VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A Parallel Processor System

For Nuclear Shell-Model Calculations

Douglas James Berry
Department of Physics and Astronomy

University of Glasgow

Presented for the degree of
Doctor of Philosophy

August 1988

@ D.J. Berry 1988

ProQuest Number: 10998212

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10998212

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Acknowl edgements

I would like to express my thanks to my supervisor Dr. A.M. Macleod for
the support and assistance given to me over the past six years and also
to Prof. R.R. Whitehead for his help and advice with the nuclear
physics. I am grateful to Dr. L.M. MacKenzie for his guidance and the
useful discussion which have contributed to my work. The actual
production of the hardware and the circuit diagrams was performed with
great patience and good humour by Ian Smith and Tony Reilly to whom I am
indebted, and also to the other members of Room 18 who gave technical
support. In particular I am grateful to Ian for doing most of the
diagrams for this thesis. I would like to thank the Head of the
Department for the use of departmental facilities. Alsoc SERC provided my
Research Studentship as well as the grant to fund material spending on
the project. Motorola Semiconductors of East Kilbride supplied a number
of their products in addition to providing useful information on future
product development. |

Thanks are also due to my current employer, the Marconi Research
Centre in Chelmsford, for the use of their facilities, in particular for
the copying of this thesis. Also to my Group Chief for his encouragement
over the last two and a half years.

Last, but by no means least, I would like to thank my wife for her
understanding and support throughout the prolonged production period of

this thesis. For this I am especially grateful.

D.J. Berry

Abstract

Chapter

Chapter

1

1.

1.

A Review of Parallel Computer Systems

Introduction

A History of Parallelism

Classification of Computer Architectures

1.2.1 Feng’s Taxonomy

1.2.2 Fynn's Taxonomy

Multiple Processor Systems

1.3.1 Loosely Coupled Systems
1.3.2 Tightly Coupled Systems
1.3.3 Moderately Coupled Systems
1.3.4 MIMD System Characteristics
Interconnection Methods

1.4.1 The Crossbar Switch

1.4.2 Multiport Resources

1.4.3 Time Shared Buses

Conclusion

The Shell Model Processor System
Introduction

The Nuclear Shell Model

The Slater Determinant Representation

The Lanczos Method

System Introduction

Page

10
11
12
12
13
14
16
17
18
18

23

25
25
26
28
31

33

Chapter

2.5 Global View

3.6

2.5.1 The Matrix Format Generator

2.5.2 The Multiple Microprocessor Unit

2.5.3 The Communications Subnet

2.5.4 SMP Modes of Operation

Conclusions

The Matrix Format Generator

Introduction

Basis List Representation and Partitioning

Secondary Generator Methods

Pair Filter Operation

MEG

3.

5.

Buffer Operation

Hardware Implementation

.1

.2

.8

.9

Timing and Control Unit

SG Interface and Start/Stop Control

Channel Clocking and Control

The Pair Filter

Secondary Index Counter and H-Mode Comparator
The MFG Buffer Implementation

MFG Buffer Read Control

MFG Buffer Write Control

I-Bus Data Transfer Protocol

.10 MFG Testing and Debugging

11 MFG Performance Limitations

Primary Generator Hardware

3.6.1 The SG Interface

3.6.2 The Control PI/Ts

- iii -

36

37

39

40

41

42

43

43

43

47

51

52

54

55

56

57

58

60

62

64

65

66

69

70

72

72

74

3.7

3.8

Chapter 4
4.0
4.1

4.2

4.3

4.4

4.5

4.6

Primary Generator Software

3.7.1 The Runtime Data Block

3.7.2 The Basis Generation Function
3.7.3 The SG Control Function

3.7.4 The MMPU Support Function

Conclusion

The Multiple Microprocessor Unit
Introduction

Bus Arbitration Protocol
I-Bus

4.2.1 MCM/I-Bus Interface
4.2.2 I-Bus Requestor

4.2.3 The I-Bus Arbiter

C-Bus

4.3.1 C-Bus Lines

4.3.2 C-Bus Interface

4.3.3 C-Bus Requestor

4.3.4 C-Bus Arbiter

Central Memory and CMA-Bus
4.4.1 Central Memory Overview
4.4.2 CMA-Bus

The Microcomputer Modules

The Supervisor Module

4.6.1 Supervisor Module Hardware

4.6.2 Supervisor Module System Monitor

4.6.3 Supervisor Module SMP Software

75
76
81
83
87

89

90
90
91
94
94
96
98
98
101
104
107
109
110
111
114
116
117
118
12Q

123

Chapter 5
5.0
5.1

5.2

5.3

5.4

5.5

Chapter 6
6.0
6.1
6.2

6.3

The Microcomputer Modules

Introduction

MCMI Outline

MCMII Structure

5.2.

5.2.

5.2,

5.2.

5.2.

5.2.

1 The Master Processor

2 The Local Bus Requestor

3 The Dynamic RAM Subsystem

4 Global and Local Module Controllers
5 The Slave Bus

6 The Floating-Point Unit

MCM Task Look-up Tables

5.3.

5.3.

1 The Matrix Element Magnitude

2 The Matrix Element Sign

MCM Task Processing

5.4.

5.4.

5.4

5.4.

5.4.

1 Two-job Processing

2 One-job Processing

.3 Zero—job Processing

4 New Prime State Processing

5 Current Implementation

Vector Processing

Shell Model Processor Performance

SMP System Testing

MFG ‘Performance

MCMII Performance

Conclusion

126
126
128
129
131
133
134
135
136
138
139
140
145
147
150
152
152
153
154

155

157
157
158
159

163

Chapter 7 The Extended SMP System
7.0 Introduction
7.1 Matrix Determination
7.2 The MultiplevMicroprocessor Unit
7.2.1 The Microcomputer Modules
7.2.2 The Communications Subnet

7.8 Conclusion

References
List of Abbreviations
Appendix A

Appendix B

164

164

164

167

168

170

171

172

178

180

184

Abstract

This thesis describes the design and implementation of a dedicated
parallel processor system for nuclear shell-model calculations. The
purpose of these calculations is to determine nuclear energy eigenvalues
by the tridiagonalisation of the nuclear Hamiltonian matrix using the
Lanczos method. The Theoretical Nuclear Structure group at Glasgow
University's Physics Department would normally perform this type of
calculation on a high-performance main-frame computer. However these
machines have limitations which restrict the number and scope of the
calculations that can be performed.

The Shell Model Processor system consists of a Multiple
Microprocessor Unit (MMPU) driven by a highly pipelined dedicated front-
end processor. The MMPU has a modular, moderately coupled, MIMD
architecture based on autonomous processing modules. The elements within
the system communicate via three shared buses. The front-end is
responsible for determining the position of non-zero elements within the
Hamiltonian matrix. Once the position of an element has been found it is
prassed to one of the free processing modules within the MMPU. The
processing module then determines the value of the matrix element and
performs the appropriate arithmetic to accumulate the resultant Lanczos
vector. Two such processing modules have been developed. The most
recently developed module is based on two MC68000 16/32 bit
microprocessors. In addition there are two supervisory processor
modules, one of which controls the front-end and also assists it in its
function. The other module has privileged system capabilities and is
responsible for supervising the system as a whole.

The system has been successfully tested and performance figures are
presented. The future expansion of the system to allow it to perform

larger calculations is also discussed.

— V’ii —

CHAPTER 1

A Review of Parallel Computer Systems

1.0 Introduction

In the 42 years since the introduction of the first electronic digital
computer until the present day "supercomputers", arithmetic processing
speed has undergone a dramatic increase of over ten million fold. Such
an increase has not been achieved solely by the improvements in
performance of electronic digital hardware, e.g. the introduction of
discrete transistors in 1960, of small-scale integrated circuits in
1965, and of VLSI and VHSIC devices in the 1980s. Rather this increase
has been made possible by the marriage of these technological
achievements with the introduction of parallel processing techniques at
all levels of computer architecture. For example, the Goodyear Aerospace
Massively Parallel Processor (MPP) being delivered to NASA is centered
around a 128 x 128 (= 16,384) array of bit-serial processing elements
(PE), with 8 of these PEs packaged on a single custom VLSI CMOS-SOS
chip. Developed primarily to process satellite imagery, it is capable of
performing over 6.5 billion additions per second and 1.8 billion
multiplications per second on 8-bit integer data. While on 32-bit
floating-point numbers it can perform 430 million additions per second
and 216 million multiplications per second, [Bat80, HLSM82].
Performance improvements in the 1last forty years due to
technological enhancements alone can be estimated to be a factor of
between one and ten thousand, [HJ81]. This would conservatively place

the speed up factor due to parallelism at about 1000. Parallelism is now

Chapter 1

common place to the extent that it is now embedded even in conventional
serial computer architectures; serial in that they execute one
instruction at a time, but parallel in that instruction fetch, decode
and execution are all pipelined.

However it must be borne in mind that it is the technological
advancements that have made much of the parallelism feasible. For
example VLSI microprocessors have made multiprocessor systems not only
feasible but widely available and the late 1970's and 1980°'s have seen a
proliferation of experimental and commercial multiprocessor systems
based on commercially available microprocessors. Indeed the
microprocessor manufacturers are very much aware of this and most of the
16 and 32 bit processors have hardware and software features included in
their design that facilitate their use in multiprocessor systems. In
fact the inmos Transputer series of microprocessors is designed
specifically for multiple processor applications and is described as a
"system building block" [BCMW83].

This thesis discusses one such experimental multiprocessor system
which is based around commercial microprocessor devices. As an
introduction this first chapter will give a brief history of the
advances in parallel techniques as well as an overview of multiprocessor

configurations and bus structures.

1.1 A History of Parallelism

The first computers to be built which were designed around the
classical, serial von Neumann architecture were EDSAC (Cambridge, 1949)
and EDVAC (Pennsylvannia, 1952). Prior to this the only digital computer
built, ENIAC (Pennsylvannia, 1946), did not have a stored program but
was wired up for specific computations. Hence any alteration of the
program required rewiring [Ro69].

Having the program stored in memory, as with EDSAC and EDVAC, was

Chapter 1

obviously much more flexible and is one of the features of the von

Neumann architecture. There are five basic units within this

architecture, namely;

1/ an input device for reading data and instructions from the outside
world into memory,

2/ an output device for sending results and messages to the outside
world,

3/ a single memory for storing both program and data,

4/ a single Control Unit (CU7 for interpreting instructions,

5/ and a single Arithmetic-Logical Unit (ALU) for processing data.

The last two units are collectively referred to as the Central

Processing Unit (CPU).

In the two von Neumann machines mentioned each of the five units
operated one at a time. Even their arithmetic was performed in a bit
serial manner, with the addition of two numbers requiring one machine
cycle per bit. This was due mainly to the fact that their memory
consisted of a mercury delay line acting as a shift register, and
therefore data was read serially bit by bit with the least significant
bit being accessed first. Bit-parallel arithmetic was first used in the
experimental IAS machine (Princeton, 1952). This used electrostatic
cathode ray tube storage from which 40 bit words could be read in
parallel. The first commercial computer to use bit-parallel arithmetic
was the IBM 701 introduced in 1953.

The next step in parallelism and the first departure from the von
Neumann architecture was the addition of data chamnnels. Up until that
point all I/0 requests to peripheral equipment e.g. card readers, line
printers and drums, had to be processed by the CPU. Even with relatively
fast peripherals, such as magnetic tape drives, I/0 could cause a major
bottleneck in the processing of data. This problem was partly solved by
introducing data channels. Data channels had their own separate

processing unit and instruction set and also had shared access with the

Chapter 1

CPU to the main memory. Once the CPU had started the data channel
transferring blocks of data, the CPU could then proceed to operate
independently of it, thus allowing concurrency between I/0 and
computational processes. IBM first introduced such channels in their 709
machine in 1958, and the technique is still used in many modern
computers.

The next architectural advance took place shortly afterwards with
the Univac Larc (1960) and the IBM Stretch (1961), [Ro69, HB87]. These
two machines further departed from the von Neumann structure by
introducing interleaved memories and an instruction pipeline.
Interleaved memories, essentially the application of parallelism to the
primary memory system, divides the primary memory up into 2 or more
independently accessible banks. Thus program words in successive memory
banks can be accessed in a pipelined manner, reducing the limitation
prlaced by slow memory technology on the processor cycle time. The
instruction pipeline (or lookahead) allowed the current instruction to
be executed in parallel with the fetching and decoding of the next few
instructions. However neither the Univac Larc nor the IBM Stretch were
commercially successful with the Stretch being superseded by the IBM
7094 in 1962.

In the same year Burroughs introduced what can be considered the
first multiprocessor system with the introduction of the D-825, [Ba80].
Intended primarily for military applications, it could have up to 4
identical CPUs connected to 16 memory modules via a cross—bar switch.
The cross-bar switch was used later in the two procesor Burroughs
B-5000 as well as in a number of other multiprocessor systems.

Functional parallelism within the CPU was first introduced, to a
limited extent, in the ATLAS computer, [HJ81]. A prototype was first
built at the University of Manchester in 1961 under the direction of
Professor Kilburn and the computer then went into production with

Ferranti in 1963. The ATLAS had magnetic core memory which was divided

Chapter 1

into 4 independent, interleaved banks. More important, however, was the
introduction of a separate 24-bit adder for address calculations (the B-
unit) which worked in parallel with the main 48-bit fixed/floating-point
arithmetic unit. An operand address was formed in the B-unit by adding
the contents of one or two of the 128 24-bit index registers to a 24-bit
address which was contained in the instruction word. The inclusion of
these independent functional units along with the use of pipelining
allowed four separate phases of instruction execution to be overlapped,
namely; instruction fetch,'operand address calculation in the B-unit,
operand fetch and operation of the 48-bit arithmetic unit.

The ATLAS is also known as the first machine to have a virtual
memory system. This gave the user the appearance of having a large
(approximately 1 million words) single level primary memory system. In
reality the operating system translated memory references to the virtual
single level system to a multilevel store consisting of magnetic core,
magnetic drum and tapes. Data was transferred between the different
levels of the physical storage system in 512 word pages.

The idea of functional parallelism was utilised to a much greater
extent in the CDC 6600, introduced in 1964. This machine had a set of 10
dedicated arithmetic functional units for performing multiplication,
division, addition, shifting and boolean operations amongst others on
60-bit floating-point numbers. These. were controlled by a hardware
mechanism which allowed independent instructions to be executed out of
sequence without altering the logic of the program yet making most
efficient use of the separate functional units. The controller had a
"scoreboard” by which it kept track of the availability of the different
functional units and registers and thus avoided conflict between the
various instructions which were being executed. In addition the CDC 6600
had 32 interleaved memory banks and 10 Peripheral Processors Units
(PPU). The PPUs each had their own private memory and executed separate

programs while sharing a common arithmetic unit and access to the main

Chapter 1

memory on a time-multiplexed basis. The CDC 6600 was replaced in 1969 by
the CDC 7600. This was upwardly compatible with the CDC 6600 but
replaced the serially organised functional units with fully pipelined
ones. The CDC 7600 also had solid state memory devices instead of the
magnetic core memory used in the 6600 and had a processor cycle time
that was four times faster. The CDC 6600 and 7600 were very popular,
powerful machines and many of the ideas found in their architecture were
used in later computers.

The chief architect of the CDC machines, Seymour Cray, later left
to start his own company, Cray Research Inc., and in 1976 produced the
Cray-1, [HB87, KI80]. This follows in the steps of the 7600 but has a
processor minor cycle time of 12.5 ns which is twice as fast as that of
the 7600. The Cray-1 also includes vector processing hardware and
instructions. That is as well as incorporating hardware for processing
data which consists of single numbers (scalars), there is also hardware
for processing data which consists of ordered sets of numbers (vectors).
The Cray-1 has 12 independent, pipelined functional units with the
ability to chain»the units together so that intermediate results from
one unit can be passed immediately for processing invanother unit
without reference to primary memory. Three of the functional units are
reserved for vector operations (add, shift and logical), while three are
shared between scalar and vector 64-bit floating-point operations (add,
multiply and reciprocal approximation, there being no divide unit). In
support of the vector units there are 8 vector registers, each
containing sixty four 64-bit floating-point numbers. The Cray-1,
considered a second generation vector processor, has a maximum
processing rate of 160 Million floating-point operations per second
(MFLOPS) and can achieve rates in excess of 100 MFLOPS for matrix
multiplication.

There were two earlier pipelined vector processors, the CDC Star

100 whose design was first conceived around 1964 and the Texas

Chapter 1

Instruments Advanced Scientific Computer (TIASC), which started around
1966. Both of these were first delivered around 1973 and both suffered
from old technology, e.g. the Star 100 had core memory compared to the
Cray’s bipolar memory. Consequently neither were as fast as the Cray-1
for either scalar or vector operations. The Star 100 was designed to
work at up to 100 MFLOPS but only averaged around 20 MFLOPS while the
TIASC, designed to reach 50 MFLOPS, averaged around 40 MFLOPS, [HB87].
The Star 100 was later improved and re-introduced as the Cyber 203,
which in turn was improved to become the Cyber 205 (1981).

In the meantime another form of parallel processing had been
developing, that is the array processor. Originally conceived by Unger
in 1958, his proposal was for a two-dimensional array of Processing
Elements (PE) each connected to its four nearest neighbours and all
controlled by a common master, [HB87]. Each PE was synchronised to all
the other PEs by the master to perform the same function in parallel on
their own local data. The proposal was further developed by Slotnick et
al in 1962 in their design for the Solomon computer [HJ81]. This was to
be a two-dimensional array of 32 x 32 PEs each with its own 128 32-bit
word memory and bit-serial arithmetic unit. Every PE would follow the
same instruction stream which was supervised by a central control unit.
The spatial parallelism of the array processor was a revolution in
computer architecture unlike the evolution of the serial processor to
the pipelined vector processor. However neither Ungers nor Slotnicks
design were ever implemented in full and it wasn’'t until 1972 that the
first array processor, Illiac IV, was built. Originally proposed by
Unger for pattern recognition problems, array processors are well suited
for certain vector processing applications and grid problems, e.g.
matrix problems, Fourier anglysis. image processing and weather
simulation. However the difficulty in programming array processors and
the parallel lockstep operation of the PEs limits their overall range of

applications and has restricted them to be special purpose machines.

Chapter 1

The original Illiac machine was intended to have four arrays of 64
PEs. Each 8 x 8 array was to have its own CU with its own instruction
stream. The PEs would have their own floating-point arithmetic unit and
2048 (2K) 64-bit words of memory and would communicate with their four
nearest neighbours. The objective‘was for a processing rate of up to
1000 MFLOPS working on vector or matrix computations. However the
machine which was eventually built, the Illiac IV, only had one of the
intended 64 PE arrays and had a peak processing rate of the order of 50
MFLOPS.

Based on the lessons learnt from building the Illiac IV Burroughs
went on to design and build the BSP array processor [KT80]. One of the
problems with the Illiac IV was the delay involved in transferring data
between memories separated by long distances across the array. In the
BSP the problem was solved by reducing the number of processors (called
arithmetic elements (AE) on the BSP) to 16 and having 17 memory banks
connected by an alignment network (a full crossbar switch). This allowed
each AE to access every memory without any routing delay and by using 17
memory banks (the next highest prime number above 16) and appropriate
mapping algorithms for storing the data memory conflicts are reduced. By
pipelining memory accesses with AE processing the BSP was designed to
have a maximum processing rate of 50 MFLOPS.

Other array processors have also been developed. For example the
ICL Distributed Array Processor (DAP), first produced in 1980, is very
similar to the original Solomon design, with a 64 x 64 array of bit-
serial PEs connected to four nearest neighbours. Larger arrays of 128 x
128 or even 256 x 256 using 4 PEs per LSI chip have also been proposed
for the DAP, [HI81]. Some multiple array processors, along the lines of
the original Illiac design, have been proposed but as yet never built
e.g. the MAP and the Phoenix [HB87].

The main architectural elements of parallel processors have now

been introduced in essentially chronological order. It is useful to

Chapter 1

order these ideas by classifying the various computer organisations into
different categories and in the next section two classification schemes

are presented.

1.2 Classification of Computer Architecture

A number of different classification schemes have been proposed, each
with their own merits and deficiencies, e.g. Flynn's [F166], Feng's
[HB87] and Shore's [HI81]. Some other classification schemes are much
more detailed and involve descriptive languages of varying complexity
by which each individual computer is described. For example PMS (a
computer hardware descriptive language intended for any computer system,
serial or parallel, [Ba80]), and Hockney and Jesshope’s own structural

notation [HJ81].

1.2.1 Feng's Taxonomy

Feng classifies a computer according to the degree of parallelism within
its architecture. The maximum parallelism degree P is defined as the
maximum number of bits that a computer system can process within unit
time (usually one processor cycle). P can then be given by the product
of the computer word length n and the bit-slice length m. The word
length is the number of bits contained in the computer word and the bit-
slice length is essentially the number of words being processed in
parallel. The pair (n,m) then classifies a given computer architecture
according to its degree of parallelism. There are four main categories
within this classification :

1/ Word-serial and bit-serial (WSBS) ; n=m =1

One bit is processed at a time in this category e.g. the Minima

computer.

2/ Word-parallel and bit-serial (WPBS) ; n=1, m> 1

One bit each from m words are processed in parallel in this

3/

4/

Chapter 1

category, sometimes called bit-slice processing. The ICL DAP (m =
4096) and Goodyear MPP (m = 16384) are both WPBS machines.

Word-serial and bit-parallel (WSBP) ;: n > 1, m = 1

Conventional serial computers which process one word at a time are
placed in this category. An example is the VAX 11/780.

Word-parallel and bit-parallel (WPBP) ; n > 1, m > 1

In this category m n-bit words are processed in parallel. This
includes array processors with bit-parallel PE's suqh as the Illiac
IV. It also includes vgotor processors such as the TIASC, and also
multiprocessor systems such as the original Burroughs D-825 and the
later Carnegie Mellon University C.mmp system developed in the

1970's.

1.2.2 Flymn'’s Taxonomy

Flynn's taxonomy classifies a computer into one of four main categories

according to the multiplicity of its instruction and data streams. An

instruction stream is a sequence of instructions executed by the machine

and a data stream is a sequence of data processed by an instruction

stream. Flynn's taxonomy appears to be the most popular but is by no

means completely definitive and is sometimes augmented by adding

subdivisions to the main categories. The four main categories are

1/

2/

Single Instruction stream/Single Data stream (SISD).

This category represents most serially organised, single processor
computers. It includes computers which use pipelining within the CU
and ALU, since there is still only one instruction stream operating
on one data stream. It even includes computers such as the CDC 7600
which have multiple functional units.

Single Instruction stream/Multiple Data stream (SIMD).

This category primarily includes array processors, such as the
I1liac IV and ICL DAP. That is there is a single CU which controls

a single instruction stream. The CU broadcasts the instruction to

Chapter 1

every PE and the PEs then operate on different sets of data.

3/ Multiple Instruction stream/Single Data stream (MISD).

This category implies that a number of instructions are operating
simultaneously on a single data stream. Baer [Ba76] considers that
pipeline processors could be included in this category if the
consecutive stages are considered separate instructions, however
Flynn [F166, F172] himself gives no positive examples of the
architecture.

4/ Multiple Instruction stream/Multiple Data stream (MIMD).

