

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A Parallel Processor System

r Nuclear Shell-Model Calculations

Douglas James Berry

Department of Physics and Astronomy

University of Glasgow

Presented for the degree of

Doctor of Philosophy

August 1988

D.J. Berry 1988

ProQuest Number: 10998212

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10998212

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Acknowl edgement s

I would like to express my thanks to my supervisor Dr. A.M. MacLeod for

the support and assistance given to me over the past six years and also

to Prof. R.R. Whitehead for his help and advice with the nuclear

physics. I am grateful to Dr. L.M. Mackenzie for his guidance and the

useful discussion which have contributed to my work. The actual

production of the hardware and the circuit diagrams was performed with

great patience and good humour by Ian Smith and Tony Reilly to whom I am

indebted, and also to the other members of Room 18 who gave technical

support. In particular I am grateful to Ian for doing most of the

diagrams for this thesis. I would like to thank the Head of the

Department for the use of departmental facilities. Also SERC provided my

Research Studentship as well as the grant to fund material spending on

the project. Motorola Semiconductors of East Kilbride supplied a number

of their products in addition to providing useful information on future

product development.

Thanks are also due to my current employer, the Marconi Research

Centre in Chelmsford, for the use of their facilities, in particular for

the copying of this thesis. Also to my Group Chief for his encouragement

over the last two and a half years.

Last, but by no means least, I would like to thank my wife for her

understanding and support throughout the prolonged production period of

this thesis. For this I am especially grateful.

D.J. Berry

CONTENTS

Page

Abstract
Chapter 1 A Review of Parallel Computer Systems 1

1.0 Introduction 1

1.1 A History of Parallelism 2

1.2 Classification of Computer Architectures 9

1.2.1 Feng1s Taxonomy 9

1.2.2 Fynn’s Taxonomy 10

1.3 Multiple Processor Systems 11

1.3.1 Loosely Coupled Systems 12

1.3.2 Tightly Coupled Systems 12

1.3.3 Moderately Coupled Systems 13

1.3.4 MIMD System Characteristics 14

1.4 Interconnection Methods 16

1.4.1 The Crossbar Switch 17

1.4.2 Multiport Resources 18

1.4.3 Time Shared Buses 18

1.5 Conclusion 23

Chapter 2 The Shell Model Processor System 25
2.0 Introduction 25

2.1 The Nuclear Shell Model 26

2.2 The Slater Determinant Representation 28

2.3 The Lanczos Method 31

2.4 System Introduction 33

ii -

2.5 Global View 36

2.5.1 The Matrix Format Generator 37

2.5.2 The Multiple Microprocessor Unit 39

2.5.3 The Communications Subnet 40

2.5.4 SMP Modes of Operation 41

2.6 Conclusions 42

Chapter 3 The Matrix Format Generator 43
3.0 Introduction 43

3.1 Basis List Representation and Partitioning 43

3.2 Secondary Generator Methods 47

3.3 Pair Filter Operation 51

3.4 MFG Buffer Operation 52

3.5 MFG Hardware Implementation 54

3.5.1 Timing and Control Unit 55

3.5.2 SG Interface and Start/Stop Control 56

3.5.3 Channel Clocking and Control 57

3.5.4 The Pair Filter 58

3.5.5 Secondary Index Counter and H-Mode Comparator 60

3.5.6 The MFG Buffer Implementation 62

3.5.7 MFG Buffer Read Control 64

3.5.8 MFG Buffer Write Control 65

3.5.9 I-Bus Data Transfer Protocol 66

3.5.10 MFG Testing and Debugging 69

3.5.11 MFG Performance Limitations 70

3.6 Primary Generator Hardware 72

3.6.1 The SG Interface 72

3.6.2 The Control PI/Ts 74

iii

3.7 Primary Generator Software 75

3.7.1 The Runtime Data Block 76

3.7.2 The Basis Generation Function 81

3.7.3 The SG Control Function 83

3.7.4 The MMPU Support Function 87

3.8 Conclusion 89

Chapter 4 The Multiple Microprocessor Unit 90
4.0 Introduction 90

4.1 Bus Arbitration Protocol 91

4.2 I-Bus 94

4.2.1 MCM/I-Bus Interface 94

4.2.2 I-Bus Requestor 96

4.2.3 The I-Bus Arbiter 98

4.3 C-Bus 98

4.3.1 C-Bus Lines 101

4.3.2 C-Bus Interface 104

4.3.3 C-Bus Requestor 107

4.3.4 C-Bus Arbiter 109

4.4 Central Memory and CMA-Bus 110

4.4.1 Central Memory Overview 111

4.4.2 CMA-Bus 114

4.5 The Microcomputer Modules 116

4.6 The Supervisor Module 117

4.6.1 Supervisor Module Hardware 118

4.6.2 Supervisor Module System Monitor 120

4.6.3 Supervisor Module SMP Software 123

- iv -

Chapter 5 The Microcomputer Modules 126
5.0 Introduction 126

5.1 MCMI Outline 128

5.2 MCMII Structure 129

5.2.1 The Master Processor 131

5.2.2 The Local Bus Requestor 133

5.2.3 The Dynamic RAM Subsystem 134

5.2.4 Global and Local Module Controllers 135

5.2.5 The Slave Bus 136

5.2.6 The Floating-Point Unit 138

5.3 MCM Task Look-up Tables 139

5.3.1 The Matrix Element Magnitude 140

5.3.2 The Matrix Element Sign 145

5.4 MCM Task Processing 147

5.4.1 Two-job Processing 150

5.4.2 One-job Processing 152

5.4.3 Zero-job Processing 152

5.4.4 New Prime State Processing 153

5.4.5 Current Implementation 154

5.5 Vector Processing 155

Chapter 6 Shell Model Processor Performance 157
6.0 SMP System Testing 157

6.1 MFG Performance 158

6.2 MCMII Performance 159

6.3 Conclusion 163

v

Chapter 7 The Extended SMP System 164
7.0 Introduction 164

7.1 Matrix Determination 164

7.2 The Multiple Microprocessor Unit 167

7.2.1 The Microcomputer Modules 168

7.2.2 The Communications Subnet 170

7.3 Conclusion 171

References 172
List of Abbreviations 178
Appendix A 180
Appendix B 184

- vi -

Abstract

This thesis describes the design and implementation of a dedicated

parallel processor system for nuclear shell-model calculations. The

purpose of these calculations is to determine nuclear energy eigenvalues

by the tridiagonal i sat ion of the nuclear Hamiltonian matrix using the

Lanczos method. The Theoretical Nuclear Structure group at Glasgow

University’s Physics Department would normally perform this type of

calculation on a high-performance main-frame computer. However these

machines have limitations which restrict the number and scope of the

calculations that can be performed.

The Shell Model Processor system consists of a Multiple

Microprocessor Unit (MMPU) driven by a highly pipelined dedicated front-

end processor. The MMPU has a modular, moderately coupled, MIMD

architecture based on autonomous processing modules. The elements within

the system communicate via three shared buses. The front-end is

responsible for determining the position of non-zero elements within the

Hamiltonian matrix. Once the position of an element has been found it is

passed to one of the free processing modules within the MMPU. The

processing module then determines the value of the matrix element and

performs the appropriate arithmetic to accumulate the resultant Lanczos

vector. Two such processing modules have been developed. The most

recently developed module is based on two MC68000 16/32 bit

microprocessors. In addition there are two supervisory processor

modules, one of which controls the front-end and also assists it in its

function. The other module has privileged system capabilities and is

responsible for supervising the system as a whole.

The system has been successfully tested and performance figures are

presented. The future expansion of the system to allow it to perform

larger calculations is also discussed.

CHAPTER 1

A Review of Parallel Computer Systems

1.0 Introduction

In the 42 years since the introduction of the first electronic digital

computer until the present day "supercomputers", arithmetic processing

speed has undergone a dramatic increase of over ten million fold. Such

an increase has not been achieved solely by the improvements in

performance of electronic digital hardware, e.g. the introduction of

discrete transistors in 1960, of small-scale integrated circuits in

1965, and of VLSI and VHSIC devices in the 1980s. Rather this increase

has been made possible by the marriage of these technological

achievements with the introduction of parallel processing techniques at

all levels of computer architecture. For example, the Goodyear Aerospace

Massively Parallel Processor (MPP) being delivered to NASA is centered

around a 128 x 128 (= 16,384) array of bit-serial processing elements

(PE) , with 8 of these PEs packaged on a single custom VLSI CMOS-SOS

chip. Developed primarily to process satellite imagery, it is capable of

performing over 6.5 billion additions per second and 1.8 billion

multiplications per second on 8-bit integer data. While on 32-bit

floating-point numbers it can perform 430 million additions per second

and 216 million multiplications per second, [Bat80, HLSM82].

Performance improvements in the last forty years due to

technological enhancements alone can be estimated to be a factor of

between one and ten thousand, [HJ81]. This would conservatively place

the speed up factor due to parallelism at about 1000. Parallelism is now

- 1 -

Chapter 1

common place to the extent that it is now embedded even in conventional

serial computer architectures; serial in that they execute one

instruction at a time, but parallel in that instruction fetch, decode

and execution are all pipelined.

However it must be borne in mind that it is the technological

advancements that have made much of the parallelism feasible. For

example VLSI microprocessors have made multiprocessor systems not only

feasible but widely available and the late 1970’s and 1980’s have seen a

proliferation of experimental and commercial multiprocessor systems

based on commercially available microprocessors. Indeed the

microprocessor manufacturers are very much aware of this and most of the

16 and 32 bit processors have hardware and software features included in

their design that facilitate their use in multiprocessor systems. In

fact the Inmos Transputer series of microprocessors is designed

specifically for multiple processor applications and is described as a

"system building block" [BCMW83].

This thesis discusses one such experimental multiprocessor system

which is based around commercial microprocessor devices. As an

introduction this first chapter will give a brief history of the

advances in parallel techniques as well as an overview of multiprocessor

configurations and bus structures.

1.1 A History of Parallelism

The first computers to be built which were designed around the

classical, serial von Neumann architecture were EDSAC (Cambridge, 1949)

and EDVAC (Pennsylvannia, 1952). Prior to this the only digital computer

built, ENIAC (Pennsylvannia, 1946), did not have a stored program but

was wired up for specific computations. Hence any alteration of the

program required rewiring [Ro69].

Having the program stored in memory, as with EDSAC and EDVAC, was

- 2 -

Chapter 1

obviously much more flexible and is one of the features of the von

Neumann architecture. There are five basic units within this

architecture, namely;

1/ an input device for reading data and instructions from the outside

world into memory,

2/ an output device for sending results and messages to the outside

world,

3/ a single memory for storing both program and data,

4/ a single Control Unit (CU) for interpreting instructions,

5/ and a single Arithmetic-Logical Unit (ALU) for processing data.

The last two units are collectively referred to as the Central

Processing Unit (CPU).

In the two von Neumann machines mentioned each of the five units

operated one at a time. Even their arithmetic was performed in a bit

serial manner, with the addition of two numbers requiring one machine

cycle per bit. This was due mainly to the fact that their memory

consisted of a mercury delay line acting as a shift register, and

therefore data was read serially bit by bit with the least significant

bit being accessed first. Bit-parallel arithmetic was first used in the

experimental IAS machine (Princeton, 1952). This used electrostatic

cathode ray tube storage from which 40 bit words could be read in

parallel. The first commercial computer to use bit-parallel arithmetic

was the IBM 701 introduced in 1953.

The next step in parallelism and the first departure from the von

Neumann architecture was the addition of data channels. Up until that

point all I/O requests to peripheral equipment e.g. card readers, line

printers and drums, had to be processed by the CPU. Even with relatively

fast peripherals, such as magnetic tape drives, I/O could cause a major

bottleneck in the processing of data. This problem was partly solved by

introducing data channels. Data channels had their own separate

processing unit and instruction set and also had shared access with the

- 3 -

Chapter 1

CPU to the main memory. Once the CPU had started the data channel

transferring blocks of data, the CPU could then proceed to operate

independently of it, thus allowing concurrency between I/O and

computational processes. IBM first introduced such channels in their 709

machine in 1958, and the technique is still used in many modern

computers.

The next architectural advance took place shortly afterwards with

the Univac Larc (1960) and the IBM Stretch (1961), [Ro69, HB87]. These

two machines further departed from the von Neumann structure by

introducing interleaved memories and an instruction pipeline.

Interleaved memories, essentially the application of parallelism to the

primary memory system, divides the primary memory up into 2 or more

independently accessible banks. Thus program words in successive memory

banks can be accessed in a pipelined manner, reducing the limitation

placed by slow memory technology on the processor cycle time. The

instruction pipeline (or lookahead) allowed the current instruction to

be executed in parallel with the fetching and decoding of the next few

instructions. However neither the Univac Larc nor the IBM Stretch were

commercially successful with the Stretch being superseded by the IBM

7094 in 1962.

In the same year Burroughs introduced what can be considered the

first multiprocessor system with the introduction of the D-825, [Ba80].

Intended primarily for military applications, it could have up to 4

identical CPUs connected to 16 memory modules via a cross-bar switch.

Hie cross-bar switch was used later in the two procesor Burroughs

B-5000 as well as in a number of other multiprocessor systems.

Functional parallelism within the CPU was first introduced, to a

limited extent, in the ATLAS computer, [HJ81]. A prototype was first

built at the University of Manchester in 1961 under the direction of

Professor Kilburn and the computer then went into production with

Ferranti in 1963. The ATLAS had magnetic core memory which was divided

- 4 -

Chapter 1

into 4 independent, interleaved banks. More important, however, was the

introduction of a separate 24-bit adder for address calculations (the B-

unit) which worked in parallel with the main 48-bit fixed/floating-point

arithmetic unit. An operand address was formed in the B-unit by adding

the contents of one or two of the 128 24-bit index registers to a 24-bit

address which was contained in the instruction word. The inclusion of

these independent functional units along with the use of pipelining

allowed four separate phases of instruction execution to be overlapped,

namely; instruction fetch, operand address calculation in the B-unit,

operand fetch and operation of the 48-bit arithmetic unit.

The ATLAS is also known as the first machine to have a virtual

memory system. This gave the user the appearance of having a large

(approximately 1 million words) single level primary memory system. In

reality the operating system translated memory references to the virtual

single level system to a multilevel store consisting of magnetic core,

magnetic drum and tapes. Data was transferred between the different

levels of the physical storage system in 512 word pages.

The idea of functional parallelism was utilised to a much greater

extent in the CDC 6600, introduced in 1964. This machine had a set of 10

dedicated arithmetic functional units for performing multiplication,

division, addition, shifting and boolean operations amongst others on

60-bit floating-point numbers. These were controlled by a hardware

mechanism which allowed independent instructions to be executed out of

sequence without altering the logic of the program yet making most

efficient use of the separate functional units. The controller had a

"scoreboard" by which it kept track of the availability of the different

functional units and registers and thus avoided conflict between the

various instructions which were being executed. In addition the CDC 6600

had 32 interleaved memory banks and 10 Peripheral Processors Units

(PPU). The PPUs each had their own private memory and executed separate

programs while sharing a common arithmetic unit and access to the main

- 5 -

Chapter 1

memory on a time-multiplexed basis. The CDC 6600 was replaced in 1969 by

the CDC 7600. This was upwardly compatible with the CDC 6600 but

replaced the serially organised functional units with fully pipelined

ones. The CDC 7600 also had solid state memory devices instead of the

magnetic core memory used in the 6600 and had a processor cycle time

that was four times faster. The CDC 6600 and 7600 were very popular,

powerful machines and many of the ideas found in their architecture were

used in later computers.

The chief architect of the CDC machines, Seymour Cray, later left

to start his own company, Cray Research Inc. , and in 1976 produced the

Cray-1, [HB87, KT80]. This follows in the steps of the 7600 but has a

processor minor cycle time of 12.5 ns which is twice as fast as that of

the 7600. The Cray-1 also includes vector processing hardware and

instructions. That is as well as incorporating hardware for processing

data which consists of single numbers (scalars), there is also hardware

for processing data which consists of ordered sets of numbers (vectors).

The Cray-1 has 12 independent, pipelined functional units with the

ability to chain the units together so that intermediate results from

one unit can be passed immediately for processing in another unit

without reference to primary memory. Three of the functional units are

reserved for vector operations (add, shift and logical), while three are

shared between scalar and vector 64-bit floating-point operations (add,

multiply and reciprocal approximation, there being no divide unit). In

support of the vector units there are 8 vector registers, each

containing sixty four 64-bit floating-point numbers. The Cray-1,

considered a second generation vector processor, has a maximum

processing rate of 160 Million floating-point operations per second

(MFLOPS) and can achieve rates in excess of 100 MFLOPS for matrix

multiplication.

There were two earlier pipelined vector processors, the CDC Star

100 whose design was first conceived around 1964 and the Texas

- 6 -

Chapter 1

Instruments Advanced Scientific Computer (TIASC), which started around

1966. Both of these were first delivered around 1973 and both suffered

from old technology, e.g. the Star 100 had core memory compared to the

Cray’s bipolar memory. Consequently neither were as fast as the Cray-1

for either scalar or vector operations. The Star 100 was designed to

work at up to 100 MFLOPS but only averaged around 20 MFLOPS while the

TIASC, designed to reach 50 MFLOPS, averaged around 40 MFLOPS, [HB87].

The Star 100 was later improved and re-introduced as the Cyber 203,

which in turn was improved to become the Cyber 205 (1981).

In the meantime another form of parallel processing had been

developing, that is the array processor. Originally conceived by Unger

in 1958, his proposal was for a two-dimensional array of Processing

Elements (PE) each connected to its four nearest neighbours and all

controlled by a common master, [HB87]. Each PE was synchronised to all

the other PEs by the master to perform the same function in parallel on

their own local data. The proposal was further developed by Slotnick et

al in 1962 in their design for the Solomon computer [HJ81]. This was to

be a two-dimensional array of 32 x 32 PEs each with its own 128 32-bit

word memory and bit-serial arithmetic unit. Every PE would follow the

same instruction stream which was supervised by a central control unit.

The spatial parallelism of the array processor was a revolution in

computer architecture unlike the evolution of the serial processor to

the pipelined vector processor. However neither Ungers nor Slotnicks

design were ever implemented in full and it wasn’t until 1972 that the

first array processor, Illiac IV, was built. Originally proposed by

Unger for pattern recognition problems, array processors are well suited

for certain vector processing applications and grid problems, e.g.

matrix problems, Fourier analysis, image processing and weather

simulation. However the difficulty in programming array processors and

the parallel lockstep operation of the PEs limits their overall range of

applications and has restricted them to be special purpose machines.

- 7 -

Chapter 1

The original Illiac machine was intended to have four arrays of 64

PEs. Each 8 x 8 array was to have its own CU with its own instruction

stream. The PEs would have their own floating-point arithmetic unit and

2048 (2K) 64-bit words of memory and would communicate with their four

nearest neighbours. The objective was for a processing rate of up to

1000 MFLOPS working on vector or matrix computations. However the

machine which was eventually built, the Illiac IV, only had one of the

intended 64 PE arrays and had a peak processing rate of the order of 50

MFLOPS.

Based on the lessons learnt from building the Illiac IV Burroughs

went on to design and build the BSP array processor [KT80] . One of the

problems with the Illiac IV was the delay involved in transferring data

between memories separated by long distances across the array. In the

BSP the problem was solved by reducing the number of processors (called

arithmetic elements (AE) on the BSP) to 16 and having 17 memory banks

connected by an alignment network (a full crossbar switch). This allowed

each AE to access every memory without any routing delay and by using 17

memory banks (the next highest prime number above 16) and appropriate

mapping algorithms for storing the data memory conflicts are reduced. By

pipelining memory accesses with AE processing the BSP was designed to

have a maximum processing rate of 50 MFLOPS.

Other array processors have also been developed. For example the

ICL Distributed Array Processor (DAP), first produced in 1980, is very

similar to the original Solomon design, with a 64 x 64 array of bit-

serial PEs connected to four nearest neighbours. Larger arrays of 128 x

128 or even 256 x 256 using 4 PEs per LSI chip have also been proposed

for the DAP, [HJ81]. Some multiple array processors, along the lines of

the original Illiac design, have been proposed but as yet never built

e.g. the MAP and the Phoenix [HB87].

The main architectural elements of parallel processors have now

been introduced in essentially chronological order. It is useful to

- 8 -

Chapter 1

order these ideas by classifying the various computer organisations into

different categories and in the next section two classification schemes

are presented.

1.2 Classification of Computer Architecture

A number of different classification schemes have been proposed, each

with their own merits and deficiencies, e.g. Flynn’s [F166], Feng’s

[HB87] and Shore’s [HJ81]. Some other classification schemes are much

more detailed and involve descriptive languages of varying complexity

by which each individual computer is described. For example PMS (a

computer hardware descriptive language intended for any computer system,

serial or parallel, [Ba80]), and Hockney and Jesshope’s own structural

notation [HJ81],

1.2.1 Feng’s Taxonomy
Feng classifies a computer according to the degree of parallelism within

its architecture. The maximum parallelism degree P is defined as the

maximum number of bits that a computer system can process within unit

time (usually one processor cycle). P can then be given by the product

of the computer word length n and the bit-slice length m. The word

length is the number of bits contained in the computer word and the bit-

slice length is essentially the number of words being processed in

parallel. The pair (n,m) then classifies a given computer architecture

according to its degree of parallelism. There are four main categories

within this classification :

1/ Word-serial and bit-serial (WSBS) ; n = m = 1

One bit is processed at a time in this category e.g. the Minima

computer.

2/ Word-parallel and bit-serial (WPBS) ; n = 1, m > 1

One bit each from m words are processed in parallel in this

- 9 -

Chapter 1

category, sometimes called bit-slice processing. The ICL DAP (m =

4096) and Goodyear MPP (m = 16384) are both WPBS machines.

3/ Word-serial and bit-parallel (WSBP) ; n > 1, m = 1

Conventional serial computers which process one word at a time are

placed in this category. An example is the VAX 11/780.

4/ Word-parallel and bit-parallel (WPBP) ; n > 1, m > 1

In this category m n-bit words are processed in parallel. This

includes array processors with bit-parallel PE’s such as the Illiac

IV. It also includes vector processors such as the TIASC, and also

multiprocessor systems such as the original Burroughs D-825 and the

later Carnegie Mellon University C.mmp system developed in the

1970’s.

1.2.2 Flynn *s Taxonomy

Flynn’s taxonomy classifies a computer into one of four main categories

according to the multiplicity of its instruction and data streams. An

instruction stream is a sequence of instructions executed by the machine

and a data stream is a sequence of data processed by an instruction

stream. Flynn’s taxonomy appears to be the most popular but is by no

means completely definitive and is sometimes augmented by adding

subdivisions to the main categories. The four main categories are :

1/ Single Instruction stream/Single Data stream (SISD).

This category represents most serially organised, single processor

computers. It includes computers which use pipelining within the CU

and ALU, since there is still only one instruction stream operating

on one data stream. It even includes computers such as the CDC 7600

which have multiple functional units.

2/ Single Instruction stream/Multiple Data stream (SIMP).

This category primarily includes array processors, such as the

Illiac IV and ICL DAP. That is there is a single CU which controls

a single instruction stream. The CU broadcasts the instruction to

- 10 -

Chapter 1

every PE and the PEs then operate on different sets of data.

3/ Multiple Instruction stream/Single Data stream (MISD).

This category implies that a number of instructions are operating

simultaneously on a single data stream. Baer [Ba76] considers that

pipeline processors could be included in this category if the

consecutive stages are considered separate instructions, however

Flynn [F166, F172] himself gives no positive examples of the

architecture.

4/ Multiple Instruction stream/Multiple Data stream (MIMD).

In MIMD architectures several CPUs operate in parallel on different

(although not necessarily unconnected) data sets. Multiprocessor

systems are therefore classified in this category, e.g. the Cm*

system [Fu78].

Flynn’s taxonomy is useful in that it clearly distinguishes between

certain types of parallel processors, e.g. array processors and

multiprocessors, whereas Feng’s taxonomy lumps most of the parallel

processors in one category, i.e. (WPBP). However it is still a fairly

loose definition in that the SISD category includes conventional serial

processors, pipelined processors and processors with multiple functional

units. The SISD class can even include vector processors, depending on

whether a vector is defined as a single data stream or not. The MIMD

category is also too broad and most writers further subdivide this for

clarity into loosely coupled systems and tightly coupled systems (or

distributed memory multicomputers and shared memory multiprocessors

respectively [Hw87]). The next section will discuss in greater detail

the MIMD class of computers.

1.3 Multiple Processor Systems

MIMD processor systems vary extensively in the degree and nature of the

coupling and interaction between processors. This coupling determines

- 11 -

Chapter 1

the extent to which the various elements in the system share resources

and cooperate in performing a task. Thus MIMD systems can be further

classified according to the degree of coupling between processors [FK83]

1.3.1 Loosely Coupled Systems

Each processor within a loosely coupled system possesses its own local

I/O devices and its own local memory systems which will be large enough

to store any programs and data that are being processed. Thus each

processor is an autonomous computer module in its own right. Each

computer module is connected to a communications net by which it can

communicate directly or indirectly to any of the other modules in the

system. The modules can be geographically distributed and processes

which run on the different modules may communicate with each other by

passing messages over the net.

The net, which is usually a high-speed serial link such as Ethernet

[MB76], will have a strictly defined transfer protocol with each

computer module having its own communications net controller. In this

way the net itself is passive and the control, i.e. arbitration and

message routing, is distributed throughout the system. The

communications net for a loosely coupled system can usually tolerate

only a low rate of interaction between tasks, otherwise its performance

will be degraded. Loosely coupled systems are also referred to as

distributed systems [HB87].

1.3.2 Tightly Coupled Systems
Processors in such a system communicate with each other via a global

primary memory system which they access over an interconnection network.

This interconnection network must provide a means of communication

between all processors and all memory modules within the system.

Individual processors may also, have their own small, private memory or

cache. I/O devices and any other system resources are generally shared

- 12 -

Chapter 1

by the processors, although some devices may be dedicated to specific

processors. Each processor is supervised and controlled by a single

common operating system. Software/hardware means are provided for

synchronising cooperating processes which are being executed on

different processors. Since most resources are common and all processors

have equal processing power, dynamic load sharing is possible under

control of the operating system.

In a tightly coupled system data is passed between processors via

the global memory, thus the rate at which interprocess communications

can take place is determined by both the bandwidth of the memory system

and the bandwidth of the processor-memory switching network. The network

must resolve any contentions that arise when two or more processors

attempt to access the same memory module. Memory contention is a major

limitation on the performance of tightly coupled systems and imposes an

upper limit on the number of processors that can usefully be included in

a system. Thus the switching network should be designed so as to reduce

the number of contentions as much as possible. Any contention which does

occur between requests must be arbitrated as quickly as possible and

should be invisible to the competing processes.

1.3.3 Moderately Coupled Systems
In between the two extremes of tightly and loosely coupled systems there

lies a range of organisations which can be termed moderately coupled

systems. These systems are suited to processes where the workload can be

partitioned into relatively independent tasks which require only a

limited amount of communication between them. In general the processing

elements will be self-contained, with their own processor and memory for

both data and program. Each element may have its own I/O capabilities or

there may be a processor (or processors) which is dedicated to this

task. Other processors may be dedicated to specific tasks which are

necessary to the overall performance of the process. Interprocessor

- 13 -

Chapter 1

communications and communications to global resources are performed over

the communications net. In general much of the load sharing is static

since some functions are carried out by specific processors. Such

moderately coupled systems are also called Multiple Task/Multiple Data

(MIMD) systems [FK83], since they are capable of concurrently executing

a number of tasks on different data.

1.3.4 MIMD System Characteristics
A multiprocessor system can at most have a linear increase in

performance for increasing the number of processors, i.e. n processors

will perform n times faster than one processor. This is the ideal, but

in practice the law of diminishing returns will operate so that as more

processors are added overall system performance will start to level off

before eventually reaching a maximum and then, in some cases, beginning

to decrease [Fu78 for some examples with Cm*]. This saturation effect

can be attributed to a number of causes;

Resource contention : as the number of processors increases so will

requests to access the global resources, e.g. shared data in global

memory and dedicated processors. More and more conflicts will occur as

the usage of the resources increases. In some cases the bandwidth of the

communications net may ultimately be fully utilised and so processors

will spend more time waiting to use the net as well as the resources.

Overheads : a parallel algorithm for a multiprocessor system will

inevitably require more steps than a serial algorithm, due to the

overheads in managing and scheduling the system. For example certain

cooperating tasks may require to be periodically synchronised and thus

some processors may have to wait while others catch up.

Input/Output : if there are fewer I/O devices than processor modules

then processors may become idle while waiting for input data or while

waiting for output requests to be serviced. For example for certain

applications on the Illiac IV I/O functions have been measured to

- 14 -

Chapter 1

consume up to 60% of the total processing time, [HLSM82].

The onset of saturation will depend on the particular configuration

of the multiprocessor system and the actual task it is performing, e.g.

whether the process is compute bound or I/O bound. For example, for a

compute bound process, e.g. matrix multiplication, the number of

computations is larger them the number of I/O operations and so will

have improved performance on certain multiprocessor systems than on

others.

The advantages of multiprocessor systems over single processor

systems cannot simply be measured in terms of performance improvement

alone, although this is probably the most important and attractive

measure for computer users. However another important factor is cost and

even here multiprocessor systems can bring improvements. Traditionally

Grosch’s law [FK83] suggested that processor performance was

proportional to the square of the cost and thus adding extra processors

was not an economical means of improving performance. However with the

advent of cheap, VLSI microprocessors this is no longer the case and the

Cosmic Cube [Se85] is a prime example of this. The Cosmic Cube consists

of 64 identical computer modules connected as a hyper-cube, with each

module containing a 16-bit Intel 8086 microprocessor and 8087 floating­

point coprocessor plus 136K bytes of memory. The system is reported to

have one tenth of the processing power of a Cray-1, but with a total

manufacturing cost of $80,000 it has only one hundredth of the cost,

[F084].

Another of the advantages of a multiprocessor system lies in their

potential for improved reliability due to redundancy. In a redundant

system all, or most of, the system elements are duplicated and so in the

event of a failure in one of the elements the system can still operate,

although perhaps with a reduced performance. Tightly coupled

multiprocessor systems are inherently more reliable than moderately or

loosely coupled systems, since in such systems there are duplicates of

- 15 -

Chapter 1

all processor, memory and I/O modules. Moderately coupled systems where

the system elements are not homogeneous in their capabilities are

obviously less fault tolerant. However the system software must support

fault tolerance as well as the hardware. The system software and

hardware must combine to detect any errors as soon after their occurence

as possible and the spread of faulty data must then be contained.

Diagnostic routines will then determine the extent of the problem and if

necessary isolate the faulty module. The system software will then

reallocate tasks to the remaining properly functioning modules. The

ability to isolate a module while still retaining overall system

functionality is also a factor in serviceabilty since this allows the

system to operate while repairs are being made to a defective module.

However MIMD systems, and parallel systems in general, have

disadvantages as well as advantages. The main problems lie with the

software, in the areas of operating systems design, languages and

compilers [Pr79, Hw87].

The communications net plays a fundamental role in determining the

overall capabilities of an MIMD system. The total useful utilisation of

the net is partly determined by the nature of the processor modules and

global resources interfaced to it. That is if processors modules are

equipped with sufficient local memory to store program code and local

data then accesses via the net can be reduced. A number of different

methods for interconnecting system elements have been suggested and

implemented and the next section is devoted to a brief discussion of

these.

1.4 Interconnection Methods

There are a number of important factors to be considered when discussing

the merits of any communications net for MIMD systems. Bandwidth,

reliability, modularity and cost are some of these factors. These in

- 16

Chapter 1

turn depend on other considerations, e.g. the number of connections

required for each module (be it processor, memory or I/O) interfaced to

the net, whether control is centralised or decentralised and whether

transfers between modules are direct or indirect (i.e. do some transfers

require the cooperation of other modules).

Three of the main structures used for interconnecting processors

and global resources are the crossbar switch, multiport resources and

the time shared or common bus.

1.4.1 The Crossbar Switch
A crossbar switch provides complete direct connectivity between

processors and resources. Essentially there is a separate path from each

resource which can be switched to any of the processors. There is

therefore never any contention for a communication path but there may

still be contention over an individual resource. Thus if there are m

resources and n processors then the crossbar requires m x n switches

The important feature of the crossbar switch is that is supports

multiple concurrent transfers to all the resources. Only one processor

can access a resource at one time, but the switch allows a total of

min(m,n) accesses in parallel, if all processors are accessing different

resources. Each individual switch must have hardware capable of

resolving multiple simultaneous requests to access the same resource, as

well as being able to switch the parallel transmission path.

System fault tolerance can be severely compromised by a fault in

one of the switches, possibly rendering a processor, resource or both

totally isolated. If several switches are integrated on a single chip

then fault modes could be even worse. However redundancy within the

switch can go a long way to overcoming these problems.

The crossbar switch system has the potential for very high transfer

rates. However the complexity of the switches and the numbers required

means that the switch as a whole becomes the dominating factor in the

- 17 -

Chapter 1

cost of the overall system. The Carnegie Mellon C.mmp system

successfully used a crossbar switch to interconnect 16 processors to 16

memory modules, [HB87].

1.4.2 Multiport Resources

With this organisation the switching and arbitration control which is

distributed in the crossbar switch matrix is placed at the interfaces of

the resources. Thus each processor has access via its own bus to all the

memory and I/O modules. Contention for access to a single resource can

still occur and must be resolved essentially by the resource itself.

Cost considerations again make multiporting unsuitable when connecting

many processors and resources.

1.4.3 Time Shared Buses
This is the simplest method of interconnecting the processors and

resources of an MIMD system. The processors have direct access via the

bus to each of the resources. Transfers can be controlled totally by the

bus interfaces of the processors and resources and hence the bus is

often totally passive and thus extremely simple. However with a single

bus there can be no concurrency in transfers since only one access to

one resource can take place at a time. As a result of this there must be

some means of arbitration between competing requests to use the bus.

This will be performed in hardware to reduce delays and can arbitrate

requests on either a fixed or dynamic priority scheme.

The total bandwidth of the bus is determined by the transfer rate

of the processors and the time taken to resolve competing requests.

However it is quite feasible that in order to increase the total

bandwidth of a large system that it be divided into clusters of

processors and resources with each cluster having its own shared bus.

Clusters themselves can then be connected via intercluster buses. This

is the method used in the Carnegie-Mellon Cm* multiprocessor [Fu78] and

- 18 -

Chapter 1

on Fastbus (IEEE P960) where clusters are called segments [Gu84,FAST83].

Each processor can still access each resource in the system, although

not necessarily in the same amount of time, and the presence of multiple

buses allows accesses within clusters to be performed concurrently thus

increasing the total system bandwidth.

Alternatively system bandwidth can be increased by incorporating

multiple, dedicated, parallel buses. Each processor would have a

dedicated interface to each of the buses, with each bus being interfaced

only to a certain type of resource, e.g. a bus dedicated to I/O devices

and another to global memory. This method is better suited to systems

where the communications load is reasonably well balanced between the

different types of resources, otherwise one bus could become the system

bottleneck long before any of the others.

As has been said any processor which wants to use the bus must

first receive permission in order to avoid a conflict. There are a

number of mechanisms for resolving the bus request/arbitration problem.

One solution is to have individual request and bus grant signals from

each potential bus master to the arbiter. Thus each master has his own

private two-way connection to the arbiter. However this has the

disadvantage of requiring two lines on the bus for each potential bus

master. It does have the advantage though of speed, simplicity and great

flexibility in that it allows the arbiter to use any method in

allocating priority to multiple requests.

Another solution is the use of daisy chaining. This method assigns

a unique static priority to the requesting devices which is dependent on

their physical position relative to the bus arbiter. With this method

all devices request the bus from the arbiter via a common (wire-OR) bus

request line and bus ownership is signalled by a bus busy line. When a

request is signalled to the arbiter it issues a bus grant signal down

the bus grant daisy chain, as long as the bus is not currently being

used. Each requester has two separate lines for the bus grant; a bus

- 19 -

Chapter 1

grant input and a bus grant output. When the arbiter issues the bus

grant it is passed on to the first module on the daisy chain. If that

module is not currently requesting the bus then it will propagate the

grant on to the next module on the chain, via its bus grant out line.

The first module which receives the bus grant and which is actively

requesting the bus will block the propagation of the bus grant down the

daisy chain. This module will then assert the bus busy signal and negate

its bus request. When the arbiter then sees the bus busy line being

asserted it will rescind the bus grant signal.

The new bus master can hold the bus and perform as many bus

accesses as it wishes until it decides to negate the bus busy signal.

VME bus (or IEEE P1014) uses this type of bus arbitration and allows the

current bus master two options on when to release the bus, [Fi85,

V'ME82]. The first is release-when-done (RWD) which allows the current

bus master to keep the bus only to perform a single or block transfer

and then to release it. This option is useful where multiple masters

require approximately equal bus usage and where transfers are mostly

done on a cycle by cycle basis. The second option, release-on-request

(ROR), allows the master to hold the bus as long as it wishes even if it

is not actually using the bus. However the current master must release

the bus when a bus request is issued by another master. This latter

option is most useful in situations where the majority of masters have

low bus usage and where the bus transfer rate of a few masters must be

maximised. Giving these masters the ability to hold on to the bus so

that they do not need to re-arbitrate for every usage will obviously

increases their throughput.

When the bus master finishes with the bus, which it signals by

negating the bus busy, the arbiter must recommence the arbitration

process if there are outstanding requests to use the bus. The arbiter

does this by sending the bus grant down the daisy chain again. It can

thus be seen that the nearer a requester is to the arbiter on the bus

- 20 -

Chapter 1

grant daisy chain then the more likely it is to receive the bus grant

signal first and thus the higher its priority in the arbitration

process.

Other bus arbitration techniques are possible, such as dividing the

bus bandwidth into fixed length time slots that are sequentially offered

to each master in rotation. However all the arbitration mechanisms

mentioned so far require a centralised arbitration controller. This

obviously reduces fault-tolerance since a failure in such a critical

component would cause the whole system to fail, unless there was a

redundant controller which could be switched in.

However a system of arbitration has recently been introduced on

buses such as Fastbus and Futurebus which uses distributed arbitration

control, [Gu84, Ta84]. In such systems there are no critical centralised

components required for the arbitration but instead each potential bus

master has all that is necessary to determine whether it can or cannot

assume control of the bus.

With distributed control each potential master is assigned a unique

n-bit arbitration number. The bus contains n lines to which the

requesters apply their number, via open collector drivers, at the start

of an arbitration cycle. Each requester then monitors the lines and if

it sees a logic 1 (the lower voltage level) on a line to which it is

driving a logic 0 then it ceases to apply all bits of lower

significance. After a delay to allow the bus to settle down the bus

lines will carry the highest arbitration number among the competitors.

The requester which recognises that the number remaining on the bus is

its own then knows that it has gained control of the bus.

However this scheme would impose a disadvantage on requesters with

low arbitration numbers unless an additional fairness constraint is

imposed. On Futurebus (IEEE P896) the fairness constraint means that

once a module has finished with the bus it cannot request the bus again

until there are no other requests to be serviced, [Ta84]. However some

- 21 -

Chapter 1

modules by their nature may have more urgent needs for the bus.

Futurebus takes account of this and allows these priority modules to

request the bus whenever they want. Such modules will also have the most

significant bit of there arbitration number equal 1, while fairness

modules will have this bit equal 0, giving priority modules an

additional advantage in gaining the bus.

With distributed control the current bus master is responsible for

initiating the next bus arbitration procedure. It can do this even

before it has finished its bus usage, thus allowing the arbitration time

to be pipelined with bus transfers. Arbitration time can thus be lost

and need not therefore impose a limit on bus bandwidth. The winner of

the new arbitration contest must then monitor the bus to wait for the

current bus master to finish before it assume bus control.

No central clocks or control circuits are required for Futurebus.

Instead 3 dedicated, wire-OR, control lines ensure that all operations

concerned with the transfer of the bus are synchronised. Arbitration is

thus a completely decentralised operation. Fault tolerance can be

additionally enhanced by having a parity bit on the bus for the

arbitration number. All potential masters can then check that the state

of this parity bit is correct before a new bus master takes control. As
/

a possible additional check at the end of the arbitration contest all

losers can test that their arbitration number is less them the number on

the bus. Any errors that are found will prevent the hand over of the bus

emd the current master then restarts the process.

In general, bus systems can be highly modular, allowing an almost

unlimited number of processors to be attached, e.g. as with Fastbus.

Even simple, more general purpose single bus systems are modular,

although usually only up to some upper limit. This upper limit may be

determined by the physical limit of the number of slots on a bus

backplane. Or it may be determined by the total bus bandwidth available,

which itself it technology dependent. Most buses require no alterations

- 22 -

Chapter 1

or additions in order to add other processors or resources. In fact new

processors, while they must obviously still conform to the bus

arbitration and transfer protocols, can make use of faster interfaces

and thus achieve higher transfer rates, if the transfer protocol is

asynchronous.

The bus itself can be totally passive allowing bus systems to be

comparatively cheap and simple. The only dedicated bus hardware lies in

the processor and resource interfaces and any controllers that may be

required. Additionally all bus transfers are direct thus removing the

need for cooperation amongst other processors. Global broadcast

transfers are also possible, where one processor sends data to all or

some of the processors and resources.

Bus systems have become very popular in modern computing systems,

mainly as a result of their simplicity and flexibility. With the

introduction of decentralised control they can also be highly reliable.

Their main disadvantage has always been their speed but with use of new

technology including the development of special bus driver circuits they

can be very fast, e.g. Fastbus claims 30 MHz transfer rates giving 120

Mbytes/sec capability.

1.5 Conclusion

Digital hardware technology is still advancing at much the same rate as

it has over the last 25 years. Research into x-ray and e-beam

lithography as well as improved processing techniques have achieved sub­

micron features to the extent that IBM have announced that they have

chips "ready for production" with features smaller then 0.5 microns

[Electronic Times, May 1988]. However the improvement in speed that

reduced feature size brings serves to highlight other problems such as

suitable inter—connection techniques and packaging technology.

Eventually fundamental limits in mos and silicon bipolar technology

- 23 -

Chapter 1

will be reached, [SM84]. However other currently more rare technologies

still have a lot of scope for development. GaAs devices, for example,

are five times faster then ECL devices and have other advantages too,

but difficulties in lower density and lower yield still must be

overcome. GaAs technology has advanced to an extent that a number of

discrete functions are now commercially available (the Cray 3 uses

mostly GaAs, [Hw87]). However it may be that some of the phenomena which

impose size limitations on conventional semiconductor devices could be

exploited to produce a new generation of much more efficient devices, in

the form of the quantumn effect devices [Bat88].

A radically new technology is emerging in the form of optical

computing devices using photons instead of electrons. Optical gates and

processing elements have been built in a number of labs and a few

computers have been proposed, [Wi87].

The exploitation of concurrency also continues to grow, with an

increasing number of commercially available parallel and multiprocessor

systems. New architectures continue to appear, with a key area of

current research being neural networks [Wi87]. These attempt to model

the parallel operation of neurons in the brain with massively parallel

collections of relatively simple processors. Applications include

Artificial Intelligence and image recognition. Machines have been built,

with up to 64000 such cells, and have produced encouraging results

[Hi84, RT88].

The remainder of this thesis is a description of a particular

application of parallel processing techniques in the field of nuclear

physics research. Using current microprocessor technology and applying

some of the techniques just discussed a high performance special purpose

parallel processor has been built. As such it is a prime example of the

reduced size and cost as well the increased performance and flexibility

that is now available utilising VLSI technology and parallel processing

techniques.

- 24 -

CHAPTER 2

The Shell Model Processor System

2.0 Introduction

Special purpose, or dedicated, processor systems are becoming

increasingly prevalent in scientific research due to the ease with which

such systems can now be put together using VLSI components. Areas such

as aerodynamics, fluid dynamics, Monte Carlo simulations and image

processing can require a very high arithmetic processing bandwidth as

well as an equally high data transfer bandwidth. General purpose

computer systems will not usually achieve their maximum efficiency when

applied to such problems. However dedicated machines can have a much

higher performance than general purpose computers since their

architecture can be optimised to reflect the structure of the problem,

so that generality is traded for performance, [PRT85].

When designing a dedicated system the form of the calculation and

the architecture of the machine must be as closely matched as possible.

For example the application of parallel processing within the

architecture can be optimised to mirror any parallelism within the

computation. Thus when designing the machine sufficient processing

elements should be included to be able to handle the computational load.

Equally important is an efficient means of interconnecting the

processing elements to each other as well as to the data storage devices

so that the necessary data can be moved and processed as required.

However full system optimisation will not only influence the

architecture of the machine but also the algorithm and form of the

- 25 -

Chapter 2

computation.

One example of a machine dedicated to theoretical physics

calculations is the previously mentioned Cosmic Cube (Section 1.3.4).

The main motivation for the system was Monte Carlo studies of lattice

gauge theories. However the message-passing architecture of the system

is flexible enough to be applied to the whole class of problems

involving multidimensional arrays of interrelated data, such as are

found in statistical mechanics and field theory. The Cube has been

successfully programmed for a number of different applications with some

performing up to 10 times faster than a VAX 11/780 [Se85], thus

demonstrating the performance which can be obtained from well designed

special purpose processor systems.

The field of nuclear physics theory is another area of research

where computationally intensive problems arise. In particular the

calculation of the nuclear energy levels which arise out of the theory

of the nuclear shell model is of much interest. In the following

sections of this chapter we will discuss the nuclear shell model problem

and introduce the Shell Model Processor (SMP) system. The SMP is a high

performance, parallel processor system developed at the Department of

Physics at Glasgow University for the purpose of performing such nuclear

structure calculations [MBMW85, MMB87].

2.1 The Nuclear Shell Model

It is well known that the nucleus exhibits a behaviour with respect to

"magic numbers" of nucleons that is similar to that of atoms which have

closed electron shells. For example the rapid change in nucleon binding

energy at the nuclear magic numbers is similar to the change in electron

separation energy in the atom. It therefore seemed logical for the early

nuclear theorists to attempt to develop a shell model of the nucleus

based on the quantum-mechanical procedures which had been so

- 26 -

Chapter 2

successfully used to develop the atomic shell model. However the early

attempts at predicting closed shells through the operation of the Pauli

exclusion principle were only able to produce the first three

empirically observed nuclear magic numbers. It was not until the later

addition of spin-orbit coupling to the theory that the full list of

magic numbers was produced.

Although superficially similar the atomic and nuclear systems are

physically very different. Electron motion in the atom is governed

mainly by the Coulomb force between individual electrons and the central

nucleus. The force between individual electrons produces only a small

perturbation from this main effect. However the essence of the nuclear

shell model is that each nucleon moves under the combined influence of

all the other nucleons. The major assumption is that the total effect of

the other nucleons can be represented by a potential well having a large

negative value at the centre of the nucleus and rising to zero at the

surface. Various shapes for the potential have been suggested, ranging

from the simple rectangular well, through the three-dimensional harmonic

oscillator to the Woods-Saxon potential.

In practice however the single particle spherically symmetrical

potential is a simplification since there is evidence of a pairing or

two-body interaction within the nucleus [ER74]. The two-body interaction

represents a departure from the average single particle potential and

arises when a nucleon is close to another nucleon with which it can

interact uninhibited by the Pauli exclusion principle. For example two

nucleons with different values of m collide and after the collisioni
enter states such that the total m^ is unchanged, thus conserving

angular momentum. The nuclear force therefore has a two-body nature and

the Hamiltonian thus takes the form;

H = V v + XI v(i,j) (2.1)
2m i < j

- 27 -

Chapter 2

2.2 The Slater Determinant Representation

In attempting to determine the nuclear energy levels it is usually

assumed that only one major shell is actively involved. The problem is

therefore to set up the Hamiltonian matrix and then to diagonalise it to

obtain the eigenvalues. The eigenvectors are also required in order to

calculate the transition rates and expectation values for various

measurable quantities. Traditionally the basis states were specified

using group theory and were coupled to good J and T quantum numbers.

However the need to handle the angular momentum algebra computationally

greatly inhibited progress.

It was for this reason that the nuclear theorists at Glasgow

University gave up the angular momentum coupled representations and

instead used uncoupled antisymmetric product wave functions, i.e. Slater

determinants, and an occupation number representation, [Wh72, MBMW85]. A

Slater determinant is given by

<p (rj . . . 0 <rj
a a

1 1 1
(B (l . . . r) = 1/a

a a ...a n (n !)
1 2 n

0 (r) . . . (f) (r)
1 ' na a

n n

where 0 (r) is the wave function for the jth particle in the ith
ia

state, for some arbitrary ordering. A Slater determinant can then be

written in the occupation number formalism using the creation and
+

annihilation operators, a and a respectively. A typical determinant

then becomes

a V ... a+ !0> (2.2)
A B N

where a is the creation operator for orbital i, and A, B, etc are thei
indices of the occupied orbitals with A < B < . . etc. Such states have

definite values for the total z-component of angular momentum and total

z—component of isospin but no definite total angular momentum or

- 28 -

Chapter 2

isospin. This representation is known as the m~scheme, [WWCM77] .

Under the m-scheme it is appropriate to use an occupation number

representation for the Hamiltonian, so that;

= «ZL-i H a a + 1/4 Z__iH = .Z_i H a a + 1/4 ZL. H <2> a+ a+ a a (2.3)
ik lk 1 k ijkl Mkl 1 J 1 k

(1) < 2)
where H and H are the one and two-body Hamiltonian matrix

l k i j k l

elements respectively. A simplification can be achieved by combining the

two terms, so that the Hamiltonian can be treated as a purely two-body

operator, [WWCM77], thus;

’ 1
t» — 1 l k “ j 1 i j k l

(1 > { 2) + +
a a a a (2.4)
1 j 1 k

H =
ijkl
i< j
k<l

so that the Hamiltonian is now explicitly dependent on n, the number of

nucleons. Thus the Hamiltonian can be written as;

H = Z— . H a+ a+ a a (2.5)
. , 1 J k 1 1 j 1 ki jkl
i< j
k<l

To diagonalise the Hamiltonian, H, it is necessary to have a form for

the actual matrix elements. These are given as follows, [Mac83]:

Let H be the two-body Hamiltonian as given in 2.5 and L be a basis list

of Slater determinants for a system of n nucleons. Let !i> and !f> be

two states, both members of L, such that;

!i> = ! ...<=*>
1 n

! f> = i /5 . . . $ >
1 n

where Q>i , . . ol , J0> , . . A are the indices of the occupied single particle
1 n 1

orbitals. The matrix elements are then;

1/ If !i> = !f>, i.e. OC = fi> for i = 1 to n, theni i

V "<f! H !i> = /_, <f! H a a a a ii>------------ w x y * w x ■ ywxyz

<o< ...(x!H a a a a \ fi) . ..(!>>
wxyz

+ +
i a

1 n w x y x w x x y

- 29 -

Chapter 2

v1- -
r V <2-6>« > T i l li J i j

l=i< j

2/ If { c* ... ex. } + { ft ... fa } = {cx , /& },i.e. there is only one
1 n 1 n 1 ' j

different occupied orbital between ii> and if>, then

n
Y -!i> = Z__i H,
k=l

<fi H !i> = Zl— , A (-1)P (2.7a)

k/i, j

where A -1 c* -1
j i

P = n^ + nB (2.7b)

s=CX +1 s=cX +1
k k

where n = 0 if the orbital with index s is empty,
S

= 1 if the orbital with index s is occupied,

for the Slater determinant a a !i>.«*- , 0* .k i

3/ If {<x ...&<} + { fa ... fa } = {c*,<X,/J,/3 },i.e. there are
1 n 1 n i j k l

two different occupied orbitals between ii> and !f>, then

<f! H !i> = <*4 (-1)P (2.8a)

where
(X -i fa -I

i i
p = ^ n + n^ (2.8b)

S= Cx +1 S— fa +1
i k

for the Slater determinant a a !i>.oc . .J i

4/ If there are more than two occupied orbitals different between !i>

and !f> then

<f! H !i> = 0 (2.9)

(N.B. that for any two sets A and B, A+B = (A—B)u(B-A))

Thus making use of the occupation number representation there is now a

simple mapping by which SDs can be efficiently represented and

manipulated within a computer. That is to assign each possible single

- 30 -

Chapter 2

particle orbit to a different bit position in a computer word. An

occupied orbital is then represented by 1 in the relevant bit of the

word, while an unoccupied orbital is represented by a 0. For example in

the 2s-ld shell there are 24 single particle orbits, thus requiring only

a 24-bit word to represent each SD. Thus using this method SDs and the

form of the Hamiltonian itself can be generated by using bit

manipulation and logic operations.

The basis space for a nucleus in shell model calculations is
2 e

potentially very large. For example in a calculation for Si (m = 0)

with 12 active nucleons in the 2s-ld shell, there are 93710 states (the
i omaximum for the sd shell) giving almost 10 elements in the matrix.

However only 20 to 30 of the eigenstates produced are actually compared

with experimentally determined values. Therefore a diagonalisation

method which produces all the eigenstates will generate mostly unwanted

information. Central to the method developed at Glasgow University,

along with the m-scheme representation, is the use of the Lanczos

algorithm for the iterative tri-diagonalisation of the nuclear

Hamiltonian. Using this algorithm only as many of the lower eigenstates

as are wanted are produced with the minimum of additional unwanted

information.

