https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

by

IOANNIS NIKAS

A Thesis presented for the degree of Doctor of Philosophy
in

The Faculty of Science at the University of Glasgow

```
Institute of Virology
Church Street
GLASGOW Gll 5JR

All rights reserved

\section*{INFORMATION TO ALL USERS}

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 10998223
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

\section*{TABLE OF CONTENTS}
AcknowledgementsSummaryAbbreviations
INTRODUCTION
SECTION A. THE HERPESVIRUSES.
1. Classification of Herpesviruses. ..... 1
2. Biology and Pathogenicity of Herpesviruses ..... 3
SECTION B. STRUCTURE AND REPLICATION OF HSV-1 DNA.
3. Structure of the HSV-l genome. ..... 5
a) Arrangement of DNA sequence elements. ..... 5
b) Organisation of HSV-l genes. ..... 6
c) The a sequence. ..... 6
d) Proteins interacting with the a sequence ..... 9
4. HSV DNA Replication. ..... 10
a) Cis-acting signals for DNA replication. ..... 10
b) \(\mathrm{HSV}-1\) genes required for replication. ..... 13
SECTION C. PROCESSES INVOLVED IN PRODUCTIVE HSV INFECTIONS.
5. Effects of \(H S V\) on Host Cell Metabolism. ..... 15
6. Temporal Regulation of HSV Gene Expression. ..... 16
a) Immediate early gene expression. ..... 17
b) Early gene expression. ..... 21
c) Late gene expression. ..... 25
SECTION D. HSV POLYPEPTIDE SYNTHESIS.
7. Number and Post-Translational Modifications of HSV-Encoded Polypeptides. ..... 27
8. Structural Polypeptides. ..... 29
a) Virion polypeptides ..... 29
b) Envelope polypeptides ..... 30
9. HSV-Induced Enzymes. ..... 31
a) Enzymes involved in DNA metabolism. ..... 31
b) Enzymes involved in DNA replication. ..... 33
c) Interactions between HSV-l enzymes involved in DNA replication. ..... 34
10. Other HSV-Induced Enzyme Activities. ..... 35
SECTION E. RIBONUCLEOTIDE REDUCTASES.
11. General Background. ..... 37
a) Mechanism of the reaction. ..... 37
b) Hydrogen donor systems. ..... 37
c) Classification of ribonucleotide reductases. ..... 39
12. Monomeric Ribonucleotide Reductases. ..... 39
13. Oligomeric Ribonucleotide Reductases. ..... 40
a) The E. coli enzyme. ..... 40
b) Bacteriophage-induced enzymes. ..... 44
c) The mammalian enzyme. ..... 46
d) Viral-induced enzymes. ..... 48
14. Ribonucleotide Reductase is Essential for Virus Growth ..... 51
15. Ribonucleotide Reductase as a Target for Antiviral Compounds. ..... 52
16. Regulation of Ribonucleotide Reductase Synthesis. ..... 53
MATERIALS AND METHODS.
SECTION A. MATERIALS.
l. Viruses. ..... 55
2. Cells. ..... 55
3. Bacterial Strains. ..... 55
4. Tissue Culture Media. ..... 55
5. Bacterial Culture Media. ..... 56
6. Frequently Used Buffers and Solutions. ..... 56
7. Enzymes. ..... 57
8. Radiochemicals. ..... 57
9. Chemicals and Miscellaneous Reagents. ..... 58
10. Cloning Vectors. ..... 58
11. Recombinant Plasmids. ..... 59
SECTION B. METHODS.
12. Virus Growth and Assay. ..... 60
13. Standard Techniques. ..... 60
a) Restriction enzyme digests. ..... 60
b) Ligation of DNA fragments. ..... 61
c) Gel electrophoresis. ..... 61
14. Large Scale Preparation of Plasmid DNA. ..... 63
15. Small Scale Preparation of Plasmid DNA ('Miniprep'). ..... 64
16. Transformation and Transfection of E. coli. ..... 65
a) Preparation of competent bacteria. ..... 65
b) Transformation by plasmid. ..... 65
c) Transformation by Ml3mp8 RF. ..... 65
17. DNA Sequencing. ..... 66
a) DNA cloning into Ml3mp8 RF by the 'shotgun' method. ..... 67
b) Preparation of single-stranded templates for sequencing. ..... 67
c) Selection of insert-containing recombinant Ml3 phages. ..... 68
d) DNA sequencing reactions. ..... 68
18. Transient Expression Experiments. ..... 69
a) Transfection of DNA into tissue culture. ..... 69
b) Preparation of cytoplasmic RNA. ..... 70
c) Production of RNA probes. ..... 70
d) Hybridisations and ribonuclease T2 digestions. ..... 71
SECTION C. COMPUTER ANALYSIS.
19. Accumulation and Processing of Gel Readings. ..... 73
20. Interpretation of Data in the Database. ..... 74
21. Structural Analysis of Amino Acid Sequences. ..... 75a) The Venn diagram of amino acidclassification.76
b) Protein homology by consensus template alignment.

\section*{RESULTS AND DISCUSSION.}
SECTION A. RESULTS.
1. DNA Sequencing studies within the Hind III k Fragment of HSV-1. 78
2. Computer Assisted Analysis of the HINDKK Database. 79
DISCUSSION.
3. The HSV-l RRI Polypeptide. 80
a) Analysis of the RRl amino acid content. 80
b) The RRI hydropathicity profile. 81
c) Repetitions within the RRI N-terminus. 82
SECTION C. RESULTS.
4. Amino Acid Sequence Conservation of HSV-1 RRI with Other Viral, Eukaryotic and Procaryotic Equivalent Polypeptides.83
a) Amino acid sequence conservation of HSV-l RRI with other viral polypeptides. ..... 83
b) Amino acid comparison of HSV-l RRl and mouse Ml polypeptides. ..... 86
c) Amino acid comparison of HSV-1 RRl and E. coli Bl polypeptides. ..... 87
5. Amino Acid Sequence Conservation of HSV-l RR2 with Other Viral Polypeptides. ..... 87
DISCUSSION.
6. Relationship Between \(H S V-1\) and Other Herpesviral and Non-Herpesviral polypeptides. ..... 91
a) Polypeptide conservation between HSV-l and HSV-2. ..... 91
b) Polypeptide conservation between HSV-l and VZV. ..... 92
c) Polypeptide conservation between HSV-l and EBV. ..... 92
d) Polypeptide conservation between HSV-l and HCMV. ..... 93
e) Polypeptide conservation between HSV-l and non-herpesviral polypeptides. ..... 93
7. Constituents of the Viral Ribonucleotide Reductases. ..... 94
8. Putative Common Epitopes in the HSV-1 RRI and RR2 Subunits. ..... 95
SECTION C. RESULTS.
9. Alignment and Secondary Structure Predictions of the Identified or Potential Large and Small Subunit Ribonucleotide Reductase Polypeptides. ..... 97
a) Alignment of the \(R R\) polypeptides. ..... 98
b) Alignment of the \(R R_{S}\) polypeptides. ..... 99

\section*{DISCUSSION.}
10. Structural and Functional Features of the \(R R_{L}\) Polypeptides. ..... 100
a) Region 1 . ..... 100
b) Region 2 . ..... 101
c) Region 3. ..... 101
d) Region 4. ..... 103
11. Structural and Functional Features of the \(R^{R}\) S Polypeptides. ..... 106
a) The tyrosyl radical and iron ligands. ..... 106
b) The \(\mathrm{RR}_{\mathrm{S}}\) C-terminal regions. ..... 107
SECTION D. RESULTS.
12. Sequence Determination of the Mutation(s) in the RRI Xho I/Bgl II DNA Fragment of the HSV-1 Mutant tsl207. ..... 108
DISCUSSION.
13. The Mode of Action of BUdR as a Mutagen. ..... 109
14. How does the Mutation in HSV-l tsl207 Inhibit the Association of the RR1 and \(\overline{R R} 2\) Subunits? ..... 110
SECTION E. RESULTS.
15. The HSV-2 Ribonucleotide Reductase Locus. ..... 113
16. Construction of Plasmids Used in Transient Expression Assays. ..... 114
17. Transient Expression Assays with Plasmid pRR. ..... 114
a) pRR-borne constitutive and induced levels of RRI mRNA. ..... 115
b) pRR-borne constitutive and induced RR2 mRNA levels. ..... 117
18. Trans-Activation of Ribonucleotide Gene Transcription by HSV-l IE Polypeptides. ..... 118
DISCUSSION.
19. Regulation of the HSV-2 RRl Gene Transcription. ..... 120
a) Constitutive transcription from the HSV-2
RRI gene promoter. ..... 120
b) Effects of HSV-l trans-activating functions on RRI mRNA transcription. ..... 123
20. Constitutive and Induced Transcription from the HSV-2 RR2 gene promoter. ..... 124
GENERAL DISCUSSION.
1. The HSV-1 RRI N-terminal Region. ..... 125
a) On the evolution of the HSV-l N-terminal region. ..... 125
b) A possible function for the RRl \(N\)-terminal region. ..... 127
2. Ribonucleotide Reductase as a Target for Antiviral Compounds. ..... 130
3. Regulation of the HSV Ribonucleotide Reductase Activity.131
a) Transcriptional regulation of the RRI and RR2 genes under IE conditions.132
b) Transcriptional regulation of the RR1 and RR2 genes under \(E\) conditions. ..... 132
References

I thank Professor John H. Subak-Sharpe for provision of facilities within the Institute and for his overall supervision and interest in this work.

I express my gratitude to my supervisor Professor J. Barklie Clements for his encouragement and helpful advice, and for critical reading of this manuscript.

I am indebted to Dr John McLauchlan for his excellent guidance, patience and friendship throughout the course of this study and for proof reading this document.

I wish to thank Drs D.J. McGeoch and P. Taylor for their assistance with computing and Mr J. Scott for his help and advice with sequencing. The friendship and wide-ranging discussions with Dr H. Lankinen are greatly appreciated.

Thanks are due to my good friends in the Institute Bobby, Ian, Penny, Jackie, Jasmine and, especially, to Stuart.

I am grateful to my very good friend in Athens Dr Kosta Platanista who didn't forget me and whose letters kept me going.

I can never adequately express my thanks to Ms Linda Shaw for her friendship and patience throughout the last months of this ordeal and the excellent printing of this document.

Finally, I express my gratitude to my long-suffering parents George and Diatsenta and my brother Angelo for their uncomplaining moral and financial support.

During the course of this study, the author was partly supported by a NATO Studenship and, unless otherwise stated, all results were obtained by his own efforts.

\section*{Dedicated to \\ my parents \\ George and Diatsenta Nika}

Ribonucleotide reductase (EC l.17.4.1.) catalyses the direct reduction of all four ribonucleotides to the corresponding deoxyribonucleotides, this reaction being the first unique step in the de novo pathway of DNA biosynthesis. The herpes simplex virus type 1 (HSV-l)-induced enzyme is composed of two non-identical subunits, termed large (RRI) and small (RR2), which are dimers of the Vmwl 36 (RRI) and Vmw38 (RR2) polypeptides respectively. These polypeptides are specified by two early, unspliced and \(3^{\prime}\) co-terminal mRNAs with sizes of 5.0 kb (RRI mRNA) and l. 2 kb (RR2 mRNA). The work presented in this thesis has been primarily directed at obtaining the predicted amino acid sequence of the HSV-1 RRI polypeptide. The HSV-l RRI and RR2 amino acid sequences were analysed for conserved structural and functional features by comparisons to equivalent polypeptides of herpesviral and cellular origin. Other studies have identified the nucleotide changes in a portion of the RRI gene of the HSV-l temperature-sensitive (ts) mutant tsl207 and have examined the transcriptional regulation of \(R R 1\) and RR2 mRNA expression.

\section*{The Nucleotide and Predicted Amino Acid Sequence of the HSV-l RRI Polypeptide.}

The nucleotide sequence of the HSV-l DNA region encoding the RRI polypeptide was obtained with the Ml3 dideoxy/chain termination method in combination with a 'shotgun' cloning approach. The sequencing data predicted that the RRI DNA coding region is an open reading frame (ORF) of 3414 nucleotides which encodes a polypeptide of 1137 amino acids in length. In contrast to the remainder of the RRI polypeptide, the \(N\)-terminal region contains unique amino acid composition features and seven sets of tandemly repeated amino acid sequences. A hypothetical scheme of evolutionary events leading to the formation of this region has been postulated. Further, as this region appears not be directly involved in enzymatic activity, a possible function has been
suggested on the basis of two potential nuclear localisation signals.

\section*{Amino Acid Conservation between Herpesvirus and Cellular Ribonucleotide Reductases.}

Analysis of amino acid conservation between the HSV-l RR1 and RR2 polypeptides with identified or proposed large \(\left(R_{L}\right)\) and small ( \(R R_{S}\) ) subunit polypeptides of herpesviral or cellular origin was performed using computer programs.
a) Comparisons of the HSV-1 RRI polypeptide with homologue \(R R_{L}\) polypeptides. Comparison of the HSV-l RRI polypeptide with the equivalent herpes simplex virus type 2 (HSV-2) polypeptide revealed that they are essentially colinear with the exception of the \(N\)-terminal regions where a number of insertions or deletions were predicted. Other analyses revealed that the RRI \(N\)-terminal region was absent from other \(R_{L}\) polypeptides while the colinear parts exhibited clustered homology.
b) Comparisons of the HSV-1 RR2 polypeptide with homologue herpesviral \(\mathrm{RR}_{\mathrm{S}}\) polypeptides. Comparisons of the HSV-1 RR2 polypeptide with homologue herpesviral \(R^{\text {R }}\) polypeptides revealed the existence of clustered homology. The Escherichia coli (E. coli) tyrosine residue, on which the (essential for function) stable free radical has been localised, is conserved in all the \(R_{S}\) polypeptides examined.

These comparisons strongly indicate that the herpesviral \(\mathrm{RR}_{\mathrm{L}}\) and \(\mathrm{RR}_{\mathrm{S}}\) polypeptides examined are the constituents of the ribonucleotide reductase activities specified by these viruses.

> Conserved Structural and Potential Functional Features of the Herpesviral and Cellular Ribonucleotide Reductases.

To identify more precisely regions of clustered homology and to determine potential functional features of the \(\mathrm{RR}_{\mathrm{L}}\) and \(\mathrm{RR}_{\mathrm{S}}\) polypeptide sequences, these were aligned with the consensus template alignment program and secondary structure predictions were obtained.
a) The RR alignment. The consensus secondary structure predictions identified four \(R_{L}\) Regions. Region 1 is present only in the HSV-l and HSV-2 RRI polypeptides and the majority of sequences within this region are represented by the RRI \(N\)-terminal region. The remaining regions are present in all the polypeptides and contain sixteen blocks of clustered homology. A block in Region 4, with a sequence of GxGxxG (where \(G=g l y c i n e, ~ x=a n y ~ a m i n o ~ a c i d) ~ h a s ~ a ~ p r e d i c t e d ~\) secondary structure of \(\beta\)-strand/turn/ \(\alpha\)-helix. As this structure approximates to the structure of nucleotide binding sites, it is likely to represent the \(\mathrm{RR}_{\mathrm{L}}\) nucleotide binding site. One of the blocks in Region 3 and an adjacent leucine residue are proposed, on the basis of homology to the primary and secondary structures of the adenylate kinase enzyme, to participate in the formation of the \(R R_{\text {L }}^{\text {nucleotide }}\) bing site. Only two homologous blocks are retained in a human cytomegalovirus (HCMV) ORF which would correspond by genome location to HSV-l RRI; the first of these contains a sequence similar to the proposed \(R R_{L}\) binding site.
b) The \(R R_{S}\) alignment. This alignment demonstrated that the E. coli tyrosine residue is conserved in all the \(R_{R}\) polypeptides with the exception of a second HCMV ORF, which corresponds by genome location to HSV-l RR2. Six blocks of clustered amino acid homology and a number of conserved histidine, aspartic acid and glutamic acid residues where identified; the latter could represent ligands of the enzyme's non-heme iron atoms which stabilise the free radical. None of the homologous blocks within \(\mathrm{RR}_{\mathrm{S}}\), except for three amino acids of a carboxy-terminal block, are present in the HCMV ORF which would correspond by genome location to HSV-l RR2.

\section*{The Nucleotide Changes within an HSV-l Mutant tsl207 DNA Fragment Encoding Part of the RRl Polypeptide.}

The HSV-1 mutant ts 1207 fails to specify any detectable ribonucleotide reductase activity at the non-permissive temperature because the RRl and RR2 subunits fail to associate. Marker rescue experiments demonstrated that the tsl207 lesion lies within a DNA fragment encoding part of the

RRI polypeptide. Sequencing studies within this fragment identified two nucleotide changes from which the second results in a change of a serine residue in the wild-type RRI to an asparagine residue in the mutant RRl. The region where the second mutation lies appears not to be directly involved in subunit association.

\section*{The Transcriptional Regulation of the HSV-2 RR1 and RR2 Gene Expression.}

The HSV-2 ribonucleotide reductase activity is specified by two transcripts, termed RRI and RR2 mRNA, which are similarly arranged with their HSV-l counterparts. To study the transcriptional regulation of the RRI and RR2 mRNAs a vector was constructed containing the HSV-2 DNA sequences specifying these mRNAs. Transient expression assays demonstrated that the constitutive RRI mRNA levels were readily detectable, whereas, after induction by HSV-l infection or trans-activation with HSV-l immediate early (IE) polypeptides moderate increases were observed. Analysis of the RRl gene promoter (Pl) sequences identified a number of potential cis-acting transcription elements one of which is identical to the binding site of the 'octamer motif binding factor'. It is proposed that, in the absence of HSV trans-activating functions, the constitutive RRI mRNA levels are due to the interaction of cellular transcription factors with the Pl sequences. The basal RR2 mRNA levels were barely detectable, but in the presence of HSV-l trans-activating functions a significant increase was observed. These results in conjunction with other data allow the proposal of a scheme for the transcriptional regulation of the HSV ribonucleotide reductase gene expression.

\section*{ABBREVIATIONS}

A

\section*{\(\AA\)}
aa
ADP
AE
AK
APS
ATP
bp
BHK
BSA
BU
BUdR

C
Ci
CAT
CDP
C-terminus
dADP
dATP
dCDP
dCTP
ddATP
ddCTP
ddGTP
ddTTP
dGDP
dGTP
DNase
dNTP(s)
DTT
dTTP
E

EBV
EDTA
EPR
E. coli
adenine
Angstrom
amino acid(s)
adenosine diphospate
alkaline exonuclease
adenylate kinase
ammonium persulphate
adenosine triphosphate
base pairs
baby hamster kidney
bovine serum albumin
5-bromouracil
\(5^{\prime}\)-bromodeoxyuridine
cytosine
Curie(s)
chloramphenicol acetyltransferase cytidine diphosphate
carboxy terminus of a polypeptide deoxyadenosine diphosphate
deoxyadenosine triphosphate
deoxycytidine diphosphate
deoxycytidine triphosphate
dideoxyadenosine triphosphate
dideoxycytidine triphosphate
dideoxyguanosine triphosphate
dideoxythymidine triphosphate
deoxyguanosine diphosphate
deoxyguanosine triphosphate
deoxyribonuclease
deoxyribonucleoside triphosphate(s)
dithiothreitol
thymidine triphosphate
early
Epstein-Barr virus
sodium ethylenediamine tetra-acidic acid
electron paramagnetic resonance
Escherichia coli
g(D)
G+C
GDP
GTP
HCMV
HEPES

HSV
IE
Ig
ILB
IPTG
kb, kbp
Km
Kd
1
L
lacz
MCS
MDBP
min
ml
mM
mmol
m.o.i.
mol. wt.
N
NDP (s)
ng
nm
NDP (s)
NPT
N -terminus
NTP (s)
nuc
OD
32 p
PAA
PAGE
gram(s)
glycoprotein (D)
guanosine and cytidine
guanosine diphosphate
guanosine triphosphate
human cytomegalovirus
N-2-hydroxyethyl piperazine-N'-2-ethane
sulphonic acid
herpes simplex virus
immediate early
immunoglobulin
isotonic lysis buffer
isopropyl-D-thiogalactoside
kilobase(s), kilobase pair(s)
Michaelis constant
dissociation constant
litre
late
\(\beta\)-galactose
multiple cloning site
major DNA-binding protein
minute
millilitre
millimolar
millimole
multiplicity of infection
molecular weight
unspecified nucleotide ( \(A, G, C\) or \(T\) )
ribonucleoside diphosphate(s)
nanogram
nanometre
ribonucleoside diphosphate(s)
non-permissive temperature
amino terminus of a polypeptide
ribonucleoside triphosphate(s)
nucleotide(s)
optical density
radiolabelled phosphate
phosphonoacetic acid
polyacrylamide gel electrophoresis

PEB
p.f.u.
p.i.

PR V
PT
R
RNase
rpm
SDS
SV4 0
T
TEMED
TK
ts
U
UV
V
VV
v/v
VZ V
W
\(w / v\)
Xgal

Y
ug
ul
phenol extraction buffer
plaque forming unit
post infection
pseudorabies virus
permissive temperature
purine moiety
ribonuclease
revolutions per minute
sodium dodecyl sulphate
simian virus 40
thymine
\(N, N, N^{\prime}, N^{\prime}\)-tetramethylethylene diamine
thymidine kinase
temperature-sensitive
uracil
ultraviolet
volt(s)
vaccinia virus
volume/volume
varicella-zoster virus
watts
weight per volume
5-bromo 4-chloro 3-indoyl . 3 D
galactopyranoside
pyrimidine moiety
microgram
microlitre

THREE LETTER
SYMBOL
SINGLE LETTER SYMBOL
\begin{tabular}{lll} 
Alanine & Ala & A \\
Arginine & Arg & R \\
Asparagine & Asn & N \\
Aspartic acid & Asp & D \\
Cysteine & Cys & C \\
Glutamine & Gln & \(\mathbf{Q}\) \\
Glutamic acid & Glu & E \\
Glycine & Gly & G \\
Histidine & His & H \\
Isoleucine & Ile & I \\
Leucine & Leu & L \\
Lysine & Lys & K \\
Methionine & Met & M \\
Phenylalanine & Phe & F \\
Proline & Pro & P \\
Serine & Ser & S \\
Threonine & Thr & T \\
Tryptophan & Trp & Y \\
Tyrosine & Tyr & V \\
Valine & Val &
\end{tabular}

This thesis reports the study of the enzyme ribonucleotide reductase specified by herpes simplex virus (HSV), the objective being to elucidate its structure and transcriptional regulation. The aim of this Introduction is to provide a brief background to the biology of herpes simplex virus type 1 (HSV-1), the virus upon which most of this study was carried out. Particular reference will be made to (i) the \(H S V-1\) transcriptional program, (ii) the enzyme functions specified by \(H S V-1\), (iii) the structure and function of the ribonucleotide reductases from prokaryotic, eukaryotic and viral origin, with the aim of putting into context (iv) a detailed account of the HSV-l-specified ribonucleotide reductase.

\section*{SECTION A.}

\section*{THE HERPESVIRUSES.}
1. Classification of Herpesviruses.

The family of Herpetoviridae comprises at least 80
different members. Of these, six have been isolated from humans and the remainder from a wide variety of eukaryotic hosts (Roizman and Batterson, 1985). Membership of this family is based on four morphological features of the virion:
i) The core, which contains the double-stranded viral DNA in the form of a ring-like structure. Passing through the centre of this structure is a proteinaceous, fibrillar spindle, thought to be embedded in the wall of the capsid (Furlong et al., 1972; Nazerian, 1974).
ii) The capsid, which surrounds the core, is icosahedral in shape and consists of 162 capsomeres (12 pentamers and 150 hexamers; wildy et al., 1960).
iii) The tegument, which is a rather ill-defined layer of proteinaceous material between the capsid and the envelope of the virion (Roizman and Furlong, 1974). The thickness of this layer varies considerably among the herpesviruses (McCombs et al., 1971).
iv) The envelope, the outermost structure of the virion (Wildy et al., 1960), which is derived by budding through the inner nuclear membrane (Darlington and Moss, 1968). The envelope contains numerous protruding spikes, estimated to be approximately 8 nm in length (wildy et al., 1960).

Viruses within the family of Herpetoviridae can be classified on the basis of their biology and their genome structure. On the basis of their biology, they have been divided into three subfamilies, the alpha-, beta-, and gammaherpesvirinae, using the criteria of host range, duration of reproductive cycle, cytopathology and characteristics of latent infection (Roizman et al., 1978; Roizman, 1978).

Certain Alphaherpesvirinae have a variable host range both in vivo, in experimental animals, and in vitro. They have a short reproductive cycle, spread rapidly during infection and frequently establish latent infections in ganglia. This group includes herpes simplex virus types 1 and 2 , equid herpesvirus type 1 (EHV-l; Randall et al., 1953), pseudorabies virus (PRV; Gustafsohn, 1970), bovine mammilitis virus (BMV; Martin et al., 1966), varicella-zoster virus (VZV; Weller, 1953) and channel catfish virus (CCV; Wolf and Darlington, 1971; Chousterman et al., 1979).

Betaherpesvirinae are typified by a narrow host range, a long reproductive cycle, spread slowly in culture and may become latent in secretory glands and lymphoreticular cells. Murine cytomegalovirus (MCMV; Smith, 1954) and human cytomegalovirus (HCMV; Smith, 1956) are members of this group.

Gammaherpesvirinae, include Epstein-Barr virus (EBV; Epstein et al., 1965), Marek's disease virus (MDV; Marek, 1907; Churchill and Biggs, 1967), herpesvirus saimiri (HVS; Melendez et al., 1968) and herpesvirus ateles (HVA;

Melendez et al., 1972). They vary in duration of reproductive cycle and in cytopathology but have a host range limited in vitro to lymphoblastoid cells, in which they may also give rise to latent infection.
2. Biology and Pathogenicity of Herpesviruses.

Herpesviruses are known to infect numerous eukaryotic orders, from fungi (Kazama and Schornstein, 1972) to man, who is host to HSV-l, HSV-2, VZV, HCMV and EBV. Recently, a novel herpesvirus, HHV-6, originally termed human B-lymphotropic virus, has been isolated from immunocompromised patients (Josephs et al., 1986; Salahuddin et al., 1986).

HSV-1 is the agent of 'cold sores', facial lesions primarily around the mouth (Fiddian et al., 1983), but the virus can infect many organs. Primary infection may be asymptomatic or lead to development of a number of clinical symptoms such as fever, sore throat, oedema, localised lymphadenopathy and malaise (Whitley, 1985). Following primary infection, the virus establishes a latent state in the trigeminal ganglia and may be periodically reactivated to produce recurrent disease. This is evidenced by the identical restriction enzyme pattern of viral DNA isolated from primary and recurrent lesions (Lonsdale et al., 1979).

HSV-2 is the primary cause of genital herpes,
a vener ally-transmitted disease (Kessler, 1977). HSV-2 genital infections exhibit periods of exacerbation and remission due to reactivation of latent virus in the sacral ganglia (Baringer, 1974). This virus has also been associated with cervical carcinoma, however, HSV-2 DNA sequences are present in only a small percentage of cervical carcinomas (Park et al., 1983; Macnab et al., 1985), whilst human papilloma virus DNA can be detected in up to 80\% of cervical carcinomas examined (Macnab et al., 1986). \(V Z V\) is the causative agent of chickenpox (varicella) in children. In common with HSV-1 and HSV-2, VZV can establish a latent state and reactivate later in life to cause shingles (herpes zoster; Weller, 1976).

HCMV usually infects salivary glands but may also be found in other tissues, usually resulting in a mild or
subclinical disease although congenital neonatal infection can result in mental retardation (Alford and Britt, 1985). Blood transfusions or organ transplants in immunosuppressed individuals frequently result in outbreaks of HCMV infection (Ho, 1982).

EBV is the causative agent of infectious mononucleosis (glandular fever) and is involved in the aetiology of Burkitt's lymphoma (Epstein et al., 1964 ) and in nasopharyngeal carcinoma (zur Hausen et al., 1970).

\section*{SECTION B.}

\section*{STRUCTURE AND REPLICATION OF HSV-1 DNA.}
3. Structure of the HSV-l Genome.
a) Arrangement of DNA sequence elements. HSV-l strain \(17^{+}\)is the third virus with a genome larger than \(10^{5}\) base pairs (bp) whose complete nucleotide sequence has been determined (Davison and Wilkie, 1981; Preston and McGeoch, l981; Murchie and McGeoch, 1982; Dalrymple et al., 1985; Quinn and McGeoch, 1985; McGeoch et al., 1985; Davison and Scott, 1986a; McGeoch and Davison, 1986a and b; McGeoch et al., 1986 a and b; Nikas et al., 1986; Perry et al., 1986; McGeoch et al., 1988; Perry and McGeoch, 1988). Its genome is a linear duplex DNA molecule of \(152,260 \mathrm{bp}\) and has a mean \(G+C\) content of \(68.3 \%\) (McGeoch et al., 1988). HSV DNA can be fragmented by treatment with alkali or formamide suggesting that it contains single-stranded nicks (Kieff et al., 197l; Wilkie, 1973; Ecker and Hyman, 1981).

The HSV genome consists of two distinct segments, designated Long (L) and Short (S), which are covalently linked at the junction (Fig. l; Sheldrick and Berthelot, 1974). Each segment consists of a unique region ( \(U_{L}\) and \(U_{S}\) ) which is flanked by a pair of inverted repeats ( \(R_{L}\) and \(R_{S}\) ). The \(R_{L}\) and \(R_{S}\) sequences are distinct and, depending on whether they are located at the genomic termini (T) or internally (I) at the junction, they are designated \(T R_{L}\), \(\mathrm{IR}_{\mathrm{L}}\) and \(\mathrm{IR}_{\mathrm{S}}\) and \(\mathrm{TR}_{\mathrm{S}}\). The sizes of these regions in bp are: \(\mathrm{U}_{\mathrm{L}}, 107,943\); \(\mathrm{U}_{\mathrm{S}}, 12,978 ; \mathrm{R}_{\mathrm{L}}, 9,215 ; \mathrm{R}_{\mathrm{S}}, 6,676\) (McGeoch et al., 1988). The HSV genome possesses a direct terminal repeat which is also present in one or more inverted copies at the junction (see Page 6).

Preparations of HSV DNA contain approximately equimolar amounts of four isomers which differ in the relative orientation of the \(L\) and \(S\) segments about the junction (Delius and Clements, 1976; Clements, 1976;
\(\longrightarrow\) L
\(P\)
\(I_{L}\)
\(I_{S}\)
\(I_{S L}\)
041.1


Figure 1. The genome structure of HSV-1 DNA. Boxed areas represent repetitive sequences and single lines represent the unique segments. \(L\), the Long segment; \(S\), the Short segment; \(U_{L}\), the long unique sequence; \(U_{S}\), the short unique sequence; \(T R_{L}\) and \(I R_{L}\), the terminal and internal repeats of the \(L\) segment; \(I R_{S}\) and \(T R_{S}\), the internal and terminal repeats of the \(S\) segment. The four possible isomers of the HSV-1 genome are depicted below. P, prototype orientation; \(I_{L^{\prime}}\) inversion of the \(L\) segment; \(I_{S}\), inversion of the \(S\) segment; \(I_{\text {SL }}\), inversion of both the \(L\) and \(S\) segments.

Wilkie and Cortini, 1976; Cortini and Wilkie, l978). One of the four isomers, chosen arbitrarily, is designated prototype ( \(P\) ) and the remainder are designated as \(I_{S}\), \(I_{L^{\prime}}\) and \(I_{S L}\) (see Fig. 1 ; reviewed in Roizman, 1979). In this thesis, genome representations are given in the P orientation.
b) Organisation of HSV-l genes.

It is estimated that the HSV-l genome contains
72 genes which encode 70 distinct polypeptides (Fig. 2; reviewed in McGeoch et al., 1988). Two genes, whose products have been well characterised (see Page l7), map entirely within the \(R_{L}\) and \(R_{S}\) repeats and are therefore each represented twice. The \(U_{L}\) region contains 56 genes, designated ULl to UL56 and the \(U_{S}\) region contains 12 genes, designated USl to USl2. In general, HSV-l genes are densely arranged and in certain cases, such as USIO and USll or in the regions between UL5 and ULl4 and between UL30 and UL33, their coding regions overlap (Rixon and McGeoch, 1984; McGeoch et al., 1988). Each gene has its own promoter, and a feature of their arrangement is that they specify families of overlapping and unspliced transcripts with common \(3^{\prime}\) termini.
c) The a sequence.

The HSV molecule possesses a direct terminal
redundancy, termed the a sequence, which is present in the inverted orientation at the \(L / S\) junction (Fig. 3; Grafstrom et al., 1974 and 1975; Wadsworth et al., 1976; Wagner and Summers, 1978). The a sequence comprises a direct terminal repeat of 17 bp to 2 lbp (DR1 or reiteration I), adjacent to which are two unique sequences (Ub and Uc). The latter are separated by two direct repeat elements of 12 bp and 37 bp (DR2 and DR4). Overall, the structure of the a sequence can be represented by:
\[
D R 1-U b-(D R 2)_{n}-(D R 4)_{m}-U C-D R 1
\]
where \(n\) represents \(l\) to at least 22 copies and m represents 1 to 3 copies (Davison and Wilkie, 1981; Mocarski and Roizman, 1981 and 1982a). The a sequences vary in length both inter- and intra-strain (Wagner and Summers, 1978;


Figure 2. The locations of HSV-l genes, mapping within the unique \(U_{L}\) and \(U_{S}\) sequences, which encode proteins with known functions or properties. Arrowed lines above or below the genome represent genes transcribed rightwards or leftwards respectively. The three origins of viral DNA replication (see text) are indicated ( \(\triangle\) ).

UL2, uracil-DNA glycosylase (J. Mullaney personal communication); UL5, UL8, UL9, UL42, and UL52, DNA replication (Wu et al., 1988; McGeoch et al., 1988); ULl2, alkaline exonuclease (Preston and Cordingley, 1982; McGeoch et al., l986b); ULl9, major capsid protein Vmwl55 (Costa et al., 1984; Davison and Scott, 1986a); UL22, glycoprotein H (McGeoch and Davison, 1986a); UL23, thymidine kinase (McKnight, 1980; Wagner et al., 1981); UL27, glycoprotein B (Bzik et al., 1984; Pellet et al., 1985); UL29, major DNA-binding protein, DNA replication (Conley et al., 1981; Quinn and McGeoch, 1985); UL30, DNA polymerase (Chartrand et al., 1979; Quinn and McGeoch, 1985); UL39, large subunit of ribonucleotide reductase (Preston, V.G. et al., 1984; Nikas et al., 1986; this thesis); UL40, small subunit of ribonucleotide reductase (McLauchlan and Clements, 1983a; Preston, V.G. et al., 1988); UL4l, host virion shut-off (Kwong and Frenkel, 1987; Kwong et al., l988); UL44, glycoprotein \(C\) (Frink et al., 1983); UL48, major tegument protein Vmw65, transcriptional activator (Campbell et al., 1984; Dalrymple et al., 1985); UL50, deoxyuridine triphosphatase (Preston and Fischer, 1984); UL54, immediate early protein (see Page 17; Everett, 1986).

USl, immediate early protein (see Page 17; McGeoch et al., 1985); US3, protein kinase (MCGeoch and Davison, 1986b; Frame et al., 1987); US4, glycoprotein G (McGeoch et al., 1985; Frame et al., 1986a); US6, glycoprotein D (Watson et al., 1982); US7, glycoprotein I (McGeoch et al., 1985); US8, glycoprotein E (McGeoch et al., 1985); USl2, immediate early protein (see Page l7;Murchie and McGeoch, 1982).

Davison and wilkie, 1981). In HSV-1 strain \(17^{+}\)the a sequence is approximately 400 bp and contains one DR4, whereas, in HSV-2 strain HG52 it is approximately 250 bp and contains one DR2 and one DR4 (Davison and Wilkie, 1981).

The a sequence is present as a single copy at the \(S\) terminus, but at the \(L\) terminus and the \(L / S\) junction more than one copy may be present (Wagner and Summers, 1978; Locker and Frenkel, 1979). The DRI elements at the genomic termini are incomplete; the \(L\) terminal DRl contains l8bp and a single \(3^{\prime}\) nucleotide extension (total length 18.5 bp ) while the \(S\) terminal \(D R 1\) contains the remaining 1.5 bp (Mocarski and Roizman, l982a). Therefore, together these partial sequences form a complete DRI element.

The a sequences appear to play a significant role in genome circularisation, inversion, cleavage and packaging.
i) Circularisation. After penetration of the infected cell nucleus, HSV DNA circularises rapidly (Davison and Wilkie, 1983; Poffenberger and Roizman, 1985). This process appears to occur by direct ligation of the complementary a sequences at the termini (Davison and Wilkie, l983) rather than by annealing of the exposed terminal single-stranded ends (reviewed in Roizman, 1979). The former is supported by the ability of \(H S V-1 / H S V-2\) intertypic recombinants to circularise although they contain heterotypic a terminal sequences (Davison and Wilkie, 1983). Circularisation takes place in the absence of \(H S V\) protein synthesis indicating that ligation of the termini is mediated either by a host function or a virion factor (Poffenberger and Roizman, 1985).
ii) Inversion. Inversion of the \(L\) and \(S\) segments of the HSV genome results in the generation of four HSV genome isomers which, at least in tissue culture, appear to be functionally equivalent (Jenkins and Roizman, l986). The necessary signal for this process appears to reside within the a sequences; insertion of a fragment bearing the a sequence into the thymidine kinase (TK) gene of HSV-l promoted additional inversions resulting in the formation of 12 isomers (Mocarski et al., 1980; Mocarski and Roizman,

pac-1
pac-2

Figure 3. The location of the HSV-1 a sequence on the \(P\) genomic arrangement. The a sequence is present as a direct repeat at the genomic termini, and in inverted orientation at the \(L / S\) junction. An expansion of the a sequence at the L/S junction is shown below. Unique and repeated sequence elements within the a sequence are: DRl, a l7-2lbp repeat present as a direct repeat at the ends of the a sequence; Ub, a unique sequence located toward the \(\underline{b}\) sequnce; DR2, \(a\) 12 bp repeat present as 1 to at least 22 copies; DR4, a 37 bp repeat present as 1 to 3 copies; Uc, a unique sequence located toward the \(\underline{c}\) sequence. The black boxes labelled pac-1 and pac-2 indicate unique a DNA sequences conserved in a number of herpesviruses.

1982b). Inverting DNA fragments must be flanked by homotypic and inverted a sequences relative to those at the termini or the junction. Davison and Wilkie (1983) demonstrated that an \(H S V-1\) strain \(17^{+}\)recombinant (RE4), possessing an inverted \(H S V-2\) a sequence at the junction, failed to invert and was predominantly frozen in the \(I_{S}\) arrangement. Likewise, DNA fragments flanked by a sequences in the same orientation failed to invert (Mocarski et al., 1980; Mocarski and Roizman, 1981). Deletion analysis within the \(\underline{a}\) sequences demonstrated that only the DR2 and DR4 elements are required for genomic inversion (Chou and Roizman, 1985).

Site-specific recombination need not be postulated for the generation of the four genomic isomers. Genomic inversion could result partly from the use of alternative packaging phases of the precursor concatemer, which could account for half of the genome isomerisation events, and partly from the summed recombinational activity of sequences primarily dispersed throughout \(\mathrm{R}_{\mathrm{L}}\) and \(\mathrm{R}_{\mathrm{S}}\) (Varmuza and Smiley, 1985). The HSV genome contains short segments of tandemly reiterated sequences which vary in length between 5 bp and 54 bp and have a high G+C content (Rixon et al., 1984; Whitton and Clements, 1984 a and b; Perry et al., 1986). These sequences could be highly recombinogenic and homologous recombination could occur between any members of the same sequence family (Rixon et al., 1984).

Further supportive evidence that recombination leading to segment inversion is not site-specific is obtained from a number of reports. An HSV-l mutant lacking the a sequences at the junction and predominantly frozen in the \(I_{S}\) arrangement generated a minor population of \(I_{S L}\) molecules most probably due to recombination between the remaining \(\underline{b}\) sequences of the junction (see Fig. 3; Longnecker and Roizman, 1986). Likewise, an HSV-l mutant containing a second copy of a \(U_{L}\) fragment inserted into the \(T K\) gene induced inversion (Pogue-Geile and Spear, 1986) as did a fragment from the \(\underline{c}\) sequences albeit at a low frequency (Varmuza and Smiley, 1985).
iii) Cleavage and packaging. The a sequence is
involved in the cleavage of replicated concatemeric DNA into unit length linear molecules and their subsequent packaging into virus particles; although plasmid constructs containing an HSV-l origin of replication are able to replicate they are packaged, as defective particles or 'amplicons', only when they contain an a sequence (Stow et al., 1983; Deiss and Frenkel, 1986). The necessary signals for these processes appear to reside within the Ub and Uc sequences (see Fig. 3; Deiss et al., 1986). 'Amplicons' containing deletions within the Uc region fail to become packaged while those containing deletions within the Ub region are packaged only when a wild-type a sequence is acquired from the helper virus. The Ub region contains a 28 bp sequence which is highly conserved in HSV-1, HSV-2 (Davison and Wilkie, 1981), VZV and PRV (Davison and Rixon, 1985). Deiss and Frenkel (1986) termed this sequence pac-1 and identified a less homologous sequence, pac-2, within the Uc region (see Fig. 3). Although the function of these conserved sequences is at present unknown, these authors proposed that they might play a role in the cleavage and packaging processes.
d) Proteins interacting with the a sequence. The processes in which the a sequence is involved appear to require the interaction of specific HSV-induced and/or host cell proteins. This is evidenced by the requirement of at least one trans-acting viral component for inversion (Mockarski and Roizman, 1982b) and the occurence of genomic circularisation in the absence of de novo protein synthesis (Poffenberger and Roizman, 1985). Dalziel and Marsden (1984), using competition binding assays with HSV-1 DNA fragments containing the \(\underline{a}\) sequence, identified two polypeptides with sizes of 21,000 and 22,000 mol. wt. ( \(21 \mathrm{~K}, 22 \mathrm{~K}\) ) which consistently interacted with these fragments. It was therefore suggested that these polypeptides bind to the a sequence either directly or indirectly (Dalziel and Marsden, 1984). MacLean et al. (1987) demonstrated, by means of antisera raised against oligopeptides corresponding to regions of the predicted primary structure of gene USIl (McGeoch et al., 1985), that
the latter specified two polypeptides with sizes identical to those interacting with the a sequence. Although these authors were unable to isolate substantial quantities of proteins interacting with a sequences to test with anti-USIl-peptide sera, they demonstrated that the USll gene products are DNA binding proteins. The a sequence-interacting 21 K and 22 K proteins of Dalziel and Marsden (1984) may therefore correspond to the products of USll (McLean et al., 1987). The relationship between the \(2 l \mathrm{~K}\) and 22 K proteins is not clear.

Immune electron microscopy showed that the USIl gene products were localised in the nucleoli of infected cells (MacLean et al., 1987). However, viral DNA is located in the nucleoplasm and is specifically excluded from the nucleoli (Rixon et al., 1983; Randall and Dinwoodie, 1986). Therefore, it appears that these proteins may not be involved in DNA replication and maturation in vivo. This suggestion is supported by the viability in tissue culture of HSV mutants, which lack the USll gene (Longnecker and Roizman, 1986; Umene, 1986; Brown and Harland, 1987). Recently, Meigner et al. (1988) reported that one of these mutants was able to establish latency in mice.
4. HSV DNA Replication.
a) Cis-acting signals for DNA replication. The mechanism by which HSV DNA replicates is largely unknown. Jacob et al. (1979) proposed that after infection HSV DNA circularises and replication proceeds by a rolling circle mechanism. In support of this suggestion is the fact that newly replicated viral DNA possessesfewer detectable termini indicating that it consists of head-to-tail concatemers (Jacob et al., 1979; Jongeneel and Bachenheimer, 1981). Furthermore, electron microscopic studies using cells with replicating viral DNA detected circular unit length genome molecules (Shlomai et al., 1976; Friedmann et al., 1977; Jacob and Roizman, 1977).

Approximate locations for \(H S V\) origins of replication were initially characterised using defective viral genomes
obtained following passage at high multiplicities of infection (m.o.i.; Kaerner et al., 1979; Vlazny and Frenkel, 1981; Spaete and Frenkel, 1982). These defective genomes consisted of tandem repetitions of sequences derived from the standard genome and were divided into two classes. Both classes contained sequences from the end of the \(T R\) repeat. Class \(I\) contained in addition sequences from the \(S\) segment while class II contained sequences from near the centre of the \(L\) segment. The ability of these defective genomes to replicate and package in the presence of wild-type helper virus indicated the presence of cis-acting signals for DNA synthesis and processing. Thus, it was suggested that the HSV genome contains i) two potential origins of replication, one in each \(R_{S}\), termed ori \(S_{S}\) and present in class \(I\) defective genomes and ii) a potential origin of replication in \(U_{L^{\prime}}\) termed ori \(L\) and present in class II defective genomes (Vlazny and Frenkel, 1981; Spaete and Frenkel, 1982).
i) Ori \(\underline{S}^{-}\)Stow (1982) developed an assay system for determining functional origins of replication in which the amplification of plasmid DNA sequences containing inserted HSV fragments was estimated in the presence of HSV-l functions supplied in trans. Using this assay system, \({ }^{\text {oris }}\) was positioned in a \(90 b p R_{S}\) region (see Fig. 2), located between the \(5^{\prime}\) termini of IE mRNAs 3 and \(4 / 5\) (for a description of these mRNAs see Page 17; Rixon and Clements, 1982). This region comprised a 45 bp almost perfect palindromic sequence, at the centre of which is positioned an l8bp A+T-rich tract, and contained all the necessary cis-acting sequences for replication (Fig. 4a; Murchie and McGeoch, 1982; Stow and McMonagle, 1983). The A+T-rich segment appears to be important for replication since deletion of it completely abolished origin activity (Stow, 1985).

Within the HSV-2 strain HG52 \(\mathrm{R}_{\mathrm{S}}\), Whitton and Clements (1984a) identified two copies of a sequence highly homologous to HSV-l oris; this sequence is present as a \(137 b p\) direct repeat and it is the proposed \(H S V-2\) oris. In VZV a functional oris was identified, cloned copies of which could be activated by VZV replication functions
(a) HSV-1 oris sequence
\begin{tabular}{|c|c|}
\hline & GGCCGCCGGG'PAAAAGAAGTGAGAACGCGAAGCGTTCGCACTTCGTCCCAATATATATATATTATTAGGGCGAA
: : : : : : : : : : : : : : : : : : : : : : : : : \\
\hline \multicolumn{2}{|l|}{(b) HSV-1 ori \({ }_{L}\) sequence} \\
\hline &  GCGCGTCATCAGCCGGTGGGCGTGGCCGCTATTATAAAAAAAGTGAGAACGCTGAACGTTCGCACTTTGTCCTA \\
\hline &  \\
\hline &  \\
\hline \multicolumn{2}{|l|}{(c) HSV-1 ori \({ }_{\text {L }}\) /oris \({ }_{\text {S }}\) comparison} \\
\hline ori \({ }_{\text {L }}\) & \begin{tabular}{l}
< \(\lll \lll \lll<l\) \\
GCGCG'rCATCAGCCGGTGGGCGTGGCCGCTATTATAAAAAAAGTGAGAACGCGAAGCGTTCGCACTTTGTCCTA
\end{tabular} \\
\hline \multirow[t]{2}{*}{oris} & GCGGGACCGCCCCAAGGGGGCGGGGCCGCCGGG. TAAAAGAAGTGAGAACGCGAAGCGTTCGCACTTCGTCCC \lll \lll \lll \lll \(\ll\) \\
\hline & : : : : : : : : : : : : : : \\
\hline &  \\
\hline ori \({ }_{\text {L }}\) & TATATTATTAGGA CAAAGTGCGAACGCT'ICGCGTTCTCACTTTTTITTATAATAGCGGCCACGCCCACCGGCTA \\
\hline oris & TATATTATTAGGGCGAAGTGCGAGCACTGGCGCCGTGCCCGA CTCCGCGCCGGCCCCGGGGGCGGGCCCGGGC >>>>> \(\ggg \ggg \ggg \ggg \ggg>1\) \\
\hline
\end{tabular}
: : : : : : : : : : : : : :

Figure 4. Structure of the HSV-1 origins of replication.
a) The oris sequence. The arms of the palindrome are indicated by (<) or (>) and the binding sites of the UL9 protein are indicated by (:).
b) The ori \({ }_{L}\) sequence. Palindromic sequences are indicated as above. Numbered arrowed lines indicate regions of interrupted and inverted nucleotide repetitions.
c) Comparison of the ori \({ }_{S}\) and ori \({ }_{L}\) sequences. Asterisks indicate conservation and dots indicate gaps introduced into the sequences for optimal alignment. Dashed lines represent the sequences essential for oris activity and the palindromic sequences and binding sites of the UL9 protein are indicated as above.
supplied in trans (Stow and Davison, 1986); in addition, the cloned VZV oris could be activated by HSV-l infection although at a reduced efficiency (Stow and Davison, l986). The VZV oris contains a tract of alternating A+T residues located at the centre of an almost perfect palindrome of 45 bp and displays limited homology to the HSV-1 equivalent.
ii) ori \({ }_{L}\). The \(\operatorname{HSV}^{\text {ori }}{ }_{L}\) is positioned between the 5' termini of the mRNAs encoding the major DNA-binding protein (MDBP) and the DNA polymerase (genes UL29 and UL30 respectively in Fig. 2), and its sequence has been determined for \(H S V-1\) strains \(17^{+}\)(Quinn and McGeoch, 1985), KOS (Weller et al., 1985) and the Angelotti class II defective of \(H S V-1\) (Gray and Kaerner, 1984). Ori \({ }_{L}\) sequences consist of an A+T-rich region positioned at the centre of a perfect palindrome with arms each of 72 bp ; each arm contains three regions of interrupted and inverted repetitions (Fig. 4 b ; Weller et al., 1985). Comparison between oris and ori \({ }_{L}\) sequences revealed that the whole of the oris palindrome is quite similar to the central portion of the ori \({ }_{L}\) palindrome (Fig. 4c). The latter was shown to be a functional origin and deletions within the palinarome abolished activity (Weller et al., 1985).

HSV-2 contains a perfect palindrome of 136 bp which is highly homologous to that of HSV-1 ori \({ }_{L}\) (Lockshon and Galloway, 1986). On the contrary, VZV does not appear to
 equivalent \(H S V-1\) genomic position (Stow and Davison, 1986).