In MIMD architectures several CPUs operate in parallel on different
{(although not necessarily unconnected) data sets. Multiprocessor
systems are therefore classified in this category, e.g. the Cm#
system [Fu78].
Flynn's taxonomy is useful in that it clearly distinguishes between
certain types of parallel processors, e.g. array processors and
multiprocessors, whereas Feng's taxonomy lumps most of the parallel
processors in one category, i.e. (WPBP). However it is still a fairly
loose definition in that the SISD category includes conventional serial
processors, pipelined processors and processors with multiple functional
units. The SISD class can even include vector processors, depending on
whether a vector is defined as a single ‘data stream or not. The MIMD
category is also too broad and most writers further subdivide this for
clarity into loosely coupled systems and tightly coupled systems (or
distributed memory multicomputers and shared memory multiprocessors

respectively [Hw87]). The next section will discuss in greater detail

the MIMD class of computers.

1.3 Multiple Processor Systems

MIMD processor systems vary extensively in the degree and nature of the

coupling and interaction between processors. This coupling determines

Chapter 1

the extent to which the various elements in the system share resources
and cooperate in performing a task. Thus MIMD systems can be further

classified according to the degree of coupling between processors [FK83].

1.3.1 Loosely Coupled Systems

Each processor within a loosely coupled system possesses its own local
1/0 devices and its own local memory systems which will be large enough
to store any programs and data that are being processed. Thus each
processor is an autonomous computer module in its own right. Each
computer module is connected to a communications net by which it can
communicate directly or indirectly to any of the other modules in the
system. The modules can be geographically distributed and processes
which run on the different modules may communicate with each other by
passing messages over the net.

The net, which is usually a high-speed serial link such as Ethernet
[MB76], will have a strictly defined transfer protocol with each
computer module having its own communications net controller. In this
way the net itself is passive and the control, i.e. arbitration and
message routing, 1is distributed throughout the .system. The
communications net for a loosely coupled system can usually tolerate
only a low rate of interaction between tasks, otherwise its performance
will be degraded. Loosely coupled systems are also referred to as

distributed systems [HB87].

1.3.2 Tightly Coupled Systems

Processors in such a system communicate with each other via a global
primary memory system which they access over an interconnection network.
This interconnection network must provide a means of communication
between all processors and all memory modules within the system.
Individual processors may also have their own small, private memory or

cache. I/0 devices and any other system resources are generally shared

Chapter 1

by the processors, although some devices may be dedicated to specific
processors. Each processor is supervised and controlled by a single
common operating system. Software/hardware means are provided for
synchronising cooperating processes which are being executed on
different processors. Since most resources are common and all processors
have equal processing power, dynamic load sharing is possible under
control of the operating system.

In a tightly coupled system data is passed between processors via
the global memory, thus the rate at which interprocess communications
can take place is determined by both the bandwidth of the memory system
and the bandwidth of the processor—-memory switching network. The network
must resolve any contentions that arise when two or more processors
attempt to access the same memory module. Memory contention is a major
limitation on the performance of tightly coupled systems and imposes an
upper limit on the number of processors that can usefully be included in
a system. Thus the switching network should be designed so as to reduce
the number of contentions as much as possible. Any contention which does
occur between requests must be arbitrated as quickly as possible and

should be invisible to the competing processes.

1.3.3 Moderately Coupled Systems

In between the two extremes of tightly and loosely coupled systems there
lies a range of organisations which can be termed moderately coupled
systems. These systems are suited to processes where the workload can be
partitioned into relatively independent tasks which require only a
limited amount of communication between them. In general the processing
elements will be self-contained, with their own processor and memory for
both data and program. Each element may have its own I/0 capabilities or
there may be a processor (or processors) which is dedicated to this
task. Other processors may be dedicated to specific tasks which are

necessary to the overall performance of the process. Interprocessor

Chapter 1

communications and communications to global resources are performed over
the communications net. In general much of the load sharing is static
since some functions are carried out by specific processors. Such
moderately coupled systems are also called Multiple Task/Multiple Data
(MIMD) systems [FK83], since they are capable of concurrently executing

a number of tasks on different data.

1.3.4 MIMD System Characteristics

A multiprocessor system can at most have a linear increase in
performance for increasing the number of processors, i.e. n processors
will perform n times faster than one processor. This is the ideal, but
in practice the law of diminishing returns will operate so that as more
processors are added overall system performance will start to level off
before eventually reaching a maximum and then, in some cases, beginning
to decrease [Fu78 for some examples with Cm*]. This saturation effect
can be attributed to a number of causes;

Resource contention : as the number of processors increases so will
requests to access the global resources, e.g. shared data in global
memory and dedicated processors. More and more conflicts will occur as
the usage of the resources increases. In some cases the bandwidth of the
communications net may ultimately be fully utilised and so processors
will spend more time waiting to use the net as well as the resources.
Overheads : a parallel algorithm for a multiprocessor system will
inevitably require more steps than a serial algorithm, due to the
overheads in managing and scheduling the system. For example certain
cooperating tasks may require to be periodically synchronised and thus
some processors may have to wait while others catch up.

Input/Output : if there are fewer I/0 devices than processor modules
then processors may become idle while waiting for input data or while
waiting for output requests to be serviced. For example for certain

applications on the Illiac IV I1/0 functions have been measured to

Chapter 1

consume up to 60% of the total processing time, [HLSM82].

The onset of saturation will depend on the particular configuration
of the multiprocessor system and the actual task it is performing, e.g.
whether the process is compute bound or I/0 bound. For example, for a
compute bound process, e.g. matrix multiplication, the number of
computations is larger than the number of I/0 operations and so will
have improved performance on certain multiprocessor systems than on
others.

The advantages of multiprocessor systems over single processor
systems cannot simply be measured in terms of performance improvement
alone, although this is probably the most important and attractive
measure for computer users. However another important factor is cost and
even here multiprocessor systems can bring improvements. Traditionally
Grosch's law [FK83] suggested that processor performance was
proportional to the square of the cost and thus adding extra processors
was not an economical means of improving performance. However with the
advent of cheap, VLSI microprocessors this is no longer the case and the
Cosmic Cube [Se85] is a prime example of this. The Cosmic Cube consists
of 64 identical computer modules connected as a hyper-cube, with each
module containing a 16-bit Intel 8086 microprocessor and 8087 floating-
point coprocessor plus 136K bytes of memory. The system is reported to
have one tenth of the processing power of a Cray-1, but with a total
manufacturing cost of $80,000 it has only one hundredth of the cost,
[Fos4].

Another of the advantages of a multiprocessor system lies in their
potential for improved reliability due to redundancy. In a redundant
system all, or most of, the system elements are duplicated and so in the
event of a failure in one of the elements the system can still operate,
although perhaps with a reduced performance. Tightly coupled
multiprocessor systems are inherently more reliable than moderately or

loosely coupled systems, since in such systems there are duplicates of

Chapter 1

all processor, memory and I/0 modules. Moderately coupled systems where
the system elements are not homogeneous in theic capabilities are
obviously less fault tolerant. However the system software must support
fault tolerance as well as the hardware. The system software and
hardware must combine to detect any errors as soon after their occurence
as possible and the spread of faulty data must then be contained.
Diagnostic routines will then determine the extent of the problem and if
necessary isolate the faulty module. The system software will then
reallocate tasks to the remaining properly functioning modules. The
ability to isolate a module while still retaining overall system
functionality is also a factor in serviceabilty since this allows the
system to operate while repairs are being made to a defective module.

However MIMD systems, and parallel systems in general, have
disadvantages as well as advantages. The main problems lie with the
software, in the areas of operating systems design, languages and
compilers [Pr79, Hw87].

The communications net plays a fundamental role in determining the
overall capabilities of an MIMD system. The total useful utilisation of
the net is partly determined by the nature of the processor modules and
global resources interfaced to it. That is if processors modules are
equipped with sufficient local memory to store program code and local
data then accesses via the net can be reduced. A number of different
methods for interconnecting system elements have been suggested and

implemented and the next section is devoted to a brief discussion of

these.

1.4 Intercomnection Methods

There are a number of important factors to be considered when discussing
the merits of any communications net for MIMD systems. Bandwidth,

reliability, modularity and cost are some of these factors. These in

Chapter 1

turn depend on other considerations, e.g. the number of connections
required for each module (be it processor, memory or 1/0) interfaced to
the net, whether control is centralised or decentralised and whether
transfers between modules are direct or indirect (i.e. do some transfers
require the cooperation of other modules).

Three of the main structures used for interconnecting processors
and global resources are the crossbar switch, multiport resources and

the time shared or common bus.

1.4.1 The Crossbar Switch

A crossbar switch provides complete direct connectivity between
processors and resources. Essentially there is a separate path from each
resource which can be switched to any of the processors. There is
therefore never any contention for a communication path but there may
still be contention over an individual resource. Thus if there are m
resources and n processors then the crossbar requires m X n switches

The important feature of the crossbar switch is that is supports
multiple concurrent transfers to all the resources. Only one processor
can access a resource at one time, but the switch allows a total of
min(m,n) accesses in parallel, if all processors are accessing different
resources. Each individual switch must have hardware capable of
resolving multiple simultaneous requests to access the same resource, as
well as being able to switch the parallel transmission path.

System fault tolerance can be severely compromised by a fault in
one of the switches, possibly rendering a processor, resource or both
totally isolated. If several switches are integrated on a single chip
then fault modes could be even worse. However redundancy within the
switch can go a long way to overcoming these problems.

The crossbar switch system has the potential for very high transfer
rates. However the complexity of the switches and the numbers required

means that the switch as a whole becomes the dominating factor in the

Chapter 1

cost of the overall system. The Carnegie Mellon C.mmp system
successfully used a crossbar switch to interconnect 16 processors to 16

memory modules, [HB87].

1.4.2 Multiport Resources

With this organisation the switching and arbitration control which is
distributed in the crossbar switch matrix is placed at the interfaces of
the resources. Thus each processor has access via its own bus to all the
memory and I/0 modules. Contention for access to a single resource can
still occur and must be resolved essentially by the resource itself.
Cost considerations again make multiporting unsuitablé when connecting

many processors and resources.

1.4.3 Time Shared Buses

This is the simplest method of interconnecting the processors and
resources of an MIMD system. The processors have direct access via the
bus to each of the resources. Transfers can be controlled totally by the
bus interfaces of the processors and resources and hence the bus is
often totally passive and thus extremely simple. Howeveriwith a single
bus there can be no concurrency in transfers since only one access to
one resource can take place at a time. As a result of this there must be
some means of arbitration between competing requests to use the bus.
This will be performed in hardware to reduce delays and can arbitrate
requests on either a fixed or dynamic priority scheme.

The total bandwidth of the bus is determined by the transfer rate

‘of the processors and the time taken to resolve competing requests.

However it is quite feasible that in order to increase the total
bandwidth of a large system that it be divided into clusters of
processors and resources with each cluster having its own shared bus.
Clusters themselves can then be connected via intercluster buses. This

is the method used in the Carnegie-Mellon Cm#* multiprocessor [Fu78] and

Chapter 1

on Fastbus (IEEE P960) where clusters are called segments [Gu84,FAST83].
Each processor can still access each resource in the system, although
not necessarily in the same amount of time, and the presence of multiple
buses allows accesses within clusters to be performed concurrently thus
increasing the totallsystem bandwidth.

Alternatively system bandwidth can be increased by incorporating
multiple, dedicated, parallel buses. Each processor would have a
dedicated interface to each of the buses, with each bus being interfaced
only to a certain type of resource, e.g. a bus dedicated to I1/0 devices
and another to global memory. This method is better suited to systems
where the communications load is reasonably well balanced between the
different types of resources, otherwise one bus could become the system
bottleneck long before any of the others.

As has been said any processor which wants to use the bus must
first receive permission in order to avoid a conflict. There are a
number of mechanisms for resolving the bus request/arbitration problem.
One solution is to have individual request and bus grant signals from
each potential bus master to the arbiter. Thus each master has his own
private two-way connection to the arbiter. However this has the
disadvantage of requiring two lines on the bus for each potential bus
master. It does have the advaﬁtage though of speed, simplicity and great
flexibility in that it allows the arbiter to use any method in
allocating priority to multiple requests.

Another solution is the use of daisy chaining. This method assigns
a unique static priority to the requesting devices which is dependent on
their physical position relative to the bus arbiter. With this method
all devices request the bus from the arbiter via a common (wire-OR) bus
request line and bus ownership is signalled by a bus busy line. When a
request is signalled to the arbiter it issues a bus grant signal down
the bus grant daisy chain, as long as the bus is not currently being

used. Fach requester has two separate lines for the bus grant; a bus

Chapter 1

grant input and a bus grant output. When the arbiter issues the bus
grant it is passed on to the first module on the daisy chain. If that
module is not currently requesting the bus then it will propagate the
grant on to the next module on the chain, via its bus grant out line.
The first module which receives the bus grant and which is actively
requesting the bus will block the propagation of the bus grant down the
daisy chain. This module will then assert the bus busy signal and negate
its bus request. When the arbiter then sees the bus busy line being
asserted it will rescind the bus grant signal.

The new bus master can hold the bus and perform as many bus
accesses as it wishes until it decides to negate the bus busy signal.
VME bus (or IEEE P1014) uses this type of bus arbitration and allows the
current bus master two options on when to release the bus, [Fi85,
VMER2]. The first is release-when-done (RWD) which allows the current
bus master to keep the bus only to perform a single or block transfer
and then to release it. This option is useful where multiple masters
require approximately equal bus usage and where transfers are mostly
done on a cycle by cycle basis. The second option, release-on-request
(ROR), allows the master to hold the bus as long as it wishes even if it
is not actually using the bus. However the current master must release
the bus when a bus request is issued by another master. This latter
option is most useful in situations where the majority of masters have
low bus usage and where the bus transfer rate of a few masters must be
maximised. Giving these masters the ability to hold on to the bus so
that they do not need to re-arbitrate for every usage will obviously
increases their throughput.

When the bus master finishes with the bus, which it signals by
negating the bus busy, the arbiter must recommence the arbitration
process if there are outstanding requests to use the bus. The arbiter
does this by sending the bus grant down the daisy chain again. It can

thus be seen that the nearer a requester is to the arbiter on the bus

Chapter 1

grant daisy chain then the more likely it is to receive the bus grant
signal first and thus the higher its priority in the arbitration
process.

Other bus arbitration techniques are possible, such as dividing the
bus bandwidth into fixed length time slots that are sequentislly offered
to each master in rotation. However all the arbitration mechanisms
mentioned so far require a centralised arbitration controller. This
obviously reduces fault-tolerance since a failure in such a critical
component would cause the whole system to fail, unless there was a
redundant controller which could be switched in.

However a system of arbitration has recently been introduced on
buses such as Fastbus and Futurebus which uses distributed arbitration
control, [Gu84, Ta84]. In such systems there are no critical centralised
components required for the arbitration but instead each potential bus
master has all that is necessary to determine whether it can or cannot
assume control of the bus.

¥With distributed control each potential master is assigned a unique
n-bit arbitration number. The bus contains n lines to which the
requesters apply their number, via open collector drivers, at the start
of an arbitration cycle. Each requester then monitors the lines and if

‘it sees a logic 1 (the lower voltage level) on a line to which it is
driving a logic 0 then it ceases to apply all bits of 1lower
significance. After a delay to allow the bus to settle down the bus
lines will carry the highest arbitration number among the competitors.
The requester which recognises that the number remaining on the bus is
its own then knows that it has gained control of the bus.

However this scheme would impose a disadvantage on requesters with
low arbitration numbers unless an additional fairness constraint is
imposed. On Futurebus (IEEE P896) the fairness constraint means that
once a module has finished with the bus it cannot request the bus again

until there are no other requests to be serviced, [Ta84]. However some

Chapter 1

modules by their nature may have more urgent needs for the bus.
Futurebus takes account of this and allows these priority modules to

request the bus whenever they want. Such modules will also have the most
significant bit of there arbitration number equal 1, while fairness
modules will have this bit equal 0, giving priority modules an

additional advantage in gaining the bus.

With distributed control the current bus master is responsible for
initiating the next bus arbitration procedure. It can do this even
before it has finished its bus usage, thus allowing the arbitration time
to be pipelined with bus transfers. Arbitration time can thus be lost
and need not therefore impose a limit on bus bandwidth. The winner of
the new arbitration contest must then monitor the bus to wait for the
current bus master to finish before it assume bus control.

No central clocks or control circuits are required for Futurebus.
Instead 3 dedicated, wire-OR, control lines ensure that all operations
concerned with the transfer of the bus are synchronised. Arbitration is
thus a completely decentralised operation. Fault tolerance can be
additionally enhanced by having a parity bit on the bus for the
arbitration number. All potential masters can then check that the state
of this parity bit is correct before a new bus master takes control. As
e possible additional check at the end of the arbitration contest all
losers can test that their arbitration number is less than the number on
the bus. Any errors that are found will prevent the hand over of the bus
and the current master then restarts the process.

In general, bus systems can be highly modular, allowing an almost
unlimited number of processors to be attached, e.g. as with Fastbus.
Even simple, more general purpose single bus systems are modular,
although usually only up to some upper limit. This upper limit may be
determined by the physical limit of the number of slots on a bus
backplane. Or it may be determined by the total bus bandwidth available,

which itself it technology dependent. Most buses require no alterations

Chapter 1

or additions in order to add other processors or resources. In fact new
processors, while they must obviously still conform to the bus
arbitration and transfer protocols, can make use of faster interfaces
and thus achieve higher transfer rates, if the transfer protocol is
asynchronous.

The bus itself can be totally passive allowing bus systems to be
comparatively cheap and simple. The only dedicated bus hardware lies in
the processor and resource interfaces and any controllers that may be
required. Additionally all bus transfers are direct thus removing the
need for cooperation amongst other processors. Global broadcast
transfers are also possible, where one processor sends data to all or
some of the processors and resources.

Bus systems have become very popular in modern computing systems,
mainly as a result of their simplicity and flexibility. With the
introduction of decentralised control they can also be highly reliable.
Their main disadvantage has always been their speed but with use of new
technology including the development of special bus driver circuits they
can be very fast, e.g. Fastbus claims 30 MHz transfer rates giving 120

Mbytes/sec capability.

1.5 Conclusion

Digital hardware technology is still advancing at much the same rate as
it has over the last 25 years. Research into x-ray and e-beam
lithography as well as improved processing techniques have achieved sub-
micron features to the extent that IBM have announced that they have
chips "ready for production" with features smaller then 0.5 microns
[Electronic Times, May 1988]. However the improvement in speed that
reduced feature size brings serves to highlight other problems such as
suitable inter—connection techniques and packaging technology.

Eventually fundamental limits in mos and silicon bipolar technology

Chapter 1

will be reached, [SM84]. However other currently more rare technologies
still have a lot of scope for development. GaAs devices, for example,
are five times faster then ECL devices and have other advantages too,
but difficulties in lower density and lower yield still must be -
overcome. GaAs technology has advanced to an extent that a number of
discrete functions are now commercially available (the Cray 3 uses
mostly GaAs, [Hw87]). However it may be that some of the phenomena which
impose size limitations on conventional semiconductor devices could be
exploited to produce a new generation of much more efficient devices, in
the form of the quantumn effect devices [Bat88].

A radically new technology is emerging in the form of optical
computing devices using photons instead of electrons. Optical gates and
processing elements have been built in a number of labs and a few
computers have been proposed, [Wi87].

The exploitation of concurrency also continues to grow, with an
increasing number of commercially available parallel and multiprocessor
systems. New architectures continue to appear, with a key area of
current research being neural networks [Wi87]. These attempt to model
the parallel operation of neurons in the brain with maséively parallel
Coilections of relatively simple processors. Applications include
Artificial Intelligence and image recognition. Machines have been built,
with up to 64000 such cells, and have produced encouraging results
[Hig4, RT88].

The remainder of this thesis is a description of a particular
application of parallel processing techniques in the field of nuclear
physics research. Using current microprocessor technology and applying
some of the techniques just discussed a high performance special purpose
parallel processor has been built. As such it is a prime example of the
reduced size and cost as well the increased performance and flexibility

that is now available utilising VLSI technology and parallel processing

techniques.

CHAPTER 2

The Shell Model Processor System

2.0 Introduction

Special purpose, or dedicated, processor systems are becoming
increasingly prevalent in scientific research due to the ease with which
such systems can now be put together using VLSI components. Areas such
as aerodynamics, fluid dynamics, Monte Carlo simulations and image
processing can require a very high arithmetic processing bandwidth as
well as an equally high data transfer bandwidth. General purpose
computer systems will not usually achieve their maximum efficiency when
applied to such problems. However dedicated machines can have a much
higher performance than general purpose computers since their
architecture can be optimised to reflect the structure of the problem,
so that generality is traded for performance, [PRT85].

When designing a dedicated system the form of the calculation and
the architecture of the machine must be as closely matched as possible.
For example the application of parallel processing within the
architecture can be optimised to mirror any parallelism within the
computation. Thus when designing the machine sufficient processing
elements should be included to be able to handle the computational load.
Equally important is an efficient means of interconnecting the
processing elements to each other as well as to the data storage devices
so that the necessary data can be moved and processed as required.
However full system optimisation will not only influence the

architecture of the machine but also the algorithm and form of the

Chapter 2

computation.

One example of a machine dedicated to theoretical}physics
calculations is the previously mentioned Cosmic Cube (Section 1.3.4).
The main motivation for the system was Monte Carlo studies of lattice
gauge theories. However the message-passing architecture of the system
is flexible enough to be applied to the whole class of problems
involving multidimensional arrays of interrelated data, such as are
found in statistical mechanics and field theory. The Cube has been
successfully programmed for a number of different applications with some
performing up to 10 times faster than a VAX 11/780 [Se85], thus
demonstrating the performance which can be obtained from well designed
special purpose processor systems.

The field of nuclear physics theory is another area of research
where computationally intensive problems arise. In particular the
calculation of the nuclear energy levels which arise out of the theory
of the nuclear shell model is of much interest. In the following
sections of this chapter we will discuss the nuclear shell model problem
and introduce the Shell Model Processor (SMP) system. The SMP is a high
performance, parallel processor system developed at the Department of
Physics at Glasgow University for the purpose of performing such nuclear

structure calculations [MBMW85, MMB87].

2.1 The Nuclear Shell Model

It is well known that the nucleus exhibits a behaviour with respect to
"magic numbers" of nucleons that is similar to that of atoms which have
closed electron shells. For example the rapid change in nucleon binding
energy at the nuclear magic numbers is similar to the change in electron
separation energy in the atom. It therefore seemed logical for the early
nuclear theorists to attempt to develop a shell model of the nucleus

based on the quantum-mechanical procedures which had been so

Chapter 2

successfully used to develop the atomic shell model. However the early
attempts at predicting closed shells through the operation of the Pauli
exclusion principle were only able to produce the first three
empirically observed nuclear magic numbers. It was not until the later
addition of spin-orbit coupling to the theory that the full list of
magic numbers was produced.

Although superficially similar the atomic and nuclear systems are
physically very different. Electron motion in the atom is governed
mainly by the Coulomb force between individual electrons and the central
nucleus. The force between individual electrons produces only a small
perturbation from this main effect. However the essence of the nuclear
shell model is that each nucleon moves under the combined influence of
all the other nucleons. The major assumption is that the total effect of
the other nucleons can be represented by a potential well having a large
negative value at the centre of the nucleus and rising to zero at the
surface. Various shapes for the potential have been suggested, ranging
from the simple rectangular well, through the three-dimensional harmonic
oscillator to the Woods-Saxon potential.