2.3 The Lanczos Method

The task of determining the eigenvalues and eigenvectors for a real

symmetric matrix is generally performed using the Householder tri­

diagonal isation method. However for shell-model work its major drawback

is that it requires the full tri-diagonalisation process to be completed

before any of the eigenvalues can be obtained. The Lanczos method [FM77]

is, at least in theory, almost ideal for finding the extreme eigenvalues

of a large sparse symmetric matrix [Pa72]. The two methods are

equivalent and will produce the same results. However the Lanczos method

- 31 -

Chapter 2

is an iterative scheme which will produce the upper left-hand k x k

submatrix after only k iterations. The eigenvalues of this k x k matrix

converge rapidly to very accurate approximations of the extreme

eigenvalues of the full matrix as k increases, [WWCM77], This remains

true even when k is much less than the dimension of the matrix.

Therefore in shell-model work the lowest energy levels, which are the

most useful, can be obtained after only 50 to 100 iterations, regardless

of the size of the basis space.

The Lanczos method works as follows; let A be a real, symmetric,
+

n x n matrix and v an arbitrary, n x 1 vector, such that v v = 1i i 1
(where the + denotes the transpose). New vectors are then generated by

iteration;

Av = <a< v + ft v1 XI 12
Av = ft v + cx.v + ft v

2 1 1 2 2 2 3

Av = ft v + cx.v + ft v
3 4

Av = ft v + c< v
n n — 1 n — 1 n n

such that the v are all orthogonal with respect to each other and arei
all normalised. The process terminates automatically after n iterations

since there can only be n mutually orthogonal vectors for the space and

therefore v must be 0.
n + 1

The Lanczos vectors v to v then form an orthonormal basis in
1 n

which A takes the tri-diagonal form

cx fti ' i

ft 1 ^*2 ft 2
ex.2 3 A

ft ,9 n - 1

The coefficients are determined as follows;

cx = v Avi i i
+

v Avi -1 iA,-, =
- 32 -

Chapter 2

w = $ v = Av - £ v - cy v
i i + 1 i i - l i - 1 i i

/> + 1 / 2$ = (w w)
i i + 1 1 + 1

If there are degenerate eigenvalues then the Lanczos method will

terminate in less than n iterations and only one eigenvector and

eigenvalue from the degenerate set will be obtained, [WWCM77]. However

degenerate eigenvalues rarely arise in shell model work, but the problem

can be overcome by using a new initial vector.

Unfortunately in practice the Lanczos method is not as ideal as at

first it seems. This is due to arithmetic processing inaccuracies which

lead to a loss of orthogonality in the Lanczos vectors and which stops

the process from actually terminating. The remedy is to re-orthogonalise

the current vector, v , with all the previous ones, as follows;
i

i-1
y " ♦

x = w - — i v w v (2.10a)i i j i j

V = i,, (2.10b)
(x x)i i

It is this which makes the Lanczos method less attractive than at first

appears. Indeed if the full matrix were to be diagonalised it would be

much less efficient than the Householder method. However if less than

n/4 iterations are sufficient, which is exactly the case with shell

model work, then the Lanczos method has the computational advantage over

the Householder method in terms of storage requirements and speed.

2.4 SMP System Introduction

We have so far described the nature and extent of the nuclear physics

problem and a method for its solution. However the original Glasgow

Program for determining the nuclear energy eigenvalues has a number of

limitations. These restrictions are a result of the type of computers

that the Glasgow Program is implemented on, which because of the

- 33 -

Chapter 2

magnitude of the shell—model calculation must be very large, high

performance mainframe installations. Access to these computers is both

limited and expensive, thereby reducing the number and scope of the

calculations that can be performed.

The number of single particle orbitals in any calculation is

limited by the type of computer used, being equal to the number of bits

in the computer word, allowing up to 59 orbitals on a CDC 7600 machine

but only up to 32 on an IBM 370 series computer. It is possible to store

each Slater determinant in more than one word, as has sometimes been

done, but this reduces the efficiency of the process and therefore still

imposes a limitation.

The amount of primary memory available on a mainframe also further

acts to limit the scope of the calculations since the Glasgow Program

requires that the complete Slater Determinant basis list be stored

during runtime [WWCM77]. The amount of space required to store this list

increases rapidly with any increase in the number of active orbitals and

in a 128 orbital system would require too much space even on today’s

mainframes.

Out of a desire therefore to overcome these limitations and so to

increase the number and scope of shell-model calculations which the

Glasgow Nuclear Structure Group could perform, the following aims were

drawn up:

1/ That a dedicated computer system should be designed and built in

order to carry out nuclear structure calculations.

2/ The initial computer should be a prototype system, able to deal with

up to 32 single particle states.

3/ The computer should be totally accessible to the nuclear physicist

and have a low construction and running cost.

4/ The performance should be comparable to that of an IBM 360/195.

5/ That this prototype system should act as a testbed for a later

machine with four times the capability, i.e. it should be able to

- 34 -

Chapter 2

deal with up to 128 single particle states.

Having gone so far as to decide to design a dedicated shell-model

processor, the question must be asked, what method should it use and

what should its nature be so that it is not restricted by the same

limitations as the current mainframes? i.e. should it be a simple one

processor SISD machine, or perhaps a SIMD array processor. An answer to

this question lies in the nature of the shell-model calculation,

examination of which shows that it divides into two logical stages;

1/ to generate the basis list of Slater determinants for the nucleus and

then to perform the annihilation and creation operations on the list

to determine the positions of the non-zero matrix elements within the

Hamiltonian matrix,

2/ to multiply the Hamiltonian matrix by the Lanczos vector and so to

accumulate a resultant vector.

This second stage further subdivides into a large number of independent,

non-identical tasks. Namely the determination of the magnitude and sign

of the matrix element from the annihilation and creation operators

(found in the first stage) and then its multiplication by the

appropriate Lanczos vector element and accumulation into a resultant

vector element. These tasks are non-identical not just in the fact that

they operate on different data, but also in that they will follow

different paths to determine the Hamiltonian entry according to one of

equations 2.6-2.8. Since the tasks are independent it is possible that

any number of them could be carried out in parallel. Normally matrix

multiplication is well suited to array processor architectures. However

since in this instance the matrix is irregularly sparse this is not the

case. In fact this second stage of the calculation is ideally suited to

a multi-processor configuration.

It is only the first stage of the calculation that actually

manipulates the SDs and so only it need have the capability of handling

32 bit words (or 128 bit words in the expanded system). It is therefore

- 35 -

M
AT

RI
X

FO
RM

AT

GE
NE

RA
TO

R
'

M
UL

TI
PL

E
M

IC
R

O
PR

O
C

ES
SO

R

U
N

IT

cnc
<b

o oCD 5=)

ll >

O Qj
.§ ot-Q_ 10

Fi
gu

re

2.1

SM
P

LO
G

IC
AL

S

TR
U

C
TU

R
E

Chapter 2

possible that this stage be a dedicated hard-wired unit.

These aims and objectives were drawn up a number of years ago by

Dr. A.M. MacLeod and Prof. R.R. Whitehead in the Dept, of Natural

Philosophy at Glasgow University. The prototype Shell—Model Processor is

now almost complete with only one component of the system still to be

added. The SMP system is operational without this element, allowing one

full iteration on a basis size of up to 13,000 elements. A number of

test iterations have been successfully run, thus proving the integrity

of the system and fulfilling the original aims. The initial feasibility

studies and some design and prototyping work was carried out by Dr. L.M.

Mackenzie as the work for his Ph.D. My work has been largely concerned

with the later design and testing of both hardware and software in order

to integrate and commission the system as a whole. What follows

therefore is mainly a description and discussion of the SMP system both

in terms of its hardware and software.

2.5 A Global View

As has already been said the shell-model calculation divides into two

logical parts, with this division being reflected in the two major

functional sub-systems of the SMP (figure 2.1). The Matrix Format

Generator (MPG) has the responsibility of determining the position of

non-zero elements within the Hamiltonian, i.e. it must determine the row

and column index for each non-zero element as well as its creation and

annihilation operators. The second sub-system, the Multiple

Microprocessor Unit (MMPU), then uses the information determined by the

MFG in order to identify the magnitude and sign of the Hamiltonian

matrix elements and then perform the arithmetic to produce a new vector

from the current Lanczos vector. The MMPU must hold all the previous

Lanczos vectors in order to be able to perform the re—orthogonalisation

which is necessary after each iteration (section 2.3). The MMPU is a

- 36 -

Chapter 2

modular, moderately coupled MIMD system based on autonomous processing

elements and is thus able to process a number of matrix elements in

parallel.

The two SMP sub-systems can themselves be further subdivided into a

number of functionally separate units (figure 2.2). A communications

subnet is also be defined so that the two main sub-systems, and the

units within them, can communicate with each other. We will now describe

the detail present within the two subsystems and the subnet.

2.5.1 The Matrix Format Generator

1/ The Primary Generator: In the SMP system, the SD basis list does not

need to be stored, thus overcoming the needs to have vast amounts of

primary memory for its storage. Instead the MFG generates the basis

list during each iteration. This task is carried out by the Primary

Generator (PG). The PG is basically a single board computer based on

the Motorola MC68000 (8 MHz) microprocessor and 128K bytes of local

dynamic RAM. Its task of generating the basis list is performed using

several data tables built prior to runtime and stored in local RAM.

The PG also acts as a supervisor and controller to the rest of the

MFG, ensuring its proper initialisation and performing runtime

maintenance and control.

2/ The Secondary Generator: Once a state within the basis list has been

produced by the PG we have, with the state, identified a column

within the Hamiltonian matrix. This state, called a prime state

!e >, is then passed to the Secondary Generator (SG) which in
n

response has the task of generating sections of the basis list, i.e.

sections of the matrix column, where non-zero elements may exist. The

states so produced, called secondary states ie >, form pairs of

states with the prime state (!e >,!e >) and each pair must then be
n v

tested to determine whether it defines a non-zero matrix element.

The SG has effectively to regenerate parts of the basis list for

- 37 -

Chapter 2

each member in the basis list and this obviously has the capacity

for being a very large task. To cope with this workload the SG is a

dedicated, hard-wired logic module which does not run a control

program and is constructed using- emmitter coupled logic (ECL). The SG

is at present clocked at 112 MHz and is capable of producing a peak

rate of approximately 8.6 million secondary states per second (i.e.
2 7

one every 13 clock cycles). For A1 m=5/2, which has a basis list of
Q

64,299 states, the SG must produce approximately 1.666 x 10

secondary states per iteration, which it can do in 3.28 mins,

effectively placing an upper limit on the performance of the SMP as a

whole.

3/ The Pair Filter: As a result of the method of operation of the SG

(which will be explained later) many of the secondary states it

produces will not actually combine with the prime state to produce a

non-zero matrix element. The task of filtering out these redundant

secondary states is given to the Pair Filter (PF). For each valid

secondary state the PF finds, i.e. one which is two particles or less

different from the prime state !en>, the PF must also generate the

indices of the annihilation operators (a ,a) and creation operatorsk 1
+ + + +

(a ,a) such that ie> = a a a a ! e > . These operator indices
i j n k 1 i i a

(k,l,i,j) determine the magnitude of a non-zero matrix element within

the Hamiltonian matrix and must be passed to the MMPU to be

processed. Obviously the performance of the PF must match that of the

SG and so the PF is also a dedicated hard-wired module constructed

using ECL.

4/ The MFG Buffer: The rate of output from the PF will vary considerably

and will only rarely reach the same peak rate as the SG due to the

fact that most of the secondary states are filtered out. In order to

even out the rate of output of valid secondary states by the PF and

to reduce the occurrence of the MFG being held up while it waits for

its output to be consumed by the MMPU, a first-in-first-out (FIFO)

- 38 -

Chapter 2

buffer stores the PF output.

Each output word, called a Task Setup Word (TSW), in the MFG Buffer

contains the necessary set-up parameters for the MMPU to identify the

matrix element magnitude and also which element in the final vector

is to be updated. To this end the TSW must contain the index of the

secondary state (m) , the annihilation and creation operator indices

(up to 4 of these), and information regarding which of eqns 2.6-2.8

should be used. When the MMPU is able to receive a new set of

parameters to start another job, then the TSW at the top of the

buffer is read out thus providing an extra empty space at the bottom

of the buffer. It is only when the buffer becomes full that the MFG

must halt its operation and remain idle until a new space becomes

available. The read/write control circuitry for the buffer is also

constructed using ECL.

In order for the MFG to achieve maximum throughput it is designed as a

parallel processor, with all 4 of its sub-units completely pipelined

with one another. In particular the SG, PF and MFG buffer all have the

same major cycle time in which they process a state.

2.5.2 The Multiple Microprocessor Unit

1/ The Microcomputer Modules : these are the modules which must read the

set-up parameters from the MFG Buffer and perform the matrix times

vector arithmetic. When a Microcomputer Module (MCM) reads a TSW it

must determine the magnitude and sign of the matrix element using the

information imparted by the annihilation and creation operators and

the job type bits. The index m, also included in the TSW, gives the

index of the final vector element, V , whose new value is to bet»
calculated as follows:

V = V x H + V (2.11)
f■ in nn fB

The index n of the initial vector element V is the index of thei n

prime state being considered by the MFG and therefore remains static

- 39 -

Chapter 2

for varying lengths of time. For this reason n is not included in the

TSW but instead is passed directly to the MCMs by the MFG each time

the prime state changes.

The MCMs must therefore have their own native intelligence capable of

evaluating one of equations 2.6-2.8 and performing the floating point

arithmetic. Their ability to carry out this task is extremely

important since it is the speed of the individual MCMs which will

determine the performance of the MMPU. To fulfill their purpose the

MCMs are therefore high performance single board computers.

2/ Centra 1 Memory: as has been said, all the MCMs require access to the

initial and final vectors during an iteration. Since the storage

space required is large, up to 800K bytes for the biggest sd shell

nucleus, it is much more efficient to store these vectors centrally,

which is the purpose of Central Memory (CM). As each MCM starts a new

task it will read the required initial and final vector elements from

CM and at the end of the task will write the updated final vector

element back to CM.

Included in the CM subsystem will be a high capacity backing store

which is intended primarily to store the Lanczos vectors. After each

iteration the new Lanczos vector will be orthogonalised with respect

to all the previous vectors held in the store and then copied into

the store itself.

3/ Supervisor Module : it is this module’s responsibility to monitor the

system during runtime and also to ensure the correct initialisation

of all the parts of the SMP system. The Supervisor Module (SM) also

acts as the interface to the outside world, e.g. via terminals,

printers, disks, etc.

2.5.3 Communications Subnet

1/ Input Bus: I-bus is the dedicated highway between the MFG Buffer and

the MCMs, along which the TSWs are read. As such it is fairly simple

- 40 -

Chapter 2

single address, uni-directional bus, but must have a high transfer

rate in order to keep up with the required flow of TSWs to the MMPU.

2/ Central Memory Access Bus: CMA—bus is the means by which the MCMs

perform read and write cycles to CM to access the vector elements. As

such it is more complicated than I-bus but requires the same

performance capabilities.

3/ Communications Bus: C-bus is the main system highway for

communications between components of the MMPU and the MFG. It is a

general purpose multiprocessor bus.

2.5.4 SMP Modes of Operation
Having thus described the tasks of the MFG and MMPU we can now draw

attention to an important fact that allows us to almost half the

workload of the MFG and also, but to a much lesser extent, reduce the

workload of the MMPU. This is simply the fact that the Hamiltonian is

symmetric i.e.

<e ! H ie > = <e ! H ie > for all m and n.
m n n a

Therefore once the MFG has identified two states !e > and ie > such that
n zd

H 0 the MMPU can then perform two jobs, i.e. instead of the MMPU
■ n

just evaluating

V = V x H + V (2.12a)
f n i n a n f n

it can also evaluate

V = V x H + V (2.12b)
f a i n a n f a

using the same H . Thus the MFG need only search half of the matrix for
m n

non-zero elements, i.e. in every column it need only search up to the

diagonal element, and in turn the MMPU has only half the number of jobs

to process.

However for each task the MMPU has to process there is now twice

the arithmetic workload and twice the number of vector elements to fetch

although there is still only one matrix element value to be determined.

Thus if the MFG is operated in this way, called H-toode as opposed to

/

- 41 -

Chapter 2

W-mode when the whole matrix is generated, the workload is significantly

shifted off the MFG. H-mode is therefore particularly useful in

situations where the MFG is the system bottleneck.

2.6 Conclusions

Although the system has been named the Shell-Model Processor it should

not be seen as a rigidly dedicated system useful only for nuclear

structure calculations, since this is far from the case. For a start

this type of calculation, i.e. matrix generation and diagonalisation, is

common in many other branches of science. However far more than this the

SMP has the flexibility to be applied to many problems which have a

degree of parallelism and which could utilise the processing power of

the MMPU. The MMPU itself, since it is based on multiple, high-

performance single board computers, can be viewed as a general purpose

moderately coupled multiprocessor system and is therefore useful in many

other types of calculations. Even if the MFG could not be used in these

problems, the I-bus is of a sufficiently general nature that it could be

used to connect the MMPU to some other input device e.g. a high speed

disk or pre-processor.

We have in this chapter given an overview of both the nuclear

structure problem and the prototype SMP as a means for its solution. The

following chapters will be devoted to a more detailed description and

discussion of the system. Particular attention will be given to the MFG,

the multiple MCMs and the communications subnet since they are the most

important sections of the system in terms of their workload and

performance. The details of the Supervisor module will also be given as

well as the plans for the Central Memory, this being the only part of

the system not yet implemented.

- 42 -

CHAPTER 3

The Matrix Format Generator

3.0 Introduction

The function of the Matrix Format Generator (MFG) has already been

described (Sec. 2.5.1) as well as its internal high-level structure. We

will now give further details of the MFG, describing the algorithm it

uses and its implementation in terms of both hardware and software.

3.1 Basis List Representation and Partitioning

Having chosen to use a Slater Determinant representation for the basis

states the most simple and (for manipulation purposes) efficient method

of representing them is, as we have said, to have one bit in the

computer word representing one single-particle orbital. Thus for the 24

orbitals of the sd shell only 24 bits in a computer word are required,

giving 8 spare bits in the current MFG which is a 32—bit machine.

The Shell-Model Processor system further subdivides this 32-bit

word such that bits 0-15 (i.e. the least significant 16 bits) are

reserved for neutron orbits and bits 16—31 are reserved for proton

orbits. Within these two half-words the orbital assignment is completely

arbitrary, for example figure 3.1 shows a possible assignment (note that

any particular assignment is called an SD representation) . Thus given

the number of protons (Np) , the number of neutrons (Nn) and the z

component of the total angular momentum (M̂) for the sd shell of the

nucleus and an appropriate representation we can generate a list of 32-

- 43 -

Bit number 1 j m nucleons

31 0 unused
30 0 unused
29 2 5/2 5/2 proton
28 2 5/2 3/X proton
27 2 3/2 3/2 proton
26 2 3/2 -3/2 proton
25 2 5/2 -3/2 proton
24 X 5/2 -5/2 proton

23 0 unused
22 0 unused
21 2 5/2 1/2 proton
20 2 3/2 1/2 proton
19 0 1/2 1/2 proton
18 0 1/2 -1/2 proton
17 2 3/2 -1/2 proton
16 2 5/2 -1/2 proton

15 0 unused
14 0 unused
13 2 5/2 5/2 neutron
12 2 5/2 3/2 neutron
11 2 3/2 3/2 neutron
10 2 3/2 -3/2 neutron
9 2 5/2 -3/2 neutron
8 2 5/2 -5/2 neutron

7 0 unused
6 0 unused
5 2 5/2 1/2 neutron
4 2 3/2 1/2 neutron
3 0 1/2 1/2 neutron
2 0 1/2 -1/2 neutron
1 2 3/2 -1/2 neutron
0 2 5/2 -1/2 neutron

Figure 3.1 Example SMP Orbital Assignment

unapter ^

bit numbers which represent the Slater Determinant (SD) basis list for

the nucleus. These 32-bit numbers are called SD-words.

To make the generation of the basis simpler and so ease the task of

the PG and SG we partition up the basis list and define an order on it.

It should be noted that from this point on the method used by the SMP

system to generate the basis states and Hamiltonian entries starts to

differ significantly from the original method of the Glasgow Shell-Model

Program [WWCM77].

First the SD word is sub-divided up into 4 8-bit sub-words which we

call SD-bytes;

SD-byte 0 comprises bits 31 - 24

SD-byte 1 comprises bits 23 - 16

SD-byte 2 comprises bits 15 - 8

SD-byte 3 comprises bits 7 - 0

SD bytes 0 and 1 are proton bytes and named PI and P2 respectively while

SD bytes 3 and 4 are neutron bytes and named N1 and N2 respectively. For

simplicity we define an integral M-value, M , for each bit i, such that;

M = 2m for each used bit,i j i
= 0 for an unused bit.

i = 0..31 (3.1)

The total M-value for an SD is then defined as;
31

m = y z m & <3-2>
i=0 1 1

where : 5 = 0 for an unoccupied orbital,i
= 1 for an occupied orbital.

We also define n (A) and m (A) wherei i
n (A) = total number of occupied orbitals (set bits)i

in byte i of SD word A,

and m (A) = the sum of the individual M-values for thei
occupied orbitals in byte i of SD word A.

We also denote the basis for a given nuclei with Np protons, Nn

neutrons, total M-value M and under representation R, as;

B-R (Np, Nn, M)

- 44 -

Chapter 3

A basis list can now be partitioned up into what are defined as N—

partitions and denoted;

[n(Pl) ! n(P2) ! n(Nl) ! n(N2)]

such that for all SD-words A in the N-partition;

n (A) = n(Pl), n (A) = n(P2), etc.
, v 1 (3-3)and where n(Pl) + n(P2) = Np and n(Nl) + n(N2) = Nn.

Thus all states in B—R(Np,Nn,M) can be placed in one, and only one, N-

partition and so the basis is completely and uniquely subdivided by

these partitions.

Each N-partition can now be subdivided by defining an M—partition,

denoted;
'n(Pl) ! n(P2) ! n(Nl) I n(N2)
m(Pl) 1 m(P2) ! m(Nl) j m(N2)

such that for all SD-words A in the M-partition;

m (A) = m(Pl) and n (A) = n(Pl), etc
(3.4)

and where m(Pl) + m(P2) + m(Nl) + m(N2) = M.

Each state can thus be placed in one and only one M-partition and so the

N-partitions are uniquely subdivided.

Using the N and M-partitions an order can now be imposed on the states

within any basis B-R(Np,Nn,M). First the N-partitions are ordered;

Let N = [n(Pl) ! n(P2) ! n(Nl) ! n(N2)]

and N = [n(Pl)"! n(P2)"! n(Nl)"! n(N2)"]2
be two arbitrary N-partitions within a basis. Then we define

N < N <=> (1) n(P2) < n(P2)" or1 2
(2) (n(P2) = n(P2)") and n(N2) < n(N2)" (3.5)

(Note that if n(P2) = n(P2)" then n(Pl) = n(Pl)").

We can thus say that an N-partition N^ "is less than" another N—

partition N if the above is true for N and N .2 1 2
An order can now be imposed on the M-partitions, such that if M and M1 2
are two arbitrary M-partitions within a basis, and if and M^ belong

to different N-partitions, N and N respectively, then we define1 2
M < m <=> N < N

- 45 -

Np = 3
Nn = 3

= 0m
N-partitions

[3 0 3 0]

[3 0 2 1]

[3 0 1 2 3

[3 0 0 3]

[2 1 3 0 3

[2 1 2 1 3

[2 1 1 2]

[2 1 0 3 3

[1 2 3 o 3

[1 2 2 i 3

[1 2 1 2 3

[1 2 0 3 3

[o 3 3 o 3

E o 3 2 i 3

[o 3 1 2 3

[o 3 0 3 3

 Initial N-partition

 Final N-partition

* denotes N—partition connected to [1 , 2 , 2 , 1]

Figure 3.2 Example N-partitions

Np = 3
Nn = 3
m = 0

M-partitions

-5 , -2 , 6

-5 . -2 , 8
-5 , 0 , 6

-5 , 2 , 2

-3 , -2 . 6

-3 , 0 . 2

-3 , 2 , 0

-3 , 2 , 2

3 , -2 , -2

3 , -2 , o

3 . o , -2

3 , 2 , -6

5 , -2 , -2

5 ,, 0 . -6

5 ,, 2 , -8
5 ,, 2 ,, -6

Initial M-partition

Final M-partition

Figure 3.3 M-partitions for N-partition [1,2,2,1]

N p = 3
Nn = 3
m = 0

02 18 22 01
02 18 22 02
02 18 22 04

02 18 24 01
02 18 24 02
02 18 24 04

02 28 22 01
02 28 22 02
02 28 22 04

02 28 24 01
02 28 24 02
02 28 24 04

02 30 22 01
02 30 22 02
02 30 22 04

02 30 24 01
02 30 24 02
02 30 24 04

04 18 22 01
04 18 22 02
04 18 22 04

04 18 24 01
04 18 24 02
04 18 24 04

04 28 22 01
04 28 22 02
04 28 22 04

04 28 24 01
04 28 24 02
04 28 24 04

04 30 22 01
04 30 22 02
04 30 22 04

04 30 24 01
04 30 24 02
04 30 24 04

Figure 3.4a SD-words in M partition [3,2,2, 1]

02 18 22 01

04 28 24 02

30 04

Figure 3.4b SD-chains for seed 02 18 22 01

Chapter 3

If however M^ and belong to the same N—partition such that,

andM =i

M =
2

n(Pl) ! n(P2) ! n(Nl) ! n(N2)
m (PI) ! m(P2) j m(Nl) ! m(N2)

n(Pl) ! n(P2) ! n(Nl) ! n(N2)
m(Pl)"! m(P2)"! rn(Nl)"! m(N2)'

then Mi < <=> (1) m(Pl) < ra(Pl)" or

(2) (m(Pl) = m(Pl)") and m(P2) < m(P2)" or

(3) (m(Pl) = m(Pl)") and (m(P2) = ra(P2)")

and m(Nl) < m(Nl)" (3.6)

We can now say that an M-partition M "is less than” another M-

partition M if the above is true for M and M .
2 1 2

Thus for any two arbitrary states SI and S2 within a basis, where SI and

S2 belong to different N-partitions N and N respectively, then;
1 2

SI < S2 <=> N < N
1 2

Similarly if SI and S2 both belong to the same N-partition but different

M-partitions, M and M respectively, then;
1 2

SI < S2 <=> M < M
1 2

If SI and S2 are within the same M-partition then they are simply

ordered according to normal numerical ordering.

Thus using these definitions all states within a basis can be

ordered. It is this partitioning and ordering that the PG uses to

produce all the SD-words for a given nucleus.

As an example of what has just been described figure 3.2 shows all

the N-partitions (note that the definition of connected N-partitions
3 0

will be given later) for the P m=0 nucleus under the representation
1 5

given in fig. 3.1. The N-partitions are given in order, with the lowest,

under the definition given in 3.5, shown at the top. Figure 3.3 shows,

in order, all the M-partitions contained in the [1, 2, 2, 1] N-

partition. Finally figure 3.4a shows all the SD-words, (in hexadecimal),

within the [-3, 2, 2, -1] M-partition.

- 46 -

Chapter 3

3.2 Secondary Generator Methods

As has been said, for every state, Ie >, that the PG produces, a column
n

within the Hamiltonian is defined. This column of the matrix must then

be searched in order to find all the other states, ie >, such that
m

<e iHie > "fc 0. The task of searching the column to find non-zero matrixa n

elements involves generating the basis list and then comparing each

state with the prime state !e >. If a state is two or less particles
n

different from the prime state then a non-zero matrix element has been

found. The ordered basis of SD-words must therefore be generated and

searched for each state in the basis, although as has already been

stated, in H-mode only the states up to the current prime state, i.e.

the diagonal element, are compared.

The task of generating the basis list for each prime state is

performed, in hardware, by the SG. The SG is not a completely autonomous

piece of hardware, that is it will not generate the complete basis of SD

words unaided. However the SG will independently generate, in order, all

the SD-words belonging to an M-partition in response to being sent the

initial SD-word for that partition. The task of driving the SG by

sending these initial states, called seed states, is part of the

function of the PG.

In addition to H-mode there is, fortunately, another means whereby

the SG need only produce certain sections of the basis for searching,

thereby reducing the number of states it must generate. This is due to

the fact that for each prime state there exist certain sections of the

basis which cannot possibly contain any states which contribute non-zero

matrix elements. The sections of the basis which are generated and

searched for a given prime state !e >, are those N-partitions
n

N* = [n(Pl)* ! n(P2)* ! n(Nl)* ! n(N2)]

such that

- 47 -

Chapter 3

I n(Pl) - n(Pl)* | + | n(P2) - n(P2)* | +
* , * (3.7)

I n(Nl) - n(Nl) | + | n(N2) - n(N2) | <= 4

where the prime state !e > belongs to the N-partition

N = [n(Pl) ! n(P2) ! n(Nl) ! n(N2)]
4c

If equation 3.7 is not true for a particular N-partition N relative to
*

N then all the states in N must have more than 4 differences relative

to all the states in N, i.e. more than 2 creations and 2 annihilations.

It can be seen then that if equation 3.7 is true for one of the states

which belongs to N then it is true for all states in N. We say that two

N-partitions are connected if they are related by eqn. 3.7. Thus for all

the prime states which belong to a given N-partition, N, the SG need

only search those N-partitions which are connected to N.

As has been said it is the PG’s task to send the seed states to the

SG. A table of these seed states is built by the PG every time the new

prime state belongs to a different N-partition. This table will contain

the initial SD-word of each M-partition within all the N-partitions

which are connected to the N-partition which the prime state belongs to.

As an example figure 3.2 identifies all those N-partitions which

are connected to the [1, 2, 2, 1] partition. In H-mode, of course,

the SG need only search those N-partitions up to and including the one

in which the current prime state resides, since only half the matrix is

being searched. In figure 3.4a the first word shown (= 02 18 22 01) is

the seed state for that particular M-partition and the remaining 35

words are those which the SG must produce in response to being sent it.

It can be seen that each of the individual SD-bytes in all the

states in fig. 3.4a take on only a few different values. These different

values are shown for each SD—byte in figure 3.4b, with each column

corresponding to the SD—byte above it. Each of the four different

sequences of numbers in the four columns of fig. 3.4b is called an SD-

byte chain. Each SD—byte chain is a list of the values, in numerical

order, that each SD-byte can assume in a particular M-partition, under

- 48 -

1 0 1 7 3 x 2
1 0 1 7 3 x 2

//Q»o'

10U£x8
CHANNEL
MEMORYIN IT IA L

BYTE 3 2 5 6 x 8
©

C M 1 L
CCH3(L)

FCYCLE (H)
TO PAIR FILTERS G L O A D L

2 5 6 x 1
Dout(L)

S E E D L)C M 3 L)1 0 1 6 5

E N D (L)

CHANNEL
CONTROL
RAM

in W E I U
C C R W E (L)

CHAIN2.(L) C H A I N 3(L) C H A I N 1 (L)'CHAIN 0 (L)
FIG 3.5 S G C H A N N E L 3.

Chapter 3

the constraints of constant n̂ and m imposed by the partitioning.

To produce the states of an M-partition the SG is built as four

separate byte-wide channels, SG channels 0 to 3, corresponding to the

four SD—bytes that make a SD—word. Associated with each channel is a

block of 256 x 8 RAM, the channel memory, which stores the SD-byte

chains for that channel. When a seed state is sent down to the SG each

SD-byte in the seed is used to address the appropriate channel memory.

Figure 3.5 shows the hardware for channel 3 (corresponding to SD-

byte 3) although there is little difference for any of the other

channels. During the first cycle of the SG the appropriate byte of the

seed word enters the SG via the DxO input of multiplexer (1) and is

latched into the output register of multiplexer (2). The signal

FCYCLE(H) is only active during the first cycle of the SG and so only

then will the multiplexers (1) and (3) use the DxO inputs (note the (H)

suffix on the signal name denotes that it is active high, while an (L)

suffix denotes an active low signal).

The output of (2) addresses the channel memory and is also the

output of the SG to the Pair Filter via the register (6). The byte which

is read out of each of the four channel memories is the next element in

each of the SD-byte chains. The output of each of the channel memories

is fed back round and latched first onto the output of (1) and then onto

the output of (2). This next byte in the SD-byte chain'now addresses the

channel memory and the output it produces is the next member of the

chain, and so on.

After the first cycle of the SG only the least significant channel,

i.e. channel 3, has its multiplexer (2) clocked round. Therefore the

output of the top 3 most significant channels stays the same, initially

equal to the bytes of the seed state, while the lowest channel is

clocked through the elements in its SD-byte chain.

When the last element in the chain for channel 3 addresses the

channel memory it produces the first element at its output. It is only

- 49 -

Chapter 3

when this byte is clocked round to the output of the SG, i.e. the output

of (2) , that the next most significant channel, channel 2, has its

multiplexer (2) clocked round so that the next byte in its chain is then

presented at its output. Channel 3 now has the first byte in its SD-bĵ te

chain at its output, while channel two has the second byte in its chain

at its output. When both channels 3 and 2 reach the end of their chains

channel 1 is then clocked round and so on. In this way the SG acts like

a 4 byte counter, with each of the bytes only taking on a limited number

of values, i.e. the elements of their respective SD-byte chains. The SG

thus produces in numerical order all the SD-words present in an M-

partition, in response to being sent a seed state.

The contents of the channel memories are thus organised as closed

self-addressing chains. For example taking byte 3 of the example given

in figure 3.4b, the contents of location $01 ($ signifying a hexadecimal

value) would be $02, the contents of location $02 would be $04 and the

contents of location $04 would be $01.

The task of recognising when a chain has come to an end is

performed by the 256 x 1 channel control RAM (5). Initially this RAM

will contain all ones, but when a new seed state is latched into the SG

then a zero is written in to the RAM at the location addressed by

initial seed SD-byte. As each byte in the chain is read out of the

channel memory, it addresses the channel control memory. Thus as the

different bytes of the chain address the memory only when the first

element in the chain addresses it will it output a zero. This is then

the signal that the channel has reached the end of its chain. When all

channels reach the end of their chains then the M-partition has been

exhausted. The control memory then has a one written back into it,

overwriting the zero, and a new seed is requested.

The channel memories are initialised at the start of SMP system

processing by the PG. The SGLOAD(L) signal is driven low by the PG thus

switching the multiplexer (2) over to its Dxl inputs which are connected

- 50 -

Chapter 3

to the PGs address bus (A.B. fig. 3.5). The data inputs and the data

outputs of the channel memories are connected to the PG’s data bus so

that it can initialise, and verify, their contents. The contents of the

channel control RAM are automatically initialised to all ones when the

channel memories are written to.

The SG must also keep track of the index number of the the SD-words

it produces so that the MCMs can identify the appropriate vector element

which is to be used. To this end the SG has a 20-bit counter, called the

Secondary Index Counter (SIC), which is clocked up each time the SG

produces a new state. However as has been said the SG does not produce

all the SD-words in the basis but only those belonging to connected r e ­

partitions. For this reason the SIC must have the capability to be

initialised at the start of each new N-partition that the SG produces,

since the N-partitions which the SG produces will not in general be

contiguous. The PG has the task of initialising the SIC and must

therefore maintain a table, called NIMTB, of the index numbers of the

initial states in all the N-partitions. When the PG prepares a new table

of seed states it must also prepare a table of initial indices selected

from NUMTB. This initial number table (INT) will contain the indices of

the initial SD-words in each of the N-partitions connected to the

currently active partition.

We have now given a more complete description of the task of the SG

and of the methods it uses to fulfill this task. Section 3.5 will go

into greater detail and discuss its hardware implementation. However

first the Pair Filter and MFG buffer must be described more fully.

3.3 Pair Filter Operation

Once a secondary SD-word has been generated by the SG it is passed

directly to the Pair Filter. There it is compared to the prime state

ie > to determine whether it is two particles or less different. First
n

- 51 -

u- cr — I o (jj LUI— :

lU O <
r\ —r- LU O

UJ CD U
l/) gC

UJ O
£

c r Q c z

ui in ll

FIG.
 3.6

PAI

R
FIL

TER

RE
GI

ST
ER

Chapter 3

the orbitals which differ between the two states must be identified.

This is performed by logically exclusive-ORing the two SD-words that

represent ie > and ie >, figure 3.6. The resultant 32-bit word will haven a

ones only in those positions which differed, thus marking out those

orbitals in which a particle was either created or destroyed. To then

determine those particles in !e > which have been destroyed the output
n

of the XOR array is logically ANDed with ie >. The particles which have
n

been created in the prime state are determined by logically ANDing the

state !e > with the output of the XOR array. The two resultant 32-bitzn

words are then latched into registers feeding separate operator encoder

channels (OEC).

The output of each OEC is a 5-bit word giving the index of the

least significant set (i.e. high) bit stored in the input registers.

These output words, the index of an annihilation/creation operator

depending on the channel, are latched into two 5-bit registers. The

index of the next least significant set bit on the input registers of

the OECs is then determined and latched at the output. If after this it

transpires that there is another set bit on both the input registers

then there must have been more than 2 particles difference between the

two input SD-words, therefore <e !H!e > = 0. If however there are no
n n

more bits left then the four operator indices are written into the MFG

buffer.

The operation of the PF is completely pipelined with that of the

SG. That is, as the SG is in the process of producing a new state, the

PF is processing the last state the SG produced. The SG and PF thus have

the same major cycle, i.e. the time taken to process a state. The major

cycle time for the SG and PF is currently 13 clock cycles.

3.4 MFG Buffer Operation

The Task Setup Word (TSW) written into the Buffer for each state passed

- 52 -

Chapter 3

by the PF has three subwords contained within it. These are made up as
follows;

Subword 1. a 20—bit word consisting of the four 5—bit operators produced

by the PF,

Subword 2: the 20—bit output of the SIC which gives the index, m, of the

secondary state, !e >.
m

Subword 3: a 2-bit code to identify whether the TSW word refers to a 0,

1 or 2-job. This code is also produced by the PF.

The operation of reading and writing to the buffer is pipelined with the

operation of the SG and PF. To ensure as far as possible the

uninterrupted operation of the SG and PF they must not be delayed by

buffer read/write operations. Therefore although only a few states are

actually passed by the PF the buffer must still have the capability of

performing a write operation on every major cycle of the SG and PF. The

write cycle time of the buffer must therefore be at most 13 clock

periods. However read requests from the MCMs to the buffer, which are

completely asynchronous to the MFG operation, must also be fitted into

this cycle so that the SG and PF are not held up. To this end the 13

clock period major cycle of the MFG is split into two subcycles for the

buffer; one for buffer read operations and the other for buffer writes.

The buffer must therefore synchronise any read request to its read

subcycle. On some occasions however the SG and PF will be halted, e.g.

if the buffer is full, in which case the reads can take place at

anyt ime.

The buffer must keep a track of how many locations within it are

used at any time and from this provide signals to indicate whether it is

empty or full. These signals are then used to stop any more reads from

the buffer or to halt the SG and PF from producing any more states.

- 53 -

Chapter 3

3.5 MPG Hardware Implementation

The MFG was first run successfully as a complete unit towards the end of

1983, at a clock rate of 50 MHz. It has now, after a major revision of

its timing control and a number of other changes to the design, been

uprated to run at 112 MHz. This section will detail the updated MFG

hardware, as well as identify those sections of the hardware which

currently impose the upper limit om its clock speed.

The SG, PF and buffer read/write control logic are all built with

Motorola 10K series ECL gates. This high speed family of logic devices

has typical gate propagation delays of 2 ns, rise and fall times of 3.5

ns and offers a wide range of SSI devices and functions [MECL86] . In

some key areas of the timing circuit Motorola 10KH ECL devices were

used. The 10KH series is fully compatible with the 10K family but has an

improved performance, e.g. providing typical propagation delay of 1 ns

for the same power consumption (typically 25 mW per gate). 10KH devices

also provide improved noise margin and reduced parasitic capacitance on

inputs allowing faster rise and fall times.

With the fast edge speeds and low propagation delays of ECL devices

path lengths can approach the wavelength of the signals. Thus any line

which is improperly terminated will produce reflections causing serious

distortions in the waveform [Ch86]. As a result of this, transmission

line practices must be used, requiring each line to be properly

terminated at its end with a load approximately equal to the

characteristic impedance of the line [MECL83]. This practice is

facilitated by the open emitter output used on all 10K devices. This

also allows "wire-ORing" of outputs, i.e. the ability to produce an OR

function between a number of outputs simply by connecting them directly

together.

A full power (equal -5.2 V for 10K ECL) and ground plane on the

circuit board also helps to reduce the impedance of signal lines and so

- 54 -

CO

CO

CO

o

CO

o

H

Csl

UJ
to

UJ

m
Q ty

cr©
Q A

COCM___

CM

I—
(JL

cr

FIG
. 3

.7
TIM

ING

AND

CO
NT

RO
L

UN
IT

Chapter 3

minimise cross-talk between signals [MECL83], The circuit boards used,

as well as providing a full power and ground plane, also provided

positions for the terminating resistor networks. Single-in-line (SIL)

resistor packs were used, providing seven 100 ohm resistors connected to

a common terminal. This was connected to a —2.0 V supply to provide an

active pull down termination.

3.5.1 Timing and Control Unit

The timing and control unit (TCU) provides the main timing and control

signals for all the major units within the MFG. It also controls the

synchronisation of the three stages within the pipeline, i.e. the SG, PF

and buffer.

The TCU can be separated into two functional subsections (fig 3.7);

the pulse injector and the 26-bit serial-in-parallel-out shift register.

A pulse is injected into the shift register by the D input of (2) being

high on a positive edge of the clock. This happens in two ways;

1/ START: This active low signal will inject a pulse into the TCU on its

back edge. START(L) is only activated when the SG commences

processing a new seed state. Thus if the SG is idle and waiting for a

new seed state then START(L) will only be activated when the PG sends

one. Alternatively if the SG finishes processing a seed state and a

new seed is already waiting then START(L) will be activated

immediately.

2/ RESTART: When the shift register is triggered, a pulse one clock

cycle long will travel along it causing each output to go high for

one clock period, starting at T1 and ending at T26. When the pulse

reaches T13 another pulse will be injected into the shift register.

This therefore generates the 13 clock period major cycle of the MFG

system. Thus on most occasions there will be two pulses travelling

through the shift register, separated by 13 clock cycles. Exceptions

to this are on the first cycle after the TCU has been started and on

- 55 -

£
$

£ T
COC^—J X

L U L U
o o
o o c c u i w
(JL LL

<
ocr
o
o
Q_o
h-to
cr
<S)
Q
Z<
LU
O
(£cr
UJ

00
00
o
LL

a ia x a
C C @ l /) i/> ©,_____.
Q A. X Q A

O
UJ

a i a

ia
h i / ' £ © H 3

t 73101 f 73101 J, S3I01

Chapter 3

the last cycle before it becomes idle.

There ai e two conditions that can stop a new' pulse being injected in;

i) The SG finishing an M-partition: this condition is signalled by

the HALT(H) line. Obviously if this happens then the SG must be

brought to a halt but the rest of the MFG pipeline must be allowed to

empty before they are halted. In this case RESTART is barred from

injecting a pulse into the shift register and instead must wait for

START to be activated, signifying the arrival of a new seed state.

However timing signals must continue to the PF and buffer and so the

shift register is allowed to continue on, generating pulses up to

T26. It is from the latter half of the shift register that the PF and

buffer receive most of their timing signals.

ii) The buffer becoming full: this condition is signalled by the

BFULL(L) line. When this occurs RESTART is blocked from injecting new

pulses in. Only when a read is executed from the buffer and BFULL(L)

is thus negated is a new pulse allowed into the shift register. As in

i) above the MFG pipeline is allowed to empty. Since this could mean

another request to write to the buffer if the PF passes the state it

is processing, then BRILL is actually made a pre-emptive signal. That

is BRITT, is activated when there are still 16 positions left in the

buffer. This is more than enough room to store any states allowed

through by the PF while the pipeline is being emptied.

Note that the two flip-flops, (2) and (3), at the input to the shift-

register serve to synchronise the the input pulse to the clock since

both START(L) and BRJLL(L) are asynchronous to the system clock.

The lines DL1, DL2 and DL3 are all debug lines controlled by the PG

software and used during MFG testing. Their operation will be explained

later in section 3.5.10.

3.5.2 SG Interface and Start/Stop Control

The interface between the SG and PG, figure 3.8, is the means whereby

- 56 -

fOX
J
Vj

A
_r
U

3
X
_J

A
h
O

r \

o
cr
h-z:
o
o

CD

I

c? <5* c?

@ S-'lTOT

r»<=C

o°

\J

c ?

8ST0 X

/O
0 o0 H

O'" cr

Ui
-Iu>•oIL

«■
01

oriu

lo ° lo * l (f

©
S9I0I

0 rf
a o &

r*
i.£D

ro
r Hz:<ra:v)

•Hr
«rx
u

<y
Z
x
v

v;
O
O
-J
o

UJ

<
X
o

CD
00

3
(0
r
u

lu
ID
VP

X

uLL

Chapter 3

the SG signals to the PG that it requires a new seed state and whereby

the PG then transfers new seed states to the SG.

When the SG has exhausted an M-partition it will activate END(L)

(6) causing IDLE(L) (5) to be clocked low thus signalling to the PG that

the SG is indeed idle. If the next seed state is available, signalled by

SRD\ (L) , then the SG can start again, otherwise it must wait.

When the PG writes a new seed to the interface then the WLONG(H)

(1) signal is activated. This in turn triggers START(L) and also resets

(3) indicating, via FCYCLE, that the first cycle of the SG processing an

M-partition is in progress. When the SG does start again it signals to

the PG, via NSREQ(L) , that a new seed is now required. Thus the supply

of seed states to the SG by the PG is pipelined with the SG’s activity.

The first cycle of the SG is not used to produce any new states but

only to take in the new seed state and initialise the appropriate

locations in the Channel Control RAMs. The write pulse to the RAMs,

CCRWE(L), is generated on the first cycle of a new seed by STRTW(L) and

on the last cycle by STOPW(L).

The WRITE, INIT and RESET lines are initialisation control signals

driven by the PG at the start of SMP processing. They are used, among

other things, to ensure the correct state of various flip-flops in the

MEG control system and to set all bits in the SG channel control RAMs to

ones.

3.5.3 Channel Clocking and Control
As has been said the output of the multiplexer (2) , fig. 3.5, of the nth

channel is only clocked if all the channels of lower significance, i.e.

channels n+1 to 3, are also at the end of their chains. The control for

the clocking of the multiplexers in each of the four SG channels is

shown in f igure 3.9.
The decision as to which channels are clocked round is implemented

by the priority encoder (1) and the 16x4 RAM (the channel clocking

- 57 -

JR BIT31

D R
3 2 L I N E
P R I O R I T Y
E N C O D E R

5 - 3 2
L I N E

D E C O D E R

BITO
15x10131

P T 8 (L)
D O N E (L)

D O N E (H)

PT13(H]
P T 17(H)

P T 13
10175
P T 17

<3>

©
P A S S H

PT21 H) <Z>

D & i r i
> M

J T O JT1
1 1 O - J O B
1 0 i - J O B
0 0 2 - J O B
0 1 (N O T A L U D W E D)
PA IR F I LTE R O P E R A T O R

E N C O D E R C H A N N E L .
FIG. 3.10

Chapter 3

memory (OCM)) (3). The only function of the multiplexer (2) is to allow

the PG to initialise the CCM at the start of processing. The inputs to

the priority encoder (1) are the outputs of the 4 channel control RAMs

((5) figure 3.5), with the output of channel 3 connected to the highest

priority input. The 2—bit output word of (1) is the index of the highest

priority input that is high. This output is then used to address the

CCM, only the lowest 4 locations of which are used. The CCM is

preprogrammed such that the bit pattern which is read out will enable

only the appropriate channel to be clocked.

3.5.4 The Pair Filter

Figure 3.10 shows one of the two PF OECs while figure 3.11 details the

logic to control its timing. The timing of the PF has been completely

revised to allow it to operate at 112 MHz. This has meant increasing the

time between the 4 PF timing pulses, so that the OEC now completely

utilises the 13 clock period major cycle of the SG. Previously it had

only used 8 clock periods to perform its function.

The first timing pulse to the PF, PT8(L), clocks the output from

the XOR/AND arrays into two 32-bit registers. Each bit of these

registers can be individually reset to a low. The DONE(L) output of the

priority encoder signals that all of the input bits are low. Therefore

if this output is activated before PT13 then there could have been no

set bits in the registers. This indicates that the secondary state and

the prime state were identical and that a 0-job has been identified. If

DONE(L) is not activated by this point then the output of the priority

encoder, which gives the index of the most significant set bit on the

input register, is clocked into the 5-bit register (1), (note that bit

zero of the input register has highest priority).

FT13(L) is also used to enable the output of the 5-line-in, 32-

line—out decoder. This output is used to reset the highest priority set

bit in the input register. If DONE(L) is now activated before PT17 then

- 58 -

S T R T W (H)

D " C lO U T (H)

T8(L) T13(L) TT7(L)

I n

H J
PT13IH)

Q_Q

D Q

T21IL)

y yPT13 (H) yPT17(H) y P T 2 1 (H)
PT8(L) PT13(L) ’PT17(L) lPT21(L)

FIG.3.11 PAIR FILTER T I M I N G C O N T R O L .

CM -
cn

LO

CO
LO

CO
LOCM.
CO”CM.cn
CM.
cn

LO

CO
LO

CO

b

□

cn

o
£ in
tz LU g COQ — 'o Z>
CD 0-

h
5 ?
I—
CL
I—LO

3 00
o H*CL

00 ^ <r-rz CMI— I— I—CL CL. d-

FIG
.

3.12

PAIR
 F

ILT
ER

TIM
ING

PU

LS
ES

Chapter 3

there was obviously only 1 set bit in the input word. Thus there was

only one particle different between the secondary state and the prime

state and so a 1-job has been identified.

If DONE(L) is not activated before PT17 then the above process is

repeated for the next highest priority set bit. If after this bit has

been encoded and cleared DONE(L) is activated before PT21 then a 2-job

has been identified. Otherwise if DONE(L) is not active by PT21 then

there must have been more than 2 particles different between the two

states and so the secondary state is not passed. In the 0, 1 and 2-job

cases the encoded annihilation and creation operators present in the

latches (1) and (2) are transferred into latches (3) and (4) by PASS(H) .

A write enable pulse for the buffer is also generated by PASS(H).

The two flip-flops (5) and (6) generate the job-type bits JTO and

JT1, which also form part of the data word written into the buffer.

These two bits are encoded as shown in fig. 3.10.

Figure 3.11 shows the PF timing control circuit. Figure 3.12

details the timing relationship between the different clocks for the PF.

The timing pulses to the PF are disabled during the the first cycle of

the SG processing an M-partition, since the SG does not produce a state

for the PF in this cycle. The STRTW(H) clock, which is generated only on

the first cycle of a new seed (fig. 3.8). is used to disable the PF

timing clocks. The OUT(H) clock, which is generated on every cycle of

the SG except on the first one, is then used to enable the first three

clocks to the PF (PT8, PT13 and PT17). FT13 is used to enable the last

clock, PT21. This difference is caused by the fact that PT8 and PT21

will actually occur at the same time since they are 13 clock periods

apart. Therefore on the first cycle of the PF at the start of a new

seed, PT21 must only be enabled after PT8 in order to avoid spurious

clock pulses to the PF which could potentially cause unwanted write

pulses to the buffer.

- 59 -

£

^i§ £
UJ O

no o o

Lf>CM 3
O *3x—

h—CL

Chapter 3

3.5.5 Secondary Index Counter and H—mode Comparator

Since the SG only searches certain N-partitions belonging: to a prime

state then the PG must preload the SIC with the index of the initial

state of every new N-partition processed. The inputs to preload the SIC

are fed by the latches, (4, 5) figure 3.13, which can be written to by

the PG.

Once the SG starts processing the last seed state of an N-partition

the PG must write the initial index number of the next N-partition to

the SIC preload latches. The PG can tell when the SG has started

processing a seed by testing that NSREQ(L) (fig. 3.8) is active. When

the PG writes the initial value to the SIC the flip-flop (2) is clocked,

signalling that the SIC preload latches are full. Only then does the PG

write the first seed of the new N-partition to the SG interface.

When the SG finishes the old N-partition and starts processing the

new seed for the new N-partition IDLE(L) will be driven low and high

again, (see fig. 3.8 for the circuit which generates IDLE) thus

activating the LOAD(L) signal. The SIC is then synchronously preloaded

by the first SICLK pulse. The SICLK pulse, which clocks up the SIC and

also preloads it, is generated with one of the PF timing pulses, PT17,

since the SIC must only be advanced when a new state has been clocked

out of the SG.

It is quite possible that an N-partition contains only one M-

partition. In such a situation there would only be one seed state for

the PG to send down to the SG before requiring to reload the SIC.

However it is feasible the SIC has not yet been preloaded with the

previous value, even although the SG has started to process the only

seed state. This could occur if the last state produced by the SG on the

last seed was written into the buffer causing it to go full. Under these

conditions the BFULL signal would not stop the SG from starting to

process the new seed, it would instead only stop the SG after its first

cycle (fig. 3.7). Consequently the PF timing would not yet have been

- 60 -

Chapter 3

enabled (fig. 3.11) and so the SIC would not have been preloaded.

Therefore the PG must always check SPLEMPTY(L) (fig. 3.13) to determine

if the SIC preload latches are empty before writing to them. Since the

PG must also check that the SG has started processing the previous seed,

tested via NSREQ(L), before writing to the preload latches, a composite

signal, LEMPTY(L), is formed. This signal is active only when both the

above conditions are true.

While processing in H-mode the SG should only produce states up to

and including the diagonal element. The secondary state for the diagonal

element will have the same index as the prime state. Thus when the

diagonal element has been produced, being identified by its index

number, the PG and MFG buffer must be notified. The PG needs to know so

that it can abort loading down the seed table for the current prime and

move onto the next prime state. The buffer must also know so that any

more states in the current M-partition which are passed by the PF will

not be written into the buffer. No writes are then allowed into the

buffer until the SG has started processing the new prime state.