Recently, it was shown that an HSV-l deletion mutant lacking most of the ori \({ }_{L}\) sequences, and therefore rendering ori \(_{L}\) non-functional in the presence of helper virus, was able to replicate in vitro (Polvino-Bodnar et al., 1987). Further, an \(H S V-1\) recombinant that contains ori \({ }_{L}\) and a single copy of oris was viable in tissue culture (Longnecker and Roizman, 1986). These observations demonstrate that two out of three HSV origins are sufficient for replication, and this raises the question of the role of a third origin. It is possible that different origins are preferentially used during different stages of lytic infection (reviewed in McGeoch, 1987).
b) HSV-1 genes required for replication.

A number of HSV-l-induced enzymes have been shown by genetics to be essential for viral DNA replication in cultured cells and these are described in Section D. Recently, Challberg (1986) developed a method for identifying viral genes required for DNA replication. This method was based on the observation that transfected HSV DNA could provide in trans the functions to support amplification of an oris \({ }_{s}\)-containing plasmid introduced concurrently. Thus, it was shown that a set of plasmids representing most of the HSV genome could substitute efficiently for intact virus DNA in supplying replication functions and that the DNA polymerase and MDBP genes were essential components of this system. Subsequent subcloning and inactivation by restriction endonuclease digestion identified, in conjuction with DNA sequencing data, five additional essential genes (Wu et al., 1988; McGeoch et al., 1988); these are UL5, UL8, UL9, UL42 and UL52 (see Fig. 2).

The products of genes UL9 and UL42 have been
characterised. Gene UL9 encodes a protein, identified previously by Elias et al. (1986), which binds to oris. This protein is present in nuclear extracts of HSV-l-infected cells and generates a DNase I footprint of 18 bp which maps to the left of the palindrome centre (Elias et al., 1986); however, it has recently been shown that this protein has an additional binding site to the right of the palindrome centre (see Fig. 4a; Olivo et al., 1988; H. Weir, personal communication). It is notable that the DNase \(I\) protected region to the left of the palindrome centre includes an llbp sequence which is highly conserved between \(H S V-1\) ori \(L^{\prime}\), ori \(S_{S}\) and \(V Z V\) ori \(S_{S}\) (Stow and Davison, 1986). Gene UL42 encodes the 65 K DNA-binding protein ( \(65 \mathrm{~K}_{\mathrm{DBP}}\); Marsden et al., 1987; Parris et al., 1988). This protein is the major species in high-salt eluates from double-stranded DNA cellulose columns used to fractionate nuclear extracts of HSV-l-infected cells (Marsden et al., 1987). Recently, a temperature-sensitive (ts) HSV-l mutant with a mutation lying most probably in gene UL42 failed to induce synthesis of viral DNA at the non-permissive temperature (NPT) and was unable to replicate an
oriS-containing plasmid (Marchetti et al., 1988). Further, this mutant at the NPT failed to induce synthesis of the true-late class of HSV-l mRNAs (for a description of these mRNAs see Page 17). The functions of the other three essential genes are currently being investigated.

\section*{PROCESSES INVOLVED IN PRODUCTIVE HSV INFECTIONS.}

\section*{5. Effects of HSV on Host Cell Metabolism.}

Productive infection with HSV virus significantly impairs several host functions. Following infection, host DNA synthesis ceases (Aurelian and Roizman, 1964; Roizman and Roane, 1964) and host RNA synthesis decreases (Hay et al., 1966; Flanagan, 1967; Pizer and Beard, 1976). However, certain host cell RNAs continue to be synthesised at late times post infection (p.i.; Stringer et al., 1977) and the promoters of cellular genes, integrated into the genome of biochemically transformed cell lines, are activated after HSV infection (Everett, 1985). The steady-state levels of pre-existing host polyadenylated mRNAs decrease by 4 h p.i., probably due to deadenylation (Nishioka and Silverstein, 1977 and 1978; Nakai et al., 1982; Mayman and Nishioka, 1985).

Infection of cells with HSV results, also, in inhibition of host protein synthesis with the exception of the heat shock or stress proteins whose production is increased (Notarianni and Preston, 1982; LaThangue et al., 1984). Host protein shut-off appears to be more rapid and efficient with HSV-2 than HSV-1, although HSV-2 strain HG52 appears to be an exception to this generalisation (Powell and Courtney, 1975; Pereira et al., 1977). Host protein shut-off has been divided into 'early' and 'delayed' stages. The 'early' stage occurs after HSV infection and is mediated by a virion component(s) as it can be achieved either by UV-irradiated virus or in the presence of drugs which inhibit incoming virus expression (Fenwick and Walker, 1978; Nishioka and Silverstein, 1978). This stage appears to be associated with disaggregation of infected-cell polyribosomes which reassemble to form new ones exhibiting an altered size distribution (Sydiskis and Roizman, 1967 and 1968). The majority, but not all, of the mRNA associated with new polyribosomes is virally-encoded (Stringer et al.,
1977). Further, the 'early' shut-off appears to be associated with host mRNA degradation and with a reduction in the half-life of immediate-early and, possibly, early and late HSV mRNAs (for a description of these HSV mRNAs see below; Schek and Bachenheimer, 1985; Kwong and Frenkel, 1987; Strom and Frenkel, 1987; Kwong et al., 1988). A number of \(H S V-1\) mutants defective in virion-associated host shut-off (vhs) have been isolated (Read and Frenkel, 1983). In one mutant, the mutation(s) affecting both inhibition of host protein synthesis and stability of host and viral mRNAs, most likely maps within gene UL4l (see Fig. 2; Kwong et al., 1988). In certain cell lines, host cell mRNA degradation occurs during 'delayed' shut-off of host polypeptide synthesis (Nishioka and Silverstein, 1978).

The 'delayed' stage of the shut-off process completes the inhibition of host protein synthesis and requires viral gene expression (Nishioka and Silverstein, 1978; Read and Frenkel, 1983). The gene(s) involved in 'delayed' shut-off can function in the absence of the virion component(s) responsible for the 'early' shut-off (Read and Frenkel, 1983).
6. Temporal Regulation of HSV Gene Expression.

The HSV virion is uncoated in the cytoplasm of the infected cell and subsequently the viral DNA is transported to the nucleus (Hummeler et al., 1969). In the nucleus, mRNA is transcribed from viral DNA by a process which appears to involve cellular RNA polymerase II; this is evidenced by the sensitivity to \(\alpha\)-amanitin (Alwine et al., 1974; Ben-Zeev et al., 1976), a fungal toxin which specifically inhibits RNA polymerase II, and by the absence of any novel RNA-polymerasing activity in HSV-l-infected cells (Lowe, 1978). The sensitivity against the drug persists throughout all stages of infection (Costanzo et al., 1977). Subsequently, HSV mRNA is transported to the cytoplasm where it becomes associated with polyribosomes, and is translated (Wagner and Roizman, 1969). HSV gene expression is temporally regulated and can be sub-divided
into three broad stages, immediate early (IE), early (E) and late (L) gene expression (Swanstrom and Wagner, 1974; Clements et al.. 1977; Jones and Roizman, 1979).

\section*{a) Immediate early gene expression.}
i) Immediate early genes. IE or \(\alpha\) genes are the subset of genes which are transcribed by an unmodified cellular RNA polymerase II (Costanzo et al., 1977) in the absence of de novo protein synthesis (Kozak and Roizman, 1974; Roizman et al., 1974). IE mRNAs are usually detectable by 1 h p.i. and their accumulation peaks at \(2 h\) to 3 h p.i., although, some of them persist in the cytoplasm at late times of infection (Harris-Hamilton and Bachenheimer, 1985; Godowski and Knipe, 1986).

IE transcription is limited to restricted regions of the genome (Fig. 5; Clements et al., 1977 and 1979; Anderson et al., 1980; Easton and Clements, 1980). Five IE genes have been identified, IE genes 1 to 5 , which encode polypeptides Vmwll0 (ICP0), Vmw63 (ICP27), Vmwl75 (ICP4), Vmw68 (ICP22) and Vmwl2 (ICP47) respectively (the 'Chicago' nomenclature is given in brackets). The genome locations and sizes of the IE mRNAs encoded by the IE genes have been determined. IE mRNAs 1 and 3 map entirely within \(T R_{L} / I R_{L}\) and \(I R_{S} / T_{S}\) respectively, and are therefore encoded by diploid genes (Rixon et al., 1982). IE mRNAs 4 and 5 span the \(I R_{S} / U_{S}\) and \(T R_{S} / U_{S}\) regions and share identical promoter and \(5^{\prime}\) untranslated leader sequences (Watson et al., 1981; Rixon and Clements, 1982); these are encoded by genes USl and USl2 respectively. Finally, IE mRNA 2 maps entirely within \(U_{L}\) (Whitton and Clements, 1983) and is encoded by gene UL52. Three of the five IE transcripts, IE mRNAs l, 4, and 5, are spliced. IE mRNAs 4 and 5 have a single splice located entirely within the \(\mathrm{R}_{\mathrm{S}}\) repeats (Watson et al., 1981a; Rixon and Clements, 1982; Whitton and Clements l984b) and upstream of the polypeptide coding regions (Murchie and McGeoch, 1982; Whitton and Clements, 1984 b ; Rixon and McGeoch, 1984). HSV-1 IE mRNA 1 contains two introns with sizes of 765 nucleotides (nuc) and l35nuc, both of which are


Figure 5. A representation of the HSV-l genome showing the location and orientation of the five IE genes. The designation of the \(I E\) genes mapping in the \(U_{L}\) or \(U_{S}\) segments is given in brackets (see Fig. 2). The IE genes are depicted as arrows and splices are indicated as ( \(\wedge\) ) and (V).
located in the translated portion of the gene (Perry et al., 1986).
ii) IE gene regulatory sequences. The 5'-upstream regions of HSV IE genes contain sequence elements that clearly differentiate them from the respective regions of E and L genes. A chimeric gene comprising the upstream control signals and 50 bp of leader sequence from IE mRNA 3 when fused to an early HSV-l TK gene, behaved as an IE gene either when rescued into a \(\mathrm{TK}^{-}\)virus or inserted into biochemically transformed cell lines (Post et al., 1981). Similar results were obtained when the TK gene was fused to the upstream region of IE mRNA 2 (Mackem and Roizman, 1982a).

Deletion studies within the IE gene 3 upstream region identified a promoter region, spanning positions +26 to -108 (+l=mRNA start site), which is sufficient for transcription initiation in the absence of upstream promoter sequences (Mackem and Roizman, 1982a; Cordingley et al., 1983). This region contains elements found in most eukaryotic promoters such as the TATA box and two G+C-rich tracts separated by an A+T-rich stretch; however, the \(5^{\prime-C C A A T-3 ' ~ h o m o l o g y, ~}\) which is usually present at position -80 relative to the mRNA start site in many eukaryotic promoters (Benoist and Chambon, 1980; Efstratiadis et al., 1980), is not present. Further, they identified a regulatory region spanning positions -174 to -33l. In all IE genes examined so far this region induces \(I E\) gene transcription in a process mediated by a virion component (see Page 19). Deletion studies within the regulatory region (Cordingley et al., 1983; Preston, C.M. et al., 1984; Bzik and Preston, 1986) and DNA sequence comparisons of the upstream regions of IE mRNA 5' termini (Mackem and Roizman, 1982b; Whitton and Clements, 1984a) demonstrated that the target sequence for the trans-inducing virion component is an \(A+T-r i c h\) sequence with a core consensus of \(5^{\prime}-T A A T G A R A T-3^{\prime}\) ( \(R=\) purine). Gaffney et al. (1985) demonstrated that when a 20 bp synthetic oligonucleotide, containing a TAATGARAT element, was fused to a promoter driving the chloramphenicol acetyltransferase (CAT) gene, it increased CAT activity
after infection with the HSV-l tsk mutant; the latter has a mutation in \(I E\) gene 3 and does not synthesise \(E\) or \(L\) gene products at the NPT (Preston, 1979). The observed stimulation of expression was dependent on the number of TAATGARAT copies, since increasing the copy number had an additive effect (Gaffney et al., l985). However, it appears that flanking sequences, although not essential, are important for full induction of \(I E\) gene transcription. Bzik and Preston (1986) demonstrated that an adjacent G+A-rich element is required for full activity which, although it was unable to confer full activity on its own, could activate an otherwise non-functional homologue of TAATGARAT (Bzik and Preston, 1986).

The regulatory region of 1 E gene 3 has an enhancer-like activity comparable to that of the SV40 enhancer, since it can stimulate expression of target promoters in an orientation-independent manner and at a distance from the target promoter (Lang et al., 1984; Preston and Tannahill, 1984). In contrast to a typical enhancer, the HSV-1 IE gene 3 enhancer activity is abolished when placed downstream from a gene and, also, is further stimulated by a virion component (see below; Lang et al., 1984; Preston and Tannahill, 1984). Deletion analysis of the upstream regulatory region of HSV-l IE gene 3 demonstrated that the enhancer-like activity and the responsiveness to the trans-inducing virion component reside in distinct sequence elements (Bzik and Preston, 1986). Elements important for enhancer-like activity are: i) two copies of the hexanucleotide \(5^{\prime}-G G G C G G-3 '\) which can bind the mammalian Spl transcription factor (Jones and Tijan, 1985) and, ii) a region containing both a \(5^{\prime}-G C G G A A A C-3^{\prime}\) motif, which resembles the simian virus 40 (SV40) enhancer core (Weiher et al., 1983), and a 5'-CGGAAGCGGAA-3' motif, which resembles the adenovirus ElA and polyoma virus enhancer cores (Hearing and Shenk, 1983; Herbomel et al., 1984).
iii) Characterisation of the virion factor which induces IE gene expression. Experiments designed to identify the mechanism by which IE gene expression is induced demonstrated that a component of the virus particle
could stimulate IE gene expression (Post et al., 198l; Mackem and Roizman, l982b; Cordingley et al., 1983; Preston, C.M. et al., 1984). Campbell et al. (1984) identified the virion component as the major tegument protein Vmw65, which is distinct from the \(65 \mathrm{~K}_{\text {DBP }}\) (see Page l3), and its primary structure was determined by Dalrymple et al. (1985).

DNA-binding studies with Vmw65 indicated that it did not directly bind either calf thymus (Marsden et al., 1987) or HSV DNA (Preston, C.M. et al., 1988). However, Vmw65 has been shown to be the only viral constituent of a complex, termed IEC, which contains cellular factors and binds specifically to TAATGARAT motifs via one of the cellular factors (Preston, C.M. et al., 1988). It has been proposed that one of these factors is a protein related to nuclear factor III (NF-III; C. Ace, personal communication). NF-III facilitates the binding of a complex, involved in initiation of adenovirus 2 DNA replication, to core sequences of the adenovirus 2 origin (Pruijn et al., 1986). The NF-III binding site, \(5^{\prime-T A T G A T A A T G A G-3 ' ~(P r u i j n ~ e t ~ a l ., ~ 1986), ~ i s ~}\) quite similar to the TAATGARAT motif. Interestingly, it has been shown that both of these motifs are equally competitive for binding of a cellular factor present in mock-infected HeLa cell nuclear extracts (O'Hare and Goding, 1988).
iv) Control of HSV IE gene expression. As discussed previously, IE gene transcription does not require de novo protein synthesis. However, a number of HSV-l-induced polypeptides appear to be involved in the control of \(I E\) gene expression (Fig. 6). First, is the virion component Vmw65 which, as already mentioned, positively regulates IE gene transcription. Second, is Vmwl 75 which is involved both in positive and negative regulation of \(I E\) gene expression. Polypeptide profiles of HSV ts-Vmwl75 mutant viruses demonstrated that IE gene products were overexpressed, and blocking of \(I E\) mRNA translation with cycloheximide led to production of large amounts of IE mRNAs (Preston, 1979; Dixon and Schaffer, 1980; Watson and Clements, 1978 and 1980). The same results were obtained from transient expression assays where increased amounts of Vmwl75 could repress both the basal and activated levels of transcription


Figure 6. The HSV-1 functions thought to be involved in the regulation of immediate early (IE), early (E) and late (L) gene expression. The solid lines represent positive regulation and dashed lines indicate negative regulation. The positive regulators include Vmw65, Vmwll0, Vmwl75, Vmw63 and DNA replication (DNA REP). The negative regulators include the virion-associated host shutoff (vhs) factor, Vmwl75, and the major DNA-binding protein (MDBP). The precise roles of Vmwl2 ( \(O^{\prime}\) Hare and Hayward, 1985a) and a L function(s) (DeLuca et al., 1984) require further investigation and this is depicted by (?).
repress both the basal and activated levels of transcription from IE gene promoters (DeLuca and Schaffer, 1985; O'Hare and Hayward, 1985a; Gelman and Silverstein, 1986 and 1987). It appears that the only exception to this generalisation is the HSV-l IE gene 2 promoter which, in HeLa cells, was active in the presence of increased amounts of Vmwl75 (Gelman and Silverstein, 1987). Reduced levels of Vmwl75, however, have been shown to activate \(I E\) gene promoters (DeLuca and Schaffer, 1985; O'Hare and Hayward, 1985a; Gelman and Silverstein, 1986 and 1987). Third, is Vmwllo which has been shown to activate IE promoters in
 and Silverstein, 1986 and 1987). In addition to these polypeptides, MDBP (Godowski and Knipe, 1986) and the product of gene UL4l (Strom and Frenkel, 1987; Kwong et al., 1988) appear to have a role in \(1 E\) gene regulation since mutations in these genes increase the half-life of HSV IE mRNAS.

\section*{b) Early gene expression.}
i) Early genes. E or \(\beta\) genes are defined as that subset of viral genes which are expressed in the presence of functional IE gene products and prior to the onset of DNA replication (Wagner, 1972; Swanstrom et al., 1975; Clements et al., 1977). Early transcripts are detectable at 2 h p.i. and reach their maximum levels at 4 h to 6 h p.i., after which, the levels of individual transcripts either decrease or remain unaltered (McLauchlan and Clements, 1982; Harris-Hamilton and Bachenheimer, 1985). However, some variation in their kinetics of appearance is observed. For example, the polypeptide of the ribonucleotide reductase large subunit (Vmwl36), although classified as an \(E\) polypeptide, can be detected under \(I E\) conditions (see Results and Discussion, Section E). On the other hand, synthesis of glycoprotein \(D(g D)\) mRNA requires DNA replication to reach maximum expression although moderately high levels are detected early in infection (Gibson and Spear, 1983). E transcripts have been shown to map across the entire length of the genome (Clements et al., 1977).
ii) E gene promoter sequences. Two HSV-l E promoters, those of the TK and gD genes, have been studied in detail. The TK promoter region, which is positioned immediately upstream from the TK mRNA start site, has been divided into one proximal and two distal regions (dsI and dsII) by means of linker scanning mutations (Fig. 7a; reviewed in McKnight and Tjian, 1986). The proximal region contains the TATA box which has been shown to be especially important for \(T K\) transcription when present on the viral genome (Coen et al., 1986). Each of the distal regions contains an Spl binding site (see Page 19) and in addition, dsI contains an inverted CCAAT homologue which binds the CBP/CTF transcription factor (Jones et al., 1985). The gD promoter region has been extensively studied by Everett (1983 and l984a). Deletion analysis indicated that the sequence requirements for gD-regulated expression reside within an \(83 b p\) region located upstream from the mRNA start site (Fig. 7b; Everett, 1983). Further analysis of this region identified two G-rich regions, termed Gl and G2, which are quite similar to an Spl binding site in the human immunodeficiency virus long terminal repeat (Jones, K.A., et al., 1986), and a functional TATA box together with a cap site region (Everett, 1984a). A CCAAT homologue was not identified.
iii) Control of HSV E gene expression. At least two IE gene products, Vmwl75 and Vmwll0, appear to be important for regulation of \(E\) gene expression (see Fig. 6). Transient expression assays demonstrated that Vmwl75 and Vmwll0 can independently stimulate expression of \(E\) promoters whereas, in combination, their effect is synergistic (Everett, l984b and 1986; O'Hare and Hayward, 1985b; Quinlan and Knipe, 1985; Gelman and Silverstein, 1986; see Results and Discussion, Section E).

The requirement for a functional Vmwl75 for \(E\) gene expression has also been observed during virus infection; at the NPT, HSV-l ts-Vmwl75 mutants fail to induce E gene expression and fail to repress IE gene expression (Marsden et al., 1976; Preston, 1979; Dixon and Schaffer, 1980; Watson and Clements, 1978 and 1980). In an attempt to
a)

b)


Figure 7. Cis-acting transcription elements within E gene promoters.
a) Elements within the \(T K\) promoter (reviewed in McKnight and Tjian, 1986). The GC boxes represent the binding sites of the Spl transcription factor and arrows above them indicate the relative orientation of the sequences. The CCAAT box indicates the binding site of the CTF/CBP transcription factor. Both the Spl and CTF/CBP transcription factors are depicted to interact with the promoter sequences by curved arrows and the stronger affinity of the Spl site in dsII is depicted by two arrows. A binding factor is thought to interact with the TATA box. The TK promoter sequences are numbered from -120 to beyond the first TK mRNA cap site at +1 .
b) Elements within the gD promoter (Everett 1984a). The open boxes labelled Gl and G2 represent the two G-rich regions thought to be binding sites of the Spl transcription factor. A binding factor is thought to interact with the TATA box. The gD promoter sequences are numbered from -75 to the gD mRNA start site at +1 .
identify regions important for Vmwl 75 function, Paterson and Everett (1988) constructed insertion and deletion mutants in a plasmid-borne gene encoding Vmwl75. These authors identified a region, between amino acids (aa) 275 and 490, which is important for both \(E\) gene trans-activation and IE gene repression, and a carboxy terminal (C-terminal) region which is important primarily for \(E\) gene trans-activation. The fact that HSV-l ts-Vmwl 75 mutants fail to activate E gene expression is an interesting finding in view of the ability of Vmwllo to independently trans-activate \(E\) promoters in transient expression assays. The reason for this phenomenon appears to be the transdominance of the mutant Vmwl75 protein at the NPT. This is evidenced by the fact that certain ts-Vmwl75 mutant polypeptides, which fail to accumulate in the nucleus, impair nuclear localisation of Vmwll0 (Knipe and Smith, 1986). Further, a different ts-Vmwl 75 mutant, which localises in the nucleus and does not interfere with nuclear localisation of Vmwllo, inhibits Vmwll0-mediated trans-activation of \(E\) promoters at the NPT (Gelman and Silverstein, 1986). However, the transdominance of mutant ts-Vmwl 75 proteins may not be the only reason for the inability of Vmwllo to induce \(E\) gene expression. It is quite possible that the trans-activating function of Vmwllo is not strong enough and is therefore inhibited in the presence of negative regulators of \(I E\) gene expression such as MDBP (see Page 2l; Godowski and Knipe, 1986).

The role of Vmwllo in productive infection has been studied in two HSV-l recombinants with deletions in both copies of IE gene 1 (Stow and Stow, 1986; Sacks and Schaffer, 1987). Although the deleted genes had no detectable stimulatory effect on \(E\) gene promoters in transient expression assays (Perry et al., 1986; Sacks and Schaffer, 1987), mutant viruses were able to grow in tissue culture (Stow and Stow, 1986; Sacks and Schaffer, 1987). Growth defects were apparent at low m.o.i., where the plaquing efficiency of mutants was reduced, whereas at high m.o.i. the amount of gene expression and DNA synthesis was indistinguisable from wild-type infection (Stow and Stow, 1986; Sacks and Schaffer, 1987). Thus, it was suggested that although Vmwllo is not absolutely essential for virus
growth in tissue culture, it is required for normal virus growth at low multiplicity infections. Everett (1987a and 1988) constructed insertion and deletion mutants in a plasmid-borne gene encoding Vmwllo, recombined them into the viral genome, and studied their effects during recombinant virus infection. The results showed that Vmwll0 is required at early stages of low multiplicity infections where its absence results in insufficient viral gene expression to allow productive infection.

Vmw68 and Vmw63 have no stimulatory function on \(E\) gene transcription either independently or in combination with other IE polypeptides (O'Hare and Hayward, 1985b; Everett, 1986). By contrast, although Vmwl2 does not stimulate E gene expression independently, it appears to augment the synergistic effect of Vmwl75 and Vmwll0 (O'Hare and Hayward, 1985b).
iv) The mechanism of \(E\) gene trans-activation. The mechanism by which Vmwl 75 and Vmwllo trans-activate E gene promoters is unknown. It appears that, at least in the case of Vmwl75, this process requires the formation of a complex between Vwml75 and cellular protein(s); a partially purified Vmwl 75 preparation failed to bind to DNA in the absence of added cellular proteins, but did so in their presence (Freeman and Powell, 1982). This complex subsequently interacts with the promoter regions of \(E\) genes, via the cellular proteins, and positively regulates initiation of transcription. A partially purified nuclear Vmwl75 preparation, where Vmwl75 represented \(5 \%\) of the total protein mass, was able to bind to a region flanking the gD mRNA start site and stimulated initiation of transcription fron this promoter in vitro (Beard et al., 1986). When this Vmwl 75 preparation was incubated with an antibody specific for Vmwl 75, initiation of transcription was significantly impaired (Beard et al., 1986). Interestingly the same preparation stimulated transcritpion from the \(L\) gC and VP5 promoters whereas it inhibited transcription from the IE gene 4 promoter (Pizer et al., 1986).

Faber and Wilcox (1986) have identified two regions in the pBR322 plasmid vector sequences and one in the
gD promoter (between positions -lll to -81), which are preferentially bound by a partially purified Vmwl 75 nuclear preparation. Alignment of the protected sequences revealed a consensus of \(5^{\prime}-A T C G T C N N N N Y C G K C-3 '\) (where \(N=a n y\) nucleotide, \(Y=\) pyrimidine and \(R=p u r i n e)\) which was suggested to be the Vmwl75/cellular factor(s) binding site (Faber and Wilcox, 1986). The relationship between this consensus with E gene trans-activation or \(I E\) gene repression is unclear. First, this consensus is not included in the 83 bp promoter region which is required for fully regulated transcription of the gD gene (see Page 22; Everett, 1983 and 1984a). Second, this consensus is not protected by the Vmwl75/cellular protein(s) putative complex in the upstream region of \(I E\) gene 2 while, the complete consensus or part of it are protected in the promoter regions of \(I E\) genes 1 and 3 (Kristie and Roizman, l986a and b; Muller, 1987). Therefore, it appears that binding sites other than that proposed by Faber and Wilcox (1986) might be involved in the interaction between DNA and the putative Vmwl75/cellular protein(s) complex.
C) Late gene expression.

L or \(\gamma\) gene expression requires the presence of functional IE genes and, in addition, viral DNA replication for maximal expression. L transcripts are first detectable at 2 h to 3 h p.i. and their accumulation peaks at 10 h to 16 h p.i. (Harris-Hamilton and Bachenheimer, 1985). Two groups of late genes have been described, the leaky-late or \(\gamma l\) and the true-late or \(\gamma 2\) and these are distinguisable by the fact that the former are readily detectable before the onset of viral DNA replication whereas the latter are barely detectable (Roizman and Batterson, 1985; reviewed in Wagner, 1985).

Johnson and Everett (1986a) demonstrated that a fusion gene, consisting of the true-late USll gene promoter linked to a rabbit \(\beta\)-globin gene, was expressed, in the presence of a functional oris, with kinetics similar to its viral counterpart after infection with HSV-l. Further, the appearance of both the fusion and viral genes coincided with the onset of viral replication. Expression of this fusion
gene from plasmids lacking oris was detectable but severely curtailed. These findings indicate that DNA replication, although not an absolute requirement for activation of a true-late promoter, is essential for abundant expression. It is possible that \(L\) gene promoters are relatively weak and therefore high copy numbers are required for abundant expression. Alternatively, it is possible that DNA replication somehow increases \(L\) gene expression by alteration of the state of the template; however, such an interpretation would not explain why only \(L\) gene products become more abundant after DNA replication and not \(E\) gene products.

It appears that a functional TATA box and a cap site are sufficient promoter elements for maximal USll expression in the presence of oris (Johnson and Everett, l986b). Similar sequence requirements have been described for the true-late gC gene promoter (Homa et al., 1986).

Activation of \(L\) promoters requires \(I E\) gene products Vmwl75 and Vmwllo (see Fig. 6). HSV-l ts-Vmwl75 mutant viruses fail to induce late gene expression at the NPT (Marsden et al., 1976; Preston, 1979; Dixon and Schaffer, 1980; Watson and Clements, 1978 and 1980). Similarly, two different ts-Vmwl75 mutants, which express IE and E genes and induce viral DNA synthesis, do not express \(L\) gene products at the NPT (DeLuca et al., 1984). In transient expression assays both Vmwl 75 and Vmwll0 have been shown to activate L promoters (Everett, 1986; Mavromara-Nazos et al., 1986). However, Everett (1986) observed that, although a combination of Vmwl 75 and Vmwll0 gave slight activation of the true-late VP5 gene promoter expression, addition of Vmw63 further increased activation.

\section*{HSV POLYPEPTIDE SYNTHESIS.}

\section*{7. Number and Post-Translational Modifications of HSV-Encoded Polypeptides.}

Following infection of cells with HSV-1, about
50 novel polypeptides are induced as identified by one-dimensional SDS-PAGE analysis (Honess and Roizman, 1973; Marsden et al., 1976). However, two-dimensional polyacrylamide gel analysis revealed the existence of some 230 virus induced polypeptide species a number of which most probably are related forms of the same polypeptide (Haar and Marsden, l981). Virus-specific polypeptide synthesis can be divided into \(I E\) (or \(\alpha\) ), \(E\) (or \(\beta\) ) and \(L\) (or \(\gamma\) ) temporal groups. The E polypeptides have been further subdivided into groups \(\beta 1\) and \(\beta 2\) and in contrast to \(\beta 1, \beta 2\) synthesis requires fully-functional IE gene products (Pereira et al., 1977). The L polypeptides have been subdivided into groups \(\gamma^{1}\) and \(\gamma^{2}\) which are analogous to the early-late and true-late mRNAs respectively (see Page 25; Powell and Courtney, 1975). Although HSV infection is predominantly regulated at the transcriptional level, there is evidence that translational regulation also occurs. This is shown by the persistence at early and late times p.i. of a relatively large amount of HSV-1 IE mRNA 3 (Harris-Hamilton and Bachenheimer, 1985) while at the same time Vmwl 75 synthesis is greatly reduced (Dixon and Schaffer, 1980). The observed lack of correlation between mKNA levels and the rate of protein synthesis could be due to translational regulation although this possibility needs to be further examined (Harris-Hamilton and Bachenheimer, 1985).

The failure of some in vitro synthesised HSV polypeptides to comigrate with their in vivo counterparts on SDS-polyacrylamide gels indicates that they undergo certain modifications (Preston, 1977). Four main types of modification occur: phosphorylation, glycosylation, sulphation and cleavage (Marsden et al., 1982).
i) Phosphorylation. This is a reaction by which phosphate groups are esterified to a serine or a threonine residue in the primary structure of the protein, and is catalysed by the enzyme protein kinase (see Page 35). Approximately 16 HSV-1 and 18 HSV-2 polypeptides are phosphorylated (Pereira et al., 1977; Marsden et al., 1978). In several of these phosphoproteins the phosphate can cycle on and off (Wilcox et al., 1980). Vmwl75 is present as three species with different electrophoretic mobilities termed \(a, b\), and \(c ; ~ s p e c i e s ~ a ~ a n d ~ c ~ r a p i d l y ~ c y c l e ~ b e t w e e n ~\) the phosphorylated and the non-phosphorylated forms while species b remains stably phosphorylated. Other phosphoproteins in which the phosphate cycles on and off include Vmw68, Vmw63 and Vmwl36 (Wilcox et al., 1980). Phosphorylation has also been shown to change the affinity of certain polypeptides for double-stranded DNA; for example, the affinity of Vmwl36 is decreased after phosphorylation (Wilcox et al., 1980).
ii) Glycosylation. Glycosylation is a process by which oligosaccharides are covalently attached to the polypeptide chain. At least seven HSV-l-induced polypeptides are glycosylated (see Page 30). Studies with the antibiotic tunicamycin, which blocks the synthesis of glycoproteins, demonstrated that in HSV the mechanism of oligosaccharide moiety addition to the polypeptide backbone is analogous to that of the glycosylation of the VSV glycoprotein \(G\) (Pizer et al., 1980; Hope and Marsden, 1983). In VSV, oligosaccharide-peptide linkages are predominantly N-glycosidic where the oligosaccharide core, which contains N-acetylglucosamine and mannose, is linked to an asparagine
 and serine or threonine residues have also been reported (Olofsson et al., 1981). Glycosylation appears to occur in discrete steps (Haar and Marsden, 1981; Palfreyman et al., 1983).
iii) Sulphation. At late times of infection, inorganic sulphate is added to the major glycoprotein
species (Hope et al., 1982; Hope and Marsden, 1983). In most cases this is achieved by attachment of the sulphate to N-linked oligosaccharide moieties (Hope and Marsden, 1983).
iv) Proteolytic cleavage. Proteolytic cleavage is another form of \(H S V\) polypeptide modification although the mechanism by which it occurs has been poorly investigated. Vmwl 36 and the IE polypeptides Vmwl75, Vmwll0 and Vmw63 induced by the HSV-l mutant tsK at the NPT are degraded to lower mol. wt. products (McDonald, 1980). This degradation appears to be specific as it does not occur in the presence of protease inhibitors. The Vmwl36 polypeptide has been shown, by tryptic peptide mapping, to give rise to products of \(100,000 \mathrm{~mol}\). wt. and \(90,000 \mathrm{~mol}\). wt. which are found in the nucleus of infected cells while the polypeptide is itself predominantly cytoplasmic (McDonald, 1980). Likewise, Ingemarson and Lankinnen (1987) reported that Vmwl36 is proteolytically digested to products with mol. wts. of \(110,000,93,000\) and 81,000 . The maturation of \(H S V\) glycoproteins also involves proteolytic cleavage. Eisenberg et al. (1984) demonstrated that 25 amino acids from the translation product of \(g D\) were missing from the mature glycoprotein isolated from HSV-infected cells; the missing stretch of amino acids, which includes the entire amino terminal (N-terminal) hydrophobic domain, is thought to constitute the signal sequence which is found at the N -terminus of many transmembrane and secreted proteins.

\section*{8. Structural Polypeptides.}
a) Virion polypeptides.

Approximately 33 HSV-l polypeptides have been designated as structural components of the virion (Spear and Roizman, 1972; Marsden et al., 1976). The nucleocapsid contains seven polypeptides ranging in mol. wt. from 12,000 to 155,000 . Immune electron microscopy revealed that the major capsid protein, Vmwl55, was distributed over the entire capsid surface whereas polypeptide Vmw50 appeared to be located at the capsid vertices (Vernon et al., 1981).

It is quite possible that these two polypeptides bind within the capsid structure with disulphide bonds. A third virion polypeptide, Vmw40 or p40, also was located over the capsid (Vernon et al., 1981), possibly at positions interior to those of Vmwl55, and this protein appears to form disulphide-linked complexes, the constituents of which are not resolved. Gibson and Roizman (1972) have suggested that this protein could be involved in DNA encapsidation and this was strengthened by the observation that p 40 covers the surface of DNA-containing capsids (full nucleocapsids) but not of empty ones (Braun et al., 1984). However, recent immune electron microscopy studies, using two different monoclonal antibodies, have localised 440 on the surface of partially-cored rather than full nucleocapsids (Rixon et al., 1988).

Located in the tegument of the herpesvirion, of note are a large polypeptide of 273,000 mol. wt. (Heine et al., 1974), the function of which is unclear, and the Vmw65 protein which is responsible for the trans-induction of IE gene transcription (see Page l9). In addition, the presence of a protein kinase activity in capsid-tegument structures has been described (Lemaster and Roizman, 1980), although, similarities between this activity and the host casein kinase II suggest that this enzyme may not be virus-encoded (Stevely et al., 1985).
b) Envelope polypeptides.

The virus particle has an external lipid envelope (Wildy et al., 1960) which, although is normally acquired by budding of the intranuclear particles through the host cell inner nuclear membrane (Darlington and Moss, 1968), is enriched for virus specific glycoproteins (Spear and Roizman, 1972; Heine et al., 1972; Honess and Roizman, 1975). At least seven HSV-l glycoproteins have been identified, designated \(B, C, D, E, G, H\), and \(I\) (reviewed in Marsden, 1987; Longnecker et al., 1987; McGeoch et al., 1987) all of which are present in virions (Spear, 1976; Para et al., 1980; Buckmaster et al., 1984; Frame et al., 1986a; Richman et al., 1986). Immunoprecipitation studies using type common antibodies
have shown that \(H S V-2\) induces equivalent polypeptides to gB, gC, gD, gE and gG (reviewed in Marsden, 1987).
9. HSV-Induced Enzymes.

HSV induces a number of enzyme activities which are involved in nucleotide metabolism, and either directly or indirectly in DNA replication.
a) Enzymes involved in DNA metabolism.
i) Ribonucleotide reductase. This enzyme catalyses the reduction of ribonucleoside diphosphates to the corresponding deoxyribonucleoside diphosphates and its properties are described in Section E.
ii) Thymidine kinase. The cellular enzyme catalyses the synthesis of deoxypyrimidine nucleotides from preformed nucleosides, which are the products of cell death or catabolic activity. Kit and Dubbs (1963) first described such an HSV-induced activity with properties different from those of the host cell enzyme. The HSV enzyme, originally thought to phosphorylate only thymidine, was shown in addition to phosphorylate deoxycytidine and was thus characterised as a deoxypyrimidine kinase (Jamieson et al., 1974; Jamieson and Subak-Sharpe, 1974). By contrast, PRV and vaccinia virus (VV) specify only a thymidine phosphorylating activity while equine abortion virus (EAV) does not induce either activity (Jamieson et al., 1974). The two HSV phosphorylating activities appear to be catalysed by the same active site although they are quite distinct in their biochemical behaviour (Jamieson and Subak-Sharpe, 1974). Further, the HSV-induced enzyme appears to be associated with a phosphotransferase activity which can utilize AMP as phosphate donor to convert thymidine to thymidylate (Jamieson et al., 1976).

The active enzyme is a dimer consisting of two identical subunits of \(42,000 \mathrm{~mol}\). wt. (Honess and Watson, 1974; Jamieson and Subak-Sharpe, 1978). Jamieson et al. (1974) demonstrated that it was indispensable for virus
growth in serum-starved cells but not in actively growing ones indicating that such an activity is required only when the de novo metabolism of the host cell is low.
iii) Deoxyuridine triphosphatase (dUTPase). After infection, HSV specifies a novel duTPase activity (Wohlrab and Franke, 1980) which is virus-encoded (Preston and Fisher, 1984). This enzyme catalyses the reduction of dUTP to dUMP and pyrophosphate; in the host cell, the role of this enzyme is to reduce the intracellular concentration of dUTP by reducing it to dUMP. Subsequently, duMP can be methylated to \(d T M P\) by the enzyme thymidylate synthetase. The HSV-l-induced duTPase has a mol. wt. of 53,000 (Williams, 1984) and has been shown not to be essential for virus growth in cultured cells (Fisher and Preston, 1986). Recently, William and Paris (1987) have reported that HSV-2 induces a duTPase activity utilising dUTP as a substrate and that this activity differs biochemically from the HSV-l-induced activity. It appears that HSV, as well as, HCMV, PRV and EBV do not encode a thymidylate synthetase, although HVS and VZV do (Davison and Scott, l986b; Honess et al., 1986; Thompson et al., 1987). This could be due to the fact that both HVS and VZV have A+T-rich genomes which indicates a possible greater requirement for thymidylate synthesis.
iv) Uracil-DNA glycosylase. During replication when a cytosine residue in DNA loses its amino group a uracil:guanosine mispair occurs which can lead to a guanosine:cytosine to adenine: thymine transition mutation. The function of the cellular enzyme is the removal of deaminated cytosine residues from DNA thus reducing transition mutations. In HSV-infected cells, this activity appears to be virally encoded and differs biochemically from the host cell enzyme (Caradonna and Cheng, 1981; Caradonna et al., 1987). Initial mapping data suggested that it is located at the left portion of \(U_{L}\) (Caradonna et al., 1987) and recent evidence strongly suggests that the gene encoding the glycosylase is UL2 (see Fig. 2; J. Mullaney, personal communication).
b) Enzymes involved in DNA replication.
i) DNA polymerase. Keir and Gold (1963) demonstrated that HSV-1 induced a DNA polymerase activity which was stimulated by high salt concentration (Keir et al., 1966). The viral enzyme is distinct from the host cell enzyme not only immunologically (Keir et al., 1966), but also biochemically by virtue of its \(3^{\prime}\) to \(5^{\prime}\) exonuclease activity and by its sensitivity to low concentrations of phosphonoacetic acid (PAA) a pyrophosphate analogue (Knopf, 1979; Leinbach et al., 1976). The HSV-l enzyme consists of a single polypeptide chain of 150,000 mol. wt. (Powell and Purifoy, 1977) and in vitro it is active as a monomer (Knopf et al., 1979). Mutations within this gene have shown that it is essential for viral DNA replication (Purifoy et al., 1977).

Purified preparations of the HSV-2 DNA polymerase often contained a polypeptide of 54,000 mol. wt. designated ICSP 34,35 (Powell and Purifoy, 1977; Knopf, 1979; Vaughan et al., 1985). This polypeptide has been shown to be the HSV-2 counterpart of the HSV-1 \(65 K_{\text {DBP }}\) described on Page 13 (H.S. Marsden, personal communication).
ii) DNA primase. Recently, Holmes et al. (1988) reported a novel HSV-l primase activity which co-eluted with a portion of the HSV-l DNA polymerase from single-stranded DNA agarose columns loaded with high-salt infected cell extracts. This activity was biochemically distinct from host HeLa cell DNA primase, did not cross-react with polyclonal antibodies raised against the calf thymus DNA polymerase/primase complex and appeared to be coupled with the HSV-l DNA polymerase. The approximate mol. wt. of this novel activity is 40,000 (Holmes et al., 1988).
iii) Alkaline exonuclease (AE). A novel alkaline exonuclease activity is induced following HSV-l (Morrison and Keir, 1968; Strobel-Fidler and Franke, 1980) and HSV-2 infection (Hay et al., 1971; Hoffmann and Cheng, 1979) with properties different from those of cellular nucleases.

This enzyme, in addition to its 5' and 3' exonuclease activities, has been shown to possess an endonuclease activity (Hoffmann and Cheng, 1979; Hoffmann, l98l). Marker rescue experiments, using an HSV-2 ts-AE virus (Moss et al., 1979), and in vitro translation in Xenopus laevis oocytes (Preston and Cordingley, 1982) suggest that this enzyme is virally encoded and corresponds to polypeptide Vmw85 (Marsden et al., 1978). Moss (1986) demonstrated that the AE activity is essential for virus replication as a ts-AE mutant exhibited considerably reduced levels of virus DNA synthesis and growth at the NPT.
iv) Topoisomerase. DNA topoisomerases are enzymes that transiently break the phosphodiester backbone of DNA and then rejoin the free DNA ends. To date, all topoisomerases can be divided into two categories. Type I enzymes catalyse the breaking and rejoining of only one strand of DNA at a time, whereas, type II enzymes appear to introduce transient double-strand breaks (reviewed in Gellert, 1981). Both classes relax supercoiled DNA although the reaction mechanisms are clearly different (Brown and Cozzarelli, 198l) and each enzyme class can be distinguished by reaction cofactor requirements. Biswal et al., (1983) first reported an HSV-induced topoisomerase activity which copurified with the DNA polymerase through several chromatographic steps. By contrast, Muller et al. (1985) suggested that the HSV-1 topoisomerase activity, which these authors classified as type \(I\), was a component of the virion envelope or the tegument. Further studies with antibodies specific for the cellular and putative viral topoisomerase activities will be required to resolve the localisation of the enzyme and its role in replication.
c) Interactions between HSV-1 enzymes involved in DNA replication.
There is both biochemical and genetic evidence that at least four virus-encoded polypeptides form a functional complex which is involved in DNA replication.

The constituents of this putative complex are DNA polymerase, \(A E, 65 K_{D B P}\), and MDBP. The latter is a virus induced protein of 128,000 mol. wt. and its in vitro properties include the ability to dissociate double-stranded DNA (Powell et al., 1981), to stimulate the activity of the HSV-encoded DNA polymerase activity and to preferentially bind single-stranded DNA (Ruyechan and Weir, 1984). The MDBP has been shown to be essential for virus replication (Weller et al., 1983). Vaughan et al. (1984) using monoclonal antibodies against the MDBP, \(65 \mathrm{~K}_{\mathrm{DBP}}\), and AE demonstrated the existence of: i) two very strong binding complexes, the first between \(M D B P\) and \(A E\) and the second between DNA polymerase and \(65 \mathrm{~K}_{\mathrm{DBP}}\), and ii) an intermediate strength association between MDBP and \(65 \mathrm{~K}_{\mathrm{DBP}}\).

The first genetic evidence of the existence of such a functional complex in vivo involved studies with ts virus mutants (Littler et al., 1983). These authors demonstrated that two HSV-2 ts-MDBP mutant viruses severely restricted DNA polymerase and AE induction in infected cells. Furthermore, ts mutations in MDBP induced secondary mutations within the DNA polymerase gene which altered its sensitivity to PAA (Chiou et al., 1985). These secondary mutations could possibly restore the functional interaction between the DNA polymerase and the altered MDBP.
10. Other HSV-Induced Enzyme Activities.

During lytic infection of cells by HSV, virus-induced protein kinase activities have been detected. DNA sequencing studies revealed that the predicted primary structure of the US3 gene product of both HSV serotypes (McGeoch et al., 1985 and 1987) and the corresponding gene of VZV (Davison, 1983) were clearly homologous to members of the protein kinase family of eukaryotes (McGeoch and Davison, l986b). Frame et al. (1987) demonstrated, by means of rabbit antisera raised against an octapeptide corresponding to the eight \(C\)-terminal amino acids of the predicted US3 gene sequence, that the product of this gene is indeed a protein kinase.

