

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

M enu-B ased User In ter fa ce System s

Theory & P ractice

by

DjitaCi TDOUUH/l

tA T h esis S u b m itte d f o r th e D egree

of
M aster o f S c ien ce

i n th e

D e p a r tm en t o f C om p u tin g S c ien ce

a t

The U n iv e r s ity o f CSXasgoiv

October 1988

(g D . 'VDOUCLH'l, 1988

ProQ uest N um ber: 10998206

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10998206

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

ACKNOWLEDGEMENTS

T would, Dike to th a n k m y s u p e rv is o r D r. *T.C. K itg o u r fo r h is

a s s is ta n c e a n d a d v ic e d u r in g th e la s t p a s t g e a r . T h an h s aCso go to

K e v in W aite a n d C athy W ood for th e ir hetp a n d th e ir h in d n e s s a n d

resp ec t they show ed to m e a n d m y f a m i ly . Tty g r a t i tu d e a n d aCt m y
A?

r e s p e c t m u s t go th e N ig e r ia n g o v e rn m e n t , w i t h o u t w h o se

educational po licy a n d e n co u rag e m en t th is p re se n t s tu d y w o u ld n o t

h a v e been p o ss ib le , f i n a l ly , m y g r a t i tu d e a n d a f f e c t io n go to m y

w i f e , S a d ih a a n d m y d a u g h te r S c h e h in e z , fo r th e i r p a tie n c e ,

a s s is ta n c e a n d su p p o r t, d u r in g th e la s t tw o y e a rs .

D e d ic a tio n

To m y w i f e S a d ih a

an d our

d a r t in g d a u g h te r S c h e h in ez

(M.Sc thesis) Menu-Based User Interface Systems: D. Idoughi October 88
Theory & Practice

Summary

The thesis discusses the menu selection technique, which is one of the most
commonly used interaction techniques in Human-Computer Interfaces, and continues to
flourish because of its simple interaction format and its adaptability to the many diverse
applications. The ease of use of the technique, particularly by novices, contributes
significantly to the widespread acceptance of menu-based user interface systems, despite
their inherent disadvantages and drawbacks. Chapter One surveys the issues concerning
the design and use of menu-based interfaces, and addresses particularly the navigational
problems encountered by users of menu selection systems, identifying various navigational
aids which help overcome these problems. The chapter concludes with a comparison
between menu-based interfaces and other interface styles (command language, natural
language and form-filling).

Chapter Two describes the practical work of the thesis which consists of
implementing a particularly demanding menu-based interface example involving multiple
menu selections using four different dialogue specification systems. The implementation is
discussed mainly from a menu system designer's view. Strategies to solve or address the
multiple selection mechanism problem as well as some the navigational concepts discussed
in chapter one are devised and used within each the four target systems. Also, some other
related user interface design issues are reported in chapter two.

The principal aim of the work is to investigate the difficulties a dialogue
designer may face in attempting to implement a common type of menu-based interface
using various delivery systems, all of which claim in varying degrees to support
menu-based interactive styles. In the final chapter conclusions are drawn from the practical
work concerning desirable menu support features in user interface implementation systems,
and issues requiring further investigation are identified.

Menu-Based User Interface Systems:
Theory and Practice

Contents page

Chapter 1. Menu selection systems

1. Introduction... 1
2. Characteristics of Menu-Based Systems......................................4

2.1. Menu Categories.. 6
2.1.1. Explicit menus.. 6
2.1.2. Embedded menus..7

2.2. Menu selection in the context of Hypertext........................... 7
3. Menu System Design Issues...8

3.1. Presentational issues.. 9
3.1.1. Titling...9
3.1.2. Menu items...10
3.1.3. Menu layout... 13

3.2. Organisational issues..14
3.2.1. Menu structures... 15
3.2.2. Menu drawbacks..18
3.2.3. Navigation aids and techniques.....................................19

3.3. Functional or Computational issues..................................... 21
4. A descriptive/prescriptive model for menu-based interaction............21
5. Menus vs other Interfaces..24

5.1. General .. 24
5.2. Menus vs Command languages... 24
5.3. Menus vs Natural languages... 26
5.4. Menus vs Form-filling.. 28

6. Examples of menu systems..29

Chapter 2. Experimental studies in system use

1. Introduction...31
2. Sample problems...32
3. The systems ... 35

3.1. Chisl... 36
3.2. Guide..54

3.3. KMS.. 71
3.4. HyperCard.. 96

Chapter 3. Conclusions

1. Summary... 116
2. Further work... 118

References
Appendix A

A. 1. The Chisl syntax
A.2. The Chisl preprocessor

Appendix B. The Guide menu commands

Chapter 1

Menu Selection Systems

1. In troduction

In the early developm ent of the com puter industry, effort,

research and money were concentrated on the developm ent and

sophistication of the machine's internals and program m ing languages

and to the efficient use of the cpu and storage media. Early users

w ere necessarily com puter technicians and professionals through

whom other users had to go in order to access the remote computer.

As com puter technology has grown faster and becom e widely

available, and costs have become lower, many areas such as the

com m ercial, m edical and educational spheres have exploited this

technology for different purposes. The next stage has been marked

by a closer move of the computers toward human society in which

they occupy a big place nowadays. There has been a considerable

grow th in the num ber of users w ithou t form al train ing in

program m ing or computer technology. These users are simply using

the computer as a tool, and are not interested in becoming computer

p rofessionals or in understanding the details of their application

systems. However, although most computer systems are designed to

run essentially autonomously, most provide a means through which

hum an users and the com puter can com m unicate. This means is

nowadays known as the User Interface .

So, human users and com puters com m unicate through the

user interface whose primary role is to support information exchange

between users and computers. Many names have been assigned to

the com m unica tion p rocess . T hese in c lude M a n - M a c h i n e

l

C o m m u n ic a t io n , Man-Machine Dialogue , Human-Computer Dialogue

and finally Human Computer Interaction. This stage has also been

characterised by the fact that despite the degree of sophistication of

the m achinery and the elaborateness of many com puter systems,

problem s have arisen at the user in terface which have seriously

underm ined the effectiveness of the computer as a tool for human

problem -solving. Most of these problems are directly related to the

underlying dialogue betw een the human user and the com puter

system, and have arisen principally because of the lack of attention

paid by the system designers to e ffec tive hum an com puter

in te rfaces .

This can be considered as the starting point of a new era in

which greater attention is paid to the issues which guarantee high

quality user interfaces, and in which research effort is focussed on

a ttem pts to understand the com plex in teraction of hum ans and

m achines. Contributions to this research are required from different

d iscip lines such as psychology, human factors, ergonom ics and

related fields, and taken together these constitute the area which is

now know n as the H um an-C om pu ter In te ra c tio n . A lready

considerab le progress has been m ade and im portan t findings

reported in this new area.

All the HCI specialists were unanimous about the need for

user interface im provem ents because of the crucial effects of the

in terface on user efficiency and the acceptability and therefore

com m ercial potential of the com puter system. One of their major

findings was that the human user has to be taken into account as

well as the computer system in the design process. Previously the

emphasis was on hardware developments, but now the emphasis is

2

shifting tow ard hum an concerns. The resu lt of this change of

emphasis is that greater efforts are being made to make computers

easie r to use and program by p rovid ing be tter program m ing

languages, better program developm ent environm ents. These may

include U ser In terface M anagem ent System s (UIM S) which are

intended to free the applications program m er from low-level details

so as to be able to concentrate on higher applications specific aspects

of the User Interface, i.e to separate the details of user interaction

from the details of advanced applications [Buxton et al., 83; Bennett,

86]. Generally, a UIMS consists of a package of tools which support

the im p lem en ta tion , debugging and evaluation of in te rac tiv e

human-computer dialogues [Buxton et al., 83].

The U ser Interface may be thought of as surface through

which data are passed back and forth between com puter and user,

where the data displayed on the workstation provide a context for

interaction [Bennett, 86]. The interaction part of the User Interface is

im portant since it represents the com m unication path between the

user and computer. U sers’ interests are not, in general, concerned

with programming but with the utility of the end product. This will

often depend on how easy the system is to use and is particularly

in fluenced by its U ser In terface. There are m any techniques

commonly used for communication between humans and computers.

They differ widely in their ease of learning and use and their general

applicability [Brown, 82]. For example, the interface to Unix is very

different from the interface to a M acintosh. The com puter system

interface imposes a certain dialogue style on the user. Among the

im portant and com m only used com m unication techniques are the

follow ing:

3

- Command Interfaces : The user types instructions to the computer

in a form ally defined command language.

- Natural language Interfaces : The user's command language is a

significant, well defined subset of some natural language such as

English.

- Form-Fil l ing Inter faces : The user issues commands by filling in

fields in one or more forms displayed on the screen.

- Direct Manipulation Interfaces : The user manipulates through a

language of button pushes and m ovem ent of a pointing device

such as a mouse, a graphic representation of the underlying data.

- Menu-Based Interfaces : The user issues commands by selecting in

sequence choices from among displayed alternatives. This is the

form of communication or interaction which is the subject of this

th esis .

The lite ra tu re on the in teraction betw een com puters and

human users is large and varied. Therefore, the scope of this thesis is

lim ited to those elements which relate directly to the design and

im plem entation of one particu lar type of user in terface: the

Menu-Based User Interface .

A broad survey of the characteristics of menu systems as well

the underlying issues involved in a M enu-Based U ser Interface

design are presented in the following sections of this Chapter.

2. Characteristics of M enu-Based Systems
The d ia logue part o f the H um an-C om puter In teraction

represents the central aspect of any interactive system. For many

dialogues, the exchange of information can be characterised in terms

of its style, structure and content [Hammond et al., 84]. Only the

4

m enu selection style is fully discussed in this chapter since it

characterises any menu system . A m enu-based system or menu

selection system is a system where each user response is predicated

on a set of choices provided by the system. The user is presented

with a sequence of menus, each containing some descriptive text and

a list of items (options).

The user responds by selecting one item, causing the system

to perform an action associated w ith that item selection. Menu

systems offer a simple interaction format that is adaptable to many

diverse applications. They are prim arily used to present information

and to control the actions of computer systems. The user interface

associated w ith or p rovided by these system s is said to be

menu-driven in the sense that the user is guided and assisted in the

decision m aking process or problem solving task. This form of

interaction has several characteristics, including the follow ing: (i)

neither form al train ing nor m em orisation of com plex comm and

sequences are required; (ii) it offers a simple selection mechanism

via some pointing devices (mouse, keystroke); (iii) it simplifies choice

by structuring the user's decision making, thus reducing the risk of

making errors. Therefore, menu based systems appear to be more

appropriate to novice or casual users, and menu interfaces have

become increasingly popular during the last decade as a means of

making the computer more accessible to those with little experience

and/or those who use systems infrequently.

However, if a menu system is well and carefully designed, it

can be appealing to experts as well. As the title of the thesis implies,

the key word is "menu". It represents the central component of a

m enu system . Before considering menu system design issues in

5

detail, a brief description of the categories or types of menus is

g iven .

2.1. Menu Categories

M enus can be categorised as either e x p l i c i t or e m b e d d e d

[Koved & Shneiderman, 86]. The difference lies in the context in

which the menu items are presented. Explicit menus are themselves

subcategorised. Each of these categories is briefly discussed next.

2.1.1. Explicit menus

These are usually characterised by an explicitly enumerated

list of items from which the user selects using one of the selection

m echanism s available. Till recently, a linear organisation of the

menu items was the assumed form at in this category. Recently PIE

m enus, in which the item s are arranged circu larly , have been

introduced [Hopkins et al., 87]. For linear menus, a variety of types

may be distinguished, including

•Pop-up and Pull down menus , that is menus which appear below

a fixed label on the screen (pull down), or anywhere within a

fixed area, occasionally the whole screen (pop-up), in response to

a click of a pointing device.

• P e r m a n e n t m e n u s , that is m enus which are perm anently

displayed so always available to the user.

In general, linear menus are a linear row or column of items.

PIE menus are norm ally of the pop-up variety. The menu

item s are positioned in a circle around the m enu centre. The

direction in which the cursor is moved makes the selection, and the

length of motion (i.e. the distance of the cursor from the centre of the

6

Pie) is available as a second input.

2.1.2. Embedded Menus

The menu items are embedded within the inform ation being

displayed on the screen to the user. In embedded menus, highlighted

or underlined words or phrases within the text become the menu

item s and are selectable, using the commonly used touch screen,

cursor and m ouse m ethods. They are more appropriate in some

situations where explicit menus are inefficient particularly in touch

tex t, spelling checkers and language-based ed ito rs [Koved &

Shneiderm an, 86].

2.2. Menu Selection in the context of Hypertext

H ypertext is a concept, typically used within the electronic

docum entation domain, which allows non-linear organisation of the

underlying material (text/graphics) of a document. It also provides a

com m unication and thinking tool allowing authoring and design as

well as reading and retrieving. A hypertext system has two main

components: a database and a user interface to the database.

H ypertext systems use the menu selection technique as a

fundam ental m ode of user contro l in navigating through the

inform ation space. A hypertext system may therefore be regarded as

a menu selection system. However, the reverse is not always true. To

qualify as a hypertext system, a menu system must exhibit the main

hypertext features, which are the following:

- the database is a network of textual/graphical nodes

- windows on the screen correspond to nodes in the database on a

one to one basis

7

- standard window operations are supported

- windows contain link icons which point to nodes in the database

- the user can easily create new nodes and new links to new

nodes or to existing nodes

- the database can be browsed in three ways: link following, string

searching and graphical browsing.

One of the m ost im portant characteristics of a hypertext

system is its linking capabilities. Unlike selections in menu selection

systems, links in hypertext systems can be of several functions and

of different types. There are many systems which do not qualify as

hypertext system s because of their lack of either the underlying

database (eg. window systems) or the interface to the database (eg.

DBMS).

Menu selection is a method of communication with a system,

whereas hypertext is a tool using this m ethod as its means of

interaction. Finally, since a hypertext system is a menu system,

therefore hypertext designers have to consider most of the design

issues inherent in menu selection systems (discussed below) as well

as those special to hypertext. When it comes to the use of any

hypertex t system , both w riting and reading are allow ed, but

generally in separate modes norm ally called a u t h o r / w r i t e r and

browser/reader respectively. However, in considering the design

and use of a menu-based system below, these two modes will be

referred to as the des ig ner and user modes respectively.

3. Menu System Design Issues
It is not yet known what are all the issues or factors that

must be taken into account in order to achieve an effective menu

8

system, and less is known about what will guarantee the ease of

learning and use of such system . How ever, many psychological,

cognitive and human factors studies have been conducted in this

direction and these have produced results which can be considered

at this stage as guidelines. Many of these results are common to the

design of interactive systems in general. Only those concerned with

m enu system s are discussed in this chapter. D esign issues are

considered in re la tion to the p resen ta tional, o rgan isational and

functional aspects of the interface.

3.1. Presentational issues

These issues are concerned with all the presentation aspects

of the interface, that is how text, options and graphics should be

presen ted to the user. T herefore, a tten tion is focussed on the

constituents of a menu.

3.1.1. Titling

Choosing a title for a menu is as difficult as choosing a title

for a book [Shneiderman, 86]. D ifferent menus need different titles,

therefore choosing a consistent title for a menu becomes a serious

issue to consider. The im portance of th is issue has been

demonstrated by several studies. Titles can be used to help the user

understand the context of the menu, and to indicate the distance

(level) from the main menu, so reducing the disorientation problem

in deep menus and enhancing the user's confidence. In a recent

study on the effects of the presence/absence of menu titles (showing

the path of previous selections) on the search time and accuracy,

Gray [86] found that the subjects searched more accurately with

9

titled than with untitled menus, but titles gave no benefit in search

time. Previous selections as titles could also be of great benefit from

the navigation point of view [Apperley & Spence, 83]. Besides the

con tex tual and nav igational help aspects of m enu titles , title

placem ent is also an im portant param eter to consider. For example,

left justification has been found to be preferable with slow display

ra te s .

3.1.2. Menu Items

M enu item s should fit logically into categories and have

readily understood meanings so that users are confident in making

their selections, and have a clear idea of what will happen when they

make a choice. The design issues concerned with menu item s are

very im portant because the overall design of the menu system itself

is based on them. The issues involved range from phrasing the menu

items to sequencing and selecting them.

•Phrasing menu items

Menu items should be w ritten such that com prehensibility,

clarity and non-am biguity are assured. This is not as simple as it

appears to be. However, following some appropriate guidelines such

as using fam iliar and consistent terminology, distinguishing between

items and using consistent and concise phrasing may help lead to

better results in user performance. A consequence of bad phrasing of

the menu items is ambiguity, which is a major drawback in menu

sy stem s.

10

•Sequencing menu items

The second issue concerning menu items is the presentation

issue, in other words how should the items be presented to the user.

Should they be in alphabetical, logical (functional) or random order?

If the items have a natural ordering sequence, the design decision is

straightforw ard, but in other cases, the designer needs to choose

betw een the major ordering sequences (alphabetical, functional and

random). The importance of this issue has led to the investigation of

the effect of item ordering on search perform ance. Card [1982]

re p o r te d th a t p eo p le p e rfo rm ed b e tte r w ith a lp h a b e tic a l

arrangem ents than functional which in turn was better than random.

Snow berry et al [83aj also found evidence that a categorical

a rran g em en t re su lts in a m ore accu ra te and rap id search

perform ance than a random arrangem ent. In contrast Schultz [87]

found no significant overall advantage of alphabetical over random

ordering of menu selections apart from during the initial blocks of

trials, and then only when a deep structure was presented. The issue

of sequencing or organising the menu items is directly relevant to

the semantic organisation of the user's task.

•Selecting menu items

After the phrasing and ordering of menu item s comes the

issue of item selection, that is what kind of selection mechanism is

su itab le or appropriate for the menu item s in question. This

represents the central aspect of the menu system for most users. The

m ajor existing selection m echanism s are on-screen direct pointing

(touch panel), off-screen pointer m anipulation (m ouse) and typed

id en tifica tio n (keyboard). The m ost com m only used selection

11

technique is still the keyboard, despite the growing availability of

the mouse on most recent workstations. Therefore, choosing the most

appropriate selection technique for the task at hand becomes an

issue. For systems using the keyboard as a means of item selection,

the menu designer has to decide between different alternatives such

as sequential num bering or lettering the item s. Each of these has

advantages as well as disadvantages depending on the task at hand

and the user who is going to carry out this task. Perlman [84] studied

the effects of type selector on the selection times (user think times)

and found that com patible letters (a com patible letter is the first

letter of the menu item it is paired with eg. p for print) were the best

selectors followed by compatible numbers (a compatible number is

the ordinal alphabetical position of the initial letter of the menu item

eg. 4 for Debug) whereas for incompatible selectors, the trend was

just reversed. Another advantage of compatible lettering is to permit

typeahead selections (below). However, it was found that compatible

lettering selectors were useful only if the designer has full control

over the contents of menus (static menus). In other cases (dynamic

menus) compatible lettering could lead to the worst case. Therefore

incom patible (nonm nem onic) letters and num erical selections are

preferable for dynamic menus.

With recent workstations, there is a tendency to use selection

techniques other than keyboard, in particular the mouse, which has

become the most used pointing device. This widespread use of a

m ouse m ight be expected to be m otivated by the best selection

performance. Surprisingly, however, Karat et al [86] have just proved

the opposite. They found that the touch panel technique led to better

perform ance, follow ed by the keyboard, and the mouse gave the

12

poorest perform ance and was the least preferred device. \»t Menu

systems using the mouse as a pointing device, only a single selection

m echanism, that is a rigid sequence of single selections have to be

made before seeing a menu at lower levels of the menu structure.

However, with the keyboard as a means of the selection technique

some features that facilitate speed in a menu system can be used

such as:

- t y p e a h e a d : to go directly to a desired menu by typing in a

sequence of type se lec to rs (charac ters or num bers). This

technique is also known as the B L T approach [Shneiderman, 86].

- use of menu names

- m a c r o s , which allow regularly used paths to be recorded and

used as a single option when invoked.

Highlighting the menu items is another issue to consider in

the menu system design process, but too little work has been done

on the effects of different highlighting techniques.

3.1.3. Menu Layout

B eside the issues previously discussed, another im portant

consideration in the presentation layer of the interface is the menu

layout, that is how many items or how much information should be

presented to the user and how menus are related together. As with

m ost in terac tive system s, the screen (m enu) d isplay is a key

com ponent of successful design. Dense or cluttered displays can

provoke anger, and inconsistent form at can inhib it perform ance.