The output word of the SIC is fed into a 20-bit hardware

comparator, (7) figure 3.13. The other input to the comparator is fed by

a 20-bit latch (8). This latch is loaded by the PG at the start of

processing on each new prime state with the index of the prime state.

When the index of the secondary state equals the prime state index then

the SICINT(L) signal is activated. This signal interrupts the PG

processor and is also sent to the SG and buffer. If the PG is not in H—

mode then the HMCEN(H) signal will be inactive thus permanently

disabling the SICINT line.

The diagonal element will always be passed by the PF and so the

back edge of the write signal, WE(L), which the diagonal element

generates is used to produce the write inhibit signal, WIN(H). The

WIN(H) signal is used to block any more clock pulses to the SIC as well

as disabling writes to the buffer. In this way the SICINT(L) signal

- 61 -

S 3
74x

6
LS2

44x
 6

U 2
CD O

i
§ 5

CO O

S37
£x6

LS

2U
x6

CD O

to O <r

Chapter 3

remains active until the PG has received and processed the interrupt,

when it will initialise the latches (8) with the new prime state index.

The SICINT signal cannot be used to abort the SG/PF from processing

an M-partition since this would leave a position in the channel control

RAMs (fig. 3.5) with a zero written in it. Therefore the SICINT signal

is only used to block any more writes to the buffer after the diagonal

element has been written in. As a result the PG must wait until the SG

finishes an M-partition as normal before it can go on to process a new

prime state. However when the SG finishes it is possible that the SG

interface still has a seed from the old prime state ready to be

processed by the SG/PF. In order that the SG should not take and process

this seed and so waste time, SICINT is used to block any new START

pulses, (7) fig. 3.8.

There is the danger that a race will occur between SICINT and IDLE

causing a glitch out of (7). SICINT will safely block IDLE as long as it

reaches (7) before IDLE reaches (8), thus ensuring no glitches out of

(7). This will always happen since the SIC is clocked 11 clock cycles

before IDLE (5) thus giving SICINT enough time (in worst case

conditions) to reach (7) first. However there is one exceptional

condition when SICINT will not be able to block IDLE, but which still

ensures no glitches out of (7). That is when SICINT is caused by the

last state produced in an M-partition, in which case IDLE is clocked 2

clock cycles before the SIC. This will unfortunately mean that the SG

will waste time processing a seed.

3.5.6 The MPG Buffer Implementation
A schematic of the buffer and its control is given in figure 3.14. The

requirement that the buffer must be capable of handling both a read and

write cycle within the 13 clock period major cycle of the MFG (- 116 ns

at 112 MHz) necessitates the use of fast static RAMs. The 55ns cycle

time of the Motorola MCM2147 4K x 1 memories only just allows this to be

- 62 -

Chapter 3

achieved. At the time these memories were one of the main limiting

factors in increasing the clock speed of the MFG.

There are three sets of 12-bit counters within the buffer subsystem

(1, 2 and 3). (1) and (2), the buffer write address counter (BWAC) and

buffer read address counter (BRAC), generate the write and read

addresses respectively for the buffer and only count up. (3) is the

buffer word counter (BWC) and holds the number of used positions within

the buffer. The BWC will count up or down depending on the state of the

read signal, R(L) . The output of the BWC is used to generate the buffer

full and buffer empty signals, BFULL(L) and BEMPTY(L) respectively. This

is done by means of a combinatorial AND/OR array.

The multiplexer (4) outputs either the read or write address to the

memories depending on the state of the read grant signal RGRNT(L). Thus

the output of the multiplexer will default to the write address and only

change when a read access is actually being performed. Note that the

R(L) signal changes on every major cycle of the MFG, splitting it up

into a write and read phase. The RGRNT(L) signal on the other hand is

active only when a read is actually taking place.

As has already been noted the parameters within the TSWs which are

stored in the buffer do not contain all the data required by the MCMs

for each task. That is the MCMs must also know the prime state SD-word

and its index. These parameters change very infrequently and only need

to be sent to the MCMs when they start processing a new prime state. To

achieve this the PG must know when the last TSW for a prime is read out

of the buffer.

To this end the PG must read the BWAC, (1), when the SG finishes

processing a prime state and before it starts processing a new prime. At

this point the BWAC will contain the address of the next position to be

written to in the buffer. The PG then writes this address into the

register (8) which feeds a 12-bit comparator (7), the Buffer Block

Finished Comparator (BBFC). When the MCMs read the last TSW from the

- 63 -

IDTACK

IDS(L)

10125

IDTACK(L)
BEMPTY(H)

BLKFIN(L)

RUNNING(H)

RGRNT(H)
HnRnl-H

15MHz
SRRQST(H)

MFG BUFFER READ CONTROL

FIG. 3.15

FIG. 3.16
WRITE AND SYNCHRONOUS READ CONTROL

T 15(H)

HH '
PASS(H)

E(L)

❖

T26(H)

HH D Q
LB_

WEIL)

T21(H)

19(H)

BFULUL)

D Q
L J B _

SRGRNT(L)
<S>

SRROSTM \
IDLE(L) ▼)

T2A(HV

D Q
>R ©

T20IH)
T26(H) D Q

>SQ
RUNNING(H)

HH

T25(H)
DSQ

R(L)
©

A T18(H)

1
BFULL(H)

T2IL)

Chapter 3

buffer relating to the old prime, the BRAC, (2), will then equal the

contents of the register (8), at which point the BBFC will activate the

BLKFIN(L) signal. This signal is then used to interrupt the PG, which

then broadcasts the new prime state information to the MCMs. BLKFIN(L)

is also used to generate a read inhibit signal which stops the MCMs

performing any more reads from the buffer. This is done until the PG has

successfully informed all the MCMs of the new details.

3.5.7 MFG Buffer Read Control

All reads to the MFG buffer are performed along I-bus and are controlled
*

by two signals; the data strobe IDS and the data transfer acknowledge
*

IDTACK (note that the * denotes an active low signal on the bus) . A
♦read from the buffer is only initiated when the date strobe IDS is

activated, figure 3.15. This will latch in a read request on the flip-

flop (1), unless either the buffer is empty, BEMPTY(H) active, or the

read inhibit from the BBFC is active, RIN(L). If either of these signals

is active then a read request will be delayed until it is removed.

Once a request has been latched in it can produce either a

synchronous or asynchronous read cycle;

1/ Asynchronous cycle: this type of read cycle will only happen if the

SG and PF have been stopped, either by a buffer full condition or

when the SG is waiting for a new seed. If this happens then

RUNNING!H) is brought low by T26, the last timing pulse of the TCU,

(see (6) of figure 3.16 for circuit). RUNNING(H) is then brought high

again on the second pulse T2 of the first cycle immediately after the

SG/PF restarts. RUNNING(H) is synchronised with the inverted 16 MHz

clock by (5), fig. 3.15, and then used to hold (2) reset. Thus only

if the SG/PF have stopped, RUNNING!H) low, will an asynchronous

grant, ASGRNT, be generated lasting 62.5 ns.

2/ Synchronous cycle: If RUNNING is active then the synchronous read

request signal, SRRQST from (1) of fig. 3.15, will generate a

- 64 -

T13 15 17 19 ' 21 23 25 1 3
 1---1---1-----1-1----1--1--- 1-1____I__I___ t i i » 1 I i

WE(L) '

E(L)

R(L)

PF DATA

i

Simzzz7MMZzzmzzzzzzzzzzzzzm
I
i

— | SRGRNT(L) ------------------------------------

READ WRITE

FIG. 3.17 MFG BUFFER TIMING

Chapter 3

synchronous read grant signal, SRGRNT, via (3) and (4) of fig. 3.16.

This SRRQST(L) signal is completely asynchronous with the MFG system

at this point and so is synchronised to the MFG clock by the two

flip-flops (3) and (4). It is also synchronised to the MFG buffer

read phase by (3). Note that the read phase starts at the beginning

of T25 (7) with R(L) going low, but the synchronous read grant does

not start until two clock cycles later at the end of T26. This allows

time for the R(L) signal to place the BWC, (3) fig. 3.14, into the

count down mode before it is clocked by the SRGRNT signal.

It is possible that a read request is first initiated when RUNNING(H) is

low and gets as far as bringing the output of (2) high, fig. 3.15, only

for RUNNING!H) then to go high again. In this case the asynchronous

request would be aborted and then treated as a synchronous request.

However if an asynchronous request gets as far as driving ASRGRNT(L) and

then RUNNING(H) goes high there is no danger of the request also being

treated as synchronous, since the RGRNT(H) signal will clear the read

request on (1).

3.5.8 MFG Buffer Write Control
The read and write subcycles of the buffer are split so that a

synchronous read is performed in 7 clock cycles ! = 62.5 ns at 112 MHz)

leaving 6 clock cycles (= 53.5 ns) for a write. Figure 3.16 shows the

circuitry to control the write cycle. The PASS(H) signal comes from the

PF OEC circuitry, fig. 3.10, and signals that a state has been passed by

the PF and so must be written in to the buffer. The E(L) and WE(L)

signals are the chip enable and write enable signals respectively for

the MFG buffer memories during a write cycle.

Figure 3.17 details the timing for the buffer synchronous read and

write cycles. This was also completely revised to accommodate the

changes made to the PF timing. The R(L) signal is only used on the BWC,

(3) fig. 3.14, to determine whether they count up or down. Since these

- 65 -

RGRNT(L)
INTERNAL
SIGNAL

60ns

FIG 3.18 CURRENT I-BUS READ CYCLE.

IDS*

RGRNT(L)
INTERNAL
SIGNAL

60 ns

FIG. 3.19 PROPOSED I-BUS READ CYCLE.

Min S Max S Measured

1 a/ T
8 1 g V

(synch) 43.8 77.4 —

b/ (synch) 159.8 193.4 —

c/ (asynch) 75.1 96.3 —

d/ (asynch) 137.6 158.8 —

2/ T8 1 8 h 17.5 50.9 25

3/ Tshah 8.8 29.3 25

4/ Ta h s 1 10.9 31.1 15

Table 3.1 I-bus cycle timings

Chapter 3

counters are clocked at the start of any read/write cycle then the R(L)

signal is changed ahead of the write cycle to give them sufficient setup

time.

3.5.9 I-Bus Data Transfer Protocol

I-bus is a dedicated, unidirectional, asynchronous bus capable of

supporting only one bus slave, the MFG buffer, and multiple bus masters,

the MCMs. The I-bus signal lines fall into two subsets; the arbitration

bus and data transfer bus (DTB). The arbitration bus requires only four
* *

lines; a common bus request line (IBR), a bus busy line (IBBSY), a
*

daisy chained bus grant line (IBG) and a bus grant return line
*

(IBGRTN). The operation of the bus arbitration protocol will be

explained later in Section 4.3. All that need be noted at present is

that the arbitration for the next bus master is pipelined with the bus

transfer of the current bus master. This pipelining allows minimal delay

to be incurred when handing over bus mastership.

The DTB consists of up to 64 data lines of which 42 are used at
* *

present. There are only two DTB control lines, IDS and IDTACK . These

two lines form a simple handshake between the bus master and MFG buffer.

Figure 3.18 details the current protocol for the I-bus data transfer,
*

while table 3.1 gives the associated timings. The IDS line is driven by

the current bus master and signals a read request to the buffer as well

as indicating to other potential masters that a bus cycle is currently
*

in operation. IDTACK is the MFG buffers response when the data is valid
*

at its output. In response to the buffer asserting IDTACK the current
*

bus master will negate his IDS and latch in the data after a short

delay to guarantee set-up times. Only when the buffer has negated
* *IDTACK does the next bus master assume control by driving IDS .

Since a read has to be synchronised with the read subcycle of the

buffer for both asynchronous (fig. 3.15) and synchronous reads (fig.

3.16), it is more than likely that there will be a delay before this

- 66 -

Chapter 3

happens. Time la in table 3.1 is the best case delay for T during a

synchronous read, i.e. is when the request arrives just in time to be

clocked into (4) fig. 3.16. The worst case delay for a synchronous read

is where the request just misses the clock and has to wait the full 13

clock period cycle of the MFG before being granted, lb in table 3.1. lc

and Id in table 3.1 give the best and worst case timings for the delay

imposed on requests being synchronised with the 16 MHz clock during

asynchronous reads. Using fig. 3.18 and the figures given in table 3.1

we can arrive at the following bus cycle times for synchronous buffer

accesses (allowing 60 ns for memory access);

a) Peak cycle time (worst case),

i.e using la for T , and using worst case delays
B 1 g V

= T + 6 0 + T + T + T (all max. timings)
B 1 g y a 1 s h s h a h a h s 1

= 77.4 + 60 + 50.9 + 29.3 + 31.1

= 248.7 ns cycle time

= 4.02 MHz transfer rate.

b) Peak cycle time (best case),

i.e using la for T , and using best case delaysS 1 g -V
= 43.8 + 60 + 17.5 + 8.8 + 10.9

= 141 ns cycle time

= 7.09 MHz transfer rate.

c) Average cycle time (worst case),

i.e using average of la and lb for T , and using worst case delays
B 1 g V

= 135.4 + 60 + 50.9 + 29.3 + 31.1

= 306.7 ns cycle time

= 3.26 MHz transfer rate.

d) Average cycle time (best case),

i.e using average of la and lb for T , and using best case delays
B 1 g V

= 101.8 + 60 + 17.5 + 8.8 + 10.9

= 199 ns cycle time

= 5.03 MHz transfer rate.

- 67 -

a

I
BUS
C0NNECTI0NS

vcc-1027- ID26- 1025- ID24- 1023-
1022-

1021-

1020- ID19- 1018- 1017- 1016- 1015- 1014- 1013-
1012- ID11-
1010- 109- 108- ID7- 106- 1 0 5- 104- 103-
102-

101 - IDO-
vcc-

■32 —■31 V C C — f■30■29■28■27 ^•26■252 42 32 221 +-2 019 —181716 +15 + -14 +13 + -12 +11 + -10 +9 +-876 +
l :» r
2 V C C — 1-1

—vcc

I D SX3CI D T A C K * ,
Z X D C

ON EACH
LJME C O M M O NTO OLJL L.INCS +CW

^ ^ 2 p F 3 3 0 R
ON 6o-r»i

4 7 0 R

C O M M O N
-TO 60TM L/nPS

220R
H u F ,N

' 4148

FIG.3.20 I - B U S C O N N E C T I O N S A N D T E R M I N A T I O N S .

Chapter 3

An average data rate of between 3.26 MHz and 5.03 MHz can therefore be

expected on I-bus. While it is possible that the data rate could peak at

up to between 4.02 MHz and 7.09 MHz.

However examination of fig. 3.18 shows that time is wasted at the
♦ *

end of each bus cycle in the way IDS and IDTACK are removed. Since the

TSW is valid at the output of the MFG buffer on the rising edge of the

buffer RGRNT(L) signal and stays valid until the rising edge of the next

RGRNT(L) pulse it is possible to change the date transfer protocol to

that shown in fig. 3.19. As before the current bus master removes his
* *

IDS signal when IDTACK is driven low and the next bus master is only
*

allowed to assume control when the IDTACK is negated. However with this
*

method IDTACK simply follows the internal RGRNT(L) signal and when it

is negated it signals to the current bus master that the data is ready.

The bus master then latches in the data after a short delay as before.

With this protocol the T delay would be buried in the 60 ns memory
o 1 s h

access time and the T time would be lost altogether. The aboveshah
figures for bus bandwidth wrould thus become;

a) J.68.5 ns = 5.93 MHz,

b) 114.7 ns = 8.71 MHz,

c) 226.5 ns = 4.42 MHz,

d) 172.7 ns = 5.79 MHz.

I-bus bandwidth could therefore be expected to increase to average

between 4.42 MHz and 5.79 MHz.

I-bus is physically implemented on a commercially available 21

slot, 96-line multi-layer backplane. 12 of the lines on the backplane

are reserved for power and ground lines since they are connected to the

power and ground plane of the backplane. The remaining 84 signal tracks

on the backplane are layed out with a ground line on either side, thus

reducing the impedance of the track and so reducing signal crosstalk.

The layout of the signals on the edge connector is shown in figure 3.20.

The IBG* and IBGRTN* signals are not physically present on the I-bus

- 68 -

Chapter 3

backplane since they require a daisy-chained line which was not

available on the backplane used. Instead they physically reside on the

C-bus backplane, which being a VME-bus has four daisy-chained signal

lines.

The termination circuits used for the data and clock lines are

shown on fig. 3.20. These custom-made termination circuits are placed at

either end of the backplane on all the data and clock lines. The active

pull-up, pull-down termination has an impedance of 194 ohms. This

approximately matches the impedance of the signal lines on the backplane

and so reduces signal reflection from either end of the backplane. The

diodes on the termination for the clock lines help to limit undershoot

and so reduce ringing.

3.5.10 MFG Testing and Debugging

During testing and debugging of the MFG hardware it was possible to

override some of the normal functions within the MFG using a number of

dedicated debug control lines. All these debug control lines are driven

by the FG and are under software control. However during some of the

early stages of testing they were controlled by switches. While testing

circuitry within the MFG signals were monitored via a 2 channel 100 MHz

oscilliscope.

For example it is possible to block the BRILL signal from stopping

the TCU, via DL1 fig. 3.7, thus allowing uninterrupted operation of the

SG and PF. This will of course mean that data is overwritten in the

buffer. However it is a very useful facility when signals are being

examined within the SG, PF and indeed the buffer write circuitry but

when the data in the buffer is not required.

There is also a facility to start the TCU via DL4, fig. 3.8, and

thus to initiate cycles in the SG/PF under software control. Using DL2,

fig. 3.7, it is possible to block the RESTART signal so that the TCU

does not have a pulse injected into it every 13 clock cycles. Thus using

- 69 -

Chapter 3

DL2 and DL4 it is possible to run "single shot" full speed cycles within

the SG/PF, i.e. only one pulse is allowed to travel through the shift

register, thus allowing each major cycle to be initiated under user

control. This facility proved useful for single stepping through SG and

PF operation and then checking their output as well as checking the

state of various key registers and flip-flops after each cycle.

It is also possible using DL3, fig. 3.7, to inhibit the HALT line

from stopping the SG at the end of a seed. Thus a single seed is

processed repeatedly without PG servicing. This is useful where signals

within the MFG are being examined with a 'scope, and so continuous and

synchronous operation is required.

The SIC H-mode comparator and BBFC can also be individually

disabled, via HMCEN (fig. 3.13) and BBFCEN (fig. 3.14). This facility

can be used to simplify control software during debugging.

All of the initial testing of the MFG was performed with much

simplified driver software. The software needed only to load the SG

channel memories with 2 or 3 different SD-byte chains and then use only

a small number of seeds. These seeds and chains were chosen to produce

tight loops within the MFG which could then be easily examined and

traced. Once the I-bus interfaces were complete a two processor system

was implemented, with the PG driving the MFG and an MCM accessing the

buffer and checking the data which was read out. When the complete PG

software was written more thorough checks could be performed using the

same two processor system, but now with the MFG performing the full

sequence of events for an SMP iteration.

The MFG hardware has now been completely tested and proven to

successfully and reliably operate at a clock speed of 112 MHz.

3.5.11 MFG Performance Limitations

The following have been identified as the major limitations on the

performance of the MFG;

- 70 -

Chapter 3

1/ MFG buffer memories: as has been said the current 55 ns memories

limit the MFG major cycle to an absolute minimum of 2 x 55 =

llOns/cycle which gives a clock speed of approximately 118 MHz.

Indeed it has been found that the MFG will only operate successfully

up to a clock speed of just under 120 MHz. The current memories could

be replaced by 25 ns 4k x 4 bit RAMS, e.g. the IDT71682LA (which has

separate data input and output lines). This would impose a limit of

50 ns/cycle, which equals a clock speed of 260 MHz.

2/ SG channel memories: the time allowed between the clocking of the

multiplexers (2) and (3), fig. 3.5, is only 3 clock periods during

which time the channel memories must be accessed. The present clock

speed only gives 27 ns for this function. This currently does not

allow for the maximum address access time of the memories (MCM10144)

of 26 ns, plus the maximum propagation delay of (2) and the setup

time required for (3), which amounts to another 8.8 ns. However it is

within the 17ns typical delay of the memory devices. Replacement with

the Fairchild F10414, which has a maximum address access time of

7 ns, or the Motorola MCM10422-7 (which is a 256 x 4 bit RAM) which

has the same access time, and replacing the multiplexers with the

10KH equivalent would place a limit of 262 MHz.

3/ PF Operator Encoder Channels: analysis of the OECs shows that when

producing the second operator index a propagation delay of 30.3 ns

(worst case) is required for the signals to travel through the 1-to-

32 decoder and the 32-bit register and then be ready at the input of

the encoder. Only 4 clock periods are currently given to this stage

of the OEC, imposing an upper limit of 132 MHz. The simplest method

of increasing this is to replace all the OEC devices with 10KH ECL

series parts, which would approximately double this upper limit.

4/ TCU shift register: in order to operate above 125 MHz the shift

registers in the TCU would have to be changed to 10KH devices. This

would place an upper limit of 250 MHz on the clock. However the pulse

- 71 -

o No XoCD 2
UD CD

CD z:
X <

cr
m

CDX
<CD crCM Q

s«3d=in<3

>r (jlJ

CD O
^addna

«3idng

□
CO CL {/)

0 O< UL
$ CO
CD CO

FFFFFfi,
O F F B O A R O

V I A
C - B U S8 M

0 - 5 K
7777U N U S E D

S G
I N T E R F A C E

U N U S E D
0 9 F F F E

1 2 8 K

U N U S E D

O F F R
U K

0000
FIG. 3.21b M E M O R Y M A P

Chapter 3

injection logic would become a lot more difficult to control and may

not work at this speed..

The above list is by no means exhaustive but it does present some of the

more major limitations on the current performance. There are a number of

other minor limitations which could possibly be overcome by circuit

alterations rather than replacing parts. What is clear however is that

with the current design the MFG clock could possibly be increased in

speed by a factor of two, at the very most. Beyond this speed the

current design could not operate and a major rethink in the design of

the MFG would be necessary.

3.6 Primary Generator Hardware

A schematic of the FG hardware is shown in figure 3.21a, with its memory

map shown in figure 3.21b. The PG is an MC68000 (8MHz) microcomputer

module. It has an interface to C-bus, but none of the other SMP system

buses, and has direct control over the SG and PF via the SG interface.

The PG also has control over some of the MFG buffer functions as well as

access to read the contents of the BWAC. The PG can also write to the

preload latches of the BBFC, SIC and H-mode comparator. The buffer

functions and all the preload latches along with the two PI/Ts (Parallel

Interface/Timers) are all memory mapped into the control space (fig.

3.21b) .

Only those parts of the PG hardware that are particularly dedicated

to its function will be discussed here, and not the more general

hardware of its microcomputer architecture.

3.6.1 The SG Interface

Hie SG interface contains two SG control PI/Ts and an 8k x 8 block of

memory, used for holding seed state tables. The SG interface is also the

pathway for the PG to initialise the contents of the SG channel memories

- 72 -

Chapter 3

and CCM.

The MC68230 PI/T [Mot230] has three 8-bit general purpose

bidirectional ports, A, B and C. Each of the bits for the three ports

can be independently configured as an input or output pin. The PI/T can

be used to generate vectored interrupts to an MC68000 device. Four

independent interrupt inputs are provided via the handshake pins HI -

H4. The PI/T will supply a different interrupt vector to the MC68000

depending on which handshake line was the source of the interrupt. All

three PI/Ts have their A and B ports in Mode 0, submode lx. which

configures them as bit I/O with the handshake pins as interrupt

generating inputs.

The C- ports on the two SG control PI/Ts on the interface are used

as the SG control and status register (SGCSR), so that the PG can

control certain functions of the SG and also read back its status e.g.

idle or running. The A and B ports on the two SG control PI/Ts are

combined to form one 32-bit output register, the Prime State Register

(PSR), to hold the current prime state which is fed to the PF. The

buffer control PI/T uses its B port as a buffer control and status

register (BCSR).

The 8k block of memory on the interface is used to hold the seed

SD—words which are sent to the SG. 2k of these 32—bit words can be held

in the memory at any one time. The memory is made up of four 2k x 8

static RAMs, organised as two 2k x 16-bit word blocks. In normal

operation the memory acts as any other block in the PG’s memory map,

being written to and read from 16-bits at a time. However when servicing

the SG with a new seed state the PG simply has to read a byte or word of

the relevant seed from the memory and the full 32-bit SD-word is read

out in one cycle and clocked into the SG seed latch. This utility saves

a significant amount of time for the PG servicing the SG and thus

reduces the time wasted by the SG while it waits for a new seed state.

However this means that a seed state cannot be written into the seed

- 73

Chapter 3

memory as a contiguous 4-byte word. Instead the most significant 16—bit

word of the seed (containing the bytes for channels 0 and 1) is written

to the lowest 4k block of the seed memory. The least significant word

(containing the bytes for channels 2 and 3) is then written into the

same address but with an offset of 4k (bytes) into the highest 4k block

of the seed memory.

3.6.2 The Control PI/Ts

A total of 10 lines are used on the two SG control PI/Ts to form the

SGCSR. These lines are used as follows;

1/ Input: NSRBQ(L) - signals that the SG is requesting a new seed,

2/ Input: IDLE(L) - signals that the SG is idle after completing an

M-partition,

3/ Output: REQEN(L) - enables the DREQ(L) signal (see fig. 3.8),

4/ Output: DL4 - a low to high transition on this line injects a pulse

into the TCU (see section 3.5.10 and fig. 3.8),

5/ Output: INIT(L) - used to initialise certain flip-flops within the

SG/PF,

6/ Output: LOAD_SG - enables the memories in the SG to be loaded prior

to running,

7/ Output: L0AD_INT - enables the seed table memories on the SG

interface to be loaded and then switched into 32-bit mode,

8/ Output: DL3 - HALT override (see section 3.5.10 and fig. 3.7),

9/ Output: DL2 - single shot enable (" " ") ,

10/ Output: DL1 - BFULL override (" " ") .

The buffer control PI/T has 7 lines dedicated on its B port as the BCSR,

as follows:

11/ Input: LEMPTY(H) - signals that both the SIC preload latch and the

SG seed latch are empty (see section 3.5.5 and fig. 3.13),

12/ Input: BEMPTY(L) - signals that the MFG buffer is empty,

13/ Output: BBFCEN(L) - enables the BBFC (see fig. 3.14),

- 74 -

Chapter 3

14/ Output: HMCEN(H) - H-mode comparator enable (see fig. 3.13),

15/ Output: SICLEN(L) - SIC preload enable (see fig. 3.13),

16/ Output: BCLK - this control line is wire-ORed to the BWC clock. A

low to high transition clocks the BWC, while it is held low

to allow it to run. This line is required to preset the BWC

to zero.

17/ Output: BRESET(L) - BWC preset mode line.

Most of the control lines driven by the PI/Ts are completely static

during runtime, except lines 7, 13 and 14 which are altered at certain

times by the PG software w'hen necessary.

The two interrupts, i.e. the H-mode interrupt and BLKFIN interrupt,

are both directed to the PG processor via the buffer control PI/T. This

is achieved by connecting the two interrupt signals, SICINT and BLKFIN,

to the HI and H2 lines respectively of the PI/T. The PI/T is then

configured by the PG to generate an interrupt to the processor on a

negative going edge from either of these signals. Since the two

interrupts are both edge triggered the PG must clear them in the PI/T

before it will rescind its interrupt signal. The interrupts are both on

the second highest interrupt level to the PG processor, i.e. level 6,

and so can be masked out if desired.

3.7. Primary Generator Software

The PG task subdivides into three separate functions;

1/ The Basis Generation Function: this generates, in order, the basis

list of ,SD-words (i.e. prime states) for the nuclei under

consideration.

2/ The SG Control Function: amongst other things this function will

supply the SG with the necessary seed states, preload the SIC and

service the H-mode comparator interrupt.

3/ The MMFU Support Function: this function supplies the MCMs with new

- 75 -

cr lu

ln UJ

V Q O

UJ 3 UJ

/\ l-tCL
3crcrUJ
1—z•—1

y V

u-cr
h-

00go
CD

U.CTf

PG

R
O

U
TI

N
E

S

FIG
.

3.23

STA
TIC

DAT

A.

Chapter 3

prime state information when necessary.

Figure 3.22 shows the structure of the PG software and the flow of

control and data between the different routines. All the software for

the PG has been written in Motorola 68000 assembly language. The

software was developed on a Motorola EXORmacs 68000 development system

using a relocatable assembler and linker package.

To perform its function the PG must generate and maintain a large

Runtime Data Block (RDB) containing lookup tables and PG system

parameters. The RDB is split into two sub-blocks; the static block and

the dynamic block. The static block is built prior to runtime and

contains read only data. The dynamic block is a read/write block of data

which is constantly changing during runtime.

3.7.1 The Runtime Data Block

1/ The Static Data Block

This data block consists of a number of tables and parameters built by

the Supervisor Module prior to runtime and then placed in the PG memory.

The static block is shown in figure 3.23 along with the PG software

routines which reference it. The sole function of the static data block

is to aid the PG in generating the basis list of SD-words according to

the ordering given in section 3.1. Therefore this data block is only

used by the Basis Generation Function.

The static block consists almost entirely of the Channel

Information Tables (CITs). There are four separate CITs corresponding to

the four channels of the SG (which in turn correspond to the four SD-

bytes that make up an SD-word) . Each CIT is itself made up of four

different tables, as follows;

1/ The SD-Byte List: this is the lowest level of the CITs. It is a 256

byte table which contains all the possible SD-bytes for the channel

it refers to. Within the table the entries are sub-divided into

blocks, called n-blocks, with all the entries in an n-block having

- 76 -

Chapter 3

the same number of set—bits, i.e. occupied orbitals. There are thus 9

possible n-blocks (for 0 to 8 set bits) in each SD-byte list. The n-

blocks are arranged in order, with the n-block corresponding to 0 set

bits first in the list. It should be noted that while each of the 4

SD-byte lists of the 4 CITs are split into 9 n-blocks that in some of

the CITs some of the n-blocks will be empty. For example under the

representation given in figure 3.1 each SD-byte list will have 2

empty n-blocks, since 2 bits in each SD-byte are unused.

Within each n-block the entries are arranged into nm—blocks, where

all the entries in an nm-block have the same M-value. The number of

nm-blocks in any n-block is variable, depending on the particular n-

block and the basis list representation used. The nm-blocks are

arranged within the n-blocks in ascending numerical order of their 111-

values .

Within each nm-block the SD-bytes are arranged in numerical order.

All the SD-bytes within an nm-block thus have a constant number of

occupied orbitals and M-value. They therefore correspond to the SD-

byte chains placed in the SG channel memories (section 3.2).

2/ The M-list: This 256 entry table is also ordered into n-blocks with

each n-block having a single byte-wide entry for each of its nm-

blocks. The entry for each nm-block simply gives the M-value for that

nm-block. These entries within each of the n-blocks are arranged in

numerical order, i.e. the same ordering as the nm-blocks in the SD-

byte lists.

3/ The M-directory: The M-directory is organised in exactly the same way

as the M-list. However the entry for each nm-block consists of two 2-

byte elements and therefore the M-directory takes up 1024 bytes. The

first element of each entry in the directory is a 16-bit address

offset from the base of the SD-byte list to the base of the

associated nm—block. The second element of each entry gives the

number of SD—bytes minus 1 contained within the associated nm—block

- 77 -

D Y N A M I C
T A B L E S

DRIVER
TABLES

N U M T B
INITIAL
N U M B E R

T A B L E (INT)
S E E D C O N T R O L !
T A B L E (SCTAB)

S E E D T A B L E

P R I M E B L O C K
F I F O

T R A N S I E N T
pg r o u t i n e s P A R A M E T E R S

N P C

D T C

M P C

S T B

S D W S

S G D R

B L K F I N
I N T E R R U P T

A N P

J S W

C M P T

C M P T I X

P I C

P S B

F I F C

F I F R A

F I F W A

DATA
REFERENCE

FI a 1 2 4 D Y N A M I C D A T A *

Chapter 3

of the SD-byte list. (Note that here as in other tables block lengths

are stored less one to optimise the use of the 68000 microprocessor

assembly language. The decrement and branch conditional instruction

(DBcc), which is used to operate most loops, exits a loop when the

counter reaches -1. Therefore it is more efficient to store the loop

counts less one, rather than to calculate this value).

4/ The N—directory: This is the highest level table within each CIT and

is used only by the MPC. It contains 9 different entries, one for

each n-block, consisting of two 16-bit word elements. The first

element is a 16-bit address offset to the base of an n-block within

the M-directory. This offset is used for the M-List as well but since

the entries in the M-List are a quarter of the size of those within

the M-Directory then it must be divided by 4 (i.e. shifted right 2

places) before it can be used to reference the M-List. The second

element is a block length number, which gives the number of entries

(i.e. the number of nm-blocks) minus one within the associated n-

block. The total size of each N-directory is thus 9 x 2 x 2 = 36

bytes.

The only other entries within the static block are three parameters

which define the particular nucleus under consideration, these are INP,

FNP and MVAL. INP and FNP are the initial and final N-partitions

respectively for the nucleus (an N-partition is specified by a 4 byte

number, with byte 0 containing the value of n(Pl), etc. (eqn. 3.3)).

MVAL is a 2 byte parameter and is the total M-value for the nucleus.

II/ The Dynamic Block

Most of the space within this block is taken up with the dynamic tables

while the remainder is used by transient parameters, figure 3.24. Only

the SG Control Function and MMPU Support Function use the dynamic

tables, while all the functions use the transient parameters.

The dynamic tables are made up as follows;

1/ The Number Table (NUMTB) ; This table contains the index of all the

78

Chapter 3

N-partitions within "the basis list (where the index of a partition,

be it an N or M-partition is the index of the first state within the

partition). Each entry in the table is made up of two 32-bit long

word elements; the first element specifies the actual N-partition and

the second gives its index. This table is built by the Basis

Generation Function during the first iteration of the process.

2/ The Initial Number Table (INT); The INT contains the indices of all

the N-partitions which are connected to the active N-partition (the

active N-partition is the one which the current prime state resides

in). Its entries are used by the SG Control Function to preload the

SIC each time the seed states enter a new N-partition (section

3.5.5). It is built using the information in NUMTB. This holds no

problems in H-mode since in this case only connected N-partitions

before and including the active N-partition are searched by the SG.

However N-partitions which occur after the active N-partition are

searched when processing in W-mode and therefore during the first

iteration, since the NUMTB will not be complete, their index will be

unknown. Therefore a dummy basis generation run must first be

carried out in order to build NUMTB, when processing in W-mode.

3/ The Seed Control Table (SCTAB); The first entry in the SCTAB is the

number (minus one) of all the non-empty N-partitions connected to the

active N-partition. Therefore this entry gives the number of valid

entries in the INT. The remaining entries in the SCTAB give the

number of M-partitions minus one in each of the connected N-

partitions, i.e. the number of seeds minus one for each N-partition.

4/ The Seed Table; This is the actual list of seed SD-words which are

sent to the SG. This table is stored in the seed memory of the SG

interface.

The last three tables collectively form the Driver Tables. These

tables are built and used only by the SG Control Function. The Driver

Tables contain all the information necessary for controlling and

- 79 -

Chapter 3

supporting the SG during seeding.

5/ The Prime Block FIFO: This is a softw’are FIFO maintained by the MMPU

Support Function. It is used to keep a record of previous prime

states and the position of their associated TSWs within the MFG

buffer. Each entry within the FIFO consists of a prime state SD-word,

its index and the address (read from the BWAC) of its first TSW

within the MFG buffer. These entries use 4, 4 and 2 bytes

respectively.

Before the SG Control Function begins processing a new prime state,

the new prime state details are appended to the FIFO. When a new

prime block is reached in the MFG buffer, signaled by the BLKFIN

interrupt (section 3.5.6), the MMPU Support Function will broadcast

the details, taken from the FIFO, to the MCMs. The BBFC is then

reinitialised using the details from the next entry in the FIFO.

In order to maintain the Prime Block FIFO there are three data words.

FIFO, FIFRA and FIFWA, kept in the transient parameter area of the RDB.

FIFRA and FIFWA are the offsets from the base of the FIFO to the next

position to read from and the next free position to write to

respectively. FIFRA (FIFWA) is incremented each time a read (write) is

performed, with the addition performed modulo the length of the FIFO.

FIFC is used to keep a count of the number of used locations within the

FIFO. Thus FIFC is used to determine when the FIFO is full or empty.

Some of the other transient parameters are;

PIC: this is a 32-bit number which is used to keep a count of the index

of the prime state.

ANP: this is another 32-bit location w'hich specifies the active N-

partition.

CMPT: this specifies the current M-partition. It is a 32—bit word, with

byte 0 holding the M-value of SD-byte 0, etc.

JSW: this 4—byte location is the Job Status Word. It is used amongst

other things by the PG to determine whether it is in H-mode or W-mode.

- 80 -

Chapter 3

It is also used to keep a record of the number of iterations which have

been performed.

In total the RDB takes up 8936 bytes of the PG’s DRAM system,

excluding the seed table which is placed in the SG interface memory.

3.7.2 The Basis Generation Function

The details of the three main routines which the PG uses to generate the

basis of SD-words are now considered.

i) The N-Partition Controller (NPC);

This routine generates, in order, all the N-partitions for a nucleus,

given its initial and final N-partitions, according to the following

steps;

1/ On entry to the NPC from the initialisation routine, the PIC is

cleared and the active N-partition is set equal to the initial N-

partition.

2/ The NIMTB is updated by appending the active N-partition and the

contents of the PIC plus 1.

3/ Control is passed to the SG Control Function to generate the new

Driver Tables for the active N-partition. If the JSW shows that the

job is being performed in W-mode and that it is the first iteration

then this step is not taken so that a dummy first iteration can be

performed to build NUMTB.

4/ Control is p a s s e d to the M-Partition Controller.

5/ If the active N-partition is equal to the final N-partition then

the basis has been completely generated and so the NPCs task is

finished. Otherwise the next active N-partition is generated

according to the order given in eqn. 3.6. Control then returns to

step 2.

ii) The M-Partition Controller (MPC);

The MPC is called by both the Basis Generation Function, via the NPC,

and also the SG Control Function, via the Driver Table Constructor

- 81 -

Chapter 3

(DTC). In both these circumstances its function is exactly the same,

namely to generate, in order, all the M-partitions that belong to a

given N-partition. The MPC can determine which routine called it by a

flag bit in the JSW. When the DTC is first called it sets the flag bit

in the JSW and only when it finishes does it clear the flag.

1/ The individual bytes within the ANP (multiplied by 4) are used as

offsets into the 4 N-directories.

2/ The entries read in the N-directories then give 4 offsets and

block length numbers for the appropriate n-blocks within the M-

directories and M-lists. A 4 word parameter, CMPTIX, is initialised

using these 4 offsets. CMPTIX is used to hold the offsets from the

base of each of the M-directories to the current nm-blocks being used

within the n-blocks.

3/ CMPT is formed. This is done by using the offsets (divided by 4)

in CMPTIX to fetch the 4 M-values from the M-Lists. These four M-

values are then placed in CMPT

4/ The 4 bytes within CMPT are added together. If the result As equal

to MVAL then a valid M-partition has been found and so the the STB or

the SDWS is called, depending on whether the MPC was called by the

DTC or not. Otherwise the MPC proceeds to the next step.

5/ The block length number of the least significant channel, i.e.

that which corresponds to SD-byte 3, is decremented by 1. If the

result is equal to -1 then there are no more nm-blocks for this

channel and so the relevant word of CMPTIX is reset to its initial

value which points to the start of the n-block in the M-directory and

the above procedure is performed for the next channel up. If the

result was not equal to —1 then the nm—block has not been finished

and so the relevant word of CMPTIX is incremented to point to the

next nm-block and control returns to step 3.

If the most significant channel runs out of nm-blocks then all the

possible M—Partitions for the active N—partition have been generated.

- 82 -

Chapter 3

The MPC therefore returns to the calling routine.

iii) The SD-Word Sequencer (SDWS):

This routine generates all the SD-words, in order, that belong to a

particular M-partition. As each SD-word (prime state) is built the SDWS

will call the SGDR, except when processing the dummy first iteration for

W-mode. In this case all that is required is that the PIC be incremented

for each SD-word made. The SDWS operates as follows;

1/ Using the 4 offsets in CMPTIX to reference the M-directories, 4

offsets and block length numbers are obtained for the relevant chains

in the SD-byte lists. A 4 word parameter, CSDBIX, is initialised with

these 4 offsets. CSDBIX is used to hold the offsets from the base of

each of the SD-byte Lists to the SD-bytes being used to form the

current prime state.

2/ Using CSDBIX the 4 SD-bytes are fetched and placed in a 4-byte

location, the Prime State Buffer (PSB), in the RDB. The PIC is then

incremented by one.

3/ The SGDR is called, except if the JSW indicates that it is the

first iteration in W-mode.

4/ The next SD-word is then built in the same manner as in step 5 of

the MPC and control then passes back to step 2. When all 4 chains are

finished then control is returned to the MPC.

3.7.3 The SG Control Function
The software for the Basis Generation Function need know nothing about

the MFG hardware since it is completely independent of it. However the

same is not true of the SG Control Function since it is intimately

involved in the maintenance of the SG, PF and buffer. This function must

be optimised for speed since the vast majority of its workload is in

seeding the SG and any delay in this can delay the SG. On the other hand

little attention need be paid to optimising the Basis Generation

Function since it is a much smaller part of the PG s workload, (note

- 83 -

An(Pl)+2 , An(P2)-2 , An(Nl) , An(N2

An(Pl)+l , An(P2)-l , An(Nl)+l , An(N2 -1

An(Pl)+l , An(P2)-l , An(Nl) , An(N2

An(Pl)+l An(P2)-l An(Nl)-l , An(N2 +1

An(Pl) An(P2) An(Nl)+2 An(N2 -2

An{Pl) An(P2) An(Nl)+l An(N2 -1

An(Pl) An(P2) An(Nl) An(N2

An(Pl) An(P2) An(Nl)-l CM555 +1

An(Pl) An(P2) An(Nl)-2 An(N2 +2

An(Pl)-l An(P2)+l An(Nl)+l An(N2 -1

An(Pl)-l An(P2)+l An{Nl) An(N2

An(Pl)-l An(P2)+l An(Nl)-l An(N2 +1

An{Pl)-2 An(P2)+2 An(Nl) An(N2

where An(Pl) = the number of occupied orbitals for byte PI of

the active N-partition, etc.

Figure 3.25 Connected N-partitions

Chapter 3

that the complete Basis Generation Function takes less than 3 seconds to

execute for the largest basis list).

i) The Driver Table Constructor (DTC);

The purpose of the DTC is to generate all the N-partitions which are

connected to the active N-partition and to construct two of the Driver

Tables, the SCTAB and INT. The N-partit ions connected to the active N-

partition are related as shown in figure 3.25. However for any

particular active N-partition not all of the 13 possible connected N-

partitions need exist. This would happen if some of the entries shown in

fig. 3.25 were less than the initial N-partition or greater than the

final N-partition. Also during H-mode processing the DTC need only

produce the first 7 of the entries shown in fig. 3.25.

1/ The DTC first sets the flag in the JSW to signal that it is

active. The ANP is then copied since it is overwritten by each new

connected N-partition before calling the MPC. A count, called NOOUNT,

of the number of valid, non-empty connected N-partitions is then

initialised to -1. When the DTC finishes NCOUNT will be included as

the first entry in the SCTAB.

2/ The first connected N-partition is generated and compared to INP.

If the initial N-partition is found to be greater than this then

control jumps to step 6, otherwise control proceeds to step 3.

3/ A valid connected N-partition has now been identified, however it

still remains to be seen if it is non-empty. Another count, called

MCOUNT, is therefore initialised to -1 to count the number of M-

partitions belonging to the current connected N-partition. The

connected N—partition is copied into the ANP location to be passed to

the MFC.

4/ The MPC is called and each time it finds an M-partition it will

call the STB which will increment MCOUNT.

5/ If on return from the MPC MCOUNT is still equal to —1 then the

connected N-partition is obviously empty. The N-partition is

- 84 -

Chapter 3

therefore not included in the SCTAB and so control advances to the

next step. If MCOUNT was not equal -1 then it is placed in the next

location of the SCTAB and NUMTB is searched to find the index of the

N-partition. When this is found it is placed in the next position of

the INT. NOOUNT is then incremented.

6/ The next connected N-partition is then generated and compared with

INP. If it is less than INP then the step starts again. Otherwise the

N-partition is compared with either FNP or the copy of the original

value of ANP, depending on whether the MFG is processing in W or H-

mode respectively. If it is less than or equal to the appropriate

partition then control jumps back to step 3, otherwise all

possibilities have now been tried. In this latter case NCOUNT is

placed at the start of the SCTAB, the DTC flag in the JSW is cleared

and control is returned to the NPC.

ii) The Seed Table Builder (STB);

Once the MPC has identified an M-partition it passes it to the STB via

the offsets in CMPTIX. The STB then uses CMPTIX to look-up the M-

directories to get 4 new offsets into the SD-byte Lists. The 4 initial

SD-bytes which this gives thus make up the seed state for the M-

partition and so are placed in the Seed Table. When this has been done

MCOUNT, used by the DTC, is incremented and control is returned to the

MPC.

iii) The Secondary Generator Driver Routine (SGDR);

When the SDWS identifies the next SD-word in the basis list (i.e. the

next prime state) the SG must then be sent all the relevant seed states

which have previously been prepared by the DTC and STB.

1/ The SGDR must first wait until the SG has stopped processing. The

SGDR determines this by testing the state of the IDLE bit in the

SGCSR. This is done to ensure that spurious results are not obtained

when various hardware control registers are changed later.

2/ The Prime Block FIFO Control routine, part of the MMPU Support

- 85 -

Chapter 3

Function, is then entered. This has to add the details of the new

prime state to the FIFO.

3/ If in H-mode the index of the new prime is written to the latches

feeding the H-mode comparator and the H-mode comparator interrupt is

enabled.

4/ The prime state is copied from the PSB to the Prime State Register

in the SG interface PI/Ts. The SIC is then initialised with the

index, taken from INT, of the first connected N-partition.

5/ The SG can now have the seed SD-words sent to it. The time taken

for the PG to send the seeds to the SG is very important to the

performance of the MFG, since if this time is too long then it could

produce unacceptable delays while the SG waits. As has already been

said a full 32-bit seed word can be latched into the seed register in

one MC68000 bus cycle. The code required by the SGDR to service the

SG is as follows;

LOOP TST.W (A3) 1 us

BMI.S LOOP 1 us

MOVE.W (A1)+,D2 1 us

DBF D1,L00P 1.25 us

giving a total of 4.25 us. However in this time the SG can produce up

to 36 states.

The first two lines test the SGSCR to see if a new seed is required

by the SG and if it is not then the test is repeated until one is

requested. Line 3 reads the seed from the seed table memory causing

the hardware to latch the 32-bit word into the seed register. Line 4

then decrements the counter for the number of seeds in the current

connected N-partition being searched. When the count reaches —1 then

a new connected N-partition is entered and so the SIC must be

reinitialised, and step 5 is repeated.

6/ When all the connected N-partitions are finished the SGDR

disables the H-mode interrupt.

- 86 -

F I F O

Full?

No

F I F O

yes

Ma-sk U-W.r-M4.pV

A pp<LA.<& &U.<fW-r
W m W AVcWasa 4o FiFO.

U r i - V * a«*4- U # Ojr U r 4 «

A < W res-, V o t 8 ^ C lopu-V

ft rocxd ca*V- P m i m<i
S W x - W O ^ V o u l s 4 - o

K c m s .
-fW &6Fc.
^ IA-W.M-M.pV

FIGURE 3.26 Prime Btock FIFO Update Rout ine

Chapter 3

7/ The SGDR then terminates and returns to the SDWS.

iv) The H-mode Interrupt Service Routine;

This interrupt, generated by the SIC and H-mode comparator, occurs only

in H-mode when the diagonal element of the matrix has been produced. Its

purpose is to cause the SGDR to abort its task of seeding the SG for the

current prime state and for the PG to return to the Basis Generation

Function to select the next prime state. The interrupt routine therefore

has only two main steps:

1/ The first step is simply to clear the interrupt in the PI/T which

directed the interrupt at the PG processor.

2/ Program control must now return to the SGDR but not to the point

at which it was interrupted. Instead control must be returned to the

end of the SGDR (step 7) so that no more seeds are sent to SG. In

order to do this the return address on the processor system stack is

overwritten with the address of the relevant part of the SGDR. The

interrupt routine then simply executes the normal return from

exception (RTE) instruction.

The H—mode interrupt is disabled in step 6 of the SGDR for two reasons.

The first is that it is simply no longer required if the SGDR has

naturally run out of seeds for the SG. The second is due to the last

step of the H-mode interrupt service routine. Since if the PG was

interrupted outside of the SGDR then it would return to the wrong

routine and cause a fatal error.

3.7.4 The MMPU Support Function
i) The Prime Block FIFO Update Routine;

The two software routines of the MMPU Support Function both manipulate

and alter the BBFC and the Prime Block FIFO and its associated

parameters. Since the second routine is entered by a BLKFIN interrupt,

which in principle can occur at any time, then great caution must be

taken by this first routine. A flow diagram, figure 3.26, is used to aid

- 87 -

Chapter 3

in understanding the flow of control for this routine.

The BWAC in the MFG buffer can be safely read at the start of this

routine since the SGDR, which calls it, has previously made sure that

the SG and PF have stopped processing. Therefore there will be no more

writes to the buffer for the previous prime state.

The routine must obviously determine if the Prime Block FIFO is

full. If it is then the processor must wait until a position becomes

free. This will only happen when a BLKFIN interrupt occurs during which

the interrupt routine will read from the FIFO. A BLKFIN interrupt must

eventually occur since the MMPU is continually reading from the MFG

buffer. The size of the FIFO is governed solely by software. A size of

100 entries was used so that the FIFO consumed only 1000 bytes of PG

memory. It is highly unlikely that this would fill up, since if it did

it would imply that the MFG buffer contained blocks of TSWs for more

than 100 different prime states, with each block containing less than 21

elements on average. Even if the FIFO did fill up this would imply a

back-log of TSWs in the MFG buffer and so holding up the MFG for a while

would have little or no affect on system performance.

At this point the PG processor masks out any external interrupts in

its status register to ensure that the rest of the routine is free from

the BLKFIN interrupts. This has to be done to make certain that only one

routine is manipulating the FIFO and the BBFC at any one time, thus

ensuring the integrity of all the FIFO parameters. Since the interrupts

are only masked out, then any attempted interrupts which do occur will

be ”saved" until they are unmasked.

If the FIFO is not empty then it is updated. The three entries

written to it are; the next write address of the MFG buffer (read from

the BWAC), the new prime state SD-word and its index. The FIFWA and FIFO

parameters are also incremented.

If the FIFO is empty then the MCMs must currently be processing the

TSWs for the previous prime state. In this case the BBFC will currently

- 88 -

Chapter 3

be disabled. Therefore the next write address of the MFG buffer is

written directly to the BBFC input latches and the BBFC is enabled, via

the SGCSR. However it is quite possible that the MFG buffer has now been

emptied by the MCMs. If this were the case then the MCMs would be

waiting for the new prime state details. Therefore if the MFG buffer is

empty then the new prime state details are broadcast to the MCMs and the

BBFC is disabled. BLKFIN interrupts are cleared from the PI/T since it

is possible that one may have ocurred. If the MFG buffer was not empty

then the FIFO is simply updated.

The routine then unmasks all interrupts and returns to the SGDR.

ii) The BLKFIN Interrupt Service Routine;

This routine first clears the interrupt in the PI/T. It then reads the

prime state details from the Prime Block FIFO, at the location indicated

by FIFRA, and broadcasts them to the MCMs. FIFRA is then incremented to

point to the next entry and FIFC is decremented by one. If this

indicates that the FIFO is empty then the BBFC is disabled. Otherwise

the start address of the next prime block in the MFG buffer is read

from the FIFO and written to the BBFC input latches. The routine then

terminates.

3.8 Conclusion

The complete details concerning the method of operation of the MFG along

with its hardware and software details have now been given. The

performance capabilities of the MFG will be summarised later along with

those of the MMPU. However first the details of the MMPU and in

particular the MCMs will be discussed.

- 89 -

CHAPTER 4

The Multiple Microprocessor Un-it

4.0 Introduction

As the MFG searches the Hamiltonian matrix to identify the positions of

non-zero elements so the MMPU, in parallel, processes the MFG’s output.

As has been said the job of processing the MFG’s output sub-divides into

a large number of asynchronous, non-identical, independent tasks which

are dealt with, in parallel, by the MCMs. The prototype MMPU is made up

of up to 16 of these MCMs as well as the Supervisor Module and Central

Memory.

In designing any multiprocessor system the nature of the

communications subnet is just as crucial in defining the characteristics

and performance of the system as the nature of the Processing Modules

(in our case the MCMs), and the Global Resources (in our case the CM, SM

and MFG Buffer). When defining the SMP communications subnet we must

take into consideration the requirements of the different modules

present within the system. We also place the following additional

demands on its capabilities (in order of priority):

1/ High bandwidth; the subnet should be able to cope adequately with the

demands of the MCMs to access the Global Resources. Equally it should

be able to cope with the needs of the SM to communicate with and

control the rest of the system. The subnet should not be a system

bottleneck.

2/ Modularity; it should be a simple task to add new MCMs or Global

Resources to the system, requiring no changes to either the subnet or

- 90 -

Chapter 4

any other part of the MMPU.

3/ Reliability; as far as possible hardware faults on any of the MCMs

should not degrade the performance of the subnet or of any of the

other MCMs.

