

the 1 OF N structure to the M OF N structure. This structure is less

89

commonly used but is very useful. It allows a user to pick any
number of entries (including Zero) from a list in any order. This is
very important in application with no obvious, natural order for
presenting things. In such cases, each user needs the freedom to
make decisions in the order that seems appropriate at the time,
given the user's specific knowledge, background and orientation with

respect to the problem at hand.

System_structure and Navigation concepts
The navigation concept plays a big role within the KMS

environment. It represents the way of moving around different
locations within the environment. This movement is made very fast
and quick enough that the links provided by the KMS interface act
like "magic buttons" [Conklin, 87]. Moreover, this feature makes KMS
behave as a hypertext system (Chapter 1).

So, link following makes the navigation easy,
straightforward and surprise free if the location within the menu
network and how to get to specific places are both known. However,
this is not the case all the time, i.e. the answer of where am I and
how to get to X is not always obvious and sometimes can be very
difficult to be aware of that frustration and desistment are the most
common consequences for such situation which is known as the "
disorientation problem” [Mantei, 82, Conklin, 87]. From this point, it
is obvious that the navigation concept is directly linked to the system
structure which is being navigated.

My own experience with the navigation commands within
KMS showed however that some of them are still lacking of
consistency in such a way that a novice user can be easily misled in
his/her exploration of the system structure. I am referring

particularly to the next and previous commands which have been

90

mentioned earlier, but this time the inconsistency concerns the way
these commands behave or guide the user in his/her decision making
process. The simultaneous use of the next, previous and even back
commands when exploring a system structure which is not
necessarily equivalent to the structure of the information being
presented may very well result in a search task failure because of
the unfruitful paths taken. This can disappear gradually when the
user becomes more familiar with the behaviour of these commands.
Moreover, a successful backing up to a recognised or a visited frame
may help the restart of the task. Another user difficulty when
navigating through a large structure is the difficulty in maintaining
an overall understanding of the semantic organisation. This is due
mainly to the way the structure is being viewed, where only one
frame is viewed at a time. This is very like much seeing the world
through a cardboard tube [Shneiderman, 86]. This forces the user to
rely entirely on his memory for efficient exploration of the
information space. Thus another problem in the KMS interface is
encountered. It is known as a memory overload problem and which
affects especially novice users. Two major problems related to the
KMS interface have been identified and discussed in this section:
disorientation and memory overload problems. It is obvious that the
second one can cause the first one. The disorientation problem was
the subject of Mantei's thesis where she concluded that the major

cause for user disorientation was due to the interface structure.

Interface modification and interface level

Some specific points concerning the user interaction have
been identified throughout the previous sections. It is known now
that KMS provided a menu-based interface where most of the user

interaction is via menu selection which is particularly suitable to

91

novice users. This means that the users are not in full control on the
system nor can the application designer offer them such a possibility
apart from invoking some agents (programs) and the freedom of
choice of the menu items or commands. In addition to menu selection
(ignoring the editor interaction for the moment) a sort of a
conversation window only for system prompt and user response is
also provided.

Thereafter, I believe that in order to generate a more
appropriate dialogue and enter in a more effective interaction with
the user interface, an alternate or a mixture forms of dialogue is
required and suggested rather than base the user interface on one
particular format. I am particularly suggesting that the alternating
with a command-driven interface is essential not only on the KMS
environment level but extending it to the operating system level
(Shell level). This would allow the user to control and initiate an
interactive dialogue instead of a menu item or answering to a system
prompt.

In effect, while practising with the KMS environment which
can not be run from within the Sun View environment, I had the
impression as though my activities with the computer are limited
and also obstructed or prevented from another environment (the
Unix environment). Then exiting the KMS environment is necessary
before shifting to the other environment.

Concerning the interaction style, the KMS interface can be
considered as a one fixed and shared level user interface. It does not
allow neither the novice users nor the experts ones to accommodate
this level (changing the interaction style) at their will.

However, it does provide a valuable feature through its
editor interaction though there is no separate editor. This feature

represents the possibility of the tailoring or modifiability of a given

menu network. This means that the user may become an application
designer or enter the designer mode. This modifiability is only
supported at the frame level. This facility enables the user to
represent his own understanding and referred way of dealing with
the material of the net [Robertson, McCracken & Newell, 81]. But the
ability to modify some structures may have some negative effects
such as forgetting the changes made [Mantei, 82], causing the
explosion of the overall network, whereas the freedom in linking
may complicate some search or learning tasks [Shneiderman, 88].
Therefore, the application designer is provided with a frame

protection facility which can avoid the problems above.

Error messages. error prevention and error recovery

The last point to discuss in this section is the one concerning
the error handling within the KMS environment. Since, KMS is
supposed to be everything to the user, where he/she encouraged to
experiment and to explore the environment more freely. Thus, errors
may be made at any time as a natural result of attempting to do a
task [Lewis & Norman, 85].

Most of the errors which can be made when interacting
with the KMS environment are principally due to the inconsistency of
some of the commands discussed earlier. But the errors are minor
because of the simplicity and the interaction style used. There are
few situations where errors can be made. Principally, during an
editing session, most of the errors made are minor and easy to
recover from.

In effect, the Restore command is used to undo all the
typing previously done, and the Undelete command is used only to
undelete at most the last 32 deleted items, but before saving any

changes made explicitly or displaying another frame. otherwise they

93

are inappropriate. These two commands can be considered then as
error prevention or error recovery facilities. Another error-prone
situation could arise whenever the creation of a new frameset with a
non valid name is attempted. Therefore, KMS just ignore the action
taken, displaying a warning message saying that the name was
invalid. This also can be regarded as an error prevention scheme.
Finally, concerning the messages displayed or prompted to
the user, most of them are explicit and understandable.
All this is seen mostly more beneficial and helpful from the user's
point of view. But, KMS does not provide the application designer
with any simple and possible facilities to handle the error cases
himself, apart from may be a special language in the frames

themselves are written, but this is not even recommendable at all.