In practice however the single particle spherically symmetrical
potential is a simplification since there is evidence of a pairing or
two-body interaction within the nucleus [ER74). The two-body interaction
represents a departure from the average single particle potential and
arises when a nucleon is close to another nucleon with which it can
interact uninhibited by the Pauli exclusion principle. For example two
nucleons with different values of mj collide and after the collision
enter states such that’the total mJ is unchanged, thus conserving

angular momentum. The nuclear force therefore has a two-body nature and

the Hamiltonian thus takes the form;

H = 4T 4 ZV(i,j) (2.1)
2m i<

Chapter 2

2.2 The Slater Determinant Representation

In attempting to determine the nuclear energy levels it is usually
assumed that only one major shell is actively involved. The problem is
therefore to set up the Hamiltonian matrix and then to diagonalise it to
obtain the eigenvalues. The eigenvectors are also required in order to
calculate the transition rates and expectation values for various
measurable quantities. Traditionally the basis states were specified
using group theory and were coupled to good J and T quantum numbers.
However the need to handle the angular momentum algebra computationally
greatly inhibited progress.

It was for this reason that the nuclear theorists at Glasgow
University gave up the angular momentum coupled representations and
instead used uncoupled antisymmetric product wave functions, i.e. Slater
determinants, and an occupation number representation, [Wh72, MBMW85]. A

Slater determinant is given by

a

n

D w)... @)
a

where QD (r) is the wave function for the jth particle in the ith
3 .

a
state, for' some arbitrary ordering. A Slater determinant can then be

written in the occupation number formalism using the creation and

+
annihilation operators, a and a respectively. A typical determinant

then becomes
+ + +

aa ...a 0 (2.2)

A B N
+ 0 -
where a 1is the creation operator for orbital i, and A, B, etc are the
i
indices of the occupied orbitals with A < B < .. etc. Such states have

definite values for the total z-component of angular momentum and total

z-component of isospin but no definite total angular momentum or

Chapter 2

isospin. This representation is known as the m—-scheme, [WWCM77].
Under the m-scheme it is appropriate to use an occupation number

representation for the Hamiltonian, so that;

(1) + (2 + +
H = :E: H a a + 1/4 :E: H a a a a (2.3)
ik ik i 0k i 1 k

ikl ikl 4

1)

[§ 2)
where H
1k

and H:jkl are the one and two-body Hamiltonian matrix
elements respectively. A simplification can be achieved by combining the
two terms, so that the Hamiltonian can be treated as a purely two-body
operator, [WWCM77], thus:

1 1) (2) + +
H = :EE: —H § + H a 8 8 & (2.4)

ikl n-1 ik 1 ijk1
i<j
k<1
so that the Hamiltonian is now explicitly dependent on n, the number of
nucleons. Thus the Hamiltonian can be written as;

A + +
H = ZE:: H a a a a (2.5)
i 1 x

ijkl 151 1
i<j
k<1
To diagonalise the Hamiltonian, H, it is necessary to have a form for
the actual matrix elements. These are given as follows, [Mac83]:
Let H be the two-body Hamiltonian as given in 2.5 and L be a basis list

of Slater determinants for a system of n nucleons. Let 1i> and If> be

two states, both members of L, such that;
1i> = !C*l e Qi>
> = !ﬁl . ﬁn
vwhere 041,..ci,ﬁl,..ﬂL are the indices of the occupied single particle

orbitals. The matrix elements are then;

1/ If 1i> = If>, i.e. OL = /5i for i = 1 to n, then

£V H D

1
A
h
D>
o
< +
o]
E
o
L]

o
“«

"
v

n
R
R
)
o
o
o
o
&
e

Chapter 2

n Pa)
= § H“.w.o‘(.w. (2.6)
i34)
12i<;
2/ If {<><‘ oot } + {[’51 ,5“ } = {<><i. 6.1 1, i.e. there is only one

different occupied orbital between |i> and !f>, then

n

FVH 1i> = Z 1 (-1)" (2.7a)

&y ﬂjukui

k=1
k#i, j
where
p & -1
3 1 .
p = _;- n + E n (2.7b)
s=¢X +1 s={ +1
k k
where n = 0 if the orbital with index s is empty,

1 if the orbital with index s is occupied,

for the Slater determinant a_ a ~ 1i>.

k i

3/ If {<>\1 Lo) 4+ {/51 ﬁn } = {Cxi,GLJ.ﬁk,Bl }, i.e. there are

two different occupied orbitals between 1i> and {f>, then

A P .
1] [- _
<fi H 11> = Hﬂ. ﬁ‘ °‘J°‘i (l) (28&)
where
> -1 b -1
| 1
p= § n + E n {2.8b)
sz +1 s= p +1
i k
for the Slater determinant a a 1i>.
oLy oy
4/ If there -are more than two occupied orbitals different between 1i>
and {f> then
<ft Hii> =0 (2.9)

(N.B. that for any two sets A and B, A+B = (A-B)u(B-A))
Thus meking use of the occupation number representation there is now a
simple mapping by which SDs can be efficiently represented and

manipulated within a computer. That is to assign each possible single

Chapter 2

particle orbit to a different bit position in a computer word. An
occupied orbital is then represented by 1 in the relevant bit of the
word, while an unoccupied orbital is represented by a 0. For example in
the 2s-1d shell there are 24 single particle orbits, thus requiring only
a 24-bit word to represent each SD. Thus using this method SDs and the
form of the Hamiltonian itself can be generated by using bit
manipulation and logic operations.

The basis space for a nucleus in shell model calculations is
potentially very large. For example in a calculation for 2881 {m = 0)
with 12 active nucleons in the 2s-1d shell, there are 93710 states (the
maximum for the sd shell) giving almost 101° elements in the matrix.
However only 20 to 30 of the eigenstates produced are actually compared
with experimentally determined values. Therefore a diagonalisation
method which produces all the eigenstates will generate mostly unwanted
information. Central to the method developed.at Glasgow University,
along with the m-scheme representation, is the use of the Lanczos
algorithm for the iterative tri-diagonalisation of the nuclear
Hamiltonian. Using this algorithm only as many Qf the lower eigenstates

as are wanted are produced with the minimum of additional unwanted

information.

2.3 The Lanczos Method

The task of determining the eigenvalues and eigenvectors for a real
symmetric matrix is generally performed using the Householder tri-
diagonalisation method. However for shell-model work its major drawback
is that it requires the full tri-diagonalisation process to be completed
before any of the eigenvalues can be obtained. The Lanczos method [FM77]
is, at least in theory, almost ideal for finding the extreme eigenvalues
of a large sparse symmetric matrix [Pa72]. The two methods are

equivalent and will produce the same results. However the Lanczos method

Chapter 2

is an iterative scheme which will produce the upper left-hand k x k
submatrix after only k iterations. The eigenvalues of this k x k matrix
converge rapidly to very accurate approximations of the extreme
eigenvalues of the full matrix as k increases, [WWCM77]. This remains
true even when k is much less than the dimension of the matrix.
Therefore in shell-model work the lowest energy levels, which are the
most useful, can be obtained after only 50 to 100 iterations, regardless
of the size of the basis space.

The Lanczos method works as follows; let A be a real, symmetric,
n x n matrix and v1 an arbitrary, n x 1 vectpr, such that v:v1 =1

(where the + denotes the transpose). New vectors are then generated by

iteration;
Av = =x v + ﬁ v
1 1 1 1 2
Av Z{SV +C>(v+£>v
2 1 1 2 2 2 3
Av = Bv + v + Bv
3 2 2 3 3 3 a

Av = ﬂ v + (Vv

n n-1 n-1

such that the v are all orthogonal with respect to each other and are
i
all normalised. The process terminates automatically after n iterations

since there can only be n mutually orthogonal vectors for the space and

therefore v must be 0.

n+tl

The Lanczos vectors v to v then form an orthonormal basis in
1

n

which A takes the tri-diagonal form
o, P,
61 0‘2 ﬂ’z
ﬂ’z 0‘3 ﬂs

3 ﬁn—l o‘n-

The coefficients are determined as follows;

(14 = v Av

Chapter 2

i+1 i 1i+12 i i-1 4i-1 i 1
+ 1/2

A = (v w)

i 141 1+1
If there are degenerate eigenvalues then the Lanczos method will
terminate in less than n iterations and only one eigenvector and
eigenvalue from the degenerate set will be obtained, [WWCM77]. However
degenerate eigenvalues rarely arise in shell model work, but the problem

can be overcome by using a new initial vector.
Unfortunately in practice the Lanczos method is not as ideal as at
first it seems. This is due to arithmetic processing inaccuracies which
lead to a loss of orthogonality in the Lanczos vectors and which stops

the process from actually terminating. The remedy is to re-orthogonalise

the current vector, Vi, with all the previous ones, as follows;

i-1
>
X = w - VWYV (2.10a)
i i ,j=1 J i 4
Xl
v = /2 (2.10b)
i
(x x)
R §

It is this which makes the Lanczos method less attractive than at first
appears. Indeed if the full matrix were to be diagonalised it would be
much less efficient than the Householder method. However if less than
n/4 iterations are sufficient, which is exactly the case with shell
model work, then the Lanczos method has the computational advantage over

the Householder method in terms of storage requirements and speed.

2.4 SMP System Introduction

We have so far described the nature and extent of the nuclear physics
problem and a method for its solution. However the original Glasgow
Program for determining the nuclear energy eigenvalues has a number of
limitations. These restrictions are a result of the type of computers

that the Glasgow Program is implemented on, which because of the

Chapter 2

magnitude of the shell-model calculation must be very large, high
performance mainframe installations. Access to these computers is both
limited and expensive, thereby reducing the number and scope of the
calculations that can be performed.

The number of single particle orbitals in any calculation is
limited by the type of computer used, being equal to the number of bits
in the computer word, allowing up to 59 orbitals on a CDC 7600 machine
but only up to 32 on an IBM 370 series computer. It is possible to store
each Slater determinant in more than one word, as has sometimes been
done, but this reduces the efficiency of the process and therefore still
imposes a limitation.

The amount of primary memory available on a mainframe also further
acts to limit the scope of the calculations since the Glasgow Program
requires that the complete Slater Determinant basis list be stored
during runtime [WWCM77]. The amount of space required to store this list
increases rapidly with any increase in the number of active orbitals and
in a 128 orbital system would require too much space even on today's
mainframes.

Out of a desire therefore to overcome these limitations and so to
increase the number and scope of shell-model calculations which the
Glasgow Nuclear Structure Group could perform, the following aims were
drawn up:

1/ That a dedicated computer system should be designed and built in
order to carry out nuclear structure calculations.

2/ The initial computer should be a prototype system, able to deal with
up to 32 single partiéle states.

3/ The computer should be totally accessible to the nuclear physicist
and have a low construction and running cost.

4/ The performance should be comparable to that of an IBM 360/195.

5/ That this prototype system should act as a testbed for a later

machine with four times the capability, i.e. it should be able to

Chapter 2

deal with up to 128 single particle states. -

Having gone so far as to decide to design a dedicated shell-model
processor, the question must be asked, what method should it use and
what should its nature be so that it is not restricted by the same
limitations as the current mainframes? i.e. should it be a simple one
processor SISD machine, or perhaps a SIMD array processor. An answer to
this question lies in the nature of the shell-model calculation,
examination of which shows that it divides into two logical stages:

1/ to generate the basis list of Slater determinants for the nucleus and
then to perform the annihilation and creation operations on the list
to determine the positions of the non-zero matrix elements within the
Hamiltonian matrix,

2/ to multiply the Hamiltonian matrix by the Lanczos vector and so to
accumulate a resultant vector.

This second stage further subdivides into a large number of independent,

non—identical tasks. Namely the determination of the magnitude and sign

of the matrix element from the annihilation and creation operators

{(found in the first stage) and then its multiplication by the

appropriate Lanczos vector element and accumulation into a resultant

vector element. These tasks are non-identical not just in the fact that
they operate on different data, but also in that they will follow
different paths to determine the Hamiltonian entry according to one of
equations 2.6-2.8. Since the tasks are independent it is possible that
any number of them could be carried out in parallel. Normally matrix
multiplication is well suited to array processor architectures. However
since in this instance the matrix is irregularly sparse this is not the
case. In fact this second stage of the calculation is ideally suited to

a multi-processor configuration. .

It is only the first stage of the calculation that actually
manipulates the SDs and so only it need have the capability of handling

32 bit words (or 128 bit words in the expanded system). It is therefore

81035

buixong

—

FAINLINYLS IVII00T dWS

340J)S
AJow g

10323
DI}y

10323/
joul

)

-

LINN H0SS3J30dd0HIIW F1dILINKW

SJ10SS320.g

JndWYIY

[
I
I
|
I

I
|
|
|
| |
|
(] swewe
I
|
|
[
|
I

1’z 24nbig

XiJ}DW

HO1VYHINT9 LVYWHOH XIHLVIW

Chapter 2

possible that this stage be a dedicated hard-wired unit.

These aims and objectives were drawn up a number of years ago by
Dr. A.M. Macleod and Prof. R.R. Whitehead in the Dept. of Natural
Philosophy at Glasgow University. The prototype Shell-Model Processor is
now almost complete with only one component of the system still to be
added. The SMP system is operational without this element, allowing one
full iteration on a basis size of up to 13,000 elements. A number of
test iterations have been successfully run, thus proving the integrity
of the system and fulfilling the original aims. The initial feasibility
studies and some design and prototyping work was carried out by Dr. L.M.
MacKenzie as the work for his Ph.D. My work has been largely concerned
with the later design and testing of both hardware and software in order
to integrate and commission the system as a whole. What follows
therefore is mainly a description and discussion of the SMP system both

in terms of its hardware and software.

2.5 A Global View

As has already been said the shell-model calculation divides into two
logical parts, with this division being reflected in the two major
functional sub-systems of the SMP (figure 2.1). The Matrix Format
Generator (MFG) has the responsibility of determining the position of
non-zero elements within the Hamiltonian, i.e. it must determine the row
and column index for each non-zero element as well as its creation and
annihilation operators. The second sub-system, the Multiple
Microprocessor Unit (MMPU), then uses the information determined by the
MFG in order to identify the magnitude and sign of the Hamiltonian
matrix elements and then perform the arithmetic to produce a new vector
from the current Lanczos vector. The MMPU must hold all the previous
Lanczos vectors in order to be able to perform the re-orthogonalisation

which is necessary after each iteration {section 2.3). The MMPU is a

Chapter 2

modular, moderately coupled MIMD system based on autonomous processing
elements and is thus able to process a number of matrix elements in
parallel.

The two SMP sub-systems can themselves be further subdivided into a
number of functionally separate units (figure 2.2). A communications
subnet is also be defined so that the two main sub-systems, and the
units within them, can communicate with each other. We will now describe

the detail present within the two subsystems and the subnet.

2.5.1 The Matrix Format Generator

1/ The Primary Generator: In the SMP system, the SD basis list does not

need to be stored, thus overcoming the needs to have vast amounts of
primary memory for its storage. Instead the MFG generates the basis
list during each iteration. This task is carried out by the Primary
Generator (PG). The PG is basically a single board computer based on
the Motorola MC68000 (8 MHz) microprocessor and 128K bytes of local
dynamic RAM. Its task of generating the basis list is performed using
several data tables built prior to runtime and stored in local RAM.
The PG also acts as a supervisor and controller to the rest of the
MFG. ensuring its proper initialisation and performing runtime

maintenance and control.

2/ The Secondary Generator: Once a state within the basis list has been

produced by the PG we have, with the state, identified a column
within the Hamiltonian matrix. This state, called a prime state

e >, is then passed to the Secondary Generator (SG) which in
n

response has the task of generating sections of the basis list, i.e.

sections of the matrix column, where non-zero elements may exist. The

states so produced, called secondary states ie >, form pairs of

states with the prime state (le >,le >) and each pair must then be

tested to determine whether it defines a non-zero matrix element.

The SG has effectively to regenerate parts of the basis list for

3/

4/

Chapter 2

each member in the basis list and this obviously has the capacity
for being a very large task. To cope with this workload the SG is a
dedicated, hard-wired logic module which does not run a control
program and is constructed using emmitter coupled logic (ECL). The SG
is at present clocked at 112 MHz and is capable of producing a peak
rate of approximately 8.6 million secondary states per second (i.e.
one every 13 clock cycles). For 27Al m=5/2, which has a basis list of
64,299 states, the SG must produce approximately 1.666 x 10g
secondary states per iteration, which it can do in 3.28 mins,
effectively placing an upper limit on the performance of the SMP as a
whole.

The Pair Filter: As a result of the method of operation of the SG

(which will be explained later) many of the secondary states it
produces will not actually combine with the prime state to produce a
non-zero matrix element. The task of filtering out these redundant
secondary states is given to the Pair Filter (PF). For each valid
secohdary state the PF finds, i.e. one which is two particles or less
different from the prime state ien>, the PF must also generate the
indices of the annihilation operators (ak.al) and creation operators
+ + + +

(ai,a) such that {eh> = akalaiajien>. These operator indices
(k,1,i,j) determine the magnitude of a non-zero matrix element within
the Hamiltonian matrix and must be passed to the MMPU to be
processed. Obviously the performance of the PF must match that of the
SG and so the PF is also a dedicated hard-wired module constructed
using ECL.

The MFG Buffer: The rate of output from the PF will vary considerably

and will only rarely reach the same peak rate as the SG due to the
fact that most of the secondary states are filtered out. In order to
even out the rate of output of valid secondary states by the PF and
to reduce the occurrence of the MFG being held up while it waits for

its output to be consumed by the MMPU, a first-in-first-out (FIFO)

Chapter 2

buffer stores the PF output.
Each output-word, called a Task Setup Word (TSW). in the MFG Buffer
contains the necessary set-up parameters for the MMPU to identify the
matrix element magnitude and also which element in the final vector
is to be updated. To this end the TSW must contain the index of the
secondary state (m), the annihilation and creation operator indices
(up to 4 of these), and information regarding which of eans 2.6-2.8
should be used. When the MMPU is able to receive a new set of
parameters to start énqther job, then the TSW at the top of the
buffer is read out thus providing an extra empty space at the bottom
of the buffer. It is only when the buffer becomes full that the MFG
must halt its operation and remain idle until a new space becomes
available. The read/write control circuitry for the buffer is also
constructed using ECL.

In order for the MFG to achieve maximum throughput it is designed as a

parallel processor, with all 4 of its sub-units completely pipelined

with one another. In particular the SG, PF and MFG buffer all have the

same major cycle time in which they process a state.

2.5.2 The Multiple Microprocessor Unit

1/ The Microcomputer Modules : these are the modules which must read the

set-up parameters from the MFG Buffer and perform the matrix times
vector arithmetic. When a Microcomputer Module (MCM) reads a TSW it
must determine the magnitude and sign of the matrix element using the
information imparted by the annihilation and creation operators and
the job type bits. The index m, also included in the TSW, gives the

index of the final vector element, V , whose new value is to be

fm
calculated as follows:

Vv = V. xH + V (2.11)

fm in n fm

The index n of the initial vector element V is the index of the

in

prime state being considered by the MFG and therefore remains static

Chapter 2

for varying lengths of time. For this reason n is not included in the
TSW but instead is passed directly to the MCMs by the MFG each time
the prime state changes.

The MCMs must therefore have their own native intelligence capable of
evaluating one of equations 2.6-2.8 and performing the floating point
arithmetic. Their ability to carry out this task is extremely
important since it is the speed of the individual MCMs which will
determine the performance of the MMPU. To fulfill their purpose the
MCMs are therefore high performance single board computers.

2/ Central Memory: as has been said, all the MCMs require access to the

initial and final vectors during an iteration. Since the storage
space required is large, up to 800K bytes for the biggest sd shell
nucleus, it is much more efficient to store these vectors centrally,
which is the purpose of Central Memory (CM). As each MCM starts a new
task it will read the required initial and final vector elements from
CM and at the end of the task will write the updated final vector
element back to CM.

Included in the CM subsystem will be a high capacity backing store
which is intended primarily to store the Lanczos vectors. After each
iteration the new Lanczos vector will be orthogonalised with respect
to all the previous vectors held in the store and then copied into
the store itself.

3/ Supervisor Module : it is this module's responsibility to monitor the

system during runtime and also to ensure the correct initialisation
of all the parts of the SMP system. The Supervisor Module (SM) also

acts as the interface to the outside world, e.g. via terminals,

printers, disks, etc.

2.5.3 Communications Subnet

1/ Input Bus: I-bus is the dedicated highway between the MFG Buffer and

the MCMs, along which the TSWs are read. As such it is fairly simple

Chapter 2

single address, uni-directional bus, but must have a high transfer
rate in order to keep up with the required flow of TSWs to the MMPU.

2/ Central Memory Access Bus: (MA-bus is the means by which the MCMs

perform read and write cycles to CM to access the vector elements. As
such it is more complicated than I-bus but requires the same
performance capabilities.

3/ Communications Bus: C-bus is the main system highway for

communications between components of the MMPU and the MFG. It is a

general purpose multiprocessor bus.

2.5.4 SMP Modes of Operation

Having thus described the tasks of the MFG and MMPU we can now draw
attention to an important fact that allows us to almost half the
workload of the MFG and also, but to a much lesser extent, reduce the

workload of the MMPU. This is simply the fact that the Hamiltonian is

symmetric 1i.e.

e t Hie> = <e | Hie>» for all m and n.

= n n m

Therefore once the MFG has identified two states ie > and ie > such that

n m

H Z 0 the MMPU can then perform two jobs, i.e. instead of the MMPU

mn

just evaluating

V =V xH +V (2.12a)

it can also evaluate

VvV =V xH +V (2.12b)

fm in mn fm

using the same H . Thus the MFG need only search half of the matrix for
=n
non-zero elements, i.e. in every column it need only search up to the
diagonal element; and in turn the MMPU has only half the number of jobs
to process.
However for each task the MMPU has to process there is now twice
the arithmetic workload and twice the number of vector elements to fetch

although there is still only one matrix element value to be determined.

Thus if the MFG is operated in this way., called H-mode as opposed to

Chapter 2

W-mode when the whole matrix is generated, the workload is significantly
shifted off the MFG. H-mode is therefore particularly useful in

situations where the MFG is the system bottleneck.

2.6 Conclusions

Although the system has been named the Shell-Model Processor it should
not be seen as a rigidly dedicated system useful only for nuclear
structure calculations, since this is far from the case. For a start
this type of calculation, i.e. matrix'generation and diagonalisation, is
common in many other branches of science. However far more than this the
SMP has the flexibility to be applied to many problems which have a
degree of parallelism and which could utilise the processing power of
the MMPU. The MMPU itself, since it is based on multiple, high-
performance single board computers, can be viewed as a general purpose
moderately coupled multiprocessor system and is therefore useful in many
other types of calculations. Even if the MFG could not be used in these
problems, the I-bus is of a sufficiently general nature that it could be
used to connect the MMPU to some other input device e.g. a high speed
disk or pre-processor.

We have in this chapter given an overview of both the nuclear
structure problem and the prototype SMP as a means for its solution. The
following chapters will be devoted to a more detailed description and
discussion of the system. Particular attention will be given to the MFG,
the multiple MCMs and the communications subnet since they are the most
important sections of‘the system in terms of their workload and
performance. The details of the Supervisor module will also be given as

well as the plans for the Central Memory, this being the only part of

the system not yet implemented.

CHAPTER 3

The Matrix Format Generator

3.0 Introduction

The function of the Matrix Format Generator (MFG) has already been
described (Sec. 2.5.1) as well as its infernal high-level structure. We
will now give further details of the MFG, describing the algorithm it

uses and its implementation in terms of both hardware and software.

3.1 Basis List Representation and Partitioning

Having chosen to use a Slater Determinant representation for the basis
states the most simple and (for manipilation purposes) efficient method
of representing them is, as we have said, to have one bit in the
computer word representing one single-particle orbital. Thus for the 24
orbitals of the sd shell only 24 bits in a computer word are required,
giving 8 spare bits in the current MFG which is a 32-bit machine.