High bandwidth is by far the most important requirement since it will

determine an upper limit on the MMPU’s performance, which will in turn

impose an upper limit on the performance of the SMP (just as the MFG

does). Indirect interconnection between modules on the subnet (e.g. as

in a loop configuration) would tend to reduce all the above capabilities

and so a direct connection between all modules is preferred, i.e. for

two modules to communicate with each other no other module need take

part in the process.

For these reasons the SMP subnet is based on three shared buses as

described earlier in section 2.5.3. The advantages of bus structures

have been mentioned earlier in section 1.4.3.

Each module within the MMPU is built using at least two, but

usually four, double Eurocards, thus providing four 96-way edge-

connectors on one side of a module. The modules are housed in a 19 inch

card-cage holding four backplanes which supply the modules with power.

Two of the backplanes are standard 96-way backplanes while the other two

are VME-bus backplanes. Each backplane has 19 slots for connecting with

the SMP modules. Together the four backplanes form the basis of the SMP

communications subnet.

4.1 Bus Arbitration Protocol

We have already described and discussed certain bus arbitration

protocols in section 1.4.3. However for the purposes of the SMP none of

these methods is followed exactly, rather a variation on the VME-bus

centralised daisy chain arbitration scheme is used on the three SMP

buses. The SMP protocol, which uses a decentralised daisy chain, shares

91 -

UOCAL BR

BR

BGin

BGout

BGRTN

BBSY

B ARBITERARBITER

FIG. 4.1 C-BUS ARBITRATION PROTOCOL

Chapter 4

the advantages already mentioned of daisy chains. However it overcomes

the disadvantages of the centralised daisy chain, where modules

competing for use of the DTB have a fixed priority imposed on them by

their physical location on the backplane. With the decentralised

protocol a round-robin priority arbitration system is implemented thus

giving equal access to the DTB for all competing modules.

With the decentralised scheme, as before, when a module requests

the use of the DTB it activates the (wire-or) bus request line and the

central arbiter then sends a bus grant signal down the daisy chain line.

Any module not currently requesting the DTB simply passes the grant

signal on. When the bus grant signal arrives at a module which is

actively requesting the bus that module will block the grant signal from

propagating any further down the daisy chain. Instead the module assumes

mastership of the DTB by asserting the bus busy signal, BBSY*. However

instead of the grant being rescinded at this point by the arbiter, as in

the case of the centralised daisy chain, it is still held active. Then

when the current master finishes with the DTB the grant signal' is

allowed to propagate down the daisy chain to the next module.

When the grant reaches the end of the daisy chain it is fed onto a

grant return line on the bus. The arbiter constantly monitors this

signal and only when it is activated does the arbiter negates the bus

grant (figure 4.1).

This simple extension to the protocol thus overcomes the rigid,

fixed priority of the centralised daisy chain at the expense of only one

extra line on the backplane. To implement this decentralisation a few

other minor changes, which we will now detail, are made to the protocol.

As has been said any module which is actively requesting the DTB

will block the bus grant signal from propagating down the daisy chain.

Therefore since a bus master must have the grant signal present

throughout its DTB cycle, then all the modules between the arbiter, in

slot 1 of the backplane, and the current bus master must be inhibited

92 -

Chapter 4

from initiating new bus requests. That is any module which is actively

propagating the grant signal should have its bus request circuit

inhibited. If this condition were not imposed then a module in this

position which started to request the bus would find its bus grant in

active and therefore inhibit the grant out. This would cause the grant

to fail at the input of the current bus master and so remove him

prematurely from the DTB and cause a system error.

Similarly if a module starts requesting the DTB just as the grant

propagates through its request circuitry, there is the danger that its

grant out line may be driven active momentarily. This may give the next

module down the daisy chain the impression that a bus grant has been

received. In this case both modules could assume mastership of the DTB,

again causing either spurious results or at worst a system failure. To

prevent this occurring the further condition is imposed that no module

is allowed to initiate a new request while the grant is being

transferred between modules. This condition is signalled by BBSY* in the

inactive state.

However BBSY* would normally be inactive when the arbiter has not

issued a bus grant, i.e. when none of the modules are using or

requesting the bus. Therefore when this happens the arbiter itself must

drive BBSY* active, and so allow new requests to be issued. Also when

each bus master releases BBSY* it must wait a time t , (figure 4.1),s t 1

before propagating the grant along the daisy chain. This delay allows

each module to settle its requesting state, i.e. whether it will pass or

block the grant, before the grant is propagated.

The SMP decentralised protocol allows overheads introduced due to

the arbitration time to be "lost", by pipelining the arbitration with

the DTB cycle. This is achieved by making the master negate BBSY* as

soon as he actually holds the DTB, i. e as soon as he is actively driving

the address strobe, AS*, on the bus. Thus the grant is allowed to

propagate down the daisy chain while the bus is being used by the

- 93 -

WORD 0

63 56 55 54 53 52 51 48
11 unused I ID41 ! ID40 !! 0 0 I ID39 - ID36 I

Job-type bits SIC

WORD 1

47 32

I ID35 - ID20 !

SIC

WORD 2

31 29 28 24 23 21 20 16

10 0 0 i ID19 - ID15 10 0 0 !! ID14 - ID10 !

creation operator i creation operator j

WORD 3

15 13 12 8 7 5 4 0

1 0 0 0 i ID9 - ID5 10 0 0 ! ID4 - I DO 11

annihilation operator 1 annihilation operator k

Figure 4.2 I—Bus FFB Word

IB
S

E
L

(L
)

O c n ^ m cn O c < p Q Q
CO.

o vj ui CD S ^ °o in cd t-<N CM C O C O "*Q Q Q Q Q Q q O O Q
I — I I I > ' I > ■' I M *■ A 1___ I 1— 1 *

CO in

M

P P

Chapter 4

current bus master. The time taken to transfer the bus between masters

is thus reduced to a minimum. When the requesting module receives the

grant he will of course drive BBSY* but will not actually use the DTB

until the AS* and DTACK* (the data transfer acknowledge) signals have

been negated on the bus. There will thus be a time during each DTB cycle

when the module which holds the grant and drives BBSY* will not actually

be the one using the DTB, but will in fact be the next module to use the

DTB.

We now proceed by giving the details of the hardware implementation

for each of the SMP buses.

4.2 I-Bus

We have already given some details of the I-bus data transfer protocol

(section 3.5.9). In this section we will give the details of the I-bus

interface and bus request and arbitration logic.

4.2.1 MCM/I-Bus Interface

When an MCM reads a TSW from the MFG buffer it is latched into the I-bus

prefetch buffer (PFB) on the MCM. This register is memory mapped into

the MCMs address space and appears as an 8 byte location whose format is

shown in figure 4.2. Figure 4.3 details the I-bus PFB and its

associated control logic. The I-bus data lines (currently 42 are used)

are fed to the inputs of seven 8-bit latches, i.e. the PFB. These are

latched when the modules I-bus data strobe signal, IDS*, is negated.

Latches 1 to 3 form the most significant long word and hold the 20-bit

SIC as well as the two job-type bits JTO and JT1. Latches 4 to 7 form

the least significant long word and hold the four 5—bit operator indices

I , J ,K,L, where I, J are creation operators (I < J) and K, L are

annihilation operators (K < L) (figure 4.2).

As the PFB is filled, the D-type flip-flop, 8, is cleared bringing

- 94 -

Chapter 4

EMPTY(H) low. The MCM can read the level of this signal via a PI/T and

thus knows when the PFB has valid data in it. When the MCM reads the

last word of the PFB the IBSEL(L) signal enables the 373s, 6 and 7 which

contain word 3 of the TSW. The IRSEL(L) signal is decoded from the MCM

processors address and control bus and when it is negated the flip-flop

8 is clocked signalling that the PFB is now empty.

The flip-flop 9 is also clocked by IBSEL(L) to produce a local I-

bus request signal, LIDS(H), which is sent to the onboard I-bus request

circuitry. When the MCM I-bus control logic receives an I-bus grant,

LIBG(H) active, it must wait until the current bus master finishes his

cycle, indicated by IDS* and IDTACK* being negated, before assuming

control of the bus, signalled by IMASTER(L) active.

The operation of accessing the MFG Buffer via I-bus thus happens

completely transparently with respect to the MCM processor. Also each I-

bus access is pipelined with the MCM processing the previous I-bus PFB

data.

The operation of IDTACK* being activated clears the MCMs IDS*

signal and latches the data into the PFB. However to ensure that the

data has arrived at the inputs of the PFB before latching, a delay must

be introduced in the PFB clock signal. Examination of figure 3.14 shows

that the maximum delay between the RGRNT(L) signal going high on the

MFG buffer, to the new data being valid at the output of the LS 244’s is

equal to 50.4 ns. However the time from RGRNT(L) going high to IDTACK*

being activated and the PFB being clocked (fig. 3.15 and 4.3) is a

minimum of 21.2 ns (excluding the delay introduced by 10). In worst case

conditions therefore it is possible for the I-bus PFB to be latched 29.8

ns before the data has arrived at its input (note that the LS 373 needs

no set-up time). A delay of 43-48 ns is therefore introduced, using an

LS 31, which allows 13.2 ns settle time on the backplane and guarantees

I-bus PFB operation under worst case conditions.

New requests to the MFG Buffer can be locked out at any time by the

- 95 -

cnjCM

CD CM M k CO

@ * _

o f 5 r-'--- CD r- CM> • COCOCOCO
CO 00COCO

CO

LO
S£>)

00o
CM
OCM

O
m

O
M

CM

•— »

FIG
. U

M
I-B

US
RE

QU
ES

TO
R

(CO
RE

RE
QU

ES
TO

R)

Chapter 4

assertion of IBLOCK(L). This will also act to abort any currently

pending or active I-bus requests.

4.2.2 I-Bus Requester

When the I-bus PFB has been emptied by the MCM processor, a local I-bus

request, LIBR(H), is generated and passed to the onboard I-bus

requester, figure 4.4. The I-bus requester is in fact the core SMP

requester for the decentralised daisy chain protocol used on all three

SMP buses and therefore its details are extremely important to the whole

system.

The local I-bus request signal triggers off the I-bus request logic

assuming that the output of 3 is not low, indicating either that the I-

bus grant has already passed the module (IBGin* low) or is currently

being propagated between modules (IBBSY* high). If neither of these

conditions exists then the output of 1 (1 and 2 forming an RS flip-flop)

is brought high, activating the I-bus request signal, IBR*. When the bus

grant arrives at the module, a local bus grant, LIBG(H), is produced and

the module starts to drive the IBBSY* signal.

Once the MCM has actually gained the bus, i.e. the module is

actively driving IDS*, it will rescind the LIBR(H) signal and thus stop

asserting IBBSY*. The LS 31, 12 figure 4.4, is introduced to produce the

delay between negating the IBBSY* signal and propagating the I-bus grant

out to the next module. As has been said this ensures that if the next

module down the daisy chain gets in a new bus request just as the IBBSY*

is negated, then its logic will have settled and be ready to block the

grant from propagating any further when it arrives. That is if the

inputs A and B of 1 and 2 transition low at the same time with the

output of 1 winning and going high, then the input C of 8 will

transition high in time to block the grant when it arrives.

To determine the length of the delay which is required we consider

two modules, 1 and 2, next to each other on the backplane with module 1

- 96 -

Chapter 4

relinquishing mastership and propagating the grant on to module 2. The

delay must therefore equal;

propagation delay for IBBSY* to be produced on module 1 and

arrive at input B of 2 on module 2

+ propagation delay for RS flip-flop, on module 2, to transition

and bring input C of 8 high blocking grant

propagation delay for RS flip-flop, on module 1, to transition

and allow grant to propagate, bringing IBGin* on module 2 low.

(For worst case conditions the first two terms will have maximum

propagation delays, while the last term will have minimum delays).

This delay is therefore;

[t (S38) + t (F244) + t (F02)]max
P 1 H P L H P H L

+ [t (F02)]max
P L H

- [t (F02) + t (F32) + t (F244)]min
P H L P H L P H L

=17.5 ns

The 23-32 ns delay of the LS 31, therefore guarantees the safe

propagation of the grant along the daisy chain.

The propagation delay time of the bus grant through any module is

also important since it will determine the length of time any requesting

module must wait before the grant reaches it. At present each module

imposes a delay of only two gates, an F32 and F244, on the grant. The

F244 is considered necessary because of its drive capability which may

be required if a termination is needed. The maximum delay these gates

will impose is 10.5 ns, but will typically be only 8 ns. Therefore

assuming the worst case a module at the end of the backplane would have

to wait 157.5 ns (assuming- 16 modules) between the grant being produced

by the arbiter and reaching the module.

However in most cases there will be more than one module requesting

the DTB at a time, in which case the propagation delay of the grant will

be pipelined with the current bus cycle. In the last analysis though,

the bandwidth of the bus is determined by the bus cycle time and not the

- 97 -

a
H

IX.

h
UlV*UiaC

cQ
H ba

FI
GU

RE

A.5

I-B
US

SI

NG
LE

LE

VE
L

A
R

B
IT

E
R

Bus Requestor Timing Parameters (in nanosecs

LBR(H) high to IBR* low
BGin* low to LBG(H) high
BGin* low to BR* high
BGin* low to BGout* high
LBR(H) low to BBSY* high
LBR(H) low to BGout* low

Min Typ Max
37.5 46.5

5.5 8 10.5
41 51.5

5.5 8 10.5
6 10

30.5 38 46

Bus Arbiter Timing Parameters (in nanosecs)
Min______ Typ______ Max

BR* low to BGout* low 30.5 38.5 46.5
BGRTN* low to BGout* high 32.4 42 50.5

Table 4.1 Bus Request and Arbitration Timing Parameters

Chapter 4

daisy chain propagation delay, since this delay is easily made less than

the cycle time.

4.2.3 The I—Bus Arbiter

The I-bus arbiter, figure 4.5, is a simple device, again based on an RS

flip-flop and is again a core device used elsewhere in the SMP system.

There is of course only one I-bus arbiter (whereas there is an I-bus

requester on every MCM) which must be located in slot 1 of the backplane

in order to drive the daisy chain bus grant line. The I-bus arbiter is

therefore placed on the Supervisor Module along with the arbiters for

the other buses.

As soon as a bus request arrives, the arbiter releases IBBSY* and

then after a 23-31 ns delay drives the bus grant down the daisy chain.

The arbiter will then continue to drive the bus grant until the bus

grant return line, BGRTN*, is activated signalling that the grant has

propagated to the end of the backplane. When this occurs the arbiter

will remove the grant signal and assume bus mastership by driving IBBSY*

low. At this point new I-bus requests will be enabled on the MCMs.

Table 4.1 gives some relevant timing parameters for the I-bus

requester and arbiter. As we can see from this table, the time between a

local bus request, LIBR(H), being created and a grant being produced by

the arbiter is 93 ns (max) and 76.5 (typ). Therefore the time taken for

the last module on the backplane to receive a LIBG(H) from the point at

which he activated his LIBR(H) is 93 + 157.5 + 10.5 = 261 ns (max) and

76.5 + 120 + 8 = 204.5 ns (typ).

4.3 C-Bus

C-bus is the command, control and communication bus for the SMP system.

As such it is the main path for data (e.g. program code) and message

transfers between the MCMs, Supervisor Module and the PG. The Central

98 -

Chapter 4

Memory will also be interfaced to it, as can any other possible global

resources. It is used by the SM to initialise the MCMs and PG; by

providing them with their necessary program code, initialising certain

tables and parameters in their data blocks and also initialising

specific hardware locations. C-bus is also used by the PG to communicate

changes in prime state data to the MCMs.

C-bus is significantly different from the other two SMP buses in a

number of ways;

1/ There is more than one bus slave interfaced to C-bus and indeed all

C-bus masters are potential C-bus slaves and vice-versa. This is not

true for either the I-bus or the CMA-bus which have only one bus

slave each, namely the MFG Buffer and CM respectively. Also the MCMs

which are interfaced to both these buses only ever act as bus masters

on them and never bus slaves.

2/ During accesses via C-bus the internal bus of the C-bus master is

connected, via buffers, to the C-bus lines. Thus the onboard

processor itself controls the C-bus data transfer and not an

automatic prefetch buffer as is the case with the other two buses.

Thus a C-bus master could potentially access the complete address

space of all modules and devices interfaced to C-bus. Since this

bestows great power to C-bus masters certain areas are protected so

that only a few privileged C-bus masters can access them.

These differences necessitate an expansion of the C-bus structure over

that found on the other SMP system buses and also a major change to the

nature of the interfaces. For example C-bus must have a means by which

bus masters can select the appropriate bus slave that they wish to

access. Also a modules C-bus interface must have the flexibility of

being able to support the module when it acts as a bus master and a bus

s1ave.

In essence C-bus is a slightly modified VME bus [Fi85, VME82].

C-bus retains the four sub-buses of VME bus, namely;

- 99 -

Chapter 4

1/ The Data Transfer bus (DTB); the main bus by which modules transfer

data. It contains the address and data lines and associated control

signals.

2/ The DTB Arbitration bus; this group contains all the signals

necessary to transfer control of the DTB between modules.

3/ Priority Interrupt bus; the means by which modules can interrupt

other modules on the bus and request their services.

4/ Utility bus; this includes system clock and reset signals, as well as

failure detection signals.

The functional modules identified on VME-bus also exist on C-bus, e.g.

DTB masters, DTB slaves, DTB requesters, etc. However there are one or

two alterations and additions which increase the capabilities of C-bus

and make it more suitable for the particular needs of the SMP system.

The most important improvement to the C-bus specification relative

to VME bus is the provision of a bus-broadcast utility whereby a bus

master can write to more than one bus slave per bus cycle. This utility

obviously improves the performance of C-bus over VME bus in situations

where global data must be transferred to more than one bus slave, which

is often the case during shell-model processing. Only the MCMs are

potential bus slaves for a broadcast cycle. However each module has the

facility whereby it can be locked-out during broadcast cycles. The bus

master for a broadcast cycle can therefore be selective about which

modules receive the information being broadcast. Only certain key

modules, at present the SM and the PG, are able to initiate bus-

broadcast transfers since it is obviously a very powerful, and

potentially destructive, utility. Similarly only these modules are able

to select which MCMs are locked-out during a bus broadcast.

Another addition to the VME bus specification is the alteration of

the lowest bus request level, BRO* , to make it conform to the

decentralised daisy chain protocol already described. All the MCMs

request C—bus on this level and using this protocol, and therefore have

100 -

Chapter 4

equal access among themselves to C—bus. The other three request levels

all follow the VME bus arbitration protocol, thus giving C-bus

compatibility with VME bus and therefore allowing standard, "off the

shelf" boards to be used on C-bus.

The 6 address modifier lines, AM0-AM5, remain on C-bus as defined

in the VME specification. The user defined codes ($10-$1F) which the VME

bus specification allows for can be used to identify non-VME type bus

cycles, e.g. bus broadcasts, to standard VME modules to prevent them

from interfering in these cycles. The interrupt protocol and DTB

protocol remain the same on C-bus as on VME bus (although as we have

said the DTB protocol is extended to permit bus broadcasts).

4.3.1 C-Bus Lines

As a result of the additions to the VME bus specification, the C-bus DTB

structure is different to VME bus in that a number of lines have been

added and some redefined. We shall here only describe those lines that

are different from those on VME bus.

1/ MA7-MA0 : the map-select lines

C-bus is intended, in its final version, to be a full 32-bit address

and data bus, as is VME bus. The 8 additional address lines needed to

bring C-bus up to this standard are at present named the map-select

lines. To explain their function we must first describe how the

address space of any processor module is partitioned. At present each

MC68000, with its 16M-byte direct addressing range, has its local

memory and devices in the lower 8M—byte map, i.e. local address line

A23 low. All off board address spaces are then allocated the upper

8M-byte map, i.e. local A23 high. The top 5 map-select lines, MA7-

MA3, are then used to select between the C-bus slaves, allowing a

total of 32 different modules to be selected by any C-bus master. A

total of 16 8M-byte maps (i.e. a 128M-byte map) can then be addressed

within each slave module by the master module, using the remaining 3

101 -

Chapter 4

ni&P— select lines and A23. This is possible since A23 driven by the

MCM processor and A23 on the bus are not the same. The MC68000 must

therefore drive MA7-MA0 and A23 on the bus from a latch, e.g. from a

PI/T.

In the future when 32-bit processors are used on C-bus modules,

address lines A24-A31 will replace the map-select lines. However each

module will still be allocated a 128M-byte local map, selected by A0-

A26, and have 31 offboard maps, selected by A27-A31. A request by the

MCM processor to use C-bus will then be identified by A27-A31 not all

low.

2/ BBCST* and BBACK : Bus Broadcast strobe and acknowledge signals

These are the only two extra signals required for the bus broadcast

utility. At present the SM and PG are the only two modules with the

ability to drive the bus broadcast strobe, BBCST*, and monitor the

acknowledge signal, BBACK. All the MCMs monitor BBCST* and drive

BBACK. The fact that a bus broadcast cycle is signalled by the

dedicated line, BBCST*, rather than say the address modifiers or map-

select lines, gives further protection to this utility.

The BBACK line is an active high signal driven by open-collector

gates, thus producing a wire-AND. Therefore all bus broadcast slaves

must acknowledge the successful transfer of data by driving the BBACK

line high before the master can complete his cycle. During a bus

broadcast cycle the state of the map-select lines MA7-MA3 is ignored

by the MCMs and all MCMs are selected, except those that have

previously been locked out of broadcast transfers. MCMs which are

locked out of a broadcast cycle will still automatically drive the

BBACK signal high.

The bus broadcast facility is of course only intended for write

operations. However should a read operation be mistakenly attempted

then the MCMs will still be selected but their C-bus buffers will not

be enabled. In this case the bus master will terminate his cycle as

- 102 -

Chapter 4

normal but read invalid data.

3/ PRIV* : Privileged Module strobe

This strobe identifies those C-bus masters which have privileged

access rights and is used in the selection of key C-bus modules. At

present only the Supervisor Module either uses this line in its

selection decoding or drives it. Therefore the SM cannot be a bus

slave to any of the MCMs or the PG.

4/ OOttlKQL* : Control Map strobe

Associated with the normal address map of each MCM, which contains

the local memory and devices, there is also a control map. This map

overlays the normal map of each MCM, and is only selected when the

CONTROL* line is activated, which can only be done by the SM and PG.

Contained within the control map are the devices required to

dynamically supervise, control and configure the operation of the MCM

e.g. devices to perform processor reset and halt operations,

interrupt the processor, control bus broadcast lockout etc. Thus the

SM and PG both have the (privileged) option of accessing either the

normal map or control map of a particular MCM. It is possible to

perform broadcast cycles to the control map.

The MCMs bus for the control map, the control bus, is completely

separate from the bus for the normal map, the local bus. This allows

accesses to the control devices via the control bus to be carried out

without disturbing the MCM processor in any way. This is of course

completely different from accesses to the normal map from C-bus, when

the MCM processor must be removed from the local bus by its local bus

request circuitry and remain idle throughout the access.

At present there is only one device resident within the control map,

that is the Global Module Controller (GMC) PI/T. This device

receives/drives the already mentioned control, status and interrupt

lines via its I/O ports.

The C—bus DTB arbitration bus has only one addition as follows:

- 103 -

Chapter 4

1/ BGRTNO : Bus grant return (level 0). This is the return line for the

bus grant on level 0, the level on which the non-VME, decentralised

daisy chain has been implemented.

The interrupt bus and utility bus both 2’emain as defined for VME bus.

However at present the ACFAIL* and SYSFAIL* signals are not supported on

C-bus.

4.3.2 C-Bus Interface

As we have already seen the C-bus interface on any module must support

it in a number of different configurations, namely;

1/ Isolated mode : when the module is not selected in any way the local

and control buses must be completely isolated from any activity on C-

bus. However the map-select lines, bus broadcast line and C-bus

address strobe must all be monitored to identify any requests to

access either the local or control bus.

2/ Control mode : when the module control map is being accessed by the

current C-bus master the interface is placed in control mode. In this

mode the local bus must remain isolated from C-bus and only the

control bus should be connected to C-bus allowing either read or

write accesses. In both this mode and isolated mode the local

processor is free to access all his local memory and devices.

3/ Local mode : in this mode the local bus is connected to C-bus

allowing both read and write accesses by the C-bus master to any of

the local devices. The local processor is therefore not allowed the

use of his local bus and so must remain idle. In both this mode and

control mode the module acts as a C-bus slave.

Local mode supports two types of access to the local map, namely

single cycle and burst cycle. For single cycle accesses the local bus

is arbitrated for on a cycle-by-cycle basis. For burst cycle accesses

the local bus is arbitrated for once and then held for as long as is

wanted. This reduces the time taken for block transfers of data to a

- 104 -

— COCCt/)

- £ £ £
<t <C <! <C <C •< •< <

CD CD
CD CD

§e

crLUh-in

j z L
.CMlo lo ©

CM
U L

n L
I CD |o

<

£
i0 =i”
y > - rCD fy ^ §

oo

1C
"J
CM
L l

C/)
3CO
I
o

to *JLi > o
o cr cdo: Q- CD

oo

z
LUCD

i f) ~ L
<'

o
cr

_j

cr
i— LUio 1—

j- . LO
—i <

Z iio

o - '— io c r

c r
cr mLU O
CD tO

I/) Q U)

FI
G

.4
7a

C-

BU
S

DT
B

IN
TE

R
FA

C
E

d* CO > CM
C <■
cr —

c
r)

</)
3
CD

<
O
Q

(3)
ID CO'st< LO LO _1

_ <

'TID
CD^ to

A1
7i

nt
A

22
in

t
(§)

“ !5<(DCO

©
<!5<dID

A
9i

nt A
16

in
t

©
ID

m2 <
j a10 0

(2)
ID<^tcQLO

IO 0A1
in

t A
8 in

t

*
LU

cr

CMCM<

5
CD

t/)
3

3 C D® 6

< 'J-CO

LJ loQ IO

X
- j
LU

GO X cr LOO0 h~ 0LO LO H_J O <CD
CD-J

0

FIG
.47

b
C-B

US
DTB

IN

TE
RF

AC
E

Chapter 4

module since the C—bus master is not slowed down by the arbitration

process for the local bus.

4/ Master mode : wrhen the local processor has been granted C-bus

mastership the interface enters master mode. The local bus is

connected to C-bus allowing read and write accesses to C-bus slaves.

Both the local and control modes support bus-broadcast cycles, although

only for write accesses, as well as normal cycles requested via the map-

select lines.

Figures 4.6 and 4.7 detail the C-bus module select logic and the

DTB interface buffers for the MCMs. There are only slight variations

between these circuits and those for other C-bus modules, the

differences being mainly in the select logic.

To select a module, indicated by SEL(L) active, the map-select

lines MA7-MA3 must match the MCMs Module ID (MID), which is a unique 5-

bit number for every C-bus module. Since no module should ever be

allowed to select itself, not that one should ever want to, the

MASTER(H) line is used to enable the 8-bit comparator, 1 (the AMD

25LS2521). The MASTER(H) signal indicates, when it is active, that the

local processor is currently the C-bus master. The bus broadcast strobe

overrides this, since it will select a board regardless of the state of

the map-select lines or PRIV line, but only if the local bus broadcast

strobe, LBBCST(L), is not locked out by the BBLCK(H) signal.

Once a module is selected, either its control map or its normal map

is then selected, CSEL(L) or MSEL(L) active respectively, depending on

the state of the OONTROL(L) line. If the normal map is selected then the

local bus will be requested from the MCM processor by the LOCBR(L)

signal when a valid access is being performed on C-bus. When there is a

valid access from C-bus (signalled by VAC(H) active which is produced by

AS* active on C-bus) the VAC(H) signal will generate the LOCBR(L)

signal. It should be noted that the LOCBR signal can also be activated

if the BURST(H) signal is active. This signal places the interface in

- 105 -

Chapter 4

burst cycle mode and keeps the local bus of the MCM permanently selected

as long as the map select lines match its MID. Both the BBLCK and BURST

signals are driven from the GMC and so cannot be changed by the MCM

itself.

The double buffering for the DTB interface, figure 4.7b, is

necessitated by the two separate buses on each MCM. The control bus is

placed between the two sets of buffers, w'hile the local bus is within

the inner buffers. Thus accesses to the control bus can be carried out

without interfering with the local bus while allowing the module to meet

C-bus signal loading requirements, i.e. that there should be no more

than one driver and one receiver (or one transceiver) per module

connected to a C-bus line.

The map-select lines, address lines and strobes on C-bus are

constantly monitored for any requests to access either of the internal

buses. If a request for the local bus is made, then once the local

processor has granted that request and removed itself from the bus, a

local bus grant acknowledge signal, LBGACK, is generated. The inner

address buffers and both sets of data buffers are then enabled. The

buffer 1 (figure 4.7a), enabled by STROBEN(L), will not be enabled until

more than 48 ns after this, in order to provide a setup time for the

data and address buses before the data and address strobes are activated

on the local bus. This will happen even on block transfers to and from

the local bus (BURST active) when the data and address buffers are

permanently enabled.

In master mode, signalled by MASTER(L) active, when the local

processor is the bus master, the address bus buffers (figure 4.7b) are

enabled and turned to drive C-bus. The data bus buffers are also enabled

by the same signal and their direction is determined by IDATDIR which is

ultimately generated by the processors own read/write signal, R/W(L)

figure 4.6. The data transfer acknowledge and bus error signals on C-

bus, DTACK* and BERR* respectively, are then monitored by the module to

- 106 -

BCLR(H), BBSY F02
B1AM26S12

©

F08K11

F32

BGin*
ALS31

„ AM26S12
ruo

BO (2) 10

23-32ns
LCBR(H)

F08
ASint(L)

LSOO CDTACK(L)r

BGin*
LS31
23-32ns

F 2 0
r lsooKit

F08

LS157

BCLR(L)

MASTERS

F08

F00
MASTER(L)

|(S)A B sL
~ B1 B 2 lCBREQ(L)

BCLR(H)

8MHzLS(X

IA1A2.

BCLRL

L S 2 4 4

I —H BCLR
CBR(H) MASTER(L)

FIG. 48 C-BUS REQUESTOR

Chapter 4

receive the response from the bus slave. If the module does not

correctly select any device or memory on the slave or if a memory parity

error occurs then BERR* will be asserted by the slave, generating the

BEBR(L) signal on the MCM, figure 4.7a. A normal transfer is terminated

by the slave asserting DTACK*, which in turn generates the CBDTACK(L)

signal on the MCM, figure 4.7a.

In the most severe case where the C-bus master does not correctly

select any C-bus module or where the bus slave does not respond at all

then a BERR* signal will be generated by the SM C-bus watchdog timer.

This timer monitors the AS* on C-bus such that after a (software

programmable) delay if the AS* is still active, then BERR* will be

generated and the master removed from the bus. The selected delay for

the timer should obviously be longer than the maximum response time of

all the devices in the system.

As recommended by the VME bus specification the address and data

strobes are driven by 64 ma drivers (74F244s) onto C-bus and the

remaining three state drivers all have 48 ma drive capacity (74LS645-1).

On most of the open-collector drivers the AM26S12 quad bus transceiver

is used. This device has four high drive (100 ma) , open-collector bus

drivers which are connected internally to four bus receivers with

hysteresis characteristics (typically 0.6 V threshold margin) [AMD86].

It therefore has superior capabilities to a S38/LS244 combination. The

hysteresis is especially necessary on high-speed, open-collector lines

due to the "wire-OR glitch’’ which they tend to produce when used on bus

backplanes even when properly terminated [GT83].

4.3.3 C—Bus Requester

The C-bus requester, figure 4.8, is designed around the core requester

used on I—bus, figure 4.4, with a few alterations. Its major difference

is the addition of the logic to deal with the C-bus bus clear signal.

A local C-bus request, LCBR(H) active, is initiated in either of

- 107 -

Chapter 4

two ways;

1/ The CBR signal. This is produced by the modules decoding logic in

response to a processor cycle which requires the use of offboard

resources.

2/ Or under software control by the CBREQ(L) signal which is driven by a

PI/T line.

The CBR signal thus requests C-bus on a (processor) cycle-by-cycle basis

while CBREQ activates a C-bus request as soon as it is driven low. With

this latter form of request the MCM will hold C-bus, once it has been

granted, until CBREQ is driven high. Large block transfers can thus be

carried out over C-bus, using the CBREQ signal without the need for the

request/arbitration delay between C-bus cycles. However with this type

of transfer the arbitration time is not pipelined with the bus cycle.

This is because the local request, LCBR, is not removed and therefore

the grant is not propagated, until CBREQ is brought high.

The bus clear signal, BCLR, is activated by the C-bus arbiter in

response to a request for C-bus from a module with a higher priority

than the module which is currently using the bus. When this happens the

lower priority master must terminate its usage and any other requests on

lower priority modules must be denied. For the current master there are

two choices for the bus clear process; for block transfers the processor

is interrupted and CBREQ is removed in the interrupt routine thus

releasing C-bus, otherwise for single cycle bus transfers the cycle is

allowed to follow through to its normal completion.

The bus clear process is more complicated for modules which are

actively requesting the bus and which are in the path of the grant as it

propagates down the chain after being released by the previous master.

When the grant-in arrives LCBR(H) must be negated immediately, by 18, to

allow the grant-out to propagate. However the grant-in must not allow

the module to take control of the bus i.e. MASTER must not be asserted.

Only once BCLR is released can LCBR be reasserted and the module is

- 108 -

B R O B G 3 ° Ut*BG2ou f
BGIout*

B C L R ?A BGOout

S B R E Q 2 (L)
S B R E Q K L)a

B R B G B C L R
-o|DBR7 D B G 7

D B R 6 D B R 5 D B R 4 (?) D B R 3 w D B R 2 D B R 1D B R O D B G O
M C 6 8 4 5 2© B G A C K

s

B G A C K (L)
F 0 8

F 0 0
< 2 d

©ABBSY(L)

SBSSY(L)
® L 0 C ®

S B R E Q 2 L)
S B R E Q 1 L)

RESET(L)

B B S Y L

BBSYIH)A M 2 6 S 1 2

FIG. 49. C - B U S A R B I T E R B G R T N (L)

Chapter 4

allowed to place a new request foi’ the bus. All of this happens

completely transparently to the local processor.

The requester shown is used only for the MCMs since it is they that

use the decentralised daisy chain protocol. The PG on the other hand

uses a higher request level than the MCMs, since it requires a much

higher priority usage of C-bus. It therefore follows the VME-bus request

and arbitration protocol.

4.3.4 C-Bus Arbiter

The C-bus arbiter (figure 4.9), placed on the Supervisor Module in slot

1, is very different from the simple I-bus arbiter discussed earlier.

This is due to the fact that it must cope with the 4 prioritised request

levels of C-bus as well as two other levels used solely by the SM. The

heart of the arbiter is the Motorola MC68452 Bus Arbitration Module

(BAM), 1 [Mo t452]. This is a bipolar asynchronous device which can

arbitrate between up to 8 independent prioritised request levels using a

protocol along the same lines as VME-bus. The top priority request

level, level 7, is given over to the SM which therefore has supreme

priority over all other requesters when needed. However the SM also has

the option of using level 3 instead and therefore can operate at a

reduced priority when its needs are less important.

The C-bus arbiter drives BBSY* itself in two cases: when the SM is

using C-bus, signalled by SBBSY(L) active, or when there are no current

C—bus requesters or masters, signalled by ABBSY(L) active. Therefore as

soon as one of the C-bus request lines is activated the arbiter will

stop driving BBSY*. 52 ns after negating BBSY* the BAM will issue a bus

grant on the appropriate level, assuming that BGACK(L) is not already

asserted (i.e. the bus grant is already issued). In the case of the

decentralised protocol, on BRO* of C—bus, BGACK(L) will not be asserted

and the bus grant will not be propagated until the bus grant return,

BGRTN(L) , is rescinded showing that the grant has been driven high all

- 109 -

Chapter 4

along the daisy chain.

When BBS* is driven low by the module which received the grant,

GLOCK(L) will be brought low, 10, and so BGACK(L) will be asserted, 5.

This signals to the arbiter that successful transfer of the bus has

occurred and also latches the state of the bus grant on the output of

the F373, 2. BGACK(L) will then remain low either until BBSY* is driven

high at the end of the bus cycle (centralised daisy chain on BR1-3*), or

until BGRTN(L) is brought low (decentralised daisy chain). For the

decentralised daisy chain the delay produced by the BAM between negating

BBSY* and driving the bus grant (being greater than 20 ns) is enough to

ensure correct operation of the protocol.

Should a new request be initiated when BGACK(L) is low, the BAM

will compare its priority with that of the current master which the BAM

has latched internally. If this priority is greater than the current

masters then BCLR(L) will be asserted otherwise the BAM will wait until

BGACK(L) has been negated when it will issue another grant.

The BAM therefore greatly facilitates the arbitration procedure

amongst the different request levels on C-bus, requiring little extra

logic even to accommodate the decentralised daisy chain.

4.4 Central Memory and CMA-Bus

For calculations within the sd shell the nuclei with the largest basis

list would require approximately 800K bytes of storage to hold both the

initial and final vectors present during any iteration. It is not

inconceivable that this amount of primary memory should be included on

each MCM to provide them with their own private copy of the vectors.

However this would be a wasteful duplication of data and the Central

Memory Module and CMA-bus subsystem will provide an efficient means by

which all MCMs can have shared access to these vectors. Dedicated

prefetch buffers will operate concurrently with MCM processing and will

- 110 -

Chapter 4

thus allow the necessary vector elements to be fetched transparently to

the MCM thus giving this method very few overheads. Also at the end of

each iteration the completed final vector will be immediately available

in CM. On the other hand if each MCM had a local version of the final

vector then these would all have to be accumulated together before the

true final vector was complete. In a four times the size system capable

of performing calculations within the pf shell these vectors would

become too large to be stored locally. Therefore in such a system CM and

CMA-bus would become vital to the success of shell-model calculations.

It has not yet been possible to implement the CM / CMA-bus

subsystem. Without it the SMP is still capable of performing iterations

on nuclei with a configuration space of up to 13,500 elements using the

MCM's own local memory to store the vectors. However the main elements

of this subsystem, e.g. DRAM control, PFB design, bus interfacing, have

been tried and tested in other parts of the SMP. Therefore once the

resources become available it should be possible to construct both CM

and CMA-bus fairly quickly.

4.4.1 Central Memory Overview

The Central Memory Module is designed to be able to store up to 4

Lanczos vectors at any time and therefore will have 4M-bytes of primary

storage built using 256K DRAM devices. It will be split into two

independent 2M-byte banks with each capable of storing two vectors of up

to 256K 4-byte elements. Each bank will be interfaced to CMA-bus via a

64-bit data bus and also interfaced separately to C-bus via a 16-bit

local data bus. It will also be possible to access the CM local bus via

a VME-bus compatible port, intended for DMA transfers to and from the CM

by the backing store controller.

Both the CM banks will be dual-port with respect to the local bus

and CMA-bus. Since each bank will be completely independent of the

other, having their own DRAM refresh and control circuitry, it will

- Ill -

Chapter 4

therefore be possible for one bank to be accessed from CMA-bus at the

same time as the other bank is being accessed from the local bus.

However in the event of both buses simultaneously requesting access to

the same bank then arbitration logic will decide on a first-come-first-

served basis which request will proceed first. Each bank will have its

own arbitration logic, which will be based on the design used in the

other arbiters within the SMP system. Any request to access a bank may

also have to compete with the DRAM refresh cycles thus giving another

level of arbitration to CM accesses. Similarly accesses via C-bus must

go through another level of arbitration before they can gain use of the

local bus, this time with accesses from the external system port.

The independence of the two memory banks allows one bank to be

devoted to holding the vectors currently being processed by the MMPU

while DMA transfers can take place on the other bank in preparation for

the next iteration. The elements of the initial and final vectors will

be interleaved in CM so that V and V will be in one 64-bit location.
i D f IB

Thus both elements can be read in one CMA-bus cycle, a facility which

will greatly enhance H-mode processing.

For each task performed by an MCM in H-mode the elements V and
i m

V must be read from CM (eqn 2.12). The element from the final vector,
i in

V , must be updated (according to eqn 2.12b) and written back into the
f n

same location in CM, overwriting the previous value. During the time

between an MCM reading an element from CM and writing the new value back

in, no other MCM should use the same element as part of another task,

since the update from one of the tasks will inevitably be lost. To

prevent this occurrence each half word (4-byte) location in CM will have

a lockout bit (L-bit) associated with it. This bit will be set when the

vector element contained at the location is read and reset only when it

is written back again. An MCM will thus be informed via the L-bits that

the element it requires from the final vector is being updated by

another MCM and so the current value of the element is indeterminate. In

- 112 -

Chapter 4

this case the MCM must attempt to read the vector element again until

he is successful. The L-bits for the initial vector elements are ignored

by the MCMs during any read since these values are never altered during

an iteration.

The MCMs must also read from central memory at the start of each

new prime state in order to read V (eqn 2.12b). Therefore in order not
i n

to alter the L-bit for the final vector element at the same location the

MCM performs only a half-word (32-bit) read from CM in order to obtain

this value.

Each L-bit will in fact be duplicated to protect against soft and

hard memory errors. The two L-bits, held in separate devices at the same

location, will be exclusive-ORed to test for such errors each time a

read is made from CM. As well as two L-bits for each four byte word

there will also be one parity bit provided per byte in CM. Thus for each

64 bit data word there will be an additional 8 parity bits and 4 L-bits

and so each bank in CM will require a total of 76 256K DRAM chips.

It is proposed that the Hitachi HM51258-8 256K x 1 Static Column

Dynamic RAM be used for CM. This device has a read/write access time of

85ns and cycle time of 155ns and a read-modify-write cycle time of

180ns. It is also intended that the Intel 8207 can be used as the CM

DRAM controller.

The DRAM cycle time will place a lower limit on the CM access time

as this will be the slowest link in the access chain. Since each access

will require a read-modify-write cycle to test and update the L-bits

then this lower limit will be 180ns using the HM51258-8. Although the

dedicated prefetch buffers will be high-speed, built with fast bipolar

logic, they will inevitably impose further delays as will the DRAM

controller. Taking all these delays into consideration CM access time,

via CMA-bus, is estimated at around 240ns, thus allowing approximately 4

accesses/microsecond.

Chapter 4

4.4.2 CMA-Bus

CMA-bus is intended as the pathway between the MCMs and the Central

Memory Module during a Lanczos iteration. As such it must be capable of

supporting both read and write accesses to a large, random access memory

store. It must therefore have, unlike I-bus, an address bus and bi­

directional data bus. Although the CM will also be interfaced to C-bus

there are still good reasons for a dedicated pathway for the MCMs to use

in accessing CM:

1/ The potential usage of CM by the MCMs is very high and C-bus would

soon become a bottleneck were it the only means of accessing CM. The

systems use of C-bus as its prime means of communication would thus

be greatly reduced. Therefore an extra dedicated bus, for use purely

by the MCMs to access CM, greatly reduces C-bus traffic allowing C-

bus to perform its important system control and communications task.

2/ The initial and final vector elements are held in single precision

(32-bit) floating-point format. Therefore since each read access to

CM will require one initial and one final vector element, a pathway

which can support 64-bit data transfers will greatly increase bus

bandwidth over the 16-bit data path of C-bus.

3/ When an MCM reads two vector elements from CM, the two L-bits

associated with the elements must also be read. On C-bus this would

require another bus cycle to read the two bits, which is obviously

extremely wasteful. A dedicated bus therefore, which provides two

lines for carrying the L-bits reduces this extra bus usage.

4/ Similarly a dedicated bus interface with prefetch buffers which

operate in parallel with the MCM processor (like the I—bus PFB) will

also greatly increase MCM performance.

Although CMA-bus has not yet been implemented the most complex and

important parts of its design have already been tried and tested in

other parts of the system, e.g. the proposed request and arbitration

logic and some of the ideas for the interface. The arbitration protocol

- 114 -

Chapter 4

used on CMA-bus and thus the actual arbiter and requester will be

identical to that used on I-bus. The prefetch buffers will however have

to be more sophisticated than those used on I-bus because of the

presence of an address bus and bi-directional data bus. The nature of

CMA-bus means that the MCM must first write the address of the location

in CM which it requires to access to the CMA-bus PFB. The MCM is then

free to perform a task while the PFB accesses the appropriate location

in CM.

As a result of its dedicated task CMA-bus can have a much simpler

structure than C-bus, requiring neither its utility bus nor its

interrupt bus and using a simplified DTB and arbitration bus. The single

level arbitration bus is identical to that on I-bus and so requires only

3 lines and one daisy chain bus grant line. The details of the DTB

remain the same as in [Mac83], apart from one alteration. In summary the

DTB consists of:

1/ CMD63-CMD0 : the 64-bit CMA data bus. This consists of two half

buses, the upper (CMD63-CMD32) and lower (CMD31-CMD0) bus.

2/ CMA26-CMA3 : the CMA address bus, capable of addressing up to 16M 64-

bit words,

3/ CMLD1, CMLDO : the L-bit data lines, used only during a read cycle

from CM.

4/ CMDS1*, CMD50*: the data strobes for the upper and lower halves of

the data bus respectively. These independently signal a transfer on

the upper and lower halves of the data bus.

5/ CMWE1*, CMWEO* : the two write enable strobes, independently

governing write cycles on the upper and lower halves of the data bus

respectively.

6/ CMDTACK* : the data transfer acknowledge signal. When this signal is

asserted the bus master must latch any data being read, negate all

other DTB signals and release the bus for the next master.

7/ CMRERR* : the bus error signal is asserted if an invalid address is

115 -

Chapter 4

used or a parity error occurs.

Depending on the state of the data and write strobes, accesses on CMA

bus are either a full 64-bit read or write, a concurrent 32-bit read and

32-bit write, or a 32 bit read/write on either half of the data bus.

No discussion of the arbiter or requester for CMA-bus will be

included here since, as we have said, they are identical to the ones

used on I-bus. The CMA-bus PFB interface is detailed in [Mac83] and at

present remains completely unchanged.

As has already been said the bandwidth of CMA-bus is primarily

determined by the cycle time of the CM dynamic RAMs and not the bus

arbitration time. Thus assuming 16 MCMs with a CMA-bus cycle time of

240ns then each MCM will take at most 16 x 240ns = 3.84us to perform a

read from CM. This assumes that all modules are requesting at the one

time and also that arbitration time is buried in the bus cycle time.

4.5 The Microcomputer Modules

The MCMs are self-contained microcomputers which act as slaves to the

SM. In order to reduce usage of the SMP communications subnet by the

MCMs, they are endowed, as much as possible, with their own local

resources, e.g. local memory capable of storing all program code and

frequently used data. To this end the MCMs have 128K bytes of dynamic

RAM suitable for holding data tables and 8K bytes of fast static RAM to

hold program code and workspace area. The MCMs are also provided with

the hardware and software to interface to the communications subnet

already described.

The requirement for sufficient local memory and subnet interfaces

are the only hardware constraints on the design of the MCMs. Indeed the

subnet interface need be the only application specific hardware on the

MCMs. Were it not for this "off the shelf" microcomputer boards could

have been bought to perform the task. Another reason for designing

116 -

Chapter 4

custom MCMs is that they can be made to have much higher performance

capabilities than any microcomputers which are currently available.

The complexity of the MCM’s task demands that a high-performance

microprocessor be used, one which is capable of fast table searching,

data manipulation and arithmetic processing. The Motorola MC68000 16/32

bit microprocessor is well suited to this application, with its 32-bit

internal data and address registers, a powerful and regular instruction

set, and 16 Megabyte direct addressing range [Mot68000, SG79]. Its full

32-bit successors, the MC68020. MC68030 and MC68040, are completely

object code compatible with the MC68000. For example the 16.67 MHz

MC68020 has 4 to 5 times the performance of an 8 MHz MC68000 [MMM84] .

The successors also have a coprocessor interface to which a floating

point arithmetic unit. the MC68881 or MC68882, can be attached giving

even further improvements in processing power. Thus, because of the

power of the MC68000 and its successors, it is an ideal processor on

which to base the MCMs.

It should be apparent that the internal architecture of each MCM

need not be identical, as long as each conforms to the external

constraints already mentioned by providing the necessary local resources

and subnet interfaces. In terms of design effort it is obviously

sensible that the MCMs are identical. However having said this the only

two MCMs at present in operation are very different in their hardware

and software. The first MCM built, AOfT. is a simple, single processor

module, while MCMII has two processors working on a master/slave basis

and a hardware floating point arithmetic unit. This change in

architecture was dictated by the ability to radically increase the MCM

performance by utilising advances in technology.

4.6 The Supervisor Module

The role of the SM within the MMPU is that of a master, controlling and

- 117 -

Chapter 4

monitoring the different parts of the SMP system. In order to support

this specialised function it has the most privileged rights of all the

modules and is the one with the most resources available to it.

4.6.1 Supervisor Module Hardware

Central to the SM is an MC68010 (8 MHz) virtual memory microprocessor.

This is an enhanced MC68000 microprocessor being able to support a

virtual memory/machine system [MM83]. It also has improved instruction

execution times while still remaining fully object code compatible with

the earlier MC68000. Using virtual memory techniques an MC68010 system

can be made to appear to the user as having the full 16 Mbytes of

primary memory available to him, while in reality only a fraction of the

address space actually contains physical memory. This is supported

with an MC68010 since it has the capability of suspending an

instruction’s execution when a bus error is signalled and then

completing the instruction after the required action has been taken

within the bus error exception* routine, an ability which the MC68000

does not have. Another addition to the MC68010 is a vector base register

which is used to determine the base of the exception vector table in

memory, thus allowing this table to be relocatable and so enabling

multiple vector tables [MotOlO].

The SM also has a memory management unit (MMU), the MC68451, which

further supports virtual memory on the SM by performing address

translation and protection on the full addressing range of the processor

[Mot451, Mot82]. The internal registers of the MMU can be accessed by

the SM’s MC68010 (in supervisor mode only) in order to program it and

when correctly programmed the MMU will translate all logical addresses

to their physical counterparts. The MMU can also interrupt the MC68010

when a chosen section of memory is accessed as well as prohibit write

accesses to any sections of memory.

Using the MMU the logical address space of the SM can be tailored

Chapter 4

to fit any requirements. For example the SM can be made to "see" the

physical address space of any external module (e.g. an MCM) within its

own local logical address space. This enables the SM to immediately run

and debug any software written for one of the external modules using

their memory and devices without the need for modifying the code in any

way. Howrever the MMU reduces processor performance by slowing down

memory accesses due to the time taken to translate addresses

(approximately 150ns maximum). In order to avoid this delay the MMU may

be completely bypassed in circumstances when it is not required.

The SM is also equipped with 128K of DRAM. 8K of static RAM, 8K of

EPROM (with provision for up to 20K), two MC68230 PI/Ts and a Signetics/

Mullard SCN68681 dual universal asynchronous receiver/transmitter

(DUART) . The arbiters for each of the system buses are also placed on

the SM.

The DUART provides the SM with two very flexible serial, full

duplex RS232 type links. On the SM one of these serial links is normally

connected to a terminal and the other to a remote "host" computer

system. The two serial interfaces on the SM have been built such that

they can be connected together by bringing one of the programmable

output lines low on the DUART. This causes the SM to become completely

transparent with respect to the serial links and creates a full duplex

link directly between the terminal and host. The SMP system host is

currently a Motorola EXORmacs microcomputer based on the MC68000

microprocessor and running under the VERSAdos disk operating system.

Using the facilities available on the host system software for the SMP

can be written, assembled, linked and loaded into the SMP via the serial

link. Similarly data can be passed to the host from the SMP and stored

on disk for future reference.

Apart from being interfaced directly to C-bus the SM also has a

general purpose interface provided on it. This interface is a simple 16

bit data and 24-bit address expansion bus which is intended to connect

- 119 -

Chapter 4

the SM to peripheral system devices e.g. an EPROM programmer.

The SM is the only module in the SMP system which will have

software resident in EPROM. It is intended that this should hold a

monitor/debugger program and also, when a disk and disk operating system

become available, a bootstrap loader.

While it is possible for external modules to directly access the SM

from C-bus this is only done in unusual circumstances due to its highly

privileged nature. Indeed the SM cannot be accessed by any of the

modules normally present within the SMP system since the PRIV* line must

be active to select it. Prior to its construction the SM function was

carried out by a standard Motorola VME module, the VECPU105 monoboard

computer, and at present only this module has the capability of

accessing the SM ’ s address space. The VECPU105 has an MC68000

microprocessor, two serial links (RS232), a PI/T and a resident

monitor/debugger. Although the proper SM completely replaces the

VECPU105 so that it is not required during any Lanczos iteration, it

still has its uses during initialisation and testing of the system

because of the current lack of a full resident monitor program on the

SM.

4.6.2 Supervisor Module System Monitor

A set of rudimentary monitor routines have been written for the SM

system to provide an environment in which users can more easily

integrate software into the SMP system. The routines fall into three

categories; SM initialisation, I/O and intermodule data transfers.

Supervisor Module Initialisation;

Included in this category is a routine to initialise the SM’s exception

vector table. This initialises all the exception vectors, except the

user interrupts and two of the TRAP exceptions, for the MC68010 to call

a default error handler.routine. This default routine will then send an

error message to the terminal and allows the user to identify the

- 120 -

Chapter 4

exception which occurred. Two of the 16 MC68010 TRAP instruction

exceptions are reserved for SM use by the monitor, these are TRAP #0 and

TRAP #15. The TRAP #0 exception is reserved for user program termination

so that a user program can easily pass control over to the system

monitor at the end of execution. The TRAP #15 exception is reserved for

calling system routines to transfer data between the SM and the other

SMP modules as will be explained later.

