
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


A Method of Rendering CSG-Type Solids 
Using a Hybrid of 

Conventional Rendering Methods and 
Ray Tracing Techniques.

by

Marion Scott Cottingham B. Sc. (Hons)

A thesis submitted to the 

Faculty of Science 

for the degree of 

Doctor of Philosophy.

University of Glasgow.

September 1988.



ProQuest Number: 10998216

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction  is d e p e n d e n t  u p on  the quality of the co p y  subm itted .

In the unlikely e v e n t  that the author did not send a c o m p le te  m anuscript 
and there are missing p a g e s ,  th ese  will be n o te d . Also, if m aterial had to be rem o v ed ,

a n o te  will in d ica te  the d e le tio n .

uest
ProQ uest 10998216

Published by ProQuest LLC(2018). C opyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected  a g a in st unauthorized  copying  under Title 17, United States C o d e

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 4 8 1 0 6 -  1346



2

ACKNOWLEDGEMENTS.

The work to be described was carried out in the Department of Computing 
Science, University of Glasgow. I would like to thank Dr. A.C. Kilgour 

and Dr. R.A. Sutherland for their continuing support and advice throughout the 
period of research and writing this thesis. I am particularly indebted to Dr. 
A.C. Kilgour for his helpful suggestions and constructive criticism.

I would also like to thank the British Science and Engineering Research 
Council for their financial support while carrying out the work involved.

I am most grateful to my Mother for taking over my household duties, 
without whose help this thesis would not have been possible. Finally I would like 

to thank my sons Steven and Alan for being very understanding and helpful.



3

CONTENTS.

Section Description page

Summary 8

Chapter 1 : Modelling and Rendering Solids : An Overview. 9
1.1 Introduction. 10
1.2 Representations for Solid Modelling. 12

1.2.1 Alternative Representations of the Primitives. 16
1.2.1.1 Primitives Represented by Half-Spaces. 16
1.2.1.2 Polyhedral Approximation of Primitive Solids. 17

1.3 Rendering Techniques. 20
1.3.1 Hidden-Surface Removal Methods. 21

1.3.1.1 Scan-line Methods. 22
1.3.1.2 Ray Tracing Techniques. 24
1.3.1.3 Fast Access to Required Data. 26

1.3.2 Shading and Illumination. 27
1.3.2.1 Illumination Models. 27
1.3.2.2 Smooth Shading Techniques for Polyhedral

Models. 31
1.3.2.3 Anti-Aliasing. 33

Chapter 2 : Ray Tracing. 34
2.1 History 35
2.2 Using the CSG Representation. 40
2.3 Overview of Roth’s Paper. 41

Chapter 3 : Consideration of Roth’s Method of Ray Tracing. 45
3.1 Improving the Efficiency of Roth’s Method of

Ray Tracing. 46
3.2 Problems in Building Ordered and Balanced

CSG-trees. 51



4

Section Description page

Chapter 4 : The Proposed Hybrid Method. 52
4.1 Additional Structures for Fast Access of Data. 55

4.1.1 Scene Trees: A New Structure for CSG-trees. 56
4.1.1.1 Input Sequences Containing Groups of Primitives. 59

4.1.2 Computing the Surface Definitions. 62
4.1.3 Calculation of Box Enclosures. 62
4.1.4 Indexing CSG-Tree Terminal Nodes. 63
4.1.5 Creating and Maintaining the Active Primitive

List. 64
4.1.5.1 Path Through the Data Structure. 66

4.1.5.1.1 Creating a Path Through the CDS. 68
4.1.6 Creating and Maintaining the Span List. 69

4.1.6.1 The ‘Polygon in Span’ List. 70
4.2 Hidden-Surface Elimination. 72

4.2.1 Using Scan-line Methods. 73
4.2.2 Using Ray Tracing Techniques. 73

4.3 Algorithm for Proposed Hybrid Method. 75
4.4 Shading and Illumination. 78

Chapter 5 : Presentation & Analysis of Results. 79
5.1 Comparison with Watkins’ Spanning Scan-line

Algorithm. 80
5.2 Comparison with Roth’s Ray Tracing Techniques. 83
5.3 Comparison with Other Hybrid Approaches. 85
5.4 Performance Measurements. 87
5.4 Conclusions and Further Work. 89

References. 90



5

Section Description page

Appendix A : The DIAMOND System. 102
1.1 Interacting with DIAMOND. 104

Appendix B : A Compressed Data Structure. 107

Appendix C : Compressed Data Structure for Rotational
Sweep Method. 136

Appendix D : Pseudo Ordering of CSG-Trees. 147



6

LIST OF FIGURES.

No. Description Follow
page

fig. Ka) Special class of cell-decomposition 
called spatial enumeration representation
( SE-Rep ). 14

fig. 1(b) CSG tree representation. 14

fig. 1(c) Rotational Sweep. 15

fig. 1(d) Translational Sweep 15

fig. 1(e) Boundary representation (B-Rep). 15

fig. Kf) Isoluminance Contour Model 15
fig. 2 Winged-edge topology showing the various

pointers associated with each edge. 18
fig. 3 Typical CSG primitive objects and their

corresponding CDS. 19
fig. 4(a) Wire-frame drawing of a cylinder with no

hidden lines removed. 20
fig. 4(b) Wire frame drawings of a cylinder with
and (c) hidden lines removed. 20

fig. 5 Scan-line divided into spans according to
intersection points. 23

fig. 6 Incident light and surface normal 28
fig. 7 Specular reflection. 29
fig. 8 Light rays reflecting from surface considered 

as a collection of small perfectly-reflecting
surfaces. 30

fig. 9 Gouraud’s ‘smooth shading’ technique. 31

fig. 10 Phong’s ‘smooth shading’ technique. 31

fig. 11 (a) Point by Point Shading. 35
fig. 11 (b) Result of Point by Point Shading. 35
fig. 12 Pinhole Camera Model. 36

fig. 13 Sight rays being traced through the environment. 36

fig. 14 Components of light reaching the viewer
from point A. 36

fig. 15 Classifying a ray. 40

fig. 16 Example of scene tree structure. 58



7

No. Description Following
page.

fig. 17(a) Drawing of vice. 58
fig. 17(b) Binary tree structure representing the vice. 58
fig. 17(c) Scene tree structure representing the vice. 58
fig. 18 Logical internal representation for input sequence. 61
fig. 19(a) Template primitive with box enclosure. 62
fig. 19(b) Deduced box enclosure in screen coordinates. 62
fig. 19(c) Exact minimum box enclosure in screen

coordinates. 62
fig. 20(a) CSG-tree with index. 63
fig. 20(b) CSG-tree with index ordered by y. 63
fig. 21(a) Template primitive with box enclosure. 65
fig. 21(b) Deduced box enclosure in screen coordinates. 65
fig. 21(c) Exact minimum box enclosure in screen

coordinates. 65
fig. 22 Active-list ordered by x for given

scan-lines. 65
fig. 23 Active-list with associated path lists. 66
fig. 24(a) Spans of a scan-line. 69
fig. 24(b) Span list with associated ‘polygon in span’

sub-lists. 69
fig. 25(a) Image with initially active polygons shaded. 77
fig. 25(b) Image showing three areas and block 1. 77
fig. 26(a) Initial state of underlying data structure. 77
fig. 26(b) State of underlying data structure at a

particular point. 77

Photograph 1 Wire-frame image of three cubes. 89
Photograph 2 Shaded image of three cubes with ray traced

pixels coloured blue. 89
Photograph 3 Shaded image of three cubes. 89
Photograph 4 Wire-frame image of a sphere and cube. 89
Photograph 5 Shaded image of a sphere and cube. 89



SUMMARY.

This thesis describes a fast, efficient and innovative algorithm for producing 
shaded, still images of complex objects, built using constructive solid geometry 

( CSG ) techniques. The algorithm uses a hybrid of conventional rendering 
methods and ray tracing techniques.

A description of existing modelling and rendering methods is given in 
chapters 1. 2 and 3, with emphasis on the data structures and rendering 
techniques selected for incorporation in the hybrid method.

Chapter 4 gives a general description of the hybrid method. This method 
processes data in the screen coordinate system and generates images in scan-line 
order. Scan lines are divided into spans (or segments) using the bounding 
rectangles of primitives calculated in screen coordinates. Conventional rendering 
methods and ray tracing techniques are used interchangeably along each scan-line. 
The method used is detennined by the number of primitives associated with a 
particular span.

Conventional rendering methods are used when only one primitive is 
associated with a span, ray tracing techniques are used for hidden surface removal 
when two or more primitives are involved. In the latter case each pixel in the 
span is evaluated by accessing the polygon that is visible within each primitive 
associated with the span. The depth values (i. e. z-coordinates derived from the 
3-dimensional definition) of the polygons involved are deduced for the pixel’s 
position using linear interpolation. These values are used to determine the visible 
polygon.

The CSG tree is accessed from the bottom upwards via an ordered index 
that enables the ‘visible’ primitives on any particular scan-line to be efficiently 
located. Within each primitive an ordered path through the data structure 
provides the polygons potentially visible on a particular scan-line.

Lists of the active primitives and paths to potentially visible polygons are 
maintained throughout the rendering step and enable span coherence and scan-line 
coherence to be fully utilised.

The results of tests with a range of typical objects and scenes are provided in 
chapter 5. These results show that the hybrid algorithm is significantly faster than 

full ray tracing algorithms.



CHAPTER 1.

MODELLING AND RENDERING SOLIDS 
AN OVERVIEW.



10

1.1. Introduction.

Computers are capable of producing astonishingly realistic pictures, which are 
often achieved by employing clever techniques that are equally astonishing in the 
amount of CPU time they require. The resemblance between state-of-the-art 
computer generated pictures and photographs of the real thing can be quite 
amazing. Most practical applications of computer graphics however do not require 
photograph-like images. This thesis deals with the problem of rendering 
mechanical parts in circumstances where speed of picture generation is more 
important than a high degree of realism.

There is no doubt that computer produced images are a valuable aid for 
communicating information. Such images can exploit the massive parallel 
processing capacity of human vision. The saying "A picture is worth a 
thousand words" has been found to have a strong element of truth by 
psychologists.

For decades industry has recognised that drawings are the most effective 
method of conveying geometric information between humans. It is a natural 
progression for computer graphics to provide an effective method of human- 
computer communication. Indeed for some applications that involve vast 
amounts of numerical data, computer generated images are the only reasonable 
way of communicating the infomiation. The earliest computer graphics systems, 
developed in the 1960’s, produced wire-frame drawings that were essentially the 
same as the traditional drawings done by draughtsmen etc. [Cottingham 1988a 
(Appendix D)]. These drawings were done on random-scan display devices that 
were limited in capability to plotting continuous lines and curves.

In the early 1970’s raster-scan display devices were introduced enabling 
shading to be applied to images. These devices brought about a major change in 
the techniques used for describing objects. The aim now was to render shaded 
images rather than imitate the drawings previously done by draughtsmen.

The display screen of a raster-scan device is divided into a rectangular array of 
picture elements (pixels). When an image is generated, each of these pixels has 
an intensity value stored in a block of memory that is called a ‘frame buffer’. 
Early versions of frame buffers typically used disks and drums for storage 
[Newman 1979]. This meant that raster-scan devices were rather expensive



11

because of the rotating memory required. By the early 1970’s the decrease in 
cost of integrated-circuit shift registers made it more cost effective to use them in 
place of the rotating disks or drums. Unfortunately shift registers, disks and 
drums all require ‘serial’ access, each pixel being accessed in order once per 
revolution of a disk or drum, or once per cycle through the shift-registers. This 
resulted in an average delay of 1/50 or 1/60 of a second to change each pixel, so 
that even minor changes required several seconds. This was not acceptable for 
interactive applications.

Nowadays, random access integrated memory circuits are used for frame 
buffers. These overcome the latency problem and provide for faster interaction. 
Since the introduction of raster-scan devices there has been a continuously 
increasing ratio of processing power to cost. This has made them more and more 
attractive and accessible to a larger number of users. Their increase in popularity 
has brought about an increase in the availability of graphics software and demand 
for higher resolution display devices. Computer graphics is now well established 
and is still expanding into new applications as well as extending existing ones.

Today’s raster devices also enable colour. Each element in the frame buffer 
is extended to contain the intensity value for each of the three primary colours 
(red, green and blue). These can be represented by a minimum of 8 bits; for 
example 3 bits are allocated for red, 3 for green and 2 for blue. There is no doubt 
that adding colour and shading greatly enhances realism in an image, enabling 
complex objects to be easily and unambiguously interpreted.

This thesis introduces a new method for producing acceptably realistic shaded 
images on a raster-scan display device. A hybrid of conventional rendering 
methods and ray tracing techniques is used to render unsculptured mechanical parts 
that are built using constructive solid geometry ( CSG ) methods ( see section
1.2 ). Special attention is paid to efficiency, both in storage of the internal 
model and rendering algorithms used to generate the image. The main aim is to 
strike the correct balance between realism and processing time for engineering-type 

applications.



12

X.2. Representations for Solid Modelling.

In computer graphics the rendering process starts from an internal model.
This internal model has to provide all that is necessary to describe a scene and 

for an image to be rendered. In a polyhedral representation, the model will 
contain the coordinates of vertices defining all the solids in the scene, and the 
topology showing how these vertices are connected (e. g. edges and faces). For 
a mathematical representation, it will contain some formulae for defining surface 
patches. For example, the surface of a sphere will be represented by a quadratic, 
and a Bezier surface patch will be represented by a parametric vector-valued 
function.

Geometric modelling is the term given to the actual construction of this 
internal model. There are currently three major types of internal model :

wire-frame model an object is represented by a 
collection of lines.

surface model an object is represented by a 
collection of surface elements.

solid model a complex object is represented by 
some consistent model of true 
volume.

One of the main objectives when modelling a scene is realism (or precision). 
The degree of realism is influenced by both the complexity of the internal model 
and the rendering algorithms applied. In general, a high degree of realism 
requires a complex internal model and sophisticated rendering algorithms that 
require a lot of processing time to generate an image.

One method of reducing the drawing time is to build a few internal models of 
the same object, each at different levels of detail [Clark 1976]. Models with 
lower levels of detail may then be used for quick generation of the image for 
interactive viewing, or when less detail is required such as when the object is 
viewed from a distance. Models with higher levels of detail are used for high-



13

quality image generation or close-up viewing.

The most important of these internal models is the solid model. Solid 
modelling systems for CAD/CAM have been under development since the late 
1960’s and are now beginning to enter the commercial market in force. They 
are becoming increasingly popular in civil and mechanical engineering, architecture 
and other applications that utilise spatial features. A distinguishable feature of 
such systems is the unambiguous representation of solids [Requicha 1980,

Requicha 1982]. Because solid modelling is so widely tried and tested, well 
understood and provides an unambiguous representation, it was decided to adopt 
this as the internal model for the work described in this thesis. There are six
well-known representations :

primitive instancing :

The concept of families of object types is introduced (e.g. families of 
blocks, prisms etc. ). An individual object within a family is called a 
primitive instance. These are defined by tuples of the form -

( family, a b c)

where family is a string identifying the ‘type’ and a, b and c are
parameters providing position and size information. The number of 
parameters is dependent on the family of objects involved.

Because the number of different families is unrestricted, it is
impossible to write general algorithms for computing properties of the solids 
represented. Each family must be treated as a special case. In particular, 
there is a lack of algorithms for combining instances of these primitives in 
order to build new and more complex objects.

cell decomposition :

Cells are represented by volume elements that have an arbitrary number 
of sides. These are sub-solids and are used to represent the volume as well 
as the surface. Cell decompositions are a generalisation of triangulations,



14

i. e. polyhedra may be triangulated into tetrahedra. However it is 
difficult for humans to decompose a curved solid.

spatial enumeration :

This is a special case of cell-decomposition. Space is partitioned by
a 3-dimensional grid, into volume elements (voxels). Each voxel is a 
cube. Solids are represented by the list of voxels that they occupy (see 
fig. 1 (a) ).

This representation is suitable for applications requiring box-like 
objects, and so is reasonably efficient in certain architectural applications. 
However, objects containing surface areas of high curvature require a 
tremendous amount of voxels, making this representation inefficient for 
representing most mechanical parts.

constructive solid geometry ( CSG ) :

Constructive Solid Geometry ( CSG ) methods represent complex 
solids by collections of simpler solids (or primitives). These are typically 
blocks, spheres, cylinders, cones and tori that are combined using the 
Boolean set operations union ‘ + difference ‘ - ’ and intersection 

‘ &

Internally these primitives and operands are stored as a tree structure, 
called a CSG tree. This is normally a binary tree that has the primitive 
solids stored at the external nodes (see fig. 1 (b) ). The internal nodes 
contain the sub-solids resulting in the Boolean operands being applied to the 
two branches/primitives beneath them in the tree. The root node contains
the complex solid being modelled. Certain classes of objects such as 
unsculptured mechanical parts can be easily created using the CSG 
representation.



fig. 1(a) Special class of cell-decomposition called spatial enumeration 
representation (SE-Rep).



%• 1(b) CSC  tree representation.

i t= 3 j
~  o
4-

oo

-f-

1
+

0 0 0



15

sweep representations

There are two types of sweep, rotational and translational. Rotational 
sweep is used for objects that have their symmetry preserved when rotated. 
The object is defined by a contour and an axis of rotation (see fig. 1 (c) ).

Translational sweep is used for objects that are invariant in one 
direction. The object is defined by a contour and a trajectory (see fig. 
J (d) ). The main disadvantage of this representation is the lack of 
algorithms available for computing the properties of the represented solids.

boundary representation (B-rep)

The boundary, or surface of a solid, is represented as unions of 
facets, with each facet typically being defined by its bounding edges and 
vertices (see fig. 1 (e) ). This representation is potentially capable of 
doing all that the CSG representation can do and more.

isoluminance contour representation :

The surface of a solid is divided into areas of constant intensity 
[Cottingham 1981, Conway 1988 (Appendix E)] (see fig 1(f)). At the 
rendering step, these areas are generated in depth order using the polygon- 
fill hardware that is available in most of the graphics devices currently 
available. It provides very realistic images which compare favourably with 
ray tracing (see section 1.3.1.2).

CSG and B-rep schemes are the best understood and currently the most 
important representation schemes for solids. There are some pure CSG systems 
such as SHAPES [Laning 1979] and earlier versions of SynthaVision [Goldstein 
1979] and TIPS [Okino 1973]. These pure systems evolved towards having 
an additional surface representation for primitives. Dual representation is used in 
some CSG systems such as PADL [Voelcker 1978] , GMSolid [Boyse 1982] 
and later versions of Synthavision and TIPS.

The additional representation is derived from the CSG representation. For 
example, in GMSolid each type of primitive solid is represented by an exemplary



fig. 1(c) Rotational Sweep.

fig. 1(d) Translational Sweep.



fig. 1(e) Boundary representation (B-Rep).



light source

fig. 1(f) Isoluminance Contour Model.



16

surface definition and a transformation matrix [Boyse 1982]. These are defined in 
a ‘local’ coordinate space, with one feature placed at the origin (e. g. sphere’s 
centre, cube’s comer) and lengths in unit distance (e. g. sphere’s radius, 
cylinder’s height and width). When a solid is being constmcted, the position 
and size of each primitive are provided and stored in a transformation matrix. This 
is used to transform the primitive type’s surface definition from the object space to 
the scene coordinate space.

Nowadays, numerous commercial solid modelling systems exist [Requicha 
1983]. It is often difficult to classify these systems into the simple categories 
above due to the lack of availability of technical descriptions of their internal 
organisations.

Because mechanical parts can be easily created from a small number of 
primitive types, the CSG representation was adopted for the present work. 
GMSolid’s method of having primitive templates and transformation matrices are 
used to compute the surface definitions. This is less error prone than using B- 
rep since much less geometrical input is required.

1.2.1. Alternative Representations of the Primitives.

Many ways are available for representing CSG primitives. This section 
describes two that are commonly used in current CSG systems, viz half-spaces 
and polyhedral approximation.

1.2.1.1. Primitives Represented by Half-Spaces.

Halfspaces can be used as the simplest solids at the leaf nodes of CSG-trees 
(e. g. Shapes, TIPS ). For example, a block is represented as the intersection
of six planar halfspaces. A planar half-space is the infinite plane defined by the

equation



17

ax + by + cz + d = 0

plus all the points on one side of the plane. Using halfspaces can lead to invalid 
CSG representations, so checks must be made to ensure that compositions of 
solids remain bounded.

1.2.JL2. Polyhedral Approximation of Primitive Solids.

Polyhedral approximations can be used to represent the surface of the 
primitives at the leaf nodes of the CSG-tree. The primitive solid’s surface is 
approximated by a collection of polygons. Vertices defining these polygons are 
normally defined in the Cartesian coordinate system with the x, y and z 
coordinates being sufficient to represent a 3-dimensional point.

This method of representation enables a smooth-shading technique (such as 
Gouraud or Phong, see section 1.3.2.2 ) to be used to restore the surface’s 
smooth appearance. To obtain this in regions of high curvature the surface must 
be approximated by hundreds or thousands of facets. Therefore the amount of data 
storage required for this method of representation is usually very large, but this is 
becoming less pertinent as computer technology progresses. Because of the vast 
amount of data required, it is extremely important that the geometrical and 
topological information is stored in the most efficient and easily accessible manner. 
This information must include all that is required for an unambiguous 
representation of the solid(s) in question.

There are several different ways of representing and storing this information. 
Polygons could be defined by their vertices and could be stored as individual 
entities. Tire topology could be restored by comparing vertices of polygons; 
adjacent polygons would have at least one edge (i. e. two vertices) in common. 
However, using such a representation geometric information is duplicated, with a 
vertex common to four polygons being stored in four different places. Also 
finding two adjacent polygons could prove quite computationally expensive.

Two storage stmctures that avoid any duplication of data are the Winged-Edge 
data structure (see below) and the Compressed Data Structure ( CDS )



18

[Cottingham 1985 (included as Appendix B), Cottingham 1987 (included as 
Appendix C)].

Baumgart’s Winged-Edge Data Structure.

A well-known general structure for polyhedral representation is 
Baumgart’s Winged-Edge data structure [Baumgart 1975]. This is 
used in the Design and in the Build-2 systems [Hillyard 1982]. It 
consists of four rings containing body, face, edge and vertex nodes.

Each ring can be linearly traversed if required. The geometry is 
stored in the vertex nodes. The colour and intensity information is 
stored in the face nodes. The topology, showing the relationships 
between faces, edges and vertices, is stored in the edge nodes in the 
fonn of ten pointers. Figure 2 shows eight of these pointers, the two 
not shown are the next and previous edge nodes in the ring. The 
body node contains pointers to the ‘first’ and ‘last’ nodes in the 
vertex, edge and face rings.

The structure requires sixteen routines for node creation and 
manipulation and nine accessing routines, though this is considerably 
reduced in the recent generalisation of Guibas and Stolfi [Guibas 
1985]. These routines enable the following access operations to be 
done efficiently -

- access all faces
- access all edges
- access all vertices
- access all edges belonging to a face
- access all edges meeting at a vertex
- access both faces meeting at an edge

It is a very powerful structure and can be used to represent 
virtually any polyhedron without duplication of data. However most of 
these access operations are not required when rendering an image. 
Because of its generality, it requires what seems an excessive amount 
of data to represent simple objects. For example, to represent a cube 
requires 1 body node, 6 face nodes, 8 vertex nodes, 12 edge nodes



fnext.faca Edje.

t  pt'e.v/. cCuJ.edcje

fig. 2 : Winged-Edge topology showing the various pointers associated with



19

and numerous pointers.

Vertices are the basic building blocks in approximating any surface by 
polygonal facets. Edges are defined by two vertices, facets are defined by edges 
and solids are defined by facets. The author has devised a simpler, more 
compact data structure which is less general than Baumgart’s but is suitable for 
representing the CSG primitives. This is outlined below.

The Compressed Data Structure.

Using the Compressed Data Structure ( CDS ) only vertices are 
actually stored and the topology is deduced from the order of storage.

The CDS consists of an array with each element containing the 
coordinates of four vertices that define a facet. This limits the scope of 
polyhedral approximations to those in which exactly four edges impinge 
on each vertex, apart possibly from a small number of ‘singularities’, 
i. e. vertices with other than four edges.

Representing a block using the CDS requires only a two 
element array since there are only eight vertices in the cube. The type 
block implies that there are connections between the two facets, the 
order of storage of the vertices within an element enables the correct 
connections to be made.

The polyhedral representation of primitive solids is adopted for the hybrid 
system described in this thesis. Because of its simplicity the CDS is used for 
storing the vertex information of the polygons. Fig. 3 shows how the typical 
( CSG ) primitives are stored using this data structure.



JNTet of j torus.

fig. 3 : Typical CSG Primitives and their corresponding CDS.



20

1.3. Rendering Techniques.

As computer graphics became established, research tended to concentrate on 
two major issues, namely improving realism and increasing performance. The 
two most common conventional techniques for achieving realism when generating a 
3-dimensional scene are hidden-line/hidden-surface removal and shading. These 
techniques help to convey the relative depth and shape of solid objects in the scene 
and are discussed in sections 1.3.1 and 1.3.2.

Among the most efficient hidden surface methods are those based on a scan- 
line approach. These are discussed in the following section.

