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For my Father



A curious thing about tensors 
is tensors have traces and norms.
Their tops are made out of vectors.
Their bottoms are made out of forms.
There's stress and pressure 
and one that measures 
the distance from P to Q.
But the most wonderful thing about tensors, 
is the one called Gjjy.

D. Alexander and A.G. Emslie, 
composed in *'The Aragon'', 
Byres Rd., Glasgow, May 1987.
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PREFACE

In this thesis, cosmological models, which admit self-similar 

symmetries, are examined. Symmetries in cosmology have become 

increasingly important since the formulation of the Einstein field 

equations demonstrating the close correspondence between geometry 

and physics. Physical investigations of gravitational systems have 

benefited greatly from the applications of geometric techniques and, in 

particular, from the consideration of various symmetries which lead to 

a simplification of the relevant equations. One such symmetry is that 

of self-similarity, which was initially developed as a physical symmetry 

in the study of hydrodynamics and is now associated with the more 

global symmetries of conformal and homothetic motions. Self-similar 

symmetry is particularly useful in the study of cosmology, since the 

Universe can be treated as a hydrodynamic fluid (or a geometrical 

manifold) in which there are no characteristic scales and so may be 

expressible by the techniques of self-similarity.

In Chapter 1, a general review of the current developments in 

the study of cosmology is given. In particular, the 'intrusion’ of 

particle physics into the realm of cosmology is discussed. The 

application of particle physics theories, which has resulted in a better 

understanding of the Universe at early epochs and has helped to 

explain the origin of large-scale structure in the Universe, is also 

outlined briefly. Finally, exotic cosmological theories which attempt to 

go beyond Einstein’s theory of general relativity are addressed.

The application of differential geometry to cosmology is 

discussed in Chapter 2. The description of the Universe as a 

four-dimensional manifold is considered and the various symmetries



which may be imposed on such a manifold are described. The 

symmetry of self-similarity is then introduced together with a

discussion of its development in hydrodynamics and its applications to

the study of the dynamics of the Universe.

Spatially-inhomogeneous spacetimes with a non-zero cosmological 

constant are investigated in Chapter 3. The role of self-similarity is 

discussed and solutions of this spacetime, which admit a similarity

symmetry, are considered. Integrals of the motion are determined and 

these are related to the degree of anisotropy and inhomogeneity of 

any given solution. The solutions found are then discussed in the 

context of the cosmological "no-hair" theorems which consider the 

effect of a large vacuum term on the expansion of the Universe.

In Chapter 4, the effects of viscosity and shear on the evolution 

of a cosmological model are considered. A self-similar analysis is 

carried out in which the viscosity coefficients vary in a prespecified 

manner, and two different classes of solution are investigated. These 

solutions differ in the choice of the equation of state, which is chosen 

to represent the extreme cases of a 'viscous dust’ and a 'stiff’ 

Universe. The self-similar stiff solutions are then developed to 

consider the growth of primordial black holes in the early Universe in 

Chapter 5.

Chapter 6 includes a brief review of the work of the thesis and 

suggests a few interesting lines for future research.

The original work of this thesis is contained in Chapters 3-5 

and also in the Appendix. The contents of Chapter 3 have been 

accepted for publication in M o n th ly  N otices and different aspects of 

this work have also appeared in various conference proceedings. The 

work of Chapters 4 and 5 is currently being developed for publication.
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SUMMARY

The Universe today is observed to be extremely homogeneous 

and isotropic on large scales. The dipole anisotropy of the microwave 

background, due to the relative motion of the Earth, is measured to be 

less than one part in 104. The quadropole component, due to intrinsic 

anisotropies, is even smaller. Thus, any viable mathematical or 

physical description of the large scale properties of the Universe must 

encompass the observational evidence and reflect this large degree of 

uniformity.

The most popular, and certainly the most successful, description 

of the Universe at the present epoch is provided by the Friedmann- 

Robertson-Walker (FRW) cosmological models. These spherically 

symmetric models consider the Universe as an isotropic, spatially 

homogeneous, perfect fluid matter distribution, which is in a state of 

dynamic evolution. All of the FRW cosmologies exhibit an expansion, 

i.e. the volume of the spatial sections varies with time, during some 

stage of their evolution, in agreement with the observed expansion of 

the Universe. An important consequence of this behaviour is that it 

leads to a singularity at a finite time in the past when the volume of 

the spatial sections becomes zero and matter becomes infinitely dense 

and infinitely hot (the hot Big Bang scenario). The isotropy and 

homogeneity of the Universe at the present epoch, cannot necessarily 

be extrapolated back to these earlier times. Certainly, there must 

exist inhomogeneities on small scales at all epochs in order to produce 

the observed structure, such as galaxies, clusters and superclusters. 

This raises the question of the effect of anisotropy on the initial 

stages of the evolution of the Universe.
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In this thesis we consider cosmological models which differ 

significantly from the FRW descriptions. We consider the effect of a 

large cosmological constant (vacuum energy term) on the behaviour of 

a spherically symmetric anisotropic universe, characterised by 

different expansion rates in the radial and transverse directions. The 

analysis is simplified considerably by imposing the condition that the 

model admits a self-similar symmetry. The techniques of similarity and 

dimensional analysis are employed to obtain a class of spatially 

inhomogeneous solutions to the Einstein field equations with a 

non-zero cosmological term. These solutions are found to contain some 

which tend asymptotically to a de-Sitter FRW solution and thereby 

extend the cosmological "no-hair" theorems, which state that under 

certain restrictions any model containing a large positive cosmological 

term will evolve to a de-Sitter cosmology at late times. Such models 

are attractive since they tend to isotropic spacetimes.

Similarity methods are also applied to the study of an 

anisotropic spacetime with an imperfect fluid as source. The fluid 

description of the cosmology is chosen to include the dissipative 

processes of shear and bulk viscosity but to neglect the effects due 

to the existence of magnetic fields, heat conduction or acceleration 

along the flow lines. In order to obtain a self-similar description of 

such a fluid we must impose certain conditions on the form of the 

viscous coefficients of bulk and shear. This allows a degree of 

tractability but restricts the physical significance of the models. 

Solutions are found for which the matter distribution acts as (i) a 

'presureless fluid’ with an equation of state given by T11=0 and (ii) a 

'stiff’ fluid with equation of state, T11=-T°0. The conditions under 

which the Universe may attain either of these extreme properties are
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discussed in relation to the physical processes occurring in the matter 

distribution at different epochs. It is found that the presence of 

viscosity has a marked effect on the dynamics of the Universe, 

particularly at early times.

The self-similar viscous models with a stiff equation of state are 

then considered with respect to the formation of black holes in the 

early Universe. The difficulties of obtaining a smooth continuation of 

the viscous solutions from the Universe particle horizon to a black 

hole event horizon are discussed in view of the limitations encountered 

in the non-viscous black hole solutions.

Finally, the possibility of future investigations inspired by the 

considerations of this thesis are discussed. In particular, the 

determination of a geometric symmetry corresponding to self-symmetry 

of the second kind and the formation of a self-consistent similarity 

treatment of imperfect fluid cosmologies are deemed important. 

Possible lines of research to these ends are considered.
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1. REVIEW OF CURRENT COSMOLOGICAL IDEAS

1.1 Preamble

The study of cosmology has relatively recent origins. Its 

beginning must be placed around 1929, when Hubble discovered the 

expansion of the universe. The most amazing thing about this 

discovery is the universality of this expansion. A ll galaxies are 

moving away from us, and moving with velocities which increase with 

their distance. Therefore, the observed expansion is neither a local 

phenomenon nor a random statistical event. The whole universe 

expands, all the galaxies move away from each other with enormous 

velocities which, at large distances, approach the speed of light. This 

discovery verified some of the most daring predictions of Einstein’s 

theory of relativity.

The first theorists to construct models of an expanding 

universe, using general relativity, were de-Sitter (1917), Friedmann 

(1922) and particularly Lemaitre (1927). However, the majority of

astronomers did not take these models seriously since the concept of a 

dynamic universe was contradictory to most beliefs at the time. This 

situation lasted until the discovery of Hubble (1929), after which the 

whole previous way of thinking was altered. For the first time the 

study of the universe as a whole became the object of serious 

physical research, subject to observational constraints. The great 

advancement of cosmology that followed was due to systematic research 

in observations an d theory. Hubble initiated a large scale study of 

the universe, starting from the nearby galaxies. Galaxies can be 

regarded as the basic ingredients of the universe, its "atoms". 

Modern astronomical techniques have taken the subject far beyond the



2

nearby galaxies to distant objects from which light may take billions 
of years to reach us.

The subject of cosmology is concerned mainly with this

extragalactic world. It is a study of the large-scale nature of the 

universe extending to distances of giga-parsecs, a study of the overall 

dynamic and physical behaviour of a myriad of galaxies spread across 

vast distances and of the evolution of this enormous system over

several billion years.

1.2 The Observable Universe

It became clear from the catalogue of the positions of bright 

galaxies, compiled by Shapley and Ames (1932), that the galaxies 

segregated into compact clusters, many of which appeared spherically 

symmetric. Abell (1958) chose a homogeneous sample of such clusters 

and noticed that apart from clusters of galaxies there are clusters of 

clusters of galaxies due to second-order clustering. That is, he 

noticed that rich clusters had a tendency to segregate into larger 

structures, called s u p e rc lu s te rs, whose size were of the order of 

50Mpc, (IMpc s 3xl022m). A typical galactic scale is 30-50kpc. These 

superclusters have as many as 10 rich clusters and masses of 

1015-1017Mq. The largest superclusters could have as many as 10s 

member galaxies.

There is evidence that there is a supercluster around our own

galaxy, called the Local Supercluster. It is a flat ellipsoidal system of

15Mpc cross-section and IMpc thickness, which includes the local 

group of galaxies. Studies of the radial velocities and dynamics of the 

50,000 galaxies in the Local Supercluster show that it is rotating and 

expanding. From the rotation of this system it is estimated that its
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total mass is 1015Mq. The whole local supercluster also moves with 

respect to other distant superclusters with a velocity of the order of 

500kms-1. Most galaxies belong to such large dynamic structures. In 

fact, it is estimated that ~90% of all galaxies belong to clusters and 

superclusters. The clusters of galaxies are generally spherical in 

shape whereas almost all superclusters are flat. For this- reason 

superclusters are sometimes called "pancakes", after Zel’dovich (1970).

At first glance the observations of clusters and superclusters 

indicate that their distribution is random. However, after detailed 

observation and data analysis it becomes clear that their distribution 

is not uniform. There exist huge areas in the universe which contain 

almost no galaxies. These are appropriately called "voids". It is 

estimated that only 10% of space is occupied by superclusters while 

the rest does not contain any luminous matter. The voids may reach 

dimensions of up to lOOMpc. Recent theories on the structure of 

superclusters can, in fact, explain the creation of condensations of 

matter in spherical form and also the formation of large scale 

filamentary and flat structures, (Peebles 1965, Zel’dovich 1970 and 

Saarinen et al. 1987). Numerical simulations of the large-scale 

structure, give a honeycomb structure, in which the cells of the 

honeycomb are the voids and the walls are the superclusters, (White 

et al. 1987).

The universe as a whole appears to be isotropic and 

homogeneous on very large scales. Isotropy means that the universe 

looks the same in every direction, homogeneity means that the 

universe will appear the same to any observer, independently of their 

position in the universe. In other words, all observers will measure 

the same density and generally the same properties of the universe.
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This is termed the 'cosmological principle’. A proof of the homogeneity 

of the distribution of galaxies is based on the observation that the 

number of galaxies up to a magnitude m+1 is about four times the 

number of galaxies up to magnitude m, as is expected if the density of 

galaxies in space is constant. On small scales, the distribution of 

galaxies is inhomogeneous but becomes increasingly more homogeneous 

as the scale increases. The greatest degree of homogeneity is 

exhibited by the microwave background radiation (MBR).

The MBR was first discovered by Penzias and Wilson (1965) and 

became one of the major cosmological discoveries of all time. This 

radiation is the remnant of the radiation of the early universe and 

uniformly fills the whole of space. It is an extremely diffuse radiation 

which comes uniformly from all directions and corresponds to a black 

body spectrum of approximately 3 K. The implication of this is that 

the MBR is not due to stars or galaxies but to the early concentration 

of matter in the universe when its temperature was about 3000 K, at 

which temperature hydrogen recombined and the mean free path of 

photons in the universe became as large as the horizon. Evidence for 

the origin of this radiation comes from the fact that its spectrum is 

very nearly that of a black body. The temperature of the MBR has 

been cooled by the general expansion of the universe.

Thus, on very large scales, the universe is observed to be 

extremely isotropic and homogeneous and any viable cosmological model 

must contain this exactly or at least in the limit. On the scale of 

superclusters (=50Mpc), however, observations show that the universe 

has some filamentary and bubble-like structure, cf. Figure 1.1, making 

it generally inhomogeneous. There are several theories which attempt 

to explain this large-scale structure.



5

4 * Y
> * 4 *

A A

Figure 1.1 Equal area projections of the galaxy distribution in the 
northern sky from the CfA survey volume limited to 4000 kins'-1 
(cf. White 1987).
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1*3 Theories for Large-Scale Structure in the Universe

The so-called "Big Bang" model of the universe has been 

extremely successful. It describes how all matter and energy came 

into existence at a single point in space and time and then expanded, 

which quite naturally explains why other galaxies seem to be rushing 

away from our own. The model also predicts that the universe is 

filled with a low level of radiation, left over from the big-bang, and 

the observation of this radiation by Penzias and Wilson became the 

first major success of the big-bang model. This and subsequent 

successes, such as predicting the abundance of the elements, has 

given us the confidence to trace the history of the universe back into 

the first second of existence.

One of the questions that remains unanswered, however, is why 

the universe is "lumpy" and how it got that way. The big bang model 

treats the universe as completely smooth and uniform. We described 

in the previous section that, on a very large scale, matter does indeed 

appear to be spread out evenly everywhere. However, on smaller

scales, a great deal of structure exists. Recent observations reveal 

structures such as huge empty regions ('voids’), the largest =60Mpc in 

diameter (Kirschner et al. 1983), giant 'filaments’, i.e. roughly linear 

overdense regions in the distribution of galaxies about lOOMpc long 

and 5Mpc across (Giovanelli and Haynes 1982) and in more complete 

surveys most galaxies appear to lie on the surfaces of 'bubbles’,

«50Mpc across (de Lapparent et al. 1986).

Before we consider the formation of these complicated large-scale 

structures we must address the problem of how the basic matter

condensations are formed. We shall concentrate on the mechanism of
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gravitational instability based on the work of Jeans (1902). C Another

mechanism for the initial formation of matter condensations was that of 

turbulence in the early universe, proposed by Weizsacker (1951): 

However, serious arguments have been advanced against this theory].

If we consider the universe to be uniformly filled with gas, then 

a small local perturbation in the density may be enhanced or damped. 

Indeed, a local density excess will grow as it causes a stronger local 

gravitational field which will tend to attract even more matter. On the 

other hand, the gas pressure will tend to disperse any density 

enhancement and restore the initial homogeneity. Jeans (1902) found 

that small scale perturbations are quickly dispersed, while large scale 

perturbations become enhanced. In the latter case, the density in the 

perturbation increases continuously with time. This is called 

g ra v ita t io n a l in s ta b i l i ty or Jeans in s ta b il ity . Such an instability 

finally creates a concentration of matter which may evolve to form a 

star, a galaxy or even a cluster of galaxies. The amount of matter 

condensed in this way depends on the initial density of the gas and 

the local sound speed, at which speed the local density perturbations 

propagate. The minimum mass required for the onset of gravitational 

instability is called the Jeans mass, Mj, and its radius is known as the 

Jeans lengthy Xj. In a sphere of radius greater than Xj, gravity 

overcomes the gas pressure and causes a concentration of matter. 

The reverse happens for a sphere with radius less than Xj, i.e. the 

pressure of the gas overcomes gravity and the perturbation is 

damped.
Before the time of the recombination of hydrogen, the Jeans 

length was very large because the sound speed at that time 

approached the speed of light, since matter and radiation were



strongly coupled. The Jeans mass increased until shortly before 

recombination, when it was ~1017Mq, much greater than the mass of 

galactic clusters. After recombination, matter and radiation ceased 

contributing to the pressure and the sound speed suddenly fell to a 

few kilometres per second. The corresponding Jeans mass also

dropped to 105Mq, that is, comparable to the mass of a globular 
cluster.

We distinguish two extreme types of matter condensations which 

form via gravitational instability: (a) isothermal, and (b) adiabatic. In 

the former case, the temperature inside the perturbation is the same 

as the cosmic temperature. This is achieved by the free movement of 

photons which remain uniformly distributed while the matter is 

clumped. In the latter case, the ratio of photons to baryons is the 

same inside and outside the perturbation, so that the temperature 

increases along with the density. Each type of perturbation has its 

own implications for the future evolution of structure in the universe. 

Consequently, two diifferent theories have been proposed for the 

formation of galaxies and clusters of galaxies.

The theory of isothermal perturbations has been mainly proposed 

by Peebles (1965). It states that any isothermal perturbation in the 

initial distribution of matter in the universe does not evolve before 

the time of recombination, trec. The perturbations simply follow the 

expansion of the universe. After trec, however, every perturbation 

which is greater than the Jeans mass starts to grow, i.e. every 

perturbation ^1O5M0, the mass of a globular cluster. After the 

formation of these condensations we have two opposite effects 

proceeding together. On the one hand, these clusters break up into 

small condensations which ultimately form stars (fragmentation). On
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the other hand, the same clusters concentrate in larger and larger 

groups, which make up the galaxies, groups of galaxies, clusters and 

superclusters. The larger the scale of concentration, the longer it 
takes to be formed.

There are two basic arguments supporting this theory. The 

first is that a study of observational data on the galaxy distributions 

shows that there are no distinctive scales for groups of galaxies up to 

superclusters, cf. Peebles (1980). The second argument is based upon 

numerical calculations done with models of the expanding universe 

(e.g. Aarseth et al. 1979). They found that points initially uniformly 

distributed (each point representing a galaxy) tend to segregate into 

groups which tend to increase in size as the universe expands. An 

interesting aspect of this theory is that large areas devoid of galaxies 

are formed in between the concentrations of galaxies. As time passes, 

the voids increase in size while the concentrations become more 

compact. This picture, therefore, seems to explain several 

characteristics of the observed universe.

The theory of adiabatic perturbations was proposed by 

Zel’dovich (1970) and his collaborators. A characteristic property of 

adiabatic perturbations is that small condensations are destroyed by 

viscosity during the epoch before recombination. Only concentrations 

more massive than 1013Mq can survive until trec, when they can 

collapse since they are then greater than the Jeans mass. According 

to this theory, the large scale structure (superclusters) formed first, 

while the structure on smaller scales (clusters etc.) were formed later 

by the fragmentation of these initial concentrations. This is exactly 

the inverse process to the one suggested by the theory of isothermal 

perturbations. The superclusters, according to this theory, are not
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even approximately spherical but are flat like "pancakes". For this 

reason, this theory is also known as the "pancake theory". These 

"pancakes" eventually fragment into galaxies. (The Peebles picture is 

often referred to as the b o tto m -u p scenario whereas the Zel’dovich

picture is called the to p -d o w n scenario).

This theory has several attractive characteristics. For example, 

in a picture of the distribution of galaxies (Figure 1.1) one can

distinguish several elongated structures, consisting of galaxies, groups 

of. galaxies and clusters, reminiscent of Zel’dovich's pancakes. The

numerical experiments are consistent with this picture if we assume 

that the points represent particles, rather than galaxies.

It is premature to say which of these two theories best

describes the formation of galaxies and groups, clusters and

superclusters of galaxies. What is common to both is that the initial

perturbations in the distribution of matter in the universe, which led

to the formation of galaxies, were very small and appeared during the 

first stages of the expansion of the universe, (they probably existed 

already at the Planck time, i.e. tp = 10-43s). Thus, the isotropy and 

homogeneity of the early universe, according to these theories, was 

almost exact.

One current field of study, which incorporates the above

theories in order to produce the large-scale structure, is that of the 

theories of dark matter in the universe. Dark matter is the 'unseen’ 

matter which most astronomers believe surrounds the luminous stars 

and galaxies and makes up the vast bulk of the mass of the universe. 

Dark matter betrays itself by the gravitational effect it has on the 

matter we can see. Observational evidence shows that dark matter is 

present on all distance scales, from within the close neighbourhood of
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the sun to the rotation of galaxies themselves, in the dynamics of 

clusters and superclusters and also in the expansion of the universe, 
(cf. Kormendy and Knapp 1987).

At present, dark matter is in a non-gaseous, effectively 

collisionless form, and therefore the evolutionary phases of the 

structure in the universe can be studied, quite easily, by N-body 

numerical methods (e.g. White at al, 1984). There are essentially two 

forms that this dark matter can take, i.e. it can be composed of 

baryonic or non-baryonic matter.

B a ry o n ic  D a rk  M a tte r

Primordial nucleosynthesis constrains the fraction of density of 

the universe contributed by baryons (luminous and dark) to be

0-056h-2 * ^baryons * 0*14h-2 , (1.1)

where the Hubble constant is chosen to be Ho=50h(kms“1Mpc”1) 

(observationally l£h£2) and 0=p/pc, the ratio of the density of the 

universe to the critical (or closure) density. Since the measured 

value of 0, dynamically, is ~0*l-0*2, then there may not be a problem 

and all of the dark matter could be baryonic in the form of 'Jupiters’ 

or black holes. Such constituents of dark matter may eventually be 

detected.

N o n -B a ry o n ic  D a rk  M a tte r

Belief in the inflationary universe scenario (see §1.4) strongly 

biasses most cosmologists and there is almost universal agreement that 

our universe should be flat with 0=1. Due to the constraints imposed 

on baryonic matter, discussed above, this seemingly suggests that 

most of the matter in the universe is non-baryonic. Also the existence 

of galaxies and clusters today requires that perturbations in the
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density must become non-linear before the present epoch. In a 

baryonic universe, for adiabatic perturbations at recombination, this 

implies that present-day fluctuations in the microwave background 

radiation should be much larger than present observational upper 
limits.

One of the currently fashionable possibilities is that the dark 

matter consists of relic WIMPs (Weakly Interacting Massive Particles)

left over from the very hot, early epoch of the universe. The early

universe and modern particle theories working together have provided 

a very generous list of candidates for the dark matter (cf. Turner 

1987). For the purpose of illustration we shall consider only two.

The standard model of particle physics, [a gauge theory which 

undergoes spontaneous symmetry-breaking at a temperature T«300 Gev:

SU(3)xSU(2)xU(l) »SU(3)xU(l), (lGeV=1013K)], supplies no candidates,

other than the rather exotic quark nuggets, for dark matter beyond 

ordinary baryons in some non-luminous guise. Virtually all extensions 

of the standard model provide us with a generous supply of dark 

matter candidates. The two we shall consider are massive neutrinos

and axions. CTable 1.1 provides a summary of the conversion scales

between temperature, energy, size of the universe and time after the 

big bang for a hot big bang modell].

Massive neutrinos are a product of the standard model extension 

known as the Majoron model. (The symmetry broken in this theory is 

the lepton number). We know neutrinos exist and if they have a mass 

then they would seemingly be ideal dark matter candidates. If 

neutrinos are massive then it can be shown that the density of 

neutrinos relative to the critical density is given by

—  0 • 12(ny/ny)h 1 (1*2)



Temperature Energy Size of 
Universe

Time after 
big bang (s)

Remarks

3K 3.10-4eV 1 ~1018 Present epoch

3000K 0.3eV 10“3 1013 Recombination 
of Hydrogen

109K O.IMeV IO”9 100 1
Big-Bang
Nucleosynthesis

10ilK lOMeV 10”11 0.01 J

10i3K lGeV 10~13 10"6 Quark/Hadron
transition

101SK lOOGeV io-15 t—* o i o End of electro- 
weak unification

1027K 1014GeV n r 27 io-34 End of grand 
unification

>1031K >1019GeV <10"31 <10-43 Planck era - 
Quantum gravity

Table 1.1 Conversion factors between temperature and energy for 
significant times in the history of the very early universe.
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where ny is the photon number density in the microwave background 

and we are summing over the number of neutrino species. In the 

standard model ny/n^ - 3/11. So one species of mass »25h2eV suffices 
to give

Another popular, though more exotic, dark matter candidate is 

the axion. Peccei and Quinn (1977) proposed extending the standard 

model further by adding one additional Higgs doublet to the Majoron 

model. (We can add as many scalar (or Higgs) fields to the theory as 

we like by relating them to the free energy of the system). This 

extension introduces another symmetry (the PQ symmetry) which is 

also spontaneously broken. The existence of such a broken symmetry 

leads to a new light pseudoscalar boson called the axion.

The mass of the axion, its lifetime and its coupling to ordinary 

matter are all determined by the symmetry-breaking scale of the PQ 

symmetry, fpQ, viz.,

nia - 10-5eV(1012GeV/fpQ) ,

T(a->2y) = 1041yrs. (fpQ/1012GeV)5 , (1*3)

^aee ~ ^e/^PQ »

where gaee is the coupling of the axion to the electron. Thus, fpQ is 

required to be >108GeV from helium burning constraints in various 

stars. It can be shown that if the energy density is to be of order 

unity, &a“l> then we require a PQ breaking scale of £l012GeV, 

corresponding to an axion mass of 10_5eV. Thus, for the allowed 

values of fpQ we have

10”5eV £ £ 10_1eV . (1*4)
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What then are the implications of these WIMPs for the formation of 
structure in the universe?

It is well known that density perturbations in a self-gravitating 

fluid, in which the mean free path of the fluid constituents is finite, 

will undergo Landau damping (cf. Bond and Szalay 1983). For 

instance, the damping scale, Xpg, for a massive neutrino is of the 

order of 40Mpc(m/30eV) whereas for an axion it is <10”5Mpc. 

Physically, the damping scale Xpg is the comoving distance that a 

WIMP could have travelled since the big bang. The scale £lMpc 

corresponds to galactic scale. The relationship to the galactic scale 

neatly separates the WIMPs into three categories:

(i) Cold Xpg<lMpc galactic size perturbations survive
free-streaming

e.g. axions
(ii) Warm Xpg=lMpc
(iii) Hot Xpg^lMpc only perturbations on scales much

larger than galactic scales survive 
e.g. massive v’s free-streaming.

We can see this more clearly in Figure 1.2, where we see the power 

spectra at late times in a universe now dominated by WIMPs. The 

quantity k3|Skl2 is the local power in plane wave perturbations of 

scale X=27T/k, and 8k is the amplitude of the relative density 

fluctuations in some particle or radiation field. Objects of this size 

will condense out of the general expansion when k31 12»1. Until

non-linear effects are important the spectra shown evolve by 

increasing their amplitude while maintaining their shape.

We see that the characteristic scale for hot dark matter, such as 

massive neutrinos, is
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\ 17” fth2 ~ 17 (lOOeV/mx) Mpc , (1.5)

which is of the order of supercluster size (mx is the mass of the 

particle). Thus, structure in a neutrino-dominated universe will grow 

according to a variant of Zeldovich’s "pancake" scenario. On the 

other hand, an axion-dominated model will cluster hierarchically in the 

manner discussed by Peebles (1965).

Cosmologies dominated by cold dark matter produce mass 

distributions which fit the observed galaxy distribution, (i) if 

ft-0-l-0*2 and galaxies trace the mass distribution or (ii) 0=1, 

Ho^50kms-1Mpc-1 and galaxies form preferentially in high density 

regions (cf. biassed galaxy formation models, e.g. Dekel and Silk 1986). 

These cold dark matter model catalogues differ from the real data in 

that their clusters are somewhat tighter and the associated velocities 

somewhat higher. (Cold dark matter models can, therefore, reproduce 

the observed galaxy-galaxy correlation function of Peebles (1980) but 

not the cluster-cluster correlation). If ft is indeed unity galaxies 

cannot trace the mass. Rather they must be over-represented by a 

factor of about five in the dense regions from which dynamical mass 

estimates are obtained, (Kaiser 1985).
The major opponent to the dark matter models for the 

large-scale structure of the universe is the theory of galaxy-formation 

based on cosmic strings. The cosmic string model does not preclude 

the existence of dark matter but the mechanism which generates the 

structure is somewhat different.
In the spontaneously broken gauge theories of elementary 

particle physics there are, in addition to the fundamental particles of 

the theory, topological entities, which form as defects in the process
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of breaking the symmetry. (These objects correspond to classical 

configurations of the gauge and Higgs fields). A class of these Grand 

Unified Theories (GUTs) leads to the prediction of topological entities 

which are line singularities and are referred to as cosmic strings 

(Vilenkin 1985).

GUTs all begin with the assumption that at the very high 

energies of the first moments after the big bang, there was no 

distinction between three of the four fundamental forces of nature 

(electromagnetism, weak interactions and strong interactions). Soon 

after the big bang, the symmetry broke and energy settled into 

fundamental particles, such as quarks and leptons. However, it was 

postulated that when this occurred, at about 10“35s, frozen bits of 

unified field got trapped in long 'cosmic strings’ (Kibble 1976). These 

defects contained remnants of the high energy that existed just sifter 

the big bang. The existence of cosmic strings is highly speculative. 

Nevertheless, many unified theories do predict that the universe would 

fill up with a network of such strings, as defects at the time of the 

symmetry breaking, which is inherent to these theories. These cosmic 

strings would be very heavy (typically 104Kgcm-1) and very thin 

(«10“7cm) and they would have a very strong gravitational field. (It 

can be shown that the production of cosmic strings in the very early 

universe leads to isothermal perturbations in the matter distribution of 

a definite spectrum and amplitude (Vilenkin 1985), which allows for a 

theory of structure formation in the late universe).

Cosmic strings are found to occur either in the form of closed 

loops or as infinitely long strings (Turok 1987). Most (~80%) of the 

strings are actually in long 'infinite’ strings as large as the universe 

horizon size. The remainder are in the form of a scale invariant



distribution, of closed loops. The infinite string’s that form are not 

straight but meander about in the form of Brownian random walks, and 

the whole collection of strings forms a network that permeates all of 

space. The mean velocity of a piece of string is of the order of 10-1c 

(Albrecht and Turok 1985). Thus the bits of string frequently 
intersect.

The evolution of a network of cosmic strings depends crucially 

on what happens when two strings intersect. For instance, if cosmic 

strings were to pass right through each other, then the physical 

length in string would expand as fast as the scale factor of the 

universe, a(t), and hence the energy density in strings would only 

decay as a~2(t), compared to the energy density in radiation which 

falls off as a~4(t). Thus the energy in strings would rapidly become 

the predominant form of matter-energ3r in the universe. A universe 

dominated by cosmic strings would look very different from the one 

that we observe today. Cosmic strings would be plainly visible all 

around us and the additional energy of the cosmic strings would cause 

the universe to expand much faster than the observed rate, e.g. in a 

radiation-dominated FRW period, the energy density in the strings 

would cause the universe to expand as =t, If on the other hand, 

strings, as they cross, could also break and reconnect the other way, 

long strings would form loops (Figure 1.3) and this would avoid the 

scenario of a universe dominated by strings.

(a) (b)

Figure 1.3 Intercommutation of cosmic strings: (a) a single
self-intersecting string, (b) two infinite strings intersect.
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As a string moves around, it loses energy by radiating gravitational 

waves. This effect will eventually cause a loop (unlike an infinite 

string) steadily to decrease in size until nothing remains but 

radiation. It is this conversion of the energy of the string to 

radiation which prevents strings from dominating. Shellard (1987)

discovered that provided their relative speed is less than 0*9c, two 

intersecting cosmic strings always break and reconnect to produce 
smaller loops.

The expansion of the universe, characterised by the Hubble 

length, strongly influences the evolution of strings. At any time, the 

infinite strings have 'wiggles’ on them that are about the Hubble 

length in size. These 'wiggles’ cause the infinite strings to cross 

themselves and produce loops, also about a Hubble length in size. As 

the Hubble length increases, the loops which form are correspondingly 

larger. Once fromed, the tension in the loops cause them to oscillate. 

Oscillating mass gives rise to gravitational radiation and so the loops 

decay by radiating gravitational waves. It can be shown 

(Brandenberger 1987) that the loops decay completely into radiation 

after about 106 oscillations. Thus, at any time there is a 'debris’ of 

loops left behind by the network, ranging in size from the Hubble 

length down to zero. (In fact, the network seems to evolve in a 

self-similar manner with the Hubble length characterising the scale of 

the network. The existence of this self-similar evolution greatly 

reduces the complexity of the calculations involved).

Zel’dovich (1980) and Vilenkin (1981) suggested that strings 

could produce density fluctuations sufficient to explain the galaxy 

formation in the universe. The gravitational fields of the loops 

accrete matter leading to the build up of the structures which exist in
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the universe. A loop accretes a mass proportional to its own mass, so 

smaller loops accrete a smaller amount of matter. Large loops not only 

accrete more matter but also the smaller loops around them. Thus, in 

this scenario, smaller loops formed galaxies and larger loops formed 

clusters of galaxies. The evolution of the network determines the 

number of loops of different sizes. The size of the loop also 

determines its mass and therefore how much matter it will accrete. 

The mass of a loop is its length times the mass per unit length, u, of 

the cosmic string, a quantity that is not uniquely predicted by the 

underlying field theory. The mass per unit length, u, depends on the 

value of the (string-generating) scalar field for which the potential 

energy is at a minimum and so should be the same for all loops.

We can determine li by counting the number of galaxies and then 

try to predict from the theory which size of loop appears in the same 

quantity. We can then choose the value of ju which gives loops of the 

right size to accrete a galaxy. This procedure can be repeated for 

clusters of galaxies. Remarkably these two independent determinations 

of U give the same value, Turok and Brandenberger (1985). The value 

obtained also lies within the range most preferred in the underlying 

field theory.
A model based on cosmic strings should predict more than just 

the total number of galaxies or clusters. The distribution of these 

objects should also be a reflection of the distribution of loops of 

cosmic string in space. Clusters offer a clearer test because they are 

too far apart for gravity to have moved them around very much since 

their formation. A simple way to measure the degree of clustering of 

the distribution of objects is to use the two-point correlation function 

(Peebles 1980). For the observed clusters of galaxies, this is found to
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be identical with that of the corresponding calculations for loops of 

cosmic strings. Cosmic strings are, therefore, more likely to explain 

the existence of voids, filaments and sheets in the universe. However, 

they do have a problem when it comes to predicting the observed 

matter distribution on scales of order 30-50h-1kpc, i.e. galactic scales. 

We conclude then by stating that cosmic strings do offer an intriguing 

alternative to the scenario of a WIMP-dominated universe as a viable 

model for structure formation. The dark matter models are able to 

produce a good agreement with the observed galaxy-galaxy correlation 

function but fail on the cluster-cluster correlations. Thus, we should 

not rule out the possibility that some combination of these models may 

be more profitable than the individual models themselves.

Cosmic strings were found to originate in the very early 

universe. Therefore, it would seem that in order to fully comprehend 

the evolution of the universe we must consider the contribution made 

by phenomena occurring in the early stages of this evolution.