5. Summary

I have discussed the most relevant points of one particular
style of human-computer interface and outlined some important
characteristics of this particularity and its impact on the design of
user interfaces in general. I have mostly focussed on the user
interface issues and identified some important problems and
deficiencies in such interfaces. Therefore, I believe that reconsidering
some design issues within this type of interfaces is undoubtedly
necessary in order to improve the user interface both at the human
and system sides. Although this, KMS has a great success over the
years it took to be developed. The reason may be attributed to the
simplicity of the interaction style and frame concept. Moreover, its
success may also be attributed to the concept of hypertext systems
which is taken very seriously in the recent years. In fact, KMS is

considered to be a particular hypertext system: structured browsing

system [Conklin, 87] even if it was not the type of system intended in

94

its early stages of development.

I have also stated that getting lost or disoriented in a menu
network was a fact in KMS. This can be attributed principally to the
misinterpretation of the user interface structure.

Different structures have been constructed for the same
task because different ways of presenting the information are
needed. The differences in the information presentation is motivated
by the way or strategy for the simulation of the multi-attribute
selection property. This leads me to formulate the following idea:
Providing a better selection mechanism than the one used in KMS
(single menu selection only) may lead to a better presentation of
information, therefore to a better perception of the user interface
structure which will surely improve or decrease the disorientation
problem. I am particularly suggesting that a multiple menu selection
mechanism may be used for this end. Moreover, improving the
navigational techniques used can also have a great impact on the
problem: providing or giving a global view of a menu network is
greatly recommended and helpful in such systems.

It is understandable that the KMS system is intended to be used by
novice and expert users, providing a single interface mechanism
which is sufficient to support most computer functions needed by the

user.

95

3.4. HyperCard

1. Description of HyperCard

When it comes to the amazing number of things that can be
done with HyperCard, it is very difficult to describe it accurately.
However, this can be considered as a personal toolkit that gives users
the opportunity to use, customise and create new information using
text, graphics, video, music, voice and animation. In addition, it offers
an easy-to-use English-based scripting language called HyperTalk
that allows users to write their own programs. Goodman ([87]
describes it as a multi-faceted authoring system in the sense that it
allows the creation of proper applications and running others'
applications. Unlike database managers, which store information into
a predefined pattern or format, HyperCard permits browsing through
information, cross-referencing and establishing new relationships
between pieces of information. Bill Atkinson, the author of
HyperCard, has described it as a "software erector set" that allows
non-programmers to easily construct sophisticated interfaces
[Conklin, 87]. Finally, HyperCard can be considered as a UIMS that
can be classified among those which share a similar way of
specifying the interface, but differs in the way that the underlying
concepts of this class of UIMS are handled or supported. These
differences are discussed next in terms of the concepts and entities

which give HyperCard its originality.

2. Concepts and Entities

This section gives an overview of the concepts and basics
which govern the HyperCard philosophy and also outlines some of

the important underlying features. Typically, this section is

96

concerned with the way of creating, representing and accessing

information within HyperCard.

2.1. Objects

Like many other new UIMS, HyperCard uses the concept of
objects through which all the user interaction is performed and
within which information is stored. HyperCard provides five

different objects which are:

*Stack : This is the simple idea HyperCard is based on. A stack is a
named collection of related cards. This can be seen as a disk file
that serves as a HyperCard application.

Card: This represents the on-line screen metaphor of any
HyperCard information base or in other words, HyperCard's basic
unit of information. A card may contain buttons, fields and
MacPaint-like graphics combined in any way. In hypertext
terminology, a card may represent a node (Chapter 1) within a
HyperCard information space.

eBackground : This is very similar to a card in the sense that
buttons, fields and pictures may be contained within a
background as well. A card has only one background, but a
number of cards can share the same background.

+Buttons : They are the primary action parts of a HyperCard stack.
They may point to a specific card or perform a complex task.
These may be considered as links in hypertext systems technology
(Chapter 1). There are two different kinds of buttons :

background buttons, Which appear on every card associated

with a given background.

card buttons, which appear only on the card where they

have been created.

97

*Fields : These are the place or recipients where only text is
entered and stored. Like the buttons, fields are also of two types:
background fields and card fields. A card can have several fields
which can overlap one other to any depth.
Each of the five objects mentioned above has its own
properties which allow the object to be handled as a separate and
different entity. These properties may include: the object's name,

object's number, object's id, object's style, object's script and link.

2.2. User interaction
Interaction with HyperCard (objects) depends on the user
level. This means that different levels of use are provided in order to
control the use of the objects. HyperCard offers five different levels
of access which are discussed next according to level order.
- Browsing : This read only level enables users only to roam
around the information space. At this level, only a few functions
are allowed such as opening, copying and printing a stack..
- Typing : Beside all the functions allowed in the previous level
(browsing) more new abilities are added at this level such as
adding new cards and changing text within existing fields.
- Painting : Beside the functions allowed in the above levels,
painting functions are added and background as well.
- Authoring : The ability to deal with the remaining objects
(buttons and fields) is provided. All the five objects mentioned
earlier as well as their underlying properties apart from the script
one (see next) are made available to any non-programmer
designer to become a stack author.
- Scripting : It is the highest level, thus providing more power to
the user interaction over HyperCard objects. In effect, the script

property that every object is associated with is exploited, that is a

98

script is attached to the object. A script may contain one or more
handlers, where a handler is a set of instructions or commands
that HyperCard executes in response to an action or upon the
selection of that object. The language used for this purpose is
called HyperTalk which is an object-oriented programming
language like and English-based. It is obvious then that the higher
the user level is the more power HyperCard provides since each
level incorporates everything from previous levels as well as

more added abilities.

3. Experience of using HyperCard
3.1. Design and implementation

As stated before, there exist five different levels of use of
HyperCard. However, when it comes to consider HyperCard's
environment, these levels may be collapsed into two major ones
known as designer and user levels. HyperCard differs from other
systems previously discussed in that it considers two types of
designers: non-programmers and programmers. This section outlines

these two types of designers but more focus is made on the second

type which is related to the scripting level.

3.1.1. Non-programmer designer

All HyperCard objects are available and accessible at the
authoring level. Therefore, people without any programming
background may become a stack author. However, any user interface
designed at this level is rather restricted and limited in that most of
the interface components come in a predefined form. In effect, a
stack may be created with very little effort, either by copying and
pasting elements from other existing stacks, customising (changing a

card’'s look), or by creating new objects as well as deleting existing

99

objects. As a matter of fact, an attempt to implement the Dining Out
In Carlton example is made at the authoring level. At this level,
HyperCard behaves very much like KMS. Therefore, the strategy to
be used to implement the the example could be very similar to the
one carried out in KMS. The multi-attribute selection property would
be simulated in the same manner as it has been done with KMS.
However, the card's size in HyperCard could be an obstacle for
illustrating the parameter node as it has been done in the second
approach with KMS. Therefore, the scripting level is provided to

achieve or meet just that.