The substrate specificity of the HSV-inauced enzyme has been shown to be broadly similar to that of the PRV-induced enzyme which phosphorylates serine and threonine residues (Purves et al., 1986). The main conclusions regarding the site specificity of the PRV enzyme, as deduced by phosphorylation studies with oligopeptide substrates, are: i) basic residues, preferably arginines, must be present at the \(N\)-terminal side of the target residue and ii) at least two basic \(N\)-terminal residues are required, whereas, additional ones have a further positive effect. Additional requirements for maximal phosphorylation include the need for the \(N\)-terminal arginines to be displaced from the target serine or threonine residue for optimal effect, hydrophobic residues at the \(N\)-terminal side of the target residue may cause a decrease in phosphorylation; finally, proline residues adjacent to the target residue on the N-terminal side increase phosphorylation, whereas, on the C-terminal side they decrease it (Purves et al., 1986).

\section*{SECTION E.}

\section*{RIBONUCLEOTIDE REDUCTASES.}

\section*{11. General Background.}
a) Mechanism of the reaction.

Ribonucleotide reductase (EC l.17.4.l) catalyses the reduction of all four ribonucleotides to the corresponding deoxyribonucleotides, the hydroxyl group at the 2 ' position of the ribonucleotide ribose moiety being substituted with a hydrogen, and NADPH being the ultimate hydrogen donor (Fig. 8; Thelander and Reichard, 1979; Reichard and Ehrenberg, 1983). This reaction is the first unique step in the de novo pathway of DNA biosynthesis.
b) Hydrogen donor systems.

Efforts to identify the physiological hydrogen donor in this reaction resulted in the discovery of two novel types of hydrogen carrier systems, the thioredoxin and the glutaredoxin systems.
i) The thioredoxin system. This system was originally discovered in Escherichia coli (E. coli; Laurent et al., 1964); it consists of two small proteins, thioredoxin and thioredoxin reductase, and utilizes NADPH as a hydrogen donor. The E. coli thioredoxin is an enzyme of \(11,700 \mathrm{~mol}\). wt. and contains two redox-active cysteine residues (Holmgren, 1968), located on a protrusion of the active centre of the enzyme (Holmgren et al., 1975). The reduced form of thioredoxin serves as an efficient hydrogen donor for ribonucleotide reductase while the oxidised form is reduced in the cell by the enzyme thioredoxin reductase at the expense of NADPH. Thioredoxin reductase consists of two, probably identical, subunits each of which has one tightly bound FAD molecule and a redox-active disulphide in its active centre (Thelander, 1968; Ronchi and Williams, 1972). Overall, the function of this system involves a





Figure 8. Reduction of a ribonucleotide to a deoxyribonucleotide by ribonucletide reductase (RR). \(\mathrm{RR}-(\mathrm{SH})_{2}\) and \(\mathrm{RR}-\mathrm{S}_{2}\) represent the reduced and oxidised forms of ribonucleotide reductase respectively. \(P_{n}\) denotes a diphosphoryl or triphosphoryl nucleotide.
shuttle transfer of electrons from NADPH to the substrate via a system of redox-active disulphides as shøwn in Fig. 9 (reviewed in Thelander and Keichard, 1979)

Mammalian cells specify a thioredoxin system, comprising a thioredoxin reductase and a thioredoxin, similar to that of E. coli. Bacteriophage \(T 4\) encodes a thioredoxin but not a thioredoxin reductase; oxidised T4 thioredoxin can be reduced by the host cell thioredoxin reductase (Berglund et al., 1969; Berglund, 1969). Further, T4-induced thioredoxin can also be reduced by the glutathione system (see below) and thus appears to be a functional hybrid between these two hydrogen donor systems (Holmgren, 1978). Although the primary structure of the T4-induced and E. coli thioredoxins are not homologous (Sjoberg and Holmgren, 1972), their three-dimensional structures display large similarities (Sodenberg et al., 1978; Hoog et al., 1983). Attempts to identify the principal hydrogen donor for the HSV-l-induced ribonucleotide reductase resulted in the purification of a protein, present in both infected and mock-infected extracts, with similar physical characteristics to the cellular thioredoxin (Darling, 1988); this result, in conjunction with the lack of DNA sequence-evidence for the existence of a virus-induced thioredoxin, suggests that HSV-l utilises the cellular enzyme as a hydrogen donor.
ii) The glutaredoxin system. This system was identified in an E. coli mutant which was unable to replicate bacteriophage T7 DNA, failed to express any detectable level of thioredoxin and, at the same time, displayed no decreased capacity to reduce ribonucleoside diphosphates (NDPs) in vitro as compared to the wild-type (Holmgren, 1976). The glutaredoxin system consists of glutathione, glutaredoxin, and glutathione reductase and utilizes NADPH as a hydrogen donor. The E. coli glutaredoxin is an enzyme of \(11,600 \mathrm{~mol}\). wt. and contains two redox-active cysteine residues (Holmgren, l979a). This system functions as shown in Fig. l0 (Holmgren, l979b).

It is not known which of these two systems is functional in vivo; it is possible that both systems


Figure 10. Reduction of a ribonucleoside diphosphate (NDP) to a deoxyribonucleoside diphosphate (dNDP) with the E. coli glutaredoxin system. The diagram shows the involvement of proteins, with oxidation-reduction active sulhydryl groups, in the shuttle electron transfer from NADPH to the NDP. The reactions catalysed by glutaredoxin reductase (GR), glutaredoxin (G) and ribonucleotide reductase (RR) are indicated above the diagram. The reduced forms of \(G R, G\) and RR are indicated by \(\mathrm{GR}-(\mathrm{SH})_{2}, \mathrm{G}-(\mathrm{SH})_{2}\) and \(\mathrm{RR}-(\mathrm{SH})_{2}\) while the oxidised forms are indicated by \(G R-S_{2}, G-S_{2}\) and \(R R-S_{2}\) respectively.
substitute for each other under different growth conditions.
c) Classification of ribonucleotide reductases.

Studies on ribonucleotide reductases of prokaryotic, eukaryotic and viral origin have suggested that three different classes of enzyme exist. Class I, which is represented by the enzyme from Lactobacillus leichmannii, is monomeric and is found in several prokaryotes and in a few eukaryotes. Class II is represented by the E. coli enzyme and consists of two non-identical homodimeric subunits. This type is found in some prokaryotes, most eukaryotes and animal viruses. Finally, class III enzymes resemble those of class II in structure but differ from them biochemically. This class is found in a number of gram positive bacteria. The following part of Section E will mainly describe class \(I\) and II enzymes which are the best characterised.

\section*{12. Monomeric Ribonucleotide Reductases.}

As already mentioned, the monomeric ribonucleotide reductases are represented by the Lactobacillus leichmannii enzyme which consists of a single polypeptide chain of 76,000 mol. wt. (Fig. ll; Panagou et al., 1972; Chen et al., 1974). The enzyme has a single regulatory site which binds the deoxyribonucleoside triphosphate (dNTP) allosteric effectors (Singh et al., 1977). It is assumed that the enzyme has a single catalytic site which binds the ribonucleoside triphosphate (NTP) substrates. The existence of the latter has not been shown using direct binding studies with substrates; however, kinetic experiments showed that the best substrate, GTP, binds with a Km as high as 0.24 mM (Vitols et al., 1967). Chen et al. (1974)
demonstrated that the substrates are also able to bind to the regulatory site although their affinity is 100 to 1,000 lower than that of the effectors.

The activity of this class of enzymes is absolutely dependent on the presence of adenosylcobalamine (AdoCbl, Bl2-coenzyme). Adocbl binds directly to the polypeptide chain and is dependent on effector binding to the regulatory


Figure ll. A schematic representation of the proposed structure of the Lactobacillus leichmannii ribonucleotide reductase. The enzyme is depicted as a monomeric protein (hatched region) with a single regulatory site (RS) which binds the allosteric deoxyridonucleoside triphosphate effectors (E) indicated. The enzyme's single catalytic site (CS) contains the active sulphydryl groups (SH) and binds the ribonucleoside triphosphate substrates (S) shown. The CS is also depicted to bind adenosylcobalamine (AdoCbl).
site (Singh et al., 1977). It is thought that AdoCbl functions in a manner similar to that of the class II enzyme subunit which contains the iron centre and the tyrosyl free radical (see below; Ashley et al., 1986).

It is proposed that the enzyme's activity is only positively regulated as no strong negative effectors have been found (Goulian and Beck, 1966; Vitols et al., 1967; Follman and Hogenkamp, 1971). Binding of the positive effectors dATP, dCTP, dTTP and dGTP results in reduction of the CTP, UTP, GTP, and ATP substrates respectively (Vitols et al., 1967).
13. Oligomeric Ribonucleotide Reductases.
a) The E. coli enzyme.

The E. coli ribonucleotide reductase is a dimeric enzyme consisting of two non-identical subunits, Bl and B2 (Fig. 12; Brown and Reichard, 1969a). The respective polypeptides are encoded by the nrdA and nrdB genes (Fuchs and Karlstrom, 1976) which are located at adjacent regions on the E. coli chromosome (Bachmann et al., 1976; Yamada et al., 1982). The active enzyme consists of the Bl and B 2 subunits bound in a l:l stoichiometry in the presence of \(\mathrm{Mg}^{2+}\) (Brown et al., 1967; Brown and Reichard, 1969a; Thelander, 1973). This binding is rather weak and the two subunits easily dissociate during purification.
i) The Bl subunit. This subunit is a dimer of two identical polypeptides \(\left(a_{2}\right)\) and has a mol. wt. of 160,000 (Thelander, 1973). Each Bl subunit contains two catalytic sites which bind the NDP substrates (von Dobeln and Reichard, 1976), and two types of different regulatory sites, each type consisting of two sites, which bind the allosteric effectors (Brown and Reichard, 1969 b ).

The catalytic sites. Binding studies with separated B1 and B2 subunits showed that only Bl has the capacity to bind substrates, indicating that the catalytic sites are positioned on Bl (von Dobeln and Reichard, 1976). In addition, these authors proposed that all four substrates


Figure 12. A schematic representation of the proposed structure of the E . coli ribonucleotide reductase. The enzyme is depicted as a dimer of the Bl and B 2 subunits, each consisting of two identical polypeptides. The Bl subunit contains two catalytic sites (CS) which contain the active sulphydryl groups (SH), and bind the ribonucleoside diphosphate substrates. The regulatory sites (RS) bind the allosteric effectors (E) shown, and are separated in low (1) and high ( \(\underline{h}\) ) dATP-affinity sites. The B2 subunit contains the tyrosyl radical (•), which is depicted to conform to half-site reactivity, and the iron centre ( \(\mathrm{Fe}^{3+}-\mathrm{O}^{2}-\mathrm{Fe}^{3+}\) ).
bind to the same site since they are equally competitive for binding. However, as depicted in Fig. l2, the catalytic site, in order to reduce substrates, requires the presence of the active sulphydryl groups provided by two cysteine residues which are located exclusively on Bl (Thelander, 1974). B2 alone cannot reduce the substrates even after incubation with dithiothreitol to increase its sulphydryl active content. Furthermore, reduction of substrates requires the stable free radical which is provided by B2 (see below; Thelander, 1974; Ehrenberg and Reichard, 1972). In conclusion, although substrate binding takes place in B1, the active catalytic site itself is composed by elements from both subunits.

The allosteric sites. Brown and Reichard (1969b) proposed that the allosteric sites can be separated into two types on the basis of their affinity for dATP-effector binding; the \(\underline{h}\) sites with high affinity ( \(K_{d}=0.03 u m\) ) and the \(\underline{1}\) sites with low affinity for this effector ( \(K_{d}=0.1-0.5 u m\) ). Competition experiments demonstrated that the \(\underline{h}\) sites also bind ATP, dTTP, and dGTP, while, the \(\underline{l}\) sites bind only ATP in addition to dATP (Brown and Reichard, 1969b).
ii) The B2 subunit. This subunit is a dimer of two identical polypeptides \(\left(b_{2}\right)\) and has a mol. wt. of 78,000 (Thelander, 1973). The B2 subunit has two important elements namely, the iron binuclear centre and the stable free radical.

The iron centre. The E. coli \(B 2\) subunit contains two non-heme iron atoms which can be removed after prolonged dialysis against 8-hydroxyquinoline (Brown et al., l969). These are in an antiferromagnetically coupled binuclear complex and most possibly are liganded with an \(\mu\)-oxo-group (Atkin et al., 1973; Petersson et al., 1980; Sjoberg et al., 1980). Sjoberg et al., (1985) proposed that the E. coli iron centre is of the same type as in \(h\) emerythrin, where the two iron atoms are liganded by one glutamic acid, one aspartic acid and five histidine residues (Stenkamp et al., 1981).

The stable free radical. The E. coli B2 subunit contains a stable free radical as part of its structure


Figure 13. The proposed involvement of the E. coli ribonucleotide reductase radical in the reduction of a ribonucleotide to the corresponding deoxyribonucleotide (see text). The diagram depicts the substitution of the \(2^{\prime}\) OH group of the substrate ribose moiety with a hydrogen in the product. The balance of electrons (e) is shown and the radical is depicted by (•). IMI and IMII indicate the intermediate states \(I\) and II.
(Ehrenberg and Reichard, 1972). The radical can be destroyed after treatment with hydroxyurea or hydroxylamine which are powerful radical scavengers; they most probably act by donating an electron to the radical (Ehrenberg and Reichard, 1972).

Isotope substitution experiments located the radical to a tyrosine (Sjoberg et al., 1977) with its spin density delocalised over the aromatic ring of the residue (Sjoberg et al., 1978). This tyrosine was identified by site directed mutagenesis (Larsson and Sjoberg, 1986); substitution of it with a phenylalanine produced a mutant B2 protein which showed an electron paramagnetic resonance (EPR) spectrum identical to that of the host cell, and was less than \(2 \%\) active as compared to the wild-type \(B 2\). Sjoberg et al., (1987) found a truncated form of B2 dimers ( \(b^{\prime}\) ), lacking the 29 c-terminal amino acids, which resulted from limited proteolysis of the normal \(\mathrm{B} 2\left(\mathrm{~b}_{2}\right)\) dimers. Although the \(\mathrm{B} 2\left(\mathrm{~b}_{2}\right)\) subunit had normal tyrosyl radical content and a normal iron centre, it had no enzymatic activity as it failed to bind the Bl subunit (Sjoberg et al., 1987). Further, by mixing \(B 2\left(b_{2}\right)\) and \(B 2\left(b_{2}^{\prime}\right)\) populations, these authors isolated a heterodimeric form of B2 with a bb' structure which could weakly bind Bl and the resulting \(B 1\left(a_{2}\right) B 2\left(b b^{\prime}\right)\) enzyme had low activity. Using this mutant enzyme, they proposed that the tyrosyl radical is randomly generated in either one or the other of the two polypeptides in \(\mathrm{B} 2\left(\mathrm{bb} b^{\prime}\right)\), thus conforming to half-site reactivity.

The main involvement of the radical in the reaction is the transient transfer of the unpaired electron from the enzyme to the substrate. Sjoberg et al. (1983) proposed a scheme for this reaction (Fig. l3). First, the radical abstracts the hydrogen atom at the \(3^{\prime}\) position of the substrate ribose moiety. The \(3^{\prime}\) electron is captured by the radical and this results in the conversion of the radical-containing tyrosine residue to a normal tyrosine residue and in the formation of substrate intermediate state I. Second, the presence of the radical at the \(3^{\prime}\) position destabilises the ribose moiety which rapidly rearranges by releasing the hydroxyl group from 2' position thus resulting
in intermediate state II. Third, donation of two electrons from the Bl subunit active sulphydryls and one electron from the tyrosine results in formation of a deoxyribose moiety and concomitant regeneration of the radical in the \(B 2\) tyrosine residue.

It is unusual to find a stable free radical as an integral part of an enzyme. Atkin et al. (1973) proposed that the iron centre appears to generate and stabilise the radical since when it is chelated out of the protein the radical is also lost. Recovery of the iron centre, by addition of ferrous iron in the presence of oxygen, regenerates the radical as well (Atkin et al., 1973). In contrast, destruction of the tyrosyl radical with hydroxyurea does not destroy the iron centre, and reconstitution of the former requires chelation and subsequent reconstitution of the iron centre. In conclusion, the enzymatic activity of B2 depends upon the presence of the radical which in turn depends upon the presence of the iron centre.
iii) Allosteric regulation. Allosteric control of the E. coli ribonucleotide reductase has been extensively studied. The overall enzyme activity and substrate specificity are regulated by the allosteric effectors (Brown and Reichard, l969b). As described above, there are two types of binding sites the \(\underline{1}\) and \(\underline{h}\). The \(\underline{l}\) sites regulate the level of overall activity of the enzyme since binding of ATP activates the enzyme, whereas, binding of dATP leads to inactivation which can be reversed by the addition of ATP. dATP inhibition is accompanied by the formation of complexes (dimers) which contain equimolar amounts of the B1 and B2 subunits and have a sedimentation coefficient of approximately 15.5 S while the active enzyme has a coefficient of 9.7S (Brown and Reichard, 1969a). The \(\underline{h}\) sites regulate the substrate specificity of the enzyme; binding of any effector to these sites results in a conformational change of the catalytic site which leads to preferential binding of the appropriate substrate (Brown and Reichard, 1969b).

In vitro binding studies, performed by Larsson and


Figure 14. Allosteric control of the E. coli ribonucleotide reductase. Substrates and reaction products are shown, with the direction of reaction pathways indicated by thick-arrowed lines. Reactions inhibited by the negative effectors are shown by open bars; dashed lines indicate reactions stimulated by positive effectors.

Reichard (1966a,b), demonstrated that in the absence of effectors the enzyme activity is low whereas addition of low concentrations of dTTP stimulates reduction of all four substrates. Addition of ATP or low concentrations of dATP selectively stimulates reduction of CDP and UDP, whereas, the presence of dGTP stimulates reduction of ADP and, to a lesser extent, GDP. These conditions refer to the situation where the enzyme has only its \(\underline{h}\) sites occupied; however, in vivo, in all probability, the \(\underline{l}\) sites are at the same time occupied with either ATP or dATP and the ratio of their concentrations determines the activity of the enzyme. Therefore, it is proposed that in vivo three active and orie inactive enzyme states exist (reviewed in Thelander, 1969). When ATP is bound to the \(\underline{l}\) sites, binding of either ATP, or dTTP, or dGTP to the \(\underline{h}\) sites will respectively reduce CDP or UDP, GDP (and ADP) and finally ADP (and GDP). When dATP is bound to the \(\underline{l}\) site, the enzyme is inactive irrespective of effector binding to the \(\underline{h}\) site.

These findings can be summarised into the following scheme that links ribonucleotide reduction to DNA synthesis (Fig. 14; reviewed in Reichard, 1978). Deoxyribonucleotide synthesis begins with the reduction of pyrimidine substrates (CDP, UDP) by an ATP-activated enzyme. Subsequently, a dTTP-activated enzyme reduces GDP and a dGTP-activated enzyme reduces ADP. Accumulation of dTTP shuts off pyrimidine substrate reduction whereas accumulation of dGTP shuts off both pyrimidine and GDP substrate reduction. Finally, dATP shuts off reduction of all four substrates.
b) Bacteriophage-induced enzymes.

Infection of \(E\). coli with bacteriophages T2, T4, T5, and \(T 6\) results in the appearance of a new ribonucleotide reductase activity (Cohen and Barner, 1962; Biswas et al., 1965; Berglund et al., 1969; Eriksson and Berglund, 1974). In contrast \(T 7\) and \(\lambda\) do not synthesise a novel enzyme during infection (Eriksson and Berglund, 1974). The T4-induced enzyme, which is the most well studied, has a mol. wt. of 225,000 and is composed of two subunits called T4Bl and T4B2 (Fig. 15; Berglund, l972a). In contrast to the E. coli enzyme, the \(T 4\) subunits form a very tight
complex (Berglund, 1972a).
i) The T4Bl subunit. This subunit is a dimer of two identical polypeptides ( \(\alpha\) ) each of which has a mol. wt. of 85,000 (Berglund 1972a and 1975). This subunit contains, possibly, a single catalytic site which binds the NDP substrates and, possibly, two types of allosteric sites, one with low and one with high affinity for dATP; the latter binds in addition ATP, dTTP, and dGTP (Berglund, l972b). Cook and Greenberg (1983) demonstrated that a T4Bl amber mutant (nrdA67) lacking the \(C\)-terminal amino acid sequences, encoded a truncated polypeptide of 50,000 mol. wt. which failed to bind to dATP affinity columns. Therefore, these authors suggested that either the c-terminus contains the allosteric site or that it is essential for the tertiary structure of that site which is located elsewhere along the polypeptide backbone.
ii) The T4B2 subunit. This subunit is also a dimer and consists of two identical polypeptides \(\left(\beta_{2}\right)\) each of which has a mol. wt. of 34,500 (Berglund, 1972a and 1975; Cook and Greenberg, 1983). Sjoberg et al. (1986) sequenced the region between 136.1 kb and 137.8 kb positions on the \(T 4\) genetic map and identified a putative open reading frame (ORF) which exhibited \(47 \%\) amino acid homology to the E. coli nrdB gene product. On the basis of this homology, these authors suggested that this ORF encoded the T4B2 subunit and called it the \(T 4 n r d B\) gene. Further, they suggested that an approximately 625 base intron divided the gene in two parts. The proposed exon-intron boundary at the \(5^{\prime}\) splice donor site ends with a TAA stop codon and the intron-exon boundary of the \(3^{\prime}\) splice acceptor site has an ATG codon. These intron boundaries were proposed on the basis of homology with those of the well characterised intron of the adjacent T4 thymidylate synthetase gene (td gene; Chu et al., 1984).

The T4B2 subunit contains two non-heme iron atoms per molecule whose optical and EPR spectra are very similar to those of the E. coli B2 iron centre (Berglund, 1972a and 1975). The iron atoms are essential for activity since their removal results in loss of activity. This subunit


Figure 15. A schematic representation of the proposed structure of the bacteriophage \(T 4\) ribonucleotide reductase. The enzyme is depicted as a dimer of the T4Bl and T4B2 subunits. The T 4 Bl subunit contains two catalytic sites (CS) which contain the active sulphydryl groups (SH) and bind the ribonucleoside diphosphate (NDP) substrates. The regulatory sites (RS) bind the allosteric effectors (E) shown and are separated in low (l) and high (h) dATP-affinity sites. The T4B2 subunit contains the tyrosyl radical (•), which is depicted to conform to half-site reactivity, and the iron centre ( \(\mathrm{Fe}^{3+}-\mathrm{O}^{2}-\mathrm{Fe}^{3+}\) ).
also contains a free radical which is located on a tyrosine residue with its spin density delocalised over the aromatic ring (Berglund, 1972a; Sahlin et al., 1982). The EPR spectra profiles of the bacterial and bacteriophage radicals are overall similar although small differences occur. These have been attributed to the different geometry of the radicals due to a different angle of the \(\beta\)-methylene group relative to the plane of the aromatic ring. Again, in analogy to the E. coli radical, the \(T 4\) radical is destroyed by hydroxyurea although it is ten times more sensitive to the drug. Kjoller-Larsen et al. (1982) ascribed the different suseptibility to the drug, to the different topology of the active sites in the bacterial and phage enzymes with the latter site being more exposed.
iii) Allosteric regulation. The allosteric properties of the T 4 -induced ribonucleotide reductase are in many ways similar to those of the E. coli enzyme (Berglund, l972b). ATP affects the reduction of CDP and UDP, dTTP affects the reduction of GDP and dGTP affects the reduction of ADP. In contrast to the bacterial enzyme where high concentrations of \(\operatorname{dATP}\left(>10^{-5} \mathrm{M}\right)\) inhibit enzyme activity, the same dATP concentrations positively regulate reduction of the pyrimidine substrates by the \(T 4\) enzyme (Berglund, l972b). Further, 5'-hydroxymethyl cytosine, which is essentialy inert with the bacterial enzyme, stimulates pyrimidine reduction by the T4-induced enzyme. The lack of any negative effectors of the \(T 4\)-induced enzymatic activity may be related to the fact that \(T 4\) DNA synthesis is not turned off during infection but continues until the \(T 4-i n f e c t e d\) cell lyses.
c) The mammalian enzyme.

Ribonucleotide reductase activity has been
demonstrated in a number of mammalian systems including rat hepatoma (Moore, 1977), calf thymus (Engstrom et al., 1979; Eriksson et al., 1979; Thelander et al., 1980) rabbit bone marrow (Hopper, 1972 and 1978) and human tissue culture cell lines (Chang and Cheng, 1979). Hopper (1972) demonstrated that the mammalian enzyme's properties resemble those of


M1 subunit

M2 subunit

Figure 16. A schematic representation of the proposed structure of the mammalian ribonucleotide reductase. The enzyme is depicted as a dimer of the Ml and M2 subunits, each consisting of two identical polypeptides. The Ml subunit is shown to contain two regulatory sites (RS) which bind the allosteric effectors (E) indicated. The catalytic sites (CS) are shown to contain the active sulphydryl groups (SH). The M2 subunit contains the tyrosyl radical (•), and the iron centre \(\left(\mathrm{Fe}^{3+}-\mathrm{O}^{2}-\mathrm{Fe}^{3+}\right)\).
E. coli rather than the Lactobacillus enzyme as it contains easily separable subunits, it is inhibited by hydroxyurea, does not require AdoCbl for activity, and contains iron. The mammalian enzyme consists of two non-identical subunits called M1 and M2 (Fig. 16; Thelander et al., 1980).
i) The Ml subunit. This subunit is composed of two identical polypeptides, and its mol. wt. in calf thymus is 170,000 (Thelander et al., 1980). The Ml dimer contains two catalytic sites which bind the NDP substrates and two different types of allosteric effector binding sites. In analogy to the E. coli enzyme, the first of the allosteric effector binding sites binds ATP and dATP while the second binds dTTP and dGTP in addition (Thelander et al., 1980). However, two major differences appear to exist between the bacterial and mammalian enzymes. First, substrate binding studies indicated that the number of sites in Ml is lower than that in Bl (Thelander et al., 1980). Second, the Ml sites show equal affinity for dATP-binding and therefore they cannot be classified as \(\underline{h}\) or \(\underline{l}\) sites as the case is with the E. coli Bl (Thelander et al., 1980). Both of these suggestions require further investigation.
ii) The M2 subunit. This subunit is a dimer composed of two polypeptides; in mouse the \(M 2\) molecule has a mol. wt. of 88,000 (Thelander et al., 1985). M2 contains a non-heme iron centre and a tyrosine free radical. Light adsorption spectra for the \(M 2\) and \(B 2\) subunits gave iron related bands at almost similar wavelengths indicating that both proteins should have the same type of iron centre (Thelander et al., 1985). Isotope substitution studies demonstrated that the free radical is located on a tyrosine residue and its spin density is delocalised over the aromatic ring of this tyrosine (Graslund et al., 1982). In analogy to the E. coli radical, the \(M 2\) radical is inhibited by hydroxyurea (Engstrom et al., 1979). However, the M2 radical can be regenerated by the addition of dithiotreitol in the presence of oxygen (Graslund et al., 1982) and this is in sharp contrast to the bacterial radical where radical regeneration requires chelation and subsequent re-introduction of the
iron centre (see Page 43; Atkin et al., 1973). Comparison of the EPR spectra profiles of the M2 and B2 radicals revealed small differences which, as the case is for the T4 radical, are attributed to the slightly different angles of the \(\beta\)-methylene group relative to the plane of the aromatic ring of the tyrosine (Graslund et al., 1982). Another property of the mammalian radical is that it is 75 times more sensitive to hydroxyurea analogues than the bacterial radical. Kjoller-Larsen et al. (1982) and Thelander et al. (1985) suggested that this is due to different active site topologies with the mammalian site being more exposed.
iii) Allosteric regulation. The mammalian enzyme has been shown to be allosterically regulated in a similar fashion to the E. coli enzyme (Eriksson et al., 1979). In the absence of positive effectors, the enzyme is inactive with any substrate. Reduction of pyrimidine substrates is stimulated by ATP, reduction of GDP by dTTP \(^{\text {and }}\) reduction of ADP by dGTP. Reduction of purine substrates is further stimulated by ATP but only in combination with dTTP and dGTP respectively. Each of \(d T T P\) and dGTP inhibits reduction of the other three substrates. Finally, dATP is a general inhibitor but the dATP-mediated inhibition can be reversed by high concentrations of ATP. Overall, the E. coli allosteric regulation scheme (see Fig. l3) is also applicable to the mammalian enzyme, although, allosteric control of the latter enzyme is much more strict.
d) Viral-induced enzymes.

Several animal viruses including HSV-l (Cohen, l972), HSV-2 (Cohen et al., 1974), PRV (Lankinen et al., 1982), EHV serotypes 1 and 3 (Cohen et al., 1977; Allen et al., 1978) EBV (Henry et al., 1978), VV (Slabaugh et al., 1984) and VZV (Spector et al., 1987) have been reported to induce a novel ribonucleotide reductase activity in infected cells which differs from the host cell enzyme. However, direct evidence that this activity is virus-encoded has been obtained only for HSV-1. This part of Section \(E\) is mainly concerned with the properties of the ribonucleotide reductase activity induced by HSV-1, HSV-2, PRV, VZV and VV.
i) Constituents and structure of the HSV-1-induced enzyme. Dutia (1983) demonstrated that the HSV-I enzyme is virus-encoded since the multiple HSV-l mutant tsG (Brown et al., 1973) expressed significantly reduced levels of ribonucleotide reductase activity at the permissive temperature (PT) while at the NPT no activity was observed. The enzyme is composed of two non-identical subunits, termed RR1 and RR2 (Frame et al., 1985; Cohen et al., 1985; Bacchetti et al., 1986; Ingemarson and Lankinen, 1987). The gene encoding RR1 has been shown to be UL39 by marker rescue of the mutant HSV-l virus tsl207 (see Results and Discussion, Section D). The product of UL39, Vmwl 36 or RRI polypeptide, has a mol. wt. of 136,000 (Marsden et al., 1978).

Other studies have accumulated evidence that the RRI polypeptide is not the only one involved in ribonucleotide reductase activity. First, amino acid comparisons of the predicted primary structure of the UL40 gene product, Vmw38 or RR2 polypeptide, with that of the small subunit polypeptide of E. coli exhibited high homology (Standart et al., 1985; Sjoberg et al., 1985; McLauchlan 1986; Nikas et al., 1986; see Results and Discussion, Section C). Second, a monoclonal antibody specific for the RR1 polypeptide precipitated along with RRl a smaller protein species (Preston, V.G. et al., 1984), which was shown to be RR2 (Frame et al., 1985). Conclusive evidence for the involvement of the RR2 polypeptide in enzymatic activity was obtained from the HSV-1 mutant ts 1222 which has a lesion in UL40 and induces negligible levels of ribonucleotide reductase activity at both the PT and NPT (Preston, V.G. et al., 1988). The studies with these ts mutants further demonstrate that the viral enzyme consists of two non-identical subunits. The sedimentation coefficient of the active HSV-l enzyme is 17 S which approximately corresponds to a mol. wt. of 370,000 (Ingemarson and Lankinen, 1987). Given the predicted sizes of the RRI and RR2 polypeptides, these authors suggested that the active enzyme is a homodimeric complex of the \(\alpha_{2} \beta_{2}\) structure. The complex appears to be a very strong one as the two subunits
fail to dissociate in columns containing antibodies specific for each subunit nor do they sediment separately in glycerol gradients (Frame et al., 1985; Ingemarson and Lankinen, 1987). This type of tight binding between the two subunits is similar to that of the \(T 4\)-induced enzyme subunits (Berglund, 1972a).
ii) Physicochemical and binding properties of the virus-induced enzymes. Unlike the bacterial and mammalian enzymes, \(\mathrm{Mg}^{2+}\) or ATP inhibit the viral enzyme (Averett et al., 1983; Huszar and Bacchetti, 1981; Ponce de Leon et al., 1977). At least for the HSV-1 and HSV-2 enzymes, the inhibition appears to be qualitatively similar, although slight quantitative differences exist (Averett et al., 1984) However, in the presence of a Mg-ATP complex this inhibition is reduced most probably because the formation of the complex lowers the concentration of free ligands in the reaction mixture. The substrate binding properties of the HSV-1 and HSV-2 enzymes are quite similar (Averett et al., 1983 and l984). Both enzymes have as substrates NDPs which bind at a common catalytic site; competition binding studies with CDP and ADP substrates indicated that both are mutual competitors for binding (Averett et al., 1983). The products of the reaction, deoxynucleoside diphosphates (dNDPs), are inhibitors which compete with the substrates (Averett et al., 1983). Both HSV enzymes are insensitive to inhibition by dNTPs suggesting that they are not allosterically regulated (Averett et al., 1983 and 1984). The same suggestion can be applied to the PRV- (Lankinen et al., 1983) and VZV-induced activities (Spector et al., 1987). Conversely, the VV-induced activity has been shown to be inhibited by dATP and dTTP and has therefore been proposed to be allosterically regulated (Slabaugh et al., 1984).

PRV-infected cells display an EPR spectrum resembling that of the tyrosyl radical of the \(M 2\) subunit (Lankinen et al., 1982). Therefore, it is possible that the viral enzyme also contains a free radical. This suggestion is reinforced by the strong conservation of the tyrosine residue and the flanking amino acid sequences of the polypeptides encoding
the E. Coli B2 and HSV-1 RR2 subunits (see Results and Discussion, Section C); further it is reinforced by the observed inhibition of the HSV and PRV enzymes by hydroxyurea (Averett et al., 1983; Lankinen et al., 1982) which, as reported above (see Page 43), acts as a radical scavenger.
14. Ribonucleotide Reductase is Essential for Virus Growth. HSV-1 tsl207 failed to induce any ribonucleotide reductase activity at the NPT and its yield at that temperature was lo0-fold lower than that of wild-type virus (Preston, V.G. et al., 1984). These results suggested that the enzyme is essential for virus replication. In contrast, subsequent reports raised questions as to the validity of this proposal. First, Nutter et al., (1985) reported that concentrations of hydroxyurea, which would otherwise inhibit ribonucleotide reductase activity to undetectable levels, reduced the \(H S V-2\) virus yield in proliferating cells only by six-fold. Second, wu et al. (1988) demonstrated, by means of the plasmid replication assay developed by Challberg (1986), that a significant amount of DNA replication occured in the absence of the ribonucleotide reductase genes. Finally, third, Goldstein and Weller (1988a) reported that the enzyme is dispensable in dividing cells at \(34^{\circ} \mathrm{C}\). These authors reached this conclusion by studing the growth and DNA replication of a mutant HSV-l virus, hr3, which was expressing the \(N\)-terminal RRI 434 amino acids fused to the \(\beta\)-galactosidase (lacZ) gene.

However, studies with the HSV-l mutant virus tsl222 reconciled these apparently conflicting data and showed that the enzyme is essential for virus replication. Preston, V.G. et al. (1988) demonstrated that tsl222 failed to grow in resting cells at the PT thus indicating that the enzyme is essential under these conditions. This is the case with TK as well, although, the requirement for actively dividing cells appears to be more stringent for ribonucleotide reductase negative mutant viruses than in \(\mathrm{TK}^{-}\)viruses. Preston and co-workers further showed that, in exponentially growing cells and at the PT, tsl222 is dependent on the
cellular enzyme for replication, while, it was proposed that at the NPT the mutant fails to replicate due to inactivation of the cellular enzyme at this temperature. Similar suggestions were reached by Goldstein and Weller (1988b), using the HSV-l mutant ICP6 \(\Delta\) which was expressing less than 10\% of the RRI DNA coding region; these authors showed that growth and DNA replication of ICP6D were severely restricted in non-dividing cells or at \(39.5^{\circ} \mathrm{C}\).

Conclusive evidence that ribonucleotide reductase is an essential HSV function have been obtained from studies on the pathogenicity of the ts 1207 and tsl222 mutants following intracranial or intraperitoneal inoculation of albino Charles River mice (Cameron et al., l988). The virulence of these mutants was reduced by about a million-fold when compared with that of the parental virus (HSV-l strain \(17^{+}\)); further, the pathogenicity of a revertant of tsl222 (tsl222 revl) was restored to about 60- to 200 -fold of that of the parent virus. Similar evidence was obtained from experiments involving HSV infection in epithelium cells of hairless mice which were scarified on the flank (H.S. Marsden, D.M. Ryan, personal communication). Mice infected with HSV-l strain \(17^{+}\)gave rise to a zosteriform lesion, as did tsl222 revl, while infection at doses higher than \(4 \mathrm{x} 10^{2}\) plaque forming units (p.f.u.) per mouse caused death. In contrast, infection with tsl222 did not give rise to zosteriform lesions but instead to small blisters which healed by 6 days p.i.
15. Ribonucleotide Reductase as a Target for Antiviral Compounds.

The herpesvirus-encoded enzyme has been considered as an attractive antiviral target for a number of reasons. Firstly, as reported above, the enzyme is important for pathogenicity in mice. Secondly, the herpesviral enzyme is biochemically distinct from the mammalian enzyme. Thirdly, the interaction between the RRI and RR2 subunits may itself be exploitable as a target for antiviral compounds.

Effort is currently being put in the identification of a compound or a class of compounds that would inhibit the
interaction of the two subunits. This approach resulted from reconstitution experiments designed to show that both subunits are necessary for activity (Dutia et al., 1986); in these experiments an IgG from serum raised against a synthetic octapeptide corresponding to the C-terminal seven amino acids of RR2 successfully removed this subunit from a crude extract of HSV-l infected cells. Subsequently, two different groups reported that the same octapeptide inhibited ribonucleotide reductase activity and postulated that this was achieved by dissociation of the RRI/RR2 subunit complex (Dutia et al., 1986; Cohen et al., 1986a). McClements et al. (1988) demonstrated that indeed the synthetic oligopeptide acted by dissociating the RRI and RR2 subunits and that this resulted in inhibition of the ribonucleotide reductase activity.

Recently, Huang et al. (1988) and Darling et al. (1988) demonstrated that the enzymatic activity can be restored by reassociation of the two subunits both in vivo and in vitro and that no other HSV proteins are required for the formation and activity of the reconstituted enzyme. Furthermore, Darling and co-workers demonstrated that the two subunits exist in a dynamic equilibrium between the associated and dissociated states of the enzyme (A.J. Darling, personal communication). These observations will prove valuable in the further characterisation of the enzyme and in studies with antiviral compounds.
16. Regulation of Ribonucleotide Reductase Synthesis.

As already mentioned, the prokaryotic and eukaryotic enzymes are allosterically regulated by NTPs and dNTPs. However, additional types of regulation exist at the transcriptional, translational or post-translational level.

The E. coli genes encoding the bacterial enzyme are arranged in one operon and are coordinately regulated (Hanke and Fuchs, 1983a). The enzyme appears to be synthesised only once during the cell cycle at a time that coincides with the onset of DNA replication. It appears that subunit synthesis is primarily controlled at the transcriptional level as inhibition of DNA synthesis by thymine starvation
results in an increased rate of transcription in ribonucleotide reductase genes (Hanke and Fuchs, 1983b). It appears that this increase is mediated by a positive regulatory protein(s) which accumulates during inhibition of DNA replication and acts to induce ribonucleotide reductase transcription (Hanke and Fuchs, 1984). Another type of regulation of the \(E\). coli enzyme appears to be at the post-transcriptional level; as reported above (see Page 42), Sjoberg et al. (1987) encountered a truncated form of B2 which resulted from limited proteolysis of normal B2 by a serine protease and which inactivated the enzyme.

Synthesis of the mouse enzyme is regulated in a cell cycle-dependent fashion. Activity measurements of the two subunits in cells separated in Gl, \(S\) and \(G 2\) phases of the cell-cycle indicated that the Ml catalytic activity was constant throughout these phases whereas the M2 activity was substantially decreased in \(G 1\) as compared to \(S\) and \(G 2\) (Eriksson and Martin, 1981; Engstrom et al., 1985). The reduced M2 activity in Gl could be explained either by the existence of a latent \(M 2\) protein pool, which was activated at the start of the \(S\) phase, or by the de novo synthesis of M2 protein. Eriksson et al., (1984) demonstrated that the latter is correct, since a 3- to 7-fold increase in M2 radical content is observed when cells are passed from the Gl to the \(S\) phase. Moreover, these authors proposed that this type of \(M 2\) regulation primarily occurs at the transcriptional level.

In analogy to the mouse enzyme regulation, both sea urchin and surf clam oocyte enzymes are regulated at the level of \(M 2\), although, in the latter the control of M2 synthesis appears to be at the translational level. Standart et al. (1985) demonstrated that the small subunit is expressed after fertilisation of the embryo and that the mRNA encoding this subunit is one of the stored maternal mRNAs whose translation is induced by fertilisation. On the other hand, the large subunit is already present as a polypeptide in the embryo (Standart et al., 1986).

\section*{SECTION A.}

\section*{MATERIALS.}
1. Viruses.

HSV-2 strain HG52 (Timbury, 1971) and HSV-1 Glasgow strain \(17^{+}\)(Brown et al., 1973) were used during the course of this work.
2. Cells.

Baby hamster kidney cells (BHK-Cl3; MacPherson and Stoker, 1962) were used for growth and assay of virus. HeLa cells (obtained from Dr J. McLauchlan) were used for transient expression assays of plasmid constructions.
3. Bacterial Strains.
E. coli Kl2 strain DHl (recAl, \(\mathrm{F}^{-}\), endAl, gyra96, thi-1, supE44, recAl; Hanahan, 1983) was used as host in all recombinant plasmid experiments. E. coli Kl2 strain JMlOl ( \(\Delta\) (lac;pro), supe, thi, F'traD36, proAB, lacIq, \(Z \Delta M 15\); Messing et al., 1981), which harbours an \(F\) factor essential for the transmittance of the male specific phage, was used as host strain of M13 bacteriophage recombinants.
4. Tissue Culture Media.

BHK-Cl3 cells were grown in Glasgow Modified Eagle's medium (Busby et al., 1964) supplemented with \(100 \mathrm{ug} / \mathrm{ml}\) streptomycin, 100 units \(/ \mathrm{ml}\) penicillin, \(0.2 \mathrm{ug} / \mathrm{ml}\) amphotericin, \(0.002 \%(w / v)\) phenol red. The growth medium used (ETClO) consisted of \(80 \%\) Eagle's, \(10 \%\) tryptose phosphate and \(10 \%\) calf serum.

HeLa cells were grown in Dulbecco's medium (Flow Laboratories), a modified version of Eagle's medium, supplemented with 20 mM glutamine, lounits/ml of streptomycin, lolunits \(/ \mathrm{ml}\) penicillin and \(0.2 \mathrm{ug} / \mathrm{ml}(\mathrm{w} / \mathrm{v})\)
amphotericin. In addition to the above ingredients, growth medium contained \(2.5 \%\) calf serum and \(2.5 \%\) foetal calf serum (Gibco Ltd).

For washing and removal of cell monolayers the following media were used:
i) PBS, which contained \(170 \mathrm{mM} \mathrm{NaCl}, 3.4 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}\) \(\mathrm{Na}_{2} \mathrm{HPO}_{4}, 2 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}(\mathrm{pH} 7.2)\)
ii) Versene, which consisted of PBS containing 0.6 mM EDTA and \(0.0015 \%(w / v)\) phenol red and,
iii) Trypsin, which comprised 25\% (w/v) Difco trypsin dissolved in Tris-saline. The constituents of Tris-saline were \(140 \mathrm{mM} \mathrm{NaCl}, 30 \mathrm{mM} \mathrm{KCl}, 280 \mathrm{mM} \mathrm{Na} 2{ }^{\mathrm{HPO}_{4}}\), lmg/ml dextrose, 25 mM Tris \(\mathrm{HCl}(\mathrm{pH} 7.4), 0.005 \%(\mathrm{w} / \mathrm{v})\) phenol red supplemented with 100 units/ml penicillin and \(100 \mathrm{ug} / \mathrm{ml}\) streptomycin.
5. Bacterial Culture Media.

DHl bacteria were propagated in L-broth which consisted of 177 mM NaCl, \(10 \mathrm{~g} / \mathrm{l}\) Difco Bactotryptone and 5g/l yeast extract ( pH 7.5 prior to sterilisation). Solid medium for the growth of colonies was agar which contained 1.5\% (w/v) agar in L-broth. These media were supplemented, where appropriate, with ampicillin or chloramphenicol, both at a final concentration of lolug/ml. JMlOl were grown in \(2 Y T\) broth which comprised \(85 \mathrm{mM} \mathrm{NaCl}, 16 \mathrm{~g} / \mathrm{l}\) Difco Bactotryptone, l0g/l yeast extract (pH 7.5 prior to sterilisation).
6. Frequently Used Buffers and Solutions.

TE lOmM Tris HCl ( pH 7.5 ), lmM EDTA
TBE 90 mM Tris, 90 mM boric acid, \(\operatorname{lmM}\) EDTA ( pH 9.3 )
TAE 40 mM Tris HAC ( pH 8.0 ), 2 mM EDTA
STET \(50 \mathrm{mM} \operatorname{Tris} \mathrm{HCl}(\mathrm{pH} 8.0), 50 \mathrm{mM}\) EDTA, \(8 \%\) ( \(\mathrm{w} / \mathrm{v}\) ) sucrose, \(5 \% ~(\mathrm{v} / \mathrm{v})\) Triton Xl00

5 x LB \(\quad 100 \mathrm{mM}\) Tris \(\mathrm{HCl}(\mathrm{pH} 7.5), 20 \mathrm{mM} \mathrm{MgCl}{ }_{2}\), 20 mM DTT
SSC \(\quad 150 \mathrm{mM} \mathrm{NaCl}, 15 \mathrm{mM}\) sodium citrate ( pH 7.5 )
50x DHB \(1 \%\) (w/v) Ficoll, 1\% (w/v) polyvinylpyrrolidone,
\(1 \%(w / v)\) bovine serum albumin (BSA)
(Denhardt, 1966 )
\(10 x \mathrm{AB} \quad 100 \mathrm{mM}\) Tris \(\mathrm{HCl}(\mathrm{pH} 8.5), 100 \mathrm{mM} \mathrm{MgCl}{ }_{2}\)
\begin{tabular}{|c|c|}
\hline TGM & ```
150 ml 40% polyacrylamide (acrylamide/bisacrylamide
20:l), 50ml l0x TBE, 540g urea, made up to ll with
distilled H}\mp@subsup{\textrm{H}}{2}{}\textrm{O
``` \\
\hline BGM & \(150 \mathrm{ml} 40 \%\) polyacrylamide (acrylamide/bisacrylamide 20:1), 62.5ml 40x TBE, 540 g urea, 50 g sucrose, l0ml l\% bromophenol blue, made up to 11 with deionized \(\mathrm{H}_{2} \mathrm{O}\) \\
\hline EB & \(100 \mathrm{mM} \mathrm{NH} 4{ }^{\text {AC, }}\), \(10 \mathrm{mM} \mathrm{MgAC} 0.1 \\),\(% (w/v) SDS, lmM ED'TA\) \\
\hline TE (P) & lmM Tris HCl (pH 7.5) , 0.05 mM EDTA \\
\hline HBS & \(140 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM} \operatorname{HEPES}(\mathrm{pH} 7.12), 1.5 \mathrm{mM} \mathrm{Na} 2{ }_{2} \mathrm{HPO}\) \\
\hline ILB & \(150 \mathrm{mM} \mathrm{NaCl}, 1.5 \mathrm{mM} \mathrm{MgCl}{ }_{2}\), 10 mM Tris \(\mathrm{HCl}(\mathrm{pH} 7.8)\), \(0.65 \%(v / v)\) nonidet p40. \\
\hline PEB & 7.0 M urea, \(350 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}\) ED'TA, 10 mM Tris HCl (pH 7.9), \(1 \%\) (\(\mathrm{w} / \mathrm{v}\)) SDS \\
\hline 5x SP6 & 200 mM Tris HCl (pH 7.5), \(30 \mathrm{mM} \mathrm{MgCl}{ }_{2}\), 10 mM spermidine \\
\hline 2x PK & 100 mm Tris HCl (pH 8.0), 20 mM EDTA, 20 mM NaCl , \\
\hline & 0.4\% (w/v) SDS \\
\hline 5x M13 & 3.75M NaCl, 250 mM HEPES (pH 6.95), 5mM EDTA \\
\hline HNE & \(200 \mathrm{~mm} \mathrm{NaCl}, 10 \mathrm{~mm}\) HEPES (pH 7.9), 1mM EDTA \\
\hline
\end{tabular}
7. Enzymes.