1.4 The Early Universe
The models of Friedmann (1922) and Lemaitre (1927) and the 

discovery of extragalactic recession by Hubble (1929) established 

securely the concept of an expanding universe. A simple extrapolation 

back in time leads directly to an initial big-bang state of high 

density. The idea of a hot and dense early universe was put on a 

firm foundation by the discovery of the 3’K background radiation by 

Penzias and Wilson (1965) and its identification by Dicke et al. (1965). 

However, prior to this discovery the idea had played an active and a 

prominent role in the work of Gamow and collaborators, with excellent 

reviews in Gamow (1953) and Alpher et al. (1953). Advocates of cold
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big bang theories, in which the microwave background does not have 

a primordial origin, face the problems of providing a mechanism which 

generates the observed thermal background and producing the 

observed cosmic helium abundance. With the assumption of a hot big 

bang, the early universe becomes an extremely fascinating and 

physically intricate subject for study.

The thermal history of the standard big bang from a 

temperature of 1012K is illustrated in Figure 1.4. The standard model 

of the early universe studied by Gamow (1948) is free of any 

pronounced anisotropy and large inhomogeneities. The extreme early 

universe (T>1012K) contains all manner of particles and antiparticles. 

By the time the temperature has dropped to 1012K the hordes of 

hadrons existing in an earlier era have almost completely disappeared, 

leaving behind a few surviving nucleons and a rapidly diminishing 

population of pions. The universe then consists mainly of leptons, 

antileptons and photons and enters the lep to n  era . As far as density 

is concerned, the universe is lepton-dominated.

As the declining temperature approaches =8xl011K (cooled by the 

expansion of the universe) muon pairs begin to annihilate. Shortly 

thereafter both the muon and electron neutrinos decouple when their 

rapidly increasing interaction time exceeds the expansion time. The 

surviving electrons and photons remain in a state of thermal 

equilibrium until the temperature approaches ^4xl09K. Electron pairs 

then annihilate significantly faster than they are created and we reach 

the ra d ia tio n  e ra.
The radiation era lasts until the recombination of hydrogen 

occurs at 3000 * K. During most of this long period the universe is 

radiation—dominated and contains only a trace of matter. Toward the
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Figure 1.4 Thermal history of a standard big bang universe to a 
temperature of 10* 2K. Note that recombination does not coincide with 
the universe becoming matter-dominated.
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tail-end of the radiation era matter is increasingly important, and 

either slightly before or slightly after the recombination epoch the 

universe becomes matter-dominated. The radiation era, however, does

not necessarily terminate at the instant the universe is

matter-dominated. The important fact is that the contents of the 

universe remain radiation-pressure dominated until the recombination 

epoch. Helium is synthesised during the early stages of the radiation 

era and later when the Hubble mass has increased, the various 

precursory inhomogeneities of galaxy formation take effect. A more 

detailed discussion of the physical processes occurring in the

different regimes of the early universe is given by Harrison (1973).

Thus, the standard model, whereby the scale factor of the 

universe follows the Friedmann equations, allows us to extrapolate 

backwards from the present extremely isotropic universe, at least on 

large scales, to t»10~2 seconds. However, to completely describe the 

evolution of the universe, we need to know what happens during that 

first 10”2s. The remarkable developments in elementary particle 

physics, in the search for a unified theory of the forces of nature, 

have allowed cosmologists to 'probe1 the very early stages of the 

universe.
The gauge theories of the particle physicists have been very 

successful, so far, in describing and predicting the behaviour of 

fundamental particle interactions, where the forces controlling the 

particles are described by the spontaneous breaking of the symmetries 

imposed by the theories. The point of spontaneous symmetry breaking 

(SSB) is that although the laws of physics may be intrinsically 

symmetrical, that symmetry is not manifest below a certain temperature 

or energy level, because the lowest energy state of the system (the
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vacuum) is a particular solution of the equations that does not possess 

their symmetry. In spontaneously broken gauge theories the 

properties of the vacuum state are of vital importance and are 

described by the vacuum expectation value of a scalar field - the 

Higgs field (Abers and Lee 1973). The appearance of a non-zero 

vacuum expectation value signals SSB.

The mathematical elegance and experimental vindication of the 

SU(3), strong force symmetric gauge, and SU(2)xU(l), electro-weak 

gauge theory, models has led to their incorporation within proposals 

for the grand unification of the strong and the electro-weak 

interactions. In such models a spontaneous breakdown of complete 

symmetry between the strength and properties of these three 

interactions occurs when the temperature falls to 1028K, an energy of 

about 1015GeV. Such energies are never likely to be attained by 

terrestrial particle accelerators. However, we do have a 'theoretical 

laboratory’ in which to test our ideas, i.e. the early universe. 

According to the hot big bang model, temperatures corresponding to 

average particle energies as large as 1019GeV should have been 

reached in the early universe.

Guth (1981) proposed a new picture for the early stages of the 

hot big bang model which provided a 'natural’ explanation for a 

collection of cosmological problems. The picture was dubbed the 

'inflationary universe ’. In particle physics theories which undergo 

SSB, the Lorentz invariant energy density associated with the vacuum 

changes during a phase transition and creates an effective 

cosmological constant, p0=0(Tc4), where Tc is the critical temperature 

of the phase transition. As the universe cools below Tc, bubbles of 

the low-temperature phase (asymmetric vacuum) nucleate and grow and
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eventually the entire universe is in the asymmetric phase. However, 

Guth pointed out that if the nucleation rate was sufficiently small, 

then the universe would remain in the high-temperature phase 

(symmetric vacuum) for a non-negligible period: the symmetric vacuum 

is metastable. During this interval the initial cosmological term, p0, 

would soon begin to dominate the expansion dynamics and the universe 

would expand exponentially and 'supercool', erasing its previous 

history. (Exponential expansion was first discussed by de-Sitter in 

1917). When the transition to the asymmetric vacuum state does occur, 

an enormous latent heat (the energy difference between the two 

vacuum states) is released, reheating the universe so its subsequent 

evolution is that of the standard big bang model. As a result of the 

exponential expansion phase in its early evolution, the portion of the 

universe that is observable today should be extremely uniform and 

expanding at a critical rate (that is, the ratio of the potential to the 

kinetic energy in the universe, &, should be equal to unity).

Without this de-Sitter phase, in which the size of the universe 

is greatly inflated over what one would expect early on, the present 

uniformity of the universe and the proximity of its expansion rate to 

the critical value would remain a mystery. Our only explanation, other 

than some inflationary model, would be to appeal to very special initial 

conditions, i.e. the value of the Hubble constant would have to be 

fine-tuned to an accuracy of one part in 1055. Guth's inflationary 

universe dispensed with the need for special initial conditions. 

Furthermore, it solved the somewhat embarrassing problem of the 

over-production of magnetic monopoles during the SSB phase 

transition of the Grand Unified Theories (GUTs). In the earlier, more 

conventional, models of the GUT phase transition so many monopoles
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were predicted to arise that they would contribute a density more

than 1012 times larger than the maximum allowed by the observed

deceleration of the universe, (Preskill 1979, Zel’dovich and Khlopov 

1979). In the inflationary model, the period of accelerating expansion 

dilutes the monopole density to a small and observationally permissible 

level. Unfortunately for this model, once the universe reaches this 

symmetric phase, it remains trapped there.

Linde (1982), Albrecht and Steinhardt (1982) and Hawking and 

Moss (1982) analysed a different class of GUTs (those which undergo 

SSB of a characteristic type first studied by Coleman and Weinberg

1973) and discovered that in these models the advantageous features

of Guth’s inflationary model could be retained whilst the difficulty of 

escaping from the symmetric vacuum of de-Sitter space could be 

overcome. In their second generation model - the so-called 'new 

inflationary model’ - the universe never gets trapped in the symmetric 

vacuum state but instead simply takes a very long time to evolve from 

the symmetric to the asymmetric vacuum state, and while the universe 

is evolving from the symmetric to the asymmetric state it expands 

exponentially due to the large energy density of the symmetric 

vacuum. In this new model the evolution to the true vacuum takes 

long enough for sufficient exponential expansion to occur to explain 

the uniformity, expansion rate and monopole-free composition of the

present-day universe.
One problem with the new-inflationary model is that the matter 

inhomogeneities, which are spontaneously generated by quantum 

fluctuations during the de—Sitter phase, are found to be far too large 

to lead to galaxies, rather everything would evolve to form superdense 

objects or black holes. Also, the inflationary models predict that



today the density parameter Q should be equal to unity to a very high 

degree of precision# However, the best astronomical determinations of 

$ all consistently suggest a much smaller value, less than 0-2. A 

possible way out of this conflict would be if the universe was 

dominated (0*1) by non-baryonie dark matter, which coalesces on very 

large scales so that the observations to date would not have been 

sensitive to the presence of this matter.

The fact that Inflationary models predict the observed isotropy 

of the universe does not preclude the existence of significant 

anisotropies and Inhomogeneitles before the onset of inflation. Indeed 

several authors (Bidsi et al# 1984, Waga et al. 1986) have raised the 

possibility that bulk viscosity in the early universe could be the 

(driving force of an accelerated expansion akin to inflation. These 

authors have suggested that bulk viscosity arising around the time of 

a OTT phase transition could lead to a negative pressure thereby 

driving an inflationary expansion. In order for structure such as 

galaxies and clusters of galaxies to form, the universe must develop 

density inhomogeneitles at some time during its ©volution. It is 

unrealistic to assume that the universe could contain such 

inhomogeneitles without being at least somewhat anisotropic, sine© 

density fluctuations tend to generate shear motions via tidal stresses 

{(see Liang 1974 and Barrow 1977). Quite apart from the anisotropy 

which Is generated in this way It is feasible that the universe started 

off endowed with a lot of primordial anisotropy. Thus, if we are going 

to feed Inhomogeneitles into the Initial conditions of the universe (to 

explain the galaxiiesjb we are equally entitled to feed shear into the 

iimifittii?all conditions and„ In this situation, the anisotropy must dominate 

the dynamics of the universe at early enough times.
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However, the universe cannot be shear-dominated indefinitely. 

The density associated with induced shear can never be more than 

comparable to the matter-radiation density and even primordial shear 

can only dominate the density of the universe until some time ts. 

This is because shear energy decreases with redshift like z6, whereas 

the matter-radiation density decreases more slowly (like z4" before 

matter-radiation equilibrium and z3 thereafter). Thus, even if the 

universe starts off shear-dominated, it will not remain so for ever. 

Indeed, calculations of the effect of shear on cosmological 

nucleosynthesis (Barrow 1976) indicate that ts cannot exceed =ls. We 

might anyway expect most primordial anisotropy to have been 

dissipated before t=ls by collisional and collisionless dissipative 

processes (Misner 1967).

Relaxing the requirement of isotropy, i.e. permitting the 

cosmological flow to rotate and shear as it expands, allows more 

freedom in the choice of solutions. Various cosmological models of this 

kind have been formulated in which the rates of expansion in different 

directions are unequal (Taub 1951, Ellis and MacCallum 1969). A more 

physical interpretation of these models is that very-long-wavelength 

gravitational standing waves are present throughout the evolving 

matter distribution. Such a gravitational wave field determines 

preferred directions and orientations in space. If this picture is 

simultaneously true everywhere, the models are said to be spatially 

homogeneous (cf. Bianchi models; Bianchi 1897, Ryan and Shepley 1975).

The simplest anisotropic model is the Kasner model (Kasner 1921) 

in which the vorticity and acceleration of the flow lines are absent 

and in which shear and expansion are completely specified once the 

expansion rate in one direction is known. Such Kasner solutions can
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be easily extended to higher dimensional cosmologies and these will be 

discussed in the next section. Suffice it to say that within the very 

generous confines of 'conventional’ cosmology the early universe has a 

great deal to offer to the understanding the universe in its entirety. 

(A collection of papers on the subject of the physics of the very early 

universe, is presented in Gibbons et al. 1983).

1.5 Exotic Cosmologies

In the preceding sections we have discussed the various 

'conventional1 methods of devising cosmological models in an attempt to 

explain the universe as it exists, within the framework of the general 

theory of relativity. There have been models which attempt to 'usurp’ 

general relativity by providing an alternative theory (e.g. Brans and 

Dicke 1961, Smalley 1974). None of these alternatives, however, have 

been able to match the phenomenal success of relativity theory in 

satisfying most of the available observational tests. Less radical, but 

more enlightening, have been the extensions of general relativity to 

higher dimensions (e.g. Kaluza-Klein models, supersymmetry theories, 

super string theories and extended Kasner models). All of these 

theories exist in an attempt to unify the fundamental forces of nature.

In general relativity, the force of gravity appears as a result of 

distortions in four—dimensional space. Kaluza (1921) was interested in 

what would happen if the equivalent equations were expressed in five 

dimensions. (Note that in 1921 there was no physical justification for 

this). When Kaluza wrote down the five-dimensional equivalent of the 

equations of general relativity, by the addition of an extra spatial 

dimension, he found that they automatically divided into two sets of 

equations in four dimensions. One set corresponded to the familiar
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equations of electromagnetism (Maxwell’s equations). Five-dimensional 

reativity" seemed to unify the two forces known in 1921.

Kaluza proved his results only for the case where the fields 

were weak, (i.e. g/^n^+h^, Ih^Kl, n55=l), and the velocity was 

small (v/cCl). However, Klein (1926a) showed that these two 

constraints were irrelevant, unification should not depend on the 

fields being weak and the velocities small. Klein employed the results 

obtained by the rapid developments of quantum physics in the early 

1920’s, particularly the development of Schrodinger’s equation 

(Schrodinger 1926). Klein took Kaluza’s five-dimensional theory and 

translated it into quantum terms by writing down a version of 

Schrodinger’s equation with five variables (each one effectively 

corresponding to a dimension) instead of four. He showed that this 

five-dimensional Schrodinger’s equation had solutions which 

corresponded, respectively, to gravitational and electromagnetic waves 

in four-dimensional space.

In these early studies no real attempt was made to justify the 

use of five dimensions nor to explain where the extra dimension was 

hidden. However, Klein (1926b) suggested that the extra fifth 

dimension could be 'rolled up’ or 'compactified’ so that it was 

undetectable in the everyday world. (The usual analogy is a hosepipe, 

which when viewed from a long way away, looks like a 

one-dimensional line. However, when you look more closely, it turns 

out to be a two-dimensional object. Each point on the 'line* is a circle 

around the circumference of the tube). Klein suggested that every 

point in three-dimensional space might really be a tiny circle looping 

around a fourth spatial dimension. Calculations suggest that each loop
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of string would be about 10 30 to 10“33 centimetres across, i.e. of 

the order of the Planck length. This compactification argument has 

become standard in the study of higher dimensional cosmologies today, 
known collectively as Kaluza-Klein models.

The original Kaluza-Klein theory helped unify the two known 

fundamental forces at that time, gravity and electromagnetism. 

However, in the decades that followed, experiments in particle physics 

led to the discovery of two more fundamental forces of nature; the 

strong interaction and the weak interaction. Witten (1981) 

demonstrated that the Kaluza-Klein approach could be extended to 

unify the strong, weak and electromagnetic interactions, if we 

employed a minimum of eleven dimensions in all, ten spatial and one 

temporal. There are two natural ways for the resulting

eleven-dimensional space to compactify, either four dimensions curl up 

into insignificance, leaving a seven-dimensional world, or seven 

dimensions compactify, leaving four dimensions behind. The 'odd*

force out in these considerations is gravity. As yet there has been 

little success in the search for a consistent quantum theory of

gravity. The idea of a supergravity has been developed, however,

which like Einstein’s theory is a geometrical theory of gravity.

Supergravity goes beyond general relativity and attempts to unify 

gravity with the other forces of nature. Theories of supergravity can 

be made to work in different numbers of dimensions, but only up to a

maximum of eleven.
Today, the most favoured variation of the Kaluza-Klein approach 

is ten-dimensional superstring theory, which involves fundamental 

particles that are one-dimensional strings, not mathematical points, and 

also incorporates a version of super gravity. The justification for
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particle physics and is not founded in any observations. Present 

accelerators have probed matter at distances as small as 10“16cm 

without finding any evidence of extra dimensions, which is not too 

surprising as the extra dimensions are expected to have a size 

characteristic of the Planck length (slO“33cm).

Supersymmetry (Duff et al. 1986) is the symmetry which 

interchanges fermions and bosons. In a supersymmetric theory there 

is a bosonic counterpart for every fermion and vice versa. There is 

no evidence for such a symmetry in the world around us, e.g. there is 

no massless fermionic partner for the photon, or scalar partner for 

the electron. The motivation for supersymmetry is that mathematically 

it is very elegant and it is the ultimate symmetry we have available to 

impose. When supersymmetry is made a gauge symmetry (this is called 

supergravity) it leads to a generally covariant theory, i.e. it 

automatically incorporates general relativity into the theory. Thus, it 

offers the hope of unifying gravity with the other forces. 

Supersymmetry also offers the hope of clearing up the discrepancy of 

the weak and GUT symmetry breaking scale encountered in all GUTs. 

This discrepancy is some twelve or so orders of magnitude in a typical 

GUT. Although we are free to set these scales to very different 

energies, quantum corrections restrict this and tend to raise the weak 

scale up to the GUT scale (or the highest scale in the theory). 

Supersymmetry can be used to stabilise this discrepancy once it is 

initially set.
Since there is no evidence that we exist in a supersymmetric 

universe, supersymmetry must also be a broken symmetry. In order 

to stabilise the weak scale the supersymmetry breaking scale must
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supersymmetric partners, or spartners, of all known particles must 

have masses of the order of the weak scale, where "of the order” 

means between a few GeV and a TeV. The scalar partners of the 

quarks are called squarks; the scalar partners of the leptons are 

called sleptons; the fermionic partners of the photon, gluon, W, Z and 

graviton are the photino, gluino, Wino, Zino and gravitino respectively. 

The fermionic partners of the Higgs particles are referred to as 
Higgsinos.

Because of an additional symmetry that most 

supersymmetry/supergravity models have (called R-parity) the lightest 

spartner is stable, and because the effective supersymmetry breaking 

scale is of the order of the weak scale, the interactions of spartners 

with ordinary particles are about as strong as the usual weak 

interactions. This makes the lightest spartner an ideal candidate WIMP 

(see dark matter discussion in §1.3).

Almost all supersymmetry/supergravity models are 

supersymmetric GUTs. The unification scale in these theories is 

higher than in normal GUTs, more like 1016GeV (compared to 1014GeV) 

and these theories are supposed to describe physics up to 1019GeV. 

Therefore, supersymmetry/supergravity models also predict all of the 

additional particles that GUTs do - magnetic monopoles, massive 

neutrinos, axions and even cosmic strings in some cases.
Super string theories (Schwarz 1985) combine the ideas of 

supersymmetry, gauge symmetry, extra dimensions and one new one, 

strings (not to be confused with cosmic strings). The basic idea is 

that the fundamental particles are not point-like, but rather are 

string-like, one-dimensional entities and such theories can only be
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consistently formulated in ten dimensions. Superstring theories unify 

all the forces of nature (including gravity) in a finite quantum theory 

and are almost unique (only five string theories are known to exist). 

In principle, starting from the superstring (which describes physics at 

or above the Planck scale) we can calculate everything - the masses 

of all the fermions, the GUT, etc. When viewed at large distances the 

loops look like point particles. The so-called point-like limit of a 

superstring theory is supposed to be a supersymmetry/supergravity 

GUT. All the WIMP candidates predicted by supersymmetric GUTs are 

also predicted by superstring theories.

Thus, GUTs attempt to describe physics up to around 1014GeV, 

supersymmetric GUTs up to 1019GeV and superstring theories at 

energies above 1019GeV.

All of the higher-dimensional cosmologies, discussed above, rely 

on the compactification of the additional dimensions. One simple way 

of understanding how these extra dimensions can be incorporated into 

general relativistic cosmology is to consider the Kasner solutions 

discussed briefly in the last section. The Kasner solutions (Kasner 

1921) were the prototypes for cosmological models with great 

asymmetry in a few degrees of freedom. The four-dimensional Kasner 

metric is given by

ds2 = dt2 - t2nyXi2 - t2ndx22 - t2Pdx32 , (1.6)

where m, n and p are constants satisfying the constraints,

m + n + p = m2 + n2 + p2 = 1 • (1*7)

Thus, each t=constant hypersurface of this model is a flat 

three-dimensional space. This model represents an expanding
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universe, since the volume element is constantly increasing. However, 

it is an a n is o tro p ic a lly expanding universe. The separation between 

standard (constant x lf x2, x3) observers is tmAx1, if only their 

xl”coordinates differ. Thus distances parallel to the x̂ -axis expand at 

one rate, R^t111, while those along the x2-axis can expand at a 

different rate, R2«tn. Most remarkable perhaps is the fact that along 

one of the axes, distances contract rather than expand. This 

contraction shows up mathematically in the fact that equations (1.7) 

require one of m, n or p, say p, to be non-positive:

-1/3 £ p £ 0 . (1.8)

Thus, we can immediately see the extension to higher dimensions, e.g. 

five (four spatial and one temporal). The metric would then take the 

form

ds2 = dt2 - t2n*dx̂ 2 - t2ndx22 - t2Pdx32 - t2(3dx42 , (1.9)

where we have introduced the new 'scale factor’, tH, for the additional

dimension. The constraints on the expansion rates are then

m + n + p + q  = m2 +n2 + p 2 + q 2 = 1 , (1.10)

and again we see that at least one of the expansion rates must be 

non—positive, q say. Thus, compactification of the extra dimension 

follows quite naturally in such a model. As t-**°, tH-»0 and the

dimension x̂. is 'lost’ while the remaining dimensions grow large. This 

analysis can be continued for as many extra dimensions as we like, 

being only restricted by the fact that observationally all but three of 

the spatial dimensions must become vanishingly small.
Finally, we would like to consider another five-dimensional (5D) 

cosmology, which is interesting in that it draws on actual observations
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of the universe. One observational feature of the universe is the 

mass. If we allow the somewhat unusual property that the rest mass 

of a particle changes with time, then it is found that at least some of 

the observations not accounted for by Einstein’s four-dimensional (4D) 

theory of gravitation, may be explained (Wesson 1984). The approach 

of this version of cosmology starts from the equivalent of adding an 

extra dimension to everyday space by multiplying time by the speed of 

light to obtain a measure of distance. The constant of gravity, G, can 

also be used to convert masses into distances. The length c t is a 

coordinate in 4D special and general relativity. But the parameter 

Gm/c2 (where m is the rest mass of a particle) also has units of 

length and so can be used as a coordinate, to give a 5D version of 

general relativity.

Relativity in four dimensions implies that the strength of gravity 

is constant, a fact which has been verified by many experiments. 

However, when we examine carefully the calculations on which this 

conclusion is based, a curious fact emerges. Because of the nature of 

the underlying physical laws, if the strength of gravity is 

proportional to the time that has elapsed since the birth of the 

universe in the big bang, the properties of astronomical systems are 

almost exactly the same as they are if Gm/c2 is a constant. This 

parameter is therefore a natural measure of the ‘strength’ of the 

gravitational force associated with a particle of mass m. Thus, in 

nature it seems to make no difference whether the rate of change of 

this parameter is steady and finite or zero. Thus, we can allow for a 

steady rate of change of the rest mass, m, keeping G as strictly 

constant.
A similar argument, for a varying Gm /c2 , was given by Dirac
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(1938) in what he called the Large Numbers Hypothesis, where 

dimensionless ratios of the physical constants of nature are found to 

be typically of the order of 104°. For example, if we compare the 

relative strength of the electrical and the gravitational forces between 

the electron and the proton we find that a large dimensionless number 
is obtained, given by

^  = 2-3xl°39 - (1-i d

where e is the charge of the electron, G is the gravitational constant 

and mp, m e are the masses of the proton and electron, respectively. 

Similarly, if we compare the length scale associated with the universe, 

c/H0, and the length associated with the electron, e2/mec2, we obtain 

the ratio

HlgC3
= S.TxlO40̂ - 1 . (1.12)

Dirac pointed out that (1.12) contained the Hubble constant, Hq , and 

therefore the magnitude computed in this formula varies with the 

epoch in the standard Friedmann model. If so, the near equality of

(1.11) and (1.12) has to be a coincidence of the present epoch in the 

universe, unless the constant in (1.11) also varies in such a way as to 

maintain the state of near equality with (1.12) at all epochs. This 

would imply that at least one of the so-called constants involved in

(1.11), e, mp, me, and G, must vary with epoch. Because G has 

macroscopic significance, whereas the other constants are atomic 

quantities, Dirac postulated that the gravitational constant must vary 

with time, in such a manner as to keep the ratios (1.11) and (1.12) of

roughly the same magnitude.
There is no observation that we can devise which could be
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capable of detecting this particular kind of variation. In effect, this 

is a 5D equivalent to the feature of special relativity that there is no 

preferred frame of reference’ so that the laws of physics are the 

same in all frames moving at constant velocity relative to one another. 

In this 5D theory, an equivalent rate of change refers to "velocity” 

along the fifth-axis - the one described in terms of mass.

This description of the universe agrees with all observations to 

date which is not too surprising since, in the limiting case where the 

rest masses of particles vary infinitely slowly, the equations become 

the familiar equations of 4D relativity. Provided the rate at which 

mass is changing today is small, there will be no reason to expect any 

observations to conflict with the predictions of the theory of 

relativity. The age of the universe is 1010 years and according to the 

5D theory, the amount of mass in the universe today has built up at a 

steady rate over all that time. So the rate at which the mass of a 

proton, say, is increasing today is no more than one part in 1010 each 

year, far below detectable limits.
There is a set of solutions to the 5D equations that allow the 

rest masses of particles to increase from zero at time zero, Wesson 

(1986a). According to this theory, in the beginning there was no 

mass. The same rate of growth of mass which is one part in 10 per 

year today, means that the mass of a proton doubled during the 

second "year" of the life of the universe. It also means that, unlike 

the usual theory, the universe did not start in a big bang. If this 

were true it would completely change our ideas on the origin of the 

universe, the nature of the cosmic microwave background and the 

origin and evolution of galaxies.
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2* global symmetries in c o s m o l o g y

2.1 Introduction

Differential geometry has a major role to play in the study of 

modern theoretical physics. In the nineteenth century, physicists 

were content to 'live’ in the three dimensional world of Euclidean 

geometry, happy in the realisation that the physical laws of nature 

could be expressed as differential equations. Euclidean geometry 

allowed them to develop powerful analytic techniques with which to 

solve these differential equations and any further applications of

geometry were neglected.

However, two developments in this century significantly altered 

the balance between geometry and physical analysis in the outlook of

the modern physicist. The first was the development of the theory of

relativity, according to which the Euclidean three-space is only an

approximation to the correct description of the physical world. The 

second was the realisation, principally by the mathematician Cartan, 

that the study of geometry leads naturally to the development of

certain analytic tools (e.g. the Lie derivative and exterior calculus)

and certain concepts (e.g. the manifold and the identification of 

vectors with derivatives) that have an important function in the 

applications of physical analysis. Because it has developed this

intimate connection between geometrical and analytical ideas, modern 

differential geometry has become increasingly more important in

theoretical physics, where it has led to a greater simplicity in the 

mathematics and a more fundamental understanding of the physics.

The key to differential geometry’s importance is that it studies 

the geometrical properties of continuous spaces, in which most
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physical problems are embodied, whether it be a physical

three-dimensional space, a four-dimensional spacetime or a phase 

space. The most basic of these geometrical properties go into the 

definition of the differentiable manifold, which is the mathematically 
precise substitute for the word 'space’.

A manifold is essentially a space which is locally similar to

Euclidean space in that it can be covered by coordinate patches. This

structure permits differentiation to be defined, but does not

distinguish intrinsically between different coordinate systems. Thus, 

the only concepts defined by the manifold structure are those which 

are independent of the choice of a coordinate system, (Hawking and 

Ellis 1973, Schutz 1980).

The theory of relativity, on which the study of theoretical 

cosmology is founded, is based on the consideration of the universe as 

a four-dimensional differentiable manifold, where ordinary three-space 

is combined with time into one unified coordinate system (Einstein 

1905, 1915). CThere are cosmological models which deal with higher 

dimensional manifolds, such as the five-dimensional Kaluza-Klein models 

dicussed in the last chapter, but these are rather exotic and for the 

moment we prefer to remain conventional!]. We have noted above that 

an n—dimensional manifold, M, is locally similar to Euclidean space, 

denoted IRn, so that each point on M can be identified with a set of 

'coordinates’ in IRn. This allows us to define a coordinate system on

the manifold.
We now introduce the important concept of a vector field on the 

manifold. A vector field is closely tied to the concept of 

differentiablity. Consider a function f on the manifold. The change m  

f between the points P and Q depends on the vector P« and the
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function itself. If p and Q are in the same coordinate patch ( A t h e  
difference in their coordinates),

f(Q)-f(P) a Af z Ax°(3f/3x°) = vectorial derivative. (2.1)

The dependence of Af on displacement is contained in the linear 
differential operator

AxP(3/3xP) s Ax°3a , (2.2)

to be thought of as the vector PQ.

Modern differential geometry refines this idea of a vector as 

follows: (1) Take the limit as Axa-»0 to define a local concept ( ta n g e n t

v e c to r ) which preserves the directional properties of PQ. (2) Ensure 

that this concept is independent of coordinates. (3) Define the 

concept of vector field, consisting of a tangent vector at each point of 

the manifold.

Once vectors are defined in a coordinate-free manner it is 

convenient to define the concept of a differential form. Differential 

forms are especially useful in describing antisymmetric, covariant

tensor fields. We define a differential form (of first degree), also 

called a one-form, as a linear operator on vector fields. That is, if (Z

is a one—form and U a vector, w(U) is a function, so that $(U)(P) is a

real number, where P is a point on the manifold.

If (X̂ > is a basis, we define a set of one-forms {0̂ > by

m * v )  = = { o ; %  - (2-3>

(StV is the Kronecker delta). The functions CP(XV) are the constant 

functions § % . These are called the duals of X̂ . As with vectors, 

wrbc£P is required to be independent of the choice of cooordmates.
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assume the manifold to be that of a four-dimensional 
spacetime then any point on the manifold is termed an 'event’. Any 

spacetime event can be labelled by four coordinates, (x^x^x^x3), 

where x is the time’ assigned to the particular event and x^x^x3 

are its space values. Having labelled each event in spacetime we can 

proceed to determine the spacetime interval between any two events.

In general relativity the interval between two events in 
spacetime can be expressed by the metric,

ds2 = g^Ax^Axv , (2.4)

where Greek indices run from 0-3 and we apply the Einstein 

summation convention. Ax^ is the difference in the A/̂h coordinate 

value between the two events and g ^  is the component form of the 

m e tr ic  te n s o r and is dependent on the geometry of the spacetime.

The metric tensor, jg, is extremely important in cosmology as it 

is used to define the geometric structure of the spacetime. It is 

defined as a linear function which associates a number (the 'dot

product’) with two vectors, and can be written as

g(V,U) = g(U,V) = U.V . (2.5)

These components form an n x n symmetric matrix. If it happens that 

the matrix is the unit matrix, we say the metric tensor is the

Euclidean metric and the vector space is called Euclidean space. In 

this space the transformations between coordinate systems (Cartesian 

bases) are given by the orthogonal matrices. These matrices form a 

group, which is called the Euclidean symmetry group. If the metric

tensor takes the form used in special relativity, namely,

Sw = = diag( 1,-1 . <2-6>
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the metric tensor is said to be pseudo-Euclidean and the vector space 

is called the Minkowski spacetime. This manifold is one of the most 

important manifolds in physics. The transformation matrices between 

bases in Minkowski spacetime also form a group, called the Lorentz 

group L(n). (Note that throughout this thesis we shall adopt the

timelike convention, i.e. the metric signature is (+-- )).

The fundamental dependence of the metric tensor on the 

geometry of the spacetime associated with general relativity, allows the 

effects of curvature to be included into the general description of a 

cosmology. Thus derivatives of functions, vectors or tensor fields 

take on a more complicated form as terms must be added to

compensate for such curvature effects (Misner, Thorne and Wheeler 

1973). We therefore need a generalisation of the concept of a partial 

derivative in order to set up field equations for physical quantities on 

a manifold. We obtain such a generalised derivative, the  c o v a ria n t  

d e r iv a t iv e , by introducing some extra structure in the form of an 

affine connection on the manifold, (cf. Hawking and Ellis 1973). Affine 

connections allow us to define the concept of parallelism on a manifold, 

i.e. we can compare vectors at different points on the manifold. An 

affine connection is a rule for p a ra lle l tra n s p o rt, for moving a vector 

along a curve without changing its direction.
It can be shown (cf. Ryan and Shepley 1975) that the affine

connection takes the form

r/4lA = +  ~

(2.7)
+ ^(-C^ + g voZ ^ ^ t v +

w h e re  ( ,t ) d e n o te s  p a r t ia l  d e r iv a t iv e  w ith  re s p e c t  to  c o o rd in a te  xT , i.e .
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3/3x , and where the C’s are the "structure coefficients”, which, if 

non-zero, express the non-commutativity of the basis tetrads used. If 

the coordinate system is chosen to be holonomic (the basis tetrad 

ejLr3/8x/i a coordinated basis), all structure coefficients are zero and 
the affine connection reduces to the Christoffel form;

“ 2 + ^oX,y ~ SvX,a) • (2.8)

This will become important later.

Having introduced the affine connection on the manifold, we may 

define the covariant derivative of a vector field Y along vector x as,

VXY = YM;vx %  = [ g  ] x %  , (2.9)

where the T’s are the components of the affine connection and eu is 

the basis vector 3/3xK

The "curvature" of the manifold, defined by the Riemann 

curvature tensor, measures the non-commutativity of covariant 

derivatives in spacetime:

R>W r x/J = xX ;v t “ ;t v • (2.10)

For a spacetime to be flat, i.e. to have zero curvature, the left hand 

side of equation (2.10) must be zero for all events on the spacetime 

topology. In other words, in a flat spacetime covariant derivatives 

defined by different vector fields on the manifold commute. From the 

definition of the covariant derivative, equation (2.̂ ), we see that given 

an affine connection, the Riemann tensor takes the form,

R*)UVT = r\rr,v - r>>,T + r°AfrrXov " r<V r>W  » (2.11)

where again (,) denotes partial derivative.
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In general relativity, the coordinates are chosen such that the 

affine connection introduced on the manifold is usually the Christoffel 

connection, the components of which are symmetric in their lower two 

indices (see above), thereby directly introducing the metric into the 
definition of curvature.

1 he path of any particle in the manifold of general relativity is 

affected by the curvature of the manifold. The matter in turn defines 

the geometry through Einstein’s field equations:

% /  “ , (2.12)

with iA being the components of the Ricci tensor (the

contraction of the Riemann tensor), R the Ricci scalar, R^g^R^y, and 

T|m/ the components of the stress-energy tensor. We have chosen 

units such that c=G=l.

The field equations (2.12) are a complicated set of coupled, 

non-linear partial differential equations. In cosmology, we simplify 

these equations by imposing symmetries on the solution.