1.3.1. Hidden-Surface Removal Methods.

The problem of removing hidden-lines/hidden-surfaces is one of the more 
difficult tasks in computer graphics [Rogers 1985]. Hidden-line/hidden-surface 
removal is necessary to avoid any ambiguity or confusion. Figure 4 (a) shows a 
wire-frame drawing of a cylinder with no hidden-line/hidden-surface removal. This 
could be interpreted as 4 (b) or 4 (c).

There are many different hidden-line/hidden-surface algorithms in existence, 
some providing solutions for specialised applications. Algorithms that are designed 
for real-time rendering of images, e. g. flight simulation, are completely 
different from those that have been designed for producing photograph-like images, 

e. g. in computer animation, which must also include reflections, refractions, 
transparency and shadows, and often require several hours to produce an image.

In general, hidden-line algorithms work in the object-space where the objects 
are defined to detennine the objects in the environment that are fully/partially 
visible. Hidden-surface algorithms often work in image-space where the objects 
are viewed (i. e. display screen) to determine what is visible at any particular 
position in the screen. The remainder of this section concentrates on hidden- 
surface methods since these are relevant to the application of generating the shaded 
images discussed in this thesis.



fig. 4(a) Wire-frame drawing of a cylinder with no hidden lines removed.

fig* 4(b) and (c) wire frame drawings of a cylinder with hidden lines re­
moved.



21

Several hidden-surface algorithms are designed solely for raster-scan display 
devices. These algorithms concentrate on setting the intensity values at pixels in 
order to provide an approximation to a scene. In this section intensity will be 
used to mean both brightness and colour.

All hidden-surface algorithms involve sorting surface areas into some order 
[Sutherland 1974] to enable the visible surface, at a particular screen position, to 
be found and displayed. These algorithms tend to differ only in the sorting 
methods used and the order that geometric information is sorted into. Most of 
the algorithms require surfaces to be split into planar polygons. A few are 
designed to handle other representations such as parametric surface patches or 
mathematically defined objects.

Hidden surface methods often employ coherence properties to increase 
efficiency. There are three well-known coherence properties -

scan-line coherence : The properties that raster images on
adjacent scan-lines are usually similar 
and adjacent pixels on the same scan-line 
are likely to have the same characteristics.

area coherence : The property that pixels lying within a
small region of the display screen tend to 
be filled by the image of the same polygon.



22

span coherence : The property that sequences of pixels on a
scan-line tend to be filled by the image of 
the same polygon. This is a 1-dimensional 
form of area coherence.

For efficiency, hidden-surface algorithms that generate the images of 
polygons by processing them one polygon at a time in an arbitrary order with 
respect to the screen’s pixel order use area coherence to generate the pixels lying 
within their boundaries (e. g. Wamock’s algorithm [Wamock 1969] and the z- 
buffer algorithm [Catmull 1975] ). Hidden-surface algorithms that generate the 
images of polygons by processing them several at a time in scan-line order, called 
scan-line algorithms, use span coherence or scan-line coherence (or both) to 
generate adjacent pixels on each scan-line. The earliest such method was 
proposed by Wylie et al [Wylie 1967].

The hybrid method presented in this thesis uses the scan-line approach and 
processes several polygons at a time generating pixels in left-to-right order, one 
scan-line at a time, taking advantage of span coherence to minimise the work in 
moving from one pixel to the next and scan-line coherence to minimise the work in 
passing from one scan-line to the next.

1.3.JL1. Scan-line Methods.

There are several scan-line hidden surface algorithms available a well-known 
one is Watkins’ spanning scan-line algorithm ( [Watkins 1970, Newman 1973, 
Rogers 1985] ). This algorithm generates pixels in scan-line order and works 
with vertices in screen coordinates taking advantage of scan-line coherence and 
span coherence methods. For efficiency the data is prepared by a pre-processing 

step as follows -



23

determine the maximum y-value for each polygon in the scene, 
order polygons in decreasing maximum y-values. 
for each polygon compute and store

- the number of scan-lines intersected by the polygon.
- a list of the polygon’s edges.
- the four coefficients of the plane equation (ax + by + cz = d).
- the polygon’s rendering attributes.

The following spanning scan-line algorithm then processes the prepared data -

for  every scan-line do 
begin
create/update active polygon list by examining ordered

polygons;
create/update active edge list by examining active polygon list; 
create/update span list maintaining increasing x order; 
process active edge list; 
end;

Each node in the active edge list contains the following information about each 
edge intersection -

1. the x coordinate at the intersection point.
2. the difference in x between intersection points 

on two adjacent scan-lines.
3. the number of scan-lines intersected by the edge.
4. an identifier for the polygon.
5. a flag to indicate if the polygon is active on 

current scan-line.

Processing the active edge list entails splitting the scan-line into segments (or 
spans) where the intersection points are located (see fig. 5). This reduces the
hidden surface problem to the selection of the visible surface in each span of the
scan-line. There are three kinds of spans possible -



2

■ X r

fig. 5 : Scan-line divided into spans according to intersection points.



24

1. empty span (span 1 of fig. 5 ).

2. span containing one surface (spans 2 and 4 of fig. 5 ).
3. span containing more than one surface (span 3 of fig. 5 ).

This algorithm takes advantage of the scan-line and span coherence properties 
that are described in section 1.3.1. Chapter 4 discusses how the algorithm’s 
concepts are adapted for the hybrid method and used at both the primitive level and 
the polygon level.

1.3.JL2. Ray Tracing Techniques.

Ray tracing is to mathematically cast a ray from the viewpoint through every 
pixel in the screen. Hidden-surface removal is achieved by finding the first 
surface intersected by the ray. This provides the visible surface at the pixel 
corresponding to the ray [Atherton 1983]. There is no need to clip surfaces that 
partially/wholly lie outside the viewing window since no ray intersects such 
surfaces.

Without doubt, ray tracing (or casting) techniques are capable of producing 
the most realistic computer generated images currently attainable in computer 
graphics. Most of the problems that occur using conventional illumination 
models can be solved very easily. Accurate lighting models handling optical 
effects such as shadowing, reflections and refraction for transparent objects can be 
achieved in a simple and elegant way [Wijk 1984a]. For the current work ray
tracing is used solely for hidden-surface elimination.

Ray tracing is relatively simple to program in comparison to other graphics 
algorithms [Kajiya 1983], but generally requires a large amount of computing 
time. This is mainly due to mapping the pixels onto the scene. The following 
ray tracing algorithm shows how this is done -



25

for  every pixel in screen do 
begin
cast ray through pixel; 
find first surface hit by ray; 
calculate intensity value; 
end

Computation time required can be kept to a minimum by using a simple 
illumination model whenever a high degree of realism is not required, or by using 
special hardware enabling parallel processing (see section 2.1). However the 
time required to find the nearest surface intersected could still be considerable.

The major part of any ray tracing algorithm is the ray-surface intersection 
calculation. This is nonnally done in one of two ways depending on the surface 
representation. If the surface is approximated by a collection of polygonal facets 
the ray-surface intersection test is done for every facet. The facet normals are 
used to distinguish the enter and exit points of the ray.

If the surface is defined analytically (e. g. quadric surfaces) points on the 
surface are computed directly by solving the equation for each ray, i. e. the roots 
supplying the intersection points. The simplest way to compute these points is to 
transfonn rays to local coordinate space before performing the ray-surface 
intersection tests. The alternative is to transform the equation.

After the ray-surface intersections have been found, the rays are decomposed 
into a collection of inside-the-solid and outside-the-solid segments [Myers 1982]. 
This is called classifying a ray. It can be determined from these segments the 
surface ‘visible’ at the associated screen pixel.

Ray tracing algorithms have been proposed for handling a wide class of 
surface representations. These include polyhedra and simple analytic surfaces 
[Roth 1982], general algebraic surfaces [Blinn 1982, Hanrahan 1983 R 
parametric surfaces such as rational bivariate polynomials [Kajiya 19821 and 

Steiner patches [Sederberg 1984], surfaces with superimposed density distribution 
[Kajiya 1984], and biquadratic patches [Steinberg 1984].

It has been recognised that ray tracing is inefficient because it does not take 
advantage of any coherence properties [Atherton 1983]. This thesis introduces a



26

method of incorporating scan-line coherence and span coherence (discussed in 
chapter 4) into ray tracing. To enable this the order of pixel generation is left- 
to-right in scan-line order.

X.3.1.3. Fast Access to Required Data.

Finding the visible polygons from a large number of polygons can be very 
time consuming. Several ways of finding these have been devised to increase 
efficiency. One of these involves the partitioning of space [Woodwark 1982]. A 
model is recursively divided into sub-models according to spatial position until each 
sub-model reaches a certain level of simplicity. The processing starts with the 
sub-models positioned near the viewplane. The results are stored in a quad tree
and provide for hidden-surface elimination; if all the quads corresponding to the
front face of a sub-model have already been generated then that sub-model can be 
discarded without any further computation.

Another method uses a spatial index to link data to partitions [Tamminen 
1984]. Tamminen converts a complex polyhedron into an octree-like block 
model and sequentially retrieves the blocks intersected by a ray. These blocks 
are ordered by distance to efficiendy search for the visible face by location.

The current work introduces another method that operates in image space and 
provides access to data at two different levels. At the higher level, bounding 
rectangles are used for locating primitives that may be visible. At the lower 
level, paths through the data structure indicate polygons within each primitive that 
are visible. If only one primitive is associated with an area the front-facing 
polygons are generated. For areas associated with more than one primitive, ray 
tracing is used to find the polygon visible at a particular point. This method is 
discussed in more detail in chapter 4.



27

1.3.2. Shading and Illumination.

After the hidden-surface algorithm has found a visible surface, the intensity 
value has to be computed. The characteristics of the surface, its position and 
orientation to the viewpoint and the light source(s) must be considered. The 
intensity value will, according to the physics of light, have several different 
components. These are dealt with in the following sub-sections.

I.3.2.I. Illumination Models.

Diffuse Reflection and Ambient Light.

Every object in a scene reflects light depending on the reflectance property of 
its surface. Extremely dull surfaces will scatter light equally in all directions 
irrespective of the viewing direction. This is called diffuse reflection [Foley 
1982].

The amount of light reflected from such surfaces can be computed using 
Lambert’s cosine law:

I d = l pkdcos(0) (a)

where Id is the intensity of the diffuse illumination, I p is the intensity of the

point light source, kd is the level of dullness in the range 0 to 1, and 0 is the

angle between the light direction E and the surface normal N. Cos(9) can
also be written as -

E • N



28

where E and N have been normalised (see fig. 6).

In most real environments, parts of objects lying in the shade are not totally 
unlit. This is owing to ambient light which is propagated by multiple reflections 
of light from the many surfaces present in the environment. Adding the
approximate ambient light term I aka to equation (a) gives :

I = I aka + Ipkd(£  • N) (b)

where Ia is the intensity of the ambient light and k a is the amount of ambient 

light reflected from the object’s surface.

Suppose two objects of the same colour and dullness factor overlap on the 
screen, and that they have the same surface nonnal. Using equation (b) they 
would both be given the same shading and would be indistinguishable from each 
other, therefore distance must also be considered in the illumination model. The 
energy of light decreases as the inverse square of the distance that the light travels 
from its source to the object’s surface and onto the viewpoint. If D is this 
distance, then equation (b) is updated to :

I = Iaka + Ipkd(E ‘ N)/D2 (c)

However, this does not provide realistic shading when the viewpoint is very 
far- away or very near to a surface. When the light source is an infinite distance 
away, solids appear to be evenly shaded with ambient light. When it is very 
near, surfaces sharing the same angle 9 can have considerably different shades. 

These differences in shade can be overcome by replacing D" by D + k, where 
D is the distance between the perspective viewpoint and the surface, and k is a 
constant. This changes equation (c) to :

I = Iaka + Ipkd (E • N) / (D+k) (d)



Sorfa.ce.

fig. 6 : Incident light L and surface normal N.



29

If a coloured image is required then equation (d) must be used to compute the 
amount of diffuse reflection for each of the colour components of the intensity. For 
an RGB video monitor the colour components are red, green and blue. The 
parameters for intensity and reflectivity then become three-element vectors, one for 
each colour component. The amount of ambient light is uniform for any colour, 
since it is always the same colour as the point source.

Specular Reflection.

Specular reflection occurs on any shiny surface. An area of high specular 
reflection is often called a highlight. The colour of the highlight is always the 
same colour as the light source, or if reflected from another surface the colour of 
the incident light.

Specular reflection occurs only when the viewing direction is roughly 

coincident with the direction of reflection K (see fig. 7), (i. e. angle a  = 0). For
surfaces that are perfect reflectors, such as mirrors, the viewing direction must be 
exactly coincident with the reflection direction. Most surfaces are not perfect 
reflectors: for them the intensity of the reflected light is at its highest level
whenever the two directions are exactly coincident. This intensity decreases 
rapidly as the angle a  increases. Phong Bui-Tuong approximates this rapid 

decrease by cosna, where typically 1 < n < 200 depending on the surface [Bui- 

Tuong 1975, Foley 1982]. For perfect reflectors n would be infinite. Cosna  
provides a reasonable approximation for specular reflection but is based entirely on 
experimental observation.

The amount of light reflected depends on the angle of incidence 0. Let 0(0) 
be the fraction of incident light that is specularly reflected, then equation (d) is 
written :

I = Iaka + I pkd(E • N)/(D+k) + Ipf2( 0) cos” ce/(D+k) (e)

I = ambient + diffuse + specular.



<x

fig. 7 : Specular reflection.



30

Torrance and Sparrow present a theoretically-based model for reflected light 
[Torrance 1967]. This provides very realistic results and was used by Blinn 
[Blinn 1977] and Cook and Torrance [Cook 1982]. Using this model the 

surface is considered to be a collection of very small facets, each one being a 
perfect reflector (see fig. 8). Only facets that reflect light towards the viewer are 
considered (i. e. a, c, e, g and i). The geometry of the facets and the light
direction determine the intensity and the direction of the specular reflection. 
Experiments have shown that there is a strong correlation between the actual 
reflection and the reflection provided by this model.

Shading algorithms aimed at realism must be able to simulate reflectance, 
specular reflectance, shadowing and diffuse illumination. Some applications also 
require simulation of surface texture and transparency.

Rendering mechanical parts does not require a high degree of realism, so 
texture and transparency are not considered further here. It is easily seen by 
comparing equations (d) and (e) that allowing for specular reflection greatly 
increases the workload and for this reason it will be omitted too. For this 
particular application it is assumed that the viewpoint will never be positioned very 
near or very far from the solid being modelled, therefore distance will also be 
ignored (compare equation (b) with (c) and (d) ). Because parts of the solids 
are likely to lie in shadow, ambient light cannot be ignored. Therefore equation
(b) is adopted to provide the minimum amount of realism required. The 
contribution of light reflected off other objects in the environment is ignored to 
avoid having to build an intersection tree (see section 2.1).

Applying even the simplest of these illumination models (see equation (a) ) 
requires the calculation of an angle plus two multiplications. Smooth shading 
techniques (i. e. Gouraud shading) have been devised to minimise the cost of 
illumination calculations for surfaces that are approximated by polyhedra. Only 
points lying at the vertices have their intensity values calculated by the illumination 
model. The other intensity values are deduced using linear interpolation. This 
is much faster than numerous calls to the illumination model. These techniques

are described in the next section.



Vo v ieu  t'-vcj
p o  itV<oiA

Actual Sorfece.

fig. 8 : ligh t rays reflecting from surface considered as a collection of small 
perfectly-reflecting surfaces.



31

I.3.2.2. Smooth Shading Techniques for Polyhedral Models.

Smooth shading techniques can be adopted to generate the images of objects 
that have their surfaces represented by planar polygons. These techniques use the 
illumination values at each vertex to compute the shades at pixels contained inside 
the polygon. The simplest of these techniques was introduced by Gouraud and 
used linear interpolation of colour and intensity values to eliminate intensity 
discontinuities and thus generate the appearance of smoothly curved 
surfaces [Gouraud 1971].

Using this technique surface normals are calculated for each polygon’s surface.
The normals at each vertex are computed by taking the average of the surface 

normals of all the polygonal facets that contain the vertex. These are used, with 
the desired illumination model, to compute the colour and intensity values at these 
vertices. The values at points lying inside the polygon and along the edges are 
deduced using linear interpolation.

In figure 9, the shading intensity at point L is determined by interpolating 
linearly between intensities at A and C. Similarly the intensity at R is 
determined by intensities at A and F. The intensity at point P can then be 
determined by interpolating linearly between intensities at L and R.

If colour is required the intensity value for each of the three primaries is 
calculated. The interpolation is done on each of these intensities individually.

However, this technique can tend to give a ‘buzzing bees’ effect when used 
for an animated sequence. This effect can make the surface appear to develop 
some fonn of moving microscopic life. The reason for this phenomenon is that 
the interpolation basis is fixed to the screen’s surface rather than to points on the 
object’s surface. This affects highlights too, with the shapes of highlighted 
areas being strongly influenced by the shape of the polygon rather than the surface 
orientation. Highlights lying within polygons, not incident on any vertex may be 
omitted altogether.

A smooth shading technique introduced by Phong tried to eliminate these 
problems by interpolating ‘surface’ normal vectors instead of shading intensities 
(see fig. 10) [Newman 1979]. A reflection model is applied to determine the 
colour and intensity values at each pixel as a function of the direction of the surface



acan l in e

D

fig. 9 : Gouraud’s 'smooth shading’ technique.



scan  l in e

fig. 10 : Phong’s ‘smooth shading’ technique.



32

normal. As with Gouraud’s method the surface and vertex normals are 
computed. The vertex normals are used to interpolate the normals linearly 
between points lying inside the polygon and along the edges. Phong hoped to 
avoid the ‘buzzing bees’ effect by fixing the interpolation basis to the object’s 
surface, however in certain situations this effect can be worse than when using 
Gouraud’s method [Duff 1983]. Rotating an object and its light source in the 
image plane can cause unexpected results using either Gouraud or Phong shading. 
The shapes of the highlighted areas are more realistic using Phong’s rather than 
Gouraud’s method.

Phong’s smooth shading technique has played an important part in the 
evolution of realistic image synthesis methods [Hall 1983]. The main 
disadvantage of using Phong’s technique is the extra computation time involved in 
computing the three normal components at each point and in calling the shading 
model much more frequently than when using Gouraud’s techniques.

Using any smooth shading technique, care must be taken not to smooth shade 
‘true’ edges. For example, computing the normal of a cube’s vertex by 
averaging the normals at the surfaces of all polygons containing that vertex, will 
yield spurious results. A ‘true’ edge must therefore be treated as a special case 
and the vertex given the same nonnal as the polygon being processed.

When rendering mechanical parts, the image rendered will be a ‘still’ image 
rather than a frame in an animated sequence, therefore the ‘buzzing bees’ effect 
produced by Gouraud’s techniques is never envisaged. Specular reflection is being 
ignored so no highlighted areas will exist which was another disadvantage of 
Gouraud’s method. Therefore Gouraud’s techniques were adapted for efficiency 

in the new method.



33

I.3.2.3. Anti-Aliasing.

Aliasing is a common problem with images generated on raster display 
devices. The appearance of aliasing effects is due to attempting to map 
continuous lines or edges onto a raster-scan device which is discrete. It is an 
undesirable effect of point sampling techniques. Slithers of objects that are smaller 
than the space between adjacent sampling points may be overlooked. Linear or 
smoothly curved edges may appear jagged, giving a staircase effect.

The main problem with anti-aliasing for ray-tracing is that there is not enough 
infonnation associated with each pixel [Fujimoto 1986]. The ray-object intersection 
point enables the samplng of only one point in the centre of the pixel.

There are many approaches to reducing the effects of aliasing [Crow 1981]. 
These follow two fundamental techniques. The first is to increase the sampling 
rate to a higher resolution than the display device; averaging or filtering methods 
are used to reduce these samples before displaying. The second approach is to treat 
a pixel as a finite area rather than a point, which is also equivalent to prefiltering 

the image.

The first approach is used for ray-tracing which is normally done using 
adaptive subdivision of pixels lying near large changes of intensity or near small 

objects.

For the purposes of the present work, the aliasing problem is disregarded.



CHAPTER 2. 

RAY TRACING.



35

2.1. History.

Ray tracing, as applied to computer graphics, was introduced by Appel in 
1967 [Appel 1967]. His paper described a scheme for the determination of 
visibility in a wire-frame image. A year later [Appel 1968] another paper was 
published describing experiments done in the automatic shading of line drawings, 
using a line-drawing display device. The possibility was recognised that ‘machine 
generated photographs’ might replace line drawings as the principal method of 
displaying information in engineering and architecture applications. However the 
techniques used for generating such images would have to be competitive with 
those currently in use for line drawings.

One of the many techniques Appel tested was ray tracing. His technique for 
point by point shading of an object (see fig. 11 (a) and (b) ) was as follows-

1. Calculate minimum bounding boxes for the object in picture
plane (screen) coordinates.

2. Generate raster of spots within this box, and compute the
equation of the lines between each spot and the viewing position.

3. Project these lines into the scene and determine the first
intersection point.

4. Determine the intensity value for this point and mark with
appropriate symbol (e. g. . ’, + or * ’ ).

However this method was found to require several thousand tunes more 

calculation time than conventional wire-frame drawing.

As with other rendering techniques different methods of tracing rays have 
evolved. These tend to differ in the direction that the rays are traced. and 
whether the viewing position lies in front or behind the picture plane.

In 1971 Goldstein and Nagel [Goldstein 1971] used ray tracing in an 
attempt to simulate the physical process of vision (i. e. how the eye s retina 
reacts to light being reflected from a scene). This was implemented on a raster- 

scan display device.



Bounding 
Box ,

P ic tu r e
Plane

x

fig. 11(a) : Point by  Point Shading.

fig. 11(b) : Result of Point by Point Shading.



36

A pinhole camera was used for the model on which to base their visual 
simulation technique. The camera’s film plane was analogous to the display 
device’s screen and the pinhole to the focal point (see fig. 12). The film plane 
was subdivided into a two dimensional array of picture elements (pixels). The 
size of this array depended on the resolution required by the final results. The
method was to cast a ray, from each pixel, through the focal point and into the
object space. Ray-surface intersection tests were made to determine the first 
surface hit by the ray. The intensity value was then calculated by tracing a ray 
from this point to the light source.

It was noted that rays could also be traced in the opposite direction, starting at 
the light source, but in practice this approach would take longer to compute. Only 
a few of these rays would actually pass through the image plane and onto the 
viewer. An argument against this hypothesis is that if light rays were traced, and 
the light source was located at a different position from the view point, then the 
surface areas of the objects which were in shadow would never be hit by rays. 
Therefore such parts would never be drawn, being replaced by background 
colour/intensity in the final image rather than being lit by diffuse illumination.

This visual simulation technique introduced by Goldstein and Nagel was the 
impetus for most of the research into ray tracing techniques that followed. The
pinhole camera model became the standard model in image processing [Roth
1982].

In 1979 Kay [Kay 1979] added further realism to the ray tracing modeller 
by attempting to solve the global illumination problem. It was recognised that 
colour and intensity at any point on a surface was partially dependent on the 
location, reflectance and additional characteristics of the other objects in the 
surrounding environment. Therefore a true image could only be generated by 
tracing each ray through the environment and computing the cumulative results 
(see fig. 13).

Rays were traced from the viewing position through each pixel and on through 
the scene. When a ray intersected an object the reflected ray was calculated. A 
hypothetical viewing position was then created at the intersection point and the 
viewing direction was made equivalent to the reflection direction (see fig. 14).

This process was recursively repeated. Accumulating these results was
achieved using an intersection tree for each ray. This intersection tree was a



Film Plane

I
P in h o le

fig. 12 : Pinhole Camera Model.



37

binary tree with all nodes except the root storing surfaces intersected by the ray, the 
root corresponded to the initial viewing position. The final pixel intensity value 
was determined by traversing the tree and computing the intensity contribution of 
each branch according to the reflection model used.

Kay added further reasons for tracing sight rays rather than light rays. These 
were -

1. The guarantee that each pixel would have an intensity value.

2. At lower levels of the tree, it may be possible to decrease the
number of rays required as these rays get further away. This would 
be impossible to do if the light rays were traced.

3. Multiple light sources only require one sight ray tree, but if
light rays were traced, these would require one tree for each light 
source.

4. The real shape and size of a light source can be correctly
modelled using a sight ray system. Only point light sources can 
be modelled if light rays are traced.

Whitted [Whitted 1980] also traced rays from the viewing position to the 
surfaces through the environment and onto the light sources. His shading 
algorithm was the first to accurately simulate ‘true’ reflection, shadows and 
refraction as well as the effects normally already simulated by conventional shaders. 
Simulating ‘true’ reflection meant that objects not directly visible to the viewer 
could be visible through mirrored reflections in other objects. This would be 
impossible to achieve using conventional hidden-surface elimination techniques. He 
generated very realistic effects and some astonishing images [Roth 1982].

In 1981 Nelson Max [Max 1981] used ray tracing to render a natural scene 
containing islands, ocean waves and sky. Rays were reflected by the ocean and 
checked to detennine whether they hit any other object on their way to the sky.