The majority of restriction enzymes were obtained from New England Biolabs or Bethesda Research Laboratories (BRL). The Klenow fragment of \(E\). coli polymerase was supplied by Boer inger Corporation Ltd or provided by Dr A. Davison, ribonuclease \(T 2\) was supplied by Calbiochem Ltd, and lysozyme and proteinase \(K\), were supplied by Sigma Chemical Company. Unless otherwise stated, enzyme digests were performed in lx core buffer (50 mM Tris \(\mathrm{HCl}, \mathrm{pH} 8.0,10 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 50 \mathrm{mM} \mathrm{NaCl}\)), supplied by BRL.
8. Radiochemicals.

Radioisotopes were supplied by Amersham International PLC at the following specific activities:
5' [\(\left.\not \subset-{ }_{32}^{32} \mathrm{p}\right]\) adenosine triphosphate, \(5000 \mathrm{Ci} / \mathrm{mmol}\)
\(5^{\prime}\left[\alpha-{ }^{32} \mathrm{p}\right]\) deoxynucleoside triphosphates, \(3000 \mathrm{Ci} / \mathrm{mmol}\) \(5^{\prime}[\alpha-32 \mathrm{P}]\) uridine triphosphate, \(800 \mathrm{Ci} / \mathrm{mmol}\).
9. Chemicals and Miscellaneous Reagents.

Most chemicals of analytical grade were supplied by BDH Chemicals UK or Sigma Chemical Company. Koch-Light laboratories supplied acrylamide, bisacrylamide, boric acid and caesium chloride; Biorad laboratories supplied ammonium persulphate (APS), and TEMED (N',N',N',N' -tetramethylethylene diamine). The sequencing primer (5'-GTAAAACGACGGCCAGT-3') was obtained from New England Biolabs. Other primers or oligonucleotide probes used during the course of this work were constructed by Dr J. McLauchlan using a Biosearch 8600 DNA Synthesizer. Dideoxynucleoside triphosphates (ddNTPs) and dNTPs, used in sequencing reactions, were bought from P-L Biochemicals. Ribonucleoside triphosphates, used for the production of RNA probes, were obtained from Promega Biotec. Tissue culture materials were supplied by Sterilin Ltd. and Nunc.

\section*{10. Cloning Vectors.}

Most of the constructs made during the course of this study used plasmids pUC8 and pUCl2 as cloning vectors (Vieira and Messing, 1982).

Bacteriophage Ml3 was used for subcloning of DNA fragments for sequencing (Messing and Vieira, 1982). The double-stranded DNA replicative form (RF) of this phage can be manipulated as a plasmid for subloning of DNA fragments into the multiple cloning site (MCS). The infectious phage particle contains single-stranded DNA and is secreted, in high titres, from the host cell intothe culture medium. The sidvacan be used as a template for sequencing reactions. Throughout this study the Ml3mp8 RF bacteriophage was used (obtained from New England Biolabs).

RNA probes used in transient expression experiments were produced with the use of the pGEM-2 Riboprobe Gemini transcription plasmid supplied by Promega Biotec (Fig. l7). This vector comprises part of the pBR322 vector sequences and the bacteriophage SP6 and \(T 7\) promoters which are cloned in opposite transcriptional directions and are separated by a short piece of DNA containing an MCS (Melton et al.,

Figure 17. The pGEM-2 Riboprobe Gemini transcription plasmid. Black boxes indicate the SP6 and T7 promoters and arrowed lines above them indicate their respective transcriptional directions. The multiple cloning site (MCS) is expanded above the plasmid to show the restriction endonuclease cleavage sites. The location and orientation of the ampicillin resistance gene (\(\mathrm{amp}^{\mathrm{r}}\)) and the pBR322 origin of replication (ori) are also indicated.
1984). The pGEM-2 plasmid carries the pBR322 origin of replication and the gene conferring resistance to ampicillin.
11. Recombinant Plasmids.

All recombinant plasmids used during the course of this work were constructed by the author with the exception of: pHindK, pBamE and pBamT, obtained from Dr J. McLauchlan, pBamHIo, obtained from Dr V.G. Preston and plll and pl75 obtained from Dr R.D. Everett.

\section*{SECTION B.}

\section*{METHODS.}
12. Virus Growth and Assay.

BHK-Cl3 cells, maintained in \(850 \mathrm{~cm}^{2}\) roller bottles, were infected with HSV-2 strain HG52 at a multiplicity of 1 p.f.u. per 350 cells. The infected cells were incubated in 20 ml of ETCl 0 for 3 to 4 days at \(31^{\circ} \mathrm{C}\) until they could be readily harvested by gentle shaking; subsequently, they were pelleted by centrifugation in the cold at l,500rpm for l0min. The supernatant was removed and centrifuged at \(12,000 \mathrm{rpm}\) for 2 h . The resultant pellet was resuspended in 5 ml of ETClO and stored in \(-70^{\circ} \mathrm{C}\) as cell released virus (CRV). The pellet from the initial centrifugation was resuspended in an equal volume to 5 ml ETClO and sonicated briefly. After centrifugation at \(3,000 r p m\) for 15 min , the supernatant was recovered and stored at \(-70^{\circ} \mathrm{C}\) as cell associated virus (CAV). The CRV and CAV fractions were titrated as described in Brown et al. (1973).