M enus should be designed such that the inform ation displayed

provides cognitive assistance to the user. Since a screen is the

predom inant elem ent of the user interface that a user comes in

13

contact w ith, many user activities are involved such as reading,

v isual scanning, rem em bering and recalling . T herefore all these

processes become part of the screen design process. Information and

layout considerations are design functions that impact on the ability

of the user to scan and digest the screen content, and poor design

co n trib u tes to user fru stra tio n and fa tigue , and can inh ib it

perform ance [Hodgson et al., 85]. Screen layout design is a difficult

task because the demands of each task and user community are so

varied and difficult to measure. However, there are experimental

findings and guidelines which can lead to sensible and acceptable

design. The m ajor principles are visual clarity and memory load

optimisation. These two principles are both involved in the menu size

issue. The effect of menu size on user perform ance has been

dem onstrated by several studies. M iller [81] and Snowberry et al

[83a) found that search time and accuracy increased if the menu size

was increased. Perlman [84] also found that menu size has a linear

effect on the time it takes to find an item and this effect is larger if

the list is random. There is also an effect of menu size on response

time [Norman, 87]. And finally, the effect of menu size on the menu

structure is also important (see next section).

3.2. Organisational issues

U nlike the menu system com ponents previously discussed,

w hich the user sees and deals w ith d irec tly , the follow ing

com ponents are not necessarily visible to the user. However, the

issues within this "inner part” of the interface are as important as the

presentational issues. The major issues are the way the menus (or

rather the information composing the menus) are structured, and the

14

way they are accessed and navigated.

3.2.1. Menu Structures

In some situations, the task domain may need only single

menus with one or more screens which consist mainly of some items

of instructions to choose from, as in online quizzes and document

processing packages, for example. However, even with these simplest

menus, some of the presentational issues (discussed earlier) are still

under the designer's consideration. An application requiring the user

to m ake one decision at a tim e, such as selecting the prin t

param eters in a docum ent printing package, may need a linear

sequence of menus to guide the user through this decision-making

process. O ther organisational issues relevan t to such cases are

concerned m ostly with movem ent through the sequence of menus,

for example moving backward, or forward and giving a clear sense of

progress within this sequence.

For a relatively m ore com plex task, where neither single

menus nor a linear sequence of menus are appropriate, a more

suitable way of guiding the user through the problem solving task is

through the use of menu trees or hierarchically structured menus.

Menu trees are prim arily used to offer or provide a step-by-step

guidance to the user. The menu structure can have one or more

menu levels, each consisting of a set of items from which the user

selects to proceed to the next level, and repeating the process till the

user's goal is met. It is obvious that structuring the menus in a

hierarchical m anner needs great consideration of the presentational

issues discussed earlier in order to assure better user performance

and optimum use of the hierarchical structure.

15

One of the very im portant issues in designing hierarchical

structures is the question of depth (number of levels) versus breadth

(number of items per menu), i.e how many items each level should

have for a given task. At least three effects can be attributed directly

to the depth/breadth tradeoff. These are visual scanning, memory

load and d iso rien ta tio n problem s (w hich them selves rep resen t

im portant issues to consider in menu design). M any studies have

dem onstrated the im portance of the depth versus breadth issue and

have studied its effects on user performance. In two different studies

which consisted of assessing user perform ance in retrieving items

from four configurations (64 items with 1 level, 8 items with 2

levels, 4 item s with 3 levels, 2 items with 6 levels) of a tree

structured menu system containing 64 target items, M iller [81] and

Snowberry et al [83a] found that the goal acquisition times were

faster with the interm ediate levels of breadth and slower with the

extrem e ones, while the accuracy decreased when the depth was

increased, that is the deepest structure was the least accurate. These

results suggest an advantage of a broader structure over a deeper

one. However, it is not always appropriate to choose a broader

structure for some applications where the depth alternative is not

only an issue but a task requirement. In these cases it is necessary to

provide additional support to reinforce the semantic grouping at all

menu levels in order to facilitate performance accuracy.

Although tree structures are very appealing because they are

the most natural structures for organising levels of abstraction, and

the com m and-language for navigating them is sim ple, they suffer

from the disadvantage that the tree structure is a function of the few

specific criteria that are used to creating it [Conklin, 87], and it is

16

often necessary to force a hierarchical organisation upon a task or

dom ain which does not fit logically and naturally into such an

organisation. One solution is to allow the inform ation elements or

task components to be structured into m ultiple hierarchies and allow

cross-references betw een them , resu lting in a netw ork structure.

However, network structures may introduce new problems not found

with hierarchical menus. The complexity of menu network structures

may make the understanding or m odification of the overall menu

system v irtua lly im possib le [Brown, 82]. There may also be

d isorientation and lack of flexibility in the order in which the

information is received by the user.

Som e approaches have been dev ised to overcom e the

com plexity problem of menu netw orks. Brown [82] adopted the

approach called structured subgraphs and which is inspired by the

top-dow n struc tu red program m ing m ethodology . P art o f this

approach is discussed in Chapter Two when considering KMS, since it

a typical example of a menu network system. Arthur [85] proposed

an approach w hich is based on partition ing the conventional,

m onolith ic fram e (m enu) netw ork in to a set of h ierarchically

structured , d isjo in t netw orks that preserve the orig inal netw ork

topology while reducing its overall complexity and size.

There is no perfect menu structure that m atches every

person's knowledge of the application domain. The initial design of

the structure can be m otivated by some the principles discussed

above, and can be improved over time to meet the user's and task

re q u ire m e n ts .

17

3.2.2. Menu Drawbacks

A lthough a menu system is rela tively easy to write and

im plem ent com pared with other in teractive system s, it does not

necessarily follow that this kind of system is the easiest to learn or

interact with. Poor design in a menu system can lead to bad user

perform ance because of the many problems that can be encountered

by the user. These problems are likely to be of two main categories,

nam ely problem s caused by a poorly designed presentation layer,

and problem s of menu structure. A poorly designed presentation

layer may involve cognitive m ismatches caused by the organisation

and categorisation of the inform ation. The following problems form

principally this category:

- ambiguity in choices or selections

- overlapping categories

- extraneous item s

- conflicting classification in the same menu

- unfam iliar jargon

- generic items

- weak association betw een descrip tor term s (higher levels) and

target words (lower levels)

- visual scanning and memory load problems.

The problems related to traversal or movement in the menu

structure may include:

- uncertainty in the users about their current position and about

how to move to another state,

- artificially im posed hierarchies, that is hierarchical relationships

between menu items where no real hierarchy exist

- in flex ib ility

18

3.2.3. Navigation Aids and Techniques

Two m ain solutions have been proposed to the problem s

m entioned above. To avoid problem s due to cognitive m ism atch,

Shneiderman [86] suggested guidelines which are useful for semantic

grouping in menu structures. These are:

- create groups of logically similar items

- form groups that cover all possibilities

- make sure that items are not overlapping

- use fam iliar term inology.

The other type of solutions consist m ostly of a set of

navigation aids and techniques that have been the results of many

experim ental studies. One suggestion that might solve some of the

problem s mentioned earlier is to increase the amount of information

per menu [Miller, 81; Snowberry et al., 83a] but not to the extent of

increasing the visual scanning and memory load problems and the

response time. This is particularly relevant in menu systems with

large and deep menu structures.

As the depth of a menu system structure grows and becomes

larger, it becomes increasingly difficult for the user to maintain a

sense of position in the menu structure and the risk of getting lost

increases. Many menu systems have adopted different alternatives

to overcome these problems. Some have adopted the method of an

index such as: Prestel whereas some other systems use a map to

show the underlying menu structure. Bellingsley [82], in a study on

the effects of providing a map of the hierarchical structure and a

sem antically organised index, found that the presence of a map of

the overall structure helped users develop a m ental model of the

underlying structure and led to a better performance over the index

19

method. An advantage for the map over other forms of training in

menu learning has also been reported by Shneiderman [86]. It seems

that offering a spatial map can help the user develop a better mental

m odel and can thus assist in overcom ing m any of the problem s

above. However, other menu systems and their designers rely on

other means and strategies developed to this end. Apperley et al [83]

p roposed som e nav igation techniques based on the fo llow ing

concepts.

- s ta b i l i t y , that is the user should be given the possibility to cancel

any choice and return to the state prior to its use by making the

selections bistable (active and inactive).

- awareness o f s ta te , that is the current choices as well as the

choices which led to the current ones (previous choices) should be

displayed to the user allowing him /her to cancel, back up, and

select again (incremental and selective retreat).

- parameter nodes , which permit a set of choices which are merely

param eter definitions and which all lead to the same subsequent

node to be replaced by a single param eter node. This is

particularly convenient where the number of choices is large, and

it also assists in avoiding artificially imposed hierarchies.

Other techniques proposed by Hepe et al [85] include:

- ins tan t ia t ion , which consists of displaying all subordinate nodes of

each label after the label of the current node. Snowberry et al [85]

called this upcoming selections. It is not only useful to increase

the user's understanding of the category label but increases

search accuracy as well.

- s idew ays v ie w in g , which consists of displaying not only the

upcoming selections (lower levels) but also selections from the

20

superior node to the other nodes at the same level (nearby levels).

This enhances the user's confidence in selection, since it gives a

better perception of the user's location within the menu structure.

3.3. Functional or Computational Issues

The a ttrac tiveness and accep tab ility of a m enu system

depends heavily on the speed at which users in teract with the

system, that is the pace of interaction. This is characterised by the

system response time, and the display rate. These two factors are

very im portant in menu system design because they influence other

design issues such as user expectations, speed of task performance

and error rates. Novice users prefer slower interaction together with

more inform ative and complete displays, whereas more experienced

users would prefer rapid interaction and less disruptive information.

Rapid interaction can increase productivity and user perform ance

but may also increase errors in consequence. Therefore, how can the

designer choose the most appropriate interaction pace when each

variable affects the other? In any case such a decision must be made

to m axim ise user perform ance and satisfaction [Norman, 87]. The

effects and the relationships between the different variables have

been the subject of many different studies.

4. A descriptive/prescriptive model for menu-based interaction

Interactive system design is a very difficult task in general

because it involves so many factors which the designer cannot pin

down by an algorithm or a system atic m ethod. M oreover, the

in terface requirem ents that support user in teraction increase in

so p h is tic a tio n and com plex ity , m aking the hum an-com puter

21

in teraction process even m ore d ifficu lt to understand. However,

people who are concerned with designing and building interactive

systems and have a lot of experience in this field have produced a

num ber of ideas and suggestions which are purely the results of

their long and rich experience. Guedj [80] suggested to setting up of

guidelines intended to im prove the quality of in teractive systems,

and since then m any others have follow ed up this suggestion.

A nother approach w hich offers be tter contro l over the

in teraction process is the use of models which can be form ally

specified in order to allow the precise description of the external

behaviour of the system regardless of its internal im plem entation

[Jacob, 83; Arthur, 86].

For m enu-based user in terface system s, A rthur [86] proposed a

m odel that characterises m enu-based interaction. It is designed to

provide a basis for achieving understanding of the capabilities and

the lim itations of m enu-based interaction systems. Arthur suggests

that any menu system is minimally characterised by:

- a finite set of frames each consisting of a sequence of options

- a set of user responses

- a mapping from each frame/response pair to another frame.

Systems displaying only these three characteristics are said to

be in formation systems or information retrieval system s, because

the ir m ain function is to provide the users with inform ation.

Exam ples include most the videotext systems such as: Prestel and

Ceefax. If these three characteristics are extended with a set of

actions associated with frame item selection, then such systems are

said to be t a s k - o r i e n t e d systems. Menu systems that provide user

response facilities such as response reversal and item selection

22

h is to rie s need ano ther d isc rim in a tin g e lem ent w hich is the

in c rem en ta l h is to ry sequence. T h ere fo re , fiv e d isc rim in a tin g

elem ents have been identified to characterise menu systems. These

five elem ents represent the m odel com ponents. Any m enu-based

interaction can be modelled and specified by the following 5-tuple :

M = (F, R, A, H, T) where,

- F is a finite set of frames

- R is a finite set of user responses

- A is a finite set of actions that support system and task-oriented

o p e ra tio n s

- H is a set of all sequences over F x R x A , that the set of all

possible history sequences

- T is a transition that maps F x R x H into A x F x H as follows:

let h be an element of H and define :

app : H x (F x R x A) -» H

app (h, y) is the sequence obtained when the 3-tuple y is

appended to H. V f, f e F, r e R, a e A and h, h’ e H then

T (f, r, h) = (a, f , h’), where h’ = app (h, (f, r, a)).

This model represents a basic framework within which some

important menu system concepts can be described such as :

- user movement within a menu system

- the increm ental history sequence

- the current state of the menu system

The menu systems used in the practical work described in

chapter 3 could all be described within this framework, but such a

description is not presented here, since the main purpose of the

practical work was to explore em pirical properties of the various

systems which are not captured by Arthur’s model.

23

5. Menus vs other Interfaces

5.1. General

This section discusses the m erits of three different kinds of

in terface (com m and language, natural language and form -filling)

relative to the menu-based interface. D ifferent comm unities of users

with d ifferen t needs may have different objectives in using the

computer. The way the computer is used or exploited depends on the

task, type and know ledge of the user. D ifferent hum an-com puter

interfaces are needed for different groups of users. For example, text

editing and interacting with an operating system are usually most

appropriately achieved via command language interface, because of

the wide range of capabilities and operations required by this type of

application . M enu or natural language in terfaces would not be

appropriate for these applications. One of the most appropriate

dom ains for a natural language in terface is querying databases,

where the query language consists mainly of a subset of a given

natural language such as English.

5.2. Menus vs Command languages

G enera lly , com m and language in te rfaces are used by

experienced and know ledgeable users in a task dom ain such as

in te rac tion w ith an operating system . U sers can specify their

operations directly simply by typing the names of the commands

along with their param eters, and are therefore offered a vast range

of possible intentions that can be realised, as well as freedom in

accomplishing their goals within the capability of the system. With

menu interfaces on the other hand, possible processing goals are

com pletely prespecified in advance, and users need only select a

24

perm issible sequence to accomplish their goals. Command language

in terfaces require users to learn and m em orise several commands

and there is usually no online reminder of the set of possible actions.

This leads to m any known problem s and d ifficu lties with these

interfaces. Possible techniques for overcom ing problem s associated

with the command language interface (such as the memorisation and

learning problems) include :

- commands as prompts : this approach is close to but more compact

than a standard numbered menu, and preserves screen space for

task -re la ted inform ation .

- command menus : a list of descriptive items that can be selected

by single letter presses. This is known as a hierarchical command

language and analogous to the typeahead (BLT) approach

to menu selection.

- pop-up or pull-dow n com m and menus : the menu item s are

commands which are selected via a pointing device, a mouse. The

Apple Macintosh interface is a typical example.

From this perspective, a menu-based interface is an interface

in which commands are presented via menus. This is a menu-driven

in terface. N orm an [87] reported five a ttribu tes on which the

com parison betw een these two types (m enu-driven and non

menu-driven) of interface could be based. These are as follows:

- speed o f use : slow for large and hierarchically organised menu

interfaces, but faster with command language interfaces.

- p r i o r know ledg e requ ired : too much dem anded with CL

in te r fa c e s , w h ereas m enu in te rfa c e s are in p r in c ip le

se lf-ex p lan a to ry .

- ease o f learning : high in menu interfaces because they involve

25

recogn ition ra ther than recall, and fac ilita te exploration and

discovery of system options. In CL interfaces, on the other hand,

learning is harder because of the numerous names and syntax to

be m em orised and recalled , and there is no sim ple way for

exploring the system. v

- e rro r s : erroneous actions are difficult to determine and recover

from in menu interfaces, whereas errors in illegal commands are

easy to detect and correct.

- most useful f o r : menu interfaces are more suitable for beginners

and infrequent users while CL interfaces are useful for expert

u se rs .

5.3. Menus vs Natural languages

It m ight be expected that comm unicating with the computer

in a natural language such as English would be the most natural,

sim ple and pow erfu l hum an-com puter in te rface . M any natural

language interfaces have been designed and built, but applied only to

specific dom ains w here the resu lts are not as sa tisfy ing as

anticipated. A common application of natural language interfaces is

in querying databases in which the query language consists of a

subset of English that is translated by grammars to a formal query

language such as SQL [Simmons, 86]. In a Natural Language Interface

(NLI), the users are assumed to be knowledgeable about the task

dom ain but interm ittent about the syntactic details of the query

[Shneiderm an, 86]. However, like most hum an-com puter interfaces

such as m enu and com m and language in terfaces, NL interfaces

present many problems and difficulties as well. Tennant et al [83]

reported the following problems that NLI suffer from:

26

- typing and form ulating questions in a way that the system can

understand is necessary

- high failure rates which often frustrate users

- users often do not use features of the system because they are

unaware of them

- systems are expensive to build and require a large amount of

m em o ry .

Simmons [86] associated the following additional problems with NLI:

- lack of feedback for misformulation of the queries

- user expectations are poorly met

- lack of understanding of human intentions

A possible solution to some of these problems is proposed by

Thom pson and which consists of the adoption of menu control

[Simmons, 86], where users select whether to formulate an enquiry

or to supply data. A menu then shows how a command may begin,

and selecting an option causes a new menu to appear showing

choices for possible continuations. This method keeps the user in the

English subset and ensures that the user's queries rem ain in the

semantic and pragm atic bounds of the system. M oreover, selection

by mouse gives the added advantages of largely elim inating typing

problem s and ensures error free-use, accompanied by a satisfactory

feedback showing the user the resulting translation to a simple

formal language. This hybrid form of interface is called by Tennant

et al [83], a m enu-based natural language interface. In Tennant's

com parison betw een conven tiona l and m enu-based natural

in terfaces the advantages o f the m enu-based approach over the

conventional one are summarised as follows:

27

co n ven tiona l

10-15% failure rate

typing required

possible spelling errors

hard to create a sentence

m e n u -b a se d

0% failure rate

selection through pointing

no spelling errors

easy to recognise a sentence

1-30 m an/m onths per application 1-30 m an/hours per application

However, this does not mean that this approach will always be

preferred, or will replace the conventional one in all circumstances

because conventional natural language in terfaces can cover more

design possibilities within an application domain than are possible

with menu based interfaces. Also there are many applications which

either cannot be done with menu interfaces, or long and complex

menu search requires more effort than typing.

5.4. Menus vs Form-filling

For some tasks, requesting the user to type in various values in

various fields of a single display may be more appropriate than the

use of menus. An interface that allows the use of a keyboard as a

means for its input and the display of various fields in which the

values and options are specified and entered is called a form-filling

interface.

Menus and forms are both input mechanisms. The difference

lies in the way input is used. Forms are integrators of information

w hile menus are displays of discrim inating alternatives [Perlman,

84], A form can be viewed as a menu with random access of fields

via cursor movements. Unlike values in menus, which are assumed to

large m em ories small memories

28

be valid prior to selection, values in forms are validated. As with

m enu selection in terfaces, form -filling in terfaces also have their

associated design guidelines [Shneiderman, 86].

6. Examples of menu systems

The best examples of menu systems are the systems known

generically as of videotext or v i e w d a t a , in which the TV screen is

used to display data or inform ation organised into frames or pages.

They are on-line information retrieval services. A typical version of

videotext is given next under the name of Prestel.

6.1. Prestel

A Prestel database contains many thousands of inform ation

pages, where the key to information retrieval is the indexing method.

A Prestel page is the smallest item of information which a user can

address directly. A page is a screenful with up to ten links to any

other page. Index pages are called routine pages which lead to end

pages which contain inform ation rather than routing choices. But

each page can be extended over up to 26 additional display

screenfuls, each called a frame. A frame is identified by its parent

page number plus a following alphabetic character (a to z). Frames

can only be reached via their parent pages. There are no jum p or

reverse procedures for finding frames. Frames permit a logical topic

to be extended over more than the capacity of a single screenful.

Prestel uses also the combined printed directory with the numbered

choices approach.

As mentioned before, hypertext systems are also menu systems, and

apart from the systems which are discussed in chapter two, the

29

following is also a typical hypertext and menu system.

6.2. TIES or HyperTIES

This is a typical example of a menu system which uses the

h y p ertex t approach . The U n iversity o f M ary land In te rac tive

E ncyclopaedia System [Conklin, 87] is an inform ation retrieval

system which allows users to explore inform ation resources in an

easy and appealing manner. The basic units in the system are short

articles which are interconnected by any number of links (selection).

The links are highlighted words or phrases in the article text

(embedded menus). The user activates the links by touching them by

a finger or using the arrow keys to jump to them. Activating a link

causes the article about that topic to appear in its own window on

the screen.