Roth [Roth 1982] described a method of ray tracing objects represented by 
CSG trees (see section 1.2). Roth’s aim was to achieve fast image generation



fig. 13 : Sight rays being traced through the environment.

rv

i n t e n s i t y  returned  
to  v iew er

fig. 14 : Components of light reaching the viewer from point A.



38

for interactive modelling rather than realism. His paper was the impetus for a 
major part of this research and is discussed in more detail in section 2.3 and 
chapter 3.

In 1983 Hall and Greenberg [Hall 1983] added a few improvements to 
the illumination model introduced by Whitted in 1980. These improvements
included a hybrid reflection model, a spectral sampling method, the ability to
define the position, size and shape of light sources, and adaptive depths of 
intersection trees.

Ray tracing was incorporated with the Cook and Torrance [Cook 1982] 
illumination model (see section 1.3.2.1) to generate a high quality image
[Bouville 1984]. This illumination model is based on a theoretical analysis of 
light reflection. It undoubtedly provided the best results that had ever been 
obtained to date.

In 1984 Cook [Cook 1984] introduced motion blur, depth of field, 
penumbras, translucency and fuzzy reflections into ray tracing methods. This was 
achieved by distributing the directions of the rays according to the analytic 
functions they sampled.

A method of ray tracing a new class of objects was introduced by
J. van Wijk [Wijk 1984b]. These objects were defined by sweeping spheres of 
varying radii along a 3-dimensional trajectory. The basic problem was that of 
ray-surface intersection. J. van Wijk also introduced another new class of 
objects defined by sweeping planar cubic splines [Wijk 1984c].

Also in 1984, H. Weghorst, G. Hooper and D. Greenberg [Weghorst 1984] 
introduced a selection of bounding volumes aimed at reducing the computing time 
of the ray-intersection test. The paper discusses howr to detennine optimal 
bounding volumes. The characteristics looked at include the cost of intersecting 
the volume, the item complexity and the projected void areas.

In 1985, D. Toth [Toth 1985] extended the use of ray tracing to the 
rendering of surfaces which could not be generated using existing methods. He 
solved the ray-surface intersection directly using multivariate Newton iteration.

Because rays were processed individually, computation time could be 
minimised by using special hardware to enable several rays to be processed 
simultaneously. As far back as 1979 D.S. Kay [Kay 1979] suggested



39

spreading the load of ray tracing between a large number of small processors. This 
is possible when no coherence properties are utilised and each sight ray is traced 
independently of its neighbours.

M. Dippe and J. Swensen [Dippe 1984] introduced an algorithm which 
adaptively subdivided a scene into sub-regions that had approximately the same 
unifonn load. The algorithm was mapped onto independent computers, each 
communicating with a few neighbours.

A.L. Thomas [Thomas 1984] describes how specialised hardware and the 
development of VLSI circuits may be used to speed up ray tracing. Primitive 
operations were identified and implemented in hardware.

The recent introduction of machines such as INMOS transputers for parallel 
processing is likely to have a considerable impact on computer graphics in the near 
future. A transputer is a VLSI component consisting of a computer on a chip 
containing a processor, memory and communication links for connection to other 
transputers [Walker 1985]. A network of these can operate concurrently.

Ray tracing systems cover a wide range of applications, one of which is solid 
modelling. One of the most famous of these systems is the SynthaVision system 
[Goldstein 1979, Sorensen 1982, Kinnucan 1983], which uses the CSG 
representation as the internal model. This was developed by Mathematical 
Applications Group Inc. ( MAGI ). Using this system the Walt Disney 
animators built props and scenes for use in the sci-fi movie TRON. Complex 
objects are modelled by combining primitive solids (see section 1.2). This 

system has 18 different types to choose from.

Ray tracing using the CSG representation is discussed in the next section.



40

2.2. Using the CSG Representation.

Using conventional rendering techniques, CSG-trees are traversed and pairs of 
objects combined using the set of Boolean operands. This entails computing new 
boundaries for the intersecting facets of the two objects being joined. There are 
many possible methods of achieving this. One simple approach introduced by 
Yamaguchi and Tokieda [Yamaguchi 1984] was to use triangulation. This 
simplified finding the intersection points; triangles are planar and therefore only one 
line of intersection exists.

Ray tracing avoids recomputing boundaries by finding the visible surface at 
each pixel. A major part of the workload in ray tracing is finding the ray-surface 
intersection points to compute this surface. Computing the intersection points for 
a single primitive is much simpler than computing them for a complex solid.

Therefore finding the intersection points usually involves searching the CSG 
tree for primitives intersected by the ray. When an intersection is found the enter 
and exit points are stored. Using a binary tree structure for the CSG-tree, this 
classification propagates through the internal nodes to the root (see fig. 15). The 
Boolean operator is used to ‘combine’ the enter and exit points of the left and 
right primitives/sub-solids in the tree. This method, or similar, is used by the 

SynthaVision, GMSolid, PADL-1 and -2 systems.

Alternative methods to traversing the CSG tree for each ray can be used if 
the CSG tree representation is evaluated i. e. is converted from a ‘composite 
object’ representation into a ‘single object’ representation [Jansen 1985]. If 
using a polyhedral approximation, this is achieved by intersecting the polygons 

and merging them into a new model.



fig. 15 : Classifying a ray.



41

2.3. Overview of Roth’s Paper.

Roth used the ray tracing methods described above. Points on the 

primitives surfaces were generated directly by the ray-surface intersection points. 
Ray-primitive intersection tests were done in the local coordinate space where the 
primitives were defined analytically. The rays were transformed using the 
screen-to-local transformation matrix of the primitive concerned. The ray-surface 
intersection calculation was then reduced to a normalised form.

Three coordinate systems were used to accomplish this. These were -

local coordinate system.

As with some conventional CSG systems (e. g. GMSolid), 
primitive objects were defined in their own local coordinate system. An 
analytic surface definition exists for each primitive type; the characteristics 
were the same for any number of solids of the same type. Whenever a 
new primitive solid was created, its size and position were used to create a 
scene-to-local transformation.

global coordinate system

Objects in the scene were defined in the global (or scene) coordinate 
system. When an object changed its position or size, changes occurred 
only in the global coordinate system. The definition of the primitive 
object remained unchanged in the local coordinate system. The scene-to- 
local transformation matrix was updated to reflect the change.

screen coordinate system

The third coordinate system was the device screen coordinate system. 
This was linked to the scene coordinate system by the screen-to-scene 

transformation matrix.



42

A reduction in computation time was achieved by combining the screen-to- 
scene transformation and the scene-to-local transformation and storing the resultant 
screen-to-local transformation. This required multiplying the two matrices and 
storing the result for each primitive, but halved the number of transformations that 
the rays had to undergo. There is nonnally a far greater number of rays than there 
are primitives.

Rays were classified by finding the ray-surface intersection points for each 
primitive in the scene. These were then combined as before. Roth suggests
that the combine operation should be done in three steps -

1. Compute the ‘inside’ and ‘outside’ segments from both 
the left and right sub-trees in sorted order. This forms
a list of in-and-out segments, some of which may overlap.

2. Re-class segments as inside or outside according to the Boolean 
operator used in the combine.

3. Merge overlapping segments together into one segment.

However Roth assumed at step 3 that different primitive surfaces had the same 
photometric information, this may not be so. For example, intersecting a red
cube and a blue sphere what colour would the segment containing the two newly

merged segments adopt.

Ray tracing CSG-trees using Roth’s methods is very time-consuming. 

Consider generating an image on a screen of size p x p pixels, using a 

CSG tree containing q primitives. This requires -



43

1- (l°g2 q ~ l)p 2 (q > 1) recursive procedure calls.

2. (q -  l)p 2 classification combines.

3- qp2 ray direction calculations

4. qp2a ray-surface intersection tests (where a is 

the average number of surfaces per primitive).

Typically p2 will be > i  million.

Roth suggested the introduction of box enclosures for improving efficiency 
[Roth 1982]. These box enclosures were cuboids that were defined by six 
numbers; the minimum and maximum x, y and z-coordinates. The x and y 
values in screen coordinates defined a rectangular screen area that enclosed the 
image of the solid/sub-solid and the z values in local coordinates provided the 
depth bounds.

To enable these box enclosures to be computed with minimal effort, a 
bounding cuboid in local coordinates for each primitive type was pre-defined and 
stored with the primitive type’s characteristics. The box enclosures in scene 
coordinates were easier to compute if local-to-scene transformation matrices were 
available. Therefore the inverse of the scene-to-local transformation matrices 
were computed and stored for each of the primitives. The box enclosure for a 
primitive was computed by transforming the eight vertices of the primitive type’s 
cuboid into screen coordinates using the primitive’s local-to-screen transformation 
matrix. The minimum and maximum x and y values of the projected points 
were stored, along with the minimum and maximum z values of the unprojected 
points. With the exception of the cube primitive, it was more efficient to transform 
these vertices than it was to find the maximum and minimum x, y and z 

values of the vertices defining the surface.

The enclosures were computed and stored for every node in the CSG tree. 

Prior to the drawing step, the tree was traversed and the box enclosures computed 

at the primitive (external) nodes. These were then combined using the
Boolean operators to provide boxes at internal nodes. For a tree containing q 

primitives these combinations required 6{q - 1) comparisons.

At the ray classification step, the tree was searched from the top downwards, 
directed by the box enclosures, for branches that were likely to contain visible



44

primitives. If the pixel that a ray passed through did not lie within the box 
enclosure at a node then that node and its left and right branches in the tree were 
ignored. It is easily seen how this reduced all 4 of the requirements listed above. 
In particular, if all the boxes enclosed a fraction A (A < 1) of the screen’s pixels 
then a maximum of A(log2<? - l)p2 (q>l) recursive procedure calls may be 
required to process the pixels lying within primitives’ box enclosures. The

search for visible primitives at the remaining (1 - A)p2 pixels terminates before 
reaching the bottom of the tree.

All four ray tracing requirements, listed above, depended on the spatial 
distribution of the primitives in the tree. Requirements 1 and 2 depended on 
the number of nodes that were visited to classify the rays. Requirements 3 and 4 
depended on the number of positive ray-in-box tests. Therefore using box 
enclosures, for maximum efficiency the external nodes in the tree had to be 
ordered in such a way that the box enclosures at internal nodes were as small as 
possible.

Requirements 1 and 2 depended on tree organisation. In general fewer 
nodes need to be visited in a well-balanced tree than in a badly-balanced tree 
which, in the worst case, is a linear list. Therefore the tree had also to be 
balanced. The definition of a completely balanced tree is that there must be at 
most a difference of one between the number of nodes at the left-subtree as there is 
at the right-subtree, irrespective of the position of the node in the tree.

Both ordering and balancing the tree kept the number of recursive calls 
required to a minimum. These calls included the additional pixel-in-rectangle 

test.

The additional requirements needed to implement box enclosures in a binary 

CSG tree containing q primitives were -

1. Zq local-to-scene transformations to get primitives’

depth values.
2. 8q scene-to-screen transformations to get primitives’

screen rectangles.
3. 6( q - 1) comparisons to compute boxes at internal nodes.

The next chapter considers Roth’s methods and suggests improvements that 

can be made.



CHAPTER 3.

CONSIDERATION OF ROTH’S METHOD OF RAY TRACING.



46

3.1. Improving the Efficiency of Roth’s Method of Ray Tracing.

This section introduces proposals for improving the efficiency of the method 
used at the ray creation step described in Roth’s paper. These are delaying the 
computation of a ray s direction until required and deducing rays using linear 
interpolation.

Using Roth s ray tracing methods [Roth 1982] for modelling solids, the 
following restrictions are made -

1. The display screen is defined as being the x-y plane 
centred at the origin in the world coordinate system.

2. The viewing position is placed along the negative z-axis, 
in the world coordinate system.

3. The visible solids are positioned in the direction of 
the positive z-axis.

These restrictions ensure that rays are evenly distributed in the primitives’ own 
local coordinate system where the primitive objects are defined.

At the ray tracing step, rays are cast from the viewing position through every 
pixel in order left to right, top to bottom. A ray is defined by its screen
position (i. e. the pixel it passes through) and direction, which are stored in 
homogeneous coordinates. Computing a ray’s direction requires three

subtractions.

For a screen size of p  x p  pixels, the ray creation step would require - 

3/72 subtractions (a)

Efficiency can be improved at this step by delaying the computation of the 
ray’s direction vector until it is actually required, i. e. the search has permeated 
down to a primitive node and the result of the pixel-in-rectangle test is positive. 
Only then is the direction vector computed. In general, using this method most 
of the direction vectors for rays passing through pixels that will be assigned



47

background intensity are not computed. The saving at this step is proportional 
to the area of the screen that all the primitives’ box enclosures do not cover.

Roth transforms the ray into the local coordinate system for a primitive. Since 
the transformation matrix is a 4 x 4  array, the usual matrix multiplication would 

require 32 multiplications and 24 additions to transform both the starting 
position and the direction vector. For a primitive with a box enclosure covering / x 
/ pixels and full resolution would require -

32/ multiplications and 2412 additions (b)

Roth suggests increasing efficiency by omitting multiplication by 0 or 1 and 
addition of 0. The last column of the transformation matrix is of the form -

" o "

0
0

where #  will be 1 assuming no dilatation is required. The transformation of the 
ray’s starting position is of the form -

[x y 0 1]

therefore only 6 multiplications and 6 additions are necessary. The transformation 

of the ray’s direction is of the form

[x y z 0]

and so requires 9 multiplications and 6 additions. The full ray transformation for 

a primitive with a box enclosure as above now requires -

1512 multiplications + 12/2 additions (c)

Efficiency can be improved further by using linear interpolation to deduce rays 
in the local coordinate space. Whenever a primitive’s parameters are input, the 
4 x 4  transformation matrix and the box enclosure are computed. The increments



48

required to deduce rays can then be computed. These would have to be re­
computed if the viewing position changed.

To deduce a ray, only three of the four rays passing through the comer pixels 
of a box enclosure are created. After these rays are transformed into local 
coordinates, the increments in the x and y directions are computed. If the 
viewing position is static the computation can be done at the input stage, this 
saves time at the drawing stage. The ray creation step for q primitives now only 
requires -

9q subtractions per scene (d)

compared with (a). Now only three rays need to undergo any transformation, the 
other rays being deduced. Each deduction requires only 6 additions. For a 
primitive with a box enclosure covering / x / pixels requires -

45 multiplications + (6/2 + 36 ) additions (e)

which compares very favourably with (c).

Additional work is required to compute the twelve increments needed for the 
ray’s start and direction in x, y and z coordinates for both the ‘horizontal’ and 

‘vertical’ directions. This involves -

12q subtractions + 1 2 q divisions per scene (f)

These increments are computed once and stored in the primitive concerned for use 

each time a ray-surface intersection test is required.



49

Timing on the VAX 11/780.

Timing measurements were done on the VAX 11/780 at the Department 
of Computing Science, University of Glasgow. The results are given in the 
table below. For the purpose of these measurements a primitive with a box 
enclosure of 500 x 500 pixels was assumed.

As can be seen from the table, the creation of the 250,000 rays 
corresponding to pixels lying within the box enclosure required 2.3 CPU seconds 
(see (a) ).

At the transformation step the first three columns of the matrix used to 
transfonn rays into local coordinates consisted of real numbers, the last column 
contained [ 0 0 0 1 ] as expected. Using only integers in the matrix reduced 
the time dramatically but in general this is unrealistic. To create the rays and 
transfonn them by multiplying by all the matrix entries required 115.8 CPU 
seconds (see (b) ).

Increasing efficiency using Roth’s suggestion of omitting multiplication 
by 0 or 1 and addition of 0 reduces this time to 68.9 CPU seconds (see 

(c) ).

Finally, creating the three comer rays, transfonning them and deducing all 
the others in the local coordinate space required 4.4 CPU seconds (see (e) and 
(f) ). However this time would increase slightly with the number of primitives 
involved; 10,000 primitives requiring approximately j  of the 

multiplication/division operations and j- of the addition/subtraction operations 

required by (c).



50

CPU seconds per 250,000 rays.

(a) Roth’s ray creation 2.3

(b) Creation + Full matrix mult 115.8

(c) Creation + Reduced matrix mult 68.9

(d) Creation of 3 comer rays 0.0

(e) Creation + Deducing rays 4.4

Roth uses the analytic definition of a primitive which requires considerably 
less storage space than the polyhedral approximation, but before testing for ray- 
surface intersections, rays must be transformed into the local coordinate system. 
Since the number of rays will normally be far greater than the number of vertices 
required to approximate the primitive’s surface, it will generally be more efficient 

to transform the vertices which is the approach taken in the current work.

The improvements proposed in this section were introduced before the 

introduction of the underlying data structures, that were to enable direct access to 
required primitives and polygons. After these data structures were introduced 
rays were mapped onto polygons defined in screen coordinates. Therefore a ray s 

direction vector in scene coordinates was no longer required.



51

3.2. Problems in Building Ordered and Balanced CSG-trees.

As discussed in section 2.3, maximum efficiency is gained using box 
enclosures and a spatially ordered and balanced binary CSG-tree. This section 
deals with the problems faced in attempting to build such a tree. The problems of 
ordering are dealt with first.

The most efficient way is to arrange primitives according to the order that they 
are required by the ray tracing algorithms. For rows of pixels this is in 
decreasing order of maximum y values. These values are easily obtained from 
their box enclosures. For columns of pixels this is in increasing order of 
minimum x values. It may be possible to achieve both of these orderings on any 
one scan-line of pixels but it is generally impossible to achieve them for an entire 
image, which is required by the static nature of the binary tree structure.

Strict ordering of the primitives by y-values may not be possible using binary 
trees due to the ordering dictated by the intersection and difference operators. 
Since the difference operator is non-commutative

i.e. a -  b =£ b -  a

and non-associative

i.e. a — (b — c) =£ (a — b) — c

the order of the left and right primitives/sub-solids associated with it must remain 
static. The intersection operator is associative and commutative so the left and 
right primitives/sub-solids can be swapped if required. However they must still 
remain as primitives/sub-solids of the same internal node associated with the 

operand. This restriction can affect the balancing of the tree.

The ordering problem can be solved by the introduction of an index sttuctuie 
to depict the order for accessing primitive nodes during the search for ray-surface 
intersections [Cottingham 1988b]. Using these indices it no longer matters 
whether the tree is ordered or balanced since it is no longer traversed from the top 
downwards during the search. Introducing indices is discussed in section 4.1.4.



CHAPTER 4.

THE PROPOSED HYBRID METHOD.



53

The main aim of the work in this thesis is to render unsculptured mechanical 
parts, balancing realism with processing time. When generating an image it is 
desirable that relevant data can be directly accessed. Conventionally scan-line 
methods achieved this by ordering all the polygons, initially in decreasing 
maximum y value and at the scan-line level by increasing minimum x value. There 
may be several thousand polygons per scene, therefore this sorting could be very 
time consuming. Using Roth’s ray tracing methods fast access of relevant data is 
achieved by ordering and balancing CSG-tree nodes. Generally there will be far 
fewer nodes than there are polygons, which will require less time to sort than scan- 
line methods. However it is not usually possible to have the CSG-tree built with 
nodes in the desired order for processing a whole scene (see section 3.2).

The proposed rendering method avoids ordering polygons and balancing CSG- 
trees, by the introduction of underlying data stmctures [Cottingham 1988b]. A 
description of these is given in section 4.1.4 and the proposed algorithm is given in 
section 4.3.

A dual representation is used for the data with scenes being represented by 
pseudo CSG-trees, called scene trees (see section 4.1.1) and primitives by 
polyhedral approximations to their surfaces (see section 4.1.2). Rendering the 
image is done in scan-line order. Box enclosures are used for fast recognition of 
potentially visible primitives and to restrict the number of pixels that require their 
intensity values to be actually computed. Only pixels lying within at least one 
primitive box enclosure have their intensity values evaluated. No clipping is 
required since box enclosures are clipped to the viewport when they are created.

With the addition of underlying data structures, it is possible for the primitive 
nodes (stored at the external scene tree nodes) to be traversed in the order required 
by the routines generating the image. The underlying data structures can also be 
used with conventional binary CSG-trees to achieve the same ordering, thus 
avoiding having to order and balance the CSG-tree nodes. These data structures 
enable primitives active on a scan-line and polygons incident on a pixel to be 
directly identified and accessed. These additional data structures are described in 
more detail in section 4.1. Trees are no longer traversed from the top downwards 
making it possible to introduce scene trees which are no longer stored in a binary 
tree structure. Scene trees require fewer nodes than CSG-trees to represent most 
scenes, however the proposed hybrid method can be used with either tree structure.



54

Hidden surface elimination is accomplished using a hybrid of conventional 
scan-line methods and ray tracing techniques. These methods and the conditions 
under which they are used are discussed in section 4.2.

The proposed algorithm is provided in section 4.3 showing how the 
underlying data structures are maintained and used at the rendering step and how 
they determine what hidden-surface elimination method is used.

Linear interpolation (Gouraud shading) is used to evaluate the intensity at 
each pixel.



55

4.1. Additional Structures for Fast Access of Data.

This section describes the data structures required to enable direct access to the 
primitives and polygons required at the drawing step, and to take full advantage of 
the efficiency gained by employing scan-line coherence and span coherence 
properties. The word size for storing a ‘C ’ language pointer varies depending 
on the compiler used. The pointers discussed in this section are assumed to 
require a i  word, which is the storage required by the compiler used.

Pseudo CSG-trees, called scene-trees are described in section 4.1.1. However 
the underlying data structures (i.e. index etc.) are not dependent on the tree 
structure used and will work equally well with either scene trees or binary trees.

After the CSG-tree has been completely built, an index can be added to enable 
all the primitives in a scene to be ordered by y values (see section 4.1.4). The 
addition of an active primitive list enables all the primitives incident on a particular 
scan-line to be identified and ordered by x values (see section 4.1.5). The 
addition of a path list for each active primitive enables all the polygons incident on 
a particular scan-line to be identified and ordered by x within each list. Path lists 
are described in section 4.1.5.1.

The addition of a span list enables all the primitives incident on a particular 
span (or pixel) to be easily identified (see section 4.1.6 ). The addition of a 
‘polygon in span’ list within each span enables direct access to the polygon(s) in 
the path lists, that are incident at a particular pixel within the span.

There is a pointer to the first node in each of these lists and a pointer to the 
current node being processed in each list except for the index list. The ‘first 
pointer’ to the index list provides access to the next primitive that will become 

active.

The ‘first pointers’ to the active primitive list and the span list are used to 
re-initialise the ‘current pointers’ after each scan-line has been processed. The 
‘current pointers’ in these lists are used during the processing of a scan-line and 
are updated as each active primitive/span are completed. The first pointer in 
the ‘polygon in span’ list is used to re-initialise the current pointer after each 

pixel (and scan-line) has been processed.



56

4.1.1. Scene Trees : A New Structure for CSG-trees.

The addition of an index (see section 4.1.4) enables primitive nodes to be 
accessed in required order. Therefore, the CSG tree no longer requires to be 
traversed from the top downwards. This makes it possible to store the CSG tree 
in a different data structure from the normal binary tree structure. The proposed 
structure, called a scene tree, is introduced in this section, however the hybrid 
method is not dependent on its use. The scene-tree structure allows primitives to 
be grouped using brackets. The next section describes input sequences grouped in 
this way.

The proposed structure consists of four levels of nodes (see fig. 16). At the 
lowest level, the external nodes contain the data for the primitive instances. These 
are built as a one-way linear list for access reasons. Each node contains 
information about a primitive such as its type, size, defining vertices, directly 
associated Boolean operand and a list of pointers to its group (or bracket) nodes, if 
any, that enclose it in the input sequence.

At the next level there are group nodes. These are built as a two-way 
linear list and are stored in the same order as the opening brackets are input. Each
of these nodes contain pointers to the two nodes that correspond to the first and last

primitives that are enclosed.

The numbers attached to the brackets in the following input string show the 

position of each set of brackets in the list -

('(2 ap0 + bpl )2 -  cp2 )' & (3 (4 dp3 -  fp4f  & (3gp5 + hp6)5)3

The following table shows the contents of the brackets l i s t :



57

bracket list
position 1 2 3 4 5

Boolean op - + &
nested level 1 2 1 2 2
open (prim no.) PO PO P3 P3 P5
close (prim no.) P2 PI P6 P4 P6
next bracket 2 3 4 5 #
prev bracket # 1 2 3 4

The primitive nodes are accessed at the rendering step and pointers are 
followed to the group nodes to find their associated Boolean operands. There are 
four types of nodes that are of interest -

1. Primitive is associated with only *+’ operator(s).
2. Primitive is on left-hand side of *-’ operator.
3. Primitive is on right-hand side of operator.
4. Primitive is associated with an *&’ operator.

Type 1 primitives will be fully rendered whereas the others will probably have a 
piece cut off to reflect the Boolean operator. The following pseudo-code shows 

how the associated types are found -

if current primitive is in a group then 
begin
set current bracket to bracket pointed at by current primitive 

for 0 to nested level 
begin
if current bracket’s operator is then 

check and return type 2 or 3 
if current bracket’s operator is *&’ then 

return type 4 
set current bracket to previous bracket in list 

end

end



58

if current primitive’s operator is *+’ then 
return type 1 

if current primitive’s operator is then 
return type 3 

if current primitive’s operator is then 
return type 4

if next primitive's (to current primitive) operator is then 
return type 2

The complex solid nodes are at the level above the group nodes. These are 
built as a one-way linear list and have pointers to the four nodes corresponding to 
the first and last primitive and first and last group input for the solid. These
nodes are only used for deleting/updating part/all of the complex solid and are not
required at the rendering step.