2.2 Symmetries of Spacetime
In this section we are interested in the symmetries which may 

be imposed on a four-dimensional manifold representing the spacetime 

of general relativity. Such symmetries help to reduce the complexity 

of the Einstein field equations, which define the geometry of spacetime 

given the matter distribution. We will express the symmetry of the 

models obtained in a coordinate-free manner by the use of differential 

forms and vector fields defined in the preceding section.
A symmetrical cosmological model is a manifold, M, on which the 

metric is invariant under a certain (specified) group of
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transformations. That is, each operation of the symmetry group 

corresponds to a map of M onto itself. This map (isometry) carries a 

point P into another point Q at which the metric is the same, when 
expressed in a coordinate independent way.

The description of the invariance of a metric under a group ( L ie  

g ro u p ) of isometries is achieved by directing attention .to the 

infinitesimal transformations (L ie  algebra) in the group. Other 

members of the group can be obtained from the infinitesimal members 

by e x p o n en tia tio n (repeated application of the infinitesimal members, 

Helgason 1962). Thus, a symmetric cosmological model is found by 

imposing the structure of a Lie algebra, although Lie group 

terminology is used. Before considering particular symmetries of the 

spacetime it is necessary to introduce some useful concepts.

To describe an infinitesimal transformation it is convenient to 

revert to coordinates (Misner 1964). Consider a point P0 in a 

neighbourhood, N, in which coordinates (u ~ l,...,n ) are used. A point 

P in N will have coordinates xp̂ . An in fin ites im a l tran s fo rm atio n is of 

small effect and therefore carries points in N’, a small neighbourhood 

of P0 which lies within N, into other points of N. Our transformation 

may be described in N* by n functions f̂  of the coordinates x̂ . The

point P is carried to the point Q in N with the coordinates xq^i

fWfxp*') = f^P) = • <2-13>

An infinitesimal transformation has the form

f̂ (P) = xp^ + eâ (P) • (2.14)

The number £ is meant to be so small that points m  N’ are carried 

only to points in N. The vector field describes the magnitude

and direction of the transformation, (3^a/ax^ is a basis vector).
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A transformation acting on a space induces a transformation 

which carries a vector at point P into a vector at the image point Q. 

CThis statement holds for any tensor, not just a vector which is a 

tensor of type (1,0), and so is completely general!. This 

transformation of vectors defines a new vector, whose value at Q is 

the same as the value of the vector at P. It can be shown that a 
vector Y=b^du will change by the formula

^new = t^new <Q>3« = [b«<P)+ea*')Vbl'<P);|3M . (2.15)

The value Ynew is what one would expect to see at Q if Y did

not change in the direction given by the transformation vector field X. 

Y-Ynew is the observable change in the vector Y. The measure of 

this change is,

(Y-Ynew)*1 = b*'<Q>-b*1ne„(Q> = b*'(Q)-b<J<P)-£at'>vbl'(P)

= bd(x«+ea«) - bW(x“) - ea^yb^P)

Dividing by € and letting €->0, we have the Lie  d e r iv a t iv e of Y with 

respect to X,

Y = (b^oa0 - a.»ia iP )a u . (2.16)

This expression is simply the commutator of X and Y,

1̂ Y = CX,Y] • <2 - 17)

The Lie derivative can easily be extended to arbitrary tensors, by 

requiring that it acts as a differentiation with respect to the tensor 

product where { ^ 0CS2)(V ,V )-C S H V )^{W ), and that V rXf- where f

is a function. In the coordinated system used above, if the tensor, T, 
has components T L ^ T  is given by,
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(zil)“ '3ys = T ^ y s . o a 0 - ^ y s ^ . a  “ T ^ y S ^ . o  

+ T ^ o S ^ . y  + ^ y o a ° , s (2.18)

All of the commas (partial derivatives) may be replaced by semi-colons 

(covariant derivative) without affecting the correctness of this 

relation. Thus, the Lie derivative is independent of both metric and 

connections. A comprehensive discussion of Lie derivatives and their 
application is given by Yano (1955).

A transformation which leaves the metric invariant is called an 

is o m e try . An infinitesimal isometry is described by a vector v, called 
a K ill in g  v e c to r (Killing 1892), which is said to g e n e ra te isometries. A 

Killing vector thus satisfies

In other words, the derivatives of the functions g^y in the direction 

of v are zero. That is, the geometry of the manifold is left completely 

unchanged by a translation of points through the infinitesimal 

displacement ev, where e is small.

Equation (2.19) leads to the Killing equation for the components 

a^ of the contravariant form of v in an arbitrary basis, viz.,

(cf. Yano and Bochner 1953). Thus, a vector field v(P) generates an 
isometry if and only if it satisfies Killing’s equation, (2.20). It is 

important to notice that if and v2 are two Killing vectors, then the
linear combination a1v1+a2v2 is a Killing vector if alfa2 are two 

constants. However, if a l f a2 are functions of position, a1v1+a2v2 is a 

vector field, but not necessarily a Killing vector. The commutator of 

two Killing vectors, Cv^v^, is also a Killing vector.

L g  = 0 (2.19)

au;v + av;u ~ 0 (2.20)
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The set of isometries of a manifold M has the structure of a 

group. An associative product is defined ( the product of isometries 

A and B is A followed by B), an inverse exists for each element, and a 

unit transformation (the identity) exists. The group of isometries is 

the s y m m e try  g ro u p of M. Isometries are obtained from the Killing 

vectors by exponentiation in the same way that group elements are 

obtained from the infinitesimal generators which form the Lie algebra 
of the group.

therefore of considerable interest whenever the metric is invariant 

with respect to some vector field, cf. equation (2.19). We stated, 

above, that such a vector field is termed a Killing vector field. A 

convenient way of identifying a Killing vector is to find a coordinate 

system in which the components of the metric are independent of a 

certain coordinate, then the basis vector for that coordinate is a 

Killing vector.
As an example we shall determine the Killing vector fields of the 

three-dimensional Euclidean space. The metric in Cartesian coordinates 

has components,

giJ = Sij - (2-2D

which is independent of x, y and z. Therefore, 3/3x, 3/3y and 3/3z 

are Killing vectors. The same metric in spherical polar coordinates 

has components,

Many manifolds of interest in physics have metrics and it is

3_ 3_ 
Srr ~ 3r*3r 1

3_ 3_ 
gee = 3e’3e (2 .2 2)
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an<* we see that 3/3<l> is a Killing vector.

In general, therefore, the presence of a symmetry means that a 
coordinate x° may be chosen such that

v = 3/3x° , g^,xo = 0 . (2.23)

Then,

ds2 = S m /ix1 ,x2 ,x3)dx̂ dxy

Common examples occur when the metric is stationary, in which case 

the Killing vector, v, is timelike, when the metric has axial symmetry

(and is invariant under the coordinate transformation 0 -» <tH-constant

where <t> is the usual polar angular coordinate and v̂ 3/3<t>), or when 

the geometry has the same cross-section for all points on one 

coordinate axis, say the z-axis (and the metric is thus invariant under 

z -» z+constant and v=3/3z).

Other assumptions on the spacetime may be that the Weyl 

curvature tensor belongs to a particular Petrov type, that the metric 

has some special form and so on. In some of these special cases the 

field equations may be simplified to such an extent that they can be 

fully integrated. For example, Kinnersley (1969) found a ll vacuum 

metrics for which the Weyl tensor is Petrov type D. In general, 

however, some particular assumption is insufficient to allow for such 

full integration.
The groups classified by Petrov (1969) serve as isometry groups 

of a four—dimensional manifold with the appropriate metric signature.

A list of all of the three-dimensional Lie algebras, each of which

uniquely determines the local properties of a three-dimensional group, 

has been given by Ryan and Shepley (1975). Each of these may be
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used as the isometry group of a spatially-homogeneous cosmological 

model, the Bianchi Type universes. [Bianchi (1897) studied the set of 

all three-dimensional spaces which are homogeneous in the sense that 

there exist vectors V which leave the metric invariant]. Such 

spatially-homogeneous models are consistent with the observed 

distribution of matter in the universe today, e.g. Seldner et al. (1977).

Bianchi’s studies showed that there are only nine independent 

Lie groups which satisfy the homogeneity condition. These nine 

groups are labelled Bianchi Types I to IX and can be identified by the 

values of the structure constants, of the particular group, given

by the commutator of the Killing vectors associated with the 

homogeneity, i.e. L^\/)Z'xl-C^yy£>̂  These structure constants are equal 

to the structure constants of the Lie algebra introduced in the affine 

connection (2.7).

One of the most important of the isometry groups is that of the 

Bianchi Type IX spaces, to which the Friedmann-Robertson-Walker 

universe belongs. Bianchi Type IX spaces are invariant under S0(3), 

the special orthogonal group in three dimensions, which is isomorphic 

to the three-dimensional rotation group. S0{3), a subgroup of the

Euclidean symmetry group 0(3), consists of matrices with determinant 

+1 and can, therefore, be shown to be the group of rotations. (The 

remaining matrices of 0(3) can be interpreted as inversions). Thus, 

any matrix of S0(3) is equivalent to successive rotations in 

independent two-dimensional planes. This means that when a model 

universe M has the invariance group SO(3), the invariant 

hyper surfaces are taken to be three—spheres and the manifold is 

spherically symmetric about any point. If the three—spheres are

spacelike then any fourth invariant vector, Y0, will be timelike. This
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vector may be chosen freely and one convenient choice is to take the 

vector perpendicular to the spacelike S3,s and of unit length, i.e. we 

choose a synchronous coordinate system. Thus, in terms of the dual 
one-forms, the metric of M will then be of the form,

g = ds2 = at2 - gydJfliSBj . (2.24)

Each gjj is a function of the proper time, t, alone. The dt, w* are the 
duals of Y0> Yp respectively.

In the case of the FRW metric, the gy, expressed in this uP 
basis, would have the form

gjj = G2Ŝ  j with G-G(t) . (2.25)

The fact that gy is diagonal and has three equal entries shows that 

the metric of the FRW universe is iso tro p ic . In other words, the FRW 

universe has symmetries in addition to the homogeneity of spacelike 

sections which is granted by invariance under S0(3). This additional 

symmetry of the FRW universe - its isotropy - may be expressed by 

the statement that its metric is invariant under rotations about any 

axis in a homogeneous three-space H(t).

Another example of a universe which is invariant under SO(3) is 

the Taub universe, Taub (1951). This (vacuum) model is rotationally 

invariant about only one axis in each three-space and has the metric,

ds2 = dt2 - b^iO1)2 - b22C(©2)2+«a3)23 . (2.26)

The manifold is again S3xlR. As we see, by the form of this metric, 

where the b’s are functions of t only, the Taub universe is spatially 

homogeneous with invariance group S0(3).
A more general matter-filled S0(3)-homogeneous model may be
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imagined in which gjj is not diagonal as a function of t (nor may be 

made diagonal by changing the choice of & ) . This model exhibits 

rotation and anisotropy, cf. the models described in Chapter 4 of this 
thesis.

Symmetries based on isometry groups and Killing vector fields, 

therefore, provide extremely useful methods for solving the rather 

complicated Einstein equations describing a cosmology. However, there 

exist other kinds of assumptions which can be made on the metric 

tensor and thereby help to reduce the complexity of the field 

equations, For instance, the assumption of the existence of a second 

or higher order Killing tensor rather than that of a Killing vector. 

Killing tensors yield constants of motion and enable, for example, the 

separation of the Hamilton-Jacobi equation in most Petrov type D 

vacuum solutions, in particular the Kerr-Newman solution, (cf. 

Hughston and Sommers 1973). However, Killing tensors are not easily 

handled and we will not consider them further.

One other type of assumption which may be made is that there 

exist symmetries such as homothetic motions, conformal motions and 

curvature collineations as discussed for example, by Katzin at al. 

(1969). We shall be mostly concerned with the homothetic and 

conformal motions as these relate directly to the symmetries of 

similarity solutions of the first kind. The possibility of higher order 

self-similar symmetries will also be discussed.
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2.3 Self-Similar Symmetries

In this section we shall approach the subject of self-similarity 

from two directions. The first will continue the discussion of the 

previous section and consider the equivalence of self-similar motions 

(of the first kind) with homothetic motions in a manifold. The second 

will be to use the dimensional methods developed by Sedov (1959) and 

Zel’dovich and Raizer (1967), in the study of hydrodynamical fluids. 

Although the second treatment is somewhat less mathematically 

aesthetic than the first, it does provide some useful physical insight 

into the symmetries imposed on the motion of the physical variables of 

any given problem. This division of "tactics” also highlights the two, 

often distinct, approaches to doing cosmology; treating the universe as

(i) a manifold on which to apply the tools of differential geometry and

(ii) a fluid which satisfies continuity relations, equations of motion etc. 

The fact that the two methods are complimentary is neatly 

encapsulated in the Einstein field equations of general relativity, with 

'geometry’ on the left hand side of the equations and 'physics’ on the 

right.

A. Geometrical Approach
Perhaps the simplest generalisation of a Killing motion is a 

homothetic one, McIntosh (1980). In this case the vector v satisfies 
the equation,

U = «S(A/ > <2-27)

where $ is a constant. If, on the other hand, <t> is an arbitrary scalar 

function, then v is termed a conformal vector field. Collinson and 

French (1967) showed that in a non-flat empty spacetime a conformal 

motion must be a homothetic one (unless it is of Petrov Type N).
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Thus, if we are to use these symmetries to integrate the field 

equations to obtain new solutions, there is no need to consider the 

possibility of conformal motions with 0 non-constant and we shall 
therefore take <I>=2k in what follows.

To emphasise the symmetry inherent in homothetic motions, 
equation (2.27) can be written in the form,

£v(iT1/%l'> = 0 , g = IDetfg^)! , (2.28)

where n is the dimension of the manifold. Thus, we see immediately

the geometric object which is left invariant under a homothetic motion. 

In general, if a space admits an infinitesimal point transformation with 

respect to which the Lie derivative of some geometric object vanishes, 

then it also admits a one-parameter invariance group (physical

symmetry) of this geometric object, (Yano 1955). Examples of such 

symmetries include; the conformal or homothetic motions discussed 

above, Killing motions where the invariant geometric object is the 

metric tensor, g^, itself (see §2.2), affine collineations which demand 

invariance of the Christoffel symbols, and curvature collineations

for which the Riemann curvature tensor, is the relevant

geometric object defining the symmetry. A discussion of these various 

types of symmetry was given by Katzin et al. (1969). We shall restrict 

our attention to the homothetic (conformal) motions.
To obtain a physical notion of equation (2.27) let us form the 

c o n fo rm a l Killing equation, using equation (2.18), viz.,

%V,oa° + %<oa0,v + gova° ,u  = 2kguv * (2.29)

w h e r e  v ^ a ^ a ^ . R e s tr ic t in g  o u rs e lv e s  to tw o  d im en s io n s  we h a v e  f o r  a  

f l a t  tw o -s p a c e ,
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ds2 - dx2 + dy2 f

that equation (2.29) reduces to the expression

+ av iU = 2kS«l/ , (2.30)

S c which is just the flat-space form of equation (2.20) 
for a conformal symmetry. If we take the components of a^ to be 

al-u, a2-w, then equations (2.30) reduce to the following!

3u _ 9w
9x ” 3y

(2.31)
8u dw
9y ~ 9x

which are the Cauchy-Riemann equations for transformations in 

complex analysis. Thus, Killing’s equation for a conformal symmetry 

can be regarded as the general representation of the Cauchy-Riemann 

equations in curved space.

For a homothetic motion, a coordinate x° can be chosen such

that,

v — 9/3x3 , g^,x° ~ * (2.32)

and the line element can then be written as

ds2 = exp[2kx°]h^(x1,x2,x3)dx*icixy . (2.33)

For example, one common metric which admits a homothetic motion is 

that of the Einstein-de Sitter cosmology, for which

ds2 = dt2 - t4/3Cdx2+dy2+dz2H , (2.34)

in which case the homothetic vector is

v = 4 + 3[4 + 4 + zti] • <2-35)
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In this form all of the coordinates are scaled, under the action 

of (2.35), although not all by the same amount. The geometry is 

mapped along the congruence of curves, whose tangent vectors are v, 
to one of the same 'shape", but where lengths are changed by a fixed 

amount. Another obvious example of a homothetic motion is the 

mapping along the axis of symmetry of a cone such that the 

cross-sections remain of similar shape but increase or decrease in 

size. The word self-similar is often used to describe a homothetic 

mapping. In this thesis our main consideration is to investigate the 

properties of cosmological models which admit self-similar symmetries. 

Let us, therefore, study the homothetic motions in a little more detail.

In the preceding section we defined the Lie derivative in terms 

of infinitesimal transformations. For a spherically symmetric spacetime, 

which admits a Killing vector 3/3<t>, the infinitesimal transformation 

corresponding to the conformal motion (2.27), is defined by

t* = t+€/3(r,t) ; r* = r+ea(r,t) ; e’=e ; , (2.36)

where <x and P are two arbitrary functions of r and t, and € is an 

infinitesimal parameter. The associated conform al Killing vector is,

v = (P ,a,0,0) , (2.37)

with the conformal Killing equation given by

aAt;v + av ;p = 2kgjuv » (2.38)

where v-a^3^. Given a metric of the form

ds2 = eadt2 - ewdr2 - r2(d©2+sin2ed<t>2) , (2.39)

we see that only four equations in (2.38) are not identically zero.

€  + + €  = ■ <2-40)
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e°—  + eu>3« _
9r e 3t ~ 0 , (2.41)

98oc 8w  aw 
2̂ r. + ^  + fe: = 2k-ar 3r T pat - » (2.42)

a = kr . (2.43)

From equations (2.43) and (2.41), we see that the infinitesimal

transformation is necessarily of the form, (Munier et al. 1980),

t* = t + e/3(t)
(2.44)

r ’ = r + ekr

Following the analysis of Munier et al. (1980) we introduce new ‘scaled* 
coordinates:

* at* t*r - r  ; a t  £(t) * (2.45)

Substituting the transformed system, (r*,t*,ĝ *), back into the

conformal Killing equation, we find that a new dimensionless variable 

emerges,

S = rt"k , (2.46)

where we have dropped the asterisks. The variable £ is an invariant 

of the infinitesimal group (2.44) and is termed the self-similar variable.

It is remarkable that in general relativity every conformal

homothetic group is equivalent because of the possible rescaling of the 

variables, (2.45). Self-similarity in relativity theory is, therefore, an

extremely general process.
In the particular case, where the homothetic constant is unity 

(k=l), then the invariant of the group reduces to S=r/t, Cor
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equivalently e=t/r, see Chapter 4], and the metric coefficients, g00 and 
g l l f  are expressible in terms of £ alone.

Note that when the source of the gravitational field is a perfect 

fluid it is a consequence of the self-similar (homothetic) motion and 

the transformation properties of the Einstein tensor, G^, that the 
four-velocity, û , is conformally invariant. That is,

uU.vvv - v̂ .vuy = -u^ . (2.47)

Another consequence of the self-similar symmetry is that only 
equations of state of the form

P = , (oc constant) (2.48)

are possible, (Cahill and Taub 1971). A comprehensive discussion on 

the uses of self-similarity in general relativity is given by Eardley 

(1974).

B. Classical Hydrodynamical Approach

Similarity solutions in classical hydrodynamics have been a 

fruitful source of models for physical systems having no intrinsic 

scale of length or mass, or time. In this sub-section we will discuss 

the development of similarity techniques in mechanics from their origin 

in dimensional analysis. This subject is dealt with comprehensively in 

the textbooks by Sedov (1959) and Zel’dovich and Raizer (1967).

Every phenomenon in mechanics is determined by a series of 

variables, such as energy, velocity and stress. Problems in dynamics 

reduce to the determination of certain functions and characteristic 

parameters. The relevant physical laws and geometrical relations are 

represented as functional equations, usually differential equations. In 

purely theoretical investigations, we use these equations to establish
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the general qualitative properties of the motion and to calculate the 

unknown physical variables by means of mathematical analysis. 

However, very often the problem cannot be formulated mathematically 

because the mechanical system to be investigated is too complex to be 

described by a satisfactory model. In general, we begin every 

investigation of a natural phenomenon by finding out which physical 

properties are important and looking for mathematical relations 

between them which govern the behaviour of the phenomenon.

Many phenomena cannot be investigated directly and to

determine the laws governing them we must perform experiments on 

similar phenomena which are easier to handle. Theoretical analysis is 

needed when formulating such experiments to determine the values of 

particular parameters of interest. In general, it is very important to 

select the non-dimensional parameters correctly; there should be as 

few parameters as possible and they must reflect the fundamental

effects in the most convenient way. This preliminary analysis of a 

phenomenon and the choice of a system of definite non-dimensional 

parameters is made possible by dimensional analysis and similarity 

methods.
We call quantities dimensional if their numerical values depend

on the scale used, i.e. on the system of measurement units. Quantities

are non-dimensional when their values are independent of the system 

of measurement units. The subdivision of quantities into dimensional 

and non-dimensional is to a certain extent a matter of convenience. 

However, the quantities of length, time and mass (or energy, or force) 

are usually regarded as dimensional, whereas angles and the ratio of

lengths are non-dimensional.
In practice, it is sufficient to establish the units of measurement
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for three quantities; precisely which three depends on the particular 

conditions of the problem. In physical investigations it is convenient 

to take the units of length, time and mass. (Such a system of 

measurement in cosmology is obtained by choosing Ĝ ĉ l, where G is 

the gravitational constant and c is the speed of light, allowing all 

dimensions to be measured in one unit, usually length).

In particular, dimensional and similarity theory is of a great 

value when making models of various phenomena. The basic idea of 

modelling is that the information required about the character of the 

effects and the various quantities related to the phenomenon under 

natural conditions can be derived from the results of experiments with 

models. Modelling is based on an analysis of physically similar 

phenomena. We replace the study of the natural phenomenon, which 

interests us, by the study of a physically similar phenomenon, which 

is more convenient and easier to reproduce. Physical similarity can be 

considered as a generalisation of geometric similarity. Two geometric 

figures are similar if the ratio of all the corresponding lengths are 

identical.
There are various ways of defining dynamical or physical 

similarity. We shall adopt the definition of similar phenomena used by

Sedov (1959), viz.,
* Two phenom ena a re  s im ilar, i f  the c h a ra c te r is tic s  o f  one can be 

o b ta in e d  fro m  the assigned  c h a ra c te ris tic s  o f the o th e r  b y  a sim ple  

c o n v e rs io n f which is  analogous to the transfo rm ation  from  one system

o f  u n its  o f  m easurem ent to a n o th e r.’

The 'scaling factor’ must be known in order to accomplish this 

conversion. Further, the necessary and sufficient conditions for two 

phenomena to be similar are that the numerical values of the
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non dimensional coefficients forming the basic system are constant. 
These conditions are called s im ila rity  c r ite r ia.

For instance, all the non-dimensional quantities in the problem 

of steady, uniform motion of a body in an incompressible, viscous fluid 

are defined by two parameters: the angle of attack oc and the Reynolds 

number R. The conditions of physical similarity are represented by 
the relations

oc = constant , R = = constant , (2.49)

where v is the velocity of the fluid, d is the scale size of the body, p 

is the fluid density and u is the dynamic viscosity. Thus, in fluid 

mechanics, flows of the same type with the same Reynolds number are 

similar. This is dubbed the law of similarity, (Reynolds 1883).

We can extend this law of similarity to the situation where the 

two fluid motions being compared belong to the same fluid, but at 

different times. The type of motion in which the distributions of the 

flow variables remain similar (in the above sense) to themselves with 

time and vary only as a result of changes in scale is called 

s e lf—sim ilar. For example, the motion of a compressible medium, in 

which the dimensionless parameters depend only on the combination

where x, y, z denote Cartesian coordinates, t is the time and b is a 

constant with dimensions LT” ,̂ will be called self-similar with a centre 

of similarity at the origin of the coordinate system. (This corresponds 

to the conformal motion where the dimensionless independent variable 

is given by equation (2.46)). It is easy to discover the general
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character of all problems for which self-similarity exists. It is 

sufficient for the system of dimensional characteristic parameters, 

prescribed in part by supplementary conditions and in part by 

boundary or initial conditions, to contain not more than two constants 

with independent dimensions other than length or time.

Generally speaking, for self-similarity to exist in the motion of a 

compressible fluid it is necessary that the formulation of the problem 

should not contain a characteristic length or time.

To fix our ideas, let us consider the motion of a fluid in 

one-dimension, i.e. all the properties of the fluid depend only on one 

geometric coordinate and on the time. It can be shown that the only 

possible one-dimensional motions are produced by spherical, cylindrical 

and plane waves (Liubimov 1956). We can distinguish the problems 

which can be solved by the methods of dimensional analysis, i.e. by 

analysing the dependent variables and the fundamental parameters of 

one-dimensional motion. The basic physical variables in the Eulerian 

approach are the velocity v, the density p and the pressure p and the 

characteristic parameters are the linear coordinate r, the time t and 

the constants which enter into the equations, the boundary and the 

initial conditions of the problem.
Since the dimensions of the quantities p and p contain the mass, 

at least one constant a, the dimensions of which also contain the mass, 

must be a characteristic parameter. Without loss of generality, it can 

be assumed that its dimensions are

[a] = ML^TS » (2.51)

where we will use the notation [ ] for the dimensions of any quantity. 

We can then write for the velocity, density and pressure
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V ~ t } ’ ^ rk+3^s® » P - pk+ifS+2̂ 5 » (2.52I

where the reduced functions'*. V, R and P, are arbitrary quantities 
and, therfore, can depend only on non-dimensional combinations of r, t 

and other parameters of the problem. In the general case, they are 

functions of two non-dimensional variables. However, if an additional 

characteristic parameter b can be introduced with dimensions 

independent of those of a, the number of independent variables which 

can be formed by combining a and b is reduced to one. (Incidentally, 

it is interesting to note that similar functions, called 

homology-invariant variables, were introduced by Bondi and Bondi 

(1949) in the theoretical study of stellar structure to aid calculations 

of the relevant equations and to avoid the instabilities which occurred 

in other methods. These h-variables, as they were called, played a 

similar role to the reduced functions, in that they greatly simplified 

the equations involved).

Since the dimensions of the constant a contain the mass, we can 

chose the constant b, without loss of generality, so that its dimensions 

do not contain the mass, i.e.

[b] = LPT®1 . (2.53)

The single non-dimensional independent variable in this case will be 

rmtn/b, which can be replaced, for m*0, by the variable

S = ’ ‘* ere 6 = ‘ <2'54)

If m=0, V, R and P depend only on the time t and the velocity v  is 

proportional to r. The solution depending on the independent variable 

may contain a number of arbitrary constants. tit was noted by
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Stanyukovich (1955) that, in addition to the power-law self-similarity 

of equation (2.54), it is also possible to have exponential 

self-similarity, in which £=re~kt/A, where k and A are constants. The 

majority of problems of practical interest have a power-law character!).

This argument shows that, when the characteristic parameters 

include two constants with independent dimensions in addition to r 

and t, the partial differential equations satisfied by the velocity, 

density and pressure in the one-dimensional unsteady motion of a 

compressible fluid can be replaced by ordinary differential equations 

for V, R and P. Such motions are called self-similar.

In the case of a perfect, inviscid, non-heat-conducting fluid the

equations of motion, continuity and energy take the form

3v , v9v , 1 9p ~
rrr + —  + -  = 0 ,3t 9r p 3r

if * fc,evi * < - » “  = »  . «■“ >

where y is the adiabatic index; v=l for planar flow, V-2 for flow with

cylindrical symmetry and V=3 for flow with spherical symmetry. These 

equations do not contain any dimensional constants. Consequently, the 

question of the self-similarity of the motion is determined by the 

number of parameters with independent dimensions introduced by the 

remaining conditions of the problem. If there are only two of these 

the motion is self-similar.

One illuminating way of describing the physical effect of 

self-similar motion on the fluid variables is demonstrated in Figure 2.1, 

which displays the density and velocity profiles in a centred
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F ig u re  2.1 D ensity  and veloc ity  p ro files  in  a centred  ra re fac tio n  
w ave produced b y  the motion of a reced ing  p iston moving a t a 
constant ve lo c ity .
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rarefaction wave resulting from the influence of a piston receding with 

a constant velocity, (cf. ZePdovich and Raizer 1967). If the motion is 

self-similar the distributions of all quantities with respect to the 

x-coordinate will change with time without changing their form; they 

remain similar to themselves. If we were to draw the profiles shown 

in Figure 2.1, using as the abscissa not x but the ratio x/t, w.e would 

obtain a "frozen" picture, one which does not vary with time. 

centred rarefaction similarity solution has S=l, m=-n, cf. equation 

(2.54)].

Many phenomena in nature, although not exactly self-similar 

throughout their evolution, do exhibit self-similar behaviour in the 

limit as t-*», i.e. in a region far from the initial conditions and the 

influence of the boundary conditions. The existence of such a limiting 

solution corresponds to the concept of intermediate asymptotics as 

reviewed by Barenblatt and ZePdovich (1972).

An intermediate asymptotic regime is a region in which the 

behaviour of the solutions is no longer dependent on the details of 

the initial and/or boundary conditions, but where the system is still 

far from being in a state of equilibrium. For example, in the case of a 

strong explosion, discussed by Barenblatt and ZePdovich (1972), where 

there is a phase change across the resulting shock front, the solution 

appropriate to the intermediate asymptotic region corresponds to the 

instantaneous release of an amount of energy E in an infinitesimal 

domain of radius R0. In this example, it can be said that the

intermediate asymptotic solutions do not 'remember’ either the energy 

E or the size R0 of the domain, in which the energy is released at the 

initial time, independently but a combination of these quantities.

The study of self-similar motions is, therefore, of great physical



ihmferestL The fact that it is posaibl© to r©duc@ a system of partial 

differential equations to a system of ordinary differential equations tor 

new reduced functions simplifies the problem from the m&themalioal 

standpoint and in a number of eases makes it possible to find §X&§t 
analytic solutions.

To complete this section w© not© that there exist tw® Father 

different kinds of self-similar solutions. The first type possess the

property that the similarity exponent ® and the exponents o f the

dimensional constant b in all scales are determined either by 

dimensional considerations or from the conservation laws* Problems 

this type always contain two parameters with independent dimensions* 

These parameters are used to eon® true t one parameter whose

dimensions contain the unit of mass, a, and another parameter,

that contains only the units of length and time* With the seeewd 

parameter A it is possible to construct a dimensionless eombinatJon, 

the similarity variable £=r/At̂ » The dimensions of the parameter A, 

LT“S, are determined by the similarity exponent §* Motions of tMs 

kind are called self-similar of the first kind and were ©ons&dered 

extensively above.

In self-similar problems of the second kind, the essptonent 

cannot be found from dimensional eonsMeratione or Ifeom the 

conservation laws without solving the equitations.. ttoie the

determination of the similarity exponent requires ttibat the ordjM®ry 

differential equations for the reduced ftunntaona fee iiedegitsted.. Ktt 

turn® out that the exponent is found ffroso the eondiitiion rfttest tthe 

integral curve must pass through soioe singular pcxwat,. as otherwise 

the boundary conditions cannot fee satisfied. The existence of .ewoh a 

singular point is linked directly to the fact that '.the 'self-similar
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solution of the gasdynamic equations is only physically meaningful if it 

is single-valued. That is, each value of the independent variable £ 

should correspond to unique values of the reduced functions of the 

problem, e.g. £(V), £(R), £(P) should not have extrema. A more

comprehensive discussion of this issue is given for the imploding 

shock wave problem in Zel’dovich and Raizer (1967), Vol. 2, Ch. XII.2).

Examination of solutions to specific problems of the second kind 

shows that in all these cases the initial conditions of the problem 

contain only one dimensional parameter with the unit of mass but lack 

another which could be used to form the parameter A. This 

circumstance eliminates the possibility of determining the number S 

from the dimensions of A. Actually, of course, the problems do have a 

dimensional parameter A, with dimensions LT“̂ , relevant to it, 

otherwise it would be impossible to construct the dimensionless 

combination £=r/At̂ . However, the dimensions of this parameter (i.e. 

8) are not dictated by the initial conditions of the problem, but rather 

are found from the solution of the equations. Thus, for instance, if 

the self-similar motion originated as a result of some non-self-similar 

flow that approaches a self-similar regime asymptotically, then the 

value of A can only be found by a numerical solution of the complete 

non-self-similar problem in which it is possible to follow the transition 

of the non-self-similar motion into the self-similar one. As an example 

of another problem which admits a self-similarity of the second kind, 

consider a cosmological fluid with a non-zero cosmological constant A 

(cf. Chapter 3). There are three dimensional constants in this 

problem; G (units M-1T“2L3), c (LT-1) and A (T-2). The gravitational 

constant G immediately gives us a parameter which contains the units 

of mass. However, two independent dimensionless variables can be
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formed from the remaining two constants and the independent 
variables r and t, namely,

5 = rt 1 T = i r  - <2-56>

and we therefore cannot define a unique similarity exponent oc. (For 

the variable £, <x=l, for t , <x=0). Thus, we cannot define a self-similar 

solution of the first kind. However, it is found that by treating A as 

a strict constant and relating it to the energy density of the vacuum 

the system admits a self-similar symmetry of the second kind. The 

the analysis leading to this result will be discussed more fully in 
Chapter 3).

We noted above that self-similarity of the first kind can be 

represented as a homothetic (or conformal) motion of the underlying 

spacetime. However, in the more complex situation of a self-similar 

symmetry of the second kind, no such conformal analogue exists. It is 

to be expected that similarity motions of the second kind correspond 

to the global invariance of some geometric object but as yet no such 

object has been identified, (see the Appendix).

2.4 Applications of Self-Similarity

The investigations of self-similar motions, whether in geometric 

form, equation (2.27), or hydrodynamic form, equation (2.54), have 

applications in many branches of physics and astrophysics, 

particularly in the study of theoretical cosmology. Self-similar 

solutions are often the leading terms in an asymptotic expansion of a 

non-self-similar evolution, in a regime where the motion has 

"forgotten” to a considerable extent about the initial conditions and as 

such are likely to be frequently encountered in nature. Thus,
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self-similar solutions have greater physical interest than merely being 

a special class of mathematical solutions. This property of similarity 

solutions concerns the concept of intermediate asymptotics mentioned 

earlier. It is the purpose of this section to discuss a selection of 

these investigations in an attempt to demonstrate the wide-ranging 

applications of self-similar solutions in physics.

The self-similar description in fluid mechanics of a rarefaction 

wave in a compressible medium has been extended to the regime of 

laser fusion plasma physics. It was found (Varey and Sander 1969) 

that the expansion of a plasma into a vacuum produces an 

electro-acoustic (ion) rarefaction wave propagating into the plasma. 

Allen and Andrews (1970) considered a self-similar treatment to 

successfully describe this effect for a plasma bounded by a 

positively-charged sheath. For a similarity solution to be valid, in 

this situation, the processes of ionisation are assumed to be negligible 

over the time scale involved and the theory must be restricted to the 

case in which the plasma boundary moves with constant velocity. 