The major purpose of this work and the thesis as a whole, is to

investigate the functionality and lim itations of a number of dialogue

specification systems, from the point of view of a designer wishing to

b u ild a m enu-based in te rface . M ostly the w ork invo lves

im plem entation of a particu larly dem anding exam ple involving

multiple menu selections. And in order to get a deeper insight into

the properties and limitations of these dialogue specification systems,

practical work was carried out implementing sample problems and

concepts. This work is described in the following chapter.

30

Chapter 2

Experimental Studies In System Use

1. In troduction

This chapter discusses the practical work which was carried

out as part of the investigation of menu systems. The work consisted

mainly of implementing some practical examples using four different

m en u -b ased d ia lo g u e sp e c if ica tio n system s. E ach o f these

incorporates some im portant concepts and principles which give the

underlying system its own type and style. However, the differences

in type or style focussed on in this thesis are those relevant to

m enu-based user in terface system s or h ierarch ica lly organised

d ialogues.

The practical examples to be implemented were chosen with the aim

of highlighting the relationship between the underlying systems and

h ierarch ically based system s. A dditional aims were to discover

w hether the m ultiple menu selection mechanism adopted by some

m enu-driven systems such as the Dining Out In Carlton system

described in [Hepe et al., 85] was achievable or not, to see whether

the im plem entation of certain im portant navigational concepts was

possible or not, and finally to investigate the extent to which the

hypertex t concept may influence the design of menu selection

systems. A wide range of issues involved in the design of user

interfaces arose in the course of implementing the examples using

the target systems and these issues are discussed together with the

difficulties and deficiencies encountered during those experiments.

31

The chapter is partitioned as follows: section 2 gives an outline

of the exam ples as well as their special properties which represent

the different sample problem s to be im plem ented using the target

systems, section 3 gives full details of each of the four experiments,

including a detailed description of the different target systems used.

2. Sample problems
In chapter One, some draw backs were m entioned which

m any menu system s suffer from and which represent the main

disadvantages of such systems. Chapter One also described proposed

solutions to these problems, several of which have been successfully

applied in many applications [Hepe et al., 85; Apperley and Spence,

83; Apperley and Field, 84]. Typically, these techniques relate to the

navigation around a given dialogue structure. In order to illustrate

the im portance of these techniques, the task of designing and

pro to typ ing a user in terface to two m enu-based exam ples was

carried out. The examples chosen for this purpose were Dining Out

In Carlton [Hepe et al., 85] and the On Line Library based on the CR

classification scheme [CR, Acm press, 88].

The Dining Out In Carlton example gives scope for use of all

the navigation aids and techniques discussed in Chapter One as well

as a m ultiple selection m echanism , and the principal reason for

choosing it was to investigate how easily these navigational

techniques as well as its m ultiple selection property can be

implemented in each of the selected dialogue specification systems.

The descriptions of the two examples are given below.

32

2.1. Description of the ’’Dining Out In Carlton” example

It is a hierarchically organised inform ation system. It was

originally devised to provide inform ation about restaurants for the

experim ental viewdata system described by Apperley and Field [84].

It operates at three levels : • a menu of restaurant attributes,

• a list of available restaurants,

• the restaurant's inform ation page.

The first menu consists of a set of attributes where the

user's choice is a combination of selection of three attributes. This

m ultiple menu selection scheme represents a special property of the

exam ple and w hich m akes a challenge for conventional menu

specification systems. The attributes used are c u i s in e , loca t ion and

price range. This selection leads to the corresponding alphabetically

ordered menu (page) where only one item is chosen or selected.

Thereafter, the corresponding third level menu which represents the

inform ation page of the specific restaurant chosen is displayed. A

valuable feature is also included allowing the user to bypass making

a decision for all parameters in order to browse the available target

space. This facility is known as the Sk ip - to - ta rge t - leve l option. One

other valuable option named any which gives added freedom to the

user who has a specific value of an attribute in mind but does not

care about the other parameters in order to skip to the target level is

also added. Attribute selection is achieved by the user pointing to the

attribute name with a light pen. The selected attribute name is then

h igh ligh ted .

As well as providing inform ation, another purpose was to

p rov ide a w orking dem onstration of m ost of the techniques

em ployed to rem ove the inherent disadvantages of classical menu

33

based inform ation system s. In the im plem entation discussed here,

only the sideways viewing technique has been omitted (See [Hepe et

al., 85] for more details).

2.2. Description of the On-Line library example

This exam ple is typically based on the CR classification

scheme [CR, Acm press, 88]. This scheme is mainly aimed to classify

and structure all the inform ation contained w ithin the computing

field. The classification scheme consists of two parts:

• a numbered tree containing unnumbered subject descriptors,

• a general terms list

The tree and subject descriptors

The tree consists of eleven first level options and one or two

more numbered levels under each of these.

The set of children of all first and second level options begins with an

op tion nam ed "G eneral" and ends w ith an o th er nam ed

"M iscellaneous". The first level options have letter designations (A

through K) with numerals used for the second and third levels. A set

of subject descriptors is associated with most leaves of the tree.

These are essentially fourth level options intended to subdivide the

subject area denoted by the leaves into subareas. Cross-references

between the options within the tree structure are also supported in

this scheme.

The General Terms list

T ypically many areas of the com puting field share a

common set of General Terms. Therefore grouping reviews in CR

34

according to the General Terms is another way of organising the

inform ation retrieval task. Exam ples are: algorithm s, design, etc...

This general Terms list represent the keywords within this example.

3. The Systems

The four d ialogue descrip tion system s considered for

practical work in this thesis were: Chisl [Wood et al., 88], Guide

[Brown, 86], KMS [Akscyn et al., 88] and HyperCard (released by

Apple and developed by Bill Atkinson, [Apple M acintosh HyperCard

User's Guide, 87]).

The very first step relating to the use of each system was to

acquire and understand all the underlying features, concepts and

m echanism s concerning the design of an eventual m enu-based

system . The respective outcom es of this step as well as the

description of each system are discussed in each subsection of this

c h ap te r.

The idea behind the objective of carrying out the task of

designing and pro to typing a m enu-based user in terface to the

examples chosen was not the use of the end products themselves, but

rather the investigation and consideration of the underlying concepts

which compose each of the target system and the way the design and

implementation of the above examples are achieved. Each experience

is discussed from both the designer's and the user's perspectives.

35

3.1. Chisl

1. Features of the Chisl specification.

Among the key features of Chisl are the following:

i. C hisl is a graphical dialogue specification language which

allow s:

• the creation of hierarchically organised dialogues,

• the dynam ic reconfiguration of a dialogue specification

w ithout requiring recom pilation.

ii. A dialogue consists of sequence of dialogue units hierarchically

structured. Each dialogue unit is specified and stored in a separate

file in a human readable form. The filename is used to identify the

dialogue unit. A dialogue unit consists of a set of options which are

selectable either by the user, the application program or Chisl

itself.

iii. An option consists of:

• an option name: identifies the option and holds information

about the option type,

• a location: the initial coordinates of a selectable screen

object, but optional,

• a condition: a boolean expression such that if is evaluated as

true, the option is selected,

• an action sequence: a list of actions carried out when the

option is selected.

A dialogue unit may also have an entry action which will be carried

out once when the dialogue unit is first activated.

36

The syntax of an option is as follows:

<selection condition>[<location>]<option n am ex ac tio n sequence>;

An option is either local or global.

• local: when declared or defined in a DU (Dialogue Unit), a

local option is selectable or legal only in the DU in which it is

declared. If while in a lower level dialogue unit a local

option is chosen from further up the hierarchy, then the

dialogue will back up to the chosen level of the selected

option.

• global: a global option is exported to each DU called from the

DU where the option is declared even if that DU is

deactivated or exited. A local option, on the other hand, is

selectable only as long as the DU in which it is declared

rem ains active.

iv .T h e interpretation and execution of a dialogue specified in the

Chisl language is perform ed by the Chisl interpreter C h ip . The

e x e c u t e function of Chip is called recursively each time an

activated dialogue unit is encountered within the selected option.

v. Chip uses a condition satisfier to evaluate the selection

conditions of the options which are tested in the following order:

1. global option exported to the current level;

2. local options at the current level,

3. local options at successively higher levels along the

activation path, back to the root.

The Chisl system can be classified as a hierarchically based dialogue

system and appears to be well suited for the im plem entation of

menu based user interface systems.

37

2. Experience of using the Chisl System.

T his sec tio n d escrib es the task o f d esig n in g and

im plem enting a menu based user interface to the Dining Out In

Carl ton example using the Chisl system. Two approaches are devised

for this purpose which consist of using the C hisl specification

language as well as a preprocessor.

2.1. D esign a n d Im p le m e n ta tio n

This section discusses the design and use of the Dining Out

In Carl ton example using the Chisl system. The attribute values

considered here for illustration are: • Cuisine: French, Italian

Only a few attributes are considered in this exam ple in order to

generate small dialogue units.

2 .1 .1 . U sing C hisl sp ec ifica tio n language

The menu of attributes should be displayed first in order to

allow the user to select three attributes in any order achieving

therefore the special property of the Dining Out In Carlton example.

This is how it is done when using the specification language

(See Appendix A for more details on the Chisl syntax). First of all,

the display should be done by the "Root" dialogue unit, let's call this

dialogue unit: "Root". The attribute values or items are considered as

local button • ncj identified by the attribute values

• Location: Carlton, Abbeywell

• Price: 3-10, 10-15

them selves. contents of this dialogue unit in the present

example would be:

38

{B_French} X0Y6 B_French assign(reg97, French);
{B_Italian} X0Y7 B_Italian assign(reg97, Italian);
{B_Carlton} X20 Y6 B_Carlton assign(reg98,Carlton);
{B Abbeywell} X20 Y7 B Abbeywell assign(reg98,Abbeywell);
{B 3-10} X40 Y6 B 3-10 assign(reg99,3-10);
{B_10-15} X40 Y7 B_10-15 assign(reg99,10-15);
{B_quit} X0 Y0 B_quit% quit();
{B_Show-List} X10 Y10 B_Show-List% assign(reg91, View);

{(reg97=French) AND (reg98=Carlton) AND (reg99=3-10) AND (reg91=View)}
View reset(reg91) Dl[];

{(reg97=Italian) AND (reg98=Abbeywell) AND (reg99=10-15) AND (reg91=View)}
View reset(reg91) D2[];

The execution of the Root dialogue (above) by the Chisl intrepreter

Chip issuing the following command: "Framex Root " will generate the
New R oot | S ta r tu p Frame :

s f a u l t O p tio n C N o n e Qdisplay of figure 1.1.

(f r e n c h]

(1 f a l l e n]

f i f r t t) (Shorn—U a t) fS h lp - T o - T a r g o t- te v e 11

figure 1.1. Display of the attributes (main menu)attributes

For simplicity, we suppose that only two selections (a combination of

3 options) have associated menus of available restaurants. So, two

39

d ia lo g u e un its cou ld be ca lled or ac tiv a ted w henever the

corresponding selection condition becomes true, which means:

(1) if (reg97=French) AND (reg98=Carlton) AND (reg99=3-10) AND

(reg91=View) then the dialogue unit D1 is activated, or

(2) if (reg97=Italian) AND (reg98=Abbeywell) AND (reg99=10-15)

AND (reg91=View) then the dialogue unit D2 is activated.

These two selection conditions illutrate perfectly the m ultiple menu

selection property of the Dining Out In Carlton example.

Each dialogue unit is specified in the same way as the Root

dialogue unit. Only the dialogue unit D1 is considered here for

illustration. So, D1 may look like:

{B_1 .French 1 -Carlton-3-10} X0 Y9 B_l.French-Carlton-3-10
assign(regl,iteml);

{B_2.French2-Carlton-3-10} X0 Y10 B_2.French2-Carlton-3-10
assign(reg2,item2);

{B_Show-Info-Page} X20 Y0 B_Show-Info-Page%
assign(reg90,OK);

{(regl=iteml) AND (reg90=OK)} OK reset(reg90) D11 [];
{(reg2=item2) AND (reg90=OK)j OK reset(reg90) D12[];

This means, that the dialogue unit D1 displays a menu of

two local options (items) and one global option. The execution of this

dialogue unit together with the root dialogue unit by the Chisl

interpreter will generate the display of figure 1.2. This execution can

be achieved w ithout necessarily issuing explicitly the execution

command. This can be done simply by selecting the "New Root "

option (figure 1.1) which invokes the Chisl interpreter to execute the

updated dialogue in consequence.

40

| { Hew Root] S ta r tu p Fr«m« : R oo^

D e fa u l t O p tion C N o n e [S e t D e fa u l ta |

•THIS IS A 3 -ATTRIBUTES INFORMATION SYSTEM*

(f r tn c h j IC .r l to n l [3 -H 1
H t» 1 1 » n] lA 6 b .y u . l l] 111 -15] |c» i» c« l]

T h is I s t h e l i s t a v a i l a b l e

I t . F raech l-C arlton -3 -181
12. French2-Csr lton-3-18~)

iQ u it] iS h o y -L ls t] [S fc lp -T e -T a rq e t- ta v e 11 [S h o u -Iw fg -fa q c]

French I c a r ltc n ■•tir£e-Ier,
Cuisine I I

figure 1.2. Display of the available list

So, if item l and the global option are selected (identified by

registers "regl" and "reg90") then the dialogue unit D l l is activated,

the in fo rm a tio n page co rresp o n d in g to the item chosen

(l-French-C ardlton-3-10) is displayed, or if the item2 is selected

then the dialogue unit D12 is activated instead.

Let's consider the dialogue unit D l l . D l l will display the

inform ation page where the target information is always retrieved.

U sually, the information page which is the main concern of the

information system provider contains a large amount of information.

There are many ways of presenting or displaying this page on the

screen providing better layout and greater clarity. So, doing this

using the Chisl specification language will lead to larger dialogue

units and require great attention to writing a more accurate dialogue

specification.

41

The dialogue unit D l l could be specified as follows:

ENTRY message(0,15,13 /'THIS IS THE INFORMATION PAGE")
message(l,15,14,"______________________________ ")
messaged,10,15," CHEZ MAXIM(****)M)
message(3,10,16,"__________________ ")
message(4,5,17,"SOUP ")
message(5,5,1

{B_Dummy} X0Y13 B_Dummy assign(reg92,Dummy);

The execution of this dialogue unit together with the two

dialogue units already specified above by Ch i p will generate the

display of figure 1.3. (N eu R o o t ') S t i r t u p F ra M : Roo^

I W . i i l t Dot Ion C N o n e f S e t D e fa u l ts J

...

[f r e n c h 1 fC a r l to n] (w e)
{ I t a l i a n) {A bbeyuellJ (H - 1 S 1 I C an ce l)

T h is l a th e 1 1 s t a v a i la b le

1X. F ren ch l -C a r 1 t o n - 3 - ie)
12 . F ren ch 2 -C ar 1 t o n - 3 - ie)

THIS IS THE INFORMATION PAGE

CHEZ MAXWC***)

SOUP

1____
2

APPETSERS

1..........
2

| MAIN COURSE

| 1___
| 2 ___

Carlton I 'tire e -T e r

figure 1.3. Display of the information page

42

As we can see from this dialogue unit (D 1 7), all the layout of the

inform ation page should be done explicitly by the means of a

pre-defined routine m essa g e which takes as arguments: the message

identifier, the (X,Y) coordinates of the first character of the text and

the text to be displayed. Finally, the dummy option is added so that

the dialogue unit can be exited when selecting an option from the

upper level in the hierarchy (a deficiency in the present version of

Chisl).

As has been demonstrated in this exercise, the m ultiple menu

selection property was possible using Chisl. M oreover, options from

three different levels of the dialogue (figure 1.3) are made available

to the user, which illustrates the instantiation or upcoming selection

technique (chapter 1). Finally, since the first level options are always

available, therefore, the parameter node concept is also possible.

A fter having specified all the dialogue units, the dialogue is

hierarchically organised (figure 1.4). The hierarchical nature of this

dialogue structure arises from the fact that the dialogue units are

called from within an action sequence.

43

D2

D22D2

figure 1.4. Hierarchical Dialogue structure.

As consequence of experience in using Chisl, an auxiliary goal

was form ulated. The new objective was to provide a means of

specifying a dialogue without necessitating the learning of a formal

specifica tion language, the aim being to avoid the m isleading

im pression of the system 's functionality given by the Chisl

specification. This new goal led to the construction of a preprocessor:

the Chisl preprocessor. The preprocessor specifications are given in

appendix A. The design and implementation of the same dialogue or

example using the preprocessor are discussed next.

2.1.2. Using the preprocessor

W ith this method, the user, instead of specifying the dialogue

in terms of dialogue units and the Chisl specification language, has to

specify the dialogue in terms of ordinary text files called the

PreChisl DU files (See Appendix A). These files are translated into the

44

Chisl specification language for later interpretation and execution by

the Chisl interpreter Chip. Three types of files have to be specified or

created because there are three levels in the hierarchical structure of

the exam ple.

i. The attributes file

This file contains all the information related to the options to

be displayed (attributes) at the first level. Let’s call this file F. In the

present example, its content would be:

French
Carlton
3-10
FI
D1
iconl
icon2
icon3
Italian
Abbeywell
10-15
F2
D2
icon4
icon5
icon6

- French, Carlton, 3-10, Italian, Abbeywell, 10-15 represent the

options names (attributes).

- F I , F2 are PreChisl DU files, containing textual information about

the list of restaurants which will be displayed at level 2.

- icon l, icon2, icon3, icon4, icon5, icon6 represent the names of files

containing the icons to be displayed upon a selection of the

corresponding option in order to indicate the selected state of the

option since this facility is not available in the current version of

45

the Chisl system.

- D l, D2 are the Chisl DU files into which F I , F2 are translated

re sp e c tiv e ly .

ii. The PreChisl DU files tvpel

F I, F2 are of this type. Only FI is considered here. FI is:

1 .French 1 -Carlton-3 -10
F ll
D ll
2.French2.Carlton-3-10
F12
D12

- F l l , F12 are PreChisl DU files of type2, files containing detailed

textual information about a specific item at level 2.

- " l.F ren ch l-C arlto n -3 -1 0 " , "2.French2.C arlton-3-10" are the two

items displayed upon the selection of the three attributes (French,

Carlton, 3-10), that is the local options at level 2.

- D l l , D12 are the Chisl DU files into which F l l , F12 are translated

re sp ec tiv e ly .

iii. The PreChisl DU files tvpe2

F l l , F12 are files of type2. Only F l l is considered .

This file is an ordinary text file which can contain any text. No special

form at is required for this type of file, since the content of this file

represents the information page. This file is exactly displayed as it is

written. So, by this means, it is much easier to modify or add items of

information. F l l may look like:

46

1.
2 .

1.
2 .

1.
2 .

1.

THIS IS THE INFORMATION PAGE

CHEZ MAXIM(****)

SOUP

APPETISERS

MAIN COURSE

DESSERTS

As can be seen from this example, the file structure (figure 1.5) is

equivalent to the dialogue structure (figure 1.4) which is being built

using the preprocessor.

F22F 21

0

:flie type 1

: f i le type2

Figure 1.5. Hierarchical PreChisl DU file structure

47

2.1.3. Invocation of the preprocessor

W hen all the textual files are created, the dialogue is built

and subsequent communication between the user and the system is

via the user interface generated by the Chisl system, as illustrated by

the figures above. The command: "PreChisl F Root " takes two file

names (F and Root) as arguments. F is the name of a file containing

textual inform ation about the attributes (see Appendix A) to be

displayed as the main menu options. R oot is the name of a file which

will become the Chisl root dialogue unit. The information contained

within the file F will be translated into the Chisl specification

language w ithin the dialogue unit R o o t . T hereafter, issuing the

com m and: "Framex Root " will invoke the Chisl interpreter to

execute the prespecified and translated dialogue. This will result in

the displays of the figures 1.1, 1.2 and 1.3.

The user makes his choice of parameters, after which a list

of availab le restauran ts is d isplayed. T hereafter the user can

selectively re treat to change any of the three param eters. This

results in an updated list based on the new value and the other

(unchanged) attributes values. At the third level of the hierarchy, the

user can also either return to the first or second level in the

hierarchy by either selecting one option from the main menu options

(displayed by the root dialogue unit) or an option displayed by one

of the second level dialogue units.

The current implementation of the Chisl system does not

provide an implicit way for displaying a history of the selected items

or the current path. However, this is achieved in an explicit way by

displaying an icon for each attribute upon its selection in a separate

graphical window (figure 1.2).

