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Abstract

This thesis describes the design and implementation of a dedicated 

parallel processor system for nuclear shell-model calculations. The 

purpose of these calculations is to determine nuclear energy eigenvalues 

by the tridiagonal i sat ion of the nuclear Hamiltonian matrix using the 

Lanczos method. The Theoretical Nuclear Structure group at Glasgow 

University’s Physics Department would normally perform this type of 

calculation on a high-performance main-frame computer. However these 

machines have limitations which restrict the number and scope of the 

calculations that can be performed.

The Shell Model Processor system consists of a Multiple 

Microprocessor Unit (MMPU) driven by a highly pipelined dedicated front- 

end processor. The MMPU has a modular, moderately coupled, MIMD 

architecture based on autonomous processing modules. The elements within 

the system communicate via three shared buses. The front-end is 

responsible for determining the position of non-zero elements within the 

Hamiltonian matrix. Once the position of an element has been found it is 

passed to one of the free processing modules within the MMPU. The 

processing module then determines the value of the matrix element and 

performs the appropriate arithmetic to accumulate the resultant Lanczos 

vector. Two such processing modules have been developed. The most 

recently developed module is based on two MC68000 16/32 bit

microprocessors. In addition there are two supervisory processor 

modules, one of which controls the front-end and also assists it in its 

function. The other module has privileged system capabilities and is 

responsible for supervising the system as a whole.

The system has been successfully tested and performance figures are 

presented. The future expansion of the system to allow it to perform 

larger calculations is also discussed.



CHAPTER 1

A Review of Parallel Computer Systems

1.0 Introduction

In the 42 years since the introduction of the first electronic digital 

computer until the present day "supercomputers", arithmetic processing 

speed has undergone a dramatic increase of over ten million fold. Such 

an increase has not been achieved solely by the improvements in 

performance of electronic digital hardware, e.g. the introduction of 

discrete transistors in 1960, of small-scale integrated circuits in 

1965, and of VLSI and VHSIC devices in the 1980s. Rather this increase 

has been made possible by the marriage of these technological 

achievements with the introduction of parallel processing techniques at 

all levels of computer architecture. For example, the Goodyear Aerospace 

Massively Parallel Processor (MPP) being delivered to NASA is centered 

around a 128 x 128 ( = 16,384 ) array of bit-serial processing elements 

(PE) , with 8 of these PEs packaged on a single custom VLSI CMOS-SOS 

chip. Developed primarily to process satellite imagery, it is capable of 

performing over 6.5 billion additions per second and 1.8 billion 

multiplications per second on 8-bit integer data. While on 32-bit 

floating-point numbers it can perform 430 million additions per second 

and 216 million multiplications per second, [Bat80, HLSM82].

Performance improvements in the last forty years due to 

technological enhancements alone can be estimated to be a factor of 

between one and ten thousand, [HJ81]. This would conservatively place 

the speed up factor due to parallelism at about 1000. Parallelism is now
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Chapter 1

common place to the extent that it is now embedded even in conventional 

serial computer architectures; serial in that they execute one 

instruction at a time, but parallel in that instruction fetch, decode 

and execution are all pipelined.

However it must be borne in mind that it is the technological 

advancements that have made much of the parallelism feasible. For 

example VLSI microprocessors have made multiprocessor systems not only 

feasible but widely available and the late 1970’s and 1980’s have seen a 

proliferation of experimental and commercial multiprocessor systems 

based on commercially available microprocessors. Indeed the 

microprocessor manufacturers are very much aware of this and most of the 

16 and 32 bit processors have hardware and software features included in 

their design that facilitate their use in multiprocessor systems. In 

fact the Inmos Transputer series of microprocessors is designed 

specifically for multiple processor applications and is described as a 

"system building block" [BCMW83].

This thesis discusses one such experimental multiprocessor system 

which is based around commercial microprocessor devices. As an 

introduction this first chapter will give a brief history of the 

advances in parallel techniques as well as an overview of multiprocessor 

configurations and bus structures.

1.1 A History of Parallelism

The first computers to be built which were designed around the 

classical, serial von Neumann architecture were EDSAC (Cambridge, 1949) 

and EDVAC (Pennsylvannia, 1952). Prior to this the only digital computer 

built, ENIAC (Pennsylvannia, 1946), did not have a stored program but 

was wired up for specific computations. Hence any alteration of the 

program required rewiring [Ro69].

Having the program stored in memory, as with EDSAC and EDVAC, was
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Chapter 1

obviously much more flexible and is one of the features of the von 

Neumann architecture. There are five basic units within this 

architecture, namely;

1/ an input device for reading data and instructions from the outside 

world into memory,

2/ an output device for sending results and messages to the outside 

world,

3/ a single memory for storing both program and data,

4/ a single Control Unit (CU) for interpreting instructions,

5/ and a single Arithmetic-Logical Unit (ALU) for processing data.

The last two units are collectively referred to as the Central 

Processing Unit (CPU).

In the two von Neumann machines mentioned each of the five units 

operated one at a time. Even their arithmetic was performed in a bit 

serial manner, with the addition of two numbers requiring one machine 

cycle per bit. This was due mainly to the fact that their memory 

consisted of a mercury delay line acting as a shift register, and 

therefore data was read serially bit by bit with the least significant 

bit being accessed first. Bit-parallel arithmetic was first used in the 

experimental IAS machine (Princeton, 1952). This used electrostatic 

cathode ray tube storage from which 40 bit words could be read in 

parallel. The first commercial computer to use bit-parallel arithmetic 

was the IBM 701 introduced in 1953.

The next step in parallelism and the first departure from the von 

Neumann architecture was the addition of data channels. Up until that 

point all I/O requests to peripheral equipment e.g. card readers, line 

printers and drums, had to be processed by the CPU. Even with relatively 

fast peripherals, such as magnetic tape drives, I/O could cause a major 

bottleneck in the processing of data. This problem was partly solved by 

introducing data channels. Data channels had their own separate 

processing unit and instruction set and also had shared access with the
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CPU to the main memory. Once the CPU had started the data channel 

transferring blocks of data, the CPU could then proceed to operate 

independently of it, thus allowing concurrency between I/O and 

computational processes. IBM first introduced such channels in their 709 

machine in 1958, and the technique is still used in many modern 

computers.

The next architectural advance took place shortly afterwards with 

the Univac Larc (1960) and the IBM Stretch (1961), [Ro69, HB87]. These 

two machines further departed from the von Neumann structure by 

introducing interleaved memories and an instruction pipeline. 

Interleaved memories, essentially the application of parallelism to the 

primary memory system, divides the primary memory up into 2 or more 

independently accessible banks. Thus program words in successive memory 

banks can be accessed in a pipelined manner, reducing the limitation 

placed by slow memory technology on the processor cycle time. The 

instruction pipeline (or lookahead) allowed the current instruction to 

be executed in parallel with the fetching and decoding of the next few 

instructions. However neither the Univac Larc nor the IBM Stretch were 

commercially successful with the Stretch being superseded by the IBM 

7094 in 1962.

In the same year Burroughs introduced what can be considered the 

first multiprocessor system with the introduction of the D-825, [Ba80]. 

Intended primarily for military applications, it could have up to 4 

identical CPUs connected to 16 memory modules via a cross-bar switch. 

Hie cross-bar switch was used later in the two procesor Burroughs 

B-5000 as well as in a number of other multiprocessor systems.

Functional parallelism within the CPU was first introduced, to a 

limited extent, in the ATLAS computer, [HJ81]. A prototype was first 

built at the University of Manchester in 1961 under the direction of 

Professor Kilburn and the computer then went into production with 

Ferranti in 1963. The ATLAS had magnetic core memory which was divided
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into 4 independent, interleaved banks. More important, however, was the 

introduction of a separate 24-bit adder for address calculations (the B- 

unit) which worked in parallel with the main 48-bit fixed/floating-point 

arithmetic unit. An operand address was formed in the B-unit by adding 

the contents of one or two of the 128 24-bit index registers to a 24-bit 

address which was contained in the instruction word. The inclusion of 

these independent functional units along with the use of pipelining 

allowed four separate phases of instruction execution to be overlapped, 

namely; instruction fetch, operand address calculation in the B-unit, 

operand fetch and operation of the 48-bit arithmetic unit.

The ATLAS is also known as the first machine to have a virtual 

memory system. This gave the user the appearance of having a large 

(approximately 1 million words) single level primary memory system. In 

reality the operating system translated memory references to the virtual 

single level system to a multilevel store consisting of magnetic core, 

magnetic drum and tapes. Data was transferred between the different 

levels of the physical storage system in 512 word pages.

The idea of functional parallelism was utilised to a much greater 

extent in the CDC 6600, introduced in 1964. This machine had a set of 10 

dedicated arithmetic functional units for performing multiplication, 

division, addition, shifting and boolean operations amongst others on 

60-bit floating-point numbers. These were controlled by a hardware 

mechanism which allowed independent instructions to be executed out of 

sequence without altering the logic of the program yet making most 

efficient use of the separate functional units. The controller had a 

"scoreboard" by which it kept track of the availability of the different 

functional units and registers and thus avoided conflict between the 

various instructions which were being executed. In addition the CDC 6600 

had 32 interleaved memory banks and 10 Peripheral Processors Units 

(PPU). The PPUs each had their own private memory and executed separate 

programs while sharing a common arithmetic unit and access to the main
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memory on a time-multiplexed basis. The CDC 6600 was replaced in 1969 by 

the CDC 7600. This was upwardly compatible with the CDC 6600 but 

replaced the serially organised functional units with fully pipelined 

ones. The CDC 7600 also had solid state memory devices instead of the 

magnetic core memory used in the 6600 and had a processor cycle time 

that was four times faster. The CDC 6600 and 7600 were very popular, 

powerful machines and many of the ideas found in their architecture were 

used in later computers.

The chief architect of the CDC machines, Seymour Cray, later left 

to start his own company, Cray Research Inc. , and in 1976 produced the 

Cray-1, [HB87, KT80]. This follows in the steps of the 7600 but has a

processor minor cycle time of 12.5 ns which is twice as fast as that of 

the 7600. The Cray-1 also includes vector processing hardware and 

instructions. That is as well as incorporating hardware for processing 

data which consists of single numbers (scalars), there is also hardware 

for processing data which consists of ordered sets of numbers (vectors). 

The Cray-1 has 12 independent, pipelined functional units with the 

ability to chain the units together so that intermediate results from 

one unit can be passed immediately for processing in another unit 

without reference to primary memory. Three of the functional units are 

reserved for vector operations (add, shift and logical), while three are 

shared between scalar and vector 64-bit floating-point operations (add, 

multiply and reciprocal approximation, there being no divide unit). In 

support of the vector units there are 8 vector registers, each 

containing sixty four 64-bit floating-point numbers. The Cray-1, 

considered a second generation vector processor, has a maximum 

processing rate of 160 Million floating-point operations per second 

(MFLOPS) and can achieve rates in excess of 100 MFLOPS for matrix 

multiplication.

There were two earlier pipelined vector processors, the CDC Star 

100 whose design was first conceived around 1964 and the Texas
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Instruments Advanced Scientific Computer (TIASC), which started around 

1966. Both of these were first delivered around 1973 and both suffered 

from old technology, e.g. the Star 100 had core memory compared to the 

Cray’s bipolar memory. Consequently neither were as fast as the Cray-1 

for either scalar or vector operations. The Star 100 was designed to 

work at up to 100 MFLOPS but only averaged around 20 MFLOPS while the 

TIASC, designed to reach 50 MFLOPS, averaged around 40 MFLOPS, [HB87]. 

The Star 100 was later improved and re-introduced as the Cyber 203, 

which in turn was improved to become the Cyber 205 (1981).

In the meantime another form of parallel processing had been 

developing, that is the array processor. Originally conceived by Unger 

in 1958, his proposal was for a two-dimensional array of Processing 

Elements (PE) each connected to its four nearest neighbours and all 

controlled by a common master, [HB87]. Each PE was synchronised to all 

the other PEs by the master to perform the same function in parallel on 

their own local data. The proposal was further developed by Slotnick et 

al in 1962 in their design for the Solomon computer [HJ81]. This was to 

be a two-dimensional array of 32 x 32 PEs each with its own 128 32-bit 

word memory and bit-serial arithmetic unit. Every PE would follow the 

same instruction stream which was supervised by a central control unit. 

The spatial parallelism of the array processor was a revolution in 

computer architecture unlike the evolution of the serial processor to 

the pipelined vector processor. However neither Ungers nor Slotnicks 

design were ever implemented in full and it wasn’t until 1972 that the 

first array processor, Illiac IV, was built. Originally proposed by 

Unger for pattern recognition problems, array processors are well suited 

for certain vector processing applications and grid problems, e.g. 

matrix problems, Fourier analysis, image processing and weather 

simulation. However the difficulty in programming array processors and 

the parallel lockstep operation of the PEs limits their overall range of 

applications and has restricted them to be special purpose machines.
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The original Illiac machine was intended to have four arrays of 64 

PEs. Each 8 x 8  array was to have its own CU with its own instruction 

stream. The PEs would have their own floating-point arithmetic unit and 

2048 (2K) 64-bit words of memory and would communicate with their four 

nearest neighbours. The objective was for a processing rate of up to 

1000 MFLOPS working on vector or matrix computations. However the 

machine which was eventually built, the Illiac IV, only had one of the 

intended 64 PE arrays and had a peak processing rate of the order of 50 

MFLOPS.

Based on the lessons learnt from building the Illiac IV Burroughs 

went on to design and build the BSP array processor [KT80] . One of the 

problems with the Illiac IV was the delay involved in transferring data 

between memories separated by long distances across the array. In the 

BSP the problem was solved by reducing the number of processors (called 

arithmetic elements (AE) on the BSP) to 16 and having 17 memory banks

connected by an alignment network (a full crossbar switch). This allowed

each AE to access every memory without any routing delay and by using 17 

memory banks (the next highest prime number above 16) and appropriate 

mapping algorithms for storing the data memory conflicts are reduced. By 

pipelining memory accesses with AE processing the BSP was designed to 

have a maximum processing rate of 50 MFLOPS.

Other array processors have also been developed. For example the 

ICL Distributed Array Processor (DAP), first produced in 1980, is very 

similar to the original Solomon design, with a 64 x 64 array of bit- 

serial PEs connected to four nearest neighbours. Larger arrays of 128 x 

128 or even 256 x 256 using 4 PEs per LSI chip have also been proposed 

for the DAP, [HJ81]. Some multiple array processors, along the lines of 

the original Illiac design, have been proposed but as yet never built

e.g. the MAP and the Phoenix [HB87].

The main architectural elements of parallel processors have now 

been introduced in essentially chronological order. It is useful to
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order these ideas by classifying the various computer organisations into 

different categories and in the next section two classification schemes 

are presented.

1.2 Classification of Computer Architecture

A number of different classification schemes have been proposed, each 

with their own merits and deficiencies, e.g. Flynn’s [F166], Feng’s 

[HB87] and Shore’s [HJ81]. Some other classification schemes are much 

more detailed and involve descriptive languages of varying complexity 

by which each individual computer is described. For example PMS (a

computer hardware descriptive language intended for any computer system,

serial or parallel, [Ba80]), and Hockney and Jesshope’s own structural 

notation [HJ81],

1.2.1 Feng’s Taxonomy
Feng classifies a computer according to the degree of parallelism within 

its architecture. The maximum parallelism degree P is defined as the 

maximum number of bits that a computer system can process within unit 

time (usually one processor cycle). P can then be given by the product 

of the computer word length n and the bit-slice length m. The word 

length is the number of bits contained in the computer word and the bit- 

slice length is essentially the number of words being processed in 

parallel. The pair (n,m) then classifies a given computer architecture 

according to its degree of parallelism. There are four main categories 

within this classification :

1/ Word-serial and bit-serial (WSBS) ; n = m = 1

One bit is processed at a time in this category e.g. the Minima

computer.

2/ Word-parallel and bit-serial (WPBS) ; n = 1, m > 1

One bit each from m words are processed in parallel in this
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category, sometimes called bit-slice processing. The ICL DAP (m = 

4096) and Goodyear MPP (m = 16384) are both WPBS machines.

3/ Word-serial and bit-parallel (WSBP) ; n > 1, m = 1

Conventional serial computers which process one word at a time are 

placed in this category. An example is the VAX 11/780.

4/ Word-parallel and bit-parallel (WPBP) ; n > 1, m > 1

In this category m n-bit words are processed in parallel. This 

includes array processors with bit-parallel PE’s such as the Illiac 

IV. It also includes vector processors such as the TIASC, and also 

multiprocessor systems such as the original Burroughs D-825 and the 

later Carnegie Mellon University C.mmp system developed in the 

1970’s.

1.2.2 Flynn *s Taxonomy

Flynn’s taxonomy classifies a computer into one of four main categories 

according to the multiplicity of its instruction and data streams. An 

instruction stream is a sequence of instructions executed by the machine 

and a data stream is a sequence of data processed by an instruction 

stream. Flynn’s taxonomy appears to be the most popular but is by no 

means completely definitive and is sometimes augmented by adding 

subdivisions to the main categories. The four main categories are :

1/ Single Instruction stream/Single Data stream (SISD).

This category represents most serially organised, single processor 

computers. It includes computers which use pipelining within the CU 

and ALU, since there is still only one instruction stream operating 

on one data stream. It even includes computers such as the CDC 7600 

which have multiple functional units.

2/ Single Instruction stream/Multiple Data stream (SIMP).

This category primarily includes array processors, such as the 

Illiac IV and ICL DAP. That is there is a single CU which controls 

a single instruction stream. The CU broadcasts the instruction to
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every PE and the PEs then operate on different sets of data.

3/ Multiple Instruction stream/Single Data stream (MISD).

This category implies that a number of instructions are operating 

simultaneously on a single data stream. Baer [Ba76] considers that 

pipeline processors could be included in this category if the 

consecutive stages are considered separate instructions, however 

Flynn [F166, F172] himself gives no positive examples of the

architecture.

4/ Multiple Instruction stream/Multiple Data stream (MIMD).

In MIMD architectures several CPUs operate in parallel on different 

(although not necessarily unconnected) data sets. Multiprocessor 

systems are therefore classified in this category, e.g. the Cm* 

system [Fu78].

Flynn’s taxonomy is useful in that it clearly distinguishes between 

certain types of parallel processors, e.g. array processors and 

multiprocessors, whereas Feng’s taxonomy lumps most of the parallel 

processors in one category, i.e. (WPBP). However it is still a fairly 

loose definition in that the SISD category includes conventional serial 

processors, pipelined processors and processors with multiple functional 

units. The SISD class can even include vector processors, depending on 

whether a vector is defined as a single data stream or not. The MIMD 

category is also too broad and most writers further subdivide this for 

clarity into loosely coupled systems and tightly coupled systems (or 

distributed memory multicomputers and shared memory multiprocessors 

respectively [Hw87]). The next section will discuss in greater detail 

the MIMD class of computers.

1.3 Multiple Processor Systems

MIMD processor systems vary extensively in the degree and nature of the 

coupling and interaction between processors. This coupling determines
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the extent to which the various elements in the system share resources 

and cooperate in performing a task. Thus MIMD systems can be further 

classified according to the degree of coupling between processors [FK83]

1.3.1 Loosely Coupled Systems

Each processor within a loosely coupled system possesses its own local 

I/O devices and its own local memory systems which will be large enough 

to store any programs and data that are being processed. Thus each 

processor is an autonomous computer module in its own right. Each 

computer module is connected to a communications net by which it can 

communicate directly or indirectly to any of the other modules in the 

system. The modules can be geographically distributed and processes 

which run on the different modules may communicate with each other by 

passing messages over the net.

The net, which is usually a high-speed serial link such as Ethernet 

[MB76], will have a strictly defined transfer protocol with each 

computer module having its own communications net controller. In this 

way the net itself is passive and the control, i.e. arbitration and 

message routing, is distributed throughout the system. The 

communications net for a loosely coupled system can usually tolerate 

only a low rate of interaction between tasks, otherwise its performance 

will be degraded. Loosely coupled systems are also referred to as 

distributed systems [HB87].

1.3.2 Tightly Coupled Systems
Processors in such a system communicate with each other via a global 

primary memory system which they access over an interconnection network. 

This interconnection network must provide a means of communication 

between all processors and all memory modules within the system. 

Individual processors may also, have their own small, private memory or 

cache. I/O devices and any other system resources are generally shared
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by the processors, although some devices may be dedicated to specific 

processors. Each processor is supervised and controlled by a single 

common operating system. Software/hardware means are provided for 

synchronising cooperating processes which are being executed on 

different processors. Since most resources are common and all processors 

have equal processing power, dynamic load sharing is possible under 

control of the operating system.

In a tightly coupled system data is passed between processors via 

the global memory, thus the rate at which interprocess communications 

can take place is determined by both the bandwidth of the memory system 

and the bandwidth of the processor-memory switching network. The network 

must resolve any contentions that arise when two or more processors 

attempt to access the same memory module. Memory contention is a major 

limitation on the performance of tightly coupled systems and imposes an 

upper limit on the number of processors that can usefully be included in 

a system. Thus the switching network should be designed so as to reduce 

the number of contentions as much as possible. Any contention which does 

occur between requests must be arbitrated as quickly as possible and 

should be invisible to the competing processes.

1.3.3 Moderately Coupled Systems
In between the two extremes of tightly and loosely coupled systems there 

lies a range of organisations which can be termed moderately coupled 

systems. These systems are suited to processes where the workload can be 

partitioned into relatively independent tasks which require only a 

limited amount of communication between them. In general the processing 

elements will be self-contained, with their own processor and memory for 

both data and program. Each element may have its own I/O capabilities or 

there may be a processor (or processors) which is dedicated to this 

task. Other processors may be dedicated to specific tasks which are 

necessary to the overall performance of the process. Interprocessor
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communications and communications to global resources are performed over 

the communications net. In general much of the load sharing is static 

since some functions are carried out by specific processors. Such 

moderately coupled systems are also called Multiple Task/Multiple Data 

(MIMD) systems [FK83], since they are capable of concurrently executing 

a number of tasks on different data.

1.3.4 MIMD System Characteristics
A multiprocessor system can at most have a linear increase in 

performance for increasing the number of processors, i.e. n processors 

will perform n times faster than one processor. This is the ideal, but 

in practice the law of diminishing returns will operate so that as more 

processors are added overall system performance will start to level off 

before eventually reaching a maximum and then, in some cases, beginning 

to decrease [Fu78 for some examples with Cm*]. This saturation effect 

can be attributed to a number of causes;

Resource contention : as the number of processors increases so will 

requests to access the global resources, e.g. shared data in global 

memory and dedicated processors. More and more conflicts will occur as 

the usage of the resources increases. In some cases the bandwidth of the 

communications net may ultimately be fully utilised and so processors 

will spend more time waiting to use the net as well as the resources. 

Overheads : a parallel algorithm for a multiprocessor system will

inevitably require more steps than a serial algorithm, due to the 

overheads in managing and scheduling the system. For example certain 

cooperating tasks may require to be periodically synchronised and thus 

some processors may have to wait while others catch up.

Input/Output : if there are fewer I/O devices than processor modules

then processors may become idle while waiting for input data or while 

waiting for output requests to be serviced. For example for certain 

applications on the Illiac IV I/O functions have been measured to
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consume up to 60% of the total processing time, [HLSM82].

The onset of saturation will depend on the particular configuration 

of the multiprocessor system and the actual task it is performing, e.g. 

whether the process is compute bound or I/O bound. For example, for a 

compute bound process, e.g. matrix multiplication, the number of 

computations is larger them the number of I/O operations and so will 

have improved performance on certain multiprocessor systems than on 

others.

The advantages of multiprocessor systems over single processor 

systems cannot simply be measured in terms of performance improvement 

alone, although this is probably the most important and attractive 

measure for computer users. However another important factor is cost and 

even here multiprocessor systems can bring improvements. Traditionally 

Grosch’s law [FK83] suggested that processor performance was 

proportional to the square of the cost and thus adding extra processors 

was not an economical means of improving performance. However with the 

advent of cheap, VLSI microprocessors this is no longer the case and the 

Cosmic Cube [Se85] is a prime example of this. The Cosmic Cube consists 

of 64 identical computer modules connected as a hyper-cube, with each 

module containing a 16-bit Intel 8086 microprocessor and 8087 floating­

point coprocessor plus 136K bytes of memory. The system is reported to 

have one tenth of the processing power of a Cray-1, but with a total 

manufacturing cost of $80,000 it has only one hundredth of the cost, 

[F084].

Another of the advantages of a multiprocessor system lies in their 

potential for improved reliability due to redundancy. In a redundant 

system all, or most of, the system elements are duplicated and so in the 

event of a failure in one of the elements the system can still operate, 

although perhaps with a reduced performance. Tightly coupled 

multiprocessor systems are inherently more reliable than moderately or 

loosely coupled systems, since in such systems there are duplicates of
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all processor, memory and I/O modules. Moderately coupled systems where 

the system elements are not homogeneous in their capabilities are 

obviously less fault tolerant. However the system software must support 

fault tolerance as well as the hardware. The system software and 

hardware must combine to detect any errors as soon after their occurence 

as possible and the spread of faulty data must then be contained. 

Diagnostic routines will then determine the extent of the problem and if 

necessary isolate the faulty module. The system software will then 

reallocate tasks to the remaining properly functioning modules. The 

ability to isolate a module while still retaining overall system 

functionality is also a factor in serviceabilty since this allows the 

system to operate while repairs are being made to a defective module.

However MIMD systems, and parallel systems in general, have 

disadvantages as well as advantages. The main problems lie with the 

software, in the areas of operating systems design, languages and 

compilers [Pr79, Hw87].

The communications net plays a fundamental role in determining the 

overall capabilities of an MIMD system. The total useful utilisation of 

the net is partly determined by the nature of the processor modules and 

global resources interfaced to it. That is if processors modules are 

equipped with sufficient local memory to store program code and local 

data then accesses via the net can be reduced. A number of different 

methods for interconnecting system elements have been suggested and 

implemented and the next section is devoted to a brief discussion of 

these.

1.4 Interconnection Methods

There are a number of important factors to be considered when discussing 

the merits of any communications net for MIMD systems. Bandwidth, 

reliability, modularity and cost are some of these factors. These in
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turn depend on other considerations, e.g. the number of connections 

required for each module (be it processor, memory or I/O) interfaced to 

the net, whether control is centralised or decentralised and whether 

transfers between modules are direct or indirect (i.e. do some transfers 

require the cooperation of other modules).

Three of the main structures used for interconnecting processors 

and global resources are the crossbar switch, multiport resources and 

the time shared or common bus.

1.4.1 The Crossbar Switch
A crossbar switch provides complete direct connectivity between 

processors and resources. Essentially there is a separate path from each 

resource which can be switched to any of the processors. There is 

therefore never any contention for a communication path but there may 

still be contention over an individual resource. Thus if there are m 

resources and n processors then the crossbar requires m x n switches

The important feature of the crossbar switch is that is supports 

multiple concurrent transfers to all the resources. Only one processor 

can access a resource at one time, but the switch allows a total of 

min(m,n) accesses in parallel, if all processors are accessing different 

resources. Each individual switch must have hardware capable of 

resolving multiple simultaneous requests to access the same resource, as 

well as being able to switch the parallel transmission path.

System fault tolerance can be severely compromised by a fault in 

one of the switches, possibly rendering a processor, resource or both 

totally isolated. If several switches are integrated on a single chip 

then fault modes could be even worse. However redundancy within the 

switch can go a long way to overcoming these problems.

The crossbar switch system has the potential for very high transfer 

rates. However the complexity of the switches and the numbers required 

means that the switch as a whole becomes the dominating factor in the
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cost of the overall system. The Carnegie Mellon C.mmp system 

successfully used a crossbar switch to interconnect 16 processors to 16 

memory modules, [HB87].

1.4.2 Multiport Resources

With this organisation the switching and arbitration control which is 

distributed in the crossbar switch matrix is placed at the interfaces of 

the resources. Thus each processor has access via its own bus to all the 

memory and I/O modules. Contention for access to a single resource can 

still occur and must be resolved essentially by the resource itself. 

Cost considerations again make multiporting unsuitable when connecting 

many processors and resources.

1.4.3 Time Shared Buses
This is the simplest method of interconnecting the processors and 

resources of an MIMD system. The processors have direct access via the 

bus to each of the resources. Transfers can be controlled totally by the 

bus interfaces of the processors and resources and hence the bus is 

often totally passive and thus extremely simple. However with a single 

bus there can be no concurrency in transfers since only one access to 

one resource can take place at a time. As a result of this there must be 

some means of arbitration between competing requests to use the bus. 

This will be performed in hardware to reduce delays and can arbitrate 

requests on either a fixed or dynamic priority scheme.

The total bandwidth of the bus is determined by the transfer rate 

of the processors and the time taken to resolve competing requests. 

However it is quite feasible that in order to increase the total 

bandwidth of a large system that it be divided into clusters of 

processors and resources with each cluster having its own shared bus. 

Clusters themselves can then be connected via intercluster buses. This 

is the method used in the Carnegie-Mellon Cm* multiprocessor [Fu78] and

- 18 -



Chapter 1

on Fastbus (IEEE P960) where clusters are called segments [Gu84,FAST83]. 

Each processor can still access each resource in the system, although 

not necessarily in the same amount of time, and the presence of multiple 

buses allows accesses within clusters to be performed concurrently thus 

increasing the total system bandwidth.

Alternatively system bandwidth can be increased by incorporating 

multiple, dedicated, parallel buses. Each processor would have a 

dedicated interface to each of the buses, with each bus being interfaced 

only to a certain type of resource, e.g. a bus dedicated to I/O devices 

and another to global memory. This method is better suited to systems 

where the communications load is reasonably well balanced between the 

different types of resources, otherwise one bus could become the system 

bottleneck long before any of the others.

As has been said any processor which wants to use the bus must 

first receive permission in order to avoid a conflict. There are a 

number of mechanisms for resolving the bus request/arbitration problem. 

One solution is to have individual request and bus grant signals from 

each potential bus master to the arbiter. Thus each master has his own 

private two-way connection to the arbiter. However this has the 

disadvantage of requiring two lines on the bus for each potential bus 

master. It does have the advantage though of speed, simplicity and great 

flexibility in that it allows the arbiter to use any method in 

allocating priority to multiple requests.

Another solution is the use of daisy chaining. This method assigns 

a unique static priority to the requesting devices which is dependent on 

their physical position relative to the bus arbiter. With this method 

all devices request the bus from the arbiter via a common (wire-OR) bus 

request line and bus ownership is signalled by a bus busy line. When a 

request is signalled to the arbiter it issues a bus grant signal down 

the bus grant daisy chain, as long as the bus is not currently being 

used. Each requester has two separate lines for the bus grant; a bus
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grant input and a bus grant output. When the arbiter issues the bus 

grant it is passed on to the first module on the daisy chain. If that 

module is not currently requesting the bus then it will propagate the 

grant on to the next module on the chain, via its bus grant out line. 

The first module which receives the bus grant and which is actively 

requesting the bus will block the propagation of the bus grant down the 

daisy chain. This module will then assert the bus busy signal and negate 

its bus request. When the arbiter then sees the bus busy line being 

asserted it will rescind the bus grant signal.

The new bus master can hold the bus and perform as many bus 

accesses as it wishes until it decides to negate the bus busy signal. 

VME bus (or IEEE P1014) uses this type of bus arbitration and allows the 

current bus master two options on when to release the bus, [Fi85, 

V'ME82]. The first is release-when-done (RWD) which allows the current 

bus master to keep the bus only to perform a single or block transfer 

and then to release it. This option is useful where multiple masters 

require approximately equal bus usage and where transfers are mostly 

done on a cycle by cycle basis. The second option, release-on-request 

(ROR), allows the master to hold the bus as long as it wishes even if it 

is not actually using the bus. However the current master must release 

the bus when a bus request is issued by another master. This latter 

option is most useful in situations where the majority of masters have 

low bus usage and where the bus transfer rate of a few masters must be 

maximised. Giving these masters the ability to hold on to the bus so 

that they do not need to re-arbitrate for every usage will obviously 

increases their throughput.

When the bus master finishes with the bus, which it signals by 

negating the bus busy, the arbiter must recommence the arbitration 

process if there are outstanding requests to use the bus. The arbiter 

does this by sending the bus grant down the daisy chain again. It can 

thus be seen that the nearer a requester is to the arbiter on the bus
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grant daisy chain then the more likely it is to receive the bus grant 

signal first and thus the higher its priority in the arbitration 

process.

Other bus arbitration techniques are possible, such as dividing the 

bus bandwidth into fixed length time slots that are sequentially offered 

to each master in rotation. However all the arbitration mechanisms 

mentioned so far require a centralised arbitration controller. This 

obviously reduces fault-tolerance since a failure in such a critical 

component would cause the whole system to fail, unless there was a 

redundant controller which could be switched in.

However a system of arbitration has recently been introduced on 

buses such as Fastbus and Futurebus which uses distributed arbitration 

control, [Gu84, Ta84]. In such systems there are no critical centralised 

components required for the arbitration but instead each potential bus 

master has all that is necessary to determine whether it can or cannot 

assume control of the bus.

With distributed control each potential master is assigned a unique 

n-bit arbitration number. The bus contains n lines to which the 

requesters apply their number, via open collector drivers, at the start 

of an arbitration cycle. Each requester then monitors the lines and if 

it sees a logic 1 (the lower voltage level) on a line to which it is 

driving a logic 0 then it ceases to apply all bits of lower 

significance. After a delay to allow the bus to settle down the bus 

lines will carry the highest arbitration number among the competitors. 

The requester which recognises that the number remaining on the bus is 

its own then knows that it has gained control of the bus.

However this scheme would impose a disadvantage on requesters with 

low arbitration numbers unless an additional fairness constraint is 

imposed. On Futurebus (IEEE P896) the fairness constraint means that 

once a module has finished with the bus it cannot request the bus again 

until there are no other requests to be serviced, [Ta84]. However some
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modules by their nature may have more urgent needs for the bus. 

Futurebus takes account of this and allows these priority modules to 

request the bus whenever they want. Such modules will also have the most 

significant bit of there arbitration number equal 1, while fairness 

modules will have this bit equal 0, giving priority modules an 

additional advantage in gaining the bus.

With distributed control the current bus master is responsible for 

initiating the next bus arbitration procedure. It can do this even 

before it has finished its bus usage, thus allowing the arbitration time 

to be pipelined with bus transfers. Arbitration time can thus be lost 

and need not therefore impose a limit on bus bandwidth. The winner of 

the new arbitration contest must then monitor the bus to wait for the 

current bus master to finish before it assume bus control.

No central clocks or control circuits are required for Futurebus.

Instead 3 dedicated, wire-OR, control lines ensure that all operations

concerned with the transfer of the bus are synchronised. Arbitration is

thus a completely decentralised operation. Fault tolerance can be

additionally enhanced by having a parity bit on the bus for the

arbitration number. All potential masters can then check that the state

of this parity bit is correct before a new bus master takes control. As
/

a possible additional check at the end of the arbitration contest all 

losers can test that their arbitration number is less them the number on 

the bus. Any errors that are found will prevent the hand over of the bus 

emd the current master then restarts the process.

In general, bus systems can be highly modular, allowing an almost 

unlimited number of processors to be attached, e.g. as with Fastbus. 

Even simple, more general purpose single bus systems are modular, 

although usually only up to some upper limit. This upper limit may be 

determined by the physical limit of the number of slots on a bus 

backplane. Or it may be determined by the total bus bandwidth available, 

which itself it technology dependent. Most buses require no alterations
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or additions in order to add other processors or resources. In fact new 

processors, while they must obviously still conform to the bus 

arbitration and transfer protocols, can make use of faster interfaces 

and thus achieve higher transfer rates, if the transfer protocol is 

asynchronous.

The bus itself can be totally passive allowing bus systems to be 

comparatively cheap and simple. The only dedicated bus hardware lies in 

the processor and resource interfaces and any controllers that may be 

required. Additionally all bus transfers are direct thus removing the 

need for cooperation amongst other processors. Global broadcast 

transfers are also possible, where one processor sends data to all or 

some of the processors and resources.

Bus systems have become very popular in modern computing systems, 

mainly as a result of their simplicity and flexibility. With the 

introduction of decentralised control they can also be highly reliable. 

Their main disadvantage has always been their speed but with use of new 

technology including the development of special bus driver circuits they 

can be very fast, e.g. Fastbus claims 30 MHz transfer rates giving 120 

Mbytes/sec capability.

1.5 Conclusion

Digital hardware technology is still advancing at much the same rate as 

it has over the last 25 years. Research into x-ray and e-beam 

lithography as well as improved processing techniques have achieved sub­

micron features to the extent that IBM have announced that they have 

chips "ready for production" with features smaller then 0.5 microns 

[Electronic Times, May 1988]. However the improvement in speed that 

reduced feature size brings serves to highlight other problems such as 

suitable inter—connection techniques and packaging technology.

Eventually fundamental limits in mos and silicon bipolar technology
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will be reached, [SM84]. However other currently more rare technologies 

still have a lot of scope for development. GaAs devices, for example, 

are five times faster then ECL devices and have other advantages too, 

but difficulties in lower density and lower yield still must be 

overcome. GaAs technology has advanced to an extent that a number of 

discrete functions are now commercially available (the Cray 3 uses 

mostly GaAs, [Hw87]). However it may be that some of the phenomena which 

impose size limitations on conventional semiconductor devices could be 

exploited to produce a new generation of much more efficient devices, in 

the form of the quantumn effect devices [Bat88].

A radically new technology is emerging in the form of optical 

computing devices using photons instead of electrons. Optical gates and 

processing elements have been built in a number of labs and a few 

computers have been proposed, [Wi87].

The exploitation of concurrency also continues to grow, with an 

increasing number of commercially available parallel and multiprocessor 

systems. New architectures continue to appear, with a key area of 

current research being neural networks [Wi87]. These attempt to model 

the parallel operation of neurons in the brain with massively parallel 

collections of relatively simple processors. Applications include 

Artificial Intelligence and image recognition. Machines have been built, 

with up to 64000 such cells, and have produced encouraging results 

[Hi84, RT88].

The remainder of this thesis is a description of a particular 

application of parallel processing techniques in the field of nuclear 

physics research. Using current microprocessor technology and applying 

some of the techniques just discussed a high performance special purpose 

parallel processor has been built. As such it is a prime example of the 

reduced size and cost as well the increased performance and flexibility 

that is now available utilising VLSI technology and parallel processing 

techniques.
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The Shell Model Processor System

2.0 Introduction

Special purpose, or dedicated, processor systems are becoming 

increasingly prevalent in scientific research due to the ease with which 

such systems can now be put together using VLSI components. Areas such 

as aerodynamics, fluid dynamics, Monte Carlo simulations and image 

processing can require a very high arithmetic processing bandwidth as 

well as an equally high data transfer bandwidth. General purpose 

computer systems will not usually achieve their maximum efficiency when 

applied to such problems. However dedicated machines can have a much 

higher performance than general purpose computers since their 

architecture can be optimised to reflect the structure of the problem, 

so that generality is traded for performance, [PRT85].

When designing a dedicated system the form of the calculation and 

the architecture of the machine must be as closely matched as possible. 

For example the application of parallel processing within the 

architecture can be optimised to mirror any parallelism within the 

computation. Thus when designing the machine sufficient processing 

elements should be included to be able to handle the computational load. 

Equally important is an efficient means of interconnecting the 

processing elements to each other as well as to the data storage devices 

so that the necessary data can be moved and processed as required. 

However full system optimisation will not only influence the 

architecture of the machine but also the algorithm and form of the
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computation.

One example of a machine dedicated to theoretical physics 

calculations is the previously mentioned Cosmic Cube (Section 1.3.4). 

The main motivation for the system was Monte Carlo studies of lattice 

gauge theories. However the message-passing architecture of the system 

is flexible enough to be applied to the whole class of problems 

involving multidimensional arrays of interrelated data, such as are 

found in statistical mechanics and field theory. The Cube has been 

successfully programmed for a number of different applications with some 

performing up to 10 times faster than a VAX 11/780 [Se85], thus 

demonstrating the performance which can be obtained from well designed 

special purpose processor systems.

The field of nuclear physics theory is another area of research 

where computationally intensive problems arise. In particular the 

calculation of the nuclear energy levels which arise out of the theory 

of the nuclear shell model is of much interest. In the following 

sections of this chapter we will discuss the nuclear shell model problem 

and introduce the Shell Model Processor (SMP) system. The SMP is a high 

performance, parallel processor system developed at the Department of 

Physics at Glasgow University for the purpose of performing such nuclear 

structure calculations [MBMW85, MMB87].

2.1 The Nuclear Shell Model

It is well known that the nucleus exhibits a behaviour with respect to 

"magic numbers" of nucleons that is similar to that of atoms which have 

closed electron shells. For example the rapid change in nucleon binding 

energy at the nuclear magic numbers is similar to the change in electron 

separation energy in the atom. It therefore seemed logical for the early 

nuclear theorists to attempt to develop a shell model of the nucleus 

based on the quantum-mechanical procedures which had been so
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successfully used to develop the atomic shell model. However the early 

attempts at predicting closed shells through the operation of the Pauli 

exclusion principle were only able to produce the first three 

empirically observed nuclear magic numbers. It was not until the later 

addition of spin-orbit coupling to the theory that the full list of 

magic numbers was produced.

Although superficially similar the atomic and nuclear systems are 

physically very different. Electron motion in the atom is governed 

mainly by the Coulomb force between individual electrons and the central 

nucleus. The force between individual electrons produces only a small 

perturbation from this main effect. However the essence of the nuclear 

shell model is that each nucleon moves under the combined influence of 

all the other nucleons. The major assumption is that the total effect of 

the other nucleons can be represented by a potential well having a large 

negative value at the centre of the nucleus and rising to zero at the 

surface. Various shapes for the potential have been suggested, ranging 

from the simple rectangular well, through the three-dimensional harmonic 

oscillator to the Woods-Saxon potential.

In practice however the single particle spherically symmetrical

potential is a simplification since there is evidence of a pairing or

two-body interaction within the nucleus [ER74]. The two-body interaction

represents a departure from the average single particle potential and

arises when a nucleon is close to another nucleon with which it can

interact uninhibited by the Pauli exclusion principle. For example two

nucleons with different values of m collide and after the collisioni
enter states such that the total m^ is unchanged, thus conserving 

angular momentum. The nuclear force therefore has a two-body nature and 

the Hamiltonian thus takes the form;

H = V v  + XI v(i,j) (2.1)
2m i < j
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2.2 The Slater Determinant Representation

In attempting to determine the nuclear energy levels it is usually 

assumed that only one major shell is actively involved. The problem is 

therefore to set up the Hamiltonian matrix and then to diagonalise it to 

obtain the eigenvalues. The eigenvectors are also required in order to 

calculate the transition rates and expectation values for various 

measurable quantities. Traditionally the basis states were specified 

using group theory and were coupled to good J and T quantum numbers. 

However the need to handle the angular momentum algebra computationally 

greatly inhibited progress.

It was for this reason that the nuclear theorists at Glasgow 

University gave up the angular momentum coupled representations and 

instead used uncoupled antisymmetric product wave functions, i.e. Slater 

determinants, and an occupation number representation, [Wh72, MBMW85]. A 

Slater determinant is given by

<p (rj . . .  0  <rj
a a

1 1 1
( B  (l . . . r ) = 1/a

a a ...a n (n !)
1 2  n

0  (r ) . . . (f) (r )
1 ' na a

n n

where 0  (r ) is the wave function for the jth particle in the ith
ia

state, for some arbitrary ordering. A Slater determinant can then be

written in the occupation number formalism using the creation and
+

annihilation operators, a and a respectively. A typical determinant 

then becomes

a V  ... a+ !0> (2.2)
A B N

where a is the creation operator for orbital i, and A, B, etc are thei
indices of the occupied orbitals with A < B < . . etc. Such states have 

definite values for the total z-component of angular momentum and total 

z—component of isospin but no definite total angular momentum or
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isospin. This representation is known as the m~scheme, [WWCM77] .

Under the m-scheme it is appropriate to use an occupation number 

representation for the Hamiltonian, so that;

= «ZL-i H a a + 1/4 Z__iH = .Z_i H a a + 1/4 ZL. H <2> a+ a+ a a (2.3)
ik lk 1 k ijkl Mkl 1 J 1 k

( 1 ) < 2 )
where H and H are the one and two-body Hamiltonian matrix

l k  i j k l

elements respectively. A simplification can be achieved by combining the 

two terms, so that the Hamiltonian can be treated as a purely two-body 

operator, [WWCM77], thus;

’ 1
t» — 1 l k  “  j 1 i j k l

( 1 > { 2 ) + +
a a a a (2.4)
1 j 1 k

H =
ijkl 
i< j 
k<l

so that the Hamiltonian is now explicitly dependent on n, the number of 

nucleons. Thus the Hamiltonian can be written as;

H = Z— . H a+ a+ a a (2.5)
. , 1 J k 1 1 j 1 ki jkl
i< j 
k<l

To diagonalise the Hamiltonian, H, it is necessary to have a form for 

the actual matrix elements. These are given as follows, [Mac83]:

Let H be the two-body Hamiltonian as given in 2.5 and L be a basis list

of Slater determinants for a system of n nucleons. Let !i> and !f> be

two states, both members of L, such that;

!i> = ! ...<=*>
1 n

! f> = i /5 . . .  $  >
1 n

where Q>i , . . ol , J0> , . . A are the indices of the occupied single particle
1 n  1

orbitals. The matrix elements are then;

1/ If !i> = !f>, i.e. OC = fi> for i = 1 to n, theni i

V "<f! H !i> = /_, <f! H a a a a ii>------------  w x y *  w  x ■ ywxyz

<o< ...(x!H a a a a \ fi) . ..(!>>
wxyz

+ +
i a

1 n w x y x w x x y
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v1-  -
r V  <2-6>« > T i l li J i j

l=i< j

2/ If { c* ... ex. } + { ft ... fa } = {cx , /& },i.e. there is only one
1 n 1 n 1 ' j

different occupied orbital between ii> and if>, then

n
Y  -!i> = Z__i H,
k=l

<fi H !i> = Zl— , A (-1)P (2.7a)

k/i, j

where A -1 c* -1
j i

P = n^ + nB (2.7b)

s=CX +1 s=cX +1
k k

where n = 0 if the orbital with index s is empty,
S

= 1 if the orbital with index s is occupied,

for the Slater determinant a a !i>.«*- , 0* .k i

3/ If {<x ...&<} + { fa ... fa } = {c*,<X,/J,/3 },i.e. there are
1 n 1 n i j k l

two different occupied orbitals between ii> and !f>, then

<f! H !i> = <*4 (-1)P (2.8a)

where
(X -i fa -I

i i
p = ^  n + n^ (2.8b)

S= Cx +1 S— fa +1
i k

for the Slater determinant a a !i>.oc . .J i

4/ If there are more than two occupied orbitals different between !i> 

and !f> then

<f! H !i> = 0 (2.9)

( N.B. that for any two sets A and B, A+B = (A—B)u(B-A) )

Thus making use of the occupation number representation there is now a 

simple mapping by which SDs can be efficiently represented and 

manipulated within a computer. That is to assign each possible single
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particle orbit to a different bit position in a computer word. An

occupied orbital is then represented by 1 in the relevant bit of the

word, while an unoccupied orbital is represented by a 0. For example in

the 2s-ld shell there are 24 single particle orbits, thus requiring only

a 24-bit word to represent each SD. Thus using this method SDs and the

form of the Hamiltonian itself can be generated by using bit

manipulation and logic operations.

The basis space for a nucleus in shell model calculations is
2 e

potentially very large. For example in a calculation for Si (m = 0)

with 12 active nucleons in the 2s-ld shell, there are 93710 states (the
i omaximum for the sd shell) giving almost 10 elements in the matrix. 

However only 20 to 30 of the eigenstates produced are actually compared 

with experimentally determined values. Therefore a diagonalisation 

method which produces all the eigenstates will generate mostly unwanted 

information. Central to the method developed at Glasgow University, 

along with the m-scheme representation, is the use of the Lanczos 

algorithm for the iterative tri-diagonalisation of the nuclear 

Hamiltonian. Using this algorithm only as many of the lower eigenstates 

as are wanted are produced with the minimum of additional unwanted 

information.

2.3 The Lanczos Method

The task of determining the eigenvalues and eigenvectors for a real 

symmetric matrix is generally performed using the Householder tri­

diagonal isation method. However for shell-model work its major drawback 

is that it requires the full tri-diagonalisation process to be completed 

before any of the eigenvalues can be obtained. The Lanczos method [FM77] 

is, at least in theory, almost ideal for finding the extreme eigenvalues 

of a large sparse symmetric matrix [Pa72]. The two methods are 

equivalent and will produce the same results. However the Lanczos method
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is an iterative scheme which will produce the upper left-hand k x k

submatrix after only k iterations. The eigenvalues of this k x k matrix

converge rapidly to very accurate approximations of the extreme

eigenvalues of the full matrix as k increases, [WWCM77], This remains

true even when k is much less than the dimension of the matrix.

Therefore in shell-model work the lowest energy levels, which are the

most useful, can be obtained after only 50 to 100 iterations, regardless

of the size of the basis space.

The Lanczos method works as follows; let A be a real, symmetric,
+

n x n matrix and v an arbitrary, n x 1 vector, such that v v = 1i i 1
(where the + denotes the transpose). New vectors are then generated by 

iteration;

Av = <a< v + ft v1 XI 12
Av = ft v + cx.v + ft v

2 1 1 2 2 2 3

Av = ft v + cx.v + ft v
3 4

Av = ft v + c< v
n  n  — 1 n  — 1 n n

such that the v are all orthogonal with respect to each other and arei
all normalised. The process terminates automatically after n iterations 

since there can only be n mutually orthogonal vectors for the space and 

therefore v must be 0.
n + 1

The Lanczos vectors v to v then form an orthonormal basis in
1 n

which A takes the tri-diagonal form

cx fti ' i

ft 1 ^*2 ft 2
ex.2 3 A

ft ,9 n - 1

The coefficients are determined as follows;

cx = v Avi i i
+

v Avi -1 iA,-, =
- 32 -
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w = $ v = Av - £ v - cy v
i i + 1 i i - l i - 1  i i

/> + 1 / 2$ = (w w )
i i + 1 1 + 1

If there are degenerate eigenvalues then the Lanczos method will

terminate in less than n iterations and only one eigenvector and

eigenvalue from the degenerate set will be obtained, [WWCM77]. However 

degenerate eigenvalues rarely arise in shell model work, but the problem 

can be overcome by using a new initial vector.