3.1.2. Programmer designer

It is at this level that the design of a more suitable and
appropriate user interface to the Dining Out In Carlton example can
be undertaken because the ability to attach a script to object is
added and therefore more control over the user interface is assured.

In this exercise, two different approaches are considered in
the implementation of the example. Each approach is illustrated and
explained in a different designed stack. The stacks to be designed in
each approach operate at three levels, and the cards composing the
stacks must be created such that the hierarchical structure of the
example is reflected, because HyperCard does not provide any

underlying mechanism for such structures.

The first approach

In this approach, the stack consists of three cards (a card
per level). The aim of this approach is to use the scripting power of

HyperCard to handle the dialogue part of the example as well as the

display of the information.

100

At level 1. The first level of this stack consists of displaying and
presenting the different attributes in the main menu represented
by the first card of the stack. The attributes are represented as
buttons. A script consisting of one handler is attached to each
button of this card and is executed upon the selection of that
button. A script is attached to this card. Among the instructions of
the button's script is a call to the card's script which is executed in
turn. The card's script consists)mainly of testing whether a chosen
combination of attributes does exist in the database so that a
second level information is displayed, and if not a message is
displayed in the message box saying so. Some menu commands
each performing a specific action such as quitting HyperCard or
going to the Home Card are also created and represented as

buttons, (figure 4.1).

Location

London l

Manchester

cuisine
French
Italian
English
Chinese

fAny

4= | quit | restart [Findjmessage

figure 4.1. Display of the attributes

101

On the storage side of this stack all the necessary
information is stored in different fields composing a sort of a
database. Unlike other systems, only one card (set of fields) may
suffice to hold all this information. Therefore, the first card's script
checks this database for every combination selected by the user. The
card's script can be thought of as a procedure which takes 3
attributes as parameters and displays the corresponding card
containing the available list of restaurants if the parameters are
valid. The validity of the parameters is expressed by their existence
in the database. And the selection process at the first card (main

menu) can be expressed as follows:

while (the combination selected is not in the database) do

display message "This combination is not available";

another selection; |

end;
This cycle is repeated till the combination is found and the next card
is displayed. At this level, a menu item can be cancelled by selecting
it again, thus the attributes options are made bistable (chapter 2).
The three attribute selection is not taken into account till upon the
user's confirmation, that is to select the OK option. It is clear then,
that the multi-attribute selection property is perfectly achieved and
illustrated by figure 4.1. The probability of selecting an existing
combination is 1/N where N is all the possible combination of three
attributes, that is a selection is an element of the Cartesian product of
Al x A2 x A3, where Al, A2 and A3 are the attributes. This method
may lead to user frustration and loss in confidence about the
potentiality of the retrieval side of the user interface. Therefore a
more convenient and consistent interface is required for increasing

the speed of the multi-selection process.

102

At level 2: This one card level is designed such that most of the
navigation aids and techniques reported in Chapter 1 are
supported. These include selective retreat, parameter node,
stability and so on, on one hand, in the other hand, some basic
stack navigation commands such as going back, going to the Home
card, find and message are also added. This card consists of a set
of buttons designed to handle the previous choices (parameters
from the main menu) and some fields (figure 4.2). One of the
fields is made scrollable in order to handle the list of available
restaurants which is ought to be lengthy. Whenever a list of items
is displayed, the possibility of cancelling and reselecting one of the
parameters previously chosen from the main menu (buttons) is
given at this level, so no explicit backing up the hierarchy is
needed and an updated list of items is displayed in the same field
in consequence (figure 4.3). This illustrates the selective retreat as

el AL
welltthe parameterfconcepts. T

stck level = 2, cardname = cardl §

LList of items evailablel

mil Previous Choices

ml2 French
terni3
emid London
miS

|@ quit [MainMenu| Find | message

figure 4.2. Display of the available list

103

Lsmcklevel= 2, cardname = cardl |

[List of items availablel

Cuigine parameters Previous Choices §

French

Italian London

English

Chinese

Any

@ quit jMainMenu] Find | message

figure 4.3. Display of the cancelled parameters

But, going back to the main menu is dictated whenever cancelling
‘more than one parameter is needed. The problem encountered at this-+- -
level and which can be considered one of the weakest features of
HyperCard is that text (more than one word) within a field cannot be
made explicitly selectable. In order to render text within fields
selectable, one method is to use transparent buttons overlap the text
which is about to select. The drawback of this method is that buttons
have a fixed position, therefore making it impossible to cover all the
list of items displayed in the scrollable field.

An eventual improvement for this method is to specify the
item selection by entering the number of the item via a keyboard
making therefore the text selection independent of the fixed position
of the buttons. However, to avoid using the keyboard as a means for
item selection, another technique is adopted, that is to use the "one
word field selection” method supported by HyperCard. Therefore, the

handler intercepting this selection must be within the field script.

104

This method is likely to be more appropriate to the application
carried out. In any case, a selection has to be made at this card in
order to proceed to the lower level.
At level 3: This level is one card level as well. The card represents
the information page of the item selected at level 2. It consists
of previously selected parameters represented as buttons,
navigation buttons such as going to the main menu, and a field

where the detailed information is displayed (figure 4.4).

Information Page stack level = 3, cardname = cardij

Information Page Previous Choices

French
London

@} quit ||GoBack||MainMenu| Find | message

figure 4.4. Display of the target information

The implementation of the example in this approach is similar to the
Chisl implementation. But, the instantiation and sideways viewing
techniques which were perfectly illustrated in the Guide
implementation and more or less in Chisl are not possible using

HyperCard. This may be due to the small card’'s size and the display

of one card at a time.

105

The key issue in this approach is that most of the user dialogue
as well as the displayed information are controlled by and within the
scripts of the different objects composing the three levels of the
stack. The communication between these objects is via message
passing (handlers). Form the designer's point of view, the main
implication of this approach is that, the programming of the dialogue
part of the interface is quite complex because great care and
attention must be paid in order to assure a good and surprise free
object communication. I believe, this complexity is mainly due first
to the creation of a great amount of objects which are uniquely
identified and handled. Second , to the lack of efficiency in the way
the text field are considered. Hence, the need for only simplifying the
programming task of this application emerged and another approach
which exploits the concept of background is carried out and

illustrated in the design of the second stack.