Other routines set up the SM PI/T and the DUART. The DUART is set

up so that if it receives a break from the terminal then it will

interrupt the processor. The necessary interrupt vector is placed in the

SM exception vector table for this.

Supervisor Module I/O

A library of routines for input/output via the DUART have been built up.

These include routines to receive and transmit single ASCII characters

as well as ASCII strings. Routines are also included to convert between

ASCII coded decimal integers and binary integers. All errors are checked

for in these routines, e.g. parity error, framing error, etc, and any

which are found are signalled to the user. All these routines will

handle I/O from/to either the terminal or the host. However there are

two specific routines to handle the host so that a file can be listed by

the host and captured by the SM or vice-versa. These routines include

sending the appropriate command string to the host to list or create the

relevant file. The ability to send data to the host and have it captured

as a file is particularly useful to the SM due to its lack of hard disk.

Intermodule Data Transfer

As has been said the MC68010 TRAP #15 exception is reserved for

transferring data between the SM and other SMP modules over C-bus. This

function is reserved as a system function since it would be unwise to

allow user programs to write data to other modules without due control

and supervision by the SM system. Hardware also supports this in that

the SM cannot perform transactions via C-bus except when the SM MC68Q10

121

Chapter 4

processor is in supervisor mode (this is signalled by the MC68010

functions code lines). Similarly the SM PI/T which governs the control

of the PRIV* and CONTROL* lines on C-bus is only accessible in

supervisor mode. The TRAP #15 function will eventually be extended to

the monitor kernels of all SMP modules so that all C-bus accesses are

controlled by the system.

Embedded in the SM monitor software is a table giving details of

the modules which can be physically present within the system. This

table, the Module Identification Table (MIT) has a 96 byte entry for

each possible module and allows any details concerning a module to be

identified to the SM, e.g the MID, differences in the address map of any

of the modules, any specific hardware features which they may have, etc.

During system initialisation the SM module determines which of these

modules are actually present within the system and signals this in the

MIT. The SM determines if a module is present by placing its MID on the

map select lines of C-bus and then attempting to read from the modules

memory. If the module is not present then the SM will receive a bus

error signal. A bus error exception routine is temporarily set up for

this function and if entered is alters the MIT to show that the module

is not present in the system.

The TRAP #15 exception caters for physical reading and writing of

data blocks to/from SMP modules. That is a user program can request to

transfer data to a specific (physical) module by supplying the modules

MID to the TRAP #15 function. The calling routine must also supply the

source and destination addresses, the number of words to be transferred

and a code specifying which function is being requested. At present

three functions are catered for; wTriting a block of data to a module,

reading a block of data from a module and bus broadcast transfers to the

MCMs. The request for a transfer is checked first before being executed.

Firstly, for non-broadcast transfers, the MIT is accessed to determine

if the module is actually present in the system. The source and

- 122 -

Chapter 4

destination addresses are also checked to determine that if they are

valid areas of memory to transfer data to. If an error is found then the

routine terminates and returns an error code to the calling routine. If

no errors are found then the source/destination address on the module is

translated to an offboard address by adding $800000, i.e. bit A23 set

high.

The functions which are available at present via TRAP #15 although

limited are all that are required for the SMP system. However they they

can easily be extended to form the core of a multi-processor monitor

environment. For example the bus broadcast routine could be extended to

allow the user to request that certain modules be excluded from the

transfer. Similarly extra functions could be added to allow the user to

request the MID of a module of a specific type or with a specific

hardware function available to it. The TRAP routine would then simply

access the MIT table to determine the MID of the module which met the

requirements of the user.

4.6.3 Supervisor Module SMP Software
There is currently available on the host computer a Pascal runtime

library for the SM. This allows Pascal programs to be edited, compiled

and linked on the host and then run on the SM. Most of the routines

required to run on the SM for the purposes of the SMP have been written

in Pascal with the remainder being written in assembler and called as

subroutines to the main Pascal program.

The main task of the SM during any calculation is the

initialisation of the MCMs and PG prior to the first iteration. This

requires a number of basic tasks;

1/ generating all the look-up tables required by the Basis Generation

function of the PG,

2/ generating all the tables required by the MCMs for determining the

matrix element magnitude and sign.

- 123 -

Chapter 4

3/ generating a table of matrix element magnitudes for use by the MCMs,

4/ transferring all of these tables into the memory of the relevant

modules,

5/ sending commands to the PG and MCMs to tell them to commence

processing.

A Pascal program TABLEBLD has been developed to run on the SM to

function as the user interface to the SMP system. This program allows

the user to set up the details of the nucleus under consideration and

performs the system initialisation functions just mentioned as well

monitoring the SMP system during runtime. Before a calculation can be

carried out a file containing a number of data values and tables must be

loaded into SM memory from the disk of the host computer. This file

includes a table of energies for single particle states which allows the

SM to build a table of Hamiltonian matrix element values required by the

MCMs. A table detailing a default assignment of angular momentum values

to the 24 active orbitals is also included. Once loaded into SM memory

this latter table can be edited by the user to give any particular

assignment of angular momentum values that is desired. When all the

necessary tables have been built in SM memory they are transferred into

the PG and MCM memories as required before the start of processing.

During each iteration the SM monitors the progress of the MCMs and

MEG to watch for any errors which may be flagged by them. At present

after each iteration the SM forms the complete final vector from the

partial results held in the memory of each MCM and can then make it

available for display at the terminal or send it to the host to be

stored on disk.

We have only given a brief outline of the SM but it should now be

apparent that it rs a highly flexible, versatile, stand alone

microcomputer, adequately capable of supervising the SMP system. We need

not go into any further detail regarding its implementation since.

- 124 -

Chapter 4

although it is crucial to the success of the SMP as a whole, it does not

play an important part in actually determining the performance

capabilities of the SMP. However due to the importance of the MCMs in

processing each iteration we will devote the following chapter to a more

detailed discussion and description of them. The details of their

architecture are set out as well as the steps involved in processing the

TSWs and so performing a Lanczos iteration.

- 125 -

CHAPTER 5

Hie Microcomputer Modules

5.0 Introduction

The SMP system is in effect made up of a two stage pipeline, consisting

of the MFG and MMPU. The MFG is purely a data producer feeding a sole

consumer, the MMPU, with TSWs to process. The relationship between these

two subsystems is therefore governed by supply and demand. Should the

demand for TSWs from the MMPU outstrip their supply then the MMPU will

simply have to wait while the MFG catches up. Similarly if supply

outstrips demand then the MFG will have to halt its work while the glut

of data is reduced. Therefore one of these subsystems will impose an

upper limit on the performance of the SMP as a whole. It is only

advances in semiconductor and microprocessor technology that have

enabled a high-performance MMPU to be designed, based on MCMII. The SMP

system is therefore now in the position where the MFG is the system

bottleneck whereas before the MFG would have had approximately twice the

performance of the MMPU were it based on MCMI.

The most significant advances which have been incorporated into the

MCMs are;

* the production of the 8 MHz MC68000 (before this the 8—bit MC6809

would have been used on the MCMs),

* the later introduction of the 16 MHz MC68000,

* the introduction of the National Semiconductor NS32081 floating-point

unit,

* and finally a new design utilising two MC68000s per MCM.

- 126 -

Chapter 5

These last three advances have all been incorporated onto MCMII,

improving it by a factor of 9 over MCMI and thus giving the MMPU its

current potential performance capabilities. The advantages of a modular

system can therefore be clearly seen, in that advances in technology can

be easily incorporated into the MCMs without having to remove or disturb

in any way current components of the system, so long as new MCMs conform

to the requirements of each of the SMP buses. Indeed the fact that the

buses are asynchronous allows faster interfaces to be incorporated onto

new MCMs, so long as they conform to the original bus protocol

standards. This potentially allows faster transfer rates on any new MCMs

without the need to change current, slower interfaces.

The MCMs should not be viewed as highly specialised, dedicated

computer modules. They are in fact high performance microcomputers with

a highly flexible architecture. There is very little that is specialised

about their structure and the parts that are dedicated in no way

interfere with their general purpose capabilities. The class of problems

that the MCMs can be applied to is as varied as that of any

microcomputer. Even the latest MCMII with its two processors is still a

general purpose microcomputer, the user having the option of using the

second processor as a high performance arithmetic processor, as a slave

processor doing any tasks the master commands it to perform or indeed of

simply ignoring it altogether. It is this flexibility of the MCMs that

gives the whole MMPU its great power as a »ulti-processor system.

However this non—specialised nature of the MMPU in no way compromises

the ability of the system to carry out its intended function since none

of the abilities required for this have been sacrificed to give if its

current structure.

What follows is a description of the structure and architecture of

the current MCMs. Although MCMI has been superseded it is still an

important, working part of the MMPU. It was from the experience gained

in designing, building and working with MCMI that the designs for MOMJ1

1:27

to

<
o

M to
tO

^ cr
00 Q CM

< LL
1 °-o

I—I
1—I

to

to
cecr
LU LU
Z f 1-
t Li-

3
O i— UJ-t ll

O &»—i

OoO N 00 X
UD 21
O /VN 00

O to to LU O
£ - 2 X > (T)
LtJ LU . CL q q>Qffl n

FI
G

.
5.1

MC

Mt
C

OU
TL

IN
E

Chapter 5

were developed and therefore an outline of MCMI is important to have

befoie going on to discuss MCMII in greater detail.

5.1 MCMI Outline

A block diagram of MCMI is given in figure 5.1, showing its major

components and their interconnection. The control bus can be seen

between the inner and outer C-bus buffers, allowing C-bus masters access

to the modules control map. The global decode logic is also situated on

the control bus to intercept requests from C—bus to access the local

bus. Any such requests are sent via the Local Bus Requester (LBR) to the

local processors own bus request input. The MC68000’s own bus

arbitration control will automatically issue a bus grant signal and give

up the local bus and only then can a C-bus master assume control.

It can be seen that all memory and devices on the local bus are

completely dual-port with respect to C-bus. Thus all accesses to any of

these devices are identical, regardless of whether they come from the

onboard processor or from C-bus, except of course that all data transfer

acknowledge signals are routed to C-bus in the latter case.

The memory requirements of the local processor are catered for by

the 128K bytes of dynamic RAM and 4K bytes of static RAM. The DRAM

although not large by todays standards is enough to hold the user

program code and data for SMP processing and could be fairly easily

updated to 512K bytes by using the 256K DRAM chips. The static RAM is

placed in the lowest 4K of the processors address space. It is limited

to supervisor mode accesses only, as decoded from the MC68000 function

codes [Mot68000], and therefore only system functions can access this

memory. The MC68000 reset and other exception vectors are placed in the

lowest IK bytes of memory and normally this would be implemented with

ROM rather than RAM. The lack of ROM on the MCM presents no difficulties

and indeed has significant advantages both for module development effort

128 -

S I .Lu cr
> LU < Li. -J Ll
^ 3

“ S'zr 10 00
I—II/)

I - LUS f cz s
" ^ v

I/)
3 cr 00 LU

<

I—
>: o
^ cr00 QCM

L0

O

-J

o

FIG
.

5.2
MC

M#

OUT
LIN

E
L.r

~BU
S

1
> C

MA-
BUS

Chapter 5

and operational flexibility. On power up the MCM processor is held

halted by the GMC until released by the SM. However prior to doing this

the SM should provide the processor with a reset vector, as well as any

other necessary exception vectors and appropriate startup program code.

Thereafter the module can be supplied with program code by the SM

depending on what task(s) it requires the MCM to perform.

For shell-model processing the MCM is required to do significant

amounts of floating-point arithmetic. However since MCMI has no hardware

unit to perform this task all its arithmetic must be carried out in

software. At present Motorola supplied MC68000 routines are used which

implement the IEEE P754 floating-point format although they do not fully

implement the arithmetic standard [IEEE81]. The approximate average

times for addition and multiplication (of two non-zero numbers) are 80

jusecs and 100 jusecs respectively, for an 8 MHz processor with no wait

states. Since the MCM has to do two multiplications and two additions

much of MCMI’s time is therefore taken up with arithmetic and therefore

any consistent method of reducing this time is desirable. One possible

solution is to use faster software routines which use a non-standard

data format, e.g. Motorola Fast Floating-Point format routines, however

this would be at the expense of the overall ease of use. In terms of

speed, consistency and flexibility the best solution is to use one of

the hardware arithmetic processors available today, e.g. the Motorola

MC68881 or MC68882, National Semiconductor 32081 or AMD 29325 all if

which implement the IEEE standard. It was therefore decided to include

such a hardware device on MCMII.

5.2 MCMII Structure

Figure 5.2 shows the overall structure of MCMII. It is quite clearly an

extended MCMI, with the basic structure of MCMI still being present but

having the addition of a slave bus. The master processor, which is now a

- 129 -

Chapter 5

16 MHz MC68000, resides on the local bus. As with MCMI all devices are

^ual with respect to C-Bus, including those on the slave bus.

The slave bus is the local bus for the slave processor by which it

communicates with its local devices. The slave bus is completely

accessible to the master processor so that all devices interfaced to it

are dual port, i.e. can be accessed by both the master and slave

processors. However the slave processor is confined to the slave bus and

cannot access the local bus. Devices on the slave bus are; 8K bytes of

fast static RAM, a PI/T for slave subsystem control, the I-bus and CMA-

bus interfaces and two floating-point units (FPUs), although only one

has as yet been included.

The arbitration scheme for the slave bus is fundamentally different

from that used on the local bus. When a request is made for the local

bus f rom C-bus it is submitted via the LBR logic to the master

processor’s bus request input. Only after the master processor has

finished any current access is the bus granted, which is potentially a

time consuming process. In contrast to this the arbitration for the

slave bus happens independently of the slave processor and is completely

transparent to him.

In essence the slave bus is a pool having two mutually exclusive

access routes with neither processor having any particular right of

ownership. That is there is not one privileged processor which grants

the right of access to the slave bus to the other processor. Instead the

processors compete on a cycle by cycle, first-come-first-served basis

for the use of the slave bus. Thus the first processor to get its

request to the arbiter will have other processor’s buffers disabled.

However in acknowledgment of the fact that under normal operating

conditions the master processor will use the slave bus only rarely, the

slave processor’s buffers are enabled by default to save him from being

needlessly delayed while its buffers turn on. Only when the master

processor is granted access to the slave bus are the slave buffers

130 -

ASIL)
MHALT(H)

iS05

LADTACKIL)
DRDTACK(L)
FRDTACK(L)

9 ®
CBRlH
LS10
A23_ LSU8

LBGACKL

IACK(L)
AS(L)

SYSCLK'LH >
F2U

16MHz

MRESET(H) FRAMSEUL)
SYSRESET* 1

cnc TO RESET OF
S05 GMCPI/T

TO LOCAL

HALT RESET

BERR ©

DTACK

MC68000
16 MHz

IPL2

IPU

IPLO

FC2
FC1 R/W

FCO
UDS
LDS

CLK AS

DEVICES
TO C-BUS

2xLS6^5 G
DIR AS(H)

LMAPSEL(H)

TO
C-BUS-

D1 CLR
F175_

— S8 L

LMAPSEL(H)

hBGACK(L)

z3xF2A4 q _TOC-
BUS

2xIMS
U20%2xIMS

U 20

FRDTACKD
FRAMSEUL)

F32

I L-WRITE(L) lm a p s e u uI— i incL/i i
> LS161
A BC D
I ' ' T

UDSIL)
LDS(L)
AS(L)

8mhz 1MHz F | G 5 3 M A S T E R P R O C E S S O R

Chapter 5

disabled. In the case where the two processors do both require the slave

bus at the same time then the loser in the arbitration contest will of

course have its cycle delayed. However using this method the delay to

either processor will never be as much as that obtained using the

MC68000’s own bus arbitration control logic.

The hardware to implement the slave bus sharing scheme and other

components of the MCMII structure will now be discussed in more detail.

5.2.1 The Master Processor

Figure 5.3 gives the details of the master processor sub-system. At its

heart lies a 16 MHz MC68000, with a minimum bus-cycle time of 250 ns.

For a 16 MHz processor to be guaranteed to run with no wait states,

static RAMs of at most 80-85 ns access time must be used. Dynamic RAMs

have the extra delay of the controller to be considered and so have to

be faster to achieve no wait state accesses. There are a number of

static devices available today with this speed, the Inmos IMS1420-55, a

4K x 4 memory with an access time of 55 ns, being the one chosen for

MCMII. Four of these are used to provide the master processor with 8K

bytes of supervisor memory. This memory is used to hold the master

processors exception vector tables, code for exception handler routines,

the system stack, SMP program code and frequently used data. This amount

of static RAM is more than adequate for SMP purposes but additional user

memory can be easily added.

Using the AMD 25LS2521 8 bit comparator, 7, for decoding the memory

select, allows for simple alteration of the position of memory within

the address space. This can be done by changing the levels on the B

inputs to the comparator. Indeed a rudimentary memory management could

be implemented if the B inputs were tied to a PI/T port. This would

allow the positioning of memory to be dynamically altered, although this

would not be suitable for the supervisor memory.

The MHALT(H) and MRESET(H) are both driven by the module’s GMC thus

131 -

Chapter 5

allowing individual MCMs to be halted or reset by the SM or any other

module capable of accessing the MCM control map. On power up the outputs

of the GMC PI/T come on high thus assuring that each MCM is initially

held reset and halted until released. The MCMs are also reset when the

C-bus SYSRESET* line is activated. This signals a complete SMP system

reset, and is the only method of reseting the GMCs.

In order to produce carefully timed data transfer acknowledge

signals, DTACK(L), for the master processor an F175 (quad. D-type

register with common clock and clear) is used, 4. When the masters AS(L)

is activated, sometime within processor state S2 or S3 [Mot68000], the

clear is removed from the FI75 and the D1 input taken high. Q1 will then

be brought high at the next positive edge of the clock, which is always

at the start of state S4, Q2 will be brought high at the start of state

S6 and so on. Thus for memory systems running with no wait states Q1 is

used to produce DTACK(L). While for slower memories or devices requiring

say 6 wait states Q4 would be used to produce DTACK(L).

When the processor attempts an access to a non-existant device then

no DTACK(L) will be produced and instead a BERR(L) signal must be used

to terminate the processor cycle. This is produced by the LS393, 5,

which is clocked by a 1 MHz signal. On an attempted access to a local

device, when both AS(L) and A23 are low, a BERR(L) signal will be

produced after 8 usees if the cycle is not terminated. For non-local

accesses via C-bus the C-bus BERR* signal is monitored.

Interrupts to the MC68000 are delivered via the LS148, 6, which in

the case of multiple requests will present the highest priority level to

the processor. Seven interrupt levels are provided for with an MC68000.

More than one interrupting device can be externally chained to the one

level, allowing an unlimited number of devices to interrupt the

processor. However with the MCMs no more than seven interrupting devices

are foreseen.

The interrupt acknowledge cycle, signalled by IACK(L), is produced

132 -

BG(L)
AS(H)

DTACK(L)
L S 0 2 i__

L B G A C K (L)

M S E L (H)
ACC(H) L OCBR I L

L B G A C K I H K
C Q 5 T O 6 8 0 0 0

B G A C K
L S 0 2 BRIL)

S 0 5

L B G A C K I H)
V A C (H)

B U R S T (H)
FIG. 5. 4 L O C A L B U S R E Q U E S T O R

Chapter 5

in response to an interrupt to the processor and is used to determine

the interrupt vector. Since only local devices can interrupt the

processor no off board accesses are ever needed for this cycle i.e. MCMs

are not C-bus interrupt handlers. C-bus requests, produced in response

to CBR(H) active, are therefore only initiated in response to a normal

processor cycle with A23 high.

In order to comply with MC68000 output loading requirements all the

address lines, data lines and strobes are buffered before being used.

However for the purposes of speed the MC68000 lines which are used for

decoding the supervisor static RAM are unbuffered. All C-bus lines are

attached directly from the inner C-bus buffers to the MC68000 lines,

thus allowing C-bus masters to emulate the master processor and give all

local devices dual-port access capabilities.

5.2.2 The Local Bus Requester

The MCM acts as a C-bus slave, in both the local and control modes

although in the latter mode the local processors are unimpeded by the

access. When the C-bus master wishes to access the MCM’s local bus, then

the local processor must be removed from it before the interface can be

put in local mode.

A local bus request, LOCBR(L) figure 5.4, on an MCM is generated as

soon as a C-bus cycle is in progress, signalled by VAC(H) active, and

the modules local map is selected (either by the map-select lines or

bus-broadcast line), MSEL(H) active. In the case of block transfers,

signalled by BURST(H) active, then a LOCBR(L) will be generated just as

soon as the local map is selected (see figures 4.6 and 4.7 for C—bus

module select). LOCBR(L) active immediately generates a BR(L) signal to

the local processor which will automatically generate a bus grant

signal, BG(L) , a minimum of 1.5 clock cycles and a maximum of 3 clock

cycles later. The LBR then waits until the AS and DTACK signals on the

local bus are inactive, signalling that the local processor has finished

133

Chapter 5

with the bus, before asserting a bus grant acknowledge, BGACK(L), to the

processor. This signal informs the local processor that its bus is being

used and only once BGACK(L) is negated will it again assume mastership

of the local bus. BGACK(L) is only negated once the external bus master

has finished its access(es). Therefore during block transfers the local

processor will be held off its bus until BURST(H) is negated. Note that

during any period when the local (master) processor is removed from its

bus the slave processor is not interfered with in any way, unless of

course the C-bus master accesses the slave bus.

Although the local processor must be requested for the use of its

bus, granting of the local bus to the requesting module is automatic and

immediate. This is true no matter how important or crucial the task that

the local processor is performing. Thus the local processor has lower

priority use of its own bus in comparison with any C-bus master which is

requesting access. However this situation is obviously more desirable

than one where the local processsor has higher priority and could delay

in giving up its bus to the C-bus master until a time when it so

desired. In this case the C-bus master would be wastefully delayed

waiting for the local processor, thus causing a reduction in C-bus

bandwidth and therefore a global reduction in performance.

5.2.3 Dynamic RAM Subsystem

This subsystem is implemented using the MCM6665-15 64Kxl dynamic RAM

with an access time of 150 ns and cycle time of 300 ns. A National

Semiconductor DP8409 Multi-mode Dynamic RAM controller/driver is used as

the refresh and address multiplexing controller. This device is

implemented in high speed Schottky TTL and is capable of driving up to

88 16K, 64K or 256K DRAMs, with only 25 ns (typical) propagation delay.

With these speeds the 16 MHz MC68000 must run with 4 wait states on

accesses to this memory giving a bus cycle time of 375 ns.

An external arbiter must be used to arbitrate between DP8409 DRAM

- 134 -

Chapter 5

refresh requests and MC68000 access requests. When a refresh must take

place and the local processor wants to access the DRAM the arbiter does

not use the MC68000 bus arbitration control circuitry, but instead will

hold off the DTACK(L) signal from the DRAM subsystem while the refresh

goes ahead. Thus the processor access is delayed in a manner similar to

the master/slave slave bus arbitration already mentioned. Since the 128

rows of the DRAM require refreshing every 2 ms, a refresh cycle must

take place approximately every 16 jusec. This means that if the local

processor were constantly accessing the DRAM only 1 access in 41 would

be delayed by a refresh cycle. Since in most cases the local processor

will not be accessing the DRAM this frequently then it will only very

rarely be delayed.

At present no error checking or correcting is carried out on the

DRAM system either via parity or a Hamming code. However it is envisaged

that in the future at least a parity bit should be included on each byte

to improve detection of errors.

The 128K byte DRAM subsystem is more than adequate for current SMP

needs, since at present all data tables used by the MCMs only take up

approximately 30K bytes.

5.2.4 Global and Local Module Controllers

The Local Module Controller (LMC) is implemented using an MC68230 PI/T.

It controls various functions on the MCM as well as being used to drive

the map-select lines during C-bus accesses. Due to its powerful

capabilities the LMC has protected access rights, being only accessible

in supervisor mode.

The LMC can also be used to interrupt the local processor at the

request of the SM or PG in order to gain the attention and services of

the MCM. This is performed by altering one of the control lines on the

GMC. Thus although an MCM is not a C-bus interrupt handler it can still

be interrupted by external modules capable of accessing the control bus.

- 135 -

PIN I/O Function

PA7 unused.

PA6 0 CMA-bus lock.

PA5 0 I-bus lock.

PA4 0 Bus broadcast lockout (BBLCK).

PA3 0 Master processor interrupt, level 7 (MINT).

PA2 0 Module reset (MRESET).

PA1 0 Module processor halt (MHALT).

PAO 0 Block/Cycle by cycle transfer select (BURST).

PB7 - PBO Unused.

PC7 unused.

PC6 I PIACK function.

FC5 0 PIRQ function (C-bus interrupt request).

PC4 unused.

PC3 0 TOUT function.

PC2 I TIN (62.5 KHz).

PCI unused.

PCO unused.

H4 unused.

H3 Interrupt input, service request from MCM.

H2 unused.

HI Interrupt input, processor halted.

Figure 5.5 Global Module Controller Pin Assignments

PIN I/O Function

PA7 - PAO 0 Map-select lines, MA7 - MAO.

PB7 I I-bus buffers empty.

PB6 0 I-bus request lock and reset.

PB5 unused.

PB4 0 C-bus A23 polarity.

PB3 0 Slave processor interrupt.

PB2 0 Slave reset.

PB1 0 Slave processor halt.

PBO 0 SM service request.

FC7 I TIACK function.

PC6 I PIACK function.

FC5 0 PIRQ function, interrupts local processor.

PC4 unused.

FC3 0 TOUT function, interrupts local processor.

PC2 unused.

PCI I CMA-bus buffers empty.

FCO 0 CMA-bus request lock and reset.

H4 Interrupt input, slave service request.

H3 Interrupt input, C-bus grant.

H2 Interrupt input, local failure.

HI Interrupt input, Supervisor service request

Figure 5.6 Local Module Controller Pin Assignments

ASi
nt(

L)

LS
02

n (©

©

0

FIG
.

5.7
C-B

US
IN

TE
RR

UP
TE

R

LU
> CO in
< 3 ĉ
-J CD LL
CO

\

C M C M
O-r-c

V

CO
ZD
CD
LU><_l
CO

OO
LO

O

Chapter 5

Interrupts can be sent to the local processor via the LMC for a number

of other reasons, e.g. to warn of a local device failure (e.g. DRAM

parity error), or as a request for attention from the slave processor.

The timer on the LMC can also be used to generate interrupts to the

local processor, although this is not required for shell-model

processing. However this is a function which could prove useful if

multi-tasking on the MCMs were ever envisaged. Current pin assignments

for both the GMC and the LMC are shown in figures 5.5 and 5.6

respectively.

The MCM can request attention from the SM via the GMC. Thus the GMC

is made a C-bus interrupter device on level 4. Interrupts to the SM from

the GMCs can occur under two conditions, namely;

1/ a local processor halted condition occurring due to a double bus

error for example,

2/ or an active request from the local processor via its LMC for

attention from the SM.

Since each GMC will have a different set of interrupt vector numbers and

since it modifies this number depending on which handshake line

initiated the interrupt request, then the SM interrupt service routine

will be aware of both the identity of the interrupting module and the

cause. The vector numbers will themselves be supplied to the GMCs by the

SM since it will be its task to initialise them. The MCM control bus

must therefore be able to support interrupt acknowledge cycles from C-

bus and so must monitor the IACK* daisy chain (figure 5.7). However

since it is not intended that devices on the local bus should ever act

as C-bus interrupters the local bus need not have this facility.

5.2.5 The Slave Bus

Details of the slave bus and its arbitration mechanism have already been

given at the beginning of section 5.2. In this section we will go on to

describe its hardware implementation (figure 5.8).

- 136 -

Chapter 5

The key to the arbiter is the pair of NOR gates, 1 and 2. The slave

bus appears as a 16K byte space within the masters local map and w’hen it

attempts to access this space, signalled by SLAVSEL(L) active, input A

of, 1, is brought low. Since any cycle of the slave processor uses the

slave bus then only the slaves address strobe, AS, need be used to bring

input B low. The output of the F-F, MGRNT(H) , is used to enable one of

the two sets of buffers and will be in the low state, enabling the slave

buffers, when neither processor is using the slave bus. The first

processor to get its request, into the F-F will win control of the bus by

having its buffers enabled. However a delay is necessary in enabling the

buffers which drive the data and address strobes in order to guarantee a

setup time for the addresses. Therefore a delay of 23-31 ns, produced by

an LS31, is introduced here.

The slave bus data transfer acknowledge, SBDTACK(L), which is timed

in the same way as for the local bus, is sent to the appropriate

processor by gates 6 and 7.

This arbitration mechanism is thus a simple, efficient method of

allowing dual processor access to the slave bus, without unduly holding

up either processor.

The slave processor subsystem itself is a much simplified version

of the master processor system (section 5.2.1). The bus error and data

transfer acknowledge signals are produced in much the same way, as are

the interrupts. The reset and halt signals come from the master

processors LMC, instead of the GMC, so that the master processor has

complete control over the running of the slave. The slave is also reset

whenever the master is.

The slave controller (SC) PI/T has a much more limited use than the

T.MG Interrupts from the SC to the slave can come from four sources, the

master processor, either of the FPUs signalling that they are finished

processing, or the onboard timer. The master processors interrupt must

be non-maskable and is therefore on level 7. The two FPU interrupts are

137

Chapter 5

also on level 7, but can be disabled externally by the slave processor

should it wish to ignore them. The PI/T timer interrupt is placed on

level 4. Uses of the SC I/O port lines are limited to :

1/ I-bus buffers empty signal (input),

2/ I-bus requester reset and lock (output),

3/ CMA-bus buffers empty (input),

4/ CMA-bus requester reset and lock (output),

5/ Master processor attention request (output).

6/ FPU interrupt enable/disable (output).

We need not go into any detail concerning the slaves static RAM

subsystem, which is implemented in the same manner as the master’s using

the Inmos IMS1420-55. However in the next section we will give some

details concerning the FPUs.

5.2.6 The Floating-Point Units

The FPU used in MCMII is the National Semiconductor NS32081 (formerly

the NS16081). This device is one of the slave processors to the NS32000

family of microprocessors, but can be used as a peripheral for other

microprocessors [NS081]. It contains eight 32-bit internal data

registers but only has a 16-bit external data bus. It can perform the

normal arithmetic functions to 32 or 64-bit precision, i.e. single or

double precision conforming to the IEEE standard, as well as format

conversion instructions (e.g. integer to floating-point, single to

double precision etc.) and floating-point comparisons. The NS32081

contains an internal floating-point status register (FSR) which is used

to configure the FPU operational modes (e.g. IEEE rounding modes) and

also records any exceptional conditions which were encountered during

execution of an operation (e.g. underflow, inexact result etc.).

The 8 MHz part which is used is capable of performing a register to

register multiplication in 6 jasec and a register to register addition in

9.4 jusec. Additional overheads are necessary for the MC68000 processor

138 -

Chapter 5

to send the appropriate operation words and operands (if required) to

the FPU at the start of each operation and to read back the FPU status

and result (if there is one). If an error is detected by the FPU during

operation then this will be signalled in the status word. It is then up

to the processor to read the FSR from the FPU to determine more fully

.the nature of the error and take any necessary action.

At the time of designing MCMII the Motorola MC68881 floating point

coprocessor was not available. Also early reports from Motorola

indicated that it would not be possible to use the MC68881 as a

peripheral to the MC68000 although this has now been changed. For these

reasons the NS32081 device was chosen instead. However this proved to be

more complicated and slower to interface to than at first was believed

and although the device enhances the power of MCMII it is unsuitable, in

terms of speed and ease of use, for the MC68000 based MCMII system.

5.3 MCM Task Look-up Tables

Having described the hardware of the MCMs we will nowr further elaborate

on the main task which the MCMs perform and the data table resources

that are available to them during normal shell-model processing. In H-

mode operation the MCMs basic task involves the evaluation of the

Hamiltonian matrix element <e !H!e > using one of equations 2.6-2.8 andz» n

then the evaluation of equations 2.12a and 2.12b by the following

steps:

1/ Read a new TSW from the I-bus interface. Set-up the CMA-bus prefetch

buffers to read from CM at the address given by the index, m,

contained in the TSW.

2/ Using the annihilation and creation operators and the job—type bits,

all contained in the TSW, as well as the prime state, determine the

two—body matrix element and its sign. For zero and one jobs there

will be more than one two-body element to determine, with each one

139 -

Chapter 5

being added together to form the complete Hamiltonian element.

3/ Test to determine if the vector elements have arrived from CM. If so

then read V and V from the CMA-bus prefetch buffers. If not thenin f m

wait until they have arrived. The L—bit for V must be tested and if
f »

it is set then the element must be read again from CM (see section

4.4.1).

4/ Evaluate V = V x H + V and
in in inn fn

V = V X H + V .
fn in inn fn

5/ Write V back to CM.
f D»

The task in 2 above of determining the Hamiltonian matrix element

magnitude and sign is potentially very complex and demanding. In order

to make this task easier for the MCMs a number of data tables are

necessary. The tables required for these two stages will be discussed in

the following two subsections.

5.3.1 The Matrix Element Magnitude
The value of each Hamiltonian matrix element, <e !H!e >, is solely

m n

dependent on which particles are annihilated and which are created to

transform the state !e > into the state !e > (eqn. 2.5). In a system of
n »

24 active orbitals there would therefore be a potential maximum of
2 4 2(C .) = 76176 two-body matrix elements, if there were no quantum

2

mechanical constraints on the particles annihilated and created.

Fortunately this is not the case and there are in fact two constraints

on the annihilated and created particles which greatly reduces this

number. These constraints are (for annihilated particles with indices k

and 1 and created particles with indices i and j);

1/ Isospin conservation: if t(x) is the z-component of isospin of the

single particle orbital with index x then we must have

t(i) + t(j) = t(k) + t(1) (5.1)

where t(x)= +1 or -1.

In other words, if two protons are destroyed then two protons must be

- 140 -

Chapter 5

created, if two neutrons are destroyed then two neutrons must be

created or if a proton and neutron are destroyed then a proton and

neutron must be created.

2/ Angular momentum conservation: if m(x) is the z-component of angular

momentum for the single particle orbital x then we must have

m(i) + m(j) = m(k) + m(l) (5.2)

These two constraints act to reduce the number of valid operator

quadruples (k,l,i,j), and therefore the number of two-body matrix

elements, to just 4196. Thus it is quite practical that all these

elements should be stored as single precision floating-point numbers in

local MOW memory in a Matrix Element Table (MET). The task of the MCM is

then simplified to one of looking up the MET to find the appropriate

element (s) with which to form the Hamiltonian entry <e !H!e >. The MET
m n

must therefore be constructed in such a manner as to make the process of

referencing it efficient. This process is performed using only the

annihilation and creation operators since it is they which uniquely

specify each two-body element.

The simplest and quickest method of referencing the MET would be to

use the annihilation and creation operators directly to index into it.

However this would necessitate that the MET be prohibitively large since

it would contain mostly null and duplicated entries. Therefore in order

to keep the MET to 4196 entries a system of look-up tables indexed by

the four operators must be used.

To explain the structure of the MET we first define a set. S,

containing all valid operator pairs (x,y) , with x (y, and partition it

by defining an equivalence relation on it. For the sd shell this set

will have - 276 entries. We define the equivalence relation such
2

that, for (i, j) and (k,l) both members of S then:

(i,j)~(k,l) (5.3)

if and only if m(i) + m(j) =m(k) +m(l)

and t(i) + ttj) = t(k) + t(l)

- 141

Example partition ;

S(M,t) = [(a,b) , (c,d) , (e,f) , (g,h)]

Matrix Element Table Structure

B(a,b)

B(c,d)

B(e.f)

B(g,h)

■where the operator quadruple (a,b,c,d) represents the

two-body matrix element H*■ o b c a

(a b a b)
(c d a b)
(e f a b)
(S h a b)

(a b c d)

(c d c d)

(e f c d)

(S h c d)

{a b e f)
(c d e f)
(e f e f)

(S h e f)

(a b S h)
(c d S h)
< e f S h)
(S h S h)

Figure 5.9 Example of Blocks within MET

Chapter 5

We have thus divided S into partitions, which we denote S(M,t), where:

M = m (i) + m { j) and t = t (i) + t (j) (5.4)

i.e. t is either proton-proton (p-p), neutron-neutron (n-n), or proton-

neutron (p-n). Therefore all pairs (x,y) in S fall into one and only one

partition and so S is completely and uniquely partitioned by this

equivalence relation.

The significance of these partitions lies in the fact that any pair

of operators, (k,l), taken from a partition S(M,t) can only be joined

with other operators, (i,j), within the same S(M,t) to form valid

operator quadruples (k,l,i,j) which specify two-body matrix elements. In

fact each of the operator pairs within S(M,t) will join with, and only

with, all the pairs in S(M,t) to form these quadruples. Therefore if

there are n pairs of operators in a partition then that partition will
2

define n two-body matrix elements.

We now define an order on the pairs in S(M,t) as follows:

for (x.y) and (x’,y’) both members of S(M,t)

(x,y) < (x’,y’) <=> 1) y < y ’ or (5.5)

2) y = y ’ and x < x’ .

The MET can now be divided up into blocks, where all the two-body matrix

elements in a block are specified by the same pair of annihilation

operators (k,l) in the quadruple. These blocks are denoted B(k,l). All

the two-body matrix elements in B(k,l) are then specified by taking each

pair of operators in the partition S(M,t), where (k,l) belongs to the

partition S(M,t), and forming a quadruple of operators. The elements in

B(k ,1) are given the same order as the pairs in S(M,t), figure 5.9.

Thus all the blocks in the MET whose annihilation operators (k,l)

belong to the same partition S(M,t) will have the same set of creation

operators (i.e. all those operators in S(M,t) itself) and so have the

same number and order of elements. For example consider two blocks

B (a ,b) and B(e,f) in the MET, where (a.b) and (e,f) both belong to

S(M,t). and consider another pair of operators (c,d) and (g,h) also in

142 -

Chapter 5

S(M ,t) (see f igure 5.9),

i.e. m (a) +m (b) = m(c)+m(d) = m(e)+m(f) = m(g)+m(h) = M

and t(a)+t(b) = t(c)+t(d) = t(e)+t(f) = t(g)+t(h) = t.

That is if (c,d) and (g.h) are the 2nd and 4th pair in S(M,t)

respectively then the quadruples

(c ,d,a,b) and (g ,h ,a,b)

will define the 2nd and 4th two-body matrix elements in B(a,b) while the

quadruples

(c, d, e, f) and (g,h ,e,f)

will define the 2nd and 4th two-body matrix elements in B(e,f).

Therefore for any two-body matrix element its annihilation operators

(k.l) can be used to specify the block within the MET where the element

resides and its creation operators (i,j) can then specify its position

in the block.

A number of auxiliary tables are now needed in the task of finding

a matrix element in the MET using its annihilation and creation

operators. These tables are;

1/ The Global Offset Table (GOT): this table contains one entry for

every pair of annihilation operators possible in the 32-bit word of
3 2

the MFG and therefore has C = 496 entries. Since there are only 24
2

active orbitals only 276 of these entries are valid and so almost

half of the space in the GOT is unused. Each of the (valid) entries

in the GOT contains a 16-bit address offset from the base of the MET

to the start of a different block within the MET i.e. the entry for

(k , 1) in the GOT contains the offset to the block B(k,l) in the MET.

The entries in the GOT are ordered according to equation 5.5, i.e. in

the same way as the entries in S(M,t), and so the 2-byte entry for a

pair (k,l) can be referenced by;

2[k + 1(1-11/2]

= 2k + 1(1-1) (5.6)

where k and 1 are the annihilation operators (k < 1) .

- 143 -

Global Offset Table

GO(a,b)

GO(e,f)

Local Offset Table

LO(c,d)

Matrix Element Table

GO(a,b)

LO(c,d)

(a,b,c,d)

GO(e,f)

LO(c,d)

e,f,c,d)

GO(a,b) = global offset for annihilation
operator pair (a,b),
indexed by 2a + b(b-l)

LO(c,d) = local offset for creation
operator pair (c,d),
indexed by 2c + d(d-l)

(a,b,c,d) = two-body matrix element
specified by operator
quadruple (a,b,c,d)

Figure 5.10 Global and Local Offset Tables

Chapter 5

2/ The Local Offset Table (LOT): this table contains one entry for each

pair of possible creation operators and so has the same number of

entries as the GOT. Each entry in the LOT is a 16-bit address offset

from the base of a block in the MET to the two-body matrix element

specified by the the creation operators, figure 5.10. The creation

operators are used with equation 5.6 to determine the 2-byte entry in

the LOT to use. When the entry from the LOT is added to the entry

from the GOT then the complete offset from the base of the MET to the

vector element specified by the 4 operators is formed.

3/ The O-table: in order to aid in the evaluation of the offsets into

both the Global and Local Offset tables using equation 5.6, a further

table is added to give the value of x(x-l) for x equal 0 up to 31.

Each entry for this table is 2-bytes and the entry at offset 2x from

the base of the table gives the value of x(x-l).

The memory usage for these three tables plus the MET itself is

MET 4196 entries @ 4 bytes each = 16,784 bytes,

GOT 496 entries @ 2 bytes each = 992 bytes,

LOT 496 entries @ 2 bytes each = 992 bytes,

0-table 32 entries @ 2 bytes each = 64 bytes,

giving a total of 18,832 bytes (18.39K bytes).

It should be noted that the size of the MET can be reduced even

further at no extra cost to the look-up process. This is achieved by

first noting that the magnitude of each two-body matrix element remains

unchanged by a transformation of neutron orbitals to proton orbitals

(and vice-versa) with the same quantum numbers (n,l,m) . Thus each block

B (k ,1) is the same as B(k’,l’), (i.e. has the same two-body matrix

elements in the same order), where

k’ = (k+16) mod 16 and 1’ = (1+16) mod 16

in the representation given in figure 3.1.

Thus any neutron—neutron (n—n) block in the MET has its equivalent

proton-proton (p-p) block and thus the GOT can map all p-p operators

- 144 -

Chapter 5

onto their equivalent n-n blocks in the MET, or vice-versa. The p-p (or

n-n) blocks can therefore be removed from the MET, thus reducing its

size by 640 elements (= 15.25%).

The proton-neutron cases can also be reduced if the GOT maps (k,l),

not onto B(k,l), but onto its equivalent block B(k’,l’) and so B(k,l)

can also be removed from the MET. This removes a further 1362 entries in

the MET, giving an overall reduction of 2002 entries (= 47.7%).

Other methods could be used to further reduce the size of the MET,

however they would necessitate more complex look-up processes and are

thus not considered. However although the above modification gives a

fairly substantial reduction in the MET size at no extra cost to the MCM

look-up process this has not been implemented for reasons which shall be

explained later.

Clearly then there is a trade-off between the size of the MET and

the ease with which it is referenced, with the most efficient method for

finding an entry requiring far too much memory space for the MET. The

final method must therefore be a compromise between speed and memory

usage with speed being the greatest requirement, w'hich the above

solution offers.

5.3.2 The Matrix Element Sign

Before the final Hamiltonian matrix element, <e !H!e >, is complete them n

sign of the two-body matrix element must be altered by the factor
[X <1 +1 >J_ 1 * + +(-1)

as given in equations 2.7 and 2.8. The power of —1 in this equation is

simply the sum of the number of set bits (i.e. occupied orbitals)

between k and 1 and between i and j in the slater determinant

R = a a ! e >.
k 1 n

In order to determine this number we must first form R and then

strip off the unwanted bits leaving only those set bits which are to be

counted or in effect whose parity is to be determined. Forming R is

145 -

Chapter 5

performed using the MC68000 bit-clear command, however stripping off the

unwanted bits using this method would be time consuming. A simpler

method is to have a table of 32-bit masks for each pair of operators

(x,y), which consists of all zeros except for the bits between x and y.

These masks are held in the Mask Table which is organised along the same

lines as the GOT and LOT with 496 entries indexed by the operator pair

using the function given in equation 5.6, although since the entries in

the Mask table are 4 bytes instead of 2 the index gained from 5.6 must

be doubled.

Two masks are retrieved from the Mask table, one for (i,j) and one

for (k,l). Set bits which are common to both masks are eliminated, since

they would otherwise have to be counted twice. To do this the masks are

first XORed together and the resultant composite mask is then ANDed with

R to leave only those set bits necessary.

The above method is the one currently used in producing the

composite mask, however there is another method which is quicker

although it requires the Mask table to be much larger. This other method

comes as a result of noting that each composite mask is completely

determined by the operator quadruple (k,l,i,j) just as the two-body

matrix elements are. Therefore the Mask table could instead contain the

4196 possible composite masks, specified by the (k,l,i,j), and be

referenced using the same index as used for retrieving the two-body

matrix element from the MET. The Mask table would then be almost 9 time

larger and could be incorporated into the MET with each entry containing

a two-body matrix element and composite mask. The sign determination

process would then be shortened since the composite mask would not have

to be manufactured. It is for this reason that the MET is not reduced in

size as described earlier so that in future the MET and Mask table can

be referenced together.

Under normal operating conditions these increases in table size

would be minimal compared to the 128K bytes available to the MCM at

146 -

Chapter 5

present. However since there is no CM yet implemented, the initial and

final vectors normally stored there must instead be stored locally on

each MCM thus making space requirements more important. Therefore this

improvement in manufacturing the composite mask has not been implemented

in order to save local memory space for the storage of vectors.

The resultant word formed after R is ANDed with the composite mask

must then have its parity determined and to do this we make use of the

following result:

P(M1:M2) = P(M1 © M2)

where P(M) is the parity of binary word M, Ml and M2 are words of equal

length and Ml:M2 is the word formed by the concatenation of Ml and M2.

Thus to determine the parity of the 32-bit word we first XOR the two 16-

bit words and then XOR the two bytes of the resultant word. The parity

of the remaining byte, which equals the parity of the initial 32-bit

word, is then found from a Parity Table, which is indexed directly by

the byte. This 256 entry table gives at location x the parity of x, i.e.

if the byte at location x is zero then x has an even number of bits

otherwise x has an odd number of bits. Thus using the Mask table and

Parity table the sign change for the two-body matrix elements can be

determined.

The space requirement for these two tables is :

Mask Table — 496 entries @ 4 bytes each = 1,984 bytes,

Parity Table — 256 entries @ 1 bytes each = 256 bytes,

giving a total size of 2.240 bytes for these two tables and 21,072 bytes

for all six tables. If the proposed changes to the Mask table were

implemented it would be 16,784 bytes long, bringing the total figure to

35,872 bytes.

5.4 MCM Task Processing

All the hardware and software resources of the MCMs have now been

147

Chapter 5

discussed and thus the foundations have been laid so that we can now

describe the actual process, in terms of software, which the MCMs must

follow through to perform a Lanczos iteration. All the software for the

MCMs is written in MC68000 assembly language since much of the process

involves manipulation of binary data which is less suited to high level

languages. However more importantly than this assembly language can be

tailored to meet high-performance requirements, which is a high priority

for the MCM’s task.

For the successful processing of an iteration by the MCMs a number

of global software flags are required, in order that both the SM and PG

can signal certain system-wide conditions to the MCMs. These conditions

are:

1/ New Prime State: when there is a change in the prime state which is

associated with the TSWs read from the MFG Buffer, the PG must inform

the MCMs of the new prime state SD word and its index.

When the last TSW for a prime state is read from the MFG Buffer by the

MCMs. the PG will be interrupted and the Buffer will be blocked by

its onboard inhibit logic from any more reads (sec. 3.5.6). At this

point the PG must send the new prime state details to a predetermined

parameter passing area on the MCMs, using- the C-bus bus-broadcast

facility. The PG must then send a signal to the MCMs to inform them

of the update and then remove the read inhibit from the MFG Buffer.

However each individual MCM must be inhibited from reading from the

Buffer until it has recognised that there is a new prime state. This

is essential so that when an MCM reads a TSW from its PFB it knows

which prime state the TSW belongs to. To this end the PG must also

activate the local I-bus reset and lock signal on the LMC of each of

the MCMs when it sends the new prime state details and before it

enables the MFG buffer again. Thus if there is a TSW in an MCM's PFB

after the I-bus lock has been. set then it cannot refer to the new

prime state. It is in fact this lock being activated that is used to

- 148 -

Chapter 5

signal the presence of a new prime to the MCMs.

After finishing each task the MCM will test if its I-bus PFB is full

or empty and if it is full then it will process the TSW as normal. It

is quite possible that a new prime state has already been passed to

the MCM at this point, however if there is a TSW in the PFB then it

must belong to the old prime and so no action is taken by the MCM

with regard to the new prime. Only if the PFB is empty does the MCM

then test the lock signal in the LMC and if it has been activated by

the PG’s broadcast then the new prime state details are read into the

appropriate workspace locations from the parameter passing area.

2/ Iteration start: after the MCM is released from the reset signal by

the SM it will perform certain initialisation functions, e.g. set up

the LMC. Once these tasks have been finished the MCM must wait for a

start signal from the SM before reading from the MFG Buffer and

commencing TSW processing. The MCM must also wait for this signal

after finishing an iteration and before going on with the next. A

word within the MCMs workspace is reserved for this and other signals

from the SM. these signals being collectively called the global

module code word (GMOODE).

3/ Iteration finished: when the PG finishes generating the basis list

and the MFG Buffer empties, the PG will signal this to the SM who

will in turn signal to the MCMs (via the GMCODE) that there are no

more TSWs to be processed and so the iteration is finished.

The master processor on MCMII must also be able to give commands to the

slave processor and so a location, the slave instruction code word

(SIOODE), is reserved in the slave’s workspace for this purpose. These

local commands are given to the slave in association with data that it

is to process, e.g. two-body matrix elements for the slave to add

together in zero or one job processing. Once the slave has read the data

it will signal this to the master, via SIOODE. and thus allow the master

to pass more data.

149 -

Chapter 5

In response to each of the above global signals the MCM will enter

a different software routine. Similarly after reading a TSW from the I-

bus PFB the MCM will enter one of three different routines depending on

whether a zero, one or two job is indicated by the job-type bits. The

details of these latter routines are now given in order to describe in

more detail the task of the MCMs and explain their method of operation.

Note that we describe here the routines assuming the presence of CM and

two FPUs per slave processor, the actual routines currently implemented

are therefore different since there is no CM and only one FPU on MCMII.

we will however describe the differences this makes later.

5.4.1 Two-job Processing

Appendices A and B give listings of the two-job routines for the current

and final versions of MCMII respectively.

Master processor'.

Once the master processor has determined that the I-bus PFB is not empty

it will read the first 4 bytes, which contain the job-type bits and

secondary index, m, and store them in its workspace. The job-type bits,

having been examined, are stripped off leaving only the index m. The 4

operators are then read from the PFB and stored.

In order to allow recovery from MCM errors, it is important that

each TSW is stored in full in the MCM’s workspace and not overwritten

until the master has finished processing it. Thus in the event of a

fatal error occurring on the master another MCM, or possibly the SM, can

process the TSW and so the Hamiltonian associated with it is not lost.

Next the master uses the operators to fetch the offsets from the

GOT and LOT. These are then added to form the offset into the MET and so

the two-body matrix element can be retrieved. The sign change for the

two-body element is then determined using the Mask table and Parity

table, as previously described.

The master then tests SICODE to determine if the slave has read the

- 150

CMA-bus
Fetch Vim and Vfm

FPU1 FPU2

linn x Vin
Vim and Vfm received

Read result

(Hmn x Vin) + Vfm

Read result

Send back Vfm

Hmn x Vim

Read result

(Hmn x Vim) + Vfn

Finished
Finished

Figure 5.11 Concurrency During Slave Two-job Processing

Chapter 5

last data which was sent. If the slave has then the parameter passing

area in the slave s workspace is free to place new data in, otherwise

the master must wait until the slave reads the data currently in it.

When the parameter passing area is free then the master writes the

Hamiltonian element just formed and the secondary index, m, into it and

places the appropriate code (i.e. one which tells the slave that the

data is for a two-job) in SICXDDE. The master then tests to see if there

is a new TSW in the I-bus PFB.

Slave Processor:

Just as the master processor has its tasks initiated by data present in

the I-bus PFB, so the slave has its initiated by a valid code word in

SICODE and the associated data. The slave reads the code word and then

branches to the appropriate routine.

Upon receiving the two-job code the slave will transfer H and m
m n

from the parameter passing area into its local workspace and then signal

to the master, via SICODE, that it has read the data. This then frees

the parameter passing locations for more data. The slave will then

immediately set off the CMA-bus PFB to fetch the initial and final

vector elements indexed by m.

The first multiplication (H x V) can then be started in FPU1
m n in

(V will be stored in one of the internal registers of FPU1) . By this
i n

time V and V should have arrived, i.e within 4 usee of setting off
in f m

the CMA-bus PFB. The L-bit for V is checked to determine if the value
f n

received is valid. If not then another request is issued to fetch the

data from CM. The second multiplication (H x V) can be started inn n in

FPU2 , even if V has not arrived. The result of the first
f in

multiplication (when it is available) can then be added to V (when it
f IB

is available), in FPU1. Then the result of the second multiplication

can be added to V , in FPU2 (V is stored in one of the internal
in * "

registers of FPU2). The new V can then be returned to CM. Figure 5.11

details the concurrency of operation for the sla\e executing a two job.

151

Chapter 5

5.4.2 One-job Processing

Master Processor:

In this case there is only one annihilation operator, k, and one

creation operator, i, held in the TSW. The annihilation operator is used

to form the slater determinant a !en> and this determinant is then
lc

searched for all remaining occupied orbitals i.e. set bits. For each set

bit that is found its index is used as the other annihilation and

creation operator index so .that a quadruple, (k,l,i,j) with 1 = j, is

formed. Both operator pairs must then be ordered so that k < 1 and i < j

and the quadruple is then used to fetch a two-body matrix element from

the MET and determine the sign change as for the two-job case above.