48

3. Discussion

The two versions of the "Dining Out In Carlton" example (the

version described in [Hepe et al., 85] and the one prototyped in Chisl)

are discussed in terms of differences and improvement.

The m ajor difference resides in the way in which the

techniques discussed earlier are illustrated and exploited, and the

user interface supported or generated for each version.

In the first version described in [Hepe et al., 85], most of the

nav igational aids are used apart from the sidew ays-view ing one

which is quite difficult to achieve within the conventional display

used. Moreover, the user interface is organised in such a way that:

•At level 1, the user is presented with the display of

f ig u re l.6 from which he selects a com bination of three

options (attributes) leading him to level 2.

Dining Out In Carlton

c u is in e lo c a a t io n p r ice (L)

French C arlton 3 - 1 0
Itaa lian A b b e y w e l l 1 0 - 1 5

S e le c t an option, or

View the l i s t of restaurants.
Quit the restaurant giude.

Figure 1.6. Display of option menu at level 1.

•At level 2, the user is presented with the display of

figure 1.7 which replaces the first display. At this level, the

user can either select an option which will lead him to the

third level or return back to the option menu.

49

Dining Out In Carlton

French
Carlt
3 - 1 0

You have s e le c te d : Cam on

1 .French 1 Carlton 3-1 0,
2.French2 Carlton 10-15

S e le c t a restaurant from l is t
Return to the option menu, or
Quit the restaurant guide.

Figure 1.7. Display of a list of restaurants at level 2.

•At level 3, the user is presented with the information page

of a specific restaurant chosen at level 2 together with the

options allowing him to return to either of the previous

levels.

It is clear that the user is presented with only one display at a time

where the backtracking option is necessary for navigating or moving

through the system hierarchy. In a hierarchically organised system

where the backtracking option is the only means for navigation, it is

hard for the user to see and understand the efficiency and the

pow erful navigational aids provided by those techniques. However,

in the version prototyped using Chisl, some of these techniques, such

as p ara m eter nodes and se lec t ive r e t r e a t , are au tom atically

supported or provided by the Chisl system. This is due to the more

flexible way in which local and global options are handled as already

50

dem onstra ted . M oreover, the i n s t a n t i a t i o n technique is better

illu stra ted when using the Chisl system since the user can see

instances from all the three levels simultaneously (see figure 1.3). By

th is m eans, the user can navigate more accurately and rapidly

through the system hierarchy. More im portant is the fact that the

user is given the opportunity to cancel any doubtful choice and

change his choice, since the option menu is always available to him

(see figures).

Finally, the s ideways v iewing technique which has been

omitted in the original or first version, could be easily included in the

second version. This could be achieved for example by displaying all

the nearby menus (level 2) in a second interaction window. So, if an

option is selected from that window, the menu to which this option

belongs could be displayed in the principal interaction window. But,

and unfortunately, the present version of the Chisl system (still in

the process of development) does not handle or support the case of

displaying and selecting from another window apart from the control

panel window. This has prevented the realisation of the idea above.

4. Difficulties and Deficiencies in Chisl.

This section outlines some d ifficu ltie s and problem s

encountered during the above experience in using Chisl.

1. Only one string of characters is allowed to represent an option.

2. An option is identified only by the string, so no identical strings

are used.

3. A dialogue unit must have at least one local option in order to be

ex ited .

51

4. N onexistence of a prim itive or a function which allows the

removal of a button as for example for a message.

5. The option or button selected should remain highlighted as long as

it is activated.

6. Som etim es, an infin ite loop situation could happen, when for

exam ple in a parent dialogue unit one or more test conditions are

found always to be true when calling another dialogue unit where no

test condition is true. This may be due to the misuse of the registers.

7. Sometimes, the error messages displayed by the Chisl interpreter

do not seem to be very explicit.

8. The number of the registers manipulated is limited. So in a very

large dialogue the situation of lack of resources could happen where

for example more registers are required.

However, some of these problems have been solved in later versions

of the Chisl system.

5. Sum m ary
One of the major difficulties in the Chisl system is the

hierarchical structure of the dialogues and the specification language

itself. In the beginning it was quite difficult to map the user interface

design requirements onto the Chisl specification language, but, after a

period of time using the system a better perception of Chisl was

acquired. The use of the Chisl system would highlighted the privilege

of one class of users (knowledgeable) from another (novice or

casual). Nevertheless, many of the techniques mentioned in chapter

One have been im plem ented in the chosen exam ple and some

im portant concepts are well handled by the Chisl specification

language.

52

In the course of carrying out this exercise, the need became clear for

an additional tool to sim plify the creation and editing of menu

structures of the type required by the exercise, and a preprocessor

for this purpose was constructed. This had the added advantage of

relieving the dialogue designer from the need to have a detailed

understanding of Chisl syntax (The long-term aim of the Druid

pro ject, whose work produced the Chisl language, is to provide

h igh-level graphical tools for editing all aspects of a dialogue

specifica tion).

53

3.2. Guide

1. Description of Guide

O riginally , Guide was designed typically for electronic or

in teractive docum entation purposes and first applied to the Unix

docum entation [Brown, 86]. It is an in teractive com puter-based

docum ent system, whose user interface exploits hypertext concepts,

eg. links (Chapter One). Guide may thus be considered to be a

"hypertext com puter-based document" system. It allows users to

build their own documents interactively by providing a simple way

for selective display of information and for creating material that can

be so displayed. Guide, as a tool and as a hypertext system, can be

used for: s to ring , ca ta logu ing , c ro ss-re fe ren c in g , struc tu ring ,

prototyping and retrieving inform ation

Guide is available commercially for both the Apple Macintosh

and IBM PC-com patible micros from Office W orkstations Ltd. of

E d inburgh , who ported and developed the system orig inally

implemented on Sun workstations by Prof. Peter Brown of University

of Kent. The experiments described here were carried out using the

Sun version, which has some minor differences from the Apple and

PC versions supplied by OWL.

In the Sun version, Guide provides a special command dialogue

w ithin which many im portant hierarchical structure concepts are

em bedded. Some m ajor concepts and princip les of the Guide

philosophy and which are common to many hypertext systems are

d iscussed .

54

2. Concepts and Principles
2.1. Buttons

One of the most important features of Guide is the notion of a

button (which in the hypertext terminology introduced in chapter 1

is simply called a link). Guide offers two major types of button or

link:

• r e p la c e - b u t to n : causes the button to be completely replaced by

the text and/or picture pointed to by the button when it is

selected. There are three kinds of replace-buttons:

d e f i n i t i o n - b u t t o n : the rep lacem ent assoc ia ted w ith the

replace-button applies not only to the button itself but can also

be em ployed by other usage-buttons and/or g lossary-buttons

(See below) that match the same name.

lo c a l-b u tto n : the replacement applies only to the button itself.

u s a g e -b u tto n : the replacement is created dynamically (eg, using

the definition or the result of running a shell-script).

A group of replace-buttons may be organised such that all the

buttons are replaced by one button's replacem ent. These buttons

form an e n q u i r y . The replacements of this kind of buttons are

displayed within the principal frame-of-view (below). These buttons

are made emboldened when created.

•g lo s s a ry -b u t to n , the replacement of a glossary-button is called a

definition. W henever a glossary-button is selected, its associated

definition is displayed in a separate area called a glossary-view

(See below) and the original button still remains. This is the

d ifference betw een these two types of button. A Guide

docum ent may contain several occurrences of the same

g lossary-button . M oreover, several d ifferen t g lossary-buttons

m ay share the same nam e, that is they have d ifferen t

definitions. A glossary-button is underlined when created.

2.2 . V iew s

Unlike many other hypertext systems, Guide does not support

heavy use of windows that have one-to-one correspondence with

nodes in the database (chapter 1). Instead Guide has adopted the

'sp lit screen' display concept and generates different, independent

areas called views or frame-of-views.

In the Sun implementation, a Guide screen consists mainly of

one Sun View window which may be divided into different views

(see figures). It is screen-based, that is it provides a convenient user

in terface by displaying a whole screenful of inform ation, menus,

etc...together with a scrolling mechanism for each view.

2.3. E d itin g

Guide allows the capability of editing by providing the user

with some facilities in order to manipulate the material to be edited.

Guide provides two types of editing :

•Textual editing , the usual way of editing.

•Structural editing , only possible in author or design mode where

the underlying structure is made visible. This allows the author to

identify the types of buttons where each structure (button and its

rep la ce m e n t) is de lim ited by specia l ch a rac te rs . B uttons

(structures) can only be created in author mode using an

additional menu which consists of a set of com m ands (see

A ppendix B). The way the buttons and rep lacem ents are

constructed is m ade inv isib le to the reader (user). Guide

distinguishes an ordinary text file from a source file in such a way

the form er does not contain any structuring (no underlying

structure visible to the reader).

56

2.4 . Replacem ents

U nlike many other interactive systems, Guide provides three

useful m echanism s whereby buttons are replaced autom atically on

loading. Each mechanism meets a different user need, but only two of

these are worth considering in the present discussion. These concern

the autom atic selection of the buttons with specific properties or

unasked replacem ents. They are:

•Asking-level and User-level

Each replace-button has an asking-level (a digit between 0 and 3).

It is set to 1 by default at creation. The asking-level can be

changed by the end-user. Associated with each user is a user-level

which is set to 1 by default. The user can change his user-level by

specifying it in the command which is used to load the source file.

This mechanism implies that all the replace-buttons for which the

asking-level is less than the current user-level are autom atically

replaced (without asking the reader). It is mainly used to control

some buttons such that the end-user or reader may not be aware

of. This mechanism can be regarded from the designer's point of

view as one of many im portant techniques for accommodating

d iffe re n t com m unities o f users w ith d iffe ren t needs and

re q u ire m e n ts .

•Preset replacement

Unlike the first mechanism, this one is principally useful from the

user’s perspective since it gives the opportunity to have some sort

of control over individual local and definition replace-buttons.

Presetting a button means not only is the button itself replaced but

all the rep lace-buttons of the same name are autom atically

replaced too. This can also be preplanned by the author. More

details about Guide and its concepts can be found in [Brown, 87].

57

2.5. The command dialogue

All the structural editing and authoring are achieved via a

sp ec ia l set o f m enu com m ands w hich rep resen t the menu

specification language of Guide. The description of these commands is

g iven in appendix B. The underlying princip les of the menu

specification language language are explored by considering the

im plem entation of an example.

3. Experience of using the Guide system

A different example was chosen for exam ination instead of

the Dining Out In Carlton example previously discussed in the Chisl

section, because of the unsuitability of Guide for that application.

This inappropriateness arises mainly because the notion of buttons

and their replacements does not fit well with the requirements of the

main menu in the example, which consists of a set of attributes that

can be selected in any order and in any number (1, 2 or 3). This

m eans that neither the d ifferen t types of buttons nor their

com bination can be used to achieve the multiple attribute selection

property of the Dining Out In Carlton example. However, if the main

menu is considered as a multi-level menu attribute, the notion of

buttons may apply but still in a rather inappropriate manner. In

principle the example could be implemented in a purely hierarchical

fashion, although this would impose an unnatural constraint on the

a ttribu te selection scheme, and would lead to a com binatorial

explosion in the overall structure. This is the main reason why

another exam ple had to be considered instead. The example used

was the On-Line Library already described in chapter 1.

The follow ing section discusses the major points involved in the

design and im plementation of a Guide interface to the O n - L i n e

L i b r a r y exam ple, and outlines the im portant steps in the

58

im p le m e n ta t io n .

3.1. Design and Implementation

This section illustrates Guide from the designer's perspective,

in particular how the information handled within the On-Line library

exam ple is structured and presented to the end user, and how the

menu specification language provided is exploited for such purpose.

3.1.1. Entering the design (author) mode

Guide uses the end user (reader) mode as its default mode,

where only a set of menu commands (see figure lb in Appendix B)

are available. Therefore selecting the author option from this menu

switches to the author mode making available an extra set of options

(see figure 2b in Appendix B).

3.1.2. Authoring and Design

This has much to do with structuring and representing the

m ateria l to be displayed and accessing the inform ation to be

retrieved. The hierarchical organisation of the menu items implied

by the CR classification scheme should be displayed in the principal

view accordingly, that is the four menu levels of the On-Line Library

exam ple should be displayed such that whenever a menu item is

selected, its corresponding lower level options are displayed within

the principal view. To meet this requirement, This menu item should

be created as a local replace-button, and its lower level options as its

replacem ents. All the four level menus are created in the same

m anner. In order to make the display clear, the menu items are

displayed such that the hierarchical structure of the menus is well

reflected (see figures) on one hand. On the other hand, menu items

not already selected (emboldened) are distinguished from the menu

59

item s already selected (plain text) which them selves appear within

the displayed replacement (See [Brown, 87] for more details on the

creation of local replace-buttons). Figure 2.1 illustrates the first level

menu (main menu) of the example in author mode.

All the options of the fourth level (subject descriptors) should

lead to the display of their respective target inform ation when

selected. Instead of displaying the target inform ation within the

principal view which may render it clutter and inadequate for visual

scann ing and read ing , it is d isp layed in a d iffe ren t view

(glossary-view). To this end, all the fourth level options are created

as glossary-buttons and their respective target information is created

as the ir defin itions. These defin itions are created in special

definition-file called the glossary .guide file (See [Brown, 87] for the

creation of glossary-buttons and their definitions). There are some

other menu items which do not have any further associated options

such as: "General” and "Miscellaneous". These options are also created

as g lossary-buttons (see figure 2.2). So far, only hierarchical

organisation is illustrated. Since cross-references exist in the CR

classification scheme and in order to distinguish them within the

pro to type, references are put between brackets (see figures). A

cross-reference means jumping from one node to another node. In

this exam ple, a cross-reference is represented by a button, when

selected, brings up a set of options of an already existing node within

the tree s tru c tu re . T h ere fo re , to m eet th is req u irem en t,

c ro s s - re fe re n c e s are c rea ted as u sag e -b u tto n s , because a

usage-button uses a definition of an already existing button (See

[Brown, 87] for the creation of usage-buttons).

This is how all the information is structured and presented to

the user. In author display, the underlying structures are made

v isib le to the designer helping therefore the authoring and the

60

design of the prototype. The figure 2% shows the main menu in

author display. Each structure is delimited by two special characters,

in this case B and its mirror image for a button.

A.GENERAL LITERATURE
B.HARDWARE
C.COMPUTER SYSTEM ORGANIZATION
D.SOFTWARE
E.DATA
F.THEORY OF COMPUTATION
G.MATHEMATICS OF COMPUTING
H.INFORMATION SYSTEMS
J.COMPUTING METHODOLOGIES
K.COMPUTER APLLICATIONS
L.COMPUTING MILIEUX

figure 2.1. main menu in display

The possibility of switching to the reader display while prototyping

the user interface to the On-Line Library example is a very helpful

and useful facility allowing the designer to see the prototype as the

reader would see it.

3.1.3. Saving the prototype
After having built the prototype, this has to be saved. It can

be saved either as a source file or as an ordinary text file. In this

case it is saved as a source file with all its underlying structures. The

name of the source file in which the four level menus are saved is

l ibrary .gu , and the definitions are saved in the g l o s s a r y . g u i d e

Quit New Read'Quit New Read-on Save Block-edlt Author

source file.

61

3.2. Using the prototype example

This focuses mostly on the reader's perspective, in particular how

users move around the inform ation space to reading and finding

in fo rm a tio n .

3.2.1. Entering the user’s (reader) mode

There are different ways to enter the reader mode. But only two are

considered in the present discussion

i. bv starting a Guide session

The user loads the source file by issuing the following command:

guide library.gu . Therefore, the display of figure 2. i . appears on

the screen. The default mode is reader mode as said before.

Quit New Read-on Save Block-edlt Reader
♦Local +Def1n1t1on ♦Usage +Act1on ♦Glossary
♦Enquiry Change-button Oestruct Extend Find

B O O A. GENERAL LITERATURES]
0B. HARDWARES]
0C.COMPUTER SYSTEM ORGANIZATIONS]
00. SOFTWARES)
0E.OATA0
0F.THEORY OF COMPUTATIONS]
0G.MATHEMATICS OF COMPUTINGS]
0H.INFORMATION SYSTEMS 0
0J.COMPUTING METHODOLOGIES&I
0K.COMPUTER APLLICATIONS&I
0L.COMPUTING MILIEUXSl

During a Guide session, switching to reader mode (if not already in)

is by selecting the reader command from the menu of figure 2b in

s h e l l t o o l - /b in /c s h

figure 2.2. First level of menus (main menu)

ii. within a Guide session

Appendix B.

62

The first case is likely to be the normal and usual way of entering

reader mode.

3 .2 .2 . R ead ing and R e trieva l

R etrieving inform ation is the main purpose in using the

prototype. Retrieving all the books covering a specific topic in the

computing field or finding all the books written by a given author

both are examples of information retrieval task that a user is likely

to be carrying out. Guide provides two strategies or ways for

inform ation retrieval task, these are:

i. link following or item selection

The inform ation seeking process can start from the main menu

(see figure 2.1^ by selecting the appropriate menu items till the

target information is found.

L et's consider the follow ing exam ple, selecting the menu i t e m ^

labelled "H.INFORM ATION SYSTEMS" from the main menu (figure 2.1)

will cause an extra menu items to be displayed as in figure 2.3.
shelltool - /b1n/csh

Quit New Read-on Save Block-edlt Author

A.GENERAL LITERATURE
B.HARDWARE

C.COMPUTER SYSTEM ORGANIZATION
0.SOFTWARE
E.OATA
F.THEORY OF COMPUTATION
G.MATHEMATICS OF COMPUTING
H .In fo rm a tio n S y s te m s H O .G en era l

HI.Models t. Principles
H2.Datbase Management(E.5)
H3.Information Storage I Retrieval
H4.Information Systems Applications
H5.Mlscellaneous

J.COMPUTING METH000L0GIES
K.COMPUTER APLLICATIONS

figure 2.3. Second level of menus

63

Therefore selecting for example "Hl.Models and Principles" leads

to the display of figure 2.4.

Q u i t Km R e a d -o n S a v a B l o c * - a d i t A u th o r

A. GENERAL LITERATURE

B.HARDWARE

C.COMPUTER SYSTEM ORGANIZATION

0 . SOFTWARE

E . DATA

F . THEORY OF COMPUTATION

G.MATHEMATICS OF COMPUTING

H. Inform al Ion S yatam t HO.Ganaral

Hl-modala A Principle* H10.Gan*r*l

J . COMPUTING HETHOOOLOGIES

K . COMPUTER APLLICATIONS

L.COMPUTING MILIEUX

H Z .O a tb a e a M a n a g a m a n t(E .S)

H 3. I n f o r m a t i o n S t o r a g u A R e t r i e v a l

H 4 .I n f o r m a t io n S y a t a a a A p p l i c a t i o n *
H5Ji4l*c«Haneoo«

H lL S y s te * 4 Inform ation tb * o ry (E .O
H 1 2 JU ie r /M a c h im i y i t « i

H laJtflscelitneous

figure 2.4. third level of menus

Finally selecting for example "H 1 0 .G e n e ra l" will lead to the display

of figure 2.5.

Quit Mew Read-on Save ftlock-edft Author

F.THEORY OF COMPUTATION

G.MATHEMATICS OF CONFUTING

H elnforaatloft System s HO.General

HI .models k Principles H10.Gw*eral

M ll-S ys te m A In fo rm * t ice t te c r > (E .4 l

H12User/U»c*t*»* system

HleJ«#isceHlt»neous

H 2 .0 « tb « * e M an ag em en t(6 . 5)

H 3 .I n f o r m a t io n S to r a g e A R e t r i e v a l

H 4 .I n f o r m a t i o n S y s te m * A p p l i c a t i o n s

H 5 .Miscellaneous

6 0 5 6 C J .v a n RIJ*ber*an (H33) Informaclo Vhsraka***
6 0 4 9 OJLNormaa • S .W iV ap a r (d») (D22) U*er C antered Syttam Oatlcn

6 0 4 7 I N S t o d w I WJCent (d<) (AOO) Proceadlnc* o f the ThM aant* la ta raa tloaa l Conf arnnc* am V ary L e x .