The Shell-Model Processor system further subdivides this 32-bit
word such that bits 0-15 (i.e. the least significant 16 bits) are
reserved for neutron orbits and bits 16-31 are reserved for proton
orbits. Within these two half-words the orbital assignment is completely
arbitrary, for example figure 3.1 shows a possible assignment (note that
any particular assignment is called an SD representation). Thus given
the number of protons (Np), the number of neutrons (Nn) and the z

component of the total angular momentum (MJ) for the sd shell of the

nucleus and an appropriate representation we can generate a list of 32-

Bit number 1 J m nucleon

31 0 unused
30 0 unused
29 2 5/2 5/2 proton
28 2 5/2 3/2 proton
27 2 3/2 3/2 proton
26 2 3/2 -3/2 proton
25 2 5/2 -3/2 proton
24 2 ~5/2 -5/2 proton
23 0 unused
22 0 unused
21 2 5/2 1/2 proton
20 2 3/2 1/2 proton
19 0 1/2 1/2 proton
18 0 1/2 -1/2 proton
17 2 3/2 -1/2 proton
16 2 5/2 -1/2 proton
15 0 unused
14 0 unused
13 2 5/2 5/2 neutron
12 2 5/2 3/2 neutron
11 2 3/2 3/2 neutron
10 2 3/2 -3/2 neutron
9 2 5/2 -3/2 neutron
8 2 5/2 -5/2 neutron
7 0 unused
6 0 unused
5 2 5/2 1/2 neutron
4 2 3/2 1/2 neutron
3 0 1/2 1/2 neutron
2 0 1/2 -1/2 neutron
1 2 3/2 -1/2 neutron
0 2 5/2 -1/2 neutron

Figure 3.1 Example SMP Orbital Assignment

wnapter o

bit numbers which represent the Slater Determinant (SD) basis list for
the nucleus. These 32-bit numbers are called SD-words.

To make the generation of the basis simpler and so ease the task of
the PG and SG we partition up the basis list and define an order on it.
It should be noted that from this point on the method used by the SMP
system to generate the basis states and Hamiltonian entries starts to
differ significantly from the original method of the Glasgow Shell-Model
Program [WWCM77].

First the SD word is sub-divided up into 4 8-~bit sub-words which we

call SD-bytes;

SD-byte 0 comprises bits 31 - 24
SD-byte 1 comprises bits 23 - 16
SD-byte 2 comprises bits 15 - 8
SD-byte 3 comprises bits 7 - 0

SD bytes 0 and 1 are proton bytes and named Pl and P2 respectively while
SD bytes 3 and 4 are neutron bytes and named N1 and N2 respectively. For
simplicity we define an integral M-value, Mi. for each bit i, such that;
2m for each used bit, |

! it i=0..31 (3.1)
=0 for an unused bit.

M

The total M-value for an SD is then defined as;

31
M= ZE: M S (3.2)
i=0 ot
where : S =0 for an unoccupied orbital,
. i
=1 for an occupied orbital.

We also define n*(A) and mt(A) where
ni(A) = total number of occupied orbitals (set bits)
in byte i of SD word A,
and mi(A) = the sum of the individual M-values for the
occupied orbitals in byte i of SD word A.
We also denote the basis for a given nuclei with Np protons, Nn
neutrons, total M-value M and under representation R, as;

B-R(Np,Nn,M)

Chapter 3

A basis list can now be partitioned up into what are defined as N-
partitions end denoted;
[n(P1) ! n(P2) ! n(N1) ! n(N2)]
such that for all SD-words A in the N-partition;
n (A) = n(P1), n (4) = n(P2), etc.
and where n(P1) + n(P2) = Np and n(N1) + n(N2) = Nn. 8:9)
Thus all states in B-R(Np,Nn,M) can be placed in one, and only one, N-
partition and so the basis is completely and uniquely subdivided by
. these partitions.
Each N-partition can now be subdivided by defining an M-partition,
denoted;
i n(N1) | n(N2)
m(P2) | m(N1) ! m(NZ)]
such that for all SD-words A in the M-partition;
m (A) = m(P1) and n (A) = n(Pl), etc
¢ ° (3.4)
and where m(Pl) + m(P2) + m(N1) + m(N2) = M.
Each state can thus be placed in one and only one M-partition and so the
N-partitions are uniquely subdivided.
Using the N and M-partitions an order can now be imposed on the states
within any basis B-R(Np,Nn,M). First the N-partitions are 6rdered;

Let N [n(P1) | n(P2) ! n(N1) | n(N2)]

1

and N

2

be two arbitrary N-partitions within a basis. Then we define

[n(P1)"! n(P2)"} n(N1)"{ n(N2)"]

N1 < Nz <=> (1) n{(P2) < n(P2)" or
(2) (n(P2) = n(P2)") and n(N2) < n(N2)" (3.5)

(Note that if n(P2) = n(P2)" then n(P1) = n(P1)").
We can thus say that an N-partition N1 "is less than" another N-
partition Nz if the above is true for N1 and Nz.
An order can now be imposed on the M-partitions, such that if Ml and M2
are two arbitrary M-partitions within a basis, and if Ml and M2 belong
to different N-partitions, N1 and Nz respectively, then we define

M (M <> N <N

1 2 1 2

Np
Nn

W nu
QO ww

N-partitions

[3
s 3
[3 .
t 3 .
+ [2,
s | 2
+ [2,
{ 2,
+ [1,
+ [1,
L | 1,
s+ [1,
L o .
s | o ,
LI | o ,
[o .

3 denotes N-partition connected

Figure 3.2

0

0

A

3

2

0] --—- Initial N-partition
1]
2]
3]
o]
1]
2]
3 1
o]
1]
2]
38 1
o]
1]
2]
3 } ~--- Final N-partition

1,2,2,1]

Example N-partitions

Np
Nn

o ww

[-5
[-5
[-5
[-5
[-3
[-3
[-3
[-3
[3
[3
{ 3
| 3
[5
[5
[5
[5

Figure 3.3

M-partitions

., —2

|—2'

6

8

]

Initial M-partition

Final M-partition

M-partitions for N-partition {1,2,2,1]

Np
Nn

"o un

S ww

Figure 3.4a

Figure 3.4b

02 18
02 18
02 18
02 18
02 18
02 18
02 28
02 28
02 28
02 28
02 28
02 28
02 30
02 30
02 30
02 30
02 30
02 30
04 18
04 18
04 18
04 18
04 18
04 18
04 28
04 28
04 28
04 28
04 28
04 28
04 30
04 30
04 30
04 30
04 30
04 30
SD-words
02 18
04 28

30

SD-chains for seed 02 18 22 01

22
22
22

24
24
24

22
22
22

24
24
24

22
22
22

24
24
24

22
22
22

24
24
24

22
22
22

24
24
24

22
22
22

24
24
24

in M-partition [-3,2,2,-1]

22

24

01
02
04

01
02
04

01
02
04

01
02
04

01
02
04

01
02
04

01
02
04

01
02
04

01
02
04

01
02
04
01
02
04
01

02
04

01

02

04

Chapter 3

If however M1 and Mz belong to the same N-partition such that,

M = [n(P1) | n(P2) | n(N1) ! n(N2) and
! m(P1l) | m(P2) ! m(N1) ! m(N2)
M = n(N1)

n{P1) | n(P2) ! i n(N2)
m(Pl)"i m(P2)"! m(N1)"! m(N2)"

then M < M <=> (1) m(P1) < m(P1)" or

(2) (m(P1)

m(P1)") and m(P2) < m(P2)" or

(3) (m(P1) = m(P1)") and (m(P2) = m(P2)")

and m(N1) < m(N1)" (3.6)

We can now say that an M-partition M1 "is less than" another M-
partition Mz if the above ié true for M1 and Mz.
Thus for any two arbitrary states S1 and S2 within a basis, where S1 and
S2 belong to different N-partitions N1 and N2 respectively, then;

S1 < 82 <= Nl < Nz
Similarly if S1 and S2 both belong to the same N-partition but different
M-partitions, Ml and Mz respectively, then;

S1 < 82 <= M1 < Mz
If S1 Qnd S2 are within the same M-partition then they are simply
ordered according to normal numerical ordering.

Thus using these definitions all states within a basis can be
ordered. It is this partitioning and ordering that the PG uses to
produce all the SD-words for a given nucleus.

As an example of what has just been described figure 3.2 shows all
the N-partitions (note that the definition of connected N-partitions

a

° .
P m=0 nucleus under the representation

will be given later) for the s

given in fig. 3.1. The N-partitions are given in order, with the lowest,
under the definition given in 3.5, shown at the top. Figure 3.3 shows,
in order, all the M-partitions contained in the [1, 2, 2, 1] N-

partition. Finally figure 3.4a shows all the SD-words, (in hexadecimal),

within the [-3, 2, 2, -1] M-partition.

Chapter 3

3.2 Secondary Generator Methods

As has been said, for every state, le >, that the PG produces, a column
within the Hamiltonian is defined. This column of the matrix must then
be searched in order to find all the other states, te >, such that

<e {Hlen> # 0. The task of searching the column to find non-zero matrix

m
elements involves generating the basis list and then comparing each

state with the prime state le >. If a state is two or less particles

different from the prime state then a non-zero matrix element has been
found. The ordered basis of SD-words must therefore be generated and
searched for each state in the basis, although as has already been
stated, in H-mode only the states up to the current prime state, i.e.
the diagonal element, are compared.

The task of generating the basis list for each prime state is
performed, in hardware, by the SG. The SG is not a completely autonomous
piece of hardware, that is it will not generate the complete basis of SD
words unaided. However the SG will independently generate, in order, all
the SD-words belonging to an M-partition in response to being sent the’
initial SD-word for that partition. The task of driving the SG by
sending these initial states, called seed states, is part of the
function of the PG.

In addition to H-mode there is, fortunately, another means whereby
the SG need only produce certain sections of the basis for searching,
thereby reducing the number of states it must generate. This is due to
the fact that for each prime state there exist certain sections of the
basis which cannot possibly contain any states which contribute non-zero
matrix elements. The sections of the basis which are generated and

searched for a given prime state le >, are those N-partitions
n

3

N = [nen) @) a1 ! nN2)]

such that

Chapter 3

| n(P1) - n(Pl)‘ I+ | n(p2) - n(P2)t | +
* . (3.7)
| n(N1) - n(N1) | + | n(N2) - n(N2) | <= 4
where the prime state len> belongs to the N-partition
N =1[n(P1) ! n(P2) { n(N1) ! n(N2)]

If equation 3.7 is not true for a particular N-partition N‘ relative to
N then all the states in N‘ must have more than 4 differences relative
to all the states in N, i.e. more than 2 creations and 2 annihilations.
It can be seen then that if equation 3.7 is true for one of the states
which belongs to N then it is true for all states in N. We say that two
N-partitions are comnected if they are related by egqn. 3.7. Thus for all
the prime states which belong to a given N-partition, N, the SG need
only search those N-partitions which are connected to N.

As has been said it is the PG's task to send the seed states to the
SG. A table of these seed states is built by the PG every time the new
prime state belongs to a different N-partition. This table will contain
the initial SD-word of each M-partition within all the N-partitions
which are connected to the N-partition which the prime state belongs to.

As an example figure 3.2 identifies all those N-partitions which
are connected to the [1, 2, 2, 1] partition. In H—mo&e, of course,
the SG need énly search those N-partitions up to and including the one
in which the current prime state resides, since only half the matrix is
being searched. In figure 3.4a the first word shown (= 02 18 22 01) is
the seed state for that particular M-partition and the remaining 35
words are those which the SG must produce in response to being sent it.

It can be seen that each of the individual SD-bytes in all the

states in fig. 3.4a take on only a few different values. These different

values are shown for each SD-byte in figure 3.4b, with each column

corresponding to the SD-byte sbove it. Each of the four different

sequences of numbers in the four columns of fig. 3.4b is called an SD-

byte chain. Each SD-byte chain is a list of the values. in numerical

order, that each SD-byte can assume in a particular M-partition, under

7

L1117

1017

3x2

7

/
/
0]
INITIAL

SEED @

BYTE 3

MPX
®

CKS

10173 x2
MPX

10144 %8

NN

/0x0

CM1(L)]

FCYCLE(H)

AB.

Q@

Dx1

1CK'S

CCH3I(L)
q%l :

G LOADI(L)

7

CHANNEL
MEMORY

256 x 8
@

%

TO PAIR
FILTER

0

71T

®

A

)

QUT(H)

SSNNNNNNNN..

NN

10173x2
/, —MPX
D' 4 @

CK

/.

ITTTTI111177

10144 CHANNEL
256 x1

®
Dout(L)

Din WET(LX

CONTROL
RAM

END(L)

SEED(L)

CCRWEI(L)

L

CHAIN2(L)
CHAIN 1 (L)
CHAIN O (L)

FIG 35 SG CHANNEL 3.

CHAIN 3(L)

Chapter 3

the constraints of constant ni and mi imposed by the partitioning.

To produce the states of an M-partition the SG is built as four
separate byte-wide channels, SG channels 0 to 3, corresponding to the
four SD-bytes that make a SD-word. Associated with each channel is a
block of 256 x 8 RAM, the channel memory, which stores the SD-byte
chains for that channel. When a seed state is sent down to the SG each
SD-byte in the seed is used to address the appropriate channel memory.

Figure 3.5 shows the hardware for chamnel 3 (corresponding to SD-
byte 3) although there ig little difference for any of the other
channels. During the first cycle of the SG the appropriate byte of the
seed word enters the SG via the Dx0 input of multiplexer (1) and is
latched into the output register of multiplexer (2). The signal
FCYCLE(H) is only active during the first cycle of the SG and so only
then will the multiplexers (1) and (3) use the Dx0O inputs (note the (H)
suffix on the signal name denotes that it is active high, while an (L)
suffix denotes an active low signal).

The output of (2) addresses the channel memory and is also the
output of the SG to the Pair Filter via the register (6). The byte which
is read out of each of the four channel memories is the next element in
each of the SD-byte chains. The output of each of the channel memories
is fed back round and latched first onto the output of (1) and then onto
the output of (2). This next byte in the SD-byte chain now addresses the
channel memory and the output it produces is the next member of the
chain, and so on.

After the first cycle of the SG only the least significant channel,

i.e. channel 3, has its multiplexer (2) clocked round. Therefore the

output of the top 3 most significant channels stays the same, initially

equal to the bytes of the seed state, while the lowest channel is

clocked through the elements in its SD-byte chain.

When the last element in the chain for channel 3 addresses the

channel memory it produces the first element at its output. It is only

Chapter 3

when this byte is clocked round to the output of the SG, i.e. the output
of (2), that the next most significant channel, channel 2, has its
multiplexer (2) clocked round so that the next byte in its chain is then
presented at its output. Channel 3 now has the first byte in its SD-byte
chain at its output, while channel two has the second byte in its chain
at its output. When both chamnnels 3 and 2 reach the end of their chains
channel 1 is then clocked round and so on. In this way the SG acts like
a 4 byte counter, with each of the bytes only taking on a limited number
of values, i.e. the elements of their respective SD-byte chains. The SG
thus produces in numerical order all the SD-words present in an M-
partition, in response to being sent a seed state.

The contents of the channel memories are thus organised as closed
self-addressing chains. For example taking byte 3 of the example given
in figure 3.4b, the contents of location $01 ($ signifying a hexadecimal
value) would be $02, the contents of location $02 would be $04 and the
contents of location $04 would be $01.

The task of recognising when a chain has come to an end is
performed by the 256 x 1 chammel control RAM (5). Initially this RAM
will contain all ones, but when a new seed state is latched into the SG
then a zero is written in to the RAM at the location addressed by
initial seed SD-byte. As each byte in the chain is read out of the
channel memory, it addresses the channel control memory. Thus as the
different bytes of the chain address the memory only when the first
element in the chain addresses it will it output a zero. This is then
the signal that the channel has reached the end of its chain. When all
channels reach the end of their chains then the M-partition has been
exhausted. The control memory then has a one written back into it,
overwriting the zero, and a new seed is requested.

The channel memories are initialised at the start of SMP system
processing by the PG. The SGLOAD(L) signal is driven low by the PG thus

switching the multiplexer (2) over to its Dxl inputs which are connected

Chapter 3

to the PGs address bus (A.B. fig. 3.5). The data inputs and the data
outputs of the channel memories are connected to the PG's data bus so
that it can initialise, and verify, their contents. The contents of the
channel control RAM are automatically initialised to all ones when the
channel memories are written to.

The SG must also keep track of the index number of the the SD-words
it produces so that the MCMs can identify the appropriate vector element
which is to be used. To this end the SG has a 20-bit counter, called the
Secondary Index Counter (SIC), which is clocked up each time the SG
produces a new state. Howevér as has been said the SG does not produce
all the SD-words in the basis but only those belonging to comnected N-
partitions. For this reason the SIC must have the capability to be
initialised at the start of each new N-partition that the SG produces,
since the N-partitions which the SG produces will not in general be
contiguous. The PG has the task of initialising the SIC and must
therefore maintain a table, called NUMIB, of the index numbers of the
initial states in all the N-partitions. When the PG prepares a new table
of seed states it must also prepare a table of initial indices selected
from NUMTB. This initial number table (INT) will contain the indices of
the initial SD-words in each of the N-partitions connected to the
currently active partition.

We have now given a more complete description of the task of the SG
and of the methods it uses to fulfill this task. Section 3.5 will go
into greater detail and discuss its hardware implementation. However

first the Pair Filter and MFG buffer must be described more fully.

3.3 Pair Filter Operation

Once a secondary SD-word has been generated by the SG it is passed

directly to the Pair Filter. There it is compared to the prime state

le > to determine whether it is two particles or less different. First

d344N8
Ol

4d334NQg
Ol

g31S1934

13NNVH)

g300ON3
d01vy3d0

431113 divd 9€9Id

7V
A1/

ONV

13NNVHD NOIIV3YD

1INNVHD NOILV TIHINNY

13NNVHD

43000N3
J01vy3d0

[/ /]

(9S WOY4)
:m ayoMm as
Nm AHVONOD3S

\ d0X

/.

/

43151934

ANV

QYoM

Chapter 3

the orbitals which differ between the two states must be identified.
This is performed by logically exclusive-ORing the two SD-words that
represent #en> and }en>. figure 3.6. The resultant 32-bit word will have
ones only in those positions which differed, thus marking out those
orbitals in which a particle was either created or destroyed. To then
determine those particles in :en> which have been destroyed the output
of the XOR array is logically ANDed with }en>. The particles which have
been created in the prime state are determined by logically ANDing the
state len> with the output of the XOR array. The two resultant 32-bit
words are then latched into'registers feeding separate operator encoder
channels (OEC).

The output of each OEC is a 5-bit word giving the index of the
least significant set (i.e. high) bit stored in the input registers.
These output words, the index of an annihilation/creation operator
depending on the channel, are latched into two 5-bit registers. The
index of the next least significant set bit on the input registers of
the OECs is then determined and latched at the output. If after this it
transpires that there is another set bit on both the input registers
then there must have been more than 2 particles difference between the
two input SD-words, therefore <e‘:H!en> = 0. If however there are no
more bits left then the four operator indices are written into the MFG
buffer.

The operation of the PF is completely pipelined with that of the
SG. That is, as the SG is in the process of producing a new state, the
PF is processing the last state the SG produced. The SG and PF thus have

the same major cycle, i.e. the time taken to process a state. The major

cycle time for the SG and PF is currently 13 clock cycles.

3.4 MFG Buffer Operation

The Task Setup Word (TSW) written into the Buffer for each state passed

Chapter 3

by the PF has three subwords contained within it. These are made up as

follows;

Subword 1: a 20-bit word consisting of the four 5-bit operators produced
by the PF,

Subword 2: the 20-bit output of the SIC which gives the index, m, of the

secondary state, le >.

Subword 3: a 2-bit code to identify whether the TSW word refers to a O,
1 or 2-job. This code is also produced by the PF.

The operation of reading and writing to the buffer is pipelined with the
operation of the SG ana PF. To ensure as far as possible the
uninterrupted operation of the SG and PF they must not be delayed by
buffer read/write operations. Therefore although only a few states are
actually passed by the PF the buffer must still have the capability of
performing a write operation on every major cycle of the SG and PF. The
write cycle time of the buffer must therefore be at most 13 clock
periods. However read requests from the MCMs to the buffer, which are
completely asynchronous to the MFG operation, must also be fitted into
this cycle so that the SG and PF are not held up. To this end the 13
clock period major cycle of the MFG is split into two subcycles for the
buffer; one for buffer read operations and the other for buffer writes.
The buffer must therefore synchronise any read request to its read
subcycle. On some occasions however the SG and PF will be halted, e.g.
if the buffer is full, in which case the reads can take place at
anytime.

The buffer must keep a track of how many locations within it are
used at any time and from this provide signals to indicate whether it is
empty or full. These signals are then used to stop any more reads from

the buffer or to halt the SG and PF from producing any more states.

Chapter 3

3.5 MFG Hardware Implementation

The MEG was first run successfully as a complete unit towards the end of
1983, at a clock rate of 50 MHz. It has now, after a major revision of
its timing control and a number of other changes to the design, been
uprated to run at 112 MHz. This section will detail the updated MFG
hardware, as well as identify those sections of the hardware which
currently impose the upper limit om its clock speed.

The SG, PF and buffer read/write control logic are all built with
Motorola 10K series ECL gates. This high speed family of logic devices
has typical gate propagation delays of 2 ns, rise and fall times of 3.5
ns and offers a wide range of SSI devices and functions [MECL86]}. In
some key areas of the timing circuit Motorola 10KH ECL devices were
used. The 10KH series is fully compatible with the 10K family but has an
improved performance, e.g. providing typical propagation delay of 1 ns
for the same power consumption (typically 25 mW per gate). 10KH devices
also provide improved noise margin and reduced parasitic capacitance on
inputs allowing faster rise and fall times.

With the fast edge speeds and low propagation delays of ECL devices
path lengths can approach the wavelength of the signals. Thus any line
which is improperly terminated will produce reflections causing serious
distortions in the waveform [Ch86]. As a result of this, transmission
line practices must be used, requiring each line to be properly
terminated at its end with a load approximately equal to the
characteristic impedance of the line [MECL83]. This practice is
facilitated by the open emitter output used on all 10K devices. This
also allows "wire-ORing" of outputs, i.e. the ability to produce an OR

function between a number of outputs simply by connecting them directly

together.

A full power (equal -5.2 V for 10K ECL) and ground plane on the

circuit board also helps to reduce the impedance of signal lines and so

LINA 1041INOJ ONV ONIWIL £E€ 91

¥31S1938 14IHS dJO1J03rNI 3S1Nnd

I
| (IMN48
| na _
! Al
319 |
! ! |
L LELHOL| LELHOL| | g | (H1iyvIS3d
_ A
431S193Y 14IHS 118 42 |
‘ ug AOIN._.._m ! OED RN DN_O H
| | |
(H9Z1 (HiEL _
(HILL |
LYVIS3Y=(H)ELL "
(HIZ1 | :
| DITEvIS
| H AT

€10 (H.1VH

Chapter 3

minimise cross-talk between signals [MECL83]. The circuit boards used.
as well as providing a full power and ground plane, also provided
positions for the terminating resistor networks. Single-in-line (SIL)
resistor packs were used, providing seven 100 ohm resistors connected to
a common terminal. This was connected to a -2.0 V supply to provide an

active pull down termination.

3.5.1 Timing and Control Unit

The timing and control unit (TCU) provides the main timing and control
signals for all the major units within the MFG. It also controls the
synchronisation of the three stages within the pipeline, i.e. the SG, PF
and buffer.