Unfortunately in practice the Lanczos method is not as ideal as at 

first it seems. This is due to arithmetic processing inaccuracies which 

lead to a loss of orthogonality in the Lanczos vectors and which stops 

the process from actually terminating. The remedy is to re-orthogonalise 

the current vector, v , with all the previous ones, as follows;
i

i-1
y "  ♦

x = w - — i v w v (2.10a)i i j i j

V = i,, (2.10b)
(x x )i i

It is this which makes the Lanczos method less attractive than at first 

appears. Indeed if the full matrix were to be diagonalised it would be 

much less efficient than the Householder method. However if less than 

n/4 iterations are sufficient, which is exactly the case with shell 

model work, then the Lanczos method has the computational advantage over 

the Householder method in terms of storage requirements and speed.

2.4 SMP System Introduction

We have so far described the nature and extent of the nuclear physics 

problem and a method for its solution. However the original Glasgow 

Program for determining the nuclear energy eigenvalues has a number of 

limitations. These restrictions are a result of the type of computers 

that the Glasgow Program is implemented on, which because of the
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magnitude of the shell—model calculation must be very large, high 

performance mainframe installations. Access to these computers is both 

limited and expensive, thereby reducing the number and scope of the 

calculations that can be performed.

The number of single particle orbitals in any calculation is 

limited by the type of computer used, being equal to the number of bits 

in the computer word, allowing up to 59 orbitals on a CDC 7600 machine 

but only up to 32 on an IBM 370 series computer. It is possible to store 

each Slater determinant in more than one word, as has sometimes been 

done, but this reduces the efficiency of the process and therefore still 

imposes a limitation.

The amount of primary memory available on a mainframe also further 

acts to limit the scope of the calculations since the Glasgow Program 

requires that the complete Slater Determinant basis list be stored 

during runtime [WWCM77]. The amount of space required to store this list 

increases rapidly with any increase in the number of active orbitals and 

in a 128 orbital system would require too much space even on today’s 

mainframes.

Out of a desire therefore to overcome these limitations and so to

increase the number and scope of shell-model calculations which the

Glasgow Nuclear Structure Group could perform, the following aims were 

drawn up:

1/ That a dedicated computer system should be designed and built in 

order to carry out nuclear structure calculations.

2/ The initial computer should be a prototype system, able to deal with 

up to 32 single particle states.

3/ The computer should be totally accessible to the nuclear physicist 

and have a low construction and running cost.

4/ The performance should be comparable to that of an IBM 360/195.

5/ That this prototype system should act as a testbed for a later

machine with four times the capability, i.e. it should be able to
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deal with up to 128 single particle states.

Having gone so far as to decide to design a dedicated shell-model 

processor, the question must be asked, what method should it use and 

what should its nature be so that it is not restricted by the same 

limitations as the current mainframes? i.e. should it be a simple one 

processor SISD machine, or perhaps a SIMD array processor. An answer to 

this question lies in the nature of the shell-model calculation, 

examination of which shows that it divides into two logical stages;

1/ to generate the basis list of Slater determinants for the nucleus and 

then to perform the annihilation and creation operations on the list 

to determine the positions of the non-zero matrix elements within the 

Hamiltonian matrix,

2/ to multiply the Hamiltonian matrix by the Lanczos vector and so to 

accumulate a resultant vector.

This second stage further subdivides into a large number of independent, 

non-identical tasks. Namely the determination of the magnitude and sign 

of the matrix element from the annihilation and creation operators 

(found in the first stage) and then its multiplication by the 

appropriate Lanczos vector element and accumulation into a resultant 

vector element. These tasks are non-identical not just in the fact that 

they operate on different data, but also in that they will follow 

different paths to determine the Hamiltonian entry according to one of 

equations 2.6-2.8. Since the tasks are independent it is possible that 

any number of them could be carried out in parallel. Normally matrix 

multiplication is well suited to array processor architectures. However 

since in this instance the matrix is irregularly sparse this is not the 

case. In fact this second stage of the calculation is ideally suited to 

a multi-processor configuration.

It is only the first stage of the calculation that actually 

manipulates the SDs and so only it need have the capability of handling 

32 bit words (or 128 bit words in the expanded system). It is therefore
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possible that this stage be a dedicated hard-wired unit.

These aims and objectives were drawn up a number of years ago by 

Dr. A.M. MacLeod and Prof. R.R. Whitehead in the Dept, of Natural 

Philosophy at Glasgow University. The prototype Shell—Model Processor is 

now almost complete with only one component of the system still to be 

added. The SMP system is operational without this element, allowing one 

full iteration on a basis size of up to 13,000 elements. A number of 

test iterations have been successfully run, thus proving the integrity 

of the system and fulfilling the original aims. The initial feasibility 

studies and some design and prototyping work was carried out by Dr. L.M. 

Mackenzie as the work for his Ph.D. My work has been largely concerned 

with the later design and testing of both hardware and software in order 

to integrate and commission the system as a whole. What follows 

therefore is mainly a description and discussion of the SMP system both 

in terms of its hardware and software.

2.5 A Global View

As has already been said the shell-model calculation divides into two 

logical parts, with this division being reflected in the two major 

functional sub-systems of the SMP (figure 2.1). The Matrix Format 

Generator (MPG) has the responsibility of determining the position of 

non-zero elements within the Hamiltonian, i.e. it must determine the row 

and column index for each non-zero element as well as its creation and 

annihilation operators. The second sub-system, the Multiple 

Microprocessor Unit (MMPU), then uses the information determined by the 

MFG in order to identify the magnitude and sign of the Hamiltonian 

matrix elements and then perform the arithmetic to produce a new vector 

from the current Lanczos vector. The MMPU must hold all the previous 

Lanczos vectors in order to be able to perform the re—orthogonalisation 

which is necessary after each iteration (section 2.3). The MMPU is a
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modular, moderately coupled MIMD system based on autonomous processing 

elements and is thus able to process a number of matrix elements in 

parallel.

The two SMP sub-systems can themselves be further subdivided into a 

number of functionally separate units (figure 2.2). A communications 

subnet is also be defined so that the two main sub-systems, and the 

units within them, can communicate with each other. We will now describe 

the detail present within the two subsystems and the subnet.

2.5.1 The Matrix Format Generator

1/ The Primary Generator: In the SMP system, the SD basis list does not 

need to be stored, thus overcoming the needs to have vast amounts of 

primary memory for its storage. Instead the MFG generates the basis 

list during each iteration. This task is carried out by the Primary 

Generator (PG). The PG is basically a single board computer based on 

the Motorola MC68000 (8 MHz) microprocessor and 128K bytes of local 

dynamic RAM. Its task of generating the basis list is performed using 

several data tables built prior to runtime and stored in local RAM. 

The PG also acts as a supervisor and controller to the rest of the 

MFG, ensuring its proper initialisation and performing runtime 

maintenance and control.

2/ The Secondary Generator: Once a state within the basis list has been 

produced by the PG we have, with the state, identified a column 

within the Hamiltonian matrix. This state, called a prime state 

!e >, is then passed to the Secondary Generator (SG) which in
n

response has the task of generating sections of the basis list, i.e. 

sections of the matrix column, where non-zero elements may exist. The 

states so produced, called secondary states ie >, form pairs of 

states with the prime state (!e >,!e >) and each pair must then be
n v

tested to determine whether it defines a non-zero matrix element.

The SG has effectively to regenerate parts of the basis list for
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each member in the basis list and this obviously has the capacity 

for being a very large task. To cope with this workload the SG is a 

dedicated, hard-wired logic module which does not run a control 

program and is constructed using- emmitter coupled logic (ECL). The SG 

is at present clocked at 112 MHz and is capable of producing a peak 

rate of approximately 8.6 million secondary states per second (i.e.
2 7

one every 13 clock cycles). For A1 m=5/2, which has a basis list of
Q

64,299 states, the SG must produce approximately 1.666 x 10 

secondary states per iteration, which it can do in 3.28 mins, 

effectively placing an upper limit on the performance of the SMP as a 

whole.

3/ The Pair Filter: As a result of the method of operation of the SG 

(which will be explained later) many of the secondary states it 

produces will not actually combine with the prime state to produce a 

non-zero matrix element. The task of filtering out these redundant 

secondary states is given to the Pair Filter (PF). For each valid 

secondary state the PF finds, i.e. one which is two particles or less 

different from the prime state !en>, the PF must also generate the 

indices of the annihilation operators (a ,a ) and creation operatorsk 1
+ + + +

(a ,a ) such that ie> = a a a a ! e > .  These operator indices
i j n k 1 i i a

(k,l,i,j) determine the magnitude of a non-zero matrix element within 

the Hamiltonian matrix and must be passed to the MMPU to be 

processed. Obviously the performance of the PF must match that of the 

SG and so the PF is also a dedicated hard-wired module constructed 

using ECL.

4/ The MFG Buffer: The rate of output from the PF will vary considerably 

and will only rarely reach the same peak rate as the SG due to the 

fact that most of the secondary states are filtered out. In order to 

even out the rate of output of valid secondary states by the PF and 

to reduce the occurrence of the MFG being held up while it waits for 

its output to be consumed by the MMPU, a first-in-first-out (FIFO)
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buffer stores the PF output.

Each output word, called a Task Setup Word (TSW), in the MFG Buffer 

contains the necessary set-up parameters for the MMPU to identify the 

matrix element magnitude and also which element in the final vector 

is to be updated. To this end the TSW must contain the index of the 

secondary state (m) , the annihilation and creation operator indices 

(up to 4 of these), and information regarding which of eqns 2.6-2.8 

should be used. When the MMPU is able to receive a new set of 

parameters to start another job, then the TSW at the top of the 

buffer is read out thus providing an extra empty space at the bottom 

of the buffer. It is only when the buffer becomes full that the MFG 

must halt its operation and remain idle until a new space becomes 

available. The read/write control circuitry for the buffer is also 

constructed using ECL.

In order for the MFG to achieve maximum throughput it is designed as a 

parallel processor, with all 4 of its sub-units completely pipelined 

with one another. In particular the SG, PF and MFG buffer all have the 

same major cycle time in which they process a state.

2.5.2 The Multiple Microprocessor Unit

1/ The Microcomputer Modules : these are the modules which must read the 

set-up parameters from the MFG Buffer and perform the matrix times 

vector arithmetic. When a Microcomputer Module (MCM) reads a TSW it 

must determine the magnitude and sign of the matrix element using the 

information imparted by the annihilation and creation operators and 

the job type bits. The index m, also included in the TSW, gives the 

index of the final vector element, V , whose new value is to bet»
calculated as follows:

V = V x H + V (2.11)
f■ in nn fB

The index n of the initial vector element V is the index of thei n

prime state being considered by the MFG and therefore remains static
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for varying lengths of time. For this reason n is not included in the 

TSW but instead is passed directly to the MCMs by the MFG each time 

the prime state changes.

The MCMs must therefore have their own native intelligence capable of 

evaluating one of equations 2.6-2.8 and performing the floating point 

arithmetic. Their ability to carry out this task is extremely 

important since it is the speed of the individual MCMs which will 

determine the performance of the MMPU. To fulfill their purpose the 

MCMs are therefore high performance single board computers.

2/ Centra 1 Memory: as has been said, all the MCMs require access to the 

initial and final vectors during an iteration. Since the storage 

space required is large, up to 800K bytes for the biggest sd shell 

nucleus, it is much more efficient to store these vectors centrally, 

which is the purpose of Central Memory (CM). As each MCM starts a new 

task it will read the required initial and final vector elements from 

CM and at the end of the task will write the updated final vector 

element back to CM.

Included in the CM subsystem will be a high capacity backing store 

which is intended primarily to store the Lanczos vectors. After each 

iteration the new Lanczos vector will be orthogonalised with respect 

to all the previous vectors held in the store and then copied into 

the store itself.

3/ Supervisor Module : it is this module’s responsibility to monitor the 

system during runtime and also to ensure the correct initialisation 

of all the parts of the SMP system. The Supervisor Module (SM) also 

acts as the interface to the outside world, e.g. via terminals, 

printers, disks, etc.

2.5.3 Communications Subnet

1/ Input Bus: I-bus is the dedicated highway between the MFG Buffer and 

the MCMs, along which the TSWs are read. As such it is fairly simple

- 40 -



Chapter 2

single address, uni-directional bus, but must have a high transfer 

rate in order to keep up with the required flow of TSWs to the MMPU. 

2/ Central Memory Access Bus: CMA—bus is the means by which the MCMs

perform read and write cycles to CM to access the vector elements. As 

such it is more complicated than I-bus but requires the same 

performance capabilities.

3/ Communications Bus: C-bus is the main system highway for

communications between components of the MMPU and the MFG. It is a 

general purpose multiprocessor bus.

2.5.4 SMP Modes of Operation
Having thus described the tasks of the MFG and MMPU we can now draw 

attention to an important fact that allows us to almost half the 

workload of the MFG and also, but to a much lesser extent, reduce the

workload of the MMPU. This is simply the fact that the Hamiltonian is

symmetric i.e.

<e ! H ie > = <e ! H ie > for all m and n.
m  n n a

Therefore once the MFG has identified two states !e > and ie > such that
n zd

H 0 the MMPU can then perform two jobs, i.e. instead of the MMPU
■  n

just evaluating

V = V x H + V (2.12a)
f n  i n  a n  f n

it can also evaluate

V = V x H + V (2.12b)
f a  i n  a n  f a

using the same H . Thus the MFG need only search half of the matrix for
m n

non-zero elements, i.e. in every column it need only search up to the 

diagonal element, and in turn the MMPU has only half the number of jobs 

to process.

However for each task the MMPU has to process there is now twice 

the arithmetic workload and twice the number of vector elements to fetch 

although there is still only one matrix element value to be determined. 

Thus if the MFG is operated in this way, called H-toode as opposed to

/
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W-mode when the whole matrix is generated, the workload is significantly 

shifted off the MFG. H-mode is therefore particularly useful in 

situations where the MFG is the system bottleneck.

2.6 Conclusions

Although the system has been named the Shell-Model Processor it should 

not be seen as a rigidly dedicated system useful only for nuclear 

structure calculations, since this is far from the case. For a start 

this type of calculation, i.e. matrix generation and diagonalisation, is 

common in many other branches of science. However far more than this the 

SMP has the flexibility to be applied to many problems which have a 

degree of parallelism and which could utilise the processing power of 

the MMPU. The MMPU itself, since it is based on multiple, high- 

performance single board computers, can be viewed as a general purpose 

moderately coupled multiprocessor system and is therefore useful in many 

other types of calculations. Even if the MFG could not be used in these 

problems, the I-bus is of a sufficiently general nature that it could be 

used to connect the MMPU to some other input device e.g. a high speed 

disk or pre-processor.

We have in this chapter given an overview of both the nuclear 

structure problem and the prototype SMP as a means for its solution. The 

following chapters will be devoted to a more detailed description and 

discussion of the system. Particular attention will be given to the MFG, 

the multiple MCMs and the communications subnet since they are the most 

important sections of the system in terms of their workload and 

performance. The details of the Supervisor module will also be given as 

well as the plans for the Central Memory, this being the only part of 

the system not yet implemented.
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The Matrix Format Generator

3.0 Introduction

The function of the Matrix Format Generator (MFG) has already been 

described (Sec. 2.5.1) as well as its internal high-level structure. We 

will now give further details of the MFG, describing the algorithm it 

uses and its implementation in terms of both hardware and software.

3.1 Basis List Representation and Partitioning

Having chosen to use a Slater Determinant representation for the basis 

states the most simple and (for manipulation purposes) efficient method 

of representing them is, as we have said, to have one bit in the 

computer word representing one single-particle orbital. Thus for the 24 

orbitals of the sd shell only 24 bits in a computer word are required, 

giving 8 spare bits in the current MFG which is a 32—bit machine.

The Shell-Model Processor system further subdivides this 32-bit 

word such that bits 0-15 (i.e. the least significant 16 bits) are

reserved for neutron orbits and bits 16—31 are reserved for proton 

orbits. Within these two half-words the orbital assignment is completely 

arbitrary, for example figure 3.1 shows a possible assignment (note that 

any particular assignment is called an SD representation) . Thus given 

the number of protons (Np) , the number of neutrons (Nn) and the z 

component of the total angular momentum (M̂ ) for the sd shell of the 

nucleus and an appropriate representation we can generate a list of 32-
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Bit number 1 j m nucleons

31 0 unused
30 0 unused
29 2 5/2 5/2 proton
28 2 5/2 3/X proton
27 2 3/2 3/2 proton
26 2 3/2 -3/2 proton
25 2 5/2 -3/2 proton
24 X 5/2 -5/2 proton

23 0 unused
22 0 unused
21 2 5/2 1/2 proton
20 2 3/2 1/2 proton
19 0 1/2 1/2 proton
18 0 1/2 -1/2 proton
17 2 3/2 -1/2 proton
16 2 5/2 -1/2 proton

15 0 unused
14 0 unused
13 2 5/2 5/2 neutron
12 2 5/2 3/2 neutron
11 2 3/2 3/2 neutron
10 2 3/2 -3/2 neutron
9 2 5/2 -3/2 neutron
8 2 5/2 -5/2 neutron

7 0 unused
6 0 unused
5 2 5/2 1/2 neutron
4 2 3/2 1/2 neutron
3 0 1/2 1/2 neutron
2 0 1/2 -1/2 neutron
1 2 3/2 -1/2 neutron
0 2 5/2 -1/2 neutron

Figure 3.1 Example SMP Orbital Assignment
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bit numbers which represent the Slater Determinant (SD) basis list for 

the nucleus. These 32-bit numbers are called SD-words.

To make the generation of the basis simpler and so ease the task of 

the PG and SG we partition up the basis list and define an order on it. 

It should be noted that from this point on the method used by the SMP 

system to generate the basis states and Hamiltonian entries starts to 

differ significantly from the original method of the Glasgow Shell-Model 

Program [WWCM77].

First the SD word is sub-divided up into 4 8-bit sub-words which we 

call SD-bytes;

SD-byte 0 comprises bits 31 - 24

SD-byte 1 comprises bits 23 - 16

SD-byte 2 comprises bits 15 - 8

SD-byte 3 comprises bits 7 - 0

SD bytes 0 and 1 are proton bytes and named PI and P2 respectively while 

SD bytes 3 and 4 are neutron bytes and named N1 and N2 respectively. For 

simplicity we define an integral M-value, M , for each bit i, such that;

M = 2m for each used bit,i j i
= 0 for an unused bit.

i = 0..31 (3.1)

The total M-value for an SD is then defined as;
31

m = y z  m & <3-2>
i=0 1 1

where : 5 = 0  for an unoccupied orbital,i
= 1 for an occupied orbital.

We also define n (A) and m (A) wherei i
n (A) = total number of occupied orbitals (set bits)i

in byte i of SD word A, 

and m (A) = the sum of the individual M-values for thei
occupied orbitals in byte i of SD word A.

We also denote the basis for a given nuclei with Np protons, Nn 

neutrons, total M-value M and under representation R, as;

B-R (Np, Nn, M)
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A basis list can now be partitioned up into what are defined as N— 

partitions and denoted;

[ n(Pl) ! n(P2) ! n(Nl) ! n(N2) ]

such that for all SD-words A in the N-partition;

n (A) = n(Pl), n (A) = n(P2), etc.
, v 1 (3-3)and where n(Pl) + n(P2) = Np and n(Nl) + n(N2) = Nn.

Thus all states in B—R(Np,Nn,M) can be placed in one, and only one, N-

partition and so the basis is completely and uniquely subdivided by

these partitions.

Each N-partition can now be subdivided by defining an M—partition, 

denoted;
'n(Pl) ! n(P2) ! n(Nl) I n(N2)
m(Pl) 1 m(P2) ! m(Nl) j m(N2)

such that for all SD-words A in the M-partition;

m (A) = m(Pl) and n (A) = n(Pl), etc
(3.4)

and where m(Pl) + m(P2) + m(Nl) + m(N2) = M.

Each state can thus be placed in one and only one M-partition and so the 

N-partitions are uniquely subdivided.

Using the N and M-partitions an order can now be imposed on the states

within any basis B-R(Np,Nn,M). First the N-partitions are ordered;

Let N = [ n(Pl) ! n(P2) ! n(Nl) ! n(N2) ]

and N = [ n(Pl)"! n(P2)"! n(Nl)"! n(N2)"]2
be two arbitrary N-partitions within a basis. Then we define

N < N <=> (1) n(P2) < n(P2)" or1 2
(2) ( n(P2) = n(P2)" ) and n(N2) < n(N2)" (3.5)

( Note that if n(P2) = n(P2)" then n(Pl) = n(Pl)" ).

We can thus say that an N-partition N^ "is less than" another N—

partition N if the above is true for N and N .2 1 2
An order can now be imposed on the M-partitions, such that if M and M1 2
are two arbitrary M-partitions within a basis, and if and M^ belong

to different N-partitions, N and N respectively, then we define1 2
M < m <=> N < N
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Np = 3 
Nn = 3 

= 0m
N-partitions

[ 3 0 3 0 ]
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[ 2 1 1 2 ]

[ 2 1 0 3 3

[ 1 2 3 o 3

[ 1 2 2 i 3

[ 1 2 1 2 3

[ 1 2 0 3 3

[ o 3 3 o 3

E o 3 2 i 3

[ o 3 1 2 3

[ o 3 0 3 3

  Initial N-partition

  Final N-partition

* denotes N—partition connected to [ 1 , 2 , 2 , 1 ]

Figure 3.2 Example N-partitions



Np = 3
Nn = 3
m = 0

M-partitions

-5 , -2 , 6

-5 . -2 , 8
-5 , 0 , 6

-5 , 2 , 2

-3 , -2 . 6

-3 , 0 . 2

-3 , 2 , 0

-3 , 2 , 2

3 , -2 , -2

3 , -2 , o

3 . o , -2

3 , 2 , -6

5 , -2 , -2

5 ,, 0 . -6

5 ,, 2 , -8
5 ,, 2 ,, -6

Initial M-partition

Final M-partition

Figure 3.3 M-partitions for N-partition [1,2,2,1]



N p  = 3 
Nn = 3 
m = 0

02 18 22 01
02 18 22 02
02 18 22 04

02 18 24 01
02 18 24 02
02 18 24 04

02 28 22 01
02 28 22 02
02 28 22 04

02 28 24 01
02 28 24 02
02 28 24 04

02 30 22 01
02 30 22 02
02 30 22 04

02 30 24 01
02 30 24 02
02 30 24 04

04 18 22 01
04 18 22 02
04 18 22 04

04 18 24 01
04 18 24 02
04 18 24 04

04 28 22 01
04 28 22 02
04 28 22 04

04 28 24 01
04 28 24 02
04 28 24 04

04 30 22 01
04 30 22 02
04 30 22 04

04 30 24 01
04 30 24 02
04 30 24 04

Figure 3.4a SD-words in M partition [ 3,2,2, 1]

02 18 22 01

04 28 24 02

30 04

Figure 3.4b SD-chains for seed 02 18 22 01
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If however M^ and belong to the same N—partition such that,

andM =i

M =
2

n(Pl) ! n(P2) ! n(Nl) ! n(N2)
m (PI) ! m(P2) j m(Nl) ! m(N2)

n(Pl) ! n(P2) ! n(Nl) ! n(N2)
m(Pl)"! m(P2)"! rn(Nl)"! m(N2)'

then Mi < <=> (1) m(Pl) < ra(Pl)" or

(2) ( m(Pl) = m(Pl)" ) and m(P2) < m(P2)" or

(3) ( m(Pl) = m(Pl)" ) and ( m(P2) = ra(P2)" )

and m(Nl) < m(Nl)" (3.6)

We can now say that an M-partition M "is less than” another M-

partition M if the above is true for M and M .
2 1 2

Thus for any two arbitrary states SI and S2 within a basis, where SI and

S2 belong to different N-partitions N and N respectively, then;
1 2

SI < S2 <=> N < N
1 2

Similarly if SI and S2 both belong to the same N-partition but different

M-partitions, M and M respectively, then;
1 2

SI < S2 <=> M < M
1 2

If SI and S2 are within the same M-partition then they are simply 

ordered according to normal numerical ordering.

Thus using these definitions all states within a basis can be 

ordered. It is this partitioning and ordering that the PG uses to 

produce all the SD-words for a given nucleus.

As an example of what has just been described figure 3.2 shows all

the N-partitions (note that the definition of connected N-partitions
3 0

will be given later) for the P m=0 nucleus under the representation
1 5

given in fig. 3.1. The N-partitions are given in order, with the lowest, 

under the definition given in 3.5, shown at the top. Figure 3.3 shows, 

in order, all the M-partitions contained in the [ 1, 2, 2, 1 ] N- 

partition. Finally figure 3.4a shows all the SD-words, (in hexadecimal), 

within the [ -3, 2, 2, -1 ] M-partition.
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3.2 Secondary Generator Methods

As has been said, for every state, Ie >, that the PG produces, a column
n

within the Hamiltonian is defined. This column of the matrix must then 

be searched in order to find all the other states, ie >, such that
m

<e iHie > "fc 0. The task of searching the column to find non-zero matrixa n

elements involves generating the basis list and then comparing each 

state with the prime state !e >. If a state is two or less particles
n

different from the prime state then a non-zero matrix element has been 

found. The ordered basis of SD-words must therefore be generated and 

searched for each state in the basis, although as has already been 

stated, in H-mode only the states up to the current prime state, i.e. 

the diagonal element, are compared.

The task of generating the basis list for each prime state is 

performed, in hardware, by the SG. The SG is not a completely autonomous 

piece of hardware, that is it will not generate the complete basis of SD 

words unaided. However the SG will independently generate, in order, all 

the SD-words belonging to an M-partition in response to being sent the 

initial SD-word for that partition. The task of driving the SG by 

sending these initial states, called seed states, is part of the 

function of the PG.

In addition to H-mode there is, fortunately, another means whereby 

the SG need only produce certain sections of the basis for searching, 

thereby reducing the number of states it must generate. This is due to 

the fact that for each prime state there exist certain sections of the 

basis which cannot possibly contain any states which contribute non-zero 

matrix elements. The sections of the basis which are generated and 

searched for a given prime state !e >, are those N-partitions
n

N* = [ n(Pl)* ! n(P2)* ! n(Nl)* ! n(N2) ]

such that
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I n(Pl) - n(Pl)* | + | n(P2) - n(P2)* | +
* , * (3.7)

I n(Nl) - n(Nl) | + | n(N2) - n(N2) | <= 4

where the prime state !e > belongs to the N-partition

N = [ n(Pl) ! n(P2) ! n(Nl) ! n(N2) ]
4c

If equation 3.7 is not true for a particular N-partition N relative to
*

N then all the states in N must have more than 4 differences relative 

to all the states in N, i.e. more than 2 creations and 2 annihilations. 

It can be seen then that if equation 3.7 is true for one of the states 

which belongs to N then it is true for all states in N. We say that two 

N-partitions are connected if they are related by eqn. 3.7. Thus for all 

the prime states which belong to a given N-partition, N, the SG need 

only search those N-partitions which are connected to N.

As has been said it is the PG’s task to send the seed states to the

SG. A table of these seed states is built by the PG every time the new

prime state belongs to a different N-partition. This table will contain 

the initial SD-word of each M-partition within all the N-partitions 

which are connected to the N-partition which the prime state belongs to.

As an example figure 3.2 identifies all those N-partitions which 

are connected to the [ 1, 2, 2, 1 ] partition. In H-mode, of course,

the SG need only search those N-partitions up to and including the one

in which the current prime state resides, since only half the matrix is 

being searched. In figure 3.4a the first word shown (= 02 18 22 01 ) is 

the seed state for that particular M-partition and the remaining 35 

words are those which the SG must produce in response to being sent it.

It can be seen that each of the individual SD-bytes in all the 

states in fig. 3.4a take on only a few different values. These different 

values are shown for each SD—byte in figure 3.4b, with each column 

corresponding to the SD—byte above it. Each of the four different 

sequences of numbers in the four columns of fig. 3.4b is called an SD- 

byte chain. Each SD—byte chain is a list of the values, in numerical 

order, that each SD-byte can assume in a particular M-partition, under
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the constraints of constant n̂  and m imposed by the partitioning.

To produce the states of an M-partition the SG is built as four 

separate byte-wide channels, SG channels 0 to 3, corresponding to the 

four SD—bytes that make a SD—word. Associated with each channel is a 

block of 256 x 8 RAM, the channel memory, which stores the SD-byte 

chains for that channel. When a seed state is sent down to the SG each 

SD-byte in the seed is used to address the appropriate channel memory.

Figure 3.5 shows the hardware for channel 3 ( corresponding to SD- 

byte 3) although there is little difference for any of the other 

channels. During the first cycle of the SG the appropriate byte of the 

seed word enters the SG via the DxO input of multiplexer (1) and is 

latched into the output register of multiplexer (2). The signal 

FCYCLE(H) is only active during the first cycle of the SG and so only 

then will the multiplexers (1) and (3) use the DxO inputs (note the (H) 

suffix on the signal name denotes that it is active high, while an (L) 

suffix denotes an active low signal).

The output of (2) addresses the channel memory and is also the 

output of the SG to the Pair Filter via the register (6). The byte which

is read out of each of the four channel memories is the next element in

each of the SD-byte chains. The output of each of the channel memories 

is fed back round and latched first onto the output of (1) and then onto 

the output of (2). This next byte in the SD-byte chain'now addresses the 

channel memory and the output it produces is the next member of the 

chain, and so on.

After the first cycle of the SG only the least significant channel, 

i.e. channel 3, has its multiplexer (2) clocked round. Therefore the 

output of the top 3 most significant channels stays the same, initially

equal to the bytes of the seed state, while the lowest channel is

clocked through the elements in its SD-byte chain.

When the last element in the chain for channel 3 addresses the 

channel memory it produces the first element at its output. It is only
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when this byte is clocked round to the output of the SG, i.e. the output 

of (2) , that the next most significant channel, channel 2, has its 

multiplexer (2) clocked round so that the next byte in its chain is then 

presented at its output. Channel 3 now has the first byte in its SD-bĵ te 

chain at its output, while channel two has the second byte in its chain 

at its output. When both channels 3 and 2 reach the end of their chains 

channel 1 is then clocked round and so on. In this way the SG acts like 

a 4 byte counter, with each of the bytes only taking on a limited number 

of values, i.e. the elements of their respective SD-byte chains. The SG 

thus produces in numerical order all the SD-words present in an M- 

partition, in response to being sent a seed state.

The contents of the channel memories are thus organised as closed 

self-addressing chains. For example taking byte 3 of the example given 

in figure 3.4b, the contents of location $01 ($ signifying a hexadecimal 

value) would be $02, the contents of location $02 would be $04 and the 

contents of location $04 would be $01.

The task of recognising when a chain has come to an end is 

performed by the 256 x 1 channel control RAM (5). Initially this RAM 

will contain all ones, but when a new seed state is latched into the SG 

then a zero is written in to the RAM at the location addressed by 

initial seed SD-byte. As each byte in the chain is read out of the 

channel memory, it addresses the channel control memory. Thus as the 

different bytes of the chain address the memory only when the first 

element in the chain addresses it will it output a zero. This is then 

the signal that the channel has reached the end of its chain. When all 

channels reach the end of their chains then the M-partition has been 

exhausted. The control memory then has a one written back into it, 

overwriting the zero, and a new seed is requested.

The channel memories are initialised at the start of SMP system 

processing by the PG. The SGLOAD(L) signal is driven low by the PG thus 

switching the multiplexer (2) over to its Dxl inputs which are connected

- 50 -



Chapter 3

to the PGs address bus (A.B. fig. 3.5). The data inputs and the data 

outputs of the channel memories are connected to the PG’s data bus so 

that it can initialise, and verify, their contents. The contents of the 

channel control RAM are automatically initialised to all ones when the 

channel memories are written to.

The SG must also keep track of the index number of the the SD-words 

it produces so that the MCMs can identify the appropriate vector element 

which is to be used. To this end the SG has a 20-bit counter, called the 

Secondary Index Counter (SIC), which is clocked up each time the SG 

produces a new state. However as has been said the SG does not produce 

all the SD-words in the basis but only those belonging to connected r e ­

partitions. For this reason the SIC must have the capability to be 

initialised at the start of each new N-partition that the SG produces, 

since the N-partitions which the SG produces will not in general be 

contiguous. The PG has the task of initialising the SIC and must 

therefore maintain a table, called NIMTB, of the index numbers of the 

initial states in all the N-partitions. When the PG prepares a new table 

of seed states it must also prepare a table of initial indices selected 

from NUMTB. This initial number table (INT) will contain the indices of 

the initial SD-words in each of the N-partitions connected to the 

currently active partition.

We have now given a more complete description of the task of the SG 

and of the methods it uses to fulfill this task. Section 3.5 will go 

into greater detail and discuss its hardware implementation. However 

first the Pair Filter and MFG buffer must be described more fully.

3.3 Pair Filter Operation

Once a secondary SD-word has been generated by the SG it is passed 

directly to the Pair Filter. There it is compared to the prime state 

ie > to determine whether it is two particles or less different. First
n
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the orbitals which differ between the two states must be identified. 

This is performed by logically exclusive-ORing the two SD-words that 

represent ie > and ie >, figure 3.6. The resultant 32-bit word will haven a

ones only in those positions which differed, thus marking out those 

orbitals in which a particle was either created or destroyed. To then 

determine those particles in !e > which have been destroyed the output
n

of the XOR array is logically ANDed with ie >. The particles which have
n

been created in the prime state are determined by logically ANDing the 

state !e > with the output of the XOR array. The two resultant 32-bitzn

words are then latched into registers feeding separate operator encoder 

channels (OEC).

The output of each OEC is a 5-bit word giving the index of the 

least significant set (i.e. high) bit stored in the input registers. 

These output words, the index of an annihilation/creation operator 

depending on the channel, are latched into two 5-bit registers. The 

index of the next least significant set bit on the input registers of 

the OECs is then determined and latched at the output. If after this it 

transpires that there is another set bit on both the input registers 

then there must have been more than 2 particles difference between the 

two input SD-words, therefore <e !H!e > = 0. If however there are no
n n

more bits left then the four operator indices are written into the MFG 

buffer.

The operation of the PF is completely pipelined with that of the 

SG. That is, as the SG is in the process of producing a new state, the 

PF is processing the last state the SG produced. The SG and PF thus have 

the same major cycle, i.e. the time taken to process a state. The major 

cycle time for the SG and PF is currently 13 clock cycles.

3.4 MFG Buffer Operation

The Task Setup Word (TSW) written into the Buffer for each state passed
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by the PF has three subwords contained within it. These are made up as 
follows;

Subword 1. a 20—bit word consisting of the four 5—bit operators produced 

by the PF,

Subword 2: the 20—bit output of the SIC which gives the index, m, of the 

secondary state, !e >.
m

Subword 3: a 2-bit code to identify whether the TSW word refers to a 0,

1 or 2-job. This code is also produced by the PF.

The operation of reading and writing to the buffer is pipelined with the 

operation of the SG and PF. To ensure as far as possible the 

uninterrupted operation of the SG and PF they must not be delayed by 

buffer read/write operations. Therefore although only a few states are 

actually passed by the PF the buffer must still have the capability of 

performing a write operation on every major cycle of the SG and PF. The 

write cycle time of the buffer must therefore be at most 13 clock 

periods. However read requests from the MCMs to the buffer, which are 

completely asynchronous to the MFG operation, must also be fitted into

this cycle so that the SG and PF are not held up. To this end the 13

clock period major cycle of the MFG is split into two subcycles for the 

buffer; one for buffer read operations and the other for buffer writes. 

The buffer must therefore synchronise any read request to its read 

subcycle. On some occasions however the SG and PF will be halted, e.g. 

if the buffer is full, in which case the reads can take place at 

anyt ime.

The buffer must keep a track of how many locations within it are 

used at any time and from this provide signals to indicate whether it is 

empty or full. These signals are then used to stop any more reads from 

the buffer or to halt the SG and PF from producing any more states.

- 53 -



Chapter 3

3.5 MPG Hardware Implementation

The MFG was first run successfully as a complete unit towards the end of 

1983, at a clock rate of 50 MHz. It has now, after a major revision of 

its timing control and a number of other changes to the design, been 

uprated to run at 112 MHz. This section will detail the updated MFG 

hardware, as well as identify those sections of the hardware which 

currently impose the upper limit om its clock speed.

The SG, PF and buffer read/write control logic are all built with 

Motorola 10K series ECL gates. This high speed family of logic devices 

has typical gate propagation delays of 2 ns, rise and fall times of 3.5 

ns and offers a wide range of SSI devices and functions [MECL86] . In 

some key areas of the timing circuit Motorola 10KH ECL devices were 

used. The 10KH series is fully compatible with the 10K family but has an 

improved performance, e.g. providing typical propagation delay of 1 ns 

for the same power consumption (typically 25 mW per gate). 10KH devices 

also provide improved noise margin and reduced parasitic capacitance on 

inputs allowing faster rise and fall times.

With the fast edge speeds and low propagation delays of ECL devices 

path lengths can approach the wavelength of the signals. Thus any line 

which is improperly terminated will produce reflections causing serious 

distortions in the waveform [Ch86]. As a result of this, transmission 

line practices must be used, requiring each line to be properly 

terminated at its end with a load approximately equal to the 

characteristic impedance of the line [MECL83]. This practice is 

facilitated by the open emitter output used on all 10K devices. This 

also allows "wire-ORing" of outputs, i.e. the ability to produce an OR 

function between a number of outputs simply by connecting them directly 

together.

A full power (equal -5.2 V for 10K ECL) and ground plane on the 

circuit board also helps to reduce the impedance of signal lines and so
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minimise cross-talk between signals [MECL83], The circuit boards used, 

as well as providing a full power and ground plane, also provided 

positions for the terminating resistor networks. Single-in-line (SIL) 

resistor packs were used, providing seven 100 ohm resistors connected to 

a common terminal. This was connected to a —2.0 V supply to provide an 

active pull down termination.

3.5.1 Timing and Control Unit

The timing and control unit (TCU) provides the main timing and control 

signals for all the major units within the MFG. It also controls the 

synchronisation of the three stages within the pipeline, i.e. the SG, PF 

and buffer.

The TCU can be separated into two functional subsections (fig 3.7); 

the pulse injector and the 26-bit serial-in-parallel-out shift register. 

A pulse is injected into the shift register by the D input of (2) being 

high on a positive edge of the clock. This happens in two ways;

1/ START: This active low signal will inject a pulse into the TCU on its 

back edge. START(L) is only activated when the SG commences 

processing a new seed state. Thus if the SG is idle and waiting for a 

new seed state then START(L) will only be activated when the PG sends 

one. Alternatively if the SG finishes processing a seed state and a 

new seed is already waiting then START(L) will be activated 

immediately.

2/ RESTART: When the shift register is triggered, a pulse one clock 

cycle long will travel along it causing each output to go high for 

one clock period, starting at T1 and ending at T26. When the pulse 

reaches T13 another pulse will be injected into the shift register. 

This therefore generates the 13 clock period major cycle of the MFG 

system. Thus on most occasions there will be two pulses travelling 

through the shift register, separated by 13 clock cycles. Exceptions 

to this are on the first cycle after the TCU has been started and on
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the last cycle before it becomes idle.

There ai e two conditions that can stop a new' pulse being injected in;

i) The SG finishing an M-partition: this condition is signalled by 

the HALT(H ) line. Obviously if this happens then the SG must be 

brought to a halt but the rest of the MFG pipeline must be allowed to 

empty before they are halted. In this case RESTART is barred from 

injecting a pulse into the shift register and instead must wait for 

START to be activated, signifying the arrival of a new seed state. 

However timing signals must continue to the PF and buffer and so the 

shift register is allowed to continue on, generating pulses up to 

T26. It is from the latter half of the shift register that the PF and 

buffer receive most of their timing signals.

ii) The buffer becoming full: this condition is signalled by the 

BFULL(L) line. When this occurs RESTART is blocked from injecting new 

pulses in. Only when a read is executed from the buffer and BFULL(L) 

is thus negated is a new pulse allowed into the shift register. As in 

i) above the MFG pipeline is allowed to empty. Since this could mean 

another request to write to the buffer if the PF passes the state it 

is processing, then BRILL is actually made a pre-emptive signal. That 

is BRITT, is activated when there are still 16 positions left in the 

buffer. This is more than enough room to store any states allowed 

through by the PF while the pipeline is being emptied.

Note that the two flip-flops, (2) and (3), at the input to the shift- 

register serve to synchronise the the input pulse to the clock since 

both START(L) and BRJLL(L) are asynchronous to the system clock.

The lines DL1, DL2 and DL3 are all debug lines controlled by the PG 

software and used during MFG testing. Their operation will be explained 

later in section 3.5.10.

3.5.2 SG Interface and Start/Stop Control

The interface between the SG and PG, figure 3.8, is the means whereby
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the SG signals to the PG that it requires a new seed state and whereby 

the PG then transfers new seed states to the SG.

When the SG has exhausted an M-partition it will activate END(L) 

(6) causing IDLE(L) (5) to be clocked low thus signalling to the PG that 

the SG is indeed idle. If the next seed state is available, signalled by 

SRD\ (L ) , then the SG can start again, otherwise it must wait.

When the PG writes a new seed to the interface then the WLONG(H) 

(1) signal is activated. This in turn triggers START(L) and also resets

(3) indicating, via FCYCLE, that the first cycle of the SG processing an 

M-partition is in progress. When the SG does start again it signals to 

the PG, via NSREQ(L) , that a new seed is now required. Thus the supply 

of seed states to the SG by the PG is pipelined with the SG’s activity.

The first cycle of the SG is not used to produce any new states but 

only to take in the new seed state and initialise the appropriate 

locations in the Channel Control RAMs. The write pulse to the RAMs, 

CCRWE(L), is generated on the first cycle of a new seed by STRTW(L) and 

on the last cycle by STOPW(L).

The WRITE, INIT and RESET lines are initialisation control signals 

driven by the PG at the start of SMP processing. They are used, among 

other things, to ensure the correct state of various flip-flops in the 

MEG control system and to set all bits in the SG channel control RAMs to 

ones.

3.5.3 Channel Clocking and Control
As has been said the output of the multiplexer (2) , fig. 3.5, of the nth 

channel is only clocked if all the channels of lower significance, i.e. 

channels n+1 to 3, are also at the end of their chains. The control for 

the clocking of the multiplexers in each of the four SG channels is

shown in f igure 3.9.
The decision as to which channels are clocked round is implemented 

by the priority encoder (1) and the 16x4 RAM (the channel clocking
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memory (OCM)) (3). The only function of the multiplexer (2) is to allow 

the PG to initialise the CCM at the start of processing. The inputs to

the priority encoder (1) are the outputs of the 4 channel control RAMs

((5) figure 3.5), with the output of channel 3 connected to the highest 

priority input. The 2—bit output word of (1) is the index of the highest 

priority input that is high. This output is then used to address the 

CCM, only the lowest 4 locations of which are used. The CCM is 

preprogrammed such that the bit pattern which is read out will enable 

only the appropriate channel to be clocked.

3.5.4 The Pair Filter

Figure 3.10 shows one of the two PF OECs while figure 3.11 details the

logic to control its timing. The timing of the PF has been completely

revised to allow it to operate at 112 MHz. This has meant increasing the 

time between the 4 PF timing pulses, so that the OEC now completely 

utilises the 13 clock period major cycle of the SG. Previously it had 

only used 8 clock periods to perform its function.

The first timing pulse to the PF, PT8(L), clocks the output from 

the XOR/AND arrays into two 32-bit registers. Each bit of these 

registers can be individually reset to a low. The DONE(L) output of the 

priority encoder signals that all of the input bits are low. Therefore 

if this output is activated before PT13 then there could have been no 

set bits in the registers. This indicates that the secondary state and 

the prime state were identical and that a 0-job has been identified. If 

DONE(L) is not activated by this point then the output of the priority 

encoder, which gives the index of the most significant set bit on the 

input register, is clocked into the 5-bit register (1), (note that bit 

zero of the input register has highest priority).

FT13(L) is also used to enable the output of the 5-line-in, 32- 

line—out decoder. This output is used to reset the highest priority set 

bit in the input register. If DONE(L) is now activated before PT17 then
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there was obviously only 1 set bit in the input word. Thus there was 

only one particle different between the secondary state and the prime 

state and so a 1-job has been identified.

If DONE(L) is not activated before PT17 then the above process is 

repeated for the next highest priority set bit. If after this bit has 

been encoded and cleared DONE(L) is activated before PT21 then a 2-job 

has been identified. Otherwise if DONE(L) is not active by PT21 then 

there must have been more than 2 particles different between the two 

states and so the secondary state is not passed. In the 0, 1 and 2-job 

cases the encoded annihilation and creation operators present in the 

latches (1) and (2) are transferred into latches (3) and (4) by PASS(H) . 

A write enable pulse for the buffer is also generated by PASS(H).

The two flip-flops (5) and (6) generate the job-type bits JTO and 

JT1, which also form part of the data word written into the buffer. 

These two bits are encoded as shown in fig. 3.10.

Figure 3.11 shows the PF timing control circuit. Figure 3.12 

details the timing relationship between the different clocks for the PF. 

The timing pulses to the PF are disabled during the the first cycle of 

the SG processing an M-partition, since the SG does not produce a state 

for the PF in this cycle. The STRTW(H) clock, which is generated only on 

the first cycle of a new seed (fig. 3.8). is used to disable the PF 

timing clocks. The OUT(H) clock, which is generated on every cycle of 

the SG except on the first one, is then used to enable the first three 

clocks to the PF (PT8, PT13 and PT17). FT13 is used to enable the last

clock, PT21. This difference is caused by the fact that PT8 and PT21

will actually occur at the same time since they are 13 clock periods 

apart. Therefore on the first cycle of the PF at the start of a new

seed, PT21 must only be enabled after PT8 in order to avoid spurious

clock pulses to the PF which could potentially cause unwanted write 

pulses to the buffer.
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3.5.5 Secondary Index Counter and H—mode Comparator

Since the SG only searches certain N-partitions belonging: to a prime 

state then the PG must preload the SIC with the index of the initial 

state of every new N-partition processed. The inputs to preload the SIC 

are fed by the latches, (4, 5) figure 3.13, which can be written to by 

the PG.

Once the SG starts processing the last seed state of an N-partition 

the PG must write the initial index number of the next N-partition to 

the SIC preload latches. The PG can tell when the SG has started 

processing a seed by testing that NSREQ(L) (fig. 3.8) is active. When 

the PG writes the initial value to the SIC the flip-flop (2) is clocked, 

signalling that the SIC preload latches are full. Only then does the PG 

write the first seed of the new N-partition to the SG interface.

When the SG finishes the old N-partition and starts processing the 

new seed for the new N-partition IDLE(L) will be driven low and high 

again, (see fig. 3.8 for the circuit which generates IDLE) thus 

activating the LOAD(L) signal. The SIC is then synchronously preloaded 

by the first SICLK pulse. The SICLK pulse, which clocks up the SIC and 

also preloads it, is generated with one of the PF timing pulses, PT17, 

since the SIC must only be advanced when a new state has been clocked 

out of the SG.

It is quite possible that an N-partition contains only one M- 

partition. In such a situation there would only be one seed state for 

the PG to send down to the SG before requiring to reload the SIC. 

However it is feasible the SIC has not yet been preloaded with the 

previous value, even although the SG has started to process the only 

seed state. This could occur if the last state produced by the SG on the 

last seed was written into the buffer causing it to go full. Under these 

conditions the BFULL signal would not stop the SG from starting to 

process the new seed, it would instead only stop the SG after its first 

cycle (fig. 3.7). Consequently the PF timing would not yet have been
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enabled (fig. 3.11) and so the SIC would not have been preloaded. 

Therefore the PG must always check SPLEMPTY(L) (fig. 3.13) to determine 

if the SIC preload latches are empty before writing to them. Since the 

PG must also check that the SG has started processing the previous seed, 

tested via NSREQ(L), before writing to the preload latches, a composite 

signal, LEMPTY(L), is formed. This signal is active only when both the 

above conditions are true.

While processing in H-mode the SG should only produce states up to 

and including the diagonal element. The secondary state for the diagonal 

element will have the same index as the prime state. Thus when the 

diagonal element has been produced, being identified by its index 

number, the PG and MFG buffer must be notified. The PG needs to know so 

that it can abort loading down the seed table for the current prime and 

move onto the next prime state. The buffer must also know so that any 

more states in the current M-partition which are passed by the PF will 

not be written into the buffer. No writes are then allowed into the 

buffer until the SG has started processing the new prime state.

The output word of the SIC is fed into a 20-bit hardware 

comparator, (7) figure 3.13. The other input to the comparator is fed by 

a 20-bit latch (8). This latch is loaded by the PG at the start of 

processing on each new prime state with the index of the prime state. 

When the index of the secondary state equals the prime state index then 

the SICINT(L) signal is activated. This signal interrupts the PG 

processor and is also sent to the SG and buffer. If the PG is not in H— 

mode then the HMCEN(H) signal will be inactive thus permanently 

disabling the SICINT line.

The diagonal element will always be passed by the PF and so the 

back edge of the write signal, WE(L), which the diagonal element 

generates is used to produce the write inhibit signal, WIN(H). The 

WIN(H) signal is used to block any more clock pulses to the SIC as well 

as disabling writes to the buffer. In this way the SICINT(L) signal

- 61 -



S 3
74x

6 
LS2

44x
 6

U 2
CD O

i
§ 5

CO O



S37
£x6

 
LS

2U
x6

CD O

to O  <r



Chapter 3

remains active until the PG has received and processed the interrupt, 

when it will initialise the latches (8) with the new prime state index.