O ata Base* BrlcMon. S e p t. 1-4 1987
6 0 4 3 PJtJB arastaln a t a l (H22) Concurrency Control amd R ecovary b> O a ta ln sa Syttam* | .« -O v m r . ,* M « . |

5841 I.W M ield (H12) Human R asoirce* amd Camoutlnc
5831 E.Oeborrow (H20) O alsbase* and d a tab ase System*: Comcaots amd Issua* 1-nvO varnaM n-1

5 7 4 6 TjH Jdorratt (K2C0 Relational Informatlom Syttam*

5 7 4 5 P X S Io c te r a t a l (d<) (HZ0) O a ta b a .e . -R ota and S truc tu re
5 7 4 4 M.l-Brodta e t a l (H20) On C onceptual ModeWn«: Parsoactlv** from Artificial Ia le « « e n c * . d a tab****, and

Procrsmminc LMRutca* ______ __

figure 2.5. Display of the target information

64

As it is illustrated by the figures displayed above, some of the

navigation techniques mentioned in chapter One are well handled.

The figures highlight the availability of more than one level of menu

item s at a time, illustrating therefore, the instantiation or upcoming

selections technique on one hand. On the other hand, nearby menu

item s are also made available and selectable, thus illustrating the

sideways viewing technique. Moreover, these two techniques could

fully and completely illustrated if the user sets his user-level to the

highest level, and all the menu items are automatically replaced, thus

the w hole structure is made available and visible. F inally , the

param eter node concept would have no sense in this example.

ii. string searching

In this case the information seeking process can be restricted to a

string search. This implies that the string to be searched or found

w ithin the information space has to be specified. However, there

are d ifferen t ways of doing so in Guide. Typically this is

expressed by the fact that the find command can be invoked

d ifferently . This method is more appropriate for searching for

general term s which are the keywords w ithin the inform ation

space of the example. This is achieved by selecting the f i n d

com m and from the com m and d ialogue (See figure 2b in

AppendixB), and by typing in the string to be searched for in a

prom pt frame-of-view provided for this purpose.

4. Discussion
The previous sections have been mostly on the Guide tool

concepts and principles and the design and im plem entation of a

particular application encompassing these principles and highlighting

the underlying specifications of the prototype built. The discussion in

65

this section will principally focus on the major design issues raised

during this particular experience. These issues concern typically the

follow ing points.

4.1. The command dialogue

The menu commands provided have been used to construct

the m enu-based pro to type as shown in the previous sections.

T herefore, the concepts embedded within this command language

seem to be attractive for hierarchically structured system s, but

non-hierarchical structures are also supported. M oreover, it enables

a num ber of features that overcome many of the objections to

h ierarchically organised systems such as instantiation and upcoming

selections (Chapter 1) to be realised or achieved. It can be considered

as a menu specification language embedded within the run-tim e

environm ent. This helps increase the flexibility and efficiency of the

pro to type creation and use. There is no particu lar specification

syntax to learn. However, some negative effects due to the misuse

and mishandling of those concepts may occur. Some of the merits of

command menus are also discussed in (chapter 1).

4.2. Structure and navigation concepts

U nlike many other systems, Guide does not include the

concept of a browser which is usually used to give a global view of

the structure or a part of it as a means for traversing the structure

and especially when it grows more complex, but instead it uses the

scrolling mechanism.

Instances are made selectable at any time. Moving up and down the

m enu structu re are straightforw ard. A lthough G uide does not

provide explicit Goback , Goto and Cancel as in other systems, upper

level menu items are available, and upon selection, the user moves

66

up the hierarchy thus performing the Goback action as in Chisl. Also,

the Goto action is catered by the fact that usage-buttons can just do

that (cross-references). Moreover, Cancelling a menu item is simply

done by undoing its replacement, therefore returning to a state prior

to its use.

However, some negative effects may become important issues

w hen considering the inform ation space as a w hole and the

movem ent around it. In effect, if the information to be displayed to

the user in not well laid out even for simpler hierarchical structures

which are the most natural way of organising the information, it will

be difficult to grasp and understand the overall structure, let alone

the navigation aids and concepts embedded within that structure.

Som etim es, organisational links may point to pieces of information

which when combined together form a hierarchical structure which

is not visible at all to the user when displayed because of the linear

display of the information. It is only the display which is linear but

not the underlying structure. This does not help the user develop a

suitable m ental model of the underlying structure. Therefore, the

getting lost problem known with many other systems becomes an

issue. Furtherm ore, by traversing down through the levels of menus

and m oving around the information space the user may forget the

original context in which the material was retrieved, because there is

no way for providing cues or displaying selected records (history

selection). The approach used in KMS for such a purpose is to assign

an asterisk (*) for a previously selected item such that when you go

back up a level, you easily recognise the item previously selected,

therefore avoiding to selecting it if another search path is required.

In Guide you have to rely on your memory in order not to follow the

same path again. This makes the memory overload problem another

issue, but it is not as severe as is found in other systems supporting a

67

heavy use of windows (or frames in KMS and Cards in HyperCard).

4.3. The User Interface

From the user's point view, any user interface created with

the G uide tool is characterised prim arily by its sim plicity and

ease-of-use. This is due mainly to the "frame-of-view" concept and

the selection mechanism used (click on a mouse button).

From the designer's point of view, however, Guide does not

provide enough facilities to help the menu designer to conduct and

design a well and efficient menu-based user interface. Guide is

lacking techniques which might help increase the visual scope of the

user and which addresses the problem of cognitive layout of user

interfaces [Norman et al., 86]. This may result from the limited text

editor (highlighting facilities not available) used and also from the

concept of replace-buttons and their replacem ents which do not

allow much freedom in the way the information (surface layout) is

presented. This issue concerns typically the way in which the user

v iew s and cognitively processes inform ation presented in the

different views which may compose the user interface. Therefore the

designer has to consider very carefully the surface layout from

w hich the user’s m ental model (cognitive layout) is derived. A

broken v isual scope of a Guide display may cause confusion,

disorientation and difficulty in locating needed information on the

d isp lay .

Unlike many other menu systems, the number of menu items which

can be generated becomes a less important issue because of the

scrolling m echanism used. Extended menus [Shneiderman, 86] may

also benefit from this scrolling capability, thus speeding usage.

Finally, I believe that more functionality and appropriate techniques

68

are needed to be added to those already supported in order to

generate m ore flexible, consistent and efficient m enu-based user

interfaces despite their simplicity and ease-of-use.

4.4. Reconfigurability

M ost of the prototyping is carried out during the design process. The

behaviour of the Guide interface and more exactly the way the

inform ation is made accessible and displayed to the user may be

more or less modified dynamically and tailored to meet the different

needs o f d ifferent users exploiting the Ask-level and User-level

concepts discussed above. Since structural and textual editing are the

only operations that are involved in the prototyping process, then

the behaviour and the interface and the changes made to it are

rather restricted and limited. End users as well as designers may be

invo lved in the m odification and reconfiguration. However, the

interface designer has the possibility to protect the interface from

being m odified and changed. Moreover, there is no way of changing

the in ternal specification of the interface nor can the command

language used to build it be extended or respecified. This point is

common to many systems eg. KMS. It is obvious then Guide can be

regarded as a user interface style dependent creator tool. It enforces

a particu lar interface style, like many other systems eg. Chisl and

KMS.

5. Sum m ary
Another system which belongs to the family of systems that

may be regarded as user interface management systems has been

studied and investigated. This analysis has shown that creating menu

systems using Guide is possible but not to the extent of supporting

the full range of conceptual operations that the user requires for a

69

given range of tasks. This is mainly due to the lack of functionality of

the design tool and inappropriate exploitation of the various concepts

em bedded within the provided design environm ent. It may also

result from the fact that creating menu-based user interfaces is not

what Guide was intended for. In spite of this, some interesting design

issues with their respective consequences have been raised. Some

are common to many design tools and some others are purely typical

to G uide such as: no explicit navigation commands, support for

navigation aids aimed at overcoming the drawbacks of hierarchically

organised structures, dynamic prototyping, and equal opportunities

to designers as well as end users. Finally, I believe that more power

and control over the Guide design environment is the key to a better

achievem ent of its stated intentions.

70

3.3. KM S

1. Description of the KMS system

There is no unique way of categorising KMS, since it

com bines features from many types of software such as word

p ro c e s s o rs , d a ta b ase sy stem s, docum en t m an ag em en t and

inform ation management systems. It can be described as:

• a spatial database system for managing (representing, accessing

and using) all kind of know ledge which m ight be called:

f re e - fo rm a t

inform ation (information which does not fit predefined patterns),

• a com puter-based document storage and training systems,

• an electronic communication system via messages and discussion

fram es. In other words, it can be described as distributed

hypertext system for managing knowledge in organisations.

KMS is claimed by its suppliers to be a general purpose

human computer interface system. It is based on the Zog approach to

h u m an -co m p u te r in te rac tio n developed at C arneg ie M ellon

U niversity and used on the aircraft carrier USS CARL VINSON

[Robertson et al., 81]. It uses primarily on the concept of menu

selection, with a large database of menus and rapid response to

selections. This makes the KMS Interface a particular style or type of

interface. But, when considering the retrieval and the structure sides

of the interface, KMS is best described as an information retrieval

sy stem .

2. Concepts and Principles
In this section, the m ajor com ponents which define or

characterise the particularity of the KMS system and all the systems

similar to KMS (based on common principles) are identified.

71

2.1. The Database

On the storage and the knowledge management sides, KMS is

mostly characterised by its database whose design is based on some

uncom m on notions (d ifferen t from the trad itional ones). The

following are worth mentioning:

Large size : The KMS database may be large enough in order to

accom m odate many thousands of fram es w ithout affecting the

responsiveness of the system.

Shared bv multiple users : The KMS database accommodates

sim ultaneous use by many different users so that it can provide a

simple but rich means of communication among the users.

M e n u s : A KMS database consists of a set of menus, whereas in a

m ore conventional database, this can a set of records. In KMS

terminology, a menu is called a frame. A frame is displayed in a

KMS window which can have only two sizes: half or the whole

screen.lt has : • a unique name displayed in the upper right

corner,

• a set of options,

• a menu of global commands at the bottom.

item-selected frame-id

— |nextlCiotol

A frame format

It contains objec ts which are of three types:

• i tems : text items or points,

• connected objects : items that are connected by lines and may be

72

simple or complex,

• s e t s : items and connected objects that are enclosed in a

rec tan g le .

Each frame belongs to a f r a m e s e t (set of frames). All the frames in a

fram eset share a name prefix, that is the frames have the names as

frameset-name iy where "i" is the creation order of the frame.

Generali ty o f representation : The KMS database is designed to

handle all kind of knowledge. It integrates text, graphics and

im ages in frames which are WYSIWYG screen-sized chunks of

inform ation. So, frames can be created , edited, m odified and

saved. There is no separate editor. In effect, KMS is good at

handling free-form at inform ation.

Network / Tree structures : A KMS database can have a network

structure in which data items can be linked to others data items in

the database. Links are the interconnections between frames that

are the essence of KMS.

Any item can be linked to another frame. This operation involves

changing the item 's link property. The links between frames are

very important because they allow :

• frames to be arranged into hierarchies or network structures.

• creation of cross-references between related frames.

Fram es can be linked together to form a H ypertext-like database

(Chapter 1). Links can also have attached procedures to be executed

when selected.

2.2. User Interaction
This section outlines some important concepts which govern

the KMS User Interface and the User Interaction. These are:

Menu selection : Almost all interaction with the KMS user interface

is done by making selections from the currently displayed menus.

73

Except when using the editor and answering for system prompt.

Fast response and Browsing : Upon an item selection, a new menu

(frame) appears instantly (about Is on average). Rapid navigating

makes it easy to browse through large portions of the database and

quickly move around within a sm aller groups of menus. There are

three ways for navigating a KMS database:

•C lic k in g on an item that's linked to a frame using the left button

of the mouse which is labelled G o to w henever the cursor moves

close enough the item.

•Going back, to a fram e displayed earlier by clicking the left

button of the mouse which is labelled Back when the cursor is in

empty space.

•Clicking on one of the navigation command items at the bottom of

the frame using any button of the mouse. Some of these are: Goto ,

N e x t , Previous .

Direct manipulation : The KMS system uses the direct manipulation

approach to handle most editing operations which are perform ed

d irec tly on ob jects using the m ouse bu ttons toge ther with

WYSIWYG features.

2.3. Functional extension

KMS provides some mechanisms for extending the system to

allow new functions to be added. This is governed by the following

principles :

Mapping data structures : The data structure of a new application

should be m apped in to fram e form ats and in te rconnec tion

structures w ithin the database.

Embedded programs : Programs that are needed to implement new

functions are w ritten in a special way that allows them to be

em bedded within the system, so that they can be used without

74

having to leave the system. These programs can be invoked via

active menu selections (items with associated actions).

E nvironm en t frames : These are special frames from which the

program s are invoked and controlled.

3. Experience in using the KMS system

Since, KMS supports only a single selection mechanism, it is

apparently clear that the multiple attribute selection property of the

Dining Out In Carlton example would not be achievable. Moreover,

the achievem ent of some of the im portant navigation concepts

(chapter 2) would be very difficult because of the unavailability of

the required underlying language constructs. However, the concept of

rapid response to item selection as well as large frame display in

KMS might be helpful and appeared to provide a reasonable solution

to achieve the stated goals. Therefore, the strategies devised to

exploit the concepts for a design and im plem entation of a user

interface to the Dining Out In Carlton example as well as the

application of the key design issues described in chapter One are

discussed next.

3.1. Design and implementation

Instead of considering the full complexity of the Dining Out

In Carlton example, a simpler exercise with the same multi-attribute

selection property is discussed. Let's consider two attributes namely

A and B and their respective values are A1 , A2 >B1 and B2 .

But , befo re going through th is ex erc ise in de ta il,

rem entioning some of the important steps of a sim ilar exercise in

Chisl at this point will serve as a reminder.

In effect, this is what the main menu would look like if implemented

in Chisl:

75

A B

A1 B1
A2 B2

Showlist

• A selection of a combination of (A,B) in any order, or one of (A,B),

or none of (A,B) would lead to the display of the corresponding

menu (level 2).

• The user's choice is taken into account if and only if he issues

the show list option (the user is responsible for his choice).

• The displayed menu has a limited number of options where only

one selection is made.

• Every time an item is selected, it is highlighted as feedback.

• It is possible to have more than one combination of (A,B) that do

not have corresponding menus, for which a warning message is

d isp lay ed .

• The structure of the example is hierarchically organised.

For this particular example, n=2 (number of attributes).

The maximum number of frames that can be generated is

then: 1+ 4 + n l + n2 + n3 + n4

This means, from the main menu (level 1), four other frames are

possible (level 2), "ni " is the number of frames (number of options)

generated from frame "i" at level 2. These frames represent the level

3 of the hierarchy.

In general, the maximum number is :

n m
1+71 IAj I + X I Fj I where : I Aj I represents the number of values of attribute Aj

j=l i=l I Fj I represents the number of options in frame
Ff (level 2)
m = K IAj I, j=l,n

Actually, thinking about implementing the example using KMS

suggested two possible approaches which are discussed separately.

76

The first approach

This approach discusses attem pts to follow the same

methodology used in the Chisl implementation. An important feature

of the Chisl application is the availability of the main menu at all

times. Following this approach, the first thing to do is to add to the

Hom e fram e (as described in section 3.2) a new item called

E x a m p l e 1 , which will be an index entry to the example’s database.

The very first link to the database leads to the creation of a new

fram eset (if desired) which will have a unique name. Alternatively,

the item may link to a new frame within an existing frameset.

Assume a new frameset is being created with the name of EX. So far,

a new KMS database is being created and accessed whenever the

item E x a m p l e 1 is selected. As stated from the previous sections,

every time a frame is created within the frameset E X , that frame is

identified by its unique name in the upper right corner E X i w h e r e

"i" is the order in which the frame is created. For example E X I , E X 2

and so on.

So, the main menu (first frame) within the frameset EX is E X I .

E X I may look like :
examplel EXI

A B

A1 B1
A2 B2

It is also stated that only one item is selected at a time and only one

frame is displayed at a time .

The selection of one item at a time implies that at least 3 selections

(2 for selecting the 2 attributes and 1 for selecting one option which

is about to have detailed inform ation) are needed to meet the

retrieval task goal.

The single selection of either A l or A2 or B 1 or B2 means that 4

different frames, each of which is linked to one one of the 4 items

77

above have to be created. The first two levels of the structure are as

follows:

examplel EXI

A1 EX2
A B

A1 .Bl
,A2 .B2

. A1 . B1

. A2 . B2
global commands

A2 EX3
A B

.A1 .Bl
A2 .B2

Bl EX4
A B

.A1 Bl

.A2 .B2

B2 EX5
A B

.A1 JB1

.A2 B2

figure 3.1

The dots (.) mean that the items have frames linked to them.

Figure 3.1. shows that one of the attributes values has already been

selected. The selection of each of the four attribute values would lead

to the display of a frame making available the other attributes of the

main menu selectable. At this level, a second attribute has to be

selected, this achieving the required 2 attribute selection before

meeting the retrieval task goal.

At the second level, two different frames have to be created from

each frame . This means for example, from the frame E X 2 , two

frames linked respectively to B1 and B2 have to be created and

identified by E X 6 a n d £ X 7 . So selecting A1 at E X I would leads to

the display of E X 2 and selecting B l or B2 would leads to the

display E X 6 or E X7 performing 2 attribute selection in consequence.

At frame E X 2 for example selecting A 2 would mean

cancelling the previous item (Ai) and this would lead to the frame

EX3 , thus, the link to the frame E X 3 from A 2 at EX2 has to be

created or added. This shows that there is no way of cancelling a

selection after it has been done before seeing the frame which is

78

linking to .i.e. the selective retreat (chapter 2) facility is not

supported in KMS. This is because, the selection is directly taken into

account and the display is immediately performed. This does not

allow much time for decision making. So, the next level (third level)

in the frameset (database) structure consists of 8 frames which are

respectively (EX6, EX7), (EX8, EX9), (EX10, EX11), (EX12, EX13). At

this level, let's consider only one frame for discussion eg. EX6. EX6

would look like:

B l EX6

B l
.B2

A1
A2

. opt3

. opt4
. optl
. opt2

The contents of the frames of level 3 are different from those of the

frames of upper levels, because at this level a limited number of

options (requiring detailed information) is also added. This third

level is very much like the level 2 in the Chisl implementation.

Different numbers of options are available within each frame. So, all

the frames linked to those options have to be created. These frames

will represent the level 4 of the structure and which also represent

the target frames.

As in level 2 (figure 3.1), selecting B2 at E X 6 would mean

cancelling B l , then the link to the frame EX7 has to be created. Note

that A1 and A 2 are not selectable, but remain visible only for

keeping the main menu visible at any time. Using this approach, the

number of frames composing the first three levels i s . 1 + 4 + 8 — 13

frames. The number of frames in the last level (level 4) depends on

the number of options at level 3.

79

In this example we have 2 attributes (n=2), so the number of levels

generated is 4.

In general, for n attributes, the number of levels which will be

generated is n+2.

At level 2 we have P = ^ I Aj I frames, where IA; I is the number of
!̂ ’n values of attribute Aj

So, if P increases then the structure get broader, and if n

increases then the structure gets deeper. This means, at least (n + 1)

decision levels are required before retrieving the target. This

approach has exploited the rapid response to item selection to

simulate the multi-attribute selection property of the example and it

is shown that this may lead to a huge and complex structure. From

the frame builder's (system designer) point of view this situation

may become frustrating, irritating and time consuming. The structure

generated in this approach is a network structure.

What has been discussed so far is the way the frameset (database)

structure is generated and what's the impact of the idea of attributes

on the database structure which might be very huge and complex.

Therefore, another attempt to reduce the complexity and the size of

the structure is carried out and which is discussed in the second

approach .

Second approach

In this approach, the structure of the database is reduced in

complexity and size. This is due to the decision making process

offered by the frame builder, which affects the way the main menu

is presented. In effect, instead of having a decision point as a single

attribute value, a decision point in this approach is taken to be a

combination of different values of the attributes eg. (A 1 , B 1), (A 7,

B2) and so on. This approach is another way of simulating the

m ultiple attribute selection property. Thereafter, the main menu

80

may look like:
examplel EXI

main menu

1.A1-B1 2.A1-B2
2.A2-B1 3.A2-B2

The limitation of one selection (one attribute combination) at a time

implies that 4 frames have to be created (as in the first approach).

But this number can be further reduced if only the items which are

really needed can have their corresponding frames created. This

means for example if (A 2 - B 2) does not lead anywhere or is not a

decision point then this item should be removed from the main

frame. This will generate only 3 frames instead of 4. This removal is

also motivated by the fact that the combinatorial method might

cause the cluttering of the screen. However, an item can be added

when needed.

Assume only 3 items (combinations) are available at this stage. Thus

only 3 frames have to be created from E X I .