Denavit (1979) also considered the expansion of a collisionless plasma 

into a vacuum using a particle simulation code. The results of these 

simulations confirmed the existence of an ion front and verified the 

general features of self-similar solutions behind this front. The 

assumption of self-similarity also yields a linearly decreasing ion 

acoustic speed which is in good agreement with the computations.

A self-similar solution of the asymptotic type (i.e. a solution 

which is approached in the limit as t-»») was also considered in the 

investigation of the ablative heat wave formed when a dense body is 

suddenly brought into contact with a thermal bath (Pakula and Sigel 

1985). The self-similarity is a consequence of the fact that the solid



may be considered as infinitely dense in the limit. It was found that 

there is a range of validity of the self-similar solutions which is 

dependent on the temperature of the thermal bath (T) and the time 

(t). The boundaries of the valid region are formed by three straight 

lines in the (T,t)-space; the first marks the boundary where local 

thermodynamic equilibrium becomes invalid, the second separates the 

heat wave regime from the ablative heat wave regime and the third 

marks the boundary of non-negligible radiation pressure. Such a 

study is important as it provides a good example of a system which is 

asymptotically self-similar. (One would expect this type of solution to 

occur more frequently in nature than the exact self-similar solutions). 

Brown and Emslie (1988) also found a solution where the validity of 

the self-similar symmetry is confined to a particular region of space 

and time when considering the heating of solar flares by an electron 

beam.

Further applications of self-similar flows can also be found in 

the hydrodynamic investigations of the propagation of shocks in 

accretion disks (Gaffet and Fukue 1983) or cosmological media 

(Bertschinger 1983), in the study of gravitationally bound stellar 

clouds (Henriksen and Turner 1984) and in the investigation of 

gravitational clustering (Efstathiou 1983).

Gaffet and Fukue (1983) used a self-similar analysis to construct 

a family of solutions that describes freely propagating shock waves in 

accretion disks, i.e. the case where there is no energy source other 

than the initial instantaneous release of the outburst energy. This 

family of solutions is interesting in that it displays a self-similarity of 

the second kind (cf. the strong explosion example in the preceding 

section) and when the shock wave is sufficiently weak, in comparison



with the gravitational force, a critical point appears through which the 

solution should pass in order to have physical meaning. This critical 

point corresponds to the sonic limit of the motion. Beyond this point 

the regime becomes supersonic. On the contrary, for sufficiently weak 

shocks, no such critical point exists and the regime remains 

everywhere subsonic. The solutions are then self-similar of the first 

kind. Bertschinger (1983) also applied the analysis of Sedov (1959), 

regarding the use of similarity methods in the description of blast 

waves, in an attempt to find self-similar solutions for adiabatic shock 

waves in cosmologically varying media (homogeneous in space but 

time-varying and self-gravitating). In this investigation the shock 

wave formed satisfies the Sedov solution for adiabatic evolution in a 

constant medium initially, but it is modified by the cosmological 

expansion to form a self-similar thin dense shell which cools by 

adiabatic expansion and is unstable to gravitational fragmentation and 

collapse. The shock solution obtained is applied to the explosive

amplification model of galaxy formation proposed by Ostriker and Cowie 

(1981). In this model rapid star formation and supernova explosions 

occurring in a collapsing protogalaxy power a galactic wind, producing 

a shock wave propagating into the intergalactic medium. Bertschinger 

showed that, for exact similarity solutions of shock waves in 

homogeneous cosmological media to exist, the background universe has 

to be Einstein-de Sitter. (Two other cases are possible but these 

have no gravity and are therefore of no immediate interest). He,

further, states that the formation of galaxies in the self-similar shell 

may inject more energy into the intergalactic medium, causing a shock 

wave to continue propagating radially outward. This shock may

fragment to form a second generation of galaxies, with parameters
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typical of small galactic clusters.

Henriksen and Turner (1984) considered the relation between 

internal velocity dispersions and cloud sizes in an ensemble of galactic 

molecular clouds. They argued that the ensemble of clouds could be 

regarded as elements in a self-similar regime of compressible 

turbulence. In this scenario the distinction between correlations 

"inside clouds" and "among clouds" becomes rather obscure (because 

no cloud is isolated) at least below some maximum scale. Rather each 

is an element of a larger unit and contains subunits. This 

hierarchical distribution is very suggestive of a self-similar process. 

Self-similar symmetry is well known to be present in turbulent flow 

(e.g. Cantwell 1981). Moreover, Henriksen and Turner extended such 

analyses to derive scaling laws for the turbulence of these 

gravitationally bound clouds.

The work of Efstathiou (1983) considered self-similar 

gravitational clustering in an attempt to explain the observed nature 

of the distribution of galaxies. If the clustering pattern does obey 

some simple similarity scaling then the clustering at some early time, 

apart from a change in length scale, would be statistically 

indistinguishable from the pattern observed today. The relevance of 

such a simplifying assumption to the actual clustering pattern is 

provided by the power-law shape of the two-point correlation function 

and the simple forms of higher order correlation functions (Peebles 

1980).
Cosmologies, based on a similar hierarchical structure to that 

described by Efstathiou (1983), have been proposed by many authors 

on the strength of the observations of de Vaucouleurs (1970) that the 

density of matter in the universe is not uniform on a cosmological
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scale. Instead, de Vaucouleurs found that the density varies roughly 

as d for large distance, d. Bonnor (1972) attempted to model this 

density law by considering a specific Bondi-Tolman dust solution. His 

solution is chosen specifically so that the density on constant t slices 

varies as r 1,5 for large r. However, the optical equations describing 

the propagation of light are not simple in this solution -so that 

comparison with observation is difficult. Dyer (1979) followed the lead 

of Bonnor, but instead of assuming a particular density law, he 

assumed self-similarity. This assumption simplifies the analysis

considerably although it is found to be only valid if the self-similar 

solution is used to represent a limited region of the universe. (A 

similar model was considered by Wesson (1979). However, his 

observational relations also have only limited regions of applicability).

The observed hierarchy of the structure of the universe also 

prompted the self-similar investigations of Henriksen and Wesson 

(1978a,b) which we will deal with in great detail in Chapter 4. [Later 

in this thesis we will also discuss, extensively, the use of similarity 

solutions in the study of the growth of primordial black holes (cf. 

Chapter 5). To obtain a significant distribution of black holes in the 

universe today, it was postulated that at some stage the black holes 

formed in the very early universe grew at the same rate as the 

universe particle horizon (Carr and Hawking 1974). The absence of 

any distinct length scale in such a scenario (all length scales grow at 

the same rate) suggests that a similarity solution may be applicable].
The study of self-similar solutions have also provided 

considerable insight into the more complicated results obtained from 

numerical solutions for the formation of structure in the universe. 

Fillmore and Goldreich (1984) investigated self-similar solutions in an
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attempt to describe the collapse of cold, collisionless matter within a 

background Emstein-de Sitter universe. They found that their results 

for planar symmetry display the same qualitative features found in 

other simulations (e.g. Melott 1983) and their spherically symmetric 

similarity solutions are compatible with the extended flat rotation 

curves observed in spiral galaxies (Rubin et al. 1980).

Finally, self-similarity (in its geometric form) has numerous 

applications in mathematical cosmology, i.e. the determination of exact 

solutions to the field equations. Many of these applications will be 

discussed in detail in the later chapters of this thesis. However, this 

section would not be complete without mentioning some of them.

Wainwright et al. (1979) found a number of inhomogeneous 

cosmological solutions of the Einstein field equations which have an 

irrotational perfect fluid, with equation of state p=p (p is the energy 

density), as source. These solutions admit a two-parameter Abelian 

group of local isometries, but in general do not admit a third isometry 

and are thus classified as inhomogeneous. McIntosh (1978) 

demonstrated that all but one of the Wainwright et al. solutions admit 

homothetic motions which together with the two Killing motions span 

spacelike hyper surf aces. Each of these models thus admits a 

three—parameter similarity group of motions and is an example of a 

self—similar cosmology. The possible relevance of the equation of state 

p—p as regards the matter content of the universe in its early stages, 

and in particular its relevance to self—similar cosmologies will be 

discussed at length in Chapters 4 and 5 of this thesis.
It was proved by McIntosh (1975, 1976) that, in order for a 

homothetic vector to be non-trivial in a perfect fluid solution of the 

field equations, either p=p or the model is tilted. [A tilted solution is
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one m  which the fluid velocity is not orthogonal to the group orbits, 

e.g. a radial tilting velocity will be of the form ujLi=(<xl/Bf0,0), where oq/3 

may be functions of the coordinates r and t, cf. King and Ellis (1973)3. 

The solutions of Wainwright et al. (1979) agree with the statement of 

this theorem and moreover show that there are solutions with p=p with 

non—trivial homothetic motions [0 * 0 in (2.27)] in the tilted and 
non-tilted cases.

The general conclusions of this chapter are, therefore, that 

differential geometry has an increasingly important role in the study 

of cosmology. By treating the universe as a four-dimensional manifold, 

we can employ the geometric techniques of topology to impose global 

symmetry conditions on spacetime and thereby simplify the field 

equations describing the behaviour of such 'symmetric’ solutions. 

These geometric symmetries then manifest themselves as physical 

symmetries by requiring that the matter distribution obey certain 

conditions such as, spherical symmetry, homogeneity, isotropy, etc.

In particular, the success of self-similar symmetries in 

hydrodynamics, which are the 'physical’ representations of conformal 

symmetries in geometry, has prompted their appliance to the realm of 

the cosmological fluid. One might reasonably expect a strongly 

self-gravitating system which evolves in size through many orders of 

magnitude, either expanding or contracting, to ’forget its initial 

conditions and eventually become scale—invariant. Thus, the necessary 

condition for self—similar flow, i.e. that the properties of matter in the 

system are scale-free, makes such solutions desirable as descriptions 

of cosmological fluids. It is on this assumption that the present 

treatise is undertaken.
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3 . S E L F - S I M I L A R  IN H O M O G E N E O U S  S P A C E T IM E S  W IT H  A  

C O S M O L O G IC A L  C O N S T A N T

3.1 Introduction
The use of the cosmological constant, A, in the application of 

general relativity to cosmology has been the subject of much 

controversy. It is a new independent constant of nature, like the 

gravitational constant, G, and the speed of light, c, and should be 

avoided if possible. However, the Einstein equations are made more 

general by the inclusion of A, and it does seem unlikely that A is 

exactly zero. Einstein first introduced the A term in order to avoid 

the prediction of general relativity that the universe was dynamic, 

which was contradictory to most beliefs at the time. The constant was 

necessary to obtain stationary (non-expanding) solutions to the field 

equations and thus model a universe of constant radius. Einstein's 

argument was that a non-zero A requires empty spacetime to be 

curved, and this is contrary to the spirit of Mach’s principle, that 

there is a connection between the local inertial behaviour of matter 

and the distant parts of the universe, of which Einstein was a firm 

believer. CMach’s principle is not based on any quantitative theory, 

but rather arose from the observation that the local inertial frame, 

earlier identified by Newton as absolute space, is one relative to which 

the distant parts of the universe are non-rotating, cf. Mach 19123. To 

confuse the issue further, Hubble (1929) discovered that the spectrum

of distant galaxies was redshifted by an amount directly proportional
... f 4-up, ccalaxv from the Earth and, thus,to the apparent distance of the galaxy

n v n a n d in g  a n d ,  t h e r e f o r e ,  n o t  s t a t i c ,  
c o n c lu d e d  t h a t  t h e  u n i v e r s e  w a s  e x p a n d

in  m a n y  a u t h o r s  r e t u r n i n g  t o  t h e  s i m p l i c i t y  
T h i s  o b s e r v a t i o n  r e s u l t e d  i n  m a n y
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of the original field equations with A=0.

If we are to allow solutions in which the cosmological constant is 

non-zero, we must address the origin of such a term. The 

cosmological constant represents an energy density which is usually 

associated with the vacuum, (cf. Linde 1979). The notion that the 

vacuum can act as a source of energy provides the basis for .many of 

the current theories of elementary particle physics and early universe 

cosmology, (e.g. Guth 1981, Brandenberger 1987 and Turner 1987).

Elementary particle theories not only allow for a non-zero 

vacuum energy density but also strongly suggest that it should have 

a large value. A universe with a large A would be vastly different 

from the one we actually observe. The energy of the vacuum 

generates a gravitational field that reveals itself as a change in the 

geometry of spacetime. Therefore, a large vacuum energy density 

would have a profound effect on the evolution of the universe. As an 

example, consider the radius of curvature for an isotropic (Friedmann) 

universe. Whether the universe is closed (e.g. Einstein static model) 

or open (e.g. de-Sitter model), the radius of curvature (Hubble radius 

for an open solution) is given by R ~ A" 1/ 2 (in units of c=l). Thus, 

in either type of solution, if the cosmological constant was positive 

and large, the universe would be extremely small, obviously, contrary 

to all observational evidence.
Observational cosmology allows us to place a strict limit on the 

magnitude of the cosmological constant, (vacuum energy density), at 

the present epoch. Number counts of galaxies in many different 

regions of the universe have allowed us to determine the geometry of 

those regions, which then gives us a direct measure of the effect, if 

any, the cosmological constant may have on this geometry, (Loh 1987).
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The results indicate that the magnitude of the cosmological constant 

must be smaller than l/(10 23km)2, some 12.2 orders of magnitude 

smaller than the value predicted on the basis of the standard model of 

elementary particle physics, (e.g. Cheng and Li 1984). This extremely 

high prediction of the standard model for the cosmological constant is 

based on the assumed independence of the free parameters of that 

model. The discrepancy with observational limits suggests that this 

assumption is spectacularly wrong. As yet there has been little 

progress made in reconciling the vanishingly small cosmological 

constant 'observed' within the context of the standard model.

Cosmologies which contain a large A, may still be viable 

descriptions of the universe at very early epochs. Indeed, such 

models have proved to be very useful as a source of an accelerated 

expansion causing the universe to evolve from an anisotropic state to 

the extremely isotropic and homogeneous universe we observe today, 

(cf. Wald 1983 and Jensen and Stein-Schabes 1987). Such 'inflationary' 

scenarios, (Gibbons at al. 1983), are considered attractive because they 

hold out the hope that the present state of the universe can be 

explained without the necessity of imposing very special conditions on 

the initial state of the universe. The large value of A required in 

these inflationary models may be transitory, and could undergo one or 

more phase transitions, altering its value significantly, possibly 

bringing it to within observational limits, (Henriksen, Emslie and 

Wesson 1983, hereafter HEW). The importance of these accelerated 

expansion models demand that we discuss them in more detail .

HEW have shown that Einstein's equations with a constant 

vacuum energy density ("cosmological constant") term can be solved 

by exploiting a self-similarity of the second kind, (e.g. Zel’dovich and
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Raizer 1967), to obtain non-trivial analytic solutions. These solutions 

include non-empty, spherically symmetric, inhomogeneous models which 

tend to the de-Sitter spacetime at small radial distances and/or large 

cosmic times. Barrow and Stein-Schabes (1984) considered dust-filled 

exact inhomogeneous solutions of the Szekeres type (Szekeres 1975) 

and showed that these solutions tended asymptotically to the de-Sitter 

spacetime, thus providing a specific example of the cosmic "no-hair" 

theorems of Hawking and Moss (1982) and Wald (1983). Recently 

Jensen and Stein-Schabes (1987) have extended these "no-hair" 

theorems and demonstrated that under quite general conditions a n y  

inhomogeneous solution with a positive cosmological constant and a 

non-positive three-curvature of space will approach the de-Sitter 

solution at late times. The HEW solutions, however, have a positive 

scalar three-curvature and are thus interesting examples of asymptotic 

de-Sitter solutions which lie outside the scope of these theorems. In 

fact, many attempts have been made to extend these cosmic "no-hair" 

theorems by considering different initial assumptions to those of 

Jensen and Stein-Schabes (1987). For instance, Ponce de Leon (1987) 

considered spherically symmetric, A>0, solutions with a positive scalar 

three-curvature on which he imposed the, physically reasonable, 

dominant, weak and, more importantly for this discussion, strong 

energy conditions of Hawking and Ellis (1973), together with the 

positive pressure criterion, p>0 for all time. The solutions obtained 

were found to be ever-expanding, overcoming the premature recollapse 

problem, but with an asymptotic behaviour different from de-Sitter. 

The relevance of the energy conditions within cosmological models will 

become apparent later, when we discuss the behaviour of our 

solutions.
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TTKd® sMaaitxEffirais discussed by alii these authors are based on a 

ayni(shiin®!DGania; coorbfchas&fce system. and thus belong to a different class of 

ti© that off MEW.. @m the other hand, *36tz (1988) investigated 

sohuttou'® tom aa ©onr-symehranaus: gauge which had a matter field

ecgphvafeailt ttco> am empty universe with a positive cosmological constant. 

Tnteffiffl® aKdiiuilimmffi db> nest display the asymptotic time behaviour predicted 

toy the ,,’M®-haair’r conjecture. Like the HEW solutions they have 

jpamMtons space ©usirvatare,, tout possess plane rather than spherical 

symmetry.. TTh© HEM soMtikms are, however, non-empty and have the 

dijHEtitoittdtiiw© feature off predicting am Inflationary-type negative pressure 

sett ©ffiirfly times,. making them attractive candidates for describing the 

©wtolliutliktKt off am imhoraEsgemecMtiŝ  exponentiating, inflationary bubble into 

a jpresenff-day g’riied.imamm wrerse. The presence of the cosmological 

(umTnafeBmtt,, whikfti w© wiEIl take to toe positive throughout, is of some 

(mrnCTflftgrrrafcTTre tomtterestt since this tfim, in its role as a vacuum energy 

dJfflacfflitiy,, nraj toe ffitmnamgly linked to the symmetry-breaking phase 

pareGfiixdtedi toy gauge theories of elementary particle physics 

(((Suutffla IS®!)).. Him addition,, the negative material pressures which exist 

raft ©early tiiTrmgs ton the BBEW solutions may be advantageous to the 

(rrrfsajtiirnifin tmff jnĵrrttrtrlb̂ Tivm some symmetry—breaking particle theories 

((Bknmorft,, TErmglterrtt aamd (Suommig I f f l i B ) ) .

Hfil̂uw diiifflmisBsedl iim detsgrfll am inhomogeneous self—similar spacetime 

ton whntrtin,, hmw©w©rr,, totuffh the matter density and spatial sections of the 

mraramffizriM wrar© homogeneous.. It is the purpose of the present work to 

flpsffttepnmH tflVfiipK ansdlysaHE tt© a more general inhomogeneou.fi similarity 

solbjrttirTrmn tom which the matter density is also inhomogeneoufi. Solutions 

w,itthi r̂iri ©vpCTtTTiff-rflittihl] ê pajmston ((toe. inflationary model®) tend to wash 

ojiut aaagy gphtoaill iimhoimDgenjeifiies tom the spacetime leaving behind a very
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smooth universe (Guth 1981). However, by introducing an intrinsic 

inhomogeneity into the spatial sections of the manifold, inhomogeneities 

may still exist on local scales at the end of the inflationary stage.

We proceed, then, to find a class of spatially, inhomogeneous, 

spherically symmetric solutions with the prescribed self-symmetry. 

These solutions are set in a physical context by demanding that they 

satisfy both the weak and dominant energy conditions for a Type I 

matter field (Hawking and Ellis 1973). We shall find that by imposing 

these energy conditions our inhomogeneous solutions cannot always be 

extended back to arbitrarily small times and/or large distances from 

the origin. This difficulty is overcome by patching our solution to an 

isotropic model, enabling us to obtain a global solution.

3.2 Formation of Self-Similar Solutions

The sign convention and notation are the same as in HEW, with 

c=G=l. CChoosing our units in this way is equivalent to introducing a 

constant length L0, a constant energy density p0 and a constant mass 

m 0 which satisfy

GPo^o2 = c*

m0c2 = P0L03

In the subsequent discussion we shall measure lengths in units of L0 

and suppress this constant̂ . In the ideal fluid case under discussion, 

the general form of the field equations,

G^y + Agjjy = -8TTT̂ y , (3.1)

can be written as

R/il/ “ + = (Pm+Prn) U/L/Uy ” > (3.2)



86

where is the Einstein tensor, T^, is the energy-momentum tensor, 

Rfjy is the Ricci tensor, g^  is the metric tensor, R is the scalar 

curvature and A is the cosmological constant. The right hand member 

of equation (3.2) is the form of the energy-momentum for a perfect 

fluid matter distribution, where pm is the density, pm is the 

thermodynamic pressure and u^ is the velocity four-vector of the 

fluid.

As in HEW, we identify

A = 87Tpv = S n p y  , ( 3 .3 )

where pv  is the energy density of the vacuum, and set, (cf. Henriksen 

1982),

P = Pm + Pv ; 9 = 9m + Pv » <3*4)

to obtain the field equations in standard form,

Rjm/ -  up = ~8ttC (p+p) u^uy -  pg^U  . (3 .5 )

We have thus included the cosmological constant on the right hand 

side of (3.5), in the role of a vacuum energy density. Thus, p and p 

are decoupled into matter and vacuum terms, each with its own 

separate equation of state: for the vacuum pv=-pv, (e.g. McCrea 1951

and Linde 1979), while the matter equation of state, Pm=Pm (Pm)> may  

be taken as the sixth equation that completes the definition of the 

problem. Rather than specify such an equation of state a p r io r i, HEW 

searched for solutions which were self-similar in some dimensionless 

variable £, i.e. a typical physical variable, f say, can be written as 

f(r,t)=g(S[r,t]), with a suitable form of £.

Adopting a spherically symmetric metric, viz.,



ds2 = g/L/ydx:*Jdxv

= e°(r»̂ )dt2 - ew(r>t)dr2 - R2 (r,t)d&2 . (3.6)

with d(i2=de2+sin2ed<t>2, and a non-synchronous coordinate system

which is comoving and such that

UU -  e°/2 (l,0,0,0) . (3.7)

Substituting equations (3.6) and (3.7) into the expression for the

energy-momentum tensor, T^, we find that

T*V = g^T-n, =

9 0 0 0

0 -P 0 0

0 0 -P 0

0 0 0 -p

(3.8)

Einstein's equations in the form (3.5) reduce to a set of four partial 

differential equations, (cf. Zel'dovich and Novikov 1971) viz.,

2Rpr - RjjUj. + Rp2 - e“° f y P t  + Rt2
R R R2

--
i

(VI«
•

- -8"? , (3.9a)

e“w Rjjar + Rp2 + e~° 2Rt t  ~ + Rt2

R R2 R R R2
+ i2 = ' 8"P , (3.9b)

-e~uRrr + e-°Rtt - e~°Rt[qt " utl - “ u r l

"IT 2 R L J 2 R L J

+ e ^ U t t  + ut2 - ut°tj - + °r2 " °i"rj = -8TrP

, (3.9c)

2Rtr = ® (3.9d)



where subscript 't* denotes 8/9t and subscript *r* denotes 9/9r. 

Following Misner and Sharp, (1964) and Podurets, (1964), we introduce 

the function m(r,t), which is defined to be the mass within a comoving 

radius r and is given by

m =
r
4tt(R(x,t) )2p(x,t)9Rdx = 
o

4T7R2pRrdr . (3.10)

Then clearly,

mp = 47TpR2Rr . (3.11)

We also note that from equations (3.9a) and (3.9d) we find

-2mr = e~w ̂2RRrRrr-RRr2wr+Rr3j - e-̂  ̂2RR-̂ R̂ r—RR-̂ 2or+RpEt̂ -2j - Rr ,

which can then be integrated to obtain

m = |[r + e“°RRt 2 - e-wRRr2j . (3.12)

In deriving equation (3.12) we have used the fact that m-»0 as R->0 to 

remove an arbitrary function of t, assuming that there are no 

singularities in e""w and/or e”°. Thus we have, from equations (3.9b) 

and (3.9d), that

raj- = -4ttR2R^p . (3.13)

Now, since the vectorial divergence of the energy-momentum tensor 

vanishes identically, i.e.

TW'jv = 0

where (;) denotes the covariant derivative, we can obtain the 

equations expressing the law of conservation of energy and momentum. 

After some simple but tedious algebra, these equations are most 

concisely written as
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« t  = " J * .  ‘ ^  ’ (3.14a)
(p+P) R

or = ~ 2pr . (3.14b)
(P+P)

We have thus obtained the Einstein equations in physical form which 

describe the evolution of a perfect fluid cosmology, i.e. equations 

(3.11M3.14).

The presence of the cosmological constant prevents there being 

a simple (first kind) self-symmetry, since A introduces a fundamental 

scale. However, by transforming to canonical coordinates t’, r\ 

(Bluman and Cole 1974), such that the appropriate self-similar variable 

is just £=tVr’, we can define a similarity symmetry of the second kind. 

This proves to be always possible, provided the equation of state 

pm (pm ) is allowed to be found as part of the solution.
This transformation to canonical coordinates is taken in the form

dt = ’ • fjp = ê w(r,)/2dr> , (3.15)

In these coordinates we may take the similarity variable to be £=t’/r’ 

and make the usual self-similar ansatz, (Cahill and Taub 1971, 

Henriksen and Wesson 1978a), viz.,

> 8ttRh = ^ ? 2 f

^  _ r’M(g) ( R=r'(S(e) , (3.16)

o  = o ( £ )  , w = w ( £ )  ,

where n, P, M, S, a and u> are all dimensionless functions of the 

self-similar variable £ and mm is the material component of the 

gravitational mass (3.10).
Substituting (3.16) into the equations (3.11)-(3.14) gives the field
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equations in the form

M* = -PS2S’ , (3.17)

m - m* = ns2(s-es’) , (3.18)
a- = --^2__ <L(S2P> .

e2 (p+n) ae ’ ( J - i s )

u< -  -  2 n ’ ' ->n\S (P+n) ’ ( 3 . 20 )

M 8Trpv1- -3— (r')2S2 = expC-(u(S)+Au(r’ ))D(S-SS’ ) 2

- expC-(o(S)+^a(t’))DS’ 2
(3.21)

where (*) now denotes the differential d/d£.

By choosing 8TTpv = A > 0, the only way to maintain the assumed 

symmetry is to set

e-Ao - . alj = 0 , (3 .2 2)

whence (3.21) is uniquely separated into two equations:

1 - | = e-^S-SS’ ) 2 , (3.23)

and

S2 = e-°(es’ ) 2 . (3.24)

From equation (3.23), it is evident that, for the self-symmetry to be 

valid, we have the important global condition M^S. As HEW 

demonstrated, the existence of a self-symmetry of the second kind 

requires, for positive A, the similarity variable be given by, (cf. 

equations (3.15) and (3.22)),

4- » o,XtS = ^  = f—  , (3.25)r’ Ar



where A/3).
The Misner-Sharp-Podurets form of the Einstein field equations 

then yield s ix independent ordinary differential equations for the 

dimensionless functions S(S), M(£), r\(S), P(S), w(£) and o(S). Following 

HEW, we see that equations (3.17) and (3.18) are easily rearranged to 

give

oq» _ (nS3-M) .o ofi)
^  " s2(p+n) ’

and

91’ = -j^r(ns3-M) . (3.27)

Moreover, equations (3.23) and (3.24) may now be used with (3.26) to 

express the metric components as

^ /2 = S2 (l-M/sp[p+rO ' <3-28)

e° / 2  = S )  • (3-29)

Substituting these equations into the Bianchi identities (3.20) and 

(3.19) respectively, gives after a tedious calculation,

9V = —3 <a|a~M)' , (3.30)

and

ep> - CM+PS3]2 - 4PS3(S-M)3 (3 31)^  - 2S3(S-M) ’ ' '

The ratio of equations (3.27) and (3.26) may be written as



92

which may be combined with equation (3.30) to give the integral

where we have used (3.26) to change the independent variable from E 

to S in (3.30). Here A is a constant of integration and again (’) 

denotes d/dE.

Equation (3.33), expressed in dimensional parameters (cf. 

ansatz (3.16)), is

indicating that A is a measure of the inhomogeneity of the solution.

HEW have made a detailed study of the uniform solution, (A=0), 

in which the density of matter, and spatial sections of the manifold, 

are homogeneous. The assumption of uniformity admits an analytic 

solution of (3.26) to (3.33), given in its most general form by

(3.33)

(3.34)

S = KEsech(ClnE+D) (3.35)

M = KEsech3 (ClnE+D) (3.36)

n = k2E2
(3.37)

C3Ctanh(ClnE+D)-ID
P = K2E2C1-Ctanh(ClnE+D)U (3.38)

eo/2 = El-ctanh( ClnE+D )U (3.39)

eu/2 = CKEsech(ClnE+D) (3.40)

where C, D and K are three further constants of integration. We will 

justify this analytic solution in §3.4.A. We note that D can be set 

equal to zero without loss of generality (through a scaling of the
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radial coordinate) and that K is a simple homology parameter, (a scaled 

solution exists involving the variables (S/K), (M/K), (K2r\), (K2P),

(ew/K2) and e°, cf. (3.26)-(3.33)). The parameter C has a much more 

interesting significance, however. As we have

S — > 2K£l-c , M W Z l-Z C ,
• (3.41)

o _  3 (3C-1)
n K2S2 1 P 3(1-C)

The metric then becomes

ds2 = (1-C)2dt2 - 4K2£^(1-C)(c2dr2 + r2dCl2 ) , (3.42)

and we see that C^l corresponds to 'closed’ and 'open* universe 

models respectively. In the latter the scale factor increases without 

bound as £-*», while in the former it passes through a maximum at 

£=£Crit> say, and approaches zero as (t-*» and/or r-»0; cf. equation
(3.25)). Figures 3.1a,b demonstrate the behaviour of the scale factor, 

S/K, and the pressure, K2P, for the analytic solutions of HEW for a 

range of values of the parameter C, illustrating each of the regions, 

C<1, C=l, C>1. We see from the figures that the closed solutions,

(C>1), are characterised by a maximum in the scale factor, S/K, with a 

corresponding infinity in the pressure, K2P, (cf. equation (3.38)), at 

some value of £, Scrit say. (This is a pressure siingularity similar to 

the one discussed by Barrow jet al. (1986), see later). For the

'bounded* solutions, (C=l), both the scale factor and the pressure tend

to finite limits as £-*», (S/K— >2 and K2P— >1, equations (3.35) and (3.38)). 

In the case of the open solutions, (C<1), the scale factor increases

monotonically with the self-similar variable, S. However, the behaviour 

of the pressure is a little more interesting. If C^l/3 the pressure is
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Figure ̂ .1 Behaviour of (a) the transverse scale factor, S/K and fb) 
the pressure, K2P, for the analytic solutions of The open
solutions (O) are characterised by a wmnetonieally increasing scale
factor and correspond to solutions for which €<1L The hounded 
solutions (B) have C=1 and both the scale factor and pressure tend to 
constant values as the self-similar variable, The closed solutions
(C) have C>1 and are characterised by a maximum in the transverse
scale with a corresponding infinity in the pressure for some finite
value of S, £crit say. (Note that in all solutions the pressure is
negative for small £).
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negative and monotonically increasing for all S. If (1/3)<C<1 the 

pressure exhibits a maximum at a positive value of P, for some finite 

value of £, tending to zero as £-»«>. We shall consider these solutions 

in more detail in §3.4.

The coordinate transformation,

r = 2K>(c-1)rc , t - (l-C)t

reduces (3.42) to the de-Sitter form showing that such open universes 

evolve into isotropic homogeneous Friedmann models at all r for 

sufficiently large times.

The distinction between 'open* and 'closed* models is defined 

solely by the behaviour of S(£). This becomes evident when we 

consider the proper volume and proper circumference corresponding to 

a fixed time t which, with Rs=Ke^t (the de-Sitter scale factor), are 

given by

V = 47tJ°° ew/2R2dr = 47rK̂ |3>vtj“Sech3XdX = ff^s3 , (3.43)

(where X=Cln£) and

d = 2[°° ew/2dr = 277Rg . (3.44)Jo

Both the proper volume and the proper circumference are thus 

independent of the parameter C, and finite for finite t so that all 

solutions of this model are in fact s p a tia lly closed. The difference 

between our so-called 'open* and 'closed* models is that in the closed 

models at a finite time t, we can define a critical surface rc=e^V^£Crit 
such that the universe is expanding for r>rc and contracting for r<rc, 

whereas in open models it is expanding everywhere at all times and no 

such critical surface exists. The critical surface described here is 

similar to that found by Coley and Tupper (1983) in their investigation
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of a viscous magnetohydrodynamic universe. In their work the critical 

surface is characterised by a zero volume expansion, ©3ua.a=0. In the 

case of one of our 'closed* models the volume expansion may be 

derived from equations (3.35), (3.39) and (3.40) by using the fact that 

the coordinate system is comoving, i.e. ua=e°/2(l,0,0,0). It is then 

found that Q - - 3 \ for r<rc and 0=3>v for r>rc, so that the volume 

expansion is discontinuous on the critical surface.

It is interesting to investigate the form of the solution in the 

vicinity of those surfaces corresponding to maxima in S and

ew/2, on which the expansion reverses into a contraction. For models

with C>1, £crit must, by differentiating equation (3.35), satisfy

1 - Ctanh(Cln^cri-(:+D) = 0

This implies that at the point S*=0, P-*» (equation (3.38)). Since S is 

finite at this value of S, the appearance of an infinite pressure is 

somewhat puzzling. Furthermore, the curvature invariant, defined by 

R=gabgcdRa|3ccj> for the metric (3.6), in the vicinity of £=£crit> can be 

shown to be

—  19 QA
R = K4e4r4(l-Ctanh<ClnS+D) + P P ? 2 + 0<S_Scrit) > <3-45)

so that IR is infinite at £=£crit> i*e. on the shell of expansion reversal. 

This infinite curvature can be shown to be a direct consequence of 

the vanishing of the g00 term although, as shown by HEW, the

3-curvature of the t=constant hypersurface remains finite. This

4-curvature singularity is not therefore an all-encompassing "crushing 

singularity", as defined by Marsden and Tipler (1980), but is, rather, 

analogous to the "pressure" singularity discussed by Barrow e t al. 

(1986). As was discussed by these authors, this type of singularity
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prevents a Friedmann model from reaching a maximal hyper surface and 

therefore prevents recollapse. We reject models which display such 

pressure singularities since at large times, P again becomes negative 

and the solution therefore develops a wholly undesirable equation of 

state. This situation is worsened by the fact that the "surface of 

infinite pressure", propagates along a spacelike geodesic and

therefore has a proper velocity faster than the speed of light. The 

surfaces are static limits in the sense that g00 vanishes on

them, so that observers at larger r (smaller £) values only see the 

critical surface cross smaller r values when they themselves are 

crossed.

3.3 Addition of a Matter Inhomogeneity Parameter A

In this section we investigate to what extent the addition of a 

finite A to a homogeneous model can "close" an otherwise "open" (C<1) 

solution, i.e. create the pressure singularity discussed above. By 

taking a starting value £s on an analytic (A=0) solution, (equations

(3.35)-(3.40)), adding an amount A to M and integrating the basic 

equations (3.26) to (3.33) numerically from that point onward, we can 

find the minimum A which, when added in this way, causes S(S) to 

exhibit a turning point. We denote this minimum value, i.e. the value 

which just closes an open solution, by Ac.