Each element thus found is passed to the slave with the appropriate

one-job code. When all the elements have been found the master sends the

index m of the secondary state and the one-job termination code.

Slave Processor:

In this case the slave will take every two-body matrix element passed to

it by the master and sum them in one of the FPUs. The slave again uses

SICODE to signal to the master when it has read each of the elements.

When the one-job termination code is received the slave then proceeds

exactly as for the two-job case above.

5.4.3 Zero-job Processing

Master processor:

For a zero job no valid operators are present in the TSW and instead the

master must search the slater determinant, !e >, for all possiblen

annihilation operator pairs (k,l), i.e. for all possible pairs of set

bits. For each pair found the creation operator pair is set equal to it,

so that k = i and 1 = j, and the resulting quadruple is then used to

f^^ch the appropriate two—body matrix element from the MET. However

this time in accordance with equation 2.6 no sign change need be

- 152 -

Chapter 5

determined.

Each element found is sent to the slave with the zero-job code and

when all elements have been found the zero-job termination code is sent.

Note that in this case no index need be sent, since for a zero-job m = n

and the slave already possesses the index n.

Slave processor:

Each two-body matrix element sent to the slave is added together, as in

the one-job case, to form the final Hamiltonian entry. However since

m = n only the new V need be evaluated using
f n

V = H x V + V
fn mn in fn

and V need not be fetched from CM since it is equal to V , therefore
i n i n

no references need be made to CM. The new value for V is still held in
f n

an internal register of FPU2 and is not sent back to CM until later.

5.4.4 New Prime State Processing

Master processor:

When the master recognises that a new prime state has been received, by

detecting that the I-bus lock signal in its LMC is active, it will first

remove the signal and then transfer the new prime state and index into

his workspace overwriting the old details. The master will then activate

a new request to read from the MFG Buffer. If this request is not

granted then it will again test to determine if another new prime state

has been sent and if one has then it will repeat the above process. In

this way the MCM can guarantee that no updates are lost.

When the PFB is filled with a new TSW the master will first write

the new prime code to the slave along with the new prime state index and

then proceed as usual by examining the job-type bits of the new TSW and

branching to the relevant routine.

Slave processor:

Upon receiving the new prime code, the slave will make a copy of the old

prime index and then transfer the new prime index to its workspace. It

- 153

Chapter 5

will then activate its CMA-bus PFB to fetch V , where n is the old
f n

prime index, so that its own local copy of V can be added to it. Since
f n

each MCM must perform this operation and only one of them can hold a

copy of V at one time then they must all check the L-bit and wait inf n

turn to receive V from CM. When the slave does receive it. it adds on
f n

its local copy and then sends the result back to CM.

The slave then requests V from CM. where n is the new prime state
i n

index, (performing only a half-word read on CMA-bus). On receiving it

the slave places it in an internal register of FPU1. The local copy of

V , held within an internal register of FPU2, is then zeroed.f n

5.4.5 Current Implementation

As we have said there is currently no CM installed in the SMP system and

so the initial and final vector elements are stored locally on each MCM.

Howrever since they are stored in the master processor’s DRAM the slave

processor does not have direct access to them. Instead each time the

master passes the slave an index number it must also pass the

appropriate initial and final vector elements. For example during a two-

job when the master passes H and m it must also pass V and V to
n r> i m f m

the slave. Also at the start of prime state processing when the master

passes the new index n to the slave it must also pass V for the old

index and V for the new index.
i n

Similarly the slave must also pass the updated final vector entry

to the master at the end of each job and at the end of each prime. With

each of these elements the slave must also pass its index so that the

master can store them back in the correct location in the final vector.

To deal with this additional parameter passing locations are allocated

within the slaves workspace to hold the extra parameters which are to be

transferred. An additional code word, similar in nature to SICODE, is

also assigned for the slave to signal to the master the nature of the

data and for the master to signal to the slave that it has read the

- 154 -

Chapter 5

data.

Since data is being transferred in both directions care must be

taken to avoid deadlock between the two processors. That is the

situation could arise where the master processor is waiting to send data

to the slave but can’t since the parameter passing area is full and

similarly the slave is waiting to send data to the master. Therefore

when the master or slave send any data they must also always check to

determine if they have received any data and if so then read it.

At present the slave processor has only one FPU instead of the

proposed two. This simply means that the none of the arithmetic

operations to be performed by the slave can be pipelined. Instead they

must be performed serially, therefore increasing the overall time taken

by the slave.

5.5 Vector Processing

The task so far described of processing the TSWs produced by the MFG and

thus producing a resultant vector is the main task of the MMPU but not

its only one. The vector produced by the multiplication of the

Hamiltonian matrix by the Lanczos vector must be converted into the next

Lanczos vector in the sequence and then orthogonalised with respect to

all the other Lanczos vectors (section 2.3). These operations demand the

addition of two vectors and also the scalar multiplication of two

vectors. For both these operations the two vectors will be stored (as

usual) in CM in single precision floating-point format arranged so that

two elements, one from each vector, can be read during one CMA-bus

cycle.

For the addition of two vectors the SM can block partition the two

vectors and then assign each MCM a block to add together. Each addition

should take at most 20 usees, with the writing and reading of vector

elements to and from CM being pipelined with the FPU operation. Thus for

- 155 -

Chapter 5

the largest vector of 93710 elements, 5 MCMs could perform an addition

in 0.4 seconds.

The vectors can again be block partitioned for scalar

multiplication with each MCM accumulating a partial result, which are

all added together to form the final result. To reduce the accumulation

of precision errors during a scalar multiplication the accumulations

must be carried out to double precision, although the final result can

be reduced to single precision. Each multiplication and addition should

take at most 25 usee, with both FPUs being used by the slave and again

the fetching of operands from CM being pipelined with slave activity.

Thus scalar multiplication should take at most a total time of 0.5

seconds for 5 MCMs operating on the largest vectors.

Having now described the MCMs completely we can go on in Chapter 6

to give the details of performance achieved by the SMP system.

156 -

CHAPTER 6

Shell Model Processor Performance

6.0 SMP System Testing

With the completion of MCMI hardware and the MFG hardware and software

in 1984 it was then possible to run and test the performance of the MFG

subsystem on its own. Testing the correctness of operation of the MFG

was done in two ways. The first was in essence simply to use a set of

test vectors. That is with the channel memories of the SG loaded up with

sample SD-byte chains a number of predetermined seed states, or test

vectors, were sent to it. The resultant output could then be

precalculated and compared w'ith the actual output, which was read from

the MFG buffer by MCMI. This proved a successful and useful means of

testing and debugging the MFG hardware, i.e. the SG, PF, buffer and I-

bus, and could eventually be incorporated into the SMP system as a means

of self-testing.

The second test was to run the complete MFG system, software and

hardware, using data for real nuclei. The Nuclear Theory Group at

Glasgow University then supplied figures for the number of zero, one and

two-jobs that should be found. MCMI was then used to read from the MFG

buffer and to count the number of each type of job. The two sets of

figures were then compared. This method provided a means of testing the

MFG software and hardware system as a whole. By successfully passing

both these tests the correct operation of the MFG could then be

guaranteed with a very high degree of certainty.

The hardware and software for MCMII, along with the software for

- 157 -

Nucleus Number of
Basis
States

T1 T2 T3 T4 Number of
states produced
by SG for T3.

28
Si

14
m = 0
Np = 6
Nn = 6

93,710 3 117 436 396
9

3.4833 x 10

27
A1

13
m = 5/2
Np = 5
Nn = 6

64,299 <2 66 214 197
9

1.66618 x 10

All timings in seconds.

T1 = time taken with no SG driver & no interrupts i.e. time taken
to produce the basis list and associated driver tables.

T2 = time with no interrupts and no waiting for SG seed requests
i.e. seeding SG as fast as possible.

T3 = time with no H-mode interrupt.
T4 = total time per iteration for the MFG.

All the above times are for the MFG in H—mode, with the MMPU
inactive and output from the PF ignored.

Table 6.1 MFG Measured Iteration Times

Chapter 6

both MCMI and the SM, were all finished by summer 1985. The SMP system,

minus the CM, could then be tested and evaluated. Using the DRAM of the

MCMs in place of the CM, nuclei with up to 13,500 basis states could be

tested. The Nuclear Theory Group supplied the resultant vectors after

one iteration for a number of small nuclei. These nuclei were then run

on the SMP system and the results compared. On all the nuclei which were

tested the results were in complete agreement.

6.1 MFG Performance

Table 6.1 details certain timing characteristics for the MFG alone. All

these timings were taken with the MFG in H-mode and clocked at 112 MHz.

The MCMs were inactive, with the MFG buffer simply being allowed to

overflow.

The first two timings give an indication of the PG performance. The

first figure shows the speed at which the PG can generate the basis of

states and the SG driver tables, i.e. run the Basis Generation Function

and SG Control Function but without the SG Driver routine. The second

figure gives the time for the full PG task including the SG Driver

routine, i.e. the sending all the seed states to the SG, but assumes the

SG is fast enough to keep up. It is thus obvious that the majority of

the FG's time is taken up with seeding and controlling the SG.

The third timing figure is for the MFG as a whole performing an

iteration, but without the-H-mode interrupts genei’ated by the SIC. The

SG would thus produce too many states since some would go beyond the

diagonal element of the matrix. Running in this mode it was possible to

count the number of states produced by the SG using the SIC. The final

column shows how many states were produced by the SG for this third

case. From this figure we can calculate the amount of time the SG should

have taken, in theory, under those conditions for one iteration with

these nuclei. For example, at 112 MHz, producing 1 new state every 13

- 158 -

Chapter 6

9
clock cycles, the amount of time to produce 3.4833 x 10 states for the
2 8
Si nucleus should be approximately 404 seconds. Comparing with the

measured time of 436 seconds this shows an overhead of 32 seconds, i.e.
2 7an extra 8%. Similarly for the A1 nucleus the overhead is

approximately 11%. This overhead is due to the time that the SG has to

wait to be serviced by the PG. It is to be expected that the overheads

due to PG servicing will increase for smaller nuclei, since M-partitions

will in general be smaller and the SG will thus spend more time waiting

for seed states.

The last timing figure is with the H-mode interrupts enabled and

thus gives a true time for a complete iteration by the MFG as a whole.

This last set of figures therefore represents a lower limit on the

iteration time for the SMP system.

We can also from the last three figures obtain an estimate for the

saving produced by searching only connected N-partitions (section 3.2).
2 8

For the Si nucleus the final iteration time (T4) is 91% of figure T3.

It can therefore be assumed that approximately only 91% of the states

counted for T3 are actually produced once the H-mode interrupt is
8

active. That is 3.1698 x 10 states are generated compared with a
8

possible maximum of 4.39 x 10 for half the matrix, a saving of almost
2 7

28%. For the A1 nucleus the saving is almost 26%. It is to be expected

that the smaller the nucleus then the smaller the saving, since in

general there will be fewer N-partitions and so proportionately less of

the nucleus will be excluded from the search.

6.2 MCMII Performance

Processing two-jobs is by far the most common task for the MCMs during
1 8 2 8

any iteration, making up between 88% (for F m=0) to 96% (for Si m=0)

of the total number of tasks processed. Therefore the time taken to

process a two-job will in general be the most predominant in determining

- 159 -

Chapter 6

the overall time for the MCMs to complete an iteration.

With the current implementation of MCMII, i.e. a single FPU and

using local RAM to store initial and final vectors, the program code for

a two-job on the master processor should take approximately 46 usees to

run and 55.5 usees on the slave processor, allowing time for the FPU

(see Appendix A for current two-job listing). This implies that an MCM

should process a two-job in about 55.5 jusecs with the master processor

being delayed by the slave. The total time for a one-job or zero-job

will depend on the number of two-body matrix elements to be found and

added together, wrhich will in turn depend on the number of occupied

orbitals and therefore on the nucleus under consideration. Examination

of the program code for zero-jobs and one-jobs shows that currently

MCMII processes each two-body matrix element in approximately 18 jusecs

and 38 jusecs respectively. We can use these figures to estimate

iteration times as follows:
3 1

For the P nucleus (m=ll/2) with 8 protons and 7 neutrons there are;

13,327 zero-jobs with 105 two-body matrix elements to be found and added

for each,

52,091 one-jobs with 14 two-body matrix elements to be found and added

for each,

1,174,180 two-jobs.

The current MCMII will thus take

13327 x 105 x 18 -usees = 25.2 secs for zero-job processing,

52091 x 14 x 38 usees = 27.7 secs for one-job processing,

1174180 x 55.5 usees = 65.2 secs for two-job processing.

Giving a total estimated time of 118.1 seconds for a complete iteration.
2 4For the Mg (m=10/2) nucleus with 4 protons and 4 neutrons there are;

10,026 zero-jobs (28 two-body elements each),

37,758 one-jobs (7 two-body elements each),

829,643 two-jobs.

Estimated time is therefore

160 -

Nucleus
Estimated
MCMII
Time

Measured
MCMII
Time

Measured
MCMI
Time

Measured
Combined

MCMI + MCMII
Time

3 1
P

m=ll/2

118.1 114 755 99

2 4
Mg

m=10/2

61.1 62 427 54

2 3
Ne

m=l/2

33.6 34 238 30

All figures for H-mode operation.

Table 6.2 MCM Timings For Sample Nuclei

Chapter 6

5.1 secs for zero-job processing,

10 secs for one-job processing,

46 secs for two-job processing,

giving a total of 61.1 seconds for a complete iteration.
2 3

And for the Ne (m=l/2) nucleus with 2 protons and 5 neutrons there

are;

6,457 zero-jobs (21 two-body elements each),

22,166 one-jobs (6 two-body elements each),

469,974 two-jobs.

Estimated time is therefore;

2.4 secs for zero-job processing,

5.1 secs for one-job processing,

26.1 secs for two-job processing,

giving a total of 33.6 seconds for a complete iteration.

The actual measured times for a complete iteration with these nuclei,

using only the current version of MCMII, are;
3 1
P 114 seconds,

2 4
Mg 62 seconds,

2 3
Ne 34 seconds,

with the above estimates giving very good agreement.

Table 6.2 summarises these figures and adds additional figures for

measured iteration times using MCMI on its own and then using MCMI and

MCMII together. It can be seen that currently MCMII is approximately 7

times faster than MCMI.

The value of producing and verifying these estimates lies in our

ability now to extrapolate forward and make estimates for the time the

final MCMII will take. With the addition of CM and a second FPU, as well

as implementing the changes to the software look-up tables already

mentioned, we can expect the two-job processing time to be reduced to

approximately 29 jusecs for the master processor and 37 jusecs for the

slave processor (see Appendix B for final two-job listing). The one-job

- 161

Number Number Number Measured Estimated
Nucleus of Basis of of MFG Final

States One-jobs Two-jobs Time
(seconds)

MCMII Time
(seconds)

2 8
Si 93,710 414,848 12,165,224 396 711

m=0

2 7
A1 80,115 349,824 10,089,502 294 568

m=l/2

2 7
A1 64,299 279,102 7,802,290 197 444

m=5/2

2 0
Si 51,421 221,704 6,002,244 126 380

m=7/2

2 e
Si 37,971 162,247 4,200,906 76 271

I i i
f,

!
^

1
N>

1 1

2 3
Ne 6,457 22,166 469,974 5 24

m=l/2

All figures for H-mode operation.

Table 6.3 Timings For Sample Nuclei

Chapter 6

processing time will be reduced to 30 jusecs per two-body matrix element

and the zero-job time to 16 jusecs per two-body matrix elements. We now

have an estimated time for the above nuclei of;
3 1

for P ; 22.4 secs for zero-job processing,

21.9 secs for one-job processing,

44.6 secs for two-job processing,

giving a total of 88.9 seconds.
2 4

For Mg ; 4.5 secs for zero-job processing,

7.9 secs for one-job processing,

30.7 secs for two-job processing,

giving a total of 43.1 seconds.

While for Ne ; 2.2 secs for zero-job processing,

4.0 secs for one-job processing,

17.9 secs for two-job processing,

giving a total of 24.1 seconds.

Thus the final MCMII will be approximately 30 % faster than the

current limited version, making it in total a factor of 9 faster then

the original MCMI.

Table 6.3 shows the estimated time that one of the final MCMII

modules would require to process all the TSWs for a selection of nuclei.

Also shown is the measured time for the MFG to produce all the TSWs. It

can be seen that for the largest sd shell nuclei 2 MCMs would out

perform the current MFG, while for the smaller nuclei at most 5 MCMs

would be necessary. The increase in efficiency of the MFG for smaller

nuclei is due to the fact that the Hamiltonian is less sparse the
z e

smaller the nuclei. For example the Hamiltonian for the Si nucleus
2 3

shown has only 0.29% non-zero entries, while the Ne nucleus has 2.38%.

Table 6.3 shows that for the largest nuclei the average rate of

production of TSWs is 32,000 per second, while for the smaller nuclei

100,000 TSWs are produced on average per second. Clearly neither I-bus

nor CMA-bus are overloaded with the data transfer rates this produces.

- 162 -

Nucleus Number of
basis states

IBM
(minutes)

MFG
(minutes)

28
Si m=0

14
93,710 - 6.60

27
A1 m=5/2

13
64,299 1.56 3.28

29
Si m=7/2

14
51,421 1.05 2.17

25
Mg m=l/2

12
44,133 0.79 1.65

29
Si m=9/2

14
37,971 0.68 1.27

25
Mg m=9/2

12
20,007 0.28 0.42

23
Ne m=l/2

10
6,457 0.08 0.08

Table 6.4 Comparative Timings For A Single Iteration

Chapter 6

In fact I-bus could easily support an increase of over 100 fold in the

rate of production of TSWs for the larger nuclei, while CMA-bus, which

requires two transfers per task, could support an increase of 65 fold.

However the current low usage of these two buses means that the MMPU is

not yet near its saturation point and thus any increase in the number of

MCMs should give a linear increase in its performance.

6.3 Conclusion

The figures given in table 6.3 show quite clearly that the MFG is

currently the SMP system bottleneck. Table 6.4 shows MFG iteration times

compared with equivalent timings on an IBM 360/195 system (figures

obtained from [WWCM77]). Since the SMP system iteration time is the same

as the MFG processing time when using only five MCMs then these figures

show the final performance capabilities of the SMP system. As can be

seen the performance is very respectable, being at worst only a factor

of 2 slower than the IBM.

163 -

CHAPTER 7

The Extended SMP System

7.0 Introduction

The original aims of building a dedicated computer for nuclear structure

calculations have been largely fulfilled in the SMP system. The system

has been built at a low cost (less than ̂ 5000 for materials) and can

carry out any sd shell calculation in a reasonable time. However as has

been seen the limitation on the performance of the SMP system is the

MFG. While this does not present a problem for the current system

working on the sd shell it does severely limit the ability of the design

to be extended to a system which will perform pf shell calculations.

Such calculations, which would require an MFG which is 4 times the size,

could generate basis lists of 10 to 100 times the size of sd shell

lists. This would impose an impossible burden on an MFG of equivalent

design to the current one. Thus new designs or new methods are required

for the function of determining the Hamiltonian for an extended system.

7.1 Matrix Determination

During any shell model calculation it is only the Lanczos vectors which

change between iterations, the Hamiltonian matrix being constant. There

is therefore no reason, in theory, why the non-zero matrix elements

should not be generated only once and then stored and read back during

each iteration. Each matrix element would require only two entries; one

being the 32-bit matrix value and the other being its 24-bit column

- 164 -

Chapter 7

index. As with the current system the row index, which changes

infrequently, can be broadcast to all MCMs only when it changes. Thus 7

bytes of information require to be stored per matrix element. The task

of each MCM becomes much simpler with such a system since H is read
m n

directly and does not have to be found by the MCMs from a look-up table.

For sd shell calculations the maximum number of non-zero elements is
2 8

approximately 12.5 million for Si (m=0), requiring 87.5 Mbytes of

storage. For the pf shell this figure could easily increase by a factor

of 100, requiring almost 10 Gigabytes. Obviously this requires some form

of disk storage to be used. Parallel disk assemblies of 1.5 Gbytes

capacity and sustained transfer rates of 4 Mbytes/sec are available at

under $12,000 [Mo87]. The use of such an assembly would be feasible for

sd shell calculations, increasing performance by a factor of up to 15

for large nuclei. However multiple disk assemblies would be required

even for medium sized pf shell calculations. These could be read in

parallel increasing performance even further, but expense would become

the limiting factor. For large pf shell calculations storage of the

matrix would probably become impractical.

Matrix generation, as opposed to matrix storage, has much more

potential for application to large pf shell calculations. It is quite

feasible to construct a new MFG with a similar architecture to the

current one but with a 6 to 10 fold increase in performance, i.e. a

secondary state production rate of at least 50 MHz. This can be achieved

with a much simplified SG channel design, a simplified timing control

unit and a new pipelined OEC design, all implemented using 100K series

ECL logic and using only a 50 MHz clock [Mac83]. A high performance

FG/SG interface would also be used with a dedicated hardware controller

responsible for transferring seed states to the SG. Such an interface

could almost entirely eliminate SG overheads due to waiting for seed

states.

The performance of the matrix generation function can be increased

- 165 -

Chapter 7

even further by using an array of parallel MFGs. The whole MFG need not

be duplicated but certainly the SG and PF functions would be and these

could feed either their own private buffers or a single shared buffer.

Each SG would then work on different columns of the matrix. New columns

could be assigned sequentially on demand to each SG so that at any one

time all SGs were working on columns in the same N-partition. In this

case the seed state table would be common to all SGs. Alternatively the

matrix could be block partitioned so that each SG has its own section of

sequential columns to process. Each SG would have its own individual DMA

controller which would transfer the seed states from the seed state

table memory. If after the first iteration it were found that the

processing load was spread too unevenly between the SGs then the MFG

controller could redistribute the workload, and thus attempt to maximise

the performance of the total MFG system.

However a problem is introduced with multiple SGs in that the MMPU

must know which column any TSW it reads belongs to. One solution would

be to tag each TSW to identify which SG produced it. Each MCM would then

require a list giving the details of the column that each SG was

processing. As before the MCMs must be informed when any SG finishes

processing a column to allow them to take appropriate action, e.g.

accumulate the previous V (if working in H-mode) and read the new V
f n i n

Considerable amounts of hardware would be required even for one

SG/PF in an extended system. In order to make multiple SG/PFs feasible

custom gate or cell arrays would be necessary. However there is a

different method for generating the Hamiltonian matrix elements which

could remove the necessity for a separate MFG altogether. This approach

would be to use an element-placement algorithm [MMBW88] , which is a

hybrid of the method used by the original Glasgow Program [WWCM77]

combined with the SMP basis partitioning techniques.

The method used by the Glasgow Program first computes each element

of the basis list, in numerical order, and stores the complete list in

- 166 -

Chapter 7

primary memory. Each state in the basis list is then operated on

directly to produce a secondary state, such that the two states f o m a

non—zero matrix element. This is done by selecting pairs of set bits and

clearing them, while a pair of cleared bits are then set, such that the

appropriate quantum numbers are conserved. In this manner only the non­

zero matrix elements are generated. However the index of the secondary

element must then be determined and this is done by a binary search of

the basis list, hence the reason why it must be stored in primary memory

in the first place. The obvious limitation of this method is the

necessity to store the complete basis list, requiring 16 bytes per

element for pf shell calculations. For a multiprocessor architecture

this list would have to be shared and would inevitably become a system

bottleneck, since an exceptionally high bandwidth would be required in

order that each processing element could perform its binary search.

However by using an element-placement algorithm which would structure

the basis list in a manner similar to the SMP system it is possible to

remove the requirement to store the complete basis list.. Instead the

index of the secondary element can be calculated, due to the structure

which has been imposed on the list, with the aid of functions and look­

up tables. While this approach makes the task of generating each matrix

element more complicated, it does remove the burden of generating large
amounts of unwanted zero entries as with the current MFG. Matrix

generation using element—placement algorithms would be best suited to

being performed on the MCMs themselves, rather than on a dedicated

hardwired module, so that the MFG function is effectively absorbed into

the MMPU.

7.2 The Multiple Microprocessor Unit

Whatever method is used to increase the performance of the matrix

generation function the MMPU will also have to have increased

Chapter 7

capabilities, especially if element-placement algorithms are used. The

MMPU can contain at most 16 MCMs and using MCMII this would not be

enough to cope with an increased performance MFG or element-placement

approach. Similarly CM and CMA-bus, which impose a limit of 2 million

tasks per second will also require increased capabilities, since even

before this limit is reached the system would begin to saturate so that

increasing the number of MCMs would have a less than linear improvement

upon system performance.

7.2.1 The Microcomputer Modules

The performance of any new MCM can be significantly improved upon by the

use of new microprocessors. For example the recently introduced Motorola

MC68030 is twice as powerful as the MC68020 and its floating point

coprocessor the MC68882 is 4 times more powerful than the original

MC68881. Also the introduction of the newer Reduced Instruction Set

Computer (RISC) architectures [Wa85, Pa85] could bring significant

improvements to the MCMs. The RISC philosophy, which advocates the

simplification and optimisation of a computers instruction set and

internal architecture, has recently been applied to a number of new

microprocessors, e.g. the Intel 80960 series, the AMD 29000 and the

Motorola M88000 family. The Motorola MC88100 RISC microprocessor has

four fully concurrent, independent execution units (including a floating

point unit) and two separate external buses for program and data

(Harvard architecture) [Mot881]. The 20 MHz part boasts a sustained 14

to 17 MIPS (million instructions per second) and 7 MFLOPS (million

floating point operations per second) processing rate, while being able

to transfer data at a rate of up to 80 Mbytes/sec. In addition each

MC88100 processor can support up to 4 MC88200 16-Kbyte cache/memorj-

management units on each of its external buses. These provide full speed

memory caching and demand-paged memory management as well as support for

shared-memory multiprocessing [Mot882].

168

Chapter 7

The MC88100 in conjunction with the MC88200 would seem an ideal

processor on which to base an updated MCM, due to its optimised data

movement and manipulation capabilities as well as its integral floating

point unit. In order to condense as much processing power as possible

into the MMPU each MCM could contain four MC88100s and 4 Mbytes of

shared DRAM. Each processor would be equipped with 4 MC88200s and a

small amount, perhaps 32K bytes, of fast static RAM, used to store

initialisation software and supervisor mode functions. The DRAM would be

shared on an equal priority basis between all processors and would be

used to hold program code, look-up tables etc. With 4 MC88200s per

processor, 2 for the data space and 2 for the program space, contention

for the shared memory would be minimal for most applications, allowing

each processor to run at full speed for most of the time.

However writh such an architecture there arises the problem of how

to handle the dedicated communications net interfaces. With a "live" bus

such as C-bus where the processor itself controls all the bus accesses

there is little problem. In this case each request by the processors to

use such a bus can simply be arbitrated on a cycle by cycle basis by an

onboard arbiter just as the shared memory would be arbitrated for.

However the dedicated PFB interfaces of I-bus and CMA-bus require more

control. For example with the CMA-bus interface a processor must be able

to claim ownership of the PFB before using it. This enables a processor

to start the CM access by writing to the PFB as normal and then keep

ownership until the transaction is complete. This could be resolved by a

number of methods;

1/ Software semaphores; as with any shared resource where lockout must

be provided semaphores could be used in the shared memory. These are

accessed via indivisible read-modify-write accesses and are used to

signal that the relevant interface is in use.

2/ Dedicated I/O processor; a fifth processor could provide

communications services for all the other processors. This processor

- 169 -

Chapter 7

would have sole charge of and access to the MCM communications

interfaces. A software image of the interfaces could be maintained

for each processor in the shared memory. The I/O processor could poll

each of these and when required provide the necessary servicing.

3/ Hardware image; each processor could essentially have its own copy of

each of the PFB registers. In the case of I-bus, when a processor

emptied the contents of its image PFB register by reading it. the

image PFB hardware would arbitrate for ownership of the real PFB. If

the real PFB had current data then it would be transferred into the

image, otherwise the image PFB simply waits until data arrives. The

CMA-bus interface would be similar in that when the processor wrote a

CM address to its image PFB, the hardware would arbitrate for

ownership of the real CMA-bus PFB and once ownership was obtained it

would be held until the CMA-bus transaction was complete. In this

manner each processor would appear to have its own personal subnet

interface PFB since all arbitration would be transparent.

All of these methods would provide an efficient means for sharing the

MCM interfaces, with the last method providing the highest performance

but at the expense of a considerable amount of additional hardware.

Overall the proposed architecture would make each MCM a tightly coupled

MIMD system and should give it approximately 20 to 30 times the

performance of MCMII.

7.2.2 The Communications Subnet

In any new MMPU C-bus would be uprated to the full 32-bit data and

address bus as allowed by the VME-bus specification, but would retain

the enhancements which have been added in the SMP system (section 4.3).

As has been said CM and CMA-bus must be improved beyond their current

limit of 4 million accesses/second. This could be achieved by providing

multiple CM modules, with the CM address space interleaved between the

modules. Each CM module would also require the ability to queue incoming

- 170 -

Chapter 7

requests which would be held and serviced in sequence. In addition the

CMA-bus data and address buses can be split to allow independent

transfers operating concurrently. Thus an MCM can send an address to a

CM module in pai'allel with data being transferred to/from another MCM.

Thus the transfer rate is no longer limited by the cycle time of the CM.

CMA-bus transfer rates of over 30 MHz can be envisaged using fast

bipolar TTL or even ECL interfaces and with 16 CM modules the CM system

should be able to sustain this rate. This would provide a bandwidth of

over 240 Mbytes/s, an increase of 8 fold.

7.3 Conclusion

The current SMP system demonstrates the processing power which can be

readily available to scientists through the use of dedicated computing

systems. By the application of parallel processing techniques and the

use of modern VLSI devices such systems can be put together at a low

cost and in a much reduced size compared to conventional computer

installations.

Utilising the algorithms and architectural enhancements discussed

it should be possible to build an extended shell-model processor with

100 times the power of the current system. Such a system, based on the

basic architecture of the current SMP and using the experience gained in

its design, would allow nuclear theorists to perform pf shell

calculations which hitherto have not been feasible.

- 171

References

[AMD86]
AMD Bipolar Microprocessor Logic and Interface,
1986 Data Book.

[Ba76]
Jean-Loup Baer,
"Multiprocessing Systems",
IEEE Trans. Computers, Vol C-25, No 12, December 1976, pp 1271-1277

[Ba80]
Jean-Loup Baer,
"Computer Systems Architecture",
Computer Science Press, 1980.

[Bat80]
K.E. Batcher,
"Design of a Massively Parallel Processor",
IEEE Trans. Computers, Vol C-29, No 9. 1980, pp 836-840.

[Bat88]
R.T. Bate,
"The Quantum-Effeet Device: Tomorrow’s Transistor ?",
Scientific American. March 1988, pp 78-82.

'[BCMW83]
I. Barron, P. Cavill, D. May, P. Wilson,
"Transputer does 5 or more MIPS even when not used in Parallel",
Electronics. November 17. 1983, pp 109-115.

[Ch86]
K . Chan.
"ECL Technology Suits High-Speed Logic Systems",
EDN, January 23, 1986, pp 153-158.

[ER74]
R. Eisberg, R. Resnick,
"Quantum Physics of Atoms, Molecules, Solids, Nuclei
and Particles",
John Wiley and Sons, 1974.

[FAST83]
Fastbus : A Modular High Speed Data Aquisition System for High
Energy Physics and Other Applications,
ESONE/FB/01, ESONE Committee. May 1983.

172 -

References

[Fi 85]
W. Fischer,
"IEEE P1014 - A Standard for the High-Performance VME Bus",
IEEE Micro, February 1985, pp31-41.

[F166]
M.J. Flynn,
"Very High Speed Computing Systems",
Proc. IEEE, Vol 54, No 12, December 1966, pp 1901-1909,

[F172]
M.J. Flynn,
"Some Computer Organisations and Their Effectiveness",
IEEE Trans. Computers, Vol C-21, No 9, September 1972, pp 948-960

[FK83]
E.T. Fathi, M. Kreiger,
"Multiple Microprocessor Systems: What, Why and When",
IEEE Computer, March 1983, pp 23-32.

[FM77]
L. Fox, D.F. Mayers,
"Computing Methods for Scientists and Engineers",
Clarendon Press, Oxford, 1977.

[F084]
G.C. Fox, S.W. Otto.
"Algorithms for Concurrent Processors",
Physics Today, May 1984, pp 50-59.

[Fu78]
S.H. Fuller, et al,
"Multi-microprocessors: An Overview and Working Example",
Proc. IEEE, Vol 66. No 2. February 1978, pp 216-228.

[GTT83]
D.B. Gustavson, J. Theus,
"Wire-OR Logic on Transmission Lines",
IEEE Micro, June 1983, pp 51-55.

[Gu84]
D.B. Gustavson,
"Computer Buses - A Tutorial",
IEEE Micro, August 1984, pp 7-22.

[HB87]
K. Hwang, F.A. Briggs,
"Computer Architecture and Parallel Processing",
McGraw-Hi11, 1987.

- 173 -

References

[Hi84]
W.D. Hillis,
"The Connection Machine: A Computer Architecture Based on
Cellular Automata".
Fhysica, 10D, 1984, pp 213-228.

[HJ81]
R.W. Hockney, C.R. Jesshope,
"Parallel Computers",
Adam Hilger Ltd, 1981.

[HLSM82]
L.S. Haynes, R.L. Lau, D.P. Siewiorek, D.W. Mizell,
"A Survey of Highly Parallel Computing",
IEEE Computer, Jan. 1982, pp 9-24.

[Hw87]
K . Hwang,
"Advanced Parallel Processing with Supercomputer Architectures",
Proc. IEEE. Vol 75. No 10, October 1987, pp 1348-1379.

[IEEE81]
IEEE Computer Society,
"A Proposed Standard for Binary Floating-Point Arithmetic,
IEEE Draft 8.0 of Task P754",
IEEE Computer, March 1981, pp 51-62

[KT80]
W. Kozdrowicki, D.J. Theis,
"Second Generation of Vector Supercomputers"
IEEE Computer, November 1980, pp 71-

[Mac83]
L.M, MacKenzie,
"The Application of Microelectronics to Nuclear Physics Research",
Ph.D. Thesis. Dept of Physics, Glasgow University, 1983.

[MB76]
R.M. Metcalfe, D.R. Boggs,
"Ethernet: Distributed Packet Switching for Local
Computer Networks",
Communications of the ACM, Vol 19, No 7, July 1976, pp 395-403.

[MBMW85]
L.M. MacKenzie, D.J. Berry, A.M. MacLeod, R.R. Whitehead,
"A Dedicated Lanczos Computer for Nuclear Structure Calculations",
The Recursion Method and its Applications,
eds D.G. Pettifor & D.L. Weaire, Springer-Verlag Berlin, 1985, pl65

[MECL83]
"MECL System Design Handbook",
Motorola Semiconductor Products Inc, 4th Edition. 1983.

- 174 -

References

[MECL86]
"MECL Device Data Book" ,
Motorola Semiconductor Products Inc, 2nd Edition, 1986.

[MM83]
D. MacGregor, D. Mothersole,
"Virtual Memory and the MC68010",
IEEE Micro, June 1983, pp 24-39.

[MMB87]
L.M. MacKenzie, A.M. MacLeod, D.J. Berry,
"A Multiple Microprocessor System for CPU-bound Calculations",
The Computer Journal, Vol 30, No 2, 1987, pp 110-118.

[MMBW88]
L.M. MacKenzie, A.M. MacLeod, D.J. Berry, R.R. Whitehead,
"Concurrent Algorithms for Nuclear Shell Model Calculations”,
Computer Physics Communications,
Vol 48, No 2, February 1988, pp 229-240.

[MMM84]
D. MacGregor, D. Mothersole, B. Moyer,
"The Motorola MC68020",
IEEE Micro, August 1984, pp 101-118

[Mo87]
N . Mokhof f.
"Parallel disk assembly packs 1.5 Gbytes, runs at 4 Mbytes/s",
Electronic Design, November 12, 1987, pp 45-46.

[Mot82]
Motorola MC68000 16-bit Microprocessor User’s Manual
Prentice-Hall Inc. Third Edition, 1982.

[MotOlO]
Motorola MC68010 Virtual Memory Processor,
Product Preview, Motorola Semiconductors, 1982.

[Mot230]
Motorola MC68230 Parallel Interface/Timer,
Advance Information, Motorola Semiconductors, 1981.

[Mot451]
Motorola MC68451 Memory Managment Unit,
Advance Information, Motorola Semiconductors, 1982.

[Mot452]
Motorola MC68452 Bus Arbitration Module,
Advance Information, Motorola Semiconductors, 1982

- 175 -

References

[Mot881]
Motorola MC88100, 32-bit Third-Generation RISC Microprocessor,
Technical Summary, Motorola Semiconductors, 1988.

[Mot882]
Motorola MC88200, 16-Kilobyte Cache/Memory Management Unit (CMMIT),
Technical Summary, Motorola Semiconductors, 1988.

[Mot68000]
Motorola MC68000 16-bit Microprocessor Unit,
Advance Information, Motorola Semiconductors, 1982.

[NS081]
"Interfacing the NS32081 as a Floating-Point Peripheral",
Application Note. National Semiconductor Corporation,
Microprocessor Applications Engineering.

[Pa72]
C.C. Paige,
"Computational Variants of the Lanczos Method
for the Eigenproblem",
J. Inst. Maths. Applies. 10, 1972, pp 373-381

[Pa85]
D.A. Patterson,
"Reduced Instruction Set Computers",
Communications of the ACM, Vol 28, No 1, January 1985, pp 8-21.

[Pr79]
D . Prener,
"Large Multimicroprocessor Systems",
Microprocessors and Microsystems, Vol 3, No 6, July/August 1979,
pp 271-276.

[PRT85]
R.B. Pearson, J.L. Richardson, D. Toussaint,
"Special-Purpose Processors in Theoretical Physics",
Communications of the ACM. Vol 28, No 4, April 1985, pp 385-389.

[RT88]
M. Reece, P. Treleavan,
"Computing from the Brain",
New Scientist, 26 May, 1988, pp 61-64.

[Ro69]
S . Rosen,
"Electronic Computers: A Historical Survey",
Computing Surveys, Vol 1, No 1, March 1969, pp 7-36.

References

[SG79]
E. Stritter, T. Gunter,
"A Microprocessor Architecture for a Changing World:
The Motorola 68000",
IEEE Computer, February 1979, pp 43-52.

[Se85]
C.L. Seitz,
"The Cosmic Cube",
Communications of the ACM, Vol 28, No 1, January 1985, pp 22-33.

[SM84]
C.L. Seitz, J. Matisoo,
"Engineering Limits on Computer Performance",
Physics Today, May 1984, pp 38-45.

[Ta84]
D.M. Taub,
"Arbitration and Control Aquisition in the Proposed
IEEE 896 Futurebus".
IEEE Micro, August 1984, pp 28-41.

[VME82]
VMEbus Specification Manual.
Revision B, August 1982,
VMEbus Manufacturers Group (Motorola, Mostek, Signetics/Philips).

[Wa85]
P. Wallich,
"Toward Simpler, Faster Computers",
IEEE Spectrum, August 1985, pp 38-45

[Wh72]
R.R.Whitehead,
"A Numerical Approach to Nuclear Shell-Model Calculations",
Nuclear Physics, A182, 1972, pp 290-300

,[Wi87]
T. Williams,
"Optics and Neural Nets: Trying to Model the Human Brain",
Computer Design, March 1987, pp 47-62

[WWCM77]
R.R. Whitehead, A. Watt, B.J. Cole, I. Morrison.
"Computational Methods for Shell-Model Calculations",
Advances in Nuclear Physics, Vol 9, Chapter 2, Plenum Press 1977.

- 177 -

List of Abbreviations

Section No.

BAM
BBFC
BCSR
BRAC
BWAC
BWC

CCM
CIT
CM
CU

DTB
DTC
DUART

FNP
FPU

GMC
GOT

INP

JSW

LBR
LMC
LOT

MCM
MFG
MFLOP
MID
MIT
MMPU
MMU
MPC

NPC

OEC-

PE
PF
PFB
PG
PIC
PI/T
PSR

Bus Arbitration Module
Buffer Block Finished Comparator
Buffer Control and Status Register
Buffer Read Address Counter
Buffer Write Address Counter
Buffer Word Counter

Channel Clocking Memory
Channel Information Table
Central Memory
Control Unit

Data Transfer Bus
Driver Table Constructor
Dual Universal Asynchronous
Receiver/Transmitter

Final N-Partition
Floating Point Unit

Global Module Controller
Global Offset Table

Initial N-Partition

Job Status Word

Local Bus Requestor
Local Module Controller
Local Offset Table

Micro-Computer Module
Matrix Format Generator
Millions of Floating Point Operations/sec
Module ID
Module Identification Table
Multiple Microprocessor Unit
Memory Management Unit
M-Partition Controller

N-Partition Controller

Operator Encoder Channel

Processing Element
Pair Filter
Prefetch Buffer
Primary Generator
Primary Index Counter
Parallel Interface/Timer
Prime State Register

4.3.4)
3.5.6)
3.6.1)
3.5.6)
3.5.6)
3.5.6)
3.5.3)
3.7.1)
2.5.2)
1 .1)

3.5.9)
3.7.3)
4.6)
3.7.1)
5.2)
4.3.1)
5.3.1)
3.7.1)
3.7.1)

5.1)
5.2.4)
5.3.1)
2.5.2)
2.5)
1 .1)
4.3.2)
4.6.2)
2.5)
4.6)
3.7.2)
3.7.2)
3.3)
1 .1)
2.5.1)
3.7.2)
2.5.1)
3.7.1)
3.6)
3.6.1)

RDB Runtime Data Block (3.7)

- 178 -

List of Abbreviations

SC — Slave Controller (5.2.5)
SD — Slater Determinant (2.2)
SDWS — Slater Determinant Word Sequencer (3.7.2)
SG — Secondary Generator (2.5.1)
SGCSR — SG Control and Status Register (3.6.1)
SGDR — SG Driver Routine (3.7.3)
SIC — Secondary Index Counter (3.2)
SM — Supervisor Module (2.5.2)
SMP — Shell Model Processor (2.0)
STB — Seed Table Builder (3.7.3)

TCU — Timing and Control Unit (3.5.1)
TSW — Task Setup Word. (2.5.1)

- 179 -

Appendix A

Two-job software listing for current MCMII.

* *
* MASTER PROCESSOR TWO-JOB ROUTINE *
* *

*
* Address register contents;
* AO ---- Base address of Slaves workspace,
* A1 ---- Base address of initial and final vectors,
* A 2 Workspace ,
* A3 ---- Local directory,
* A4 ---- Matrix Element Table,
* A5 ---- Global Directory,
* A 6 Mask table.
*
* NOTE that all instructions which reference tables held in DRAM require
* 2 extra clock cycles per word length access due to wait states. This
* affects all references via address registers A1-A6.
*
* Data register contents;
* D5 ---- Prime state.

Number of
clock cycles

* Read words 0 and 1 from I-bus PFB.
* Contains job-type bits and SIC.
TESTJOB MOVE.L IJ3US.D4 20

MOVE.L D4,SEC_IN(A2) Save in workspace. 16+4
* Test job-type bit and branch if not a
* two-job to determine what type it is.

BCLR.L #23,D4 14
BNE P.JOBTYPE Branch if not a two-job 12

* Job is a two-job.
* Mask off unwanted bits in long word to leave only the SIC.

ANDI.L #SICMSK,D4 16
* Get the four operators from I-bus PFB.

MOVE.L I_BUS+4,D0 20
MOVEP.L DO,0PERAT0RS+1(A2) Separate operators 24+8
MOVE.L D5,D7 Copy prime state into D7 4

* Place the four operators i,j,l,k
* in registers DO to D3 respectively.

MOVEM.W OPERATORS (A2),D0-D3 32+8
* Get base address of 0-table in AO.

LEA 0TABLE(A2),AO 8
* Get the local offset using i and j.

ADD. W Dl.Dl 2 j 4
MOVE.W (A0,D1.W),D1 Get j(j-l) from 0-table 14+2
ADD.W DO,DO 2i 4
ADD. W DO ,D1 2i + j(j-l) 4
MOVE.W (A3,D1.W),D6 Get local directory entry 14+2
ADD.W D1,D1 4i + 2 j (j-1) 4

18 0 -

Appendix A

* Annihilate appropriate bits in prime state.
BCHG.L D3,D7
BCHG.L D2.D7

* Get global offset using k and 1 and
* add to local offset.

Annihilate kth orbital
Annihilate 1th orbital

ADD. W D2,D2 21 4
MOVE.W (A0.D2.W),D2 Get 1(1-1) from O-table 14+2
ADD. W D3,D3 2k 4
ADD.W D2,D3 2k + 1(1-1) 4
ADD.W (A5.D3.W),D6 Get global offset and add 14+2
ADD.W D3,D3 4k + 21(1-1) 4
:rix element value from MET.
MOVE.L (A4,D6.W),D6 18+4
ne the sign of the matrix element.
MOVE.L (A6,D1.W),D1 Get i,j mask 18+4
MOVE.L (A6.D3.W),D3 Get k ,1 mask 18+4
EOR.L D3,D1 Form composite mask 8
AND.L D1,D7 Mask prime state word 8
MOVE.L D7 ,D1 Copy resultant word into D1 4
SWAP D1 Swap words in D1 4
EOR.W D1,D7 Exclusive-OR the two words 4
MOVE.W D7,D1 Copy resultant word into D1 4
LSR.W #8 ,D1 shift byte 1 into byte 0 22
EOR.B D7,D1 Exclusive-OR the two bytes 4

* Use resultant byte to address Parity table. If parity
* byte is not equal zero then matrix element is negative.

LEA PTABLE(A2),AO Parity table address in AO 8
MOVE.B (A0,D1.W),D1 Read parity byte 14+2
BEQ.S POS Branch if parity byte zero 8
BCHG.L #31,D6 Change matrix element sign 12

* Reinitialise slaves workspace address in AO.
POS MOVE.L ASLWSPC(A2),AO 16+4

LSL.L #3,D4 Multiply SIC by 8. 14
*
* Got matrix element so send to slave when he is ready.
WAIT2 TST.W (AO) Test if slave ready for job 8

BPL.S WAIT2 If not then wait 8
MOVE.L (A1,D4.L),SLT.NVM(AO) Send new Vim 30+4
MOVE.L 4(A1,D4.L),SLT.NFM(AO) Send new Vfm 30+4
MOVE.L D6,SL.NHMN(AO) Send Hmn 16
MOVE.L D4,SL.NSI(AO) Send SIC 16
MOVE.W #T2JOB,(AO) Send two-job code 12

* Test to see if slave has any final vector
* elements to send back to be stored in vector table.

TST.W SLT.CODE(AO) Test slave code word 12
BMI.S NEXTJOB If no data then pass 8
MOVE.L SLT.IN(AO),D0 Otherwise read vector index 16
MOVE.L SLT.FI(AO),4(A1,DO.L) Read and store Vfm 30+4
MOVE.W #N0VAL,SLT.CODE(AO) Signal that data read 16

* Test I-bus interface control to determine if
* a new TSWr has arrived, if so then go back to start.
NEXTJOB TST.B MCNTRL 16

BPL TESTJOB Back to start 10

Total 731 clocks

45.7 ;usecs

- 181 -

Appendix A

**
* *
* SLAVE PROCESSOR TWO-JOB ROUTINE *
* *
**
*
* Address register contents;
* AO ----- Pointer to SIOODE and base address of workspace,
* A 1 unused,
* A2 ---- FPU - address to send ID word,
* A3 ---- FPU - address to send operands and read results,
* A4 ---- FPU - address to read status,
* A 5 unused ,
* A 6 unused.
*
* Data register contents;
* D7 ---- ID-byte for FPU.
*
* FPU operation times;
* Multiply = 6 jusec,
* = 9 6 processor clocks.
* Addition = 9.375 jusec,
* = 150 processor clocks.
*

Number of
clock cycles

* Test SIOODE word to determine if got another
* task and what its type is.
TSTJOB TST.W (AO) 8

BEQ.S START2 10
BMI.S TSTJOB

* Start a two-job.
START2 MOVE.W #T2JOB,SL.RCIC{AO) Save job type in workspace 16

MOVE.L SL.NHMN(AO),D2 Read new Hmn 16
MOVE.L SL.NSI(AO),D5 Read new index 16
MOVE.L SLT.NVM(AO),D3 Read new Vim 16
MOVE.L SLT.NFM(AO),D1 Read new' Vfm 16
MOVE.W #NOVAL,(AO) Signal that data read 12

* Save Hmn and index in workspace.
MOVE.L D2,SL.HMN(AO) Save Hmn 16
MOVE.L D5,SL.SI(AO) Save index 16

*
SWAP D2 Swap Hmn, ready for FPU 4

♦
* Multiply Hmn by Vin (Vin is held in FPU) .

MOVE.W D7 ,(A2) Send ID word to FPU 8
MOVE.W #MULFF0A,(A3) Send operation code word 12

*
MOVE.L D2,(A3) Send Hmn 12

*
SWAP D1 Swap Vfm, ready' for FPU 4
MOVE.W #ADDFIA,D6 Get next op. word ready 8

* Wait 84
* Read back FPU status word.

MOVE.W (A4),DO Read back FPU status 8
BEQ.S FP2 Branch if OK 10
TRAP #1 Otherwise TRAP if error
DC.W FPUER FPU error signal to TRAP routine

- 182 -

Appendix A

* Read result from FPU.
FP2 MOVE.L (A3),DO Read multiplication result 12
* Add result of multiplication to Vfm

MOVE.W D7,(A2) Send ID word 8
MOVE.W D6,(A3) Send FPU op. word 8
MOVE.L DO,(A3) Send previous result 12
MOVE.L D1,(A3) Send Vfm 12

* These instructions pipelined with FPU operation
SWAP D3 Swap Vim, ready for FPU 4
MOVE.W #MULFIA,D6 Get next FPU op. code word 8

* Wait 138
* Read back FPU status.

MOVE.W (A4),D0 Read FPU status 8
BEQ.S FP3 Branch i f OK 10
TRAP #1
DC.W FPUER

* Read result from FPU.
FP3* MOVE.L (A3),D1 Read result 12

* Multiply Hmn by Vim.
MOVE.W D7,(A2) Send ID word 8
MOVE.W D6,(A3) Send FPU op. word 8
MOVE.L D2,(A3) Send Hmn 12
MOVE.L D3,(A3) Send Vim 12

* This instruction pipelined with FPU operation
MOVE.W #ADDFIF1,D6 Get next FPU op. code word 8

* Wait 88
* Read back FPU status.

MOVE.W (A4) , DO Read FPU status 8
BEQ.S FP4 Branch if OK 10
TRAP #1
DC.W FPUER

* Read result from FPU.
FP4 MOVE.L (A3),DO Read result 12

* Add result to Vfn (Vfn held in FPU register).
MOVE.W D7,(A2) Send ID word 8
MOVE.W D6,(A3) Send FPU op. word 8
MOVE.L DO,(A3) Send previous result 12

* Send back updated Vfm to master.
* These! instructions pipelined with FPU operation
WAIT2 TST.W SLT.CODE(AO) Test if master ready 12

BPL.S WAIT2 If not then wait 8
SWAP D1 Swap Vfm back to normal 4
MOVE.L Dl,SLT.FI(AO) Send back Vfm 16
MOVE.L D5,SLT.IN(AO) Send back index 16
MOVE.W #T2JOB,SLT.CODE(AO) Signal that data sent 16

* Wait 78
* Read back status for FPU operation, no result to be read back.

MOVE.W (A4),DO Read FPU status 8
BEQ TSTJOB Branch if OK to start 10
TRAP #1
DC.W FPIER

Total = 886 clocks

= 55 .4 jusec

- 183 -

Appendix B

Two-job software for final version MCMII.

**
* *
* MASTER PROCESSOR TWO-JOB ROUTINE *
* *
**
*
* Address register contents;
* AO --- Base address of Slaves workspace,
* A1 --- O-table , Parity table +64,
* A 2 Workspace,
* A3 ---- Local directory,
* A4 ---- Matrix Element Table,
* A 5 Global Directors'-,
* A 6 Mask table.
*
* NOTE that all instructions which reference tables held in DRAM require
* 2 extra clock cycles due to wait states. This affects all references
* via address registers A1 and A3-A6.
*
* Data register contents;
* D5 --- Prime state.

Number of
clock cycles

* Read SIC and job-type bits from I-bus PFB
* and store.
TESTJOB MOVE.L I_BUS,D4 20

MOVEL.L D4,SEC_IN(A2) 16
* Test job-type bits
* and branch if not a two-job

BCLR.L #23,D4 14
BNE P. JOBTYPE 12

* Is a two-job, mask off unwanted bits to leave only SIC, read and store
* operators, make copy of prime state in D7.

ANDI.L #SICMCK,D4 16
MOVE.L I_BUS+4,D0 20
MOVEP.L DO,OPERATORS+1 (A2) 24
MOVE.L D5,D7 4

* Get operators into data registers.
* i into DO, j into D1, 1 into D2, k into D3.