\section*{13. Standard Techniques.}
a) Restriction enzyme digests.

Restriction digests were performed at \(37^{\circ} \mathrm{C}\) or, in certain cases, at \(65^{\circ} \mathrm{C}\) (for example, BstE II digests). Plasmid DNA and restriction enzymes were incubated for 1 h to \(4 h\) in \(1 x\) core buffer, with the exception of SmaI digests where, instead of \(\mathrm{NaCl}, 20 \mathrm{mM} \mathrm{KCl}\) was used. For diagnostic purposes, digests were carried out in l5ul of lx core buffer using 0.5 ug of plasmid DNA and lunit of enzyme for 2 h at \(37^{\circ} \mathrm{C}\), unless the reaction conditions specified by the supplier differed radically. For subcloning of DNA fragments, the enzyme units and the incubation time varied according to the size and amount of the DNA fragment.
b) Ligation of DNA fragments.

DNA fragments, produced by cleavage with restriction enzymes, were ligated to cleaved plasmid vector which contained termini compatible with those of the fragment. The vector and fragment were mixed in a l:l0 ratio in \(5 x\) ligation buffer (LB), \(0.4 \mathrm{mM} A T P\) and 2 units of \(T 4\) DNA ligase and incubated overnight at \(15^{\circ} \mathrm{C}\).

DNA fragments excised from low melting point agarose gels (see below) were not removed from gel slices for ligation purposes. The DNA-containing gel slices were mixed, an approximately equal volume of distilled \(\mathrm{H}_{2} \mathrm{O}\) was added, and the mixture was heated at \(65^{\circ} \mathrm{C}\) until the agarose melted. At that point, the sample was incubated at \(37^{\circ} \mathrm{C}\) and vector DNA, 5 x LB and T 4 DNA ligase were rapidly added. The ligation mixture was then incubated overnight at \(15^{\circ} \mathrm{C}\).

In order to prevent reannealing of linearised Ml3mp8 RF DNA with Sma \(I\), which gives 'blunt-ends', the bacteriophage DNA was treated with 25 units of bacterial alkaline phosphatase in 50 mM Tris \(\mathrm{HCl}(\mathrm{pH} 8.5)\) at \(37^{\circ} \mathrm{C}\) for 3 h .
c) Gel electrophoresis.
i) Non-denaturing agarose gels. These gels were used to analyse DNA digested with restriction enzymes. Horizontal slab gels (260 mm x 160 mm) comprising 200 ml of \(0.5 \%\) to \(1.5 \%\) (\(w / v\)) agarose in lx TBE buffer were run at up to \(12 \mathrm{~V} / \mathrm{cm}\) submerged in \(1 x\) TBE; both the gel and the buffer contained \(0.2 \mathrm{ug} / \mathrm{ml}\) of ethidium bromide. Samples were applied in lx TBE, \(10 \%\) (w/v) sucrose, \(0.02 \%\) (w/v) bromophenol blue and xylene cyanol.
ii) Low melting point agarose gels. These gels were used for the isolation of DNA fragments, of at least 500 bp in length, for subcloning purposes; they comprised 200 ml of l\% (w/v) agarose in lx TAE buffer and were electrophoresed in \(1 x\) TAE at up to \(7.5 \mathrm{~V} / \mathrm{cm}\).
iii) Non-denaturing polyacrylamide gels. These gels were prepared as described by Maniatis et al. (1975) and were used for analysis of DNA fragments of less than lkbp. Acrylamide stock of \(30 \%\) (w/v) acrylamide (acrylamide:bisacrylamide \(29: 1\), stored at \(4^{\circ} \mathrm{C}\)) was diluted to the required concentration (\(4 \%\) to \(10 \%\)) in 75 ml of 1 x TBE buffer. To this, 0.5 ml of \(10 \%(w / v) A P S\) and \(50 u l\) TEMED were added to intiate polymerisation. The mixture was poured quickly into the gel mould and allowed to stand for at least 45 min prior to electrophoresis. Samples were prepared as in non-denaturing agarose gels (see Page 6l) and gels (260 mm xl60mm \(x\) lmm) were run in vertical kits up to a maximum voltage of \(16 \mathrm{~V} / \mathrm{cm}\). DNA was visualised by ethidium bromide staining or by autoradiography.
iv) Denaturing polyacrylamide gels. This type of gel was used to analyse the products of ribonuclease \(T 2\) digestion and were prepared as described by Maxam and Gilbert (1980). A stock of \(20 \%\) acrylamide (acrylamide:bisacrylamide \(19: 1\), stored at \(4{ }^{\circ} \mathrm{C}\)) was diluted to \(8 \%\) in \(1 x\) TBE buffer containing 7 M urea. The solution was filtered, degassed, polymerised and gels (450mm x 230 mm x 0.35 mm) were pre-run for 30 min at 40 W . Lyophilised samples were resuspended in 5 ul to loul of \(90 \%\) (\(\mathrm{v} / \mathrm{v}\)) formamide, \(0.1 \%(w / v)\) bromophenol blue and xylene cyanol, denatured at \(90^{\circ} \mathrm{C}\) for 3 min and chilled rapidly in ice prior to electrophoresis. Gels were run at 40 W for 2 h approximately. Radiolabelled RNA was deteced by autoradiography. Where appropriate, the amount of radioactive product was quantified by densitometry of autoradiographs using a Joyce-Loebl scanning densitometer. Then areas under the peaks of the densitometer tracing were measured by a DEC PDP ll/44 computer linked to a digitising tablet.
vi) Gradient polyacrylamide gels (Sequencing gels).

This type of gel was used for the analysis of sequencing reaction products. The gradient of potential difference is constructed by using two different ionic strength buffers, the top buffer (TGM), containing a low concentration of TBE,
and the bottom buffer (BGM), containing a high concentration of TBE (Biggin et al., 1983).

Two gel plates, one plain and one notched (430mm x \(400 \mathrm{~mm} \times 0.35 \mathrm{~mm})\), were thoroughly cleansed with ethanol. The inside surface of the plain plate was treated with lml of Wackersilicone solution (l0ml ethanol, \(0.3 \mathrm{ml} 10 \%\) acetic acid, 50ul Wackersilicone) and the inside surface of the notched plate was treated with lml of 'Repelcote' (a \(2 \%\) solution of dimethylchlorosilane in l,l,l-tricloroethane). The Wackersilicone solution allows the formation of a firm bond between the glass surface and the gel while the 'Repelcote' facilitates plate separation after electrophoresis. The TGM solution contained 0.5 x TBE and was polymerised by adding 80 ul each of \(25 \%\) APS and TEMED to 80 ml of TGM. The BGM solution contained 2.5 x TBE and was polymerised by adding l5ul each of \(25 \%\) APS and TEMED to l5ml of BGM. l0ml of TGM and 14 ml of \(B G M\) were mixed in a 50 ml syringe and then the mixture was carefully injected into the gel mould. The remaining TGM solution was subsequently injected into the mould, moving the flow from one side to the other in order not to skew the BGM to one side; the gel was allowed to stand for at least 45 min prior to electrophoresis and was run for approximately 2 h at 40 W with \(0.5 x\) TBE in both top and bottom reservoirs. Lyophilised DNA samples were taken up in 2 ul of formamide dyes (100 ml formamide, \(0.1 \mathrm{~g} x y l e n e\) cyanol, 0.1 g bromophenol blue and 2 ml of 500 mM ED'TA), heated at \(95^{\circ} \mathrm{C}\) for lmin and quenched in ice prior to electrophoresis.
14. Large Scale Preparation of Plasmid DNA.

A loop of bacteria or a bacterial colony was used to inoculate 10 ml of L -broth supplemented with lougg/ml ampicillin and incubated overnight at \(37^{\circ} \mathrm{C} .5 \mathrm{ml}\) of this culture was then diluted in 800 ml of L -broth containing ampicillin and the culture was shaken vigorously for 6 h at \(37^{\circ} \mathrm{C}\); then, plasmid DNA was amplified by the addition of chloramphenicol to \(50 \mathrm{ug} / \mathrm{ml}\) and the culture was shaken overnight at \(37^{\circ} \mathrm{C}\).

Isolation of plasmid DNA was essentially performed
with the method of Holmes and Quigley (1981). Bacteria were recovered by centrifugation at \(8,000 \mathrm{rpm}\) for 10 min and resuspended in 60 ml of STET followed by the addition of 8 ml of freshly-prepared ice-cold lysozyme (l0mg/ml). The suspension was boiled for 40 sec , chilled on ice for 2 to 3 min and centrifuged for 1 h at \(15,000 \mathrm{pm}\). The nucleic acid in the supernatant was precipitated by adding an equal volume of isopropanol and pelleted by centrifugation at \(3,000 \mathrm{rpm}\) for 20 min . In order to isolate plasmid DNA, the pellet was resuspended in 10.5 ml of distilled \(\mathrm{H}_{2} \mathrm{O}\) followed by the addition of \(1 l g\) of caesium chloride and 0.5 ml of ethidium bromide (\(10 \mathrm{mg} / \mathrm{ml}\)). DNA was banded at \(40,000 \mathrm{rpm}\) for 72h. Supercoiled plasmid DNA was visualised under a long wave UV light and recovered by a syringe. The ethidium bromide was removed by multiple extractions with TE-saturated butan-2-ol followed by overnight dialysis against deionised \(\mathrm{H}_{2} \mathrm{O}\). The dialysed DNA was then treated with \(50 \mathrm{ug} / \mathrm{ml}\) RNase A for lh at \(65^{\circ} \mathrm{C}\) and then with \(50 \mathrm{ug} / \mathrm{ml}\) proteinase \(K\) and \(0.1 \%(w / v)\) SDS for lh at \(37^{\circ} \mathrm{C}\). The DNA was phenol/chloroform extracted twice and then precipitated with ethanol. Lyophilised DNA was finaly resuspended in TE such that the final concentration was lug/ml as estimated by spectrophotometry \(\left(O D_{260} \mathrm{l} .0=50 \mathrm{ug}\right.\) of \(\left.\mathrm{DNA} / \mathrm{ml}\right)\).
15. Small Scale Preparation of Plasmid DNA ('Miniprep').

20 ml bottles containing 3 ml of L -broth supplemented with ampicillin (l00ug/ml) were inoculated with single plasmid-transformed bacterial colonies and shaken at \(37^{\circ} \mathrm{C}\) overnight. Half of the bacterial culture was stored at \(4{ }^{\circ} \mathrm{C}\) and the remainder was poured into an 1.5 ml reaction vial and centrifuged for 15 sec in a MSE microfuge. The bacterial pellet was resuspended in 200 ul of STET and 5 ul of lysozyme (l0mg/ml), heated in a boiling waterbath for 45 sec and centrifuged for lomin. An equal volume of isopropanol was added to the supernatant and precipitated nucleic acids were centrifuged for 5 min , washed in \(70 \%\) ethanol and lyophilised. Finally, the pellet was resuspended in 20 ul of distilled \(\mathrm{H}_{2} \mathrm{O}\) and stored at \(4^{\circ} \mathrm{C}\). When DNA from 'minipreps' was digested with restriction enzymes, 0.2 ul of \(\mathrm{lmg} / \mathrm{ml}\) ribonuclease \(A\)
(RNase A) was added to remove RNA and this facilitated visualisation of bands following gel electrophoresis.
16. Transformation and Transfection of E. coli.
a) Preparation of competent bacteria.

100 ml of \(\mathrm{L}-\mathrm{Broth}\) or 100 ml of 2 YT were inoculated with 2 ml of an overnight culture of DHl or JMlOl bacteria, respectively, and shaken at \(37^{\circ} \mathrm{C}\) until the \(O D_{660}\) reached 0.3. The culture was chilled on ice for lomin and bacteria were pelleted by centrifugation at \(8,000 \mathrm{pm}\) for 10 min . The pellets were resuspended in a total of 40 ml of ice-cold \(100 \mathrm{~mm} \mathrm{CaCl} 2_{2}\) and incubated on ice for 40 min . The cells were then harvested again by centrifugation and resuspended in a total of 2 ml of ice -cold \(100 \mathrm{mM} \mathrm{CaCl}_{2}\). Competent cells were used within \(24 h\).
b) Transformation by plasmid.
loul of plasmid DNA, usually a ligation mix, were mixed with lo0ul to 200 ul of competent DHl bacteria in an 1.5 ml reaction vial by gentle shaking and the mixture was then placed on ice for 45 min . After incubation at \(42^{\circ} \mathrm{C}\) for \(3 \mathrm{~min}, 70 u l\) aliquots were spread on \(L\)-broth agar plates containing ampicillin and these were incubated overnight at \(37^{\circ} \mathrm{C}\). Prior to spreading the transformation mixture, plates were spread with 50 ul 5 -bromo 4 -chloro 3 -indonyl \(\beta D\) galactopyranoside (Xgal; \(25 \mathrm{mg} / \mathrm{ml}\) in dimethylformamide), in order to select, on the basis of colour, for insert-containing plasmid vectors.

In the case of ligations performed in low melting point agarose, \(\mathrm{CaCl}_{2}\) was added to the ligation mixture to a final concentration of 50 mM prior to mixing with competent bacteria.
C) Transformation by M13mp8 RF.
loul of Ml3mp8 RF/insert ligation mix (see Page 67) was added to 200 ul of competent JMlOl and incubated on ice for 40 min . After this, the transformation mixture was incubated at \(42^{\circ} \mathrm{C}\) for 2 min and then added to a 5 ml glass
bottle, maintained at \(42^{\circ} \mathrm{C}\), which contained: 3 ml of molten top agar, 25 ul each of isopropyl-D-thiogalactoside (IPTG; \(25 \mathrm{mg} / \mathrm{ml}\) in distilled H 2 O) and Xgal (\(25 \mathrm{mg} / \mathrm{ml}\) in dimethylformamide) and 200ul of a JMl01 overnight culture. The final mixture was gently shaken and spread on L-broth agar plates which were pre-warmed at room temperature. The top agar was allowed to set for 5 min at room temperature and plates were incubated at \(37^{\circ} \mathrm{C}\) overnight.
17. DNA Sequencing.

The dideoxy/chain termination method was used for the nucleotide sequence determination of the coding region of RRI and the identification of the nucleotide changes in an RRI coding region of the HSV-I tsl207 mutant (see Results and Discussion, Sections A and D respectively). This method was combined in the former study with a 'shotgun' cloning strategy while, in the latter study, a different approach was followed which is described on Page 108.

The principle behind the 'shotgun' cloning strategy is the generation of a bank of single-stranded Ml3 clones containing random fragments of the DNA region to be sequenced. These can then be sequenced by the dideoxy/chain termination method. A universal synthetic oligonucleotide primer is annealed to the M13 recombinant clones and is then used as a substrate for elongation by the Klenow fragment of the E. coli DNA polymerase. Four separate reactions are set up each containing a combination of four ddNTPs together with dNTPs, one of which is radiolabelled (\(\alpha-\left[{ }^{32}\right.\) pldATP). Incorporation of a ddNTP in the elongating chain results in termination of elongation; thus, the four reactions result in a set of radiolabelled chains which extend from the primer and randomly terminate at \(A, T, C\) and \(G\) residues. These chains are subsequently electrophoresed side by side on gradient polyacrylamide gels (see Page 62) and the sequence can then be directly read from the autoradiograph. This procedure generates a series of overlapping sequences which can then be collated computerianalysis (see Materials and Methods, Section \(C\)) thus producing a contiguous sequence
that spans the DNA region of interest in both the prototype and complementary orientations.
a) DNA cloning into Ml3mp8 RF by the 'shotgun' method. 20ug of plasmid containing the DNA fragment to be sequenced were dissolved in \(T E\) and sonicated as described in Deininger (1983) to give rise to random subfragments. These were subsequently end-repaired using 8 units of T4 DNA polymerase, in a reaction 2 mM for all four dNTPs in 1 x T4 DNA polymerase buffer (l00mM Tris \(\mathrm{HCl}(\mathrm{pH} 7.9), 100 \mathrm{mM} \mathrm{MgCl}_{2}\), 100 mM DTT). The reaction was incubated for 1 h at \(37^{\circ} \mathrm{C}\) and DNA was phenol/chloroform extracted and ethanol precipitated.

The end-repaired products of sonication were size-fractionated prior to cloning. The DNA was run on a \(1.5 \%\) agarose gel alongside Hinf \(I\) digested pATl53 vector DNA as marker (fragment sizes in bp: l65l, 517, 396, 298, 221, 220, 154, 145 and 75). A trough was cut in the sample track just ahead of the \(221 \mathrm{bp} / 220 \mathrm{bp}\) bands and was filled with buffer. Electrophoresis was continued and the buffer in the trough was collected and replaced at lmin intervals until the majority of 250 bp to 500 bp fragments were isolated. DNA was subsequently phenol extracted and ethanol precipitated. Finally, the pellet was taken up in TE buffer to a final concentration of 50 to \(500 \mathrm{ng} / \mathrm{ul}\).
long of SmaI linearised Ml3mp8 RF was ligated to 10 to 500 ng of sonicated, end-repaired and size-fractionated DNA fragments with 2 units of \(T 4\) DNA ligase in lx LB buffer for 15 h at \(15^{\circ} \mathrm{C}\) (Sanger et al., 1980). Competent JMlol bacteria were transfected with the ligation mixture as described on Page 65.
b) Preparation of single-stranded templates for sequencing.
lml of an overnight JMIOl culture was added to 100 ml of \(2 Y T\) broth and 1.5 ml aliquots were placed in 20 ml glass bottles. A white M13 plaque was transferred into each bottle and shaken for about 6 h at \(37^{\circ} \mathrm{C}\). The phage cultures were decanted into 1.5 ml vials and bacteria were pelleted by centrifugation for 2 min in a MSE microfuge. The supernatant
was transfered into a new vial and mixed thoroughly with l50ul of \(2.5 \mathrm{M} \mathrm{NaCl}, 20 \%(v / v)\) polyethylene glycol 6000. The mixture was left to stand for 30 min at room temperature, the bacteriophage were pelleted for 5 min in an MSE microfuge and the supernatant was carefully removed. The pellet was taken up in looul of \(10 \mathrm{mM} \operatorname{Tris} \mathrm{HCl}(\mathrm{pH} 8.0), 0.1 \mathrm{mM}\) EDTA, phenol extracted and ethanol precipitated. Phage DNA was pelleted, lyophilised and dissolved in \(30 u l\) TE.
c) Selection of insert-containing recombinant Ml3 phages. To select for recombinant phages containing insert HSV DNA fragments, Southern hybridisations were performed. lul of single-stranded Ml3 recombinant DNA was blotted onto duplicate Schleicher and Schuell nitrocellulose filters and these were baked in a vacuum oven for 2 h . The filters were then shaken at \(70^{\circ} \mathrm{C}\) with a hybridisation mix, comprising 4 ml of 1 M Tris \(\mathrm{HCl}(\mathrm{pH} 7.5)\), 60 ml of \(20 \mathrm{x} \mathrm{SSC}, 40 \mathrm{ml}\) of 50 x Denhardt's buffer (DHB), 0.8 ml of 250 mM EDTA, 5 ml of \(20 \%\) (w/v) SDS and 1 ml of \(10 \mathrm{mg} / \mathrm{ml}\) salmon sperm single-stranded DNA. After 2 h the hybridisation mix was replaced with fresh mix which in addition contained a specific probe for each filter. The first filter, which represented the positive control, was probed with the DNA fragment to be sequenced. The second filter, which represented the negative control, was probed with vector plasmid DNA digested at a unique site. Both probes were end-labelled with [\(\alpha-{ }^{32}\) p]dntps as described on Page 67, dissolved in 0.7 ml of deionised formamide and heated at \(95^{\circ} \mathrm{C}\) for 5 min prior to adding to the hybridisation mix. The filters were then incubated at \(70^{\circ} \mathrm{C}\) overnight, washed three times with 300 ml of a mixture containing loml \(\mathrm{NaH}_{2} \mathrm{PO}_{4}(\mathrm{pH} 7.5), 100 \mathrm{ml}\) of 20 x SSC and 10 ml of \(20 \%\) (\(w / v\)) SDS and autoradiographed. Clones containing HSV DNA were retained for sequencing.
d) DNA sequencing reactions.

Typically 16 to 18 clones were sequenced at the same time. lul of template DNA was added to a vial containing lul of oligonucleotide primer (2.5 ng), lul of \(10 x A B\) and \(7 u l\) of distillied \(\mathrm{H}_{2} \mathrm{O}\) and the reaction was incubated for 30 min at \(37{ }^{\circ} \mathrm{C}\). At the end of the incubation lul of Klenow

\section*{dNTP Mixes}
\begin{tabular}{lcccc}
\hline & dG mix & dA mix & dt mix & dC mix \\
\hline 0.5 mM dT & 200 & 200 & 10 & 200 \\
0.5 mM dC & 200 & 200 & 200 & 10 \\
0.5 mM dG & 10 & 200 & 200 & 200 \\
dNTP-mix buffer & 50 & 50 & 50 & 50 \\
\hline
\end{tabular}
dNTP-mix buffer \(=0.05 m\) Tris-HCl (pH8.0), lmm EDTA
ddNTP Mixes
\begin{tabular}{|c|c|c|c|c|}
\hline - & \[
\begin{aligned}
& 0.2 \mathrm{mM} \\
& \text { daGTP }
\end{aligned}
\] & 70 um ddATP & \[
\begin{aligned}
& 0.3 \mathrm{mM} \\
& \text { ddATP }
\end{aligned}
\] & \[
\begin{aligned}
& 70 \mathrm{um} \\
& \text { ddctp }
\end{aligned}
\] \\
\hline 5 mm ddg & 40 & - & - & - \\
\hline 5 mm ddA & - & 14 & - & - \\
\hline 5 mM ddT & - & - & 60 & - \\
\hline 5mM ddc & - & - & - & 14 \\
\hline \(\mathrm{H}_{2} \mathrm{O}\) & 960 & 986 & 940 & 986 \\
\hline
\end{tabular}
dNTP: ddNTP Mix
\begin{tabular}{cccc}
\hline 'Sequencing Mix' & dNTP & ddNTP & \(\mathrm{H}_{2} \mathbf{O}\) \\
\hline G & 400 & 50 & 350 \\
A & 400 & 100 & 300 \\
T & 400 & 200 & 200 \\
C & 400 & 50 & 350 \\
\hline
\end{tabular}
polymerase (lunit/ul) was added to each annealing reaction and mixed thoroughly; 2 ul of that mixture was transfered to each of four 0.75 ml reaction vials, labelled \(A, T, C\) and \(G\). Meanwhile, four vials labelled \(A, T, C\), and \(G\) were set up each containing 36 ul of \(A, T, C\) or \(G\) 'sequencing mix' respectively (see Table l). To each of these, 5 ul of a mix containing 3 ul of \(\left[\alpha-{ }^{32} \mathrm{P}\right] \mathrm{dATP}\) and 18 ul of 12 mM dATP was added. 2 ul of each of these mixtures were added to the corresponding 0.75 ml vials mentioned above. The elongation reactions were allowed to stand for 20 min at room temperature and then were incubated with \(2 u l\) of 'chase mix', which contained 0.25 mM of each dNTP, for a further 30 min at room temperature. Finally, samples were electrophoresed as described on Page 62.

\section*{18. Transient Expression Experiments.}
a) Transfection of DNA into tissue culture.

DNA transfections into HeLa cells were performed with the calcium-phosphate transfection procedure as described by Wigler et al. (1978) and Corsalo and Pearson (1981).

HeLa cells were seeded at \(30 \%\) to \(40 \%\) confluence on 90 mm petri dishes 12 h to 24 h prior to transfection. loug to 30 ug of plasmid DNA was dissolved in TE(P) buffer to a final volume of 420 ul . Then, 60 ul of \(2 \mathrm{M} \mathrm{CaCl}{ }_{2}\) was added dropwise to the DNA/TE(P) solution with constant agitation. The DNA/CaCl 2 solution was added dropwise with constant agitation to \(480 u l\) of 2 x HBS and the precipitate was allowed to form at room temperature for 30 min . This solution was then applied dropwise to the cell monolayers and swirled into the medium (15 ml per 90 mm petri dish). After 24 h the medium was replaced with fresh medium and cells were incubated at \(37^{\circ} \mathrm{C}\) for a further 24 h . When cells were infected with virus the medium was removed after the first 24 h incubation and virus added in 5 ml of fresh medium. Following adsorption at \(37^{\circ} \mathrm{C}\) for 1 h , a further 10 ml of fresh medium was added and cells were harvested at 16 h p.i.
b) Preparation of cytoplasmic RNA.

HeLa cell cytoplasmic RNA was prepared from tissue culture cells grown on 90 mm petri dishes. All solutions and vessels used up to the phenol/chloroform extraction steps were cooled on ice. Following removal of the medium, cells were washed with PBS and then harvested in 4 ml of PBS . Cells were centrifuged in the cold at \(2,000 \mathrm{rpm}\) for lmin, washed in PBS and re-pelleted. Following resuspension in 0.3 ml of ILB, cells were left on ice for 3 min and the cytoplasmic fraction was separated from nuclei by centrifugation at \(3,000 \mathrm{rpm}\) for 5 min . The supernatant (cytoplasmic fraction) was added to an equal volume of phenol extraction buffer (PEB) and extracted three times with phenol/chloroform and once with chloroform. RNA was precipitated twice with ethanol, washed with \(70 \%\) ethanol, lyophilised and resuspended in \(20 u l\) of distilled \(\mathrm{H}_{2} \mathrm{O}\). Concentration of cytoplasmic RNA was determined by spectrophotometry (\(\left.O D_{260} \mathrm{l} .0=40 \mathrm{ug} \mathrm{RNA} / \mathrm{ml}\right)\).
c) Production of RNA probes.

Detection of cytoplasmic RNAs was achieved using probes produced by the pGEM-2 transcription vector (see Page 58). The principle behind this system is that in vitro transcription of a DNA fragment, spanning the 5' end of the RNA-specifying DNA region, will produce a transcript which can then be used as a probe for the detection of this RNA. The DNA fragment is inserted into the MCS of pGEM-2 in such an orientation so that the produced transcript is complementary to the RNA of interest. As mentioned on Page 58, pGEM-2 contains two promoters one of which was used for the production of probes (SP6 in this study); in order to obtain run-off transcripts of appropriate length, the pGEM2/insert plasmid is linearised at a restriction enzyme site located doownstream form the insert. The linearised construct is then incubated in a cell-free transcription system which comprised: an SP6 RNA polymerase, a mixture of NTPs and \({ }^{32} \mathrm{P}\)-UTP and a capped dinucleotide which is added to the 5' end of the transcript and is required for its stabilisation. After the completion of the reaction, the mixture is incubated in the presence of an RNase-free DNase
which degrades the template, and RNA transcripts are electrophoresed on polyacrylamide gels and then isolated.

The main advantage of pGEM-2-produced RNA probes as compared to single-stranded DNA probes, usually used for RNA mapping, is the high counts per minute (c.p.m.)/ug ratio which allows the detection of very low amounts of RNA. Further, the RNA probes are specific for the RNA of interest, whereas, after separation of double-stranded DNA on denaturing polyacrylamide gels, single-stranded DNA probes have to be tested for complementarity to the RNA of interest.
lul of linearised pGEM2/insert plasmid DNA (lug/ul) was added to lul of \(2.5 \mathrm{mg} / \mathrm{ml}\) BSA, \(5 u l\) of 5 x SP6 buffer, l. 25 ul of 0.2 M DTT, 2.5 ul of 10 x NTPs (lmM each of \(A, U, C\) and G), 7 ul of \(\left[\alpha_{-}{ }^{32} \mathrm{P}\right] \mathrm{UTP}, 1.25 \mathrm{ul}\) of \(10 \mathrm{mM} \mathrm{G}\left(5^{\prime}\right) \mathrm{ppp}\left(5^{\prime}\right) \mathrm{G}_{\mathrm{OH}}{ }^{\prime}\) lul of RNasin, lul of SP6 DNA polymerase (l0units/ul) and 4 ul of distilled \(\mathrm{H}_{2} \mathrm{O}\). The reaction was incubated at \(37^{\circ} \mathrm{C}\) for lh and then for a further lomin in the presence of \(2.5 u l\) of RNase-free DNase (lunit/ul). The reaction was stopped with l75ul of \(2 x\) PK buffer and the mixture was phenol/chloroform and chloroform extracted. RNA transcripts were precipitated with 20 ul of \(6 \mathrm{M} \mathrm{NH} 4 \mathrm{Ac}, 600 \mathrm{ul}\) of ethanol and 2 ul of tRNA (20ug/ul) and pelleted by centrifugation for lomin in a MSE microfuge. The pellet was resuspended in \(50 u l\) of \(T E\) and the suspension was electrophoresed on an \(8 \%\) denaturing polyacrylamide gel (see Page 62) in order to isolate full-length transcripts. A gel slice containing the transcript was excised from the gel, and RNA was eluted by incubating with lml of elution buffer (EB) at \(37^{\circ} \mathrm{C}\) overnight. Following ethanol precipitation the RNA was taken up in 50 ul of distilled \(\mathrm{H}_{2} \mathrm{O}\).
d) Hybridisations and ribonuclease \(T 2\) digestions.

Typically, 0.5 ug or 4 ug of cytoplasmic RNA was added to approximately 200 ng of pGEM2-produced probe (approximate specific activity \(\left.2 \mathrm{x} 10^{8} \mathrm{c} . \mathrm{p} . \mathrm{m} . / \mathrm{ug}\right)\), the mixture was lyophilised, and the pellet was resuspended in 15 ul of \(1 x\) Ml3 buffer. The solution was heated at \(95^{\circ} \mathrm{C}\) for 10 min and then incubated at \(50^{\circ} \mathrm{C}\) overnight.

Following hybridisation, samples were treated with

200ul of \(H N E\) buffer and 5units of ribonuclease \(T 2\) and incubated at \(30^{\circ} \mathrm{C}\) for 30 min . The hybrids were then mixed with 50 ug of proteinase \(K\) and 40 ug of tRNA, incubated as above, phenol/chloroform and chloroform extracted, precipitated and lyophilised. The pellets were taken up in 5ul of formamide dyes, heated for 5 min at \(95^{\circ} \mathrm{C}\), quenched on ice and then loaded on an \(8 \%\) denaturing polyacrylamide gel. pATl53 plasmid DNA digested with Hpa II was used as DNA size markers (fragment sizes in bp: 622, 492, 404, 242, 238, 217, 201, 190, 160, 160, 147, 122, 110, 90, 76, 67, 34, 26, 26, 15, 9, 9).

\section*{SECTION C.}

\section*{COMPUTER ANALYSIS.}

DNA sequencing data were handled and analysed using the Institue of Virology Digital Research computer operating under the RSX-llm operating system. In this Section computer programs utilised throughout this work will be briefly described.
19. Accumulation and Processing of Gel Readings.

Gel autoradiographs were read using the DPAD program of Dr P. Taylor. This program allows gels to be read on a digitising tablet from which the data \(\alpha \mathrm{a}_{\mathrm{i}}\) - entered and stored directly into the computer in a form which can be read by the Staden programs (see below).

The compilation of the individual gel readings entered into the database was achieved using a group of programs designated BATCH, based on the DBAUTO system of Staden (1982). This program compares a 'file of files', which comprises several individual gel readings, with sequences held in the existing database. Gel readings showing homology to the consensus of the database are entered into the database in the appropriate region. Where necessary the program will insert padding characters into either the newly entered gel or in the consensus sequence thus enabling the sequences to be correctly aligned. Gel readings exhibiting no homology to any sequence in the database are held as separate contigs. Initially the number of contigs approximates the number of gel readings, particularly in a large project; however, as the gaps between gel readings are filled by new overlapping sequences, the number of contigs is reduced. Finally, one contig is achieved within which all gel readings overlap. Joining of the individual contigs can be achieved with the DBUTIL program of Staden (1980). This program can further monitor the state of the database by providing lists of all the entered gel readings, details
on their location, length and orientation.
20. Interpretation of Data in the Database.

Analysis of the completed sequence was achieved with a number of programs most of which were designed and/or modified by Dr P. Taylor.

BASES, estimates the frequency of occurence of each base in a nucleotide sequence at a specified position (for example every third base) or in a whole sequence and outputs a table of values.

CINTHOM, compares two nucleotide or amino acid sequences and displays the results in a matrix plot (Pustell and Kafatos, 1982). This program was designed to score for identical amino acids, however, it has been modified by Dr P. Taylor to score in addition for conservative amino acid changes as evaluated by Dayhoff (1983). The sequences are aligned on the \(X\)-axis and on the \(Y\)-axis. Areas of conserved sequences are represented by a diagonal on the plot while insertions or deletions are represented by diagonals which, when extrapolated, cross the \(X\) and \(Y\) axis at different points. Homologous sequences are displayed as uppercase or lowercase letters of the alphabet, with A representing the the highest homology (100\%) and \(z\) the lowest. The parameters of this program are set by the operator.

CHOUFAS predicts the secondary structure of a protein (Chou and Fasman, 1978).

CHOP deletes strings of nucleotide or amino acid sequences from a file.

DENS measures the areas under the peaks of densitometer tracing.

DSPLAY searches a nucleotide sequence for ORFs which can either be displayed or filed to be printed; the minimum
length of the ORFs is defined by the operator.

FRMSCAN (Staden and McLachlan, 1982) identifies potential protein coding regions by evaluating the codon usage of all three reading frames in a DNA sequence using as reference the codon usage of a 'standard' gene; in the case of HSV-l the codon usage of the TK gene was used as reference.

HOMOL (Taylor, 1984) optimally aligns two nucleotide or amino acid sequences by scoring for identical residues. The parameters are set by the operator.

MWCALC calculates the molecular weight and amino acid composition of an amino acid sequence.

PROFIL produces a graphic display of the hydropathicity profile (Kyte and Doolittle, 1982) of an amino acid sequence.

PTRANS (Taylor, P., 1986) predicts the amino acid sequence from a nucleotide sequence. In addition this program estimates the mol. wt. of the translated sequence and outputs an amino acid content and codon usage table. The positions where translation starts or ends are set by the operator.

SEARCH searches for specified strings of characters in a nucleotide or amino acid sequence.

WORDSEARCH (Dereveux et al., 1984) searches the National Biomedical Research Foundation (NBRF) protein sequence database for homologous sequences. This program was implemented on a VAX computer at the Edinburgh Regional Computing Centre.
21. Structural Analysis of Amino Acid Sequences.

Amino acid sequences of the polypeptides encoding the large and small subunit polypeptides of ribonucleotide reductase from eukaryotic, prokaryotic and viral origin were
aligned with the program of Dr W.R. Taylor (see Results and Discussion, Section C). This program can align a number of polypeptide sequences on the basis of identical amino acids and, in addition, on the basis of amino acids sharing similar physico-chemical properties. For the latter reason amino acids have been classified in the form of a venn diagram.
a) The Venn diagram of amino acid classification.

This diagram shows the classification in groups (sets) of the twenty naturally occuring amino acids to a selection of physico-chemical properties which are important for the determination of the secondary structure of a protein (Fig. 18; Taylor, W.R., 1986a). The two most prominent sets are the 'polar' and 'hydrophobic' ones; the former comprises amino acids which have a polar group in their side-chain and the latter, which is less rigorously defined, comprises amino acids which are hydrophobic. These two sets overlap, and the amino acids found in the region between them are considered as ambivalent to \(\mathrm{H}_{2} \mathrm{O}\). A third major set of amino acids, 'small', contains amino acids with side-chain volume less than 60 A. This set contains a subset of amino acids with side-chain volume less than \(35 \AA\) and this is designated as 'tiny'. The location of cysteine in this diagram is not well defined as the reduced form (\(C_{H}\)) of this residue contains a polarisable sulphur which suggests similarity with the serine residue, while the oxidised form (\(C_{S S}\)) lacks this property and appears to be more similar to valine. The remaining sets are defined on the basis of obvious properties such as 'aromatic', with ring-containing side-chains, 'aliphatic', with a branced aliphatic side-chain, and 'charged', which are normally fully ionised. Proline is generally associated with turns or loops on the protein surface due to the structure of its side-chain and therefore, despite its very hydrophobic nature, is not included in the 'hydrophobic' set of amino acids.
b) Protein homology by consensus template alignment.

The consensus template alignment (Fig. 19; Taylor,
W.R., 1986b) is a program which can align a number of amino

Figure 18. The Venn diagram of amino acid classification showing the relationship of the 20 naturally occuring amino acids to a selection of physicochemical properties (reprinted from Taylor, W.R., 1986a).
acid sequences. The alignment is obtained with the SETEM and FITEM programs and is based on the use of consensus templates. The templates are essentially the core amino acid sequences from conserved regions of related proteins with known three-dimensional structure, which have been aligned to related sequences of unknown structure in order to become more representative (alignment templates). The program begins with the tentative alignment of sections from a few of the amino acid sequences to be aligned with the use of the alignment templates. Then the SETEM program will process the aligned sections in order to make the alignment templates more representative. Depending on the aligned amino acids at a given template position, the SETEM will assign a property on the basis of the Venn diagram. For example, if at a given template position three polypeptides sequences have \(R, K\), and \(H\) residues respectively, then the program will assign the 'POSITIVE' property. Each of the properties is allocated a score ranging from \(l\) to 20 . A score of \(l\) is given when the same amino acid occurs at a given template position in all sequences, and 20 when the amino acids at that position are classified in totally different sets in the Venn diagram. The SETEM-produced alignment templates are then fitted by FITEM to a non-aligned sequence. If the complete set of templates fits the new sequence then it joins the alignment. The SETEM-FITEM alternating cycles continue until the existing alignment cannot be further altered.