At the highest level there is a scene node. This forms the root of the scene 
tree and contains pointers to the two nodes corresponding to the first and last 
complex solids input. Figure 16 gives an example of the whole stmcture.

The introduction of groups and storing the Boolean operators at the primitive 
nodes, in general enables a CSG-tree to be represented by fewer nodes. To 
represent a solid containing p  primitives the binary tree stmcture requires (2p - 1) 
nodes. In comparison the new stmcture requires (p + b + 1) nodes, where b is 
the number of bracket nodes. Normally b will be much less than p . For 
example, fig. 17(a) shows a drawing of a vice. A possible input sequence to

create such an object could be -

( ( a  + b ) - ( c  + d + e + f +  g) )  + h + i + ( j - k )  + l
+ ( ( m + ( n - o ) ) - ( p  + q + r + s ) )  + t

This combines 20 primitives. The corresponding CSG tree in binary form 
requires 39 nodes and is shown in fig. 17(b). Figure 17(c) shows the tree
represented by the new data stmcture containing 27 nodes, the ordered set of 

indices is also shown.



scene
tree
root

□ O Q - O  i— M  J
primitive 
nodes

complex
solid
nodes

group
nodes

fig. 16: Example of scene tree structure.



fig. 17 (a) Drawing of a vice.



fig. 17 (b) Binary tree structure representing the vice.



fig. 17 (c) Scene tree structure representing the vice.



4.I.I.X. Input Sequences Containing Groups of Primitives.

59

Three distinct input entities are used for the creation of a scene:

complex solid : A complex solid is a complete entity that forms part/all of 
the scene. It is identified by a name and comprises a collection of one or 
more primitive(s)/primitive group(s).

primitive group : There are three distinct types of groups:

(i) a group of primitives that are combined to form a
sub-solid.

(ii) a primitive(s) /  primitive group(s) that 
immediately precede and succeed an intersection 
or difference operator (grouped together to avoid 
ambiguity).

(iii) several primitives with a common operand (grouped
together for convenience).

primitive solid : A primitive solid is an entity that forms part/all of a 
complex solid. It belongs to a class of basic primitive objects, viz block, 

cylinder, cone or sphere.

Round brackets are used to denote the groups, which allows a variety of input 
formats. Firstly it permits sub-solids to be identified by enclosing them in a set 
of brackets. (In some CSG systems this is achieved by naming a group of
primitives). The sub-solid can then be transformed (i.e. translated, rotated etc.)

as a single entity.

Secondly grouping can be used to produce an unambiguous input sequence. 
For example, suppose a solid object consists of two sub-parts a sphere S and a 
cube C that contains a cylindrical hole H. The expected input would be -



60

S + (C -  H)

The operator preceding a primitive in the input string is considered to be the 
directly associated operator for that primitive. This operator is stored in the 
primitive node. For convenience it is assumed that the first item of input for a 
complex solid or primitive group is a primitive that is directly associated with a 
union operand. Therefore the first primitive does not require to be preceded by a 
Boolean operator. The above input sequence is interpreted by the system as -

+ S + ( + C -  H)

In the above example the grouping is used to indicate which primitives are 
associated with each of the operators, so that they can be correctly combined. For 
example omitting the brackets for the solid above gives -

S + C - H

which could be interpreted either as -

S + (C -  H)

or

(S + C) -  H

which would provide different results if object H intersects with object S.

Note that it is possible for a primitive to have several operands associated with 

it. For example in the input sequence -

S + (C -  H)

H has a ‘ - ’ operand directly associated with it and a + indirectly associated 

with it.

Finally grouping can be used to collect primitives sharing the same operator 
and its preceding operand. For example, suppose a solid consists of a cube



61

containing three holes, a possible input sequence is -

(C -  (Hx + H2 + H3) )

A possible internal representation is shown in fig. 18. It is often simpler to 
decompose a complex solid using a mixture of these input methods.

Using the Backus-Naur form of notation, the production rules for the 
context-free grammar to define all legal regular expressions for an input sequence 
are as follows -

< expression> ::= < subexpr>
< factor>
(< expressions & < expression>) 
(< expression> - < expressions)

< factors (< subexpr> + < subexprs)

< terminals

< subexps < terminal>
< terminal> + < subexp> 
U I Y I O I S

As usual the metasymbol < ....> denotes a non-terminal symbol, is read as 
"is defined to consist o f' and I is read as "or alternately". The terminal symbols 
denote the primitive types U - cube, Y - cylinder, O - cone and S - sphere.



fig. 18 Logical internal representation for input sequence.



4.1.2. Computing the Surface Definitions.

62

As in the GMSolid modelling system a template primitive is stored for each 
primitive type. These have their surfaces approximated by polygons that are 
defined in the local coordinate system (see section 1.2). As with some other 
systems there is a routine for the creation of every primitive type.

When a primitive’s type and parameters are input, the routine for the given 
type generates the 3D coordinates of the vertices required for a polyhedral 
approximation to the surface. These vertices are generated by passing the ‘local’
vertices approximating the template primitive through the local-to-scene 
transformation matrix. The screen position, normal and intensity value for each 
vertex are then computed and stored.

4.1.3. Calculation of Box Enclosures.

During the input step the box enclosure for each primitive is computed by 
transforming the template’s bounding cuboid. As in Roth’s methods the x and y 
coordinates of this cuboid are transformed to screen coordinates to provide a 
bounding rectangular screen area. Roth transformed rays into the local coordinate 
space and used the z coordinates of the template cuboid to define the depth bounds. 
The hybrid method works in the scene coordinate space to determine the depth, 
therefore the z coordinates of the bounding cuboid are transformed into scene 
coordinates to provide the depth bounds that are required by the hidden-surface 

algorithms.

The box enclosure may be slightly larger than necessary using this method, but 
only 16 coordinates are compared (see fig. 19 (a) and (b) ). To achieve an exact 
minimum box enclosure, as shown in fig. 19 (c), would require In  comparisons 

(where n is the number of vertices).

Box enclosures are clipped to the viewport to ensure all pixels processed 
actually lie within the viewing area on the screen. If two of the edges of a box 
enclosure lie outside the viewport, these edges are redefined to lie along the edge 
of the viewport. If all of the edges lie outside the viewport the box is set to a 
NULL value and its associated primitive ignored. The box enclosures are used at



fig. 19 (a): Template primitive with box enclosure.



fig. 19 (b). Deduced box enclosure in screen coordinates.

fig. 19 (c): Exact minimum box enclosure in screen coordinates.



63

the rendering step to determine the pixels to be processed.

4.1.4. Indexing CSG-tree Terminal Nodes.

Accessing data for image generation, generally requires that it is sorted into 
some order. Section 3.2 outlines the difficulties in attempting to impose an order 
on the terminal nodes of a CSG tree. In the present method these difficulties are 
avoided by the introduction of an ordered index containing pointers to the 
primitives stored at external nodes (see fig. 20 (a) ). The index enables direct 
access to the primitive information that is required by the rendering algorithms.

The index is created as a linked list directly after the definition of the scene 
has been input and immediately before the rendering step. Index entries are 
ordered in decreasing order of the maximum y values (in screen coordinates) of 
the associated primitive box enclosures (see fig. 20 (b) ). When ordering the index 
only the contents of the nodes change, the nodes themselves maintain the same 

position in the list. This results in fewer changes of addresses. To swap the 
positions of two nodes in the list requires four pointers to be updated, swapping 
their contents only requires updating the two pointers to the external 
(primitive) nodes.

An advantage of accessing primitives directly, instead of by a tree traversal, 
is that the evaluation of pixels can be restricted to those that lie within primitive 
box enclosures. The box enclosures at internal nodes in the tree no longer need 
to be computed.

Another advantage is that some Boolean operators may not be required. Using 
the traditional top downwards traversal of the tree, nodes containing Boolean 
operators are accessed and their contents noted during the traversal, primitive 
nodes are accessed last. It is always necessary to access all of the primitive 
nodes in a tree during the rendering step therefore the Boolean operands are found 
for all primitives. Accessing the tree from the bottom upwards, the primitives 
are accessed first, so it is not necessary to find the Boolean operands associated 
with some of the ‘hidden’ primitives (see section 4.2.2 ). Finding the 
Boolean operands in a binary tree stmcture requires the tree to be traversed up to



fig. 20(a) : CSG-tree with index.



fig. 20(b) : CSG-tree with index ordered by y.



64

the root.

Another advantage of using an index is that primitives associated with 
difference and intersection operators can still be correctly ordered. Using a 
binary tree stmcture primitives are restricted to being stored at the left or right 
branches of these operands. This may cause the box enclosure at the internal 
node to be much larger than actually required, adding to the inefficiency of the top 
downwards traversal.

Ordering in the x direction is achieved by creating an active primitive list 
containing all the primitives intersected by the current scan-line. Throughout the 
rendering step nodes are transferred from the ‘front’ of the index to this active 
primitive list. Thus at any particular time the index only contains pointers to 
those primitives that have their box enclosure lying below the current scan-line 
being processed. After the rendering step the index is empty. The active 
primitive list is discussed in the next section.

The storage requirement for the index depends on the number of primitives in 
the scene. Initially the index will require a node for every primitive in the scene. 
Each node contains a pointer to a primitive and to the next node in the list. 
Therefore the initial storage requirement for P primitives is P words. This 
requirement will diminish as the image is generated.

4.1.5. Creating and Maintaining the Active Primitive List.

The active primitive list is created/updated by transferring nodes from the 
beginning of the ordered index. Initially the first node in the index list contains 
the pointer to the primitive that has the top of its box enclosure ‘nearest’ to the 
top of the display screen. A node is created in the active primitive list for this 
first node and any subsequent nodes that have their box enclosure starting at the 

same level.

New nodes are placed into their correct position in the active list, which is 
ordered by increasing order of minimum x values. In general only a few boxes 
will become active in any one scan-line. Any boxes becoming inactive are 
deleted from the list. The following pseudo-code shows how ths is done -



65

set current to first node in active list;
while not end of active list do

begin

if  current node not active do 

remove current node;
set current to next node;
end;

set current to first node in index list;
while current node is active do

begin

insert into active list in correct order;
set current to next node in index list;
end;

Because box enclosures are approximated their size may be larger than 
required (see fig. 21 (a), (b) and (c) ). Therefore the index provides only an 
approximate ordering of the primitives, which may cause a primitive’s associated 
node to be maintained in the active list for longer than is really necessary.

The active primitive list will normally remain constant over several adjacent 
scan-lines (see fig. 22). Changes occur when a box enclosure’s top/bottom 
occurs at the current scan-line. The first entry of the index provides the scan-line 
where an addition to the list will occur. All the elements in the active list are 
examined to determine the next scan-line where a deletion from the list will occur.

The active primitive list is maintained throughout the rendering step and is 
non-existent afterwards. It is possible for the list to be completely deleted and 
re-created several times throughout this step. This happens whenever scan-lines 
containing no active primitives occur after the image generation has begun and the 

index is not empty.

Whenever a node is added to the active primitive list a path list is created with 
a node for each polygon incident on the current scan-line. Pointers to the first and 

current path nodes are stored in their associated active primitive node. More 

information is provided about paths in the next section.

The active primitive list enables the scan-line to be divided into the spans (or 
segments) that enable overlapping primitives to be identified. These determine the 
hidden-surface elimination technique that is to be used and are discussed in section



fig. 21(a) : Template primitive with box enclosure.

fig. 21(b) : Deduced box enclosure in screen coordinates.



fig. 21(c) : Exact minimum box enclosure in screen coordinates.



scan line active box list.
1 U
2 1A3
3 u
4 1A4
5 1.4
6 1

fig. 22 : Active list ordered by x for given scan-lines.



66

4.2.

The storage requirement for the active primitive list is dependent on how 
many primitives are active on any one scan-line. Each node contains a pointer to 
a primitive and the first and current ‘visible’ path nodes, space has to be reserved 
for the first and current ‘invisible’ path nodes too whether or not these are 
required (see section 4.2.2). There are also pointers to the next and previous 
nodes in the active primitive list. Each node requires 3 i  words.

4.I.5.I. Path Through the Data Structure.

In the proposed hybrid method fast access to visible polygons is achieved with 
the aid of paths through the primitive data structures. A path is a linked list of 
nodes, each one containing a pointer to a facet that is incident on the current scan- 
line. The facets pointed at by the path list at any particular scan-line are not 
dependent on the data structure used. A path is created when a primitive first 
becomes active (see fig. 23). Path nodes are maintained in increasing order of the 
x values of the first edge intersected.

The initial creation of a path list entails finding the facet(s) intersected by the 
current scan-line. Because scan-lines are generated in order, this is achieved by 
searching the data structure for the facet containing the vertex with the maximum y 
value. A fast method for finding this vertex when using the CDS is given in 

section 4.1.5.1.1.

If conventional hidden-surface methods are used the path node is accessed and 

the following information is retrieved -

the two x positions of the edge/scan-line intersection points, 
the two intensity values at the edge/scan-line intersection points, 
the increment in intensity between two pixels.

This information is used to linearly interpolate the intensity values at the pixels 
lying between the two x positions and within the current span. The path node is 

not updated to reflect the current intensity value.



spnere

first in 
p ath /

first
in
path

cube primitive
nodes

active
primitives

CDS path 
lists

image

scan-
line

fig. 23 : Active list with associated path lists.



67

If ray tracing techniques are used and the polygon associated with the path 
node contains the current pixel, the following information is retrieved - 

the depth value at the current pixel, 
the intensity value at the current pixel.

Both these values are updated in the path node and will be retrieved by the next 
ray.

After each scan-line has been completely processed the information in the path 
nodes is updated to reflect the changes between scan-lines. The depth and 
intensity values between pixels are reset to the edge values. At any particular 
time each path node contains the following information -

pointer to visible facet on scan-line.
the two edges intersected by scan-line.
the two x positions of the edge/scan-line intersection points.
the two depth-values of the edge/scan-line intersection points.
the two intensity values at the edge/scan-line intersection points.
the following increments reflect the difference between two adjacent scan-

lines :
the increments in x along the two edges, 
the increments in depth along the two edges, 
the increments in intensity value along the two edges, 

the intensity value at the current pixel (or at the first edge intersected if not 

yet active).
the depth value at the current pixel (or at the first edge intersected if not 

yet active).
the following increments reflect the difference between two adjacent pixels: 

the increment in intensity, 
the increment in depth, 

the top-most and bottom-most vertices, 
the next and previous path nodes in the list.

Each path node exists until the scan-line reaches the bottom-most vertex of its 
associated facet. Because the box enclosure is an approximation (see fig. 21 ) 
the top-most/bottom-most facet may differ from the top/bottom of the box



68

enclosure. Therefore it is possible for an active primitive to have an empty path 
list. After a primitive has been generated its associated path list will be empty.

The path through the front facing polygons is required for all primitives to 
detennine their depth. It is this path that is created initially when a primitive 
becomes active. A path through the back-facing polygons may also be required 
if the primitive is directly or indirectly associated with an intersection or difference 
operand and is not ‘hidden’. For efficiency the creation of the path through 
back-facing polygons is delayed until required. Both ‘front-facing’ and ‘back- 
facing’ paths may be used by the ray tracing algorithms to detennine the correct 
polygon intersected. This is discussed in more detail in section 4.2.2.

Path nodes each require 21 i  words of storage. The number of path nodes

required is dependent on the number of polygons intersected by a particular scan- 
line.

4.1.5.JL.1. Creating a Path Through the CDS.

The compressed data stmcture (CDS) [Cottingham 1985 (included as appendix 
B),Cottingham 1987 (included as appendix C)] is a 2-dimensional array. Each 
element contains the data required for one facet. Using the CDS a minimum 
amount of work is required for ordering and searching because of the inherent 
nature of the data stmcture i. e. adjacent facets in the scene are also ‘adjacent’ 
in the data stmcture. This is also an advantage when moving from one scan-line to 
the next, when paths are updated to reflect the polygons that are incident on the 

new scan-line.

The path list contains pointers to either the visible facets incident on a 
particular scan-line or the invisible facets (see section 4.1.5.1). No path list will 
contain pointers to both types. This will approximately half the number of facets of 

interest when creating the path list.

Because of the correspondence between facets and their array positions, a 
search is made to find one facet intersected by the particular scan-line. Creating a 
path containing visible facets, the search initially begins by finding one visible 
facet. An algorithm for achieving this is given in appendix B, section 4.2.



69

The search then continues for a facet intersected by the scan-line. The data 
contained at each element in the array includes the 2D and 3D coordinates of the 
vertices defining a facet, therefore it is easy to compute if the scan-line intersects 
the visible facet found. If it does not the 2D y-values of the facet and the visibility 
of adjacent facets determine whether to consider the adjacent array element lying to 
the ‘north’, ‘south’, ‘east’ or ‘west’ of the intersected facet. This procedure 
continues until an intersected facet is found.

Other facets intersected by the scan-line are found in a similar manner but 
coherence is applied. If the facet lying to the ‘north’ of the facet found is 
intersected by the scan-line, the next facet to be examined is the one lying to the 
‘north’ again. If this facet is not intersected, the facets to the ‘north-east’ and 
‘north-west’ are examined, and so on. Facets to the ‘south’ of the first facet found 
are also examined. Eventually all the visible facets intersected by the scan-line are 
found and pointed to by the path list.

Creating a path list for invisible facets is done similarly.

4.1.6. Creating and Maintaining the Span List.

The span list is created by processing the active primitive list and dividing the 

scan-line into spans with boundaries where the scan-line enters and exits each 
active primitive’s box enclosure (see fig. 24 (a) ). The span list is updated 
whenever the active primitive list is updated. The span list reduces the hidden 
surface problem to determining which primitive is visible from a selection of the 
possibly visible primitives in each span of the scan-line. There are three types of 

spans possible -

1. empty span (spans 1 and 7 of fig. 24 (a) ).
2. span containing one primitive (spans 2 and 6 of fig. 24 (a) ).

3. span containing more than one primitive (spans 3,

4 and 5 of fig. 24 (a) )



fig. 24(a) : Spans of a scan-line.

CDS paths 
q pointed to:

span list

fig. 24(b) : Span list with associated ‘polygon in span’ sub-lists.



70

A span node is created for each non-empty span of the scan-line. These are
stored as a linked list (see fig. 2^-(b) ) and contain the following information -

start and stop x values for span, 
number of primitives active in span.

pointers to first and current nodes in the ‘polygon in span’ list,
pointers to the next and previous nodes in the span list.

The span list is traversed during the generation of a scan-line, providing access 
to the visible polygons in the ‘polygon in span’ lists. There is one ‘polygon in 
span’ list for each node in the span list. The next sub-section describes the 
‘polygon in span’ list in more detail.

Each node in the span list requires 5 words of storage. The number of 
nodes required is dependent on the number of box enclosures active at a particular 
scan-line and whether they overlap.

4.I.6.I. The ‘Polygon in Span’ List.

A path list is created for each primitive when it becomes active (see 
section 4.1.5.1) and is maintained (in order) to reflect polygons active on any 
particular scan-line. Each node in the ‘polygon in span’ list points at a path 
node to provide direct access to a polygon that is potentially visible at a particular 
pixel within the span. The number of nodes in the ‘polygon in span’ list will 
depend on the number of primitives active within the span.

The ‘polygon in span’ list contains a ‘first’ pointer to indicate the path 
node that contains the polygon incident at the first pixel in the span. Initially the 
required polygon will be found by traversing the path nodes of the active primitive 
involved. Thereafter it is updated at the end of each scan-line to reflect changes 

between scan-lines.

The ‘polygon in span’ list also contains a ‘current’ pointer to indicate the 
path node that contains the polygon incident at the current pixel. At the start of a 
span the ‘first’ and ‘ current’ pointers point at the same path node. The



71

pointer to the current path node is updated to reflect changes between pixels, which 
occur each time the ‘closing’ edge of a polygon is encountered.

For each pixel in a span the ‘polygon in span’ list is traversed providing the 
information required to accomplish hidden-surface elimination. This is discussed 
in the next section.

The storage requirement for a node in the ‘polygon in span’ list is liwords. 

The number of nodes required is dependent on how many primitives overlap at any 
particular time.



72

4.2. Hidden-Surface Elimination.

In the proposed rendering method hidden-surface elimination is achieved using 
a mixture of conventional scan-line methods and ray tracing techniques. The 
following provides two different categories of hidden-surface elimination and how 
they are dealt with -

back-facing polygons :

The back-facing polygons of any primitive are invisible. It is usual 
for systems using polyhedral approximation schemes to cull such polygons 
and ignore them during the rendering step. In the hybrid method back- 
facing polygons are distinguished by their NULL intensity values at their 
four vertices. They cannot be completely ignored because they may be 
required by the ray tracing algorithms (see section 4.2.2).

intersecting solids:

Using conventional rendering methods it is normal to compute new 
boundaries where two or more solids intersect. This is no mean feat, 
using polyhedral approximation it involves finding and re-defining all the 3- 
dimensional polygons that are affected by the intersection. This type of 
hidden-surface elimination is much simpler to achieve using ray tracing 
techniques. All the ray-polygon intersection points are computed, the 
intersection point of an existing surface that is nearest to the viewing 
position provides the polygon that is visible (see section 4.2.2). The 
surface definitions remain unchanged which could be a distinct advantage 
for any future updates. The hybrid method does the ray tracing in a 
similar fashion but delays the computation of intersection points occurring at 

back-facing polygons until required.



73

4.2.1. Using Scan-line Methods.

Scan-line methods are only used for hidden-surface elimination where there is 
only one primitive active within a particular span. No checks for visibility are 
required within such a span. Using these methods the visible facets in the span 
are found by accessing path nodes via the associated ‘polygon in span’ list (see 
section 4.1.6.1).

All the pixels within the span are generated for front facing facets, back-facing 
facets are ignored. This is possible because all the primitive surfaces are convex 
and so will only have one front-facing polygon at any particular pixel. Evaluating a 
pixel involves calculating its intensity value using the information stored in the path 
node (see section 4.4 ).

Adding solids containing concave areas (e.g. torii) to the list of allowable 
primitive types would involve inserting an extra field in the primitive definitions to 
enable these solids to be easily identified. Such solids may require two or more 
path lists to exist simultaneously (see section 4.1.5.1). Areas of the screen 
containing these solids would always be generated using ray-casting.

4.2.2. Using Ray Tracing Techniques.

Ray tracing techniques are used for hidden-surface elimination where there is 
more than one primitive active within a particular span. Using these methods 
pixels are generated individually but coherence is applied between rays passing 
through adjacent pixels. When ray tracing methods are used the depth and 
intensity values at the ray-facet intersection points are retrieved from the path 

nodes.

To find the visible surface at a pixel doing a top downwards traversal of the 
tree, the rays undergo a classification step (see section 2.2 ). Generally no 

coherence between rays is attempted.

In the proposed hybrid method, finding the polygons intersected by the ray is 
reduced to finding the polygons containing the pixel associated with the ray.



74

These polygons are found by following all the ‘current’ path pointers stored in 
the ‘polygon in span’ list. It is possible for a ray not to intersect any polygon. 
If one or more polygons are intersected then all the ray-polygon intersection depths 
are retrieved from the path nodes to enable the first surface intersected by the ray to 
be found. The ‘nearest’ polygon of a primitive ‘directly’ associated with a ‘ + 

operand (see section 4.1.1.1) is computed from the depths list. If this 
primitive is not indirectly associated with a ‘ - ’ or a ‘ & ’ operand then the 
polygon ‘exists’ and the ray-polygon intersection point provides the visible 
surface at the current pixel. Otherwise further work is required to determine an 
‘existing’ polygon visible at the pixel.

If the primitive containing the ‘nearest’ polygon is directly associated with a 
*+’ operand and is indirectly associated with a ‘ - ’ operand, the path must also 
be created for its back-facing polygons. This path will supply the depth bound for 
the primitive. The primitives directly associated with the same ‘-’ operand will also 
have their depth bounds computed. These bounds will determine whether the ‘+ ’ 
primitive contains a hollow concave area or a hole.

If the primitive containing the ‘nearest’ polygon is indirectly associated with 
a ‘ & ’ operand the polygon incident on the other primitive(s) involved in the 

intersection are used to determine the depth.

After the ray associated with the first pixel in a span has been cast, the other 
rays can use the information of their immediately preceding ray. The ‘nearest’ 
polygon will remain so until a new ray intersects an ‘existing’ polygon that has a 
smaller depth value than the ‘nearest’ polygon hit by the previous ray. The 
‘initial’ ray for a span is stored for the duration that the span node exists, and is 

updated to reflect changes between scan-lines.



75

4.3. Algorithm for Proposed Hybrid Method.

The following pseudo-code provides the outline for the proposed hybrid 
rendering algorithm. In this code ordering is done in screen coordinates and 
‘box’ is used as a synonym for ‘primitive box enclosure’ i. e. the maximum and 
minimum x and y values in screen coordinates as described in section 2.3.