The TCU can be separated into two functional subsections (fig 3.7);
the pulse injector and the 26-bit serial-in-parallel-out shift register.
A pulse is injected into the shift register by the D input of (2) being
high on a positive edge of the clock. This happens in two ways;

1/ START: This active low signal will inject a pulse into the TCU on its
back edge. START(L) is only activated when the SG commences
processing a new seed state. Thus if the SG is idle and waiting for a
new seed state then START(L) will only be activated when the PG sends
one. Alternatively if the SG finishes processing a seed state and a
new seed is already waiting then START(L) will be activated
immediately.

2/ RESTART: When the shift register is triggered, a pulse one clock
cycle long will travel along it causing each output to go high for
one clock period, starting at Tl and ending at T26. When the pulse
reaches T13 another pulse will be injected into the shift register.
This therefore generates the 13 clock period major cycle of the MFG
system. Thus on most occasions there will be two pulses travelling
through the shift register, separated by 13 clock cycles. Exceptions

to this are on the first cycle after the TCU has been started and on

7 Ha
-~ > 3. hﬁ) LHVLS s m_mm
(IMJOIS 10 g Ol— (HIONOTM | P00
(61 A EA 100k =
sm_é % 2 FION3 6) i — Al 4d
03 JHsiL J\ - al 5
3 0 — HLINI
HITVHD 3 HIINIDIS S| (3s3y
q J—H = :awmwon_
| IIMI S (N3O
A ﬁwm._o J3 o@ - IATIAT
(HIINO mHm::s air 90y
Imdals o S
L (MAGES
(N3LIEM <
103 111

(M)3MYID JO4INGD dOUS /149VLS ONV 30Vv443INI 8°¢€ 9l5

Chapter 3

the last cycle before it becomes idle.

There are two conditions that can stop a new pulse being injected in;
i) The SG finishing an M-partition: this condition is signalled by
the HALT(H) line. Obviously if this happens then the SG must be
brought to a halt but the rest of the MFG pipeline must be allowed to
empty before they are halted. In this case RESTART is barred from
injecting a pulse into the shift register and instead must wait for
START to be activated, signifying the arrival of a new seed state.
However timing signals mgst continue to the PF and buffer and so the
shift register is allowed to continue on, generating pulses up to
T26. It is from the latter half of the shift register that the PF and
buffer receive most of their timing signals.

ii) The buffer becoming full: this condition is signalled by the
BFULL(L) line. When this occurs RESTART is blocked from injecting new
pulses in. Only when a read is executed from the buffer and BFULL(L)
is thus negated is a new pulse allowed into the shift register. As in
i) above the MFG pipeline is allowed to empty. Since this could mean
another request to write to the buffer if the PF passes the state it
is processing, then BFULL is actually made a pre—emptiﬁe signal. That
is BFULL is activated when there are still 16 positions left in the
buffer. This is more than enough room to store any states allowed

through by the PF while the pipeline is being emptied.

Note that the two flip-flops, (2) and (3), at the input to the shift-

register serve to synchronise the the input pulse to the clock since

both START(L) and BFULL(L) are asynchronous to the system clock.

The lines DL1, DL2 and DL3 are all debug lines controlled by the PG

sof tware and used during MFG testing. Their operation will be explained

later in section 3.5.10.

3.5.2 SG Interface and Start/Stop Control

The interface between the SG and PG, figure 3.8, is the means whereby

T041INOD 9NPDIO0TI T3INNVHI

(H)Lno lmlk (H) 3712404
O—

Naas

(Mew>

6°€ 3JdN9I4

a

vone

33:;@'@

T — "

o — L

SN eN'S

[

Ql szw,.r

@ d«@

lﬂog

N

Tﬁzullo@ljn,k

WA)

(Fvmmo

Tzcoﬂww Grana —s : “q

S T g

. o.ﬂo TU>> o *q

Q oo ° v
«O m ¢ dy>> © @ oM

Jﬂl?vwd\, >4

(Hs L

(WeL

WL

1
(MPNIVHD
(HINIUHD
(M zNHD

(HENIyH-

Chapter 3

the SG signals to the PG that it requires a new seed state and whereby
the PG then transfers new seed states to the SG.

When the SG has exhausted an M-partition it will activate END(L)
(6) causing IDLE(L) (5) to be clocked low thus signalling to the PG that
the SG is indeed idle. If the next seed state is available, signalled by
SRDY(L), then the SG can start again, otherwise it must wait.

When the PG writes a new seed to the interface then the WLONG(H)
(1) signal is activated. This in turn triggers START(L) and also resets
(3) indicating, via FCYCLE, that the first cycle of the SG processing an
M-partition is in progress. When the SG does start again it signals to
the PG, via NSREQ(L). that a new seed is now required. Thus the supply
of seed states to the SG by the PG is pipelined with the SG's activity.

The first cycle of the SG is not used to produce any new states but
only to take in the new seed state and initialise the appropriate
locations in the Channel Control RAMs. The write pulse to the RAMs,
CCRWE(L). is generated on the first cycle of a new seed by STRTW(L) and
on the last cycle by STOPW(L).

The WRITE, INIT and RESET lines are initialisation control signals
driven by the PG at the start of SMP processing. They are used, among
other things, to ensure the correct state of various flip-flops in the

MFG control system and to set all bits in the SG channel control RAMs to

ones.

3.5.3 Channel Clocking and Control

As has been said the output of the multiplexer (2), fig. 3.5, of the nth
channel is only clocked if all the channels of lower significance, i.e.
channels n+l to 3, are also at the end of their chains. The control for
the clocking of the multiplexers in each of the four SG channels is

shown in figure 3.9.

The decision as to which channels are clocked round is implemented

by the priority encoder (1) and the 16x4 RAM (the channel clocking

BIT31 —J‘
] R
—| |32LINE 5—32
R PRIORITY // LINE F
ENCODER /// / DECODERE
Tﬁ BITO Y / F_F
Jietotzt -~ |PONED) / ' PT13((0)
PT8(L)
Y / A1/ ® 10176
DONE(H) - PT17l(L)
PT13(H) //// al/ % ©)10176
Y
PTAZIH) L/ PASSIH]
tJ k{) PT21(H) @ 110176
H=D Q[7T0
) é_m(m
HDRATT
JTO JT1
1 1 0-JOB
1 0 1-JOB
0 0 2-JOB
0 1 (NOT ALLOWED)

PAIR FILTER OPERATOR
ENCODER CHANNEL.
FIG. 3.10

Chapter 3

memory (CCM)) (3). The only function of the multiplexer (2) is to allow
the PG to initialise the CCM at the start of processing. The inputs to
the priority encoder (1) are the outputs of the 4 channel control RAMs
((5) figure 3.5), with the output of channel 3 connected to the highest
priority input. The 2-bit output word of (1) is the index of the highest
priority input that is high. This output is then used to address the
CCM, only the lowest 4 locations of which are used. The CCM is
preprogrammed such that the bit pattern which is read out will enable

only the appropriate channel to be clocked.

3.5.4 The Pair Filter

Figure 3.10 shows one of the two PF OECs while figure 3.11 details the
logic to control its timing. The timing of the PF has been completely
revised to allow it to operate at 112 MHz. This has meant increasing the
time between the 4 PF timing pulses, so that the OEC now completely
utilises the 13 clock period major cycle of the SG. Previously it had
only used 8 clock periods to perform its function.

The first timing pulse to the PF, PI8(L), clocks the output from
the XOR/AND arrays into two 32-bit registers. Each bit of these
registers can be individually reset to a low. The DONE(L) output of the
priority encoder signals that all of the input bits are low. Therefore
if this output is activated before PT13 then there could have been no
set bits in the registers. This indicates that the secondary state and
the prime state were identical and that a 0-job has been identified. If
DONE(L) is not activated by this point then the output of the priority
encoder. which gives the index of the most significant set bit on the
input register, is clocked into the 5-bit register (1), (note that bit
zero of the input register has highest priority).

PT13(L) is also used to enable the output of the 5-line-in, 32-
line-out decoder. This output is used to reset the highest priority set

bit in the input register. If DONE(L) is now activated before PT17 then

STRTW(H)

H 1N\ Rl Hdq R &
D |
outd |0] e °

8L TRU TIWU T2L)

PT13(H FIPT17(H) PT21(H)
PT8(L) 'PT13(L) 'PT17(L) PT21(L)

FIG.3.11 PAIR FILTER TIMING CONTROL.

S3STINd ONIWIL Y3113 Hivd ¢L’e 914

._
(7) 121d

(1) 4L1d

(1) €L1d
[L , (1) 81d

(H)1NO

™ (HIMLYLS

A A - A T AT T A Y-t - [I TI\Ty

1Z 6L L SL B L 6 4 S €Ll
L g e L JOYLNOD ONIWIL

Chapter 3

there was obviously only 1 set bit in the input word. Thus there was
only one particle different between the secondary state and the prime
state and so a 1-job has been identified.

If DONE(L) is not activated before PT17 then the above process is
repeated for the next highest priority set bit. If after this bit has
been encoded and cleared DONE(L) is activated before PT21 then a 2-job
has been identified. Otherwise if DONE(L) is not active by PT21 then
there must have been more than 2 particies different between the two
states and so the secondary state is not passed. In the 0, 1 and 2-job
cases the encoded annihilation and creation operators present in the
latches (1) and (2) are transferred into latches (3) and (4) by PASS(H).
A write enable pulse for the buffer is also generated by PASS(H).

The two flip-flops (5) and (6) generate the job-type bits JTO and
JT1, which also form part of the data word written into the buffer.
These two bits are encoded as shown in fig. 3.10.

Figure 3.11 shows the PF timing control circuit. Figure 3.12
details the timing relationship between the different clocks for the PF.
The timing pulses to the PF are disabled during the the first cycle of
the SG processing an M-partition, since the SG does not produce a state
for the PF in this cycle. The STRIW(H) clock, which is generated only on
the first cycle of & new seed (fig. 3.8). is used to disable the PF
timing clocks. The OUT(H) clock, which is generated on every cycle of
the SG except on the first one, is then used to enable the first three
clocks to the PF (PT8, PT13 and PT17). PT13 is used to enable the last
clock, PT21. This difference is caused by the fact that PT8 and PT21
will actually occur at the same time since they are 13 clock periods
apart. Therefore on the first cycle of the PF at the start of a new
seed, PT21 must only be enabled after PT8 in order to avoid spurious

clock pulses to the PF which could potentially cause unwanted write

pulses to the buffer.

SHOIVHYVAWOD 3A0W-H ONV EL'E 913

(HINIM 43INNOD X3ANI AYMVANOI3S
()3M8 n
: (MALd %&W w_wm_ .
(N3M = 8 (13701
000 L
e e [2h0s 0a sg od /g |HE¥H— !
ﬁnsowmmz UO_\\\\\\\\\\> W/ //A A ',QO.._ SK.:&
X
EE%%.Q_ HIM PO@ 2xeLesT |OELEST
\\\\\\\m\ro] o\\m s GZL0L
(HIX0IS - [43INNOD SNONOYHONAS 1ig 0z @
A0 0@

2eIlS W\\\\\\\\\\\\\\§&&8 oL

O]

e——0=d V'IHOIVYVINOD 118 0Z \g@)| €%289 ST

jzz_o_lmmmlm

(HIN3OWH

n)

® EXELEST

Chapter 3

3.5.5 Secondary Index Counter and H-mode Comparator

Since the SG only searches certain N-partitions belonging to a prime
state then the PG must preload the SIC with the index of the initial
state of every new N-partition processed. The inputs to preload the SIC
are fed by the latches, (4, 5) figure 3.13, which can be written to by
the PG.

Once the SG starts processing the last seed state of an N-partition
the PG must write the initial index number of the next N-partition to
the SIC preload latches. The PG can tell when the SG has started
processing a seed by testing that NSREQ(L) (fig. 3.8) is active. When
the PG writes the initial value to the SIC the flip-flop (2) is clocked,
signalling that the SIC preload latches are full. Only then does the PG
write the first seed of the new N-partition to the SG interface.

When the SG finishes the old N-partition and starts processing the
new seed for the new N-partition IDLE(L) will be driven low and high
again, (see fig. 3.8 for the circuit which generates IDLE) thus
activating the LOAD(L) signal. The SIC is then synchronously preloaded
by the first SICLK pulse. The SICLK pulse, which clocks up the SIC and
also preloads it., is generated with one of the PF timing pulses, PT17,
since the SIC must only be advanced when a new state has been clocked
out of the SG.

It is quite possible that an N-partition contains only one M-
partition. In such a situation there would only be one seed state for
the PG to send down to the SG before requiring to reload the SIC.
However it is feasible the SIC has not yet been preloaded with the
previous value, even although the SG has started to process the only
seed state. This could occur if the last state produced by the SG on the
last seed was written into the buffer causing it to go full. Under these
conditions the BFULL signal would not stop the SG from'starting to
process the new seed., it would instead only stop the SG after its first

cycle (fig. 3.7). Consequently the PF timing would not yet have been

Chapter 3

enabled (fig. 3.11) and so the SIC would not have been preloaded.
Therefore the PG must always check SPLEMPTY(L) (fig. 3.13) to determine
if the SIC preload latches are empty before writing to them. Since the
PG must also check that the SG has started processing the previous seed,
tested via NSREQ(L), before writing to the preload latches, a composite
signal. LEMPTY(L). is formed. This signal is active only when both the
above conditions are true.

While processing in H-mode the SG should only produce states up to
and inciuding the diagonal element. The secondary state for the diagonal
element will have the same index as the prime state. Thus when the
diagonal element has been produced, being identified by its index
number. the PG and MFG buffer must be notified. The PG needs to know so
that it can abort loading down the seed table for the current prime and
move onto the next prime state. The buffer must also know so that any
more states in the current M-partition which are passed by the PF will
not be written into the buffer. No writes are then allowed into the
buffer until the SG has started processing the new prime state.

The output word of the SIC is fed into a 20-bit hardware
comparator, (7) figure 3.13. The other input to the comparator is fed by
a 20-bit latch (8). This latch is loaded by the PG at the start of
processing on each new prime state with the index of the prime state.
When the index of the secondary state equals the prime state index then
the SICINT(L) signal is activated. This signal interrupts the PG
processor and is also sent to the SG and buffer. If the PG is not in H-
mode then the HMCEN(H) signal will be inactive thus permanently
disabling the SICINT line.

The diagonal element will always be passed by the PF and so the
back edge of the write signal, WE(L)., which the diagonal element
generates is used to produce the write inhibit signal, WIN(H). The
WIN(H) signal is used to block any more clock pulses to the SIC as well

as disabling writes to the buffer. In this way the SICINT(L) signal

(1M1IN3 8 (NALIW3 8 0a Gl0
1 I ZxEIES] .
AVHYY (1IN3oag 777777777774 Hd344Ng 94 YL€ 914
€ %4210l
TVYNOILYNISIWOD LY,
y
S ootiame @ HOIVHYAINGD EX99L0L}= | 151
Lz\somw g gméwmw €810 \\ v £x8/10L
— — 0Q
(1 j i 2 % 7 [0
x85l0l £XGZI0L Z*ELEST
| 7YY,
w108 RE YXLL10L
(T)LNYO .
(NINHOYS
0 g 8 xLL10\
WAL
0d (I3 (M Q \ [//// SH01v43d0
L0LOL 8LLOL \\ 29 % SG-L7Z WOW LLr/OLr
b 4 ynog wa /I 91
9x9%2S1 9XVLES

::Slw_ g AJV%Zum 00 510
@ ZXEIES]
AVagv 4343N9 94W 7L 914
TVNOLIYNIgWOD | NE0=88 el
4
Vol /oo iame L@ HOIVHYANGD E990IF 145
z;om@\%méwmw £x8L100 \\ | F\ E<8LL01
I | § 0a
-] gk @ ¢ w\mw\, akd
X £XGZI0L Z*ELEST
fzdum[@ . \\\%\\\W&Mﬂo\,
(TLNYO

— LZI0L

0d

LOLOL BLLOL
\7d

v

//

(713 (TBM

9x772ST 9*ILES

jnoQ

7 X GG-L7¢ WIW

7
Q /, SYO1VY3do

wal /11T

LLC/0Lr
aIS

Chapter 3

remains active until the PG has received and processed the interrupt,
when it will initialise the latches (8) with the new prime state index.

The SICINT signal cannot be used to abort the SG/PF from processing
an M-partition since this would leave a position in the channel control
RAMs (fig. 3.5) with a zero written in it. Therefore the SICINT signal
is only used to block any more writes to the buffer after the diagonal
element has been written in. As a result the PG must wait until the SG
finishes an M-partition as normal before it can go on to process a new
prime state. However when the SG finishes it is possible that the SG
interface still has a seed from the old prime state ready to be
processed by the SG/PF. In order that the SG should not take and process
this seed and so waste time, SICINT is used to block any new START
pulses, (7) fig. 3.8.

There is the danger that a race will occur between SICINT and IDLE
causing a glitch out of (7). SICINT will safely block IDLE as long as it
reaches (7) before IDLE reaches (8), thus ensuring no glitches out of
(7). This will always happen since the SIC is clocked 11 clock cycles
before IDLE (5) thus giving SICINT enough time (in worst case
conditions) to reach (7) first. However there is oné exceptional
condition when SICINT will not be able to block IDLE. but which still
ensures no glitches out of (7). That is when SICINT is caused by the
last state produced in an M-partition, in which case IDLE is clocked 2

clock cycles before the SIC. This will unfortunately mean that the SG

will waste time processing a seed.

3.5.6 The MFG Buffer Implementation

A schematic of the buffer and its control is given in figure 3.14. The
requirement that the buffer must be capable of handling both a read and
write cycle within the 13 clock period major cycle of the MFG { = 116 ns
at 112 MHz) necessitates the use of fast static RAMs. The 55ns cycle

time of the Motorola MCM2147 4K x 1 memories only just allows this to be

Chapter 3

achieved. At the time these memories were one of the main limiting
factors in increasing the clock speed of the MFG.

There are three sets of 12-bit counters within the buffer subsystem
(1, 2 and 3). (1) and (2), the buffer write address counter (BWAC) and
buffer read address counter (BRAC), generate the write and read
addresses respectively for the buffer and only count up. (3) is the
buffer word counter (BWC) and holds the number of used positions within
the buffer. The BWC will count up or down depending on the state of the
read signal, R(L). The outpgt of the BWC is used to generate the buffer
full and buffer empty signals, BFULL(L) and BEMPTY(L) respectively. This
is done by means of a combinatorial AND/OR array.

The multiplexer (4) outputs either the read or write address to the
memories depending on the state of the read grant signal RGRNT(L). Thus
the output of the multiplexer will default to the write address and only
change when a read access is actually being performed. Note that the
R(L) signal changes on every major cvcle of the MFG., splitting it up
intoba write and read phase. The RGRNT(L) signal on the other hand is
active only when a read is actually taking place.

As has already been noted the parameters within the TSWs which are
stored in the buffer do not contain all the data required by the M(Ms
for each task. That is the MCMs must also know the prime state SD-word
and its index. These parameters change very infrequently and only need
to be sent to the MCMs when they start processing a new prime state. To
achieve this the PG must know when the last TSW for a prime is read out
of the buffer.

To this end the PG must read the BWAC, (1), when the SG finishes
processing a prime state and before it starts processing a new prime. At
this point the BWAC will contain the address of the next position to be
written to in the buffer. The PG then writes this address into the
register (8) which feeds a 12-bit comparator (7), the Buffer Block

Finished Comparator (BBFC). When the MCMs read the last TSW from the

IDTACK* IDS*

F 244
IDS(L)
10125 10124
RGRNﬂul Q
IDTACKI(L)
RUNNING(H) : BEMPTY(H)
D® ™ BLKAINIL)
> Q
16MHz CC—
@ . RGRNT":: IDTACK(L)
QRD Ef -
= @ —-l éz
16 MHz
ASRGRNTIL) SRRQST(H)

MFG BUFFER READ CONTROL

FIG. 3.15

FIG. 3.16
WRITE AND SYNCHRONOUS READ CONTROL

Hﬂ—;'f(“) E(L)
PASS (H) O3
WEI(L)
H-p 0®
R
T26(H) _ -
éf _ SRGRNTIL)
Q
> R @
T21(H) i
T9(H) SRRQSTH—
IDLE(L) B
BFULLIL) @ | T24{H)
L—DSQ©
D>
T20(H) ﬂo©o RUNNING(H)
T26(H) S Q)
_ RIL
O
T25H)
T18(H)
v
BFULLH)

T2(L)

Chapter 3

buffer relating to the old prime, the BRAC, (2), will then equal the
contents of the register (8), at which point the BBFC will activate the
BLKFIN(L) signal. This signal is then used to interrupt the PG, which
then broadcasts the new prime state information to the MCMs. BLKFIN(L)
is also used to generate a read inhibit signal which stops the MCMs
performing any more reads from the buffer. This is done until the PG has

successfully informed all the MCMs of the new details.

3.5.7 MFG Buffer Read Control

All reads to the MFG buffer are performed along I-bus and are controlled
by two signals; the data strobe IDS' and the data transfer acknowledge
IDTACK‘ {note that the #* denotes an active low signal on the bus). A
read from the buffer is only initiated when the date strobe IDS‘ is
activated, figure 3.15. This will latch in a read request on the flip-
flop (1), unless either the buffer is empty, BEMPTY(H) active, or the
read inhibit from the BBFC is active. RIN(L). If either of these signals
is active then a read request will be delayed until it is removed.

Once a request has been latched in it can produce either a
synchronous or asynchronous read cycle;

1/ Asynchronous cycle: this type of read cycle will only happen if the
SG and PF have been stopped, either by a buffer full condition or
when the SG is waiting for a new seed. If this happens then
RUNNING(H) is brought low by T26, the last timing pulse of the TCU,
(see (6) of figure 3.16 for circuit). RUNNING(H) is then brought high
again on the second pulse T2 of the first cycle immediately after the
SG/PF restarts. RUNNING(H) is synchronised with the inverted 16 MHz
clock by (5), fig. 3.15, and then used to hold (2) reset. Thus only
if the SG/PF have stopped, RUNNING(H) low, will an asynchronous
grant, ASGRNT, be generated lasting 62.5 ns.

2/ Synchronous cycle: If RUNNING is active then the synchronous read

request signal, SRRQST from (1) of fig. 3.15, will generate a

llllllllllllllllll

EL) | —

R —
PE DATA |
//////[///////////X/////Z/j////////[/

SLC
//7f////%/////]////////////////////

] SRGRNTIL)

READ ' WRITE

FIG. 317 MFG BUFFER TIMING

Chapter 3

synchronous read grant signal, SRGRNT, via (3) and (4) of fig. 3.16.
This SRRQST(L) signal is completely asynchronous with the MFG system
at this point and so is synchronised to the MFG clock by the two
flip—flops (3) and (4). It is also synchronised to the MFG buffer
read phase by (3). Note that the read phase starts at the beginning
of T25 (7) with R(L) going low, but the synchronous read grant does
not start until two clock cycles later at the end of T26. This allows
time for the R(L) signal to place the BWC, (3) fig. 3.14, into the
count down mode before it is clocked by the SRGRNT signal.
It is possible that a read request is first initiated when RUNNING(H) is
low and gets as far as bringing the output of (2) high, fig. 3.15, only
for RUNNING(H) then to go high again. In this case the asynchronous
request would be aborted and then treated as a synchronous request.
However if an asynchronous request gets as far as driving ASRGRNT(L) and
then RUNNING(H) goes high there is no danger of the request also being

treated as synchronous, since the RGENT(H) signal will clear the read

request on (1).