The second approach

In this approach, a second design alternative is undertaken
at the second and third levels of the hierarchy of the example only
whereas the first level remains similar to the one in the first
approach. Therefore, only the design of these two Ilevels are
discussed.

At level 2: In this case, instead of creating only one card where
the user dialogue is controlled by the script of the different
objects of this card, a different card is created for every possible
existing combination chosen at the first level. Thereafter, a
number of different cards sharing the same backgrouvalfi constitute
this second level of the stack. A card at this level thave same
number of objects with same purposes as the card of level 2 in the

first approach i.e bistable buttons to handle the previous choices,

106

navigation buttons and a field containing the list of available
items to choose from (figure 4.2). On the storage side of this stack,
all the necessary information is made available within the fields
of the cards composing the stack, that is each card is filled in with
its specific information.

At level 3: For each item selected at level 2 (from a given card) is
associated with a card at this level. Therefore, this level consists of
a set of cards each of which is referred to as the information
page of the item previously selected. These cards are created with
the same background which consist of the previously selected
choices represented as buttons, some navigation buttons and a
field where the whole detailed information is displayed.
Therefore, apart from their properties, the only difference
between these cards is the field content (figure 4.4).

The implications of this approach are: simpler programming
task despite the awkwardly way the selection mechanism is made,
and huge number of cards, therefore large stack structure.

Finally, an eventual third approach may envisaged in order
to improve the multiple attribute selection mechanism adopted in
the above approaches. In this eventual approach, only the possible
existing and needed combinations should be made available to the
user, increasing the probability of getting to the right information
and in less search time. This alternative might be called a
context-sensitive selection mechanism, that is whenever, an attribute
is selected then highlighted, all the other attributes but those
logically linked to the one or ones selected are removed. This

approach has not been implemented in this exercise however.

107

3.1.3. Using the example

Like the designer level discussed earlier where two
sublevels of design have been identified, three sublevels may be
identified in the user level as well. This may represent the key
difference between HyperCard and the systems previously discussed.
In effect, the end user is recognised at three different levels of use
(browsing, typing and painting). This recognition is expressed by the
fact that the stack author may restrict the use of the stack by
deciding to which kind of use the stack is intended to. More
importantly at this level is the way the stack is accessed to and how
the information stored is retrieved or read. Unlike, Guide, KMS and
many other interactive systems which allow generally at most two
different ways of moving around its underlying information space,
HyperCard provides a third valuable way (message box) which can
be seen as a natural language interface like. ‘Three ways can be used

to conduct a search task within the implemented example.

i. item selection

The information-seeking process begins from the first card (main
menu) of the stack where the user is required to make more
choices towards meeting his/her search task goal (figure 4.1).
However, this form of interaction is more suitable for user who
has a well defined and understood retrieval task, for example the
user has a specific combination to which he/she requires more
details. This method of searching is more likely and preferably to
be used with the first implemented approach of the example
because all is controlled by the different scripts which display the

relevant information, but eventually can be used in the second

approach as well.

108

ii. String searching

The search task may be carried out only for looking for a specific
string within the stack information space. In a situation where
the end user does not care about none of the attributes (cuisine,
location and price), but interested only in a particular dish eg. fish.
Therefore, the string searching method can be used to search the
information space of the stack. Thus, this method can only used in
the second implemented approach of the example. By this means,
the user can see all the information pages (cards) containing the
word fish . This can be done by using the standard find command

in the provided menu, i.e find "fish" .

iii. Direct access card

Some basic navigation commands are included in the display of
every card. Among the commands is the message command
which is principally used to issue or send commands to HyperCard
via a message box. The user conducts a more or less natural
language dialogue with the user interface. This gives a HyperCard
user interface its power over those implemented with the
systems previously discussed. In effect, the end user can directly
go to a known or recognised card if he/she knows that the card
contains the relevant information. This command can be issued as
follows: go to card cardl . This method is also not suitable to be
used in the first approach.

Finally, concerning the two implementation approaches
undertaken is this experience and discussed in the previous section,
a relatively small and modest comparative evaluation on time
acquisition or mean traversal time is carried out. The two
approaches has shown no significant difference in the mean traversal

time (from level 1 to level 3), with and without parameter cancelling

109

at level 2 (19 and 10 seconds in average respectively). However,
when cancelling a parameter at level 2 by using the selective retreat,
stability as well as parameter node instead of explicitly backing up to
the first level (using go back) increases the mean traversal time

significantly.

4. Discussion
The major points concerning HyperCard and which seem to
have great and direct impact on the user interface design are: Object,

Structure/navigation and User level concepts.

Objects concept

Unlike many design environments, HyperCard offers an
object-like environment based on the concept of objects. It allows a
user interface to be specified and designed differently as it would be
in other traditional programming environments. This concept of
objects is inspired from the object-oriented programming
methodology, therefore inheriting most of its advantages such as
reducing the cost of building user interfaces by preventing the
designer from all the low level details of the interface and increasing
the consistency and power of the interface in consequence.

Any HyperCard application (stack) is simply programmed by
creating the objects which represent the interface itself. The
interface is either graphically specified using the direct manipulation
approach, i.e many objects have associated semantic routines
(scripts) can be invoked and used directly by a designer who is not
necessarily a programmer, or by using a special-purpose language
(HyperTalk). In either cases, the interface objects are handled and
dealt separately, therefore debugging, testing and modifying the

interface are made simpler and easier. I strongly believe that the use

110

of objects has great impact on the design decision process of user
interfaces and particularly on menu-based ones. Therefore, some
design issues have to be taken or considered at some level of the
design of the object.

Consistency in layout and design of the stack, as well as
consistency in the background are important design issues in
HyperCard, that is to choose the appropriate background and not
over-design the background because this may confuse and frustrate
the user. The fact that the primary object which is likely to be the
most understandable and visible is a card makes the display or
presentation of the information within a card or a group of cards
another issue, that is it should be consistent and efficient. As a
matter of fact, a button is an element of a card and also most of the
user interaction with the stack is via the buttons, Therefore it is very
important to consider carefully the design of such buttons and the
design issues at this point may include consistency in the use of the
standard HyperCard buttons, feedback, and with the Mac interface.