Ordering by y is achieved using the maximum y values of the primitive box
enclosures, ordering by x is achieved using the minimum x values. The term 
block is used to mean a group of adjacent scan-lines where no new primitives are 
encountered and no currently active primitives become inactive.

fo r  (each primitive in scene) do 
begin
compute the surface definition; 
calculate box; 
end; /* for  */ 

create and order index list in decreasing y order; 
set scan-line to top of box of first primitive in index; 
set finished to false; 
while ( not finished) do 

begin
create/update active primitive list and span list maintaining

increasing x order;

create path list for newly active primitives and link into
‘polygon in span’ lists;

i f  (active list empty) then 

begin
if  (index list empty) then 

finished := true ;

else
set scan-line to max y of first node in index list;

end
else

begin
find last scan-line in current block of scan-lines; 
fo r  (every scan-line in current block) do



76

begin

while (span list not all processed) do 
begin

if  (only one box incident in span) then 
draw__conven( );

else
ray_cast(); 

end; /* while */ 

update path list(s) and ‘polygon in span’ list(s); 
end; /* for */ 

end; /* if */ 

end; /* while */

As a pre-processing step an index is created and ordered. How this is 
achieved is described in section 4.1.4. The index enables direct access to the 
primitives at the external nodes of the CSG-tree and provides the rendering routines 
with the areas of the image where pixels are to be evaluated. Pixels outside 
these areas are ignored.

Throughout the rendering step entries from the front of the index are 
‘transferred’ into the active primitive list. This is done whenever a box 
becomes incident on the current scan-line. A node is created for insertion into 
the active primitive list and is set to point to the primitive stored at the external 
node previously pointed at by the index node. The new node is inserted into the 
active primitive list maintaining increasing x order. The index node is no longer 
required and is deleted. Creating and maintaining the active primitive list is 

described in section 4.1.5.

The scan-line is split into spans (or segments) according to the x values of 
the box enclosures pertaining to primitives in the active primitive list. The pixels
for each scan-line are generated for one span at a time. If only one box is 
associated with a span all the pixels within that span are generated using 
conventional scan-line methods (see section 4.2.1), otherwise ray tracing 

techniques are applied (see section 4.2.2).

Considering the image shown in figure 23, the index would originally contain 
pointers to two primitives. The current scan-line would be set to the top of the



77

sphere’s box enclosure. The sphere primitive would be transferred to the active 
primitive list from the front of the index list. The path list for the newly active 
primitive would be created and would contain the two nodes associated with the 
shaded polygons (see fig. 25 (a) ). The span list would be created with one node 
starting and stopping at area A ’s boundaries (see figure 25 (b) ). The current 
block ends at the top of the cube’s box enclosure. Scan-lines in block 1 are 
generated using conventional scan-line methods. Figure 26 (a) shows the 
underlying data stmctures prior to the rendering step. The ‘current’ in the 
span/path list points to the same node as the ‘first’ in the span/path list.

Figure 26 (b) shows the state of the underlying data structure at the scan-line 
shown in figure 23 and at the start of the scan containing the cube and the sphere 
(i. e. area B in fig. 25 ). The first span has been processed and so the 
‘current’ pointer is pointing to polygon E, this will be reset to A after the 
whole scan-line has been processed. The ‘first in span’ and the ‘current in 
span’ pointers are the same for the two spans that are yet to be processed.



fig. 25 (a) Image with initially active polygons shaded.



s' \

! A  i 
: 1

|  b  l o c k  1 .

i B , 'C ! 
1 > < i
! ' !I—  -  _ U J  1

fig. 25 (b) Image showing three areas and block 1.



CbG i«oc

nod<̂ >-

Qti.vit 
pr«ivi> t.y  t  
riodti.

ptl^ o .i ipa** 
rxodtS.

rvcde.3.

fig. 26 (a) Initial state of underlying data structure.



<xjv«vm

Cuir̂ CAs.

pi vt. 
MOilu

adt»t
pt'\ ^

pat U r tu lu

Sport.
rtodci

fig. 26 (b) State of underlying data structure at a particular point.



78

4.4. Shading and Illumination.

Traditionally ray tracing systems compute the intensity value of each pixel 
individually, each ray being independent of its neighbours. Conventional 
rendering methods enable smooth shading techniques to be applied, which is 
generally more efficient because the illumination model is called less frequently. 
Using the proposed hybrid method both conventional rendering methods and ray 
tracing techniques take advantage of the efficiency of Gouraud’s smooth shading 
methods by linearly interpolating the intensity values at points on the screen (see 
section 1.3.2.2). Ray tracing is used purely for hidden-surface removal and does 
not provide for any sophisticated illumination model.

There are only two edges intersected by any scan-line since all the polygons in 
the hybrid system are convex quadrilaterals. Linear interpolation is applied to
compute the intensity values at the scan-line/edge intersection points and to provide 
the intensity values at each of the pixels lying between these two points.



CHAPTER 5.

PRESENTATION & ANALYSIS 
OF RESULTS.



80

5.1. Comparison with Watkins’ Spanning Scan-line Algorithm.

In the proposed hybrid method, data is accessed at two different levels. At 
the higher level the screen positions of primitives are provided by box enclosures 
and at the lower level the screen positions are provided by the vertices defining the 
facets. A feature of Watkins’ scan-line hidden surface algorithm, described in 
section 1.3.1.1, is the initial sorting of polygons. The same concepts are 
adapted for the hybrid method but are applied at a higher level to primitive box 
enclosures.

Another feature of Watkins’ algorithm is the concept of a span to reduce the 
number of depth calculations. The boundary of Watkins’ span is determined by 
the end points of the line computed by intersecting the polygons with the scan 
plane. The spans containing more than one polygon/‘ scan plane intersection 
point’ require the depth to be computed to determine which polygon is visible. If 
two of the ‘intersection’ lines cross within a span, the intersection point is 
computed and the span subdivided. The number of spans required for any scan- 
line is dependent on the number of polygons incident at that scan-line and how 
many of their associated ‘intersection’ lines cross, this could be very large.

In the proposed hybrid method the concept of a span is used to determine 
which primitives might be visible at any particular point. Box enclosures determine 
the extent of the spans rather than polygons which were used in Walkin’s method, 
therefore fewer spans will be required. The boundary of a span is determined by 
the scan-line/boxes intersection points. Each span is contained in part/whole of 
one or more box enclosures. No new boxes become active within a span and no 
active boxes become inactive, which is different from Watkins’ concept where 
depth was also considered. The span is used as a means of fast access to the 
primitive(s) incident within the span and to determine what rendering technique is 
to be used for generating the image within the span.

Unlike the polygons dealt with by the spanning scan-line algorithm box 
enclosures are always rectangular which enables spans to be easily created since 
minimum and maximum x and y values are simple to compute. There will be 
fewer box enclosures incident on any scanline than polygons. Using the spanning 
scan-line algorithm, a list of polygon’s edges intersected is maintained. Using the 
hybrid method, the x-coordinates of the start and finish (i.e. ‘box enclosure



81

edge’/ ‘scan-line intersection points’) of each span remains constant while the 
associated box enclosure(s) is active, therefore there is no need to update the 
positions of edges intersected. The spanning scan-line algorithm computes the
coefficients of the plane equation and the rendering attributes, these are not required 
using the hybrid method since no image will be generated at this level.

In the proposed hybrid method path nodes provide direct access to polygons 
active on a particular scan line. A path node identifies two edges that the scan- 
line intersects, and is ‘equivalent’ to two of the edge nodes used in the Watkins 
algorithm. Storing these edges enables new edges to be efficiently computed 
whenever the end of an active edge is encountered. Using the CDS a polygon 
has always two edges intersected because each polygon is convex and has exactly 
four edges, therefore one path per polygon is adequate. Using a general data 
structure, such as Baumgart’s winged-edge, polygons may have any number of 
edges, therefore several path nodes may be required per polygon, one for each set 
of enter/exit points. Extra checks would have to be incorporated whenever an 
active edge became inactive, to handle the additional case when two paths must be 
combined.

Watkins sets a flag in the edge nodes to indicate if the associated polygon is 
active on the current scan-line, this is not necessary in the proposed method since 
only path nodes of polygons incident on the current scan-line actually exist.

In the proposed method, the intensity values at the scan-line/edge intersection 
points are computed and increments stored for the difference in intensity between 
scan-lines and between pixels. These are required for Gouraud’s smooth shading 

method.

If two primitives occur within a span, (i.e. two box enclosures overlap) the 
proposed method employs ray tracing techniques to determine which primitive is 
visible at any particular pixel in the span, rather than Watkins’ method of 
computing the depths for each polygon span. To enable the ray tracing routines to 
determine the ‘nearest’ polygon, depth information is stored at the path nodes. 
The depths (i.e. z-coordinates) at the scan-line/edge intersection points are 
computed and stored with their corresponding increments for the difference in depth 

along edges between scan-lines and between pixels.

At the rendering step, if ray tracing is required, the depth values are computed 
linearly in the same way as intensity values are when using Gouraud shading. The



82

depths of polygons associated with a span containing only one primitive are not 
required and such polygons are generated using conventional rendering methods. 
The x positions of scan-line/edge intersection points are calculated using linear 
interpolation in the same way as Watkins’ algorithm.



83

5.2. Comparison with Roth’s Ray Tracing Techniques.

The most dramatic increase in efficiency from the method used by Roth is 
gained by accessing the CSG tree bottom upwards. In section 2.3 there are four 
requirements listed for generating an image using ray tracing. The first requirement 
is -

(l°g2 Q ~  1)P » (q > 1) recursive procedure calls.

Accessing the primitives ‘directly’ via the span nodes, enables any evaluation 
to be restricted to only those pixels contained in box enclosures. Therefore no 
recursive procedure calls are required.

The second requirement is

(q -  i)p  classification combines.

These classification combines will generally be reduced by not having to 
classify some primitives which are either completely ‘hidden’ or are drawable 
using conventional methods.

The requirement of computing ray directions is not appropriate because these 
are no longer required in the new method. The CPU time required to create 
250,000 rays (i.e. direction vectors) on a Pyramid computer is 64.8 seconds. 
However this could be reduced by delaying the creation of rays until they are found 
to pass through a pixel associated with a box enclosure. Typically objects created 
by CAD systems will be centred in the screen and may cover at most around 75% 
of the pixels, therefore 25% of the rays need not be created.

The requirement of ray-surface intersection points is dependent on the method 
used to represent the primitives. Using ray tracing techniques the objects are 
commonly represented by an analytic definition to avoid ray tracing numerous 
polygons. The hybrid method of finding ray-surface intersection points is reduced 
to a ‘ray-in-polygon’ test that is carried out in screen coordinates.

Three requirements needed to implement box enclosures in a binary CSG tree 
are given at the end of section 2.3. The third requirement of computing the



84

boxes at internal nodes is no longer required, since these boxes are used to direct 
the top down search for a primitive.



85

5.3. Comparison with Other Hybrid Approaches.

This section discusses two other hybrid approaches and compares them with 
the proposed hybrid method.

Jansen [Jansen 1985] exploits CSG coherence by using spatial subdivision 
techniques combined with CSG list priority and ray tracing algorithms. Using his 
subdivision techniques the object space is subdivided into cells. Each cell has a 
bucket into which associated polygons are stored. Prior to the ray tracing step 
polygons are clipped against cell planes and tested for intersection with other 
polygons in the same bucket. This pre-processing step is independent of the 
viewing position. Altering the viewing position only affects the order that the cells 
are processed. When the viewing position is known cells lying behind or outside 
the viewing cone are discarded. Cells that are partly inside the viewing window 
have their polygons clipped. Polygons are then sorted within each bucket.

The ray tracing step initially intersects rays with cells to reduce the number of 
polygons that have to be tested for intersection. Only polygons in the buckets of 
the cells intersected then have to be considered. Coherence is achieved using a 
CSG list structure, a C-buffer and an item buffer. The CSG list structure stores the 
various sequences of primitives that are intersected by rays during the CSG tree 
traversal. The C-buffer contains a pointer to an element in the list structure for 
every ray. The item buffer uses the C-buffer to set up a pointer to the visible 
polygon for every pixel. A z-buffer is also used to avoid errors in the treatment of 

. coincident facets and sorting errors.

The memory requirements for the three buffers are very large, the proposed 
hybrid method does not use buffers at all. Using Jansen’s method, as a pre­
processing step, ‘object space’ polygons are placed in cell buckets, then compared 
for overlap and clipped before sorting. Therefore the number of polygons actually 
stored is greater than the original number of polygons representing the complex 
object. The proposed method works in the image space, the only preprocessing 
required is to order the primitive box enclosures by maximum y-values. The 
overlapping and clipping of polygons is achieved automatically by the ray casting 
algorithms (without splitting polygons). The sorting step is not required either since 

the order of polygons is already inherent in the CDS’s.



86

Timings are given by Jansen for the CSG list priority and the ray tracing 
algorithms for generating the image of two cylinders. The conclusion made is that 
this method shows no improvement on the reported scanline algorithms [Atherton 
1983, Crocker 1984], Therefore no timing comparisons were made for this method, 
a comparison between the performance of the scan-line algorithm given by Atherton 
and the performance of the hybrid method is given in section 5.4.

Sears and Middleditch [Sears 1984] adopt a similar approach to the proposed 
hybrid method in that the screen is divided into sections according to the 
primitives’ box enclosures (in screen coordinates). However, they consider the 
whole screen. Edges of the box enclosures are extended to the edges of the screen, 
dividing the whole screen into rectangular regions. A pseudo CSG tree is 
constructed for each region, containing associated primitives and their Boolean 

operands.

At the ray tracing step, coherence is achieved by restricting ray/primitive 
intersection tests to the CSG tree associated with the region of the screen that the 
ray’s pixel lies in. In comparison, the hybrid method uses ‘poly-in-span’ nodes to 
indicate the primitives active within a span of a particular scan-line.

Sears and Middleditch state results are significantly inferior to Atherton’s 
results, therefore no comparison is made between their results and the results of the 

proposed hybrid method.



87

5.4. Performance Measurements.

This section analyses the results achieved using the proposed hybrid rendering 
technique described in chapter 4.

Generating the image of a cube with a box enclosure containing approximately 
17,500 pixels takes 3 minutes 55 seconds using the scan-line rendering methods. 
Generating the same image using the ray tracing techniques employed in the hybrid 
method requires 11 minutes 55 seconds, which is almost four times as long. 
This time would be increased dramatically if rays were traced through all the pixels 
in the screen and intersection tests done to all the facets of the cube. Both 
methods above sent Tektronix graphics characters to a Cifer terminal, and both 
timings were done running the system on a VAX 11/780 and did not include the 
data creation step. The shading was done using a 4 x 4 array to provide 17 
different intensity values.

Previous systems employing ray tracing techniques considered all pixels in the
lie

screen. The proposed hybrid method considers only pixels that 4y* within box 
enclosures, which is significantly faster (see section 3.1). The ray-surface 
intersection test is done in screen coordinates and so is reduced to being the ray-in- 
polygon test. In earlier ray tracing algorithms no coherence properties were 
employed during ray tracing, each ray was computed independently. The hybrid 
method employs scan-line coherence and span-coherence properties to increase 
efficiency, each ray using information from an ‘adjoining’ ray whenever possible. 
Therefore the timing for ray tracing given above would be considerably higher if 

normal ray-tracing methods were employed.

The efficiency gained from interchanging between conventional rendering 
methods and ray tracing techniques rather than using full ray tracing is dependent 
on the image being generated. Let G be the ratio denoting the number of pixels 
that are enclosed by only one box enclosure compared to all pixels enclosed. From 
the timing above, the approximate time to generate the image using the hybrid 
method compared with pure ray tracing is given by -

i  G x ray-tracing-time.



This ray tracing time does not include any hidden-surface computation other 
than the removal of back-facing polygons, since only one cube is involved. This 
time will increase with the number of overlapping box enclosures since the depth 
and intensity values at each ray-primitive entrance point must be updated for each 
new ray generated.

A Pyramid computer, linked to a Vectrix display device, was used to compare 
the time required to generate the image of a sphere. The sphere was approximated 
by a polyhedron consisting of 140 facets with front-facing facets shaded by 150 
different shading intensities. The sphere covered an area of approximately 35,000 
pixels. Normally such high precision would not be required, the sphere was created 
for testing purposes. Using conventional methods and shading each facet 
individually took 8mins. 20 secs, to generate the image. Using ray tracing 
techniques with box enclosures and the primitives stored in the compressed data 
structure (i.e. ray-in-quadrilateral tests) took 15mins 36secs. Taking full advantage 
of the coherence properties and the direct access facilities to required facets as 
provided in the hybrid method, enabled both these timings to be substantially 
reduced. Shading facets in scan-line order required 4mins. 54secs using 
conventional techniques. Ray tracing required lOmins. 25secs to render the same 

image of the sphere.

Photograph 1 shows a wireframe image of three cubes. Photograph 2 shows 
the same cubes generated as a shaded image, the areas coloured blue show the 
pixels that were generated using ray tracing techniques. Photograph 3 shows the 
cubes generated as a shaded image with the true intensity values drawn by the ray 
tracing algorithm. The wire frame image (photograph 1) took less than 2 seconds 
to draw. The shaded image of the three cubes shown in photograph 3, required 
only 18 secs. There were only 17 different intensity values allowed.

Photographs 4 and 5 show a wireframe and a shaded image (respectively) of a 
sphere and a cube combined. The wire-frame image in photograph 4 required 6 
seconds. The shaded image in photograph 5 required only 23secs, as before only 

17 different intensity values were allowed.



89

5.5. Conclusion.

The aim of this thesis is to generate images, striking the balance between 
realism and processing time, for engineering type applications. The tests done so 
far indicate that the proposed hybrid method comes nearer to achieving this aim 
than any of the ray tracing methods or hybrid methods previously available.

If an application requires photograph like images, the hybrid system could be 
used for quick generation of images, for previewing in a similar fashion to the 
way that wire frame images are used. The bottom upwards tree traversal is not 
dependent on the method used to determine ray-surfaces intersection points. 
Therefore, for final images surfaces could be defined analytically and a 
sophisticated illumination model used with this traversal. This still increases 
efficiency over most of the previous ray tracing methods because it restricts the 
evaluation of pixels to those lying within box enclosures and provides direct access 
to the primitives. The additional data structures would no longer include path 
nodes for this final image, since these are dependent on the polyhedral 
approximation representation.

The proposed hybrid method does not include any anti-aliasing, since speed of 
generation had to be balanced with realism. The resulting image would be 
improved if a minimal amount of anti-aliasing was done. Polygons could be 
anti-aliased at their edges. These edges are easily obtainable so it would be 
simple to over sample and add some pre-filtering method around these points.



Photograph 1 : Wire-frame image of three cubes.



Photograph 2 : Shaded image of three cubes with ray traced pixels coloured blue.



Photograph 3 : Shaded image of three cubes.



REFERENCES.



91

Appel 1967.

"The Notion of Quantitative Invisibility and the Machine Rendering of
Solids", A. Appel, Proc.ACM National Conf., 1967, pp.387-393.

Appel 1968.

"Some Techniques for Shading Machine Renderings of Solids", A.
Appel, AFIPS Proceedings, Vol.32, Spring Joint Comp. Conf. 1968, 
pp.37-45.

Atherton 1983.
"A Scan-Line Hidden Surface Removal Procedure for Constructive
Solid Geometry", P.R. Atherton, Computer Graphics, Vol. 17, No. 3, 

July 1983, pp.73-82.

Baumgart 1975.
"A Polyhedron Representation for Computer Vision", B.G. Baumgart, 
Proceedings AFIPS National Computer Conf. 1975, pp.589-596.

Blinn 1977.
"Models of Light Reflection for Computer Synthesized Pictures", 
J.F. Blinn, Computer Graphics, Vol. 11, No.2, 1977, pp.192-198.

Blinn 1982.
"A Generalization of Algebraic Surface Drawing", J.F. Blinn, 
ACM Trans, on Graphics, Vol.l, No.3, July 1982, pp.236-256.

Bouville 1984.
"Generating High Quality Pictures by Ray Tracing", C. Bouville, J.L.
Dubois & I. Marchal, Eurographics Conf. Proc., 1984, pp.161-177.

Boyse 1982.
"GMSolid: Interactive Modeling for Design and Analysis of Solids", 
J.W. Boyse & J.E. Gilchrist, IEEE Computer Graphics & Appl., 
Vol.2, No.2, March 1982, pp.27-40.



92

Bui-Tuong 1975.

"Illumination for Computer-Generated Pictures", Phong Bui-Tuong, 
CACM, Vol.18, No.6, June 1975, pp.311-317.

Catmull 1975.

"Computer Display of Curved Surfaces", E. Catmull, Proc. IEEE 
Conf. Computer Graphics Pattern Recognition Data Struct., May 1975, 
p . l l .

Clark 1976.
"Hierarchical Geometric Models for Visible Surface Algorithms", J.H. 
Clark, Comm. ACM, Vol. 19, No. 10, 1976, pp.547-554.

Clark 1980.
"A VLSI Geometry Processor for Graphics", J.H. Clark, Computer, 
Vol.13, No.7, July 1980, pp.59-68.

Clark 1982.
"The Geometry Engine: A VLSI Geometry System for Graphics", J.H. 
Clark, Computer Graphics, Vol.16, No.3, 1982, pp.127-133.

Conway 1988.
"The Isoluminance Contour Model", D.M. Conway, M.S. Cottingham, 
Proceedings of AUSGRAPH 88, Melbourne, July 4-8, 1988,

pp.43-50.

Cook 1982.
"A Reflectance Model for Computer Graphics", R.L. Cook & K.E. 
Torrance, ACM Trans, on Graphics, Vol.l, N o.l, Jan 1982, pp.7- 

24.

Cook 1984.
"Distributed Ray Tracing", R.L. Cook, T. Porter & L. Carpenter, 
Computer Graphics, Vol.18, No.3, July 1984, pp.137-145.



93

Cottingham 1981.

"Movies : Chapter 3", M.S. Cottingham, Honours Thesis,
Department of Computing Science, University of Glasgow, 1981.

Cottingham 1985.

"A Compressed Data Structure for Surface Representation", M.S. 
Cottingham, Computer Graphics Forum, Vol.4, No.3, September 
1985, pp.217-228.

Cottingham 1987.
"Compressed Data Structure for Rotational Sweep Method", M.S. 
Cottingham, AUSGRAPH 87 Conference Proceedings, 4-8 May 1987.

Cottingham 1988a.
"Computers in Society", M.S. Cottingham, L.M. Goldschlager, A.J. 
Maeder, R.T. Worley, ANZAAS Centenary Congress, Sydney, May 
16-20, 1988.

Cottingham 1988b.
"Pseudo Ordering of CSG-trees", M.S. Cottingham, Eurographics 88 
Conference, Nice, France, September 12-16, 1988 (to appear).

Crocker 1984.
"Invisibility Coherence for Faster Scan-line Hidden Surface 
Algorithms", Computer Graphics, Vol.18, No.3, July 1984.

Crow 1981.
"A Comparison of Antialiasing Techniques", F.C. Crow, IEEE 
Computer Graphics & Appl., Vol.l, No.l, Jan.1981, pp.40-49.

Dippe 1984.
"An Adaptive Subdivision Algorithm and Parallel Architecture for 
Realistic Image Synthesis", M. Dippe and J. Swensen, Computer 
Graphics, Vol.18, No.3, 1984, pp. 149-158.



94

Duff 1983.

"Smoothly Shaded Renderings of Polyhedral Objects on Raster 
Displays", T. Duff, Computer Graphics, Vol. 17, 1983, pp.73-82.

Fiume 1983.

"A Parallel Scan Conversion Algorithm with Anti-Aliasing for a 
General-Purpose Ultracomputer", E. Fiume, A. Fournier & L. 
Rudolph, Computer Graphics, Vol.17, No.3, 1983, pp.141-150.

Foley 1982.
"Fundamentals of Interactive Computer Graphics", J.D. Foley & A. 
van Dam, Addison-Wesley Publishing Co., 1982.

Fuchs 1982.
"Developing Pixel-Planes, A Smart Memory-Based Raster Graphics 
System", H. Fuchs, J. Poulton, A. Paeth, A. Bell, Proc. of the 
1982 MIT Conf. on Advanced Research in VLSI, pp. 137-146.

Fuchs 1985.
"Fast Spheres, Shadows, Textures, Transparencies, and Image 
Enhancements in Pixel-Planes", H. Fuchs, J. Goldfeather, J.P. 
Hultquist, S. Spach, J.D. Austin, F.P. Brooks, J.G. Eyles and J. 
Poulton, Computer Graphics, Vol.19, No.3, 1985, pp.111-120.

Fuchs 1986.
"Quadratic Surface Rendering on a Logic-Enhanced Frame-Buffer 
Memory System", H. Fuchs and J. Goldfeather, IEEE Computer 
Graphics & Appl., Vol. 6, No. 1, Jan. 1986, pp.48-59.

Fujimoto 1986.
"ARTS: Accelerated Ray-Tracing System", A. Fujimoto, T. Tanaka 
and K. Iwata, IEEE Computer Graphics & Appl., Vol. 6, No. 4, 

April,1986, pp. 16-26.



95

Goldstein 1971.

"3-D Visual Simulation", R.A. Goldstein & R. Nagel, Simulation, 
Janl971, pp.25-31.