In this approach, two design alternatives emerged and considered

•A l t e r n a t i v e # /

If the number of items in the main menu is very small and if it is

possible to fit them altogether with the frame options within the

display of this frame then the implementation of the parameter node

concept is possible. This is illustrated below:

81

examplel EXI
main menu

.iteml ,item2
■item 3________

global commands

iteml EX2 item2 EX3 item3 EX4

.optl 1

.optl2

.optl3
iteml

.item2

.item3

.opt21

.opt22

.opt23

.opt24

.opt31

.opt32

.opt33
.iteml
item2

.item3

.iteml

.item2
item3

At level 2, the frames of the next (third) level or those corresponding

to the options available have to be created and the cross-reference

links for the main menu items have to be added as well.

Let's consider EX2 for explanation.

iteml EX2

.optl 1

.optl2 iteml

.optl 3 .item2
.item3

Item2 and item3 are linked respectively to EX3 and E X 4 . Selecting

item2 at E X 2 would mean cancelling the previously selected

combination (item l) and therefore changing the node or the path in

the tree structure, in this case jumping to the frame E X 3 . This

alternative illustrates the concept of parameter node in the sense

that selecting another combination at any frame of level 2, would

lead to the display of a frame which would have been displayed

when selecting the same combinat ion but at the first level (main

82

menu), this is to say, no explicit backtracking is necessary. Note that

creating frames causes the increase of the depth of the structure, and

creating links means creating cross-references to the adjacent

fram es .

•A l t e r n a t i v e # 2

When the number of items in the main menu is large, the

fitting of this menu within any frame becomes inappropriate and

inadequate. This means a purely hierarchical structure is created by

allowing a single selection, and a different display for each frame.

Therefore, the navigation or movement through the hierarchical

structure is purely based on the navigation techniques or commands

available in KMS.

The point discussed so far relates to one of the important

design issues, a menu based system designer has to consider. This

issue is obviously the user interface structure. Two approaches are

given highlighting or illustrating this point and different structures

are constructed in this experiment. For this particular example, no

one seems to be better or more appropriate than the other since each

of them has its advantages and disadvantages. Therefore, the choice

of the structure depends on the scope of its application.

Beside the importance of the user interface structure, there

are also many other important design issues to consider, especially

the one related to the presentation layer of the user interface. KMS

provides valuable techniques and facilities that can be used by the

menu system designer to improve the presentation layer of the

interface. These include the highlighting techniques and the direct

manipulation features of the KMS system.

The concepts of frame and rapid response to item selections

can be exploited if help facilities are needed to be included within

83

the Dining Out In Carlton example. However, giving instructions and

providing help facilities for the example designed can have its impact

on the overall structure. In effect, on-line instructions and help

facilities can be provided within different frames. There could be an

instruction or a help frame for each menu item. This means that a

whole help structure must be created and can be huge and complex

itself. Meanwhile, some other design features are purely under

control and restriction of KMS . For example , the display rate and

response time are important features of KMS that can not be handled

by the menu system designer. Moreover, handling error messages,

and allowing typeahead and short cuts schemes (chapter 1) cannot

be achieved within KMS.

3.2. Using the example

This part of discussion will focus mostly on the way the user

interacts with the KMS environment within which the previous

example is implemented and how information is retrieved.

3.2.1.Starting KMS

In the KMS version 4D available on the Sun-3 workstation, users

must enter KMS directly from the basic Unix shell. KMS can not be

run from within the Sun View environment.

To start KMS: The user types the word k m s <CR>. After a few

seconds :

• The screen is divided into three windows, one small across the

top for messages from KMS, and two large windows. In each of

the large window a KMS frame is displayed.

• The home frame is in the left window, it is the base of operations

in KMS. It serves as a top-level index to the user’s area of the

KMS database. This frame is automatically displayed whenever

84

KMS is entered. The first time the user runs KMS, a home frame

is c re a te d for h im /her. The fram e w ill be ca lled

use r - l og in -namel . But in (section 3.1.), the item index ex a m p l e l

is created from the frame builder's home frame. This frame is

very much like the Home Card in HyperCard (next target system)

• On the right window is one of the KMS information frames,

which indexes some interesting features which can be used later

by the user (on-line tutorial).

Throughout all this discussion, I have considered the frame

builder (menu system designer) to be different from the system user

(end user). Their home frames are different. But let's assume that

the item index e x a m p l e l is added to the user's home frame. This

means that the user can access the example's database directly from

his/her home frame. However, this is not the only way for accessing

the database, going directly either to the frame builder's home frame

or the example's main frame {EXI) if their names are known to the

user is also possible. Assuming the example's database is accessed,

from the user’s home frame by clicking on the item reading

exam ple l to display the main frame E X I from where the

information seeking process begins.

3.2.2. Browsing and retrieving

There are two different ways for accessing and retriev ing

information within a KMS database.

(i) item selection

The information seeking process can start from the main frame

(EX I) by selecting appropriate menu items or browsing through

the information space by selecting the navigation commands till

the target information is found.

85

(ii) string searching

The example’s database may also be searched for a specific

string. This can be used via the search facility available within

KMS, and if the string is found a frame containing all the

occurrences of the string is created. These occurrences serve as

links to the frames containing the strings.

4. D iscussion

This section focuses mostly on what might be called the

limitations or deficiencies of the KMS Interface and their impacts on

both the application designer and the end user. Finally, some possible

improvements based on recent research findings are discussed.

The major points considered are as follows:

- Frame and Commands concepts

- Selection mechanism concept

- System structure and navigation concepts

- Interface modification and interface level

- Error messages, error prevention and error recovery

Frame and Commands concepts

While interacting with the KMS environment, I found that

the commands and the KMS concept of frame easy to use. Whereas,

differentiating or distinguishing between frames was quite difficult

except by the frame names and the contents of the frames.

This fact has also been reported in Mantei's work on disorientation

problem in the Zog system [Mantei, 82]. I believe, however, this is

due in part to the similarities of the frames (standardised trames) i.e.

same formats, same commands, same location on one hand. On the

other hand, to the very rapid display of the trames.

H<>

Yet, another major component which is worth considering within the

KMS concept of frame is the use or presence of a standard set of

commands at the bottom of the screen (frame) and the commands

associa ted with the mouse cursor (labels). I found that the

availability of the same set of commands at the bottom of the frame

confusing, misleading and error-prone especially in the very first

time (beginning users). This is due because, some commands are

made available in inappropriate context such as: s a v e and r e s t

(restore), where there is no change made to the current frame,

u n d e l e t e , where is nothing to undelete, h o m e , where you are

already in the home frame and finally, pr e v i o us , next where there

is neither next nor previous frame to go to.

So, in order to prevent the user from any confusion and

allow the dialogue to be more appropriate and more efficient, I

believe, either removing these commands and make them visible

only when needed and appropriate or make them unselectable

(mouse not sensitive to these commands) could greatly enhance the

user interaction with the system. The idea is well supported by

Lieberman since it is used in his EZwin kit which is used to

implementing a wide variety of interfaces [Lieberman, 851. He also

stated in his paper that using the mouse to select a command or

displayed object in situations where it is inappropriate is a common

source of error in menu systems, thus he suggested a dynamic

control of mouse sensitivity or command visibility in order to

prevent erroneous selections and which KMS does not handle very

efficiently. Another drawback of the mouse sensitivity in the KMS

interface is the negative effect of the immediate selection response,

providing no cancelling or undoing the action taken.

When in empty space, the cursor is associated with three

commands which are b a c k , l ine and t e c t (rectangle). Unlike the

87

g o t o and c r e a t e commands there is no implicit cancel to these

commands. However, cancelling them is possible whenever another

command is pressed at the same time which causes the system to

ignore the function of the buttons pressed. This is not apparent at all

to the user (I discovered it myself accidentally).

Another inconsistency concerning the "dialogue manager" is

that when the cursor moves close to the frame name (upper right

corner), the cursor is associated with four commands which are goto ,

m o v e , de le te and copy. The inconsistency concerns the first three

commands, in effect when clicking on goto, the command is

h igh ligh ted but nothing happen, when clicking on move, the

command is also highlighted and a warning message which says the

frame name can't be moved is displayed. Finally, when the delete

command is selected, a prompt waiting for a yes/no to delete the

contents of the frame, even the frame is empty (the contents has

already been deleted or just created) is displayed. Once again, these

commands should be removed or be context sensitive as it is stated

before. In addition to all this, there is no way neither for aborting a

command nor undoing the effect of some unwanted commands.

Selection mechanism concept

It is stated in the previous sections that single menu

selection, and the display of one frame at a time represent the

central aspect of the user interaction with the KMS interface.

From my own experience with the KMS interface, hence

gaining more familiarity with it, I found the Interface rather

restrictive and limited concerning the user s activities. This particular

style is forced upon the application designer. In effect, the specific

application carried out has used only a single menu selection scheme.

Adopt ing this select ion style together with the mouse as a pointing

88

device, KMS does not allow either the application designer nor the

end user to use none of the t ype-ahead or short -cuts schemes.

However, KMS uses direct access and rapid response as its

strategy. This implies that the frame should be known. Moreover,

rapid response can have its negative effect on novice users who have

not enough time to build a cognitive representation of KMS frameset.

M antei [82] reported that there were more complaints of users

becoming lost at 9600 baud than at 1200 baud. As a consequence of

all this and especially after carrying out the exercise, I believe that a

multiple menu selection mechanism is more appropriate for the tasks

that require several menu selections and these menu selections

should be made bistable (chapter 1). Moreover, these multiple menu

se lec tions should taken into account only upon the user's

confirm ation .

Part of this idea is supported and evaluated in Dunsmore's

study and reported by Shneiderman [86] where most of the subjects

have preferred the h i g h l i g h t - r e tu r n form to the i t e m - r e t u r n and

immediate response forms. With this form, the errors made were

very fewer but slightly slower than the immediate response form

(the form KMS adopted).

Finally, to my knowledge, apart from Brown's work on

controlling the complexity of menu networks, little work has been

done on systems which permit multiple selections from the same

menu, which could be in my opinion of a great importance for the

design of user interfaces. In his paper Brown [82] presented some

basic but very important structures that arise in most menu systems.

These are inspired by top-down struc tured program m ing

techniques, and include 1 OF N , modelled by the case structure. The

idea of a multiple selection scheme is also supported as he extended

the 1 OF N structure to the M OF N structure. This structure is less

89

commonly used but is very useful. It allows a user to pick any

number of entries (including Zero) from a list in any order. This is

very important in application with no obvious, natural order for

presenting things. In such cases, each user needs the freedom to

make decisions in the order that seems appropriate at the time,

given the user's specific knowledge, background and orientation with

respect to the problem at hand.

System structure and Navigation concepts

The navigation concept plays a big role within the KMS

environm ent. It represents the way of moving around different

locations within the environment. This movement is made very fast

and quick enough that the links provided by the KMS interface act

like "magic buttons" [Conklin, 87]. Moreover, this feature makes KMS

behave as a hypertext system (Chapter 1).

So, l in k fo llo w in g m akes the n a v ig a tio n easy,

straightforward and surprise free if the location within the menu

network and how to get to specific places are both known. However,

this is not the case all the time, i.e. the answer of where am I and

how to get to X is not always obvious and sometimes can be very

difficult to be aware of that frustration and desistment are the most

common consequences for such situation which is known as the

disorientation problem" [Mantei, 82, Conklin, 87]. From this point, it

is obvious that the navigation concept is directly linked to the system

structure which is being navigated.

My own experience with the navigation commands within

KMS showed however that some of them are still lacking of

consistency in such a way that a novice user can be easily misled in

h is /her exploration of the system structure. I am referring

particularly to the next and prev i ous commands which h n \ i been

90

mentioned earlier, but this time the inconsistency concerns the way

these commands behave or guide the user in his/her decision making

process. The simultaneous use of the next , p r ev i ou s and even ba ck

com m ands when exploring a system structure which is not

necessarily equivalent to the structure of the information being

presented may very well result in a search task failure because of

the unfruitful paths taken. This can disappear gradually when the

user becomes more familiar with the behaviour of these commands.

Moreover, a successful backing up to a recognised or a visited frame

may help the restart of the task. Another user difficulty when

navigating through a large structure is the difficulty in maintaining

an overall understanding of the semantic organisation. This is due

mainly to the way the structure is being viewed, where only one

frame is viewed at a time. This is very like much seeing the world

through a cardboard tube [Shneiderman, 86]. This forces the user to

rely entirely on his memory for efficient exploration of the

information space. Thus another problem in the KMS interface is

encountered. It is known as a memory overload problem and which

affects especially novice users. Two major problems related to the

KMS interface have been identified and discussed in this section:

disorientation and memory overload problems. It is obvious that the

second one can cause the first one. The disorientation problem was

the subject of Mantei's thesis where she concluded that the major

cause for user disorientation was due to the interface structure.

Interface modification and interface level

Some specific points concerning the user interaction have

been identified throughout the previous sections. It is known now

that KMS provided a menu-based interface where most of the user

interaction is via menu se lection which is purticuluily suitable to

91

novice users. This means that the users are not in full control on the

system nor can the application designer offer them such a possibility

apart from invoking some agents (programs) and the freedom of

choice of the menu items or commands. In addition to menu selection

(ignoring the editor interaction for the moment) a sort of a

conversation window only for system prompt and user response is

also provided.

Thereafter, I believe that in order to generate a more

appropriate dialogue and enter in a more effective interaction with

the user interface, an alternate or a mixture forms of dialogue is

required and suggested rather than base the user interface on one

particular format. I am particularly suggesting that the alternating

with a command-driven interface is essential not only on the KMS

environment level but extending it to the operating system level

(Shell level). This would allow the user to control and initiate an

interactive dialogue instead of a menu item or answering to a system

p ro m p t.

In effect, while practising with the KMS environment which

can not be run from within the Sun View environment, I had the

impression as though my activities with the computer are limited

and also obstructed or prevented from another environment (the

Unix environment). Then exiting the KMS environment is necessary

before shifting to the other environment.

Concerning the interaction style, the KMS interface can be

considered as a one fixed and shared level user interface. It does not

allow neither the novice users nor the experts ones to accommodate

this level (changing the interaction style) at their will.

However, it does provide a valuable feature through its

editor interaction though there is no separate editor. This feature

represents the possibil i ty of the tailoring or m od if iab i l itv o f a given

92

menu network. This means that the user may become an application

designer or enter the designer mode. This modifiability is only

supported at the frame level. This facility enables the user to

represent his own understanding and referred way of dealing with

the material of the net [Robertson, McCracken & Newell, 81]. But the

ability to modify some structures may have some negative effects

such as forgetting the changes made [Mantei, 82], causing the

explosion of the overall network, whereas the freedom in linking

may complicate some search or learning tasks [Shneiderman, 88].

Therefore , the application designer is provided with a frame

protection facility which can avoid the problems above.

Error messages, error prevention and error recovery

The last point to discuss in this section is the one concerning

the error handling within the KMS environment. Since, KMS is

supposed to be everything to the user, where he/she encouraged to

experiment and to explore the environment more freely. Thus, errors

may be made at any time as a natural result of attempting to do a

task [Lewis & Norman, 85].

Most of the errors which can be made when interacting

with the KMS environment are principally due to the inconsistency of

some of the commands discussed earlier. But the errors are minor

because of the simplicity and the interaction style used. There are

few situations where errors can be made. Principally, during an

editing session, most of the errors made are minor and easy to

recover from.

In effect, the R e s t o r e command is used to undo all the

typing previously done, and the Unde le t e command is used only to

undelete at most the last 32 deleted items, but before saving any

changes made explic it ly or displaying another frame, otherwise they

93

are inappropriate. These two commands can be considered then as

error prevention or error recovery facilities. Another error-prone

situation could arise whenever the creation of a new frameset with a

non valid name is attempted. Therefore, KMS just ignore the action

taken, displaying a warning message saying that the name was

invalid. This also can be regarded as an error prevention scheme.

Finally, concerning the messages displayed or prompted to

the user, most of them are explicit and understandable.

All this is seen mostly more beneficial and helpful from the user's

point of view. But, KMS does not provide the application designer

with any simple and possible facilities to handle the error cases

himself, apart from may be a special language in the frames

themselves are written, but this is not even recommendable at all.

5. Sum mary
I have discussed the most relevant points of one particular

style of human-computer interface and outlined some important

characteristics of this particularity and its impact on the design of

user interfaces in general. I have mostly focussed on the user

in terface issues and identified some important problems and

deficiencies in such interfaces. Therefore, I believe that reconsidering

some design issues within this type of interfaces is undoubtedly

necessary in order to improve the user interface both at the human

and system sides. Although this, KMS has a great success over the

years it took to be developed. The reason may be attributed to the

simplicity of the interaction style and frame concept. Moreover, its

success may also be attributed to the concept of hypertext systems

which is taken very seriously in the recent years. In fact, KMS is

considered to be a particular hypertext system: structured browsing

system [Conklin, 87] even if it was not the type of system intended in

94

its early stages of development.

I have also stated that getting lost or disoriented in a menu

network was a fact in KMS. This can be attributed principally to the

misinterpretation of the user interface structure.

Different structures have been constructed for the same

task because different ways of presenting the information are

needed. The differences in the information presentation is motivated

by the way or strategy for the simulation of the multi-attribute

selection property. This leads me to formulate the following idea:

Providing a better selection mechanism than the one used in KMS

(single menu selection only) may lead to a better presentation of

information, therefore to a better perception of the user interface

structure which will surely improve or decrease the disorientation

problem. I am particularly suggesting that a multiple menu selection

mechanism may be used for this end. Moreover, improving the

navigational techniques used can also have a great impact on the

problem: providing or giving a global view of a menu network is

greatly recommended and helpful in such systems.

It is understandable that the KMS system is intended to be used by

novice and expert users, providing a single interface mechanism

which is sufficient to support most computer functions needed by the

user.

95

3.4. HyperCard

1. Description of HyperCard

When it comes to the amazing number of things that can be

done with HyperCard, it is very difficult to describe it accurately.

However, this can be considered as a personal toolkit that gives users

the opportunity to use, customise and create new information using

text, graphics, video, music, voice and animation. In addition, it offers

an easy-to-use English-based scripting language called HyperTalk

that allows users to write their own programs. Goodman [87]

describes it as a multi-faceted authoring system in the sense that it

allows the creation of proper applications and running others'

applications. Unlike database managers, which store information into

a predefined pattern or format, HyperCard permits browsing through

information, cross-referencing and establishing new relationships

between pieces of inform ation. Bill Atkinson, the author of

HyperCard, has described it as a "software erector set" that allows

non-program m ers to easily construc t so ph is tica ted in terfaces

[Conklin, 87]. Finally, HyperCard can be considered as a UIMS that

can be classified among those which share a similar way of

specifying the interface, but differs in the way that the underlying

concepts of this class of UIMS are handled or supported. These

differences are discussed next in terms of the concepts and entities

which give HyperCard its originality.

2. Concepts and Entities
This section gives an overview of the concepts and basics

which govern the HyperCard philosophy and also outlines some of

the im portant underlying features. Typically , this section is

96

concerned with the way of creating, representing and accessing

information within HyperCard.

2.1. Objects

Like many other new UIMS, HyperCard uses the concept of

objects through which all the user interaction is performed and

w ithin which information is stored. HyperCard provides five

different objects which are:

•S tack : This is the simple idea HyperCard is based on. A stack is a

named collection of related cards. This can be seen as a disk file

that serves as a HyperCard application.

• C a r d : This represents the on-line screen metaphor of any

HyperCard information base or in other words, HyperCard's basic

unit of information. A card may contain buttons, fields and

M acPaint-like graphics combined in any way. In hypertext

terminology, a card may represent a node (Chapter 1) within a

HyperCard information space.

• B a c k g r o u n d : This is very similar to a card in the sense that

buttons, fields and pictures may be contained within a

background as well. A card has only one background, but a

number of cards can share the same background.

•B uttons : They are the primary action parts of a HyperCard stack.

They may point to a specific card or perform a complex task.

These may be considered as links in hypertext systems technology

(Chapter 1). There are two different kinds of buttons :

- background buttons, Which appear on every card associated

with a given background.

- card buttons, which appear only on the card where they

have been created.

97

♦F i e ld s : These are the place or recipients where only text is

entered and stored. Like the buttons, fields are also of two types:

background fields and card fields. A card can have several fields

which can overlap one other to any depth.

Each of the five objects mentioned above has its own

properties which allow the object to be handled as a separate and

different entity. These properties may include: the object's name,

object's number, object's id, object's style, object's script and link.

2.2. User interaction

Interaction with HyperCard (objects) depends on the user

level. This means that different levels of use are provided in order to

control the use of the objects. HyperCard offers five different levels

of access which are discussed next according to level order.