The required Ac depends not only on the parameters of the 

model (C, K, D) but also on the starting value Sg at which it is 

introduced. As noted above, the parameter K is a homologous scaling, 

so that we need only consider the parameter AC*=AC/K. Thus, the 

problem reduces to finding Ac* in the form

A,.* = Ac*(C;Ss) , (3.46)
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such that the resulting model, integrated forward from the point of 

addition of the Ac*, just passes through a maximum in S.

Figure 3.2 shows the form of the surface given by equation 

(3.46). Obviously, we find that AC*(1;£S)=0 (a C=1 universe is already 

closed). A more surprising result is that Ac*(0;£s) is also zero, 

suggesting that a universe with C=0 (for which S increases without 

bound) is also in some sense 'closed*. To see why this is so, note 

that the metric for a C=0 solution is given by

ds2 = dt2 - K2S2r2dG2 , (3.47)

at large £. Since g1A vanishes, we see that this corresponds to an 

expanding 2-sphere with radius equal to (K/A)e^ and with the proper 

distance in the r direction equal to zero. Thus, although the universe 

is open in the sense that the scale factor increases without bound, an 

r-shell crossing singularity (Barrow et al. 1986) exists where 

t=constant hypersurfaces are crushed together.

Since Ac* is zero at both C=0 and C=l, each curve Ac*(C;Ss) 

must exhibit a maximum at some value of C, which in general depends 

on £s. We find that the required Ac* increases with £s for all C, i.e. 

that the later in time (or the closer to the origin r=0 ) that the mass 

excess is applied, the greater is the Ac* required to force an open 

solution (which has had, for all r, more time to develop) into the 

parameter space corresponding to a closed solution.

These ’’forced" solutions, found by adding a Â .* at a finite £g, 

cannot, however, be followed back to very small £. This is because at 

S=0, M will be finite (equation (3.33)). This violates the general 

requirement, based on the assumed self-symmetry (HEW), that, for 

positive A models, S>M. Therefore, in order to extend our solution
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a -  constant

Figure 3.2 The surface Ac*(C;Ss). Solutions for which A/K lies above 
this surface are "closed", i.e. the scale factor S(S) goes through a 
maximum. Note that AC*(1;£S)=0 and Ac*(0;Ss)=0. The two curves which 
lie on the surface correspond to constant values of the parameter A, 
see Section 3.4. The lower of these illustrates a typical value of A in 
the range 1 £A&J2, while the upper corresponds to the critical value, 
>1=1.194, of the patched solution of Section 3.4.
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backwards to early times (or to great distances) we need to patch our

solution onto another solution, (one which can be extended back to

£=0), at a point where S>M still holds. Such a patch, (onto a singular 

solution with S=M everywhere), was briefly considered by HEW; we

shall discuss such a patching in detail in the next section.

3.4 Inhomogeneous (A*0) Solutions 

A General formulation

clearly not a physical development but simply a useful way of 

introducing the family of solutions which exist in this model. In this 

section we therefore explore this family of solutions by generalising 

HEW’s solution to a model which includes a global matter 

inhomogeneity, i.e. to the global inhomogeneous case where A*0. To 

make these solutions physically meaningful we will demand that they 

satisfy both the weak and dominant energy conditions for a Type I 

matter field, (in the notation of Hawking and Ellis 1973). For such 

matter fields, the weak energy condition, (Ta]-)WaW >̂̂ 0 for all timelike 

vectors Wa), will hold if r\̂ 0 and P+r\̂ 0. Furthermore, the dominant 

energy condition, Tqo^IT^I for all a and b, such that the energy 

dominates the other components of T^, will hold if r\̂ |P|.

We first define an "anisotropy parameter" A through the relation

The addition of a A "suddenly" at a set of surfaces S=Sg is

(M+PS3 ) 2 (3.48)S6(l-M/S)(P+r\ ) 2

(cf. equation (3.28)), where r|( is measure of the radial separation of 

two particles on a t=constant hypersurface and r̂  is a measure of 

their transverse separation. From the fundamental equations (3.26) to
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(3.33), it is easily shown that dA/d£ vanishes, so that the parameter A 

is a constant (integral) of the solution. Further, from equations

(3.35), (3.40) and (3.48) we see that in the limit A->0 the integral A 

reduces to the parameter C of the homogeneous case. In what follows 

we will therefore replace the parameter C with its more general form 

At and thus characterise a particular solution by the choice, of this 

new parameter.

Rewriting equation (3.48) as an expression for the dimensionless 

pressure P(£), we obtain

P - C3(M-AM(1-M/S)* - M] (3 .9.

where we have replaced r\ using the integral (3.33).

Using (3.49), equation (3.32) may be written as

dM . CM-34(M-A)(l-M/S)>tl ,, 5m

and equation (3.29) reduces to

e°/2 r . (3.51)

Finally, the relationship of the self-similar variable S to the physical 

variables is obtained by writing equation (3.26) in the form

= 1 - 4<1-M/S)K , (3.52)

(where we have again used equation (3.49)). It is convenient to use S 

as the independent variable. All the parameters of our solution are 

then determined; M numerically from (3.50), P from (3.49), q from the 

integral (3.33), ew from the integral (3.48) and ea from (3.51). Finally, 

£(S) can be determined from equation (3.52). The evolution of the
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solutions is thus completely determined by our choice of the 

parameters A and A.

Having derived the relevant differential equations for the 

general inhomogeneous case, it is convenient, now, to re-establish the 

analytic (A=0) solution of HEW. To begin with we notice that for the 

similarity symmetry to hold we must have M^S, for a positive 

cosmological constant (cf. equation (3.23)). Thus, we have that the 

expression (1-M/S) lies in the range 0£(1-M/S) 1̂. Let us introduce a 

new variable 0, where

tanh2 0 = (1-M/S) , (3.53)

which allows us to express M in terms of the variables S and 0, viz.,

M = Ssech20 . (3.54)

Substituting equations (3.53) and (3.54) into equation (3.50) with A=0, 

we obtain, after some tedious algebra,

S = B(e®/^)sech0 , (3.55)

where B is a constant of integration. Equation (3.52) then gives us

0 = ALnS + D , (3.56)

where D is a further constant of integration. Finally, we have from 

(3.55) that

S = KEsech© , (3.57)

where K=Be^ and the remaining parameters take the analytic form

(3.35)-(3.40), by substitution into equations (3.54), (3.33), (3.49), (3.51) 

and (3.48), respectively.
Returning to the inhomogeneous case (A*0), we can divide the 

(A, A)-plane into solution types. Let us first consider the case where 

A<0.
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B A<0
It is found that M^A for all £. It can be seen from equations

(3.33) and (3.49) that the weak energy condition will always be 

satisfied, i.e.

n i o , p+n ^ o

We do, however, introduce a negative dimensionless mass, M(S), 

at small values of the scale factor S (equation (3.33)). This could 

mean that we reach a stage where the gravitational potential dominates 

the matter and we have a negative energy density. It is possible to 

produce a global solution which maintains the similarity symmetry 

throughout, i.e. M^S, for a positive cosmological constant, and which 

are characterised by the choice of the two parameters A and A. The 

negative energy density occurring in these solutions make them 

physically unappealing and we will not consider them further. When A 

is chosen to be greater than zero we find that the energy conditions 

place more significant constraints on the solutions.

C A>0
It is evident from equation (3.52) that all solutions for which 

A<1 can be described as open in the sense of HEW, viz., the scale 

factor increases monotonically. For these open solutions, we find that 

M is always finite and therefore we have from equations (3.51), (3.52) 

and (3.48) that

ea —* (1 -  A)

S —* BS(1-̂ ) , (3.58)
ew A2 B2e2(l-A)

The coordinate transformation,
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T. - (l-;4)t , r =

reduces the metric (3.6) to the form

ds2 = dT2 - e2̂ (dr2 + r2d&2) , (3.59)

which corresponds to the Robertson-Walker de-Sitter metric. (We have 

replaced S by expression (3.25)). Thus, it is again found that the 

spacetime approaches a Robertson-Walker de-Sitter metric. When A> 1, 

the scale factor is bounded and tends to a finite non-zero value; as 

£-*» we find from equations (3.50) and (3.52) that

o 3A ,42
2 (>12-1)

(3.60)
m _  3A

2 *

In general, therefore, such solutions tend to an anisotropic static 

model.

Referring back to Figure 3.2, the condition >1=1 would define a 

surface in (C, A/K, £s) space. It is not, however, the surface 

indicated in that figure. To illustrate this, let us select a definite 

value of £g. The initial values of S, P and r\ are then defined and the 

initial value of M may be written as M 0+A, where M 0 is given by (3.36). 

Setting >1=1 Mn (3.48), then, leads to a simple quadratic in the 

parameter A,

A2 + [2(M0+P0S03)+S05(P0+n0)2]A + [(M0+P0S03)2-S05(S0-M0)(P0+n0)2] = 0

1— (3.61)

where M 0, P0, S0, n0 are given by equations (3.35)-(3.38). In Figure

3.3 we plot the resulting cross-section of the surface ,4=1 in the (C, 

A/K) plane. The fact that this falls below the critical surface indicates
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that there are two distinct types of solution for .4>1: (i) Those which

are well behaved with the scale factor S tending to some maximum 

value Smax as (these we will term bounded) and (ii) those which

develop the type of singularity discussed in §3.2 with the scale factor 

reaching a maximum at a finite value of S, (£m, say) - these we will 

term closed. For a closed solution, we find that P-*» as and for

a bounded solution that P->0 as £-*». We can, further, define a limiting

case to be one in which P tends to a finite value.

Now the values of the scale factor S and the mass M, as £-#», are

determined by our choice of the parameters A and A. Therefore, 

instead of fixing A and varying A to obtain a critical solution (as was 

done in §3.3), it is equally valid, (and in fact more illuminating), to fix 

A and vary A. Introducing a new variable y=M/S and using the 

integral (3.33), equation (3.50) reduces to

d£ _ 4(l-y)^(2y-3A/S)
dS " SU( l-y)«-i: - (J.OC)

In both closed and bounded solutions the numerator and denominator 

tend to zero as £-*». In the closed solutions the denominator tends 

more quickly to zero, whereas in the bounded solutions it is the 

numerator which decreases more rapidly. Only in the critical 

separating case does dy/dS tend to a finite non-zero limit. If we take 

this critical case and integrate backwards with respect to S we get a 

series of critical solutions, each defined by the corresponding value of 

A, as shown, for various A, in Figure 3.4. The family of such curves 

correspond to the intersections of the ,4=constant surfaces with the 

critical surface of Figure 3.2.

Consider equation (3.62) at the point £=«>, where both the
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A= 1-2

4 03 020

Figure 3.4 The family of critical solutions for which the scale factor
S is bounded. Only those solutions which touch the line S=M can be
extended indefinitely back to the origin, S=0. All others violate the
symmetry condition, for a positive cosmological constant, that S^M, as 
S-»0, see equation (3.33). The arrows indicate the direction of
increasing S; as S-** all the solutions tend to a point on the line 
M=3A/2.
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numerator and denominator of the right hand side are zero. Using 

L’Hopital’s rule, the expression reduces to a quadratic in dy/dS at 
that point, i.e.

[ d i ]  s=.+ + = 0 ' <3-63)

and hence

[ d l l f e .  = ’ <3-64)

where yw is the value of y at £=«>. In deriving (3.64) we have used 

the fact that, for a critical solution, both the numerator and 

denominator of (3.62) tend to zero as £-»», i.e.

2y -3§ -  0
(3.65)

(*.-*) - y - y«

Substituting (3.65) into the discriminant of (3.64) we find that real 

roots of this quadratic only exist for values of A4-/Z, Thus, all 

solutions with A>VZ are necessarily of type (ii), i.e. closed. All of the 

critical solutions found in §3.3 must correspond to values of A in the 

range 14A&V2.

Let us now consider the compatibility of the solutions with the 

weak and dominant energy criteria. It is evident from equations (3.33) 

and (3.49) that

P + n = S3m-A( 1-M/S )& \ ’ (3.66)

and, therefore, the weak energy condition, P+n̂ 0, is given by M^3A/2. 

This is clearly violated by ordinary inhomogeneous solutions at small
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values of the scale factor S, (i.e. small £), since the assumed symmetry 

requires M^S. In fact, only the homogeneous solutions, (A=0), can be 

extended indefinitely back to £=0. There exists, however, a singular 

solution studied by HEW, in which the equation of state is not

imposed by the self-symmetry but is instead freely chosen. In this 

solution it can be seen that equation (3.17) requires that P=-l/S2,

(3.23) requires S=S (an arbitrary multiplicative constant can be 

absorbed in r), (3.24) gives e°=l, (3.18) and (3.19) are identities, and 

only (3.20) need be solved as

= - I ' m  ' (3-67)

for which an equation of state for the matter must be given [P(r\)l. 

We note that if we use P=ag2r\ (ag2 is the square of the sound speed)

a homogeneous model is obtained. With this equation of state, the

solution of (3.67) is ew=BSy, where B is an arbitrary constant and 

y=-4as2/(l+as2). The metric (3.6) thus becomes

ds2 = dt2 - B^dr2 - r2£2d&2 , (3.68)

which, with a redefinition of the radial coordinate (dr*2=r“ydr2), 

reduces to a Kantowski-Sachs metric of closed form, (Kantowski and 

Sachs 1966).
Let us examine a patch from this singular solution to a general 

inhomogeneous solution on the hypersurface where M=S. In the 

Appendix we show that the singular solution to which we patch does 

exhibit a conformal symmetry, (unlike the general HEW solution), and is 

therefore, in the light of the recent interest in gauge theories of the 

early universe, an appealing candidate on physical grounds for the 

solutions at small £.
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In the singular M=S solution studied by HEW, the metric 

coefficients and their derivatives are given by

S = S , S* = 1 ,

e° = 1 , o’ = 0 , (3.69)

ew = m y  , w’ = y / Z

In our general solution at the point where S=M (=S0, say) we 
deduce the following results from equation (3.48), (3.50), (3.51) and 

(3.52), and when necessary, their derivatives,

S = Sq , S’ = Sq/£q ,
e° = 1 , o’ - ^2(3A~2so) } (3.70)

S0̂ o
ew = A2Sq2 f u. = 2 /%

We wish to patch at subject to the continuity conditions that

both the metric coefficients and their derivatives, i.e. g^  and 

be continuous across the patching hypersurface. If these continuity 

conditions hold, the patch satisfies the junction conditions of Synge 

(1961). Using the conditions (3.69) and (3.70) at £=S0 and the 

continuity relations, we obtain four conditions which must be satisfied 

on the patching surface, viz.,

S0 - S0 *
y - 2 ,

(3.71)
B = A2 

S0 = 3A/2

For a given A then this patch selects a particular solution, namely 

that for which the point S=M occurs for S=M=3A/2. The condition y=2



111

implies that as2=(-l/3) which produces an isotropic form of the 

singular solution, (cf. equation (3.68)). Therefore, the requirement for 

continuity across the patching hypersurface constrains us to patch on 

the line P+rv=0 if the symmetry is to be maintained across the patch. 

This patch is more rigorous than the one discussed briefly by HEW, 

where the authors only matched the metric coefficients and not their 

derivatives. In our patch we find that the discontinuity in the metric 

derivatives is replaced by a more physical discontinuity, i.e. one in 

the density across the interface. Furthermore, the continuity 

conditions mean that we have no freedom in the choice of the equation 

of state for the singular solution.

Thus, for a given A, a unique solution is then derived apart 

from an arbitrary scaling due to the particular choice of A. Examples 

are shown in Figure 3.5. Due to the severe restrictions imposed by 

the symmetry and the continuity conditions this patch selects a unique 

solution of the type shown in Figure 3.4. This solution corresponds to 

the upper curve superimposed on the critical surface (3.46) of Figure 

3.2. The value of A fo r which this critical solution occurs is found to 

be A -1.194, and is independent of the choice of A.

The dominant energy condition (n̂ P) is clearly violated by the 

closed solutions discussed above, since P-*» for a finite value of £. In 

fact, as discussed by Barrow et al. (1986), a general property of 

solutions with pressure singularities is that they violate the dominant 

energy criterion and therefore are physically unacceptable. In the 

bounded and open cases the situation is a little more complex. We see 

from (3.49) that, since the largest value possible for the term (1-M/S)^ 

is unity, the pressure is always negative for A& 1/3. If we also 

consider the dominant energy criterion, which can be expressed as
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3-5
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,A5114 >
\ ( B 0 U N D E D )2 5

2 0

3A/2

S = M
0-5

0 0

Figure 3.5 The diagram shows the form of the patched solutions for 
three different values of A, one from each of the regions discussed in 
the text. The dotted line is given by M=3A/2 (for convenience we 
have chosen A=l) and the point p is where these solutions are patched 
to the singular solution S=M and thus continued to the origin.
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r\-P̂ O, we have, from equations (3.49) and (3.33),

n _ p . (4M-3A) - 6(M-AM(1-M/S)*
n F " SSQ-Ad-M/S)^ ‘

From this expression we note that (n-P) is only (definitely) 

non-negative for all £ if A£2/3, since M>3A/2 for all £. Further, it is 

found numerically that solutions for which ,A>2/3 violate the dominant 

energy criterion at finite times although the pressure remains finite. 

The physically appealing solutions therefore lie in the range 

(l/3)̂ >U(2/3). These restrictions can be seen most clearly in the

uniform solutions, (A=0), of HEW, see Figures 3.1a,b, (remember that 

the parameter A reduces to the parameter C in the homogeneous case, 

A=0). From equation (3.38), with D set equal to zero, we see that, Ps£0 

for all £> when Ĉ (l/3). If we use equation (3.37) we obtain

n/e\ _ p(g\ - 2[2-3Ctanh(Clng) ]—r\(S) - P(S) - K2^2 [1_ctanh(clnS)] •

From this equation we see that with C>(2/3), n-P<0 for all finite values 

of £, thus violating the dominant energy condition. The analytic 

solutions of HEW therefore only satisfy the dominant and weak energy 

conditions between the limits (l/3)̂ Ĉ (2/3). However, all solutions 

(homogeneous or not) violate the strong energy condition,

(Tab~^Tga|:))WawbiiO for all timelike Wa (Hawking and Ellis 1973), or 

P+nasO and 3P+n̂ 0, due to the large negative pressures at early times.

Finally, we note that the scalar three-curvature of space in the 

homogeneous model is given by (cf. HEW equation (52)),

(3)K  = . <3 -7 4 >

which is positive for all time. We have, therefore, extended the
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asymptotically de-Sitter solutions of Jensen and Stein-Schabes (1987)

to include a solution a spatial hypersurface of positive scalar 

curvature. Barrow (1988) pointed out that to complete the cosmic

"no-hair" theorems of Jensen and Stein-Schabes (1987) and Wald

(1983), we need to know the general asymptotic state of anisotropic 

and inhomogeneous universes with a positive curvature. Ponce de 

Leon (1987) considered examples of such universes which contained a 

positive cosmological constant and obeyed all of the energy conditions 

of Hawking and Ellis (1973). However, the solutions found do not tend 

asymptotically to de-Sitter solutions and we agree with the author that 

this may be due to the restriction of positive pressure. Thus we have 

demonstrated the existence of a new anisotropic and inhomogeneous 

class of solutions which exhibits an inflationary stage and which

overcomes the premature recollapse problem described by Barrow 

(1987).

3.5 Conclusions
In this chapter we have presented a series of spherically 

symmetric spatially-inhomogeneous solutions of the Einstein field 

equations which admit a self-similar symmetry. These non-empty

solutions contain a constant vacuum energy density (positive 

"cosmological constant") and so the similarity is necessarily of the 

second kind (Zel’dovich and Raizer 1967; Henriksen et al. 1983).

A class of numerical solutions has been found for an 

inhomogeneous matter energy density in which solutions are 

characterised by an anisotropy parameter A. These solutions are 

found to fall into two distinct categories. Solutions with A< 1 are well 

behaved and tend to an inhomogeneous de-Sitter universe, in
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agreement with recent work by Jensen and Stein-Schabes (1987). 

Solutions with A>/Z develop an unphysical pressure singularity, of the 

type discussed by Barrow et al. (1986). When A is in the range 

1&A6V2 the situation is more complicated. Some of the solutions 

develop the pressure singularity, while others tend monotonically to 

anisotropic static spacetimes. We regard solutions of the latter two 

types to be of little relevance to the real universe and therefore we 

have concentrated on the asymptotically de-Sitter solutions.

Cosmologies which display this kind of asymptotic time behaviour 

are of great interest in light of the recent work on the cosmological 

"no-hair" theorems (cf. Wald 1983; Jensen and Stein-Schabes 1987). 

Our solutions, which have a positive scalar three-curvature, provide 

specific examples of inflationary-like universes which lie outwith the 

scope of these theorems, thus increasing the number of classes of 

asymptotically de-Sitter solutions.

All of the self-similar inhomogeneous solutions fail to meet the 

weak energy criterion of Hawking and Ellis (1973) at early times. We 

were thus forced to "patch" our solutions onto a singular 

self-symmetric solution in which the equation of state could be freely 

imposed, (i.e. the S=M solution of HEW). This allowed us to extend our 

solutions back to the origin in S-space. The requirements for 

continuity across the patching hypersurface, the continuity of the 

metric coefficients and their first derivatives, require the patch to be 

onto the isotropic form of this singular solution where the equation of 

state is given by P=-r\/3. The continuity requirements also demand 

the existence of a u n iq u e "critical" solution, i.e. a solution which is 

just closed. This solution {A -A ^ j,^ ) separates the solutions into those 

which are closed {A>Ac r^ ) and those which are bounded (1 ̂A^Aqj.^ ) as
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described above. For A< 1 the solutions are open. In other words,

there is a critical "amount of anisotropy" allowed if the solution is to

satisfy the physical conditions imposed by Barrow et al. (1986) that 

there must not develop a pressure singularity.

These allowable patched solutions describe the transformation 

from a vacuum dominated universe to a non-empty asymptotically

de-Sitter universe and are therefore of great physical interest. 

Whether or not they can be reconciled with Grand Unified Field

Theories describing the early universe from the viewpoint of particle 

physics is at present a fascinating possibility.
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4. SELF-SIMILAR IMPERFECT FLUID COSMOLOGIES

4.1 Introduction

In general relativity theory, cosmological models, stellar models 

and models of other astrophysical matter distributions are usually 

constructed under the assumption that the matter is an idealised 

perfect fluid. While this assumption may be a good approximation to 

the actual matter content of the Universe at the present epoch, effects 

such as viscosity, heat conduction, rotation and magnetic fields may 

not be negligible at earlier epochs. In fact, it is rather more 

probable, from a statistical point of view, that the Universe began in a 

far from symmetric state and evolved through some dynamical 

processes to become the homogeneous and isotropic cosmology we 

observe today. In this chapter we will investigate the problem of 

obtaining exact solutions to Einstein's field equations for a viscous 

(imperfect) fluid which displays a homothetic symmetry, i.e. exhibits a 

self-similarity of the first kind, (cf. Cahill and Taub, 1971, Henriksen 

and Wesson, 1978a, 1978b, Bicknell and Henriksen, 1978a, 1978b, and 

Henriksen, 1982).

The importance of treating the Universe as an imperfect fluid, at 

least for early epochs, is evidenced by the fact that several authors 

have made attempts to find exact solutions of the field equations by 

considering a non-ideal fluid in isotropic as well as anisotropic 

cosmological models, (cf. for example, Misner 1968, Weinberg 1971, 

Tupper 1981, Coley and Tupper 1983, 1984, 1985). An imperfect fluid 

is a fluid in which the processes of energy dissipation are 

non-negligible (Landau and Lifshitz, 1959). Energy dissipation in a 

moving fluid may be caused by processes such as internal friction due
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to any viscous stresses which may be present, thermal conductivity 

due to heat exchange between different parts of the fluid, rotation of 

the fluid (Batakis and Cohen 1975) or the presence of magnetic fields 

within the system (Coley and Tupper 1983). We will only consider the 

effect of viscous stresses on the fluid, neglecting the processes of 

heat conduction, rotation and magnetic fields.

4.2 Effect of Viscous Stresses on a Cosmological Fluid

The kinematics of a moving fluid can be described adequately by 

two fundamental equations; namely, the equation of continuity, 

expressing the conservation of matter, and Euler's equation, which 

describes the motion of a volume element of fluid, (Landau and Lifshitz 

1959 and Symon 1971). For an ideal fluid, which is free from any 

body forces, such as gravity, these equations can be written as

(3p/3t) + V.(pv) = 0 (4.1)

and

8v/at + (v.V)v + Vp/p = 0 , (4.2)

respectively, where p is the fluid density, v is the velocity of the

fluid at a given point and p is the thermodynamic pressure of the

fluid. To determine the solution of these equations completely we must 

be able to express the pressure in terms of the independent 

thermodynamical quantities of the system, such as density or 

temperature, i.e. we must be able to specify an equation of state - 

p(p), say.
If we now consider a more general fluid in which the processes
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of viscous friction cannot be neglected, we find that the motion of 

adjacent layers of fluid past each other is resisted by a shearing 

force which tends to reduce their relative velocity. The equations of 

motion, (4.2), which incorporate all the forces acting on the fluid, have 

to be modified appropriately to take account of this friction due to 

viscosity. (Note that the equation of continuity, (4.1), is equally valid 

for any fluid, viscous or otherwise). We do this by introducing the 

stress tensor, a, which gives the part of the momentum flux that is 
not due to the direct transfer of momentum with the mass of moving 

fluid, and as such, consists of two components. One is due to the 

momentum transfer caused by the hydrostatic pressure forces and the 

other to the irreversible "viscous" transfer of momentum in the fluid. 

We can also show, using a momentum argument in component form, that 

o is symmetric, (Landau and Lifshitz, 1959). Equation (4.2) then 

generalises to,

3p/3t + V.(pv) + 3v/3t + v.Vv + V.o/p = 0 , (4.3)

where we have introduced the continuity equation (4.1) into this 

expression. The reason for writing (4.3) in this form will become 

apparent when we generalise this expression to its covariant form, in 

§4.3. This equation, together with the equation of continuity, (4.1), 

determines the motion of the medium when the stress tensor, o, is 

given. The stress at any point in the fluid may be a function of the 

density and temperature, of the relative positions of the elements near 

the point in question and perhaps also of the previous history of the 

medium. In a viscous fluid, the stress tensor will be expected to 

depend on the velocity gradients in the fluid. This is consistent with
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the dimensional arguments of Landau and Lifshitz, (1959). In view of 

the covariant representation of the stress tensor that is to follow in 

the next section we will assume that the relation between o and the 

velocity gradients must not depend on the orientation of the 

coordinate system. We can guarantee that this will be so by

expressing the relation in a vector form that does not refer explicitly 

to components. The dyad

Tv =

BVyr 3Vy 8Vg
3x 3x 3x
3vx iXy *v Z
By By 3y
3vx iYy 3vz 
3z 3z 3z

(4.4)

has as its components the nine possible derivatives of the components 

of v with respect to x, y and z. Hence we must relate o to Tv. The 

dyad, (4.4), is not symmetric but can be separated into a symmetric 

and an antisymmetric part:

W  = (Vv)s + (Vv)a , (4.5a)

(W)s = c w  + (7v )t:/2 , (4.5b)

(Vv)a = C W  - (Vv )t]/2 , (4.5c)

where (Vv)7 “ tra n s p o s e (V v )f i.e. (3v|/3x̂ )7'-3vjt/3xi. We can. further, 

relate the antisymmetric part above to a vector 

u = (Vxv)/2 ,

such that, for any vector dr 

(Vv)a.dr = wxdr
If dr is the vector from a given point, A, to any nearby point, B, we 

see that the tensor (Vv)a selects those parts of the velocity
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differences between A and B which correspond to a rotation of the 

fluid around A with angular velocity u. Since no viscous forces will 

be associated with a pure rotation of the fluid, the viscous forces 

must be expressible in terms of the tensor (Vv)8. a  is also symmetric 

and so we would like to express a general linear relation between o 
and (Vvjs which is independent of the coordinate system. To do this 

we note that (Vv)s can be decomposed into a constant tensor and a 

traceless symmetric tensor in the following way:

(Vv)s = (Vv)c + (Tv)ts , (4.6a)

(7v)c = 1 /  3[!Tr(Vv)sI]l = 1/3(V.v)l , (4.6b)

(W)ts = (7v)s - V 3(V.v)l , (4.6c)

where _1 is the identity tensor. This decomposition is independent of 

the coordinate system since the trace is an invariant scalar quantity. 

It can be shown that the tensor (Vv)c measures the rate of expansion 

or contraction of the fluid whereas the tensor (Vv)̂ s specifies the way 

in which the fluid is being sheared. We are therefore free to set

o = -2n(Vv)ts - CV.vl , (4.7)

with a coefficient n, called the dynam ic or s h e a r viscosity, which 

characterises the viscous resistance to shear, and a coefficient C, 

called the b u lk viscosity, which characterises a viscous resistance, if 

any, to expansion and contraction. To the viscous stress due to 

velocity gradients, given by (4.7), must be added a hydrostatic 

pressure, p, which may also be present and which depends on the
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density, temperature and composition of the fluid. Thus we have

g = p 1 - CV.vl - 2n(Vv)ts (4.8)

= [p - GV.v] 1 - n[Vv + (Vv)T - (2/3)V.v 13

We see from equation (4.8) that we can define an "effective pressure", 

t>, by combining the hydrostatic pressure with the bulk viscosity term, 

viz.

p = p - CV.v . (4.9)

Note that the effective pressure reduces to the hydrostatic pressure

in the limit of vanishing bulk viscosity, £ -* 0. Before we proceed to 

investigate self-similar viscous solutions we shall discuss the role of 

viscosity, both bulk and shear, in the cosmological regime.

The role of bulk viscosity seems to be significant for the 

evolution of the cosmological fluid, at least during the early stages of 

the Universe. From the macroscopic point of view, the existence of 

bulk viscosity is equivalent to the existence of slow processes which 

restore equilibrium states, (Landau and Lifshitz, 1959). The general 

criterion for non-zero bulk viscosity was given by Weinberg (1971) 

while attempting to explain the high dimensionless entropy per baryon 

associated with the microwave background by taking into account the 

action of dissipative processes in the early Universe. Weinberg

pointed out that bulk viscosity may be of importance when considering 

either a simple gas at the temperatures between extreme relativistic 

and non-relativistic limits, (the bulk viscosity being negligible in

either of these limiting cases), or a fluid composed of a mixture of
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highly relativistic and non-relativistic particles. Explicit examples of 

thermodynamic systems with non-negligible bulk viscosity are given by 
Anderson (1969) and Israel and Vardalas (1970).

Several authors, Dio si et al. (1984), Waga et al. (1986) and 

Bernstein (1987), have raised the possibility that bulk viscosity can 

also be the driving force of the accelerated expansion associated with 

inflation in the early Universe. This proposal relies on the fact that 

the effect of bulk viscosity in an expanding universe is to decrease 

the value of the pressure, see equation (4.8). These authors have 

suggested that bulk viscosity arising around the time of a grand 

unified theory (GUT) phase transition can, in fact, lead to a negative 

pressure thereby driving inflation. However, Pacher e t al. (1987) have 

shown that, at least in the case of weakly-interacting particles, the 

associated bulk viscosity cannot make the pressure negative, excluding 

any form of accelerated expansion, ( B^R/Bt^ > 0, where R is the 

cosmic scale factor). For a gas of such particles the bulk viscosity 

arises due to the incomplete equilibrium of the relativistic and 

non-relativistic components and it can be shown that the pressure can 

never attain a negative value, see Pacher et al., (1987).

The effect of bulk viscosity in isotropic cosmological models, (the 

assumption of isotropy means that such models are automatically 

shear-free), has also been discussed by Nightingale (1973) and Heller 

et al. (1973). Nightingale (1973) investigated the form of the bulk 

coefficient derived via a relativistic Boltzmann equation and found that 

bulk viscosity cannot be responsible for the high dimensionless 

entropy per bar yon of the Universe associated with the microwave 

background, in agreement with Weinberg (1971). Heller et al. (1973), 

on the other hand, considered the effect of a constant coefficient of
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bulk viscosity on an isotropic cosmological model and solutions were 

given for dust-filled universes (p=0) and radiative universes (p=p/3). 

The assumption of a constant bulk viscosity is somewhat unrealistic, 

since this coefficient is automatically a function of cosmic time through 

the dependence on temperature and pressure. However, this work 

together with the many investigations cited above highlight the 

importance of understanding the role of bulk viscosity in the evolution 

of the Universe.

If we now allow for the presence of anisotropies in cosmological 

models, then the dissipative effects of shearing motions become 

important during the early stages of cosmic evolution. The effect of 

shear can be studied independently from the bulk viscosity since we 

have shown that the bulk can be 'absorbed’ into the pressure of the 

system. The presence of anisotropy, or shear, in the Universe can be 

attributed to two possible causes. Firstly, one cannot exclude the 

possibility that the Universe emerged from the Planck era with a high 

degree of anisotropy, dubbed p rim o rd ia l anisotropy by Barrow and 

Carr, (1977), in which case the shear must be fed into the initial 

conditions and one would expect that for sufficiently early times the 

shear would dominate the evolution of the Universe. The other 

possible "source" of anisotropy is the presence of inhomogeneities 

which would tend to generate shearing motions due to the tidal 

stresses caused by the density perturbations existing in such an 

inhomogeneous universe, (Liang, 1974, Barrow, 1977). For our 

purposes we shall assume the anisotropy to be an inherent property 

of the Universe and will not address its origin.

Barrow and Carr, (1977), found that the effect of the anisotropy 

generated by inhomogeneities is rather small when compared with the
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effect of primordial shear. This work, together with Carr and Barrow, 

(1979), considered the effect of shear on the production of primordial 

black holes, extending the work of Lin et al. (1976) and Bicknell and 

Henriksen (1978a,b). We will discuss primordial black hole production 

in a viscous universe in more detail in Chapter 5.

As was the case with bulk viscosity, the effect of shear on the 

cosmic evolution has been subject to numerous independent studies. 

Heckmann and Schucking (1958) found the existence of the singularity 

in the extremely successful Friedmann-Robertson-Walker (FRW) 

cosmologies very unsatisfactory and attempted to produce finitely 

oscillating solutions which avoided such a singular event by modifying 

the postulate of isotropy, thereby introducing rotation and shear. 

However, their model also introduced closed time-like curves making it 

a physically unappealing solution. Narlikar (1963) considered a similar 

problem within the realm of Newtonian cosmology and he too found 

that the singularity could not be prevented simply by the introduction 

of anisotropy in the form of shear and rotation.