However, this present experience with HyperCard has shown
that some objects are lacking consistency and more functionality
which have affected in certain situations the design process of the
example undertaken in section 3.1.2. This has affected particularly
the dialogue part of the interface. There was a difficulty in choosing a
more appropriate and elaborate selection mechanism at the field
level where textual links (Chapter 1) are not supported. Moreover,
only one single font is allowed within a given field.

Because HyperCard lacks true inheritance, sometimes too
much effort is required to represent the dialogue in a suitable form,
eg. only one object at a time is selected, moved, deleted, copied or

pasted if changing the interface layout is needed.

111

The other inconsistencies or deficiencies related to the use of objects
in HyperCard appear in the following situations: when the name of
stack is changed (within a script) all the links made between any
card in the named stack and any other card in any stack are broken.
Therefore, all these links must be redone after changing the name of
the stack. Sometimes, a small change in a part of the dialogue may
affect the overall dialogue. Finally and since only one card is
displayed at a time and the material in a card is not scrollable this
may have two consequences: first as in KMS the disorientation
problem may arise and secondly, multiple windowed user interfaces

are not supported by HyperCard.

Structure _and Navigation concepts

It has been shown from the previous experiences with other
systems that there exist a close relationship between the structure
(how the information is organised) and the navigation process (how
the information is accessed and retrieved). The design issues
considered in this direction in the stack design are therefore directly
related to nature of the information and its organisation. Information
can be stored in a single stack or in a group of connected stacks that
are closely related, loosely related or virtually unrelated.

Because HyperCard does not support any particular
structure mechanism due to the way the cards are arranged when
created, deciding on the best approach becomes a design issue at the
structure level. Different informational stack organisations may exist.
These include: linear (sequential), hierarchical, non-linear and a
combination of these. Each type of these may influence the way the
stacks are organised, therefore the way they are navigated.

Navigation issues arise at this level and must be considered in order

to reflect the underlying structure.

iz

A hierarchical stack organisation implies that the end user
has multiple options at many points in the navigation process. As a
design issue at this level is then to consider how the hierarchical
structure and the navigation aids are reflected. Assigning a different
background to each set of related cards (path) in the hierarchy is
useful and helpful to narrow the gap between the designer's model
and the user's mental model which might exist, and also reducing the
risk of getting lost as seen in KMS. The navigation aids needed for
this end not only require forward and backward buttons but also
links buttons to other points in the stack or in other related stacks.
However, great care must taken when using the standard HyperCard
navigation buttons and specially when using the Go menu. In effect,
some sort of command inconsistency may occur when using for
example the back ,next ,previous , first and last commands,
because these are related to the order in which the cards are created
and which do not reflect the underlying structure at all. Therefore,
for a more appropriate movement within the hierarchical structure,
the stack designer should consider more specific handlers within the
scripts of the navigation buttons and hiding the menu bar as well as
disabling the use of the power keys from the casual browser.

A good built in feature that might be used to reflect more
the organisational structure of the stack is the visual effect feature
such as wipe down ,up ,left or right . This also is true when
considering the other two stack organisations which require a
sophisticated level of linking and planning. So far two very important
points considering the design of a stack are identified along with
their intrinsic relationships. Yet another point to consider in this
direction is the point whether creating separate stacks and linking
them at appropriate points in the navigation process or create only

one stack but with different background for the different types of

113

information. This is known as stack vs background principle. The
design process at this point considers for example the retrieval
speed, scripting effort where a single stack is more suitable to
meeting these requirements. Whereas, multiple stacks would be
more appropriate if the information could be subdivided towards
meeting different types of users with different needs.

Moreover, if the user navigation would be made via the
standard HyperCard find command, therefore a single stack is
dictated because this command does not work across staék
boundaries. However, this can solved by writing a more specific
handler within the script of the find command.

Finally, HyperCard lacks several features that would qualify
it as hypertext system in the full sense such as bidirectional links
and graphical browser.

It uses the recent command to display only miniatures of at
most the last 42 cards visited. This is mainly used as one means of a
direct access to a given card, but if this card is recognised. This does
not replace the graphical browser facility where the different
relations between cards and stacks would be apparent. Moreover, if
the cards miniaturised by the recent command have resembling

looks (eg. same background) the recent facility would be therefore

without any need at all.

User Level

The user level concept in HyperCard may be just one
solution or one way for achieving the issues related to the end user
as a part of the design process. In effect, a stack author may restrict
the use of the stack at different levels. At the first two lowest levels
(browsing and typing), only the read-write access is given to the user

but still restricted from changing the stack structure. At the painting

114

level, users can still change the appearance of the stack but not its
functionality. However, a stack author can still allow a user to change
a part of the stack structure if necessary. This may be at the
authoring level, where the end user may enter the design mode.
Therefore, great control on the wuser's access level and the
identification of the type of the user have to be included in the stack
design process.

Different ways may be used for this end. Either setting the
user in a script or scripts, or intercepting and preventing an effort by
the user to modify the script. This means, a script can monitor and
modify the user's access level accordingly. And finally, by using the
HyperCard protect-stack facility which permits either the complete

protection of the stack or just private access.

5. Summary

In this experience, I have discussed one of the most recent
software systems that can be considered as a major breakthrough in
the family of user interface creating tools. Very often, this involve
the creation of menu-based user interfaces. Although the full power
of HyperCard has not been explored, and despite of the limitations
encountered while carrying out the task in section 3.1.2, I believe
however from the outcome of the experience, many important issues
on Human-Computer Interface design have been raised.
Undoubtedly, HyperCard and HyperTalk together provide a powerful

programming environment that is rich in functionality.

115

Chapter 3

Conclusions

1. Summary

One of the most commonly used interaction techniques in
Human-Computer Interfaces has been discussed and surveyed in this
thesis. The menu selection technique, which continues to flourish
because of its simple interaction format and its adaptability to the
many diverse applications has contributed significantly to the
widespread acceptance of menu-based wuser interface systems
despite their inherent disadvantages and drawbacks (chapter 1).
Chapter One has addressed particularly the navigational problems
encountered by users of menu selection systems, and identified
various navigational aids as well as other important design issues
that a menu system designer should take into account toward a
design of an effective menu-based system.