- B r o w s i n g : This read only level enables users only to roam

around the information space. At this level, only a few functions

are allowed such as opening, copying and printing a stack..

- Typ ing : Beside all the functions allowed in the previous level

(browsing) more new abilities are added at this level such as

adding new cards and changing text within existing fields.

- P a i n t i n g : Beside the functions allowed in the above levels,

painting functions are added and background as well.

- A u t h o r i n g : The ability to deal with the remaining objects

(buttons and fields) is provided. All the five objects mentioned

earlier as well as their underlying properties apart from the script

one (see next) are made available to any non-program m er

designer to become a stack author.

- Scr ipt ing : It is the highest level, thus providing more power to

the user interaction over HyperCard objects. In effect, the script

property that every object is assoc iated with is explo i ted , that is a

98

script is attached to the object. A script may contain one or more

handlers, where a handler is a set of instructions or commands

that HyperCard executes in response to an action or upon the

selection of that object. The language used for this purpose is

called HyperTalk which is an object-oriented programming

language like and English-based. It is obvious then that the higher

the user level is the more power HyperCard provides since each

level incorporates everything from previous levels as well as

more added abilities.

3. Experience of using HyperCard

3.1. Design and implementation

As stated before, there exist five different levels of use of

HyperCard. However, when it comes to consider HyperCard's

environment, these levels may be collapsed into two major ones

known as designer and user levels. HyperCard differs from other

systems previously discussed in that it considers two types of

designers: non-programmers and programmers. This section outlines

these two types of designers but more focus is made on the second

type which is related to the scripting level.

3.1.1. Non-programmer designer

All HyperCard objects are available and accessible at the

au thoring level. Therefore, people w ithout any program m ing

background may become a stack author. However, any user interface

designed at this level is rather restricted and limited in that most of

the interface components come in a predefined form. In effect, a

stack may be created with very little effort, either by copying and

pasting elements from other existing stacks, customising (changing a

card's look), or by creating new objects as well as deleting exist ing

99

objects. As a matter of fact, an attempt to implement the Dining Out

In Carl ton example is made at the authoring level. At this level,

HyperCard behaves very much like KMS. Therefore, the strategy to

be used to implement the the example could be very similar to the

one carried out in KMS. The multi-attribute selection property would

be simulated in the same manner as it has been done with KMS.

However, the card's size in HyperCard could be an obstacle for

illustrating the parameter node as it has been done in the second

approach with KMS. Therefore, the scripting level is provided to

achieve or meet just that.

3.1.2. Programmer designer

It is at this level that the design of a more suitable and

appropriate user interface to the Dining Out In Carlton example can

be undertaken because the ability to attach a script to object is

added and therefore more control over the user interface is assured.

In this exercise, two different approaches are considered in

the implementation of the example. Each approach is illustrated and

explained in a different designed stack. The stacks to be designed in

each approach operate at three levels, and the cards composing the

stacks must be created such that the hierarchical structure of the

example is reflected, because HyperCard does not provide any

underlying mechanism for such structures.

The first approach

In this approach, the stack consists of three cards (a card

per level). The aim of this approach is to use the scripting power of

HyperCard to handle the dialogue part of the example as well as the

display of the information.

100

At _lev_el 1: The first level of this stack consists of displaying and

presenting the different attributes in the main menu represented

by the first card of the stack. The attributes are represented as

buttons. A script consisting of one handler is attached to each

button of this card and is executed upon the selection of that

button. A script is attached to this card. Among the instructions of

the button's script is a call to the card's script which is executed in

turn. The card's script consists mainly of testing whether a chosen

combination of attributes does exist in the database so that a

second level information is displayed, and if not a message is

displayed in the message box saying so. Some menu commands

each performing a specific action such as quitting HyperCard or

going to the Home Card are also created and represented as

buttons, (figure 4.1).

The Dining Out InC.axLtQ.n_
_______ example __________

Location

Carl ton
I tal ian 5-10
English M a n c h e s te r flng
Chinese flng

flng

-5

London
French

OK

quit r e s t a r t Find m e s s a g e

figure 4.1. D isp lay o f the attributes

On the storage side of this stack all the necessary

inform ation is stored in different fields composing a sort of a

database. Unlike other systems, only one card (set of fields) may

suffice to hold all this information. Therefore, the first card's script

checks this database for every combination selected by the user. The

card’s script can be thought of as a procedure which takes 3

a ttr ibu tes as param eters and displays the corresponding card

containing the available list of restaurants if the parameters are

valid. The validity of the parameters is expressed by their existence

in the database. And the selection process at the first card (main

menu) can be expressed as follows:

while (the combination selected is not in the database) do

display message "This combination is not available";

another selection;

end;

This cycle is repeated till the combination is found and the next card

is displayed. At this level, a menu item can be cancelled by selecting

it again, thus the attributes options are made bistable (chapter 2).

The three attribute selection is not taken into account till upon the

user’s confirmation, that is to select the O K option. It is clear then,

that the multi-attribute selection property is perfectly achieved and

illustrated by figure 4.1. The probability of selecting an existing

combination is 1/N where N is all the possible combination of three

attributes, that is a selection is an element of the Cartesian product of

A1 x A2 x A3, where A l, A2 and A3 are the attributes. This method

may lead to user frustration and loss in confidence about the

potentiality of the retrieval side of the user interface. Therefore a

more convenient and consistent interface is required for increasing

the speed of the multi-selection process.

102

At level 2 : This one card level is designed such that most of the

navigation aids and techniques reported in Chapter 1 are

supported. These include selective re treat, param eter node,

stability and so on, on one hand, in the other hand, some basic

stack navigation commands such as going back, going to the Home

card, find and message are also added. This card consists of a set

of buttons designed to handle the previous choices (parameters

from the main menu) and some fields (figure 4.2). One of the

fields is made scrollable in order to handle the list of available

restaurants which is ought to be lengthy. Whenever a list of items

is displayed, the possibility of cancelling and reselecting one of the

parameters previously chosen from the main menu (buttons) is

given at this level, so no explicit backing up the hierarchy is

needed and an updated list of items is displayed in the same field

in consequence (figure 4.3). This illustrates the selective retreat as

well? the parameter?concepts.

stack level = 2, cardname = cardl
List of i t em s available

Previous Choices

FindMainMenu m e s s a g equit

1-5

London

French

figu re 4 .2 . D isp lay o f the ava ilab le list

List of i t ems avai lable
stack level = 2, cardname = cardl

Cui3ine parameters Previous Choices

French

I tal ian

English

Chinese

finy

London
1-5

quit MainMenu Find m e s s a g e

figure 4.3. D isp lay o f the can celled p aram eters

But, going back to the main menu is dictated whenever cancelling

more than one parameter is needed. The problem encountered at this^

level and which can be considered one of the weakest features of

HyperCard is that text (more than one word) within a field cannot be

made explicitly selectable. In order to render text within fields

selectable, one method is to use transparent buttons overlap the text

which is about to select. The drawback of this method is that buttons

have a fixed position, therefore making it impossible to cover all the

list of items displayed in the scrollable field.

An eventual improvement for this method is to specify the

item selection by entering the number of the item via a keyboard

making therefore the text selection independent of the fixed position

of the buttons. However, to avoid using the keyboard as a means for

item selection, another technique is adopted, that is to use the "one

word field selection" method supported by HyperCard. Therefore, the

handler intercepting this selection must be within the field script.

104

This method is likely to be more appropriate to the application

carried out. In any case, a selection has to be made at this card in

order to proceed to the lower level.

.At level 3: This level is one card level as well. The card represents

the information page of the item selected at level 2. It consists

of p rev io u s ly se lec ted param eters rep resen ted as buttons,

navigation buttons such as going to the main menu, and a field

where the detailed information is displayed (figure 4.4).

Inform ation Page |

Information Page

2

stack level = j . cardname = card 11

Previous Choices

London

itemll

O

quit GoBack MainMenu Find m e s s a g e

figure 4 .4 . D isp lay o f the target in form ation

The implementation of the example in this approach is similar to the

Chisl implementation. But, the instantiation and sideways viewing

techn iques which were perfec tly i l lu s tra te d in the Guide

implementation and more or less in Chisl are not possible using

HyperCard. This may be due to the small card's size and the display

of one card at a time.

105

The key issue in this approach is that most of the user dialogue

as well as the displayed information are controlled by and within the

scripts of the different objects com posing the three levels of the

stack. The com m unication betw een these objects is via m essage

passing (handlers). Form the designer's point of view, the main

implication of this approach is that, the programming of the dialogue

part of the interface is quite com plex because great care and

attention must be paid in order to assure a good and surprise free

object communication. I believe, this complexity is mainly due first

to the creation of a great amount of objects which are uniquely

identified and handled. Second , to the lack of efficiency in the way

the text field are considered. Hence, the need for only simplifying the

programming task of this application emerged and another approach

w hich exp lo its the concept of background is carried out and

illustrated in the design of the second stack.

The second approach

In this approach, a second design alternative is undertaken

at the second and third levels of the hierarchy of the example only

w hereas the first level rem ains sim ilar to the one in the first

approach. T herefore, only the design of these two levels are

d iscussed .

At level 2 : In this case, instead of creating only one card where

the user dialogue is controlled by the script of the different

objects of this card, a different card is created for every possible

ex isting com bination chosen at the first level. T hereafter, a

num ber of different cards sharing the same background constitute

this second level of the stack. A card at this level 'fhave same

number of objects with same purposes as the card of level 2 in the

first approach i.e bistable buttons to handle the previous choices,

106

navigation buttons and a field containing the lis t of available

items to choose from (figure 4.2). On the storage side of this stack,

all the necessary information is made available within the fields

of the cards composing the stack, that is each card is filled in with

its specific information.

At level 3 : For each item selected at level 2 (from a given card) is

associated with a card at this level. Therefore, this level consists of

a set of cards each of which is referred to as the information

page of the item previously selected. These cards are created with

the same background which consist of the previously selected

choices represented as buttons, some navigation buttons and a

fie ld w here the w hole deta iled in fo rm ation is d isp layed.

T herefo re , apart from their p roperties , the only d ifference

between these cards is the field content (figure 4.4).

The implications of this approach are: sim pler programming

task despite the awkwardly way the selection mechanism is made,

and huge number of cards, therefore large stack structure.

Finally, an eventual third approach may envisaged in order

to im prove the m ultiple attribute selection m echanism adopted in

the above approaches. In this eventual approach, only the possible

existing and needed combinations should be made available to the

user, increasing the probability of getting to the right information

and in less search tim e. This a lternative m ight be called a

context-sensitive selection mechanism, that is whenever, an attribute

is selected then highlighted, all the other attribu tes but those

log ically linked to the one or ones selected are rem oved. This

approach has not been implemented in this exercise however.

107

3.1.3. Using the example

L ike the designer level d iscussed ea rlie r w here two

sublevels of design have been identified, three sublevels may be

identified in the user level as well. This may represent the key

difference between HyperCard and the systems previously discussed.

In effect, the end user is recognised at three different levels of use

(browsing, typing and painting). This recognition is expressed by the

fact that the stack author may restric t the use of the stack by

deciding to which kind of use the stack is intended to. More

importantly at this level is the way the stack is accessed to and how

the information stored is retrieved or read. Unlike, Guide, KMS and

many other interactive systems which allow generally at most two

different ways of moving around its underlying inform ation space,

HyperCard provides a third valuable way (m essage box) which can

be seen as a natural language interface like. Three ways can be used

to conduct a search task within the implemented example.

i. item selection

The information-seeking process begins from the first card (main

menu) of the stack where the user is required to make more

choices towards m eeting his/her search task goal (figure 4.1).

However, this form of interaction is more suitable for user who

has a well defined and understood retrieval task, for example the

user has a specific combination to which he/she requires more

details. This method of searching is more likely and preferably to

be used with the first im plem ented approach of the example

because all is controlled by the different scripts which display the

relevant inform ation, but eventually can be used in the second

approach as well.

108

ii. String searching

The search task may be carried out only for looking for a specific

string within the stack inform ation space. In a situation where

the end user does not care about none of the attributes (cuisine,

location and price), but interested only in a particular dish eg. f i sh -

Therefore, the string searching method can be used to search the

information space of the stack. Thus, this method can only used in

the second implemented approach of the example. By this means,

the user can see all the information pages (cards) containing the

word f i s h . This can be done by using the standard f i n d command

in the provided menu, i.e f ind "fish” .

iii. Direct access card

Some basic navigation commands are included in the display of

every card. Among the commands is the m e s s a g e command

which is principally used to issue or send commands to HyperCard

via a m essage box. The user conducts a more or less natural

language dialogue with the user interface. This gives a HyperCard

user in terface its pow er over those im plem ented with the

systems previously discussed. In effect, the end user can directly

go to a known or recognised card if he/she knows that the card

contains the relevant information. This command can be issued as

follows: go to card cardl . This method is also not suitable to be

used in the first approach.

F inally , concerning the two im plem entation approaches

undertaken is this experience and discussed in the previous section,

a re la tive ly sm all and m odest com parative evaluation on time

acquisition or mean traversal time is carried out. The two

approaches has shown no significant difference in the mean traversal

time (from level 1 to level 3), with and without parameter cancelling

109

at level 2 (19 and 10 seconds in average respectively). However,

when cancelling a parameter at level 2 by using the selective retreat,

stability as well as parameter node instead of explicitly backing up to

the first level (using go back) increases the mean traversal time

sign ifican tly .

4. Discussion

The major points concerning HyperCard and which seem to

have great and direct impact on the user interface design are: Object,

Structure/navigation and User level concepts.

Objects concept

U nlike many design environm ents, H yperC ard offers an

object-like environment based on the concept of objects. It allows a

user interface to be specified and designed differently as it would be

in other trad itional program m ing environm ents. This concept of

o b jec ts is in sp ired from the o b je c t-o rie n te d p rog ram m ing

m ethodology, therefore inheriting most of its advantages such as

reducing the cost of building user interfaces by preventing the

designer from all the low level details of the interface and increasing

the consistency and power of the interface in consequence.

Any HyperCard application (stack) is simply programmed by

creating the objects which represen t the in terface itself. The

interface is either graphically specified using the direct manipulation

approach, i.e many objects have associated sem antic routines

(scripts) can be invoked and used directly by a designer who is not

necessarily a programmer, or by using a special-purpose language

(HyperTalk). In either cases, the interface objects are handled and

dealt separately, therefore debugging, testing and m odifying the

interface are made simpler and easier. I strongly believe that the use

110

of objects has great impact on the design decision process of user

in terfaces and particu larly on m enu-based ones. Therefore, some

design issues have to be taken or considered at some level of the

design of the object.

Consistency in layout and design of the stack, as well as

consistency in the background are im portan t design issues in

H yperCard, that is to choose the appropriate background and not

over-design the background because this may confuse and frustrate

the user. The fact that the primary object which is likely to be the

m ost understandable and visible is a card makes the display or

presentation of the information within a card or a group of cards

another issue, that is it should be consistent and efficient. As a

m atter of fact, a button is an element of a card and also most of the

user interaction with the stack is via the buttons, Therefore it is very

im portant to consider carefully the design of such buttons and the

design issues at this point may include consistency in the use of the

standard HyperCard buttons, feedback, and with the Mac interface.

However, this present experience with HyperCard has shown

that some objects are lacking consistency and m ore functionality

which have affected in certain situations the design process of the

exam ple undertaken in section 3.1.2. This has affected particularly

the dialogue part of the interface. There was a difficulty in choosing a

m ore appropriate and elaborate selection m echanism at the field

level where textual links (Chapter 1) are not supported. M oreover,

only one single font is allowed within a given field.

Because HyperCard lacks true inheritance, som etim es too

much effort is required to represent the dialogue in a suitable form,

eg. only one object at a time is selected, moved, deleted, copied or

pasted if changing the interface layout is needed.

i l l

The other inconsistencies or deficiencies related to the use of objects

in HyperCard appear in the following situations: when the name of

stack is changed (within a script) all the links made between any

card in the named stack and any other card in any stack are broken.

Therefore, all these links must be redone after changing the name of

the stack. Sometimes, a small change in a part of the dialogue may

affect the overall dialogue. Finally and since only one card is

displayed at a time and the material in a card is not scrollable this

may have two consequences: first as in KMS the disorientation

problem may arise and secondly, multiple windowed user interfaces

are not supported by HyperCard.

Structure and Navigation concepts

It has been shown from the previous experiences with other

systems that there exist a close relationship between the structure

(how the information is organised) and the navigation process (how

the inform ation is accessed and retrieved). The design issues

considered in this direction in the stack design are therefore directly

related to nature of the information and its organisation. Information

can be stored in a single stack or in a group of connected stacks that

are closely related, loosely related or virtually unrelated.

Because H yperC ard does not support any particu la r

structure mechanism due to the way the cards are arranged when

created, deciding on the best approach becomes a design issue at the

structure level. Different informational stack organisations may exist.

These include: linear (sequential), hierarchical, non-linear and a

combination of these. Each type of these may influence the way the

stacks are organised, therefore the way they are navigated.

Navigation issues arise at this level and must be considered in order

to reflect the underlying structure.

A hierarchical stack organisation implies that the end user

has m ultiple options at many points in the navigation process. As a

design issue at this level is then to consider how the hierarchical

structure and the navigation aids are reflected. Assigning a different

background to each set of related cards (path) in the hierarchy is

useful and helpful to narrow the gap between the designer’s model

and the user's mental model which might exist, and also reducing the

risk of getting lost as seen in KMS. The navigation aids needed for

this end not only require forward and backward buttons but also

links buttons to other points in the stack or in other related stacks.

However, great care must taken when using the standard HyperCard

navigation buttons and specially when using the Go menu. In effect,

some sort of command inconsistency may occur when using for

exam ple the b a c k , n e x t , p r e v i o u s , f i r s t and la s t com m ands,

because these are related to the order in which the cards are created

and which do not reflect the underlying structure at all. Therefore,

for a more appropriate movement within the hierarchical structure,

the stack designer should consider more specific handlers within the

scripts of the navigation buttons and hiding the menu bar as well as

disabling the use of the power keys from the casual browser.

A good built in feature that might be used to reflect more

the organisational structure of the stack is the visual effect feature

such as wipe down , up , left ox r i g h t . This also is true when

considering the other two stack organisations w hich require a

sophisticated level of linking and planning. So far two very important

points considering the design of a stack are identified along with

their intrinsic relationships. Yet another point to consider in this

direction is the point whether creating separate stacks and linking

them at appropriate points in the navigation process or create only

one stack but with different background for the different types of

113

inform ation. This is known as stack vs background principle. The

design process at this point considers for exam ple the retrieval

speed, scripting effort where a single stack is m ore suitable to

m eeting these requirem ents. W hereas, m ultip le stacks would be

m ore appropriate if the inform ation could be subdivided towards

m eeting different types of users with different needs.

M oreover, if the user navigation would be made via the

standard H yperC ard f i n d command, therefore a single stack is

d ic ta ted because th is com m and does not w ork across stack

boundaries. However, this can solved by writing a more specific

handler within the script of the find command.

Finally, HyperCard lacks several features that would qualify

it as hypertext system in the full sense such as bidirectional links

and graphical browser.

It uses the recent command to display only miniatures of at

most the last 42 cards visited. This is mainly used as one means of a

direct access to a given card, but if this card is recognised. This does

not rep lace the graphical brow ser fac ility w here the d ifferen t

relations between cards and stacks would be apparent. M oreover, if

the cards m iniaturised by the r e c e n t com m and have resem bling

looks (eg. same background) the recent facility would be therefore

without any need at all.

User Level

The user level concept in H yperCard may be ju s t one

solution or one way for achieving the issues related to the end user

as a part of the design process. In effect, a stack author may restrict

the use of the stack at different levels. At the first two lowest levels

(browsing and typing), only the read-write access is given to the user

but still restricted from changing the stack structure. At the painting

114

level, users can still change the appearance of the stack but not its

functionality. However, a stack author can still allow a user to change

a part of the stack structure if necessary. This may be at the

authoring level, where the end user may enter the design mode.

T herefo re , great con tro l on the user's access level and the

identification of the type of the user have to be included in the stack

design process.

Different ways may be used for this end. Either setting the

user in a script or scripts, or intercepting and preventing an effort by

the user to modify the script. This means, a script can monitor and

modify the user's access level accordingly. And finally, by using the

HyperCard protect-stack facility which perm its either the complete

protection of the stack or just private access.