It was not until the discovery of the microwave background 

radiation in 1965 by Penzias and Wilson that the first real 

measurements of the large scale isotropy of the Universe could be 

attempted. The accuracy of the observations put strict limits on the 

amount of anisotropy in the Universe at the present time. Misner 

(1968) showed that the part of the temperature anisotropy in the 

microwave radiation at the present epoch which is due to primordial 

anisotropies is extremely small. He suggested that the large 

anisotropies die away very rapidly due primarily to neutrino viscosity 

in the early Universe. It is also feasible that the shear energy may 

be dissipated by the action of gravitational radiation, Papadopoulos
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and Esposito, (1985).

Many authors, in the last twenty years or so, have introduced 

dissipative processes into their cosmological models in an attempt to 

investigate the initial singularity, (Demianski and Grischuk, 1972), to 

explain cosmological observations, (Saunders 1969, Batakis and Cohen 

1975, Goicoechea and Sanz 1984), to study the effect of shear in 

inflationary universes, (Steigman and Turner 1983, Martinez-Gonzalez 

and Jones 1986) or to provide detailed studies of anisotropic models 

and dissipative processes, (Matzner and Misner 1972, Matzner 1972, 

Johri 1977, Sanz 1983, Papadopoulos and Sanz 1985, Banerjee et al. 

1986).

Recently an interesting series of papers by Coley and Tupper, 

(1983, 1984 and 1985), have concluded that FRW cosmological models 

may represent physically viable solutions of the field equations for a 

viscous magnetohydrodynamic (VMHD) fluid. In general, it should be 

noted that different observers moving relative to each other will give 

different interpretations to the material content of the Universe. 

However, in Coley and Tupper, (1984), the interpretation of the 

material content as a VMHD fluid is given, not by another observer, 

but by the same set of hypersurface-orthogonal preferred observers 

who may also interpret the material content as a perfect fluid. Thus 

they concluded that a spacetime, such as that of the standard FRW 

models, can correspond to two distinguishable, viable solutions and 

that the interpretation of the matter distribution corresponding to this 

spacetime is not unique. Such an analysis suggests that the question 

of the eventual behaviour of the expansion of the matter content of 

the Universe cannot be decided merely by an accurate determination 

of the density of matter, visible and invisible, in the Universe. We



1 2 7

also need to determine the qualitative nature of the matter content by 

investigating the effects of dissipative processes in the Universe.

4.3 General Formalism of a Viscous Cosmology

In this section we shall develop the problem of obtaining exact 

solutions to the field equations for an anisotropic (viscous)- matter 

distribution. The notation will follow that of Misner, Thorne and 

Wheeler (1973), although we shall adopt the sign convention introduced 

in the previous chapters of this thesis. We will work in geometric 

units (G=c=l).

We will again choose a spherically symmetric spacetime with line 

element,

ds2 = e«(r»t)dt2 - e^r^Jdr2 - R2(r,t)dfl2 , (4.10)

where, for convenience of notation, the metric coefficients g00 and g1;l 

are written as ea and ê , respectively, and the self-similar energy 

density will be denoted by e, leaving the symbols o and r\ free to 

denote the shear and dynamic viscosity, respectively.

Having derived the perfect fluid equations in Chapter 3, (§3.2), 

we now wish to consider the equivalent equations for an imperfect 

fluid matter distribution with the same non-synchronous, comoving 

coordinate system. The generalisation of the previous section leads to 

the covariant expression of the shear tensor, i.e. the traceless part of 

(4.7), given by

a 'p v  = 2[uAGTpTV + ^/;TpTju] ” ^ 3 »  (4.11)

(cf. Misner, Thorne and Wheeler, 1973), where the prime signifies that 

we are only considering the shear component of the stress tensor, o. 

©su^  , is the volume expansion of the fluid world lines, and
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PjUV=£/ji/_ujuuv a projection tensor which projects any change in the 
fluid four-velocity onto a hyper surf ace orthogonal to u, (Hawking and 

Ellis, 1973). Pfjy is the generalisation of the three-dimensional identity 

tensor, _1, of equations (4.6) in four dimensions, and has only spatial 

components. We may regard P ^  as the metric in the spacelike 

hypersurface orthogonal to u. In obtaining this form for the shear 

tensor, we have followed the method of minimal coupling which can be 

used to extend the concept of shear from its flat-space definition, to 

the general curved space-time of general relativity. We simply replace 

all partial derivatives by covariant derivatives and allow for the fact 

that we are only interested in the effects of shear on a hypersurface 

orthogonal to the fluid four-velocity. Thus, the four dimensional fluid 

shear measures the rate at which a four dimensional constant 

differential volume element deforms.

With the definitions above we also find that the bulk component 

of the stress tensor generalises, quite simply, to the form ©P̂ ». Thus, 

the energy-momentum tensor for an anisotropic fluid is given by,

T)UP = (p+p)uwuy - pg^ + + CeP^ , (4.12)

where we have neglected all dissipative effects except those due to 

viscosity. r\ and G are the usual coefficients of shear and bulk

viscosity, respectively. We further note that the equations of

continuity and the equations of motion take the form

= 0 (continuity)
’ (4.13)

T^.^ = 0 (motion)

and we see from equation (4.12) that in the limit of special relativity, 

these equations reduce to the form of (4.1) and (4.3), respectively.
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Now, for a spherically symmetric metric and comoving 

coordinates the volume expansion, 0, can be very simply expressed as

© = e-«/2 I31 +
2~ R~

and the shear tensor has components

= 0

all = e'

°22 = cf

o \ = 0

(4.14)

(4.15)

where we have dropped the prime for convenience. Substituting back 

into equation (4.12) we find that the non-zero components of the 

energy-momentum tensor are

T°0 = P ,

T11 = -p + 2r\ e-a/2^ _ ©—  3 + £0

(4.16)

T22 = t33 = -p + 2n ,-<x/2Rt “ ® —  8R 6
+ c,e

Following the procedure outlined for the perfect fluid case, we can

now obtain the Einstein equations in physical form for the case of a

viscous fluid matter distribution. Equations (3.11) and (3.12) are left

unchanged but equations (3.13) and (3.14) are modified by the

presence of the non-zero viscosity in the problem. The full set of

equations is , [cf. Eric Shaver, MSc. Thesis, 1986: courtesy of
R.N. Henriksen, 1986, Lecture Notes.]



m. 47TPR2RJ, ,

2m = R[1 + e-<xRt2 - e " ^ 2 ] ,

mt = -477R2Rt (t> + x) ,

Pt = - f it  + 2®t - Rt
p + p 2™ R~ P + P 2 R~

(P + X)r + X Op + 3RJ.
2~ R~

+ o ^ ip + p) _ Q 
2~

(4*17)
(4.18)

(4.19) 

(4*20)

(4.21)

where we have made use of the definitions

-2ne“<x/2
3 -

2Rt
R

(4.22)

With these definitions and equation (4.14) our imperfect fluid 

energy-momentum tensor takes the simple form

=

0 0
-(iH-x) 0
0 - ( P - X / 2 )

0 0

0
0
0

-(l>-X/2)

(4.23)

The effect of viscosity on a cosmological model can be seen most 

easily in the case of a Friedmann-Robertson-Walker cosmology. For 

the FRW model the metric (4.10) takes the form

ds2 = dt2 - R2 dr2 
r2(1-kr2)

+ dft2

with R=rS(t). This model is isotropic and so is shear-free, x=0. 

Therefore, we need only consider the effects of bulk viscosity. For
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this case, the volume expansion takes the form, 0=3S /̂S. Thus 

equations (4.17)-(4.21) reduce to

m = pr3S3

CSt2 + kUS = 8rrpS3 
3

Pt - ~3St
(4.24)

p+p-3GSt/S S

P = P(t) ,

where the coefficient of bulk viscosity is regarded as a constant for 

the purpose of illustration. If we choose k=0, corresponding to the 

zero-curvature FRW model, and an equation of state, p=as2p, we find

that the Hubble parameter, H^S^/S, is given by

H = 8TTCe127T̂ ^ , for H < ft-TTfL-. (4.25a)
( l + a ^ X e ^ t + l )  <1+as2)

H = SnQe12” ^  .for H > ,.8TfC,, (4.25b)
(1+ag2 ) (e12TT̂ -i) <1+as >

where we have absorbed an arbitrary constant of integration. The

behaviour of the Hubble parameter is shown in Figure 4.1. We see

from the figure that as t-*», H— >877C/(l+as2), cf. equations (4.25), i.e. 

the Hubble parameter tends to a constant and we have a de-Sitter 

expansion. If H>87T£/(l+as2) then, equation (4.25b) demonstrates that 

for small t,

H = 2 , (4.26)
3(l+ag2)t

which is identical to the form of the Hubble parameter for the case of 

a zero-curvature FRW model with a perfect fluid representation (£=0),
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M L ,
(1 +al

X = 0  FRW 
so II# i on

t=0 t

Figure 4.1 Behaviour of the Hubble parameter, H=Sj-/S, for an 
isotropic spacetime with zero curvature and equation of state p=as2p. 
The thick unbroken curve demonstrates the behaviour of the 
corresponding zero-curvature (k=0) FRW model.
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also shown in Figure 4.1. Thus if the bulk viscosity is initially small, 

compared to the Hubble parameter, then the solution is almost 

indistinguishable from the perfect fluid solution at early times. If, 

however, the bulk viscosity is initially large, then there is a 

noticeable difference between the viscous and perfect fluid solution. 

A large bulk viscosity, which may be expected at early - epochs, 

therefore plays an important role in the evolution of the Universe.

Equations (4.17)-(4.21) together with an equation of state specify 

the problem of describing a viscous fluid cosmology completely. 

However, as was stated in the introduction to this section, we wish to 

study solutions which admit a self-similar symmetry and we must, 

therefore, impose such a symmetry on the solution.

4.4 Self-Similar Representation of a Viscous Cosmology

In this section we shall investigate imperfect fluid cosmological 

models which display a homothetic symmetry. The description of such 

a symmetry in the cosmological regime was given by Cahill and Taub, 

(1971) and outlined in Chapter 2 of this thesis. In general, we shall 

follow the procedure of Henriksen and Wesson, (1978a) and Bicknell 

and Henriksen, (1978a). If our solutions are to have a homothetic 

symmetry, i.e. be self-similar of the first kind, no fundamental scales 

other than the gravitational constant, G, and the speed of light, c, can 

enter the problem, (Zel’dovich and Raizer, 1967). This does not prove 

difficult in the case of a perfect fluid cosmology with zero vacuum 

energy density, (cf. Henriksen and Wesson, 1978a, for example). 

However, by introducing viscosity we may destroy any possibility of 

the solution admitting a homothetic symmetry; the viscous coefficients, 

r\ and C, being independent dimensional quantities and therefore
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fundamental scales. We avoid this difficulty by choosing the form of 

these viscous coefficients to be functions of the characteristic scales 

already present in the system. The more general problem of finding a 

self-similar representation of imperfect fluid cosmological models when 

the viscous coefficients are allowed to be determined as part of the 

solution will be discussed in Chapter 6 of this thesis. (See also

Henriksen 1987, who considers the problem of collimating a galactic

nuclei jet, using viscosity to entrain the jet material, by investigating 

steady-state self-similar solutions in which the density and viscosity 

are held constant).

Both viscous coefficients have dimensions of ML-1T-1, i.e. 

(density x velocity x length) and must be non-negative, (Landau and 

Lifshitz, 1959). Therefore, we may write

r\ = hgPlRtlR , e = hbPlRtlR , (4.27)

where p, R and R-j. are the characteristic density, velocity and scale 

for the cosmological model under discussion and hs and h^ are

numerical constants which are equivalent to inverse Reynolds numbers. 

The modulus sign reflects the fact that cosmological solutions may 

have expanding and contracting stages. Other possibilities for the 

form of the viscous coefficients are discussed in Chapter 6.

For self-similarity of the first kind to be admissible we must be 

able to obtain dimensionless quantities representing the physical 

parameters of the problem. Equations (4.17)-(4.21) have a unique 

dimensional representation in terms of c and G, viz., (c=G=l)

m = rM(S) , R = rS(S) , oc = <x(S) , jS =/3(S)
2

(4.28)
p = 1 , 1> = P1S1 , X = t [£1 ,

8rrr2 8TTr2 8n r2
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where £=t/r is the dimensionless self-similar variable, Henriksen and 

Wesson (1978a). The Einstein field equations can thus be rewritten as 

ordinary differential equations in terms of these dimensionless 

quantities with £ as the independent variable. First we note that the 

partial derivatives with respect to the coordinates t and r can be 

written as

d_ = 1 d_ ,
at at dS r dS

(4.29)
a_ = ag d_ = -§ d_ ,
ar 3r dS r dS

respectively. Therefore, Einstein’s equations, (4.17)-(4.21), in their 

self-similar, dimensionless form are given by

M - £M’ = eS2 (S - SS’) ,

M = SC 1 + e-°<S’2 - e-0(S-£S’)2 1 ,

M’ = -S2S’( P + t ) ,

£’ = - /3» + 2S’ - T £» - S’ »
P+e 2 S P+e 2 S

CM1If8 d [S2(P+t )] + 6t (s-es’> ,
S2(P+€+t ) dS es(p+e+T)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

where (’) denotes d/d£, and we see that the dimensionless coefficient 

of shear viscosity is given by

4>(£) = 8TTm = hgS€:|S’| . (4.35)

It is convenient to rewrite equations (4.30) and (4.32) as

S’ = €S3-M
£(P+t+€)S2

(4.36)
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and

M* = -(P+t)(cS3-M) 
S(P+T+e)

(4.37)

All that remains to complete the solution is to specify an equation of 

state for the matter distribution. By examining the energy-momentum 

tensor, equation (4.23), we see that the pressure is anisotropicj due to 

the presence of the viscous terms. The principal pressure in the

radial direction is different from the two transverse principal 

pressures. We thus have a different "effective" equation of state in 

each of these directions. For our purposes, it is most convenient to 

define an equation of state for one of the principal directions rather 

than choose some equation of state averaged over all three principal 

directions as is usually done in cosmological models. Thus we choose 

a radial equation of state, viz.,

introduce a new parameter y=eS3, Einstein’s equations then become

P + t = a2e (4.38)

where a2 is the square of the sound speed in units of c2. If we also

S’ = S(1-M/y) 
(l+a2)S

(4.39)

(y-M) (4.40)

M = SC 1 + e-^S12 - e-0(S-SS*)2 D (4.41)

a’ = - 2a2 r 2 + y’ - 3S* 1 + 6TS2(S-gS>)
(1+a2) L £ y  s J y(l+a2)S

(4.42)

2 y’ + 2(l-2a2) S’ + 6tS2S’ 
(1+a2) y (1+a2) S y(l+a2)

(4.43)



137

with the definition
, r 9q »t

S-2 . (4.44)t = -2hsy | S * | e-01/2 
3 «' - 1'

To reduce these equations to a form suitable for integration we 

have to solve them simultaneously for the five unknowns, S’, M ’, oc’, /3’, 

y \ in terms of the parameters, £, S, M, oc, /3, y. Equations (4.39) and

(4.40) are already in their final form, so we need only consider the 

remaining four equations. We begin by replacing the parameter T in 

equations (4.42) and (4.43) by its expression (4.44). Thus we have, 

after collecting terms,

= (7fS)[t + y - 1 ]  - <4-45>

2y* _ 2S 
y ~ s-[l-2a2+4hsS,|S,|e-(X/2j - [l+a2+4hsS’ |S’ |e”0̂ 2] . (4.46)

In order to obtain a third equation, we differentiate equation (4.41) 

with respect to the self-similar variable £>. This leads to the equation

|»_ p»_ _e^cs,2a> + e-/3(S-?S,)2iS’ + 2̂ e-aS,+̂ e-/3(S-^S,)]s" , (4.47)

where M ’ and S’ can be obtained from equations (4.39) and (4.40), 

respectively. In deriving equation (4.47) we have introduced the 

second derivative of the transverse scale factor, S", which can be 

expressed in terms of 'known’ quantities and the unknown y* by 

differentiating equation (4.39), viz.,

qM - S_^2 — * +   —____f M» 1 (4 48)
s " s " e + £(i+a2)yL x " M J * (4,48)

Thus we have three simultaneous equations, (4.45), (4.46), (4.47) with 

(4.48), in three unknowns, oc’, £’, which together with (4.39) and



(4.40), specify the field equations to be integrated. Solving these 

equations simultaneously, we find that the system of equations reduces 
to the following:

s' - sq-M/y)& ■ S(l+a2) ’ (4,49)

M’ = g(l+a^)(y~M> ’ (4,50)

, . C(2C+AB)G + 2L + JE3 .
P ~ C2F - JD - GAD + 2BGD ’ 11,011

a’ = C2C + AE + (AD-2B)B’]/2 , (4.52)

y’ = -f̂ CE + DB’3 + , (4.53)
where

2a2S3 .
" (l+a2)y ’ (4.54a)

B = 4hs|S’|e-«/2(S-SS’)/S<l+a2) , (4.54b)

C = 4C2hs|S’| |-(S-eS’)e-«/2 - a2D/S(l+a2) , (4.54c)

D = m+a2 + 4hse-0(/21S’ |S1 Dy/S3 , (4.54d)

E = 4S’Cl+a2 - 2hse-“/2|S’|S’:y/S+ , <4.54e)

P = e-^(S-SS’)2 i (4.54f)

G = e^S’2 , (4.54g)

H - 2Ce~«S’ + e-£g(S-gS’)] ....H - y(l+a2)S2 ’ (4.54x1)

J = SMS4H/y , (4.54i)

K = S(y+2M)S’ - SSM’ - (y-M)S , (4.54j)
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(4.54k)

The equations, (4.49)-(4.53), are too complex to solve analytically and 

so we utilise a finite difference technique to solve them numerically.

4.5 Numerical Solutions to the "Viscous" Field Equations

We shall now investigate the numerical solutions of the field 

equations (4.49)-(4.53). It was not possible to solve these equations 

using a truncated-step numerical procedure, such as a standard 

Runge-Kutta method, due to the lack of uniqueness of the solution 

encountered at any turning points, without carrying out the complex 

calculations of determining second derivatives of the physical 

parameters. (At the turning points the special solution S^constant is 

more stable and acts as an attractor for the numerical procedure). 

However, by adopting an Adams-Bashforth finite difference method, 

(see Khabaza, 1965), we were able to solve this problem, integrate 

through any turning points and hence obtain a complete solution.

The basic theory behind the Adams-Bashforth method is to use 

backward differences to predict the next value, i.e. by comparing the 

trend of the derivatives this method can extrapolate forwards to the 

next point in the solution and so on. For example, suppose we wish to 

solve the differential equation

at intervals h in x. We first require a few starting values of y since 

the Adams-Bashforth method is not a "self-starter” and therefore 

needs some other method, such as Runge-Kutta, to determine the first 

few values of y.

dy = f (x,y) 
dx

y=y0 when x=x0

Having done this we are now able to construct a table of x,y,
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In theory we may have to repeat steps (4.55) and (4.56) several times 

until the new value of fj_ agrees with its previous value. For 

simplicity, it was decided to dispense with the corrector phase of this 

procedure. This decision was vindicated by the success of the 

numerical integration in reproducing the analytical non-viscous 

solutions of Henriksen and Wesson, (1978a), hereafter HW1, and -Bicknell 

and Henriksen, (1978a).

For a fifth order Adams-Bashforth method, using the above we

find

f ± = (4277f0 - 7923f_1 + 9982f_2 - 7298f_3 + 2877f_4 - 475f_5)/1440 .

TT u L(4.58)We then have

y i  = y0 + h f i

So our procedure is to use a fourth order Runge-Kutta numerical 

integration method as a starter, to produce f_5, f_4, ..., f0, then an 

Adams-Bashforth method to obtain and repeat.

We are now in a position to solve the Einstein field equations 

for a self-similar imperfect fluid cosmology. Before we can continue

we must specify the exact form for the equation of state. For

instance, we could choose the sound speed such that the solution is 

adiabatic, a2=ke1-y. However, we shall deal with the much simpler 

isothermal case with the square of the sound speed, a2=constant and 

in particular we shall concentrate on the two extreme cases, a2=0,

corresponding to a "dust-like” solution, and a2=l, corresponding to a

"stiff" solution.
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A Solutions with Equation of State, P+t=Q

In the absence of any viscous terms, the equation of state for 

the hydrostatic pressure, p=0, corresponds to a dust solution, where 

the universe consists of a "pressureless-fluid" of particles. The

introduction of the dissipative processes of viscosity causes us to 

redefine what is meant by the pressure of the fluid since the 

hydrostatic pressure is no longer a distinct quantity. We define the 

pressure in terms of the spatial components of the self-similar

energy-momentum tensor, equation (4.23) in dimensionless form, so that 

the 'principal pressures’, p1} p2 and p3, of this matter distribution 

are given by

Pi = Tn  = p + T »
p2 = T22 = P - t/2 , (4.59)

Pa = T33 = P - t/2

Our equation of state is chosen such that p̂ =aj2c, (where i=l,2 or 3), 

and not some average p=a2e. This, we feel, is more physical since we 

are not treating the fluid as a sum of distinct perfect fluid, bulk 

viscosity and shear viscosity components but as a single "viscous" 

fluid. In fact, as was stated in §4.4, we choose to work with the 

radial equation of state, pj^a2e, where for convenience we have 

dropped the subscript from the sound speed, and in the present

discussion a2=0 so that we are dealing with "viscous dust". We

emphasise that by "viscous dust" we mean a fluid which obeys the 

equation of state, P+t =0. This is a different procedure from that of 

Heller et al., (1973), who chose an equation of state for the hydrostatic 

pressure and allowed the 'pressure’ due to the non-zero bulk 

viscosity to be treated as a separate quantity.
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The analytical, non-viscous, self-similar dust solutions of HW1 

will be used to provide a check of the numerical integration. The 

non—viscous dust solutions are given in analytic form by

ea = 1 , = S2/ y 2

(4.60a)
M = y(l-SS’/S) ,

s = [w p ]sin2x
for M<1 (4.60b)

« . . «  ■ - *¥*]

s = :f(as±e)D2/3 , for M=1 (4.60c)

s = [fî i]sinh2x
for M>1 (4.60d)

n M [sinh2X "1
“s * 5 = (M2-l)3/2[ 2 XJ

The ± sign corresponds to an expanding or contracting solution 

respectively and ocs is a constant of integration expressing the 'size of 

the universe’ at £=0. The starting conditions are chosen in such a 

way as to make the parameters of the viscous solutions match those of 

the non-viscous solutions on some surface, ^constant, which will be 

discussed separately for each solution.

We proceed then to integrate the field equations (4.49)-(4.53)

numerically with a2=0, using the finite difference method outlined

above. As in the case of the non-viscous dust solutions, we can 

sub-divide the viscous dust solutions into three classes depending
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upon the value of the constant dimensionless mass M, see equation

(4.41), i.e. M<1, M=l, M>1.

(i) M=l, (isotropic):

We shall consider this class of solution first since it is the 

simplest. When M=1 the initial conditions are found to be isotropic, 

(see equations (4.60)), and so are not affected by shear, T-0, and the 

equation of state reduces to P=0. Thus, this solution is represented 

by an isotropic imperfect fluid. For this viscous dust model the 

universe is ever-expanding, with the volume expansion, 0=2/t. The 

only difference between this solution and the HW1 solution for M=1 is 

in the interpretation of the pressure. In the current solutions the 

pressure is modified by the presence of a non-zero bulk viscosity. 

For a discussion of similar models see §4.2. The behaviour of the 

dimensionless scale factors, S and e^/2, is shown in Figure 4.2.

This particular class of dust solution can represent an 

approximation to the hierarchical universe structure proposed by De 

Vaucouleurs, (1971), since it yields an inverse power law in density 

along the backward light cone for some observers, (see HW1, Figure 

1.). Such a model is much less complicated than the general dust 

solutions of Bonnor, (1972), or Wesson, (1975), and as such further 

emphasises the practical use of cosmological solutions which have a 

self-similar symmetry. We should note that the behaviour displayed 

by the HW1 solutions depends critically on the existence of a 

parameter, ocs. In the viscous solutions discussed here it is 

convenient to choose as to be zero although in the isotropic dust case 

a non-zero ocs could be included quite easily. However, the viscous 

solution then becomes precisely the solution discussed by HW1, with 

the modification that the pressure must be reinterpreted since it now



145

6.0

5.5

4.5

3.5

3.0

2.5

2.0

0.5

0.0 0 2 4 106 8

Figure 4.2 Isotropic, self-similar dust solution. The figure
demonstrates the variation of the radial and transverse scale factors 
(3e£/2=g) with the self-similar variable S.
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contains a bulk viscosity term, and so we will not discuss it further. 

The convenience of choosing <xs=0 becomes more apparent in the case 

of the anisotropic dust solutions. Let us now consider these more 

interesting classes of solution, (M*l).

(ii) M<1, (closed):

This class of solutions is not isotropic and therefore we -have to 

consider the effects of a non-zero shear. The M<1 solutions of HW1 

exhibit a maximum in the transverse scale factor, S, i.e. S^O for some 

finite value of £. When S’=0 we see, from equation (4.35), that the 

self-similar viscosity coefficient and therefore the shear term, T-0 

at this point. Thus, by choosing our initial conditions sufficiently 

close to this maximum in S, we minimise the effect of shear on the 

solution at this point. Having chosen our initial conditions the 

solutions are then integrated in both directions. Figures 4.3a,b show 

the behaviour of the transverse and radial scale factors, respectively, 

for different values of the shear constant hs. It should be noted that 

hs is necessarily quite small due to the limits imposed by observations 

of the quadropole anisotropy of the microwave background radiation at 

the present epoch, (cf. Fabbri et al., 1980, and Gorenstein and Smoot, 

1981). However, we shall consider a wide range of values, hs=0-»l, to 

allow for any large anisotropies which may exist at earlier epochs.

The effect of viscosity on the scale factors, S and ê /̂ , is as we 

would expect. The presence of viscosity has a "slowing down" effect 

on any expansion such that the rate of change of either scale factor, 

at any given value of £, decreases with increasing viscosity. We see 

from Figure 4.3a that as the solutions contract from the initial surface, 

(corresponding to S’=0, S=Smax), towards the spatial origin 

(r=0/£=») the transverse scale factor decreases monotonically to zero.
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Figure 4.3 Evolution of the (a) transverse and (b) radial scale 
factors of a 'closed’ dust solution for a range of initial viscosities, 
characterised by the viscous constant hs=0,0.02,... ,0.08,0.1,0.2,.. .,0.6. 
The broken line indicates the initial surface, £=£s, corresponding to 
the maximum in the transverse scale. Throughout the figures in this 
chapter, the arrow will denote the direction of increasing hs.
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As the amount of initial viscosity increases the surface on which S=0 

gets closer and closer to the origin, r=0. As we integrate towards the 

origin, £=0, the behaviour is markedly different. The Contraction 

rate’ still decreases with increasing viscosity but the effect is not so 

dramatic. This behaviour is not too surprising since in a self-similar 

solution the physical parameters, such as viscosity, may scale with the 

self-similar variable £, so that as £ decreases from the viscosity 

need not cause the solutions to diverge significantly.

dissipative effects of viscosity on the expansion of the solution as a 

whole, we should also discuss the behaviour of the radial scale factor,

radial scale with the more viscous solutions expanding more slowly, 

again as we would expect. This monotonic behaviour of the radial 

scale factor means that we have to be careful about our definition of a

in the sense that the transverse scale exhibits a maximum. If we 

consider the proper volume

we find that this diverges at any finite time (for the analytic 

solutions) and therefore the solutions are actually open in the sense 

that the volume is infinite.
Now, the behaviour of the overall expansion of any solution can 

be most readily expressed by the evolution of the volume expansion, 0, 

which is given in self-similar form by

The solutions are anisotropic and if we are to discuss the

e1 It is found that all solutions exhibit a monotonically increasing

'closed* solution. The M<1 dust solutions of HW1 are closed only

o

4>(S) = r0 = e'—<x/ 2 &  + 2S’ (4.61)2 S
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where $(£) is the dimensionless volume expansion. The behaviour of <1> 

for a range of hs is shown in Figure 4.4, and again one would expect, 

by physical arguments, that the rate of change of 4> would decrease as 

hs increased. This can be most readily expressed by the self-similar 

form of the Raychaudhuri equation (Raychaudhuri 1955), viz.,

4>* = -^D2 - 2o2 - |(e+3P) , (4.62)

where a 2 is the self-similar scalar shear, o2=(r2/2)o/Lfl/ô fl// and we have 

neglected all dissipative processes other than viscosity. We see from 

this equation that as the shear increases the rate of change of the 

volume expansion decreases. This behaviour is indeed displayed by 

the volume expansion, in Figure 4.4, close to the initial surface £-£s. 

However, the imposed self-similar symmetry of the first kind forces us 

to choose the form of the dynamic viscosity, n, (see equation (4.35)), 

and although the values of hs in the viscous solutions, allow us to 

compare the relative viscosity of any two solutions in it ia lly , we cannot 

extend the comparison to arbitrary values of £, since the physical 

viscosity 'evolves* in a different way for each solution. In general, 

therefore, it is meaningless to look for trends in behaviour as we 

progress from solutions with lower values of hs to solutions with 

higher values. The constant hs is merely a label and can only be 

treated as a measure of the physical viscosity close to the ^-surface 

where it is introduced. Therefore, we should only expect to use our 

physical intuition to discuss comparisons between different solutions 

close to this in i t ia l surface.
Thus in these closed viscous dust solutions the introduction of a 

shear causes the universe initially to vary more slowly in both the 

transverse (contracting) and radial (expanding) directions, when
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Figure 4.4 The diagram illustrates the behaviour of the dimensionless 
volume expansion, as a function of the variable S, for the solutions 
of Figures 4.3. Again Sa denotes the initial surface of the solution 
but now the viscosity constant takes the values, hs=0,0.1,...,0.7.
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compared to the non-viscous solutions or viscous solutions with less 

viscosity, characterised by the constant hs. The overall expansion 

therefore also varies more slowly, initially, with increasing viscosity. 

However, since the physical viscosity has a functional form dependent 

upon the parameters describing a solution, the evolution of the scale 

factors becomes rather more complicated as we depart from the initial 

surface and before we can say anything about the effect of viscosity 

on the solution as a whole we must have a knowledge of how the 

viscosity behaves within any particular solution.

Figure 4.5 shows the evolution of the dynamic viscosity for a

large range of viscous solutions. At this starting surface, the

rate of expansion, S’, is zero and, by virtue of the definition (4.35), 

the self-similar dynamic viscosity is also zero (^O). The figure 

demonstrates that as the solution approaches the origin, £=0, the 

self-similar viscosity, tends to infinity in all of the viscous

solutions. This is consistent with the behaviour of the transverse 

scale since 4**|S’|. As £ increases away from £g the behaviour of the 

dynamic viscosity is less severe and diverges much less rapidly.

Some interesting properties of these solutions develop if we

consider the volume expansion expressed in physical coordinates, i.e. 

©=4>/r. Figure 4.6 shows the variation of © with the coordinate r at a 

given time, t=t0, again for a range of values of hs. This demonstrates 

that for any given value of t, there is only one value for which ©=0, 

i.e. there is a unique value of r, which we shall call the critical 

surface, r=rc, such that if r<rc, the matter is contracting and if r>rc 

the matter is expanding. In addition, the boundary defined by r=rc is 

increasing with t, i.e. it is moving outward as t increases. (This can 

easily be derived from the fact that the solution is self-similar). We
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Figure 4.5 Evolution of the self-similar dynamic viscosity, 4*, in a 
closed viscous dust solution, demonstrating the divergence as S-*0 in 
all viscous models (hs=0,0.1,...,0.7).
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also note that © increases monotonically from large negative values for 

small r, through zero at r=rc, to finite positive values for large r. 

These properties are only slightly modified by the inclusion of shear; 

for a given value of t the critical surface occurs at slightly larger 

values of r with increasing hs. The overall behaviour, however, 

remains the same with the volume expansion of the fluid world lines 

for all solutions, regardless of shearing rate, increasing monotonically 

with r. This situation is similar to that obtained by Coley and 

Tupper, (1983), while investigating solutions with shear, a radial 

magnetic field and non-negligible heat conduction, see their Figure lb.

The properties exhibited by our model and the model of Coley 

and Tupper highlight the importance of anisotropic cosmological models 

to the study of the evolution of the Universe and, in particular, to 

the study of the critical density problem, (Sciama, 1971). The 

behaviour of the volume expansion demonstrates that we cannot decide 

upon the eventual fate of the Universe merely by determining the 

density of matter it contains. We must also determine the qualitative 

nature of the matter content. We concur with the belief of Coley and 

Tupper, (1983), that the standard treatment of the critical density 

problem may be too simplistic and that investigations of general 

anisotropic models for the early Universe must be carried out in a 

self-consistent manner. This latter problem will be discussed further 

in the concluding section of this chapter.

The last class of self-similar dust solution we need to consider 

is that of the anisotropic open solutions characterised by M>1.

(iii) M>1, (open):
In this class of solutions it is found that due to the chosen 

form of the viscosity coefficients the shear dominates the solution for
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small values of the self-similar variable £. We therefore choose our 

initial conditions so that the parameters of the viscous solutions match 

those of the non-viscous solutions at a ^constant surface, suitably 

close to the spatial origin, r=0,£=». This choice of initial conditions is 

justified by the numerical solutions. If we integrate the viscous 

solutions forward towards the origin, r=0, we find that the effect of 

the shear term, which manifests itself as r S 2S’/ y  (see equations (4.42) 

and (4.43)) tends to zero. This can be demonstrated by comparison 

with the analytic non-viscous solution and is due to the isotropisation 

of the solutions as £-*», which reduces the shear considerably. The 

form of our initial conditions are therefore vindicated since the effect 

of shear decreases rapidly as we approach the spatial origin. Figures 

4.7a,b show the variation of the transverse and radial scale factors for 

this class of solutions. The presence of viscosity results in the

surface corresponding to S=R/r=0 occurring closer to the spatial origin 

(£=») as the initial viscosity increases.

If we consider the behaviour of the self-similar volume

expansion, Figure 4.8, we find that the introduction of a viscous term 

of the form (4.35) has a dramatic effect. Even the presence of a very 

small initial viscosity, hs, causes the volume expansion to behave quite 

differently from the analytic solutions, close to the origin £=0. This 

can be directly related to the form chosen for the dynamic viscosity, 4* 

(or r\). It was shown earlier that as £-*0, the viscous terms in the

Einstein field equations (4.49)-(4.53) dominate the behaviour of the

solution and rapidly diverge. Thus, when a small viscosity is 

introduced, the expansion of the fluid world lines in the solution 

diverges accordingly, as £-»0.
Another interesting parameter to consider is y=eŜ , which
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Figure 4.7 Variation of (a) the transverse and (b) the radial scale 
factors for the class of dust solutions, M>1. For clarity we have only 
shown the form of the transverse scale factor for one viscous solution 
(hs=0.1). For the radial scale, the viscosity constant hs takes the 
values 0, 10”5, 10-4, 10”3'5 and 10”3.