Goldstein 1979.
"3D Modelling with the Synthavision System", R. Goldstein, First
Annual Conf. on Computer Graphics in CAD/CAM Systems, 

M.I.T., April 1979, pp.244-247.

Gouraud 1971.
"Computer Display of Curved Surfaces", H. Gouraud, Univ of Utah
Comp. Science Dept., Utec-CSc-71-113, June 1971, NTIS AD-762
018.

Gupta 1981.
"A VLSI Architecture for Updating Raster-Scan Displays", S. Gupta, 
R.F. Sproull & I.E. Sutherland, Computer Graphics, Vol. 15, No.3, 

Aug.1981, pp.71-78.

Hall 1983.
"A Testbed for Realistic Image Synthesis", R.A. Hall and
D.P. Greenberg, IEEE Computer Graphics & Appl., Vol.3, No.8, 

Nov. 1983, pp. 10-20.

Hanrahan 1983.
"Ray Tracing Algebraic Surfaces", P. Hanrahan, Computer Graphics, 

Vol. 17, No.3, July 1983, pp.83-90.

Heckbert 1984.
"Beam Tracing Polygonal Objects", P.S. Heckbert & P. Hanrahan, 

Computer Graphics, Vol.18, No.3, July 1984, pp.119-127.

Hillyard 1982.
■ "The Build Group of Solid Modelers", R. Hillyard, IEEE Computer
Graphics & Appl., Vol.2, No.2, March 1982, pp.43-52.



96

Jansen 1985.

"A CSG List Priority Hidden Surface Algorithm”, F.W. Jansen, 
Eurographics Conf. Proc., 1985, pp.51-62.

Kajiya 1982.
"Ray Tracing Parametric Patches”, J.T. Kajiya, Computer Graphics, 
Vol. 16, No.3, 1982, pp.245-254.

Kajiya 1983.
"New Techniques for Ray-Tracing Procedurally Defined Objects", J.T. 
Kajiya, Computer Graphics, Vol.17, No.3, 1983, pp.91-102.

Kajiya 1984.
"Ray Tracing Volume Densities”, J.T. Kajiya & B.P. Von Herzen, 
Computer Graphics, Vol.18, No.3, July 1984, pp. 165-174.

Kay 1979.
"Transparency, Refraction, and Ray Tracing for Computer Synthesized 
Images", D.S. Kay, Master’s Thesis, Cornell Univ., Jan 1979.

Kinnucan 1983.
"Solid Modelers Make the Scene", P. Kinnucan, High Technology, 
Vol.2, No.4, pp.38-44.

Laning 1979.
"Capabilities of the SHAPES System for Computer Aided Mechanical 
Design", J.H. Laning and SJ. Madden, Proc. First Ann. Conf. 
Computer Graphics in CAD/CAM Systems, Cambridge, Mass., 

April 1979, pp.223-231.

Lemer 1981.
"Fast Graphics Use Parallel Techniques", E.J. Lemer, IEEE 
Spectrum, Vol.18, No.3, March 1981, pp.34-38.



97

Max 1981.

"Vectorized Procedural Models for Natural Terrain: Waves and Islands 
in the Sunset", N. Max, Computer Graphics, Vol. 15, No.3,

August 1981, pp.317-324.

Myers 1982.
"An Industrial Perspective on Solid Modelling", W. Myers, IEEE 
Computer Graphics & Appl., Vol. 2, No. 2, March 1982, pp.86-97.

Newman 1973.
"Principles of Interactive Computer Graphics", W.M. Newman & R.F. 
Sproull, 1st Edition, McGraw-Hill, 1973.

Newman 1979.
"Principles of Interactive Computer Graphics", W.M. Newman & R.F. 
Sproull, 2nd Edition, McGraw-Hill, 1979.

Okino 1973.
N. Okino, Y. Kakazu and H. Kubo, "TIPS-1: Technical Information 

Processing System for Computer-Aided Design, Drawing and 
Manufacturing", Computer Languages for Numerical Control, J. 
Hatvany ed., North-Holland Pub. Co., Amsterdam, 1973, pp. 141- 

150.

Requicha 1980.
"Representations for Rigid Solids: Theory, Methods, and Systems", 
A.A.G. Requicha, ACM Computing Surveys, Vol. 12, No.4, Dec. 

1980, pp.437-464.

Requicha 1982.
"Solid Modelling: A Historical Summary and Contemporary
Assessment", A.A.G. Requicha & H.B. Voelcker, IEEE Computer 
Graphics & Appl., Vol.2, No.2, March 1982, pp.9-24.



98

Requicha 1983.

"Solid Modelling : Current Status and Research Directions", A.A.G. 
Requicha & H.B. Voelcker, IEEE Computer Graphics & Appl., Vol. 
3, No. 7, pp.25-37.

Rogers 1985.
"Procedural Elements for Computer Graphics", D.F. 
Rogers, McGraw-Hill, 1985.

Roth 1982.
"Ray Casting for Modeling Solids", S.D. Roth, Computer Graphics 
and Image Processing, 18, 1982, pp.109-144.

Sears 1984.
"Set-Theoretic Volume Model Evaluation and Picture-Plane 
Coherence", K.H. Sears, IEEE Computer Graphics & Appl., Vol.4, 

No.3, March 1984, pp.41-46.

Sederberg 1984.
"Ray Tracing of Steiner Patches", T.W. Sederberg & D.C. Anderson, 

Computer Graphics, Vol.18, No.3, July 1984, pp.159-164.

Sorensen 1982.
"Tronic Imagery", P. Sorensen, Byte, Nov. 1982, pp.49-74.

Steinberg 1984.
"A Smooth Surface Based on Biquadratic Patches", H.A. Steinberg, 
IEEE Computer Graphics & Appl., Vol.4, No.9, Sept. 1984, 

pp.20-23.

Sutherland 1974.
"A Characterization of Ten Hidden-Surface Algorithms", I.E. 
Sutherland, R.F. Sproull & R.A. Schumacker, Computing Surveys, 

Vol.6, No.l, 1974, pp. 1-55.



99

Tamminen 1984.

"Ray-casting and Block Model Conversion Using a Spatial Index", M. 
Tamminen et al, CAD, Vol. 16, No.4, 1984, pp.203-208.

Thomas 1984.

"Synthetic Image Generation", A.L. Thomas, University Computing 
1984, Vol.6, No.3, Winter 1984, pp. 148-160.

Torrance 1967.
"Theory for Off-Specular Reflection from Roughened Surfaces", K.E. 
Torrance & E.M. Sparrow, Journal of the Optical Society of 
America, Vol.57, 1967, pp. 1105-1114.

Toth 1985.
"On Ray Tracing Parametric Surfaces", D.L. Toth, Computer 
Graphics, Vol.19, No.3, 1985, pp. 171-179.

Voelcker 1978.
"The PADL-1.0/2 System for Defining and Displaying Solid 
Objects", H.B. Voelcker, A.A.G. Requicha, E.E. Hartquist, W.B. 
Fisher, J. Metzger, R.B. Tilove, N.K. Birrell, W.A. Hunt, G.T. 
Armstrong, T.F. Check, R. Moote & J. McSweeney, Computer 
Graphics (Proc. Siggraph 1978), Vol. 12, No.3, Augl978, pp.257-263.

Walker 1985.
"The Transputer", P. Walker, Byte, Vol. 10, No.5, May 1985, 

pp.219-235.

Wamock 1969.
"A Hidden-Surface Algorithm for Computer Generated Half-tone 
Pictures", Univ. of Utah Computer Science Dept., Rep. TR4-15, 

June 1969, NTIS AD 753671.



100

Watkins 1970.
"A Real-Time Visible Surface Algorithm", University of Utah, 

Computer Science Dept. Tech. Report UTEC-CSC-70-101, June
1970, NTIS AD762 004.

Weghorst 1984.
"Improved Computational Methods for Ray Tracing", H. Weghorst, 
G. Hooper and D. Greenberg, ACM Trans, on Graphics, Vol.3,

N o.l, Jan. 1984, pp.52-69.

Whitted 1980.
"An Improved Illumination Model for Shaded Displays", T.
Whitted, Comm. ACM, Vol.23, No.6, 1980, pp.343-349.

Wijk 1984a.
"Two Methods for Improving the Efficiency of Ray Casting in Solid
Modelling", J.J. van Wijk, W.F. Bronsvoort, F.W.
Jansen, CAD, Vol. 16, No.l, 1984, pp.51-55.

Wijk 1984b.
"Ray Tracing Objects Defined by Sweeping a Sphere", J.J. van Wijk, 
Eurographics 1984 Conf. Proc., pp.73-82.

Wijk 1984c.
"Ray Tracing Objects Defined by Sweeping Planar Cubic Splines", 
J.J. van Wijk, ACM Trans, on Graphics, Vol.3, No.3, July

1984, pp.223-237.

Woodwark 1982.
"Reducing the Effect of Complexity on Volume Model Evaluation", 
J.R. Woodwark & K.M. Quinlan, CAD, Vol. 14, No.2, 1982,

pp.89-95.



101

Yamaguchi 1984.
"A Unified Algorithm for Boolean Shape Operations", F. Yamaguchi 
& T. Tokieda, IEEE Computer Graphics & Appl., Vol.4, No.6, 

June 1984, pp.24-37.



APPENDIX A : The DIAMOND System.



103

1. The DIAMOND System.

The DIAMOND ( Dynamic Integrated Algorithm for Manifesting
Objects Numerically Defined ) system is an interactive menu-driven system 

for the creation and rendering of objects that are constructed using CSG methods. 
It is written in the C programming language which was chosen for its dynamic 
array capability and its close integration with the UNIX operating system that 
shares the same language.

Unfortunately there was no funding available at the time of this research to 
purchase a suitable CAD package that would supply the data required to represent 
the CSG-tree and to represent the surfaces for a range of primitive types. 
Therefore the DIAMOND system includes several data input and creation routines 
as well as the implementation of the proposed method. The principal components 
of the system have already been described in preceding chapters. The following 
table provides a list of the methods described along with the section in which they 
appear.

Table of Modelling and Rendering Methods Adopted.

Method Adopted. Section

Solid Modelling - CSG representation, primitive
templates and transformation matrices 1.2

Polyhedral approximation 1.2.1.2

Compressed Data Structure 1.2.1.2

Adapted scan-line and span coherence properties 1.3.1

Hidden surface removal 1.3.1

Basic illumination model 1.3.2.1

Gouraud’s smooth shading techniques 1.3.2.2

Box enclosures 2.3

Additional structures to provide fast access to

primitives and polygons 4.1

Algorithm for proposed hybrid method 4.3



104

1.1. Interacting with DIAMOND.

This section summarises how DIAMOND interacts with the user. Only the 
main menu and the "choose primitive" menu are given, since the data storage and 
data access routines are the most important features in this research. The system 
uses default values for as many variables as possible e.g. viewing position, light 
position and photometry information for the primitives. These provide the user 
with realistic values for each variable and enables a solid to be rendered with a 
minimum of input.

The first ‘main’ menu to appear on the screen is -

What do you want to do?

(for efficiency options 1, 2 and 5 should be chosen first!!!)

1. change light variables.
2. change viewing position.
3. create a solid object.
4. change existing solid object.
5. change world coordinate system.
6. draw scene - wire frame format.
7. draw scene - shaded picture format.
8. read data from macro file.
9. stop writing to macro file.
10. exit from DIAMOND.
Choose one -

Whatever the choice the user is prompted for any further information required 
by the system. For example, if option 3 is chosen a prompt appears for the 
name of the complex solid to be created. After the name is input, another menu 

appears -



105

What primitive do you require?
1. cube.
2. cylinder.
3. cone.
4. sphere.
Choose one -

The system prompts the user for any parameters required for the primitive chosen. 
For a cube these parameters are the scene position of the bottom left comer of the 
front face and the dimensions in the x, y and z directions. For a sphere these 
parameters are the position of the centre and the radius. These parameters are 
used by DIAMOND to create a 4 x 4 transformation matrix for the primitive. This 
matrix is used to transform the coordinates of the vertices defining the appropriate 
template primitive. This transformation occurs immediately after all the 
information about a single primitive has been input. When the primitive has been 
completed another menu appears and prompts for the user to either finish the input 
session or select an appropriate Boolean operand to connect the next primitive to be 
input with the existing primitive(s). If the user indicates input is complete the main 
menu is redisplayed. If a Boolean operand is displayed the ‘choose primitive’ 
menu is redisplayed. This loop continues until the user finishes the input session.

The user may require a record of the inputs for any particular object/scene. 
The hybrid system provides a macro file facility; every character input is stored in 
a file named by the user. This is useful as a debugging/updating tool and can be 
used to check for typing errors, for correcting geometric errors and for expanding 
a complex solid. It also guarantees that the same scene can be re-generated as 
often as required with very little effort.

After the input for the scene is complete the ‘main’ menu is re-displayed to 
enable the user to render the image of the scene that has just been created. There 
are two choices available, ‘6’ for a wire-frame image for fast generation of the 

scene, and ‘7 ’ for shaded picture format.

The proposed hybrid algorithm is implemented and is used for shaded picture 
generation and forms the main part of the rendering routines. The wire frame 
images are generated using conventional methods. The additional data structures 
referred to in section 4.1 are created/updated whenever required. Hidden



106

surface elimination is achieved using conventional scan-line methods for removal of 
back-facing facets or ray tracing techniques as discussed in section 4.2. 

Gouraud’s smooth shading technique is employed for all the shading calculations.



APPENDIX B : A COMPRESSED DATA STRUCTURE.



108

The following paper was published as a Departmental Reasearch Report No. CSC/85/R7 by the 
Department of Computing Science, University of Glasgow in 1985. It was also published in 

"Computer Graphics Forum", Vol. 4, No. 3 in September 1985.



109

A Compressed Data Structure for Surface Representation.

Marion S. Cottingham

Department of Computing Science,
University of Glasgow.

ABSTRACT

A standard method of simplifying the task of obtaining a shaded 
image of a solid object is to represent it by a polyhedron. Another 
method is to use sculptured surface modelling which represents 
surfaces by collections of surface patches. Using either method the 
surfaces can be approximated by polygonal facets, which are 
simple to shade according to photometry information.

To obtain a smooth image in regions of high curvature, the 
surface would typically be required to have hundreds or thousands of 
facets. Because of the many facets involved, it is extremely 
important that geometrical and topological information is stored in an 
efficient manner. This information must include all that is required 
for an unambiguous representation of the solid(s) in question.

The compressed data structure (CDS) is suitable for this 
purpose, and is capable of defining most surfaces. The structure 
is intended to minimize the amount of data stored, with as much 
information as possible being implied. The CDS can be easily 
generated knowing the order of the vertices defining the surface.

Keywords : data structure, surface modelling,
constructive solid geometry, ray casting.



110

1. Surface Representation Required by the CDS.

A surface can be approximated by a collection of facets, which are bounded by 
edges and vertices. Edges are straight line segments and vertices are normally 
defined in the Cartesian coordinate system, with the x, y and z-coordinates being 
sufficient to represent a 3-D point. Each facet is surrounded by other facets and 
may or may not be planar. Topological information is required to show how these 
facets, edges and vertices are connected.

The CDS is suitable for representing surfaces of polyhedra that can be split 
into rows and columns of quadrilateral facets. However there are some polyhedra 
that cannot be fully represented in this way. For example polyhedra 
approximating spheres, cones and cylinders contain anomalous triangular facets 
around the points where the axis of symmetry intersects with the surface (i.e. the 
poles). Using the CDS, the above solids are represented as far as possible by 
quadrilateral facets, and the triangular facets are dealt with as special cases (see 
section 5).

Anomalous (i.e. non-quadrilateral) facets occurring on the surfaces of 
complex solids can be easily identified by considering the number of edges meeting 
at each vertex in a simplified polyhedral version of the solid [Forrest 78] (see fig. 
1(a) ). These regions occur when the number of edges incident at one vertex is 
other than four (see fig. 1(b) ). The surface of such a solid can be split into a 
collection of smaller surfaces, each having no anomalous facets. Figure 2 
shows a surface being split into three sections. Each section would be stored in a 
separate CDS and the anomalous facets would be handled by their connections.

Another method of representing a surface is by sculptured surface modelling in 
which a mathematical model of surface patches such as Coons, Bezier or B- 
splines is used. The mathematics involved results in patches being nearly always 
four-sided. Surfaces are represented by a collection of patches stored in 
rectangular arrays. The patches that are not four sided lie in the anomalous 
regions which occur under the same circumstances as the anomalous facets 
mentioned above. This method has the advantage of an improvement in 
contouring and shading, but the associated algorithms are less efficient than 
polygon based algorithms due to the non-linear mathematics involved [Clark 
76]. However, after a solid has been constructed these patches may be 

transformed into polygons and stored in CDS’s.



fig. 1 (a) Simplified polyhedral version of solid.

fig. 1 (b) Surface with anomalous facets shaded.



fig. 2 Surface split into three sections with no anomalous facets.



I l l

2. The Compressed Data Structure.

The CDS consists of a 2-dimensional array, in which every element contains 
the coordinates of the four vertices that define one quadrilateral facet. Defining 
every facet by an array element would require each vertex to be stored four 
times, since a vertex is common to four facets. Instead, only one in four facets 
is stored in the array. These are marked ‘x’ in fig. 3(a).

The vertices of the other facets can be easily retrieved from the relevant array 
elements. This can be achieved because of the correspondence between the 
position of the facets on the surface relative to each other and the order of storage 
in the array. Figure 3(a) shows numbered facets and their corresponding storage 
positions within the amay. »

The contents of each element in the array would typically include the x, y 
and z-coordinates of the four comer vertices defining facet f l (see fig. 4), and data 
required, such as normals and diagonal information, for all four facets (fl..f4) in 

the ‘group’.

The following ‘C* language code shows how the CDS can be traversed and a 
wire-frame image generated -

typedef struct { /* screen coordinates */
int x-coord, y-coord; 
int intensity;

} COORDS_2D;

typedef struct { /* vertex coordinates */
float x-coord, y-coord, z-coord;

} COORDS_3D;

typedef struct {
COORDS-2D coords2;
COORDS-3D coords3;

} VERT;

typedef struct { /* four vertices defining a facet */



fig. 3 Only facets marked V  have their defining vertices stored.

fig- 3 (a) Quadrilateral facets and corresponding CDS.

fig. 3 (b) Triangular facets and corresponding CDS.



fig. 4 A group of four facets, only f  1 has all its vertices stored in a single 
array element.



VERT four_verts[4]; 
} DS.FACETS;

draw-wire() /* generate wire-frame image */

{
extern int max-hor,max-vert; 
int indexl,index2;

fo r  (index 1 = 0; index 1 < max-vert;indexl++) { 
fo r  (index2 = 0;index2 < max-hor;index2++) 

draw-facet(index 1 ,index2); 
if  (index2 < (max-hor-1))

draw-hor-connections (index 1 ,index2);

} /*end for */
i f  (indexl < (max-vert - 1)) 

draw-vert-connections (index 1);

} /* end for */
} /* end draw-wire */



draw-facet(index 1 ,index2) 
int index l,index2;

t
extern DS-FACETS *CDS, * cur-facet; 
extern int max-hor,max-vert; 
int count;

cur-facet = CDS + (index 1 * max-hor) + index2; 
fo r  (count = 0;count < 4;count++) { 

if (count != 3)
draw-line(count,count+l);

else
draw-line(count,0);

} /* end for */
} /* end draw-facet */

draw-hor-connections(index 1 ,index2)
/* draw lines connecting current and next facet */ 
int index 1, index2;

{
extern DS-FACETS *CDS, *cur-facet, *next-facet; 
extern int max-hor,

cur-facet = CDS + (index 1 * max-hor) + index2; 
next-facet = cur-facet + 1 ; 
draw-between-line(l ,0); 
draw-between-line(2,3);

} /* end draw-hor-connection */

draw-vert-connections(index)
/* draw lines connecting current row and next row of facets */ 

int index;

{
extern DS-FACETS *CDS, *cur-facet, *next-facet;



extern int max-hor, max-vert; 
int index2;

cur-facet = CDS + (index * max-hor); 
next-facet = CDS + max-hor; 
fo r  (index2 = 0;index2 < max-vert;index2++) 

draw-between-line(3,0); 
draw-between-line(2,1); 
cur-facet++; 
next-facet++;

} /* end for */
/* end draw-vert-connections */



115

In order to imply the edges between vertices stored in the array, facets 
must be quadrilateral, the following restrictions enforce this -

1. Each facet must have exactly four edges.

2. Each edge must be defined by exacdy two vertices.

3. Each vertex not incident on the perimeter of the surface,
must be associated with four facets.

When the surface is being rendered it may be desirable for facets to be 
planar. The CDS handles non-planar facets by introducing a diagonal edge,
thus changing the facet into two triangular facets, which are planar by
definition (see fig. 3(b) ). The diagonal chosen for the split is dependent on the 
curvature of facet being stored. The choice is stored in the appropriate array 
element.

If the surface of a solid is being represented it will be continuous, and will 
require connection information. If it is represented by a single CDS some 
wrap-round connections will provide the relationship between either the facets 
defined by the bottom and top row elements or the facets defined by the first and 
last column elements, or a mixture of both. If the surface has been split into 
sections then the connections between these sections must be stored. Data 
describing connections will contain a name, array elements and vertices 
involved. This information will be kept in a record containing global 

information for the solid.

To make correct connections for solid surfaces, a further restriction has to 
be introduced. All rows/columns must contain the same number of facets (i.e. 
vertices on the perimeter of the surface must be associated with exactly two 

facets).

When a surface is represented by facets, it is usual to restore realism by 
using some smooth shading technique [Newman 79]. It must therefore be 
possible to distinguish between "true" edges (i.e. where there is a discontinuity in 
the normal direction) and spurious edges that are introduced by the 
approximation to an originally smooth surface. It is desirable that these



116

spurious edges are undetectable after the smooth shading technique (e.g. Gouraud 
or Phong) has been applied. Array positions pertaining to facets that adjoin 
"true" edges are noted for use at the drawing step.

3. A Hierarchical Structure for Surfaces.

Many surfaces contain large areas that have very little change in curvature 
and therefore can be closely approximated by relatively few polygonal facets. 
These surfaces may also contain small areas containing lots of detail, which 
requires a relatively large number of facets for a realistic image. When 
representing such solids, the restriction that rows and columns of facets must 
be complete, could lead to the whole solid being represented with the large 
amount of detail required for these "small areas".

To avoid this inefficiency, the concept of a sub-surface is introduced; the 
area requiring a relatively large number of facets is contained within a facet or 
several adjacent facets in the original surface. This sub-surface is defined in a 
separate array from the main surface and is pointed to by a pointer in the array 
element corresponding to the facet(s) containing the sub-surface. A sub-surface 
array element can also point to another sub-surface, thus forming a hierarchy 

of surfaces.

To accommodate this hierarchy the definition of DS-FACETS is extended to

typedef struct { 
union {

VERT four-verts [4];
CDS_header * first-vert;

} facet-kind;
} DS-FACETS;

with first-vert containing the address of the first vertex stored in the sub-surface’s 

CDS array.



117

In principle sub-surfaces can be represented by a completely different data 
structure (such as Baumgart’s Winged-Edge), but this would require additional 
routines for node creation, manipulation and access. The pointer(s) in the 
array indicating the sub-surface would then point to this new structure.

4. A Changing Scene.

Moving a surface nearer to the viewing position can cause the amount of 
data required to increase dramatically in order to produce a realistic image of that 
surface.

The number of facets required to represent a surface can be determined by a 
combination of two things, the screen resolution of the display device, and the 
area that its largest image (i.e. at closest position to viewpoint) will cover on 
the screen. An image covering a large area of the screen will require much 
more data than the same image covering a small area. Therefore representing a 
surface by a specific amount of detail puts a restriction on the minimum distance 
from which the surface can be viewed with realism [Clark 76].

The same surface drawn on display devices of differing resolution may 
require different numbers of facets to represent it. At the drawing step it is 
inefficient to have more than one facet corresponding to one screen pixel. It is 
therefore an advantage if the number of facets can be easily adapted to 
correspond to the area that the image covers on the screen, and to the resolution 

of the display device.



118

4.1. Adapting the Number of Facets According to the Environment.

The method of adapting the number of facets is extremely simple. As each 
surface is processed, the area covered by the maximum bounding box is 
calculated in screen coordinates (i.e. with the surface at its estimated nearest 
point to the viewing position). This area determines the number of facets 
required for maximum precision. It is also used at the drawing step for 
comparison with the current screen area covered. The number of facets 
required (i.e. CDS array accesses) depends on this comparison.

Figure 5 shows a subset of facets representing a solid. Part (a) shows the 
facets required when the viewpoint is at its nearest position. At the drawing step 
all the array elements are accessed. Part (b) shows the facets required when a 
smaller area is covered. When drawing, every array element is accessed, but 
only a subset of the data is used. Finally, part (c) show's the facets required for 
an even smaller area. When drawing, every second array element of every second 
row is accessed. Array accesses can continue to be reduced, until the whole 
array represents only one facet.

When a reduced number of accesses is required, none of the array 
elements accessed contain all four vertices of any one facet. The vertices of a 
facet are then defined as the top-left vertices of the four ‘adjacent’ array elements 
accessed (see fig. 6).