3.5.8 MFG Buffer Write Control

The read and write subcycles of the buffer are split so that a
synchronous read is performed in 7 clock cycles (= 62.5 ns at 112 MHz)
leaving 6 clock cycles (= 53.5 ns) for a write. Figure 3.16 shows the
circuitry to control the write cycle. The PASS(H) signal comes from the
PF OEC circuitry, fig. 3.10, and signals that a state has been passed by
the PF and so must be written in to the buffer. The E(L) and WE(L)
signals are the chip eﬁable and write enable signals respectively for
the MFG buffer memories during a write cycle.

Figure 3.17 details the timing for the buffer synchronous read and
write cycles. This was also completely revised to accommodate the
changes made to the PF timing. The R(L) signal is only used on the BWC,

(3) fig. 3.14, to determine whether they count up or down. Since these

IDSY __
D

RGRNT(L) —~60NS —»

INTERNAL

SIGNAL l—s] j’
Tsloy <

10TACK*

FIG 318 CURRENT I-BUS READ CYCLE.

Ips*

i
|
RGRNT(L) __!
INTERNAL |

sicnaL <O

60ns-

I1DTACK ™

~ ¥

—

FIG. 319 PROPOSED I-BUS READ CYCLE.

Min H Max | Measured

ta/T . (synch) 43.8 | 77.4 -
s v ’ 1 []
1 1

b/ {synch) 159.8 | 193.4 | -
(] 1
] 1

c/ (asynch) 75.1 1 96.3 | -
1 t
] 1]

d/ (asynch) 137.6 | 158.8 | -
] []
1) t

2/ T 17.5 | 50.9 | 25
alsh] 1
1 1

3/ T 8.8 1 29.3 | 25
shoh | t
1 1

a/ T et 10.9 | 31.1 | 15

Table 3.1 I-bus cycle timings

Chapter 3

counters are clocked at the start of any read/write cycle then the R(L)
signal is changed ahead of the write cycle to give them sufficient setup

time.

3.5.9 I-Bus Data Transfer Protocol

I-bus is a dedicated, unidirectional, asynchronous bus capable of
supporting only one bus slave, the MFG buffer, and multiple bus masters,
the MCMs. The I-bus signal lines fall into two subsets; the arbitration
bus and data transfer bus (DIB). The arbitration bus requires énly four
lines; a common bus request line (IBR‘). a bus busy line (IBBSYt), a
daisy chained bus grant 1line (IBG*) and a bus grant return 1line
(IBGRTN‘). The operation of the bus arbitration protocol will be
explained later in Section 4.3. All that need be noted at present is
that the arbitration for the next bus master is pipelined with the bus
transfer of the current bus master. This pipelining allows minimal delay
to be incurred when handing over bus mastership.

The DIB consists of up to 64 data lines of which 42 are used at
present. There are only two DIB control lines, IDS. and IDTACKt. These
two lines form a simple handshake between the bus master and MFG buffer.
Figure 3.18 details the current protocol for the I-bus data transfer,
while table 3.1 gives the associated timings. The IDS* line is driven by
the current bus master and signals a read request to the buffer as well
as indicating to other potential masters that a bus cycle is currently
in operation. IDTACK' is the MFG buffers response when the data is valid
at its output. In response to the buffer asserting IDTACK‘ the current
bus master will negate his IDS‘ and latch in the data after a short
delay to guarantee set-up times. Only when the buffer has negatedA
IDTACK‘ does the next bus master assume control by driving IDS‘.

Since a read has to be synchronised with the read subcycle of the
buffer for both asynchronous (fig. 3.15) and synchronous reads (fig.

3.16), it is more than likely that there will be a delay before this

Chapter 3

happens. Time la in table 3.1 is the best case delay for Tslsv during a
synchronous read, i.e. is when the request arrives just in time to be
clocked into (4) fig. 3.16. The worst case delay for a synchronous read
is where the request just misses the clock and has to wait the full 13
clock period cycle of the MFG before being granted, 1b in table 3.1. lc
and 1d in table 3.1 give the best and worst case timings for the delay
imposed on requests being synchronised with the 16 MHz clock during
asynchronous reads. Using fig. 3.18 and the figures given in table 3.1
we can arrive at the following bus c&cle times for synchronoﬁs buffer
accesses (allowing 60 ns for memory access);

a) Peak cycle time (worst case),

i.e using 1la for T , and using worst case delays

slgwv

=T + 60+ T + T + T (all max. timings)

slgv alsh shah ahsl

77.4 + 60 + 50.9 + 29.3 + 31.1

248.7 ns cycle time

1]

4.02 MHz transfer rate.
b) Peak cycle time (best case),
i.e using la for T , and using best case delays

slgv

43.8 + 60 + 17.5 + 8.8 + 10.9

141 ns cycle time

7.09 MHz transfer rate.

c) Average cycle time (worst case),

i.e using average of la and 1b for T ey and using worst case delays
= ‘V

135.4 + 60 + 50.9 + 29.3 + 31.1

306.7 ns cycle time

1

3.26 MHz transfer rate.
d) Average cycle time (best case),
i.e using average of la and 1b for T ey and using best case delays
slgv

101.8 + 60 + 17.5 + 8.8 + 10.9

199 ns cycle time

5.03 MHz transfer rate.

C

@
]‘ o

~ VCCH31 VCC— - \VCC T
102730 . -
e o B
pag] e

[1D22—25 — =
102124 + L
102023 +— —

B 1019-%2 + —

¢ D187 — —
1017—{20 + — |

c ID1619 +— -

0 ID1518 + —

N ID1L-17 +— o

N ID13-16 + 1041~

£ ID12-15 +— —-1D40

C ID1M-14 + —-1D39

T 101013 +— 1038

| ID912 + —ID37

O 1081 +— —1D36

N ID7-10 + —ID35

S ID6—9 +— —1034
ID5—8 + —1D33
1047 +— —1D32
1036 + | —1031
1025 1ppgy* —1D30
1014 —1D29
ID0—3 —1028
VCC—12 VCC‘L —VCC

LINE LINES
] 3] TO ALL LINES | -ro 8o™ L/NES

ON EAcH ECOMMON VON botn :COMMON

‘ +
+5V : 22)F. | 220R
4L70R | OuF L70Rg 1 HuF
Data /femmmn—now Nztwork 10S¥ & 1DTACK™® TERMINAT N

NeTwory

FIG 320 I-BUS CONNECTIONS AND TERMINATIONS,

o

Chapter 3

An average data rate of between 3.26 MHz and 5.03 MHz can therefore be
expected on I-bus. While it is possible that the data rate éould peak at
up to between 4.02 MHz and 7.09 MHz.

However examination of fig. 3.18 shows that time is wasted at the
end of each bus cycle in the way IDS* and IDTACK' are removed. Since the
TSW is valid at the output of the MFG buffer on the rising edge of the
buffer RGRNT(L) signal and stays valid until the rising edge of the next
RGRNT(L) pulse it is possible to change the date transfer protocol to
that shown in fig. 3.19. As before the current bus master removes his
IDS. signal when IDTACK‘ is driven low and the next bus master is only
allowed to assume control when the IDTACK' is negated. However with this
method IDTACK‘ simply follows the internal RGRNT(L) signal and when it
is negated it signals to the current bus master that the data is ready.
The bus master then latches in the data after a short delay as before.
With this protocol the T° delay would be buried in the 60 ns memory

1sh

access time and the T time would be lost altogether. The above

shah

figures for bus bandwidth would thus become:

a) 168.5 ns = 5.93 MHz,
b) 114.7 ns = 8.71 MHz,
c) 226.5 ns = 4.42 MHz,
d) 172.7 ns = 5.79 MHz.

I-bus bandwidth could therefore be expected to increase to average
between 4.42 MHz and 5.79 MHz.

I-bus is physically implemented on a commercially available 21
slot. 96-line multi-layver backplane. 12 of the lines on the backplane
are reserved for power and ground lines sinqe they are connected to the
power and ground plane of the backplane. The remaining 84 signal tracks
on the backplane are layed out with a ground line on either side, thus
reducing the impedance of the track and so reducing signal crosstalk.
The layout of the signals on the edge comnector is shown in figure 3.20.

The IBG' and IBGRTN‘ signals are not physically present on the I-bus

Chapter 3

backplane since they require a daisy-chained line which was not
available on the backplane used. Instead they physically reside on the
C-bus backplane, which being a VME-bus has four daisyv-chained signal
lines.

The termination circuits used for the data and clock lines are
shown on fig. 3.20. These custom-made termination circuits are placed at
either end of the backplane on all the data and clock lines. The active
pull-up, pull-down termination has an impedance of 194 ohms. This
approximately matches the impedance of the signal lines on the backplane
and so reduces signal reflection from either end of the backplane. The
diodes on the termination for the clock lines help to limit undershoot

and so reduce ringing.

3.5.10 MFG Testing and Debugging

During testing and debugging of the MFG hardware it was possible to
override some of the normal functions within the MFG using a number of
dedicated debug control lines. All these debug control lines are driven
by the PG and are under software control. However during some of the
early stages of testing they were controlled by switches.}While testing
circuitry within the MFG signals were monitored via a 2 channel 100 MHz
oscilliscope.

For example it is possible to block the BFULL signal from stopping
the TCU, via DL1 fig. 3.7. thus allowing uninterrupted operation of the
SG and PF. This will of course mean that data is overwritten in the
buffer. However it is a very useful facility when signals are being
examined within the SG. PF and indeed the buffer write circuitry but
when the data in the buffer is not required.

There is also a facility to start the TCU via DL4, fig. 3.8. and
thus to initiate cycles in the SG/PF under software control. Using DL2,
fig. 3.7, it is possible to block the RESTART signal so that the TCU

does not have a pulse injected into it every 13 clock cycles. Thus using

Chapter 3

DL2 and DL4 it is possible to run "single shot” full speed cycles within
the SG/PF. i.e. only one pulse is allowed to travel through the shift
register, thus allowing each major cycle to be initiated under user
control. This facility proved useful for single stepping through SG and
PF operation and‘then checking their output as well as checking the
state of various key registers and flip-flops after each cycle.

It is also possible using DL3, fig. 3.7, to inhibit the HALT line
from stopping the SG at the end of a seed. Thus a single seed is
processed repeatedly without PG servicing. This is useful wheré signals
within the MFG are being examined with a 'scope, and so continuous and
synchronous operation is required.

The SIC H-mode comparator and BBFC can also be individually
disabled. via HMCEN (fig. 3.13) and BBFCEN (fig. 3.14). This facility
can be used to simplify control software during debugging.

All of the initial testing of the MFG was performed with much
simplified driver software. The software needed only to load the SG
channel memories with 2 or 3 different SD-byte chains and then use only
a small number of seeds. These seeds and chains were chosen to produce
tight loops within the MFG which could then be easily examined and
traced. Once the I-bus interfaces were complete a two processor system
was implemented, with the PG driving the MFG and an MCM accessing the
buffer and checking the data which was read out. When the complete PG
software was written more thorough checks could be performed using the
same two processor system, but now with the MFG performing the full
sequence of events for an SMP iteration.

The MFG hardware has now been completely tested and proven to

successfully and reliably operate at a clock speed of 112 MHz,

3.5.11 MFG Performance Limitations

The following have been identified as the major limitations on the

performance of the MFG:

1/

2/

3/

4/

Chapter 3

MFG buffer memories: as has been said the current 55 ns memories

limit the MFG major cycle to an absolute minimum of 2 x 55 =
110ns/cycle which gives a clock speed of approximately 118 MHz.
Indeed it has been found that the MFG will only operate successfully
up to a clock speed of just under 120 MHz. The current memories could
be replaced by 25 ns 4k x 4 bit RAMS, e.g. the IDT71682LA (which has
separate data input and output lines). This would impose a limit of
50 ns/cycle, which equals a clock speed of 260 MHz.

SG channel memories: the time allowed between the clocking of the

multiplexers (2) and (3), fig. 3.5, is only 3 clock periods during
which time the channel memories must be accessed. The present clock
speed only gives 27 ns for this function. This currently does not
allow for the maximum address access time of the memories (MCM10144)
of 26 ns, plus the maximum propagation delay of (2) and the setup
time required for (3), which amounts to another 8.8 ns. However it is
within the 17ns typical delay of the memory devices. Replacement with
the Fairchild F10414. which has a maximum address access time of
7 ns, or the Motorola MCM10422-7 {which is a 256 x 4 bit RAM) which
has the same access time. and replacing the multiplexers with the
10KH equivalent would place a limit of 262 MHz.

PF Operator Encoder Channels: analysis of the OECs shows that when

producing the second operator index a propagation delay of 30.3 ns
(worst case) is required for the signals to travel through the 1-to-
32 decoder and the 32-bit register and then be ready at the input of
the encoder. Only 4 clock periods are currently given to this stage
of the OEC, imposing an upper limit of 132 MHz. The simplest method
of increasing this is to replace all the OEC devices with 10KH ECL
series parts, which would approximately double this upper limit.

TCU shift register: in order to operate above 125 MHz the shift

registers in the TCU would have to be changed to 10KH devices. This

would place an upper limit of 250 MHz on the clock. However the pulse

318Vl

. - ¥3LSIp3y
HOIVYINT9 AYVIWILH DLZE 915 033S 119-¢€ (3sc 09SO0l)

T 1 L [[705INGD)
WV YHQ ~ = L8[3vIS
8xM8Z| 7 | 318VYY ; FNIGd v
|2 [AvMy91 2 118-¢¢
i L JOYINOD
{3OVATINT S Lo 9————)
WY YS _...Hv
X3 Y 04INOD ¥334Ngi
8 Sng L/d r—
JO4INOD - 1|5 949 8
ANV ¢ SE
ZHNG || § VIVQ sl
OOD@@ m .mwmeﬁ_{ ! 1 mu]
: V201 Jd [QvMms
A |
J09INOD . >
|
JINAONTIVIO| | 1 |]U_J w)
HOLVEVAINOD |
3OV4Y3LINI SN8-2 300W-H | ¥3J3ng

8M

0-5K

64K

128K

LK

OFFBOARD
VIA
C—BUS

CONTROL
SPACE

s

SG
INTERFACE

V///#551/),

DRAM

Wil

SRAM

FIG.321b MEMORY MAP

FFFFFF,

800000,
7FFEO0,

10FFFFe
1000004¢

09FFFF, ¢

08000016

OFFFig
0000

Chapter 3

injection logic would become a lot more difficult to control and may

not work at this speed.
The above list is by no means exhaustive but it does present some of the
more major limitations on the current performance. There are a number of
other minor limitations which could possibly be overcome by circuit
alterations rather than replacing parts. What is clear however is that
with the current design the MFG clock could possibly be increased in
speed by a factor of two, at the very most. Beyond this speed the
current design could not opgrate and a major rethink in the design of

the MFG would be necessary.

3.6 Primary Generator Hardware

A schematic of the PG hardware is shown in figure 3.2la, with its memory
map shown in figure 3.21b. The PG is an MC68000 (8MHz) microcomputer
module. It has an interface to C-bus, but none of the other SMP system
buses, and has direct control over the SG and PF via the SG interface.
The PG also has control over some of the MFG buffer functions as well as
access to read the contents of the BWAC. The PG can also write to the
preload latches of the BBFC. SIC and H-mode comparator. The buffer
functions and all the preload latches along with the two PI/Ts (Parallel
Interface/Timers) are all memory mapped into the control space (fig.
3.21b).

Only those parts of the PG hardware that are particularly dedicated
to its function will be discussed here, and not the more general

hardware of its microcomputer architecture.

3.6.1 The SG Interface

The SG interface contains two SG control PI/Ts and an 8k x 8 block of
memory, used for holding seed state tables. The SG interface is also the

pathway for the PG to initialise the contents of the SG channel memories

Chapter 3

and CCM.

The MC68230 PI/T [Mot230] has three 8-bit general purpose
bidirectional ports, A, B and C. Each of the bits for the three ports
can be independently configured as an input or output pin. The PI/T can
be used to generate vectofed interrupts to an MC68000 device. Four
independent interrupt inputs are provided via the handshake pins H1 -
H4. The PI/T will supply a different interrupt vector to the MC68000
‘depending on which handshake line was the source of the interrupt. All
three PI/Ts have their A gnd B ports in Mode 0, submode ix. which
configures them as bit I/0 with the handshake pins as interrupt
generating inputs.

The C ports on the two SG control PI/Ts on the interface are used
as the SG control and status register (SGCSR), so that the PG can
control certain functions of the SG and also read back its status e.g.
idle or running. The A and B ports on the two SG control PI/Ts are
combined to form one 32-bit output register. the Prime State Register
(PSR). to hold the current prime state which is fed to the PF. The
buffer control PI/T uses its B port as a buffer control and status

' register (BCSR).

The 8k block of memory on the interface is used to hold the seed
SD-words which are sent to the SG. 2k of these 32-bit words can be held
in the memory at any one time. The memory is made up of four 2k x 8
static RAMs, organised as two 2k x 16-bit word blocks. In normal
operation the memory acts as any other block in the PG's memory map,
being written to and read from 16-bits at a time. However when servicing
the SG with a new seed state the PG simply has to read a byte or word of
the relevant seed from the memory and the full 32-bit SD-word is read
out in one cycle and clocked into the SG seed latch. This utility saves
a significant amount of time for the PG servicing the SG and thus
reduces the time wasted by the SG while it waits for a new seed state.

However this means that a seed state cannot be written into the seed

Chapter 3

memory as a contiguous 4-byte word. Instead the most significant 16-bit
word of the seed (containing the bytes for channels 0 and 1) is written
to the lowest 4k block of the seed memory. The least significant word
(containing the bytes for channels 2 and 3) is then written into the
same address but with an offset of 4k (bytes) into the highest 4k block

of the seed memory.

3.6.2 The Control PI1/Ts

A total of 10 lines are used on the two SG control PI/Ts to form the

SGCSR. These lines are used as follows;

1/ Input: NSREQ(L) - signals that the SG is requésting a new seed,

2/ Input: IDLE(L) - signals that the SG is idle after completing an
M-partition,

3/ Output: REQEN(L) - enables the DREQR(L) signal (see fig. 3.8),

4/ Output: DL4 - a low to high transition on this line injects a pulse

into the TCU (see section 3.5.10 and fig. 3.8},

5/ Output: INIT(L) - wused to initialise certain flip-flops within the
SG/PF.
6/ Output: LOAD_SG - enables the memories in the SG to be loaded prior

to running, ’

7/ Output: LOAD_INT - enables the seed table memories on the SG
interface to be loaded and then switched into 32-bit mode,

8/ Output: DL3 - HALT override (see section 3.5.10 and fig. 3.7),

9/ Output: DL2 - single shot enable (" " " "y,

10/ Output: DL1 - BFULL override (" " " *)

The buffer control PI/T has 7 lines dedicated on its B port as the BCSR,

as follows:

11/ Input: LEMPTY(H) - signals that both the SIC preload latch and the
SG seed latch are empty (see section 3.5.5 and fig. 3.13)},

12/ Input: BEMPTY(L) - signals that the MFG buffer is empty,

13/ Output: BBFCEN(L) - enables the BBFC (see fig. 3.14),

Chapter 3

14/ Output: HMCEN(H) - H-mode comparator enable (see fig. 3.13),

15/ Output: SICLEN(L) - SIC preload enable (see fig. 3.13),

16/ Output: BCLK - this control line is wire-ORed to the BWC clock. A
low to high transition clocks the BWC, while it is held low
to allow it to run. This line is required to preset the BWC
to zero.

17/ Output: BRESET(L) - BWC preset mode line.

Most of the control lines driven by the PI/Ts are completely static

during runtime, except lines 7, 13 and 14 which are altered at certain

times by the PG software when necessary.

The two interrupts, i.e. the H-mode interrupt and BLKFIN interrupt.
are both directed to the PG processor via the buffer control PI/T. This
is achieved by comnecting the two interrupt signals, SICINT and BLKFIN,
to the H1 and H2 lines respectively of the PI/T. The PI/T is then
configured by the PG to generate an interrupt to the processor on a
negative going edge from either of these signals. Since the two
interrupts are both edge triggered the PG must clear them in the PI/T
before it will rescind its interrupt signal. The interrupts are both on
the second highest interrupt level to the PG processor, i.e. level 6,

and so can be masked out if desired.

3.7. Primary Generator Software

The PG task subdivides into three separate functions;

1/ The Basis Generation Function: this generates, in order, the basis

list of SD-words (i.e. prime states) for the nuclei under

consideration.

2/ The SG Control Function: amongst other things this function will

supply the SG with the necessary seed states. preload the SIC and

service the H-mode comparator interrupt.

3/ The MMPU Support Function: this function supplies the MCMs with new

| |
NOIIVY3N3O Sisve J04INQD 95 | 140ddNS NdW W
_ INIINOY _
e | |
- _ INTLN0Y
Neni3 LdNEy3INI | | 1dNYY3INI
. N¥NI3Y NIENRE
(E9ST INTINOY | ‘TdNET3INT
ST s [oo
{SMASIH3ON3NO3S LS Fied S s
Qd0M—-Qas 378Vl 033S
NOTITLEVd-IW NOTLILEVd-IW
G3HSINIS| arivhA I e
3INEITIOSINDD 3IWGITIORINDD
NOILILEVd-IW NOILILavd-IN
NOILT14Vd-N OILILEvVd-N
Q3HSINI| IAILOV O3HSINI| g3 33NNOD
~INIGSTI0BINGD (OIS ISNOD DIOEE1ONEISNDD
NOILILYVd-N [318V1 43AI940| 371gVv1 "¥3A180
LRI

1

NOILVSIVILINI

ALV

'SANILNOY FYVMLIOS
HOLVY3N39 AYVIWIYd ¢t 914

e

JONIH3I4TY
viva

VAW

dN 4

dNI

Sd31 ANV HVH
OILVLS

"viva J1vIS

SMAS

JdW

JdN

S3NILNOY 9d

€¢E 914

N

)

N

7//

[l

/[l

L

[/

N

N
)

W/

A\

///,

W\

/

14

L

0

S319VL NOILVINJOINI T3NNVYHD

1S 31LA8-0S

1SI-W

AY0133410-W

AY01334I0-N

Chapter 3

prime state information when necessary.
Figure 3.22 shows the structure of the PG software and the flow of
control and data between the different routines. All the software for
the PG has been written in Motorola 68000 assembly language. The
software was developed on a Motorola EXORmacs 68000 development system
using a relocatable assembler and linker package.

To perform its function the PG must generate and maintain a large
Runtime Data Block (RDB) containing lookup tables and PG system
parameters. The RDB is split into two sub-blocks: the static block and
the dynamic block. The static block is built prior to runtime and
contains read only data. The dynamic block is a read/write block of data

which is constantly changing during runtime.

3.7.1 The Runtime Data Block

I/ The Static Data Block

This data block consists of a number of tables and parameters built by
the Supervisor Module prior to runtime and then placed in the PG memory.
The static block is shown in figure 3.23 along with the PG software
routines which reference it. The sole function of the static data block
is to aid the PG in generating the basis list of SD-words according to
the ordering given in section 3.1. Therefore this data block is only
used by the Basis Generation Function.

The static block consists almost entirely of the Channel
InfonnationiThbles (CITs). There are four separate CITs corresponding to
the four channels of the SG (which in turn correspond to the four SD-
bytes that make up an SD-word). Each CIT is itself made up of four

different tables, as follows;

1/ The SD-Byte List: this is the lowest level of the CITs. It is a 256

byte table which contains all the possible SD-bytes for the channel
it refers to. Within the table the entries are sub-divided into

blocks, called n-blocks, with all the entries in an n-block having

2/

3/

Chapter 3

the same number of set-bits, i.e. occupied orbitals. There are thus 9
possible n-blocks (for 0 to 8 set bits) in each SD-byte list. The n-
blocks are arranged in order, with the n-block corresponding to 0 set
bits first in the list. It should be noted that while each of the 4
SD-byte lists of the 4 CITs are split into 9 n-blocks that in some of
the CITs some of the n-blocks will be empty. For example under the
representation given in figure 3.1 each SD-byte list will have 2
empty n-blocks, since 2 bits in each SD-byte are unused.