It is often argued that the menu selection technique was a
cumbersome method of finding one's way around a system, and only
novice or casual users may benefit from it. However, despite the
inherent disadvantages of menu systems, menus have been shown to
offer one solution to the problems encountered with other interfaces
such as command-driven and natural language interfaces as reported
in chapterd . However, their value depends on the degree of
cognitive assistance and ease of implementation that they provide.
This offers a significant challenge to the menu system designer to
ensure that the user's needs and abilities are properly considered.

Four different menu specification systems have been
discussed and described in chapterzi . Each of which has adopted
a different approach to implementing menu-based user interfaces.
These systems are motivated by the need to make the user interface

116

cheaper and easier to design and implement. Apart from the Chisl
specification system (discussed in chapter 2 section 3.1), the
remaining three systems (here HyperCard is considered at the
authoring level) use the Direct Graphical Specification (DGS) approach
for the design and implementation of menu-based user interfaces.
The advantage of this approach is that it allows the menu system
designer to place text (Guide, KMS and HyperCard) and light buttons
(HyperCard only) on the screen using a mouse and see exactly what
the end user will see when the application is run. Currently, Guide
supports only a small part of the user interface design task, it cannot
be used to help control the display and manipulation of the real
application data objects. A drawback common to all the systems used
was their inadequacy for implementing and managing user interfaces
requiring a multiple selection of items from the same menu which
has been shown to pose a major challenge to these conventional
menu specification systems.

Strategies to solve or address the multiple selection
mechanism problems as well as some the navigational concepts
discussed in chapter two have been devised and used within each
the four target systems. The use of the Chisl specification system
and HyperCard (here it is considered at the scripting level) has
highlighted the need for a menu system designer to be a
programmer in order to be able to design and prototype a suitable
user interface to the Dining Out In Carlton example. HyperCard
required the use of a special-purpose language (HyperTalk) to handle
the stated problems as well as the semantics of the menu application,
while the Chisl specification language was required to handle or
define the interaction techniques (local and global buttons) as well.
In its present form Chisl is therefore not appropriate for user

interface designers who are not programmers.

117

2. Further work

Improving human-computer dialogues has been and still is
the most recognised and important objective within the
human-computer interaction area. A lot of improvement has been
achieved in the recent years, but there's still a lot more to be done.
From the menu system designer's point of view, improvements in
menu-based user interfaces have been concentrated mainly on the
implementation aspects of the menu system, that is most of today's
user interface tools (eg. the last three target systems discussed in
chapter 2) use the direct manipulation approach and more recently
the visual programming methodology to build menu-based systems,
thus makes the design and implementation tasks much easier and
quicker.

From the user's point of view, however, emphasis has been on
improvements in the user interface aspects such as the presentation
as well as the structure layers in order to improve the user/menu
system interaction. But, menu systems still suffer from two major
complaints, namely the difficulty in navigating accurately and
efficiently the menu system structure, and the difficulty in
accommodating or addressing the wuser's skill levels. In effect, it has
been noticed from experience of using the target systems (chapter 2),
that the way information within a menu system is organised and
made available, affects the strategies used to access this information.
The multiple-attribute selection scheme as well as the underlying
information space structure highlighted the need for more
techniques which should address the navigation problem, as well as
the need for the user's skill level to be included in the user interface
in order to improve the user/menu system interaction. Desirable
improvements may include, for example, large display surfaces 1in

order to allow a better perception of spatial relationships between

118

the menus (frames in KMS, views in Guide, DUs in Chisl and cards in
HyperCard). This might not only be beneficial from the navigation
point of view (since it would provide the user with the ability to
both determine the approximate location of the goal and the effort
required to reach it), but also from the expert user's point of view as
well, because he/she could use this spatial relationship as a means of
speeding usage of a menu system. Moreover, the highly repetitive
series of mouse movements and button pushes which must be
executed in a menu system (KMS and HyperCard at the authoring
level) may feel increasingly slow and annoying as the user becomes
more skilled. One solution would be to allow sequences to be
encapsulated as "macros" invokable by a single action on the
keyboard or using the mouse. Techniques of macros consisting of
keystrokes already exist and are applicable in some menu systems,
as illustrated in the BLT (typeahead) approach, but techniques for
recording a series of mouse movements and button pushes need to
be developed and used and especially within direct manipulation
interfaces.

A particular problem highlighted in this study is the multiple
selection problem, which was found to be unachievable unless a
special purpose language was provided within the underlying design
environment, as was the case with Chisl and HyperCard. Where
available, the multi-selection scheme can be wused as a
decision-making process reducer, therefore reducing the menu
structure complexity and enhancing user's performance. Finally,
since most the target systems studied in chapter 2 are considered to
be hypertext systems, I believe that menu-based user interface
systems will benefit from most of the improvements made in

hypertext systems technology, since they share many the HCI design

issues.

119

References

AKscyn, R. M.; McCracken, D. & Yoder, E. A.

"KMS: a distributed hypermedia system for managing knowledge in
organisations," Communications of the ACM, July 88, Vol 31 (7), pp
820-835.

Apperley, M.D. & Field, G.E.

"A comparative evaluation of menu-based interactive human-computer
dialogue techniques," Human-Computer Interaction, INTERACT'84, B.
Shackel, ed. 1984, pp 323-326

Apperley, M.D. & Spence, R.
"Hierarchical dialogue structures in interactive computer systems,"

Software-Practice & Experience , Vol 13, 1983, pp 777-790.

Arthur, J. D.
"A descripitve/prescriptive model for menu-based interacton," Int. J.

Man-Machine Studies, 1986, Vol 25, pp 19-32.

Arthur, J. D.

"Partioned frame networks for multi-level, menu-based interaction,"

IEEE expert, 1985, pp 34-39.

Bellingsley, P.A.
"Navigation through hierarchical menu strucutres, Does it help to have a

map?," Proceeding of the Human Factors Society, 26th annual meeting,

1982, pp 103-107

Bennett, J.L.

"Tools for building advanced User interfaces," IBM Systems Journal, Vol

25, no 3/4, 1986, pp 354-367.

Brown, J.W.

"Controlling the complexity of Menu Networks," Communications of the

ACM , Vol 25, no 7, 1982, pp 412-418.