Once the alignment is completed, then the program will predict the secondary structure for each aligned amino acid with the GARNIER algorithm (Garnier et al., 1978), and from the combination of the individual predictions it will derive a consensus.

Figure 19. A printout of the consensus template alignment program of Taylor, W.R. (1986b). The aligned polypeptide amino acid sequences (AA \(S E Q\)) are shown to run vertically, starting at the initiation codons (IC) and stoping at the termination codons (TC). The secondary structure GARNIER predictions for each polypeptide (ISSGP) are indicated. The consensus secondary GARNIER prediction for each aligned amino acid position (CSSGP) is shown. \(\beta\)-strand conformation is indicated by (E), \(\alpha\)-helix conformation by \((H)\), unstructured or turn conformation by (\(T\)) and (-) and (\(S\)) indicate that the consensus prediction for the given position is unknown. The hydropathicity values (HP) are indicated by asterisks (*). The printout also shows the scores (Sd assigned by the SETEM program for each aligned position, and the property (\(P\)) of the aligned amino acids as deduced from the Venn diagram of amino acid classification (see Fig. 18).
1. DNA Sequencing Studies Within the Hind III \(k\) Fragment of HSV-l.

The HSV-1 strain \(17^{+}\)ribonucleotide reductase locus between 0.54 and 0.60 map units (Fig. 20) specifies a family of four nested mRNAs which are comprised of two \(L\) and two \(E\) transcripts (Anderson et al., 1980; McLauchlan and Clements, 1982 and 1983a; McLauchlan, 1986). The L mRNAs, which are presumed to be \(5^{\prime}\) coterminal, have sizes of 7.0 kb and 1.9 kb and encode the same \(54,000 \mathrm{~mol}\). wt. polypeptide (Vmw54; McLauchlan, 1986). The E mRNAs, which are encoded by genes UL39 and UL40 are unspliced and have sizes of 5.0 kb and l. 2 kb , respectively. The 5.0 kb mRNA specifies the RRl polypeptide and the 1.2 kb mRNA specifies the RR2 polypeptide. The \(5^{\prime}\) end of the 5.0 kb mRNA is located \(194 n u c\) upstream from a Xho \(I\) site at 0.561 map units and the \(5^{\prime}\) end of the 1.2 kb mRNA lies 290 nuc upstream from a Hind III site at 0.587 map units (McLauchlan and Clements, l983a). The E mRNAs and the 7.0 kb mRNA share a common \(3^{\prime}\) terminus positioned 770nuc to the right of the Hind III site at 0.587 map units (McLauchlan and Clements, 1982).

Previous partial sequencing studies predicted that the entire coding region of \(R R 1\) and the \(N\)-terminal portion of RR2 lie within the Hind III \(\underline{k}\) fragment (McLauchlan and Clements, 1982 and 1983a; McLauchlan, 1986). A possible ATG start codon for RRI was located 34 nuc downstream from the Xho I site at 0.561 map units (see Fig. 20). Within the \(5^{\prime}\) portion of the 1.2 kb mRNA two ATG codons were identified, but an in-frame TGA stop codon was positioned l2nuc downstream from the first ATG (McLauchlan and Clements, 1983a). It was proposed that the TGA codon was the C-terminus of RRI while the second ATG codon represented the initiation methionine at the \(N\)-terminus of RR2. The prediction of the latter was based on two reasons (McLauchlan and Clements, 1983a and b; McLauchlan, 1986): first, the first ATG codon was absent from the leader of the equivalent \(H S V-21.2 \mathrm{~kb}\) mRNA and, second, the nucleotides

Figure 20. The HSV-1 strain \(17^{+}\)ribonucleotide reductase locus. This diagram shows the location of restriction endonuclease cleavage sites and the arrangement of mRNAs between 0.54 and 0.60 map units on the viral genome. The transcripts specified by this locus are shown as arrowed lines and their sizes in \(k b\) are indicated above each line. Open boxes denote the polypeptide coding regions of the transcripts and their designation is given in parentheses below each box.
flanking the second ATG of the HSV-l 1.2 kb mRNA were identical to those flanking the ATG of the HSV-2 1.2 kb mRNA and, furthermore, they resemble those at other functional initiation codons (Kozak, 1981). In conclusion, although the coding regions of the RR1 and RR2 polypeptides do not overlap, the upstream transcription initiation signals and part of the untranslated leader of the 1.2 kb mRNA map entirely within the genome region specifying the C-terminus of the RRI polypeptide.

To determine the nucleotide sequence of the RRI coding region, a Xho \(I / H i n d\) III fragment (0.561 to 0.587 map units) was isolated from a cloned Hind III k fragment (obtained from Dr J. McLauchlan), and was subcloned into a Sal I/Hind III digested pUC8 vector (Fig. 2l). Therefore, the resultant plasmid, pYNl, contained the entire proposed coding region of \(R R 1\) and part of the RR2 coding region. Sequencing data was obtained using the Ml3 dideoxy chain termination method in combination with a 'shotgun' cloning approach and was subsequently collated by computer programs as described in Materials and Methods (see Page 73).

Manipulation of the sequencing data resulted in the formation of the HINDKK database which consisted of 186 independent gel readings (Fig. 22). There were 34,286 characters, which produced a final contiguous length of 3564 bp (Fig. 23). For each contig character an average of 9.62 characters were read from gels.
2. Computer Assisted Analysis of the HINDKK Database.

Analysis of the obtained sequence for potential ORFs and potential coding regions was performed with the DSPLAY and FRMSCAN programs, respectively (see Materials and Methods, Pages 74 and 75). The DSPLAY program identified in the left-to-right stand a single ORF (frame lin Fig. 24) starting with the ATG triplet at position 34 and terminating with the TGA stop codon at position 3447 . The other two reading frames on this strand (frames 2 and 3 in Fig. 24) are punctuated by stop codons and the longest potential ORF is approximately 600 nucleotides long. Analysis of the complementary strand sequence identified a frame containing

Figure 21. Construction of plasmid pYNl. The pHind \(k\) plasmid (obtained from Dr J. McLauchlan) was digested with Xho I/Hind III. The fragment which contains the DNA region encoding the RR1 polypeptide and the \(N\)-terminus of the RR2 polypeptide (dark area) was ligated into the multiple cloning site (MCS) of a Sal I/Hind III digested pUC8 vector. The location and orientation of the ampicillin resistance \(\left.(a m)^{r}\right)\) and \(\beta\)-galactosidase (lacZ) genes is indicated.

Figure 22. A sorted list (CONTIG LINES) of the gel readings obtained after sequencing the recombinant Ml3mp8 clones which contained subfragments of the RRI polypeptide coding region. The column termed GEL LINES represents the name of the clone given by the author. The columns headed A to E are assigned by the DBUTIL program (see Materials and Methods, Page 73) and represent:

A Gel reading database number.
B Position of the left-most base of the gel reading in the contig.

C Length of the gel reading. (-) indicates that the gel reading overlaps on the opposite strand.

D Number of the gel reading overlapping to the left.
E Number of the gel reading overlapping to the right.

CONTIG LINES
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 499 & 3564 & 0 & 138 & 46 \\
\hline GEL LINES & A & B & C & D & E \\
\hline 112.G4 & 1 & 2869 & 176 & 117 & 71 \\
\hline 146.G4 & 2 & 361 & 172 & 36 & 86 \\
\hline 149.G4 & 3 & 2574 & -179 & 77 & 57 \\
\hline 150.G4 & 4 & 212 & 180 & 6 & 79 \\
\hline 154.G4 & 5 & 2908 & -159 & 176 & 23 \\
\hline 155.G4 & 6 & 200 & -193 & 21 & 4 \\
\hline 163.G4 & 7 & 814 & 186 & 84 & 165 \\
\hline 144.G4 & 8 & 3388 & 177 & 137 & 46 \\
\hline 164.G4 & 9 & 3201 & -162 & 27 & 30 \\
\hline 356.G5 & 10 & 1609 & 142 & 168 & 60 \\
\hline 358.G5 & 11 & 3098 & -246 & 112 & 131 \\
\hline 361.G5 & 12 & 1836 & 213 & 152 & 65 \\
\hline 362.G5 & 13 & 1113 & 246 & 44 & 151 \\
\hline 365.G5 & 14 & 2402 & 206 & 178 & 104 \\
\hline 412.G6 & 15 & 2986 & 221 & 183 & 53 \\
\hline 384.G7 & 16 & 29 & -150 & 185 & 96 \\
\hline 322.G8 & 17 & 2456 & -239 & 140 & 45 \\
\hline 338.G9 & 18 & 2164 & -143 & 130 & 175 \\
\hline 343.G9 & 19 & 2733 & -179 & 180 & 117 \\
\hline 345.G9 & 20 & 2038 & 160 & 51 & 139 \\
\hline 303.G10 & 21 & 200 & -178 & 90 & 6 \\
\hline 295.G11 & 22 & 1090 & 193 & 144 & 25 \\
\hline 296.G11 & 23 & 2924 & -188 & 5 & 61 \\
\hline 300.G11 & 24 & 1004 & 191 & 167 & 81 \\
\hline 255.G12 & 25 & 1094 & 212 & 22 & 103 \\
\hline 256.G12 & 26 & 394 & 193 & 28 & 78 \\
\hline 260.G12 & 27 & 3197 & -141 & 41 & 9 \\
\hline 264.G12 & 28 & 392 & -197 & 86 & 26 \\
\hline 266.Gl2 & 29 & 2960 & -171 & 147 & 183 \\
\hline 274.G12 & 30 & 3350 & -156 & 9 & 137 \\
\hline 276.G12 & 31 & 697 & 179 & 33 & 56 \\
\hline 238.G13 & 32 & 2267 & 205 & 134 & 118 \\
\hline 254.G13 & 33 & 694 & -201 & 91 & 31 \\
\hline 233.G14 & 34 & 114 & -208 & 111 & 67 \\
\hline 218.G14 & 35 & 1952 & -201 & 47 & 123 \\
\hline 363.G5 & 36 & 350 & 181 & 108 & 2 \\
\hline 372.G5 & 37 & 2372 & -165 & 80 & 122 \\
\hline \(423 . \mathrm{G6}\) & 38 & 436 & -220 & 78 & 42 \\
\hline 382.G7 & 39 & 2888 & -170 & 74 & 176 \\
\hline 323.G8 & 40 & 793 & -200 & 107 & 84 \\
\hline 329.G8 & 41 & 3186 & 197 & 146 & 27 \\
\hline \(330 . \mathrm{G8}\) & 42 & 493 & 183 & 38 & 87 \\
\hline 336.G9 & 43 & 2431 & 180 & 104 & 127 \\
\hline 335.G9 & 44 & 1105 & -205 & 155 & 13 \\
\hline \(344 . \mathrm{G9}\) & 45 & 2467 & 178 & 17 & 94 \\
\hline 352.G9 & 46 & 3447 & 118 & 8 & 0 \\
\hline 298.G11 & 47 & 1952 & 199 & 95 & 35 \\
\hline 244.G13 & 48 & 2878 & 189 & 72 & 74 \\
\hline 251.G13 & 49 & 3139 & -203 & 131 & 146 \\
\hline 227.G14 & 50 & 594 & -215 & 52 & 115 \\
\hline 228.G14 & 51 & 2002 & -197 & 69 & 20 \\
\hline 231.G14 & 52 & 594 & 211 & 87 & 50 \\
\hline 235.G14 & 53 & 2989 & 227 & 15 & 97 \\
\hline 214.G14 & 54 & 1845 & 214 & 65 & 113 \\
\hline 393.G6 & 55 & 2619 & -216 & 62 & 85 \\
\hline 212.G14 & 56 & 716 & -163 & 31 & 120 \\
\hline 223.G14 & 57 & 2600 & -195 & 3 & 83 \\
\hline 249.G13 & 58 & 3044 & 178 & 97 & 150 \\
\hline 243.G13 & 59 & 2501 & 202 & 161 & 77 \\
\hline 316.G10 & 60 & 1611 & 188 & 10 & 116 \\
\hline 334.G15 & 61 & 2932 & 203 & 23 & 147 \\
\hline 108.G15 & 62 & 2616 & 184 & 83 & 55 \\
\hline 111.G15 & 63 & 1771 & 187 & 145 & 133 \\
\hline 114.G15 & 64 & 971 & 191 & 165 & 153 \\
\hline 127.G15 & 65 & 1844 & -208 & 12 & 54 \\
\hline 538.G16 & 66 & 1386 & 196 & 126 & 153 \\
\hline 167.G15 & 67 & 171 & 197 & 34 & 90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 207.G15 & 68 & 1889 & -198 & 169 & 142 \\
\hline 539.G16 & 69 & 1996 & -155 & 92 & 51 \\
\hline 115.G15 & 70 & 274 & -191 & 109 & 110 \\
\hline 118.G15 & 71 & 2870 & -191 & 1 & 72 \\
\hline 134.G15 & 72 & 2871 & -192 & 71 & 48 \\
\hline 540.G16 & 73 & 2651 & -143 & 160 & 181 \\
\hline 552.G16 & 74 & 2882 & -183 & 48 & 39 \\
\hline 559.G16 & 75 & 1495 & 161 & 174 & 105 \\
\hline 563.G18 & 76 & 1391 & 250 & 163 & 159 \\
\hline 567.G18 & 77 & 2531 & -224 & 59 & 3 \\
\hline 561.G18 & 78 & 423 & -239 & 26 & 38 \\
\hline \(553 . \mathrm{Gl} 6\) & 79 & 243 & -195 & 4 & 173 \\
\hline 566.G18 & 80 & 2332 & 242 & 129 & 37 \\
\hline 569.G18 & 81 & 1026 & -241 & 24 & 121 \\
\hline 473.G18 & 82 & 1137 & -252 & 151 & 93 \\
\hline 465.G18 & 83 & 2609 & -266 & 57 & 62 \\
\hline 113.G02 & 84 & 809 & 176 & 40 & 7 \\
\hline 116.G02 & 85 & 2643 & 201 & 55 & 160 \\
\hline 480.G18 & 86 & 373 & -226 & 2 & 28 \\
\hline 463.G18 & 87 & 533 & 211 & 42 & 52 \\
\hline 468.G18 & 88 & 1517 & -226 & 105 & 168 \\
\hline 184.G15 & 89 & 1702 & 182 & 116 & 171 \\
\hline 482.G18 & 90 & 194 & -211 & 67 & 21 \\
\hline 105.G15 & 91 & 618 & 181 & 124 & 33 \\
\hline 558.G16 & 92 & 1991 & 209 & 125 & 69 \\
\hline 550.G16 & 93 & 1185 & 181 & 82 & 149 \\
\hline 557.G16 & 94 & 2474 & -180 & 45 & 161 \\
\hline 237.G13 & 95 & 1931 & 209 & 106 & 47 \\
\hline 110.G01 & 96 & 29 & -309 & 16 & 132 \\
\hline 122.G02 & 97 & 3041 & -175 & 53 & 58 \\
\hline 125.G02 & 98 & 2308 & -204 & 118 & 129 \\
\hline 129.G02 & 99 & 284 & -196 & 110 & 182 \\
\hline 141.G02 & 100 & 1348 & -182 & 170 & 143 \\
\hline HI61 & 101 & 1 & 121 & 0 & 0 \\
\hline H163 & 102 & 1 & 25 & 0 & 0 \\
\hline HA4 & 103 & 1098 & -155 & 25 & 155 \\
\hline 169.G19 & 104 & 2410 & 200 & 14 & 43 \\
\hline 210.G19 & 105 & 1509 & -208 & 75 & 88 \\
\hline 539.G19 & 106 & 1925 & -226 & 142 & 95 \\
\hline 140.G19 & 107 & 756 & 236 & 120 & 40 \\
\hline 173.G19 & 108 & 329 & 212 & 128 & 36 \\
\hline 222.G19 & 109 & 274 & -151 & 173 & 70 \\
\hline 129.G19 & 110 & 277 & -204 & 70 & 99 \\
\hline 556.G19 & 111 & 113 & -214 & 141 & 34 \\
\hline 560.G19 & 112 & 3048 & 230 & 150 & 11 \\
\hline 130.G20 & 113 & 1874 & 187 & 54 & 172 \\
\hline 177.G20 & 114 & 1 & 25 & 0 & 0 \\
\hline 181.G20 & 115 & 601 & -165 & 50 & 124 \\
\hline 117.G20 & 116 & 1672 & 212 & 60 & 89 \\
\hline 119.G20 & 117 & 2836 & -198 & 19 & 1 \\
\hline 125.G20 & 118 & 2271 & -241 & 32 & 98 \\
\hline 178.G20 & 119 & 1448 & 190 & 154 & 174 \\
\hline 192.G20 & 120 & 752 & 161 & 56 & 107 \\
\hline 200.G20 & 121 & 1049 & 207 & 81 & 144 \\
\hline 195.G20 & 122 & 2378 & 159 & 37 & 178 \\
\hline 291.G21 & 123 & 1953 & 219 & 35 & 125 \\
\hline 301.G21 & 124 & 617 & 187 & 115 & 91 \\
\hline 442.G21 & 125 & 1989 & -176 & 123 & 92 \\
\hline 601.G22 & 126 & 1382 & 126 & 143 & 66 \\
\hline 608.G22 & 127 & 2431 & -185 & 43 & 140 \\
\hline 281.G21 & 128 & 308 & -167 & 182 & 108 \\
\hline 284.G21 & 129 & 2320 & -172 & 98 & 80 \\
\hline G20.180 & 130 & 2155 & 200 & 157 & 18 \\
\hline 741.G23 & 131 & 3112 & -195 & 11 & 49 \\
\hline 745.G23 & 132 & 77 & -153 & 96 & 184 \\
\hline 753.G23 & 133 & 1780 & 183 & 63 & 135 \\
\hline 621.624 & 134 & 2235 & 154 & 175 & 32 \\
\hline 622.G24 & 135 & 1784 & -113 & 133 & 152 \\
\hline 623.G24 & 136 & 1232 & 227 & 149 & 179 \\
\hline 624.G24 & 137 & 3383 & -178 & 30 & 8 \\
\hline 629.G24 & 138 & 1 & -55 & 0 & 186 \\
\hline \(630 . \mathrm{G24}\) & 139 & 2092 & -188 & 20 & 162 \\
\hline 631.G24 & 140 & 2435 & -102 & 127 & 17 \\
\hline 642.G24 & 141 & 99 & -195 & 184 & 111 \\
\hline 658.G25 & 142 & 1913 & -207 & 68 & 106 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 664.G25 & 143 & 1376 & 182 & 100 & 126 \\
\hline 666.G25 & 144 & 1082 & 194 & 121 & 22 \\
\hline 667.G25 & 145 & 1737 & 171 & 171 & 63 \\
\hline 668.G25 & 146 & 3180 & -190 & 49 & 41 \\
\hline 671.G25 & 147 & 2947 & -118 & 61 & 29 \\
\hline 673.G25 & 148 & 1 & 155 & 0 & 0 \\
\hline 682.G26 & 149 & 1221 & 130 & 93 & 136 \\
\hline 686.G26 & 150 & 3045 & 173 & 58 & 112 \\
\hline 689.G26 & 151 & 1135 & -176 & 13 & 82 \\
\hline 695.G26 & 152 & 1815 & 147 & 135 & 12 \\
\hline 696.G26 & 153 & 985 & 167 & 64 & 167 \\
\hline 698.G26 & 154 & 1440 & 105 & 159 & 119 \\
\hline 706.G27 & 155 & 1102 & -183 & 103 & 44 \\
\hline 707.G27 & 156 & 1 & 182 & 0 & 158 \\
\hline 722.G27 & 157 & 2119 & 179 & 164 & 130 \\
\hline 724.G27 & 158 & 22 & 125 & 156 & 0 \\
\hline 729.G27 & 159 & 1397 & 112 & 76 & 154 \\
\hline \(730 . \mathrm{G} 27\) & 160 & 2648 & 153 & 85 & 73 \\
\hline 733.G27 & 161 & 2497 & -172 & 94 & 59 \\
\hline 735.G27 & 162 & 2103 & 193 & 139 & 164 \\
\hline 737.G27 & 163 & 1388 & -181 & 66 & 76 \\
\hline 738.G27 & 164 & 2107 & 189 & 162 & 157 \\
\hline 634.G24 & 165 & 841 & -186 & 7 & 64 \\
\hline 638.G24 & 166 & 1315 & 219 & 179 & 170 \\
\hline 639.G24 & 167 & 997 & -129 & 153 & 24 \\
\hline 657.G25 & 168 & 1546 & 228 & 88 & 10 \\
\hline 683.G26 & 169 & 1887 & 174 & 172 & 68 \\
\hline 684.G26 & 170 & 1348 & -159 & 166 & 100 \\
\hline 692.G26 & 171 & 1706 & -166 & 89 & 145 \\
\hline 694.G26 & 172 & 1886 & -196 & 113 & 169 \\
\hline 704.G27 & 173 & 273 & 188 & 79 & 109 \\
\hline 711.G27 & 174 & 1474 & -204 & 119 & 75 \\
\hline 721.G27 & 175 & 2201 & 206 & 18 & 134 \\
\hline 448.G21 & 176 & 2899 & -221 & 39 & 5 \\
\hline 486.G21 & 177 & 2714 & 241 & 181 & 180 \\
\hline 728.G27 & 178 & 2382 & 191 & 122 & 14 \\
\hline 434.G21 & 179 & 1282 & -202 & 136 & 166 \\
\hline 678.G25 & 180 & 2716 & 193 & 177 & 19 \\
\hline 604.G22 & 181 & 2657 & 143 & 73 & 177 \\
\hline 610.G22 & 182 & 308 & -129 & 99 & 128 \\
\hline 613.G22 & 183 & 2985 & -118 & 29 & 15 \\
\hline 751.G23 & 184 & 78 & -164 & 132 & 141 \\
\hline G7. 138 & 185 & 9 & -170 & 186 & 16 \\
\hline 602.G22 & 186 & 1 & -88 & 138 & 185 \\
\hline
\end{tabular}

Figure 23. The HINDKK database. This printout shows all the gel readings in the HINDKK database which are numbered (down the left side of the sequences) as in column \(A\) of Fig. 22. Computer inserted characters into the gel readings entering the contig database are indicated by (*) and those inserted by the author are indicated by (X), (/) and (-).

TCGAGCCCGCCGAAACCCGCCGCGTCTGTTGAAATGGCCAGCCGCCCAGCCGCATCCTCTCCCGTCGAAGCGCGGGCCCCGGTTGGGG
GCCGAAACCCGCCGCGTCTGTXGAAATGGCCAGCCGCCCAGCCGCATCCTCTCCCGTCGAAGCGCGGGCCCCGGTTGGGGGACAGGAGGCCGGCGGCCCCCAGCGCAGCCACC TGAAATGCCCAGCCGCXCAGCCGCATCCT TCCCCTOXAAGCGCGGGCCCC* GTTGGGGGACAG*AGGXOXGCGGCCCCAGCGCAGCCACC XGAAATGGCCAXCCGCCCAGCCGCATCCTCTCCCGTCGAAGCGCGGGCCCC GTXXXXGGACAG* AGGXOXGCGGCOXXAXXXCAXCCAXX CCCCGGTTGGGGGACAGGAGCXCXGCGGCCCCAGCGCAGCCACC CCOXGTTGGGGGACAGGAGGCOGGCGGCCCCAGCGCAGCCACC xXGCGGCCCCAGCGCAGCA**

CAGCXAXX
AGCCA*
TCGAGCCCGCOCAAACCCGCCGCGTCTGTTGAAATGGCCAGCCGCCCAGCCGCATCCTCTCCCGTCGAAGCGCGGGCCCCGGTTGGGGGACAGGAGGCCGGCGGCCCCAGCGCAGCCACC
130
CagGGG*aGXCCGCOGGGGCCCCTCTCGCCCCACGGCCACCACGTGTACTGCCAGCGAG
CAGGGG* AGXC
XXXGGG* AGTC
gTCAATCXCGTGATXGTGCTTTCCGACAAGACGCCCGGGTCOXXGTCLTACCOCARCAGCGA -
CAGمG®A CAGGG*AG•
 CAGGGG*AGGCOGCOGGGCCCLLTCT. . - CCACGGCUAÇUCGTGTACTGCCAGCGAGTCAATGGCGTGATGGTGCTTTCCGACAAGAC* CCGGGTCCGCGTCCTACCGCATCAGCGAT CCAG GAGTCAATGGCGTGATGGTGCTTTCCGACAAGACGCCCGGTCCGCGTCCTACCGCATCAGCGA

TGCT TCCGACAaxaCGCOXGGXTCC/CGICCTACGGOTTCAGOXA CCGACAAGACGCCGG rCCGCGTCCTACCGCatcagcGat CCGACAA*ACGCCCGGGTCC CGRCCIACGGCATCAGCGA CCGGGTCCGCGTCCTACCGCATCAGCCAT
CAGGGGGAGGOOGCOGGGGCCCTCTCGCCCACGGCCACCACGTGTACTGCCAGOGAGTCAATGGCGTCATGGTGCTTTCCGACAAGACGCCCGGGTCCGCGTCCTACCGCATCAGCGAT
\begin{tabular}{cccccc}
250 & 260 & 270 & 280 & 290 & 100
\end{tabular}
agCanctitctccantgTGGTtCCanc ginaccatcatcatccacg*agacct
AGCAACITTGTCCAATGTGGTTCCAACTGCACCATCATCATCGACGGAGACGTGGTXXXGGGCGCCCCOXXGGXCCOGGGGGCCGC

A**ACTTTGTCCAATGTGGTTC*AACTCCACCATGATCATCGA CGCAGA CGTGGTGCGCGGGGG* CCCCAGG* CCGGGGGCCGCGGCATCCCCXGCT* CCTT* GTTGCGGTGACAA* acCAACTITGTCXAAT/TGGTTCCAACTGCACCATGATCATCCA CGXA/A \(O\) TG/TGCGCGGGCGCCCOXA GGACCCOGGGGGCCGCGGCA TCCCOXGCTCCCTTOXTTGCCGTGACAAAC A CCAACTITGTCCAATGTGGTTCCAACTGCACCA TCA TCA TCGA CGX A GA OGTGGTGCGCGGGCGCCCCCA GGACCCGGGGGCCGCGGCATCCCCOGCTCCCTTCGTTGCGGTGACAAA AGCAACTTTGTCCAAT* TCGTTCCAACTCCACCATCATCATCGA CGX A GA CGTGGTGCGCGGTCGCCCCCA GGACCCGGGGGCCG* GCATCCCCCGCTCCCTTCGTTGCGGTGA CAAAC AOCAACITTGTCCAATGTCGTTCCAACTGCACCA TGATCATCGA OGGAGACGTGGTGCGCGG* GGCCCCAGGACCCGGGGGCCGCGGCATCCCC* GCT* CCTTCGTTGCGGTGA CAA CAXCTXXGTOXXATXTGXXTCXAACTCXACXATCATCATCGA CGXAXA OGTGXTXCGCGOXCGXXCCCAXGACCCGGGGGCCGCGGCATCCCOXGCTCCCTTCGTTGOGGTGACAAA

 AX OXAXACXTEX TXCX CGGGOXCCCCCA GXACOX XGGGCCGCGGCATCCCOXGCTCCCTTCGTTXCGGTGACAAAC COCAGGA CCOCOGGGOCG* GCAT* COOCGCTCCCTTCOTTGCGGTCACAAAC CCCAXGA COCOGGOXCOXXGCATCCOX GCTCCCTTCGTTGCGGTCACAAAC

CATCCCOKGCTCCCTTCGTTGCGGTGACAAAC cgGTGACAAAC AGCAACTITGTCCAATGTGGTTCCAACTGCACCA TCATCATCGA CGGAGA OTTGGTGCGCGGGCGCCCCCAGGACCCGGGGGCCGCGGCATCCCCOGCTCCCTTCGTTGCGGTGACAAAC

atcexagcccgcagcgacgecggcaccgccotcctgecatixag
- T* : GAGCCGGCAGCXX
atc* cagcocgcagccaccgccccaccccoc
atcgangcocga

ATCGAGGCGGGCAGCGACGGCGGGACCGCCGTXXTGXCATTXGGGGCAAOXXACGTCGCTCGGCGCXXACGTCTAXCGGTACOXAXAXGGCCGAXXTOX
ATCCK
(CGTCCCGCGGGGA CGTCTACOCGTACCCACA CGGCCCA CGTCOXXAC
 ATCGXAGCOGGCAGCGA CGGCGGGA CCGCCGTCGTGGCATTCGGGXXA CCCCACGTCGCTCGGOGGGX ACGTCTACOG2XACCCAGACGGCCGACGTCCCXACCGAGXXXXTTGGCGG

ATCGGA
ATCGEAGCOGCAGOGACGGGGGACCGCCGTOXTGGCATTCGGGGGAACOXXACGTXXCTCGGCGGXACGTCTAOXGGTACOXAGAXXGGCGACGTCCOXAOXGAGGCCXTTGGGXXX ATCGGAGCCGGCAGCGACGGCGGGACCGCCGGOXGGXXTTCGGGGGXXCOXXACGTC* TCGGCGGGGACGTCTACCGGTACCCAGACGGCCGACGTCCC* CCGAGGCCCTTG* * X* AGCGACGGCGGGACCGCCGTOXTGXCATTOGGGXXAACCOXACGTUXCTLOXCGOXXAOTCTACOXGTACOXXGACGXCCGACGTCUCVACCGAGGCUCTTGGGGGGC

TOXTXGCATTCGGOXAACOXXACXTCGOXXXXXXGGAOXTCTACOXGTACOXAGACGCXXGAXGTCCOXACOXAGXCOXTTGGXXXC
XXGOXXTTCGGGXXAACOXAACGTCGCTCG* GGGGACGTCTACCGGTACC AGACGGCCGA OGCCCCCACCGAGGCCCTTGGGGXC
GXCGGXXACXTCTAOXXGTACOXAXACGXCCGACGTCCOXACOXAGXXCCTTTGGGGXC
AXXCGTACOXAGACGXXXXAOXXCXXACOAGXCOXTTGXXXXG
ATCGGAGCOGGCAGCGACGGCGGGA CCGCCGTCGTGGCATTCGGGGGAACCCCACGTCGLTCGGOGGGGACGTCTACCGGTACCCAGACGGCCGACGTCCCCACCGAGGCCCTTGGGGGU

CCCCCTCXTCXTOXXCGXTTXAXXCTGXGTXGCGXXTCXTGTXXCTXTXG
- 66 CCECKICXTCXTCCOXGCTTXACOXTGG TXGC GCTGTTGTTOXTGTCGAG

соссстостостосооссттиасостсот

GA CGA СобX TCOTCXGATTCX GA CTOGGA TCA CTXGGACGACAXXGAXTXXGA GACGCTGTCACAXGOXTXCTXG
GА GАСОGGTOGTCXXATTCGGA CTXGGATGA CTOGGAGGACAXGGA CTXGGAGA OCCTGTCACAXGOXTXCTXGGA OGTGTCCGGOGGGGOXAOGTACGACGAXGXCCTTGACTOXGAT

 ATTC* GA CTOCGATGA CTCGGAGGACACGGACTCGGAGA CGCTGTCACACGCCTCCTCGGA OGTGTCCOGOGGGGCCACGTACGACGA CGCC* TTGACT* CGAT TTCXGACTXGGATGACTOGGAGGACAXGGACTOGCAGA GCTGTCACACGCCTXCTCGGACGTGTCOGGCGGGGCCAOGTACGACGA OX CCTTGACTXCGAT aCGTACGACGA CGCCCTTGACTCXXAT tacgacgacgoxcttcactccgat
GAcGACOGGTCGTCCGATTCCGACTCGGATGACTCGGACGA Ca CGGA CTCGGA GA CGCTGTCACACGCCTCCTCGGACGTGTCOGGCGGGGCCACGTAOGACGACGCCCTTGACTCCGAT

CCTCOGGTCCOGCOCAA OGCATACATGCCCTATTATCTCAGGGAGTATGTGACGCGGCTXGTCAAC
CCTCOCCTC C* OCAACGCATA* * TG* CCTATTATCTCAGGGAGTATGTGACGC

CСTCOGGTCOCOGOGAACGCA TACA TGOCCTATTATCTXAGGCAGTATCTGA OGCGGCTGGTCAACGGGTTCAAGCCGCTGGTGAGOXXGTCXXXTXCXCTTXAC CCTCOGGTCCOOCOCAA OCCA TA CA TGCCCTATTA TCTCA* GCAGTATGTGA

CGTCOGTOOOGCOGAACGCATACA TGCCCTATTATCTCAXGGAGTATGTGACGCGGCTGGTCAACGGGTTCAAGCCGCTGGTGAGCCGGTCCGCTCGCCTTTACCGCA
 ССТССGTCOCGСССААСGСАТАСА TCOCCTATTATCTCAGGGAGTATGTCA СGСGGСTGGTCAACGGGTTCAAGCOGCTGGTGAGCCGGTCCGCTCGCCTTTACCGCAT
 СТСССGТХССССССААСССАТАСА ATACATGCOCTATTATCTCAGGGAGTATGTCACGCGGCTGGTCA• CGGGTTCA GCCGCTGGTGAGCCGGTCCGCTCGCCTTTAC* GCAT* CTGGGGGTT ATTATCTCAGGGAGTATGTCACGCGGCTGGTCAACGGGTTCAAGCOCCTGGTGAGCCGGTCCGCTCGCCTTTACCGCATC* TGGGGGTT GTGAGCCCXTCCOCTCGCCTTTACCGCATCCTGGGGXTT
ССТССGGTСССССССААСЕСАТАСА ТGСССTATTATCTCAGGСАGTATGTGA CGCGGCTGGTCAACGGGTTCAAGCCGCTGGTGAGCCGGTCCGCTCGCCTTTACCGCATCCTGGGGGTT
 CTGGTGCACCTGOGGATCOGGACCCGGGAGGCCTCCTTTGAGGAGTGCCTGCGATCCAA* GAAGTGGC CTGGTGCACCTGOGGA TCOXGACOXXGGAGXXCTXCTITXAXGAG CT GTGCACCTGCGGA TCOGGACCOXGGAG
CTGGTGCJ ССTGOGGATCOGGACCCGGGAGGCCTC® TITGAGGAGTGCCTGCGATCCAAGGAAGTGGCCCTGGATTTTGGCCTGACGGAAAGGCTTCGCGAGCACGAAGCOXAGCTGGTG CTGGTGCACCTGCGGA TCOGGACCOXGGAGGCCTCCTTXGAGGAGTGGCTGCGATCCAAGGAAGTGGCCCTGGATTTTGGCXTGACGGAAAGXCTTCGCGAGCACGAAGCCCAGCTGX TG CTGGTGCЗССТСОСGATCCGСАСССGGGAGGCOO TITGAGGAGTGGCTGCGATCCAAGGAAGTGGCCCTGGATTITGGCCTGACGGAAAGGCTTCGCGAGCACGAAGCOXAGCTGGTG GAGXXCTOX 7 TXAGXAX TXGCTGCGATCCAAGXAAGTGCCCCTXGAXITTGGOXTGACGXAAAGXCXTCGCGAGCACGAAGCOXAGCTGXTG GAGGCCTCCTTTXAXGAXTXGCTGCGATCCAA* GAAGTGGCCCTXGATTTTGGOXTGACGXAAAGXCTTCGCGAGCACGAAGCCCAGCTXGTG TCAAGGAAGTGGCCCTGGATITTGGCCTGACGGAAAGGCTTCGCGAGCACGAAGCC AGCTGGTG

AAGTGGCCCT* GATTTTGGCCTGACGGAAAGGCTTCGCGAGCA* GAAG* CCAGCTGGTG GGCCCTGGATTTTGGCCTGACGGaAagGCTTCGCGAGCACGAAGCOXAGCTGGTG CCCT* GATTTTGGC* TGACG* 2AA* GCTTCGCGAGCA OGAAGCCA * GCTG* G TGGATITTGGCCTGACCCAAAGGCTTCGCGAGCAOGAAGCOXAGCTGGTG tTGGCCTGACGGaAnGGCTTCGCGAGCACGAAGCCCAGCTGGTG

CTGGTGCACOTGCGGA TCOCGA CCCGGGAGGCCTCCTTTGAGGAGTGGCTGCGATCCAAGGAAGTGGCCCTGGATTTTGGCCTGACGGAAAGGCTTCGCGAGCACGAAGCCCAGCTGGTG

ACCACA A САAGGCGACCCTGOGGGCCATCACCAGCAAOOTCAGTGCCATCCTCGCCCGCAACGGGGGCATCGGGCTATGCGTGCAGGCGTTTAACGACTCCGGCCCCGGGACCGCCAGC