The SICINT signal cannot be used to abort the SG/PF from processing 

an M-partition since this would leave a position in the channel control 

RAMs (fig. 3.5) with a zero written in it. Therefore the SICINT signal 

is only used to block any more writes to the buffer after the diagonal 

element has been written in. As a result the PG must wait until the SG 

finishes an M-partition as normal before it can go on to process a new 

prime state. However when the SG finishes it is possible that the SG 

interface still has a seed from the old prime state ready to be 

processed by the SG/PF. In order that the SG should not take and process 

this seed and so waste time, SICINT is used to block any new START 

pulses, (7) fig. 3.8.

There is the danger that a race will occur between SICINT and IDLE 

causing a glitch out of (7). SICINT will safely block IDLE as long as it 

reaches (7) before IDLE reaches (8), thus ensuring no glitches out of 

(7). This will always happen since the SIC is clocked 11 clock cycles 

before IDLE (5) thus giving SICINT enough time (in worst case 

conditions) to reach (7) first. However there is one exceptional 

condition when SICINT will not be able to block IDLE, but which still 

ensures no glitches out of (7). That is when SICINT is caused by the 

last state produced in an M-partition, in which case IDLE is clocked 2 

clock cycles before the SIC. This will unfortunately mean that the SG 

will waste time processing a seed.

3.5.6 The MPG Buffer Implementation
A schematic of the buffer and its control is given in figure 3.14. The 

requirement that the buffer must be capable of handling both a read and 

write cycle within the 13 clock period major cycle of the MFG ( - 116 ns 

at 112 MHz) necessitates the use of fast static RAMs. The 55ns cycle 

time of the Motorola MCM2147 4K x 1 memories only just allows this to be
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achieved. At the time these memories were one of the main limiting 

factors in increasing the clock speed of the MFG.

There are three sets of 12-bit counters within the buffer subsystem 

(1, 2 and 3). (1) and (2), the buffer write address counter (BWAC) and

buffer read address counter (BRAC), generate the write and read 

addresses respectively for the buffer and only count up. (3) is the 

buffer word counter (BWC) and holds the number of used positions within 

the buffer. The BWC will count up or down depending on the state of the 

read signal, R(L) . The output of the BWC is used to generate the buffer 

full and buffer empty signals, BFULL(L) and BEMPTY(L) respectively. This 

is done by means of a combinatorial AND/OR array.

The multiplexer (4) outputs either the read or write address to the 

memories depending on the state of the read grant signal RGRNT(L). Thus 

the output of the multiplexer will default to the write address and only 

change when a read access is actually being performed. Note that the 

R(L) signal changes on every major cycle of the MFG, splitting it up 

into a write and read phase. The RGRNT(L) signal on the other hand is 

active only when a read is actually taking place.

As has already been noted the parameters within the TSWs which are 

stored in the buffer do not contain all the data required by the MCMs 

for each task. That is the MCMs must also know the prime state SD-word 

and its index. These parameters change very infrequently and only need 

to be sent to the MCMs when they start processing a new prime state. To 

achieve this the PG must know when the last TSW for a prime is read out 

of the buffer.

To this end the PG must read the BWAC, (1), when the SG finishes 

processing a prime state and before it starts processing a new prime. At 

this point the BWAC will contain the address of the next position to be 

written to in the buffer. The PG then writes this address into the 

register (8) which feeds a 12-bit comparator (7), the Buffer Block 

Finished Comparator (BBFC). When the MCMs read the last TSW from the
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buffer relating to the old prime, the BRAC, (2), will then equal the 

contents of the register (8), at which point the BBFC will activate the 

BLKFIN(L) signal. This signal is then used to interrupt the PG, which 

then broadcasts the new prime state information to the MCMs. BLKFIN(L) 

is also used to generate a read inhibit signal which stops the MCMs 

performing any more reads from the buffer. This is done until the PG has 

successfully informed all the MCMs of the new details.

3.5.7 MFG Buffer Read Control

All reads to the MFG buffer are performed along I-bus and are controlled
*

by two signals; the data strobe IDS and the data transfer acknowledge 
*

IDTACK (note that the * denotes an active low signal on the bus) . A
♦read from the buffer is only initiated when the date strobe IDS is 

activated, figure 3.15. This will latch in a read request on the flip- 

flop (1), unless either the buffer is empty, BEMPTY(H) active, or the 

read inhibit from the BBFC is active, RIN(L). If either of these signals 

is active then a read request will be delayed until it is removed.

Once a request has been latched in it can produce either a 

synchronous or asynchronous read cycle;

1/ Asynchronous cycle: this type of read cycle will only happen if the 

SG and PF have been stopped, either by a buffer full condition or 

when the SG is waiting for a new seed. If this happens then 

RUNNING!H) is brought low by T26, the last timing pulse of the TCU, 

(see (6) of figure 3.16 for circuit). RUNNING(H) is then brought high 

again on the second pulse T2 of the first cycle immediately after the 

SG/PF restarts. RUNNING(H) is synchronised with the inverted 16 MHz 

clock by (5), fig. 3.15, and then used to hold (2) reset. Thus only 

if the SG/PF have stopped, RUNNING!H) low, will an asynchronous 

grant, ASGRNT, be generated lasting 62.5 ns.

2/ Synchronous cycle: If RUNNING is active then the synchronous read

request signal, SRRQST from (1) of fig. 3.15, will generate a
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synchronous read grant signal, SRGRNT, via (3) and (4) of fig. 3.16. 

This SRRQST(L) signal is completely asynchronous with the MFG system 

at this point and so is synchronised to the MFG clock by the two 

flip-flops (3) and (4). It is also synchronised to the MFG buffer 

read phase by (3). Note that the read phase starts at the beginning 

of T25 (7) with R(L) going low, but the synchronous read grant does 

not start until two clock cycles later at the end of T26. This allows 

time for the R(L) signal to place the BWC, (3) fig. 3.14, into the 

count down mode before it is clocked by the SRGRNT signal.

It is possible that a read request is first initiated when RUNNING(H) is 

low and gets as far as bringing the output of (2) high, fig. 3.15, only 

for RUNNING!H) then to go high again. In this case the asynchronous 

request would be aborted and then treated as a synchronous request. 

However if an asynchronous request gets as far as driving ASRGRNT(L) and 

then RUNNING(H) goes high there is no danger of the request also being 

treated as synchronous, since the RGRNT(H) signal will clear the read 

request on (1).

3.5.8 MFG Buffer Write Control
The read and write subcycles of the buffer are split so that a 

synchronous read is performed in 7 clock cycles ! = 62.5 ns at 112 MHz) 

leaving 6 clock cycles ( = 53.5 ns ) for a write. Figure 3.16 shows the 

circuitry to control the write cycle. The PASS(H) signal comes from the 

PF OEC circuitry, fig. 3.10, and signals that a state has been passed by 

the PF and so must be written in to the buffer. The E(L) and WE(L) 

signals are the chip enable and write enable signals respectively for 

the MFG buffer memories during a write cycle.

Figure 3.17 details the timing for the buffer synchronous read and 

write cycles. This was also completely revised to accommodate the 

changes made to the PF timing. The R(L) signal is only used on the BWC, 

(3) fig. 3.14, to determine whether they count up or down. Since these
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Min S Max S Measured

1 a/ T
8  1 g V

(synch) 43.8 77.4 —

b/ (synch) 159.8 193.4 —

c/ (asynch) 75.1 96.3 —

d/ (asynch) 137.6 158.8 —

2/ T8 1 8 h 17.5 50.9 25

3/ Tshah 8.8 29.3 25

4/ Ta h s 1 10.9 31.1 15

Table 3.1 I-bus cycle timings
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counters are clocked at the start of any read/write cycle then the R(L) 

signal is changed ahead of the write cycle to give them sufficient setup 

time.

3.5.9 I-Bus Data Transfer Protocol

I-bus is a dedicated, unidirectional, asynchronous bus capable of 

supporting only one bus slave, the MFG buffer, and multiple bus masters, 

the MCMs. The I-bus signal lines fall into two subsets; the arbitration

bus and data transfer bus (DTB). The arbitration bus requires only four
* *

lines; a common bus request line (IBR ), a bus busy line (IBBSY ), a
*

daisy chained bus grant line (IBG ) and a bus grant return line 
*

(IBGRTN ). The operation of the bus arbitration protocol will be

explained later in Section 4.3. All that need be noted at present is

that the arbitration for the next bus master is pipelined with the bus

transfer of the current bus master. This pipelining allows minimal delay

to be incurred when handing over bus mastership.

The DTB consists of up to 64 data lines of which 42 are used at
* *

present. There are only two DTB control lines, IDS and IDTACK . These

two lines form a simple handshake between the bus master and MFG buffer.

Figure 3.18 details the current protocol for the I-bus data transfer,
*

while table 3.1 gives the associated timings. The IDS line is driven by

the current bus master and signals a read request to the buffer as well

as indicating to other potential masters that a bus cycle is currently
*

in operation. IDTACK is the MFG buffers response when the data is valid
*

at its output. In response to the buffer asserting IDTACK the current
*

bus master will negate his IDS and latch in the data after a short

delay to guarantee set-up times. Only when the buffer has negated
* *IDTACK does the next bus master assume control by driving IDS .

Since a read has to be synchronised with the read subcycle of the 

buffer for both asynchronous (fig. 3.15) and synchronous reads (fig. 

3.16), it is more than likely that there will be a delay before this
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happens. Time la in table 3.1 is the best case delay for T during a 

synchronous read, i.e. is when the request arrives just in time to be 

clocked into (4) fig. 3.16. The worst case delay for a synchronous read 

is where the request just misses the clock and has to wait the full 13 

clock period cycle of the MFG before being granted, lb in table 3.1. lc 

and Id in table 3.1 give the best and worst case timings for the delay 

imposed on requests being synchronised with the 16 MHz clock during 

asynchronous reads. Using fig. 3.18 and the figures given in table 3.1 

we can arrive at the following bus cycle times for synchronous buffer 

accesses (allowing 60 ns for memory access);

a) Peak cycle time (worst case),

i.e using la for T , and using worst case delays
B  1 g  V

= T  + 6 0 + T  + T  + T  (all max. timings)
B 1 g y  a 1 s h s h a h  a h s 1

= 77.4 + 60 + 50.9 + 29.3 + 31.1 

= 248.7 ns cycle time

= 4.02 MHz transfer rate.

b) Peak cycle time (best case),

i.e using la for T , and using best case delaysS 1 g -V
= 43.8 + 60 + 17.5 + 8.8 + 10.9

= 141 ns cycle time 

= 7.09 MHz transfer rate.

c) Average cycle time (worst case),

i.e using average of la and lb for T , and using worst case delays
B  1 g  V

= 135.4 + 60 + 50.9 + 29.3 + 31.1

= 306.7 ns cycle time 

= 3.26 MHz transfer rate.

d) Average cycle time (best case),

i.e using average of la and lb for T , and using best case delays
B  1 g  V

= 101.8 + 60 + 17.5 + 8.8 + 10.9 

= 199 ns cycle time 

= 5.03 MHz transfer rate.
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An average data rate of between 3.26 MHz and 5.03 MHz can therefore be

expected on I-bus. While it is possible that the data rate could peak at

up to between 4.02 MHz and 7.09 MHz.

However examination of fig. 3.18 shows that time is wasted at the
♦ *

end of each bus cycle in the way IDS and IDTACK are removed. Since the 

TSW is valid at the output of the MFG buffer on the rising edge of the 

buffer RGRNT(L) signal and stays valid until the rising edge of the next 

RGRNT(L) pulse it is possible to change the date transfer protocol to

that shown in fig. 3.19. As before the current bus master removes his
* *

IDS signal when IDTACK is driven low and the next bus master is only
*

allowed to assume control when the IDTACK is negated. However with this 
*

method IDTACK simply follows the internal RGRNT(L) signal and when it 

is negated it signals to the current bus master that the data is ready. 

The bus master then latches in the data after a short delay as before. 

With this protocol the T delay would be buried in the 60 ns memory
o 1 s h

access time and the T time would be lost altogether. The aboveshah
figures for bus bandwidth wrould thus become;

a) J.68.5 ns = 5.93 MHz,

b) 114.7 ns = 8.71 MHz,

c) 226.5 ns = 4.42 MHz,

d) 172.7 ns = 5.79 MHz.

I-bus bandwidth could therefore be expected to increase to average 

between 4.42 MHz and 5.79 MHz.

I-bus is physically implemented on a commercially available 21 

slot, 96-line multi-layer backplane. 12 of the lines on the backplane 

are reserved for power and ground lines since they are connected to the 

power and ground plane of the backplane. The remaining 84 signal tracks 

on the backplane are layed out with a ground line on either side, thus 

reducing the impedance of the track and so reducing signal crosstalk. 

The layout of the signals on the edge connector is shown in figure 3.20. 

The IBG* and IBGRTN* signals are not physically present on the I-bus
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backplane since they require a daisy-chained line which was not 

available on the backplane used. Instead they physically reside on the 

C-bus backplane, which being a VME-bus has four daisy-chained signal 

lines.

The termination circuits used for the data and clock lines are 

shown on fig. 3.20. These custom-made termination circuits are placed at 

either end of the backplane on all the data and clock lines. The active 

pull-up, pull-down termination has an impedance of 194 ohms. This 

approximately matches the impedance of the signal lines on the backplane 

and so reduces signal reflection from either end of the backplane. The 

diodes on the termination for the clock lines help to limit undershoot 

and so reduce ringing.

3.5.10 MFG Testing and Debugging

During testing and debugging of the MFG hardware it was possible to 

override some of the normal functions within the MFG using a number of 

dedicated debug control lines. All these debug control lines are driven 

by the FG and are under software control. However during some of the 

early stages of testing they were controlled by switches. While testing 

circuitry within the MFG signals were monitored via a 2 channel 100 MHz 

oscilliscope.

For example it is possible to block the BRILL signal from stopping 

the TCU, via DL1 fig. 3.7, thus allowing uninterrupted operation of the 

SG and PF. This will of course mean that data is overwritten in the 

buffer. However it is a very useful facility when signals are being 

examined within the SG, PF and indeed the buffer write circuitry but 

when the data in the buffer is not required.

There is also a facility to start the TCU via DL4, fig. 3.8, and 

thus to initiate cycles in the SG/PF under software control. Using DL2, 

fig. 3.7, it is possible to block the RESTART signal so that the TCU 

does not have a pulse injected into it every 13 clock cycles. Thus using
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DL2 and DL4 it is possible to run "single shot" full speed cycles within 

the SG/PF, i.e. only one pulse is allowed to travel through the shift 

register, thus allowing each major cycle to be initiated under user 

control. This facility proved useful for single stepping through SG and 

PF operation and then checking their output as well as checking the 

state of various key registers and flip-flops after each cycle.

It is also possible using DL3, fig. 3.7, to inhibit the HALT line 

from stopping the SG at the end of a seed. Thus a single seed is 

processed repeatedly without PG servicing. This is useful where signals 

within the MFG are being examined with a 'scope, and so continuous and 

synchronous operation is required.

The SIC H-mode comparator and BBFC can also be individually 

disabled, via HMCEN (fig. 3.13) and BBFCEN (fig. 3.14). This facility 

can be used to simplify control software during debugging.

All of the initial testing of the MFG was performed with much 

simplified driver software. The software needed only to load the SG 

channel memories with 2 or 3 different SD-byte chains and then use only 

a small number of seeds. These seeds and chains were chosen to produce 

tight loops within the MFG which could then be easily examined and 

traced. Once the I-bus interfaces were complete a two processor system 

was implemented, with the PG driving the MFG and an MCM accessing the 

buffer and checking the data which was read out. When the complete PG 

software was written more thorough checks could be performed using the 

same two processor system, but now with the MFG performing the full 

sequence of events for an SMP iteration.

The MFG hardware has now been completely tested and proven to 

successfully and reliably operate at a clock speed of 112 MHz.

3.5.11 MFG Performance Limitations

The following have been identified as the major limitations on the 

performance of the MFG;
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1/ MFG buffer memories: as has been said the current 55 ns memories 

limit the MFG major cycle to an absolute minimum of 2 x 55 = 

llOns/cycle which gives a clock speed of approximately 118 MHz. 

Indeed it has been found that the MFG will only operate successfully 

up to a clock speed of just under 120 MHz. The current memories could 

be replaced by 25 ns 4k x 4 bit RAMS, e.g. the IDT71682LA (which has 

separate data input and output lines). This would impose a limit of 

50 ns/cycle, which equals a clock speed of 260 MHz.

2/ SG channel memories: the time allowed between the clocking of the

multiplexers (2) and (3), fig. 3.5, is only 3 clock periods during 

which time the channel memories must be accessed. The present clock 

speed only gives 27 ns for this function. This currently does not 

allow for the maximum address access time of the memories (MCM10144) 

of 26 ns, plus the maximum propagation delay of (2) and the setup 

time required for (3), which amounts to another 8.8 ns. However it is 

within the 17ns typical delay of the memory devices. Replacement with 

the Fairchild F10414, which has a maximum address access time of 

7 ns, or the Motorola MCM10422-7 (which is a 256 x 4 bit RAM) which 

has the same access time, and replacing the multiplexers with the

10KH equivalent would place a limit of 262 MHz.

3/ PF Operator Encoder Channels: analysis of the OECs shows that when 

producing the second operator index a propagation delay of 30.3 ns 

(worst case) is required for the signals to travel through the 1-to- 

32 decoder and the 32-bit register and then be ready at the input of 

the encoder. Only 4 clock periods are currently given to this stage 

of the OEC, imposing an upper limit of 132 MHz. The simplest method 

of increasing this is to replace all the OEC devices with 10KH ECL

series parts, which would approximately double this upper limit.

4/ TCU shift register: in order to operate above 125 MHz the shift

registers in the TCU would have to be changed to 10KH devices. This 

would place an upper limit of 250 MHz on the clock. However the pulse
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injection logic would become a lot more difficult to control and may 

not work at this speed..

The above list is by no means exhaustive but it does present some of the 

more major limitations on the current performance. There are a number of 

other minor limitations which could possibly be overcome by circuit 

alterations rather than replacing parts. What is clear however is that 

with the current design the MFG clock could possibly be increased in 

speed by a factor of two, at the very most. Beyond this speed the 

current design could not operate and a major rethink in the design of 

the MFG would be necessary.

3.6 Primary Generator Hardware

A schematic of the FG hardware is shown in figure 3.21a, with its memory 

map shown in figure 3.21b. The PG is an MC68000 (8MHz) microcomputer 

module. It has an interface to C-bus, but none of the other SMP system

buses, and has direct control over the SG and PF via the SG interface.

The PG also has control over some of the MFG buffer functions as well as

access to read the contents of the BWAC. The PG can also write to the

preload latches of the BBFC, SIC and H-mode comparator. The buffer 

functions and all the preload latches along with the two PI/Ts (Parallel 

Interface/Timers) are all memory mapped into the control space (fig. 

3.21b) .

Only those parts of the PG hardware that are particularly dedicated 

to its function will be discussed here, and not the more general 

hardware of its microcomputer architecture.

3.6.1 The SG Interface

Hie SG interface contains two SG control PI/Ts and an 8k x 8 block of 

memory, used for holding seed state tables. The SG interface is also the 

pathway for the PG to initialise the contents of the SG channel memories
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and CCM.

The MC68230 PI/T [Mot230] has three 8-bit general purpose 

bidirectional ports, A, B and C. Each of the bits for the three ports 

can be independently configured as an input or output pin. The PI/T can 

be used to generate vectored interrupts to an MC68000 device. Four 

independent interrupt inputs are provided via the handshake pins HI - 

H4. The PI/T will supply a different interrupt vector to the MC68000 

depending on which handshake line was the source of the interrupt. All 

three PI/Ts have their A and B ports in Mode 0, submode lx. which 

configures them as bit I/O with the handshake pins as interrupt 

generating inputs.

The C- ports on the two SG control PI/Ts on the interface are used 

as the SG control and status register (SGCSR), so that the PG can 

control certain functions of the SG and also read back its status e.g. 

idle or running. The A and B ports on the two SG control PI/Ts are 

combined to form one 32-bit output register, the Prime State Register 

(PSR), to hold the current prime state which is fed to the PF. The 

buffer control PI/T uses its B port as a buffer control and status 

register (BCSR).

The 8k block of memory on the interface is used to hold the seed 

SD—words which are sent to the SG. 2k of these 32—bit words can be held 

in the memory at any one time. The memory is made up of four 2k x 8 

static RAMs, organised as two 2k x 16-bit word blocks. In normal 

operation the memory acts as any other block in the PG’s memory map, 

being written to and read from 16-bits at a time. However when servicing 

the SG with a new seed state the PG simply has to read a byte or word of 

the relevant seed from the memory and the full 32-bit SD-word is read 

out in one cycle and clocked into the SG seed latch. This utility saves 

a significant amount of time for the PG servicing the SG and thus 

reduces the time wasted by the SG while it waits for a new seed state. 

However this means that a seed state cannot be written into the seed
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memory as a contiguous 4-byte word. Instead the most significant 16—bit 

word of the seed (containing the bytes for channels 0 and 1) is written 

to the lowest 4k block of the seed memory. The least significant word 

(containing the bytes for channels 2 and 3) is then written into the 

same address but with an offset of 4k (bytes) into the highest 4k block 

of the seed memory.

3.6.2 The Control PI/Ts

A total of 10 lines are used on the two SG control PI/Ts to form the 

SGCSR. These lines are used as follows;

1/ Input: NSRBQ(L) - signals that the SG is requesting a new seed,

2/ Input: IDLE(L) - signals that the SG is idle after completing an 

M-partition,

3/ Output: REQEN(L) - enables the DREQ(L) signal (see fig. 3.8),

4/ Output: DL4 - a low to high transition on this line injects a pulse 

into the TCU (see section 3.5.10 and fig. 3.8),

5/ Output: INIT(L) - used to initialise certain flip-flops within the 

SG/PF,

6/ Output: LOAD_SG - enables the memories in the SG to be loaded prior 

to running,

7/ Output: L0AD_INT - enables the seed table memories on the SG 

interface to be loaded and then switched into 32-bit mode,

8/ Output: DL3 - HALT override (see section 3.5.10 and fig. 3.7),

9/ Output: DL2 - single shot enable ( " " " ) ,

10/ Output: DL1 - BFULL override ( " " " ) .

The buffer control PI/T has 7 lines dedicated on its B port as the BCSR, 

as follows:

11/ Input: LEMPTY(H) - signals that both the SIC preload latch and the 

SG seed latch are empty (see section 3.5.5 and fig. 3.13),

12/ Input: BEMPTY(L) - signals that the MFG buffer is empty,

13/ Output: BBFCEN(L) - enables the BBFC (see fig. 3.14),
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14/ Output: HMCEN(H) - H-mode comparator enable (see fig. 3.13),

15/ Output: SICLEN(L) - SIC preload enable (see fig. 3.13),

16/ Output: BCLK - this control line is wire-ORed to the BWC clock. A 

low to high transition clocks the BWC, while it is held low 

to allow it to run. This line is required to preset the BWC 

to zero.

17/ Output: BRESET(L) - BWC preset mode line.

Most of the control lines driven by the PI/Ts are completely static 

during runtime, except lines 7, 13 and 14 which are altered at certain 

times by the PG software w'hen necessary.

The two interrupts, i.e. the H-mode interrupt and BLKFIN interrupt, 

are both directed to the PG processor via the buffer control PI/T. This 

is achieved by connecting the two interrupt signals, SICINT and BLKFIN, 

to the HI and H2 lines respectively of the PI/T. The PI/T is then 

configured by the PG to generate an interrupt to the processor on a 

negative going edge from either of these signals. Since the two 

interrupts are both edge triggered the PG must clear them in the PI/T 

before it will rescind its interrupt signal. The interrupts are both on 

the second highest interrupt level to the PG processor, i.e. level 6, 

and so can be masked out if desired.

3.7. Primary Generator Software

The PG task subdivides into three separate functions;

1/ The Basis Generation Function: this generates, in order, the basis

list of ,SD-words (i.e. prime states) for the nuclei under 

consideration.

2/ The SG Control Function: amongst other things this function will 

supply the SG with the necessary seed states, preload the SIC and 

service the H-mode comparator interrupt.

3/ The MMFU Support Function: this function supplies the MCMs with new

- 75 -



cr lu

ln  UJ

V Q O

UJ 3 UJ

/\ l-tCL
3crcrUJ
1—z•—1

y V

u-cr
h-

00go
CD

U.CTf



PG
 

R
O

U
TI

N
E

S

FIG
. 

3.23
 

STA
TIC

 
DAT

A.



Chapter 3

prime state information when necessary.

Figure 3.22 shows the structure of the PG software and the flow of 

control and data between the different routines. All the software for 

the PG has been written in Motorola 68000 assembly language. The 

software was developed on a Motorola EXORmacs 68000 development system 

using a relocatable assembler and linker package.

To perform its function the PG must generate and maintain a large 

Runtime Data Block (RDB) containing lookup tables and PG system 

parameters. The RDB is split into two sub-blocks; the static block and 

the dynamic block. The static block is built prior to runtime and 

contains read only data. The dynamic block is a read/write block of data 

which is constantly changing during runtime.

3.7.1 The Runtime Data Block 

1/ The Static Data Block

This data block consists of a number of tables and parameters built by 

the Supervisor Module prior to runtime and then placed in the PG memory. 

The static block is shown in figure 3.23 along with the PG software 

routines which reference it. The sole function of the static data block 

is to aid the PG in generating the basis list of SD-words according to 

the ordering given in section 3.1. Therefore this data block is only 

used by the Basis Generation Function.

The static block consists almost entirely of the Channel 

Information Tables (CITs). There are four separate CITs corresponding to 

the four channels of the SG (which in turn correspond to the four SD- 

bytes that make up an SD-word) . Each CIT is itself made up of four 

different tables, as follows;

1/ The SD-Byte List: this is the lowest level of the CITs. It is a 256 

byte table which contains all the possible SD-bytes for the channel 

it refers to. Within the table the entries are sub-divided into 

blocks, called n-blocks, with all the entries in an n-block having
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the same number of set—bits, i.e. occupied orbitals. There are thus 9 

possible n-blocks (for 0 to 8 set bits) in each SD-byte list. The n- 

blocks are arranged in order, with the n-block corresponding to 0 set 

bits first in the list. It should be noted that while each of the 4 

SD-byte lists of the 4 CITs are split into 9 n-blocks that in some of 

the CITs some of the n-blocks will be empty. For example under the 

representation given in figure 3.1 each SD-byte list will have 2 

empty n-blocks, since 2 bits in each SD-byte are unused.

Within each n-block the entries are arranged into nm—blocks, where 

all the entries in an nm-block have the same M-value. The number of 

nm-blocks in any n-block is variable, depending on the particular n- 

block and the basis list representation used. The nm-blocks are 

arranged within the n-blocks in ascending numerical order of their 111- 

values .

Within each nm-block the SD-bytes are arranged in numerical order. 

All the SD-bytes within an nm-block thus have a constant number of 

occupied orbitals and M-value. They therefore correspond to the SD- 

byte chains placed in the SG channel memories (section 3.2).

2/ The M-list: This 256 entry table is also ordered into n-blocks with 

each n-block having a single byte-wide entry for each of its nm- 

blocks. The entry for each nm-block simply gives the M-value for that 

nm-block. These entries within each of the n-blocks are arranged in 

numerical order, i.e. the same ordering as the nm-blocks in the SD- 

byte lists.

3/ The M-directory: The M-directory is organised in exactly the same way 

as the M-list. However the entry for each nm-block consists of two 2- 

byte elements and therefore the M-directory takes up 1024 bytes. The 

first element of each entry in the directory is a 16-bit address 

offset from the base of the SD-byte list to the base of the 

associated nm—block. The second element of each entry gives the 

number of SD—bytes minus 1 contained within the associated nm—block
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of the SD-byte list. (Note that here as in other tables block lengths 

are stored less one to optimise the use of the 68000 microprocessor 

assembly language. The decrement and branch conditional instruction 

(DBcc), which is used to operate most loops, exits a loop when the 

counter reaches -1. Therefore it is more efficient to store the loop 

counts less one, rather than to calculate this value).

4/ The N—directory: This is the highest level table within each CIT and 

is used only by the MPC. It contains 9 different entries, one for 

each n-block, consisting of two 16-bit word elements. The first 

element is a 16-bit address offset to the base of an n-block within 

the M-directory. This offset is used for the M-List as well but since 

the entries in the M-List are a quarter of the size of those within 

the M-Directory then it must be divided by 4 (i.e. shifted right 2 

places) before it can be used to reference the M-List. The second 

element is a block length number, which gives the number of entries 

(i.e. the number of nm-blocks) minus one within the associated n- 

block. The total size of each N-directory is thus 9 x 2 x 2 = 36 

bytes.

The only other entries within the static block are three parameters 

which define the particular nucleus under consideration, these are INP, 

FNP and MVAL. INP and FNP are the initial and final N-partitions 

respectively for the nucleus (an N-partition is specified by a 4 byte 

number, with byte 0 containing the value of n(Pl), etc. (eqn. 3.3)). 

MVAL is a 2 byte parameter and is the total M-value for the nucleus.

II/ The Dynamic Block

Most of the space within this block is taken up with the dynamic tables 

while the remainder is used by transient parameters, figure 3.24. Only 

the SG Control Function and MMPU Support Function use the dynamic 

tables, while all the functions use the transient parameters.

The dynamic tables are made up as follows;

1/ The Number Table (NUMTB) ; This table contains the index of all the

78



Chapter 3

N-partitions within "the basis list (where the index of a partition, 

be it an N or M-partition is the index of the first state within the 

partition). Each entry in the table is made up of two 32-bit long 

word elements; the first element specifies the actual N-partition and 

the second gives its index. This table is built by the Basis 

Generation Function during the first iteration of the process.

2/ The Initial Number Table (INT); The INT contains the indices of all 

the N-partitions which are connected to the active N-partition (the 

active N-partition is the one which the current prime state resides 

in). Its entries are used by the SG Control Function to preload the 

SIC each time the seed states enter a new N-partition (section 

3.5.5). It is built using the information in NUMTB. This holds no 

problems in H-mode since in this case only connected N-partitions 

before and including the active N-partition are searched by the SG. 

However N-partitions which occur after the active N-partition are 

searched when processing in W-mode and therefore during the first 

iteration, since the NUMTB will not be complete, their index will be 

unknown. Therefore a dummy basis generation run must first be 

carried out in order to build NUMTB, when processing in W-mode.

3/ The Seed Control Table (SCTAB); The first entry in the SCTAB is the 

number (minus one) of all the non-empty N-partitions connected to the 

active N-partition. Therefore this entry gives the number of valid 

entries in the INT. The remaining entries in the SCTAB give the 

number of M-partitions minus one in each of the connected N- 

partitions, i.e. the number of seeds minus one for each N-partition.

4/ The Seed Table; This is the actual list of seed SD-words which are 

sent to the SG. This table is stored in the seed memory of the SG 

interface.

The last three tables collectively form the Driver Tables. These 

tables are built and used only by the SG Control Function. The Driver 

Tables contain all the information necessary for controlling and
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supporting the SG during seeding.

5/ The Prime Block FIFO: This is a softw’are FIFO maintained by the MMPU 

Support Function. It is used to keep a record of previous prime 

states and the position of their associated TSWs within the MFG 

buffer. Each entry within the FIFO consists of a prime state SD-word, 

its index and the address (read from the BWAC) of its first TSW 

within the MFG buffer. These entries use 4, 4 and 2 bytes

respectively.

Before the SG Control Function begins processing a new prime state, 

the new prime state details are appended to the FIFO. When a new 

prime block is reached in the MFG buffer, signaled by the BLKFIN 

interrupt (section 3.5.6), the MMPU Support Function will broadcast 

the details, taken from the FIFO, to the MCMs. The BBFC is then 

reinitialised using the details from the next entry in the FIFO.

In order to maintain the Prime Block FIFO there are three data words. 

FIFO, FIFRA and FIFWA, kept in the transient parameter area of the RDB. 

FIFRA and FIFWA are the offsets from the base of the FIFO to the next 

position to read from and the next free position to write to 

respectively. FIFRA (FIFWA) is incremented each time a read (write) is 

performed, with the addition performed modulo the length of the FIFO. 

FIFC is used to keep a count of the number of used locations within the 

FIFO. Thus FIFC is used to determine when the FIFO is full or empty.

Some of the other transient parameters are;

PIC: this is a 32-bit number which is used to keep a count of the index 

of the prime state.

ANP: this is another 32-bit location w'hich specifies the active N-

partition.

CMPT: this specifies the current M-partition. It is a 32—bit word, with 

byte 0 holding the M-value of SD-byte 0, etc.

JSW: this 4—byte location is the Job Status Word. It is used amongst

other things by the PG to determine whether it is in H-mode or W-mode.
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It is also used to keep a record of the number of iterations which have 

been performed.

In total the RDB takes up 8936 bytes of the PG’s DRAM system, 

excluding the seed table which is placed in the SG interface memory.

3.7.2 The Basis Generation Function

The details of the three main routines which the PG uses to generate the 

basis of SD-words are now considered.

i) The N-Partition Controller (NPC);

This routine generates, in order, all the N-partitions for a nucleus, 

given its initial and final N-partitions, according to the following 

steps;

1/ On entry to the NPC from the initialisation routine, the PIC is 

cleared and the active N-partition is set equal to the initial N- 

partition.

2/ The NIMTB is updated by appending the active N-partition and the 

contents of the PIC plus 1.

3/ Control is passed to the SG Control Function to generate the new 

Driver Tables for the active N-partition. If the JSW shows that the 

job is being performed in W-mode and that it is the first iteration 

then this step is not taken so that a dummy first iteration can be 

performed to build NUMTB.

4/ Control is p a s s e d  to the M-Partition Controller.

5/ If the active N-partition is equal to the final N-partition then 

the basis has been completely generated and so the NPCs task is 

finished. Otherwise the next active N-partition is generated 

according to the order given in eqn. 3.6. Control then returns to 

step 2.

ii) The M-Partition Controller (MPC);

The MPC is called by both the Basis Generation Function, via the NPC, 

and also the SG Control Function, via the Driver Table Constructor
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(DTC). In both these circumstances its function is exactly the same, 

namely to generate, in order, all the M-partitions that belong to a 

given N-partition. The MPC can determine which routine called it by a 

flag bit in the JSW. When the DTC is first called it sets the flag bit 

in the JSW and only when it finishes does it clear the flag.

1/ The individual bytes within the ANP (multiplied by 4) are used as 

offsets into the 4 N-directories.

2/ The entries read in the N-directories then give 4 offsets and 

block length numbers for the appropriate n-blocks within the M- 

directories and M-lists. A 4 word parameter, CMPTIX, is initialised 

using these 4 offsets. CMPTIX is used to hold the offsets from the 

base of each of the M-directories to the current nm-blocks being used 

within the n-blocks.

3/ CMPT is formed. This is done by using the offsets (divided by 4) 

in CMPTIX to fetch the 4 M-values from the M-Lists. These four M- 

values are then placed in CMPT

4/ The 4 bytes within CMPT are added together. If the result As equal 

to MVAL then a valid M-partition has been found and so the the STB or 

the SDWS is called, depending on whether the MPC was called by the 

DTC or not. Otherwise the MPC proceeds to the next step.

5/ The block length number of the least significant channel, i.e. 

that which corresponds to SD-byte 3, is decremented by 1. If the 

result is equal to -1 then there are no more nm-blocks for this 

channel and so the relevant word of CMPTIX is reset to its initial 

value which points to the start of the n-block in the M-directory and 

the above procedure is performed for the next channel up. If the 

result was not equal to —1 then the nm—block has not been finished 

and so the relevant word of CMPTIX is incremented to point to the 

next nm-block and control returns to step 3.

If the most significant channel runs out of nm-blocks then all the 

possible M—Partitions for the active N—partition have been generated.
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The MPC therefore returns to the calling routine. 

iii) The SD-Word Sequencer (SDWS):

This routine generates all the SD-words, in order, that belong to a 

particular M-partition. As each SD-word (prime state) is built the SDWS 

will call the SGDR, except when processing the dummy first iteration for 

W-mode. In this case all that is required is that the PIC be incremented 

for each SD-word made. The SDWS operates as follows;

1/ Using the 4 offsets in CMPTIX to reference the M-directories, 4 

offsets and block length numbers are obtained for the relevant chains 

in the SD-byte lists. A 4 word parameter, CSDBIX, is initialised with 

these 4 offsets. CSDBIX is used to hold the offsets from the base of 

each of the SD-byte Lists to the SD-bytes being used to form the 

current prime state.

2/ Using CSDBIX the 4 SD-bytes are fetched and placed in a 4-byte 

location, the Prime State Buffer (PSB), in the RDB. The PIC is then 

incremented by one.

3/ The SGDR is called, except if the JSW indicates that it is the 

first iteration in W-mode.

4/ The next SD-word is then built in the same manner as in step 5 of 

the MPC and control then passes back to step 2. When all 4 chains are 

finished then control is returned to the MPC.

3.7.3 The SG Control Function
The software for the Basis Generation Function need know nothing about 

the MFG hardware since it is completely independent of it. However the 

same is not true of the SG Control Function since it is intimately 

involved in the maintenance of the SG, PF and buffer. This function must 

be optimised for speed since the vast majority of its workload is in 

seeding the SG and any delay in this can delay the SG. On the other hand 

little attention need be paid to optimising the Basis Generation 

Function since it is a much smaller part of the PG s workload, (note
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An(Pl) An(P2) An(Nl)+2 An(N2 -2

An{Pl) An(P2) An(Nl)+l An(N2 -1

An(Pl) An(P2) An(Nl) An(N2

An(Pl) An(P2) An(Nl)-l CM555 +1

An(Pl) An(P2) An(Nl)-2 An(N2 +2

An(Pl)-l An(P2)+l An(Nl)+l An(N2 -1

An(Pl)-l An(P2)+l An{Nl) An(N2

An(Pl)-l An(P2)+l An(Nl)-l An(N2 +1

An{Pl)-2 An(P2)+2 An(Nl) An(N2

where An(Pl) = the number of occupied orbitals for byte PI of 

the active N-partition, etc.

Figure 3.25 Connected N-partitions
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that the complete Basis Generation Function takes less than 3 seconds to 

execute for the largest basis list).

i) The Driver Table Constructor (DTC);

The purpose of the DTC is to generate all the N-partitions which are 

connected to the active N-partition and to construct two of the Driver 

Tables, the SCTAB and INT. The N-partit ions connected to the active N- 

partition are related as shown in figure 3.25. However for any 

particular active N-partition not all of the 13 possible connected N- 

partitions need exist. This would happen if some of the entries shown in 

fig. 3.25 were less than the initial N-partition or greater than the 

final N-partition. Also during H-mode processing the DTC need only 

produce the first 7 of the entries shown in fig. 3.25.

1/ The DTC first sets the flag in the JSW to signal that it is 

active. The ANP is then copied since it is overwritten by each new 

connected N-partition before calling the MPC. A count, called NOOUNT, 

of the number of valid, non-empty connected N-partitions is then 

initialised to -1. When the DTC finishes NCOUNT will be included as 

the first entry in the SCTAB.

2/ The first connected N-partition is generated and compared to INP. 

If the initial N-partition is found to be greater than this then 

control jumps to step 6, otherwise control proceeds to step 3.

3/ A valid connected N-partition has now been identified, however it 

still remains to be seen if it is non-empty. Another count, called 

MCOUNT, is therefore initialised to -1 to count the number of M- 

partitions belonging to the current connected N-partition. The 

connected N—partition is copied into the ANP location to be passed to 

the MFC.

4/ The MPC is called and each time it finds an M-partition it will 

call the STB which will increment MCOUNT.

5/ If on return from the MPC MCOUNT is still equal to —1 then the 

connected N-partition is obviously empty. The N-partition is
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therefore not included in the SCTAB and so control advances to the 

next step. If MCOUNT was not equal -1 then it is placed in the next 

location of the SCTAB and NUMTB is searched to find the index of the 

N-partition. When this is found it is placed in the next position of 

the INT. NOOUNT is then incremented.

6/ The next connected N-partition is then generated and compared with 

INP. If it is less than INP then the step starts again. Otherwise the 

N-partition is compared with either FNP or the copy of the original 

value of ANP, depending on whether the MFG is processing in W or H- 

mode respectively. If it is less than or equal to the appropriate 

partition then control jumps back to step 3, otherwise all 

possibilities have now been tried. In this latter case NCOUNT is 

placed at the start of the SCTAB, the DTC flag in the JSW is cleared 

and control is returned to the NPC.

ii) The Seed Table Builder (STB);

Once the MPC has identified an M-partition it passes it to the STB via 

the offsets in CMPTIX. The STB then uses CMPTIX to look-up the M- 

directories to get 4 new offsets into the SD-byte Lists. The 4 initial 

SD-bytes which this gives thus make up the seed state for the M- 

partition and so are placed in the Seed Table. When this has been done 

MCOUNT, used by the DTC, is incremented and control is returned to the 

MPC.

iii) The Secondary Generator Driver Routine (SGDR);

When the SDWS identifies the next SD-word in the basis list (i.e. the 

next prime state) the SG must then be sent all the relevant seed states 

which have previously been prepared by the DTC and STB.

1/ The SGDR must first wait until the SG has stopped processing. The 

SGDR determines this by testing the state of the IDLE bit in the 

SGCSR. This is done to ensure that spurious results are not obtained 

when various hardware control registers are changed later.

2/ The Prime Block FIFO Control routine, part of the MMPU Support
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Function, is then entered. This has to add the details of the new 

prime state to the FIFO.

3/ If in H-mode the index of the new prime is written to the latches 

feeding the H-mode comparator and the H-mode comparator interrupt is 

enabled.

4/ The prime state is copied from the PSB to the Prime State Register 

in the SG interface PI/Ts. The SIC is then initialised with the 

index, taken from INT, of the first connected N-partition.

5/ The SG can now have the seed SD-words sent to it. The time taken 

for the PG to send the seeds to the SG is very important to the 

performance of the MFG, since if this time is too long then it could 

produce unacceptable delays while the SG waits. As has already been 

said a full 32-bit seed word can be latched into the seed register in 

one MC68000 bus cycle. The code required by the SGDR to service the 

SG is as follows;

LOOP TST.W (A3) 1 us

BMI.S LOOP 1 us

MOVE.W (A1)+,D2 1 us

DBF D1,L00P 1.25 us

giving a total of 4.25 us. However in this time the SG can produce up 

to 36 states.

The first two lines test the SGSCR to see if a new seed is required 

by the SG and if it is not then the test is repeated until one is 

requested. Line 3 reads the seed from the seed table memory causing 

the hardware to latch the 32-bit word into the seed register. Line 4 

then decrements the counter for the number of seeds in the current 

connected N-partition being searched. When the count reaches —1 then 

a new connected N-partition is entered and so the SIC must be 

reinitialised, and step 5 is repeated.

6/ When all the connected N-partitions are finished the SGDR 

disables the H-mode interrupt.
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7/ The SGDR then terminates and returns to the SDWS.

iv) The H-mode Interrupt Service Routine;

This interrupt, generated by the SIC and H-mode comparator, occurs only 

in H-mode when the diagonal element of the matrix has been produced. Its 

purpose is to cause the SGDR to abort its task of seeding the SG for the 

current prime state and for the PG to return to the Basis Generation 

Function to select the next prime state. The interrupt routine therefore 

has only two main steps:

1/ The first step is simply to clear the interrupt in the PI/T which 

directed the interrupt at the PG processor.

2/ Program control must now return to the SGDR but not to the point 

at which it was interrupted. Instead control must be returned to the 

end of the SGDR (step 7) so that no more seeds are sent to SG. In 

order to do this the return address on the processor system stack is 

overwritten with the address of the relevant part of the SGDR. The 

interrupt routine then simply executes the normal return from 

exception (RTE) instruction.

The H—mode interrupt is disabled in step 6 of the SGDR for two reasons. 

The first is that it is simply no longer required if the SGDR has 

naturally run out of seeds for the SG. The second is due to the last 

step of the H-mode interrupt service routine. Since if the PG was 

interrupted outside of the SGDR then it would return to the wrong 

routine and cause a fatal error.

3.7.4 The MMPU Support Function
i) The Prime Block FIFO Update Routine;

The two software routines of the MMPU Support Function both manipulate 

and alter the BBFC and the Prime Block FIFO and its associated 

parameters. Since the second routine is entered by a BLKFIN interrupt, 

which in principle can occur at any time, then great caution must be 

taken by this first routine. A flow diagram, figure 3.26, is used to aid
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in understanding the flow of control for this routine.

The BWAC in the MFG buffer can be safely read at the start of this 

routine since the SGDR, which calls it, has previously made sure that 

the SG and PF have stopped processing. Therefore there will be no more 

writes to the buffer for the previous prime state.

The routine must obviously determine if the Prime Block FIFO is 

full. If it is then the processor must wait until a position becomes 

free. This will only happen when a BLKFIN interrupt occurs during which 

the interrupt routine will read from the FIFO. A BLKFIN interrupt must 

eventually occur since the MMPU is continually reading from the MFG 

buffer. The size of the FIFO is governed solely by software. A size of 

100 entries was used so that the FIFO consumed only 1000 bytes of PG 

memory. It is highly unlikely that this would fill up, since if it did 

it would imply that the MFG buffer contained blocks of TSWs for more 

than 100 different prime states, with each block containing less than 21 

elements on average. Even if the FIFO did fill up this would imply a 

back-log of TSWs in the MFG buffer and so holding up the MFG for a while 

would have little or no affect on system performance.

At this point the PG processor masks out any external interrupts in 

its status register to ensure that the rest of the routine is free from 

the BLKFIN interrupts. This has to be done to make certain that only one 

routine is manipulating the FIFO and the BBFC at any one time, thus 

ensuring the integrity of all the FIFO parameters. Since the interrupts 

are only masked out, then any attempted interrupts which do occur will 

be ”saved" until they are unmasked.

If the FIFO is not empty then it is updated. The three entries 

written to it are; the next write address of the MFG buffer (read from 

the BWAC), the new prime state SD-word and its index. The FIFWA and FIFO 

parameters are also incremented.

If the FIFO is empty then the MCMs must currently be processing the 

TSWs for the previous prime state. In this case the BBFC will currently
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be disabled. Therefore the next write address of the MFG buffer is 

written directly to the BBFC input latches and the BBFC is enabled, via 

the SGCSR. However it is quite possible that the MFG buffer has now been 

emptied by the MCMs. If this were the case then the MCMs would be 

waiting for the new prime state details. Therefore if the MFG buffer is 

empty then the new prime state details are broadcast to the MCMs and the 

BBFC is disabled. BLKFIN interrupts are cleared from the PI/T since it 

is possible that one may have ocurred. If the MFG buffer was not empty 

then the FIFO is simply updated.

The routine then unmasks all interrupts and returns to the SGDR.

ii) The BLKFIN Interrupt Service Routine;

This routine first clears the interrupt in the PI/T. It then reads the 

prime state details from the Prime Block FIFO, at the location indicated 

by FIFRA, and broadcasts them to the MCMs. FIFRA is then incremented to 

point to the next entry and FIFC is decremented by one. If this 

indicates that the FIFO is empty then the BBFC is disabled. Otherwise 

the start address of the next prime block in the MFG buffer is read 

from the FIFO and written to the BBFC input latches. The routine then 

terminates.

3.8 Conclusion

The complete details concerning the method of operation of the MFG along 

with its hardware and software details have now been given. The 

performance capabilities of the MFG will be summarised later along with 

those of the MMPU. However first the details of the MMPU and in 

particular the MCMs will be discussed.
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The Multiple Microprocessor Un-it

4.0 Introduction

As the MFG searches the Hamiltonian matrix to identify the positions of 

non-zero elements so the MMPU, in parallel, processes the MFG’s output. 

As has been said the job of processing the MFG’s output sub-divides into 

a large number of asynchronous, non-identical, independent tasks which 

are dealt with, in parallel, by the MCMs. The prototype MMPU is made up 

of up to 16 of these MCMs as well as the Supervisor Module and Central 

Memory.

In designing any multiprocessor system the nature of the 

communications subnet is just as crucial in defining the characteristics 

and performance of the system as the nature of the Processing Modules 

(in our case the MCMs), and the Global Resources (in our case the CM, SM 

and MFG Buffer). When defining the SMP communications subnet we must 

take into consideration the requirements of the different modules 

present within the system. We also place the following additional 

demands on its capabilities (in order of priority):

1/ High bandwidth; the subnet should be able to cope adequately with the 

demands of the MCMs to access the Global Resources. Equally it should 

be able to cope with the needs of the SM to communicate with and 

control the rest of the system. The subnet should not be a system 

bottleneck.

2/ Modularity; it should be a simple task to add new MCMs or Global 

Resources to the system, requiring no changes to either the subnet or
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any other part of the MMPU.

3/ Reliability; as far as possible hardware faults on any of the MCMs 

should not degrade the performance of the subnet or of any of the 

other MCMs.

High bandwidth is by far the most important requirement since it will 

determine an upper limit on the MMPU’s performance, which will in turn 

impose an upper limit on the performance of the SMP (just as the MFG 

does). Indirect interconnection between modules on the subnet (e.g. as 

in a loop configuration) would tend to reduce all the above capabilities 

and so a direct connection between all modules is preferred, i.e. for 

two modules to communicate with each other no other module need take 

part in the process.

For these reasons the SMP subnet is based on three shared buses as 

described earlier in section 2.5.3. The advantages of bus structures 

have been mentioned earlier in section 1.4.3.

Each module within the MMPU is built using at least two, but 

usually four, double Eurocards, thus providing four 96-way edge- 

connectors on one side of a module. The modules are housed in a 19 inch 

card-cage holding four backplanes which supply the modules with power. 

Two of the backplanes are standard 96-way backplanes while the other two 

are VME-bus backplanes. Each backplane has 19 slots for connecting with 

the SMP modules. Together the four backplanes form the basis of the SMP 

communications subnet.