157

3.6

3.4

3.2

3.0

2.8

2.4

2.2

0 2 3 5 6

Figure 4.8 Self-similar volume expansion in an 'open* dust solution 
(M>1) for the range of viscous solutions shown. The right hand point 
of each curve corresponds to the surface on which the viscosity is 
introduced.
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would be a measure of the mass if the solutions were uniform (see 

equation (3.33) with A=0). Figure 4.9 shows the behaviour of y for a 

range of initial viscosity, characterised by the constant hg. Initially y 
is very large, corresponding to the large value of the transverse scale 

factor S, which demonstrates that for large S the energy density e 

varies more slowly than S“3. In the non-viscous case, y falls off 

monotonically as S decreases. However, the introduction of viscosity 

causes y to exhibit a minimum and diverge for small S. This would be 

consistent with the energy density varying more rapidly than S”3 as 

£-*0 (S-»0). Thus, the presence of viscosity in the form (4.35) has a 

marked effect on the behaviour of the energy density of the solution, 

as S approaches zero.

The class of solutions for which M>1 is interesting in that it 

represents ever-expanding anisotropic cosmologies, which enable us to 

investigate the effects of large primordial (or induced) anisotropies on 

the present epoch. These investigations together with the 

observations of present-day anisotropies, (Gorenstein and Smoot, 1981), 

should help provide limits on the amount of anisotropy which may be 

present in the early universe whether primordial or generated by tidal 

motions.

Figure 4.10 shows the variation of the self-similar viscosity,'!',

with the self-similar variable, £. The figure demonstrates that the

physical viscosity of any particular open viscous dust solution

diverges rapidly as £ becomes small. (Note the behaviour of 4' for

large £> due to the isotropisation of the cosmological fluid). For a 

given observer, r̂ constant, this behaviour is equivalent to the 

viscosity of the cosmological fluid decaying with time. The observed 

universe at the present epoch is very close to a perfect pressureless
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Figure 4.9 The 'uniformity parameter* y as a function of the 
self-similar variable, S, for the values of hs discussed in the last 
figure. The thick curve corresponds to the solutions ha=0 and 
hs=10“5. For the range of S shown there is very little deviation 
between these two solutions. However, it should be noted that as S->0 
the viscous solution (hs=10“5) does diverge in a similar fashion to the 
other viscous solutions shown.
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Figure 4.10 Variation of the self-similar dynamic viscosity, 4>, for a 
large range of viscous constants, hs=0,0.1,...0.5, in an ‘open* viscous 
dust model, displaying a similar behaviour to that of the viscosity in 
the 'closed* dust models as S approaches zero.
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fluid and so any physically valid solution would be expected to display 

this type of behaviour. Thus the open (M>1) viscous dust solutions 

are viable cosmologies in that the anisotropic components are extremely 

small at the present epoch and the cosmological solutions are almost 

indistinguishable from an isotropic perfect fluid matter distribution.

Having covered self-similar solutions with an equation of state 

P+T-0 we shaU now proceed to consider the other extreme case, that of 

a * stiff* equation of state, P+T=e, where the speed of sound is equal 

to the speed of light.

B Solutions with Equation of State, P+T-e

It has been suggested by Zel’dovich (1962) that in the limit of 

high density in an isotropic fluid, strong interactions may cause the 

fluid to develop what has come to be known as a stiff equation of 

state, where the hydrostatic pressure equals the energy density. 

Harrison (1965) has criticised this work, claiming that under a more 

realistic treatment of the same problem the equation of state tends to 

that of an isotropic fluid with three degrees of freedom, a2=l/3. 

(Harrison states that Zel’dovich’s assumption of ignoring the high 

energy of baryons imposed by the exclusion principle is physically 

unrealistic). There are, however, other models which predict a stiff 

equation of state. For example, Walecka (1974) has refined Zel’dovich’s 

suggestion to include a massive scalar field and extra interaction 

terms and, like Zel’dovich, finds that p-»p at high density.

The problem of the equation of state in a superhigh-density 

region has also been discussed in review articles by Canuto, (1974, 

1975). Canuto concludes that, although the available data from the 

study of neutron stars and various other 'experiments’ are far from
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conclusive, the stiff equation of state seems favoured in high density 
regions.

There are, of course, many models of particle physics at high 

density which under varying assumptions do not produce a stiff 

equation of state. For instance, Hagedorn (1970), describes a 

"universal fireball" with an equation of state p«lnp as • a valid 

thermodynamical model of the Universe at early epochs, and Collins 

and Perry (1975), describe a model in which particles become 

asymptotically free at high density resulting in a p=p/3 equation of 

state. Thus, there is not yet any compelling experimental evidence 

that the equation of state is stiff at early times, but there are several 

models in which it may be and so the possibility should not be 

dismissed. In fact, a stiff equation of state has proved useful in the 

study of the growth of primordial black holes in spherically symmetric 

similarity models of the universe, Lin et al., (1976), and Bicknell and 

Henriksen, (1978a,b).

We should note that a stiff equation of state will only be valid 

in a regime where strong interactions are possible and so we would 

not expect the universe to be stiff after 10“4s since the density is 

then less than nuclear density. However, once we allow the 

assumption of a stiff equation of state it is possible to find solutions 

of the field equations which have a 'stiff’ fluid as a source. For 

example, Wainwright at al., (1979), have produced exact inhomogeneous 

solutions describing an irrotational perfect fluid with a stiff equation 

of state and, more interestingly, McIntosh, (1978) has shown that these 

solutions admit a three parameter homothetic group of motions and are 

thus self-similar cosmologies.
Bicknell and Henriksen (1978a), hereafter BH1, set down the
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equations for non-viscous, self-similar cosmologies with a stiff equation 

of state and we will use these solutions as a base for our viscous 

models, i.e. to provide starting values and act as a check of the 

numerical procedure. The behaviour of the BH1 solutions is shown in 

Figure 4.11. In this diagram, m=(aa/aw)M, s=(a0/au)S and aa4=l/3 as 
discussed below. The point (m=l/4, s=l) corresponds to the- particle 

horizon of the cosmological solution. We shall refer to this diagram 

later.

The non-viscous dust solutions of HW1 contained the constants 

of integration, aa and â , which appear in the expressions for the 

metric coefficients e° and ew, respectively,viz.,

ew = auS-4rr2m
(4.63)

e °  = a o (r \S )-2n

where m=l/(l+a2) and n=a2m. The constants, and â , can be taken

as unity if appropriate scale changes in the coordinates, t and r, are

made. However, such arbitrariness is not permitted if the square of 

the sound speed is also equal to unity, (in units of c=l). The reason 

for this is that under the coordinate scalings; t=af, r=br, which are 

similarity preserving, the constants of integration become, (for p-p),

ao = ao > =

Thus, a^ may be given an arbitrary value by scaling the coordinate r 

but âj is independent of scale and is therefore physically significant.

BH1 were investigating similarity black hole solutions and 

introduced a function V=(au/a0)2/S2, which measures the velocity of 

the ^constant hypersurfaces relative to the fluid. The induced metric 

on such a hypersurface is given by
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Figure 4.11 The two families of the integral curves of the analytic 
self-similar stiff solutions of BH1 for the case a04=l/3. The thin 
unbroken curves correspond to one family of solutions and the dashed 
curves the other. The boundaries m=s/4 and ra=s/(l+3s4), separating 
the (m,s)-plane into forbidden and allowed regions, are indicated. The 
thick unbroken curve through the critical point is the 
Robertson-Walker curve (l/4)s-3. The direction of increasing S is 
indicated by the arrows, (cf. Bicknell and Henriksen 1978a).
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ds2 = e°(l-V2)dt2 - R2dCl2

Thus, if V=1 and e° is finite, the surface contains a null vector and is 

either an event horizon or a particle horizon. It transpires that there 

are two values of £ for which V=l. For our present purposes we will 

only be interested in the hypersurface which corresponds to the 

universe particle horizon. [Our notation is slightly different from that 

of BH1 in that our metric coefficients are denoted e0* and and not 

ea and ew. However, we will still retain the notation and a^ for the 

constants of integration!].

In what follows is chosen to be unity, which can be done 

without loss of generality, and we will concentrate on solutions with 

aa4=l/3, since this allows us to obtain a Robertson-Walker universe as 

a particular solution of the field equations. This is an important point 

because information cannot travel beyond the particle horizon of an 

inhomogeneous region and we are therefore free to take the universe 

to be exactly Robertson-Walker outside the particle horizon. The 

Robertson-Walker solution is isotropic and as such will not be affected 

by shear. Thus we need only consider the viscous solutions within 

the particle horizon.

In the dust solutions, we had to specify the starting conditions 

on some initial ^constant surface. In the present solutions our initial 

surface is necessarily the hypersurface corresponding to the particle 

horizon. To obtain starting conditions for our general viscous 

solutions we expand away from this particle horizon, (V=l, a ^ S -1 ), 

using a standard Taylor expansion. This allows us to begin our 

solutions on one of the curves which "peel off" the Robertson-Walker 

curve, see Figure 4.11. (Since we will only be concerned with 

solutions for which £ is increasing we "peel off" to the right of the
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Robertson-Walker curve). It would, of course, be pointless to remain 

on the Robertson-Walker solution as we are interested in studying 

anisotropic solutions.

From BH1 we have the differential equation,

s2(1-s4) + C2ms(2aa4+l+s4) - 4a04s2H ~  + m2(l-s4) =0 , (4.64)

where a^l, s=aCJS and m=a0M. We want to expand about the critical 

point s=l (V=l), m=ac4/(aa4+l), which with aa4=l/3 is given in the 

(m,s)-plane by s=l, m=l/4. Now taking the expansion of BH1 for a 

trajectory which peels off from the Robertson-Walker curve we have

ms3 = 1 - ACl-4m/sl3/2 + ... , (4.65)
4 3

so that curves to the right of the Robertson-Walker curve correspond 

to A<0, where A is an arbitrary parameter characterising a 

one-parameter set of curves which pass through the critical point with 

the allowed slope. By specifying the constant A, we are, in effect, 

choosing the initial trajectory of a curve away from the critical point.

To illustrate our solutions we shall choose A=-0.05, although we 

do emphasise that the choice of A is completely arbitrary. By 

choosing the magnitude of A so small we ensure that initially we do 

not depart too far from the isotropic solution, enabling us to add the 

viscosity, at the surface obtained by the above expansion, say,

without any detrimental effects. CNote that we also have to choose the 

value of either s or m on the surface Given A our procedure is

then to choose a value of s, not too different from unity, use (4.65) to 

determine m and then use the equations of BH1 to obtain the values of 

the other parameters of the solution.]] We are now in a position to 

integrate the viscous, self-similar, stiff field equations. Figures
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Figure 4.12 Behaviour of the scale factors in the viscous stiff 
solutions, showing the Robertson-Walker curves and the ^constant 
surface corresponding to the particle horizon. In these diagrams the 
viscosity constant has the values, hs=0,0.01,...,0.07.
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4.12a,b illustrate the variation of the transverse and radial scale 

factors, respectively, for a large range of viscous solutions, 

(hs=0-0.07), with a given expansion parameter A=-0.05. The solutions 

for the scale factors , S and e^/2, have been extended into the 

Robertson-Walker region, (outside the particle horizon), using the 

analytical expressions of BH1 with a04=l/3, i.e.

S3 = 33/2f
(4.66)

e£/2 = (4g)i/a
✓3

We cannot extend the volume expansion smoothly into the 

Robertson-Walker region due to the difference in expansion rates 

between the anisotropic and isotropic models.

The stiff solutions have the property of being transversely 

closed, S has a maximum, and radially open, e^/2 is monotonic. As we 

increase the viscosity on the starting surface, we find that the more 

viscous solutions expand more slowly in the transverse direction and 

more quickly in the radial direction.

The self-similar volume expansion, 4>, is also found to increase as 

the viscosity increases, see Figure 4.13a. The behaviour of the volume 

expansion in these stiff solutions is very different from that observed 

in the dust solutions. In the stiff solutions, <l> is always positive and 

initially decreasing, as in the open dust solutions, but also exhibits a 

turning point. This turning point is caused by the large second 

derivative which develops in the radial scale factor in these stiff 

solutions. In all of the stiff solutions there is a value of S, £m say, 

for which the rate of expansion of two comoving observers away from 

each other reaches a minimum. Thus, we have a self-similar model in
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Figure 4.13 (a) Self-similar volume expansion, 4>, as a function of S,
for the solutions ha=0, 0.01, 0.04 and 0.07. (The ha=0 solution is 
almost indistinguishable from the ha=0.01 curve). The thick line 
indicates the particle horizon outside which (smaller £) the solution is 
Robertson-Walker. (b) Self-similar dynamic viscosity, for the
solutions ha=0.01, 0.04 and 0.07. The particle horizon and the
Robertson-Walker solutions are indicated by the thick line and broken 
curves, respectively.
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which each observer sees the universe expanding for all time, (cf. 

closed dust solutions), and in which we can define a surface, rm=Sra, 

at any given time t, where the rate of expansion of the fluid world 

lines is at a minimum. The spacetime itself, however, contracts in the 

transverse direction and the solution approaches the second 

hypersurface, V=l. BH1 have shown that this is not a black hole 

event horizon but represents a breakdown in the similarity symmetry 

of the problem, since on this hypersurface ea(l-V2) is finite. This 

effect also exists in the viscous solutions. In this chapter we are not 

concerned with the existence of black hole solutions but the 

generation of self-similar cosmologies and we will defer a discussion of 

progressing beyond the symmetry breakdown until the next chapter.

We should point out that, in the non-viscous solutions, 

boundaries exist which separate the (M,S)-plane into forbidden and 

allowed regions. In the general viscous models similar boundaries also 

exist but do not coincide exactly with those of BH1. The boundary 

obtained is the locus of all the maxima of the transverse scale factor, 

in any given class of solution, characterised by hs; one maximum for 

each value of the arbitrary parameter A. In principle, therefore, we 

can determine this boundary for any viscous solution.

An interesting phenomenon occurs which was not encountered in 

the dust solutions. In the stiff solutions there exists a critical value 

of the viscosity constant, hs, above which there are no physically 

meaningful solutions. If we write down the differential equation for 

the metric coefficient /3 in its most general form, cf. (4.51), viz.,

pi _ C F(£0 >S0,Mo > )  "" ^ 3  ̂ (4.67)
C H{ > Sq , Yq »°<o » ~ >ao > D
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where F, G, H and K are all positive functions of the starting 

conditions and are therefore all constant, given the parameter A for 

any given hSt We see immediately that there is a value of hs, { -H /K ) i  

for which an infinite gradient forms in the metric coefficient jS and the 

solution breaks down. CFor the starting conditions obtained from the 

Taylor expansion with aoS=1.01, A=-0.05 and ac4=l/3, we find- that an 

infinite gradient forms for hs=0.081D* Thus, we can only consider 

solutions which have an initial dynamic viscosity up to a certain limit, 

Hmax> the value of which depends on the initial conditions of the 
model.

For completeness, we also show the variation of the self-similar 

viscosity in Figures 4.13b and we see that the dynamic viscosity 

decreases from its initial value, r\o(hs), to zero on the surface where

the transverse scale factor reaches its maximum, (Ŝ O). As the initial

viscosity increases, this surface moves outwards to larger values of 

the coordinate r, (smaller £). The dynamic viscosity begins to

increase again as the universe starts to contract in the transverse

direction due to the non-zero gradients in the scale factor S. This 

increase in the viscosity, which occurs as the transverse scale 

contracts towards the symmetry breaking hypersurface, V=l, causes 

the universe evolves into a highly anisotropic state. This could have 

a severe effect on the production of black holes in the early universe. 

We shall discuss this in more detail in the following chapter of this 

thesis.
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4.6 Conclusions
In this chapter we discussed the role of dissipative forces in an 

anisotropic cosmological fluid, a topic which has been the subject of 

numerous investigations. We developed the Einstein field equations for 

a spherically symmetric geometry, in a comoving non-synchronous 

reference frame, which admitted a self-similar symmetry of the first 

kind and which described an imperfect fluid matter distribution.

The "source terms" of dissipative forces in a fluid can be of 

many kinds; electromagnetic caused by the presence of magnetic fields, 

heat conduction caused by temperature gradients, vorticity due to 

rotation of the fluid as a whole and viscous effects due to a 

resistance of the fluid to shearing or bulk motions. In this work we 

only considered the dissipative effects due to viscosity although this 

is by no means any more important than the other effects mentioned. 

Our choice was simply one of tractability. If we wish to consider 

similarity solutions of the field equations we cannot introduce any 

fundamental scales other than the constants, G and c. Therefore, 

introducing dissipative effects automatically destroys the self-similarity 

unless we can make some assumptions about the form that the 

dissipative effects take. Indeed, forcing the similarity symmetry to be 

of the first kind imposed certain restrictions on the form of the 

viscosity coefficients, both shear and bulk, such that the dynamic 

viscosity, r\, was dependent upon the characteristic scales of the 

problem, (density p, scale factor R and velocity Rj-).

Although we expect the viscosity coefficients of the anisotropic 

early universe to be functions of time, due to their dependence on 

temperature, Nightingale (1973), the exact form of the variation will, 

almost certainly, not be as chosen in equation (4.27). A more rigorous
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treatment of the problem of applying self-similarity methods to

imperfect fluid cosmologies is required. As has been suggested

previously in this chapter, this would entail resorting to a similarity

symmetry of the second kind where the form of the self-similar

variable is determined by the boundary conditions. Such an analysis 

was carried out with great success in the case of a perfect fluid 

cosmology with a non-zero cosmological constant, (cf. Henriksen et al. 

1983 and Chapter 3 of this thesis). In this work, the cosmological 

constant acts as the 'additional’ fundamental scale but can be dealt 

with by equating it to a vacuum e n e rg y density. However, no such 

solution is readily available in the case of a constant coefficient of 

shear viscosity. It is hoped that the work presented in this chapter, 

has provided some insight into the application of similarity techniques 

to imperfect fluid cosmologies and has provided a base from which to 

develop a self-consistent self-similar viscous cosmology. Such a 

development would be important for studies of the early universe 

where one expects anisotropic effects to play a major part in the 

evolution of the universe.

We restricted our considerations to the two extreme cases which 

we dubbed viscous dust, corresponding to T11=0, and stiff, to 

T11=-T°0. The most interesting solutions obtained were those of the 

open dust models, characterised by M>1, which are ever-expanding and 

therefore avoid the premature recollapse problem discussed by Barrow 

(1987). These models also had the desirable property that the 

anisotropy of the solutions is extremely small at small distances (or 

late times), making them viable descriptions of anisotropic universes 

which evolve to a state much like the observable universe at the 

present epoch.
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Investigations of viscous solutions with different equations of 

state could be carried out by appealing to Bicknell and Henriksen 

(1978b) for the initial conditions. However, the purpose of this work 

was predominantly to provide the mechanism for obtaining self-similar 

imperfect fluid cosmologies and given the somewhat ad hoc nature of 

the assumptions used, we feel that the examples of the two extreme 

cases given are adequate.

When we come to discuss the growth of primordial black holes in 

the next chapter we will see that the stiff solutions have a more 

practical use than as an academic exercise.
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5. FORMATION OF BLACK HOLES IN SELF-SIMILAR 

ANISOTROPIC UNIVERSES

5.1 Introduction

Black holes are normally thought of as being produced by the 

collapse of stars or possibly galactic nucleii. However, the existence 

of galaxies implies that there must have been some degree of 

inhomogeneity at all times in the history of the universe, and 

therefore one would also expect a certain number of black holes with 

masses from 10_5g upwards to be formed in the early stages of the 

universe (Hawking 1971). These departures from homogeneity and 

isotropy could have been very large at early epochs and, even if they 

were small on average there would be occasional regions in which they 

were very large. One would therefore expect at least a few regions to 

become sufficiently compressed to overcome pressure forces and the 

velocity of expansion and collapse to a black hole. Such black holes 

are referred to as primordial.
The earliest time at which one can hope to apply classical 

general relativity is the Planck time -10~43s. A black hole formed at 

this time would have an initial mass of about 10“5g and radius 

10“33cm. For comparison, a black hole formed at the time of Helium 

formation when the temperature was 109K would have a mass of about 

107 solar masses.
One would expect that once the primordial black holes are 

formed they would grow by accreting nearby matter. The first 

estimate of the rate of accretion of matter onto a black hole in the 

early universe was made by Zel’dovich and Novikov (1967). They 

considered the accretion as a quasi-stationary process where the
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velocity of matter crossing the horizon (rg=2M) is of order of the 

velocity of light. Further, they concluded that if the black hole was 

small compared to the particle horizon at the time of formation there 

would not be much accretion. On the other hand, if the black hole 

was of the order of the size of the particle horizon at the time of 

formation, the mass of the black hole would increase directly with 

time, i.e. M«t. In other words, the black hole would grow at the same 

rate as the particle horizon. Observations indicate that the universe 

is homogeneous on large scales and this suggests that the black hole 

could not continue to grow at this rate until the present epoch but 

would terminate at some much earlier time, say the end of the 

radiation era when there was no more radiation pressure to force 

matter into the black hole. If this were the case, the black holes 

would grow to a mass of 1015 to 1017 solar masses, the mass within 

the particle horizon at the end of the radiation-dominated era. The 

observational evidence, from the study of tidal motions in the Virgo 

Cluster (Van den Bergh 1969) and of fluctuations of the microwave 

background on small angular scales (Boynton and Partridge 1973), 

suggests that no such giant black holes exist in the universe at the 

present time.
Faced with this lack of observational evidence, Carr and 

Hawking (1974) argued that the assumption of a quasi-stationary 

accretion mechanism breaks down in the critical case of a black hole 

whose size is of the same order as the particle horizon. In this 

situation, the expansion of the universe has to be taken into account, 

a factor not included by Zel’dovich and Novikov (1967). Carr and 

Hawking (1974) proceeded to demonstrate that, in the pr(1/3)p 

situation of a spherically symmetric universe, there is no solution to
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the field equations in which a black hole formed by purely local 

processes grows as fast as the particle horizon. (If the rate of 

accretion is insufficient in the spherical case to make a black hole 

grow at the same rate as the universe, it is reasonable to assume that 

it would also be insufficient in the more general non-spherical case 

since departures from sphericity would tend to decrease the- rate of 

accretion). This negative result is proved by considering the 

properties of spherically symmetric similarity solutions of Einstein’s 

equations. (A similarity solution is one in which all length scales 

increase with time at the same rate and is what would be required to 

represent a black hole growing as fast as the universe). If one also 

requires that the universe is exactly Robertson-Walker outside the 

local homogeneity, it can be shown that the same conclusion applies 

for any equation of state of the form p=a2p, with a2 positive and 

strictly less than unity, (Bicknell and Henriksen 1978b). This means 

that any black hole formed at an early epoch must soon be 

considerably smaller than the universe.

Hacyan (1979) proposed a model for primordial black hole growth 

in the early universe which consisted of a Vaidya sphere of radially 

ingoing photons expanding into a spatially flat, radiation dominated 

(a2=l/3) Friedmann background. He found that the black hole grows 

in proportion to the horizon mass of the background. This result has 

been generalised to the case of arbitrary equation of state p=a2p, cf. 

Cameron Reed and Henriksen (1980). These authors demonstrated that 

the general relativistic boundary conditions demand the Vaidya metric 

used by Hacyan (1979) to be self-similar. However, they also 

concluded that because the transition from a Friedmann gas to ingoing 

photons seems implausible, except possibly when a2=l, the self-similar
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behaviour is probably unlikely to continue past the end of the hadron 

era. This suggests a solar mass limit for self-similar growth in 

accordance with earlier work, (Bicknell and Henriksen 1978a,b).

The proof of the non-existence of a black hole similarity solution 

only applies for a2 strictly less than 1. However, there is still the 

possibility that a2 = l, corresponding to a stiff equation of state. (For 

a discussion of such an equation of state see Chapter 4 of this

thesis). In fact, Lin et al. (1976) demonstrated that the Einstein 

equations do permit a similarity solution in this situation. This means 

that, if the universe ever did have a stiff equation of state, black 

holes which formed then might have grown as fast as the universe 

until the stiff era ended.

In discussing the cosmological consequences of black holes 

forming in a stiff era Lin et al. stress that it is somewhat doubtful 

whether primordial black holes can form naturally at all when a2=l 

since the Jeans length is then effectively the particle horizon size, i.e. 

the regions which can form black holes are necessarily nearly separate 

universes. However, if we do assume that the universe was stiff from 

the end of the Planck era to some time t* we can conclude that there 

could be no primordial black holes smaller than 1015(t*/10"23s)g. The 

choice of this particular scaling will become more apparent below. We 

have already noted in the last chapter that the universe could not 

remain stiff after 10_4s since strong interactions are unimportant then. 

This provides a very loose upper limit on the mass of the primordial 

black holes, of order of 10 solar masses, if we assume that there was 

not much accretion after the stiff era.

An important consequence of having t*>10“23s would be that no 

primordial black holes would remain small enough to evaporate within
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the lifetime of the universe (1017s). Under the assumption that a 

primordial black hole does not accrete very much matter, a black hole 

of mass m will emit particles according to Hawking (1974, 1975) like a 

blackbody of temperature 1026(m/lg)-1K because of quantum effects. 

Thus primordial black holes with original mass smaller than about 

1015g would have evaporated by the present epoch.

Observations of the y-ray background radiation indicate that 

black holes of around 1015g must have an average mass density of 

less than 10“8 times the critical density required to close the universe 

(Chapline 1975, Carr 1976, Page and Hawking 1976). However, the 

y-ray background limitation only applies if black holes of =1015g exist 

at the present epoch. If t*>10“23s then we cannot rely upon this 

observation. The only upper limit one can place on the density of the 

primordial black holes then comes from measurements of the universe’s 

deceleration parameter (Sandage 1972), which indicate that the total 

density of the universe cannot much exceed the critical density. 

Therefore, having a stiff equation of state before 10_23s leaves open 

the possibility that primordial black holes have a critical density.

In this chapter we shall discuss black hole similarity solutions 

in a stiff universe and investigate the effects of anisotropy, in the 

form of viscous shear, on the formation black holes in the early 

universe.

5.2 Black Hole Similarity Solutions

In order to determine whether a black hole could accrete a 

significant amount of matter, Carr and Hawking (1974) introduced the 

use of similarity solutions of the Einstein field equations. Such 

solutions can describe black holes whose event horizon expands at a
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rate comparable to that of the universe particle horizon. Carr and 

Hawking considered equations of state p=0 and p=(1/3)P for the 

primordial matter and came to a negative conclusion, namely that a 

primordial black hole cannot expand as quickly as the universe. Lin 

et al. (1976) have studied the case of a 'stiff’ early universe wherein 

p=p and have concluded that a black hole can accrete as rapidly as 

the particle horizon.

In light of a rather simpler formulation of the self-similar 

equations due to Cahill and Taub (1971) and Henriksen and Wesson 

(1978a), Bicknell and Henriksen (1978a) (hereafter BH1) have 

reconsidered the problem of black hole similarity solutions in a 

universe with a stiff equation of state. Their analysis supports the 

conclusion of Lin et al. (1976) indirectly, but differs substantially in 

the detailed description of accretion flow.

As in the case of the viscous similarity solutions we shall again 

work with a metric expressed in a comoving, non-synchronous 

reference frame by

ds2 = e°d.t2 - e^dr2 - R2dft2 ,
(5.1)

dft2 = de2 + sin2ed<t>2

Matter moves along the t-lines and the variables <x, /3 and R are 

functions of r and t.
A similarity solution of the first kind is one in which the metric 

admits a homothetic Killing vector v̂ , that is,

Ly&LJi' ~ 22jUi/ » (5.2)

where the left hand side is the Lie derivative of the metric tensor in 

the direction of v̂ . Lengths increase at the same rate along the
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orbits of the vector field v̂ , and this corresponds to the notion of a 

similarity solution that one encounters in hydrodynamics.

We shall use the form of the field equations for an imperfect 

fluid matter distribution given by equations (4.49)-(4.53) and for the 

moment we shall assume that the matter distribution is that of a 

perfect fluid. Consequently we shall put hs=0.

In order to discuss black hole similarity solutions we consider 

the function

V = , (5.3)

introduced by Cahill and Taub (1971) and used by Carr and Hawking

(1974). V represents the velocity of the ^-constant hypersurfaces 

relative to the flow lines of the matter. These surfaces, which have 

equation r=t/̂ -, (Zq - sl constant), represent a family of spheres

expanding through the matter. The induced metric on such a

hypersurface is

ds2 = ea(l-V2)dt2 - R2d&2 . (5.4)

Hence when V>1 the surfaces are space-like and when V<1 they are 

'time-like*. If V=1 and ea is finite, the ^constant hypersurface 

contains a null vector and is either an event horizon or a particle 

horizon. However, if e0* becomes infinite at V=l, one is required to 

calculate the limit ea(l-V2) as V-*l, in order to determine the nature of 

the hypersurface. The required behaviour of V, which has been 

demonstrated by Carr and Hawking (1974), is indicated in Figure 5.1. 

There are two values, £1 and £2 (£2^ 1)* which V=l. The inner 
surface £=£* can be regarded as the particle horizon, i.e. it describes 

the outward propagation of light rays emitted from r=0, at the

beginning of the universe, t=0. For £i<£<£2 the surfaces of constant
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Figure 5.1 Necessary behaviour of the function V=S_1e ^ ^ 0C) /2  jn 
order that a similarity solution represent a black hole in an expanding 
universe. The surfaces 5=^ and S=S2 are possible locations of the 
particle and event horizons, respectively.
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5 are time-like and it would therefore be possible for an observer in a 

rocket to remain in this region. However, should the rocket cross the 

null surface £=£2, the surfaces of constant £ would become space-like 

and it would inevitably hit the singularity, V=», at This shows

that the surface S=£2 is the event horizon of the black hole.

When considering a perfect fluid matter distribution, hs=0, we 

find that equations (4.52) and (4.53) yield integrals, which for a stiff 

equation of state (a2=l), are given by

' " a*,* S2
5.5)

= 1 S y
aw4

where a^ and a^ are constants of integration. We showed in Chapter 4 

that for a stiff universe the constant was arbitrary but that Qq 

was physically significant.

Equations (5.5) imply that, in the perfect fluid situation, the 

function V is given by

V = sr1 e(/3-a)/2 = , (5.6)

so that, for a black hole solution, S is required to go through â j/aa, 

rise to a maximum, and then decrease through a ^ /a ^ again. 

Accordingly, we shall follow BH1 and look for solutions of the field 

equations which exhibit this behaviour.

These solutions were discussed in detail and extended to the 

non-ideal fluid case in Chapter 4. Hit is easy to see that in the more 

general viscous situation, hs*0, no such integrals (5.5) exist and we 

cannot make use of the definition (5.6). However, in the viscous
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solutions the transverse scale factor does exhibit a maximum and has a 

similar behaviour to that of the non-viscous solutions]. In Chapter 4 

we generated viscous self-similar solutions and found that the 

similarity symmetry broke down on the hypersurface corresponding to 

£,-£>2' To discuss black hole solutions we have to understand the 

nature of this hypersurface in more detail.

BH1 found that this hypersurface, £=S2, was no >̂ an
event horizon even though it corresponded to V=l. The reason for 

this is that the limit e^l-V2), as £-»£2, is always greater than zero. 

Thus the induced metric (5.4) on the hypersurface has signature 

(11,— 1) and the surface is time-like.

Although ea is infinite on £=£2, all the tetrad components of the 

Riemann-Christoffel tensor are finite. Hence the infinity in both e** 

and ê3 reflects a pathology in the coordinate system rather than a 

singularity in spacetime. BH1 conclude that the physical difficulties 

incurred by these solutions are associated with the extreme equation 

of state which makes it impossible for material flowing onto a black 

hole to become supersonic contrary to what is expected from accretion 

analysis, (Novikov and Thorne 1973). In view of this apparent 

impasse, wherein the only p-p solution heading towards a black hole 

event horizon must break down at £=£2, BH1 considered a patch to 

another solution which does continue to an event horizon and which 

preserves the self-similar symmetry. This result is in contrast to that 

of Lin e t al. (1976) who claim that the second V=1 surface is an event 

horizon and the p=p solutions can be continued beyond it. BH1 

suggested that the incorrect conclusion arrived at by Lin et al. was 

due to those authors misinterpreting the behaviour of the self-similar 

energy density, €.
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It is found that in all of the stiff solutions, viscous or

otherwise, the energy density, e, vanishes as the solutions approach 

the hypersurface see Figure 5.2. This suggests that the

external solution should be patched to an inner null fluid which might 

consist of photons, neutrinos or gravitons. The photons may arise 

naturally in a matter-antimatter symmetric early universe (Omnes 1969, 

Alfven 1971), while the latter two cases represent the conversion of 

matter into ingoing neutrinos or gravitational radiation by an

accreting black hole.

BH1 demonstrated that such a patch was possible and that the 

relevant spherically symmetric solution of the field equations

describing infalling radiation is the advanced time form of the Vaidya 

(1951, 1953) solution and found that this null fluid does contain a

black hole event horizon. Thus, with the continued self-similarity of 

the solution this means that BH1 have managed to embed a black hole 

which grows with the background universe. The question we would 

like to consider is: How does the presence of anisotropy in the form

of shear affect this analysis?

5.3 Effect of Anisotropy on the Formation of Primordial Black Holes

The conditions under which black holes can form in the early 

universe have been discussed by a number of authors, beginning with 

Hawking (1971). There are various exotic cosmologies in which prolific 

black hole formation would appear to be inevitable - e.g. models in 

which the early universe is cold (Carr 1977) or tepid (Carr and Rees 

1977). However, within the context of conventional cosmological models, 

it is clear that black holes could have formed prolifically only if the 

universe’s initial density fluctuations had a very special form. Carr
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Figure 5.2 Evolution of the uniformity parameter, y=eS3 , as the
solution moves from the particle horizon to the second surface V=1 for 
the viscous stiff solutions, hs=0,0.01,...,0.07. The broken curve
indicates the Robertson-Walker behaviour outside the particle horizon.
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(1975) has shown that in an isotropic universe, primordial black holes 

of mass M could have formed only if the fluctuations on a mass scale, 

M, had a carefully chosen amplitude, S, when that scale first fell 

within the particle horizon.

Carr (1975) demonstrated that the black hole density at the 

present epoch, &g, can be significant only if S lies in a narrow range 

around 0.04. If S was lower than 0.04 then &g would be negligibly 

small and if S was larger than 0.04 then Qg would be inconsistent with 

measurements of the cosmological deceleration parameter (Sandage and 

Hardy 1973). We can, therefore, argue that the early universe could 

not have been completely chaotic (S-l), thus the linear approximation, 

on which the considerations of Carr (1975) depend, is permitted. This 

argument is not rigourous, however, since extra qualitative features 

may enter the picture in the chaotic situation which may render any 

extrapolation, from the present-day &g to &g in the early universe, 

inappropriate.