5. Summary

In this experience, I have discussed one of the most recent

software systems that can be considered as a major breakthrough in

the fam ily of user interface creating tools. Very often, this involve

the creation of menu-based user interfaces. Although the full power

of HyperCard has not been explored, and despite of the lim itations

encountered while carrying out the task in section 3.1.2, I believe

however from the outcome of the experience, many important issues

on H u m an -C o m p u te r In te rfa c e d esig n have been ra ised .

Undoubtedly, HyperCard and HyperTalk together provide a powerful

programming environment that is rich in functionality.

115

Chapter 3

C o n c lu s io n s

1. Summary

One of the most com m only used interaction techniques in

Hum an-Computer Interfaces has been discussed and surveyed in this

thesis. The menu selection technique, which continues to flourish

because of its simple interaction form at and its adaptability to the

m any diverse applications has contributed sign ifican tly to the

w idesp read accep tance of m enu-based user in te rface system s

despite their inherent disadvantages and draw backs (chapter 1).

Chapter One has addressed particularly the navigational problems

encountered by users of menu selection system s, and identified

various navigational aids as well as other im portant design issues

that a menu system designer should take into account toward a

design of an effective menu-based system.

It is often argued that the menu selection technique was a

cumbersome method of finding one’s way around a system, and only

novice or casual users may benefit from it. However, despite the

inherent disadvantages of menu systems, menus have been shown to

offer one solution to the problems encountered with other interfaces

such as command-driven and natural language interfaces as reported

in chapter i . However, their value depends on the degree of

cognitive assistance and ease of im plem entation that they provide.

This offers a significant challenge to the menu system designer to

ensure that the user’s needs and abilities are properly considered.

Four d iffe ren t m enu spec ifica tion system s have been

discussed and described in chapter | r . Each of which has adopted

a d ifferent approach to im plem enting m enu-based user interfaces.

These systems are motivated by the need to make the user interface

116

cheaper and easier to design and implement. Apart from the Chisl

specification system (discussed in chapter 2 section 3.1), the

rem ain ing three system s (here H yperC ard is considered at the

authoring level) use the Direct Graphical Specification (DGS) approach

for the design and im plem entation of m enu-based user interfaces.

The advantage of this approach is that it allows the menu system

designer to place text (Guide, KMS and HyperCard) and light buttons

(HyperCard only) on the screen using a mouse and see exactly what

the end user will see when the application is run. Currently, Guide

supports only a small part of the user interface design task, it cannot

be used to help control the display and m anipulation of the real

application data objects. A drawback common to all the systems used

was their inadequacy for implementing and managing user interfaces

requiring a m ultiple selection of items from the same menu which

has been shown to pose a major challenge to these conventional

menu specification systems.

S tra teg ies to solve or address the m u ltip le se lection

m echanism problem s as well as some the navigational concepts

discussed in chapter two have been devised and used within each

the four target systems. The use of the Chisl specification system

and HyperCard (here it is considered at the scripting level) has

h igh ligh ted the need for a m enu system designer to be a

program m er in order to be able to design and prototype a suitable

user interface to the Dining Out In Carlton exam ple . H yperC ard

required the use of a special-purpose language (HyperTalk) to handle

the stated problems as well as the semantics of the menu application,

while the Chisl specification language was required to handle or

define the interaction techniques (local and global buttons) as well.

In its present form Chisl is therefore not appropriate for user

interface designers who are not programmers.

117

2. Further work

Improving human-computer dialogues has been and still is

the m ost rec o g n ise d and im p o rtan t o b jec tiv e w ith in the

hum an-computer interaction area. A lot of improvement has been

achieved in the recent years, but there's still a lot more to be done.

From the menu system designer's point of view, improvements in

menu-based user interfaces have been concentrated mainly on the

implementation aspects of the menu system, that is most of today's

user interface tools (eg. the last three target systems discussed in

chapter 2) use the direct manipulation approach and more recently

the visual programming methodology to build menu-based systems,

thus makes the design and implementation tasks much easier and

qu icker.

From the user's point of view, however, emphasis has been on

improvements in the user interface aspects such as the presentation

as well as the structure layers in order to improve the user/menu

system interaction. But, menu systems still suffer from two major

com plaints, namely the d ifficulty in navigating accurately and

e ffic ien tly the menu system structure , and the d ifficu lty in

accommodating or addressing the user's skill levels. In effect, it has

been noticed from experience of using the target systems (chapter 2),

that the way information within a menu system is organised and

made available, affects the strategies used to access this information.

The multiple-attribute selection scheme as well as the underlying

in fo rm ation space s truc ture h igh ligh ted the need for more

techniques which should address the navigation problem, as well as

the need for the user's skill level to be included in the user interface

in order to improve the user/menu system interaction. Desirable

improvements may include, for example, large display surfaces in

order to allow a better perception of spatial relationships between

118

the menus (frames in KMS, views in Guide, DUs in Chisl and cards in

HyperCard). This might not only be beneficial from the navigation

point of view (since it would provide the user with the ability to

both determ ine the approximate location of the goal and the effort

required to reach it), but also from the expert user's point of view as

well, because he/she could use this spatial relationship as a means of

speeding usage of a menu system. M oreover, the highly repetitive

series of m ouse m ovem ents and button pushes which m ust be

executed in a menu system (KMS and HyperCard at the authoring

level) may feel increasingly slow and annoying as the user becomes

m ore skilled. One solution would be to allow sequences to be

encapsulated as "macros" invokable by a single action on the

keyboard or using the mouse. Techniques of macros consisting of

keystrokes already exist and are applicable in some menu systems,

as illustrated in the BLT (typeahead) approach, but techniques for

recording a series of mouse movements and button pushes need to

be developed and used and especially within d irect m anipulation

in te rfaces .

A particular problem highlighted in this study is the multiple

selection problem , which was found to be unachievable unless a

special purpose language was provided within the underlying design

environm ent, as was the case with Chisl and HyperCard. W here

a v a ila b le , the m u lti-se le c tio n schem e can be used as a

decision-m aking process reducer, therefo re reducing the menu

structure com plexity and enhancing user's perform ance. F inally ,

since most the target systems studied in chapter 2 are considered to

be hypertex t system s, I believe that m enu-based user in terface

system s will benefit from m ost of the im provem ents made in

hypertext systems technology, since they share many the HCI design

issues.

119

R e f e r e n c e s

AKscyn, R. M.; McCracken, D. & Yoder, E. A.

"KMS: a distributed hyperm edia system for m anaging knowledge in

o rganisations," Communications o f the ACM, July 88, Vol 31 (7), pp

8 2 0 -8 3 5 .

Apperley, M.D. & Field, G.E.

"A com parative evaluation of m enu-based in teractive hum an-com puter

dialogue techniques," Hum an-Computer In terac t ion , INTERACT'84, B.

Shackel, ed. 1984, pp 323-326

Apperley, M.D. & Spence, R.'

"H ierarch ical dialogue structures in in te rac tive com puter system s,"

Software-Practice & Experience , Vol 13, 1983, pp 777-790.

Arthur, J. D.

"A descrip itve/prescrip tive m odel for m enu-based interacton," Int. J.

Man-Machine Studies , 1986, Vol 25, pp 19-32.

Arthur, J. D.

"Pardoned fram e netw orks for m ulti-level, m enu-based interaction,"

IEEE expert , 1985, pp 34-39.

Bellingsley, P.A.

"Navigation through hierarchical menu strucutres, Does it help to have a

map?," Proceeding o f the Human Factors Society , 26th annual meeting,

1982, pp 103-107

Bennett, J.L.

"Tools for building advanced User interfaces," IBM Systems Journal , Vol

25, no 3/4, 1986, pp 354-367.

Brown, J.W.

"Controlling the complexity of Menu Networks," Communications o f the

A C M , Vol 25, no 7, 1982, pp 412-418.

Brown, P.J.

"Interactive docum entation," Sof tware-Practice and Experience , 1986,

Vol 16, 3, pp 291-299.

Brown, P.J.

"Guide User M anual," Computing laboratory, the university Canterbury,

July 1987.

Buxton, W., Lamb, M.R., Schuman, D. & Smith, K.C.

"T ow ards a com prehensive user in te rface m anagem ent system ,"

Computer Graphics , Vol 17 (3), July 83, pp 35-422

Conklin, J.

"Hypertext: An Introduction and Survey," C o m p u te r , sept 87, pp 17-41.

CR, Acm press,

Computing reviews, acm press, January 1988, Vol 29, 1.

Goodman, D.

"The two faces of HyperCard," M a cw o r ld , October 87, pp 123-129.

Gray, J.

"The role of menu titles as navigational aid in hierarchical menus,"

S IG C H I , Januaary 1986, Vol 17 (3), pp 33-40

Guedj, R.A.

"Remarks on some aspects of man-machine interaction," Methodology o f

in terac t ion , IFIP , 1980, Gueddj et al., eds., pp 235-238

Guevara, K. & Newman, W.

User Interface Design. A course developed by Beta Chi Design Ltd. 1986,

pp 3-17.

Hammond, N. & Barnard, P.

"Dialogue design: Characteristics of user knowledge," Fundamentals o f

human-computer interaction , A. Monk (eds) 1984, pp 127-164.

Hepe, D.L., Edmondson, W.H. & Spence, R.

"Helping both the novice and advanced user in menu driven information

retrieval systems," People and Computers : Designing the Interface , ed.

P. Jonhson and S. Cook, Cambridge University Press, 1985.

Hodgson, G.M. & Ruth, S.R.

"The use of menus in the design of on-line systems: A retrospective

view," SIGCHI , 1985, Vol 17 (1), pp 16-21

Hopkins, D., Callahan, J. & Weiser, M.

"Pies: Im plementation, Evaluation and application of circular menus,"

Jacob, R.J.K.

"Using formal specification in the design of hum an-computer interfaces,"

Communications o f the ACM , 1983, Vol 26 (4) pp 259-264

Karat, J., McDonald, J.E. & Anderson, M.

"A com parison of menu selection techniques: touch panel, mouse and

keyboard," Int. J. Man-Machine Studies , 1986, Vol 25, pp 73-88.

Koved, & Shneiderman, B.

"Embedded Menus: Selecting items in context," Communications of the

ACM, April 86, Vol 29 (4), pp 312-318.

Lewis, C. & Norman, D.A.

Designing for errors. User Centered System Design, D.A. Norman, S.W.

Draper (eds) 1985, pp 411-432.

Lieberm an, H.

"There’s More to Menu Systems than Meets the Screen,"

Computer Graphics , Vol 19, no 3, 1985, pp 181-189.

Mantei, M.

"A study of D isorientation behaviour in Zog," Ph.D. thesis 1982,

U niversity of Southern California.

Miller, D.P.

"The d ep th /b read th trad eo ff in h ie ra rch ica l com puter m enus,"

Proceeding o f the Human Factors Society , 25th annual meeting, 1981,

pp 293-300.

Norman, K. L.; Weldon, L.J. & Shneiderman, B.

"Cognitive layouts of windows and m ultiple screens for user interfaces,"

Int. J. Man-Machine Studies, 1986, Vol 25, pp 229-248.

Norman, D. A.

Cognitive Engineering. User Centered System Design, D. A. Norman, S. W.

Draper (eds) 1985,

Norman, D. A.

"D esign P rinc ip les for H um an-C om puter In terfaces," Readings in

H um an-C om puter In teract ion , a mul t id isc ip l inary a p proach , R.M.

Baecker, W. Buxton (eds), 1987, pp 492-501

Perlman, G.

"Making the right choices with menus," Readings in Human-Computer

Interaction, a multidisciplinary approach , R.M. Baecker, W. Buxton (eds),

1987, pp 451-455.

Robertson, G., McCracken, D. & Newell, A.

"The Zog approach to man-machine com m unication,"/^. J. Man-Machine

S tud ies (1981), Vol 14, pp 461-488.

Schultz, E.E. & Currain, P.S.

"M enu structure and ordering of m enu selections: independent or

interactive effect," S1GCHI , 1987, Vol 18 (2), pp 69-71.

Shneiderm an Ben.

"Designing the U ser Interface. Strategies for effective human-computer

interaction," Addison, W esley (eds) 1986, pp 42-52.

Shneiderman, B, & Marchionini, G.

"Finding facts vs Browsing knowledge in hypertext systems," C o m p u te r ,

January, 1988, pp 70-80.

Snowberry, K., Parkinson, S.S.R. & Sisson, N.

"Computer display menus," E rgonom ics , 1983a, Vol 26 (7), pp 699-712.

Snowberry, K., Parkinson, S.S.R. & Sisson, N.

"Design M ethodology for menu structures," 1983b, pp 557-561.

Snowberry, K., Parkinson, S. & Sisson, N.

"E ffects of help fields on navigating through h ierarch ica l menu

structures," Int. J. Man-Machine Studies , 1985, Vol 22, pp 479-491

Simmons, R.F.

"M an-M achine Interfaces: Can They Guess W hat You W ant?" I E E E

e x p e r t , 1986, pp 86-93

Tennant, H.R., Kenneth, M.R. & Thompson, C.W.

"U sable N atural Language In terface through M enu-B ased N atural

L anguage U nderstanding," Proceeding CHP83, conference on Human

Factors in computing systems , 1983, pp 154-160.

Wood, C.A., Gray, P.D. & Kilgour, A.C.

"E x p erien ce w ith C hisl: a C o n fig u rab le H ie ra rch ic a l In terface

S pecifica tion L anguage," Computer Graphics Forum 1 (1988), pp

1 1 7 -1 2 7

Appendix A

This Appendix explains the Chisl specification language syntax

and shows how dialogues are encoded with this syntax. Then, the

preprocessor specifications are discussed.

A.I. The Chisl syntax

A Chisl dialogue consists of a sequence of dialogue units. A

dialogue unit consisted of a sequence of options.

An option has a name, a location, a condition, and an action sequence.

Moreover, an option can be either local or global (see section 1).

The interpretation and execution of the Chisl dialogues are

performed by the Chisl system interpreter called : " Chip ".

The display generated by " Chip " consists of four panels:

• Control panel: is the top panel through which the root

dialogue is specified.

• Button panel: is the panel where the local options appear

• Global panel: is the panel where the global options appear

• Text output panel: is the panel where the output text action is

d isp lay ed .

This is how the elements of an option are specified :

A name of an option is specified by :

B_<option-name >, which will have a selectable screen button.

An option is either local or global, so a global option is identified by

a as follows: B_<option-name >%

The option or button is given a specific location within a panel,

specified by the (X, Y) coordinates of the top left corner of the button

as follows:

X<a> Y a,b are two integers.

The button can be tested for selection, so it is placed in a selection

condition specified by: {B_< option-name > }

Finally, the option action sequence is principally a set of pre-defined

actions for dialogue specification.

These include:

• General actions

q u it() causes termination of a Chisl dialogue.

exit! exit from the current DU, returning to the calling DU

• Register m anipulation

assign(<register>,<string>) which assigns the value <string> to

<register>.

reset(< reg ister>) reset the reg ister to the constant

UNDEFINED.

re se t_ a ll() reset all the registers.

• Output

message(<id> , <x>, <y>, <string>) places <string> in message

num ber < id> and d isp lay s it

at <x>, <y> in the interaction

w indow .

• etc...

Registers can be tested in a combined way using the boolean

connectives AND , OR , NOT.

Moreover, the action sequence could include or be a call to a dialogue

u n it.

This is an example of option:

{B_iteml} XO Y6 B _ item l D1 [];

{B_item2} X10 Y10 B _item 2 assign (reg9 ,item 2);

{B_quit} XO YO B_quit% quitQ ;

This means that, if the button whose name is < item l> , displayed at

(X0,Y6) in the button panel is selected then the dialogue unit D1 is

called or activated. Or, if the button whose name is <item2>, displayed

at (X10,Y10) in the button panel is selected then the string <item2>

is assigned to the register9. Finally, if the global option whose name

is <quit> , displayed at (X0,Y0) in the global panel is selected then the

Chisl dialogue is terminated.

A.2. The Chisl preprocessor specifications.

The user defines a sequence of textual files which is then

translated into an executable specification (Chisl) where a prototype

has been generated from the specification itself.

The Chisl preprocessor is called "PreChisl It is implemented

in C, on a Sun Workstation.

A.2.1. Description of the PreChisl files.

The textual files created are called " PreChisl f i les " whereas

the files containing the Chisl specification are called " Chisl files "

In the current im plem entation of the PreC hisl preprocessor,

there are three types of files.

A.2.1.1. Attributes files.

There is only one file of this type for each dialogue or

inform ation system (only three attributes are supported for the time

being).

Such a file consists of a sequence of blocks where each block is

composed by seven (07) items and defined as follows:

• item l: a string of characters which is used to identify an

option and represents a value of the attributel.

• item2: a string of characters which is used to identify an

option and represents a value of the attribute2.

• item3: a string of characters which is used to identify an

option and represents a value of the attribute3.

• item4: a string of characters which is the name of a file

which should contain all the inform ation needed upon the

selection of (item l, item2 and item3). This file contains only

ordinary text.

• item5: a string of characters which is the name of a dialogue

unit (see section 1) into which the contents of the file referred

to by 'item 4s are translated to Chisl specification. So, the file

Nitem4v is called a PreChisl file and the file vitem5N is

called a Chisl file.

• item6, item7, item8: are all strings of characters which are

the names of the files containing an icon image which should

be displayed into the graphical window upon the selection of

item l, item2 and item3 respectively.

So an Attributes file consists of a sequence of such blocks where each

item should be in a separate line of the file (for sim plicity). Each

block present in the file results in a corresponding fram e being

displayed on the selection of the first three item s(i.e. the values of

the attributes).

A.2.1.2. PreChisl DU files typel.

There are as many DU files as there are blocks in the Attributes

file. These files are referred to by Nitem 4N in each block. Each file

consists of a sequence of three item blocks, where the items are

defined as follows:

• item l: a string of characters which represents an option in

the page or frame displayed.

• item2: a string of characters which is the name of the file

which should contain all the inform ation needed upon the

se lection of the option 'i t e m l ' (it is also called the

inform ation page).

• item3: a string of characters which is the name of a dialogue

unit. This dialogue unit is constructed by translating the file

referred to by 'item2' into a Chisl specification

A.2.1.3. PreChisl DU files type2.

There are as many DU files as there are blocks. Each file

consists of ordinary text which corresponds to all the detailed

inform ation needed about the previous choice.

Note that only one item should be in a separate line and no

space between strings or before the first character of the string is

allow ed because Chisl does not provide otherw ise. However, any

space required should or could be replaced by the underscore (_)

character in order to make the options more readable and clear.

A.2.2. The PreChisl file structure.

As seen from the description of the PreChisl files, a hierarchical

structure is being built.

Each PreChisl file corresponds to one dialogue unit file, apart

from the Attributes file where a root dialogue unit must be specified.

So, the PreChisl file structure is hierarchically organised as the

dialogue or the information system which is being built.

Appendix B

This appendix gives an overview of the menu command which

compose the command dialogue.

B .l . The M enu C om m ands

When Guide is run for the first time by issuing the guide command,

the following window appears on the screen.

r .̂'̂ grnnrrfflE
|^Qu<^Me«^Read-on Save Block-edit

fig u re l a .

The main menu consists of the following commands :

Save : save either a text or a source file during a guide session.

B lock-ed i t : used for moving, deleting or copying block of text and/or

p ic tu re .

Q u i t : used to end a guide session or if there is more than one view,

to delete the last view.

N ew : used to add new source file(s) to the source. This can be done

in three ways:

• completely replacing the original source

• adding a new view

• inserting the material within the existing source.

R e a d - o n : used to advance forw ard and backw ard w ithin the

fram e-of-view (scro lling)

a u th o r : used to enter the author mode

So selecting the author command from the menu of figure la , an

extra menu commands is added to the main menu as follows:

—————
Q u i t New R e a d -o n S a v e f i l o c k - e d i t R e a d e r
♦ L o c a l ^ D e f i n i t i o n + U sag e + A c t1 o n + C 1 o * « a ry •

■ ♦C nqulry C h a n g e - b u t to n O e e t r u c t E x te n d F in d I

BS|

figure 2a.

+ L o c a l , + D e f in i t io n , + U sage and + G lossary : are used to create the

different buttons m entioned earlier.

D e s t r u c t : is just the opposite of the four commands above(only the

structuring is deleted, not the text or picture)

C h a n g e - b u t to n : used to change the name, type or asking-level of a

b u tto n .

F i n d : the command searches for a string of characters defined by

the user either within the names of replace-buttons(button search)

or within the complete source(complete search).

Action : this command gives the author extra power and flexibility in

constructing the replacem ent of the button. An action button is a

Unix shell command.
g l a s g o w -
UNJVERSITY
LIBRARY