4.1 Bus Arbitration Protocol

We have already described and discussed certain bus arbitration 

protocols in section 1.4.3. However for the purposes of the SMP none of 

these methods is followed exactly, rather a variation on the VME-bus 

centralised daisy chain arbitration scheme is used on the three SMP 

buses. The SMP protocol, which uses a decentralised daisy chain, shares
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the advantages already mentioned of daisy chains. However it overcomes 

the disadvantages of the centralised daisy chain, where modules 

competing for use of the DTB have a fixed priority imposed on them by 

their physical location on the backplane. With the decentralised 

protocol a round-robin priority arbitration system is implemented thus 

giving equal access to the DTB for all competing modules.

With the decentralised scheme, as before, when a module requests 

the use of the DTB it activates the (wire-or) bus request line and the 

central arbiter then sends a bus grant signal down the daisy chain line. 

Any module not currently requesting the DTB simply passes the grant 

signal on. When the bus grant signal arrives at a module which is 

actively requesting the bus that module will block the grant signal from 

propagating any further down the daisy chain. Instead the module assumes 

mastership of the DTB by asserting the bus busy signal, BBSY*. However 

instead of the grant being rescinded at this point by the arbiter, as in 

the case of the centralised daisy chain, it is still held active. Then 

when the current master finishes with the DTB the grant signal' is 

allowed to propagate down the daisy chain to the next module.

When the grant reaches the end of the daisy chain it is fed onto a 

grant return line on the bus. The arbiter constantly monitors this 

signal and only when it is activated does the arbiter negates the bus 

grant (figure 4.1).

This simple extension to the protocol thus overcomes the rigid, 

fixed priority of the centralised daisy chain at the expense of only one 

extra line on the backplane. To implement this decentralisation a few 

other minor changes, which we will now detail, are made to the protocol.

As has been said any module which is actively requesting the DTB 

will block the bus grant signal from propagating down the daisy chain. 

Therefore since a bus master must have the grant signal present 

throughout its DTB cycle, then all the modules between the arbiter, in 

slot 1 of the backplane, and the current bus master must be inhibited
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from initiating new bus requests. That is any module which is actively 

propagating the grant signal should have its bus request circuit 

inhibited. If this condition were not imposed then a module in this 

position which started to request the bus would find its bus grant in 

active and therefore inhibit the grant out. This would cause the grant 

to fail at the input of the current bus master and so remove him 

prematurely from the DTB and cause a system error.

Similarly if a module starts requesting the DTB just as the grant 

propagates through its request circuitry, there is the danger that its 

grant out line may be driven active momentarily. This may give the next 

module down the daisy chain the impression that a bus grant has been 

received. In this case both modules could assume mastership of the DTB, 

again causing either spurious results or at worst a system failure. To 

prevent this occurring the further condition is imposed that no module 

is allowed to initiate a new request while the grant is being 

transferred between modules. This condition is signalled by BBSY* in the 

inactive state.

However BBSY* would normally be inactive when the arbiter has not 

issued a bus grant, i.e. when none of the modules are using or 

requesting the bus. Therefore when this happens the arbiter itself must 

drive BBSY* active, and so allow new requests to be issued. Also when 

each bus master releases BBSY* it must wait a time t , (figure 4.1),s t 1

before propagating the grant along the daisy chain. This delay allows 

each module to settle its requesting state, i.e. whether it will pass or 

block the grant, before the grant is propagated.

The SMP decentralised protocol allows overheads introduced due to 

the arbitration time to be "lost", by pipelining the arbitration with 

the DTB cycle. This is achieved by making the master negate BBSY* as 

soon as he actually holds the DTB, i. e as soon as he is actively driving 

the address strobe, AS*, on the bus. Thus the grant is allowed to 

propagate down the daisy chain while the bus is being used by the
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WORD 0

63 56 55 54 53 52 51 48
11 unused I ID41 ! ID40 !! 0 0 I ID39 - ID36 I

Job-type bits SIC

WORD 1 

47 32

I ID35 - ID20 !

SIC

WORD 2 

31 29 28 24 23 21 20 16

10 0 0 i ID19 - ID15 10 0 0 !! ID14 - ID10 !

creation operator i creation operator j

WORD 3 

15 13 12 8 7 5 4 0

1 0  0 0 i ID9 - ID5 10 0 0 ! ID4 - I DO 11

annihilation operator 1 annihilation operator k

Figure 4.2 I—Bus FFB Word
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current bus master. The time taken to transfer the bus between masters 

is thus reduced to a minimum. When the requesting module receives the 

grant he will of course drive BBSY* but will not actually use the DTB 

until the AS* and DTACK* (the data transfer acknowledge) signals have 

been negated on the bus. There will thus be a time during each DTB cycle 

when the module which holds the grant and drives BBSY* will not actually 

be the one using the DTB, but will in fact be the next module to use the 

DTB.

We now proceed by giving the details of the hardware implementation 

for each of the SMP buses.

4.2 I-Bus

We have already given some details of the I-bus data transfer protocol 

(section 3.5.9). In this section we will give the details of the I-bus

interface and bus request and arbitration logic.

4.2.1 MCM/I-Bus Interface

When an MCM reads a TSW from the MFG buffer it is latched into the I-bus 

prefetch buffer (PFB) on the MCM. This register is memory mapped into 

the MCMs address space and appears as an 8 byte location whose format is 

shown in figure 4.2. Figure 4.3 details the I-bus PFB and its 

associated control logic. The I-bus data lines (currently 42 are used) 

are fed to the inputs of seven 8-bit latches, i.e. the PFB. These are 

latched when the modules I-bus data strobe signal, IDS*, is negated. 

Latches 1 to 3 form the most significant long word and hold the 20-bit

SIC as well as the two job-type bits JTO and JT1. Latches 4 to 7 form

the least significant long word and hold the four 5—bit operator indices 

I , J ,K,L, where I, J are creation operators (I < J) and K, L are 

annihilation operators (K < L) (figure 4.2).

As the PFB is filled, the D-type flip-flop, 8, is cleared bringing
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EMPTY(H) low. The MCM can read the level of this signal via a PI/T and 

thus knows when the PFB has valid data in it. When the MCM reads the 

last word of the PFB the IBSEL(L) signal enables the 373s, 6 and 7 which 

contain word 3 of the TSW. The IRSEL(L) signal is decoded from the MCM 

processors address and control bus and when it is negated the flip-flop 

8 is clocked signalling that the PFB is now empty.

The flip-flop 9 is also clocked by IBSEL(L) to produce a local I- 

bus request signal, LIDS(H), which is sent to the onboard I-bus request 

circuitry. When the MCM I-bus control logic receives an I-bus grant, 

LIBG(H) active, it must wait until the current bus master finishes his 

cycle, indicated by IDS* and IDTACK* being negated, before assuming 

control of the bus, signalled by IMASTER(L) active.

The operation of accessing the MFG Buffer via I-bus thus happens 

completely transparently with respect to the MCM processor. Also each I- 

bus access is pipelined with the MCM processing the previous I-bus PFB 

data.

The operation of IDTACK* being activated clears the MCMs IDS* 

signal and latches the data into the PFB. However to ensure that the 

data has arrived at the inputs of the PFB before latching, a delay must 

be introduced in the PFB clock signal. Examination of figure 3.14 shows 

that the maximum delay between the RGRNT(L) signal going high on the 

MFG buffer, to the new data being valid at the output of the LS 244’s is 

equal to 50.4 ns. However the time from RGRNT(L) going high to IDTACK* 

being activated and the PFB being clocked (fig. 3.15 and 4.3) is a 

minimum of 21.2 ns (excluding the delay introduced by 10). In worst case 

conditions therefore it is possible for the I-bus PFB to be latched 29.8 

ns before the data has arrived at its input (note that the LS 373 needs 

no set-up time). A delay of 43-48 ns is therefore introduced, using an 

LS 31, which allows 13.2 ns settle time on the backplane and guarantees 

I-bus PFB operation under worst case conditions.

New requests to the MFG Buffer can be locked out at any time by the
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assertion of IBLOCK(L). This will also act to abort any currently 

pending or active I-bus requests.

4.2.2 I-Bus Requester

When the I-bus PFB has been emptied by the MCM processor, a local I-bus 

request, LIBR(H), is generated and passed to the onboard I-bus 

requester, figure 4.4. The I-bus requester is in fact the core SMP 

requester for the decentralised daisy chain protocol used on all three 

SMP buses and therefore its details are extremely important to the whole 

system.

The local I-bus request signal triggers off the I-bus request logic 

assuming that the output of 3 is not low, indicating either that the I- 

bus grant has already passed the module (IBGin* low) or is currently 

being propagated between modules (IBBSY* high). If neither of these 

conditions exists then the output of 1 (1 and 2 forming an RS flip-flop) 

is brought high, activating the I-bus request signal, IBR*. When the bus 

grant arrives at the module, a local bus grant, LIBG(H), is produced and 

the module starts to drive the IBBSY* signal.

Once the MCM has actually gained the bus, i.e. the module is 

actively driving IDS*, it will rescind the LIBR(H) signal and thus stop 

asserting IBBSY*. The LS 31, 12 figure 4.4, is introduced to produce the 

delay between negating the IBBSY* signal and propagating the I-bus grant 

out to the next module. As has been said this ensures that if the next 

module down the daisy chain gets in a new bus request just as the IBBSY* 

is negated, then its logic will have settled and be ready to block the 

grant from propagating any further when it arrives. That is if the 

inputs A and B of 1 and 2 transition low at the same time with the 

output of 1 winning and going high, then the input C of 8 will 

transition high in time to block the grant when it arrives.

To determine the length of the delay which is required we consider 

two modules, 1 and 2, next to each other on the backplane with module 1

- 96 -



Chapter 4

relinquishing mastership and propagating the grant on to module 2. The 

delay must therefore equal;

propagation delay for IBBSY* to be produced on module 1 and 

arrive at input B of 2 on module 2 

+ propagation delay for RS flip-flop, on module 2, to transition

and bring input C of 8 high blocking grant

propagation delay for RS flip-flop, on module 1, to transition

and allow grant to propagate, bringing IBGin* on module 2 low.

(For worst case conditions the first two terms will have maximum 

propagation delays, while the last term will have minimum delays).

This delay is therefore;

[ t (S38) + t (F244) + t (F02) ]max
P 1 H  P  L  H P H L

+ [ t (F02) ]max
P L H

- [ t (F02) + t (F32) + t (F244) ]min
P H L  P H L  P H L

=17.5 ns

The 23-32 ns delay of the LS 31, therefore guarantees the safe 

propagation of the grant along the daisy chain.

The propagation delay time of the bus grant through any module is

also important since it will determine the length of time any requesting

module must wait before the grant reaches it. At present each module 

imposes a delay of only two gates, an F32 and F244, on the grant. The 

F244 is considered necessary because of its drive capability which may 

be required if a termination is needed. The maximum delay these gates 

will impose is 10.5 ns, but will typically be only 8 ns. Therefore 

assuming the worst case a module at the end of the backplane would have 

to wait 157.5 ns (assuming- 16 modules) between the grant being produced 

by the arbiter and reaching the module.

However in most cases there will be more than one module requesting 

the DTB at a time, in which case the propagation delay of the grant will 

be pipelined with the current bus cycle. In the last analysis though, 

the bandwidth of the bus is determined by the bus cycle time and not the
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Bus Requestor Timing Parameters (in nanosecs

LBR(H) high to IBR* low 
BGin* low to LBG(H) high 
BGin* low to BR* high 
BGin* low to BGout* high 
LBR(H) low to BBSY* high 
LBR(H) low to BGout* low

Min Typ Max
37.5 46.5

5.5 8 10.5
41 51.5

5.5 8 10.5
6 10

30.5 38 46

Bus Arbiter Timing Parameters (in nanosecs)
Min______ Typ______ Max

BR* low to BGout* low 30.5 38.5 46.5
BGRTN* low to BGout* high 32.4 42 50.5

Table 4.1 Bus Request and Arbitration Timing Parameters
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daisy chain propagation delay, since this delay is easily made less than 

the cycle time.

4.2.3 The I—Bus Arbiter

The I-bus arbiter, figure 4.5, is a simple device, again based on an RS 

flip-flop and is again a core device used elsewhere in the SMP system. 

There is of course only one I-bus arbiter (whereas there is an I-bus 

requester on every MCM) which must be located in slot 1 of the backplane 

in order to drive the daisy chain bus grant line. The I-bus arbiter is 

therefore placed on the Supervisor Module along with the arbiters for 

the other buses.

As soon as a bus request arrives, the arbiter releases IBBSY* and 

then after a 23-31 ns delay drives the bus grant down the daisy chain. 

The arbiter will then continue to drive the bus grant until the bus 

grant return line, BGRTN*, is activated signalling that the grant has 

propagated to the end of the backplane. When this occurs the arbiter 

will remove the grant signal and assume bus mastership by driving IBBSY* 

low. At this point new I-bus requests will be enabled on the MCMs.

Table 4.1 gives some relevant timing parameters for the I-bus 

requester and arbiter. As we can see from this table, the time between a 

local bus request, LIBR(H), being created and a grant being produced by 

the arbiter is 93 ns (max) and 76.5 (typ). Therefore the time taken for 

the last module on the backplane to receive a LIBG(H) from the point at 

which he activated his LIBR(H) is 93 + 157.5 + 10.5 = 261 ns (max) and 

76.5 + 120 + 8 = 204.5 ns (typ).

4.3 C-Bus

C-bus is the command, control and communication bus for the SMP system. 

As such it is the main path for data (e.g. program code) and message 

transfers between the MCMs, Supervisor Module and the PG. The Central
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Memory will also be interfaced to it, as can any other possible global 

resources. It is used by the SM to initialise the MCMs and PG; by 

providing them with their necessary program code, initialising certain 

tables and parameters in their data blocks and also initialising 

specific hardware locations. C-bus is also used by the PG to communicate 

changes in prime state data to the MCMs.

C-bus is significantly different from the other two SMP buses in a 

number of ways;

1/ There is more than one bus slave interfaced to C-bus and indeed all 

C-bus masters are potential C-bus slaves and vice-versa. This is not 

true for either the I-bus or the CMA-bus which have only one bus 

slave each, namely the MFG Buffer and CM respectively. Also the MCMs 

which are interfaced to both these buses only ever act as bus masters 

on them and never bus slaves.

2/ During accesses via C-bus the internal bus of the C-bus master is 

connected, via buffers, to the C-bus lines. Thus the onboard 

processor itself controls the C-bus data transfer and not an 

automatic prefetch buffer as is the case with the other two buses. 

Thus a C-bus master could potentially access the complete address 

space of all modules and devices interfaced to C-bus. Since this 

bestows great power to C-bus masters certain areas are protected so 

that only a few privileged C-bus masters can access them.

These differences necessitate an expansion of the C-bus structure over 

that found on the other SMP system buses and also a major change to the 

nature of the interfaces. For example C-bus must have a means by which 

bus masters can select the appropriate bus slave that they wish to 

access. Also a modules C-bus interface must have the flexibility of 

being able to support the module when it acts as a bus master and a bus 

s1ave.

In essence C-bus is a slightly modified VME bus [Fi85, VME82]. 

C-bus retains the four sub-buses of VME bus, namely;
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1/ The Data Transfer bus (DTB); the main bus by which modules transfer 

data. It contains the address and data lines and associated control 

signals.

2/ The DTB Arbitration bus; this group contains all the signals 

necessary to transfer control of the DTB between modules.

3/ Priority Interrupt bus; the means by which modules can interrupt 

other modules on the bus and request their services.

4/ Utility bus; this includes system clock and reset signals, as well as 

failure detection signals.

The functional modules identified on VME-bus also exist on C-bus, e.g. 

DTB masters, DTB slaves, DTB requesters, etc. However there are one or 

two alterations and additions which increase the capabilities of C-bus 

and make it more suitable for the particular needs of the SMP system.

The most important improvement to the C-bus specification relative 

to VME bus is the provision of a bus-broadcast utility whereby a bus 

master can write to more than one bus slave per bus cycle. This utility 

obviously improves the performance of C-bus over VME bus in situations 

where global data must be transferred to more than one bus slave, which 

is often the case during shell-model processing. Only the MCMs are 

potential bus slaves for a broadcast cycle. However each module has the 

facility whereby it can be locked-out during broadcast cycles. The bus 

master for a broadcast cycle can therefore be selective about which 

modules receive the information being broadcast. Only certain key 

modules, at present the SM and the PG, are able to initiate bus- 

broadcast transfers since it is obviously a very powerful, and 

potentially destructive, utility. Similarly only these modules are able 

to select which MCMs are locked-out during a bus broadcast.

Another addition to the VME bus specification is the alteration of 

the lowest bus request level, BRO* , to make it conform to the 

decentralised daisy chain protocol already described. All the MCMs 

request C—bus on this level and using this protocol, and therefore have
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equal access among themselves to C—bus. The other three request levels 

all follow the VME bus arbitration protocol, thus giving C-bus 

compatibility with VME bus and therefore allowing standard, "off the 

shelf" boards to be used on C-bus.

The 6 address modifier lines, AM0-AM5, remain on C-bus as defined 

in the VME specification. The user defined codes ($10-$1F) which the VME 

bus specification allows for can be used to identify non-VME type bus 

cycles, e.g. bus broadcasts, to standard VME modules to prevent them 

from interfering in these cycles. The interrupt protocol and DTB 

protocol remain the same on C-bus as on VME bus (although as we have 

said the DTB protocol is extended to permit bus broadcasts).

4.3.1 C-Bus Lines

As a result of the additions to the VME bus specification, the C-bus DTB 

structure is different to VME bus in that a number of lines have been 

added and some redefined. We shall here only describe those lines that 

are different from those on VME bus.

1/ MA7-MA0 : the map-select lines

C-bus is intended, in its final version, to be a full 32-bit address 

and data bus, as is VME bus. The 8 additional address lines needed to 

bring C-bus up to this standard are at present named the map-select 

lines. To explain their function we must first describe how the 

address space of any processor module is partitioned. At present each 

MC68000, with its 16M-byte direct addressing range, has its local 

memory and devices in the lower 8M—byte map, i.e. local address line 

A23 low. All off board address spaces are then allocated the upper 

8M-byte map, i.e. local A23 high. The top 5 map-select lines, MA7- 

MA3, are then used to select between the C-bus slaves, allowing a 

total of 32 different modules to be selected by any C-bus master. A 

total of 16 8M-byte maps (i.e. a 128M-byte map) can then be addressed 

within each slave module by the master module, using the remaining 3
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ni&P— select lines and A23. This is possible since A23 driven by the 

MCM processor and A23 on the bus are not the same. The MC68000 must 

therefore drive MA7-MA0 and A23 on the bus from a latch, e.g. from a 

PI/T.

In the future when 32-bit processors are used on C-bus modules, 

address lines A24-A31 will replace the map-select lines. However each 

module will still be allocated a 128M-byte local map, selected by A0- 

A26, and have 31 offboard maps, selected by A27-A31. A request by the 

MCM processor to use C-bus will then be identified by A27-A31 not all 

low.

2/ BBCST* and BBACK : Bus Broadcast strobe and acknowledge signals

These are the only two extra signals required for the bus broadcast 

utility. At present the SM and PG are the only two modules with the 

ability to drive the bus broadcast strobe, BBCST*, and monitor the 

acknowledge signal, BBACK. All the MCMs monitor BBCST* and drive 

BBACK. The fact that a bus broadcast cycle is signalled by the 

dedicated line, BBCST*, rather than say the address modifiers or map- 

select lines, gives further protection to this utility.

The BBACK line is an active high signal driven by open-collector 

gates, thus producing a wire-AND. Therefore all bus broadcast slaves 

must acknowledge the successful transfer of data by driving the BBACK 

line high before the master can complete his cycle. During a bus 

broadcast cycle the state of the map-select lines MA7-MA3 is ignored 

by the MCMs and all MCMs are selected, except those that have 

previously been locked out of broadcast transfers. MCMs which are 

locked out of a broadcast cycle will still automatically drive the 

BBACK signal high.

The bus broadcast facility is of course only intended for write 

operations. However should a read operation be mistakenly attempted 

then the MCMs will still be selected but their C-bus buffers will not 

be enabled. In this case the bus master will terminate his cycle as
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normal but read invalid data.

3/ PRIV* : Privileged Module strobe

This strobe identifies those C-bus masters which have privileged 

access rights and is used in the selection of key C-bus modules. At

present only the Supervisor Module either uses this line in its

selection decoding or drives it. Therefore the SM cannot be a bus 

slave to any of the MCMs or the PG.

4/ OOttlKQL* : Control Map strobe

Associated with the normal address map of each MCM, which contains 

the local memory and devices, there is also a control map. This map 

overlays the normal map of each MCM, and is only selected when the

CONTROL* line is activated, which can only be done by the SM and PG.

Contained within the control map are the devices required to 

dynamically supervise, control and configure the operation of the MCM 

e.g. devices to perform processor reset and halt operations, 

interrupt the processor, control bus broadcast lockout etc. Thus the 

SM and PG both have the (privileged) option of accessing either the 

normal map or control map of a particular MCM. It is possible to 

perform broadcast cycles to the control map.

The MCMs bus for the control map, the control bus, is completely 

separate from the bus for the normal map, the local bus. This allows 

accesses to the control devices via the control bus to be carried out 

without disturbing the MCM processor in any way. This is of course 

completely different from accesses to the normal map from C-bus, when 

the MCM processor must be removed from the local bus by its local bus 

request circuitry and remain idle throughout the access.

At present there is only one device resident within the control map, 

that is the Global Module Controller (GMC) PI/T. This device 

receives/drives the already mentioned control, status and interrupt 

lines via its I/O ports.

The C—bus DTB arbitration bus has only one addition as follows:
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1/ BGRTNO : Bus grant return (level 0). This is the return line for the 

bus grant on level 0, the level on which the non-VME, decentralised 

daisy chain has been implemented.

The interrupt bus and utility bus both 2’emain as defined for VME bus.

However at present the ACFAIL* and SYSFAIL* signals are not supported on

C-bus.

4.3.2 C-Bus Interface

As we have already seen the C-bus interface on any module must support

it in a number of different configurations, namely;

1/ Isolated mode : when the module is not selected in any way the local 

and control buses must be completely isolated from any activity on C- 

bus. However the map-select lines, bus broadcast line and C-bus 

address strobe must all be monitored to identify any requests to 

access either the local or control bus.

2/ Control mode : when the module control map is being accessed by the 

current C-bus master the interface is placed in control mode. In this 

mode the local bus must remain isolated from C-bus and only the 

control bus should be connected to C-bus allowing either read or 

write accesses. In both this mode and isolated mode the local 

processor is free to access all his local memory and devices.

3/ Local mode : in this mode the local bus is connected to C-bus

allowing both read and write accesses by the C-bus master to any of 

the local devices. The local processor is therefore not allowed the 

use of his local bus and so must remain idle. In both this mode and 

control mode the module acts as a C-bus slave.

Local mode supports two types of access to the local map, namely 

single cycle and burst cycle. For single cycle accesses the local bus 

is arbitrated for on a cycle-by-cycle basis. For burst cycle accesses 

the local bus is arbitrated for once and then held for as long as is 

wanted. This reduces the time taken for block transfers of data to a
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module since the C—bus master is not slowed down by the arbitration 

process for the local bus.

4/ Master mode : wrhen the local processor has been granted C-bus

mastership the interface enters master mode. The local bus is 

connected to C-bus allowing read and write accesses to C-bus slaves. 

Both the local and control modes support bus-broadcast cycles, although 

only for write accesses, as well as normal cycles requested via the map- 

select lines.

Figures 4.6 and 4.7 detail the C-bus module select logic and the 

DTB interface buffers for the MCMs. There are only slight variations 

between these circuits and those for other C-bus modules, the 

differences being mainly in the select logic.

To select a module, indicated by SEL(L) active, the map-select 

lines MA7-MA3 must match the MCMs Module ID (MID), which is a unique 5- 

bit number for every C-bus module. Since no module should ever be 

allowed to select itself, not that one should ever want to, the 

MASTER(H) line is used to enable the 8-bit comparator, 1 (the AMD 

25LS2521). The MASTER(H) signal indicates, when it is active, that the 

local processor is currently the C-bus master. The bus broadcast strobe 

overrides this, since it will select a board regardless of the state of 

the map-select lines or PRIV line, but only if the local bus broadcast 

strobe, LBBCST(L), is not locked out by the BBLCK(H) signal.

Once a module is selected, either its control map or its normal map 

is then selected, CSEL(L) or MSEL(L) active respectively, depending on 

the state of the OONTROL(L) line. If the normal map is selected then the 

local bus will be requested from the MCM processor by the LOCBR(L) 

signal when a valid access is being performed on C-bus. When there is a 

valid access from C-bus (signalled by VAC(H) active which is produced by 

AS* active on C-bus) the VAC(H) signal will generate the LOCBR(L) 

signal. It should be noted that the LOCBR signal can also be activated 

if the BURST(H) signal is active. This signal places the interface in
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burst cycle mode and keeps the local bus of the MCM permanently selected 

as long as the map select lines match its MID. Both the BBLCK and BURST 

signals are driven from the GMC and so cannot be changed by the MCM 

itself.

The double buffering for the DTB interface, figure 4.7b, is 

necessitated by the two separate buses on each MCM. The control bus is 

placed between the two sets of buffers, w'hile the local bus is within 

the inner buffers. Thus accesses to the control bus can be carried out 

without interfering with the local bus while allowing the module to meet 

C-bus signal loading requirements, i.e. that there should be no more 

than one driver and one receiver (or one transceiver) per module 

connected to a C-bus line.

The map-select lines, address lines and strobes on C-bus are 

constantly monitored for any requests to access either of the internal 

buses. If a request for the local bus is made, then once the local 

processor has granted that request and removed itself from the bus, a 

local bus grant acknowledge signal, LBGACK, is generated. The inner 

address buffers and both sets of data buffers are then enabled. The 

buffer 1 (figure 4.7a), enabled by STROBEN(L), will not be enabled until 

more than 48 ns after this, in order to provide a setup time for the 

data and address buses before the data and address strobes are activated 

on the local bus. This will happen even on block transfers to and from 

the local bus (BURST active) when the data and address buffers are 

permanently enabled.

In master mode, signalled by MASTER(L) active, when the local 

processor is the bus master, the address bus buffers (figure 4.7b) are 

enabled and turned to drive C-bus. The data bus buffers are also enabled 

by the same signal and their direction is determined by IDATDIR which is 

ultimately generated by the processors own read/write signal, R/W(L) 

figure 4.6. The data transfer acknowledge and bus error signals on C- 

bus, DTACK* and BERR* respectively, are then monitored by the module to
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receive the response from the bus slave. If the module does not 

correctly select any device or memory on the slave or if a memory parity 

error occurs then BERR* will be asserted by the slave, generating the 

BEBR(L) signal on the MCM, figure 4.7a. A normal transfer is terminated 

by the slave asserting DTACK*, which in turn generates the CBDTACK(L)

signal on the MCM, figure 4.7a.

In the most severe case where the C-bus master does not correctly 

select any C-bus module or where the bus slave does not respond at all 

then a BERR* signal will be generated by the SM C-bus watchdog timer.

This timer monitors the AS* on C-bus such that after a (software

programmable) delay if the AS* is still active, then BERR* will be 

generated and the master removed from the bus. The selected delay for 

the timer should obviously be longer than the maximum response time of 

all the devices in the system.

As recommended by the VME bus specification the address and data 

strobes are driven by 64 ma drivers (74F244s) onto C-bus and the 

remaining three state drivers all have 48 ma drive capacity (74LS645-1). 

On most of the open-collector drivers the AM26S12 quad bus transceiver 

is used. This device has four high drive (100 ma) , open-collector bus 

drivers which are connected internally to four bus receivers with 

hysteresis characteristics (typically 0.6 V threshold margin) [AMD86]. 

It therefore has superior capabilities to a S38/LS244 combination. The 

hysteresis is especially necessary on high-speed, open-collector lines 

due to the "wire-OR glitch’’ which they tend to produce when used on bus 

backplanes even when properly terminated [GT83].

4.3.3 C—Bus Requester

The C-bus requester, figure 4.8, is designed around the core requester 

used on I—bus, figure 4.4, with a few alterations. Its major difference 

is the addition of the logic to deal with the C-bus bus clear signal.

A local C-bus request, LCBR(H) active, is initiated in either of
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two ways;

1/ The CBR signal. This is produced by the modules decoding logic in 

response to a processor cycle which requires the use of offboard 

resources.

2/ Or under software control by the CBREQ(L) signal which is driven by a 

PI/T line.

The CBR signal thus requests C-bus on a (processor) cycle-by-cycle basis 

while CBREQ activates a C-bus request as soon as it is driven low. With 

this latter form of request the MCM will hold C-bus, once it has been 

granted, until CBREQ is driven high. Large block transfers can thus be 

carried out over C-bus, using the CBREQ signal without the need for the 

request/arbitration delay between C-bus cycles. However with this type 

of transfer the arbitration time is not pipelined with the bus cycle. 

This is because the local request, LCBR, is not removed and therefore 

the grant is not propagated, until CBREQ is brought high.

The bus clear signal, BCLR, is activated by the C-bus arbiter in 

response to a request for C-bus from a module with a higher priority 

than the module which is currently using the bus. When this happens the 

lower priority master must terminate its usage and any other requests on 

lower priority modules must be denied. For the current master there are 

two choices for the bus clear process; for block transfers the processor 

is interrupted and CBREQ is removed in the interrupt routine thus 

releasing C-bus, otherwise for single cycle bus transfers the cycle is 

allowed to follow through to its normal completion.

The bus clear process is more complicated for modules which are 

actively requesting the bus and which are in the path of the grant as it 

propagates down the chain after being released by the previous master. 

When the grant-in arrives LCBR(H) must be negated immediately, by 18, to 

allow the grant-out to propagate. However the grant-in must not allow 

the module to take control of the bus i.e. MASTER must not be asserted. 

Only once BCLR is released can LCBR be reasserted and the module is
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allowed to place a new request foi’ the bus. All of this happens 

completely transparently to the local processor.

The requester shown is used only for the MCMs since it is they that 

use the decentralised daisy chain protocol. The PG on the other hand 

uses a higher request level than the MCMs, since it requires a much 

higher priority usage of C-bus. It therefore follows the VME-bus request 

and arbitration protocol.

4.3.4 C-Bus Arbiter

The C-bus arbiter (figure 4.9), placed on the Supervisor Module in slot 

1, is very different from the simple I-bus arbiter discussed earlier. 

This is due to the fact that it must cope with the 4 prioritised request 

levels of C-bus as well as two other levels used solely by the SM. The 

heart of the arbiter is the Motorola MC68452 Bus Arbitration Module 

(BAM), 1 [Mo t452]. This is a bipolar asynchronous device which can 

arbitrate between up to 8 independent prioritised request levels using a 

protocol along the same lines as VME-bus. The top priority request 

level, level 7, is given over to the SM which therefore has supreme 

priority over all other requesters when needed. However the SM also has 

the option of using level 3 instead and therefore can operate at a 

reduced priority when its needs are less important.

The C-bus arbiter drives BBSY* itself in two cases: when the SM is 

using C-bus, signalled by SBBSY(L) active, or when there are no current 

C—bus requesters or masters, signalled by ABBSY(L) active. Therefore as 

soon as one of the C-bus request lines is activated the arbiter will 

stop driving BBSY*. 52 ns after negating BBSY* the BAM will issue a bus 

grant on the appropriate level, assuming that BGACK(L) is not already 

asserted (i.e. the bus grant is already issued). In the case of the 

decentralised protocol, on BRO* of C—bus, BGACK(L) will not be asserted 

and the bus grant will not be propagated until the bus grant return, 

BGRTN(L) , is rescinded showing that the grant has been driven high all
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along the daisy chain.

When BBS\* is driven low by the module which received the grant, 

GLOCK(L) will be brought low, 10, and so BGACK(L) will be asserted, 5. 

This signals to the arbiter that successful transfer of the bus has 

occurred and also latches the state of the bus grant on the output of 

the F373, 2. BGACK(L) will then remain low either until BBSY* is driven 

high at the end of the bus cycle (centralised daisy chain on BR1-3*), or 

until BGRTN(L) is brought low (decentralised daisy chain). For the 

decentralised daisy chain the delay produced by the BAM between negating 

BBSY* and driving the bus grant (being greater than 20 ns) is enough to 

ensure correct operation of the protocol.

Should a new request be initiated when BGACK(L) is low, the BAM 

will compare its priority with that of the current master which the BAM 

has latched internally. If this priority is greater than the current 

masters then BCLR(L) will be asserted otherwise the BAM will wait until 

BGACK(L) has been negated when it will issue another grant.

The BAM therefore greatly facilitates the arbitration procedure 

amongst the different request levels on C-bus, requiring little extra 

logic even to accommodate the decentralised daisy chain.

4.4 Central Memory and CMA-Bus

For calculations within the sd shell the nuclei with the largest basis 

list would require approximately 800K bytes of storage to hold both the 

initial and final vectors present during any iteration. It is not 

inconceivable that this amount of primary memory should be included on 

each MCM to provide them with their own private copy of the vectors. 

However this would be a wasteful duplication of data and the Central 

Memory Module and CMA-bus subsystem will provide an efficient means by 

which all MCMs can have shared access to these vectors. Dedicated 

prefetch buffers will operate concurrently with MCM processing and will
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thus allow the necessary vector elements to be fetched transparently to 

the MCM thus giving this method very few overheads. Also at the end of 

each iteration the completed final vector will be immediately available 

in CM. On the other hand if each MCM had a local version of the final 

vector then these would all have to be accumulated together before the 

true final vector was complete. In a four times the size system capable 

of performing calculations within the pf shell these vectors would 

become too large to be stored locally. Therefore in such a system CM and 

CMA-bus would become vital to the success of shell-model calculations.

It has not yet been possible to implement the CM / CMA-bus 

subsystem. Without it the SMP is still capable of performing iterations 

on nuclei with a configuration space of up to 13,500 elements using the 

MCM's own local memory to store the vectors. However the main elements 

of this subsystem, e.g. DRAM control, PFB design, bus interfacing, have 

been tried and tested in other parts of the SMP. Therefore once the 

resources become available it should be possible to construct both CM 

and CMA-bus fairly quickly.

4.4.1 Central Memory Overview

The Central Memory Module is designed to be able to store up to 4 

Lanczos vectors at any time and therefore will have 4M-bytes of primary 

storage built using 256K DRAM devices. It will be split into two 

independent 2M-byte banks with each capable of storing two vectors of up 

to 256K 4-byte elements. Each bank will be interfaced to CMA-bus via a 

64-bit data bus and also interfaced separately to C-bus via a 16-bit 

local data bus. It will also be possible to access the CM local bus via 

a VME-bus compatible port, intended for DMA transfers to and from the CM 

by the backing store controller.

Both the CM banks will be dual-port with respect to the local bus 

and CMA-bus. Since each bank will be completely independent of the 

other, having their own DRAM refresh and control circuitry, it will

- Ill -



Chapter 4

therefore be possible for one bank to be accessed from CMA-bus at the 

same time as the other bank is being accessed from the local bus. 

However in the event of both buses simultaneously requesting access to 

the same bank then arbitration logic will decide on a first-come-first- 

served basis which request will proceed first. Each bank will have its 

own arbitration logic, which will be based on the design used in the 

other arbiters within the SMP system. Any request to access a bank may 

also have to compete with the DRAM refresh cycles thus giving another 

level of arbitration to CM accesses. Similarly accesses via C-bus must 

go through another level of arbitration before they can gain use of the 

local bus, this time with accesses from the external system port.

The independence of the two memory banks allows one bank to be 

devoted to holding the vectors currently being processed by the MMPU 

while DMA transfers can take place on the other bank in preparation for 

the next iteration. The elements of the initial and final vectors will 

be interleaved in CM so that V and V will be in one 64-bit location.
i D  f IB

Thus both elements can be read in one CMA-bus cycle, a facility which 

will greatly enhance H-mode processing.

For each task performed by an MCM in H-mode the elements V and
i m

V must be read from CM (eqn 2.12). The element from the final vector,
i in

V , must be updated (according to eqn 2.12b) and written back into the
f n

same location in CM, overwriting the previous value. During the time 

between an MCM reading an element from CM and writing the new value back 

in, no other MCM should use the same element as part of another task, 

since the update from one of the tasks will inevitably be lost. To 

prevent this occurrence each half word (4-byte) location in CM will have 

a lockout bit (L-bit) associated with it. This bit will be set when the 

vector element contained at the location is read and reset only when it 

is written back again. An MCM will thus be informed via the L-bits that 

the element it requires from the final vector is being updated by 

another MCM and so the current value of the element is indeterminate. In
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this case the MCM must attempt to read the vector element again until 

he is successful. The L-bits for the initial vector elements are ignored 

by the MCMs during any read since these values are never altered during 

an iteration.

The MCMs must also read from central memory at the start of each

new prime state in order to read V (eqn 2.12b). Therefore in order not
i n

to alter the L-bit for the final vector element at the same location the 

MCM performs only a half-word (32-bit) read from CM in order to obtain 

this value.

Each L-bit will in fact be duplicated to protect against soft and

hard memory errors. The two L-bits, held in separate devices at the same

location, will be exclusive-ORed to test for such errors each time a 

read is made from CM. As well as two L-bits for each four byte word 

there will also be one parity bit provided per byte in CM. Thus for each 

64 bit data word there will be an additional 8 parity bits and 4 L-bits 

and so each bank in CM will require a total of 76 256K DRAM chips.

It is proposed that the Hitachi HM51258-8 256K x 1 Static Column 

Dynamic RAM be used for CM. This device has a read/write access time of 

85ns and cycle time of 155ns and a read-modify-write cycle time of 

180ns. It is also intended that the Intel 8207 can be used as the CM 

DRAM controller.

The DRAM cycle time will place a lower limit on the CM access time 

as this will be the slowest link in the access chain. Since each access 

will require a read-modify-write cycle to test and update the L-bits 

then this lower limit will be 180ns using the HM51258-8. Although the 

dedicated prefetch buffers will be high-speed, built with fast bipolar 

logic, they will inevitably impose further delays as will the DRAM 

controller. Taking all these delays into consideration CM access time, 

via CMA-bus, is estimated at around 240ns, thus allowing approximately 4 

accesses/microsecond.
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4.4.2 CMA-Bus

CMA-bus is intended as the pathway between the MCMs and the Central 

Memory Module during a Lanczos iteration. As such it must be capable of 

supporting both read and write accesses to a large, random access memory 

store. It must therefore have, unlike I-bus, an address bus and bi­

directional data bus. Although the CM will also be interfaced to C-bus 

there are still good reasons for a dedicated pathway for the MCMs to use 

in accessing CM:

1/ The potential usage of CM by the MCMs is very high and C-bus would

soon become a bottleneck were it the only means of accessing CM. The

systems use of C-bus as its prime means of communication would thus 

be greatly reduced. Therefore an extra dedicated bus, for use purely 

by the MCMs to access CM, greatly reduces C-bus traffic allowing C- 

bus to perform its important system control and communications task. 

2/ The initial and final vector elements are held in single precision 

(32-bit) floating-point format. Therefore since each read access to 

CM will require one initial and one final vector element, a pathway 

which can support 64-bit data transfers will greatly increase bus 

bandwidth over the 16-bit data path of C-bus.

3/ When an MCM reads two vector elements from CM, the two L-bits

associated with the elements must also be read. On C-bus this would

require another bus cycle to read the two bits, which is obviously 

extremely wasteful. A dedicated bus therefore, which provides two 

lines for carrying the L-bits reduces this extra bus usage.

4/ Similarly a dedicated bus interface with prefetch buffers which 

operate in parallel with the MCM processor (like the I—bus PFB) will 

also greatly increase MCM performance.

Although CMA-bus has not yet been implemented the most complex and 

important parts of its design have already been tried and tested in 

other parts of the system, e.g. the proposed request and arbitration 

logic and some of the ideas for the interface. The arbitration protocol
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used on CMA-bus and thus the actual arbiter and requester will be 

identical to that used on I-bus. The prefetch buffers will however have 

to be more sophisticated than those used on I-bus because of the 

presence of an address bus and bi-directional data bus. The nature of 

CMA-bus means that the MCM must first write the address of the location 

in CM which it requires to access to the CMA-bus PFB. The MCM is then 

free to perform a task while the PFB accesses the appropriate location 

in CM.

As a result of its dedicated task CMA-bus can have a much simpler 

structure than C-bus, requiring neither its utility bus nor its 

interrupt bus and using a simplified DTB and arbitration bus. The single 

level arbitration bus is identical to that on I-bus and so requires only 

3 lines and one daisy chain bus grant line. The details of the DTB 

remain the same as in [Mac83], apart from one alteration. In summary the 

DTB consists of:

1/ CMD63-CMD0 : the 64-bit CMA data bus. This consists of two half 

buses, the upper (CMD63-CMD32) and lower (CMD31-CMD0) bus.

2/ CMA26-CMA3 : the CMA address bus, capable of addressing up to 16M 64- 

bit words,

3/ CMLD1, CMLDO : the L-bit data lines, used only during a read cycle 

from CM.

4/ CMDS1*, CMD50*: the data strobes for the upper and lower halves of 

the data bus respectively. These independently signal a transfer on 

the upper and lower halves of the data bus.

5/ CMWE1*, CMWEO* : the two write enable strobes, independently

governing write cycles on the upper and lower halves of the data bus 

respectively.

6/ CMDTACK* : the data transfer acknowledge signal. When this signal is 

asserted the bus master must latch any data being read, negate all 

other DTB signals and release the bus for the next master.

7/ CMRERR* : the bus error signal is asserted if an invalid address is
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used or a parity error occurs.

Depending on the state of the data and write strobes, accesses on CMA 

bus are either a full 64-bit read or write, a concurrent 32-bit read and 

32-bit write, or a 32 bit read/write on either half of the data bus.

No discussion of the arbiter or requester for CMA-bus will be 

included here since, as we have said, they are identical to the ones 

used on I-bus. The CMA-bus PFB interface is detailed in [Mac83] and at 

present remains completely unchanged.

As has already been said the bandwidth of CMA-bus is primarily 

determined by the cycle time of the CM dynamic RAMs and not the bus 

arbitration time. Thus assuming 16 MCMs with a CMA-bus cycle time of 

240ns then each MCM will take at most 16 x 240ns = 3.84us to perform a 

read from CM. This assumes that all modules are requesting at the one 

time and also that arbitration time is buried in the bus cycle time.

4.5 The Microcomputer Modules

The MCMs are self-contained microcomputers which act as slaves to the 

SM. In order to reduce usage of the SMP communications subnet by the 

MCMs, they are endowed, as much as possible, with their own local 

resources, e.g. local memory capable of storing all program code and 

frequently used data. To this end the MCMs have 128K bytes of dynamic 

RAM suitable for holding data tables and 8K bytes of fast static RAM to 

hold program code and workspace area. The MCMs are also provided with 

the hardware and software to interface to the communications subnet

already described.

The requirement for sufficient local memory and subnet interfaces 

are the only hardware constraints on the design of the MCMs. Indeed the 

subnet interface need be the only application specific hardware on the 

MCMs. Were it not for this "off the shelf" microcomputer boards could 

have been bought to perform the task. Another reason for designing
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custom MCMs is that they can be made to have much higher performance 

capabilities than any microcomputers which are currently available.

The complexity of the MCM’s task demands that a high-performance 

microprocessor be used, one which is capable of fast table searching, 

data manipulation and arithmetic processing. The Motorola MC68000 16/32

bit microprocessor is well suited to this application, with its 32-bit 

internal data and address registers, a powerful and regular instruction 

set, and 16 Megabyte direct addressing range [Mot68000, SG79]. Its full 

32-bit successors, the MC68020. MC68030 and MC68040, are completely 

object code compatible with the MC68000. For example the 16.67 MHz 

MC68020 has 4 to 5 times the performance of an 8 MHz MC68000 [MMM84] . 

The successors also have a coprocessor interface to which a floating 

point arithmetic unit. the MC68881 or MC68882, can be attached giving 

even further improvements in processing power. Thus, because of the 

power of the MC68000 and its successors, it is an ideal processor on 

which to base the MCMs.

It should be apparent that the internal architecture of each MCM 

need not be identical, as long as each conforms to the external 

constraints already mentioned by providing the necessary local resources 

and subnet interfaces. In terms of design effort it is obviously 

sensible that the MCMs are identical. However having said this the only 

two MCMs at present in operation are very different in their hardware 

and software. The first MCM built, AOfT. is a simple, single processor 

module, while MCMII has two processors working on a master/slave basis 

and a hardware floating point arithmetic unit. This change in 

architecture was dictated by the ability to radically increase the MCM 

performance by utilising advances in technology.

4.6 The Supervisor Module

The role of the SM within the MMPU is that of a master, controlling and
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monitoring the different parts of the SMP system. In order to support 

this specialised function it has the most privileged rights of all the 

modules and is the one with the most resources available to it.

4.6.1 Supervisor Module Hardware

Central to the SM is an MC68010 (8 MHz) virtual memory microprocessor. 

This is an enhanced MC68000 microprocessor being able to support a 

virtual memory/machine system [MM83]. It also has improved instruction 

execution times while still remaining fully object code compatible with 

the earlier MC68000. Using virtual memory techniques an MC68010 system 

can be made to appear to the user as having the full 16 Mbytes of 

primary memory available to him, while in reality only a fraction of the 

address space actually contains physical memory. This is supported 

with an MC68010 since it has the capability of suspending an 

instruction’s execution when a bus error is signalled and then 

completing the instruction after the required action has been taken 

within the bus error exception* routine, an ability which the MC68000 

does not have. Another addition to the MC68010 is a vector base register 

which is used to determine the base of the exception vector table in 

memory, thus allowing this table to be relocatable and so enabling 

multiple vector tables [MotOlO].

The SM also has a memory management unit (MMU), the MC68451, which 

further supports virtual memory on the SM by performing address 

translation and protection on the full addressing range of the processor 

[Mot451, Mot82]. The internal registers of the MMU can be accessed by 

the SM’s MC68010 (in supervisor mode only) in order to program it and 

when correctly programmed the MMU will translate all logical addresses 

to their physical counterparts. The MMU can also interrupt the MC68010 

when a chosen section of memory is accessed as well as prohibit write 

accesses to any sections of memory.

Using the MMU the logical address space of the SM can be tailored
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to fit any requirements. For example the SM can be made to "see" the 

physical address space of any external module (e.g. an MCM) within its 

own local logical address space. This enables the SM to immediately run 

and debug any software written for one of the external modules using 

their memory and devices without the need for modifying the code in any 

way. Howrever the MMU reduces processor performance by slowing down 

memory accesses due to the time taken to translate addresses 

(approximately 150ns maximum). In order to avoid this delay the MMU may 

be completely bypassed in circumstances when it is not required.

The SM is also equipped with 128K of DRAM. 8K of static RAM, 8K of 

EPROM (with provision for up to 20K), two MC68230 PI/Ts and a Signetics/ 

Mullard SCN68681 dual universal asynchronous receiver/transmitter 

(DUART) . The arbiters for each of the system buses are also placed on 

the SM.

The DUART provides the SM with two very flexible serial, full 

duplex RS232 type links. On the SM one of these serial links is normally 

connected to a terminal and the other to a remote "host" computer 

system. The two serial interfaces on the SM have been built such that 

they can be connected together by bringing one of the programmable 

output lines low on the DUART. This causes the SM to become completely 

transparent with respect to the serial links and creates a full duplex 

link directly between the terminal and host. The SMP system host is 

currently a Motorola EXORmacs microcomputer based on the MC68000 

microprocessor and running under the VERSAdos disk operating system. 

Using the facilities available on the host system software for the SMP 

can be written, assembled, linked and loaded into the SMP via the serial

link. Similarly data can be passed to the host from the SMP and stored

on disk for future reference.

Apart from being interfaced directly to C-bus the SM also has a

general purpose interface provided on it. This interface is a simple 16

bit data and 24-bit address expansion bus which is intended to connect
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the SM to peripheral system devices e.g. an EPROM programmer.

The SM is the only module in the SMP system which will have 

software resident in EPROM. It is intended that this should hold a 

monitor/debugger program and also, when a disk and disk operating system 

become available, a bootstrap loader.

While it is possible for external modules to directly access the SM 

from C-bus this is only done in unusual circumstances due to its highly 

privileged nature. Indeed the SM cannot be accessed by any of the 

modules normally present within the SMP system since the PRIV* line must 

be active to select it. Prior to its construction the SM function was 

carried out by a standard Motorola VME module, the VECPU105 monoboard 

computer, and at present only this module has the capability of 

accessing the SM ’ s address space. The VECPU105 has an MC68000 

microprocessor, two serial links (RS232), a PI/T and a resident 

monitor/debugger. Although the proper SM completely replaces the 

VECPU105 so that it is not required during any Lanczos iteration, it 

still has its uses during initialisation and testing of the system 

because of the current lack of a full resident monitor program on the 

SM.

4.6.2 Supervisor Module System Monitor

A set of rudimentary monitor routines have been written for the SM 

system to provide an environment in which users can more easily 

integrate software into the SMP system. The routines fall into three 

categories; SM initialisation, I/O and intermodule data transfers. 

Supervisor Module Initialisation;

Included in this category is a routine to initialise the SM’s exception 

vector table. This initialises all the exception vectors, except the 

user interrupts and two of the TRAP exceptions, for the MC68010 to call 

a default error handler.routine. This default routine will then send an 

error message to the terminal and allows the user to identify the
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exception which occurred. Two of the 16 MC68010 TRAP instruction 

exceptions are reserved for SM use by the monitor, these are TRAP #0 and 

TRAP #15. The TRAP #0 exception is reserved for user program termination 

so that a user program can easily pass control over to the system 

monitor at the end of execution. The TRAP #15 exception is reserved for 

calling system routines to transfer data between the SM and the other 

SMP modules as will be explained later.

Other routines set up the SM PI/T and the DUART. The DUART is set

up so that if it receives a break from the terminal then it will

interrupt the processor. The necessary interrupt vector is placed in the 

SM exception vector table for this.

Supervisor Module I/O

A library of routines for input/output via the DUART have been built up. 