\title{

}

\section*{cggatcaaggg}

XXGATGAAGGGGGTCXIC
cGXATGAAGGGGEXCCXCGCCGGCGAAGAGGCCCAGCGCTG
XXGATGAXXXGGGTCXTXGC
cGGatGangGGGGTCCTCECCGGCGAAGAGGCCCAGCGCTGCGACA
CGGATGAAGGGGTCCTOFCGGCGAAGAGGCCCAGCGCTGCGACAATATCTTCAGCGCCCTCTG－ATGCCAGACCTGTTTTCAAGCGCCTGATTCGCCACCTGGA CGG CGGATGAAGGGGGTGCTXXXXXGCGXAGAGXCCCAGCGCTGCGACAATATCTTCAGCQXCCTXTXGATGCXAGAXCTGTTITXCXAGXGXCTGAXTCGC
CGGATGAAGGGGGTCCTCECOGGCGAAGA GGCCCAGCGCTGCGA CAXTATCTTXAGCGCOXTCTGXATGCXAGACXTGTTTTTCAAGCGCXTGATTCCXCACXTGXACGG CGGATGAAGGGGTCCTCECOGGCGAAGA GGCCCAGCGCTGCGA CAATATCTTCAGCGCCCTCTGGA TGCCAGACCTGTTTTTCAAGCGCCTGATTCGCCA CCTGGA CGGCG CGGATGAAGGGGGTCCTCGCOGGCGAAGAGGCC＊AGCGCTGCGACAATATCTTCAGCGCC＊T＊T＊GATGCAGA＊CTGTTTTTCAAGCG＊CTGATTCGCXAC＊T＊GACGGCGAGAAGAAC CG＊ATGAA＊GGGGTCCTCGCCGGCGAAGAGG＊CCAGCGCTGCGACAATATCTTCAGCGCCCTCTG＊ATGCCAGACCTGTTTTTCAAGCGCCTGATTC＊＊CACCTGGACGGCCAGAAGAAC
 CG＊ATGAA＊GGGGTCCTCGCCG＊CGXAGA GGCCCAGCGCTGCGA CAATATCTTCAGCGCCCTCTG＊A TGCCAGACCTGTTTTTTCAAGCGCCTGATTCGC＊ACCTGCACGG
 CGCATGAAGGGGGTCCTOCCCGGCGAAGAGGCCCAGCGCTGCGTCAATATCTTCAGCGCCCTCTGGATGCCAGA／CTGTTTTTCAAGCGCCTCATTCGCCA／CTGCACGGCGAGAAGAAC Côrch TTCA＊CGCCCTCTG＊ATG＊CAGACCTGTTTTTCAAGCGCCT＊ATTCGC＊ACCTGG＊CGGCGAGAAGAAC

CTGCATG CACACCTCTITTTCAACCGCCTCATTCCCCACCTGGACGCCGAGAAGAAC
atcccaca cctctuttrcanccccctiantccccacctccacgaceacaacaac
TTTITCAAGCGCCTGATTCGCCACCTGGACGGCGAGAAGAAC
CGGATGAGGGGOTCCTOGCOGGCGAAGAGGCCCAGCGCFGCG CAATATCTTCAGCGCCCTCTGGATGCCAGACCTGTTTTTCAAGCGCCTGATTCGCCACCTGGACGGCGAGAAGAAC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{} & \multicolumn{10}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

GTCACA＊＊＊ACXTGTTCGAXCGGXAXAXCAGCATXTXG
gTCacatggaccctgitcgaccgggacaccagcatgTC
gTCacatggaccotgrtceaccgggacacxagcatgT
gTCACATGGACCCTGTTCGA CCGGGACACCAGCATGTCGCTCGCCGACTTTCACGGGGAGGAGTTCGAGAAGCTCTACCAGCACCTCGAGGTCATGGGGTTCGGCGAGCAGATACCCAT GTCACATGGACCCTGTTCGA CCGGGACACCAGCA TGTCGCTCGCCGA TTTTCACGGGGAGGAGTTCGAGAAGCTCTXCCAGCACCTCGAGGTCATGGGGTTCGGCGAGCAGATAXCCAT GTCACATGGACCCTGTTCGA CCGGGA＊＊CAGCATGTCGCTCGCCGACTT＊TCCGGGGAGGAGTTCGAGAAGCTCTACCAGCACCTCGAGGTCATGGGGTTCGGCGAGCAGATACCAATC

axatGGaCCCTGTTCGA CCGGGA CACCAGCATGTCGCTCGCCGACTTTCACGGGXA GAGXXCGAGAAGCTCTACCAGCACCTCXAGGTCATGGGGTTCGGCGAGCAGATACCCATC tCGCCGACTTTCA CGGGGAGGAGTTCGAGAAGCTCTACCAGCA CCTCGAGGTCATGGGGTTCGGCGAGCAGATACCCATC CTA＊CagCa＊CtCGAGGTCATGGGGTTCGGCGAGCAGATACCCATC agcagatacceatc
gatacccatc
gTCACATGGACOCTGTTCGACCGGGACACCAGCATGTCGCTCGCCGACTTTCACGGGGAGGAGTTCGAGA GCTCTACCAGCACCTCGAGGTCATGGGGTTCGGCGAGCAGATACCCATC

TCXAACCTCTGCACXGAGATOGTCCATOXGGCCTCXAAXCGATOXAGTGGOXTCTGCAXXCTGGXAAGCGT
TCAXCGTCTGCACOXAGA TCGTCCATCCGGCCTCCAAGCGA TCCAGTGGGGTCTGCAACCTGOXAAGCGTGAATCTGGCCCGATGCGTCTCCAGGCAGACGTTTGACTTT
 TCCAACCTCTGCA COGAGATCGTCCATCCGGCCTCCAAGCCA TCCAGTGGXXTTGCAACCTGGXAAGCGTGAATCTGGCCCGATGCGTCT
GXAACGTCTGCACCFAGATCGTCCATCOGGCCTCCAAGCGATCCAGTGGGGTCTGCAXXCTGGGAAGCGTCAATCTGGCCCGATGCGTCTOXAGGCAGACGTTTGA CTTTGGGCGGCTC TCXAA
 XXAA XXAACCTCTGCACCGACA TCGTCCATCOGGCCTCXAAGCGATCCAGTGGOXTCTGCAACCTGGGAAGCGTGAATCTGGCCCGATGCGTCTCXAGGCAGACGTTTGACTITGGGCGGCTC TGCACCGAGATCGTCCATCOGGCCTCCAAGCGATCCAGTGGGGTCTGCAACCTGGGAAGCGTGAATCTGGCCGGATGCGTCTCAGGA
 GCCTXCAAXCGATCXAGTGGOXTCTGCAACCTGOXAAGCGTGAATCTGGCCCGATXCGTCTCXAGXCXXACGIT XXACTITGOXCGGCTC
 GCAACCTGGGAAXCGTGAATCTGGCCCGATGCXTXXCAGXCAGACGXTXACTXXGG－XXXCXC AGCGTGAATCTGGCCCGA ATCTGXXCCGA TXCGTCTOXAGXCAGACGTTTTGACTTTGEXCGGCTC CAGACGTTTGACTTTGG＊C＊GCT＊ CGTTTGACTTTGGGCGGCTC
TCCAACCTCTGCACCGAGATCGTCCATCCGGCCTCCAAGCGATCCAGTGGGGTCTGCAACCTGGGAAGCGTGAATCTGGCCCGATGCGTCTCCAGGCAGA CGTTTGACTTTGGGCGGCTC

\section*{cgcancgccgrgcagg}
xgxgacgccgtgcagg
xgcgacgccotgcaggoxtgcgtgctgatggtxancatcatgatcgacagca
xgcgaxgccgtgcaggcgtgoxxxtgatggtacacatxatxatcgacaxcaxgxtaxaacoxaxgccoxagtgcacc
- gcgacgccgtgcaggc* gcgtgctgatggtgancatcatcatcgacagcacgctacaacca acgccccagtgcaccl
xGCGACGCCGTGCAGGOXTGCGTGCTGATGGTGAACATCATGATCGACAGCACGCTACAXCOXACGCCOXAGTGCACCCGCGGCAACGAC
cgcGaxgccgtgcaggcgtgcgtgctgatggtgancatcatgatcgacagcacgctacaacccacgccoxagtgcacccgcggcaacgacaacct
cgcgacgccgtgcagg
CXXXAXGCCXTGCAGXCGTGOXTGCTGATGXTXXACATCATGATCGACAGCACGCTA-AAXCCACGCCCCAGTGCACCCGCGGCAACGACAACXTGOXGTCCATXGGAATCGGCATGCAG xgcgaoxccgtgcaggoxtgcgtgctgatggtgancatcatgatcgacagcacgctacancccacgccccagtgcacccgcggcaacgacaacxtgcggtccatgggantcggcatgcag cGCGAXGXCGTGCAGGCGTGCGTGCTGATGGTGAACATCATGATCGACAGCACGCTACAACCCACGCCOXAXTGCACCCGCGGXAACGACAACXTGCGGTCCATGGCAATCGGXATGXAG
 xGXXACGCCGTGCAGXCGTGCXXXXTGATGGTGAACATCATGATCGACAGCACGCTACAACCCACGCCCCAGTGCACCCGCGGCAACGACAACCTGCGGTCCATGGGAATCGGCATGCAG tGCAGGOGTGCGTGCTGAT* GTGAACATCATGATCGACAGCACGCTACAACCCACGCCCCAGTGCACCCGCGGCAACGACAACXTGCGGTCCAT* GGAATCGGCATGCAG

GCTACAAXCCACGCCCA**TGCACCCGCGGCAACGACAACXTGCXGTCCATXGGAATCGGCATGCAG ****ACGACa \(\times \times\) CCGGTCCATXGGaATCGGCatgcag ACAXCXTXCGXTCXATGGXAATCGXCATGCAG

CGGTCCATGGGAATCGGCATGCAC ctxcatxgcaatcgccatcia
OGCGACGCGTGCAGGCGTGCGTGCTGATGGTGAACATCATGATCGACAGCA CGCTACAACCCACGCCCCAGTGCACCCGCGGCAACGACAACCTGCGGTCCATGGGAATCGGCATGCAG

\section*{G*CCT
GGCC}

45 GGC
61 gxcctgcacacggcctocctgangctgg
GGCCTGCACACGGCCTGCCTGAAGCTGGGGCTXGA TCTXGAGTCTGCCGAATTTCAGGA 1 (T
GXCCTGCACAOGGCCTGCCTGAAGCTGGGGCTGGATCTGGAGTCTGCCGAATTTCAGGACCTGAACAAACACATCGCCGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCAAC
G* CCTGCACACGGCCTGCCTGAAGCTGGGGCTGGATCTGGAGTCTGCCGAATTTCAGGACCTGAACAAACACATCGCCGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCA
G*CCTGCACAOGGCCTGCCTGAAGCTGGGGCTGGATCTGGAGTCTGCOXAATTTXAGGA CCTGA A CAAACACATCGCCGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCAACGCGCXG GXCCTGCACA OGCCCTGCCTGAAGCTGGGXCTXGATCTXGAXTCTGCOXAATTTTCAGGACCTXAACAAACACATCGCCXAGXTGATGCTGCTGTCGGCGATGAAGACCAGCAACGCGCTG GGCCTGCACA CGGCCTGCCTGAAGCTGGGGCTGGATCTGGAGTCTGCCGAATTTTCAGGA CCTGA ACAAACACATCGCOGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCAACGCGCTG GXCCTGCACAC* GXCTGCCTGAAGCTXGGGCTGGATCTXGAGTCTGCCGAATTTCAGGACCTGAACAAACACATCGCCGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCAACGCGCTG CCTGCACA СGGCCTGCCTGA GCTGGGGCTGGATCTGGAGTCTGCCGAATTTCAGGACCTGAACAAACACATCGCCGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCAACGCGCTG ACA OGGCCTGCCTGAAGCTGGGGCTGGA TCTGGAGTCTGCCGAATTTCAGGACCTGAACAAACACATCGCCGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCAACGCGCTG OGGCCTGCCTGAAGCTGGG CTGGATCTGGAGTCTGCC* AATTTCAGGACCTGAACAAACACATCGCCGAGGTGATGCTGCTGTCGGCGA TGAAGACCAGCAACGCGCTG XXXXXXAGCTGGG* CTGGATCTGGAGTCTGCCGAATTT AGGACCTGAACAAACACATCGCCGAGGTGATGCTGCTGTGGGCGATGAAGACCAGCAACGCGCTG TGCCGAGGTGATGCTGCTGTCGGCGA TGAAGACCAGCAACG*GCI GCCGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCAACGCGCT gTCGGCGATGAAGACCAGCAACGCGCTG
GGCCTGCACA CGGCCTGCCTGAAGCTGGGGCTGGATCTGGAGTCTGCCGAATTTCAGGACCTGAACAAACACATCGCCGAGGTGATGCTGCTGTCGGCGATGAAGACCAGCAACGCGCTG

TGCGTTCGOGGGGCCOGTCCCTTCAACCACTTTAAGCGCAGCATX TATCX CGCCGGCCGCTTTCACTGGGAGCGCTTTCCGGACGCCCGGCCGCGGTACGAGGGCGAGTXGGAX
T* * TTCGOGGGGCCCGTCCCTTCAACCA CTTTAAGCGC
TGCGTTOGOGGGGCCCOTCCCTTCAACCACTTTAAGCGCAGCATGTATCGCGCCGGCCGCTTTCACTXGGAGCG
TGC* TTOGOGGGGCCOCTCCCTTCAACCACTITAAGCGAAGC* TGTATCGCG* CGGCG* * TTTCACTGGC*
TGCGTTCGOGGGGCCOGTCCCTTCAACCACTTTAAGCGCA
T* COTTOGOGGGGCOOTTCCCTTCAACCACTTT
TGC*TTCGOGGGGCCOGTCCCTTCAACCACTITAAGCGC
 TGCXTTCGСGGGGCCCGTCCCTTCAACCACTTTAAGCGCAGCGTGTATCGCGCCGGCCGXTTTCACTGGGAGCGCTTTCXGGACGCOXGGCCGCGGTACGAGGGCGAGTGGGA GATGCTA TGCGTTCGCGGGGCCCGTCCCTTCAACCACTTTAAGCGCAGCATGTATCGCGCCGGCCGCTTTTCACTGGGAGCGCTTTCCGGACGCCCGGCCGCGGTACGAGGGCGAGTGGGAGATGCTA TTTOXGGACGCCCGGCCGCGX TACGAGGGCGAGTGGGAGATXXTA TGGGAGATGCTA GGGAGATXCTA GGAGATXXTA
TGCGTTCGCGGGGCCm-rCCTTCAACCACTTTAAGCGCAGCATGTATCGCGCCGGCCGCTTTCACTGGGAGCGCTTTCCGGACGCCCGGCCGCGGTACGAGGGCGAGTGGGAGATGCTA
\(2890 \quad 2900 \quad 2910 \quad 2920\) 2940 2950
 cGxcagagcatcatgaaxcaxcgcxtgC
cgccagagcatcatcaaacacggcctgcgCa

 CGCCAXAGCATCA TGAAACACGGCCTGCGCAACAGCCAGTTTGTCGOGCTGA TGCCCACXGOGCCTCGGOGCAGATCTCGGACGTCAGCGAGXXCTTTGCCCCCCTGTTCACCAACCTG CGCXAGAGCATGATGAAACACGGCCTGCGCAACAGCCAXXTTGTCGCGCTGATGCCCA OXGOGCCTCGGCGCAGATCTCGGACGTCAGCGAGXXCTTTGCCCCCCTGTTCACCAACCTG CGCCAGAGCATGATGAAACACGGCCTGCGCAACAGCCAGTTTGTCGCGCTGATGCCCACCGCCGCCTCGGOXAGATCTCGGACGTCAGCGAGGGCTTTGXCCCCCTGTTCACCAACCTG XGCAGAGCATGATGANACA CGGCCTGCGCAACAG* CAGTTTGTCGCGCTGATGCCCACCGC GCCTCGGCGCAGATCTCGGACGTCAGCGA* GCTTTGCCCCCCTGTTCACCAACCTG GCATGATGAAGACCX* CTGCGCAACAGCCAG-TTGTCGCGCTCATGCCOACCOXCGCCTXC-CCXAGATCTCXGACGTCAGCGACXXCTTTGCCCCCCTGTTCACCAACCTG CA CGGCCTGCGCAACAGCCAGTTTGTCOCGCTCATGCCCA CCGC GCCTCGGCGCAGATCTCGGACGTCAGCGA* GCTTTGCCCCCTTGTT* ACCAACCTG CGCAACAGCCAGTTTGTCXCGCTGATGCCCACGG* * "CTXGGCGXAGATCT* GGACGTCAGCGAG* ©TTTGCCCCCCTGTTCACCAACCTG TCGCGCTGATGCCCA CCG* CGCCTOX GCGX AGA TCTCGGACGTCAGCGA* * GCTTTGCCCCCOTGTTCACCAACCTG atGCCCACCGCCGCCTCGGCGXAGATCTCGGACGTCAGCGAGGGCTTTG* *CCCTGTTCACCAACCTG
tCgGCGCagatctcgga cgtcagcGa ggctttgcccccctgttcaccaacctg
cgGacgTCagCGagg* CTtTGCCCCCCTGTTCACCAACCTG ctgttcaccaacctg
cgCcigagcatgatganacacggcctgcgcaacagccagtttgtcgcgctgatgcccaccgccglctcggcgcagatctcggacgtcagcgagggctttgcccccctgitcaccancctg
 ttcagcaaggTgaccccgga cgex gagacgetg
ttcagcaaggtcacccggacg* cgagacgctgcge cccaacac
trcagcaaggrgacccggcacg CGagacgctgcg cccaacac
TTCAGCAA GGTGACCCGGGA CGGCGAGA CXCTGCGCCCCAACACGCTCCTGCTAAAGGAACT
tTCAGCAAGGTEACCOGGGACGXCXAGACGCTGCGCCCCAACACGCTCXTGCTAAAGGAACTGGAA
TTCAGCAAGGTGA* CCGGGACGGCGAGACGCTGCGCCCCAACACGCTCCTGCTAAAGGAACTGG
TTUAGCAAGGTGACCCGGGACGGCGAGACGCTGCGCCCCAACACGCTCCTGCTAAAG
TTCACCA TTCAGCAAGGTCACCCGGGACGGCGAGACGCTGCGCCCCAACACGCTCCTGCTAAAGGAACTGGAA
TTCAGCAAGA TGACCCGGGACGGCGAGACGCTGCCCCCCAACACGCTCCTGCTAAAGGAACTGGAACGUACGTTTAGCGGGAAGCGCCTCCTGGAGGTGATGGACA* TCTC
TTCAGCAAGGTCACCCGGGACG* CGAGACGCTGCGCCCCAACACGCTCCTGCTAAAGGAACTGGAACGCACGTTTAGCGGGAAGGCC*TCCT* GAGGTGATGGACAGTCTCGACGC* AAG TTCAGCAAGGTGACCOGGGACGGCGA GACGCTGCGCCCCAACACGCTCCTGCTAAAGGAACTGG
TTCAGCAAGGTGACCCGGGACGGCGAGACGCTGCGCCCCAACACGCTCCTGCTAAAG*AACTGGAACGCACGTTTAGCGGGAAGCGCCTCCTGGAGGTGATGGACAGTCTCGA CGCCAAG ITCAGCAAGGTGACCCGGGACGGCGAGACGCTGCGCCCCAACACGCTCCTGCTAAAGGAACTGGAACGOACGTTTAGCGGGAAGCGCCTCCTGGAGGTGATG
TTCAGCAAGGTGACCOGGGACG* CGAGACGCTGCGCCCCAACACGCT* CTGCTAAAGGAACTGGAACGCACGTT TAGCGGGAAGCGCGTC IXGAGGTGA TGGACAGTCTCGACGC*AAG
 aCACGCTCCTGCTAAAGXAACTGXAACGCACGTTTAGCGGGAAGCGCCTCCTGGAGGTGATGGACAGTCTCGACGCCAA CGCTOTTGCTAAAGGAACTGGAACGOACGTTRAGCGGGAGCGCCTCCTGAGTGATGACAGTCTCGACGCCAA GCT* CTGCTAAAGGAACTGGA ACGCACGTITAGCGGGAAGCGCCTCCTGGAGGTGATGGACAGTCTCGA CGC*AAG CCTGCTAAAGGAACTGGAACGCACGTTTAGCGGGAAGCGCCTCCTGGAGGTGATGGACAGTCTCGACGCCAAG
gacgccaag
tTCAGCAAGGTGACCCGGGACGGCGAGACGCTGCGCCCCAACACGCTCCTGCTAAAGGAACTGGAACGCACGTTTAGCGGGAAGCGCCTCCTGGAGGTGATGGACAGTCTCGACGCCAAG

tacgTcGačatagccaatxcatgaxcctgTatgTCa
- 131 TACGTCGACCATAGCCAATCCATGACCCTGTATGTCACGGAGAagGCGGACGGGACCCTCCCAGCC
-19 TACGTCGACCATAGCCAATCCATGA CCCTGTATGTCACGGAGAAGGOGGACGGGACCCTCCCAGCCTCCACCCTGGTCCGCCTTCTGGTCCACGUATATAA
-146 TACGTCGACCATAGCCAATCCATGACCGTGTATGTCACGGAGAAGGCGGACGGGACCCTCCCAGCCTCCACCCTGGTCCGCCTTCTGGTCCACGCATATAAGCGCGGACTAAAAACAGGG TACGTCGACCATAGCCAATXCATGACCCTGTATGTCACGGAGAAGGCGGACGGGACCCTCCCAGCCTXCACCCTGGTCCGXCTT-TGGTCCAXGCATATAAGCGCGGACTAAAAACAGGG tacgrcgaccatagccaatccatgaccctgTatgTCacggaga aggcggacggcaccctcccagcctccaccctggtccgcctitctggtccacgcat

atgtactactccaagettcgca
- AT

GGTACTACTGCAAGGTTCGCAAGGCGACCAACAGCGGGGTCTTTGGCGGCGACGACAACATTGTCTGCATGAGCTGCGCGCTGTGACCGACAAACCCCCTCCGCGCCAGGCCOGCCGCC AGGCGACCAACAGCGGG TCTTTG* C® GCGACGACAACAT* GTCTGCATGAGCTGCGCGCTGTGACCGACAACCCCC* TCCGCGCCAGGCCCGCCGCC ACCAACAGCGGGGTCTTTGGCGGCGACGACAACATTGTCTGCATGAGCTGCGCGCTGTGACCGACAAACCCCCTCCGCG* CAGGCCCGCCGCC acccacaanccccctccgc/ CCAGGCCCGCCGCC ATGTACTACTGCAAGGTTCGCAAGGCGACCAACAGCGGGTCTTTGGCGGCGACGACAACATTGTCTGCATGAGCTGCGCGCTGTGACCGACAAACCCCCTCCGCGCCAGGCCCGCCGCC

\footnotetext{
ACTGTCGTCGCOGTCCCACGCTCTCCCCTGCTGCCATGGA TTCCGC* GCCCCAGCCCTCTCCCCCGCTCTGACG
NTGTC//CG* СGTCCCA*/GTCTCCOTGCTGCCATGCATTC* GCGGCCCCAGCC TXTCCCOXGXXTXAXGGCCXTTAXGG
ACTGTCGTCGCOGTCCCACGCTCTCCCCTGCTGCCA TGCATTCCGCGGCCCCAGCCCTXTCCCCCGCTCTCACGGCCCTTACGC ACTGTCGTCECCGTCCCACCCTCTCCCCTGCTGCCATGGATTCCGCOGCCCCAGCCCTCTCCCCOGCTCTCACGGCCCTTACGO
}
OPEN READING FRAMES IN HINDKK
LENGTH OF SHORTEST POLYPEPTIDE DISPLAYED IS 20 AMINO ACIDS

Figure 24. Analysis of the HINDKK database for open reading frames (ORFs) with the DSPLAY program. ORFs are indicated by lines, and in-frame stop codons by arrowheads. The reading frames are numbered on the left; 1,2 and 3 for the left-to-right DNA strand, and, 4,5 and 6 for the complementary strand.
\(\qquad\)

Figure 25. Codon usage evaluation of the HINDKK database with the FRMSCAN program. The top panel (reading frames 1 , 2 and 3) represents the codon usage evaluation for the left-to-right strand while the lower panel (reading frames 4,5 and 6) represents the codon usage evaluation of the complementary strand. The \(y\) axis represents the log probability function using an arbitrary scale (Staden and McLachlan, 1982). The x axis shows nucleotide positions in the HINDKK database; on the line parallel to the \(x\) axis the in-frame stop codons (1) are displayed.
no putative ORFs (frame 4 in Fig. 24), while the remaining frames are blocked by stop codons (frames 5 and 6 in Fig. 24); the longest potential ORF is approximately 430 nucleotides.

A representation of the FRMSCAN output is shown in Fig. 25 for both the left-to-right and complementary strands. This program identified in the former strand a single potential coding region spanning the entire sequence (frame 3 in Fig. 25).

These data predict that the coding region of the RRI polypeptide is an ORF of 3414 nucleotides located between positions 34 and 3447 of the HINDKK contig. Translation of the obtained sequence with the PTRANS program (see Materials and Methods, Page 75) predicted that the encoded polypeptide is 1137 amino acids in length (Fig. 26).

\section*{DISCUSSION.}

\section*{3. The HSV-1 RRI Polypeptide.}

The 1137 amino acid polypeptide predicted from the DNA sequence has a mol. wt. of 124,017 (Table II); this is lower than the estimate of 136,000 obtained from gel electrophoretic mobility of the protein (Marsden et al., 1978). However, RR1 is phosphorylated (Pereira et al., 1977; Marsden et al., 1978, Wilcox et al., 1980), and this may partly account for the observed size discrepancy.
a) Analysis of the RRl amino acid content. The overall G+C content across the coding region is \(66 \%\) (Table II), although, at the third base position of amino acid codons it is markedly higher (83.2\%). This is consistent with the codon usage of other HSV proteins which show that, in most cases, the third base position of amino acid codons has a higher \(G+C\) content as compared with first and second positions (McGeoch, 1984). The most pronounced triplet periodicity is observed in the alanine residues where the \(G+C\) content at the third base position is \(91.2 \%\).

哈－

 －人准

 ＜ ＜\(\times\) 㠾

场

Figure 26. The DNA sequence and the predicted amino acid sequence of the RRI polypeptide coding region and the N-terminal portion of the RR2 polypeptide. The methionine initiation codon at the \(N\)-terminus of \(R R 1\) is underlined as is the stop codon at the C-terminus of RRI. The methionine at the RR2 \(N\)-terminus is indicated by a double line. Underlined amino acids indicate the run of prolines (P) and the two discrete aspartic acid (D) and serine (S) rich stretches.

\section*{TABLE II}

\section*{AMINO ACID COMPOSITION OF THE HSV-1 RRI POLYPEPTIDE}
\begin{tabular}{lrrrrlllllll}
Ala & 114 & \(10.0 \%\) & Val & 75 & \(6.6 \%\) & Leu & 107 & \(9.4 \%\) & Ile & 30 & \(2.6 \%\) \\
Gly & 94 & \(8.3 \%\) & Pro & 71 & \(6.2 \%\) & Cys & 29 & \(2.6 \%\) & Met & 32 & \(2.8 \%\) \\
His & 29 & \(2.6 \%\) & Phe & 46 & \(4.0 \%\) & Tyr & 33 & \(2.9 \%\) & Trp & 10 & \(0.9 \%\) \\
Asn & 35 & \(3.1 \%\) & Gln & 33 & \(2.9 \%\) & Ser & 84 & \(7.4 \%\) & Thr & 69 & \(6.1 \%\) \\
Lys & 32 & \(2.8 \%\) & Arg & 84 & \(7.4 \%\) & Asp & 71 & \(6.2 \%\) & Glu & 59 & \(5.2 \%\)
\end{tabular}

Approximate Molecular Weight \(=124016.63\)

CODON USAGE OF THE HSV-1 RR1 POLYPEPTIDE DNA CODING REGION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TTT & Phe & 24 & 2.18 & TCT & Ser & 4 & \(0.4 \%\) & TAT & Tyr & 8 & 0.78 & TGT & Cys & 8 & 0.78 \\
\hline TTC & Phe & 22 & \(1.9 \%\) & TCC & Ser & 27 & \(2.4 \%\) & TAC & Tyr & 25 & 2.28 & TGC & cys & 21 & 1.8\% \\
\hline TTA & Leu & 0 & 0.0\% & TCA & Ser & 3 & 0.38 & TAA & & 0 & 0.08 & TGA & & 1 & 0.18 \\
\hline TTG & Leu & 2 & 0.2\% & TCG & Ser & 18 & 1.6\% & TAG & & 0 & 0.0\% & TGG & Trp & 10 & \(0.9 \%\) \\
\hline CTT & Leu & 10 & \(0.9 \%\) & CCT & Pro & 6 & \(0.5 \%\) & CAT & His & 3 & \(0.3 \%\) & CGT & Arg & 6 & \(0.5 \%\) \\
\hline CTC & Leu & 24 & 2.18 & CCC & Pro & 40 & \(3.5 \%\) & CAC & His & 26 & 2.38 & CGC & Arg & 45 & \(4.0 \%\) \\
\hline CTA & Leu & 6 & \(0.5 \%\) & CCA & Pro & 8 & \(0.7 \%\) & CAA & Gln & 4 & 0.48 & CGA & Arg & 6 & \(0.5 \%\) \\
\hline CTG & Leu & 65 & 5.7\% & CCG & Pro & 17 & 1.58 & CAG & Gln & 29 & \(2.5 \%\) & CGG & Arg & 23 & \(2.0 \%\) \\
\hline ATT & Ile & 3 & \(0.3 \%\) & ACT & Thr & 0 & 0.08 & AAT & Asn & 4 & \(0.4 \%\) & AGT & Ser & 4 & \(0.4 \%\) \\
\hline ATC & Ile & 25 & \(2.2 \%\) & ACC & Thr & 38 & 3.3\% & AAC & Asn & 31 & 2.78 & AGC & Ser & 28 & \(2.5 \%\) \\
\hline ATA & Ile & 2 & \(0.2 \%\) & ACA & Thr & 7 & \(0.6 \%\) & AAA & Lys & 5 & 0.48 & AGA & Arg & 0 & \(0.0 \%\) \\
\hline ATG & Met & 32 & \(2.8 \%\) & ACG & Thr & 24 & \(2.1 \%\) & AAG & Lys & 27 & \(2.4 \%\) & AGG & Arg & 4 & \(0.4 \%\) \\
\hline GTT & Val & 7 & \(0.6 \%\) & GCT & Ala & 4 & \(0.4 \%\) & GAT & Asp & 12 & 1.18 & GGT & Gly & 6 & \(0.5 \%\) \\
\hline GTC & val & 31 & \(2.7 \%\) & GCC & Ala & 67 & 5.98 & GAC & Asp & 59 & 5.28 & GGC & Gly & 39 & 3.4\% \\
\hline GTA & Val & 4 & 0.48 & GCA & Ala & 6 & \(0.5 \%\) & GAA & Glu & 12 & 1.1\% & GGA & Gly & 9 & \(0.8 \%\) \\
\hline GTG & Val & 33 & 2.98 & GCG & Ala & 37 & 3.3\% & GAG & Glu & 47 & 4.1\% & GGG & Gly & 40 & 3.5\% \\
\hline
\end{tabular}

BASE COMPOSITION OF THE HSV-1 RRI POLYPEPTIDE DNA CODING REGION
\begin{tabular}{lrrrrrrr}
& \(\mathbf{Y}\) & \(\mathbf{T}\) & C & A & G & R & ALL \\
NUMBER & 1841 & 595 & 1246 & 617 & 1106 & 1723 & 3564 \\
PERCENT & 51.7 & 16.7 & 35.0 & 17.3 & 31.0 & 48.3 & 100.0
\end{tabular}

The most common amino acids in RRl are alanine, glycine and leucine, comprising \(27.7 \%\) of all residues. Examination of the amino acid distribution throughout the length of RRI revealed a region at the \(N\)-terminus (aa 150 to 280, see Fig. 26) which is extremely rich in aspartic acid, serine, proline and glycine residues. At the start of this region there is a run of five prolines and further on there are two discrete stretches rich in aspartic acid and serine residues (underlined regions in Fig. 26). Aspartic acid and serine residues together comprise \(32 \%\) of all amino acids in this region, whereas, their overall percentage of occurence in RRl is \(13.6 \%\).

Analysis of other \(H S V-1\) polypeptide \(N\)-termini revealed that stretches of prolines occur in the AE polypeptide (Draper et al., 1986), in the IE trans-inducing factor Vmw65 (Dalrymple et al., 1985) and in Vmwl75. The latter contains two stretches of prolines the first of which is located at the \(N\)-terminus while the second is located approximately in the middle of the polypeptide (McGeogh et al., 1986a). However, it should be stated that in at least 10 other HSV-1 polypeptides proline-rich stretches were identified in the C-terminus. Examination of HSV-l sequences for stretches of aspartic acid and serine residues revealed, notably, that these were present in the \(N\)-terminal region of all the IE polypeptides with the exception of Vmwl2 (Perry et al., 1986; McGeoch et al., 1985, 1986a and 1988) and in the protein kinase (McGeoch et al., 1985). Further, a stretch rich in aspartic acid and glutamic acid was identified approximately in the middle of the DNA polymerase (Quinn and McGeoch, 1985).
b) The RRl hydrophathicity profile.