Within each n-block the entries are arranged into nm—blocks. where
all the entries in an nm-block have the same M-value. The number of
nm-blocks in any n-block is variable, depending on the particular n-
block and the basis list representation used. The nm-blocks are
arranged within the n-blocks in ascending numerical order of their m-—
values.

Within each nm-block the SD-bytes are arranged in numerical order.
All the SD-bytes within an nm-block thus have a constant number of
occupied orbitals and M-value. They therefore correspond to the SD-

byte chains placed in the SG channel memories (section 3.2).

The M-~list: This 256 entry table is also ordered into'n—blocks with

each n-block having a single byte-wide entry for each of its nm-
blocks. The entry for each nm-block simply gives the M-value for that
nm-block. These entries within each of the n-blocks are arranged in
numerical order, i.e. the same ordering as the nm-blocks in the SD-

byte lists.

The M-directory: The M-directory is organised in exactly the same way

as the M-list. However the entry for each nm-block consists of two 2-
byte elements and therefore the M-directory takes up 1024 bytes. The
first element of each entry in the directory is a 16-bit address
offset from the base of the SD-byte list to the base of the
associated nm-block. The second element of each entry gives the

number of SD-bytes minus 1 contained within the associated nm-block

VMrrowF— oM<—poO

DYNAMIC TRANSIENT
TABLES PG ROUTINES PARAMETERS
NUMTB ' NPC ANP
INITIAL /
NUMBER DTC JSW
TABLE (INT)
SEED CONTROL l T
NTROL MPC / '
TABLE (SCTAB) / CMPTIX
SEED TABLE STB / PIC
SDWS P5B
FIFC
SGDR 4
PRIME BLOCK -V
FIFRA
FIFO /‘
L [BLKFIN '\
INTERRUPT FIFWA

DATA

REFERENCE

FIG 3.24 DYNAMIC DATA

Chapter 3

of the SD-byte list. (Note that here as in other tables block lengths
are stored less one to optimise the use of the 68000 microprocessor
assembly language. The decrement and branch conditional instruction
{DBcc), which is used to operate most lcops, exits a loop when the
counter reaches -1. Therefore it is more efficient to store the loop
counts less one, rather than to calculate this value).

4/ The N-directory: This is the highest level table within each CIT and

is used only by the MPC. It contains 9 different entries, one for
each n-block, consisting of two 16-bit word elements. The first
element is a 16-bit address offset to the base of an n-block within
the M-directory. This offset is used for the M-List as well but since
the entries in the M-List are a quarter of the size of those within
the M-Directory then it must be divided by 4 (i.e. shifted right 2
places) before it can be used to reference the M-List. The second
element is a block length number, which gives the number of entries
(i.e. the number of nm-blocks) minus one within the associated n-
block. The total size of each N-directory is thus 9 x 2 x 2 = 36
bytes.
The iny other entries within the static block are three parameters
which define the particular nucleus under consideration, these are INP,
FNP and MVAL. INP and FNP are the initial and final N-partitions
respectively for the nucleus (an N-partition is specified by a 4 byte
number, with byte O containing the value of n(Pl), etc. (egqn. 3.3)).

MVAL is a 2 byte parameter and is the total M-value for the nucleus.

11/ The Dynamic Block

Most of the space within this block is teken up with the dynamic tables
while the remainder is used by transient parameters, figure 3.24. Only
the SG Control Function and MMPU Support Function use the dynamic
tables, while all the functions use the transient parameters.

The dynamic tables are made up as follows;

1/ The Number Table (NUMIB); This table contains the index of all the

2/

3/

4/

Chapter 3

N-partitions within the basis 1list (where the index of a partition,
be it an N or M-partition is the index of the first state within the
partition}. Each entry in the table is made up of two 32-bit long
word elements; the first element specifies the actual N-partition and
the second gives its index. This table is built by the Basis
Generation Function during the first iteration of the process.

The Initial Number Table (INT): The INT contains the indices of all

the N-partitions which are comnnected to the active N-partition (the
active N-partition is thg one which the current prime state resides
in). Its entries are used by the SG Control Function to preload the
SIC each time the seed states enter a new N-partition (section
3.5.5). It is built using the information in NUMIB. This holds no
problems in H-mode since in this case only connected N-partitions
before and including the active N-partition are searched by the SG.
However N-partitions which occur after the active N-partition are
searched when processing in W-mode and therefore during the first
iteration, since the NUMTB will not be complete, their index will be
unknown. Therefore a dummy basis generation run must first be
carried out in order to build NUMTB, when processing in W-mode.

The Seed Control Table (SCTAB): The first entry in the SCTAB is the

number (minus one) of all the non-empty N-partitions connected to the
active N-partition. Therefore this entry gives the number of valid
entries in the INT. The remaining entries in the SCTAB give the
number of M-partitions minus one in each of the connected N-
partitions, i.e. the number of seeds minus one for each N-partition.

The Seed Table: This is the actual list of seed SD-words which are

sent to the SG. This table is stored in the seed memory of the SG
interface.

The last three tables collectively form the Driver Tables. These
tables are built and used only by the SG Control Function. The Driver

Tables contain all the information necessary for controlling and

Chapter 3

supporting the SG during seeding.

5/ The Prime Block FIFO: This is a software FIFO maintained by the MMPU

Support Function. It is used to keep a record of previous prime
states and the position of their associated TSWs within the MFG
buffer. Each entry within the FIFO consists of a prime state SD-word,
its index and the address (read from the BWAC) of its first TSW
within the MFG buffer. These entries use 4, 4 and 2 bytes
respectively.
Before the SG Control Function begins processing a new prime state,
the new prime state details are appended to the FIFO. When a new
prime block is reached in the MFG buffer. signaled by the BLKFIN
interrupt (section 3.5.6), the MMPU Support Function will broadcast
the details, taken from the FIFO, to the MCMs. The BBFC is then
reinitialised using the details from the next entry in the FIFO.
In order to maintain the Prime Block FIFO there are three data words.
FIFC, FIFRA and FIFWA, kept in the transient parameter area of the RDB.
FIFRA and FIFWA are the offsets from the base of the FIFO to the next
position to read from and the next free position to write to
respectively. FIFRA (FIFWA) is incremented each time a read (write) is
performed, with the addition performed modulo the length of the FIFO.
FIFC is used to keep a count of the number of used locations within the
FIFO. Thus FIFC is used to determine when the FIFO is full or empty.
Some of theé other transient pérameters are:

PIC: this is a 32-bit number which is used to keep a count of the index

of the prime state.

ANP: this is another 32-bit location which specifies the active N-
partition.

OMPT: this specifies the current M-partition. It is a 32-bit word, with

byte 0 holding the M-value of SD-byte 0, etc.

JSW: this 4-byte location is the Job Status Word. It is used amongst

other things by the PG to determine whether it is in H-mode or W-mode.

Chapter 3

It is also used to keep a record of the number of iterations which have

been performed.

In total the RDB takes up 8936 bytes of the PG's DRAM system.

excluding the seed table which is placed in the SG interface memory.

3.7.2 The Basis Generation Function

The details of the three main routines which the PG uses to generate the

basis of SD-words are now considered.

i) The N-Partition Controller (NPC);

This routine generates., in order, all the N-partitions for a nucleus,

given its initial and final N-partitions, according to the following

steps;

1/ On entry to the NPC from the initialisation routine. the PIC is
cleared and the active N-partition is set equal to the initial N-
partition.

2/ The NUMIB is updated by appending the active N-partition and the
contents of the PIC plus 1.

3/ Control is passed to the SG Control Function to generate the new
Driver Tables for the active N-partition. If the JSW shows that the
job is being performed in W-mode and that it is the first iteration
then this step is not taken so that a dummy first iteration can be
performed to build NUMTB.

4/ Control is passed to the M-Partition Controller.

5/ If the active N-partition is equal to the final N-partition then
the basis has been completely generated and so the NPCs task is
finished. Otherwise the next active N-partition is generated

according to the order given in eqn. 3.6. Control then returns to

step 2.

ii) The M-Partition Controller (MPC);

The MPC is called by both the Basis Generation Function. via the NPC,

and also the SG Control Function, via the Driver Table Constructor

Chapter 3

(DTC). In both these circumstances its function is exactly the same,
namely to generate, in order, all the M-partitions that belong to a
given N-partition. The MPC can determine which routine called it by a
flag bit in the JSW. When the DIC is first called it sets the flag bit
in the JSW and only when it finishes does it clear the flag.
1/ The individual bytes within the ANP (multiplied by 4) are used as
offsets into the 4 N-directories.
2/ The entries read in the N-directories then give 4 offsets and
block length numbers fqr the appropriate n-blocks within the M-
directories and M-lists. A 4 word parameter, CMPTIX, is initialised
using these 4 offsets. CMPTIX is used to hold the offsets from the
base of each of the M-directories to the current nm-blocks being used
within the n-blocks.
3/ CMPT is formed. This is done by using the offsets (divided by 4)
in CMPTIX to fetch the 4 M-values from the M-Lists. These four M-
values are then placed in CMPT
4/ The 4 bytes within CMPT are added together. If the result /s equal
to MVAL then a valid M-partition has been found and so the the STB or
the SDWS is called, depending on whether the MPC was.called by the
DTC or not. Otherwise the MPC proceeds to the next step.
5/ The block length number of the least significant channel, i.e.
that which corresponds to SD-byte 3, is decremented by 1. If the
result is equal to -1 then there are no more nm-blocks for this
channel and so the relevant word of CMPTIX is reset to its initial
value which points to the start of the n-block in the M-directory and
the above procedure is performed for the next channel up. If the
result was not equal to -1 then the nm-block has not been finished
and so the relevant word of CMPTIX is incremented to point to the
next nm-block and control returns to step 3.
If the most significant channel runs out of nm-blocks then all the

possible M-Partitions for the active N-partition have been generated.

Chapter 3

The MPC therefore returns to the calling routine.

iii) The SD-Word Sequencer (SDWS):

This routine generates all the SD-words. in order, that belong to a
particular M-partition. As each SD-word {prime state) is built the SDWS
will call the SGDR. except when processing the dummy first iteration for
W-mode. In this case all that is required is that the PIC be incremented
for each SD-word made. The SDWS operates as follows;
1/ Using the 4 offsets in CMPTIX to reference the M-directories, 4
offsets and block length pumbers are obtained for the relevant chains
in the SD-byte lists. A 4 word parameter, CSDBIX, is initialised with
these 4 offsets. CSDBIX is used to hold the offsets from the base of
each of the SD-byte Lists to the SD-bytes being used to form the
current prime state.
2/ Using CSDBIX the 4 SD-bytes are fetched and placed in a 4-byte
location. the Prime State Buffer (PSB), in the RDB. The PIC is then
incremented by one.
3/ The SGDR is called, except if the JSW indicates that it is the
first iteration in W-mode.
4/ The next SD-word is then built in the same manner as in step 5 of
the MPC and control then passes back to step 2. When all 4 chains are

finished then control is returned to the MPC.

3.7.3 The SG Control Function

The software for the Basis Generation Function need know nothing about
the MFG hardware since it is completely independent of it. However the
same is not true of the SG Control Function since it is intimately
involved in the maintenance of the SG, PF and buffer. This function must
be optimised for speed since the vast majority of its workload is in
seeding the SG and any delay in this can delay the SG. On the other hand
little attention need be paid to optimising the Basis Generation

Function since it is a much smaller part of the PG's workload, (note

[An(P1)+2 , An(P2)-2 , An(N1) , An(N2)]
[An(P1)+1 , An(P2)-1 , An(N1)+1 , An(N2)-1]
[An(P1)+1 , An(P2)-1 , An(N1) , An(N2)]

[An(P1)+1 , An(P2)-1 , An(N1)-1 , An(N2)+1]

[An(P1) , An(P2) , An(N1)+2 , An(N2)-2]
[An(P1) , An(P2) , An(N1)+1 , An(N2)-1]
[An(P1) , An(P2) , An(N1) , An(N2)]
[An(P1) , An(P2) , An(N1)-1 , An(N2)+1]
[An(P1) , An(P2) ., An(N1)-2 , An(N2)+2]

[An(P1)-1 , An(P2)+1 , An(N1)+1 , An{(N2)-1]
[An(P1)-1 , An(P2)+1 , An(N1) , An(N2)]
[An(P1)-1 , An(P2)+1 , An(N1)-1 , An(N2)+1]

[An(P1)-2 , An(P2)+2 , An(N1) , An(N2)]

where An{(Pl) = the number of occupied orbitals for byte Pl of

the active N-partition, etc.

Figure 3.25 Connected N-partitions

Chapter 3

that the complete Basis Generation Function takes less than 3 seconds to
execute for the largest basis list).

i) The Driver Table Constructor (DIC):

The purpose of the DIC is to generate all the N-partitions which are
connected to the active N-partition and to construct two of the Driver
Tables, the SCTAB and INT. The N-partitions comnected to the active N-
partition are related as shown in figure 3.25. However for any
particular active N-partition not all of the 13 possible connected N-
partitions need exist. This would happen if some of the entries shown in
fig. 3.25 were less than the initial N-partition or greater than the
final N-partition. Also during H-mode processing the DTC need only
produce the first 7 of the entries shown in fig. 3.25.
1/ The DTC first sets the flag in the JSW to signal that it is
active. The ANP is then copied since it is overwritten by each new
connected N-partition before calling the MPC. A count. called NOOUNT,
of the number of valid, non-empty connected N-partitions is then
initialised to -1. When the DIC finishes NCOUNT will be included as
the first entry in the SCTAB.
2/ The first connected N-partition is generated and compared to INP.
If the initial N-partition is found to be greater than this then
control jumps to step 6, otherwise control proceeds to step 3.
3/ A valid connected N-partition has now been identified, however it
still remains to be seen if it is non-empty. Another count, called
MCOUNT, is therefore initialised to -1 to count the number of M-
partitions belonging to the current connected N-partition. The
connected N-partition is copied into the ANP location to be passed to
the MPC.
4/ The MPC 1is called and each time it finds an M-partition it will
call the STB which will increment MOOUNT.
5/ If on return from the MPC MCOUNT is still equal to -1 then the

connected N-partition is obviously empty. The N-partition is

Chapter 3

therefore not included in the SCTAB and so control advances to the
next step. If MCOUNT was not equal -1 then it is placed in the next
location of the SCTAB and NUMIB is searched to find the index of the
N-partition. When this is found it is placed in the next position of
the INT. NOOUNT is then incremented.

6/ The next connected N-partition is then generated and compared with
INP. If it is less than INP then the step starts again. Otherwise the
N-partition is compared with either FNP or the copy of the original
value of ANP, depending on whether the MFG is processing in W or H-
mode respectively. If it is less than or equal to the appropriate
partition then control jumps back to step 3, otherwise all
possibilities have now been tried. In this latter case NCOUNT is
prlaced at the start of the SCTAB, the DIC flag in the JSW is cleared
and control is returned to the NPC.

ii) The Seed Table Builder (STB);

Once the MPC has identified an M-partition it passes it to the STB via
the offsets in CMPTIX. The STB then uses CMPTIX to look-up the M-
directories to get 4 new offsets into the SD-byte Lists. The 4 initial
SD-bytes which this gives thus make up the seed state for the M-
partition and so are placed in the Seed Table. When this has been done
MCOUNT, used by the DIC, is incremented and control is returned to the
MPC.

iii) The Secondary Generator Driver Routine (SGDR);

When the SDWS identifies the next SD-word in the basis list (i.e. the
next prime state) the SG must then be sent all the relevant seed states
which have previously been prepared by the DIC and STB.
1/ The SGDR must first wait until the SG has stopped processing. The
SGDR determines this by testing the state of the IDLE bit in the
SGCSR. This is done to ensure that spurious results are not obtained
when various hardware control registers are changed later.

2/ The Prime Block FIFO Control routine, part of the MMPU Support

Chapter 3

Function, is then entered. This has to add the details of the new
prime state to the FIFO.

3/ If 1in H-mode the index of the new prime is written to the latches
feeding the H-mode comparator and the H-mode comparator interrupt is
enabled.

4/ The prime state is copied from the PSB to the Prime State Register
in the SG interface PI/Ts. The SIC is then initialised with the
index., taken from INT, of the first connected N-partition.

5/ The SG can now have the seed SD-words sent to it. The time taken
for the PG to send the seeds to the SG is very important to the
performance of the MFG, since if this time is too long then it could
produce unacceptable delays while the SG waits. As has already been
said a full 32-bit seed word can be latched into the seed register in
one MC68000 bus cycle. The code required by the SGDR to service the

SG is as follows:

LOOP TST.W (A3) 1 us
BMI.S LOOP 1 us
MOVE. W (A1)+.,D2 1 us
DBF D1,LOOP 1.25 us

giving a total of 4.25 us. However in this time the SG can produce up
to 36 states.

The first two lines test the SGSCR to see if a new seed is required
by the SG and if it is not then the test is repeated until one is
requested. Line 3 reads the seed from the seed table memory causing
the hardware to latch the 32-bit word into the seed register. Line 4
then decrements the counter for the number of seeds in the current
connected N-partition being searched. When the count reaches -1 then
a new connected N-partition is entered and so the SIC must be

reinitialised. and step 5 is repeated.

6/ When all the connected N-partitions are finished the SGDR

disables the H-mode interrupt.

No

Mask laterrupt

is
FlFO

EMP‘\‘&?

No

YES

Append next Audder

Wede nAo\N.ss 4o FIRO;

!

Write aexd Buler Wrde
Rddrecs Yo bBEc taput
ladch,

Enable %6Rc.

Is
HFG 6“""0-
E"\p‘\'wb?

A Pe LAJ pHﬂ\Q S S‘n.\.,_

'Bn:\-o&ls Yo Mo
UpAach Firo

P&famq_jrc.rs,

YES

1

Broadcast Prime
State Deduils 4o
Mcms.

Disable +he Lspc,
Clecr N aterewph

(a PIUT.

un"\&Sk li\‘\’tkrup A

v

FIGURE 3.26

r 3

Prime Block FIFO Update Routine

Chapter 3

7/ The SGDR then terminates and returns to the SDWS.

iv) The H-mode Interrupt Service Routine:

This interrupt, generated by the SIC and H-mode comparator. occurs only
in H-mode when the diagonal element of the matrix has been produced. Its
purpose is to cause the SGDR to abort its task of seeding the SG for the
current prime state and for the PG to return to the Basis Generation
Function to select the next prime state. The interrupt routine therefore
has only two main steps:
1/ The first step is simply to clear the interrupt in the PI/T which
directed the interrupt at the PG processor.
2/ Program control must now return to the SGDR but not to the point
at which it was interrupted. Instead control must be returned to the
end of the SGDR (step 7) so that no more seeds are sent to SG. In
order to do this the return address on the processor system stack is
overwritten with the address of the relevant part of the SGDR. The
interrupt routine then simply executes the normal return from
exception (RTE) instruction.
The H-mode interrupt is disabled in step 6 of the SGDR for two reasons.
The first is that it is simply no longer required if the SGDR has
naturally run out of seeds for the SG. The second is due to the last
step of the H-mode interrupt service routine. Since if the PG was
interrupted outside of the SGDR then it would return to the wrong

routine and cause a fatal error.

3.7.4 The MMPU Support Function

i) The Prime Block FIFO Update Routine;

The two software routines of the MMPU Support Function both manipulate
and alter the BBFC and the Prime Block FIFO and its associated
parameters. Since the second routine is entered by a BLKFIN interrupt.
which in principle can occur at any time. then great caution must be

taken by this first routine. A flow diagram, figure 3.26, is used to aid

Chapter 3

in understanding the flow of control for this routine.

The BWAC in the MFG buffer can be safely read at the start of this
routine since the SGDR, which calls it, has previously made sure that
the SG and PF have stopped processing. Therefore there will be no more
writes to the buffer for the previous prime state.

The routine must obviously determine if the Prime Block FIFO is
full. If it is then the processor must wait until a position becomes
free. This will only happen when a BLKFIN interrupt occurs during which
the interrupt routine will read from the FIFO. A BLKFIN interrupt must
eventually occur since the MMPU is continually reading from the MFG
buffer. The size of the FIFO is governed solely by software. A size of
100 entries was used so that the FIFO consumed only 1000 bytes of PG
memory. It is highly unlikely that this would fill up, since if it did
it would imply that the MFG buffer contained blocks of TSWs for more
than 100 different prime states. with each block containing less than 21
elements on average. Even if the FIFO did fill up this would imply a
back-log of TSWs in the MFG buffer and so holding up the MFG for a while
would have little or no affect on system performance.

At this point the PG processor masks out any external interrupts in
its status register to ensure that the rest of the routine is free from
the BLKFIN interrupts. This has to be done to make certain that only one
routine is manipulating the FIFO and the BBFC at any one time. thus
ensuring the integrity of all the FIFO parameters. Since the interrupts
are only masked out. then any attempted interrupts which do occur will
be "saved" until they are unmasked.

If the FIFO is not empty then it is updated. The three entries
written to it are: the next write address of the MFG buffer (read from
the BWAC), the new prime state SD-word and its index. The FIFWA and FIFC
parameters are also incremented.

If the FIFO is empty then the MCMs must currently be processing the

TSWs for the previous prime state. In this case the BBFC will currently

Chapter 3

be disabled. Therefore the next write address of the MFG buffer is
written directly to the BBFC input latches and the BBFC is enabled. via
the SGCSR. However it is quite possible that the MFG buffer haé now been
emptiéd by the MCMs. If this were the case then the MCMs would be
waiting for the new prime state details. Therefore if the MFG buffer is
empty then the new prime state details are broadcast to the MCMs and the
BBFC is disabled. BLKFIN interrupts are cleared from the PI/T since it
is possible that one may have ocurred. If the MFG buffer was not empty
then the FIFO is simply updated.
The routine then unmasks all interrupts and returns to the SGDR.

i1i) The BLKFIN Interrupt Service Routine:

This routine first clears the interrupt in the PI/T. It then reads the
prime state details from the Prime Block FIFO, at the location indicated
by FIFRA, and broadcasts them to the MCMs. FIFRA is then incremented to
point to the next entry and FIFC is decremented by one. If this
indicates that the FIFO is empty then the BBFC is disabled. Otherwise
the start address of the next prime block in the MFG buffer is read
from the FIFO and written to the BBFC input latches. The routine then

terminates.

3.8 Conclusion

The complete details concerning the method of operation of the MFG along
with its hardware and software details have now been given. The
performance capabilities of the MFG will be summarised later along with
those of the MMPU. However first the details of the MMPU and in

particular the MCMs will be discussed.

CHAPTER 4

The Multiple Microprocessor Unit

4.0 Introduction

As the MFG searches the Hamiltonian matrix to identify the positions of
non-zero elements so the MMPU, in parallel, processes the MFG's output.
As has been said the job of processing the MFG's output sub-divides into
a large number of asynchronous, non-identical, independent tasks which
are dealt with, in parallel, by the MCMs. The prototype MMPU is made up
of up to 16 of these MCMs as well as the Supervisor Module and Central
Memory.

In designing any multiprocessor system the nature of the
communications subnet is just as cruciel in defining the characteristics
and performance of the system’as the nature of the Processing Modules
(in our case the MCMs), and the Global Resources (in our case the CM, SM
and MFG Buffer). When defining the SMP communications subnet we must
take into consideration the requirements of the different modules
present within the system. We also place the following additional
demands on its capabilities (in order of priority):

1/ High bandwidth: the subnet should be able to cope adequately with the
demands of the MCMs to access the Global Resources. Equally it should
be able to cope with the needs of the SM to communicate with and

control the rest of the system. The subnet should not be a system

bottleneck.