These include routines to receive and transmit single ASCII characters 

as well as ASCII strings. Routines are also included to convert between 

ASCII coded decimal integers and binary integers. All errors are checked 

for in these routines, e.g. parity error, framing error, etc, and any 

which are found are signalled to the user. All these routines will 

handle I/O from/to either the terminal or the host. However there are 

two specific routines to handle the host so that a file can be listed by

the host and captured by the SM or vice-versa. These routines include

sending the appropriate command string to the host to list or create the 

relevant file. The ability to send data to the host and have it captured 

as a file is particularly useful to the SM due to its lack of hard disk. 

Intermodule Data Transfer

As has been said the MC68010 TRAP #15 exception is reserved for 

transferring data between the SM and other SMP modules over C-bus. This 

function is reserved as a system function since it would be unwise to 

allow user programs to write data to other modules without due control 

and supervision by the SM system. Hardware also supports this in that 

the SM cannot perform transactions via C-bus except when the SM MC68Q10
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processor is in supervisor mode (this is signalled by the MC68010 

functions code lines). Similarly the SM PI/T which governs the control 

of the PRIV* and CONTROL* lines on C-bus is only accessible in 

supervisor mode. The TRAP #15 function will eventually be extended to 

the monitor kernels of all SMP modules so that all C-bus accesses are 

controlled by the system.

Embedded in the SM monitor software is a table giving details of 

the modules which can be physically present within the system. This 

table, the Module Identification Table (MIT) has a 96 byte entry for 

each possible module and allows any details concerning a module to be 

identified to the SM, e.g the MID, differences in the address map of any 

of the modules, any specific hardware features which they may have, etc. 

During system initialisation the SM module determines which of these 

modules are actually present within the system and signals this in the 

MIT. The SM determines if a module is present by placing its MID on the 

map select lines of C-bus and then attempting to read from the modules 

memory. If the module is not present then the SM will receive a bus 

error signal. A bus error exception routine is temporarily set up for 

this function and if entered is alters the MIT to show that the module 

is not present in the system.

The TRAP #15 exception caters for physical reading and writing of 

data blocks to/from SMP modules. That is a user program can request to 

transfer data to a specific (physical) module by supplying the modules 

MID to the TRAP #15 function. The calling routine must also supply the 

source and destination addresses, the number of words to be transferred 

and a code specifying which function is being requested. At present 

three functions are catered for; wTriting a block of data to a module, 

reading a block of data from a module and bus broadcast transfers to the 

MCMs. The request for a transfer is checked first before being executed. 

Firstly, for non-broadcast transfers, the MIT is accessed to determine 

if the module is actually present in the system. The source and
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destination addresses are also checked to determine that if they are

valid areas of memory to transfer data to. If an error is found then the

routine terminates and returns an error code to the calling routine. If 

no errors are found then the source/destination address on the module is 

translated to an offboard address by adding $800000, i.e. bit A23 set 

high.

The functions which are available at present via TRAP #15 although

limited are all that are required for the SMP system. However they they

can easily be extended to form the core of a multi-processor monitor 

environment. For example the bus broadcast routine could be extended to 

allow the user to request that certain modules be excluded from the 

transfer. Similarly extra functions could be added to allow the user to 

request the MID of a module of a specific type or with a specific 

hardware function available to it. The TRAP routine would then simply 

access the MIT table to determine the MID of the module which met the 

requirements of the user.

4.6.3 Supervisor Module SMP Software
There is currently available on the host computer a Pascal runtime 

library for the SM. This allows Pascal programs to be edited, compiled 

and linked on the host and then run on the SM. Most of the routines 

required to run on the SM for the purposes of the SMP have been written 

in Pascal with the remainder being written in assembler and called as 

subroutines to the main Pascal program.

The main task of the SM during any calculation is the 

initialisation of the MCMs and PG prior to the first iteration. This 

requires a number of basic tasks;

1/ generating all the look-up tables required by the Basis Generation 

function of the PG,

2/ generating all the tables required by the MCMs for determining the 

matrix element magnitude and sign.
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3/ generating a table of matrix element magnitudes for use by the MCMs, 

4/ transferring all of these tables into the memory of the relevant 

modules,

5/ sending commands to the PG and MCMs to tell them to commence 

processing.

A Pascal program TABLEBLD has been developed to run on the SM to 

function as the user interface to the SMP system. This program allows 

the user to set up the details of the nucleus under consideration and 

performs the system initialisation functions just mentioned as well 

monitoring the SMP system during runtime. Before a calculation can be 

carried out a file containing a number of data values and tables must be 

loaded into SM memory from the disk of the host computer. This file 

includes a table of energies for single particle states which allows the 

SM to build a table of Hamiltonian matrix element values required by the 

MCMs. A table detailing a default assignment of angular momentum values 

to the 24 active orbitals is also included. Once loaded into SM memory 

this latter table can be edited by the user to give any particular 

assignment of angular momentum values that is desired. When all the 

necessary tables have been built in SM memory they are transferred into 

the PG and MCM memories as required before the start of processing.

During each iteration the SM monitors the progress of the MCMs and 

MEG to watch for any errors which may be flagged by them. At present 

after each iteration the SM forms the complete final vector from the 

partial results held in the memory of each MCM and can then make it 

available for display at the terminal or send it to the host to be 

stored on disk.

We have only given a brief outline of the SM but it should now be 

apparent that it rs a highly flexible, versatile, stand alone 

microcomputer, adequately capable of supervising the SMP system. We need 

not go into any further detail regarding its implementation since.
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although it is crucial to the success of the SMP as a whole, it does not 

play an important part in actually determining the performance 

capabilities of the SMP. However due to the importance of the MCMs in 

processing each iteration we will devote the following chapter to a more 

detailed discussion and description of them. The details of their 

architecture are set out as well as the steps involved in processing the 

TSWs and so performing a Lanczos iteration.
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Hie Microcomputer Modules

5.0 Introduction

The SMP system is in effect made up of a two stage pipeline, consisting 

of the MFG and MMPU. The MFG is purely a data producer feeding a sole 

consumer, the MMPU, with TSWs to process. The relationship between these 

two subsystems is therefore governed by supply and demand. Should the 

demand for TSWs from the MMPU outstrip their supply then the MMPU will 

simply have to wait while the MFG catches up. Similarly if supply 

outstrips demand then the MFG will have to halt its work while the glut 

of data is reduced. Therefore one of these subsystems will impose an 

upper limit on the performance of the SMP as a whole. It is only 

advances in semiconductor and microprocessor technology that have 

enabled a high-performance MMPU to be designed, based on MCMII. The SMP 

system is therefore now in the position where the MFG is the system 

bottleneck whereas before the MFG would have had approximately twice the 

performance of the MMPU were it based on MCMI.

The most significant advances which have been incorporated into the 

MCMs are;

* the production of the 8 MHz MC68000 (before this the 8—bit MC6809 

would have been used on the MCMs),

* the later introduction of the 16 MHz MC68000,

* the introduction of the National Semiconductor NS32081 floating-point 

unit,

* and finally a new design utilising two MC68000s per MCM.
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These last three advances have all been incorporated onto MCMII, 

improving it by a factor of 9 over MCMI and thus giving the MMPU its 

current potential performance capabilities. The advantages of a modular 

system can therefore be clearly seen, in that advances in technology can 

be easily incorporated into the MCMs without having to remove or disturb 

in any way current components of the system, so long as new MCMs conform 

to the requirements of each of the SMP buses. Indeed the fact that the 

buses are asynchronous allows faster interfaces to be incorporated onto 

new MCMs, so long as they conform to the original bus protocol 

standards. This potentially allows faster transfer rates on any new MCMs 

without the need to change current, slower interfaces.

The MCMs should not be viewed as highly specialised, dedicated 

computer modules. They are in fact high performance microcomputers with 

a highly flexible architecture. There is very little that is specialised 

about their structure and the parts that are dedicated in no way 

interfere with their general purpose capabilities. The class of problems 

that the MCMs can be applied to is as varied as that of any 

microcomputer. Even the latest MCMII with its two processors is still a 

general purpose microcomputer, the user having the option of using the 

second processor as a high performance arithmetic processor, as a slave 

processor doing any tasks the master commands it to perform or indeed of 

simply ignoring it altogether. It is this flexibility of the MCMs that 

gives the whole MMPU its great power as a »ulti-processor system. 

However this non—specialised nature of the MMPU in no way compromises 

the ability of the system to carry out its intended function since none 

of the abilities required for this have been sacrificed to give if its

current structure.

What follows is a description of the structure and architecture of 

the current MCMs. Although MCMI has been superseded it is still an 

important, working part of the MMPU. It was from the experience gained 

in designing, building and working with MCMI that the designs for MOMJ1
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Chapter 5

were developed and therefore an outline of MCMI is important to have 

befoie going on to discuss MCMII in greater detail.

5.1 MCMI Outline

A block diagram of MCMI is given in figure 5.1, showing its major 

components and their interconnection. The control bus can be seen 

between the inner and outer C-bus buffers, allowing C-bus masters access 

to the modules control map. The global decode logic is also situated on 

the control bus to intercept requests from C—bus to access the local 

bus. Any such requests are sent via the Local Bus Requester (LBR) to the 

local processors own bus request input. The MC68000’s own bus 

arbitration control will automatically issue a bus grant signal and give 

up the local bus and only then can a C-bus master assume control.

It can be seen that all memory and devices on the local bus are 

completely dual-port with respect to C-bus. Thus all accesses to any of 

these devices are identical, regardless of whether they come from the 

onboard processor or from C-bus, except of course that all data transfer 

acknowledge signals are routed to C-bus in the latter case.

The memory requirements of the local processor are catered for by 

the 128K bytes of dynamic RAM and 4K bytes of static RAM. The DRAM 

although not large by todays standards is enough to hold the user 

program code and data for SMP processing and could be fairly easily 

updated to 512K bytes by using the 256K DRAM chips. The static RAM is 

placed in the lowest 4K of the processors address space. It is limited 

to supervisor mode accesses only, as decoded from the MC68000 function 

codes [Mot68000], and therefore only system functions can access this 

memory. The MC68000 reset and other exception vectors are placed in the 

lowest IK bytes of memory and normally this would be implemented with 

ROM rather than RAM. The lack of ROM on the MCM presents no difficulties 

and indeed has significant advantages both for module development effort
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Chapter 5

and operational flexibility. On power up the MCM processor is held 

halted by the GMC until released by the SM. However prior to doing this 

the SM should provide the processor with a reset vector, as well as any 

other necessary exception vectors and appropriate startup program code. 

Thereafter the module can be supplied with program code by the SM 

depending on what task(s) it requires the MCM to perform.

For shell-model processing the MCM is required to do significant 

amounts of floating-point arithmetic. However since MCMI has no hardware 

unit to perform this task all its arithmetic must be carried out in 

software. At present Motorola supplied MC68000 routines are used which 

implement the IEEE P754 floating-point format although they do not fully 

implement the arithmetic standard [IEEE81]. The approximate average 

times for addition and multiplication (of two non-zero numbers) are 80 

jusecs and 100 jusecs respectively, for an 8 MHz processor with no wait 

states. Since the MCM has to do two multiplications and two additions 

much of MCMI’s time is therefore taken up with arithmetic and therefore 

any consistent method of reducing this time is desirable. One possible 

solution is to use faster software routines which use a non-standard 

data format, e.g. Motorola Fast Floating-Point format routines, however 

this would be at the expense of the overall ease of use. In terms of 

speed, consistency and flexibility the best solution is to use one of 

the hardware arithmetic processors available today, e.g. the Motorola 

MC68881 or MC68882, National Semiconductor 32081 or AMD 29325 all if 

which implement the IEEE standard. It was therefore decided to include 

such a hardware device on MCMII.

5.2 MCMII Structure

Figure 5.2 shows the overall structure of MCMII. It is quite clearly an 

extended MCMI, with the basic structure of MCMI still being present but 

having the addition of a slave bus. The master processor, which is now a
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16 MHz MC68000, resides on the local bus. As with MCMI all devices are 

^ual with respect to C-Bus, including those on the slave bus.

The slave bus is the local bus for the slave processor by which it 

communicates with its local devices. The slave bus is completely 

accessible to the master processor so that all devices interfaced to it 

are dual port, i.e. can be accessed by both the master and slave 

processors. However the slave processor is confined to the slave bus and 

cannot access the local bus. Devices on the slave bus are; 8K bytes of 

fast static RAM, a PI/T for slave subsystem control, the I-bus and CMA- 

bus interfaces and two floating-point units (FPUs), although only one 

has as yet been included.

The arbitration scheme for the slave bus is fundamentally different 

from that used on the local bus. When a request is made for the local 

bus f rom C-bus it is submitted via the LBR logic to the master 

processor’s bus request input. Only after the master processor has 

finished any current access is the bus granted, which is potentially a 

time consuming process. In contrast to this the arbitration for the 

slave bus happens independently of the slave processor and is completely 

transparent to him.

In essence the slave bus is a pool having two mutually exclusive 

access routes with neither processor having any particular right of 

ownership. That is there is not one privileged processor which grants 

the right of access to the slave bus to the other processor. Instead the 

processors compete on a cycle by cycle, first-come-first-served basis 

for the use of the slave bus. Thus the first processor to get its 

request to the arbiter will have other processor’s buffers disabled.

However in acknowledgment of the fact that under normal operating 

conditions the master processor will use the slave bus only rarely, the 

slave processor’s buffers are enabled by default to save him from being 

needlessly delayed while its buffers turn on. Only when the master 

processor is granted access to the slave bus are the slave buffers
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disabled. In the case where the two processors do both require the slave 

bus at the same time then the loser in the arbitration contest will of 

course have its cycle delayed. However using this method the delay to 

either processor will never be as much as that obtained using the 

MC68000’s own bus arbitration control logic.

The hardware to implement the slave bus sharing scheme and other 

components of the MCMII structure will now be discussed in more detail.

5.2.1 The Master Processor

Figure 5.3 gives the details of the master processor sub-system. At its 

heart lies a 16 MHz MC68000, with a minimum bus-cycle time of 250 ns.

For a 16 MHz processor to be guaranteed to run with no wait states,

static RAMs of at most 80-85 ns access time must be used. Dynamic RAMs 

have the extra delay of the controller to be considered and so have to 

be faster to achieve no wait state accesses. There are a number of 

static devices available today with this speed, the Inmos IMS1420-55, a 

4K x 4 memory with an access time of 55 ns, being the one chosen for 

MCMII. Four of these are used to provide the master processor with 8K

bytes of supervisor memory. This memory is used to hold the master

processors exception vector tables, code for exception handler routines, 

the system stack, SMP program code and frequently used data. This amount 

of static RAM is more than adequate for SMP purposes but additional user 

memory can be easily added.

Using the AMD 25LS2521 8 bit comparator, 7, for decoding the memory 

select, allows for simple alteration of the position of memory within 

the address space. This can be done by changing the levels on the B 

inputs to the comparator. Indeed a rudimentary memory management could 

be implemented if the B inputs were tied to a PI/T port. This would 

allow the positioning of memory to be dynamically altered, although this 

would not be suitable for the supervisor memory.

The MHALT(H) and MRESET(H) are both driven by the module’s GMC thus
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allowing individual MCMs to be halted or reset by the SM or any other 

module capable of accessing the MCM control map. On power up the outputs 

of the GMC PI/T come on high thus assuring that each MCM is initially 

held reset and halted until released. The MCMs are also reset when the 

C-bus SYSRESET* line is activated. This signals a complete SMP system 

reset, and is the only method of reseting the GMCs.

In order to produce carefully timed data transfer acknowledge 

signals, DTACK(L), for the master processor an F175 (quad. D-type 

register with common clock and clear) is used, 4. When the masters AS(L) 

is activated, sometime within processor state S2 or S3 [Mot68000], the 

clear is removed from the FI75 and the D1 input taken high. Q1 will then 

be brought high at the next positive edge of the clock, which is always 

at the start of state S4, Q2 will be brought high at the start of state 

S6 and so on. Thus for memory systems running with no wait states Q1 is 

used to produce DTACK(L). While for slower memories or devices requiring 

say 6 wait states Q4 would be used to produce DTACK(L).

When the processor attempts an access to a non-existant device then 

no DTACK(L) will be produced and instead a BERR(L) signal must be used 

to terminate the processor cycle. This is produced by the LS393, 5, 

which is clocked by a 1 MHz signal. On an attempted access to a local 

device, when both AS(L) and A23 are low, a BERR(L) signal will be 

produced after 8 usees if the cycle is not terminated. For non-local 

accesses via C-bus the C-bus BERR* signal is monitored.

Interrupts to the MC68000 are delivered via the LS148, 6, which in 

the case of multiple requests will present the highest priority level to 

the processor. Seven interrupt levels are provided for with an MC68000. 

More than one interrupting device can be externally chained to the one 

level, allowing an unlimited number of devices to interrupt the 

processor. However with the MCMs no more than seven interrupting devices 

are foreseen.

The interrupt acknowledge cycle, signalled by IACK(L), is produced
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in response to an interrupt to the processor and is used to determine 

the interrupt vector. Since only local devices can interrupt the 

processor no off board accesses are ever needed for this cycle i.e. MCMs 

are not C-bus interrupt handlers. C-bus requests, produced in response 

to CBR(H) active, are therefore only initiated in response to a normal 

processor cycle with A23 high.

In order to comply with MC68000 output loading requirements all the 

address lines, data lines and strobes are buffered before being used.

However for the purposes of speed the MC68000 lines which are used for

decoding the supervisor static RAM are unbuffered. All C-bus lines are 

attached directly from the inner C-bus buffers to the MC68000 lines, 

thus allowing C-bus masters to emulate the master processor and give all 

local devices dual-port access capabilities.

5.2.2 The Local Bus Requester

The MCM acts as a C-bus slave, in both the local and control modes 

although in the latter mode the local processors are unimpeded by the 

access. When the C-bus master wishes to access the MCM’s local bus, then 

the local processor must be removed from it before the interface can be 

put in local mode.

A local bus request, LOCBR(L) figure 5.4, on an MCM is generated as

soon as a C-bus cycle is in progress, signalled by VAC(H) active, and

the modules local map is selected (either by the map-select lines or 

bus-broadcast line), MSEL(H) active. In the case of block transfers, 

signalled by BURST(H) active, then a LOCBR(L) will be generated just as 

soon as the local map is selected (see figures 4.6 and 4.7 for C—bus 

module select). LOCBR(L) active immediately generates a BR(L) signal to 

the local processor which will automatically generate a bus grant 

signal, BG(L) , a minimum of 1.5 clock cycles and a maximum of 3 clock 

cycles later. The LBR then waits until the AS and DTACK signals on the 

local bus are inactive, signalling that the local processor has finished
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with the bus, before asserting a bus grant acknowledge, BGACK(L), to the 

processor. This signal informs the local processor that its bus is being 

used and only once BGACK(L) is negated will it again assume mastership 

of the local bus. BGACK(L) is only negated once the external bus master 

has finished its access(es). Therefore during block transfers the local 

processor will be held off its bus until BURST(H) is negated. Note that 

during any period when the local (master) processor is removed from its 

bus the slave processor is not interfered with in any way, unless of 

course the C-bus master accesses the slave bus.

Although the local processor must be requested for the use of its 

bus, granting of the local bus to the requesting module is automatic and 

immediate. This is true no matter how important or crucial the task that 

the local processor is performing. Thus the local processor has lower 

priority use of its own bus in comparison with any C-bus master which is 

requesting access. However this situation is obviously more desirable 

than one where the local processsor has higher priority and could delay 

in giving up its bus to the C-bus master until a time when it so 

desired. In this case the C-bus master would be wastefully delayed 

waiting for the local processor, thus causing a reduction in C-bus 

bandwidth and therefore a global reduction in performance.

5.2.3 Dynamic RAM Subsystem

This subsystem is implemented using the MCM6665-15 64Kxl dynamic RAM 

with an access time of 150 ns and cycle time of 300 ns. A National 

Semiconductor DP8409 Multi-mode Dynamic RAM controller/driver is used as 

the refresh and address multiplexing controller. This device is 

implemented in high speed Schottky TTL and is capable of driving up to 

88 16K, 64K or 256K DRAMs, with only 25 ns (typical) propagation delay. 

With these speeds the 16 MHz MC68000 must run with 4 wait states on 

accesses to this memory giving a bus cycle time of 375 ns.

An external arbiter must be used to arbitrate between DP8409 DRAM
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refresh requests and MC68000 access requests. When a refresh must take 

place and the local processor wants to access the DRAM the arbiter does 

not use the MC68000 bus arbitration control circuitry, but instead will 

hold off the DTACK(L) signal from the DRAM subsystem while the refresh 

goes ahead. Thus the processor access is delayed in a manner similar to 

the master/slave slave bus arbitration already mentioned. Since the 128 

rows of the DRAM require refreshing every 2 ms, a refresh cycle must 

take place approximately every 16 jusec. This means that if the local 

processor were constantly accessing the DRAM only 1 access in 41 would 

be delayed by a refresh cycle. Since in most cases the local processor 

will not be accessing the DRAM this frequently then it will only very 

rarely be delayed.

At present no error checking or correcting is carried out on the 

DRAM system either via parity or a Hamming code. However it is envisaged 

that in the future at least a parity bit should be included on each byte 

to improve detection of errors.

The 128K byte DRAM subsystem is more than adequate for current SMP 

needs, since at present all data tables used by the MCMs only take up 

approximately 30K bytes.

5.2.4 Global and Local Module Controllers

The Local Module Controller (LMC) is implemented using an MC68230 PI/T. 

It controls various functions on the MCM as well as being used to drive 

the map-select lines during C-bus accesses. Due to its powerful 

capabilities the LMC has protected access rights, being only accessible 

in supervisor mode.

The LMC can also be used to interrupt the local processor at the 

request of the SM or PG in order to gain the attention and services of 

the MCM. This is performed by altering one of the control lines on the 

GMC. Thus although an MCM is not a C-bus interrupt handler it can still 

be interrupted by external modules capable of accessing the control bus.
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PIN I/O Function

PA7 unused.

PA6 0 CMA-bus lock.

PA5 0 I-bus lock.

PA4 0 Bus broadcast lockout (BBLCK).

PA3 0 Master processor interrupt, level 7 (MINT).

PA2 0 Module reset (MRESET).

PA1 0 Module processor halt (MHALT).

PAO 0 Block/Cycle by cycle transfer select (BURST).

PB7 - PBO Unused.

PC7 unused.

PC6 I PIACK function.

FC5 0 PIRQ function (C-bus interrupt request).

PC4 unused.

PC3 0 TOUT function.

PC2 I TIN (62.5 KHz).

PCI unused.

PCO unused.

H4 unused.

H3 Interrupt input, service request from MCM.

H2 unused.

HI Interrupt input, processor halted.

Figure 5.5 Global Module Controller Pin Assignments



PIN I/O Function

PA7 - PAO 0 Map-select lines, MA7 - MAO.

PB7 I I-bus buffers empty.

PB6 0 I-bus request lock and reset.

PB5 unused.

PB4 0 C-bus A23 polarity.

PB3 0 Slave processor interrupt.

PB2 0 Slave reset.

PB1 0 Slave processor halt.

PBO 0 SM service request.

FC7 I TIACK function.

PC6 I PIACK function.

FC5 0 PIRQ function, interrupts local processor.

PC4 unused.

FC3 0 TOUT function, interrupts local processor.

PC2 unused.

PCI I CMA-bus buffers empty.

FCO 0 CMA-bus request lock and reset.

H4 Interrupt input, slave service request.

H3 Interrupt input, C-bus grant.

H2 Interrupt input, local failure.

HI Interrupt input, Supervisor service request

Figure 5.6 Local Module Controller Pin Assignments
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-J CD LL
CO

\

C M  C M
O-r-c

V

CO
ZD
CD
LU><_l
CO

OO
LO

O



Chapter 5

Interrupts can be sent to the local processor via the LMC for a number 

of other reasons, e.g. to warn of a local device failure (e.g. DRAM 

parity error), or as a request for attention from the slave processor. 

The timer on the LMC can also be used to generate interrupts to the 

local processor, although this is not required for shell-model 

processing. However this is a function which could prove useful if 

multi-tasking on the MCMs were ever envisaged. Current pin assignments 

for both the GMC and the LMC are shown in figures 5.5 and 5.6 

respectively.

The MCM can request attention from the SM via the GMC. Thus the GMC 

is made a C-bus interrupter device on level 4. Interrupts to the SM from 

the GMCs can occur under two conditions, namely;

1/ a local processor halted condition occurring due to a double bus 

error for example,

2/ or an active request from the local processor via its LMC for 

attention from the SM.

Since each GMC will have a different set of interrupt vector numbers and 

since it modifies this number depending on which handshake line 

initiated the interrupt request, then the SM interrupt service routine 

will be aware of both the identity of the interrupting module and the 

cause. The vector numbers will themselves be supplied to the GMCs by the 

SM since it will be its task to initialise them. The MCM control bus 

must therefore be able to support interrupt acknowledge cycles from C- 

bus and so must monitor the IACK* daisy chain (figure 5.7). However 

since it is not intended that devices on the local bus should ever act 

as C-bus interrupters the local bus need not have this facility.

5.2.5 The Slave Bus

Details of the slave bus and its arbitration mechanism have already been 

given at the beginning of section 5.2. In this section we will go on to 

describe its hardware implementation (figure 5.8).
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The key to the arbiter is the pair of NOR gates, 1 and 2. The slave 

bus appears as a 16K byte space within the masters local map and w’hen it 

attempts to access this space, signalled by SLAVSEL(L) active, input A 

of, 1, is brought low. Since any cycle of the slave processor uses the 

slave bus then only the slaves address strobe, AS, need be used to bring 

input B low. The output of the F-F, MGRNT(H) , is used to enable one of 

the two sets of buffers and will be in the low state, enabling the slave 

buffers, when neither processor is using the slave bus. The first 

processor to get its request, into the F-F will win control of the bus by 

having its buffers enabled. However a delay is necessary in enabling the 

buffers which drive the data and address strobes in order to guarantee a 

setup time for the addresses. Therefore a delay of 23-31 ns, produced by 

an LS31, is introduced here.

The slave bus data transfer acknowledge, SBDTACK(L), which is timed 

in the same way as for the local bus, is sent to the appropriate 

processor by gates 6 and 7.

This arbitration mechanism is thus a simple, efficient method of 

allowing dual processor access to the slave bus, without unduly holding 

up either processor.

The slave processor subsystem itself is a much simplified version 

of the master processor system (section 5.2.1). The bus error and data 

transfer acknowledge signals are produced in much the same way, as are 

the interrupts. The reset and halt signals come from the master 

processors LMC, instead of the GMC, so that the master processor has 

complete control over the running of the slave. The slave is also reset

whenever the master is.

The slave controller (SC) PI/T has a much more limited use than the 

T.MG Interrupts from the SC to the slave can come from four sources, the 

master processor, either of the FPUs signalling that they are finished 

processing, or the onboard timer. The master processors interrupt must 

be non-maskable and is therefore on level 7. The two FPU interrupts are
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also on level 7, but can be disabled externally by the slave processor 

should it wish to ignore them. The PI/T timer interrupt is placed on 

level 4. Uses of the SC I/O port lines are limited to :

1/ I-bus buffers empty signal (input),

2/ I-bus requester reset and lock (output),

3/ CMA-bus buffers empty (input),

4/ CMA-bus requester reset and lock (output),

5/ Master processor attention request (output).

6/ FPU interrupt enable/disable (output).

We need not go into any detail concerning the slaves static RAM 

subsystem, which is implemented in the same manner as the master’s using 

the Inmos IMS1420-55. However in the next section we will give some 

details concerning the FPUs.

5.2.6 The Floating-Point Units

The FPU used in MCMII is the National Semiconductor NS32081 (formerly 

the NS16081). This device is one of the slave processors to the NS32000 

family of microprocessors, but can be used as a peripheral for other 

microprocessors [NS081]. It contains eight 32-bit internal data 

registers but only has a 16-bit external data bus. It can perform the 

normal arithmetic functions to 32 or 64-bit precision, i.e. single or 

double precision conforming to the IEEE standard, as well as format 

conversion instructions (e.g. integer to floating-point, single to 

double precision etc.) and floating-point comparisons. The NS32081 

contains an internal floating-point status register (FSR) which is used 

to configure the FPU operational modes (e.g. IEEE rounding modes) and 

also records any exceptional conditions which were encountered during 

execution of an operation (e.g. underflow, inexact result etc.).

The 8 MHz part which is used is capable of performing a register to 

register multiplication in 6 jasec and a register to register addition in

9.4 jusec. Additional overheads are necessary for the MC68000 processor
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to send the appropriate operation words and operands (if required) to 

the FPU at the start of each operation and to read back the FPU status 

and result (if there is one). If an error is detected by the FPU during 

operation then this will be signalled in the status word. It is then up 

to the processor to read the FSR from the FPU to determine more fully 

.the nature of the error and take any necessary action.

At the time of designing MCMII the Motorola MC68881 floating point 

coprocessor was not available. Also early reports from Motorola 

indicated that it would not be possible to use the MC68881 as a 

peripheral to the MC68000 although this has now been changed. For these 

reasons the NS32081 device was chosen instead. However this proved to be 

more complicated and slower to interface to than at first was believed 

and although the device enhances the power of MCMII it is unsuitable, in 

terms of speed and ease of use, for the MC68000 based MCMII system.

5.3 MCM Task Look-up Tables

Having described the hardware of the MCMs we will nowr further elaborate 

on the main task which the MCMs perform and the data table resources 

that are available to them during normal shell-model processing. In H- 

mode operation the MCMs basic task involves the evaluation of the 

Hamiltonian matrix element <e !H!e > using one of equations 2.6-2.8 andz» n

then the evaluation of equations 2.12a and 2.12b by the following 

steps:

1/ Read a new TSW from the I-bus interface. Set-up the CMA-bus prefetch 

buffers to read from CM at the address given by the index, m,

contained in the TSW.

2/ Using the annihilation and creation operators and the job—type bits, 

all contained in the TSW, as well as the prime state, determine the 

two—body matrix element and its sign. For zero and one jobs there 

will be more than one two-body element to determine, with each one
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being added together to form the complete Hamiltonian element.

3/ Test to determine if the vector elements have arrived from CM. If so 

then read V and V from the CMA-bus prefetch buffers. If not thenin f m

wait until they have arrived. The L—bit for V must be tested and if
f »

it is set then the element must be read again from CM (see section 

4.4.1).

4/ Evaluate V = V x H + V and
in in inn fn

V = V X H + V .
fn in inn fn

5/ Write V back to CM.
f D»

The task in 2 above of determining the Hamiltonian matrix element 

magnitude and sign is potentially very complex and demanding. In order 

to make this task easier for the MCMs a number of data tables are 

necessary. The tables required for these two stages will be discussed in 

the following two subsections.

5.3.1 The Matrix Element Magnitude
The value of each Hamiltonian matrix element, <e !H!e >, is solely

m n

dependent on which particles are annihilated and which are created to 

transform the state !e > into the state !e > (eqn. 2.5). In a system of
n »

24 active orbitals there would therefore be a potential maximum of
2 4 2( C .) = 76176 two-body matrix elements, if there were no quantum

2

mechanical constraints on the particles annihilated and created. 

Fortunately this is not the case and there are in fact two constraints 

on the annihilated and created particles which greatly reduces this 

number. These constraints are (for annihilated particles with indices k 

and 1 and created particles with indices i and j);

1/ Isospin conservation: if t(x) is the z-component of isospin of the

single particle orbital with index x then we must have

t(i) + t(j) = t(k) + t(1) (5.1)

where t(x)= +1 or -1.

In other words, if two protons are destroyed then two protons must be
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created, if two neutrons are destroyed then two neutrons must be 

created or if a proton and neutron are destroyed then a proton and 

neutron must be created.

2/ Angular momentum conservation: if m(x) is the z-component of angular 

momentum for the single particle orbital x then we must have

m(i) + m(j) = m(k) + m(l) (5.2)

These two constraints act to reduce the number of valid operator 

quadruples (k,l,i,j), and therefore the number of two-body matrix 

elements, to just 4196. Thus it is quite practical that all these 

elements should be stored as single precision floating-point numbers in 

local MOW memory in a Matrix Element Table (MET). The task of the MCM is 

then simplified to one of looking up the MET to find the appropriate 

element (s ) with which to form the Hamiltonian entry <e !H!e >. The MET
m n

must therefore be constructed in such a manner as to make the process of

referencing it efficient. This process is performed using only the

annihilation and creation operators since it is they which uniquely

specify each two-body element.

The simplest and quickest method of referencing the MET would be to

use the annihilation and creation operators directly to index into it.

However this would necessitate that the MET be prohibitively large since

it would contain mostly null and duplicated entries. Therefore in order

to keep the MET to 4196 entries a system of look-up tables indexed by

the four operators must be used.

To explain the structure of the MET we first define a set. S,

containing all valid operator pairs (x,y) , with x ( y, and partition it

by defining an equivalence relation on it. For the sd shell this set

will have - 276 entries. We define the equivalence relation such
2

that, for (i, j) and (k,l) both members of S then:

(i,j)~(k,l) (5.3)

if and only if m(i) + m(j) =m(k) +m(l)

and t(i) + ttj) = t(k) + t(l)
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Example partition ;

S(M,t) = [ (a,b) , (c,d) , (e,f) , (g,h) ]

Matrix Element Table Structure

B(a,b)

B(c,d)

B(e.f)

B(g,h)

■where the operator quadruple (a,b,c,d) represents the 

two-body matrix element H*■ o b c a

( a b a b )
( c d a b )
( e f a b )
( S h a b )

( a b c d )

( c d c d )

( e f c d )

( S h c d )

{a b e f )
( c d e f )
( e f e f )

( S h e f )

( a b S h )
( c d S h )
< e f S h )
( S h S h )

Figure 5.9 Example of Blocks within MET
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We have thus divided S into partitions, which we denote S(M,t), where:

M = m (i ) + m { j) and t = t (i ) + t ( j ) (5.4)

i.e. t is either proton-proton (p-p), neutron-neutron (n-n), or proton-

neutron (p-n). Therefore all pairs (x,y) in S fall into one and only one

partition and so S is completely and uniquely partitioned by this

equivalence relation.

The significance of these partitions lies in the fact that any pair

of operators, (k,l), taken from a partition S(M,t) can only be joined

with other operators, (i,j), within the same S(M,t) to form valid

operator quadruples (k,l,i,j) which specify two-body matrix elements. In

fact each of the operator pairs within S(M,t) will join with, and only

with, all the pairs in S(M,t) to form these quadruples. Therefore if

there are n pairs of operators in a partition then that partition will
2

define n two-body matrix elements.

We now define an order on the pairs in S(M,t) as follows: 

for (x.y) and (x’,y’) both members of S(M,t)

(x,y) < (x’,y’) <=> 1) y < y ’ or (5.5)

2) y = y ’ and x < x’ .

The MET can now be divided up into blocks, where all the two-body matrix 

elements in a block are specified by the same pair of annihilation 

operators (k,l) in the quadruple. These blocks are denoted B(k,l). All 

the two-body matrix elements in B(k,l) are then specified by taking each 

pair of operators in the partition S(M,t), where (k,l) belongs to the 

partition S(M,t), and forming a quadruple of operators. The elements in 

B(k ,1) are given the same order as the pairs in S(M,t), figure 5.9.

Thus all the blocks in the MET whose annihilation operators (k,l) 

belong to the same partition S(M,t) will have the same set of creation 

operators (i.e. all those operators in S(M,t) itself) and so have the 

same number and order of elements. For example consider two blocks 

B (a ,b ) and B(e,f) in the MET, where (a.b) and (e,f) both belong to 

S(M,t). and consider another pair of operators (c,d) and (g,h) also in
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S(M ,t) (see f igure 5.9),

i.e. m (a) +m (b ) = m(c)+m(d) = m(e)+m(f) = m(g)+m(h) = M

and t(a)+t(b) = t(c)+t(d) = t(e)+t(f) = t(g)+t(h) = t.

That is if (c,d) and (g.h) are the 2nd and 4th pair in S(M,t) 

respectively then the quadruples

(c ,d,a,b) and (g ,h ,a,b) 

will define the 2nd and 4th two-body matrix elements in B(a,b) while the 

quadruples

(c, d, e, f) and (g,h ,e,f) 

will define the 2nd and 4th two-body matrix elements in B(e,f).

Therefore for any two-body matrix element its annihilation operators 

(k.l) can be used to specify the block within the MET where the element 

resides and its creation operators (i,j) can then specify its position 

in the block.

A number of auxiliary tables are now needed in the task of finding 

a matrix element in the MET using its annihilation and creation 

operators. These tables are;

1/ The Global Offset Table (GOT): this table contains one entry for 

every pair of annihilation operators possible in the 32-bit word of
3 2

the MFG and therefore has C = 496 entries. Since there are only 24
2

active orbitals only 276 of these entries are valid and so almost 

half of the space in the GOT is unused. Each of the (valid) entries 

in the GOT contains a 16-bit address offset from the base of the MET 

to the start of a different block within the MET i.e. the entry for 

(k , 1) in the GOT contains the offset to the block B(k,l) in the MET. 

The entries in the GOT are ordered according to equation 5.5, i.e. in 

the same way as the entries in S(M,t), and so the 2-byte entry for a 

pair (k,l) can be referenced by;

2[k + 1(1-11/2]

= 2k + 1(1-1) (5.6)

where k and 1 are the annihilation operators (k < 1) .
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Global Offset Table

GO(a,b)

GO(e,f)

Local Offset Table

LO(c,d)

Matrix Element Table

GO(a,b)

LO(c,d)

(a,b,c,d)

GO(e,f)

LO(c,d)

e,f,c,d)

GO(a,b) = global offset for annihilation 
operator pair (a,b), 
indexed by 2a + b(b-l)

LO(c,d) = local offset for creation 
operator pair (c,d), 
indexed by 2c + d(d-l)

(a,b,c,d) = two-body matrix element 
specified by operator 
quadruple (a,b,c,d)

Figure 5.10 Global and Local Offset Tables
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2/ The Local Offset Table (LOT): this table contains one entry for each 

pair of possible creation operators and so has the same number of 

entries as the GOT. Each entry in the LOT is a 16-bit address offset 

from the base of a block in the MET to the two-body matrix element 

specified by the the creation operators, figure 5.10. The creation 

operators are used with equation 5.6 to determine the 2-byte entry in 

the LOT to use. When the entry from the LOT is added to the entry 

from the GOT then the complete offset from the base of the MET to the 

vector element specified by the 4 operators is formed.

3/ The O-table: in order to aid in the evaluation of the offsets into

both the Global and Local Offset tables using equation 5.6, a further 

table is added to give the value of x(x-l) for x equal 0 up to 31. 

Each entry for this table is 2-bytes and the entry at offset 2x from 

the base of the table gives the value of x(x-l).

The memory usage for these three tables plus the MET itself is 

MET 4196 entries @ 4 bytes each = 16,784 bytes,

GOT 496 entries @ 2 bytes each = 992 bytes,

LOT 496 entries @ 2 bytes each = 992 bytes,

0-table 32 entries @ 2 bytes each = 64 bytes,

giving a total of 18,832 bytes (18.39K bytes).

It should be noted that the size of the MET can be reduced even 

further at no extra cost to the look-up process. This is achieved by 

first noting that the magnitude of each two-body matrix element remains 

unchanged by a transformation of neutron orbitals to proton orbitals 

(and vice-versa) with the same quantum numbers (n,l,m) . Thus each block 

B (k ,1) is the same as B(k’,l’), (i.e. has the same two-body matrix

elements in the same order), where

k’ = (k+16) mod 16 and 1’ = (1+16) mod 16

in the representation given in figure 3.1.

Thus any neutron—neutron (n—n) block in the MET has its equivalent 

proton-proton (p-p) block and thus the GOT can map all p-p operators
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onto their equivalent n-n blocks in the MET, or vice-versa. The p-p (or 

n-n) blocks can therefore be removed from the MET, thus reducing its 

size by 640 elements ( = 15.25% ).

The proton-neutron cases can also be reduced if the GOT maps (k,l), 

not onto B(k,l), but onto its equivalent block B(k’,l’) and so B(k,l) 

can also be removed from the MET. This removes a further 1362 entries in 

the MET, giving an overall reduction of 2002 entries ( = 47.7% ).

Other methods could be used to further reduce the size of the MET, 

however they would necessitate more complex look-up processes and are 

thus not considered. However although the above modification gives a 

fairly substantial reduction in the MET size at no extra cost to the MCM 

look-up process this has not been implemented for reasons which shall be 

explained later.

Clearly then there is a trade-off between the size of the MET and 

the ease with which it is referenced, with the most efficient method for 

finding an entry requiring far too much memory space for the MET. The 

final method must therefore be a compromise between speed and memory 

usage with speed being the greatest requirement, w'hich the above 

solution offers.

5.3.2 The Matrix Element Sign

Before the final Hamiltonian matrix element, <e !H!e >, is complete them  n

sign of the two-body matrix element must be altered by the factor
[X <1 +1 >J_ 1 * + +(-1)

as given in equations 2.7 and 2.8. The power of —1 in this equation is 

simply the sum of the number of set bits (i.e. occupied orbitals) 

between k and 1 and between i and j in the slater determinant 

R = a a ! e >.
k 1 n

In order to determine this number we must first form R and then 

strip off the unwanted bits leaving only those set bits which are to be 

counted or in effect whose parity is to be determined. Forming R is
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performed using the MC68000 bit-clear command, however stripping off the 

unwanted bits using this method would be time consuming. A simpler 

method is to have a table of 32-bit masks for each pair of operators 

(x,y), which consists of all zeros except for the bits between x and y. 

These masks are held in the Mask Table which is organised along the same 

lines as the GOT and LOT with 496 entries indexed by the operator pair 

using the function given in equation 5.6, although since the entries in 

the Mask table are 4 bytes instead of 2 the index gained from 5.6 must 

be doubled.

Two masks are retrieved from the Mask table, one for (i,j) and one 

for (k,l). Set bits which are common to both masks are eliminated, since 

they would otherwise have to be counted twice. To do this the masks are 

first XORed together and the resultant composite mask is then ANDed with 

R to leave only those set bits necessary.

The above method is the one currently used in producing the 

composite mask, however there is another method which is quicker 

although it requires the Mask table to be much larger. This other method 

comes as a result of noting that each composite mask is completely 

determined by the operator quadruple (k,l,i,j) just as the two-body 

matrix elements are. Therefore the Mask table could instead contain the 

4196 possible composite masks, specified by the (k,l,i,j), and be 

referenced using the same index as used for retrieving the two-body 

matrix element from the MET. The Mask table would then be almost 9 time 

larger and could be incorporated into the MET with each entry containing 

a two-body matrix element and composite mask. The sign determination 

process would then be shortened since the composite mask would not have 

to be manufactured. It is for this reason that the MET is not reduced in 

size as described earlier so that in future the MET and Mask table can

be referenced together.

Under normal operating conditions these increases in table size 

would be minimal compared to the 128K bytes available to the MCM at
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present. However since there is no CM yet implemented, the initial and 

final vectors normally stored there must instead be stored locally on 

each MCM thus making space requirements more important. Therefore this 

improvement in manufacturing the composite mask has not been implemented 

in order to save local memory space for the storage of vectors.

The resultant word formed after R is ANDed with the composite mask 

must then have its parity determined and to do this we make use of the 

following result:

P(M1:M2) = P(M1 © M2)

where P(M) is the parity of binary word M, Ml and M2 are words of equal

length and Ml:M2 is the word formed by the concatenation of Ml and M2.

Thus to determine the parity of the 32-bit word we first XOR the two 16- 

bit words and then XOR the two bytes of the resultant word. The parity 

of the remaining byte, which equals the parity of the initial 32-bit 

word, is then found from a Parity Table, which is indexed directly by 

the byte. This 256 entry table gives at location x the parity of x, i.e. 

if the byte at location x is zero then x has an even number of bits 

otherwise x has an odd number of bits. Thus using the Mask table and 

Parity table the sign change for the two-body matrix elements can be 

determined.

The space requirement for these two tables is :

Mask Table —  496 entries @ 4 bytes each = 1,984 bytes,

Parity Table —  256 entries @ 1 bytes each = 256 bytes,

giving a total size of 2.240 bytes for these two tables and 21,072 bytes 

for all six tables. If the proposed changes to the Mask table were 

implemented it would be 16,784 bytes long, bringing the total figure to 

35,872 bytes.

5.4 MCM Task Processing

All the hardware and software resources of the MCMs have now been
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discussed and thus the foundations have been laid so that we can now 

describe the actual process, in terms of software, which the MCMs must 

follow through to perform a Lanczos iteration. All the software for the 

MCMs is written in MC68000 assembly language since much of the process 

involves manipulation of binary data which is less suited to high level 

languages. However more importantly than this assembly language can be 

tailored to meet high-performance requirements, which is a high priority 

for the MCM’s task.

For the successful processing of an iteration by the MCMs a number 

of global software flags are required, in order that both the SM and PG 

can signal certain system-wide conditions to the MCMs. These conditions 

are:

1/ New Prime State: when there is a change in the prime state which is 

associated with the TSWs read from the MFG Buffer, the PG must inform 

the MCMs of the new prime state SD word and its index.

When the last TSW for a prime state is read from the MFG Buffer by the 

MCMs. the PG will be interrupted and the Buffer will be blocked by 

its onboard inhibit logic from any more reads (sec. 3.5.6). At this 

point the PG must send the new prime state details to a predetermined 

parameter passing area on the MCMs, using- the C-bus bus-broadcast 

facility. The PG must then send a signal to the MCMs to inform them 

of the update and then remove the read inhibit from the MFG Buffer. 

However each individual MCM must be inhibited from reading from the 

Buffer until it has recognised that there is a new prime state. This 

is essential so that when an MCM reads a TSW from its PFB it knows 

which prime state the TSW belongs to. To this end the PG must also 

activate the local I-bus reset and lock signal on the LMC of each of 

the MCMs when it sends the new prime state details and before it 

enables the MFG buffer again. Thus if there is a TSW in an MCM's PFB 

after the I-bus lock has been. set then it cannot refer to the new 

prime state. It is in fact this lock being activated that is used to
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signal the presence of a new prime to the MCMs.

After finishing each task the MCM will test if its I-bus PFB is full 

or empty and if it is full then it will process the TSW as normal. It 

is quite possible that a new prime state has already been passed to 

the MCM at this point, however if there is a TSW in the PFB then it 

must belong to the old prime and so no action is taken by the MCM 

with regard to the new prime. Only if the PFB is empty does the MCM 

then test the lock signal in the LMC and if it has been activated by 

the PG’s broadcast then the new prime state details are read into the 

appropriate workspace locations from the parameter passing area.

2/ Iteration start: after the MCM is released from the reset signal by 

the SM it will perform certain initialisation functions, e.g. set up 

the LMC. Once these tasks have been finished the MCM must wait for a 

start signal from the SM before reading from the MFG Buffer and 

commencing TSW processing. The MCM must also wait for this signal 

after finishing an iteration and before going on with the next. A 

word within the MCMs workspace is reserved for this and other signals 

from the SM. these signals being collectively called the global 

module code word (GMOODE).

3/ Iteration finished: when the PG finishes generating the basis list 

and the MFG Buffer empties, the PG will signal this to the SM who 

will in turn signal to the MCMs (via the GMCODE) that there are no 

more TSWs to be processed and so the iteration is finished.

The master processor on MCMII must also be able to give commands to the 

slave processor and so a location, the slave instruction code word 

(SIOODE), is reserved in the slave’s workspace for this purpose. These 

local commands are given to the slave in association with data that it 

is to process, e.g. two-body matrix elements for the slave to add 

together in zero or one job processing. Once the slave has read the data 

it will signal this to the master, via SIOODE. and thus allow the master 

to pass more data.
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In response to each of the above global signals the MCM will enter 

a different software routine. Similarly after reading a TSW from the I- 

bus PFB the MCM will enter one of three different routines depending on 

whether a zero, one or two job is indicated by the job-type bits. The 

details of these latter routines are now given in order to describe in 

more detail the task of the MCMs and explain their method of operation. 

Note that we describe here the routines assuming the presence of CM and 

two FPUs per slave processor, the actual routines currently implemented 

are therefore different since there is no CM and only one FPU on MCMII. 

we will however describe the differences this makes later.

5.4.1 Two-job Processing

Appendices A and B give listings of the two-job routines for the current 

and final versions of MCMII respectively.

Master processor'.

Once the master processor has determined that the I-bus PFB is not empty 

it will read the first 4 bytes, which contain the job-type bits and 

secondary index, m, and store them in its workspace. The job-type bits, 

having been examined, are stripped off leaving only the index m. The 4 

operators are then read from the PFB and stored.

In order to allow recovery from MCM errors, it is important that 

each TSW is stored in full in the MCM’s workspace and not overwritten 

until the master has finished processing it. Thus in the event of a 

fatal error occurring on the master another MCM, or possibly the SM, can 

process the TSW and so the Hamiltonian associated with it is not lost.

Next the master uses the operators to fetch the offsets from the 

GOT and LOT. These are then added to form the offset into the MET and so 

the two-body matrix element can be retrieved. The sign change for the 

two-body element is then determined using the Mask table and Parity 

table, as previously described.

The master then tests SICODE to determine if the slave has read the
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Read result
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Finished 
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Figure 5.11 Concurrency During Slave Two-job Processing
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last data which was sent. If the slave has then the parameter passing 

area in the slave s workspace is free to place new data in, otherwise 

the master must wait until the slave reads the data currently in it. 

When the parameter passing area is free then the master writes the 

Hamiltonian element just formed and the secondary index, m, into it and 

places the appropriate code (i.e. one which tells the slave that the 

data is for a two-job) in SICXDDE. The master then tests to see if there 

is a new TSW in the I-bus PFB.

Slave Processor:

Just as the master processor has its tasks initiated by data present in 

the I-bus PFB, so the slave has its initiated by a valid code word in 

SICODE and the associated data. The slave reads the code word and then 

branches to the appropriate routine.

Upon receiving the two-job code the slave will transfer H and m
m n

from the parameter passing area into its local workspace and then signal 

to the master, via SICODE, that it has read the data. This then frees 

the parameter passing locations for more data. The slave will then 

immediately set off the CMA-bus PFB to fetch the initial and final 

vector elements indexed by m.