Brown, P.J.

"Interactive documentation,” Software-Practice and Experience, 1986,

Vol 16, 3, pp 291-299.

Brown, P.J.

"Guide User Manual,” Computing laboratory, the university Canterbury,

July 1987.

Buxton, W., Lamb, M.R., Schuman, D. & Smith, K.C.
"Towards a comprehensive wuser interface management system,"

Computer Graphics , Vol 17 (3), July 83, pp 35-422

Conklin, J.

"

"Hypertext: An Introduction and Survey," Computer , sept 87, pp 17-41.
CR, Acm press,

Computing reviews, acm press, January 1988, Vol 29, 1.

Goodman, D.

"The two faces of HyperCard," Macworld, October 87, pp 123-129.

Gray, J.

"The role of menu titles as navigational aid in hierarchical menus,"

SIGCHI , Januaary 1986, Vol 17 (3), pp 33-40

Guedj, R.A.

"Remarks on some aspects of man-machine interaction," Methodology of

interaction , IFIP , 1980, Gueddj et al., eds., pp 235-238

Guevara, K. & Newman, W.
User Interface Design. A course developed by Beta Chi Design Ltd.1986,
pp 3-17.

Hammond, N. & Barnard, P.
"Dialogue design: Characteristics of user knowledge," Fundamentals of

human-computer interaction , A. Monk (eds) 1984, pp 127-164.

Hepe, D.L., Edmondson, W.H. & Spence, R.
"Helping both the novice and advanced user in menu driven information

"

retrieval systems," People and Computers :@: Designing the Interface , ed.

P. Jonhson and S. Cook, Cambridge University Press, 1985.

Hodgson, G.M. & Ruth, S.R.
"The use of menus in the design of on-line systems: A retrospective

view," SIGCHI , 1985, Vol 17 (1), pp 16-21

Hopkins, D., Callahan, J. & Weiser, M.

"Pies: Implementation, Evaluation and application of circular menus,"

Jacob, R.J.K.
"Using formal specification in the design of human-computer interfaces,"

Communications of the ACM , 1983, Vol 26 (4) pp 259-264

Karat, J., McDonald, J.E. & Anderson, M.

"A comparison of menu selection techniques: touch panel, mouse and

keyboard," Int. J. Man-Machine Studies , 1986, Vol 25, pp 73-88.

Koved, & Shneiderman, B.

"Embedded Menus: Selecting items in context,” Communications of the

ACM, April 86, Vol 29 (4), pp 312-318.

Lewis, C. & Norman, D.A.
Designing for errors. User Centered System Design, D.A. Norman, S.W.

Draper (eds) 1985, pp 411-432.

Lieberman, H.

"There's More to Menu Systems than Meets the Screen,"

Computer Graphics , Vol 19, no 3, 1985, pp 181-189.

Mantei, M.
"A study of Disorientation behaviour in Zog," Ph.D. thesis 1982,

University of Southern California.

Miller, D.P.
"The depth/breadth tradeoff in hierarchical computer menus,"

Proceeding of the Human Factors Society , 25th annual meeting, 1981,
pp 293-300.

Norman, K. L.; Weldon, L.J. & Shneiderman, B.
"Cognitive layouts of windows and multiple screens for user interfaces,"

Int. J. Man-Machine Studies, 1986, Vol 25, pp 229-248.

Norman, D. A.
Cognitive Engineering. User Centered System Design, D. A. Norman, S. W.

Draper (eds) 1985,

Norman, D. A.

"Design Principles for Human-Computer Interfaces," Readings in
Human-Computer Interaction, a multidisciplinary approach, R.M.

Baecker, W. Buxton (eds), 1987, pp 492-501

Perlman, G.
"Making the right choices with menus," Readings in Human-Computer
Interaction, a multidisciplinary approach, R.M. Baecker, W. Buxton (eds),

1987, pp 451-455.

Robertson, G., McCracken, D. & Newell, A.
"The Zog approach to man-machine communication,"Int. J. Man-Machine

Studies (1981), Vol 14, pp 461-488.

Schultz, E.E. & Currain, P.S.
"Menu structure and ordering of menu selections: independent or

interactive effect,” SIGCHI , 1987, Vol 18 (2), pp 69-71.

Shneiderman Ben.
"Designing the User Interface. Strategies for effective human-computer

interaction,” Addison, Wesley (eds) 1986, pp 42-52.

Shneiderman, B, & Marchionini, G.

"Finding facts vs Browsing knowledge in hypertext systems," Computer,

January, 1988, pp 70-80.

Snowberry, K., Parkinson, S.S.R. & Sisson, N.
"Computer display menus," Ergonomics , 1983a, Vol 26 (7), pp 699-712.

Snowberry, K., Parkinson, S.S.R. & Sisson, N.
"Design Methodology for menu structures," 1983b, pp 557-561.

Snowberry, K., Parkinson, S. & Sisson, N.
"Effects of help fields on navigating through hierarchical menu

structures," Int. J. Man-Machine Studies , 1985, Vol 22, pp 479-491

Simmons, R.F.
"Man-Machine Interfaces: Can They Guess What You Want?" [IEEE
expert, 1986, pp 86-93

Tennant, H.R., Kenneth, M.R. & Thompson, C.W.
"Usable Natural Language Interface through Menu-Based Natural
Language Understanding," Proceeding CHI'83, conference on Human

Factors in computing systems, 1983, pp 154-160.

Wood, C.A., Gray, P.D. & Kilgour, A.C.

"Experience with Chisl: a Configurable Hierarchical Interface
Specification Language," Computer Graphics Forum 7 (1988), pp
117-127

Appendix A
This Appendix explains the Chisl specification language syntax
and shows how dialogues are encoded with this syntax. Then, the

preprocessor specifications are discussed.

A.1. The Chisl syntax

A Chisl dialogue consists of a sequence of dialogue units. A
dialogue unit consisted of a sequence of options.
An option has a name, a location, a condition, and an action sequence.
Moreover, an option can be either local or global (see sectionl).