When the surface is fairly flat, calculating the maximum screen area is 
pointless, since these will vary immensely according to the object’s orientation to 
the viewpoint. However, it is useful to calculate a "bounding cuboid" in world 
coordinates. Then each time the object is drawn, the "bounding cuboid" is 
rotated in the same way as the object. It is then simple to calculate the screen 
area covered for this cuboid, which can then be compared with the area of the 
surface at its current position, to determine the number of array accesses 
required. In such a case, it may be desirable to access every mth row element 
and nth column element, where m need not equal n.

As an image grows smaller, minor details tend to disappear quicker than 
more major details, such as "true" edges. Correspondingly, when reducing 
the number of accesses into the anray, "true" edges must be taken into 
consideration. Array elements that correspond to facets adjoining "true" edges 
are always accessed until areas between pairs of "true" edges are no longer



fig. 5 (a) Facets required when the viewing position is at its nearest point.

fig* 5 (b) Facets required when the viewing position is further away than 
at (a).



fig. 5 (c) Facets required when the viewing position is further away than
at (b).



fig. 6 When a reduced number of vertices is required, the topleft vertices 
of array elements accessed define the new facet.



119

significant in size. These pairs of edges are then merged together to form new 
‘true’ edges.

4.2. Increasing Efficiency by Considering Visibility.

Only visible facets are considered at the drawing step. On average this 
will halve the number of array elements of interest when drawing solids. Since 
most solids have their visible facets adjacent to each other, after finding one 
visible facet it is easy to find the others.

In looking for one visible facet it would be inefficient to access all the array 
elements in turn. It is much more efficient to use some search method, such 
as the one described by the following code (higher level first) -

procedure visible; 
begin
find largest 2n x 2n section in array; 
while (visible facet not found and search not complete) do 

begin
test if visible, the facet defined in every 2nth column in every 
2nth row in array (if not previously tested); 
decrement n (i.e. quarter each section); 
end while; 

end procedure.



120

visible()
/* search current CDS array for visible facets, sparsely at first, 
examining more and more elements as the search progresses */

{
extern DS_FACETS *CDS; 
extern int max_hor, max_vert;
int found_flag,min( ),all_in_row,all_in_col,row,col,step_size; 
double pow( ),log2( ),d_two;

d_two = 2.0;
/* find largest 2**n x 2**n section in array */ 

step_size =
min(pow(d_two,log2(max_hor)),pow(d_two,log2(max_vert))); 
row = col = step_size - 1; 
found_flag = 0;
while ((!found_flag) && (step_size != 0)) {

all_in_row = 1;
while ((!found_flag) && (row < max_hor)) { 

all_in_col = 1 ;
while ((found_flag == 0) &&( col < max_vert)) { 

if  ((odd(all_in_row)) II ((even(all_in_row))
&& (odd(all_in_col)))) 

found_flag = facet_visible(row,col); 
all_in_col++; 
col += step_size;

} /* end inner while */ 
all_in_row++; 
row += step_size; 
col = step_size - 1;

} /* end while */
step_size /= 2;
row = col = step_size - 1;

} /* end outer while */
} /* end visible */



121

int intlog2(n) 
int n;

{
register power = 0; 
int n;

while (test <= n)
{ ++power; 
test « =  1;

}
return (--power);

} /* end intlog2 */

double log2(num) 
int num;

{
double pow_num,cur_num,d_two;

pow_num =1.0; 
d_two = 2.0;
cur_num = pow(pow_num,d_two); 
while (cur_num <= num)

cur_num = pow(++pow_num,d_two); 
retum(pow_num);

}

Generally, the above algorithm will only require a few array accesses. 
The other visible facets will be defined by the surrounding array elements.

For most convex surfaces there will be only one group of visible facets. 
However, it is possible for an object to be convex and yet fold itself over, 

such as a spiral shape. To take advantage of the knowledge above, such 
an object should be split into several non-folding sections and stored 
accordingly. If a surface has any concave areas there may be invisible facets 
mixed among the group of visible facets, in which case there is likely to be some 
correspondence between facets lying on edges of adjacent visible areas. The



122

facets where visibility changes will provide the contour of the object, which is 
useful in hidden surface and shadow calculations, and also anti-aliasing.

When the viewing position is moving relative to an object, facets 
changing in visibility will be positioned along the boundaries of the visible areas 
already in existence, or in areas that were previously hidden by the boundary. 
Using this knowledge will enable the visibility updates from frame to frame, to 
be made with the minimum amount of effort.

For hierarchical surfaces, if the facet containing a sub-surface is invisible 
and the sub-surface does not protrude then the whole of that sub-surface will be 
invisible. Otherwise, the array representing the sub-surface must be searched for 
visible facets in the same way as the ‘main’ array.

5. Solid Modelling Using Constructive Solid Geometry Methods and the 
CDS.

Using Constructive Solid Geometry (CSG) methods a complex solid is 
represented by a collection of simpler solids. These are combined by the Boolean 
set operations union, intersection and difference. This representation uses a 
binary tree, with leaf nodes being system primitives and internal nodes being 
compositions of these.

The system solids or primitives are typically blocks, cylinders, spheres, 
cones and tori. Some solid modelling systems use an unambiguous representation 
of these primitive solids [REQU82]. Polygonal representations are used in at least 
three contemporary solid modelling systems: IBM’s GDP [WESL80], Matra’s 
Euclid [BERN75] and Cambridge Interactive System’s Medusa. The CDS could 
be used as the data structure for storing such representations.

The following paragraphs explain how the normal range of CSG primitives 

are represented using the CDS.

A block requires a two element array (see fig. 7(a) ), since there are only 
eight vertices in the cube. The type ‘block’ implies that there are connections 
between the two facets, the order of storage enables the correct connections to be 

made.



m

Net of a torus.

fig. 7 : Typical CSG Primitives and their corresponding CDS,



123

For a sphere represented by m rows and n columns of "quadrilateral" facets, 
the minimum requirement is an array of size im (n+l). The coordinates of

the poles, are stored separately (see fig. 7(b) ). The type ‘sphere’ implies 
that connections exist between the facets defined in the first row of the array and 
the top pole, between facets defined in the last row and the bottom pole, and 
between facets defined in the first and last columns.

A cone is represented as shown in fig. 7(c), and requires I  n elements in 

the array, where n is the number of facets on the side of the cone. The type 
‘cone’ implies that the planar end is defined by the bottom vertices of all the 
facets. The cone’s top can be stored in the top-left of element (0,0). No 
other top-left vertices and no top-right vertices need be stored. Facets defined in 
the first and last elements are connected.

A cylinder is represented as shown in fig. 7(d). The type ‘cylinder’ 
implies that the top plane is defined by the top vertices of the facets, and the 
bottom plane is defined by the bottom vertices, and that there is a connection 
between the first and last elements.

Finally, a torus is represented in much the same way as a sphere, 
requiring the same size of array (see fig. 7(e) ). The type ‘torus’ implies that 
the facets defined by the first and last rows (and columns) of the array are 
connected.

When two primitives are combined their arrays must also be ‘combined’. 
For union and intersection operations this can be achieved by examining the 

facets stored in each array and noting which facets lie in the intersection.

If the operation is union these facets will be invisible and will now point to 
the other primitive solid in the union. As in hierarchical structuring, see 
section 3. If the operation is intersection these facets are the ones required for 
the new solid. It may be possible to reduce the dimensions of the two arrays to 
accomodate only these required facets. Some connection would then be set up 
between these arrays, showing that they both form the same solid’s surface.

The difference operation is a negative union. These facets will form part 
of the surface of the new solid, their normals will have to be updated to point 
in the opposite direction for hidden surface and intensity calculations. It may 
be possible to reduce the array containing these facets, since "non-intersecting"



124

facets are no longer required. The appropriate array elements for the other 
primitive would then point to this new array.

The above is a simplified approach, which assumes that the intersection 
of the solids happens along the edges of facets. In reality



125

a new boundary for the intersecting surfaces will need to be calculated which is 
no mean feat. This can be avoided if ray casting methods are used.

6. Ray Casting and the CDS.

Using ray casting techniques, sight rays are cast from the viewpoint 
through each pixel in the pixel plane (or screen) and into the scene. Hidden 
surface elimination is achieved by considering the first opaque surface intersected 
by a ray, this provides the visible surface at that screen point. Any 
transparent surfaces lying between the viewpoint and this surface would have to 
be considered. Clipping is accomplished by only considering surfaces that are hit 
by a ray.

The colour and intensity at any point on the surface of an object is 
dependent on its location with respect to the light source(s), it’s reflection 
coefficients and the luminiferous quality of surrounding objects. When two 
objects are placed next to each other, every point on one has to be considered 
as a potential light source for the other [Kay 79]. Therefore if a realistic image 
is required, each ray must be traced through the environment and the results 
accumulated.

Whenever a ray intersects a surface, it can be reflected in many 
directions, resulting in the emission of several reflected rays. Each of these 
rays can then intersect another surface, resulting in the further emission of 
several more rays. This whole process can be described by a tree structure.

When tracing a ray, it is impossible to determine in advance, which objects 
will be intersected by the nth reflected ray (n>l). Therefore, it would be ideal 
if information about every facet on every surface was available at any particular 
time. The CDS will require less storage space than some of the other data 
structures currendy used, (see section 7) thus enabling more information to 
reside in direct access store at any particular time. This implies that fewer or 
no I/O operations will be required during the ray tracing step, and that transfer 

time will generally be shorter.



126

6.1. Using CSG Methods.

If the object being traced is modelled using CSG methods (see section 5), 
then the CSG tree is traversed from the bottom upwards. Each ray is 

classified with respect to the primitives at the leaf nodes. The classification of 
a ray is the information regarding which parts of the ray are inside the primitive 
and which are outside. At each internal node the combine operators enable the 
classification to be made for that node.



127

Using Roth’s ray casting methods [Roth 82] for modelling solids, the 
following restrictions are made -

1. The display screen is defined as being the x,y-plane centered 
at the origin in the world coordinate system.

2. The viewing position is placed along the negative z-axis, in 
the world coordinate system.

3. The visible solids are positioned in the direction of the 
positive z-axis.

These restrictions ensure that rays are uniformly distributed in the primitives, 
own local coordinate system where the primitive objects are defined.

Whenever an object’s primitive type, size and position are defined by the 
user, a scene-to-local transformation matrix is stored along with any other data 
required for that object, such as a bounding box in screen coordinates. The 
scene-to-local transformation is for the rays, the primitive itself never 
undergoes any transformation. This allows the representation of a primitive to 
be defined once, its characteristics can then be given to any number of solids 
of the same type, each having a different scene-to-local transformation.

Prior to the drawing step, the CSG tree is traversed and the bounding 
boxes combined using the boolean operations. At the ray casting step rays are 
cast from the viewing position through every nth pixel (n>=l) in the order left 
to right, top to bottom. The tree is traversed for each ray, only accessing
branches for which the ray lies within the bounding box. At the primitive
node, rays have to undergo the appropriate scene-to-local transformations. 
Each transformation requires 15 multiplications and 12 additions. Thus for a 
primitive having a bounding box covering I x I pixels on the display screen, 

the transformation step requires -

15 „ 2
\ n  J

multiplications, and 12 additions.



128

Because rays are uniformly distributed in the local coordinate space, only 
the four rays, which pass through the comer pixels of this bounding box, 

require to undergo any transformation. Linear interpolation can be used to 
deduce the other rays. It only requires 3 multiplications and 3 additions to 
deduce a ray, thus, for the same object as above, the results can be 
achieved with -

i i  
_ 2 

< J

+  60 multiplications, and 3
j

+  48 additions,

I2which is a substantial saving in computation time for —=■ > 5.

7. Minimising the Number of Ray-Facet Intersection Tests.

The ray casting step normally uses a substantial portion of the processing 
time, with most of this time being spent on finding the points where the ray 
intersects the surface. It is therefore important that this step be done efficiently.

It is often difficult to predict what facet of what object will be intersected 
next. However, using the knowledge that there is a correspondence between the 
facets and the order of storage in the CDS (i.e. adjacent facets are ‘adjacent’ in the 
array), it is possible to choose with some degree of accuracy, the array element 
that is most likely to give a positive result to the ray-facet intersection test. Rays 
are passed through adjacent pixels in the pixel plane, so if one ray hits a facet, 
then the next ray will usually hit either the same facet, or an adjacent one.

A bounding box test will enable the position of the next overlapping bounding 
box to be deduced. This ensures that the current object is not hidden by a new 
object until at least this position is reached. If a consecutive ray intersects the 
same object as the previous ray, the intersection test will initially be limited to 
the array elements around the row and column found for the previous ray. 
Objects containing concave areas must be tested to ensure that the area being 
investigated is not overlapped by another area from the same solid.



129

When two consecutive rays intersect within the same area of a solid, the 
‘direction increments’ within the array are noted (i.e. changes in row and 
column). When they intersect in different areas, or objects, the array position
containing the facet where the intersection occurred is noted. The intersection
points of subsequent rays passing through the first row of pixels can be easily 
deduced, by considering another coherence property. The direction between one 
intersection point and the ‘next’ is likely to be the same as the direction between 
the ‘next’ and the ‘next again’. When the same object is being considered, the 
row and column increments help to pinpoint the array position which defines the 
facet that the new ray will be most likely to intersect. The increments are noted 
each time a row and column are found.

All these increments and array positions are used by rays passing through the 
second row of the pixel array. The majority of these increments will remain the 
same from row to row. Array positions will normally undergo only small 
changes. Any differences are updated and used by the next row.

This section so far has concentrated on rows of pixels. A further reduction 
in ray-facet intersection tests can be achieved by storing increments for columns. 
These are the actual differences in the increments and array positions between 
consecutive rows of pixels, and can be stored as the updates are being done. At 
any one time, there will be increments and array positions stored for rays 
pertaining to only one row in the pixel array. The active bounding box list will 
supply the objects that these refer to.

The coherence properties applied above would generally not hold so tightly if 
using Kay’s ray tracing methods, for a highly realistic illumination model, as 
the tracing of the ray continues and the ray has been reflected off several objects. 
For each of these objects, the idea of probing the array to find intersection points 
more quickly would still work with the same efficiency.

8. Comparison Between the CDS and Baumgart’s Winged-Edge Data 

Structure.

The winged-edge data structure is based on a polyhedral representation, which 
the CDS can also handle. Using the winged-edge structure, topological 
information is stored explicitly in the edge nodes (see fig. 8), the geometry is stored



tPP.EY.CCW.C06C
TKCXT.CW.EaGC

fig. 8 'Winged-Edge topology, showing the various pointers associated with 
each edge.



130

in the vertex nodes and the colour and intensity information is stored in the face 
nodes. For any particular solid, these edge, vertex and face nodes are stored in 
three rings. In the CDS the topological information is implied by the array 
positions, the geometry information is stored in the appropriate array elements. 
Photometry information is stored globally wherever possible, otherwise it is stored 
in the array elements.

The winged-edge structure can handle a more general class of polyhedra than 
the CDS, in particular it can be used for storing polyhedra represented by facets 
which are not restricted to having a fixed number of edges. Using the pointers 
the addition or deletion of facets is simple. The CDS is restricted to polyhedra 
consisting of triangular pairs or quadrilateral facets, which must be in complete 
rows and columns. This makes it very difficult to add or delete facets, 

however, I am investigating whether it is worth using CDS ideas in a quad-tree 
structure instead of an array, with each tree node containing the same information 
as an array element plus necessary pointers. This will enable these operations to 
be done, but may have a detrimental effect on access time.



131

8.1. Access of Data.

The winged-edge data structure requires sixteen routines for node creation and 
manipulation and nine accessing routines. Direct access of data is impossible, 

one of the rings must be serially accessed until the required node is reached. 
Corresponding nodes in the other rings can be accessed by following pointers stored 
in this node.

The CDS being an array provides direct access enabling efficient search 
techniques to be used. No special creation or accessing routines are required, 
because of the simplicity of the structure.

8.2. Storage Requirements.

Consider one solid represented by n polygonal facets. Photometry 
information would require the same amount of storage using either structure, 
therefore this discussion is confined to the storage of topological and geometrical 
information.

The word size for storing a *C* language pointer may vary in different 
compilers. I have chosen a iword, which is the storage required by the compiler I 

utilise, other compilers may take a word.

Baumgart’s Winged-Edge Structure.

The body node contains six pointers to the start and end of the face, edge and 
vertex rings, requiring three words of storage. Only one body node is required 
per solid. The edge node contains the topological information and requires ten
pointers. The number of edge nodes required in the representation of the solid
described above is 2n, therefore, lOn words are required for the pointers. The 
face node contains only three pointers, requiring l i  words of storage. The solid 

has n face nodes, therefore requires l jn  words for the pointers. The vertex node 

also contains three pointers. In addition the x, y and z-coordinates of the vertex
are stored. The solid requires n vertex nodes, therefore 4 in  words of storage is

required. The overall storage requirement for non-photometry data is therefore 3 

+ 16n words.



132

The Compressed Data Structure.

The CDS is a two-dimensional array that requires ^-n elements to store a solid

represented by n facets. Each element contains the x, y and z-coordinates of 
the four defining vertices of the facet that it explicitly represents. Therefore the 
overall storage requirement is 3n words.

8.2.1. Result.

The winged-edge structure will require more than five times the amount of 
storage that the CDS requires for storing non-photometry data. The CDS enables 
direct access of data which is not possible using the winged-edge structure, but 
there are restrictions on how the surface is split into facets, these restrictions make 
it difficult to add or delete facets to an existing surface. Hence, storage 
requirements must be balanced against generality when deciding which data 
structure to use.

9. Conclusions.

The CDS allows a surface with numerous facets to be stored in a relatively 
small amount of space. Data can be easily and directly accessed from the CDS 
array. A direct correspondence exists between the positioning of facets and the 
array elements, which may allow spatial coherence properties to be efficiently 
exploited. However, to gain these advantages, there are restrictions on the 
way the surfaces are divided into facets. For some applications these restrictions 
will not be onerous. Operations that affect all the vertex coordinates (e.g. 
moving the viewing position) could be executed using one of the array processors 
which are commercially available today, the host would then be free to continue 
other tasks. Computers with limited direct access store can draw complex objects 
with fewer I/O operations, when using the CDS than when using most of the 

other data structures currently available.



133

10. Acknowledgements.

I would like to thank Dr. A.C. Kilgour for his helpful suggestions and 
constructive criticisms throughout the period of writing this paper. I would also 
like to thank the British Science & Engineering Research Council for their financial 
support while carrying out the work involved.



11. References.

[Baumgart 75] : "A Polyhedron Representation for Computer
Vision", B.G. Baumgart, Proceedings AFIPS 
National Computer Conference 1975, 
pp 589-596.

[Bernascon 75] : "Automated Aids for the Design of Mechanical
Parts", Y.J. Bernascon and J.M. Brun, Tech.
Paper MS75-508, Society of Manufacturing 
Engineers, 1975.

[Clark 76] : "Hierarchical Geometric Models for Visible
Surface Algorithms", J.H. Clark, Comm of the 
ACM, Oct76, Vol.19, no.10, pp 547-554.

[Forrest 78] : "A Unified Approach to Geometric Modelling",
A.R. Forrest, Computer Graphics, Vol. 12, 
no.3, Aug 1978, pp 264-269.

[Kay 79] : "Transparency, Refraction and Ray Tracing
for Computer Synthesized Images", D.S. Kay, 
Master’s Thesis, Cornell University, Ithaca,
N.Y., Jan 1979.

[Newman 79] : "Principles of Interactive Computer Graphics",
W.M. Newman and R.F. Sproull, Second Edition, 
McGraw-Hill 1979, pp 398-404.

[Requicha 82] : "Solid Modeling: A Historical Summary and
Contemporary Assessment", A.A.G. Requicha and
H.B. Voelcker, IEEE Computer Graphics and 
Applications, Vol.2, No.2, March 1982, 
pp 9-24.

[Roth 82] "Ray Casting for Modeling Solids",



[Wesley 80]

S.D. Roth, Computer Graphics and Image 
Processing, 18, 1982, pp 109-144.

: "Construction and Use of Geometric Models"
M.A. Wesley, Computer Aided Design,
J. Encarnacao, ed., Springer-Verlag, N.Y.,
1980, pp 79-136.



APPENDIX C : COMPRESSED DATA STRUCTURE

FOR

ROTATIONAL SWEEP METHOD.



137

The following paper was published as part of the AUSGRAPH 1987 Conference 
Proceedings Perth, Australia 4th - 8th May 1987.



138

Compressed Data Structure for Rotational Sweep Method.

M a r i o n  S. Cottingham

Department of Computer Science,
Monash University.

PRECIS.

The rotational sweep method typically approximates the surface of an object 
by a collection of quadrilateral facets. A smooth-shading technioue is applied to 
these facets to produce a shaded image. Obtaining a smooth image in regions of 
high curvature requires the surface to be represented by hundreds or thousands of 
facets. The large number of facets involved makes it extremely :'mportant that 
geometrical and topological information is stored in an efficient manner. This 
information must include all that is required for an unambiguous mepresentation of 
the solid(s) in question.

The compressed data structure (CDS) stores such a representation efficiently, 
considering both volume of storage required and ease of access. The CDS is 
designed to minimize the amount of data stored with as much information as 
possible being implied. Therefore only geometrical information is actually stored, 
topological information is implied by the order of storage.

Keywords : compressed data structure, rotational sweep, surface modelling.



139

1. Rotational Sweep Method.

The rotational sweep method is used to define objects that have their 
symmetry preserved when rotated. An object is defined by a contour and an axis of 
rotation (see fig. 1(a)). The contour is typically defined by a collection of points.

The contour points are normally defined in the Cartesian coordinate system 
with the x, y and z-ccordinates being sufficient to represent them. These points are 
rotated n degrees at a time, one full revolution around a given axis of rotation (see 
fig. 1(b) ). At each step in the rotation the points defining the transformed contour 
(i.e. the vertices) are stored as part of the surface definition. This has the effect of 
dividing an object’s surface into a collection of quadrilateral facets. Approximating 
the surface by a polyhedron, it is usual to apply a smooth shading technique to 
restore the surface’s smooth appearance [Newman 1979].

Objects defined using the rotational sweep method often contain regions of 
high curvature that require a large number of facets to provide an acceptable surface 
approximation to enable the shading algorithms to generate a reasonably realistic 
image. It is therefore important that data is stored efficiently and that it is easily 
accessible to the rendering algorithms.

2. Compressed Data Structure.

The compressed data structure (CDS) [Cottingham 85] is suitable for storing 
the representation of objects’ surfaces that are split into quadrilateral facets, such as 
those defined by rotational sweep methods. The surface definition must contain the 
coordinates of all the vertices defining the object’s surface and the topology 
showing how these vertices are connected.

The underlying data structure of the CDS is a 3-dimensional array, making it 
simple to implement and use since array operations are already well understood in 
computing. The 3-dimensional array consists of a 2-dimensional array of facets 
with each element containing a 4-element array storing the four vertices that define 
one quadrilateral facet. A facet’s edges are implied by the order of the vertices 
within this 4-element array; an edge is implied between adjacently stored pairs of 
vertices and between the first and last vertices in the array (see fig. 2).



140

Providing an array element for every facet would require each vertex to be 
stored four times, a vertex being common to four faces. Therefore only one facet 
per group of four has all defining vertices stored in a single ‘facet’ array element. 
Figure 3(a) shows facets that have their vertices stored in one ‘facet’ array element. 
The existence of the other three facets is implied by assuming that there are edges 
connecting adjacent facets in the ‘facet’ array (see fig. 3(b) ). This implication is 
possible because the vertices are stored in a specific order and there is a direct 
correspondence between the position of facets on the surface with respect to their 
surrounding facets and their storage position within the array, i.e. facets ‘adjacent’ 
on the surface are stored at ‘adjacent* elements within the array.

Each ‘facet’ array element includes the x, y and z-coordinates of the four 
vertices defining facet / 0 (see fig. 4) plus any photometry information required for
all four facets ( f 0 ...... / 3) in the ‘group’. To enable the correct correspondence
between facets and their array position, the following restrictions are made on the 
facets representing the surface -

1. Each facet must have exactly four edges.

2. Each edge must be defined by exactly two vertices.

3. Each vertex not incident on the perimeter of the surface, must be
associated with four facets.

Using a polyhedral representation, hidden surface elimination is normally 
partly achieved by culling back-facing polygons. Back-facing polygons are usually 
detected by examining the normal vector of each facet. A normal is computed from 
the plane equation of a facet with vertex coordinates specified in a clockwise or 
anti-clockwise order depending on whether a left-handed or right-handed coordinate 

system is used [Heam 86].

The left-handed coordinate system is adopted for the present work. The 
viewing position is fixed along the negative z-axis, making the order of the vertices 
stored within the CDS such that front-facing facets are in a clockwise order and 
back-facing facets are in an anti-clockwise order. Identification of back-facing 
facets within the CDS can thus be achieved without actually computing any plane



141

equations or calculating any normals.

3. Using the CDS with the Rotational Sweep Method.

3.1. Creating and Storing Data.

The rotational sweep method creates vertices in a predefined order, malting it 
simple to store vertices at their correct position within the CDS.