The first multiplication (H x V ) can then be started in FPU1
m n in

(V will be stored in one of the internal registers of FPU1) . By this
i n

time V and V should have arrived, i.e within 4 usee of setting off
in f m

the CMA-bus PFB. The L-bit for V is checked to determine if the value
f n

received is valid. If not then another request is issued to fetch the 

data from CM. The second multiplication (H x V ) can be started inn n in

FPU2 , even if V has not arrived. The result of the first
f in

multiplication (when it is available) can then be added to V (when it
f IB

is available), in FPU1. Then the result of the second multiplication 

can be added to V , in FPU2 (V is stored in one of the internal
in * "

registers of FPU2). The new V can then be returned to CM. Figure 5.11 

details the concurrency of operation for the sla\e executing a two job.
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5.4.2 One-job Processing 

Master Processor:

In this case there is only one annihilation operator, k, and one 

creation operator, i, held in the TSW. The annihilation operator is used 

to form the slater determinant a !en> and this determinant is then
lc

searched for all remaining occupied orbitals i.e. set bits. For each set 

bit that is found its index is used as the other annihilation and 

creation operator index so .that a quadruple, (k,l,i,j) with 1 = j, is

formed. Both operator pairs must then be ordered so that k < 1 and i < j

and the quadruple is then used to fetch a two-body matrix element from 

the MET and determine the sign change as for the two-job case above.

Each element thus found is passed to the slave with the appropriate

one-job code. When all the elements have been found the master sends the 

index m of the secondary state and the one-job termination code.

Slave Processor:

In this case the slave will take every two-body matrix element passed to 

it by the master and sum them in one of the FPUs. The slave again uses 

SICODE to signal to the master when it has read each of the elements. 

When the one-job termination code is received the slave then proceeds 

exactly as for the two-job case above.

5.4.3 Zero-job Processing 

Master processor:

For a zero job no valid operators are present in the TSW and instead the 

master must search the slater determinant, !e >, for all possiblen

annihilation operator pairs (k,l), i.e. for all possible pairs of set 

bits. For each pair found the creation operator pair is set equal to it, 

so that k = i and 1 = j, and the resulting quadruple is then used to 

f^^ch the appropriate two—body matrix element from the MET. However 

this time in accordance with equation 2.6 no sign change need be
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determined.

Each element found is sent to the slave with the zero-job code and 

when all elements have been found the zero-job termination code is sent. 

Note that in this case no index need be sent, since for a zero-job m = n 

and the slave already possesses the index n.

Slave processor:

Each two-body matrix element sent to the slave is added together, as in 

the one-job case, to form the final Hamiltonian entry. However since 

m = n only the new V need be evaluated using
f n

V = H x V + V
fn mn in fn

and V need not be fetched from CM since it is equal to V , therefore
i n  i n

no references need be made to CM. The new value for V is still held in
f n

an internal register of FPU2 and is not sent back to CM until later.

5.4.4 New Prime State Processing 

Master processor:

When the master recognises that a new prime state has been received, by 

detecting that the I-bus lock signal in its LMC is active, it will first 

remove the signal and then transfer the new prime state and index into 

his workspace overwriting the old details. The master will then activate 

a new request to read from the MFG Buffer. If this request is not 

granted then it will again test to determine if another new prime state 

has been sent and if one has then it will repeat the above process. In 

this way the MCM can guarantee that no updates are lost.

When the PFB is filled with a new TSW the master will first write 

the new prime code to the slave along with the new prime state index and 

then proceed as usual by examining the job-type bits of the new TSW and 

branching to the relevant routine.

Slave processor:

Upon receiving the new prime code, the slave will make a copy of the old 

prime index and then transfer the new prime index to its workspace. It
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will then activate its CMA-bus PFB to fetch V , where n is the old
f n

prime index, so that its own local copy of V can be added to it. Since
f n

each MCM must perform this operation and only one of them can hold a 

copy of V at one time then they must all check the L-bit and wait inf n

turn to receive V from CM. When the slave does receive it. it adds on
f n

its local copy and then sends the result back to CM.

The slave then requests V from CM. where n is the new prime state
i n

index, (performing only a half-word read on CMA-bus). On receiving it 

the slave places it in an internal register of FPU1. The local copy of 

V , held within an internal register of FPU2, is then zeroed.f n

5.4.5 Current Implementation

As we have said there is currently no CM installed in the SMP system and 

so the initial and final vector elements are stored locally on each MCM. 

Howrever since they are stored in the master processor’s DRAM the slave 

processor does not have direct access to them. Instead each time the 

master passes the slave an index number it must also pass the 

appropriate initial and final vector elements. For example during a two- 

job when the master passes H and m it must also pass V and V to
n  r> i m f m

the slave. Also at the start of prime state processing when the master 

passes the new index n to the slave it must also pass V for the old 

index and V for the new index.
i n

Similarly the slave must also pass the updated final vector entry 

to the master at the end of each job and at the end of each prime. With 

each of these elements the slave must also pass its index so that the 

master can store them back in the correct location in the final vector. 

To deal with this additional parameter passing locations are allocated 

within the slaves workspace to hold the extra parameters which are to be 

transferred. An additional code word, similar in nature to SICODE, is 

also assigned for the slave to signal to the master the nature of the 

data and for the master to signal to the slave that it has read the
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data.

Since data is being transferred in both directions care must be 

taken to avoid deadlock between the two processors. That is the 

situation could arise where the master processor is waiting to send data 

to the slave but can’t since the parameter passing area is full and 

similarly the slave is waiting to send data to the master. Therefore 

when the master or slave send any data they must also always check to 

determine if they have received any data and if so then read it.

At present the slave processor has only one FPU instead of the 

proposed two. This simply means that the none of the arithmetic 

operations to be performed by the slave can be pipelined. Instead they 

must be performed serially, therefore increasing the overall time taken 

by the slave.

5.5 Vector Processing

The task so far described of processing the TSWs produced by the MFG and 

thus producing a resultant vector is the main task of the MMPU but not 

its only one. The vector produced by the multiplication of the 

Hamiltonian matrix by the Lanczos vector must be converted into the next 

Lanczos vector in the sequence and then orthogonalised with respect to 

all the other Lanczos vectors (section 2.3). These operations demand the 

addition of two vectors and also the scalar multiplication of two 

vectors. For both these operations the two vectors will be stored (as 

usual) in CM in single precision floating-point format arranged so that 

two elements, one from each vector, can be read during one CMA-bus 

cycle.

For the addition of two vectors the SM can block partition the two 

vectors and then assign each MCM a block to add together. Each addition 

should take at most 20 usees, with the writing and reading of vector 

elements to and from CM being pipelined with the FPU operation. Thus for
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the largest vector of 93710 elements, 5 MCMs could perform an addition 

in 0.4 seconds.

The vectors can again be block partitioned for scalar 

multiplication with each MCM accumulating a partial result, which are 

all added together to form the final result. To reduce the accumulation 

of precision errors during a scalar multiplication the accumulations 

must be carried out to double precision, although the final result can 

be reduced to single precision. Each multiplication and addition should 

take at most 25 usee, with both FPUs being used by the slave and again 

the fetching of operands from CM being pipelined with slave activity. 

Thus scalar multiplication should take at most a total time of 0.5 

seconds for 5 MCMs operating on the largest vectors.

Having now described the MCMs completely we can go on in Chapter 6 

to give the details of performance achieved by the SMP system.
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Shell Model Processor Performance

6.0 SMP System Testing

With the completion of MCMI hardware and the MFG hardware and software 

in 1984 it was then possible to run and test the performance of the MFG 

subsystem on its own. Testing the correctness of operation of the MFG 

was done in two ways. The first was in essence simply to use a set of 

test vectors. That is with the channel memories of the SG loaded up with 

sample SD-byte chains a number of predetermined seed states, or test 

vectors, were sent to it. The resultant output could then be 

precalculated and compared w'ith the actual output, which was read from 

the MFG buffer by MCMI. This proved a successful and useful means of 

testing and debugging the MFG hardware, i.e. the SG, PF, buffer and I- 

bus, and could eventually be incorporated into the SMP system as a means 

of self-testing.

The second test was to run the complete MFG system, software and 

hardware, using data for real nuclei. The Nuclear Theory Group at 

Glasgow University then supplied figures for the number of zero, one and 

two-jobs that should be found. MCMI was then used to read from the MFG 

buffer and to count the number of each type of job. The two sets of 

figures were then compared. This method provided a means of testing the 

MFG software and hardware system as a whole. By successfully passing 

both these tests the correct operation of the MFG could then be 

guaranteed with a very high degree of certainty.

The hardware and software for MCMII, along with the software for

- 157 -



Nucleus Number of
Basis
States

T1 T2 T3 T4 Number of 
states produced 
by SG for T3.

28
Si

14
m = 0 
Np = 6 
Nn = 6

93,710 3 117 436 396
9

3.4833 x 10

27
A1

13
m = 5/2 
Np = 5 
Nn = 6

64,299 <2 66 214 197
9

1.66618 x 10

All timings in seconds.

T1 = time taken with no SG driver & no interrupts i.e. time taken 
to produce the basis list and associated driver tables.

T2 = time with no interrupts and no waiting for SG seed requests 
i.e. seeding SG as fast as possible.

T3 = time with no H-mode interrupt.
T4 = total time per iteration for the MFG.

All the above times are for the MFG in H—mode, with the MMPU 
inactive and output from the PF ignored.

Table 6.1 MFG Measured Iteration Times
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both MCMI and the SM, were all finished by summer 1985. The SMP system, 

minus the CM, could then be tested and evaluated. Using the DRAM of the 

MCMs in place of the CM, nuclei with up to 13,500 basis states could be 

tested. The Nuclear Theory Group supplied the resultant vectors after 

one iteration for a number of small nuclei. These nuclei were then run 

on the SMP system and the results compared. On all the nuclei which were 

tested the results were in complete agreement.

6.1 MFG Performance

Table 6.1 details certain timing characteristics for the MFG alone. All 

these timings were taken with the MFG in H-mode and clocked at 112 MHz. 

The MCMs were inactive, with the MFG buffer simply being allowed to 

overflow.

The first two timings give an indication of the PG performance. The 

first figure shows the speed at which the PG can generate the basis of 

states and the SG driver tables, i.e. run the Basis Generation Function 

and SG Control Function but without the SG Driver routine. The second 

figure gives the time for the full PG task including the SG Driver 

routine, i.e. the sending all the seed states to the SG, but assumes the 

SG is fast enough to keep up. It is thus obvious that the majority of 

the FG's time is taken up with seeding and controlling the SG.

The third timing figure is for the MFG as a whole performing an 

iteration, but without the-H-mode interrupts genei’ated by the SIC. The 

SG would thus produce too many states since some would go beyond the 

diagonal element of the matrix. Running in this mode it was possible to 

count the number of states produced by the SG using the SIC. The final 

column shows how many states were produced by the SG for this third 

case. From this figure we can calculate the amount of time the SG should 

have taken, in theory, under those conditions for one iteration with 

these nuclei. For example, at 112 MHz, producing 1 new state every 13
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9
clock cycles, the amount of time to produce 3.4833 x 10 states for the 
2 8
Si nucleus should be approximately 404 seconds. Comparing with the

measured time of 436 seconds this shows an overhead of 32 seconds, i.e.
2 7an extra 8%. Similarly for the A1 nucleus the overhead is 

approximately 11%. This overhead is due to the time that the SG has to 

wait to be serviced by the PG. It is to be expected that the overheads 

due to PG servicing will increase for smaller nuclei, since M-partitions 

will in general be smaller and the SG will thus spend more time waiting 

for seed states.

The last timing figure is with the H-mode interrupts enabled and

thus gives a true time for a complete iteration by the MFG as a whole.

This last set of figures therefore represents a lower limit on the

iteration time for the SMP system.

We can also from the last three figures obtain an estimate for the

saving produced by searching only connected N-partitions (section 3.2).
2 8

For the Si nucleus the final iteration time (T4) is 91% of figure T3.

It can therefore be assumed that approximately only 91% of the states

counted for T3 are actually produced once the H-mode interrupt is
8

active. That is 3.1698 x 10 states are generated compared with a
8

possible maximum of 4.39 x 10 for half the matrix, a saving of almost
2 7

28%. For the A1 nucleus the saving is almost 26%. It is to be expected 

that the smaller the nucleus then the smaller the saving, since in 

general there will be fewer N-partitions and so proportionately less of 

the nucleus will be excluded from the search.

6.2 MCMII Performance

Processing two-jobs is by far the most common task for the MCMs during
1 8  2 8 

any iteration, making up between 88% (for F m=0) to 96% (for Si m=0)

of the total number of tasks processed. Therefore the time taken to

process a two-job will in general be the most predominant in determining
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the overall time for the MCMs to complete an iteration.

With the current implementation of MCMII, i.e. a single FPU and 

using local RAM to store initial and final vectors, the program code for 

a two-job on the master processor should take approximately 46 usees to 

run and 55.5 usees on the slave processor, allowing time for the FPU 

(see Appendix A for current two-job listing). This implies that an MCM 

should process a two-job in about 55.5 jusecs with the master processor 

being delayed by the slave. The total time for a one-job or zero-job 

will depend on the number of two-body matrix elements to be found and 

added together, wrhich will in turn depend on the number of occupied 

orbitals and therefore on the nucleus under consideration. Examination 

of the program code for zero-jobs and one-jobs shows that currently 

MCMII processes each two-body matrix element in approximately 18 jusecs 

and 38 jusecs respectively. We can use these figures to estimate 

iteration times as follows:
3 1

For the P nucleus (m=ll/2) with 8 protons and 7 neutrons there are; 

13,327 zero-jobs with 105 two-body matrix elements to be found and added 

for each,

52,091 one-jobs with 14 two-body matrix elements to be found and added 

for each,

1,174,180 two-jobs.

The current MCMII will thus take

13327 x 105 x 18 -usees = 25.2 secs for zero-job processing,

52091 x 14 x 38 usees = 27.7 secs for one-job processing,

1174180 x 55.5 usees = 65.2 secs for two-job processing.

Giving a total estimated time of 118.1 seconds for a complete iteration.
2 4For the Mg (m=10/2) nucleus with 4 protons and 4 neutrons there are; 

10,026 zero-jobs (28 two-body elements each),

37,758 one-jobs (7 two-body elements each),

829,643 two-jobs.

Estimated time is therefore
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Nucleus
Estimated
MCMII
Time

Measured
MCMII
Time

Measured
MCMI
Time

Measured 
Combined 

MCMI + MCMII 
Time

3 1
P

m=ll/2

118.1 114 755 99

2 4
Mg

m=10/2

61.1 62 427 54

2 3
Ne

m=l/2

33.6 34 238 30

All figures for H-mode operation.

Table 6.2 MCM Timings For Sample Nuclei
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5.1 secs for zero-job processing,

10 secs for one-job processing,

46 secs for two-job processing,

giving a total of 61.1 seconds for a complete iteration.
2 3

And for the Ne (m=l/2) nucleus with 2 protons and 5 neutrons there 

are;

6,457 zero-jobs (21 two-body elements each),

22,166 one-jobs (6 two-body elements each),

469,974 two-jobs.

Estimated time is therefore;

2.4 secs for zero-job processing,

5.1 secs for one-job processing,

26.1 secs for two-job processing,

giving a total of 33.6 seconds for a complete iteration.

The actual measured times for a complete iteration with these nuclei, 

using only the current version of MCMII, are;
3 1
P 114 seconds,

2 4
Mg 62 seconds,

2 3
Ne 34 seconds,

with the above estimates giving very good agreement.

Table 6.2 summarises these figures and adds additional figures for 

measured iteration times using MCMI on its own and then using MCMI and 

MCMII together. It can be seen that currently MCMII is approximately 7 

times faster than MCMI.

The value of producing and verifying these estimates lies in our 

ability now to extrapolate forward and make estimates for the time the 

final MCMII will take. With the addition of CM and a second FPU, as well 

as implementing the changes to the software look-up tables already 

mentioned, we can expect the two-job processing time to be reduced to 

approximately 29 jusecs for the master processor and 37 jusecs for the 

slave processor (see Appendix B for final two-job listing). The one-job
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Number Number Number Measured Estimated
Nucleus of Basis of of MFG Final

States One-jobs Two-jobs Time 
(seconds)

MCMII Time 
(seconds)

2 8
Si 93,710 414,848 12,165,224 396 711

m=0

2 7
A1 80,115 349,824 10,089,502 294 568

m=l/2

2 7
A1 64,299 279,102 7,802,290 197 444

m=5/2

2 0
Si 51,421 221,704 6,002,244 126 380

m=7/2

2 e
Si 37,971 162,247 4,200,906 76 271

I i i 
f,

! 
^

1 
N>
 

1 1

2 3
Ne 6,457 22,166 469,974 5 24

m=l/2

All figures for H-mode operation.

Table 6.3 Timings For Sample Nuclei
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processing time will be reduced to 30 jusecs per two-body matrix element

and the zero-job time to 16 jusecs per two-body matrix elements. We now

have an estimated time for the above nuclei of;
3 1

for P ; 22.4 secs for zero-job processing,

21.9 secs for one-job processing,

44.6 secs for two-job processing,

giving a total of 88.9 seconds.
2 4

For Mg ; 4.5 secs for zero-job processing,

7.9 secs for one-job processing,

30.7 secs for two-job processing,

giving a total of 43.1 seconds.

While for Ne ; 2.2 secs for zero-job processing,

4.0 secs for one-job processing,

17.9 secs for two-job processing,

giving a total of 24.1 seconds.

Thus the final MCMII will be approximately 30 % faster than the

current limited version, making it in total a factor of 9 faster then

the original MCMI.

Table 6.3 shows the estimated time that one of the final MCMII

modules would require to process all the TSWs for a selection of nuclei.

Also shown is the measured time for the MFG to produce all the TSWs. It

can be seen that for the largest sd shell nuclei 2 MCMs would out

perform the current MFG, while for the smaller nuclei at most 5 MCMs

would be necessary. The increase in efficiency of the MFG for smaller

nuclei is due to the fact that the Hamiltonian is less sparse the
z e

smaller the nuclei. For example the Hamiltonian for the Si nucleus
2 3

shown has only 0.29% non-zero entries, while the Ne nucleus has 2.38%.

Table 6.3 shows that for the largest nuclei the average rate of 

production of TSWs is 32,000 per second, while for the smaller nuclei

100,000 TSWs are produced on average per second. Clearly neither I-bus 

nor CMA-bus are overloaded with the data transfer rates this produces.
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Nucleus Number of 
basis states

IBM
(minutes)

MFG
(minutes)

28
Si m=0

14
93,710 - 6.60

27
A1 m=5/2

13
64,299 1.56 3.28

29
Si m=7/2

14
51,421 1.05 2.17

25
Mg m=l/2

12
44,133 0.79 1.65

29
Si m=9/2

14
37,971 0.68 1.27

25
Mg m=9/2

12
20,007 0.28 0.42

23
Ne m=l/2

10
6,457 0.08 0.08

Table 6.4 Comparative Timings For A Single Iteration
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In fact I-bus could easily support an increase of over 100 fold in the 

rate of production of TSWs for the larger nuclei, while CMA-bus, which 

requires two transfers per task, could support an increase of 65 fold. 

However the current low usage of these two buses means that the MMPU is 

not yet near its saturation point and thus any increase in the number of 

MCMs should give a linear increase in its performance.

6.3 Conclusion

The figures given in table 6.3 show quite clearly that the MFG is 

currently the SMP system bottleneck. Table 6.4 shows MFG iteration times 

compared with equivalent timings on an IBM 360/195 system (figures 

obtained from [WWCM77]). Since the SMP system iteration time is the same 

as the MFG processing time when using only five MCMs then these figures 

show the final performance capabilities of the SMP system. As can be 

seen the performance is very respectable, being at worst only a factor 

of 2 slower than the IBM.
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The Extended SMP System

7.0 Introduction

The original aims of building a dedicated computer for nuclear structure 

calculations have been largely fulfilled in the SMP system. The system 

has been built at a low cost (less than ̂ 5000 for materials) and can 

carry out any sd shell calculation in a reasonable time. However as has 

been seen the limitation on the performance of the SMP system is the 

MFG. While this does not present a problem for the current system 

working on the sd shell it does severely limit the ability of the design 

to be extended to a system which will perform pf shell calculations. 

Such calculations, which would require an MFG which is 4 times the size, 

could generate basis lists of 10 to 100 times the size of sd shell 

lists. This would impose an impossible burden on an MFG of equivalent 

design to the current one. Thus new designs or new methods are required 

for the function of determining the Hamiltonian for an extended system.

7.1 Matrix Determination

During any shell model calculation it is only the Lanczos vectors which 

change between iterations, the Hamiltonian matrix being constant. There 

is therefore no reason, in theory, why the non-zero matrix elements 

should not be generated only once and then stored and read back during 

each iteration. Each matrix element would require only two entries; one 

being the 32-bit matrix value and the other being its 24-bit column

- 164 -



Chapter 7

index. As with the current system the row index, which changes 

infrequently, can be broadcast to all MCMs only when it changes. Thus 7 

bytes of information require to be stored per matrix element. The task 

of each MCM becomes much simpler with such a system since H is read
m n

directly and does not have to be found by the MCMs from a look-up table.

For sd shell calculations the maximum number of non-zero elements is
2 8

approximately 12.5 million for Si (m=0), requiring 87.5 Mbytes of 

storage. For the pf shell this figure could easily increase by a factor 

of 100, requiring almost 10 Gigabytes. Obviously this requires some form 

of disk storage to be used. Parallel disk assemblies of 1.5 Gbytes 

capacity and sustained transfer rates of 4 Mbytes/sec are available at 

under $12,000 [Mo87]. The use of such an assembly would be feasible for 

sd shell calculations, increasing performance by a factor of up to 15 

for large nuclei. However multiple disk assemblies would be required 

even for medium sized pf shell calculations. These could be read in 

parallel increasing performance even further, but expense would become 

the limiting factor. For large pf shell calculations storage of the 

matrix would probably become impractical.

Matrix generation, as opposed to matrix storage, has much more 

potential for application to large pf shell calculations. It is quite 

feasible to construct a new MFG with a similar architecture to the 

current one but with a 6 to 10 fold increase in performance, i.e. a 

secondary state production rate of at least 50 MHz. This can be achieved 

with a much simplified SG channel design, a simplified timing control 

unit and a new pipelined OEC design, all implemented using 100K series 

ECL logic and using only a 50 MHz clock [Mac83]. A high performance 

FG/SG interface would also be used with a dedicated hardware controller 

responsible for transferring seed states to the SG. Such an interface 

could almost entirely eliminate SG overheads due to waiting for seed 

states.

The performance of the matrix generation function can be increased
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even further by using an array of parallel MFGs. The whole MFG need not 

be duplicated but certainly the SG and PF functions would be and these 

could feed either their own private buffers or a single shared buffer. 

Each SG would then work on different columns of the matrix. New columns 

could be assigned sequentially on demand to each SG so that at any one 

time all SGs were working on columns in the same N-partition. In this 

case the seed state table would be common to all SGs. Alternatively the 

matrix could be block partitioned so that each SG has its own section of 

sequential columns to process. Each SG would have its own individual DMA 

controller which would transfer the seed states from the seed state 

table memory. If after the first iteration it were found that the 

processing load was spread too unevenly between the SGs then the MFG 

controller could redistribute the workload, and thus attempt to maximise 

the performance of the total MFG system.

However a problem is introduced with multiple SGs in that the MMPU 

must know which column any TSW it reads belongs to. One solution would 

be to tag each TSW to identify which SG produced it. Each MCM would then 

require a list giving the details of the column that each SG was 

processing. As before the MCMs must be informed when any SG finishes 

processing a column to allow them to take appropriate action, e.g. 

accumulate the previous V (if working in H-mode) and read the new V
f n i n

Considerable amounts of hardware would be required even for one 

SG/PF in an extended system. In order to make multiple SG/PFs feasible 

custom gate or cell arrays would be necessary. However there is a 

different method for generating the Hamiltonian matrix elements which 

could remove the necessity for a separate MFG altogether. This approach 

would be to use an element-placement algorithm [MMBW88] , which is a 

hybrid of the method used by the original Glasgow Program [WWCM77] 

combined with the SMP basis partitioning techniques.

The method used by the Glasgow Program first computes each element 

of the basis list, in numerical order, and stores the complete list in
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primary memory. Each state in the basis list is then operated on 

directly to produce a secondary state, such that the two states f o m  a 

non—zero matrix element. This is done by selecting pairs of set bits and 

clearing them, while a pair of cleared bits are then set, such that the 

appropriate quantum numbers are conserved. In this manner only the non­

zero matrix elements are generated. However the index of the secondary 

element must then be determined and this is done by a binary search of 

the basis list, hence the reason why it must be stored in primary memory 

in the first place. The obvious limitation of this method is the 

necessity to store the complete basis list, requiring 16 bytes per 

element for pf shell calculations. For a multiprocessor architecture 

this list would have to be shared and would inevitably become a system 

bottleneck, since an exceptionally high bandwidth would be required in 

order that each processing element could perform its binary search. 

However by using an element-placement algorithm which would structure 

the basis list in a manner similar to the SMP system it is possible to 

remove the requirement to store the complete basis list.. Instead the 

index of the secondary element can be calculated, due to the structure 

which has been imposed on the list, with the aid of functions and look­

up tables. While this approach makes the task of generating each matrix 

element more complicated, it does remove the burden of generating large 
amounts of unwanted zero entries as with the current MFG. Matrix 

generation using element—placement algorithms would be best suited to 

being performed on the MCMs themselves, rather than on a dedicated 

hardwired module, so that the MFG function is effectively absorbed into 

the MMPU.

7.2 The Multiple Microprocessor Unit

Whatever method is used to increase the performance of the matrix 

generation function the MMPU will also have to have increased
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capabilities, especially if element-placement algorithms are used. The 

MMPU can contain at most 16 MCMs and using MCMII this would not be 

enough to cope with an increased performance MFG or element-placement 

approach. Similarly CM and CMA-bus, which impose a limit of 2 million 

tasks per second will also require increased capabilities, since even 

before this limit is reached the system would begin to saturate so that 

increasing the number of MCMs would have a less than linear improvement 

upon system performance.

7.2.1 The Microcomputer Modules

The performance of any new MCM can be significantly improved upon by the 

use of new microprocessors. For example the recently introduced Motorola 

MC68030 is twice as powerful as the MC68020 and its floating point 

coprocessor the MC68882 is 4 times more powerful than the original 

MC68881. Also the introduction of the newer Reduced Instruction Set 

Computer (RISC) architectures [Wa85, Pa85] could bring significant 

improvements to the MCMs. The RISC philosophy, which advocates the 

simplification and optimisation of a computers instruction set and 

internal architecture, has recently been applied to a number of new 

microprocessors, e.g. the Intel 80960 series, the AMD 29000 and the 

Motorola M88000 family. The Motorola MC88100 RISC microprocessor has 

four fully concurrent, independent execution units (including a floating 

point unit) and two separate external buses for program and data 

(Harvard architecture) [Mot881]. The 20 MHz part boasts a sustained 14 

to 17 MIPS (million instructions per second) and 7 MFLOPS (million 

floating point operations per second) processing rate, while being able 

to transfer data at a rate of up to 80 Mbytes/sec. In addition each 

MC88100 processor can support up to 4 MC88200 16-Kbyte cache/memorj- 

management units on each of its external buses. These provide full speed 

memory caching and demand-paged memory management as well as support for 

shared-memory multiprocessing [Mot882].
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The MC88100 in conjunction with the MC88200 would seem an ideal 

processor on which to base an updated MCM, due to its optimised data 

movement and manipulation capabilities as well as its integral floating 

point unit. In order to condense as much processing power as possible 

into the MMPU each MCM could contain four MC88100s and 4 Mbytes of 

shared DRAM. Each processor would be equipped with 4 MC88200s and a 

small amount, perhaps 32K bytes, of fast static RAM, used to store 

initialisation software and supervisor mode functions. The DRAM would be 

shared on an equal priority basis between all processors and would be 

used to hold program code, look-up tables etc. With 4 MC88200s per 

processor, 2 for the data space and 2 for the program space, contention 

for the shared memory would be minimal for most applications, allowing 

each processor to run at full speed for most of the time.

However writh such an architecture there arises the problem of how 

to handle the dedicated communications net interfaces. With a "live" bus 

such as C-bus where the processor itself controls all the bus accesses 

there is little problem. In this case each request by the processors to 

use such a bus can simply be arbitrated on a cycle by cycle basis by an 

onboard arbiter just as the shared memory would be arbitrated for. 

However the dedicated PFB interfaces of I-bus and CMA-bus require more 

control. For example with the CMA-bus interface a processor must be able 

to claim ownership of the PFB before using it. This enables a processor 

to start the CM access by writing to the PFB as normal and then keep 

ownership until the transaction is complete. This could be resolved by a 

number of methods;

1/ Software semaphores; as with any shared resource where lockout must 

be provided semaphores could be used in the shared memory. These are 

accessed via indivisible read-modify-write accesses and are used to 

signal that the relevant interface is in use.

2/ Dedicated I/O processor; a fifth processor could provide 

communications services for all the other processors. This processor

- 169 -



Chapter 7

would have sole charge of and access to the MCM communications 

interfaces. A software image of the interfaces could be maintained 

for each processor in the shared memory. The I/O processor could poll 

each of these and when required provide the necessary servicing.

3/ Hardware image; each processor could essentially have its own copy of 

each of the PFB registers. In the case of I-bus, when a processor 

emptied the contents of its image PFB register by reading it. the 

image PFB hardware would arbitrate for ownership of the real PFB. If 

the real PFB had current data then it would be transferred into the 

image, otherwise the image PFB simply waits until data arrives. The 

CMA-bus interface would be similar in that when the processor wrote a 

CM address to its image PFB, the hardware would arbitrate for 

ownership of the real CMA-bus PFB and once ownership was obtained it 

would be held until the CMA-bus transaction was complete. In this 

manner each processor would appear to have its own personal subnet 

interface PFB since all arbitration would be transparent.

All of these methods would provide an efficient means for sharing the 

MCM interfaces, with the last method providing the highest performance 

but at the expense of a considerable amount of additional hardware. 

Overall the proposed architecture would make each MCM a tightly coupled 

MIMD system and should give it approximately 20 to 30 times the 

performance of MCMII.

7.2.2 The Communications Subnet

In any new MMPU C-bus would be uprated to the full 32-bit data and 

address bus as allowed by the VME-bus specification, but would retain 

the enhancements which have been added in the SMP system (section 4.3). 

As has been said CM and CMA-bus must be improved beyond their current 

limit of 4 million accesses/second. This could be achieved by providing 

multiple CM modules, with the CM address space interleaved between the 

modules. Each CM module would also require the ability to queue incoming
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requests which would be held and serviced in sequence. In addition the 

CMA-bus data and address buses can be split to allow independent 

transfers operating concurrently. Thus an MCM can send an address to a 

CM module in pai'allel with data being transferred to/from another MCM. 

Thus the transfer rate is no longer limited by the cycle time of the CM. 

CMA-bus transfer rates of over 30 MHz can be envisaged using fast 

bipolar TTL or even ECL interfaces and with 16 CM modules the CM system 

should be able to sustain this rate. This would provide a bandwidth of 

over 240 Mbytes/s, an increase of 8 fold.

7.3 Conclusion

The current SMP system demonstrates the processing power which can be 

readily available to scientists through the use of dedicated computing 

systems. By the application of parallel processing techniques and the 

use of modern VLSI devices such systems can be put together at a low 

cost and in a much reduced size compared to conventional computer 

installations.

Utilising the algorithms and architectural enhancements discussed 

it should be possible to build an extended shell-model processor with 

100 times the power of the current system. Such a system, based on the 

basic architecture of the current SMP and using the experience gained in 

its design, would allow nuclear theorists to perform pf shell 

calculations which hitherto have not been feasible.
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List of Abbreviations

Section No.

BAM
BBFC
BCSR
BRAC
BWAC
BWC

CCM
CIT
CM
CU

DTB
DTC
DUART

FNP
FPU

GMC
GOT

INP

JSW

LBR
LMC
LOT

MCM
MFG
MFLOP
MID
MIT
MMPU
MMU
MPC

NPC

OEC-

PE
PF
PFB
PG
PIC
PI/T
PSR

Bus Arbitration Module 
Buffer Block Finished Comparator 
Buffer Control and Status Register 
Buffer Read Address Counter 
Buffer Write Address Counter 
Buffer Word Counter

Channel Clocking Memory 
Channel Information Table 
Central Memory 
Control Unit

Data Transfer Bus 
Driver Table Constructor 
Dual Universal Asynchronous 
Receiver/Transmitter

Final N-Partition 
Floating Point Unit

Global Module Controller 
Global Offset Table

Initial N-Partition

Job Status Word

Local Bus Requestor 
Local Module Controller 
Local Offset Table

Micro-Computer Module 
Matrix Format Generator
Millions of Floating Point Operations/sec 
Module ID
Module Identification Table 
Multiple Microprocessor Unit 
Memory Management Unit 
M-Partition Controller

N-Partition Controller

Operator Encoder Channel

Processing Element 
Pair Filter 
Prefetch Buffer 
Primary Generator 
Primary Index Counter 
Parallel Interface/Timer 
Prime State Register

4.3.4)
3.5.6)
3.6.1)
3.5.6)
3.5.6)
3.5.6)
3.5.3)
3.7.1)
2.5.2) 
1 .1 )

3.5.9)
3.7.3)
4.6)
3.7.1)
5.2)
4.3.1)
5.3.1)
3.7.1)
3.7.1)

5.1)
5.2.4)
5.3.1)
2.5.2)
2.5) 
1 .1)
4.3.2)
4.6.2)
2.5)
4.6)
3.7.2)
3.7.2)
3.3)
1 .1 )
2.5.1)
3.7.2)
2.5.1)
3.7.1)
3.6)
3.6.1)

RDB Runtime Data Block (3.7)
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List of Abbreviations

SC —  Slave Controller (5.2.5)
SD —  Slater Determinant (2.2)
SDWS —  Slater Determinant Word Sequencer (3.7.2)
SG —  Secondary Generator (2.5.1)
SGCSR —  SG Control and Status Register (3.6.1)
SGDR —  SG Driver Routine (3.7.3)
SIC —  Secondary Index Counter (3.2)
SM —  Supervisor Module (2.5.2)
SMP —  Shell Model Processor (2.0)
STB —  Seed Table Builder (3.7.3)

TCU —  Timing and Control Unit (3.5.1)
TSW —  Task Setup Word. (2.5.1)
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Two-job software listing for current MCMII.

* *
* MASTER PROCESSOR TWO-JOB ROUTINE *
* *

*
* Address register contents;
* AO ----  Base address of Slaves workspace,
* A1 ----  Base address of initial and final vectors,
* A 2  Workspace ,
* A3 ----  Local directory,
* A4 ----  Matrix Element Table,
* A5 ----  Global Directory,
* A 6  Mask table.
*
* NOTE that all instructions which reference tables held in DRAM require
* 2 extra clock cycles per word length access due to wait states. This
* affects all references via address registers A1-A6.
*
* Data register contents;
* D5 ---- Prime state.

Number of 
clock cycles

* Read words 0 and 1 from I-bus PFB.
* Contains job-type bits and SIC.
TESTJOB MOVE.L IJ3US.D4 20

MOVE.L D4,SEC_IN(A2) Save in workspace. 16+4
* Test job-type bit and branch if not a
* two-job to determine what type it is.

BCLR.L #23,D4 14
BNE P.JOBTYPE Branch if not a two-job 12

* Job is a two-job.
* Mask off unwanted bits in long word to leave only the SIC.

ANDI.L #SICMSK,D4 16
* Get the four operators from I-bus PFB.

MOVE.L I_BUS+4,D0 20
MOVEP.L DO,0PERAT0RS+1(A2) Separate operators 24+8
MOVE.L D5,D7 Copy prime state into D7 4

* Place the four operators i,j,l,k
* in registers DO to D3 respectively.

MOVEM.W OPERATORS (A2),D0-D3 32+8
* Get base address of 0-table in AO.

LEA 0TABLE(A2),AO 8
* Get the local offset using i and j.

ADD. W Dl.Dl 2 j 4
MOVE.W (A0,D1.W),D1 Get j(j-l) from 0-table 14+2
ADD.W DO,DO 2i 4
ADD. W DO ,D1 2i + j(j-l) 4
MOVE.W (A3,D1.W),D6 Get local directory entry 14+2
ADD.W D1,D1 4i + 2 j ( j-1) 4
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* Annihilate appropriate bits in prime state.
BCHG.L D3,D7 
BCHG.L D2.D7

* Get global offset using k and 1 and
* add to local offset.

Annihilate kth orbital 
Annihilate 1th orbital

ADD. W D2,D2 21 4
MOVE.W (A0.D2.W),D2 Get 1(1-1) from O-table 14+2
ADD. W D3,D3 2k 4
ADD.W D2,D3 2k + 1(1-1) 4
ADD.W (A5.D3.W),D6 Get global offset and add 14+2
ADD.W D3,D3 4k + 21(1-1) 4
:rix element value from MET.
MOVE.L (A4,D6.W),D6 18+4
ne the sign of the matrix element.
MOVE.L (A6,D1.W),D1 Get i,j mask 18+4
MOVE.L (A6.D3.W),D3 Get k ,1 mask 18+4
EOR.L D3,D1 Form composite mask 8
AND.L D1,D7 Mask prime state word 8
MOVE.L D7 ,D1 Copy resultant word into D1 4
SWAP D1 Swap words in D1 4
EOR.W D1,D7 Exclusive-OR the two words 4
MOVE.W D7,D1 Copy resultant word into D1 4
LSR.W #8 ,D1 shift byte 1 into byte 0 22
EOR.B D7,D1 Exclusive-OR the two bytes 4

* Use resultant byte to address Parity table. If parity
* byte is not equal zero then matrix element is negative.

LEA PTABLE(A2),AO Parity table address in AO 8
MOVE.B (A0,D1.W),D1 Read parity byte 14+2
BEQ.S POS Branch if parity byte zero 8
BCHG.L #31,D6 Change matrix element sign 12

* Reinitialise slaves workspace address in AO.
POS MOVE.L ASLWSPC(A2),AO 16+4

LSL.L #3,D4 Multiply SIC by 8. 14
*
* Got matrix element so send to slave when he is ready.
WAIT2 TST.W (AO) Test if slave ready for job 8

BPL.S WAIT2 If not then wait 8
MOVE.L (A1,D4.L),SLT.NVM(AO) Send new Vim 30+4
MOVE.L 4(A1,D4.L),SLT.NFM(AO) Send new Vfm 30+4
MOVE.L D6,SL.NHMN(AO) Send Hmn 16
MOVE.L D4,SL.NSI(AO) Send SIC 16
MOVE.W #T2JOB,(AO) Send two-job code 12

* Test to see if slave has any final vector
* elements to send back to be stored in vector table.

TST.W SLT.CODE(AO) Test slave code word 12
BMI.S NEXTJOB If no data then pass 8
MOVE.L SLT.IN(AO),D0 Otherwise read vector index 16
MOVE.L SLT.FI(AO),4(A1,DO.L ) Read and store Vfm 30+4
MOVE.W #N0VAL,SLT.CODE(AO) Signal that data read 16

* Test I-bus interface control to determine if
* a new TSWr has arrived, if so then go back to start.
NEXTJOB TST.B MCNTRL 16

BPL TESTJOB Back to start 10

Total 731 clocks 

45.7 ;usecs
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************************************************************************ 
* *
* SLAVE PROCESSOR TWO-JOB ROUTINE *
* * 
************************************************************************ 
*
* Address register contents;
* AO ----- Pointer to SIOODE and base address of workspace,
* A 1  unused,
* A2 ----  FPU - address to send ID word,
* A3 ---- FPU - address to send operands and read results,
* A4 ----  FPU - address to read status,
* A 5  unused ,
* A 6  unused.
*
* Data register contents;
* D7 ----  ID-byte for FPU.
*
* FPU operation times;
* Multiply = 6 jusec,
* = 9 6  processor clocks.
* Addition = 9.375 jusec,
* = 150 processor clocks.
*

Number of 
clock cycles

* Test SIOODE word to determine if got another
* task and what its type is.
TSTJOB TST.W (AO) 8

BEQ.S START2 10
BMI.S TSTJOB

* Start a two-job.
START2 MOVE.W #T2JOB,SL.RCIC{AO) Save job type in workspace 16

MOVE.L SL.NHMN(AO),D2 Read new Hmn 16
MOVE.L SL.NSI(AO),D5 Read new index 16
MOVE.L SLT.NVM(AO),D3 Read new Vim 16
MOVE.L SLT.NFM(AO),D1 Read new' Vfm 16
MOVE.W #NOVAL,(AO) Signal that data read 12

* Save Hmn and index in workspace.
MOVE.L D2,SL.HMN(AO) Save Hmn 16
MOVE.L D5,SL.SI(AO) Save index 16

*
SWAP D2 Swap Hmn, ready for FPU 4

♦
* Multiply Hmn by Vin (Vin is held in FPU ) .

MOVE.W D7 ,(A2) Send ID word to FPU 8
MOVE.W #MULFF0A,(A3) Send operation code word 12

*
MOVE.L D2,(A3) Send Hmn 12

*
SWAP D1 Swap Vfm, ready' for FPU 4
MOVE.W #ADDFIA,D6 Get next op. word ready 8

* Wait 84
* Read back FPU status word.

MOVE.W (A4),DO Read back FPU status 8
BEQ.S FP2 Branch if OK 10
TRAP #1 Otherwise TRAP if error
DC.W FPUER FPU error signal to TRAP routine
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* Read result from FPU.
FP2 MOVE.L (A3),DO Read multiplication result 12
* Add result of multiplication to Vfm

MOVE.W D7,(A2) Send ID word 8
MOVE.W D6,(A3) Send FPU op. word 8
MOVE.L DO,(A3) Send previous result 12
MOVE.L D1,(A3) Send Vfm 12

* These instructions pipelined with FPU operation
SWAP D3 Swap Vim, ready for FPU 4
MOVE.W #MULFIA,D6 Get next FPU op. code word 8

* Wait 138
* Read back FPU status.

MOVE.W (A4),D0 Read FPU status 8
BEQ.S FP3 Branch i f OK 10
TRAP #1
DC.W FPUER

* Read result from FPU.
FP3* MOVE.L (A3),D1 Read result 12

* Multiply Hmn by Vim.
MOVE.W D7,(A2) Send ID word 8
MOVE.W D6,(A3) Send FPU op. word 8
MOVE.L D2,(A3) Send Hmn 12
MOVE.L D3,(A3) Send Vim 12

* This instruction pipelined with FPU operation
MOVE.W #ADDFIF1,D6 Get next FPU op. code word 8

* Wait 88
* Read back FPU status.

MOVE.W (A4) , DO Read FPU status 8
BEQ.S FP4 Branch if OK 10
TRAP #1
DC.W FPUER

* Read result from FPU.
FP4 MOVE.L (A3),DO Read result 12

* Add result to Vfn (Vfn held in FPU register).
MOVE.W D7,(A2) Send ID word 8
MOVE.W D6,(A3) Send FPU op. word 8
MOVE.L DO,(A3) Send previous result 12

* Send back updated Vfm to master.
* These! instructions pipelined with FPU operation
WAIT2 TST.W SLT.CODE(AO) Test if master ready 12

BPL.S WAIT2 If not then wait 8
SWAP D1 Swap Vfm back to normal 4
MOVE.L Dl,SLT.FI(AO) Send back Vfm 16
MOVE.L D5,SLT.IN(AO) Send back index 16
MOVE.W #T2JOB,SLT.CODE(AO) Signal that data sent 16

* Wait 78
* Read back status for FPU operation, no result to be read back.

MOVE.W (A4),DO Read FPU status 8
BEQ TSTJOB Branch if OK to start 10
TRAP #1
DC.W FPIER

Total = 886 clocks

= 55 .4 jusec
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Two-job software for final version MCMII.

************************************************************************ 
* *
* MASTER PROCESSOR TWO-JOB ROUTINE *
* * 
************************************************************************ 
*
* Address register contents;
* AO ---  Base address of Slaves workspace,
* A1 ---  O-table , Parity table +64,
* A 2  Workspace,
* A3 ---- Local directory,
* A4 ---- Matrix Element Table,
* A 5  Global Directors'-,
* A 6  Mask table.
*
* NOTE that all instructions which reference tables held in DRAM require
* 2 extra clock cycles due to wait states. This affects all references
* via address registers A1 and A3-A6.
*
* Data register contents;
* D5 ---  Prime state.

Number of 
clock cycles

* Read SIC and job-type bits from I-bus PFB
* and store.
TESTJOB MOVE.L I_BUS,D4 20

MOVEL.L D4,SEC_IN(A2) 16
* Test job-type bits
* and branch if not a two-job

BCLR.L #23,D4 14
BNE P. JOBTYPE 12

* Is a two-job, mask off unwanted bits to leave only SIC, read and store
* operators, make copy of prime state in D7.

ANDI.L #SICMCK,D4 16
MOVE.L I_BUS+4,D0 20
MOVEP.L DO,OPERATORS+1 (A2) 24
MOVE.L D5,D7 4

* Get operators into data registers.
* i into DO, j into D1, 1 into D2, k into D3.

MOVEM.W OPERATORS(A2),D0-D3 32
* Get local offset

ADD.W D1,D1 2 j. 4
ADD.W DO,DO 2i. 4
ADD.W (A1,D1.W),D0 2i + j(j-l). 14+2
MOVE.W (A3,DO.W),D6 Get local offset. 14+2

* Annihilate particles in prime state.
BCHG.L D3,D7 8
BCHG.L D2,D7 8
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* Get global offset.
ADD.W D2 ,D2 21. 4
ADD.W D3 ,D3 2k. 4
ADD.W (A1,D2.W),D3 2k + 1(1-1). 14+2
ADD.W (A5,D3.W),D6 Add on global offset. 14+2

* Mask state.
AND.L (A6,D6.W),D7 20+4

* Get two-body matrix element.
m o v e.l (A4.D6.W),D6 18+4

* Determine sign change.
MOVE.L D7 ,D1 Copy result. 4
SWAP D1 4
EOR.W D1 ,D7 EOR two halves. 4
MOVE.W D7 ,D1 4
LSR.W #8 ,D1 22
EOR.B D7 ,D1 EOR two bytes. 4

* Get parity byte and if not zero then change sign.
MOVE.W 64(A1,D1.W),D1 Get parity byte. 14+2
BEQ.S WAIT2 Branch if zero. 8
BCHG.L *31,D6 Otherwise change sign. 12

* Pass parameters to slave if ready to take more.
WAIT2 TST.W (AO) Test if slave ready 8

BPL.S WAIT2 If not then wait. 8
MOVE.L D6,SL.NHMN(AO) Pass matrix element. 16
MOVE.L D4,SL.NSI(AO) Pass secondary index. 16
MOVE.W #T2JOB,(AO) Pass two-job code. 12

* Test if I-bus ready with another TSW,
* if so then do again.
NEXTJOB TST.B MCNTRL Test if I-bus ready. 16

BPL TESTJOB If so then do again. 10

Total = 464 clocks 

= 29 .usees

)
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************************************************************************ 
* *
* SLAVE PROCESSOR TWO-JOB ROUTINE *
* * 
************************************************************************ 
*
* Address register contents;

AO
A1
A2
A3
A4
A5
A6

Pointer to SIOODE and base address of workspace 
CMA-bus PFB
FPU1 - address to send ID byte, 

to send ID byte,
to send operands and read result, 
to send operands and read result, 
register for CMA-bus.

FPU2 - address 
FPU1 - address 
FPU2 - address 
SCNTRL control

Data register contents;
D 7  ID-byte for FPUs.

Number of 
clock cycles

* Read data from parameter passing area.
PS.STRT2 MOVE.L SL.NHMN(AO),D2 Read new Hmn.

MOVE.L SL.NSI(AO),D5 Read new secondary index.
♦Signal to master processor (via SICODE) that data has been read.

MOVE.W #NOVAL,(AO)
♦ Activate CMA-bus to read Vim and Vfm.

MOVE.L D5,(A1)
♦ Save data in workspace.

MOVE.L D5,SL.SI(AO)
MOVE.L

* Start off FPU1
MOVE.W 
MOVE.W 
SWAP 
MOVE.L

Activate CMA-bus.

D2,SL.HMN(AO)
  Hmn x Vin
D7,(A2) 
#MULFF0A,(A4) 
D2
D2,(A4)

16
16

12

12

16
16

Send FPU ID-byte.
Send operation code word. 
Swap Hmn.
Send Hmn.

* Read vector elements from CMA-bus PFB, if ready.

Vim

(A 6 )
WAITC 
4(A1),D3

 Hmn x
D7,(A3) 
#MULFIA,(A3) 
D2,(A5)
D3
D3,(A5)

WAITC TST.B 
BPL.S 
MOVE.L

* Start of FPU2
MOVE.W 
MOVE.W 
MOVE. L 
SWAP 
MOVE.L

* Read Vfm from CMA-bus PFB.
MOVE.L 8(A1),D1 
SWAP D1

* Read back status from FPU1 ( = Hmn
MOVE.W 8(A2),DO 
BEQ.S FP1 
TRAP #1 
DC.W FPU1ER

* Read result from FPU1.
FP1 MOVE.L (A2),DO

Test if ready.
If not then wait.
Read Vim.

Send ID-byte.
Send operation code word. 
Send Hmn to FPU2.
Swap Vim
and send to FPU2.

Read Vfm from CMA-bus. 
Swap Vfm.
Vin)
Read status word.
If zero then OK.

Read result.

12
4
12

8
8
16

8
12
12
4
12

16
4

12
10

12
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* Start off FPU1 (Hmn x Vin) + Vfm 
MOVE.W D7,(A2) Send FPU ID-byte, 8
m o v e.w #ad d f i a,(A4) Send operation code word. 12
MOVE.L DO, (A4) Send previous result. 12
MOVE.L D1,(A4) Send Vfm. 12

* Read back status from FPU2 (= Hmn x Vim)
MOVE.W 8(A3),D0 Read status word. 12
BEQ.S FP2 If zero then OK. 10

* Read 
FP2

TRAP #1 
DC.W FPU2ER 

result from FPU2. 
MOVE.L (A5) ,DO Read result. 12

* Start off FPU2 (Hmn x Vim) + Vfn.
MOVE.W D7,(A3) Send ID-byte. 8
MOVE.W #ADDFIF1,(A5) Send operation code word. 12

ft MOVE.L DO,(A5) Send previous result. 12

* Waitft for FPU1; wait approx. 101
♦
* Read back status from FPU1. 