The interpretation and execution of the Chisl dialogues are

performed by the Chisl system interpreter called : " Chip

The display generated by " Chip consists of four panels:
e Control panel: is the top panel through which the root
dialogue is specified.
e Button panel: is the panel where the local options appear
o Global panel: is the panel where the global options appear
 Text output panel: is the panel where the output text action is
displayed.
This is how the elements of an option are specified :
A name of an option is specified by :
B_<option-name >, which will have a selectable screen button.
An option is either local or global, so a global option is identified by
a "%" as follows: B_<option-name >%
The option or button is given a specific location within a panel,
specified by the (X, Y) coordinates of the top left corner of the button
as follows:
X<a> Y a,b are two integers.

The button can be tested for selection, so it is placed in a selection

condition specified by: {B_< option-name >}

Finally, the option action sequence is principally a set of pre-defined
actions for dialogue specification.
These include:
* General actions
quit() causes termination of a Chisl dialogue.

exit! exit from the current DU, returning to the calling DU

* Register manipulation

assign(<register>,<string>) which assigns the value <string> to

<register>.

reset(<register>) reset the register to the constant
UNDEFINED.

reset_all() reset all the registers.

¢ Output
message(<id> , <x>, <y>, <string>) places <string> in message
number <id> and displays it
at <x>, <y> in the interaction

window.

* etc...

Registers can be tested in a combined way using the boolean
connectives AND , OR , NOT.
Moreover, the action sequence could include or be a call to a dialogue
unit.
This is an example of option:
{B_item1} X0 Y6 B_iteml D1[];
{B_item2} X10 Y10 B_item2 assign(reg9,item2);
{B_quit} X0 YO B_quit% quit();

This means that, if the button whose name is <iteml> , displayed at
(X0,Y6) in the button panel is selected then the dialogue unit D1 is
called or activated. Or, if the button whose name is <item2>, displayed
at (X10,Y10) in the button panel is selected then the string <item2>
is assigned to the register9. Finally, if the global option whose name
is <quit> , displayed at (X0,Y0) in the global panel is selected then the

Chisl dialogue is terminated.

A.2. The Chisl preprocessor specifications.

The user defines a sequence of textual files which is then
translated into an executable specification (Chisl) where a prototype
has been generated from the specification itself.

The Chisl preprocessor is called "PreChisl ". It is implemented

in C, on a Sun Workstation.

A.2.1. Description of the PreChisl files.

The textual files created are called " PreChisl files " whereas
the files containing the Chisl specification are called " Chisl files "
In the current implementation of the PreChisl preprocessor,

there are three types of files.

A.2.1.1. Attributes files.

There is only one file of this type for each dialogue or
information system (only three attributes are supported for the time
being).

Such a file consists of a sequence of blocks where each block is
composed by seven (07) items and defined as follows:

o iteml: a string of characters which is used to identify an

option and represents a value of the attributel.

item2: a string of characters which is used to identify an
option and represents a value of the attribute2.

item3: a string of characters which is used to identify an
option and represents a value of the attribute3.

item4: a string of characters which is the name of a file
which should contain all the information needed upon the
selection of (iteml, item2 and item3). This file contains only
ordinary text.

item5: a string of characters which is the name of a dialogue
unit (see sectionl) into which the contents of the file referred
to by “item4® are translated to Chisl specification. So, the file
“item4” is called a PreChisl file and the file ‘item5" is
called a Chisl file.

item6, item7, item8: are all strings of characters which are
the names of the files containing an icon image which should
be displayed into the graphical window upon the selection of

iteml, item2 and item3 respectively.

So an Attributes file consists of a sequence of such blocks where each

item should be in a separate line of the file (for simplicity). Each

block present in the file results in a corresponding frame being

displayed on the selection of the first three items(i.e. the values of

the attributes).

A.2.1.2. PreChisl DU files typel.

There are as many DU files as there are blocks in the Attributes

file. These files are referred to by “item4™ in each block. Each file

consists of a sequence of three item blocks, where the items are

defined as follows:

o iteml: a string of characters which represents an option in

the page or frame displayed.

» item2: a string of characters which is the name of the file
which should contain all the information needed upon the
selection of the option ‘iteml® (it is also called the
information page).

» item3: a string of characters which is the name of a dialogue
unit. This dialogue unit is constructed by translating the file

referred to by ‘item2' into a Chisl specification

A.2.1.3. PreChisl DU files type2.

There are as many DU files as there are blocks. Each file
consists of ordinary text which corresponds to all the detailed
information needed about the previous choice.

Note that only one item should be in a separate line and no
space between strings or before the first character of the string is
allowed because Chisl does not provide otherwise. However, any
space required should or could be replaced by the underscore (_)

character in order to make the options more readable and clear.

A.2.2. The PreChisl file structure.

As seen from the description of the PreChisl files, a hierarchical
structure is being built.

Each PreChisl file corresponds to one dialogue unit file, apart
from the Attributes file where a root dialogue unit must be specified.
So, the PreChisl file structure is hierarchically organised as the

dialogue or the information system which is being built.

Appendix B
This appendix gives an overview of the menu command which

compose the command dialogue.

B.1. The Menu Commands
When Guide is run for the first time by issuing the guide command,

the following window appears on the screen.

figure 1la.

The main menu consists of the following commands :
Save : save either a text or a source file during a guide session.
Block-edit : used for moving, deleting or copying block of text and/or
picture.
Quit : used to end a guide session or if there is more than one view,
to delete the last view.
New : used to add new source file(s) to the source. This can be done
in three ways:

« completely replacing the original source

« adding a new view

. inserting the material within the existing source.

Read-on : used to advance forward and backward within the

frame-of-view (scrolling)
author : used to enter the author mode
So selecting the author command from the menu of figure la, an

extra menu commands is added to the main menu as follows:

fsnelitcol = Joinvesn—______________________________}
Quit New Read-on Save Block-edit Reader 3
+Local +Definition +Usage +Action +Glossary H

+Enquiry Change-button Destruct Extend Find

&

figure 2a.

+Local, +Definition, +Usage and +Glossary : are used to create the
different buttons mentioned earlier.

Destruct : is just the opposite of the four commands above(only the
structuring is deleted, not the text or picture)

Change-button : used to change the name, type or asking-level of a
button.

Find : the command searches for a string of characters defined by
the user either within the names of replace-buttons(button search)
or within the complete source(complete search).

Action :this command gives the author extra power and flexibility in

constructing the replacement of the button. An action button is a

Unix shell command.

GLASGOW
UNIVERSITY
LIBRARY