In particular, one might enquire as to the effects of anisotropy 

(shear) in the early universe. Barrow and Carr (1977) reconsidered 

the work of Carr (1975) and discussed the effect of anisotropy on 

primordial black hole formation. They described two forms of 

anisotropy, primordial and induced (see Chapter 4), and found that the 

effect of induced shear is small but that primordial shear could have 

an important inhibiting effect upon black hole formation. In the 

situation of primordial shear, the anisotropy must dominate the 

dynamics of the universe at early enough times. Thus, a region which 

binds when the density of the universe is dominated by shear must 

collapse, together with an appreciable part of the shear energy it 

contains. This makes collapse more difficult since the shear provides



an extra pressure against which gravity must battle. The assumption 

that the universe is initially shear-dominated is, in fact, more in the 

spirit of chaotic cosmologies than is the assumption that it starts off 

with large inhomogeneities but isotropic (Misner 1968).

If we demand that the solutions have a homothetic symmetry, we 

find, cf. Chapter 4, that the dynamic viscosity and hence the 

contribution of the shear to the matter distribution, must take a 

certain form. We thus treat the anisotropy in a somewhat different 

manner to Barrow and Carr (1977). In Chapter 4 we also defined an 

equation of state which was intrinsic to the anisotropic solutions, viz.,

P + t  = a2<=r , (5.7)

where P, e are the dimensionless effective pressure and energy 

density, respectively, a is the constant sound speed and T is the 

self-similar shear parameter defined by equation (4.44). CThis is 

equivalent to choosing an equation of state,

= -a2T°0 , (5.8)

where T^v is the energy-momentum tensor].

For our present purposes we are interested in black holes which 

grow as fast as the particle horizon and therefore require a stiff 

equation of state, a2 = l. Barrow and Carr (1977) have shown that the 

stiffness may be provided by anisotropy rather than strong 

interactions, which is the case in the conventional cosmological 

scenarios, (it might, of course, be provided by both effects). The 

equation of state (5.8) with a2=l shows that in the current analysis 

the stiffness is a property of the matter distribution as a whole, 

anisotropy included, with no e x p lic it assumptions being made about the 

origin of such an equation of state. Our analysis will proceed along
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similar lines to that of BH1.

We saw in Chapter 4 that the viscous solutions displayed a

similar behaviour to the non-viscous solutions of BH1 in that the

transverse scale factor, S, reaches a maximum on some hyper surface, 

^=^m> (^m vai*ies with each solution). When S contracts towards the 
V=1 hypersurface the solution encounters the problems described in 

the last section, i.e. the metric coefficients, ea and e&, tend to infinity 

as V-»l while the tetrad components of the Riemann-Christoffel tensor 

remain finite. Figure 5.3 illustrates the infinity in ea as V->1 for the

viscous solution, hs=0.02, and the non-viscous solution, hs=0. (We

have continued the solutions into the Robertson-Walker regime). The 

figure shows that in both solutions the metric coefficient ea rapidly 

tends to infinity as the hypersurface V=1 is approached. The 

hypersurface, V=l, occurs further out from the origin, r=0, in the 

viscous solutions than in the non-viscous solutions. This is due to 

the presence of shear causing the transverse scale to reach its 

maximum 'sooner’, by slowing down the expansion. In light of this 

coordinate breakdown, we therefore have to attempt to patch the 

viscous models to some other solution which preserves the 

self-similarity and may contain a black hole.

Figure 5.2 shows that in all the viscous solutions, characterised 

by the viscosity constant hs, the energy density, €, vanishes as the 

solutions approach the V=1 hypersurface. This suggests that we 

should again try matching the external solution to an inner null fluid. 

In order to achieve this matching, we must find a common admissible 

set of coordinates for the P+t =€ fluid and for the null fluid, (see, e.g., 

Synge 1961). We shall follow the procedure of BH1, with a(r4=(l/3) and 

aw-l.
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Figure 5.3 Variation of the velocity function V and the metric 
component e0̂  demonstrating the coordinate breakdown encountered as 
the solution approaches the surface V=l. The particle horizon and 
Robertson-Walker regime are also indicated.
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We begin by defining an advanced time coordinate, w, given by,

w = Xrexp dS
S(V+1) (5.9)

where X is an arbitrary constant and the function w is constant along 

ingoing null geodesics. Expressing the metric in terms of the new 

coordinate w and the transverse scale factor R=rS(S), we obtain

ds2 = goodw2 + 2g01dwdR - R2d£2 (5.10)

where it can be demonstrated that,

*oo = h s - g n *  - f (5>U)

and

[ ^ v s ’ -  ( s -s s * ) ]

= - grimi [e«(S-gS’)gV - e%»] _ (5<12)
ĵ VS* - (S-^S’)]2

Here S, £, a and P are to be regarded as implicit functions of w and 

R. If we now consider a fluid trajectory (dr=0) in this new coordinate 

system (w,R), we can show without too much difficulty that

dw w 2w y
dR " S(V+l)rS* (V+l)r (y-M)S

Hence as V-*l, (w-»Xr, M-»M2, S-»S2 and y-*0), dw/dR — > 0 and the fluid 

trajectories become null geodesics, justifying the statements made 

above.
The metric (5.10) is only valid up until the hypersurface V=l, 

that is, the hypersurface
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w = “TT- , (5.13)

as w=Xr and R=r/S2 at £=S2. We must therefore match to an ingoing 

null fluid across this hypersurface.

As was stated in the last section, the relevant spherically 

symmetric solution of the field equations describing infalling radiation

is the advanced time form of the Vaidya (1951, 1953) solution,

ds2 = El-2m(w)/R]dw2 - 2dwdR - R2dQ2 , (5.14)

where m is a function of the advanced time coordinate w. The only 

non-zero component of the Ricci tensor is

Roo = P  ^  . <5 - 15>

and the null vector Wjj = (w0,0,0,0) representing the infalling radiation 

is given by

c4 1 dm /e ,p\
W° = M S U i  • <5,16)

By constraining the metric to admit a self-similar symmetry, i.e. to

satisfy equation (5.2), we find that m(w) must be of the form

m(w) = bw , (b constant)

Thus we have the self-similar metric

ds2 = Cl-2bw/RDdw2 - 2dwdR - R2d£2 , (5.17)

w h ic h  is  to  be  m a tc h ed  to  th e  P+T=e m e tr ic  a c ro s s  th e  h y p e r s u r fa c e

w = X R /S 2.

To accomplish, this we first determine the limits of g00 and g01 

as V-»l. Thus we must find the asymptotic limits of the functions:
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e^S-SS’)2, e^S’2, £S’, e^S-SS*) and e^S’, cf. expressions (5.11) and 

(5.12) for g00 and g01, respectively. Using the differential equation 

for the transverse scale factor S, equation (4.39), and the definition of 

V, equation (5.3), we obtain,

lim(g00) = lim(ye^)V-*l A V->1

— Olim(g01) = q lim(ye^) V-»l aM2S2

(5.18)

where M 2 and S2 are the values of M and S at V=l, (£=£2).

If we now consider the energy equation (4.41), substituting 

e^e^/^V2, we find that

S 3M
lim(ye^) = ~rz— — r . (5.19)V-+1 (S2-M2)

Consequently, we note that equation (5.18) now becomes

4S23
^ <goo) = X2(S2-M2)

(5.20) 

lim(goi) = X(S2-M2)

Hence if we choose X=2S22/(S2-M2), gQ1 is clearly continuous by (5.17)

and the value of g00 is

g00 = 1 - M2/S2 . (5.21)
Comparison with the Vaidya value of g00 on w=XR/S2, namely

4S2b
g°° = 1 (S2-M2) ’

shows that if
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^(Sg-iS ) 
>2   , (5 .2 2;

g00 is continuous. Note that on V=1 all the radiation starts with w>0; 

and since it falls along lines of constant w, we consider only the 

region of spacetime (5.10) for which w>0. We should also notice from 

equation (4.35), for the self-similar dynamic viscosity, that' as V-»l

(y-»o),

limW = l imbs’| ) = , (5.23)
V-»l S22 V-*1 2S2S2

which is non-zero for all viscous solutions, hs*0. Thus we have to 

invoke some sort of phase change on the surface V=1 where by 

converting the matter of the external solution to ingoing neutrinos or 

gravitational radiation the viscous properties are ’Tost".

The induced metric on hypersurfaces of constant Z=w/R is

ds2 = £Z2(l-2bZ) - 2Z3dR2 -

with b given by (5.22). Now, defining

F(Z) = 2bZ2 - Z + 2 , (5.24)

we see that Z=constant is timelike if F(Z)<0, null if F(Z)=0 and 

spacelike if F(Z)>0. There are apparently two null hyper surfaces:

z = 1 * U-lfbg  . (6>25)

However, the smaller of the two values lies outside the Vaidya 

coordinate patch. Thus the Z-surfaces are timelike until

1 + :i - 4m2<s2-m2)/s22:^ 
z = M2(S2-M2)/S22 ’ <5-26)
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where we have substituted for b, at which surface we encounter an 

event horizon. With further increase in Z we encounter the surface 

(SOO-®)’

2S22 
z = M2(S2-M2)

which is an apparent horizon (cf. Hawking and Ellis 1973). As Z 

becomes infinite, that is, as R->0, the infalling radiation approaches the 

black hole singularity.

A rough numerical analysis shows that the hypersurface 

corresponding to the event horizon, (5.26), occurs at larger and larger 

values of Z as the initial viscosity, hs, of the external solution 

increases. Thus the more viscosity present initially, the closer to the 

origin, R=0, is the event horizon.

We should point out that the above analysis is not rigorous, in 

the sense that we have only shown that the metric coefficients are 

continuous across the patching hypersurface. To satisfy the junction 

conditions of Synge (1961) we must also require continuity of the first 

derivatives of the metric.

From equations (4.42) and (4.43), we see that if the derivatives 

of the metric are to be continuous, the terms containing the shear 

parameter, t, must vanish in the limit as V-»l. Unfortunately, we find 

from the differential equations that the terms due to the presence of 

viscosity are proportional to 1 /y as V-»l (y-»0). Therefore, we cannot 

satisfy the junction conditions of Synge (1961) if we attempt to patch 

from an external viscous fluid to an inner non-viscous, null fluid.
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5.4 Conclusions
In this chapter we have investigated the formation of black 

holes in an early universe with a high degree of anisotropy, (in the 

form of shear), and a stiff equation of state. The anisotropy was 

introduced in such a fashion as to maintain the self-similar symmetry 

of the solutions, i.e. the dynamic viscosity was chosen to have a 

functional form which was dependent on the characteristic scales of 

the problem. It was demonstrated that the anisotropic similarity 

solutions display a similar behaviour to that of the non-viscous 

similarity solutions found by Bicknell and Henriksen (1978a). The 

solutions contain two hypersurfaces on which the velocity of 

^constant surfaces relative to the fluid equals the speed of light.

The most important correspondence between these solutions was 

the development of a coordinate singularity on the outer hypersurface 

V=l, (the inner V=1 surface corresponds to the universe particle 

horizon). We were thus forced to extend the spacetime beyond this 

hypersurface by patching to another solution which preserved the 

self-similar symmetry. In light of the vanishing energy density on 

this surface, we attempted to match the external solution to an inner 

null fluid.

The appropriate solution of the field equations describing 

infalling radiation was found to be the advanced time form of the 

Vaidya solution (1951, 1953) which, for simplicity, we took to represent 

a perfect fluid cosmology, cf. BH1. However, it was found that such a 

patch, from a viscous external solution to an inner (non-viscous), null 

fluid could not satisfy the junction conditions of Synge (1961), 

whereby the only allowable discontinuities are in the second (or 

higher) derivatives of the metric. It was found that the first
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derivatives of the metric could not be continuous when patching to a 

non-viscous spacetime from a spacetime with a non-zero viscosity. We 

are thus faced with the situation that black hole similarity solutions 

with a stiff equation of state only exist in a non-viscous (perfect 

fluid) universe.

A possible solution to this apparent restriction may be to patch 

the external solution obtained in §5.3 to an inner null fluid which is 

not described by a perfect fluid matter distribution. The 

radiation-like imperfect fluid cosmologies of Coley and Tupper (1985) 

provide a description of such a fluid. Indeed, they also show that if 

the velocity four-vector is chosen to be "tilting" in such a way that it 

has a spacelike component in the radial direction, their solutions admit 

a homothetic Killing vector and are therefore self-similar of the first 

kind. However, the solutions described in this work correspond to a 

conformally flat representation of the FRW metric and as such it is 

unlikely that they would produce black hole solutions, cf. Carr and 

Hawking (1974).

In light of the comments made in the last chapter regarding the 

rather ad hoc assumptions about the form of the dynamic viscosity in 

self-similar solutions (first kind), we should not rule out the 

possibility that black hole similarity solutions may exist in an 

anisotropic early universe. If the viscosity was modelled in a 

self-consistent manner and was introduced as an additional 

fundamental scale any similarity solutions found would necessarily be 

of the second kind. Such an analysis should be performed before we 

can make any conclusive statements about the growth of primordial 

black holes in an anisotropic early universe.
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6. FUTURE WORK

6.1 Review
The aim of this thesis has been to investigate the possibilities of 

obtaining cosmological solutions of the Einstein field equations which 

admit a self-similar symmetry. It was demonstrated in Chapter 2 that 

there are two different kinds of self-similar solutions. Self-similarity 

of the first kind possesses the property that the similarity exponent, 

which defines the appropriate self-similar variable for the solution, is 

determined by dimensional considerations or from the conservation 

laws. As far as cosmological problems are concerned, if the only 

dimensional constants present in the model are the constant of 

gravitation, G, and the speed of light, c, then the solution may admit a 

self-similar motion of the first kind. However, if the cosmological 

model contains any additional dimensional constants, then the 

independent scale lengths introduced destroy the simple self-similar 

symmetry and the similarity solution, if it exists, is necessarily of the 

second kind. In self-similar problems of the second kind, the 

similarity exponent cannot be found from dimensional considerations or 

from the conservation laws without solving the equations.

Two distinct classes of cosmological models were considered: (i) 

an anisotropic, perfect-fluid solution to the Einstein field equations 

with a non-zero cosmological constant (A*0) and (ii) an anisotropic 

viscous-fluid solution with A=0. In situation (i), the presence of the 

additional scale length, A, destroys the possibility of obtaining a 

simple self-similar solution. However, as was discussed in Chapter 3, 

it was found by Henriksen et al. (1983) that by identifying the 

cosmological constant with the energy density of the vacuum, and
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treating pv as a strict constant then the equations admit a self-similar 

symmetry of the second kind with a suitable form of the self-similar 

variable, S. This class of self-similar solutions was found to contain 

asymptotically (£-*») de-Sitter solutions which, therefore, extend the 

cosmological "no-hair" theorems of Wald (1983).

The viscous-fluid solutions were considered in Chapter '4 and it 

was shown that with an appropriate form for the viscosity coefficients 

the solutions could admit a self-similarity of the first kind. Two 

classes of solutions were considered for which the equation of state 

was given by T11=0 (viscous dust) and T 11=-T°0 (stiff), respectively. 

The stiff viscous-fluid solutions were then considered as a class of 

black hole similarity solutions in Chapter 5 and the effect of 

anisotropy on these solutions was discussed.

In the Appendix, the geometric symmetry corresponding to a 

self-similarity of the second kind was considered. It was found that, 

although a similarity of the first kind could be identified with a 

homothetic (or conformal) motion (see Chapter 2), self-similar symmetry 

of the second kind, in general, had no such simple analogue. (It 

should be noted, however, that a special class of these self-similar 

solutions did, in fact, admit a conformal symmetry). The existence of a 

more complex geometrical analogue to self-symmetry of the second kind 

has yet to be investigated.

6.2 Asymptotic Behaviour of Monotonic Self-Similar Solutions

Starobinskii (1983) demonstrated that if the energy-momentum 

tensor of the matter contains a positive cosmological term, T^j=pvsk̂ , 

where pv>0 is the energy density of the vacuum, then it is possible to 

construct the asymptotic structure of inhomogeneous cosmological
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expansion. This analysis is valid whether the cosmological constant is 

a true constant (pv=constant) or is only an effective constant 

(Pv~constant over a certain time interval). The second case is 

important for applications in which the universe passed through some 

quasi-de-Sitter stage during the early stages of its evolution.

Starobinskii considered an empty matter distribution so that the 

only contribution to the curvature of the spacetime was made by the

cosmological vacuum term. He obtained an asymptotic form as t-*»,

given by

ds2 = dt2 - yaygdxadx^ ,
(6 .1)

>a/3 = e2Htaoc/3 + tbc/3 + e_Htcoc/3 + • • • >

where a^, b^, Cq^ are functions of three spatial coordinates and

H2=877Gpv/3. This solution is similar to the quasi-isotropic solution of 

Lifshitz and Khalantnikov (1963) but differs from it by the large

number of physically different, arbitrary functions and by the fact

that it is an expansion near t=», rather than at t=0. The solution (6.1)

contains four physical arbitrary functions of three coordinates and, 

therefore, is a general solution since four is the maximum number of 

arbitrary functions possible in this case. This solution is also stable 

relative to perturbations that are not too large. Two physically

arbitrary functions are contained in a ^  and two in Cq .̂ (Three

functions in aa£ can be eliminated by three transformations of spatial

coordinates, not including time, and a fourth function is eliminated by

a transformation which preserves the synchronism of the coordinate 

system).
Starobinskii found that rapid local isotropisation with expansion 

is a typical phenomenon in the presence of a cosmological constant,
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A=3H2 and so the spacetime inside a constant physical volume rapidly 

approaches a de-Sitter spacetime, and the initial conditions are 

forgotten. Thus, the cosmological constant is capable of eliminating all 

types of inhomogeneities over very large scales. After the decay of 

the effective cosmological constant and the end of the quasi-de-Sitter 

state (6.1), perturbations begin to grow once again. However, if the 

phase (6.1) lasted for a sufficiently long time (~60-70 Hubble times, in 

practice) then homogeneity and isotropy of the observed part of the 

universe would not have had sufficient time to break down by the 

present epoch.

Lifshitz and Khalantnikov (1963) stated that a criterion for the 

generality of a solution is the number of arbitrary functions of the 

spatial coordinates it contains. It should be noted that among the 

arbitrary functions contained in any cosmological solution there are 

those whose arbitrariness is connected with the arbitrariness of the 

reference frame. (The greatest possible number of arbitrary functions 

in an arbitrary reference frame is 20). More important is the number 

of "physically arbitrary" functions which cannot be reduced by any 

choice of reference frame. The solutions of Starobinskii (1983) contain 

the maximum number of physically arbitrary functions of three 

coordinates and are therefore completely general. It would be 

interesting to relate the asymptotic form of the 'open1 (asymptotically 

de-Sitter) solutions found in Chapter 3 to the general asymptotic 

series of Starobinskii. The immediate difficulty, although not 

insurmountable, is the non-synchronicity of the self-similar solutions, 

which prevents any direct comparison with those of Starobinskii. To 

first order the asymptotic solutions do tend to a synchronous system 

and indeed to a de-Sitter phase. However, to answer the question
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regarding the generality of the solutions, a higher order analysis 

should be carried out.

A further use of the asymptotically de-Sitter solutions of

Chapter 3 might be to provide a means by which to progress smoothly 

from an early universe model to a later universe model. The presence 

of a large vacuum energy density in these solutions requires that

they are, necessarily, early universe solutions. However, it is possible 

that these self-similar solutions of the second kind could be patched, 

via a phase transition in which the cosmological term disappears, to a 

self-similar solution of the first kind, which could be used to describe 

the later epochs of the universe. The possibilities of such a smooth 

transition between these different stages of evolution was briefly 

discussed by Wesson (1986b), for the special case of the singular

solution of Henriksen et al. (1983) (cf. Chapter 3). However, it was

found by Alexander and Green (1988), that in the more general case, 

the severe restrictions imposed by the symmetry and the continuity 

conditions make a patch possible only at a fixed time, t=t0. Further, 

the lack of freedom in the choice of the equation of state, caused by

the symmetry being of the second kind, prevents us from obtaining a

solution which is self-similar and which satisfies the continuity 

conditions across the whole t-t0 hypersurface.

It is possible to patch to a solution which does not have the 

restriction of self-similar symmetry, again via a phase change to 

effectively remove the large (unobserved) cosmological constant. Such 

a possibility is made more interesting by the fact that the spatial

inhomogeneity inherent to the general solutions of Chapter 3, may

allow separate regions of the 'patched solution’ to collapse, as seeds 

for galaxy formation, while the general background spacetime expands
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(a situation not possible with similarity solutions since all length 

scales expand at the same rate). Thus, the existence of a patch from 

an early universe (A>0) self-similar solution to a 

spatially-inhomogeneous, A=0, solution is worth a more detailed 

investigation.

6.3 Applications of Self-Similar Symmetry of the Second Kind

In Chapter 2 of this thesis, it was found that in self-similar 

problems of the second kind the initial conditions of the problem 

contain a dimensional parameter with the units of mass but lack a 

u n iq u e parameter which contains only the units of length and time, i.e. 

either no such parameter exists in the problem or there is more than 

one such parameter. In this case, no unique dimensionless

(self-similar) variable can be formed from the initial conditions, but

has to be solved for as part of the solution.

It was demonstrated in Chapter 3 that the 'additional’ scale, A, 

could be absorbed into the equations as a vacuum energy density and 

the similarity variable could be obtained. However, in order to

describe the imperfect fluid solutions of Chapter 4 as self-similar 

motions the 'additional’ scales, i.e. the viscosity coefficients of bulk 

and shear, had to be of a certain, somewhat restrictive, form, (cf. 

equation (4.27)). A much more realistic procedure would be to treat 

the viscosity coefficients as constant and allow the equations to

determine the self-similar symmetry. Such a symmetry would 

necessarily be of the second kind.

The dimensional constants present in a cosmological model with a 

viscous matter distribution are, the gravitational constant G (units 

M “1T~2L3), the speed of light c (LT-1) and the coefficients of shear
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and bulk viscosity n, C (both with units ML_1T_1). The gravitational 

constant G (or one of the viscosity coefficients) immediately gives us a 

constant which contains the units of mass. However, three 

independent dimensionless variables can be formed from the remaining 

three constants and the independent variables r and t, namely

Therefore, we cannot define a unique similarity exponent from 

dimensional considerations alone, and so we cannot obtain a self-similar 

solution of the first kind.

We could consider the effects of bulk and shear viscosity 

separately. For instance, if we were to choose an isotropic model so 

that the solutions were shear-free then we could produce a 

self-similar solution of the first kind, i.e. the M=1 dust solutions of 

Chapter 4. In that chapter we chose a specific form for the viscosity

coefficients so that we could treat the equations as self-similar of the

first kind. However, this choice was fairly arbitrary, with the only 

restrictions being that the viscous coefficients must remain positive 

throughout the solution and that their chosen form did not involve the 

introduction of any additional scales. On purely dimensional grounds 

it would also be possible to consider the forms

[ ]n = hsp* , (6.3a)

and
[ 3̂ ]n = hs/E , (6.3b)

where p is the characteristic mass density of the fluid and R is the 

characteristic scale size for the cosmological model under
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consideration. Both of these encounter the difficulty discussed in 

Chapter 4, i.e. as R-»0, rv->». However, (6.3a) is a more realistic choice 

in the sense that the viscous coefficients depend only on the 

conditions of the fluid. Such forms for the viscous coefficients will be 

considered at a later date. For the moment, we are interested in a 

self-consistent viscous model in which we do not make any • ad hoc 

assumptions about the variation of the viscosity coefficients. CNote 

that, since the bulk term can be absorbed into the pressure, we shall 

concentrate on the shear viscosity and assume that the bulk 

coefficient , C=0].

One possibility would be to try a similar procedure to that used 

for the cosmological constant in Chapter 3, i.e. equate the shear term 

to some sort of 'viscous pressure*, ps (with a corresponding 'viscous 

energy density’, ps) and write the total pressure and energy density 

as

P = Vm + Ps
(6.4)

9  - Pm + Ps ’

where pm , pra are the normal matter components (there are no vacuum 

terms present). An equation of state for the viscous terms is

required and the simplest form would be Ps=as2ps, where as is

assumed to be a dimensionless constant.

The Einstein equations, with T ^  given by equation

(4.12), would then be of the form

g/jf = -SffEtP+pJû uy - pg^H , (6.5)

but with the viscous and normal matter terms given their separate

equations of state. Because of the form of the shear tensor (4.15), the
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(0,0) component of (6.5) implies that as2=0 (ps=0). Unfortunately, the 

other components of this equation give contradictory results for the 

viscous pressure, ps, except in the case when 0^=0 and the solution 

is isotropic. Thus, it seems clear that the shear viscosity cannot be 

incorporated into the equations in the same way as the cosmological 

constant.

A more promising line of investigation may be the study of 

non-self-similar viscous solutions which become self-similar in the limit 

as t-»». Such a behaviour is likely to be more common in nature than 

the exactly self-similar solutions. A characteristic of asymptotically 

self-similar solutions is that the system 'forgets’ the initial conditions 

of the problem at some stage of its evolution. This type of behaviour 

is common in the "no-hair" theorems, of Hawking and Moss (1982) and 

Wald (1983), and the inflationary models, of Guth (1981) and Linde 

(1982), discussed in Chapters 2 and 3. These models were developed 

in order to explain, among other things, the large degree of isotropy 

and homogeneity observed in the present-day universe. However, the 

series of papers by Coley and Tupper (1983, 1984, 1985) have

questioned this observed isotropy and have shown that an anisotropic 

matter distribution could also be a viable description for the matter 

content of a Friedmann-Robertson-Walker spacetime. Thus, it may be 

possible that an initial highly-anisotropic universe could pass through 

some inflationary epoch but still retain a significant amount of its 

pre-inflationary anisotropy. Martinez-Gonzalez and Jones (1986) 

considered the role of primordial shear in two inflationary scenarios 

(Linde inflation and GUT inflation). They found that in the case of 

Linde inflation the universe becomes truly isotropic but in the case of 

GUT inflation the initial anisotropy reduces the GUT era coherence
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length and it becomes more difficult to form the present universe from 

a single 'isotropic’ bubble. Such a situation may allow the system 

essentially to 'forget’ its initial conditions and it would then be 

possible to treat the problem as an asymptotically self-similar solution. 

By investigating the asymptotic limits, either analytically or 

numerically, of this or some other non-self-similar anisotropic model, 

which evolves to a self-similar regime, we could, in principle, 

determine the similarity exponent and therefore determine a 

self-similar variable which would define the symmetry. We could then 

treat the model as a similarity solution of the second kind.

Similarity solutions of the second kind could also be useful in 

the study of Kerr black holes. The rotation inherent to such a system 

acts as an extra degree of freedom and therefore introduces an 

additional dimensional parameter which would destroy the possibility of 

any self-symmetry of the first kind. However from the above 

discussion, we see that it may be possible to discuss this system in 

terms of a similarity solution of the second kind. Such a solution, if 

it exists, may provide some interesting developments in the physics of 

rotating cosmological systems.

Finally, similarity solutions (of first or second kind) may also 

prove useful in the study of power-law singularities in cosmological 

models, (cf. Wainwright 1984). Power-law behaviour immediately lends 

itself to a self-similar analysis. The application of such an analysis to 

systems which display a power-law behaviour may be worth a more 

detailed investigation (cf. Ori and Piran 1987).
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6.4 Geometric Interpretation of Self-Similar Symmetry

In the Appendix it has been demonstrated that the general 

self-similar solutions of Henriksen et al. (1983) do not have a simple 

geometrical analogue, except in the special case of the singular 

solution (M=S). The main difficulty was shown to be the fact that the 

infinitesimal transformations corresponding to a conformal motion do 

not preserve the physical symmetry of self-similarity of the second 

kind. It was found that the generator used by Henriksen et al. 

introduced an acceleration, which transformed the reference frame to 

that of an accelerated observer, thereby destroying the conformal 

symmetry. One way to remove this difficulty would be to transform 

back to the reference frame of a comoving observer using a Lorentz 

transformation (or 'clock synchronisation’ as it was called) after each 

infinitesimal point transformation. However, such a combination of 

transformations (i.e. the infinitesimal point transformation followed by 

a clock synchronisation) should be expressible in terms of the 

vanishing Lie derivative of some geometric object.

In Chapter 2 we discussed briefly some of the various types of 

geometric symmetries that could be imposed on a spacetime (see also 

Katzin at al. 1969). However, a more interesting possibility was 

contained in the recent publication of Ludwig (1987) in which he 

discussed conformal rescalings coupled with Lorentz transformations. 

The relevance of this work to the present problem was discussed in 

the Appendix. It remains for us to translate the findings of Ludwig 

into a form suitable to facilitate the determination of the geometric 

equivalent to the general self-similar symmetry of the second kind 

displayed in Chapter 3.
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APPENDIX: Conformal Motions and Self-Similarity

In this Appendix we investigate the global symmetry properties 

of the solutions discussed in Chapter 3 of this thesis, wherein the 

physical symmetry was that of a similarity symmetry of the second 

kind. Henriksen et al. (1983), HEW, claim that the generator of• the Lie 

group symmetry corresponding to their self-similar motion may be 

taken as

va = e^(lAjr,0,0) (A.l)

in the positive A case, where X=V( A/3), and that the Lie derivative of 

the metric is

■î fsab = ^e^ggk , (A. 2)

whereby the symmetry is seen to be conformal (Yano 1955). However, 

the (0,1) term of the Lie derivative is

^ o i  = ^ex t r g l l  * 0 , (A. 3)

so that the generator, (A.l), in fact does n o t give a conformal 

symmetry for this spacetime. Indeed, any symmetry of this spacetime 

which preserves the self-similar variable £ cannot have a conformal 

symmetry as defined by (A.2), since the generator must be of the form 

(A.l) multiplied by some scalar function.

However, we can define a p a r t ia l conformal symmetry (e.g., 

Tomita 1981), by considering the subspace dt=0, i.e. we can define a 

symmetry between t^constant hypersurfaces. If we have two spatial 

vectors on the t=t0 hypersurface and transform them to t=tj_ then the 

angle between the two vectors is conserved, thus providing a partial
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conformal symmetry. Similar considerations apply on subspaces dr=0.

If we now consider the isotropic form of HEW’s singular solution, 

where the metric is given by equation (3.68) with B=1 and y=2, we find 

that we do have a conformal symmetry. We wish to show that for this 

isotropic singular solution the Lie derivative of the metric is of the 

form

-^^ab = 2fgab . (A. 4)

The equations to be satisfied, for a conformal symmetry of any metric 

to exist, are

CTf-a + or£ + 2<Xf- = 2f , (A. 5a)

wtoc + ur£ + = 2f , (A. 5b)

R|-oc + Rr£ - fR , (A. 5c)

e0^  - = 0  , (A.5d)

where we have written the generator of the conformal symmetry as,

v* = (oc,£,0,0) , (A.6)

with oc,/3 and f unknown functions of the coordinates r and t to be

obtained from equations (A.5). Since o = o (£ ) ,  w=w(£), R=rS(S) and

(see Chapter 3) the first three equations of (A.5) can be 

further reduced to

[ot - + 2«t Z 2f , ( A .7a)

+  2Pr = 2 f  - ( A - 715)

eXts^ a_ + £S = f rS , (A. 7c)
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where (*) denotes d/d£. For the isotropic singular solution we have 

that

S = S , e° = 1 , ew = £2
(A.8)

P = -1/S2 = -n/3

and therefore,

equation (A. 7a) oĉ = f , (A.9a)
e2*t

equation (A.5d) ocr = ^2r2^t » (A.9b)

equation (A. 7c) Xa = f , (A.9c)

then equation (A.7b) =£ JS = rg(t) . (A.9d)

From equations (A.9a) and (A.9c) we obtain

oc = e^h(r) , (A. 10)

and (A.9b) then gives

_  TT / A  1 1 )cLr > dt " * (A. 11)

where K is an arbitrary constant. Thus, we obtain the general 

solutions for h and g (by integrating (A.ll)),

h(r) = ^ln(Dr)

g(t) = -Kte-^+E) 

where D and E are two constants of integration, and so 

<x = ^ln(Dr)e^t f

(A. 12)

P = -Kr (e-'*'t+E) , (A. 13)

f = Kln(Dr)e*t



2 1 2

Thus, the singular solution of HEW admits a conformal Killing vector, 

which (with K=l, D=X and E=0) is

v3- = H(e^A)ln(Xr), -rg-Xt  ̂q , 0“| (A. 14)

acting as the generator of the Lie group. The Lie derivative of this 

isotropic metric with the generator (A. 14) is, then,

^ a b  = 2 lnfXrJe^gafc . (A. 15)

The lack of a conformal symmetry in the HEW solutions somewhat limits 

their physical applicability. However, the isotropic form of their 

singular solution, although restrictive, is conformal and may therefore 

have some connection with gauge theories describing the state of the 

early universe. The fact that in all of these solutions we have a 

self-similar symmetry of the physical variables with no corresponding 

conformal symmetry of the metric is puzzling. This seems to suggest 

that self-similarity of the second kind is more complicated than 

previously believed with no simple conformal analogue.

The generator (A.l) corresponds to the linear transformation

+ v̂ doc , (A. 16)

where x^ and are points on a ^constant surface, (v is

^-preserving), and <x is the transformation parameter. This introduces 

an acceleration, (or rotation), as can be seen from equation (A.3). 

Thus our reference frame becomes that of an accelerated observer and 

we no longer have a conformal symmetry on these surfaces of constant 

£. However, if for each point, x̂ , we make a further transformation 

("clock synchronisation") to the metric of a comoving observer we may 

still be able to define a global symmetry corresponding to a similarity 

symmetry of the second kind which combines a series of infinitesimal 

* R.N. Henriksen, private communication
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linear transformations with a coordinate rotation at each step.

A recent publication by Ludwig (1987) discusses the

decomposition of a general element of the group GL(2,C)®Gn(2,C), the 

direct product of the two-dimensional complex linear group with itself, 

into a "standard” conformal rescaling and a "standard" Lorentzian

transformation. The analysis is basically as follows:

Any 2x2 matrix,

" = [: 5]
with 6-1 = ad-bc * 0 may be written as

U  5] ■ [3 5][V ?] ■
The matrix,

[? !] •

has the same determinant as M, (the second matrix in the

decomposition is unimodular).

A general element (M,M) of GL(2,C)0GE(2,C) may be decomposed 

as follows,

C e-ig-1 0 1 If ur a b 1 r ageL 0 1 J d  J ’ [ c e -'aSe  ̂ B9e  ̂1-H J
x { e-̂ I, ê I } (A. 18)

where I is the unit matrix, i.e. <M,M) can be decomposed into a pure 

spin transformation, followed by a standard Lorentzian transformation, 

followed by what Ludwig (1987) called a basic right conformal 

rescaling. £ ln the 'real* case the tilde reduces to the complex
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conjugate, but in general, tilded and tilde-free quantities are 

independent complex variables],

(M,M) could equally well be decomposed into a product of a pure 

spin transformation, a standard Lorentzian transformation and a basic 

le f t conformal rescaling. Other variations are also possible. A more 

symmetric choice would be,

This is a standard Lorentzian transformation followed by a basic 

conformal rescaling. It is this last decomposition which may prove 

useful in determining some non-trivial geometric object, (Yano 1955), 

which would define the global symmetry of a spacetime corresponding 

to a similarity motion of the second kind.
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