MOVE.W 8(A2),D0 Read status word. 12
BEQ.S FP3 If zero then OK. 10

* Read 
FP3

TRAP #1 
DC.W FPU1ER 

result from FPU1. 
MOVE.L (A4),DO Read result (=Vfm) 12
SWAP DO Swap 4
MOVE.L DO,8(A1) Send to CMA-bus PFB. 16

ft MOVE.L D5,(A1) Activate CMA-bus. 12
*
* Waitft for FPU2; wait approx. 8
♦
* Read back status from FPU2 (no result to read back).

MOVE.W 8(A3),DO Read status word. 12
BEQ.S FP4 If zero then OK. 10

* Test

TRAP #1 
DC.W FPU2ER 

SIOODE from master processor for next job.
FP4 CMPI.W #T2JOB,(AO) Test for next job. 12

BEQ PS.STRT2 If two-job then do again. 10

Total = 588 clocks

= 36.75 jusecs
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The calculation of nuclear properties has proved very successful for light nuclei, but is limited by the power of the present 
generation of computers. Starting with an analysis of current techniques, this paper discusses how these can be modified to 
map parallelism inherent in the mathematics onto appropriate parallel machines. A prototype dedicated multiprocessor for 
nuclear structure calculations, designed and constructed by the authors, is described and evaluated. The approach adopted is 
discussed in the context of a number of generically similar algorithms.

1. Introduction

Physicists have been investigating the structure 
of the atomic nucleus since its discovery in the 
early years of this century. The difficulties are 
considerable: not only is the nucleus a quantum 
many-body system, but it is governed, moreover, 
by an interparticle potential (the nucleon-nucleon 
interaction) which is not fully understood. From 
empirical observations, it has long been known 
that there are indications of a shell structure, 
resembling the well-understood model of the atom. 
Yet, despite basic similarities, there are major 
fundamental differences of character between the 
atomic and nuclear cases: the existence of two 
distinct types of nucleon; the more exotic nature 
of the nuclear force; and the absence of any heavy 
centre of this force.

The basic assumption of the Shell Model [1] is, 
that to a first approximation, each nucleon moves 
independently in a potential that represents the 
average interaction with the other nucleons. The 
solutions of the single-particle Schrodinger equa­
tion in an approximation to this potential reveal a 
fundamental shell structure. Upon inclusion of the 
sp in-orb it term, it is then possible to make pre­

dictions in encouraging agreement with experi­
ment, in cases where two-body forces are not 
effective.

In moot nuclei, however, we must assume that 
the Hamiltonian has a two-body nature:

The crucial problem of diagonalising this operator 
may be tackled by choosing as a basis for the 
configuration space, wave functions with definite 
values of “ good” quantum numbers like J  (total 
angular momentum), T  (isospin) etc., thereby per­
mitting a decomposition into subspaces where 
these quantum numbers are conserved. Although 
this reduces the magnitude of the problem some­
what, the technique is not without its drawbacks: 
for example in the form of the elaborate algebra 
of coupling central to its mathematical develop­
ment.

Within the last decade or so, theorists at Glas­
gow have explored a fruitful alternative, the m- 
scheme, in which a Slater determinant basis is 
employed (Slater determinants are eigenvalues of 
the single-particle state occupation operators). Al-
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though very large configuration spaces result from 
this strategy, the Hamiltonians can be efficiently 
dealt with by proper attention to numerical tech­
niques. The real strength of the method lies in the 
natural way in which it can be mapped onto an 
extremely simple and elegant digital representa­
tion, making it ideal for computer manipulation. 
This mapping is central to the considerable success 
of the Glasgow Shell Model Program [2].

However, even light w-scheme systems can 
generate a substantial computational load (enough 
to tax available time on conventional mainframes), 
and the machine resources required by nuclei of 
higher mass number are enormous. The authors 
believe that only a parallel solution to this prob­
lem is realistic, but, to pursue such a course, 
certain difficulties must first be overcome. The 
current Glasgow Program is, in essence, a unipro­
cessor algorithm, which, for various reasons is not 
directly suitable for a concurrent machine. Fur­
ther, the scale of the potential CPU demand is so 
large that even were a suitable algorithm identi­
fied and successfully mapped onto a general pur­
pose parallel computer architecture, any existing 
or planned machine would still be unable to meet 
it satisfactorily. It seems logical therefore, that any 
search for such an algorithm should be under­
taken with a view to its possible implementation 
as a dedicated system. This paper describes a 
recent project at Glasgow to identify a class of 
concurrent shell model algorithms, and investigate 
the feasibility of mapping this class onto real 
machine architectures. As part of this project, a 
pilot Shell Model Processor, has been constructed. 
This machine illustrates the principles applicable 
to a much larger system, although its own capabil­
ities are necessarily limited.

2. Review of shell model theory

The computer-oriented representation of the 
Glasgow Shell Model Program is developed from 
the traditional occupation number formalism. In 
any n-particle system we can, given the single-par­
ticle states ordered by some arbitrary means, form 
a basis for the system as a whole from the Slater

determinants: 

l«i •••«,■•••>
with n t particles in state i. These are eigenfunc­
tions of the number operators, representing n-par- 
ticle states with definite values for the occupancy 
of each single-particle state [3]. For a nuclear 
system, of course, the Pauli principle demands 
that n t = 0 or 1, for each /. The Glasgow for­
malism involves assigning each single-particle 
nucleon state of a given system to a different bit 
of a computer word. The values, 0 or 1, which the 
bit can assume, indicate whether the state is empty 
or full. Thus the Slater determinant 110010100), 
describing a 3-particle system with 8 possible 
single-particle states, can be represented by an 
8-bit word 10010100.

Much of the initial effort expended on the 
m-scheme approach, has concentrated on light 
nuclei, with an active sd-shell (fig. 1). The sd-shell 
consists, in fact, of 3 sub-shells ( l d 5/2, 2s1/2 and 
I d 3/2) with a total of 12 single-particle states for 
protons and an equivalent 12 states for neutrons. 
For calculations involving sd-shell nuclei, the 
closed Is and lp  shells are considered only as 
contributing to the overall single-particle poten­
tial, while the outer pf-shell is deemed to be 
inaccessible (although this constraint is sometimes 
slightly relaxed). Hence only the 24 sd-shell

' pf -shel l

sd-shel l

Fig. 1. Energy levels in the shell model.
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orbitals need be considered and the computer 
word used for representation requires 24 bits.

In the m-scheme there is a trade-off between 
the flexibility of the representation and the size of 
the configuration space. Despite the indeterminate 
values of most of the helpful quantum numbers, 
however, Slater determinants are eigenfunctions of 
the M j operator (z-component of total angular 
momentum), so conservation does still allow some 
reduction in the scale of the problem. The first 
step is to generate a complete set of Slater de­
terminants with prescribed quantum numbers (e.g. 
number of protons, number of neutrons, total M j 
and parity), forming a basis for the section of the 
nuclear space under consideration. Once this is 
achieved, the fundamental problem, both from the 
physical and computational points of view, is that 
of evaluating the H am iltonian matrix and 
thereupon diagonalising it. Many other calcula­
tions, such as for example, deriving the density 
matrix for a given state, or determining the expec­
tation values of other observables, are essentially 
less demanding variations of this basic task.

The magnitude of the eigenvalue determination 
problem is a consequence of the iterative nature of 
the diagonalisation process, performed on what is 
likely to be a very large matrix. The largest pure 
sd-shell calculation generates a space with a di­
mension of about 105, but, if pf-shell orbitals are 
introduced, there is no realistic upper bound. Ob­
viously, therefore, no machine can perform totally 
unconstrained Shell model calculations involving 
shells above the sd. The question is: how large a 
subset might become feasible in the foreseeable 
future?

If the Hamiltonian is treated as a two-body 
operator, a typical element ( /  | H  | / )  is zero 
whenever the basis states | i ) and | / )  differ by 
the position of more than two particles (i.e. if the 
representing digital words have a Hamming dis­
tance of more than four). Otherwise matrix entries 
can be computed by taking linear combinations of 
the empirically determined uncoupled two-body 
matrix elements. Hijk/, of which there are a rea­
sonably small number, and which contain the 
quantitative description of the nuclear force. The 
zero-condition, as the Hamming criterion will be 
referred to henceforth, does, however, imply a

Hamiltonian matrix which is irregularly sparse, a 
feature which can be exploited to some extent, but 
which does not admit any real labour-saving 
mathematical devices. The Hamiltonian is, there­
fore, generated by determining which pairs of 
basis elements are li iced by a non-zero matrix 
entry, and, for each such pair, by computing a real 
value determined by a simple evaluation theorem. 
For example, if exactly two bits differ between the 
representations of | / )  and | / ) ,  the value is a 
single two-body element Hijkl, apart from sign. 
The diagonalisation itself is accomplished by 
means of the Lanczos method [4], This has the 
great advantage that, Tor any given n X n  matrix 
A , it is only necessary to diagonalise its upper 
m X m  com er for m  « : n, to obtain convergence 
for the dominant eigenvalues of A. Since this can 
be done after only m — 1 iterations, the Lanczos 
method is ideally suited to the problem of finding 
the lowest energy eigenstates of large Hamiltonian 
matrices.

The Lanczos algorithm itself, starting within a 
trial vector vx, generates a sequence of mutually 
orthogonal vectors (y ,)  such that:

A Y = Y T  where Y = [ y „ . . . ,  y„],

and T  is tridiagonal. During this process, a m od­
erate amount of vector manipulation is involved, 
but by far the most computationally intensive step 
is the multiplication of A into the current iteration 
vector yr  For matrices the size of the larger shell- 
model Hamiltonians this is a very heavy arith­
metic load indeed.

The multiplication problem can be tackled in 
two distinct ways: the matrix can be generated 
once, then stored and retrieved when required; or 
it can be generated afresh, in real time, for every 
iteration. The former approach reduces the com­
putational load, but requires enormous amounts 
of secondary storage (hundreds of gigabytes for 
relatively modest pf-shell calculations). Further, 
any attempt to exploit high-performance matrix -  
vector multipliers must confront the significant 
data retrieval problems which such a secondary 
storage scheme would face. Although the authors 
do not, by any means, consider that these difficul­
ties are insurmountable, the present work is con­
fined to development of the second alternative,
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which seems to offer a more flexible, and at least 
as cost-effective, solution.

3. Parallelism in Shell Model calculations

Seeking a suitable parallel algorithm for Shell 
Model calculations, a natural first step is the 
explicit identification of any fundamental concur­
rency in the logic of the m-scheme, typified by the 
following sequence:
1) Generate an ordered Slater determinant basis 
for the space involved. This basis (e x, . . . , e N) 
serves as an index for the rows and columns of the 
Hamiltonian, and for the rows of the state vectors.
2) Find all pairs of basis elements (e ;, e .) which 
fail the zero-condition test. If a pair passes the 
test, the corresponding (/, y')th entry of the Ham ­
iltonian is, as discussed above, automatically zero.
3) For each contributing pair found, use the 
evaluation rules and the uncoupled two-body ma­
trix elements to compute the real value of the 
(/, y')th Hamiltonian entry, say, H ^.
4) For each nonzero H ,• •, multiply by the y'th 
element of the initial vector for the iteration and 
accumulate the product into the / th element of the 
product vector. When this has been achieved for 
all nonzero Hijt the matrix multiplication is com­
plete.

The most obvious parallelism arises at steps 3 
and 4. The evaluation of individual matrix entries 
is independent unless tables of two-body elements 
are shared, and there is no great inhomogeneity in 
the amount of work associated with different en­
tries. Furthermore, matrix multiplication is itself 
also inherently parallel, for clearly two arithmetic 
processors can proceed independently to compute 
contributions to a final vector given two distinct 
entries of the multiplier matrix. However, consid­
ering the potentially very large dimensions of the 
configuration spaces, the initial and final vectors 
for an iteration will inevitably be shared random 
access data structures, creating a possible limit to 
the maximum practical degree of concurrency.

The parallelism in tracking down the contrib­
uting pairs is less easy to exploit efficiently. Since 
the matrix is irregular, there is no way of, say,

block-partitioning it, to share work equally 
amongst several processing elements. However, 
given that any subdivision may be unfair, it is 
possible to introduce concurrency here also by, for 
example, allocating different rows to different 
searching elements.

The ultimate aim is to provide an algorithm 
which allows maximal parallelism. To achieve this, 
any potential bottlenecks must be identified and 
their effect minimised. As is well known, such 
bottlenecks arise when processes are forced to 
communicate in such a way that the communica­
tion medium, or subnet, becomes saturated. The 
above analysis suggests that the presence of shared 
data structures is liable to engender just such a 
situation, and, clearly, minimising access to any 
such structures will be vital to the success of a 
practical system.

4. The Glasgow Program

As a salient starting point, the standard Glas­
gow Program algorithm [2] is analysed as applied 
to the sd-shell, providing a simple yet concrete 
example. Fig. 2 shows a typical assignment of 
single-particle states to a 24-bit word, divided in 
two, with the most significant half chosen (arbi­
trarily) to represent proton orbitals. Each bit, /, 
has associated with it, a value, m t, representing 
the contribution to the z-component of total angu­
lar momentum from the /th  orbital (if occupied). 
Of course:

M j = L m r
i

Suppose a calculation involves a nucleus with 
n p protons, n n neutrons and total Mj = M. 
Generation of the basis with the orbital assign­
ment of fig. 2, amounts to producing all 24-bit 
words with n p ones in the upper 12 bits, n n ones 
in the lower 12 bits, and with a total M j contribu­
tion of M  from these set bits. This is achieved by, 
first, filling the leftmost n p proton bits and the 
leftmost n n neutron bits with ones, then succes­
sively moving the rightmost set bit one place to 
the right, checking, as each new word is produced, 
whether its My value is M. Words satisfying the
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Bit Number 1 J Nucleon

23 d 5/2 + 5/2 proton22 d 5/2 +3/2 proton21 d 3/2 + 3/2 proton
20 d 5/2 + 1/2 proton
19 d 3/2 + 1/2 proton
IB s 1/2 + 1/2 proton
17 d 5/2 -1/2 proton
IE d 3/2 -1/2 proton
15 s 1/2 -1/2 proton
14 d 5/2 -3/2 proton
13 d 3/2 -3/2 proton
12 d 5/2 -5/2 proton
11 d 5/2 + 5/2 neutron
10 d 5/2 +3/2 neutron
9 d 3/2 + 3/2 neutron
B d 5/2 +1/2 neutron
7 d 3/2 + 1/2 neutron
6 5 1/2 + 1/2 neutron
5 d 5/2 -1/2 neutron
4 d 3/2 -1/2 neutron
3 s 1/2 -1/2 neutron
2 d 5/2 -3/2 neutron
1 d 3/2 -3/2 neutron
0 d 5/2 -5/2 neutron

Fig. 2. Typical assignment of single particle states to a 24-bit word.

conditions are stored, producing a basis list in 
descending numerical order.

Once the basis has been computed, each ele­
ment, er, is used to begin a search along a row of 
the Hamiltonian, seeking non-zero entries. This is 
done by selecting a pair of set bits, say k  and /, 
and resetting them. The indices k  and / are used 
to locate a block of main store containing all two 
body matrix elements Hjjkl, for all /, j  such that:
m i + rrij =  m k + m ,.

Proceeding through this list, those elements are 
selected which are such that when i and j  are set, 
the new Slater determinant has valid n p, and n n 
(M  is guaranteed by the above condition), so that 
it is a member of the basis, say es. The pair er, es 
now represent row and column indices for a Ham ­
iltonian entry, Hrs, which can be passed for 
evaluation: in fact its value, apart from sign will 
frequently be just Hijkl. However, to use this 
element in the matrix multiplication, the value s 
must be explicitly known. This may be found by 
conducting a binary search on the stored basis list 
(which, recall, is in numerical order). Once s is 
found, Hr s can be multiplied by the 5 th element

of the initial vector for the iteration, and accu­
mulated into the r th  element of the final vector. 
The process is repeated for all k  and / in er, and 
then for each r, until the basis is exhausted.

To discover the limitations of this scheme, it is 
necessary to examine problems which may arise as 
it is applied to larger calculations. Firstly, note 
that there is inevitably a loss of efficiency in 
primitive manipulation, as the size of the Slater 
determinant representation exceeds that of a CPU 
word on the host machine. However, a rather 
more serious problem, is the requirement that the 
entire generated basis must reside in primary store 
throughout the calculation. For an sd-shell nucleus, 
assuming 32-bits per Slater determinant, this de­
mand will not exceed 1 / 2  Mbyte, which is accep­
table, given that the two iteration vectors will 
occupy twice this space. On the other hand a 
pf-shell representation word can be up to 128-bits 
long, so that a space of dimension, say 106, would 
require 16 Mbytes to store its basis alone.

If the algorithm were implemented on a parallel 
machine, presumably the initial and final iteration 
vectors, together with the stored basis would be 
shared data structures. In a typical pf-shell calcu­
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lation, perhaps 20 access would be required by 
each element evaluation: a heavy load on the 
available shared bandwidth (a single access to the 
initial vector is inevitable anyway). Since this 
shared bandwidth is always a possible bottleneck, 
the potential degree of parallelism is consequently 
reduced substantially, when compared with an 
algorithm which could avoid this search.

Although other search algorithms could be 
employed, there is no ideal alternative candidate. 
For example, there is no obvious hash function 
which would efficiently map the basis into a hash 
table, without both requiring substantially more 
primary memory and significantly increasing the 
computation load of the search. Although a hash­
ing approach would reduce the number of shared 
memory references per evaluation, the cost would 
be appreciable.

The ideal solution is one which allows the value 
of the column index to be determined without any 
shared memory references at all. It transpires that 
just such a solution is possible, eliminating not 
only the search process, but, in addition, requiring 
no basis storage whatsoever. The authors have 
investigated algorithms with this property, which 
depend on imposing a structure on the Slater 
determinant basis, and have designed and con­
structed a prototype parallel dedicated system, 
The Shell Model Processor (SMP), to test the 
method out in practice.

As will emerge shortly, the efficiency with which 
critical sections of an algorithm can be hardwired 
into high-performance hardware “ accelerators” is 
an im portant consideration in the design of cost- 
effective special purpose computing machines. The 
Glasgow Program was not designed with these 
considerations in mind, and consequently, as might 
be expected, the techniques it employs (e.g. for 
basis generation) are not very suitable for such 
translation.

5. The Shell Model Processor project

The Shell Model Processor was developed to 
demonstrate the feasibility of implementing struc- 
tured-basis algorithms as dedicated parallel archi­
tectures. The scope of the project has been limited
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Fig. 3. Structured Basis organisation.

to the development of a machine capable of per­
forming sd-shell calculations, but with an architec­
ture extensible to the pf-shell.

These algorithms generate an ordered basis for 
a given nuclear configuration space as a sequence 
of sublists. The process depends on defining an 
equivalence relation, -  , on a Slater determinant 
basis, L, for the configuration space. As is well 
known, such a relation induces a ‘partition’ of L, 
the subsets of which can be ordered by some 
arbitrarily chosen order relation, < R, to form a 
sequence, ( l}, l2, . . . , / „ ) .  A sequence of this kind is 
referred to henceforth as an O-partition of L (fig. 
3). To facilitate discussion the following formal 
definitions are introduced.
1) Let P(L) =  (/j, /2, . . . , / „ )  be an O-partition of 
L. A permutation operator on ( /2, /2, } is 
called the O-function of P(L) if, for / =  1 , . . . ,  n,

0 ( / , )  =  /,-+!, where ln+l = f .

2) Let P(L) =  (/j, /2, . . . , / „ )  be an O-partition of 
L. A is called an orbit-generating function, Gp, for 
P(L) if it is a permutation operator on L such that 
the /, are precisely the orbits of A [5] i.e. if et is an 
element of /,, then:

/, =  (<?,, A et , A ^ i , . . . ,  A (n~ '}e,) and

If one element (a base) is selected from each of 
the /,, then Gp (together with P(L)) defines a total 
order on L converting it to an ordered basis L PG. 
The function mapping /, onto its base element is 
called the base function of P(L), BP(L) -» L.
3) The function mapping /, onto the index of its 
base element, in the ordering of L PC, is called the 
index function of P(L), denoted Ip: P(L) -* N.
4) Let et be an element of L, The function map­
ping each et onto the unique /■ containing e , is
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called the characteristic function  of P(L) and will 
be denoted Cp: L -» P(L).
5) The function mapping e t onto the offset into 
Cp {e t ) is called the offset func tion  of L PG, 
Off[P,G]: L -> TV.

The success of a generating algorithm, depends 
crucially on the choice of ~ and thereupon on 
selecting an ordering relation such that functions 
O, G and B can be found which are suitable for 
efficient evaluation in low-level software, or even 
in hardware. This criterion is far from a demand 
that these functions should have simple analytical 
forms. On the contrary, evaluation may involve 
any appropriate technique including, for example, 
interpolation of values in pre-calculated look-up 
tables.

Once a partition for the basis has been chosen, 
the generation algorithm is:

const null =  — 1; 
type Orbit =  record

Orbitlndex: -1 ..M A X IN T ; 
Descriptor: OrbitDescriptor; 

end;
var CurrentOrbit: Orbit;

Basis_Elt: Slater Determinant; 
begin

CurrentOrbit :=  FirstOrbit; 
repeat (* outer loop *)

if CurrentOrbit.Orbitlndex ( ) null then 
begin

Basis_Elt s= Base(CurrentOrbit); 
OrbitComplete :=  false; 
repeat (* inner loop *)

Output(Basis_Elt);
Basis _Elt == G(Basis_Elt); 

until Basis_Elt =  Base(CurrentOrbit); 
end {if}
CurrentOrbit — O(CurrentOrbit); 

until CurrentOrbit =  FirstOrbit; 
end;

where OrbitDescriptor is a complex type repre­
senting the /,, and FirstOrbit a predefined variable
of type Orbit. The roles of G and O in this are
clear.

Structured basis algorithms are distinguished

Hamiltonian M atrix

S e a rc h  P a t te rn

I S econdary  B asis

[S eg m en ts  n o t in se a rc h  p a t te r n  
need  not be g e n e ra te d  ]

Fig. 4. Dual Basis generation.

by the means employed to produce the structured 
Slater determinant basis. However, subdivisions in 
the class can be identified according to how the 
Hamiltonian search is conducted. The prototype 
Shell Model Processor is designed to work with a 
subclass which will be called Dual-Basis (DB) 
algorithms, characterised by the generation of a 
second basis for each element of the original basis 
produced (fig. 4). This corresponds to treating the 
latter as the indexing element of a row of the 
Hamiltonian, which is searched element by ele­
ment. As each element of the secondary basis is 
produced, it is compared against the primary ele­
ment to check the Hamming distance zero condi­
tion. If a column counter is maintained against the 
second basis, the index of any secondary element 
which fails need not be computed, since it will be 
available directly.

The advantages of this approach hinge on the 
success with which the functions O, and especially 
G, can be implemented. If a relatively simple 
high-speed hardware engine can be constructed to 
realise G, then an efficient search can be con­
ducted. The algorithm is of course optimal with 
respect to accesses to shared storage, which are 
only required for retrieval of Lanczos vector coef­
ficients. However, the wastefulness of the search is 
equally evident. Unlike the Glasgow Program, all 
Hamiltonian entries are tested: there is no means 
of selecting only pairs of basis elements which fail 
the zero condition test, without explicitly conduct­
ing that test. Fortunately the test can be carried 
out in hardware at very high speed. If A and B are 
two representation words for basis Slater determi­
nants, then the Hamming distance between them 
is the number of ones in the exclusive-OR of A
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and B. If the number is 0, 2 or 4, the test is failed 
and the corresponding Hamiltonian entry must be 
evaluated; otherwise, that entry is zero.

The pilot SMP system is designed to investigate 
parallel implementations of DB algorithms. The 
machine can handle Slater determinants with up 
to 32 single-particle states, although it has, as yet, 
only been tested on sd-shell iterations. It is in­
tended to act as an experimental prototype for a 
much larger system (Phase II) which would have a 
similar architecture, but might use other struc­
tured basis algorithms. As part of the project, the 
authors have defined a multiprocessor architecture 
(the M MPU [6]) which is capable of supporting 
any structured-basis algorithm (and, for that 
matter, algorithms of the Glasgow type)..

The present SMP consists of a prototype 
M M PU connected to a Hamiltonian Matrix For­
mat Generator (M FG). This is a dedicated subsys­
tem which uses a dual-generation algorithm to 
search the Hamiltonian, identifying pairs of basis 
elements which fail the zero-condition test and 
passing them on to the M M PU for evaluation and 
multiplication. The M FG generates the primary 
basis by software running on an internal micro­
computer the MFG Controller, but the production 
of the secondary basis and the subsequent zero- 
condition testing is implemented almost entirely 
in hardware. There are 4 functional units (fig. 5).
1) The MFG Controller is a M otorola MC68000- 
based microcomputer, designed and developed by 
the authors, responsible for overall supervision of 
the M FG as well as execution of the Primary 
Basis Generator software.
2) The Secondary Basis Generator, a high-speed
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Fig. 5. Matrix Format Generator (logical block diagram).

(ECL technology) synchronous hardware accelera­
tor, generates the secondary basis in response to 
each new basis state produced by the Controller. 
In fact the Secondary Generator can itself pro­
duce, unaided, only a single orbit of the chosen 
partition, and must, therefore, also be supplied 
with a search pattern by the Controller. Some­
times it is possible to eliminate entire orbits from 
the search because it can be shown in advance 
that none of their Slater determinants can possibly 
fail the zero condition test with a Slater determi­
nant in the current primary orbit (fig. 4). The 
M FG ’s dual-generation algorithm allows very easy 
identification of such inter-orbit incompatibility 
and Secondary Generator search patterns are cho­
sen accordingly. Early simulations and subsequent 
experiments with the full system have shown that 
the total search can be reduced by about 25%, 
using this technique.
3) The Pair Filter accepts each pair of Slater 
determinants ( | /'), | / ) )  output from the Primary 
and Secondary Generators, performing a hard­
ware zero-condition test, discarding pairs which 
pass, but synthesising job-packets for pairs which 
fail. These packets, each 42-bits long are passed to 
the MMPU where each will initiate an indepen­
dent concurrent evaluation/multiplication pro­
cess.
4) The MFG Buffer is a high-speed FIFO which 
evens out inhomogeneities in the production rate 
of pairs by the M FG and their consumption by 
the MMPU. The current Secondary Generator 
operates on a minor cycle of 118 MHz, producing 
one Slater Determinant about every 100 ns (Major 
cycle about 10 MHz). Of these, in a typical large 
sd-shell calculation, less than 1%> will fail the 
zero-condition test, and initiate an MMPU pro­
cess. The buffer must be capable of accepting 
job-packets from the M FG at the sustained maxi­
mum rate, while still allowing (asynchronous) reads 
from M MPU processors which have become idle.

The three hardware modules form a sequential 
fully pipelined machine and operate in asynch­
ronous parallelism with the Primary Generator 
software.

The M FG algorithm creates a basis O-partition 
as follows. Each 32-bit Slater determinant is 
divided into four bytes, which are indexed:



L.M. Mackenzie et al. /  Nuclear shell model calculations 237

Bits 0 -7  are designated 0;

Bits 8-15 are designated 1;
Bits 16-23 are designated 2;

Bits 24-31 are designated 3.

Bytes 0 and 1 contain the neutron orbitals, while 
bytes 2 and 3 contain the proton orbitals. The 
equivalence relation chosen is:

Let A and B be Slater determinant representa­
tions. Define ~ by:

A ~  B ~
«y(A) =  «y(B)

and
m i ( A ) = m i (B)  / =  0 , . . . ,3 ,

where w,(A) is the number of set bits (occupied 
orbitals) and m t(A) the contribution to Mj  from 
the /th  byte of A.

The Secondary Generator implements a gener­
ating function G for this relation as follows. To 
each byte of the Slater determinant representation 
word, there corresponds a channel in the Genera­
tor. If the ith channel is seeded with a particular 
pattern of 8-bits, then the channel will produce, in 
sequence, all patterns with the same n , and m t as 
the seed. A complete orbit of the above relation 
can be produced by assigning a significance weight 
to each channel (e.g. 3 the most significant) so 
that the whole unit acts like a counter, channel 0 
running through its entire chain before the output 
of channel 1 moves on etc.

The O-function itself is implemented (in soft­
ware) by a combination of shifting set bits and 
searching for 4-way partitions (in the number 
theoretic sense) for the total M j of the configura­
tion space. This performs well, but, at least in its 
present form, would not be suitable for implemen­
tation in high-speed hardware. This could be a 
disadvantage for very large calculations, where the 
combinatorial size of the problem could over­
whelm a single processor (although a multi­
processor solution is possible, the speedup is not, 
in the general case, predictable), forcing the G en­
erator to wait. For this reason, the authors have 
been concerned to develop alternatives which 
would be more amenable to a hardware realisa­
tion.
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Fig. 6. Block diagram of MMPU.

The MMPU is described in detail in ref. [6]. 
Multiple shared buses connect a number of gen­
eral-purpose processing elements called Micro­
computer Modules (MCMs), Central Memory Mod­
ules (CMMs) which provide bulk storage for global 
data such as Lanczos vectors, the M FG Controller 
and a Supervisor Module which coordinates the 
activities of the system as a whole (see fig. 6). 
Referring to fig. 6, the MCMs, which are responsi­
ble for executing the evaluation-multiplication 
processes setup by the M FG, read asynchronously 
from the M FG  buffer using the high-speed de­
dicated I-bus. All interactions with the shared 
Lanczos vectors are handled by the 64-bit CMA- 
bus, which is used only for accesses to CMMs. 
Driven by specialised interfaces, both these buses 
are optimised to permit maximal sharing of 
centralised resources, and, in particular to support 
the greatest possible throughput for Hamiltonian 
element processes.

Although a full MMPU has not been imple­
mented (the prototype has only two of the buses 
installed at present), the authors have been able to 
run complete sd-shell iterations using the pilot 
system. The results are in accordance with expec­
tations.
1) The MMPU shared resources and communica­
tion structures would not present a bottleneck 
unless demand were increased by some two to 
three orders of magnitude over that required by 
the present sd-shell system. This can be consid­
ered the ultimate limit of the MMPU structure as 
presently defined.
2) MCMs have no rigidly defined internal archi­
tecture (although they have rigidly defined func­
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tional specifications) and are intended to facilitate 
replacement by technologically superior units as 
these become available. The most powerful MCM 
installed to date is capable of handling about half 
the average output of the prototype MFG. Two 
such modules would give the prototype processor 
about half the speed of an IBM 360/195 execut­
ing the Glasgow program. It would be feasible 
already to construct MCMs with 5 to 10 times the 
processing capacity of these using standard micro­
processors (a preliminary design already exists 
based on the M otorola MC68020 in a multi­
processor configuration).

From this it is apparent that the current system 
bottleneck lies within the M FG rather than the 
MMPU. The M FG is of course the only part of 
the SMP which is still sequential. The authors 
estimate that state-of-the-art ECL technology 
would allow the construction of an M FG no faster 
than ten times the speed of the prototype. The 
solution, clearly, is to introduce parallelism into 
this part of the algorithm as well.

5. Increasing the parallelism

The most obvious solution to the bottleneck 
presented by the M FG  is to attem pt to introduce 
parallelism by dividing the work of the dual-basis 
search into several concurrent parts which can be 
tackled simultaneously by an array of dedicated 
machines. This is obviously possible, for example, 
at the row level, by assigning different rows of the 
matrix to different Secondary Generators, operat­
ing together. What is not immediately clear is how 
the M FG Controller task (primary generation plus 
search pattern computation) can be divided up, 
should it, as appears likely in very large calcula­
tions, exceed the capacity of a single micro­
processor. One way in which this might be achieved 
would be to separate the primary basis generation 
and Secondary support functions (see e.g. the 
design of fig. 7). Although the latter may seem the 
more substantial of these tasks, search patterns are 
identical for all Slater determinants in a given 
primary basis orbit, so once a pattern is com­
puted, if it can be stored it can be reused re­
peatedly.

Mam ProcessorlP nm ary G enerator) 
♦ Local Resources

Row
Elements

Secondary 
Generator 
Support Control 
Processor + 
Local Resources

Local
Contro l

Common
RAM

Search
P a tte rn

RAM

A rra y  o f S econdary G ene ra to rs

Fig. 7. Separation of Primary Generator and Secondary Gener­
ator Support functions in parallel MFG using dual-basis al­

gorithm.

Despite the apparent simplicity of this exten­
sion, there are some outstanding issues. Firstly, 
the division of the task is not homogeneous, so 
performance improvements are not very predict­
able over a range of calculations. Secondly, the 
requirement for specialised high-speed hardware is 
substantial, and may only be feasible if VLSI 
custom devices are fabricated (ideally in CMOS). 
Although these problems are certainly solvable, 
there is another approach, based on a related but 
distinct class of algorithms called element-place­
ment algorithms.

Element placement algorithms use the same 
Hamiltonian generation techniques as the original 
Glasgow Program, but in the context of a struc­
tured basis. The primary basis is generated using 
an O-function and orbit generator. As each 
primary basis element is produced, however, con­
necting secondary elements are computed exactly 
as in the Glasgow scheme. When such an element, 

is discovered, its index is established by 
evaluating

Ip(C p(ey)) + Off[P,G](<>,).

It is obvious that to be suitable for such an 
algorithm, a partition must be found which not 
only has suitable O, G and I, but also I°C  and 
Off[P,G]. This latter requirement is much more
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demanding than the former, and indeed the SMP 
basis generation algorithm does not satisfy it par­
ticularly well. However, recent work has indicated 
that algorithms can be found which meet the more 
stringent conditions satisfactorily.

A variation of the SMP basis generation al­
gorithm, called fixed-occupancy generation, has 
revealed some encouraging properties which ap­
pear to indicate its suitability for either a dual-ba­
sis or element-placement approach. In fixed oc­
cupancy, the Slater determinant representation 
word is divided into unequal groups of orbitals 
(bits), each group comprising all single particle 
states with the same value of m  (7-component to 
angular momentum). The advantage of this is that 
once n i is fixed for each group, m t is automati­
cally predetermined. In the sd-shell for example 
there are 6 groups each for protons and neutrons 
(fig. 8). The basis is divided into orbits completely 
characterised by twelve occupancy figures. The 
first advantage of this is that the G-function can 
be implemented very easily. The set of possible 
ways of distributing n p particles amongst the 6 
proton groups has at most 106 members (where 
n p =  6); likewise for n n. If two lists are main­
tained in memory corresponding to each of these 
sets, it is a simple process to cross-couple them in 
such a way as to generate the base of every basis

l d 5 / E + 5 / 2

l d 5 / 2 mJ
_ + 3 / 2

1 * 3 / 2 mJ + 3 / 2

l d 5 / 2 mJ
- + 1 / 2

l d 3 / 2 mJ - + 1 / 2
l s l / 2 mJ + 1 / 2

l d 5 / 2 mJ
- - 1 / 2
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l d 3 / 2 mJ - 3 / 2

l d 5 '2 - - 5 / 2

Fig. 8. Division of single-particle proton orbitals into 6 fixed- 
occupancy groups.

orbit. The orbit generating function G can be 
implemented even more easily than in the byte- 
splitting SMP case.

Fixed-occupancy is in many ways a more natu­
ral algorithm than that used in the SMP. Because 
its characteristic and offset functions are relatively 
easy to implement on a real computer, it is suita­
ble for use in the SMP-like dual-basis, or the more 
efficient element-placement matrix generators. 
Element-placement, however, presents sufficient 
difficulties to a hardware accelerator designer to 
make a cost-effective M FG less likely. It is prob­
able that such an approach would be best served 
by increasing the number of MCMs (with eventual 
paralleling of entire MMPUs) to cope with the 
increased CPU load of m atrix generating 
processes.

The SMP algorithm is ideal in applications 
involving the sd-shell, or allowing access to a 
restricted subset of the pf-shell. In more substan­
tial calculations, however, parallel Secondary Gen­
erators would be necessary, and the load on the 
M FG Controller would be greatly increased. Using 
fixed-occupancy generation, the Controller itself 
could be largely replaced by hardware, with a 
processor needed only for the most high-level su­
pervision. However, for really large calculations, 
elem ent-placem ent allows a pure m ultiple 
processor architecture, like the MMPU, to be em­
ployed without an MFG. The CPU load would, of 
course, be heavier, but with an MMPU based 
architecture this is certainly a real alternative.

6. Conclusion

A dedicated processor, would appear to give 
nuclear theorists a real chance to conduct calcula­
tions which would otherwise not be practical. Such 
a system can, as demonstrated by the Glasgow 
Shell Model Processor project, be constructed at 
relatively low cost, in a modular fashion, so that 
its capacity can be extended when required. A 
large scale pf-shell calculator could be based purely 
on the MMPU architecture, using fixed-oc­
cupancy element-placement matrix generation, or, 
given the availability of a VLSI implementation of 
a fixed-occupancy dual-basis MFG, by a similar
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configuration to that now used in the pilot system. 
A choice between these approaches would depend 
on detailed simulations on very large configura­
tion spaces, but both appear suitable for adoption 
in cases where the dimensions involved are of the 
order of 106-1 0 7.
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1. I N T R O D U C T I O N

In recent years there  has been a grow ing aw areness o f  
the p o ten tia l p rov ided  by m assively parallel system s to  
bridge the fru stra ting  gap betw een c o m p u te r pe rfo rm ­
ance and  the co m p u ta tio n al d em ands o f  presen t-day  
scientific research. W hile p e rfo rm ance  lim ita tions have 
tended to  set fairly tight co n stra in ts  on  the applicability  
o f  in teg rated  m icroprocessing  units to  highly C P U  and  
m em ory-in tensive c o n cu rren t co m p u ta tio n s ,1 VLSI 
fab rication  techniques have increased  the processing 
pow er o f  such devices by up to  tw o o rders o f  m agn itude  
in the last decade. In  consequence, m any  o f  the m icro ­
electronics m an u fac tu re rs  are  now  acu tely  aw are  o f  the 
po ten tia l o f  their latest p ro d u c ts  to  influence the designs 
o f  h igh-perform ance co m p u te r arch itec tu res, as w it­
nessed, fo r exam ple, by the m ark e tin g  o f  the Inm os 
IM S T 424 ‘tra n s p u te r ’, a  32-bit single-chip m icro ­
co m p u te r procla im ed  by its designers as an  ideal 
build ing b lock fo r extensive m u ltip rocesso r assem blies.2

W hile significant na tio n a l p ro g ram s are curren tly  
d irected  a t the developm ent o f  general p u rpose  ‘fifth- 
g e n e ra tio n ’ paralle l arch itec tures, the perfo rm ance  o f  
‘s ta te -o f-th e -a rt’ VLSI technologies can  be b ro u g h t to 
b ear on  in trac tab le  num erical o r logical calcu la tions by 
m eans o f  m ore  specialised, bu t relatively low -cost, 
m o d u la r m ultip le m icroprocesso r system s, dedicated  
to  the so lu tion  o f  p a rticu la r  classes o f  p roblem . T his 
a p p ro ach  has several im p o rta n t advan tages as follows.

(1) T he perfo rm ance  a tta in ed  can be very high, even 
in term s o f  abso lu te  co m parison  w ith co n tem p o ra ry  
supercom puters , and  is subject to  increm ental im prove­
m ent when required .

(2) Since the m achine has the ch arac te r m ore  o f  a 
lab o ra to ry -b ased  super-ca lcu la to r th an  a co m p u te r 
insta lla tion , co m parisons o f  abso lu te  perfo rm ance  are 
in any case grossly pessim istic. T he effective processing 
capacity  (p ow er/ava ilab ility  p ro d u c t) a t the d isposal o f  
a research g roup  can be several o rders o f  m agn itude  
greater than  th a t p rovided by an  annual a llo catio n  on a 
centralised  su p ercom puter insta lla tion .

(3) R unning  and m ain tenance  costs o f  a well-designed 
m achine are so low th a t it shou ld  be possible to recoup 
the initial co n struction  ou tlay  rap id ly  in saved m ainfram e 
time. M odu larity , in pa rticu la r, if effectively exploited , 
facilities rap id  repair o f  h a rdw are  failures.

* N o w  at D e p a r t m e n t  o f  C o m p u t i n g  Sc ience .  U n iv e r s i ty  o f  
G l a s g o w .

T he difficulties involved in an  undertak in g  o f  this kind, 
how ever, are no t negligible. T here  is a fundam en ta l 
requ irem en t fo r a flexible and  extensible hardw are  
design, optim ally  adap tab le  w ithin often rigid financial 
and  o p era tio n a l constra in ts. A d ap tab ility  is im p o rtan t 
since fu tu re  p ertu rb a tio n s o r  extensions to a m ethod 
can n o t alw ays be foreseen. T here  is, in ad d ition , the 
po ten tia l bonus th a t an  a rch itec tu re  w ith a sufficient 
degree o f  inheren t generality  m ight form  the basis o f  
sim ilar ded icated  system s devoted  to  o ther, p erhaps quite 
un re la ted , co m p u ta tio n al p rob lem s, thus reducing re­
search and  developm ent effort in fu tu re  undertak ings.

T he idea o f  m achines ded icated  to  specific p roblem s o r 
classes o f  p rob lem s is no t, o f  course, new, and  has found 
favour especially in theoretical physics.3 T he au th o rs  are 
in terested  in the design o f  system s o f  this kind and  have, 
in pa rticu la r, been concerned  w ith calcu la tions o f  the 
type arising  in the theory  o f  the N uclear Shell M odel. The 
rem ainder o f  this p ap er will ou tline  a design for a Nuclear 
Shell Model Processor w hich exemplifies the above 
ap p ro ach , and  which has, in fact, a lready  been partially  
im plem ented in an ongoing developm ent project.

2. T H E  S H E L L  M O D E L  P R O C E S S O R :  W H Y  
A M U L T I P L E  M I C R O P R O C E S S O R  
S Y S T E M ?

In q u an tu m  m echanics, each  observab le  qu an tity  
(position , m om entum , energy, etc.) is represented  as a 
linear o p e ra to r acting  on a configuration space o f  state  
vectors, co rresp o n d in g  to  the allow able ‘s ta te s ' o f  the 
targe t system . T he N uclear Shell M odel involves a study 
o f  such q u an tu m  m echanical configuration  spaces o f  
very large dim ension. S tate vectors w ith as m any  as 
10® elem ents, and  m atrix  opera to rs  w ith 1012 entries are 
generated  by nuclei o f  only m edium  m ass num ber. An 
ideal N uclear Shell M odel P rocessor should be capab le  
o f  perform ing  a range o f  relevant com p u ta tio n s 
including the d e te rm ination  o f  the eigenvalues and 
eigenvectors o f  q u an tu m  o p e ra to rs , density  m atrix  
elem ents o f  state  vectors, expecta tion  values o f  observ­
ables, etc. The calcu la tion  o f  the energy eigenstates (the 
eigenvectors o f  the energy o p e ra to r)  c f  a given nucleus, 
in particu la r, is at the sam e tim e b o th  crucial to the 
theoretical developm ent and  exceptionally  co m p u ta tio n ­
ally dem anding, involving the evaluation  and d iag o n a l­
isation o f a sym m etric m atrix  o p era to r, the Hamiltonian, 
acting  on the nuclear configuration  space. The Lanczos 
algorithm  is now accepted as the stan d ard  m ethod  o f
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to it.

tri-d iagonalis ing  the H am ilto n ian  m atrix  in an angular- 
m om entum  uncoupled  rep resen tation , since the  ap p ro x i­
m atio n s to  the lower eigenvalues converge a fter only 
relatively few (say 100) ite ra tio n s .4 T he capacity  to  
execute th is a lgorithm  is, therefore, a necessary, but by 
no m eans a sufficient, co n d ition  fo r a successful Shell 
M odel processor.

A L anczos ite ra tio n  involves several m a trix /v e c to r 
op eratio n s , o f  which the m ost tim e consum ing  is the 
m ultip lication  o f  a n uc lear sta te  vector by the H am il­
ton ian . W hile, a t least in p rincip le, m o d ern  VLSI 
technology m akes the constru c tio n  o f  a pow erful and 
ded icated  parallel m atrix -vec to r m ultip lier a fairly 
stra ig h tfo rw ard  undertak in g , the capability  o f  a m achine 
o f  this kind is severely co n stra ined  when the a rrays 
involved are very large and , as in this case, irregularly  
sparse. T he m atrix , w ith p e rhaps m ore  th an  a th ousand  
m illion real entries, can n o t be held in p rim ary  storage, 
so th a t there  is a practical lim it to  the  ra te  at which 
operan d s m ay be fed to  an a rithm etic  p rocessor (see 
Fig. 1).

T here  are tw o alte rna tive  ap p ro ach es to  this problem .
(1) M atrix storage. The m atrix  can  be com puted  

once and  held on disk, being retrieved and  fed to  the 
a rithm etic  unit during  each iteration .

(2) M atrix generation. T he m atrix  can be generated 
in real tim e du rin g  each ite ra tion , w ithou t ever being 
actually  stored .

Since the n u m b er o f  elem ents is so large, the form er 
ap p ro ach  w ould require  som e tens o f  gigabytes o f  on-line, 
fast secondary  sto rage, and the technique is inevitably

extrem ely expensive; indeed for large calcu la tions it is 
p ro b ab ly  n o t feasible. M atrix  generation , on the o ther 
h and , appears to  have a greatly  superio r overall ra tio  o f 
perform ance to  cost, bu t requires substan tia l add itional 
co m p u ta tio n a l pow er. T he au th o rs  have developed 
and  tested a p ro to ty p e  generato r, the M F G  (M atrix  
F o rm a t G enera to r), w hich com bines a high-perform ance 
M C 68000 m icrocom puter and  a dedicated  E C L  h a rd ­
w are accelerator, to  p roduce  in real tim e partial 
descrip tions o f  the H am ilto n ian  m atrices o f  sd-shell 
nuclei (i.e. those w ith betw een 9 and 20 p ro to n s  and 
betw een 9 and 20 n eu trons) identifying the positions, but 
no t the values o f  all non-zero  elem ents. The problem  of 
evaluating  these elem ents is highly parallel in na tu re , but 
has an  asynchronous heterogeneous n a tu re  which 
dem ands the versatility o f  a m ultip le C PU  m achine ra ther 
th an , say, an a rray  processor. A m ultiple m icroprocessor 
system  o f the kind discussed above is an ideal solu tion  in 
this situation . A lthough  it does n o t exclude a storage 
a p p ro ach  fo r sm aller calcu la tions, it can  provide the 
flexibility and perform ance, a t suitably low cost, to run 
generation  algorithm s.

The Shell M odel P rocessor p roject is seen as consisting 
o f  tw o phases. Phase I, now  ap p ro ach in g  com pletion, is 
a practical feasibility study, involving the construction  
o f  a ‘p ilo t ' m ultiple processor, driven by the M FG . 
and  capab le  o f  hand ling  calcu lations with up to 32 
single-particle nuclear orb ita ls. Phase II will require the 
p ro d u c tio n  o f  a significantly m ore am bitious m achine 
w ith up  to  4 tim es th is o rb ita l capacity . T he Phase II 
system , as cu rren tly  envisaged by the au tho rs , is
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Figure 3. Matrix format generator. Logical block diagram

essentially  an  extension  o f  the existing Phase I p rocessor; 
in the follow ing discussion  the com plete  extended 
a rch itec tu re  will be described, ind icating  those  a reas no t 
app licab le  to  the p ro to type .

3. G E N E R A L  A R C H I T E C T U R E

The m ultip le  m icroprocesso r system  developed by the 
a u th o rs  for ap p licatio n  to  N u c lea r Shell M odel calcu la­
tions is based  on the m o d u la r  a rch itec tu re  illustra ted  in 
Fig. 2. T he fun d am en ta l bu ild ing  b lock is a self-contained 
s ta tio n  called a Multiple Microprocessor Unit (M M P U ) 
w hich has stand-alone  capab ility  b u t can  be linked to 
o th er sta tions, p rov id ing  scope for ho rizo n ta l expansion 
should  it ever be desired. T he p resen t w ork  will be (even 
in Phase II) restricted  to  the  constru c tio n  o f  a single 
M M P U  w hich should  have perfo rm ance  characteris tics 
m ore  th an  ad eq u a te  fo r  pro jected  requ irem ents. W ithin 
an  M M P U , co n tro l resides w ith a  single Supervisor 
Module (SM ), w hich co o rd in a tes  the  activities o f  a 
n u m b er o f  general-purpose processing elem ents called 
Microcomputer Modules (M C M s), each an  independent 
c o m p u te r in its ow n righ t. All the M C M s m ay random ly  
access the shared  Central M em ory Modules (C M M s), 
w hich p rov ide  bulk  storage fo r g lobal d a ta  such as the 
vectors in a L anczos ite ra tion . A dditiona lly  they m ay 
o b tain  param ete rs  from  an ex ternal gen era to r w hich can 
act as a d a ta  d river fo r in ternal M C M  processes. This 
generato r, which cou ld  be a m assive secondary  storage 
facility o r a fron t-end  processor, acts as the source o f  
m atrix  elem ents du rin g  the L anczos m atrix -in to -vec to r 
step. The presen t a rran g em en t uses the p ro to ty p e  M F G  
in this role (Fig. 3), and  is expected to  con tin u e  until the 
system is required  to  execute calcu la tions involving 
nuclides with active p f  shells.