MOVEM.W OPERATORS(A2),D0-D3 32
* Get local offset

ADD.W D1,D1 2 j. 4
ADD.W DO,DO 2i. 4
ADD.W (A1,D1.W),D0 2i + j(j-l). 14+2
MOVE.W (A3,DO.W),D6 Get local offset. 14+2

* Annihilate particles in prime state.
BCHG.L D3,D7 8
BCHG.L D2,D7 8

- 184 -

Appendix B

* Get global offset.
ADD.W D2 ,D2 21. 4
ADD.W D3 ,D3 2k. 4
ADD.W (A1,D2.W),D3 2k + 1(1-1). 14+2
ADD.W (A5,D3.W),D6 Add on global offset. 14+2

* Mask state.
AND.L (A6,D6.W),D7 20+4

* Get two-body matrix element.
m o v e.l (A4.D6.W),D6 18+4

* Determine sign change.
MOVE.L D7 ,D1 Copy result. 4
SWAP D1 4
EOR.W D1 ,D7 EOR two halves. 4
MOVE.W D7 ,D1 4
LSR.W #8 ,D1 22
EOR.B D7 ,D1 EOR two bytes. 4

* Get parity byte and if not zero then change sign.
MOVE.W 64(A1,D1.W),D1 Get parity byte. 14+2
BEQ.S WAIT2 Branch if zero. 8
BCHG.L *31,D6 Otherwise change sign. 12

* Pass parameters to slave if ready to take more.
WAIT2 TST.W (AO) Test if slave ready 8

BPL.S WAIT2 If not then wait. 8
MOVE.L D6,SL.NHMN(AO) Pass matrix element. 16
MOVE.L D4,SL.NSI(AO) Pass secondary index. 16
MOVE.W #T2JOB,(AO) Pass two-job code. 12

* Test if I-bus ready with another TSW,
* if so then do again.
NEXTJOB TST.B MCNTRL Test if I-bus ready. 16

BPL TESTJOB If so then do again. 10

Total = 464 clocks

= 29 .usees

)

- 185 -

Appendix B

**
* *
* SLAVE PROCESSOR TWO-JOB ROUTINE *
* *
**
*
* Address register contents;

AO
A1
A2
A3
A4
A5
A6

Pointer to SIOODE and base address of workspace
CMA-bus PFB
FPU1 - address to send ID byte,

to send ID byte,
to send operands and read result,
to send operands and read result,
register for CMA-bus.

FPU2 - address
FPU1 - address
FPU2 - address
SCNTRL control

Data register contents;
D 7 ID-byte for FPUs.

Number of
clock cycles

* Read data from parameter passing area.
PS.STRT2 MOVE.L SL.NHMN(AO),D2 Read new Hmn.

MOVE.L SL.NSI(AO),D5 Read new secondary index.
♦Signal to master processor (via SICODE) that data has been read.

MOVE.W #NOVAL,(AO)
♦ Activate CMA-bus to read Vim and Vfm.

MOVE.L D5,(A1)
♦ Save data in workspace.

MOVE.L D5,SL.SI(AO)
MOVE.L

* Start off FPU1
MOVE.W
MOVE.W
SWAP
MOVE.L

Activate CMA-bus.

D2,SL.HMN(AO)
 Hmn x Vin
D7,(A2)
#MULFF0A,(A4)
D2
D2,(A4)

16
16

12

12

16
16

Send FPU ID-byte.
Send operation code word.
Swap Hmn.
Send Hmn.

* Read vector elements from CMA-bus PFB, if ready.

Vim

(A 6)
WAITC
4(A1),D3

 Hmn x
D7,(A3)
#MULFIA,(A3)
D2,(A5)
D3
D3,(A5)

WAITC TST.B
BPL.S
MOVE.L

* Start of FPU2
MOVE.W
MOVE.W
MOVE. L
SWAP
MOVE.L

* Read Vfm from CMA-bus PFB.
MOVE.L 8(A1),D1
SWAP D1

* Read back status from FPU1 (= Hmn
MOVE.W 8(A2),DO
BEQ.S FP1
TRAP #1
DC.W FPU1ER

* Read result from FPU1.
FP1 MOVE.L (A2),DO

Test if ready.
If not then wait.
Read Vim.

Send ID-byte.
Send operation code word.
Send Hmn to FPU2.
Swap Vim
and send to FPU2.

Read Vfm from CMA-bus.
Swap Vfm.
Vin)
Read status word.
If zero then OK.

Read result.

12
4
12

8
8
16

8
12
12
4
12

16
4

12
10

12

- 186 -

Appendix B

* Start off FPU1 (Hmn x Vin) + Vfm
MOVE.W D7,(A2) Send FPU ID-byte, 8
m o v e.w #ad d f i a,(A4) Send operation code word. 12
MOVE.L DO, (A4) Send previous result. 12
MOVE.L D1,(A4) Send Vfm. 12

* Read back status from FPU2 (= Hmn x Vim)
MOVE.W 8(A3),D0 Read status word. 12
BEQ.S FP2 If zero then OK. 10

* Read
FP2

TRAP #1
DC.W FPU2ER

result from FPU2.
MOVE.L (A5) ,DO Read result. 12

* Start off FPU2 (Hmn x Vim) + Vfn.
MOVE.W D7,(A3) Send ID-byte. 8
MOVE.W #ADDFIF1,(A5) Send operation code word. 12

ft MOVE.L DO,(A5) Send previous result. 12

* Waitft for FPU1; wait approx. 101
♦
* Read back status from FPU1.

MOVE.W 8(A2),D0 Read status word. 12
BEQ.S FP3 If zero then OK. 10

* Read
FP3

TRAP #1
DC.W FPU1ER

result from FPU1.
MOVE.L (A4),DO Read result (=Vfm) 12
SWAP DO Swap 4
MOVE.L DO,8(A1) Send to CMA-bus PFB. 16

ft MOVE.L D5,(A1) Activate CMA-bus. 12
*
* Waitft for FPU2; wait approx. 8
♦
* Read back status from FPU2 (no result to read back).

MOVE.W 8(A3),DO Read status word. 12
BEQ.S FP4 If zero then OK. 10

* Test

TRAP #1
DC.W FPU2ER

SIOODE from master processor for next job.
FP4 CMPI.W #T2JOB,(AO) Test for next job. 12

BEQ PS.STRT2 If two-job then do again. 10

Total = 588 clocks

= 36.75 jusecs

(GLASGOW I
UNIVERSITY I
library I

Computer Physics Communications 48 (1988) 229-240
North-Hollarid, Amsterdam

229

CONCURRENT ALGORITHMS FOR NUCLEAR SHELL MODEL CALCULATIONS
L.M. M ACKENZIE
Dept, o f Computing Science, University o f Glasgow, Glasgow G12 8Q Q , Scotland

A.M. MACLEOD, D.J. BERRY and R.R. W HITEHEAD
Dept, o f Physics and Astronomy, University o f Glasgow, Glasgow, Scotland

Received 30 July 1987

The calculation of nuclear properties has proved very successful for light nuclei, but is limited by the power of the present
generation of computers. Starting with an analysis of current techniques, this paper discusses how these can be modified to
map parallelism inherent in the mathematics onto appropriate parallel machines. A prototype dedicated multiprocessor for
nuclear structure calculations, designed and constructed by the authors, is described and evaluated. The approach adopted is
discussed in the context of a number of generically similar algorithms.

1. Introduction

Physicists have been investigating the structure
of the atomic nucleus since its discovery in the
early years of this century. The difficulties are
considerable: not only is the nucleus a quantum
many-body system, but it is governed, moreover,
by an interparticle potential (the nucleon-nucleon
interaction) which is not fully understood. From
empirical observations, it has long been known
that there are indications of a shell structure,
resembling the well-understood model of the atom.
Yet, despite basic similarities, there are major
fundamental differences of character between the
atomic and nuclear cases: the existence of two
distinct types of nucleon; the more exotic nature
of the nuclear force; and the absence of any heavy
centre of this force.

The basic assumption of the Shell Model [1] is,
that to a first approximation, each nucleon moves
independently in a potential that represents the
average interaction with the other nucleons. The
solutions of the single-particle Schrodinger equa­
tion in an approximation to this potential reveal a
fundamental shell structure. Upon inclusion of the
sp in-orb it term, it is then possible to make pre­

dictions in encouraging agreement with experi­
ment, in cases where two-body forces are not
effective.

In moot nuclei, however, we must assume that
the Hamiltonian has a two-body nature:

The crucial problem of diagonalising this operator
may be tackled by choosing as a basis for the
configuration space, wave functions with definite
values of “ good” quantum numbers like J (total
angular momentum), T (isospin) etc., thereby per­
mitting a decomposition into subspaces where
these quantum numbers are conserved. Although
this reduces the magnitude of the problem some­
what, the technique is not without its drawbacks:
for example in the form of the elaborate algebra
of coupling central to its mathematical develop­
ment.

Within the last decade or so, theorists at Glas­
gow have explored a fruitful alternative, the m-
scheme, in which a Slater determinant basis is
employed (Slater determinants are eigenvalues of
the single-particle state occupation operators). Al-

0010-4655/88/S03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)

GLASGOW
UNIVERSITY
LIBRARY

230 L.M. M ackenzie el al. / Nuclear shell model calculations

though very large configuration spaces result from
this strategy, the Hamiltonians can be efficiently
dealt with by proper attention to numerical tech­
niques. The real strength of the method lies in the
natural way in which it can be mapped onto an
extremely simple and elegant digital representa­
tion, making it ideal for computer manipulation.
This mapping is central to the considerable success
of the Glasgow Shell Model Program [2].

However, even light w-scheme systems can
generate a substantial computational load (enough
to tax available time on conventional mainframes),
and the machine resources required by nuclei of
higher mass number are enormous. The authors
believe that only a parallel solution to this prob­
lem is realistic, but, to pursue such a course,
certain difficulties must first be overcome. The
current Glasgow Program is, in essence, a unipro­
cessor algorithm, which, for various reasons is not
directly suitable for a concurrent machine. Fur­
ther, the scale of the potential CPU demand is so
large that even were a suitable algorithm identi­
fied and successfully mapped onto a general pur­
pose parallel computer architecture, any existing
or planned machine would still be unable to meet
it satisfactorily. It seems logical therefore, that any
search for such an algorithm should be under­
taken with a view to its possible implementation
as a dedicated system. This paper describes a
recent project at Glasgow to identify a class of
concurrent shell model algorithms, and investigate
the feasibility of mapping this class onto real
machine architectures. As part of this project, a
pilot Shell Model Processor, has been constructed.
This machine illustrates the principles applicable
to a much larger system, although its own capabil­
ities are necessarily limited.

2. Review of shell model theory

The computer-oriented representation of the
Glasgow Shell Model Program is developed from
the traditional occupation number formalism. In
any n-particle system we can, given the single-par­
ticle states ordered by some arbitrary means, form
a basis for the system as a whole from the Slater

determinants:

l«i •••«,■•••>
with n t particles in state i. These are eigenfunc­
tions of the number operators, representing n-par-
ticle states with definite values for the occupancy
of each single-particle state [3]. For a nuclear
system, of course, the Pauli principle demands
that n t = 0 or 1, for each /. The Glasgow for­
malism involves assigning each single-particle
nucleon state of a given system to a different bit
of a computer word. The values, 0 or 1, which the
bit can assume, indicate whether the state is empty
or full. Thus the Slater determinant 110010100),
describing a 3-particle system with 8 possible
single-particle states, can be represented by an
8-bit word 10010100.

Much of the initial effort expended on the
m-scheme approach, has concentrated on light
nuclei, with an active sd-shell (fig. 1). The sd-shell
consists, in fact, of 3 sub-shells (l d 5/2, 2s1/2 and
I d 3/2) with a total of 12 single-particle states for
protons and an equivalent 12 states for neutrons.
For calculations involving sd-shell nuclei, the
closed Is and lp shells are considered only as
contributing to the overall single-particle poten­
tial, while the outer pf-shell is deemed to be
inaccessible (although this constraint is sometimes
slightly relaxed). Hence only the 24 sd-shell

' pf -shel l

sd-shel l

Fig. 1. Energy levels in the shell model.

L. M. Mackenzie et al. / Nuclear shell model calculations 231

orbitals need be considered and the computer
word used for representation requires 24 bits.

In the m-scheme there is a trade-off between
the flexibility of the representation and the size of
the configuration space. Despite the indeterminate
values of most of the helpful quantum numbers,
however, Slater determinants are eigenfunctions of
the M j operator (z-component of total angular
momentum), so conservation does still allow some
reduction in the scale of the problem. The first
step is to generate a complete set of Slater de­
terminants with prescribed quantum numbers (e.g.
number of protons, number of neutrons, total M j
and parity), forming a basis for the section of the
nuclear space under consideration. Once this is
achieved, the fundamental problem, both from the
physical and computational points of view, is that
of evaluating the H am iltonian matrix and
thereupon diagonalising it. Many other calcula­
tions, such as for example, deriving the density
matrix for a given state, or determining the expec­
tation values of other observables, are essentially
less demanding variations of this basic task.

The magnitude of the eigenvalue determination
problem is a consequence of the iterative nature of
the diagonalisation process, performed on what is
likely to be a very large matrix. The largest pure
sd-shell calculation generates a space with a di­
mension of about 105, but, if pf-shell orbitals are
introduced, there is no realistic upper bound. Ob­
viously, therefore, no machine can perform totally
unconstrained Shell model calculations involving
shells above the sd. The question is: how large a
subset might become feasible in the foreseeable
future?

If the Hamiltonian is treated as a two-body
operator, a typical element (/ | H | /) is zero
whenever the basis states | i) and | /) differ by
the position of more than two particles (i.e. if the
representing digital words have a Hamming dis­
tance of more than four). Otherwise matrix entries
can be computed by taking linear combinations of
the empirically determined uncoupled two-body
matrix elements. Hijk/, of which there are a rea­
sonably small number, and which contain the
quantitative description of the nuclear force. The
zero-condition, as the Hamming criterion will be
referred to henceforth, does, however, imply a

Hamiltonian matrix which is irregularly sparse, a
feature which can be exploited to some extent, but
which does not admit any real labour-saving
mathematical devices. The Hamiltonian is, there­
fore, generated by determining which pairs of
basis elements are li iced by a non-zero matrix
entry, and, for each such pair, by computing a real
value determined by a simple evaluation theorem.
For example, if exactly two bits differ between the
representations of | /) and | /) , the value is a
single two-body element Hijkl, apart from sign.
The diagonalisation itself is accomplished by
means of the Lanczos method [4], This has the
great advantage that, Tor any given n X n matrix
A , it is only necessary to diagonalise its upper
m X m com er for m « : n, to obtain convergence
for the dominant eigenvalues of A. Since this can
be done after only m — 1 iterations, the Lanczos
method is ideally suited to the problem of finding
the lowest energy eigenstates of large Hamiltonian
matrices.

The Lanczos algorithm itself, starting within a
trial vector vx, generates a sequence of mutually
orthogonal vectors (y ,) such that:

A Y = Y T where Y = [y „ . . . , y„],

and T is tridiagonal. During this process, a m od­
erate amount of vector manipulation is involved,
but by far the most computationally intensive step
is the multiplication of A into the current iteration
vector yr For matrices the size of the larger shell-
model Hamiltonians this is a very heavy arith­
metic load indeed.

The multiplication problem can be tackled in
two distinct ways: the matrix can be generated
once, then stored and retrieved when required; or
it can be generated afresh, in real time, for every
iteration. The former approach reduces the com­
putational load, but requires enormous amounts
of secondary storage (hundreds of gigabytes for
relatively modest pf-shell calculations). Further,
any attempt to exploit high-performance matrix -
vector multipliers must confront the significant
data retrieval problems which such a secondary
storage scheme would face. Although the authors
do not, by any means, consider that these difficul­
ties are insurmountable, the present work is con­
fined to development of the second alternative,

232 L.M. Mackenzie et al. / Nuclear shell model calculations

which seems to offer a more flexible, and at least
as cost-effective, solution.

3. Parallelism in Shell Model calculations

Seeking a suitable parallel algorithm for Shell
Model calculations, a natural first step is the
explicit identification of any fundamental concur­
rency in the logic of the m-scheme, typified by the
following sequence:
1) Generate an ordered Slater determinant basis
for the space involved. This basis (e x, . . . , e N)
serves as an index for the rows and columns of the
Hamiltonian, and for the rows of the state vectors.
2) Find all pairs of basis elements (e ;, e .) which
fail the zero-condition test. If a pair passes the
test, the corresponding (/, y')th entry of the Ham ­
iltonian is, as discussed above, automatically zero.
3) For each contributing pair found, use the
evaluation rules and the uncoupled two-body ma­
trix elements to compute the real value of the
(/, y')th Hamiltonian entry, say, H ^.
4) For each nonzero H ,• •, multiply by the y'th
element of the initial vector for the iteration and
accumulate the product into the / th element of the
product vector. When this has been achieved for
all nonzero Hijt the matrix multiplication is com­
plete.

The most obvious parallelism arises at steps 3
and 4. The evaluation of individual matrix entries
is independent unless tables of two-body elements
are shared, and there is no great inhomogeneity in
the amount of work associated with different en­
tries. Furthermore, matrix multiplication is itself
also inherently parallel, for clearly two arithmetic
processors can proceed independently to compute
contributions to a final vector given two distinct
entries of the multiplier matrix. However, consid­
ering the potentially very large dimensions of the
configuration spaces, the initial and final vectors
for an iteration will inevitably be shared random
access data structures, creating a possible limit to
the maximum practical degree of concurrency.

The parallelism in tracking down the contrib­
uting pairs is less easy to exploit efficiently. Since
the matrix is irregular, there is no way of, say,

block-partitioning it, to share work equally
amongst several processing elements. However,
given that any subdivision may be unfair, it is
possible to introduce concurrency here also by, for
example, allocating different rows to different
searching elements.

The ultimate aim is to provide an algorithm
which allows maximal parallelism. To achieve this,
any potential bottlenecks must be identified and
their effect minimised. As is well known, such
bottlenecks arise when processes are forced to
communicate in such a way that the communica­
tion medium, or subnet, becomes saturated. The
above analysis suggests that the presence of shared
data structures is liable to engender just such a
situation, and, clearly, minimising access to any
such structures will be vital to the success of a
practical system.

4. The Glasgow Program

As a salient starting point, the standard Glas­
gow Program algorithm [2] is analysed as applied
to the sd-shell, providing a simple yet concrete
example. Fig. 2 shows a typical assignment of
single-particle states to a 24-bit word, divided in
two, with the most significant half chosen (arbi­
trarily) to represent proton orbitals. Each bit, /,
has associated with it, a value, m t, representing
the contribution to the z-component of total angu­
lar momentum from the /th orbital (if occupied).
Of course:

M j = L m r
i

Suppose a calculation involves a nucleus with
n p protons, n n neutrons and total Mj = M.
Generation of the basis with the orbital assign­
ment of fig. 2, amounts to producing all 24-bit
words with n p ones in the upper 12 bits, n n ones
in the lower 12 bits, and with a total M j contribu­
tion of M from these set bits. This is achieved by,
first, filling the leftmost n p proton bits and the
leftmost n n neutron bits with ones, then succes­
sively moving the rightmost set bit one place to
the right, checking, as each new word is produced,
whether its My value is M. Words satisfying the

L.M. M ackenzie el al. / Nuclear shell model calculations 233

Bit Number 1 J Nucleon

23 d 5/2 + 5/2 proton22 d 5/2 +3/2 proton21 d 3/2 + 3/2 proton
20 d 5/2 + 1/2 proton
19 d 3/2 + 1/2 proton
IB s 1/2 + 1/2 proton
17 d 5/2 -1/2 proton
IE d 3/2 -1/2 proton
15 s 1/2 -1/2 proton
14 d 5/2 -3/2 proton
13 d 3/2 -3/2 proton
12 d 5/2 -5/2 proton
11 d 5/2 + 5/2 neutron
10 d 5/2 +3/2 neutron
9 d 3/2 + 3/2 neutron
B d 5/2 +1/2 neutron
7 d 3/2 + 1/2 neutron
6 5 1/2 + 1/2 neutron
5 d 5/2 -1/2 neutron
4 d 3/2 -1/2 neutron
3 s 1/2 -1/2 neutron
2 d 5/2 -3/2 neutron
1 d 3/2 -3/2 neutron
0 d 5/2 -5/2 neutron

Fig. 2. Typical assignment of single particle states to a 24-bit word.

conditions are stored, producing a basis list in
descending numerical order.

Once the basis has been computed, each ele­
ment, er, is used to begin a search along a row of
the Hamiltonian, seeking non-zero entries. This is
done by selecting a pair of set bits, say k and /,
and resetting them. The indices k and / are used
to locate a block of main store containing all two
body matrix elements Hjjkl, for all /, j such that:
m i + rrij = m k + m ,.

Proceeding through this list, those elements are
selected which are such that when i and j are set,
the new Slater determinant has valid n p, and n n
(M is guaranteed by the above condition), so that
it is a member of the basis, say es. The pair er, es
now represent row and column indices for a Ham ­
iltonian entry, Hrs, which can be passed for
evaluation: in fact its value, apart from sign will
frequently be just Hijkl. However, to use this
element in the matrix multiplication, the value s
must be explicitly known. This may be found by
conducting a binary search on the stored basis list
(which, recall, is in numerical order). Once s is
found, Hr s can be multiplied by the 5 th element

of the initial vector for the iteration, and accu­
mulated into the r th element of the final vector.
The process is repeated for all k and / in er, and
then for each r, until the basis is exhausted.

To discover the limitations of this scheme, it is
necessary to examine problems which may arise as
it is applied to larger calculations. Firstly, note
that there is inevitably a loss of efficiency in
primitive manipulation, as the size of the Slater
determinant representation exceeds that of a CPU
word on the host machine. However, a rather
more serious problem, is the requirement that the
entire generated basis must reside in primary store
throughout the calculation. For an sd-shell nucleus,
assuming 32-bits per Slater determinant, this de­
mand will not exceed 1 / 2 Mbyte, which is accep­
table, given that the two iteration vectors will
occupy twice this space. On the other hand a
pf-shell representation word can be up to 128-bits
long, so that a space of dimension, say 106, would
require 16 Mbytes to store its basis alone.

If the algorithm were implemented on a parallel
machine, presumably the initial and final iteration
vectors, together with the stored basis would be
shared data structures. In a typical pf-shell calcu­

234 L.M. Mackenzie el al. / Nuclear shell model calculations

lation, perhaps 20 access would be required by
each element evaluation: a heavy load on the
available shared bandwidth (a single access to the
initial vector is inevitable anyway). Since this
shared bandwidth is always a possible bottleneck,
the potential degree of parallelism is consequently
reduced substantially, when compared with an
algorithm which could avoid this search.

Although other search algorithms could be
employed, there is no ideal alternative candidate.
For example, there is no obvious hash function
which would efficiently map the basis into a hash
table, without both requiring substantially more
primary memory and significantly increasing the
computation load of the search. Although a hash­
ing approach would reduce the number of shared
memory references per evaluation, the cost would
be appreciable.

The ideal solution is one which allows the value
of the column index to be determined without any
shared memory references at all. It transpires that
just such a solution is possible, eliminating not
only the search process, but, in addition, requiring
no basis storage whatsoever. The authors have
investigated algorithms with this property, which
depend on imposing a structure on the Slater
determinant basis, and have designed and con­
structed a prototype parallel dedicated system,
The Shell Model Processor (SMP), to test the
method out in practice.

As will emerge shortly, the efficiency with which
critical sections of an algorithm can be hardwired
into high-performance hardware “ accelerators” is
an im portant consideration in the design of cost-
effective special purpose computing machines. The
Glasgow Program was not designed with these
considerations in mind, and consequently, as might
be expected, the techniques it employs (e.g. for
basis generation) are not very suitable for such
translation.

5. The Shell Model Processor project

The Shell Model Processor was developed to
demonstrate the feasibility of implementing struc-
tured-basis algorithms as dedicated parallel archi­
tectures. The scope of the project has been limited

0 ^ - 0 ̂ 0 0 0
O r b U h _ _ _ _ _ _ _ _ _ _ _ _ | j _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ l j _ _ _ _ _ _ _ _ _ _ _ U _ _ _ _ _ _ _ _ _ _ ~ V

i

1 0J Up ! ''c p >/
1

i'-cp
! v
i G p

B ase B p (|^ | U 2) ® p(l 3) BpU ^ II ^)

Fig. 3. Structured Basis organisation.

to the development of a machine capable of per­
forming sd-shell calculations, but with an architec­
ture extensible to the pf-shell.

These algorithms generate an ordered basis for
a given nuclear configuration space as a sequence
of sublists. The process depends on defining an
equivalence relation, - , on a Slater determinant
basis, L, for the configuration space. As is well
known, such a relation induces a ‘partition’ of L,
the subsets of which can be ordered by some
arbitrarily chosen order relation, < R, to form a
sequence, (l}, l2, . . . , / „) . A sequence of this kind is
referred to henceforth as an O-partition of L (fig.
3). To facilitate discussion the following formal
definitions are introduced.
1) Let P(L) = (/j, /2, . . . , / „) be an O-partition of
L. A permutation operator on (/2, /2, } is
called the O-function of P(L) if, for / = 1 , . . . , n,

0 (/ ,) = /,-+!, where ln+l = f .

2) Let P(L) = (/j, /2, . . . , / „) be an O-partition of
L. A is called an orbit-generating function, Gp, for
P(L) if it is a permutation operator on L such that
the /, are precisely the orbits of A [5] i.e. if et is an
element of /,, then:

/, = (<?,, A et , A ^ i , . . . , A (n~ '}e,) and

If one element (a base) is selected from each of
the /,, then Gp (together with P(L)) defines a total
order on L converting it to an ordered basis L PG.
The function mapping /, onto its base element is
called the base function of P(L), BP(L) -» L.
3) The function mapping /, onto the index of its
base element, in the ordering of L PC, is called the
index function of P(L), denoted Ip: P(L) -* N.
4) Let et be an element of L, The function map­
ping each et onto the unique /■ containing e , is

L.M. Mackenzie et al. / Nuclear shell model calculations 235

called the characteristic function of P(L) and will
be denoted Cp: L -» P(L).
5) The function mapping e t onto the offset into
Cp {e t) is called the offset func tion of L PG,
Off[P,G]: L -> TV.

The success of a generating algorithm, depends
crucially on the choice of ~ and thereupon on
selecting an ordering relation such that functions
O, G and B can be found which are suitable for
efficient evaluation in low-level software, or even
in hardware. This criterion is far from a demand
that these functions should have simple analytical
forms. On the contrary, evaluation may involve
any appropriate technique including, for example,
interpolation of values in pre-calculated look-up
tables.

Once a partition for the basis has been chosen,
the generation algorithm is:

const null = — 1;
type Orbit = record

Orbitlndex: -1 ..M A X IN T ;
Descriptor: OrbitDescriptor;

end;
var CurrentOrbit: Orbit;

Basis_Elt: Slater Determinant;
begin

CurrentOrbit := FirstOrbit;
repeat (* outer loop *)

if CurrentOrbit.Orbitlndex () null then
begin

Basis_Elt s= Base(CurrentOrbit);
OrbitComplete := false;
repeat (* inner loop *)

Output(Basis_Elt);
Basis _Elt == G(Basis_Elt);

until Basis_Elt = Base(CurrentOrbit);
end {if}
CurrentOrbit — O(CurrentOrbit);

until CurrentOrbit = FirstOrbit;
end;

where OrbitDescriptor is a complex type repre­
senting the /,, and FirstOrbit a predefined variable
of type Orbit. The roles of G and O in this are
clear.

Structured basis algorithms are distinguished

Hamiltonian M atrix

S e a rc h P a t te rn

I S econdary B asis

[S eg m en ts n o t in se a rc h p a t te r n
need not be g e n e ra te d]

Fig. 4. Dual Basis generation.

by the means employed to produce the structured
Slater determinant basis. However, subdivisions in
the class can be identified according to how the
Hamiltonian search is conducted. The prototype
Shell Model Processor is designed to work with a
subclass which will be called Dual-Basis (DB)
algorithms, characterised by the generation of a
second basis for each element of the original basis
produced (fig. 4). This corresponds to treating the
latter as the indexing element of a row of the
Hamiltonian, which is searched element by ele­
ment. As each element of the secondary basis is
produced, it is compared against the primary ele­
ment to check the Hamming distance zero condi­
tion. If a column counter is maintained against the
second basis, the index of any secondary element
which fails need not be computed, since it will be
available directly.

The advantages of this approach hinge on the
success with which the functions O, and especially
G, can be implemented. If a relatively simple
high-speed hardware engine can be constructed to
realise G, then an efficient search can be con­
ducted. The algorithm is of course optimal with
respect to accesses to shared storage, which are
only required for retrieval of Lanczos vector coef­
ficients. However, the wastefulness of the search is
equally evident. Unlike the Glasgow Program, all
Hamiltonian entries are tested: there is no means
of selecting only pairs of basis elements which fail
the zero condition test, without explicitly conduct­
ing that test. Fortunately the test can be carried
out in hardware at very high speed. If A and B are
two representation words for basis Slater determi­
nants, then the Hamming distance between them
is the number of ones in the exclusive-OR of A

23 6 L.M. Mackenzie et at. / Nuclear shell model calculations

and B. If the number is 0, 2 or 4, the test is failed
and the corresponding Hamiltonian entry must be
evaluated; otherwise, that entry is zero.

The pilot SMP system is designed to investigate
parallel implementations of DB algorithms. The
machine can handle Slater determinants with up
to 32 single-particle states, although it has, as yet,
only been tested on sd-shell iterations. It is in­
tended to act as an experimental prototype for a
much larger system (Phase II) which would have a
similar architecture, but might use other struc­
tured basis algorithms. As part of the project, the
authors have defined a multiprocessor architecture
(the M MPU [6]) which is capable of supporting
any structured-basis algorithm (and, for that
matter, algorithms of the Glasgow type)..

The present SMP consists of a prototype
M M PU connected to a Hamiltonian Matrix For­
mat Generator (M FG). This is a dedicated subsys­
tem which uses a dual-generation algorithm to
search the Hamiltonian, identifying pairs of basis
elements which fail the zero-condition test and
passing them on to the M M PU for evaluation and
multiplication. The M FG generates the primary
basis by software running on an internal micro­
computer the MFG Controller, but the production
of the secondary basis and the subsequent zero-
condition testing is implemented almost entirely
in hardware. There are 4 functional units (fig. 5).
1) The MFG Controller is a M otorola MC68000-
based microcomputer, designed and developed by
the authors, responsible for overall supervision of
the M FG as well as execution of the Primary
Basis Generator software.
2) The Secondary Basis Generator, a high-speed

'J//77///7//d a t a b u s ///7/!////l//ih

P R IM A R Y B A S IS E L T S

P A T T E R N

S E T U P
P A R A M E T E R

W O R D S

7 / / / / / / /7 / /7 7 / /7 /7 A
S E C O N D A R Y IN D EX N U M B E R

F I L T E R B U F F E R

S E C O N D A R Y

C O N T R O L L E R
(P R I M A R Y
G E N E R A T O R)

M U L T IP L E
M IC R O P R O C E S S O R

U N IT

M A T R IX F O R M A T G E N E R A T O R M M P U

ZZZZZ} D A T A

Fig. 5. Matrix Format Generator (logical block diagram).

(ECL technology) synchronous hardware accelera­
tor, generates the secondary basis in response to
each new basis state produced by the Controller.
In fact the Secondary Generator can itself pro­
duce, unaided, only a single orbit of the chosen
partition, and must, therefore, also be supplied
with a search pattern by the Controller. Some­
times it is possible to eliminate entire orbits from
the search because it can be shown in advance
that none of their Slater determinants can possibly
fail the zero condition test with a Slater determi­
nant in the current primary orbit (fig. 4). The
M FG ’s dual-generation algorithm allows very easy
identification of such inter-orbit incompatibility
and Secondary Generator search patterns are cho­
sen accordingly. Early simulations and subsequent
experiments with the full system have shown that
the total search can be reduced by about 25%,
using this technique.
3) The Pair Filter accepts each pair of Slater
determinants (| /'), | /)) output from the Primary
and Secondary Generators, performing a hard­
ware zero-condition test, discarding pairs which
pass, but synthesising job-packets for pairs which
fail. These packets, each 42-bits long are passed to
the MMPU where each will initiate an indepen­
dent concurrent evaluation/multiplication pro­
cess.
4) The MFG Buffer is a high-speed FIFO which
evens out inhomogeneities in the production rate
of pairs by the M FG and their consumption by
the MMPU. The current Secondary Generator
operates on a minor cycle of 118 MHz, producing
one Slater Determinant about every 100 ns (Major
cycle about 10 MHz). Of these, in a typical large
sd-shell calculation, less than 1%> will fail the
zero-condition test, and initiate an MMPU pro­
cess. The buffer must be capable of accepting
job-packets from the M FG at the sustained maxi­
mum rate, while still allowing (asynchronous) reads
from M MPU processors which have become idle.

The three hardware modules form a sequential
fully pipelined machine and operate in asynch­
ronous parallelism with the Primary Generator
software.

The M FG algorithm creates a basis O-partition
as follows. Each 32-bit Slater determinant is
divided into four bytes, which are indexed:

L.M. Mackenzie et al. / Nuclear shell model calculations 237

Bits 0 -7 are designated 0;

Bits 8-15 are designated 1;
Bits 16-23 are designated 2;

Bits 24-31 are designated 3.

Bytes 0 and 1 contain the neutron orbitals, while
bytes 2 and 3 contain the proton orbitals. The
equivalence relation chosen is:

Let A and B be Slater determinant representa­
tions. Define ~ by:

A ~ B ~
«y(A) = «y(B)

and
m i (A) = m i (B) / = 0 , . . . ,3 ,

where w,(A) is the number of set bits (occupied
orbitals) and m t(A) the contribution to Mj from
the /th byte of A.

The Secondary Generator implements a gener­
ating function G for this relation as follows. To
each byte of the Slater determinant representation
word, there corresponds a channel in the Genera­
tor. If the ith channel is seeded with a particular
pattern of 8-bits, then the channel will produce, in
sequence, all patterns with the same n , and m t as
the seed. A complete orbit of the above relation
can be produced by assigning a significance weight
to each channel (e.g. 3 the most significant) so
that the whole unit acts like a counter, channel 0
running through its entire chain before the output
of channel 1 moves on etc.

The O-function itself is implemented (in soft­
ware) by a combination of shifting set bits and
searching for 4-way partitions (in the number
theoretic sense) for the total M j of the configura­
tion space. This performs well, but, at least in its
present form, would not be suitable for implemen­
tation in high-speed hardware. This could be a
disadvantage for very large calculations, where the
combinatorial size of the problem could over­
whelm a single processor (although a multi­
processor solution is possible, the speedup is not,
in the general case, predictable), forcing the G en­
erator to wait. For this reason, the authors have
been concerned to develop alternatives which
would be more amenable to a hardware realisa­
tion.

n
MCM1
11i L ,i.nr7

jj
MCM
2

JTt____
COM-BUS _____

5uS~
c:

M F G
I N T E R F A C E

t r

m m n II
C MM C MM1 m

" 0 TO BACKING s t o r e U

Fig. 6. Block diagram of MMPU.

The MMPU is described in detail in ref. [6].
Multiple shared buses connect a number of gen­
eral-purpose processing elements called Micro­
computer Modules (MCMs), Central Memory Mod­
ules (CMMs) which provide bulk storage for global
data such as Lanczos vectors, the M FG Controller
and a Supervisor Module which coordinates the
activities of the system as a whole (see fig. 6).
Referring to fig. 6, the MCMs, which are responsi­
ble for executing the evaluation-multiplication
processes setup by the M FG, read asynchronously
from the M FG buffer using the high-speed de­
dicated I-bus. All interactions with the shared
Lanczos vectors are handled by the 64-bit CMA-
bus, which is used only for accesses to CMMs.
Driven by specialised interfaces, both these buses
are optimised to permit maximal sharing of
centralised resources, and, in particular to support
the greatest possible throughput for Hamiltonian
element processes.

Although a full MMPU has not been imple­
mented (the prototype has only two of the buses
installed at present), the authors have been able to
run complete sd-shell iterations using the pilot
system. The results are in accordance with expec­
tations.
1) The MMPU shared resources and communica­
tion structures would not present a bottleneck
unless demand were increased by some two to
three orders of magnitude over that required by
the present sd-shell system. This can be consid­
ered the ultimate limit of the MMPU structure as
presently defined.
2) MCMs have no rigidly defined internal archi­
tecture (although they have rigidly defined func­

238 L. M. Mackenzie et al. / Nuclear shell model calculations

tional specifications) and are intended to facilitate
replacement by technologically superior units as
these become available. The most powerful MCM
installed to date is capable of handling about half
the average output of the prototype MFG. Two
such modules would give the prototype processor
about half the speed of an IBM 360/195 execut­
ing the Glasgow program. It would be feasible
already to construct MCMs with 5 to 10 times the
processing capacity of these using standard micro­
processors (a preliminary design already exists
based on the M otorola MC68020 in a multi­
processor configuration).

From this it is apparent that the current system
bottleneck lies within the M FG rather than the
MMPU. The M FG is of course the only part of
the SMP which is still sequential. The authors
estimate that state-of-the-art ECL technology
would allow the construction of an M FG no faster
than ten times the speed of the prototype. The
solution, clearly, is to introduce parallelism into
this part of the algorithm as well.

5. Increasing the parallelism

The most obvious solution to the bottleneck
presented by the M FG is to attem pt to introduce
parallelism by dividing the work of the dual-basis
search into several concurrent parts which can be
tackled simultaneously by an array of dedicated
machines. This is obviously possible, for example,
at the row level, by assigning different rows of the
matrix to different Secondary Generators, operat­
ing together. What is not immediately clear is how
the M FG Controller task (primary generation plus
search pattern computation) can be divided up,
should it, as appears likely in very large calcula­
tions, exceed the capacity of a single micro­
processor. One way in which this might be achieved
would be to separate the primary basis generation
and Secondary support functions (see e.g. the
design of fig. 7). Although the latter may seem the
more substantial of these tasks, search patterns are
identical for all Slater determinants in a given
primary basis orbit, so once a pattern is com­
puted, if it can be stored it can be reused re­
peatedly.

Mam ProcessorlP nm ary G enerator)
♦ Local Resources

Row
Elements

Secondary
Generator
Support Control
Processor +
Local Resources

Local
Contro l

Common
RAM

Search
P a tte rn

RAM

A rra y o f S econdary G ene ra to rs

Fig. 7. Separation of Primary Generator and Secondary Gener­
ator Support functions in parallel MFG using dual-basis al­

gorithm.

Despite the apparent simplicity of this exten­
sion, there are some outstanding issues. Firstly,
the division of the task is not homogeneous, so
performance improvements are not very predict­
able over a range of calculations. Secondly, the
requirement for specialised high-speed hardware is
substantial, and may only be feasible if VLSI
custom devices are fabricated (ideally in CMOS).
Although these problems are certainly solvable,
there is another approach, based on a related but
distinct class of algorithms called element-place­
ment algorithms.

Element placement algorithms use the same
Hamiltonian generation techniques as the original
Glasgow Program, but in the context of a struc­
tured basis. The primary basis is generated using
an O-function and orbit generator. As each
primary basis element is produced, however, con­
necting secondary elements are computed exactly
as in the Glasgow scheme. When such an element,

is discovered, its index is established by
evaluating

Ip(C p(ey)) + Off[P,G](<>,).

It is obvious that to be suitable for such an
algorithm, a partition must be found which not
only has suitable O, G and I, but also I°C and
Off[P,G]. This latter requirement is much more

L.M. Mackenzie et al. / Nuclear shell model calculations 239

demanding than the former, and indeed the SMP
basis generation algorithm does not satisfy it par­
ticularly well. However, recent work has indicated
that algorithms can be found which meet the more
stringent conditions satisfactorily.

A variation of the SMP basis generation al­
gorithm, called fixed-occupancy generation, has
revealed some encouraging properties which ap­
pear to indicate its suitability for either a dual-ba­
sis or element-placement approach. In fixed oc­
cupancy, the Slater determinant representation
word is divided into unequal groups of orbitals
(bits), each group comprising all single particle
states with the same value of m (7-component to
angular momentum). The advantage of this is that
once n i is fixed for each group, m t is automati­
cally predetermined. In the sd-shell for example
there are 6 groups each for protons and neutrons
(fig. 8). The basis is divided into orbits completely
characterised by twelve occupancy figures. The
first advantage of this is that the G-function can
be implemented very easily. The set of possible
ways of distributing n p particles amongst the 6
proton groups has at most 106 members (where
n p = 6); likewise for n n. If two lists are main­
tained in memory corresponding to each of these
sets, it is a simple process to cross-couple them in
such a way as to generate the base of every basis

l d 5 / E + 5 / 2

l d 5 / 2 mJ
_ + 3 / 2

1 * 3 / 2 mJ + 3 / 2

l d 5 / 2 mJ
- + 1 / 2

l d 3 / 2 mJ - + 1 / 2
l s l / 2 mJ + 1 / 2

l d 5 / 2 mJ
- - 1 / 2

l d 3 / 2 - 1 / 2
l s i / e "J - 1 / 2

l d 5 / 2 mJ
- - 3 / 2

l d 3 / 2 mJ - 3 / 2

l d 5 '2 - - 5 / 2

Fig. 8. Division of single-particle proton orbitals into 6 fixed-
occupancy groups.

orbit. The orbit generating function G can be
implemented even more easily than in the byte-
splitting SMP case.

Fixed-occupancy is in many ways a more natu­
ral algorithm than that used in the SMP. Because
its characteristic and offset functions are relatively
easy to implement on a real computer, it is suita­
ble for use in the SMP-like dual-basis, or the more
efficient element-placement matrix generators.
Element-placement, however, presents sufficient
difficulties to a hardware accelerator designer to
make a cost-effective M FG less likely. It is prob­
able that such an approach would be best served
by increasing the number of MCMs (with eventual
paralleling of entire MMPUs) to cope with the
increased CPU load of m atrix generating
processes.

The SMP algorithm is ideal in applications
involving the sd-shell, or allowing access to a
restricted subset of the pf-shell. In more substan­
tial calculations, however, parallel Secondary Gen­
erators would be necessary, and the load on the
M FG Controller would be greatly increased. Using
fixed-occupancy generation, the Controller itself
could be largely replaced by hardware, with a
processor needed only for the most high-level su­
pervision. However, for really large calculations,
elem ent-placem ent allows a pure m ultiple
processor architecture, like the MMPU, to be em­
ployed without an MFG. The CPU load would, of
course, be heavier, but with an MMPU based
architecture this is certainly a real alternative.

6. Conclusion

A dedicated processor, would appear to give
nuclear theorists a real chance to conduct calcula­
tions which would otherwise not be practical. Such
a system can, as demonstrated by the Glasgow
Shell Model Processor project, be constructed at
relatively low cost, in a modular fashion, so that
its capacity can be extended when required. A
large scale pf-shell calculator could be based purely
on the MMPU architecture, using fixed-oc­
cupancy element-placement matrix generation, or,
given the availability of a VLSI implementation of
a fixed-occupancy dual-basis MFG, by a similar

240 L.M. Mackenzie el at. / Nuclear shell model calculations

configuration to that now used in the pilot system.
A choice between these approaches would depend
on detailed simulations on very large configura­
tion spaces, but both appear suitable for adoption
in cases where the dimensions involved are of the
order of 106-1 0 7.

References

[1] P.J. Brassard and P.W.M. Glaudemans, Shell-Model Appli­
cations in Nuclear Spectroscopy (North-Holland, Amster­
dam, 1977).

[2] R.R. Whitehead et al„ in: Advan. Nucl. Phys., vol 9, eds
M. Baranger and E. Vogt (Plenum Press. New York, 1977)
p. 123.

[3] S.S. Schweber, An Introduction to Relativistic Quantum
Mechanics (Row and Peterson, Evanston, 1961).

[4] J.H. Wilkinson, The Algebraic Eigenvalue Problem (O x f o r d

University Press Oxford, 1965).
[5] W. Ledermai », Introduction to Group Theory (Longman,

London, 1973).
[6] L.M. Mackenzie et al., Computer J. 30 (1987) 110.
[7] L.M. Mackenzie et al., in: The Recursion Method and its

Applications, eds. D.G. Pettifor and D.L. Weaire
(Springer-Verlag, Berlin, 1985) p. 165.

GLASGOWUNIVERSITY
LIBRARY

A Multiple Microprocessor System for CPU-bound Calculations

L. M. M A C K E N Z IE ,* A. M. M A C L E O D a n d D. J. B E R R Y
D epartm ent o f N atural Philosophy , U niversity o f G lasgow , Glasgow G12 8Q Q

This paper describes a multiple microprocessor system , under development at Glasgow University, fo r application to
calculations arising in the theory o f the Nuclear Shell Model. It is the intention o f the authors to discuss the architecture
rather than the operation o f this machine, and to concentrate particularly on design features which will allow future
expansion o f both capability and applicability within the range o f such computations.

R eceived Septem ber 1985

1. I N T R O D U C T I O N

In recent years there has been a grow ing aw areness o f
the p o ten tia l p rov ided by m assively parallel system s to
bridge the fru stra ting gap betw een c o m p u te r pe rfo rm ­
ance and the co m p u ta tio n al d em ands o f presen t-day
scientific research. W hile p e rfo rm ance lim ita tions have
tended to set fairly tight co n stra in ts on the applicability
o f in teg rated m icroprocessing units to highly C P U and
m em ory-in tensive c o n cu rren t co m p u ta tio n s ,1 VLSI
fab rication techniques have increased the processing
pow er o f such devices by up to tw o o rders o f m agn itude
in the last decade. In consequence, m any o f the m icro ­
electronics m an u fac tu re rs are now acu tely aw are o f the
po ten tia l o f their latest p ro d u c ts to influence the designs
o f h igh-perform ance co m p u te r arch itec tu res, as w it­
nessed, fo r exam ple, by the m ark e tin g o f the Inm os
IM S T 424 ‘tra n s p u te r ’, a 32-bit single-chip m icro ­
co m p u te r procla im ed by its designers as an ideal
build ing b lock fo r extensive m u ltip rocesso r assem blies.2

W hile significant na tio n a l p ro g ram s are curren tly
d irected a t the developm ent o f general p u rpose ‘fifth-
g e n e ra tio n ’ paralle l arch itec tures, the perfo rm ance o f
‘s ta te -o f-th e -a rt’ VLSI technologies can be b ro u g h t to
b ear on in trac tab le num erical o r logical calcu la tions by
m eans o f m ore specialised, bu t relatively low -cost,
m o d u la r m ultip le m icroprocesso r system s, dedicated
to the so lu tion o f p a rticu la r classes o f p roblem . T his
a p p ro ach has several im p o rta n t advan tages as follows.

(1) T he perfo rm ance a tta in ed can be very high, even
in term s o f abso lu te co m parison w ith co n tem p o ra ry
supercom puters , and is subject to increm ental im prove­
m ent when required .

(2) Since the m achine has the ch arac te r m ore o f a
lab o ra to ry -b ased super-ca lcu la to r th an a co m p u te r
insta lla tion , co m parisons o f abso lu te perfo rm ance are
in any case grossly pessim istic. T he effective processing
capacity (p ow er/ava ilab ility p ro d u c t) a t the d isposal o f
a research g roup can be several o rders o f m agn itude
greater than th a t p rovided by an annual a llo catio n on a
centralised su p ercom puter insta lla tion .

(3) R unning and m ain tenance costs o f a well-designed
m achine are so low th a t it shou ld be possible to recoup
the initial co n struction ou tlay rap id ly in saved m ainfram e
time. M odu larity , in pa rticu la r, if effectively exploited ,
facilities rap id repair o f h a rdw are failures.

* N o w at D e p a r t m e n t o f C o m p u t i n g Sc ience . U n iv e r s i ty o f
G l a s g o w .

T he difficulties involved in an undertak in g o f this kind,
how ever, are no t negligible. T here is a fundam en ta l
requ irem en t fo r a flexible and extensible hardw are
design, optim ally adap tab le w ithin often rigid financial
and o p era tio n a l constra in ts. A d ap tab ility is im p o rtan t
since fu tu re p ertu rb a tio n s o r extensions to a m ethod
can n o t alw ays be foreseen. T here is, in ad d ition , the
po ten tia l bonus th a t an a rch itec tu re w ith a sufficient
degree o f inheren t generality m ight form the basis o f
sim ilar ded icated system s devoted to o ther, p erhaps quite
un re la ted , co m p u ta tio n al p rob lem s, thus reducing re­
search and developm ent effort in fu tu re undertak ings.

T he idea o f m achines ded icated to specific p roblem s o r
classes o f p rob lem s is no t, o f course, new, and has found
favour especially in theoretical physics.3 T he au th o rs are
in terested in the design o f system s o f this kind and have,
in pa rticu la r, been concerned w ith calcu la tions o f the
type arising in the theory o f the N uclear Shell M odel. The
rem ainder o f this p ap er will ou tline a design for a Nuclear
Shell Model Processor w hich exemplifies the above
ap p ro ach , and which has, in fact, a lready been partially
im plem ented in an ongoing developm ent project.

2. T H E S H E L L M O D E L P R O C E S S O R : W H Y
A M U L T I P L E M I C R O P R O C E S S O R
S Y S T E M ?

In q u an tu m m echanics, each observab le qu an tity
(position , m om entum , energy, etc.) is represented as a
linear o p e ra to r acting on a configuration space o f state
vectors, co rresp o n d in g to the allow able ‘s ta te s ' o f the
targe t system . T he N uclear Shell M odel involves a study
o f such q u an tu m m echanical configuration spaces o f
very large dim ension. S tate vectors w ith as m any as
10® elem ents, and m atrix opera to rs w ith 1012 entries are
generated by nuclei o f only m edium m ass num ber. An
ideal N uclear Shell M odel P rocessor should be capab le
o f perform ing a range o f relevant com p u ta tio n s
including the d e te rm ination o f the eigenvalues and
eigenvectors o f q u an tu m o p e ra to rs , density m atrix
elem ents o f state vectors, expecta tion values o f observ­
ables, etc. The calcu la tion o f the energy eigenstates (the
eigenvectors o f the energy o p e ra to r) c f a given nucleus,
in particu la r, is at the sam e tim e b o th crucial to the
theoretical developm ent and exceptionally co m p u ta tio n ­
ally dem anding, involving the evaluation and d iag o n a l­
isation o f a sym m etric m atrix o p era to r, the Hamiltonian,
acting on the nuclear configuration space. The Lanczos
algorithm is now accepted as the stan d ard m ethod o f

110 T H E C O M P U T E R J O U R N A L , VOL. 30, NO. 2, 1987 j U ;

A M U L T I P L E M I C R O P R O C E S S O R S Y S T E M

D a ta g e n e ra to r

R a n d o m

v e c t o r pnmar>
store

A r i th m e t i c
M atrix

e le m e n ts

F lo w rate
b o t t l e n e c k

Fina l ve c to r
e le m e n ts

Figure 1. Multiplication of a large dimensional vector by an irregularly sparse matrix

C o m m u n i c a t i o n s u b n e t

M F G
in te r face
m o d u leB a c k in g

store
con tro lle r

M F G

MCMMCMSM

CMM

MCM

CMMCMM

Main b a c k in g s to re

Figure 2. Shell model processor station (MMPU). Note: subnet provides a communication service between any pair of modules interfacing
to it.

tri-d iagonalis ing the H am ilto n ian m atrix in an angular-
m om entum uncoupled rep resen tation , since the ap p ro x i­
m atio n s to the lower eigenvalues converge a fter only
relatively few (say 100) ite ra tio n s .4 T he capacity to
execute th is a lgorithm is, therefore, a necessary, but by
no m eans a sufficient, co n d ition fo r a successful Shell
M odel processor.

A L anczos ite ra tio n involves several m a trix /v e c to r
op eratio n s , o f which the m ost tim e consum ing is the
m ultip lication o f a n uc lear sta te vector by the H am il­
ton ian . W hile, a t least in p rincip le, m o d ern VLSI
technology m akes the constru c tio n o f a pow erful and
ded icated parallel m atrix -vec to r m ultip lier a fairly
stra ig h tfo rw ard undertak in g , the capability o f a m achine
o f this kind is severely co n stra ined when the a rrays
involved are very large and , as in this case, irregularly
sparse. T he m atrix , w ith p e rhaps m ore th an a th ousand
m illion real entries, can n o t be held in p rim ary storage,
so th a t there is a practical lim it to the ra te at which
operan d s m ay be fed to an a rithm etic p rocessor (see
Fig. 1).

T here are tw o alte rna tive ap p ro ach es to this problem .
(1) M atrix storage. The m atrix can be com puted

once and held on disk, being retrieved and fed to the
a rithm etic unit during each iteration .

(2) M atrix generation. T he m atrix can be generated
in real tim e du rin g each ite ra tion , w ithou t ever being
actually stored .

Since the n u m b er o f elem ents is so large, the form er
ap p ro ach w ould require som e tens o f gigabytes o f on-line,
fast secondary sto rage, and the technique is inevitably

extrem ely expensive; indeed for large calcu la tions it is
p ro b ab ly n o t feasible. M atrix generation , on the o ther
h and , appears to have a greatly superio r overall ra tio o f
perform ance to cost, bu t requires substan tia l add itional
co m p u ta tio n a l pow er. T he au th o rs have developed
and tested a p ro to ty p e generato r, the M F G (M atrix
F o rm a t G enera to r), w hich com bines a high-perform ance
M C 68000 m icrocom puter and a dedicated E C L h a rd ­
w are accelerator, to p roduce in real tim e partial
descrip tions o f the H am ilto n ian m atrices o f sd-shell
nuclei (i.e. those w ith betw een 9 and 20 p ro to n s and
betw een 9 and 20 n eu trons) identifying the positions, but
no t the values o f all non-zero elem ents. The problem of
evaluating these elem ents is highly parallel in na tu re , but
has an asynchronous heterogeneous n a tu re which
dem ands the versatility o f a m ultip le C PU m achine ra ther
th an , say, an a rray processor. A m ultiple m icroprocessor
system o f the kind discussed above is an ideal solu tion in
this situation . A lthough it does n o t exclude a storage
a p p ro ach fo r sm aller calcu la tions, it can provide the
flexibility and perform ance, a t suitably low cost, to run
generation algorithm s.