2/ Modularity; it should be a simple task to add new MCMs or Global

Resources to the system, requiring no changes to either the subnet or

Chapter 4

any other part of the MMPU.

3/ Reliability; as far as possible hardware faults on any of the MCMs
should not degrade the performance of the subnet or of any of the
other MCMs.

High bandwidth is by far the most important requirement since it will
determine an upper limit on the MMPU's performance, which will in turn
impose an upper limit on the performance of the SMP (just as the MFG
does). Indirect intercomnection between modules on the subnet (e.g. as
in a loop configuration) would tend to reduce all the above capabilities
and so a direct connection.between all modules is preferred, i.e. for
two modules to communicate with each other no other module need take
part in the process.

For these reasons the SMP subnet is based on three shared buses as
described earlier in section 2.5.3. The advantages of bus s{ructures
have been mentioned earlier in section 1.4.3.

Each module within the MMPU is built using at least two, but
usually four, double Eurocards, thus providing four 96-way edge-
connectors on one side of a module. The modules are housed in a 19 inch
card-cage holding four backplanes which supply the modules with power.
Two of the backplanes are standard 96-way backplanes while the other two
are VME-bus backplanes. Each backplane has 19 slots for connecting with

the SMP modules. Together the four backplanes form the basis of the SMP

communications subnet.

4.1 Bus Arbitration Protocol

We have already described and discussed certain bus arbitration
protocols in section 1.4.3. However for the purposes of the SMP none of
these methods is followed exactly, rather a variation on the VME-bus
centralised daisy chain arbitration scheme is used on the three SMP

buses. The SMP protocol, which uses a decentralised daisy chain, shares

LOCALBR —y [

o A

4
BGRTN* \\
\

/]

/e

D

B ARBITER

BBSY*

ARBITER A

FIG. 41 C-BUS ARBITRATION PROTOCOL

Chapter 4

the advantages already mentioned of daisy chains. However it overcomes
the disadvantages of the centralised daisy chain, where modules
competing for use of the DIB have a fixed priority imposed on them by
their physical location on the backplane. With the decentralised
protocol a round-robin priority arbitration system is implemented thus
giving equal access to the DIB for all competing modules.

With the decentralised scheme, as before, when a module requests
the use of the DIB it activates the (wire-or) bus request line and the
central arbiter then sends a bus grant signal down the daisy chain line.
Any module not currently requesting the DTB simply passes the grant
signal on. When the bus grant signal arrives at a module which is
actively requesting the bus that module will block the grant signal from
propagating any further down the daisy chain. Instead the module assumes
mastership of the DTB by asserting the bus busy signal, BBSY*. However
instead of the grant being rescinded at this point by the arbiter, as in
the case of the centralised daisy chain, it is still held active. Then
when the current master finishes with the DIB the grant signal is
allowed to propagate down the daisy chain to the next module.

When the grant reaches the end of the daisy chain it is fed onto a
grant return line on the bus. The arbiter constantly monitors this
signal and only when it is activated does the arbiter negates the bus
grant (figure 4.1).

This simple extension to the protocol thus overcomes the rigid,
fixed priority of the centralised daisy chain at the expense of only one
extra line on the backplane. To‘implement this decentralisation a few
other minor changes, which we will now detail, are made to the protocol.

As has been said any module which is actively requesting the DIB
will block the bus grant signal from propagating down the daisy chain.
Therefore since a bus master must have the grant signal present
throughout its DIB cycle, then all the modules between the arbiter, in

slot 1 of the backplane, and the current bus master must be inhibited

Chapter 4

from initiating new bus requests. That is any module which is actively
propagating the grant signal should have its bus request circuit
inhibited. If this condition were not imposed then a module in this
position which started to request the bus would find its bus grant in
active and therefore inhibit the grant out. This would cause the grant
to fail at the input of the current bus master and so remove him
prematurely from the DTB and cause a system error.

Similarly if a module starts requesting the DIB just as the grant
propagates through its request circuitry, there is the danger that its
grant out line may be driven active momentarily. This may give the next
module down the daisy chain the impression that a bus grant has been
received. In this case both modules could assume mastership of the DTB,
again causing either spurious results or at worst a system failure. To
prevent this occurring the further condition is imposed that no module
is allowed to initiate a new request while the grant is being
transferred between modules. This condition is signalled by BBSY# in the
inactive state.

However BBSY#* would normally be inactive when the arbiter has not
issued a bus grant, i.e. when none of the modules are using or
requesting the bus. Therefore when this happens the arbiter itself must
drive BBSY* active, and so allow new requests to be issued. Also when
each bus master releases BBSY* it must wait a time tstl, (figure 4.1),
before propagating the grant along the daisy chain. This delay allows
each module to settle its requesting state, i.e. whether it will pass or
block the grant, before the grant is propagated.

The SMP decentralised protocol allows overheads introduced due to
the arbitration time to be "lost"™, by pipelining the arbitration with
the DTB cycle. This is achieved by making the master negate BBSY# as
soon as he actually holds the DTB, i.e as soon as he is actively driving
the address strobe, AS%*, on the bus. Thus the grant is allowed to

propagate down the daisy chain while the bus is being used by the

63 56 55 54 53 52 51 48
i unused i ID41 | IDAO | O O | ID39 - ID36 -i-
Job-type bits SIC

WORD 1

47 32
i i ' ID35 - - ID20 ' i

SIC
WORD 2
31 29 28 24 23 21 20 | 16
i 000 | ID19 - 1ID15 1000 | ID14 - 1ID10 '
) creation operator i creation operat;r J
WORD 3
15 13 12 8 7 514 0
1000 | IDS - 1ID5 000 | ID4 - 1IDO i
annihilation operator 1 annihilation operator k

Figure 4.2 I-Bus PFB Vord

1EST SY333N8 HIO133-34d SNg-1 €9 9l3

SUgY_GY
004
—o D[_(H)SaIT
Old v9zd| &SAI
@9l ®
004 — Rferile)
(H19811
V e}
yvzd *
|
503
60IA4-"—S510 gD
g 7L 3 H)Y9I1
a1 A= a®0 (HIALJW3 (H) |
H 1/1d oL
701 v AL
€LES7 N
OQH OD (71)13sgl

Chapter 4

current bus master. The time taken to transfer the bus between masters
is thus reduced to a minimum. When the requesting module receives the
grant he will of course drive BBSY* but will not actually use the DIB
until the AS* and DTACK* (the data transfer acknowledge) signals have
been negated on the bus. There will thus be a time during each DTB cycle
when the module which holds the grant and drives BBSY# will not actually
be the one using the DIB, but will in fact be the next module to use the
DTB.

We now proceed by giving the details of the hardware implementation

for each of the SMP buses.

4.2 1-Bus

We have already given some details of the I-bus data transfer protocol
{section 3.5.9). In this section we will give the details of the I-bus

interface and bus request and arbitration logic.

4.2.1 MOM/1-Bus Interface

When an MCM reads a TSW from the MFG buffer it is latched into the I-bus
prefetch buffer (PFB) on the MCM. This register is memory mapped into
the MCMs address space and appears as an 8 byte location whose format is
shown in figure 4.2. Figure 4.3 details the I-bus PFB and its
associated control logic. The I-bus data lines (currently 42 are used)
are fed to the inputs of seven 8-bit latches, i.e. the PFB. These are
latched when the modules I-bus data strobe signal, IDS¥, is negated.
Latches 1 to 3 form the most significant long word and hold the 20-bit
SiC as well as the two job-type bits JTO and JT1. Latches 4 to 7 form
the least significant long word and hold the four 5-bit operator indices
I1,J,K,L, where I, J are creation operators (I < J) and K, L are

annihilation operators (K < L) (figure 4.2).

As the PFB is filled, the D-type flip-flop, 8, is cleared bringing

Chapter 4

EMPTY(H) low. The MCM can read the level of this signal via a PI/T and
thus knows when the PFB has valid data in it. When the MCM reads the
last word of the PFB the IBSEL(L) signal enables the 373s, 6 and 7 which
contain word 3 of the TSW. The IBSEL(L) signal is decoded from the MCM
processors address and control bus and when it is negated the flip-flop
8 is clocked signalling that the PFB is now empty.

The flip-flop 9 is also clocked by IBSEL(L) to produce a local I-
bus request signal, LIDS(H), which is sent to the onboard I-bus request
cjrcuitry. When the MCM I-bus control logic receives an I-bus grant,
LIBG(H) active, it must wai£ until the current bus master finishes his
cycle, indicated by IDS*¥ and IDTACK% being negated, before assuming
control of the bus, signalled by IMASTER(L) active.

The operation of accessing the MFG Buffer via I-bus thus happens
completely transparently with respect to the MCM processor. Also each I-
bus access is pipelined with the MCM processing the previous I-bus PFB
data.

The operation of IDTACK*¥ being activated clears the MCMs IDS#*
signal and latches the data into the PFB. However to ensure that the
data has arrived at the inputs of the PFB before latching, a delay must
be introduced in the PFB clock signal. Examination of figure 3.14 shows
that the maximum delay between the RGRNT(L) signal going high on the
MFG buffer, to the new data being valid at the output of the LS 244's is
equal to 50.4 ns. However the time from RGRNT(L) going high to IDTACK#*
being activated and the PFB being clocked (fig. 3.15 and 4.3) is a
minimum of 21.2 ns (excluding the delay introduced by 10). In worst case
conditions therefore it is possible for the I-bus PFB to be latched 29.8
ns before the data has arrived at its input (note that the LS 373 needs
no set-up time). A delay of 43-48 ns is therefore introduced, using an

LS 31, which allows 13.2 ns settle time on the backplane and guarantees

I-bus PFB operation under worst case conditions.

New requests to the MFG Buffer can be locked out at any time by the

(HO1S3N03Y 3403) Yo1s3nD3y sng-1 779l

o

77¢3

*>mmmH

LASE8l
8€S|@ (HY81T Luiog]
| L
(Hl9g 11 SUZE-€Z A_w
@ 804 1£S1 ¥ @D (v
4
suze-e¢ g
-~ LEST] 203 ®©
L1981 g ot 1<l
| 204
® €4
582@ —((D
q.\Nn__ 9 2045—y
8ES|®D

481

Chapter 4

assertion of IBLOCK(L). This will also act to abort any currently

pending or active I-bus requests.

4.2.2 I-Bus Requester

When the I-bus PFB has been emptied by the MCM processor, a local I-bus
request, LIBR(H), is generated and passed to the onboard I-bus
requester, figure 4.4. The I-bus requester is in fact the core SMP
requester for the decentralised daisy chain protocol used on all three
SMP buses and therefore its details are extremely important to the whole
system. |

The local I-bus request signal triggers off the I-bus request logic
assuming that the output of 3 is not low, indicating either that the I-
bus grant has already passed the module (IBGin* low) or is currently
being propagated between modules {(IBBSY# high). If neither of these
conditions exists then the output of 1 (1 and 2 forming an RS flip-flop)
is brought high, activating the I-bus request signal, IBR%. When the bus
grant arrives at the module, a local bus grant, LIBG(H), is produced and
the module starts to drive the IBBSY#* signal.

Once the MCM has actually gained the bus, i.e. the module is
actively driving IDS#*, it will rescind the LIBR(H) signal and thus stop
asserting IBBSY*. The LS 31, 12 figure 4.4, is introduced to produce the
delay between negating the IBBSY%* signal and propagating the I-bus grant
out to the next module. As has been said this ensures that if the next
module down the daisy chain gets in a new bus request just as the IBBSY#*
is negated, then its logic will have settled and be ready to block the
grant from propagating any further when it arrives. That is if the
inputs A and B of 1 and 2 transition low at the same time with the
output of 1 winning and going high, then the input C of 8 will
transition high in time to block the grant when it arrives.

To determine the length of the delay which is required we consider

two modules, 1 and 2, next to each other on the backplane with module 1

Chapter 4

relinquishing mastership and propagating the grant on to module 2. The
delay must therefore equal;
propagation delay for IBBSY# to be produced on module 1 and
arrive at input B of 2 on module 2
+ propagation delay for RS flip-flop, on module 2, to transition
and bring input C of 8 high blocking grant
- propagation delay for RS flip-flop, on module 1, to transition
and allow grant to propagate, bringing IBGin* on module 2 low.
(For worst case conditioqs the first two terms will havé maximum
propagation delays, while the last term will have minimum delays).’
This delay is therefore;
[t H(838) + tPLH(F244) + tP“L(Foz) Imax

PL

+ [tPLH(FOZ) Jmax
- [tPHL(FO2) + tan(F32) + tan(F244) Jmin

=17.5 ns
The 23-32 ns delay of the LS 31, therefore guarantees the safe
propagation of the grant along the daisy chain.

The propagation delay time of the bus grant through any module is
also important since it will determine the length of time any requesting
module must wait before the grant reaches it. At present each module
imposes a delay of only two gates, an F32 and F244, on the grant. The
F244 is considered necessary because of its drive capability which may
be required if a termination is needed. The maximum delay these gates
will impose is 10.5 ns, but will typically be only 8 ns. Therefore
assuming the worst case a module at the end of the backplane would have
to wait 157.5 ns (assuming 16 modules) between the grant being produced
by the arbiter and reaching the module.

However in most cases there will be more than one module requesting
the DTB at a time, in which case the propagation delay of the grant will
be pipelined with the current bus cycle. In the last analysis though,

the bandwidth of the bus is determined by the bus cycle time and not the

431199V 13A37 3IT19NIS Sna-l S§7 34YN9id

(MHiasay
oid h2d
@ /__ $NIIRT
Y424 tod o4 |
TesT .
pd ® -» < MY
N 1 U ¥
svige~i1z o JJ-N“
H
$ AT ®

%S

Bus Requestor Timing Parameters (in nanosecs)

Min Typ Max
LBR(H) high to IBR* low 37.5 46.5
BGin* low to LBG(H) high 5.5 8 10.5
BGin#* low to BR#% high 41 51.5
BGin3% low to BGout#* high 5.5 8 | 10.5
LBR(H) low to BBSY* high 6 10
LBR(H) low to BGout$ low 30.5 38 46

Bus Arbiter Timing Parameters (in nanosecs)

Min Typ Max
BR#% low to BGout#* low 30.5 38.5 46.5
BGRTIN#* low to BGout#* high 32.4 42 50.5

Table 4.1 Bus Request and Arbitration Timing Parameters

Chapter 4

daisy chain propagation delay, since this -delay is easily made less than

the cycle time.

4.2.3 The I-Bus Arbiter

The I-bus arbiter, figure 4.5, is a simple device, again based on an RS
flip-flop and is again a core device used elsewhere in the SMP system.
There is of course only one I-bus arbiter (whereas there is an I-bus
requester on every MCM) which must be located in slot 1 of the backplane
in order to drive the daisy chain bus grant line. The I-bus arbiter is
therefore placed on the Suéervisor Module along with the arbiters for
the other buses.

As soon as a bus request arrives, the arbiter releases IBBSY#* and
then after a 23-31 ns delay drives the bus grant down the daisy chain.
The arbiter will then continue to drive the bus grant until the bus
grant return line, BGRTN*, is activated signalling that the grant has
propagated to the end of the backplane. When this occurs the arbiter
will remove the grant signal and assume bus mastership by driving IBBSY#*
low. At this point new I-bus requests will be enabled on the MCMs.

Table 4.1 gives some relevant timing parameters for the I-bus
requester and arbiter. As we can see from this table, the time between a
local bus request, LIBR(H), being created and a grant being produced by
the arbiter is 93 ns (max) and 76.5 (typ). Therefore the time taken for
the last module on the backplane to receive a LIBG(H) from the point at
which he activated his LIBR(H) is 93 + 157.5 + 10.5 = 261 ns (max) and

76.5 + 120 + 8 = 204.5 ns (typ).

4.3 C-Bus

C-bus is the command, control and communication bus for the SMP system.
As such it is the main path for data (e.g. program code) and message

transfers between the MCMs, Supervisor Module and the PG. The Central

Chapter 4

Memory will also be interfaced to it, as can any other possible global
resources. It is used by the SM to initialise the MCMs and PG; by
providing them with their necessary program code, initialising certain
tables and parameters in their data blocks and also initialising
specific hardware locations. C-bus is also used by the PG to communicate
changes in prime state data to the MCMs.

C-bus is significantly different from the other two SMP buses in a
number of ways;

1/ There is more than one bus slave interfaced to C-bus and indeed all
C-bus masters are potential C-bus slaves and vice-versa. This is not
true for either the I-bus or the CMA-bus which have only one bus
slave each, namely the MFG Buffer and CM respectively. Also the MCMs
which are interfaced to both these buses only ever act as bus masters
on them and never bus slaves.

2/ During accesses via C-bus the internal bus of the C-bus master is
connected, via buffers, to the C-bus lines. Thus the onboard
processor itself controls the C-bus data transfer and not an
automatic prefetch buffer as is the case with the other two buses.
Thus a C-bus master could potentially access the complete address
space of all modules and devices interfaced to C-bus. Since this
bestows great power to C-bus masters certain areas are protected so
that only a few privileged C-bus masters can access them.

These differences necessitate an expansion of the C-bus structure over

that found on the other SMP system buses and also a major change to the

nature of the interfaces. For example C-bus must have a means by which
bus masters can select the appropriate bus slave that they wish to
access. Also a modules C-bus interface must have the flexibility of
being able to support the module when it acts as a bus master and a bus
slave.

In essence C-bus is a slightly modified VME bus [Fi85, VME82].

C-bﬁs retains the four sub-buses of VME bus, namely;

Chapter 4

1/ The Data Transfer bus (DIB): the main bus by which modules transfer

data. It contains the address and data lines and associated control
signals.

2/ The DTB Arbitration bus:; this group contains all the signals

necessary to transfer control of the DIB between modules.

3/ Priority Interrupt bus; the means by which modules can interrupt

other modules on the bus and request their’services.
4/ Utility bus; this includes system clock and reset signals, as well as
failure detection signals. ’

The functional modules identified on VME-bus also exist on C-bus, e.g.
DIB masters, DIB slaves, DIB requesters, etc. However there are one or
two alterations and additions which increase the capabilities of C-bus
and make it more suitable for the particular needs of the SMP system.

The most important improvement to the C-bus specification relative
to VME bus is the provision of a bus-broadcast utility whereby a bus
master can write to more than one bus slave per bus cycle. This utility
‘ obviously improves the performance of C-bus over VME bus in situations
where global data must be transferred to more than one bus slave, which
is often the case during shell-model processing. Only the MCMs are
potential bus slaves for a broadcast cycle. However each module has the
facility whereby it can be locked-out during broadcast cycles. The bus
master for a broadcast cycle can therefore be selective about which
modules receive the information being broadcast. Only certain key
modules, at present the SM and the PG, are able to initiate bus-
broadcast transfers since it is obviously a very powerful, and
4potentially destructive, utility. Similarly only these modules are able
to select which MCMs are locked-out during a bus broadcast.

Another addition to the VME bus specification is the alteration of

the lowest bus request level, BRO#%¥, to make it conform to the

decentralised daisy chain protocol already described. All the MCMs

request C-bus on this level and using this protocol, and therefore have

- 100 -

Chapter 4

equal access among themselves to C-bus. The other three request levels
all follow the VME bus arbitration protocol, thus giving C-bus
compatibility with VME bus and therefore allowing standard, "off the
shelf" boards to be used on C-bus.

The 6 address modifier lines, AMO-AM5, remain on C-bus as defined
in the VME specification., The user defined codes ($10-$1F) which the VME
bus specification allows for can be used to identify non-VME type bus
cycles, e.g. bus broadcasts, to standard VME modules to prevent them
from interfering in these cycles. The interrupt protocol and DTB
protocol remain the same on C-bus as on VME bus (although as we have

said the DIB protocol is extended to permit bus broadcasts).

4.3.1 C-Bus Lines

As a result of the additions to the VME bus specification, the C-bus DIB
structure is different to VME bus in that a number of lines have been
added and some redefined. We shall here only describe those lines that
are different from those on VME bus.

1/ MA7-MAO : the map-select lines

C-bus is intended, in its final version, to be a full 32-bit address
and data bus, as is VME bus. The 8 additional address lines needed to
bring C-bus up to this standard are at present named the map-select
lines. To explain their function we must first describe how the
address space of any processor module is partitioned. At present each
MC68000, with its 16M-byte direct addressing range, has its local
memory and devices in the lower 8M-byte map, i.e. local address line
A23 low. All offboard address spaces are then allocated the upper
8M-byte map, i.e. local A23 high. The top 5 map-select lines, MA7-
MA3, are then used to select between the C-bus slaves, allowing a
total of 32 different modules to be selected by any C-bus master. A
total of 16 8M-byte maps (i.e. a 128M-byte map) can then be addressed

within each slave module by the master module, using the remaining 3

- 101 -

2/

Chapter 4

map-select lines and A23. This is possible since A23 driven by the
MCM processor and A23 on the bus are not the same. The MC68000 must
therefore drive MA7-MAO and A23 on the bus from a latch, e.g. from a
PI/T.

In the future when 32-bit processors are used on C-bus modules,
address lines A24-A31 will replace the map-select lines. However each
module will still be allocated a 128M-byte local map, selected by AO-
A26, and have 31 offboard maps, selected by A27-A31. A request by the
MCM processor to use C-bus will then be identified by A27-A31 not all
low. |

BBCST* and BBACK : Bus Broadcast strobe and acknowledge signals

These are the only two extra signals required for the bus broadcast
utility. At present the SM and PG are the only two modules with the
ability to drive the bus broadcast strobe, BBCST#, and monitor the
acknowledge signal, BBACK. All the'MCMS monitor BBCST* and drive
BBACK. The fact that a bus broadcast cycle is signalled by the
dedicated line, BBCST#*, rather than say the address modifiers or map-
select lines, gives further protection to this utility.

The BBACK line is an active high signal driven by open-collector
gates, thus producing a wire—AND. Therefore all bus broadcast slaves
must acknowledge the successful transfer of data by driving the BBACK
line high before the master can complete his cycle. During a bus
broadcast cycle the state of the map-select lines MA7-MA3 is ignored
by the MCMs and all MCMs are selected, except those that have
previously been locked out of broadcast transférs. MCMs which are
locked out of a broadcast cycle will still automatically drive the
BBACK signal high.

The bus broadcast facility is of course only intended for write
operations. However should a read operation be mistakenly attempted
then the MCMs will still be selected but their C-bus buffers will not

be enabled. In this case the bus master will terminate his cycle as

- 102 -

Chapter 4

normal but read invalid data.

3/ PRIV% . Privileged Module strobe

This strobe identifies those C-bus masters which have privileged
access rights and is uéed in the selection of key C-bus modules. At
present only the Supervisor Module either uses this line in its
selection decoding or drives it. Therefore the SM camnot be a bus
slave to any of the MCMs or the PG.

4/ OONTROL#* : Control Map strobe

Associated with the normal address map of each MCM, which contains
the local memory and devices, there is also a control map. This map
overlays the normal map of each MCM, and is only selected when the
CONTROL*¥ line is activated, which can only be done by the SM and PG.
Contained within the control map are the devices required to
dynamically supervise, control and configure the operation of the MCM
e.g. devices to perform processor reset and halt operations,
interrupt the processor, control bus broadcast lockout etc. Thus the
SM and PG both have the (privileged) option of accessing either the
normal map or control map of a particular MCM. It is possible to
perform broadcast cycles to the con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>