The fundam en ta l feature o f any m ultip le processor 
system  is its co m m unica tions subnet to  w hich all its 
constituen t processors (hosts) in terface. T he sub n e t's  
p roperties are defined by the system  in te rconnec tion  
topology and , for m any  app lications, determ ine the 
abso lu te  lim its o f  perform ance. C onven tional m ulti- 
m icroprocessors fall squarely  in to  F ly n n 's  M IM D  
c a teg o ry :5 system s consisting  o f  m any  processors 
runn ing  w hat are essentially au to n o m o u s bu t, in general.

in tercom m unica ting  processes. It is now  widely accepted 
th a t, fo r large m achines in th is class to  be successfully 
im plem ented , individual processors m ust be endow ed 
w ith local resources (especially m em ory) so th a t the 
global subnet is loaded  only w hen necessary. In 
particu la r, C P U  references to  the in struction  stream  and 
to  local variables can be rem oved from  the subnet 
a ltogether, significantly reducing the utilisation ratios o f  
indiv idual C P U s (i.e. the ra tio  o f  subnet bandw id th  
required  by a p rocessor to  to ta l bandw id th  required by 
th a t processor).

M any  struc tu res have been proposed  for m ultiple 
p rocessors: for exam ple the crossbar switch in C arnegie 
M ellon’s C .m m p ;6 shared  m em ory in U M IS T 's 
C Y B A -M ;7 a  b inary  ‘n ’c u b e ’ in C altech ’s C O S M IC  
C U B E ;8 linked buses in Cm *, etc** The M M P U  subnet 
is based on a sim ple m ultiple shared bus. D espite, or 
perhaps because of, their sim plicity, bus-orien ted  subnets 
have several significant and desirable na tu ra l properties.

(1) T he subnet does no t require in ternal ‘ intelligence’. 
T he rou teing , congestion  and flow co n tro l problem s 
characteris tic  of, for exam ple, packet-sw itched netw orks, 
are elim inated or, m ore precisely, are  reduced to  the 
level where they can  be handled by fast hardw are . Bus 
hardw are , in general, is simple, fast, reliable and 
relatively easy to  debug.

(2) T he subnet is itself sym m etrical in the sense th at 
any  node can  reach any o th er directly with no  rou teing  
delay. The sym m etry m akes it particu larly  easy to 
interface special devices to  the system, such as, for 
exam ple, shared  m em ory m odules o r special processors.

(3) T he subnet is flexible in th a t to ta l available 
bandw id th  can be divided in any desired way am ongst 
hosts. T hus a specialised host requiring , say, heavy bursts 
o f  traffic (e.g. an  a rray  processor) can  be allocated  as 
m uch bandw id th  as a rb itra tio n  pro toco ls perm it, up to, 
o f  course, the to ta l available limit.

(4) T he s truc tu re  m akes not only p o in t-to -po in t but 
also b ro adcast transfers extrem ely easy to effect. The 
la tter are often very useful where globally significant 
in fo rm ation  has to  be transm itted , o r where m ulti-host 
synchronisation  is desired.

A lthough  these advantages are clear, bus structures 
have tended to  be regarded as ra ther restrictive. The total
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Figure 4. Block diagram of MMPU (Phase II)

available ban d w id th , B, on a  given bus, is a characteristic  
u p p er lim it determ ined  by the  technology. N o  m atte r 
how  large B is, there is a p o in t beyond which the system  
c an n o t grow  w ithou t encoun tering  overload ing  (below  
this po in t the m o d u la rity  o f  bus system s is excellent). If  
B is high enough  this ob jection  is m ore a m atte r  o f 
aesthetics th an  a serious practica l w orry  (any parallel 
m achine designer w ould like to  believe th a t his 
a rch itec tu re  is infinitely extensible), b u t until recently the 
p rob lem  has been precisely th a t values o f  B have been 
too  sm all.

M o d em  bus specifications, how ever, offer bandw id ths 
o f  betw een 30 and  40 m egacycles/s : no tab ly  the IE E E  
896 Futurebus10 and  the N IM  F ASTbus,n  now  being 
ad o p ted  as IE E E  S tan d ard  960-1984. U sing advanced 
E C L  drivers it is p ro b ab ly  a lready  feasible to  achieve a 
tran sfer ra te  o f  50 M H z, so th a t, say, a 32-bit bus with 
a bandw id th  o f  150-200 M b y te s /s  is not by any m eans 
inconceivable. I f  restricted  to  essential d a ta  transfers 
(i.e. no  code o r avo idab le  d a ta  transfers) such a bus 
can  satisfy the peak  requ irem ents o f  a t least 50-100 
h igh-perform ance m icroprocessors (e.g. N S 32032 or 
M C 68020). Hence, a lthough  the objection  rem ains valid 
in the sense th a t a pure  bus-based  system is n o t feasible 
fo r m assive parallel system s w ith th o u san d s o f  p ro ­
cessors, an extrem ely pow erful flexibly coupled  m u lti­
p rocessor based on m essage passing, shared  m em ory 
o r bo th , can be constructed . Such m achines cou ld , o f  
course, form  ‘su p em o d es’ on a m ore extensive ‘super­
su b n e t’.

The M M P U  uses fo u r buses (Fig. 4) to  p rovide the 
necessary in terconnection  betw een its host com ponents. 
(As yet only two have been im plem ented  in the pilot 
m achine, bu t a reduced C M A -B us will be added 
eventually .) Before discussing these individually , a 
general com m ent m ight be helpful. T he Phase II M M P U  
subnet is in tended to provide bandw id th  requ irem ents 
well in excess o f those cu rren tly  projected  as necessary 
fo r the m ost pow erful Phase II m odule designs, which 
m ight each have, say, 20-30  tim es the perform ance o f 
a M o to ro la  M C 6 8 0 0 0 L 8. T he §hell M odel app lication  
requ ires a fairly low subnet u tilisa tion  ra tio  for each 
processor, so th a t in fact, in th is case, the com m unications

struc tu re  described below  is pow erful enough to  support 
processing  technology alm ost an o rd er o f  m agnitude 
faster th an  the  best available today . It is therefore 
feasible th a t a fu tu re  (Phase III? )  Shell M odel Processor 
could use virtually  the same subnet, bu t support, say, 20 
m odules, each w ith sufficient processing pow er to execute 
100 m illion operatio n s /sec .

(1) C -B us (C om m and Bus) is the p rim ary  M M PU  
com m unica tion  highw ay, connecting  all m odules together 
and in tended to  carry system-level com m and and contro l 
m essages. It is also used in the pilot m achine to transm it 
bulk d a ta  and process code, a lthough  this function  will 
p ro b ab ly  be largely subsum ed by C O M  bus in the Phase 
II im plem entation . In o rder to  ob tain  access to a pool o f 
available off-the-shelf hardw are , it was decided to base 
C -B us on the now  widely accepted M o to ro la /M o s te k / 
S ignetics/T hom son  V M E b u s.12 A lthough  the p e rfo rm ­
ance o f  this stan d ard  is m o dera te  by com parison  with the 
s truc tu res discussed above ( < 4 0  M bytes/s), it was felt 
th a t the C-Bus function  could  be adequate ly  supported  
and  th a t com patib ility  w ith an industry  stan d ard  was 
consequently  a m ore im p o rtan t consideration . V M E bus 
includes 32-bit d a ta  and  address buses, four levels of 
daisy chained arb itra tio n  and  seven levels o f  in te rrup t. 
D a ta  transfer occurs via a fully interlocked asynchronous 
handshake.

T he au th o rs  have augm ented  the stan d ard  V M Ebus 
specification in two ways in tended to  enhance m ulti­
p rocesso r support.

(a) A Bus Broadcast facility has been included, 
enab ling  a su itably  privileged m aster to  write data  
sim ultaneously  to  any subset o f M C M s.

(b) The lowest bus req u est/g ran t p rio rity  level BR0* 
B G 0 IN * /B G 0 O U T *  uses a decentralised daisy-chain 
gran t p ro toco l which rem oves the position-dependent 
p rio ritisa tion  inherent in the norm al V M E bus system 
(none the less retained for levels BR1 * — BR?*). M C M s. 
which are by definition isom orphic m odules, share this 
line and  thus have v irtually  equal p rio rity  on C-Bus.

D espite these changes, upw ard com patib ility  with 
V M E bus is m ain ta ined  by identifying C-Bus-specific 
accesses using the V M E  A ddress M odifier lines. Thus a 
s tan d ard  V M E card  is entirely com patib le  with custom -

8
T H E  C O M P U T E R  JO U R N A L , VOL. 30. N O . 2. 1987 113

c p j  30



L M.  M A C K E N Z I E ,  A.  M.  M A C L E O D  A N D  D,  J. B E R R Y

Time

Buses
free

A d d re ss  b u s  active ( ~  20  ns)

Buses
free

D a ta  b u s  ac tiv e  ( ~  20  ns)

A d d r e s s  bus  a rb i te r  
g r an t s  bus

M aste r  wr i te s  
ad d re s s  and  i .d.

M ast e r  la tches  
d a ta

M aste r  r eq u e s t s  
ad d re s s  bus

D a ta  bus  a rb i t e r  
g r a n t s  d a t a  bus

M e m o r y  m o d u le  
q u e u e s  reques t

M e m o r y  m o d u le  
r eq u e s t s  d a t a  bus

M e m o r y  m o d u le  
w r i te s  d a t a  to  m a s t e r

I n te r n a l  d a ta

Figure 5. Concurrent address/data transfer on CMA-bus

ised M M P U  m odules designed to  accord  w ith the C-Bus 
enhancem ents.

(2) I-Bus is a ded icated  d a ta  bus w hich provides 
M C M s with a high-speed com m unica tions ro u te  to  as 
m any  as 32 single-address devices and , in p a rticu la r, to  
the Shell M odel P rocesso r's  M F G  fro n t end. A dvanced 
S cho ttky  bus drivers enab le  transfer ra tes in excess o f 
120 M b y te s /s  to  be a tta in ed  on a 56-bit d a ta  pathw ay. 
T his is considerab ly  in excess o f  requ irem ents, in keeping 
w ith the ph ilosophy  ou tlined  above: in fact a fully 
po p u la ted  Phase II m achine w ould require  an  I-Bus 
bandw id th  o f  no m ore th an  20 M b y tes/s . D a ta  transfer 
is again  asynchronous, governed  by a four-edged 
h an d sh ak e; a rb itra tio n  is single p rio rity  and  is accom p­
lished by m eans o f  the sam e decentralised  daisy-chain  
p ro to co l em ployed for C-B us p rio rity  level 0.

(3) C M A -B us is a b id irectional 64-bit shared  d a ta  
pa th w ay  designed to  su p p o rt fast random  re ad /w rite  
cycles, over a 2 G byte  range, for transfer o f  operan d s 
betw een M C M s and C M M s. T he in co rp o ra tio n  o f  a bus 
devoted to  such tran sac tio n s is necessary to  free the 
system  from  the co n stra in ts o f  a conventional shared-bus 
architecture. T he specification allow s the d a ta  and  
address buses to  o p erate  co n curren tly  on independent 
transfers so th a t very high perform ance is a tta in ab le  
(Fig. 5). W ith ECL interfaces, bus cycle tim es o f  less 
th an  30 ns, and  fully p ipelined a rb itra tio n  a bandw id th  
po ten tially  in excess o f  300 M b y te s /s  w ould be a tta in ab le  
(Phase II requirem ents are pro jected  as <  50 M bytes/s). 
T o su p p o rt these access ra tes the C M M  address space

w ould need to  be interleaved betw een several (say 16) 
independently  accessible m em ory banks d istribu ted  over 
a num ber o f  C M M s: clearly, an ability  to  queue 
incom ing read  and  w rite requests for later service w ould 
be required . D a ta  determ inacy du ring  m ultiple re a d -  
m o d ify -w rite  o p erations on C M A -B us will be preserved 
by m eans o f  hardw are-driven  lockout flags which will 
p ro tec t each C M M  location.

(4) C O M -B us is a high-speed m essage-passing inter- 
M C M  link proposed  for the Phase II m achine, w ith a 
m axim um  bandw id th  o f  up to  200 M b y tes/s , shared  on 
a cycle-by-cycle basis, in such a way as to  allow  m any 
co n cu rren t p rivate  conversa tions (a b roadcast facility 
cou ld  easily be accom m odated). H igh bandw id th  
co m m unica tion  betw een M C M s is n o t required  during  
any sd-shell app lications, an d  an tic ipated  needs in the 
p ilo t system  can easily be satisfied by C-Bus a lone or, 
exceptionally , by m eans o f  a C en tra l M em ory ‘m ailb o x ’ 
system .

T he M M P U  m odules are inevitably subject to  design 
co n stra in ts  im posed by the requirem ent th a t they 
in terface consistently  to  the p ro toco ls o f  the subnet. In 
the next section the th ree  m ajo r categories o f  applicable 
design co n stra in t will be briefly exam ined: hardw are- 
im posed, C -B us-im posed and  function-im posed. D espite 
these restric tions there is still a lm ost to ta l freedom  in the 
deta ils o f  in te rnal m odule  design, m ain tain ing  flexibility 
and  facilitating  the replacem ents o f  o lder units as 
technological im provem ents perm it. The follow ing 
d iscussion is necessarily, however, incom plete and  m ust 
d raw  heavily on  experience o f  the Phase I im plem entation  
o f  the subnet.

4. D E S I G N  C O N S T R A I N T S  S P E C I F I E D  B Y  
M M P U

4.1 Functional constraints

The functional constra in ts  im posed on a m odule are  
d ic ta ted  by the o p erationa l requirem ents o f its role 
w ithin the system . A lthough  the Shell M odel Processor 
could  legitim ately be regarded as a ‘c a lcu la to r’ it w ould 
be m isleading to  restrict a discussion o f  its target problem  
set to  the L anczos iteration  for, as indicated  earlier, not 
only is this set cu rren tly  m ore extensive (e.g. calculation  
o f density  m atrix  elem ents, expectation  value o f  quan tu m  
observables, etc.), bu t in add ition  there is the need, as 
a lready  em phasised , for inherent functional flexibility. 
An M C M , for exam ple, m ust be capable  o f  perform ing  
a large and, indeed, still incom pletely specified list o f  
widely differing tasks.

F o r these reasons it is im p ortan t to  co nstruct a system  
which is configured to run  a range o f  softw are packages, 
including fu ture  user-generated program s. T his k ind o f 
freedom  is only realistically available if an a p p ro p ria te  
independent o p erating  system is installed to provide a 
u se r/m ach ine  interface. T he M M P U  is capab le  o f 
prov id ing  hardw are  su p p o rt for operating  system s 
ranging from  the centralised to the d istribu ted , as desired 
by the user. F o r exam ple, the Supervisor M odule could  
be program m ed  to exercise tight co n tro l over all system 
activities in a strictly hierarchical m anner, o r to intervene 
only when asked for assistance by an M C M .

In the case o f  the Shell M odel Processor, since the 
users are liable to  be them selves experienced p ro g ram ­
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m ers. and since the range o f  app lications is liable to be 
relatively restricted, the operating  system can be fairly 
unsophisticated . As envisaged at present (current 
softw are packages for the M M P U  have only very lim ited 
operating  system support), it will consist essentially o f  a 
supervisory executive runn ing  in a m ultip rogram m ed 
environm ent on the Supervisor M odule , overseeing a 
series o f d istribu ted  local kernels, each physically resident 
on one o f  the slave m odules. U ser processes will be 
assigned by the executive, a rb itrarily  or by user 
specification, to  given m odules, where they will run 
under the co n tro l o f  the local kernels. The operating  
system will hand le  all in terprocess, and hence all 
in terprocessor, co m m unica tion , task scheduling and 
resource m anagem ent.

U ser p rogram s m ay be w ritten  directly  in assem bler, o r 
in a high-level language prov ided  with an ap p ro p ria te  
library  o f system call p rocedures (the au th o rs  have done 
this for Pascal). In either case, op era tin g  system functions 
are ultim ately  accessed via softw are-generated  exceptions, 
follow ing a predefined p ro to co l (e.g. in the present 
ru d im en tary  system , calls a re  m ade by m eans o f  the 
68000 T R A P  no. 15 instruction). M any  hardw are 
resources, including the subnet and  local peripherals 
(co-processors, I /O  lines, e tc .) are only available to  a 
p rocessor runn ing  in system  m ode, so th a t, fo r exam ple, 
one user process w ishing to  pass d a ta  to  a n o th e r m ust 
trap  to  the local kernel. System  processes can. o f  course, 
access the hardw are  directly . D u rin g  a Shell M odel 
ite ra tio n  the Supervisor M odu le  functions m ainly as a 
w atchdog , responding  to  in te rru p ts  generated  by o ther 
m odules in need o f  cen tral services (in no rm al Shell 
M odel processing  such in te rru p ts  are typically in itiated  
by e rro r conditions). It is also, o f  course, responsib le for 
overall co o rd in a tio n  o f  the system  as an ite ra tio n  is 
scheduled o r term inated , an d  for p rov id ing  a user 
in terface to  the opera to r.

F u n ctiona lly , each active module (i.e. each m odule  
capable  o f  runn ing  a user process) will be identified to  the 
o p era tin g  system  as e ither an  M C M  (general-purpose) or 
a  special-purpose unit. U nassigned  processes will only be 
run  on M C M s, bu t a t in itia tio n  tim e the o p e ra to r can 
declare  th a t a newly installed process is to  ru n  on a 
specified m odule.

Since m odules m ay vary widely in their in te rnal 
topo logy , and  m ay indeed su p p o rt several m ic ro p ro ­
cessors, it will clearly be necessary to  define softw are 
in terfaces governing com m unica tion  betw een the local 
kernel and  the external o p era tin g  system , consisting  o f 
o th er local kernels and the supervisory  executive. Once 
this is done, in ternal kernel design can be tailo red  to  suit 
the arch itec tu ra l requ irem ents o f  any given m odule.

4.2 C-Bus constraints

T he overall p rocessor-m em ory  descrip tion  o f  any 
m odule  m ust conform  to  the co n stra in ts  im posed by the 
C -Bus addressing  structure . Since C-Bus su p p o rts  a 
32-bit address bus, a p rocessor w ith C -B us m aster 
capab ility , when in o p erating  system m ode, will view the 
physical system as a 4 G by te  block, certain  regions o f 
w hich m ay be restricted from  access e ither by Supervisor- 
level p ro tec tio n , o r by targe t m odule m em ory m an ag e­
m ent. O f  this to ta l physical address space, each active 
m odule  is assigned 128 M bytes which are in ternally

accessible to  on-board  processors w ithout the use of 
C-Bus.

U p  to  20 active m odules m ay reside w ithin an M M PU . 
so th a t a to ta l o f 2.5 G bytes o f the system space are 
reserved for their use. The rem aining 1.5 G bytes are 
d ivided in any ap p ro p ria te  m an n er between m odules 
such as C M M s or o ther dedicated  units. The 128 M byte 
block o f the system address space allocated to an active 
m odule , called its Primary Module Map (PM M ). does 
not necessarily con tain  all addressable on-board  devices. 
It is also perm issible for processors to  use locations 
w hich m ay be sw itched ou t o f the PM M  or. indeed, 
which are inaccessible to  it by d irect random -access 
operations. T here is no  co n stra in t on the num ber of 
processors which m ay reside within a m odule. If  there are 
several, they m ay be organised  in any desired m anner, for 
exam ple hierarchically , functionally  o r with co-equal 
access to  on -b o ard  resources (see Section 5).

4.3 Hardware constraints

A t the hardw are  level the only significant co n stra in ts are 
th a t each m odule should satisfy the electrical loading and 
signal p ro toco ls specified for each bus in terface which it 
supports. Every m odule is in terfaced to  C-B us but only 
M C M s and  C M M s to  C M A -B us. only M C M s and 
p eripheral in terface m odules to  1-Bus and only active 
m odules to  C O M -B us (Fig. 4). A lthough  an M C M  m ust 
in terface to  the 4 system  buses, only C-Bus can act as an 
extension o f the p rocesso r’s local bus. The C M A -B us. 
I-Bus and  C O M -B us interfaces are specially designed 
pre-fetch buffers (PFBs) w'hich can conduct m em ory 
cycles independently  of, and  in parallel w ith, the 
o n -b o ard  M P U s.

A lso, there is a practical requ irem ent for som e degree 
o f low-level softw are com patib ility  between m odules. 
This im plies a need to  link the M M P U  arch itectu re  to a 
m icroprocesso r arch itectu re  which essentially com bines 
curren tly  available high perform ance with projected 
upw ard -com patib le  32-bit m achines. The au th o rs  have 
selected M o to ro la 's  M 68000 family as. in their view, 
p rov id ing  the optim al mix o f  these qualities.14 The 
M M P U  as presently  im plem ented is configured to  
su p p o rt the recently announced  M C 68020 m icro ­
p ro cesso r,13 bu t the p ro to ty p e  m odules which are 
a lready  installed are based on the proven M C 68000 and 
M C 68010  M P U s.

5. M C M  D E S I G N S

T o ind icate  the practical realisation  o f the concepts 
discussed above, it m ight be helpful to  give some 
ind ication  o f  the na tu re  o f the hardw are which has been 
designed for the Shell M odel Processor project. The 
M C M  is no t only the m ajo r determ ining factor in fixing 
the lim its o f  real system perform ance, but it is a paradigm  
which can be used as a basis for the design o f o ther active 
m odules, and  its in ternal a rch itecture  m ight be expected 
to  be particu larly  instructive. A num ber o f M C M  designs 
(Figs 6, 7, 8) have been studied seriously. These are 
m o n o b o ard  processing elem ents o f  increasing co m p u ta ­
tional pow er and can perform  well over a wide range 
o f  app lications. H ow ever, they are tailored  to  tackle 
calcu la tions o f  the type arising in the theory o f the
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N uclear Shell M odel, and  perfo rm ance  figures q u o ted  
m ust be trea ted  accordingly.

M C M I (Fig. 6), built as p a r t  o f  an  early  feasibility 
study (1982), was designed ra th e r to  test system  concepts 
than  for optim al perform ance. T he local bus topology  is 
simple and  su p p o rts only one processor, an  8 M H z 
M C 68000, but all o n -b o ard  devices are d u a l-p o rt w ith 
respect to  C-Bus. As w ith all its successors there is no 
o n -b o ard  firm w are, and  all system  code is loaded by the 
SM at in itiation  tim e in to  p ro tec ted  axeas o f  R A M . This 
gives a trem endous am o u n t o f  inheren t flexibility, 
allow ing dynam ic tailo ring  o f  a m odule kernel and  
assisting enorm ously  in its developm ent and  testing.

The M C M II design (Fig. 7), now operationa lly  tested,

is in tended  to  act as an  advanced p ro to ty p e  capable  o f 
prov id ing  processing pow er ad eq u a te  for extensions o f  
the calcu la tions to h igher nuclear shells. T he m odule is 
hierarchically  organised  a ro u n d  a single master processor, 
an  enhanced-perform ance  M C 68000 runn ing  a t 16 M H z 
(a steady 1-2 M IP s capability). An 8 K byte block o f  very 
fast static  R A M  allows the 16 M H z processor to execute 
a m em ory access (read o r w rite) in 250 ns (no  wait states) 
and  is in tended to hold tim e-critical p rog ram  sections and 
frequently  accessed variables. The m aster M PU  is also 
p rovided w ith 128 K bytes o r 512 K bytes o f  local bulk 
m em ory which runs w ith 4 w ait states (375 ns cycle time). 
A second 16 M H z 68000 acts as a slave on a local sub-bus 
to  which are directly  in terfaced the I-Bus and C M A -B us
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Figure 8. Design of proposed Phase II MCM (MCMII)

pre-fetch buffers together w ith a n o th e r 8 K bytes o f  fast 
d u a l-p o rt m em ory, which can  be used to  pass d a ta  and 
com m ands betw een the tw o m icroprocessors. The slave 
also co n tro ls  tw o N atio n a l S em iconductor N S 16081 
F lo a tin g  Poin t U nits (FP U s), which are accessed as 16-bit 
peripherals and  provide the arithm etic  capab ility  required 
by the Shell M odel app lication . D u rin g  Shell M odel 
processing  the slave handles all in te rac tion  w ith C M A -B us 
and I-Bus as well as perform ing , w ith the aid o f  the 
F P U s, all arithm etic  operations. As a guide, if  M C M I 
perfo rm ance  is norm alised  to  1, then  th a t o f  M C M II is 
approx im ate ly  9 du ring  a m atrix  generating  ite ra tion  in 
a Shell M odel calculation .

O n the basis o f  recent com plete  ite ra tions on real nuclear 
d a ta , the au th o rs  estim ate th a t, w ith tw o M C M II m odules 
in place, perform ance is approx im ate ly  h a lf  th a t a tta in ­
able on an IBM  360/195 m ainfram e using conventional 
Shell M odel p rogram m ing  techniques.'1 F u rth e r, w ithin 
the defined lim its o f  the subnet, perfo rm ance  should 
increase a lm ost linearly w ith the n u m b er o f  sim ilar 
M C M s installed.

T he Phase II M C M , now  in the design stage, will be

a pow erful tightly coupled m o noboard  m ultiprocessor 
based on four M C 68020 M P U s (Fig. 8). each equipped 
with a ‘w rite-th ro u g h ' 8 K byte set-associative cache. 
In this design, the processors are paired, each pair 
consisting  o f a 'm e m o ry ' processor with access to local 
bulk m em ory and a 'sy s te m ' processor responsible for 
con tro l o f the subnet interface. T he local bulk m em ory 
(1 -4  M bytes) is shared  and divided in to  1 K byte 
page-fram es which m ay be dynam ically designated 
cacheable or non-cacheable. W hen a task running on one 
o f  the processors a ttem p ts an access to shared m em ory 
the cache is checked while, concurrently , a local memory' 
m anagem ent unit (M M U ) perform s any address tran s la ­
tions and checks access rights. I f  an access violation is 
detected the cycle is suspended o r ab o rted ; otherw ise a 
request is issued to  the on-board  arb itra tion  and a local 
shared-m em ory cycle is in itiated. The M M U  inform s the 
cache w hether o r no t the requested address falls in a 
cacheable page: if  it does, the cache au tom atically  stores 
the d a ta  as the processor reads it; if it does no t. no such 
store  m ay proceed. T hus only da ta  in cacheable pages 
m ay be cached, avoiding the problem  o f cached da ta  
going ‘s ta le ’ due to  m ultip rocessor activity.

T he proposed  M M U  will support dem and-paged 
v irtual m em ory and facilitate in tertask  p ro tection  in a 
m uch m ore general m u ltip rogram m ed m ultiprocessor 
env ironm ent. F o r  the Shell M odel app lication , the 
design o f Fig. 8 is expected to  yield a perform ance o f 
approxim ately  30 on the above scale.

6. C O N C L U S I O N S

As ou tlined  above, the M M P U  designed for the Shell 
M odel Processor project em ploys the latest 16/32-bit 
m icroprocessor technology to  im plem ent a small but 
pow erful and  flexible m ultiple C P U  system. By em p h a­
sising m odu larity  and linking the developm ent to  a 
p a rticu la r m icroprocessor family, technological enhance­
m ent m ay be achieved w ithout loss o f user softw are 
com patib ility . The M M PU  global structures are designed 
to  perfo rm  well above their currently  projected load 
and  it is hoped that, w ith scope for the in tegration  o f 
very-high-perform ance general-purpose processing ele­
m ents and , indeed, o f  optim ised dedicated processor 
m odules where necessary, the range o f applicability  o f 
the system  will be significantly extended in the future.
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Announcements

1 0 - 1 4  M a y  1 9 8 7

APL 87, The International APL Conference on
A PL  com pu ter p rogram m ing  language, is to  
be held at the F airm on t H otel. D allas. Texas, 
U SA . It is sponsored  by the Special In terest 
G ro u p  o f  the A ssociation o f  C om pu ting  
M achinery  and  the Southw est A PL  U sers' 
G roup .

For fu r th e r  inform ation please con tact: A PL  87 
R eg istrar. 440 N orth lake  S hopp ing  C en ter, 
suite 210. D allas, T X  75238, U .S.A .

1 - 4  S e p t e m b e r  1 9 8 7

13th International Conference on Very Large 
Data Bases, Brighton, England, U.K.

V LD B C onferences are a fo rum  and  focus for 
identifying and encourag ing  research, devel­
opm ent, and  the novel app lications o f  d a tabase  
m anagem ent system s and  techniques. The 
T h irteen th  V LD B C onference will bring 
to ge ther researchers and  p rac titioners  to  
exchange ideas and  advance the subject. 
P apers o f  up to  5000 w ords in length and  o f 
high quality  are invited on any aspect o f the 
subject but particu larly  on the topics listed. 
All subm itted  papers will be read  and  carefully  
evaluated  by the P rogram m e C om m ittee.

Programme

The p rogram m e will include an exhib ition , six 
tu to ria ls  by em inent speakers w hich are 
specially oriented  tow ards the needs o f  in ­
dustry . and  a high s tan d a rd  o f  refereed papers. 
T he topics covered include: D a ta  M odels; 
Design M ethods and  T oo ls; D istribu ted  
D atabases; Q uery O p tim isa tion ; C oncurrency

C o n tro l: D atabase  M achines; Perform ance 
Issues; S ecurity ; K now ledge Base R epresen­
ta tio n ; M ulti-m edia D atabases; Im plem en­
ta tion  T echn iques; O bject-O riented  M odels; 
T he role o f  logics.

Social Programme

T here will be an  extensive social p rogram m e 
including a civic reception , trad itional English 
events, a conference d inner, sightseeing tours 
and  'w eekend  b reak s ' in London .

For fu r th e r  inform ation and registration fo rm s  
please con tac t:
M iss C hristine E dginton , C onference M an a ­
ger, BISL C onference D epartm en t. The 
British C om pu ter Society. 13 M ansfield Street, 
L ondon  W 1M  0BP (44-1-637 0471; Telex 
262284).

7 -1 1  S e p t e m b e r  1 9 8 7

People and Computers HCI ’87
T he th ird  annua l conference o f  the BCS 
H u m an -C o m p u te r In te rac tion  Specialist 
G ro u p  will be held a t E xeter U niversity, 
D evon, E ngland from  Tuesday 8 S eptem ber to 
F riday  11 S eptem ber 19 8 7 . The conference will 
be preceded by a day  o f  tu to ria ls  on M onday  
7 Septem ber.

T he goals o f  the conference will again be: (i) 
to  represent the cu rren t s ta te  o f  H C I, (ii) to 
increase com m unication  between people w ork­
ing in the different disciplines o f  H C I and  (iii) 
to  discuss the fu tu re o f  H C I.

T he conference has been planned in the 
know ledge th a t there is to  be an  in ternational 
conference on a sim ilar them e (In te rac t *8 7 ) in

G erm any the previous week. H C I "87 is 
designed to  com plem ent In teract '87. M any 
people w ho w ork in H CI in the U .K . will not be 
able to  a ttend  a conference held outside the 
U .K . F u rtherm ore , the type o f  papers presented 
at the tw o conferences are likely to  be o f  a 
different type. T he papers in H C I '87 will be o f 
a substan tia l length and  will deal in detail with 
specific topics w ithin H C I. In fact, H CI '87 
plans to  take advan tage o f  the coincidence o f 
In te rac t '87 by inviting to  the U .K . in ter­
national speakers, particu larly  from  the U .S. A. 
and Japan , w ho will be in E urope a t the 
beginning o f  Septem ber. T here will also be 
w orkshops during  HCI '87 tha t will report and 
discuss in detail issues raised, but perhaps not 
answ ered, during  In teract '87. We hope that 
m any o f those who attend  In te rac t '87 will also 
a ttend  H C I '87 and  play a m a jo r partic ipatory  
role in m aking H C I '87 the success it has been 
in previous years.

For fu r th er  details con tact:

H C I '87 Conference. B .I.S .L ., 13 M ansfield 
S treet. London  W 1M  0BP. Telephone: 
(01) 637 0471.

8-11 September 1987

IFIP TC 8 Conference on Governmental and 
Municipal Information Systems will be held in 
B udapest. H ungary.

For fu r th e r  information please contact :

IF IP  T C  8 Conference Secretaria t, Jo h n  von 
N eum ann  Society for C om puting  Sciences, 
B udapest 5. P.O.B. 240 H-1360, H ungary . 
T elephone: 361 329-390. Telex: 22 5369.
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j  A Dedicated  Lanczos Computer f o r  Nuclear S t r u c t u r e  C a l c u l a t i o n s  

L.M. Mackenzie ,  D. Berry ,  A.M. MacLeod and R.R. Whitehead 

Department o f  Natural Ph i lo sophy ,  The U n i v e r s i t y ,  Glasgow G12 8QQ, Sc ot lan d

A b s tr a c t

Using a combinat ion o f  the  occupat ion  number r e p r e s e n t a t i o n  and the  Lanczos  
method, nu c le a r  s h e l l -m o d e l  c a l c u l a t i o n s  can be c a s t  in a form which i s  
s u i t a b l e  f o r  p a r a l l e l  computat ion.  An at tempt  to  d e s ig n  and c o n s t r u c t  the  
p rot o typ e  o f  a s u i t a b l e  machine i s  d e s c r i b e d .

1 I n t r o d u c t io n

This t a l k  i s  about  an at tempt  to  de s ign  and bu i l d  a ded ic a ted  computer fo r  
use in n u c le a r  s t r u c t u r e  c a l c u l a t i o n s .  There i s ,  o f  c o u r s e ,  nothing new 
in the  idea  o f  d e d ic a te d  computers -  some p eop le  th ink  t h a t  Stonehenge  was 
one ,  and the  Greeks c e r t a i n l y  had them ( t h e  antikythera mechanism) as did  
the  Arabs who in vent ed  the  p ia n i s p h e r i c  a s t r o l a b e .  Mention o f  such d e v i c e s  
i s  not  c o m p l e t e l y  i r r e l e v a n t  to  the  main t o p i c  o f  t h i s  c o n fe r e n c e ;  the  
o r i g i n a l  need f o r  the  development o f  r a t i o n a l  approximat ion and cont inued  
f r a c t i o n s  ar os e  in  conn ec t io n  with the g ear in g  o f  p l a n e t a r i a  and s i m i l a r  
proble ms .

The th in g  t h a t  i s  r e l a t i v e l y  new, however,  i s  the  ease  wi th which one 
can c o n s t r u c t  analogue  computers out  o f  d i g i t a l  b i t s  and p i e c e s .  In e f f e c t ,  
a modern analogue  computer uses  streams o f  d i g i t a l  numbers i n s t e a d  o f  e l e c t ­
r i c  c u r r e n t s  or the  r o t a t i o n  o f  a wheel as the  analogue  q u a n t i t y .

The main requirement  to  be s a t i s f i e d  be fo r e  a de d ic at ed  computer can be 
en v is a g e d  i s  t h a t  the  c a l c u l a t i o n s  to  be done must be c a s t  in such a form 
t h a t  each s t e p  i s  as  com pu ta t io na l ly  well  matched to  the  machinery as p o s s ­
i b l e .  Other speake rs  have a lready d es c r ib e d  how the  matching or mapping 
i s  done in , . the  c a s e  o f  l a t t i c e  c a l c u l a t i o n s  us in g  d i s t r i b u t e d  array p r o c e ­
s s o r s .  A l e s s  obvio us  but more s t r i k i n g  i l l u s t r a t i o n  i s  provided by the  
Fast  Fou r ie r  Transform. In s ig n a l  p r o c e s s i n g ,  where there  i s  a natural  
d e s i r e  and need to  work in frequency sp a c e ,  p ro g ress  was slow u n t i l  the  
Fast Fo uri er  Transform was introduc ed.  Almost immediate ly t h e r e a f t e r  people  
were making d e d ic a t e d  o n - l i n e  Fourier  Transformers and the s u b j e c t  l e a p t  
ahead.

In the  f o l l o w i n g  s e c t i o n s  we w i l l  d i s c u s s  the  nu clear  s h e l l  model problem 
and d e s c r i b e  the  f i r s t  attempt  to  bu i ld  a computer whose s t r u c t u r e  matches  
as c l o s e l y  as p o s s i b l e  the ph ys ic s  in v o l v e d .

2  The Nuclear  Sh el l  Model

We use the  e x p r e s s i o n  "shel l  model" to  r e f e r  to m ic roscop ic  trea tm ent s  of  
nu c le ar  phenomen in which the e lementary c o n s t i t u e n t s  are  protons and 
ne ut ron s .  There are othe r  kinds o f  nuclear  mode ls ,  but a l l  o f  t h e s e  mus GLASGOW : 
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u l t i m a t e l y  be r e fe rre d  back to  the  s h e l l  model j u s t  as the  s h e l l  model must 
u l t i m a t e l y  be re fe r re d  back to the  quark s t r u c t u r e  o f  the  n u c le o n s .

The e s s e n c e  o f  the  s h e l l  model i s  t h a t  each nucleon i s  c o n f i n e d  in  a 
p o t e n t i a l  wel l  produced by i t s  i n t e r a c t i o n s  wi th a l l  o f  the  o t h e r  n u c l e o n s .  
This  we l l  i s  o f t e n  taken to  be o f  the  form o f  a th r e e -d im e n s io n a l  harmonic 
o s c i l l a t o r  as shown in F ig .  1. The order ing  o f  and sp ac in gs  between the  
va r io u s  s h e l l s ,  o s ,  op,  i s o d ,  e t c .  account  reasonably  wel l  f o r  some o f  the  
g r o s s  p r o p e r t i e s  o f  n u c le i  and may be used as the fou nd at ion  f o r  c o n f i g u r ­
a t i o n  mixing s t u d i e s .

op
OS

Figur e  1 Schematic r e p r e s e n t a t i o n  o f  the  s i n g l e - p a r t i c l e  l e v e l s  in  a 
harmonic o s c i l l a t o r  wel l

In the  most usual approximation o n ly  one major s h e l l  i s  a c t i v e l y  in vo lved  
in  the  c o n f i g u r a t i o n  mixing .  The computational  problem i s  t h e r e f o r e  to  s e t  
up the  Hamil tonian matrix e v a lu a te d  between the  s t a t e s  o f  the  a c t i v e  c o n f i g ­
u r a t i o n  and then to  d i a g o n a l i s e  i t .  Both e ig e n v a l u e s  and e i g e n v e c t o r s  are  
r e q u i r e d ,  the l a t t e r  to  en abl e  the  c a l c u l a t i o n  o f  t r a n s i t i o n  r a t e s  and exp­
e c t a t i o n  va lue  o f  va r io u s  measurable q u a n i t i e s .  T r a d i t i o n a l l y ,  t h a t  i s  s i n c e  
the  mid 1 9 3 0 ’s ,  the b a s i s  s t a t e s  i n v o lv e d  have been s p e c i f i e d  by means o f  
group theory  and the  n e c e s s a r y  matr ix e l ements  eva lu ated  us in g  Racah a lgebra  
and the  formali sm o f  f r a c t i o n a l  p arenta ge .  Such methods are very  f a r  from 
being  matched in the  s en se  d es c r ib e d  above .  i

The Lanczos method was f i r s t  used in  sh e l l - m od e l  c a l c u l a t i o n s  in 1968 by 
SEBE and NACHAMKIN C1D and by WHITEHEAD [2D. Sebe and Nachamkin used i t  as  
a m atr ix  d i a g o n a l i s e r  but wi th the  idea  in mind t h a t  a we l l  chosen i n i t i a l  
s t a t e  would r e s u l t  in rapid convergence .  Whitehead used i t  t o  c a l c u l a t e  
the  t r i - d i a g o n a l  matrix d i r e c t l y  from the  two-body Hamil tonian wi th ou t  the  
i n t e r m e d i a t e  s t ep  of  c o n s t r u c t i n g  the  f u l l  s e c u l a r  matr ix .  In both c ases  
the  b a s i s  s t a t e s  were s p e c i f i e d  group t h e o r e t i c a l l y .  A l i t t l e  l a t e r  i t  was 
r e a l i s e d  C3,4D th a t  the s tandard formali sm was an encumbrance and t h a t  the  
f u l l  power o f  the  Lanczos method could be brought to bear i f  the  b a s i s  s t a t e s  
and the  Hamiltonian were s p e c i f i e d  in the  occupat ion  number r e p r e s e n t a t i o n :

| i > = at at ... at | 0 >
1 2  n

and H = I V a+ a* a au a S y o  a B o y  
a8y6



where | 0 > r e p r e s e n t s  the  in n e r t  f i l l e d  s h e l l s ,  the  a ' s  and a+ , s are  fermion  
d e s t r u c t i o n  and c r e a t i o n  ope ra tors  and the  Vo g g are the  two-body matr ix

e lements  th a t  d e f i n e  H ( th e r e  i s ,  o f  c o u r s e ,  a l s o  a one-body i n t e r a c t i o n ,  
but i t  i s  c om pu ta t ion a l ly  advantageous to  combine i t  with the two-body p a r t ) .  
The o p e r a t io n  o f  m u l t i p l y i n g  a v e c t o r  by H could now be performed using  
s im ple  b i t  manipulat ions  in the  computer.  For example,  the  s t a t e  | i >  can 
be repr ese nt ed by a s t r i n g  o f  0 ' s  and V s ,  the  l ' s  r e p r e s e n t i n g  the  prese nce  
o f  the  c r e a t i o n  o p e r a t o r s .  When H o p e r a te s  on | i > each term in the sum 
r e s u l t s  in a p a ir  o f  1 ' s being removed and a new p a ir  i n s e r t e d .

The general  o r g a n i s a t i o n  o f  such a c a l c u l a t i o n  i s  i l l u s t r a t e d  in F ig .  2.  
The cur rent  v e c t o r  i s  s p e c i f i e d  by a l i s t  o f  ampl i tudes  f o r  the  b a s i s  s t a t e s .  
Each b a s i s  s t a t e  i s  operated on in turn by the Hamiltonian as o u t l i n e d  above 
and f o r  each turn in  H a new b a s i s  s t a t e  r e s u l t s  and the  product  o f  the  i n i ­
t i a l  ampl itude  A and the V in vo lv ed i s  accumulated in the  f i n a l  amplitude  
v e c t o r  B. The p ro cess  as de sc r ib ed i s  s imply  a matr ix  m u l t i p l i c a t i o n ,  but  
one in which the  matrix i s  s tored  i n d i r e c t l y  in  a h ig h ly  condensed form.
There i s  c e r t a i n l y  scope  fo r  p a r a l l e l  computation s i n c e  a number o f  i n i t i a l  
b a s i s  s t a t e s  could  be handled s i m u l t a n e o u s l y .  Unlike some o f  the  a p p l i c a t ­
io ns  de sc r i be d

n  >
I 2 >

I 3 >

I n >
Figure  2

a t  t h i s  c o n f e r e n c e ,  though,  i t  i s  the  o p e r a t io n  o f  m u l t i p l y i n g  a b a s i s  s t a t e  
by H r a t h e r  than the  a r i t h m e t i c ,  the  m u l t i p l i c a t i o n  and accumulat ion o f  the  
A's  and V ' s ,  t h a t  dominates the  c a l c u l a t i o n .  This i s  t h e r e f o r e  not a s u i t ­
a b l e  a p p l i c a t i o n  f o r  a s i n g l e - i n s t r u c t i o n - m u l t i p l e - d a t a  array p r o c e s s o r .

3 The Prototype  Machine

The advantages  f o r  she l l -m odel  work o f  a d e d ic a te d  machine are:

( i ) Low c o s t

( i i )  Total  a c c e s s

( i i i )  Great computat ional  power

The pro tot ype  machine to  be de sc r ib ed c o s t s  l e s s  than £ 1 0 ,0 0 0 ,  w i l l  run 
r e l i a b l y  f o r  long per iods  and has a performance comparable to t h a t  o b t a i n ­
a b l e  wi th an IBM 360/195 .  I t  i s  a q u a r t e r - s c a l e  v e r s i o n  o f  the  "production" 
machine ,  which w i l l  be capable  o f  performing c a l c u l a t i o n s  th a t  s imply cannot  
be done on f o r e s e e a b l e  commercial computers.  I t  i s  n e v e r t h e l e s s  exper iment­
al in  the  s en se  t h a t  the f i n a l  de s ig n  i s  by no means f i x e d  and the  protot ype  
i s  intend ed as a t e s t b e d  f o r  fu tu r e  developments ra the r  than as a f i n i s h e d



The l o g i c a l  s t r u c t u r e  o f  the  machine i s  shown in Fig .  3.  The Matrix  
Format Generator performs the  o p e r a t i o n s  o f  c r e a t io n  and d e s t r u c t i o n  and 
produces  infor mat ion about which A and which V ( see  Fig .  2) are  to  be 
m u l t i p l i e d  and where the r e s u l t  i s  t o  be s t o r e d .  This i s  passed to  the  
M u l t i p l e  Microprocessors  Unit  which performs the a r i t h m e t i c ,  e x t r a c t i n g  
the  n e c e s s a r y  data from and i n s e r t i n g  the  r e s u l t s  in the  Central  Memory.

Memory

Central
Matrix

Generator

Format

M u lt ip le

Mi c r o p r o c e s s o r

Unit

F igu re  3 Logical  s t r u c t u r e  o f  p r o to ty p e  machine

The Matrix Format Generator i s  shown s c h e m a t ic a l l y  in F ig .  4 .  The Prim­
ary Generator  c o n s t r u c t s  a b a s i s  s t a t e  | i > represented by a s t r i n g  o f  32 
0 ' s or V s  ( the  product ion v e r s i o n  w i l l  have 128) .  This  s t r i n g  i s  f e d ,  in  
p a r a l l e l ,  t o  the  Secondary Generator  where i t  a c t s  as a "seed" s t i m u l a t i n g  
the  produc t io n  o f  a l l  the  o t h e r  b a s i s  s t a t e s  th a t  have non-zero Hamiltonian  
m atrix  e lements  with t h e ' s e e d  s t a t e .  In the  p resent  v e r s io n  t h i s  i s  a c h i e ­
ved by means o f  a system o f  s e l f - a d d r e s s i n g  t a b l e s  in which each 8 - b i t  byte  
o f  the  seed  s t a t e  i s  used as the  ad dres s  in  a t a b l e  at  which a s u i t a b l e  
t a r g e t  byte i s  to  be found.  This  new byte  i s  used in the same way u n t i l  
the  o r i g i n a l  seed byte i s  again  encountered s i g n a l l i n g  exh aus t ion  o f  the  
p o s s i  b i 1i t i e s .

to  MMU
BufferPair  

F i l t e r

Secondary

Generator

Primary

Generator

F igur e  4 The matrix format gen e r a to r

Owing to the co n s e r v a t io n  o f  a d d i t i v e  quantum numbers such as the  t h ir d  
components o f  angular  momentum and i s o s p i n s  the Secondary Generator cannot  
be de s ig ne d so as to produce only th os e  b a s i s  s t a t e s  which have non-zero  
matrix  e l ements  with the seed s t a t e .  I t  a c t u a l l y  produces more s t a t e s  than 
i t  sh o u ld .  The fu n c t i o n  o f  the  P ai r  F i l t e r  i s  to e l i m i n a t e  the redundant  
s t a t e s  and to e x t r a c t  the  c r e a t i o n  and d e s t r u c t i o n  operators  needed to  
c o n v e r t  the^seed s t a t e  i n t o  the  t a r g e t  s t a t e .  The i n d i c e s  o f  t h e s e



o p e r a t o r s  s p e c i f y  which V i s  to  be used l a t e r .

The Secondary Generator and Pair F i l t e r  are con st ru c ted  from very f a s t  
Em itter  Coupled Logic components running at  a c lock r a t e  o f  more .than 100MHz, 
The outpu t  from the  Pa ir  F i l t e r  i s  buf fered to even out  the  r a t e  o f  p r e s e n t ­
a t i o n  to the  M u l t ip le  Microproces sor  Unit .

The d e s ig n  o f  the  Matrix Format Generator was c o n d i t io n e d  t o  a g rea t  
e x t e n t  by the r e l a t i v e l y  high c o s t  o f  memory when the  p r o j e c t  began. The 
p r e s e n t  d es ig n  avoid s  the  n e c e s s i t y  to  s t o r e  the f u l l  l i s t  o f  b a s i s  s t a t e s ,  
which would have been very  e x p e n s iv e  in the pr oj ec te d  1 3 2 - b i t  machine.

The output  from the  Matrix Format Generator ,  c o n s i s t i n g  o f  the  index  
numbers o f  the i n i t i a l  and f i n a l  b a s i s  s t a t e s  and the  two-body matr ix e lem­
e n t  i n d i c e s ,  pa ss es  to  the  M u l t i p l e  Microprocessor  U n i t .  This c o n s i s t s  o f  
a s e t  o f  i d e n t i c a l  microcomputers arranged so t h a t  whichever  one i s  not  
busy a c c e p t s  the next  inp ut  and performs the n ecessa ry  o p e r a t i o n s  ( s e e  Fig .  
5 ) .

from
MFG

Central

Memory

Figu re  5

The t a s k s  o f  e x t r a c t i n g  the  r e l e v a n t  V and A, m u l t i p l y i n g  them t o g e t h e r  and 
s t o r i n g  the  r e s u l t  cannot  be accompl ished by a s i n g l e  m ic rop ro ces sor  wi thout  
s low ing  down the Matrix Format Generator .  The type o f  p a r a l l e l i s m  employed 
here i s  t h e r e f o r e  one o f  ov er la pp in g  op era t io n s  in a s e r i e s  o f  asynchronous  
autonomous p r o c e s s o r s .

The proto type  machine as d es c r ib e d  does not y e t  e x p l o i t  a l l  the  p o s s i b i l ­
i t i e s  f o r  p a r a l l e l i s m .  For example one could have two or more MFG's each 
working on d i f f e r e n t  s e c t i o n s  o f  the  b a s i s .

The machine was o r i g i n a l l y  des igne d around 8 - b i t  micr opr oc ess or s  f o r  the 
sake o f  cheapness .  I t  was however des igned to be "upward compatible" with  
newer 16 and 32 b i t  m ic ropr ocess or s  of  the same (Motorola)  f a m i l y .  These



ar e  very much f a s t e r  and some have hardware f l o a t i n g  po in t  a r i t h m e t i c .  As 
a r e s u l t  o f  th ese  advances we now have d e s ig n s  f o r  MMU modules one or two 
o f  which w i l l  e a s i l y  be able  to keep up with the  pr es ent  MFG. This means 
t h a t  the  MFG should now probably be r e d e s ig n e d .  The c o s t  o f  memory has 
a l s o  come down dr am at ica l l y  and t h i s  may a l s o  have a bear ing on fu tu r e  
development s .
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