The Shell M odel P rocessor p roject is seen as consisting
o f tw o phases. Phase I, now ap p ro ach in g com pletion, is
a practical feasibility study, involving the construction
o f a ‘p ilo t ' m ultiple processor, driven by the M FG .
and capab le o f hand ling calcu lations with up to 32
single-particle nuclear orb ita ls. Phase II will require the
p ro d u c tio n o f a significantly m ore am bitious m achine
w ith up to 4 tim es th is o rb ita l capacity . T he Phase II
system , as cu rren tly envisaged by the au tho rs , is

T H E C O M P U T E R J O U R N A L . VOL. 30. NO . 2. 1987 111

L. M. M A C K E N Z I E . A. M. M A C L E O D A N D D. J. B E R R Y

Se ed
sd

M FG
co n t r o l le r
(p r im a r y

g e n e ra t o r)

v
w o r d s A

S e c o n d a r y
g e n e ra t o r

O/rnn '6...̂ /////////////////>
Pr im e sd w o r d s

S e c o n d a ry
sd w o r d s

Pair
fi l ter

M F G
b u f fe r

S e c o n d a r y in d ex n u m b e r

77777)

ucp
Se t up

p a r a m e te r
w o r d s

M ult ip le
m ic r o p ro c e s s o r

u n i t

■ C o n t r o l

77777) p«a
MMPU

Figure 3. Matrix format generator. Logical block diagram

essentially an extension o f the existing Phase I p rocessor;
in the follow ing discussion the com plete extended
a rch itec tu re will be described, ind icating those a reas no t
app licab le to the p ro to type .

3. G E N E R A L A R C H I T E C T U R E

The m ultip le m icroprocesso r system developed by the
a u th o rs for ap p licatio n to N u c lea r Shell M odel calcu la­
tions is based on the m o d u la r a rch itec tu re illustra ted in
Fig. 2. T he fun d am en ta l bu ild ing b lock is a self-contained
s ta tio n called a Multiple Microprocessor Unit (M M P U)
w hich has stand-alone capab ility b u t can be linked to
o th er sta tions, p rov id ing scope for ho rizo n ta l expansion
should it ever be desired. T he p resen t w ork will be (even
in Phase II) restricted to the constru c tio n o f a single
M M P U w hich should have perfo rm ance characteris tics
m ore th an ad eq u a te fo r pro jected requ irem ents. W ithin
an M M P U , co n tro l resides w ith a single Supervisor
Module (SM), w hich co o rd in a tes the activities o f a
n u m b er o f general-purpose processing elem ents called
Microcomputer Modules (M C M s), each an independent
c o m p u te r in its ow n righ t. All the M C M s m ay random ly
access the shared Central M em ory Modules (C M M s),
w hich p rov ide bulk storage fo r g lobal d a ta such as the
vectors in a L anczos ite ra tion . A dditiona lly they m ay
o b tain param ete rs from an ex ternal gen era to r w hich can
act as a d a ta d river fo r in ternal M C M processes. This
generato r, which cou ld be a m assive secondary storage
facility o r a fron t-end processor, acts as the source o f
m atrix elem ents du rin g the L anczos m atrix -in to -vec to r
step. The presen t a rran g em en t uses the p ro to ty p e M F G
in this role (Fig. 3), and is expected to con tin u e until the
system is required to execute calcu la tions involving
nuclides with active p f shells.

The fundam en ta l feature o f any m ultip le processor
system is its co m m unica tions subnet to w hich all its
constituen t processors (hosts) in terface. T he sub n e t's
p roperties are defined by the system in te rconnec tion
topology and , for m any app lications, determ ine the
abso lu te lim its o f perform ance. C onven tional m ulti-
m icroprocessors fall squarely in to F ly n n 's M IM D
c a teg o ry :5 system s consisting o f m any processors
runn ing w hat are essentially au to n o m o u s bu t, in general.

in tercom m unica ting processes. It is now widely accepted
th a t, fo r large m achines in th is class to be successfully
im plem ented , individual processors m ust be endow ed
w ith local resources (especially m em ory) so th a t the
global subnet is loaded only w hen necessary. In
particu la r, C P U references to the in struction stream and
to local variables can be rem oved from the subnet
a ltogether, significantly reducing the utilisation ratios o f
indiv idual C P U s (i.e. the ra tio o f subnet bandw id th
required by a p rocessor to to ta l bandw id th required by
th a t processor).

M any struc tu res have been proposed for m ultiple
p rocessors: for exam ple the crossbar switch in C arnegie
M ellon’s C .m m p ;6 shared m em ory in U M IS T 's
C Y B A -M ;7 a b inary ‘n ’c u b e ’ in C altech ’s C O S M IC
C U B E ;8 linked buses in Cm *, etc** The M M P U subnet
is based on a sim ple m ultiple shared bus. D espite, or
perhaps because of, their sim plicity, bus-orien ted subnets
have several significant and desirable na tu ra l properties.

(1) T he subnet does no t require in ternal ‘ intelligence’.
T he rou teing , congestion and flow co n tro l problem s
characteris tic of, for exam ple, packet-sw itched netw orks,
are elim inated or, m ore precisely, are reduced to the
level where they can be handled by fast hardw are . Bus
hardw are , in general, is simple, fast, reliable and
relatively easy to debug.

(2) T he subnet is itself sym m etrical in the sense th at
any node can reach any o th er directly with no rou teing
delay. The sym m etry m akes it particu larly easy to
interface special devices to the system, such as, for
exam ple, shared m em ory m odules o r special processors.

(3) T he subnet is flexible in th a t to ta l available
bandw id th can be divided in any desired way am ongst
hosts. T hus a specialised host requiring , say, heavy bursts
o f traffic (e.g. an a rray processor) can be allocated as
m uch bandw id th as a rb itra tio n pro toco ls perm it, up to,
o f course, the to ta l available limit.

(4) T he s truc tu re m akes not only p o in t-to -po in t but
also b ro adcast transfers extrem ely easy to effect. The
la tter are often very useful where globally significant
in fo rm ation has to be transm itted , o r where m ulti-host
synchronisation is desired.

A lthough these advantages are clear, bus structures
have tended to be regarded as ra ther restrictive. The total

112 T H E C O M P U T E R J O U R N A L , VOL. 30, NO. 2, 1987

A M U L T I P L E M I C R O P R O C E S S O R S Y S T E M

M E G
in te r face

M C MMCM M C M

T o
M F G

C O M - b u s

CM A -b us

SM CMMCMM

T o ba c k in g s tore

Figure 4. Block diagram of MMPU (Phase II)

available ban d w id th , B, on a given bus, is a characteristic
u p p er lim it determ ined by the technology. N o m atte r
how large B is, there is a p o in t beyond which the system
c an n o t grow w ithou t encoun tering overload ing (below
this po in t the m o d u la rity o f bus system s is excellent). If
B is high enough this ob jection is m ore a m atte r o f
aesthetics th an a serious practica l w orry (any parallel
m achine designer w ould like to believe th a t his
a rch itec tu re is infinitely extensible), b u t until recently the
p rob lem has been precisely th a t values o f B have been
too sm all.

M o d em bus specifications, how ever, offer bandw id ths
o f betw een 30 and 40 m egacycles/s : no tab ly the IE E E
896 Futurebus10 and the N IM F ASTbus,n now being
ad o p ted as IE E E S tan d ard 960-1984. U sing advanced
E C L drivers it is p ro b ab ly a lready feasible to achieve a
tran sfer ra te o f 50 M H z, so th a t, say, a 32-bit bus with
a bandw id th o f 150-200 M b y te s /s is not by any m eans
inconceivable. I f restricted to essential d a ta transfers
(i.e. no code o r avo idab le d a ta transfers) such a bus
can satisfy the peak requ irem ents o f a t least 50-100
h igh-perform ance m icroprocessors (e.g. N S 32032 or
M C 68020). Hence, a lthough the objection rem ains valid
in the sense th a t a pure bus-based system is n o t feasible
fo r m assive parallel system s w ith th o u san d s o f p ro ­
cessors, an extrem ely pow erful flexibly coupled m u lti­
p rocessor based on m essage passing, shared m em ory
o r bo th , can be constructed . Such m achines cou ld , o f
course, form ‘su p em o d es’ on a m ore extensive ‘super­
su b n e t’.

The M M P U uses fo u r buses (Fig. 4) to p rovide the
necessary in terconnection betw een its host com ponents.
(As yet only two have been im plem ented in the pilot
m achine, bu t a reduced C M A -B us will be added
eventually .) Before discussing these individually , a
general com m ent m ight be helpful. T he Phase II M M P U
subnet is in tended to provide bandw id th requ irem ents
well in excess o f those cu rren tly projected as necessary
fo r the m ost pow erful Phase II m odule designs, which
m ight each have, say, 20-30 tim es the perform ance o f
a M o to ro la M C 6 8 0 0 0 L 8. T he §hell M odel app lication
requ ires a fairly low subnet u tilisa tion ra tio for each
processor, so th a t in fact, in th is case, the com m unications

struc tu re described below is pow erful enough to support
processing technology alm ost an o rd er o f m agnitude
faster th an the best available today . It is therefore
feasible th a t a fu tu re (Phase III?) Shell M odel Processor
could use virtually the same subnet, bu t support, say, 20
m odules, each w ith sufficient processing pow er to execute
100 m illion operatio n s /sec .

(1) C -B us (C om m and Bus) is the p rim ary M M PU
com m unica tion highw ay, connecting all m odules together
and in tended to carry system-level com m and and contro l
m essages. It is also used in the pilot m achine to transm it
bulk d a ta and process code, a lthough this function will
p ro b ab ly be largely subsum ed by C O M bus in the Phase
II im plem entation . In o rder to ob tain access to a pool o f
available off-the-shelf hardw are , it was decided to base
C -B us on the now widely accepted M o to ro la /M o s te k /
S ignetics/T hom son V M E b u s.12 A lthough the p e rfo rm ­
ance o f this stan d ard is m o dera te by com parison with the
s truc tu res discussed above (< 4 0 M bytes/s), it was felt
th a t the C-Bus function could be adequate ly supported
and th a t com patib ility w ith an industry stan d ard was
consequently a m ore im p o rtan t consideration . V M E bus
includes 32-bit d a ta and address buses, four levels of
daisy chained arb itra tio n and seven levels o f in te rrup t.
D a ta transfer occurs via a fully interlocked asynchronous
handshake.

T he au th o rs have augm ented the stan d ard V M Ebus
specification in two ways in tended to enhance m ulti­
p rocesso r support.

(a) A Bus Broadcast facility has been included,
enab ling a su itably privileged m aster to write data
sim ultaneously to any subset o f M C M s.

(b) The lowest bus req u est/g ran t p rio rity level BR0*
B G 0 IN * /B G 0 O U T * uses a decentralised daisy-chain
gran t p ro toco l which rem oves the position-dependent
p rio ritisa tion inherent in the norm al V M E bus system
(none the less retained for levels BR1 * — BR?*). M C M s.
which are by definition isom orphic m odules, share this
line and thus have v irtually equal p rio rity on C-Bus.

D espite these changes, upw ard com patib ility with
V M E bus is m ain ta ined by identifying C-Bus-specific
accesses using the V M E A ddress M odifier lines. Thus a
s tan d ard V M E card is entirely com patib le with custom -

8
T H E C O M P U T E R JO U R N A L , VOL. 30. N O . 2. 1987 113

c p j 30

L M. M A C K E N Z I E , A. M. M A C L E O D A N D D, J. B E R R Y

Time

Buses
free

A d d re ss b u s active (~ 20 ns)

Buses
free

D a ta b u s ac tiv e (~ 20 ns)

A d d r e s s bus a rb i te r
g r an t s bus

M aste r wr i te s
ad d re s s and i .d.

M ast e r la tches
d a ta

M aste r r eq u e s t s
ad d re s s bus

D a ta bus a rb i t e r
g r a n t s d a t a bus

M e m o r y m o d u le
q u e u e s reques t

M e m o r y m o d u le
r eq u e s t s d a t a bus

M e m o r y m o d u le
w r i te s d a t a to m a s t e r

I n te r n a l d a ta

Figure 5. Concurrent address/data transfer on CMA-bus

ised M M P U m odules designed to accord w ith the C-Bus
enhancem ents.

(2) I-Bus is a ded icated d a ta bus w hich provides
M C M s with a high-speed com m unica tions ro u te to as
m any as 32 single-address devices and , in p a rticu la r, to
the Shell M odel P rocesso r's M F G fro n t end. A dvanced
S cho ttky bus drivers enab le transfer ra tes in excess o f
120 M b y te s /s to be a tta in ed on a 56-bit d a ta pathw ay.
T his is considerab ly in excess o f requ irem ents, in keeping
w ith the ph ilosophy ou tlined above: in fact a fully
po p u la ted Phase II m achine w ould require an I-Bus
bandw id th o f no m ore th an 20 M b y tes/s . D a ta transfer
is again asynchronous, governed by a four-edged
h an d sh ak e; a rb itra tio n is single p rio rity and is accom p­
lished by m eans o f the sam e decentralised daisy-chain
p ro to co l em ployed for C-B us p rio rity level 0.

(3) C M A -B us is a b id irectional 64-bit shared d a ta
pa th w ay designed to su p p o rt fast random re ad /w rite
cycles, over a 2 G byte range, for transfer o f operan d s
betw een M C M s and C M M s. T he in co rp o ra tio n o f a bus
devoted to such tran sac tio n s is necessary to free the
system from the co n stra in ts o f a conventional shared-bus
architecture. T he specification allow s the d a ta and
address buses to o p erate co n curren tly on independent
transfers so th a t very high perform ance is a tta in ab le
(Fig. 5). W ith ECL interfaces, bus cycle tim es o f less
th an 30 ns, and fully p ipelined a rb itra tio n a bandw id th
po ten tially in excess o f 300 M b y te s /s w ould be a tta in ab le
(Phase II requirem ents are pro jected as < 50 M bytes/s).
T o su p p o rt these access ra tes the C M M address space

w ould need to be interleaved betw een several (say 16)
independently accessible m em ory banks d istribu ted over
a num ber o f C M M s: clearly, an ability to queue
incom ing read and w rite requests for later service w ould
be required . D a ta determ inacy du ring m ultiple re a d -
m o d ify -w rite o p erations on C M A -B us will be preserved
by m eans o f hardw are-driven lockout flags which will
p ro tec t each C M M location.

(4) C O M -B us is a high-speed m essage-passing inter-
M C M link proposed for the Phase II m achine, w ith a
m axim um bandw id th o f up to 200 M b y tes/s , shared on
a cycle-by-cycle basis, in such a way as to allow m any
co n cu rren t p rivate conversa tions (a b roadcast facility
cou ld easily be accom m odated). H igh bandw id th
co m m unica tion betw een M C M s is n o t required during
any sd-shell app lications, an d an tic ipated needs in the
p ilo t system can easily be satisfied by C-Bus a lone or,
exceptionally , by m eans o f a C en tra l M em ory ‘m ailb o x ’
system .

T he M M P U m odules are inevitably subject to design
co n stra in ts im posed by the requirem ent th a t they
in terface consistently to the p ro toco ls o f the subnet. In
the next section the th ree m ajo r categories o f applicable
design co n stra in t will be briefly exam ined: hardw are-
im posed, C -B us-im posed and function-im posed. D espite
these restric tions there is still a lm ost to ta l freedom in the
deta ils o f in te rnal m odule design, m ain tain ing flexibility
and facilitating the replacem ents o f o lder units as
technological im provem ents perm it. The follow ing
d iscussion is necessarily, however, incom plete and m ust
d raw heavily on experience o f the Phase I im plem entation
o f the subnet.

4. D E S I G N C O N S T R A I N T S S P E C I F I E D B Y
M M P U

4.1 Functional constraints

The functional constra in ts im posed on a m odule are
d ic ta ted by the o p erationa l requirem ents o f its role
w ithin the system . A lthough the Shell M odel Processor
could legitim ately be regarded as a ‘c a lcu la to r’ it w ould
be m isleading to restrict a discussion o f its target problem
set to the L anczos iteration for, as indicated earlier, not
only is this set cu rren tly m ore extensive (e.g. calculation
o f density m atrix elem ents, expectation value o f quan tu m
observables, etc.), bu t in add ition there is the need, as
a lready em phasised , for inherent functional flexibility.
An M C M , for exam ple, m ust be capable o f perform ing
a large and, indeed, still incom pletely specified list o f
widely differing tasks.

F o r these reasons it is im p ortan t to co nstruct a system
which is configured to run a range o f softw are packages,
including fu ture user-generated program s. T his k ind o f
freedom is only realistically available if an a p p ro p ria te
independent o p erating system is installed to provide a
u se r/m ach ine interface. T he M M P U is capab le o f
prov id ing hardw are su p p o rt for operating system s
ranging from the centralised to the d istribu ted , as desired
by the user. F o r exam ple, the Supervisor M odule could
be program m ed to exercise tight co n tro l over all system
activities in a strictly hierarchical m anner, o r to intervene
only when asked for assistance by an M C M .

In the case o f the Shell M odel Processor, since the
users are liable to be them selves experienced p ro g ram ­

114 T H E C O M P U T E R J O U R N A L , VOL. 30, NO. 2, 1987

A M U L T I P L E M I C R O P R O C E S S O R S Y S T E M

m ers. and since the range o f app lications is liable to be
relatively restricted, the operating system can be fairly
unsophisticated . As envisaged at present (current
softw are packages for the M M P U have only very lim ited
operating system support), it will consist essentially o f a
supervisory executive runn ing in a m ultip rogram m ed
environm ent on the Supervisor M odule , overseeing a
series o f d istribu ted local kernels, each physically resident
on one o f the slave m odules. U ser processes will be
assigned by the executive, a rb itrarily or by user
specification, to given m odules, where they will run
under the co n tro l o f the local kernels. The operating
system will hand le all in terprocess, and hence all
in terprocessor, co m m unica tion , task scheduling and
resource m anagem ent.

U ser p rogram s m ay be w ritten directly in assem bler, o r
in a high-level language prov ided with an ap p ro p ria te
library o f system call p rocedures (the au th o rs have done
this for Pascal). In either case, op era tin g system functions
are ultim ately accessed via softw are-generated exceptions,
follow ing a predefined p ro to co l (e.g. in the present
ru d im en tary system , calls a re m ade by m eans o f the
68000 T R A P no. 15 instruction). M any hardw are
resources, including the subnet and local peripherals
(co-processors, I /O lines, e tc .) are only available to a
p rocessor runn ing in system m ode, so th a t, fo r exam ple,
one user process w ishing to pass d a ta to a n o th e r m ust
trap to the local kernel. System processes can. o f course,
access the hardw are directly . D u rin g a Shell M odel
ite ra tio n the Supervisor M odu le functions m ainly as a
w atchdog , responding to in te rru p ts generated by o ther
m odules in need o f cen tral services (in no rm al Shell
M odel processing such in te rru p ts are typically in itiated
by e rro r conditions). It is also, o f course, responsib le for
overall co o rd in a tio n o f the system as an ite ra tio n is
scheduled o r term inated , an d for p rov id ing a user
in terface to the opera to r.

F u n ctiona lly , each active module (i.e. each m odule
capable o f runn ing a user process) will be identified to the
o p era tin g system as e ither an M C M (general-purpose) or
a special-purpose unit. U nassigned processes will only be
run on M C M s, bu t a t in itia tio n tim e the o p e ra to r can
declare th a t a newly installed process is to ru n on a
specified m odule.

Since m odules m ay vary widely in their in te rnal
topo logy , and m ay indeed su p p o rt several m ic ro p ro ­
cessors, it will clearly be necessary to define softw are
in terfaces governing com m unica tion betw een the local
kernel and the external o p era tin g system , consisting o f
o th er local kernels and the supervisory executive. Once
this is done, in ternal kernel design can be tailo red to suit
the arch itec tu ra l requ irem ents o f any given m odule.

4.2 C-Bus constraints

T he overall p rocessor-m em ory descrip tion o f any
m odule m ust conform to the co n stra in ts im posed by the
C -Bus addressing structure . Since C-Bus su p p o rts a
32-bit address bus, a p rocessor w ith C -B us m aster
capab ility , when in o p erating system m ode, will view the
physical system as a 4 G by te block, certain regions o f
w hich m ay be restricted from access e ither by Supervisor-
level p ro tec tio n , o r by targe t m odule m em ory m an ag e­
m ent. O f this to ta l physical address space, each active
m odule is assigned 128 M bytes which are in ternally

accessible to on-board processors w ithout the use of
C-Bus.

U p to 20 active m odules m ay reside w ithin an M M PU .
so th a t a to ta l o f 2.5 G bytes o f the system space are
reserved for their use. The rem aining 1.5 G bytes are
d ivided in any ap p ro p ria te m an n er between m odules
such as C M M s or o ther dedicated units. The 128 M byte
block o f the system address space allocated to an active
m odule , called its Primary Module Map (PM M). does
not necessarily con tain all addressable on-board devices.
It is also perm issible for processors to use locations
w hich m ay be sw itched ou t o f the PM M or. indeed,
which are inaccessible to it by d irect random -access
operations. T here is no co n stra in t on the num ber of
processors which m ay reside within a m odule. If there are
several, they m ay be organised in any desired m anner, for
exam ple hierarchically , functionally o r with co-equal
access to on -b o ard resources (see Section 5).

4.3 Hardware constraints

A t the hardw are level the only significant co n stra in ts are
th a t each m odule should satisfy the electrical loading and
signal p ro toco ls specified for each bus in terface which it
supports. Every m odule is in terfaced to C-B us but only
M C M s and C M M s to C M A -B us. only M C M s and
p eripheral in terface m odules to 1-Bus and only active
m odules to C O M -B us (Fig. 4). A lthough an M C M m ust
in terface to the 4 system buses, only C-Bus can act as an
extension o f the p rocesso r’s local bus. The C M A -B us.
I-Bus and C O M -B us interfaces are specially designed
pre-fetch buffers (PFBs) w'hich can conduct m em ory
cycles independently of, and in parallel w ith, the
o n -b o ard M P U s.

A lso, there is a practical requ irem ent for som e degree
o f low-level softw are com patib ility between m odules.
This im plies a need to link the M M P U arch itectu re to a
m icroprocesso r arch itectu re which essentially com bines
curren tly available high perform ance with projected
upw ard -com patib le 32-bit m achines. The au th o rs have
selected M o to ro la 's M 68000 family as. in their view,
p rov id ing the optim al mix o f these qualities.14 The
M M P U as presently im plem ented is configured to
su p p o rt the recently announced M C 68020 m icro ­
p ro cesso r,13 bu t the p ro to ty p e m odules which are
a lready installed are based on the proven M C 68000 and
M C 68010 M P U s.

5. M C M D E S I G N S

T o ind icate the practical realisation o f the concepts
discussed above, it m ight be helpful to give some
ind ication o f the na tu re o f the hardw are which has been
designed for the Shell M odel Processor project. The
M C M is no t only the m ajo r determ ining factor in fixing
the lim its o f real system perform ance, but it is a paradigm
which can be used as a basis for the design o f o ther active
m odules, and its in ternal a rch itecture m ight be expected
to be particu larly instructive. A num ber o f M C M designs
(Figs 6, 7, 8) have been studied seriously. These are
m o n o b o ard processing elem ents o f increasing co m p u ta ­
tional pow er and can perform well over a wide range
o f app lications. H ow ever, they are tailored to tackle
calcu la tions o f the type arising in the theory o f the

T H E C O M P U T E R JO U R N A L , VOL. 30. N O . 2. 1987 115

s-:

L. M M A C K E N Z I E . A. M. M A C L E O D A N D D. J. B E R R Y

128 kbytes
D R A MDecode

MC 68000
Loca bus

4 kbytes
SRAM

requestor

W/T

I -bus
interfaceInner buffers

G lobal G lobalo oai
decodecon tro l

CM A-bus
interface

O u ter buffers
G lobal bus
requestors

C -bus

Figure 6. MCMI block diagram

Local bus
requestor

Supervisor
devices

C -bus

I-busC M A -b u s

1 kbytes
SRAM

FPU I

FPU 2

Inner buffers

O u ter buffers

i kby tes
SRAM

Sub bus
requestor

PI/T

28 kby tes
DRAM

Buffers

16 kby tes
SRAM

(supervisor)

MC 68000
16 MHz

Slave
MPU

MC 68000
16 MHz

PFBI PFBI

Figure 7. MCMI1 design

N uclear Shell M odel, and perfo rm ance figures q u o ted
m ust be trea ted accordingly.

M C M I (Fig. 6), built as p a r t o f an early feasibility
study (1982), was designed ra th e r to test system concepts
than for optim al perform ance. T he local bus topology is
simple and su p p o rts only one processor, an 8 M H z
M C 68000, but all o n -b o ard devices are d u a l-p o rt w ith
respect to C-Bus. As w ith all its successors there is no
o n -b o ard firm w are, and all system code is loaded by the
SM at in itiation tim e in to p ro tec ted axeas o f R A M . This
gives a trem endous am o u n t o f inheren t flexibility,
allow ing dynam ic tailo ring o f a m odule kernel and
assisting enorm ously in its developm ent and testing.

The M C M II design (Fig. 7), now operationa lly tested,

is in tended to act as an advanced p ro to ty p e capable o f
prov id ing processing pow er ad eq u a te for extensions o f
the calcu la tions to h igher nuclear shells. T he m odule is
hierarchically organised a ro u n d a single master processor,
an enhanced-perform ance M C 68000 runn ing a t 16 M H z
(a steady 1-2 M IP s capability). An 8 K byte block o f very
fast static R A M allows the 16 M H z processor to execute
a m em ory access (read o r w rite) in 250 ns (no wait states)
and is in tended to hold tim e-critical p rog ram sections and
frequently accessed variables. The m aster M PU is also
p rovided w ith 128 K bytes o r 512 K bytes o f local bulk
m em ory which runs w ith 4 w ait states (375 ns cycle time).
A second 16 M H z 68000 acts as a slave on a local sub-bus
to which are directly in terfaced the I-Bus and C M A -B us

116 T H E C O M P U T E R J O U R N A L , VOL. 30. NO. 2, 1987

A M U L T I P L E M I C R O P R O C E S S O R S Y S T E M

C ache MMU Cache

MC 68020
m em ory

processor

MC 68020
memory

processor

MC 68020
system

processor

MC 68020
system

processor

Locai

Shared RAM
1-4 M bytes

Subnet interface

C -bus. CM A-bus. I-bus. COM bus

Figure 8. Design of proposed Phase II MCM (MCMII)

pre-fetch buffers together w ith a n o th e r 8 K bytes o f fast
d u a l-p o rt m em ory, which can be used to pass d a ta and
com m ands betw een the tw o m icroprocessors. The slave
also co n tro ls tw o N atio n a l S em iconductor N S 16081
F lo a tin g Poin t U nits (FP U s), which are accessed as 16-bit
peripherals and provide the arithm etic capab ility required
by the Shell M odel app lication . D u rin g Shell M odel
processing the slave handles all in te rac tion w ith C M A -B us
and I-Bus as well as perform ing , w ith the aid o f the
F P U s, all arithm etic operations. As a guide, if M C M I
perfo rm ance is norm alised to 1, then th a t o f M C M II is
approx im ate ly 9 du ring a m atrix generating ite ra tion in
a Shell M odel calculation .

O n the basis o f recent com plete ite ra tions on real nuclear
d a ta , the au th o rs estim ate th a t, w ith tw o M C M II m odules
in place, perform ance is approx im ate ly h a lf th a t a tta in ­
able on an IBM 360/195 m ainfram e using conventional
Shell M odel p rogram m ing techniques.'1 F u rth e r, w ithin
the defined lim its o f the subnet, perfo rm ance should
increase a lm ost linearly w ith the n u m b er o f sim ilar
M C M s installed.

T he Phase II M C M , now in the design stage, will be

a pow erful tightly coupled m o noboard m ultiprocessor
based on four M C 68020 M P U s (Fig. 8). each equipped
with a ‘w rite-th ro u g h ' 8 K byte set-associative cache.
In this design, the processors are paired, each pair
consisting o f a 'm e m o ry ' processor with access to local
bulk m em ory and a 'sy s te m ' processor responsible for
con tro l o f the subnet interface. T he local bulk m em ory
(1 -4 M bytes) is shared and divided in to 1 K byte
page-fram es which m ay be dynam ically designated
cacheable or non-cacheable. W hen a task running on one
o f the processors a ttem p ts an access to shared m em ory
the cache is checked while, concurrently , a local memory'
m anagem ent unit (M M U) perform s any address tran s la ­
tions and checks access rights. I f an access violation is
detected the cycle is suspended o r ab o rted ; otherw ise a
request is issued to the on-board arb itra tion and a local
shared-m em ory cycle is in itiated. The M M U inform s the
cache w hether o r no t the requested address falls in a
cacheable page: if it does, the cache au tom atically stores
the d a ta as the processor reads it; if it does no t. no such
store m ay proceed. T hus only da ta in cacheable pages
m ay be cached, avoiding the problem o f cached da ta
going ‘s ta le ’ due to m ultip rocessor activity.

T he proposed M M U will support dem and-paged
v irtual m em ory and facilitate in tertask p ro tection in a
m uch m ore general m u ltip rogram m ed m ultiprocessor
env ironm ent. F o r the Shell M odel app lication , the
design o f Fig. 8 is expected to yield a perform ance o f
approxim ately 30 on the above scale.

6. C O N C L U S I O N S

As ou tlined above, the M M P U designed for the Shell
M odel Processor project em ploys the latest 16/32-bit
m icroprocessor technology to im plem ent a small but
pow erful and flexible m ultiple C P U system. By em p h a­
sising m odu larity and linking the developm ent to a
p a rticu la r m icroprocessor family, technological enhance­
m ent m ay be achieved w ithout loss o f user softw are
com patib ility . The M M PU global structures are designed
to perfo rm well above their currently projected load
and it is hoped that, w ith scope for the in tegration o f
very-high-perform ance general-purpose processing ele­
m ents and , indeed, o f optim ised dedicated processor
m odules where necessary, the range o f applicability o f
the system will be significantly extended in the future.

Acknowledgements

The a u th o rs would like to thank D r R. R. W hitehead o f
the T heoretical N uclear S tructure G ro u p at G lasgow
U niversity for his assistance.

R E F E R E N C E S

1 .E . T. Fathi and M. Krieger. Multiple microprocessor
systems: what, why, and when. IE E E Computer (1983).

2. I. Barron. P. Cavill and D. May. Transputer does 10 or
more MIPs even when not used in parallel. Electronics
(17 Nov. 1983).

3. R. B. Pearson. J. L. Richardson and D. Toussaint, Special
purpose processors in theoretical physics. Communications
o f the A C M 28 (4) (1985).

4. R. R. Whitehead. A. Watt, B. J. Cole and I. Morrison,
Computational M ethods fo r Shell Mode! Calculations.

Advances in Nuclear Physics, vol. 9. Plenum Press. London
(1977).

5. J. L. Baer. Computer System s Architecture. Pitman.
London (1980).

6. W. A. Wulf and C. G. Bell, C.mmp - A muln-minipro-
cessor. A FI P S Conference Proceedings 41. A FI PS Press
(1972).

7. E. L. Dagless. M. D. Edwards and J. T. Proudfoot. The
shared memories in the CYBA-M multi-microprocessor.
Proceedings o f I EE, E 301 (1983).

T H E C O M P U T E R J O U R N A L , VOL. 30, NO. 2. 1987 117

L. M. M A C K E N Z I E , A. M. M A C L E O D A N D D. J. B E R R Y

/ C. L. Seitz, The cosmic cube. Communications o f the A C M
/ 28 (1) (1985).

f 9. R. J. Swan, S. H. Fuller and D. P. Siewiorek, Cm* - A
modular multi-microprocessor. A F IP S Conference Pro­
ceedings 46, AFIPS Press (1977).

10. P. Borrill and J. Theus, An advanced communications
protocol for the proposed IEEE 896 Futurebus. IEE E
M icro (1984).

11. Fastbus. A modular high-speed data acquisition system for

high energy physics and other applications. US-NIM
Committee DOE/ER-OI89 (1982).

12. VM Ebus Specification Manual, Rev. B. Motorola, Mostek,
Signetics (1982).

13. M C68020 , User’s Manual. Motorola (1984).
14. E. Stritter and J. Gunter, A microprocessor architecture

for a changing world: the Motorola 68030. Computer
(1979).

Announcements

1 0 - 1 4 M a y 1 9 8 7

APL 87, The International APL Conference on
A PL com pu ter p rogram m ing language, is to
be held at the F airm on t H otel. D allas. Texas,
U SA . It is sponsored by the Special In terest
G ro u p o f the A ssociation o f C om pu ting
M achinery and the Southw est A PL U sers'
G roup .

For fu r th e r inform ation please con tact: A PL 87
R eg istrar. 440 N orth lake S hopp ing C en ter,
suite 210. D allas, T X 75238, U .S.A .

1 - 4 S e p t e m b e r 1 9 8 7

13th International Conference on Very Large
Data Bases, Brighton, England, U.K.

V LD B C onferences are a fo rum and focus for
identifying and encourag ing research, devel­
opm ent, and the novel app lications o f d a tabase
m anagem ent system s and techniques. The
T h irteen th V LD B C onference will bring
to ge ther researchers and p rac titioners to
exchange ideas and advance the subject.
P apers o f up to 5000 w ords in length and o f
high quality are invited on any aspect o f the
subject but particu larly on the topics listed.
All subm itted papers will be read and carefully
evaluated by the P rogram m e C om m ittee.

Programme

The p rogram m e will include an exhib ition , six
tu to ria ls by em inent speakers w hich are
specially oriented tow ards the needs o f in ­
dustry . and a high s tan d a rd o f refereed papers.
T he topics covered include: D a ta M odels;
Design M ethods and T oo ls; D istribu ted
D atabases; Q uery O p tim isa tion ; C oncurrency

C o n tro l: D atabase M achines; Perform ance
Issues; S ecurity ; K now ledge Base R epresen­
ta tio n ; M ulti-m edia D atabases; Im plem en­
ta tion T echn iques; O bject-O riented M odels;
T he role o f logics.

Social Programme

T here will be an extensive social p rogram m e
including a civic reception , trad itional English
events, a conference d inner, sightseeing tours
and 'w eekend b reak s ' in London .

For fu r th e r inform ation and registration fo rm s
please con tac t:
M iss C hristine E dginton , C onference M an a ­
ger, BISL C onference D epartm en t. The
British C om pu ter Society. 13 M ansfield Street,
L ondon W 1M 0BP (44-1-637 0471; Telex
262284).

7 -1 1 S e p t e m b e r 1 9 8 7

People and Computers HCI ’87
T he th ird annua l conference o f the BCS
H u m an -C o m p u te r In te rac tion Specialist
G ro u p will be held a t E xeter U niversity,
D evon, E ngland from Tuesday 8 S eptem ber to
F riday 11 S eptem ber 19 8 7 . The conference will
be preceded by a day o f tu to ria ls on M onday
7 Septem ber.

T he goals o f the conference will again be: (i)
to represent the cu rren t s ta te o f H C I, (ii) to
increase com m unication between people w ork­
ing in the different disciplines o f H C I and (iii)
to discuss the fu tu re o f H C I.

T he conference has been planned in the
know ledge th a t there is to be an in ternational
conference on a sim ilar them e (In te rac t *8 7) in

G erm any the previous week. H C I "87 is
designed to com plem ent In teract '87. M any
people w ho w ork in H CI in the U .K . will not be
able to a ttend a conference held outside the
U .K . F u rtherm ore , the type o f papers presented
at the tw o conferences are likely to be o f a
different type. T he papers in H C I '87 will be o f
a substan tia l length and will deal in detail with
specific topics w ithin H C I. In fact, H CI '87
plans to take advan tage o f the coincidence o f
In te rac t '87 by inviting to the U .K . in ter­
national speakers, particu larly from the U .S. A.
and Japan , w ho will be in E urope a t the
beginning o f Septem ber. T here will also be
w orkshops during HCI '87 tha t will report and
discuss in detail issues raised, but perhaps not
answ ered, during In teract '87. We hope that
m any o f those who attend In te rac t '87 will also
a ttend H C I '87 and play a m a jo r partic ipatory
role in m aking H C I '87 the success it has been
in previous years.

For fu r th er details con tact:

H C I '87 Conference. B .I.S .L ., 13 M ansfield
S treet. London W 1M 0BP. Telephone:
(01) 637 0471.

8-11 September 1987

IFIP TC 8 Conference on Governmental and
Municipal Information Systems will be held in
B udapest. H ungary.

For fu r th e r information please contact :

IF IP T C 8 Conference Secretaria t, Jo h n von
N eum ann Society for C om puting Sciences,
B udapest 5. P.O.B. 240 H-1360, H ungary .
T elephone: 361 329-390. Telex: 22 5369.

GLASGOW
UNIVERSITY
LIBRARY

118 T H E C O M P U T E R J O U R N A L . VOL. 30, NO. 2, 1987

U_TK« (̂qx.ca.*-s»io/\ ^Qav\exX o>^d (4*5, nppl t C-a«=V*©'VS
Q.ds ^ . 4 " . i -^o«~ & b-V_. Q-CA. i X" Q. f *S> pr-i'V^Q-f — VJ e_A(XA^ I^C.'rli/N, l ^ 5 S ; p^S>

j A Dedicated Lanczos Computer f o r Nuclear S t r u c t u r e C a l c u l a t i o n s

L.M. Mackenzie , D. Berry , A.M. MacLeod and R.R. Whitehead

Department o f Natural Ph i lo sophy , The U n i v e r s i t y , Glasgow G12 8QQ, Sc ot lan d

A b s tr a c t

Using a combinat ion o f the occupat ion number r e p r e s e n t a t i o n and the Lanczos
method, nu c le a r s h e l l -m o d e l c a l c u l a t i o n s can be c a s t in a form which i s
s u i t a b l e f o r p a r a l l e l computat ion. An at tempt to d e s ig n and c o n s t r u c t the
p rot o typ e o f a s u i t a b l e machine i s d e s c r i b e d .

1 I n t r o d u c t io n

This t a l k i s about an at tempt to de s ign and bu i l d a ded ic a ted computer fo r
use in n u c le a r s t r u c t u r e c a l c u l a t i o n s . There i s , o f c o u r s e , nothing new
in the idea o f d e d ic a te d computers - some p eop le th ink t h a t Stonehenge was
one , and the Greeks c e r t a i n l y had them (t h e antikythera mechanism) as did
the Arabs who in vent ed the p ia n i s p h e r i c a s t r o l a b e . Mention o f such d e v i c e s
i s not c o m p l e t e l y i r r e l e v a n t to the main t o p i c o f t h i s c o n fe r e n c e ; the
o r i g i n a l need f o r the development o f r a t i o n a l approximat ion and cont inued
f r a c t i o n s ar os e in conn ec t io n with the g ear in g o f p l a n e t a r i a and s i m i l a r
proble ms .

The th in g t h a t i s r e l a t i v e l y new, however, i s the ease wi th which one
can c o n s t r u c t analogue computers out o f d i g i t a l b i t s and p i e c e s . In e f f e c t ,
a modern analogue computer uses streams o f d i g i t a l numbers i n s t e a d o f e l e c t ­
r i c c u r r e n t s or the r o t a t i o n o f a wheel as the analogue q u a n t i t y .

The main requirement to be s a t i s f i e d be fo r e a de d ic at ed computer can be
en v is a g e d i s t h a t the c a l c u l a t i o n s to be done must be c a s t in such a form
t h a t each s t e p i s as com pu ta t io na l ly well matched to the machinery as p o s s ­
i b l e . Other speake rs have a lready d es c r ib e d how the matching or mapping
i s done in , . the c a s e o f l a t t i c e c a l c u l a t i o n s us in g d i s t r i b u t e d array p r o c e ­
s s o r s . A l e s s obvio us but more s t r i k i n g i l l u s t r a t i o n i s provided by the
Fast Fou r ie r Transform. In s ig n a l p r o c e s s i n g , where there i s a natural
d e s i r e and need to work in frequency sp a c e , p ro g ress was slow u n t i l the
Fast Fo uri er Transform was introduc ed. Almost immediate ly t h e r e a f t e r people
were making d e d ic a t e d o n - l i n e Fourier Transformers and the s u b j e c t l e a p t
ahead.

In the f o l l o w i n g s e c t i o n s we w i l l d i s c u s s the nu clear s h e l l model problem
and d e s c r i b e the f i r s t attempt to bu i ld a computer whose s t r u c t u r e matches
as c l o s e l y as p o s s i b l e the ph ys ic s in v o l v e d .

2 The Nuclear Sh el l Model

We use the e x p r e s s i o n "shel l model" to r e f e r to m ic roscop ic trea tm ent s of
nu c le ar phenomen in which the e lementary c o n s t i t u e n t s are protons and
ne ut ron s . There are othe r kinds o f nuclear mode ls , but a l l o f t h e s e mus GLASGOW :

UNIVERSITY
LIBRARY

u l t i m a t e l y be r e fe rre d back to the s h e l l model j u s t as the s h e l l model must
u l t i m a t e l y be re fe r re d back to the quark s t r u c t u r e o f the n u c le o n s .

The e s s e n c e o f the s h e l l model i s t h a t each nucleon i s c o n f i n e d in a
p o t e n t i a l wel l produced by i t s i n t e r a c t i o n s wi th a l l o f the o t h e r n u c l e o n s .
This we l l i s o f t e n taken to be o f the form o f a th r e e -d im e n s io n a l harmonic
o s c i l l a t o r as shown in F ig . 1. The order ing o f and sp ac in gs between the
va r io u s s h e l l s , o s , op, i s o d , e t c . account reasonably wel l f o r some o f the
g r o s s p r o p e r t i e s o f n u c le i and may be used as the fou nd at ion f o r c o n f i g u r ­
a t i o n mixing s t u d i e s .

op
OS

Figur e 1 Schematic r e p r e s e n t a t i o n o f the s i n g l e - p a r t i c l e l e v e l s in a
harmonic o s c i l l a t o r wel l

In the most usual approximation o n ly one major s h e l l i s a c t i v e l y in vo lved
in the c o n f i g u r a t i o n mixing . The computational problem i s t h e r e f o r e to s e t
up the Hamil tonian matrix e v a lu a te d between the s t a t e s o f the a c t i v e c o n f i g ­
u r a t i o n and then to d i a g o n a l i s e i t . Both e ig e n v a l u e s and e i g e n v e c t o r s are
r e q u i r e d , the l a t t e r to en abl e the c a l c u l a t i o n o f t r a n s i t i o n r a t e s and exp­
e c t a t i o n va lue o f va r io u s measurable q u a n i t i e s . T r a d i t i o n a l l y , t h a t i s s i n c e
the mid 1 9 3 0 ’s , the b a s i s s t a t e s i n v o lv e d have been s p e c i f i e d by means o f
group theory and the n e c e s s a r y matr ix e l ements eva lu ated us in g Racah a lgebra
and the formali sm o f f r a c t i o n a l p arenta ge . Such methods are very f a r from
being matched in the s en se d es c r ib e d above . i

The Lanczos method was f i r s t used in sh e l l - m od e l c a l c u l a t i o n s in 1968 by
SEBE and NACHAMKIN C1D and by WHITEHEAD [2D. Sebe and Nachamkin used i t as
a m atr ix d i a g o n a l i s e r but wi th the idea in mind t h a t a we l l chosen i n i t i a l
s t a t e would r e s u l t in rapid convergence . Whitehead used i t t o c a l c u l a t e
the t r i - d i a g o n a l matrix d i r e c t l y from the two-body Hamil tonian wi th ou t the
i n t e r m e d i a t e s t ep of c o n s t r u c t i n g the f u l l s e c u l a r matr ix . In both c ases
the b a s i s s t a t e s were s p e c i f i e d group t h e o r e t i c a l l y . A l i t t l e l a t e r i t was
r e a l i s e d C3,4D th a t the s tandard formali sm was an encumbrance and t h a t the
f u l l power o f the Lanczos method could be brought to bear i f the b a s i s s t a t e s
and the Hamiltonian were s p e c i f i e d in the occupat ion number r e p r e s e n t a t i o n :

| i > = at at ... at | 0 >
1 2 n

and H = I V a+ a* a au a S y o a B o y
a8y6

where | 0 > r e p r e s e n t s the in n e r t f i l l e d s h e l l s , the a ' s and a+ , s are fermion
d e s t r u c t i o n and c r e a t i o n ope ra tors and the Vo g g are the two-body matr ix

e lements th a t d e f i n e H (th e r e i s , o f c o u r s e , a l s o a one-body i n t e r a c t i o n ,
but i t i s c om pu ta t ion a l ly advantageous to combine i t with the two-body p a r t) .
The o p e r a t io n o f m u l t i p l y i n g a v e c t o r by H could now be performed using
s im ple b i t manipulat ions in the computer. For example, the s t a t e | i > can
be repr ese nt ed by a s t r i n g o f 0 ' s and V s , the l ' s r e p r e s e n t i n g the prese nce
o f the c r e a t i o n o p e r a t o r s . When H o p e r a te s on | i > each term in the sum
r e s u l t s in a p a ir o f 1 ' s being removed and a new p a ir i n s e r t e d .

The general o r g a n i s a t i o n o f such a c a l c u l a t i o n i s i l l u s t r a t e d in F ig . 2.
The cur rent v e c t o r i s s p e c i f i e d by a l i s t o f ampl i tudes f o r the b a s i s s t a t e s .
Each b a s i s s t a t e i s operated on in turn by the Hamiltonian as o u t l i n e d above
and f o r each turn in H a new b a s i s s t a t e r e s u l t s and the product o f the i n i ­
t i a l ampl itude A and the V in vo lv ed i s accumulated in the f i n a l amplitude
v e c t o r B. The p ro cess as de sc r ib ed i s s imply a matr ix m u l t i p l i c a t i o n , but
one in which the matrix i s s tored i n d i r e c t l y in a h ig h ly condensed form.
There i s c e r t a i n l y scope fo r p a r a l l e l computation s i n c e a number o f i n i t i a l
b a s i s s t a t e s could be handled s i m u l t a n e o u s l y . Unlike some o f the a p p l i c a t ­
io ns de sc r i be d

n >
I 2 >

I 3 >

I n >
Figure 2

a t t h i s c o n f e r e n c e , though, i t i s the o p e r a t io n o f m u l t i p l y i n g a b a s i s s t a t e
by H r a t h e r than the a r i t h m e t i c , the m u l t i p l i c a t i o n and accumulat ion o f the
A's and V ' s , t h a t dominates the c a l c u l a t i o n . This i s t h e r e f o r e not a s u i t ­
a b l e a p p l i c a t i o n f o r a s i n g l e - i n s t r u c t i o n - m u l t i p l e - d a t a array p r o c e s s o r .

3 The Prototype Machine

The advantages f o r she l l -m odel work o f a d e d ic a te d machine are:

(i) Low c o s t

(i i) Total a c c e s s

(i i i) Great computat ional power

The pro tot ype machine to be de sc r ib ed c o s t s l e s s than £ 1 0 ,0 0 0 , w i l l run
r e l i a b l y f o r long per iods and has a performance comparable to t h a t o b t a i n ­
a b l e wi th an IBM 360/195 . I t i s a q u a r t e r - s c a l e v e r s i o n o f the "production"
machine , which w i l l be capable o f performing c a l c u l a t i o n s th a t s imply cannot
be done on f o r e s e e a b l e commercial computers. I t i s n e v e r t h e l e s s exper iment­
al in the s en se t h a t the f i n a l de s ig n i s by no means f i x e d and the protot ype
i s intend ed as a t e s t b e d f o r fu tu r e developments ra the r than as a f i n i s h e d

The l o g i c a l s t r u c t u r e o f the machine i s shown in Fig . 3. The Matrix
Format Generator performs the o p e r a t i o n s o f c r e a t io n and d e s t r u c t i o n and
produces infor mat ion about which A and which V (see Fig . 2) are to be
m u l t i p l i e d and where the r e s u l t i s t o be s t o r e d . This i s passed to the
M u l t i p l e Microprocessors Unit which performs the a r i t h m e t i c , e x t r a c t i n g
the n e c e s s a r y data from and i n s e r t i n g the r e s u l t s in the Central Memory.

Memory

Central
Matrix

Generator

Format

M u lt ip le

Mi c r o p r o c e s s o r

Unit

F igu re 3 Logical s t r u c t u r e o f p r o to ty p e machine

The Matrix Format Generator i s shown s c h e m a t ic a l l y in F ig . 4 . The Prim­
ary Generator c o n s t r u c t s a b a s i s s t a t e | i > represented by a s t r i n g o f 32
0 ' s or V s (the product ion v e r s i o n w i l l have 128) . This s t r i n g i s f e d , in
p a r a l l e l , t o the Secondary Generator where i t a c t s as a "seed" s t i m u l a t i n g
the produc t io n o f a l l the o t h e r b a s i s s t a t e s th a t have non-zero Hamiltonian
m atrix e lements with t h e ' s e e d s t a t e . In the p resent v e r s io n t h i s i s a c h i e ­
ved by means o f a system o f s e l f - a d d r e s s i n g t a b l e s in which each 8 - b i t byte
o f the seed s t a t e i s used as the ad dres s in a t a b l e at which a s u i t a b l e
t a r g e t byte i s to be found. This new byte i s used in the same way u n t i l
the o r i g i n a l seed byte i s again encountered s i g n a l l i n g exh aus t ion o f the
p o s s i b i 1i t i e s .

to MMU
BufferPair

F i l t e r

Secondary

Generator

Primary

Generator

F igur e 4 The matrix format gen e r a to r

Owing to the co n s e r v a t io n o f a d d i t i v e quantum numbers such as the t h ir d
components o f angular momentum and i s o s p i n s the Secondary Generator cannot
be de s ig ne d so as to produce only th os e b a s i s s t a t e s which have non-zero
matrix e l ements with the seed s t a t e . I t a c t u a l l y produces more s t a t e s than
i t sh o u ld . The fu n c t i o n o f the P ai r F i l t e r i s to e l i m i n a t e the redundant
s t a t e s and to e x t r a c t the c r e a t i o n and d e s t r u c t i o n operators needed to
c o n v e r t the^seed s t a t e i n t o the t a r g e t s t a t e . The i n d i c e s o f t h e s e

o p e r a t o r s s p e c i f y which V i s to be used l a t e r .

The Secondary Generator and Pair F i l t e r are con st ru c ted from very f a s t
Em itter Coupled Logic components running at a c lock r a t e o f more .than 100MHz,
The outpu t from the Pa ir F i l t e r i s buf fered to even out the r a t e o f p r e s e n t ­
a t i o n to the M u l t ip le Microproces sor Unit .

The d e s ig n o f the Matrix Format Generator was c o n d i t io n e d t o a g rea t
e x t e n t by the r e l a t i v e l y high c o s t o f memory when the p r o j e c t began. The
p r e s e n t d es ig n avoid s the n e c e s s i t y to s t o r e the f u l l l i s t o f b a s i s s t a t e s ,
which would have been very e x p e n s iv e in the pr oj ec te d 1 3 2 - b i t machine.

The output from the Matrix Format Generator , c o n s i s t i n g o f the index
numbers o f the i n i t i a l and f i n a l b a s i s s t a t e s and the two-body matr ix e lem­
e n t i n d i c e s , pa ss es to the M u l t i p l e Microprocessor U n i t . This c o n s i s t s o f
a s e t o f i d e n t i c a l microcomputers arranged so t h a t whichever one i s not
busy a c c e p t s the next inp ut and performs the n ecessa ry o p e r a t i o n s (s e e Fig .
5) .

from
MFG

Central

Memory

Figu re 5

The t a s k s o f e x t r a c t i n g the r e l e v a n t V and A, m u l t i p l y i n g them t o g e t h e r and
s t o r i n g the r e s u l t cannot be accompl ished by a s i n g l e m ic rop ro ces sor wi thout
s low ing down the Matrix Format Generator . The type o f p a r a l l e l i s m employed
here i s t h e r e f o r e one o f ov er la pp in g op era t io n s in a s e r i e s o f asynchronous
autonomous p r o c e s s o r s .

The proto type machine as d es c r ib e d does not y e t e x p l o i t a l l the p o s s i b i l ­
i t i e s f o r p a r a l l e l i s m . For example one could have two or more MFG's each
working on d i f f e r e n t s e c t i o n s o f the b a s i s .

The machine was o r i g i n a l l y des igne d around 8 - b i t micr opr oc ess or s f o r the
sake o f cheapness . I t was however des igned to be "upward compatible" with
newer 16 and 32 b i t m ic ropr ocess or s of the same (Motorola) f a m i l y . These

ar e very much f a s t e r and some have hardware f l o a t i n g po in t a r i t h m e t i c . As
a r e s u l t o f th ese advances we now have d e s ig n s f o r MMU modules one or two
o f which w i l l e a s i l y be able to keep up with the pr es ent MFG. This means
t h a t the MFG should now probably be r e d e s ig n e d . The c o s t o f memory has
a l s o come down dr am at ica l l y and t h i s may a l s o have a bear ing on fu tu r e
development s .

Acknowledgments

We are indebted t o the Motorola Company f o r a s s i s t a n c e in many a s p e c t s o f
t h i s work. R.R.W, acknowledges the tenure o f an SERC Se nio r Fe l l ow sh ip
during the course of the work.

Referenc es

1. T. Sebe and J . Nachamkin Ann. Phys. (NY) J51_ (1969) 100

2 . R.R. Whitehead 1969 Unpublished re p o r t

3 . R.R. Whitehead Nucl. Phys. A 182 (1972) 290

4 . R.R. Whitehead, A. Watt, B .J . Cole and I . Morrison Adv. in Nucl. Phys.
Vol. 9 Eds. Baranger and Voyt (Plenum P r e s s , 1977)

I GLASGOW
] UNIVERSITY

J LIBRARY