The following pseudo-code computes the points required to approximate the 
surface of an object when given a set of points defining its contour, an axis of 
symmetry and the number of points required to be generated. The code also stores 
the points generated at the correct position within the CDS. Each point in the 
comour is rotated round the axis of symmetry n degrees at a time, where n = 
360/‘number of points required*.

allocate space for CDS_array; 
row_num = 0;
cur_facet = CDS_array [row_num] [0]; 
fo r  each point in contour do 

begin
read coordinates of contour point;

/* place into CDS_array */ 
if  odd number points processed so far do 

cur_facet.v3 = point;

else
cur_facet.vO = point; 

initialise angle to 0; 
fo r  each point in rotation do 

begin
increment angle;
rotate point about axis of rotation by ‘angle’;

J* place into CDS_array */ 
if  even number points processed so far do 

begin



142

if odd number rotations done so far and 
not in last column of CDS_array do 
begin
set cur_facet to facet in next column;
cur__facet.vO = rotated point;
end;

else
begin
cur_facet.vl = rotated point; 
if cur_facet in last column of CDS_array do 

cur_facet = CDS_array[row_num][0];
end;

end;
else /* odd number points processed so far */ 

if odd number rotations so far do 
begin
set cur_facet to facet in next column;
cur_facet.v3 = rotated point;
end;

else
begin
cur_facet.v2 = rotated point; 
if in last column of CDS_array do 

begin
increment row_num;
cur_facet = CDS_array[row_num][0];
end;

end;
end;

end;
end;

3.2. Generating the Image.

At the rendering step the coordinates of the four vertices defining a 
quadrilateral are retrieved from the CDS. The following pseudo-code shows how 
this is achieved and how a wire-frame drawing can be generated using this data.



143

cur_row = 0; 
fo r  each row do 

begin

cur_facet = facet_array [cur_ro w ] [0]; 
next_facet = facet_airay [cur_ro w] [ 1 ]; 
next_row_facet = facet_airay[cnr_row + 1][0]; 

fo r  each column do 

begin

J* generate directly stored facet ( f 0) */ 

draw_line(cur_facet.vO,cur_facet. v 1); 
draw_line(cur_facet.v 1 ,cur_facet. v2); 
draw_line(cur_facet.v2,cur_facet.v3); 
draw_line(cur_facet.v3,cur_facet.v0);

/* generate edges connecting columns(/ i) */ 
if cur_facet not in last column do 

begin

draw_line(cur_facet.v 1 ,next_facet.vO); 
draw_line(cur_facet.v2,next_facet.v3); 
end;

/* generate edges connecting rows ( f 3) */ 
if cur_facet not in last row do 

begin

draw_line(cur_facet.v3,next_row_facet.v0);
draw_line(cur_facet.v2,next_row_facet.vl);
end;

set cur_facet, next_facet and next_row_facet to facets in next
columns;
end;

increment cur_row;

end;

Each edge in drawn only once. The data structure enables common edges 
to be easily identified. The four edges of facet f 0 are drawn but only two 

edges of facets f  i and / 3 are drawn. No edges of facet f 2 are drawn.



144

Generating a shaded image, facets are retrieved from the CDS in the same 
way as above. Calls to the ‘draw_line’ routine are replaced by calls to a 
‘shade_face:’ routine that requires the four vertices defining a facet as its 
parameters. Additional code is included for generating facet / 2. The 

following pseudo-code shows how this is done -

cur_row = 0;
fo r  each row do 

begin
cur_facet = facet_array[cur_row][0]; 
next_facet = facet_airay[cur_row][l]; 
next_row_facet = facet_array[cur_row + 1][0]; 

fo r  each column do 
begin

/* generate directly stored facet / 0 */ 

shade_facet(cur_facet.v0,cur_facet.vl,cur_facet.v2,cur_facet.v3);
/* generate facet f i * /  

if  cur_facet not in last column do
shade_facet(cur_facet.vl,next_facet.v0,cur_facet.v2,next_facet.v3); 

/* generate facet / 3 */ 

if  cur_facet not in last row do
shade_facet(cur_facet.v3,next_row_facet.v0,cur_facet.v2, 

next_ro w_facet. v 1);
/* generate facet / 2 */ 

if  cur_facet not in last row or last column do 
shade_facet(cur_facet.v2,(cur_facet+l).v3,

(next_row_facet + I).v0,next_row_facet.v2); 
set cur_facet, next_facet and next_row_facet to facets in next 
columns; 
end;

increment cur_row;

end;

The shade_facet routine smooth shades the polygon defined by the four 
vertices using a smooth shading routine such as Gouraud’s or Phong’s.



145

Around half of the facets used to approximate the surface in rotational 
sweep methods will be visible in the final image. Figure 5(a) shows all the 
facets drawn, figure 5(b) shows only front-facing facets drawn. In general, 
visible facets in convex areas are adjacent to each other on the object’s 
surface. The correspondence between the position of facets on the surface and 
their position in the CDS array, means visible facets are generally stored at 
adjacent array elements. Therefore after finding one visible facet coherence 
properties can be used to find the others.

4. Conclusion.

The CDS stores a polyhedral approximation of an object in a relatively 
small amount of space. The underlying array structure makes it easy to 
implement since array operations are already well understood and used in 
computing. The array structure enables data to be directly accessed. 
Transformations affecting all the vertex coordinates, such as moving the 
viewing position, could be executed using one of the array processors 
commercially available. A polyhedral approximation of an object often 
requires a vast amount of information. Computers with limited direct access 
memory read and write parts of the data as required. Using the CDS such 
computers can draw complex objects with fewer I/O operations than when 
using most of the other data structures currently available.



146

5. References.

[Cottingham 85] : "A Compressed Data Structure for Surface
Representation", M.S. Cottingham, Computer Graphics Forum, 
Vol.4,No.3,September 1985, pp.217-228.

[Hearn 86] : "Computer Graphics",!). Hearn & M.P. Baker, Prentice-Hall
International Editions 1986.

[Newman 79] : "Principles of Interactive Computer Graphics", W.M.
Newman & R.F. Sproull, 2nd Edition, McGraw-Hill, 1979.



Fig. 1(a) : Vase defined by a contour and an axis of rotation.



Fig. 1(b) : Point p Q being rotated about axis of rotation 30° at a time.



Fig. 2: The four verdces defining a face: are stored in order wichin die facet array 
element, enabling the facet’s edges to be implied.



»31iHH5llu!(7 I I S 1191201̂1 ! Z Z ! Z y 2 . * l

C 7

Fig. 3(a): One facer per group of four has all of its vertices stored in a single facet 
array element.



Fig. 3(b): Other edges are implied by the order of storage.



Fig. 4: The position of each of the four facets in the group.



II!

Fig. 5(a) : Objec:s with all facets drawn.



Fig. 5(b) : Objects with front-facing facets drawn.



147

APPENDIX D : PSEUDO ORDERING OF CSG-TREES.



148

The following paper was published as part of the EUROGRAPHICS 1988 
Conference Proceedings Nice, France 12th - 16th September 1988.



149

PSEUDO ORDERING OF CSG-TREES

Marion S. CCTTINGHAM

Department of Computer Science 
Mcnash University 
Melbourne, Australia

Using Constructive Solid Geometry (CSC) methods, it is usual for 
primitive object representations to be stored at the leaf nodes of 
binary trees. The major part of the work involved in generating an 
image of the object is finding what surface is visible at each pixel 
in the screen. Using conventional rendering methods this can be 
simplified by ordering the primitives by their screen positions and 
by their depths. Using ray tracing techniques this can be achieved 
by testing if rays intersect with primitives, the number of these 
intersect!on tests can be reduced by ordering. However it is not 
generally possible to order data (in any one direction) in CSG-trees 
where intersection or difference operators are involved.

This paper describes a method that enables 'local' three-way ordering 
of the data contained in CSG-trees that can be used with either 
conventional scan-line rendering methods or ray tracing techniques. 
This is achieved by the introduction of underlying data structures 
that dynamically change throughout the image generation step. Using 
this method, the primitive/polygon visible at a particular pixel can 
usually be accessed directly via pointers.

Keywords : Computer Aided Design (CAD), Constructive Solid Geometry
(CSG), boundary evaluation, ray tracing, Compressed Data Structure 
(CDS).

1. INTRODUCTION

Constructive Solid Geometry (CSG) methods are used in most of the CAD/CAM 
packages currently available [1]. Certain classes of objects such 
as unsculptured mechanical parts can be easily created using these methods. 
Complex objects are represented by collections of simpler solids (or primi­
tives). These primitives are typically blocks, spheres, cones, cylinders and
torii that are combined using Boolean set operators union, difference and
intersection. Internally these primitives and their associated operands are 
stored in a tree structure, called a CSG tree. This is typically a binary 
tree that has primitive objects stored at external nodes in the tree and their 
associated operands at internal nodes (see fig.1) The primitive objects are 
often defined by a second representation. The polyhedral approximation is a 
common way to represent the surface of the primitives at the leaf nodes.

After the CSG-tree has been built the data it contains is used to generate the 
image. A major part of this work involves identifying and removing hidden 
surfaces. There are many algorithms in existence for doing this. Sutherland 
et al categorised these into three classes object-space, image-space and list 
priority [2]. An 'object-space' method compares objects to determine 
which oarts are visible, an 'image-space1 method determines what is 
visible at each pixel and a 'list priority' method works partly in each space. 
Most of these algorithms sort surfaces either by screen positions (XY), by



150

Fig. 1 CSG tree representation

depth (Z) or by seme ocher criteria. To increase efficiency some algorithms 
use scanline coherence (i.e. adjacent scanlines are very similar) or frame 
coherence (i.e. an image dees not c h a n g e  much between frames in an animated 
sequence).

This paper introduces a method of accessing the data stored in CSG trees by 
scanline order, and by left to right pixel order within each scanline, and by 
increasing depth crder within each pixel. This method also utilizes scanline 
coherence.

2. RENDERING METHODS

There are two main approaches to rendering the image of an object represented 
by CSG trees, conventional rendering methods and ray tracing techniques. Using 
conventional rendering methods the data must be preprocessed to provide a 
boundary evaluation for the whole complex object (see next section). Using ray 
tracing techniques, the tree is traversed by each sight ray to find the surface 
visible at a particular pixel (see section 2.2).

2.1 Conventional Rendering Methods

Generating an image using conventional methods requires computing a boundary 
evaluation for the complex solid. This usually involves traversing the CSG- 
tree from the bottom upwards, and at each branch combining the surface boundar­
ies of their sub-objects according to the associated 3colean operand (see 
fig.2). The CSG-tree is conventionally a binary tree which restricts each 
evaluation to two sub-objects. After the boundary evaluation step has been 
completed, the rcot node contains the complete surface definition of the 
complex solid being modelled.

A common reoresentation of the primitives is to approximate them by polyhedrals. 
This reoresentation enables a smooth-shading technique such as Gouraud's or 
Phong's to be used [3, 4j. The boundary evaluation of a polyhedral 
representation is simpli^ieG to finding and updating afrected



151

& .  <$>

Ii
O  j ©  O  * 0

O o
Fig.2 Boundary Evaluation

polygons, these are either deleted or re-evaluated according to the associated 
Boolean operands. Re-evaluating a polygon requires updating its existing edges 
by increasing/decreasing the number of vertices.

Ordering the leaf ncces by their primitives' maximum screen y-values can reduce 
the number of disjoint objects that have to be evaluated at.any particular node. 
An unordered tree may have many disjoint objects at internal nodes resulting 
in several objects having to be considered simultaneously at any step in the 
evaluation. Figure 3(a) and (b) shews the ordered and unordered CSG-trees for 
the same object, with (b) shewing a worst case with all the primitives remaining 
disjoint at internal nodes.

2.2 Ray Tracing Techniques

Ray tracing is to mathematically cast a ray from the viewpoint through every 
pixel in the screen and onto the objects in the scene. A high degree of realism 
can be achieved by bouncing the rays off reflective/transparent surfaces and 
tracing them through the scene until the light source is reached. However the 
mechanical-like objects normally represented by CSG-trees do not require such 
a high degree of realism, therefore this paper will concentrate on ray tracing 
for hidden-surface removal, providing an alternative approach to the boundary 
evaluation step of conventional rendering techniques.

Hidden-surface removal is achieved by finding the first surface intersected by 
each ray. This provides the visible surface at the pixel corresponding to the 
ray [5]. The major part of any ray tracing algorithm is the rav-surface 
intersection calculation.

Ray tracing a CSG-tree involves a bottcm-up traversal of the tree for each 
sicht rav, to find the intersection points where a ray enters and exits each 
primitive object (see fig.4). This decomposes the ray into a collection of 
'inside-the-solid' and 'outsice-the-solid' segments [6]. At each



Fig.3(a) CSG-tree with nodes ordered

O

o ^4o 0
1

~H\
0 o

/ ^ \   ̂ o

4

Fig.3(b) CSG-tree with nodes not ordered



153

•i-----1—  j--------- »--------

l e f t  (-----1-----1--------»-------------
right------------ hh------

l e f t  ---------1
right------,--j-----------

ieft — H----------
right — I----------- »—

Fig. 4 Ray Tracing a CSG-tree

level, these secrr.er.~3 are combined according to the Boolean operands stored at 
internal nodes. After the whole tree has been traversed, the surface ‘'visible' 
at the associated screen pixel is determined from these segments.

Accessing all the CSG-tree r.cdes for every ray is expensive in computation.
Roth [7] introduced box enclosures to reduce the number of node accesses 
required to prccess any one ray. A box enclosure is a rectangular area of the 
screen that encloses a primitive object. Before the drawing step the tree is 
traversed bottcm-up and boxes combined at internal nodes according to the 
Boolean operands. After this traversal the box enclosure at the root node 
encloses the whole complex object. Figure 5(a) shows the box enclosures for the
CSG-tree shewn in figure 3(a). If the pixel associated with a ray does not lie
within a box enclosure then no further nodes in that branch need be accessed. 
This reduces the number of node accesses dramatically and rays are only inter­
sected with primitives likely to provide a positive result.

In general box enclosures will be larger at internal nodes if the tree is 
unordered (see fig.5(b)). This implies than many more node accesses will be 
required for an ur.crdered tree.

3. PSEUDO-ORDERING CF CSG-TREES

Using either ray tracing or conventional rendering techniques, it is more 
efficient if the CSG-tree ncces are ordered. There may be two levels of order­
ing to be considered, the primitive level and, for a polyhedral representation, 
the polygon level.

Considering the primitive level, if all the primitives in a CSG-tree are 
combined bv union operators then leaf nodes can be strictly ordered by maximum 
y values (in screen coordinates). However, if any difference or intersection 
operators are used then strict ordering of the primitives is not generally 
possible; for correct results the positions of the two branches associated with 
either of these operators are static, making ordering impossible.



z.— -~-~l

r;j--------- )

— L

rCT'! r  n r

i______ I____

Fig.5{a) Ordered CSG-tree shewing box enclosures

□

\
 I

Fig.5(b) Dnordered CSG-tree showing box enclosures



155

Assuming that ordering by y is possible, the next step is to order by increas­
ing values of x local to each scanline. Generally it is impossible to build 
a binary tree that provides this two-way ordering for the whole scene. The 
main problem is that binary trees are inherently static structures. This paper 
introduces dynamic data structures that allow the CSG-tree primitives to be 
ordered in both the x and y directions for any particular scanline. The next 
section describes hew this pseudo-ordering of the tree can be achieved dynamic­
ally throughout the rendering process.

If a polyhedral approximation is used to represent surfaces, additional under­
lying data structures can be used to access polygons in left to right pixel 
order within each scanline. These are introduced in more detail in section 3.2.

3.1 Ordering Primitive Nodes

The previous section outlines the difficulties in attempting to impose an order 
on the terminal nodes cf a binary tree structure and how these difficulties can 
be overcome by the introduction cf underlying data structures. The first of 
these is an index containing pointers to the primitives stored at external 
nodes (see fig.o). This enables ordering by y. This index is created as a 
linked list directly after the CSG-tree has been built and immediately before 
the rendering step (see fig.7). Index nodes are ordered by decreasing maximum 
y values (in screen coordinates) of primitives. This is made easier by employ­
ing Roth's method of box enclosures. Using an index, primitives associated 
with difference or intersection operators can still be strictly ordered since 
the CSG-tree nodes maintain their same positions. The order of nodes in this 
index is static throughout the rendering step although the number of nodes 
decreases as the rendering progresses and primitives have been completely 
processed.

Fig.6 CSG-tree with index



156

1 i ------r
i ! : ! r \  j O
i 1— '

i
■ w  i

2
r

4

Fig.7 CSG-tree with index ordered by y

The second underlying data structure is the active primitive list. This enables 
primitives to be ordered by increasing x values within a scanline. For any 
scanline this list contains pointers to ail the primitives intersected by the 
scanline. This active list is created/updated by transferring nodes from the 
beginning of the ordered index. Initially the first node in the ordered index 
contains the pointer to the primitive that is 'nearest' to the top cf the 
display screen. This node is transferred to the active primitive list with any 
subsequent node that has its 'top' at the same level. The active list is 
ordered, in increasing order cf minimum x box enclosure values, by inserting 
nodes into the list at their correct position. Nodes are removed when their 
box enclosures' minimum y values are incident on the previous scanline processed.

The active primitive list will normally remain constant over several adjacent 
scanlines and will only change when a primitive’s top/bottom is incident on a 
scanline (see fig.3). The first entry of the ordered index provides the scan­
line where the next addition to the list will occur. The maximum 'bottom' of 
all the primitives in the active list provides the scanline where the next 
deletion from the list will occur.

The active primitive list is maintained throughout the rendering step, enabling 
each scanline to be divided into spans that are bounded by scanline/bcx enclos­
ure intersections. Spans are discussed in more detail in section 4. A count 
is kept of the number cf primitives associated with each span to enable over­
lapping primitives to be easily identified. This determines if any hidden- 
surface elimination other than the removal of back-facing polygons is required 
within a span.

3.2 Ordering Polygons

If a polyhedral representation is used, a third underlying data structure 
called a path provides fast access to visible polygons. A path is a linked 
list of nodes each containing a pointer to identify a polygon that is incident 
on the scanline. An individual path list is created for each primitive when it 
is transferred from the ordered index into the active primitive list and will 
remain in existence while the primitive is active (see fig.9). Path nodes are 
maintained in increasing order of the minimum x values of the scaniine/polvgon 
intersection points.

A oath list will normally remain cosntant (i.e. contain nodes pointing to the 
same polygons, for a few scanlines, and will only change whenever a new edge is > 
encountered. The initial creation of the path list entails finding the 
polygon(s) intersected by the current scanline. Because scanlines are generated 
in order, this is achieved by searching the data structure for the polygon 
containing the vertex with the maximum y value. It is assumed for this applica­
tion that the polygons will all be convex, therefore there will be two edges



157

scanline active primitive list
1 1,2
2 1,2,3
3 1,2
4 1,2,4
5 1,4
6 1

Pig. 3 Active primitive list ordered by 
^ for given scanlines

image

scanline

scr.ere cube

first 
in path

firs-
in
path

A 3 C D E F G H

primitive
nodes

active
primitives
list

CDS path 
lists

Fig. 9 Active, primitive list with 
associated path lists

intersected by any scanline. The following information is calculated and 
stored in each path node -

pointer to polygon incident on scanline. 
the two edges intersected by the scanline. 
the next path node in the list.

For each edge/scanline intersection point - 
the x values in screen coordinates, 
the z values in scene coordinates.
the depth values (if more than one primitive in associated 
span).



For updating between pixels -
the horizontal increment: in depth values for both edges (if 
mere than one primitive in associated span).

For updating between scanlines. the following is stored for the two 
edges -

the vertical increments in x.
the vertical increments in depth.

Additional information can also be stored for use by the smooth shading 
routines if required. For each path list there _is a current pointer to 
indicate the polygon incident at the current pixel being generated.

Using conventional rendering methods a path node is used to generate the pixels 
lying along the scanline inside the associated polygon. If only one primitive 
is associated wish the span containing a polygon,, the enclosed pixels can be
generated immediately. If more than one primitive is involved the current
pointer for each path is followed and the depth value of each associated poly­
gon is interpolated no reflect the depth at the current pixel. The polygon 
with the smallest depth determines the visible surface at that pixel.

Ray tracing techniques normally use an analytical definition of the surface and 
so would not usually require path nodes. Therefore ray tracing path nodes is' 
not considered in this paper.

After each scanline has been completely processed, the information in the path 
nodes is updated to reflect the changes between scanlines. Each path node 
exists until the scanline reaches the bottom-most screen vertex of its assoc­
iated polygon.

4. SPAN LIST FOR A SCANLINE

The span list is creared by processing the active primitive list and dividing 
the scanline into spans with boundaries where the scanline enters and exits .• 
each active primitive's bcx enclosure (see fig.10(a)). The span list changes 
whenever the active primitive list is updated. The span list reduces the 
hidden surface problem to determining the visible primitive from several poss­
ibly visible primitives in each span of the scanline.' There are three types of 
spans possible -

1. empty span (spans 1 and 7 of fig.10(a)).
2. spar, containing one primitive (spans 2 and 6 of fig. 10(a)).
3. span containing more than one primitive (spans 3, 4 and 5

of fig.10(a)).

A span node is created for each non-empty span of the scanline. These are 
stored as a linked list (see fig.10(b)) and contain the following information -

start and step x values for span,
number of orimitives active m  span.
pointers to first and current nodes in the path list (for each 
primitive).
pointers to the next node in the span list.

The span list is traversed during the generation of a scanline, providing 
access to the visible polygons in the path lists. There is one or more path 
lists for each node in the span list.



159

■m

Fig. 10(a) Spans of a scanline

polygons
^ A 3  A B C  3 C C pointed at

path
lists

span
list

2 3 4 5 6

Fig. 10(b) Span list with associated path lists

5. DATA STRUCTURES FOR POLYHEDRAL REPRESENTATION

There are several data structures in existence for storing the polyhedral 
representation. One of these is the compressed data structures (CDS)
[8, 9] which uses a 2-dimensional array for storage. Each element contains 
the data required for one polygon. Using the CDS a minimum amount of work is 
required for one polygon. Using the CDS a minimum amount of work is required 
for ordering and searching because of the inherent nature of the data structure 
i.e. adjacent polygons in the scene are also 'adjacent' in the data structure. 
This is also an advantage when moving from one scanline to the next, when paths 
are updated to reflect the polygons that are incident on the new scanline. 
Another more general data structure is 3aumgart's Winged-Edge [10]. This could 
also be used, but may require more searching to set up the path nodes.

6. CONCLUSIONS AND RESULTS

The underlying data structures enable pseudo-ordering of the primitives stored 
at CSG-tree leaf nodes. This enables primitives active on a scanline and the 
polygons incident at a pixel (if required) to be easily identified and directly 
accessed. Accessing the tree from the bottom upwards, the primitives are



160

accessed first, therefore the associated Boolean operand need only be found 
for the nearest 'visible1 primitive, most of the information stored in the 
underlying data structures are pointers, these only require half or one word 
of storage depending on what hardware is beina used. Accessing the data 
directly maxes it feasible to generate the imaae in scanline order.

A Pyramid computer, linked to a Vectrix display device, was used to compare 
the time required to generate the image of a sphere. The sphere was approxi­
mated by a polyhedron consisting of 140 facets with front-facing facets shaded 
by 150 different shading intensities. The sphere covered an area of approxi­
mately 3 5,000 pixels. Gouraud's smooth-shading technique was used to inter­
polate the shading intensities. Using conventional methods, and shading one 
facet at a time, took 8 mins. 20 secs, to generate the image. Taking full 
advantage of the coherence properties and the direct accessing of data, that 
the underlying data structures described in this paper allow, enabled this 
time to be reduced.

REFERENCES

[1] Recuicha, A.A.G. and Vcelcker, K.3., Solid Modelling: A Historical 
Summary and Contemporary Assessment, IEEE Computer Graphics & Applications 
(March 1582) 9.

[2] Sutherland, I.E., Sprcuil, R.F. and Schumacker, R.A. , A Characterisation 
of Ten Hidden-Surface Algorithms, Computing Surveys (March 1974) 1.

[3] Gouraud, H., Computer Display of Curved Surfaces, Univ. of Utah, Comp. 
Science Dept.', Utec-CSc-71-113 (June 1971).

[4] Newman, W.M. and Sprcuil, R.F., Principles of Interactive Computer 
Graphics, (McGraw-Hill, 1979).

[5] Atherton, P.R., A Scan-Line Hidden Surface Removal Procedure for 
Constructive Solid Geometry, Computer Graphics (July 1983) 73.

[6] Myers, W., An Industrial Perspective on Solid Modelling, IEEE Computer
Graphics & Applications (March 1982) 86.

[7] Roth, S.D., Ray Casting for Modelling Solids, Computer Graphics and Image
Processing (13, 1982) 109.

[8] Cottincham, M.S., A Compressed Data Structure for Surface Representation,
Computer Graphics Forum (Sept. 1985) 217.

[9] Cottingham, M.S., Compressed Data Structure for Rotational Sweep Method, 
AUSGRAPH 87 Conference Proceedings (May 1987).

[10] Baumgart, 3.G., A Polyhedron Representation for Computer Vision, 
Proceedings AFIPS National Computer Conf. (1975) 589.