The RRl hydropathicity plot (Fig. 27) was obtained with the PROFILE program (see Materials and Methods, Page 75). The program predicted two major hydrophilic regions; the first one corresponding to the first stretch of aspartic acid and serine residues and is the most hydrophilic region, while the second, from aa 914 to 961 , is the longest predicted region. The most hydrophobic regions are located between aa 833 to 847 and at the

Figure 27. Hydropathicity of the RRI polypeptide. Hydrophobic regions lie between 0 and 40 , and hydrophilic regions between 0 and -40 . The RRI amino acid sequence is shown below the plot and is numbered as in Fig. 26. Hatched regions represent the most hydrophilic regions while dotted regions represent the most hydrophobic regions. Program settings were: group length \(=9\), shift \(=1\), spacing of plotted points \(=10\). The underlined sequence represents a block of highly conserved amino acids between HSV-l RR1 and other homologue herpesviral polypeptides for which a putative function has been postulated (see General Discussion, Page 130).
```

40
6
-4%
MASRFAASSFVEARAFVGGGEAGGFGAATGGEAAGAFLAMGHHYYCGEVNGYHVLSDKTPGSASYRISDSNFVGC75

```
```

-40GSNCTMIIDGDVVRGRPGUPGAAASFAPFVAVTNIGAGSDGGTAVVAFGGTPRRSAGTSTGTOTADVPTEALGGP150

```

```\(-40\)FPPFRFTLGGGCCSCRDTRRRSAVFGGEGDPVGFAEFVSDLRSSDSESDESEDTDSETLSHASSDVSGGATYDDA225
```

46

-49
LDSDSSEEDSLGIDGPVCRFHSNDTAFLDVCFGTFGFGADAGGFSAVDFHAPTPEAGAGLAADPAVARDDAEGL 299
46


```
\(-40\)SDFRPRLGTGTAYPVPLELTFENAEAVARFLGDAVAKEFALMLEYFCRCAREETKRUPPRTFGSPPRLTEDDFGL374
```

40

LAYALVEMORLCLDVPPVPPNAYMFYYLREYYTRL YNGFKPLYSRSARLYRILGVLVHLRIRTREASFEEWLRSK 449

48


```
\(-40\)EVALDFGLTERLREHEAQLVILAQALDHYDCLIHSTPHTLVERGLOSALKYEEFYLKRFGGHYMESVFOMYTRI523
48
```



```
\(-46\)
AGFLACRATRGMRHIALGREGSWHEMFKFFFHRLYDHGIVPSTPAMLHLGTRNYYTSSCYLVNPQATTNKATLRA

```

-40ITSNVSAILARNGGIGLCVGAFNDSGPGTASVMPALKVLDSLVAAHNKESARPTGACVYLEPWHTDVRAVLGMKG673

```
```\(-42\)VLAGEEAQRCDNIFSALWMPDLFFKRLIRHLDGEKNVTWTLFDRDTSMSLADFHGEEFEKLYQHLEVHGFGEQIP
```

IGELAYGIVRSAATTGSFFVMFKDAVNRHYIYDTGGAAIGGSNLCTEIVHPASKRSSGVCNLGSVNLARCVSRG
TFDFGRLRDAVQACVLMVNIMIDSTLQPTPQCTRGNDNLRSMGIGMQGLHTACLKLGLDLESAEFQDLNKHIAEV ..... 897

```
-40
```

40
HLLSAMKTSNALCVRGARPFNHFKRSMYRAGRFHWERFPDARPRYEGEWEMLRQSMMKHGLRNSQFVALMPTAAS ..... 927
40


```
\[
-40
\]AaISDVSEGFAPLFTNLFSKVTRDCETLRPNTLLLKELERTF SGKRLLEVMDSLDAKOWSVAQALPCLEPTHPL
\[
40^{-}
\]
```



```
-4REFKTAFDYDQKLLIDLCADRAPYVDHSQSMTLYYTEKADGTLPASTLVRLLVHAYKRGLKTGMYYCKVRKATNS1121
```

46
0



C-terminal five residues of the polypeptide.
c) Repetitions within the RRI N-terminus.

Examination of the RRl amino acid sequence for possible repetitions was performed with the CINTHOM program (see Materials and Methods, Page 74; Fig. 28). As can be seen, a number of small letter homology diagonals were identified indicating that amino acid sequences positioned in different parts of the RRI $N$-terminus share homology. These sequences were then aligned with the HOMOL program (see Materials and Methods, Page 75), and the results are shown in a graphical form in Fig. 29. Seven tandemly repeated stretches of amino acids were identified which mostly contained identical and/or conserved residues as determined by the Venn diagram of amino acid classification (Taylor, W.R., 1986a). Interestingly, the stretch designated 7 comprises two blocks of residues from which the first one is inverted in $7^{\prime \prime}$ and this is indicated by arrows in Fig. 29.

Examination of other HSV-l polypeptide N-termini with the analysis described above demonstrated the existence of five tandemly repeated stretches of amino acids in the Vmwl75 polypeptide and these are shown in Fig. 30.


Figure 28. Analysis of the HSV-l RRI polypeptide amino acid sequence for repetitions with the CINTHOM program. The small letter homology diagonals correspond to RRI regions containing amino acid repetitions. Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=$ 30\%; compressed xl5.


Figure 29. Repeated amino acid sequences within the HSV-l RRI N-terminus. The diagram depicts the region in a linear form starting at the $N$-terminal methionine ( $M$ ) and terminating at a tyrosine residue (Y) at amino acid position 312. Black boxes indicate the position of each repetition; the first set of boxes are numbered 1 to 7 and their corresponding boxes are numbered $l^{\prime}$ to 7 '. The amino acid sequence of each repetition is given above each box and the first amino acid is numbered as in Fig. 26. Asterisks within the sequences indicate any amino acid and the arrows indicate the stretch of residues in block 7 which is inverted in block 7'.


Figure 30. Repeated amino acid sequences within the HSV-1 Vmwl 75 N -terminal region. The diagram depicts the region in a linear form starting at the $N$-terminal methionine (M) at amino acid position $l$ and terminating at a glutamic acid (E) residue at amino acid position 314. Black boxes indicate the position of each repetition; the first set of boxes are numbered 1 to 5 and their corresponding boxes are numbered $1^{\prime}$ to 5'. The amino acid sequence of each repetition is given above each box and the first amino acid is numbered as in McGeoch et al. (1986a).
4. Amino Acid Sequence Conservation of HSV-l RRI with Other Viral, Eukaryotic and Prokaryotic Equivalent Polypeptides.

Comparisons of the $\mathrm{N}-$ and C-terminal portions of HSV-l RRI with herpesviral polypeptides and the polypeptides encoding the mouse Ml and E . coli Bl subunits demonstrated the existence of homology (McLauchlan, 1986; Swain and Galloway, 1986). In this part of Section $B$ the complete sequence of RRI is compared, using the CINTHOM and HOMOL programs, with these polypeptides and, in addition, with a VV polypeptide and a recently obtained putative ORF of HCMV. The purpose of this analysis was to determine whether RRI shares any homology with the equivalent viral, eukaryotic and prokaryotic polypeptides and if so, to identify conserved features between these polypeptides.

## a) Amino acid sequence conservation of HSV-l RRI with other viral polypeptides.

i) HSV-1 RR1 shares homology with HSV-2 RRI. Sequencing studies in HSV-2 strain 333 identified a polypeptide, Vmwl38 or RRI, which was homologous to the N and C-terminal portions of HSV-l RRI (McLauchlan, 1986; Swain and Galloway, 1986). A CINTHOM comparison between these polypeptides revealed that they are essentially colinear (Fig. 31). The lettering in the diagonal indicates that the $N$-terminal 315 amino acids of both polypeptides are relatively poorly conserved whereas the remainder show extremely high homology. Optimal alignment of the polypeptides with the HOMOL program predicted that the highly conserved regions extend from the tyrosine residues at HSV-1 RRI aa 312 and HSV-2 RRI aa 319 to the respective C-termini (Fig. 32). The percentage similarity for these regions is 938 with 57 changes out of 827 aligned residues. However, most of these changes are conservative ones according to the Venn diagram of amino acid conservation (Taylor, W.R., 1986a) and are predominantly between amino


Figure 31. A CINTHOM plot comparing the amino acid sequence of HSV-1 RRI with that of HSV-2 RRI. The position of the homology diagonal after which the two amino acid sequences share higher homology is indicated by an arrow. Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=30 \%$; compressed xl5.

First sequence:	$H S V-1$	RR1
Second sequence:	HSV-2 RR1	

1 MASRPAASSPVEARAPVGGQEAGGPSAATQGEAAGAPLAHGHHVYCQRVNGVMVLSDKTPGSASYRISDSNFVQ ** ***** ** * ** * * * * * * 1 MANRPAASALAGARSPSERQEPREPEVAPPG GDHVFCRKVSGVMVLSSDPPGPAAYRISDSSFVQ

75 CGSNCTMIIDGDVVRGRPQDPGAAASPAPFVAVTNIGAGSDGGTAVVAFGGTPRRSAGTSTGTQTADVPTEALG
 66 CGSNCSMI IDGDVARGHLRDLEGATSTGAFVAISNVAAGGDGRTAVVALGGTSGPSATTSVGTQT SGEFLH 149 G PPPPPRRFTLGGGCCSCRDTRRRSAVFGGEGDPVGPAEFVSDDRSSDS DSDDS EDT 137 GNPRTPEPQGPQAVPPPPPPPFPWGHECCARRDAR GGAEKDVGAAESWSDGPSSDSETEDSDSSDEDT 205 DSETLSHASSDVSGGATYDDALDSDSSSDDSLQIDGPVCRPWSNDTiP LDVCPGTPGPGADAGG 205 GSGSETLSRSSSIWAAGATDDDDSDSDSRSDDSVQPDVVVRRRWSDGPAPVAFPKPRRPGDSPGNPGLGAGTGP $\dagger$

269 PSAVDPHAPTPEAGAGLAADPAVARDDAEGLSDPRPRLGTGTAYPVPLELTPENAEAVARFLGDAVNREPALML ** ** * * ** * * * * * * ** ****************************** 279 GSATDPRASADSDSAAHAA APQADVAPVL DSQPTVGTDPGYPVPLELTPENAEAVARFLGDAVDREPALML $\Lambda$
343 EYFCRCAREETKRVPPRTFGSPPRLTEDDFGLLNYALVEMQRLCLDVPPVPPNAYMPYYLREYVTRLVNGFKPL ********** ******************************************************** 350 EYFCRCAREESKRVPPRTFGSAPRLTEDDFGLLNYALAEMRRLCLDLPPVPPNAYTPYHLREYATRLVNGFKPL

417 VSRSARLYRILGVLVHLRIRTREASFEEWLRSKEVALDFGLTERLREHEAQLVILAQALDHYDCLIHSTPHTLV
 424 VRRSARLYRILGILVHLRIRTREASFEEWMRSKEVDLDFGLTERLREHEAQLMILAQALNPYDCLIHSTPNTLV

491 ERGLQSALKYEEFYLKRFGGHYMESVFQMYTRIAGFLACRATRGMRHIALGREGSWWEMFKFFFHRLYDHQIVP ************************************************************************ 498 ERGLQSALKYEEFYLKRFGGHYMESVFQMYTRIAGFLACRATRGMRHIALGRQGSWWEMFKFFFHRLYDHQIVP

565 STPAMLNLGTRNYYTSSCYLVNPQATTNKATLRAITSNVSAILARNGGIGLCVQAFNDSGPGTASVMPALKVLD ******************************************************************** 572 STPAMLNLGTRNYYTSSCYLVNPQATTNQATLRAITGNVSAILARNGGIGLCMQAFNDASPGTASIMPALKVLD

639 SLVAAHNKESARPTGACVYLEPWHTDVRAVLRMKGVLAGEEAQRCDNI FSALWMP DLFFKRLI RHLDGEKNVTW ******** * ************************************************************** 646 SLVAAHNKQSTRPTGACVYLEPWHSDVRAVLRMKGVLAGEEAQRCDNIFSALWMPDLFFKRLIRHLDGEKNVTW

713 TLFDRDTSMSLADFHGEEFEKLYOHLEVMGFGEQIPIQELAYGIVRSAATTGSPFVMFKDAVNRHYIYDTQGAA ******************************************************************* 720 SLFDRDTSMSLADFHGEEFEKLYEHLEAMGFGETIPIQDLAYAIVRSAATTGSPEIMFKDAVNRHYIYDTQGAA

787 IAGSNLCTEIVHPASKRSSGVCNLGSVNLARCVSRQTFDFGRLRDAVQACVLMVNIMI DSTLQPTPQCTRGNDN *********************************************************************
794 IAGSNL TEIVHPSSKRSSGVCNLGSVNLARCVSRRTFDFGMLRDAVQACVLMVNIMIDSTLQPTPQCARGHDN
861 LRSMGIGMQGLHTACLKLGLDLESAEFQDLNKH I AEVMLLSAMKTSNALCVRGARPFNHEKRSMYRAGRFHWER ************************** *** **************************************** 868 LRSMGIGMQGLHTACLKMGLDLESAEFRDLNTH I AEVMLLAAMKTSNALCVRGARPFSHFKRSMYRAGRFHWER

935 FPDARPRYEGEWEMLRQSMMKHGLRNSQFVALMPTAASAQISDVSEGFAPLFTNLFSKVTRDGETLRPNTLLLK

942 FSNASPRYEGEWEMLRQSMMKHGLRNSQFIALMPTAASAQISDVSEGFAPLFTNLFSKVTRDGETLRPNTLLLK
1009 ELERTESGKRLLEVMDSLDAKQWSVAQALPCLEPTHPLRRFKTAFDYDQKLLIDLCADRAPYVDHSQSMTLYVT

1016 ELERTFGGKRLLDAMDGLEAKQWSVAQALPCLDPAHPLRRFKTAFDYDQELLIDLCADRAPYVDHSQSMTLYVT
1083 EKADGTLPASTLVRLLVHAYKRGLKTGMYYCKVRKATNSGVFGGDDNIVCMSCAL
*****************************************************
1090 EKADGTLPASTLVRLLVHAYKRGLKTGMYYCKVRKATNSGVFAGDDNIVCTSCAL

Figure 32. A HOMOL plot comparing the amino acid sequence of HSV-l RRl with that of HSV-2 RRI. Arrowheads denote the amino acid positions where the sequences become highly homologous and asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7, k$ up to 2000 .

First sequence: HSV-1 RKI
Second sequence: HSV-2 RRI

								1																2					
M	$A$	S	R	P	A	A	S	\$	8	$V$	E	$\wedge$	R	A	P	$v$	$G$	6	0	E	A	G	G	$P$	S	$\wedge$	A	$T$	0
ATG	GCC	AGC	CGC	CCA	GCC	GCA	TCC	TCT	CCC	GTC	gaa	GCG	cGg	GCC	CCG	GTT	GGG	GGA	cag	GAG	GCC	GGC	G6C	CCC	AGC	GCA	GCC	ACC	Cag
***	**	-	***	**	-	-**	**	.	-	-	-	-**	-	-	-••		-	**	-*	$\cdots$	-		-	-			-	-	
ATG	GCC	AAC $N$	CGC	CCT	GCC	GCA	TCC	$\begin{gathered} \mathrm{GCC} \\ \mathbf{A} \end{gathered}$	CTC	$\begin{gathered} \operatorname{GCC} \\ \mathbf{A} \end{gathered}$	$\mathrm{G}_{\mathbf{G}}$	GCG	CGG	$\begin{gathered} \text { TCT } \\ \mathrm{S} \end{gathered}$	CCG	$\begin{gathered} \operatorname{TCC} \\ \mathrm{S} \end{gathered}$	$\underset{E}{G A A}$	$\underset{R}{C C A}$	cag	$\underset{\varepsilon}{\cos A}$	$\underset{p}{\mathrm{ccc}}$	$\begin{gathered} C G 6 \\ R \end{gathered}$	$\begin{gathered} \text { GAG } \\ 8 \end{gathered}$	CCC	$\begin{gathered} \text { CAG } \\ \mathbf{E} \\ \hline \end{gathered}$	$\begin{gathered} \text { GTC } \\ V \\ \hline \end{gathered}$	$\int_{A}^{G C C}$	$\underset{P}{\operatorname{CCC}}$	$\underset{\mathrm{P}}{\mathrm{CCT}}$
			3																										
G	E	A	A	6	$\lambda$	$\stackrel{P}{ }$	L	${ }^{\mathbf{A}}$	${ }^{\text {n }}$	G	H	H	$v$	$\boldsymbol{X}$	C	0	R	T	$N$	G	T	${ }^{M}$							
GGG	GAG	GCC	CCC	GGG	GCC	CCT	CTC	GCC	alc	CGC	CAC	CAC	GTG	tac	TCC	cag	CCA	GTC	AAT	GGC	GTG	ATG	GTG	CTT	$\mathrm{TCC}$	CAC	AAG	$A C G$	CCC
$\cdots$										${ }^{+1}$	${ }^{*}{ }^{*}$	- ${ }^{\circ}$	**		$\cdots$			- ${ }^{\circ}$		- ${ }_{\text {cic }}$	-**	ATC	CTG	CTT	-	AGC			
GGC										GGC	CAC	CAC	GTC	TTT	TGC	AGG	AAA	GTC	AGC	GGC	GTG	ATC	GTG	CTT	TCC	$\begin{gathered} \text { AGC } \\ 8 \end{gathered}$	CAT	$\underset{p}{\text { CCC }}$	CCC


0	¢	A	¢	$x$	R	1	$\delta$	0	8	$N$		V	0	C	C	8	N	C		N	1	1	0	c	,	$v$	$v$	H	c
G	rcc	GCG	TCC	TAC	CGC	ATC	AGC	cat	AGC	AAC	TTT	GrC	caa	TGT	GCT	TCC	AAC	T0C	ACC	ATG	ATC	ATC	GAC	GCA	GAC	GTa	GTC	CGC	cac
*	**	**	*	**	***	**	***	-	**			**	**	**	-	***	***												
Gcc	$\underset{p}{\operatorname{ccc}}$	CCC	$\operatorname{GCC}$	TAC	CGC	ATt	AGC	c	C	$A G$		GTT	A	TGC	GEC		AAC	TGC	$\begin{gathered} \text { AGT } \\ 8 \end{gathered}$	ATO	ATA	ATC	GAC	GCA	GAC	GTG	${\underset{A}{\text { acg }}}^{\text {act }}$	CC	GGT



CCC CCT CCT LCT CCC CGC TTC ACC CTG GGT GGC GGC TGT TGT TCC TGT CGC


Figure 33. Alignment of the DNA sequences and predicted amino acid residues at the N-termini of HSV-l RRI and HSV-2 RRI. Conserved bases are indicated by asterisks. The predicted amino acid sequence of the HSV-l RRI polypeptide is shown above the HSV-l DNA sequence and amino acid residues which are not conserved in HSV-2 RRI are indicated below the HSV-2 DNA sequence. The HSV-1 RRI repeated amino acid sequences, shown in Fig. 29, are boxed as are the corresponding HSV-2 RRI amino acid sequences.
acids with small or tiny side-chains, such as glycine, alanine, serine and threonine ( 15 changes) or between hydrophobic residues such as methionine, isoleucine, leucine and valine (l0 changes).

In contrast, the N-terminal HSV-1 312 and HSV-2 319 amino acids of both polypeptides, designated as the N-terminal regions, show considerably lower homology (38\%), and contain a number of predicted insertions and deletions, the longest being 14 amino acids (Fig. 33, HSV-l RRI aa 149). Interestingly, the prolines and the stretches rich in aspartic acid and serine residues are well conserved. Further, the only HSV-l RRl repetitions which are well conserved in the HSV-2 sequence are , 4, 6, 7, l' and 7'; the remainder share either limited homology or are not conserved at all (Fig. 33). The low conservation of the $N$-terminal regions can also be observed at the DNA level. Nucleotide comparison of shared amino acid sequences indicates that the strongest homology is $73 \%$ (Fig. 33, HSV-1 RRl aa 41 to l39). This percentage homology is lower than that obtained from nucleotide sequence comparisons of the colinear parts of both polypeptides (90\%, data not shown).
ii) HSV-1 RRl shares homology with VZV Vmw87. The entire sequence of the $V Z V$ genome has been determined by Davison and Scott (1986b). Analysis of the sequence predicted that the genome contained 71 potential ORFs distributed almost equally between the two strands. One of these encodes a polypeptide with a predicted size of 87,000 mol. wt. (Vmw87) which is homologous to HSV-l RRl (Davison and Scott, l986b; Nikas et al., 1986). Comparison of RRl and Vmw87 with the CINTHOM program (Fig. 34) revealed that the N-terminal 400 amino acids of RR1 are not present in the VZV polypeptide, whereas, the remainder of both sequences are quite homologous and no major insertions or deletions occur. The colinear parts of the sequences display $43 \%$ similarity and are separated into three highly conserved regions (marked A, $B$ and $C$ in Fig. 34) by stretches of low homology. Optimal alignment of the colinear sequences with the HOMOL program (Fig. 35) indicated that the homology percentage for the $A$, $B$, and $C$ regions is $54 \%, 61 \%$, and $56 \%$ respectively.


Figure 34. A CINTHOM plot comparing the amino acid sequence of HSV-l RRI with that of VZV Vmw87. Underlined parts of the homology diagonal denote the $A, B$ and $C$ polypeptide regions of higher homology. Program settings were: range = 15; scale factor $=0.95$; minimum value plotted $=30 \%$; compressed xl5.
VZV MEFKRIFNTVHD IINRLCQHGYKEYIIPPESTTPVELMEYISTIVSKLKAVTRQDERVYRCCGEL 6S

HSV-1 TFGSPPRLTEDDFGLLNYALVEMORLC LDVPPVPPNAYMPYYLREYVTRLVNGFKPLVSRSARLYRILGVL 430

VZV IHCRINLRSVSMETWLTSPILCLTPRVRQAIEGRRDEIRRAILEPFLKDQYPAL ATL GLQSALKYE 131
HSV-1 VHLRIRTREASFEEWLRSKEVAL DFGLTERLREHEAQLVILAQAL DHYDCLIHSTPHTLVERGLQSALKYE 501

VZV DFYLTKLEEGKLESLCQFFLRLAATVTTEIVNLPKIAT LIPGINDG YTWTDVCRVFFTALACQKIVPATPV 202
HSV-1 EFYLKRFGGHYMESVFQMYTRIA GFLACRATRGMRHIALGREGSWWEMFKFFFHRLYDHQIVPSTPA 568

VZV MMFLGRETGATASCYLMDPESITVGRAVRAITGDVGTVLQSRGGVGISLQSLNLIPTENQTKGLLAVLKLLDCM 276

HSV-1 MLNLGTRNYYTSSCYLVNPQATTNKATLRAITSNVSAILARNGGIGLCVQAFN DSGPGTASVMPALKVLDSL 640

VZV VMAINSDCERPTGVCVYIEPWHVDLQTVLATRGMLVRDEIFRCDNIFCCLWTPDLFFERYLSYLKGASNVQWTL 350 HSV-1 VAAHNKESARPTGACVYLEPWHTDVRAVLRMKGVLAGEEAQRCDNIFSALWMPDLFFKRLIRHLDGEKNVTWTL 714

VZV FD NRADILRTLHGEAFTSTYLRLEREGLGVSSVPIQDIAFTIIRSAAVTGSPFLMFKDACNRNYHMNTQGNAI 423 HSV-1 FDRDTSMSLADFHGEEFEKLYQHLEVMGFG EQIPIQELAYGIVRSAATTGSPFVMFKDAVNRHYIYDTQGAAI 787

VZV TGSNLCTEIVQKADAHQHGVCNLASINLTTCLSKGPVSFNLNDLQLTARTTVIFLNGVLAAGNFPCKKSCKGVK 497
HSV-1 AGSNLCTEIVHPASKRSSGVCNLGSVNLARCVS RQTFDFGRLRDAVQACVLMVNIMIDSTLQPTPQCTRGND 859

VZV NNRSLGIGIQGLHTTCLRLGFDLTSQPARRLNVQIAELMLYETMKTSMEMCKIGGLAPFKGFTESKYAKGWLHQ 571


VZV DGF STISYLDLPWCTLRDDICAYGLYNSQFLALMPTVSSAQVTECSEGFSPIYNNMFSKVTTSGELLRPNLDL 644
HSV-1 ERFPDARPRYEGEWEMLRQSMMKHGLRNSQFVALMPTAASAQISDVSEGFAPLFTNLFSKVTRDGETLRPNTLL 1006

VZV MDELRDMYSCEEKR LEVINILEKNQWSVIRSFGCLSNSHPLLKYKTAFEYEQEDLVDMCAERAPFIDQSQSMT 717 HSV-1 LKELERTFS GKRLLEVMDSLDAKQWSVAQALPCLEPTHPLRRFKTAFDYDQKLLIDLCADRAPYVDHSQSMT 1078

VZV LFIEERPDGTIPASKIMNLLIRAYKAGLKTGMYYCKIRKATNSGLFAG GELTCTSCAL

* ****** ** ***************************

HSV-1 LYVTEKADGTLPASTLVRLLVHAYKRGLKTGMYYCKVRKATNSGVFGGDDNIVCMSCAL

Figure 35. Optimal alignment of the amino acid sequences of HSV-1 RRI with those of VZV Vmw87. Regions of clustered homology are underlined. Asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7, k$ up to 2000 .

Interestingly, most of the identical residues in the colinear parts are clustered rather than distributed evenly throughout the sequences. The longest of these clusters is located close to the C-termini (Fig. 35, HSV-l RRI aa 1101 to ll23) and displays $90 \%$ homology.
iii) HSV-l RRl shares homology with EBV Vmw93. The sequence of the entire EBV strain B 95-8 genome has been obtained (Baer et al., 1984), and mapping data exist for a number of genes. One of these encodes a polypeptide with a predicted size of $93,000 \mathrm{~mol}$. wt. (Vmw93) which is homologous to HSV-l RRl (Gibson et al., 1984; Nikas et al., 1986). Comparison of RRI and Vmw9 3 with the CINTHOM program indicated that the RRI N-terminal 400 residues are not present in the EBV polypeptide (Fig. 36). Beyond this region, homology extends to the C-terminus of the HSV-1 polypeptide and the remaining 80 C-terminal residues of Vmw9 3 are absent in RR1. The major interruption in the homology diagonal is due to an insertion of 35 amino acids in the EBV sequence (Fig. 37, EBV aa 420 to 454 ). It is of interest to note that the insertion corresponds by position to the non-homologous stretch of amino acids separating the highly conserved $A$ and $B$ regions in the HSV-l RRI/VZV Vmw87 comparison (see Fig. 34). As indicated in Fig. 37, identical residues are clustered and the overall homology of the colinear parts is $33 \%$. This percentage homology, which is lower than that obtained in the HSV-l RRI/VZV Vmw87 comparison, is an interesting result considering that the G+C DNA content of HSV ( $66 \%$ ) is closer to that of EBV (54\%) than to that of $\mathrm{VZV}(40 \%)$ in these coding regions.
iv) HSV-l RRl shares homology with VV Vmw86.

Recently, Tengelsen et al., (1988) identified and sequenced a VV strain WR gene (I-3) encoding a polypeptide of 86,000 mol. wt. (Vmw86). As the $1-3$ deduced amino acid sequence was found to be highly homologous to the mouse Ml polypeptide, these authors suggested that I-3 encodes the VV-induced large ribonucleotide reductase subunit polypeptide. CINTHOM comparison of HSV-l RRI and VV Vmw86 displayed significant homology extending approximately


Figure 36. A CINTHOM plot comparing the amino acid sequence of HSV-1 RRI with that of EBV Vmw93. A major insertion in the EBV sequence is indicated by an arrow. Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=30 \%$; compressed xl5.


Figure 37. Optimal alignment of the amino acid sequences of HSV-1 RRI with those of EBV Vmw93. Regions of clustered homology are underlined, and the major EBV insertion identified in Fig. 36 is indicated. Asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7, k$ up to 2000 .

VV Vmw86


Figure 38. A CINTHOM plot comparing the amino acid sequence of HSV-l RRI with that of VV Vmw86. Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=$ 30\%; compressed xl5.

TLEKSYLLKI NNKI VER PQHMLMR VAVGI HQWDI DSA I ETYNLLSEKWFTHASPTLFNAGTSRHQMSSCFLLM LGREGSWWEMFKFFFHR ${ }^{\star}$ LYDHQIVPSTPAMLNLGTRNYYTSSCYLVN

MIDDS I EGI YDTLKR CALISKMA GGI GLS ISNIRASGSYISGTNGISNGI I PMLR VYNNTARY IDQGGNKRP
 QATTNKATLRAITSNVSA ILARNGGIGLCVQAFNDSG PGT ASVMPALKV LDSLVAAHNKESARF VMAIYLEPWHSDIMAFLDLK KNTGNEEHRTRDLFIALWIPDLFMKR VKDDGE WSLMCPDECPGLDN GA CVYLEPWHTDVRAVLRMKGVLAGEEAQRCDNIFSALWMPDLFFKRLIRHLDGEKNVTWTLFDRDTSMSLAD WGDEFERLYTLYERERRYKSIIKARVVWKAIIESQIETGTPFILYKDACNKKSNQQNLG TIKCSNLCTEIIQ * $\star \star \star \star * * * * * * * * * * * * * * *$ HGEEFEKLYQHLE VMGFGEQIPIQELAYGI VRSAATTGSPFVMFKDA VNRHYIYDTQGAAIAGSNLCTEIVH ADAN EVA VCNLAS VALNMFVI DGRFDFLKLKVVVKVI VR NLNKI IDINYYPI PEAEISNKR HR PI GIGVQGLA
 AS KRSSGVCNLGS VNLAR CVSRQTFDF GRLRDAVQACVLMVNIMIDSTLQPTPQCTRGNDNLRSMGI GMQGLG

AFILLNYPFDSLEAQDINKKIFETIYYGALEASCEL AEKEGPYDTYVGS YASNGILQYDLWNVVPSDLWNK
 ACLKLGLDLESAEFQDLNKH IAEVMLLSAMKTSNALCVRGARPFNHFKRSMYRAGRFHWERFPDARPRYEGEW PLKDKIRTYGLRNSLLVAPLPLHQHAQILGNNES VEPYTSNIYTRRVLS GEFQVVNPHLLRVL TERKLWND
 MLRQSMMKHGLRNSQFVALMPTAASAQISDVSEGFAPLFTNLFSKVTRDGETLRPNTLLLKELERTFSGKRLL IKNRIMADGGS IQNTNLPEDIKRVYKTIWEIPQKTIIKMAADRGAFIDQSQSM NIHIAD PSYSKL VMDS LDA KQWS VAQALPCLEPTHPLRRFKTAFDYDQKLLIDLCADRAPYVDHSQSMTLYVTEKADGTLPASTL SMHFYGWSLGLKTGMYYLRTKPASAPIQFTLDKDKIKPPVVCDSEICTSCSG RLLVHAYKRGLKTGMYYCKVRKATNSGVFGGD DNIVCMSCAL

Figure 39. Optimal alignment of the amino acid sequences of HSV-1 RR1 with those of VV Vmw86. Regions of clustered homology are underlined. Asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7, k$ up to 2000 .
between RRl aa 645 and Vmw86 aa 300 to the respective C-termini (Fig. 38). Comparison of the colinear parts of these polypeptides with the HOMOL program demonstrated that they share 29 q homology which, as the case is with the other viral polypeptide comparisons, is primarily retained in stretches of identical amino acids (Fig. 39). The overal percentage homology between these polypeptides is $21 \%$ (data not shown).
v) HSV-l RRl shares limited homology with a putative HCMV ORF. Sequencing studies by Barrell and co-workers in HCMV strain ADl69 revealed the existence of a putative ORF, termed M4. PRO, which exhibits homology to RRl (B.G. Barrell, personal communication). Amino acid comparison of RRI and M4. PRO with the CINTHOM program displayed limited but detectable homology extending approximately between RRI aa 855 to 975 and M4.PRO aa 650 to 750 (Fig. 40). Comparison of the colinear parts of RRI and M4.PRO with the HOMOL program demonstrated that they share $22 \%$ homology and that two regions of more than $60 \%$ clustered homology exist (underlined regions in Fig. 4l). The overall percentage homology is $18 \%$ (data not shown).
b) Amino acid sequence comparison of HSV-l RRI and mouse Ml polypeptides.

Comparison of HSV-l RRl with the mouse Ml polypeptide (Caras et al., 1985) is represented as a CINTHOM plot in Fig. 42. As is the case with the viral polypeptide comparisons, the RRI $N$-terminal region is not present in the Ml polypeptide whereas the remainder of the sequences are colinear; the homology diagonal extends approximately between KRl aa 720 and Ml aa 330 to the respective C-termini and contains a major shift at aa 335 of the mouse sequence (indicated by arrow in Fig. 42). Comparison of the polypeptides with the HOMOL program demonstrated that the shift is due to a deletion of 13 amino acids in the mouse sequence (Fig. 43). The plot also demonstrated a major insertion of 18 amino acids at the c-terminus of the mouse polypeptide. It is of interest to note, that 15 out of 18 residues comprising this insertion are charged ones (lysine,

	150	300	450	600	750
	*	*	*	*	*
	-	.	-	.	-
	-	-	-		-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-		.
	-	-	-	-	-
150	-	-	-	-	-
	-	. .	. .	.	. . $\cdot$
	-	-	-		-
	-	ј •	-	.	$\stackrel{\square}{-}$
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-		$\stackrel{\square}{-}$
300			-.j.......		
	-	.	.	-	-
	j	-	-	-	-
		-	-	-	-
	-	-	-	-	-
	-	-	-		
	-	-	-	-	-
	-	-		-	-
$450$	-	-		-	-
	-	-	-	-	-
	-	-	-	-	-
$\frac{\text { HSV-I }}{\text { RRI }}$	-	-	-	-	$\bullet$
	-	.	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	$\stackrel{\square}{-}$
600	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	.	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
750				. . .	. .
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-		-
	-	-	-		-
900		.			
	-	-	-	i.	-
	-	-	$\stackrel{\rightharpoonup}{\text { - }}$	i.	$\stackrel{\square}{-}$
	-	.	-	. a	-
		-	-	-	-
	-	-	-	-	-
	.	-	-	-	-
	-	-	-	.	-
1050				.	
	-	-	-	-	-
	-	-	-	-	j
	-	-	-		.

Figure 40. A CINTHOM plot comparing the amino acid sequence of HSV-l RRI with that of a putative HCMV ORF termed M4.PRO (B. Barrell, personal communication). Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=30 \%$; compressed xl5.


Figure 41. Optimal alignment of the amino acid sequences of HSV-l RRI with those of a putative HCMV ORF termed M4.PRO (B. Barrell, personal communication). Polypeptide regions of higher homology are underlined. Asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7, k$ up to 2000 .


Figure 42. A CINTHOM plot comparing the amino acid sequences of $\mathrm{HSV}-1 \mathrm{RRI}$ and mouse Ml. The location of a major deletion in the mouse sequence is indicated by an arrow. Program settings were: range $=15$; scale factor $=$ 0.95 ; minimum value plotted $=30 \%$; compressed xl5.
 AHNKESARPTGACVYLEPWHTDVRAVLRMKGVLAGEEAQRCDNIFSALWMPDLFFKRLIRHLDGEKNVTWTLFD PNECPGLDEVWGEEFEKLYESYEKQGRVRKVVKAQQLWYAI IESQTETGTPYMLYKDSCNRKSNQQNLG TIKC RDTSMSLADFHGEEFEKLYQHLEVMG FGEQIPIQELAYGI VRSAATTGSPFVMFKDA VNRHYIYDTQGAAIAG
 SNLCTEIVHPASKRSSGVCNLGSVNLARCV SRQTFDFGRLRDAVQACVLMVNIMIDSTLQPTPQCTRGNDNLR PIGIGVQGLADAFILMRYPFESPEAQLLNKQIFETIYYGALEASCEL AKEYGPYETYEGSPVSKGILQYDMNN SMGI GMQGLHTACLKLGLDL ESAEFQDLNKH IAEVMLLSAMKTSNALCVRGARPFNHFKRSMYRAGRFHWERFP VA PTDLWDWKPLKEKIAKYGIRNSLLIAPMPTASTAQILGNNESIEPYTSNI YTRRVLSGEFQI VNPHLLKDL DARPRYEGEWEMLRQSMMKH GLRNSQFVALMPTAASAQISDVSEGFAPLFTNLFSKUTRDGETLRPNTLLLKEL TERGLWNEEMKNQIIACNGS IQSIP EIPDDLKQLYKTVWEISQKTVLKMAAERGAFIDQSQSLNIHIAEP ERTFSGKRLLEVMDSLDAKQWSVAQALPCLEPTHPLRRFKTAFDYDQKLLIDLCADRAPYVDHSQSMTLYVTEK ${ }^{\star}{ }^{*}$ NYGKL TSMHFYGWKQGLKTGMYYLRTRPAANPIQFTLNKEKLKDKEKALKEEEEKERNTAAMVCSLE * * * * * ******** * * * * * * * * ADGTLPASTLVRLLVHAY KRGLKTGMYYCKVRKATNSGVFGGD $\longrightarrow 18 \mathrm{aa} \longrightarrow$ DNIVCMSCAL NREECLMCGS

Figure 43. Optimal alignment of the amino acid sequences of HSV-l RRI with those of mouse Ml. Regions of clustered homology are underlined. The major insertion in the Ml sequence identified in Fig. 42 is indicated and the region of high percentage of occurence of charged residues in Ml is boxed. Asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7, k$ up to 2000 .
aspartic acid, glutamic acid), although, the immediate flanking sequences do not contain such an extreme amino acid composition. The HOMOL plot also indicated the existence of clustered homology; the overall percentage homology of the colinear sequences is $31 \%$.
c) Amino acid sequence comparison of HSV-1 RRl and E. coli Bl polypeptides.

Carlson et al., (1984) reported the amino acid sequence of the E. coli $B 1$ polypeptide, which subsequently was amended (J. Fuchs, personal communication; Nilsson et al., 1988a). Comparisons of RRI with the amended Bl sequence are represented as CINTHOM and HOMOL plots in Figs. 44 and 45, respectively. The CINTHOM plot displayed no homology at the $N$-terminus of RRl for 720 amino acids and for 360 amino acids at the $N$-terminus of Bl (Fig. 44). After these non-homologous regions, both sequences exhibit low but detectable amino acid conservation. The HOMOL alignment predicted a deletion of 20 residues close to the C-terminus of the E. coli polypeptide (Fig. 45, at E. coli Bl aa 700), and demonstrated that the colinear parts share 2l\% homology.
5. Amino Acid Sequence Conservation of HSV-1 RR2 with Other Viral Polypeptides.

The amino acid sequences of the polypeptides encoding the small ribonucleotide reductase subunit have been determined for HSV-2 strain HG52 (RR2; McLauchlan and Clements, 1983), E. coli (B2; Carlson et al., l984), surf clam Spisula solidisima (M2; Standart et al., 1985) and mouse (M2; Thelander and Berg, 1986), and comparisons of these polypeptides have been performed by these authors. The sequence of the HSV-l RR2 polypeptide has also been reported for HSV-l strain KOS (Draper et al., 1982) and was subsequently amended (K. Draper, personal communication), and for HSV-l strain $17^{+}$(McLauchlan, 1983a; McGeoch et al.. 1988). Further, the potential small ribonucleotide reductase subunit sequences have been reported for EBV (Vmw34; Baer et al., 1984), VZV (Vmw35; Davison and Scott,


750


900

1050
h

Figure 44. A CINTHOM plot comparing the amino acid sequence of HSV-l RRI with the amended E. coli Bl polypeptide sequence (Nilsson et al., 1988a). A major deletion in the Bl sequence is indicated by an arrow. Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=30 \%$; compressed xl5.

First Secon	$\begin{array}{ll} \text { sequence: } & \text { E. coli } B l \\ \text { a sequence: } & \text { HSV-1 RRI } \end{array}$
345	TRLLKGEDITLFSPSDVPGLYDAFFADQEEFERLYTKYEKDDS IR KQR VKA VELFSLMMQERASTGRIYIQNVD
720	SMSL ADF HGEEFEKLYQHLE VMGFGEQIPIQELAYGIVRSAATTGSPFVMFKD
419	HCNTHSPFDPAIAPVRQSNLCLEIALPTKPLNDVNDENGEIALCTLSAFNLGA INNLDELEELAILAVRALDAL
773	AVNRHYI YDTQGAAIAGSNLCTEIVHPAS KRSSGVCNLGS VNLARCVSRQTFDFGRLRDAVQACVLMV NIM
493	LDYQDYPI PAAKR GAMGRRTLGIGVINFAYYLANDGKRYSDGSANNLTHKTFEA IQYYLLKASNELAKEQGACP
844	IDSTLQPTPQCTRGNDNLRSMGIGMQGLHTACLKLGLDLESAEFQDLNKHIAEVMLLSAMKTSNAL CVRGARP
567	WFNETTYAKGILPIDTYKKDLDTIANEPLHYDWEALRESIKTHGLRNSTLSALMPSETSSQISNATNGIEPPRG
917	FNHFKRSMYRAGRFHWERFPD ARPRYEGEWEMLRQSMMKHGLRNSQFVALMPTAASAQISDVSEGFAPLFT
641	
988	NLFSKVTRDGETLRPNTLLLKELERTFSGKRLLEVMDSLDAKQWS VAQALPCLEPTHPLRRFKTAFDYDQKLLI
690	
1062	DLCADRAPYVDHSQSMTLYVTEKADGTLPASTLVRLLVHAYKRGLKTGMYYCKVR KATNSGVFGGDDNIV
755	ESGACKI
1132	CMSCAL

Figure 45. Optimal alignment of HSV-1 RRI with the amended amino acid sequence of E. coli Bl (Nilsson et al., 1988a). The major deletion in the $B l$ sequence predicted in Fig. 44 is indicated. Regions of clustered homology are underlined and asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7, k$ up to 2000 .

1986b; Nikas et al., 1986), VV (Vmw37; Slabauch et al., 1988), bacteriophage T4 (T4B2; Sjoberg et al., 1986) and Saccharomyces cerevisiae (Elledge and Davis, 1987; Hurd et al., 1987); likewise, each of these sequences has been compared with other proposed or identified small subunit polypeptide sequences by the respective authors. In this part of Section $B$ the polypeptide sequences of HSV-2 RR2, VZV Vmw35, VV Vmw37 and the putative HCMV ORF M3.PRO are compared with HSV-l RR2.
i) HSV-1 RR2 is highly homologous to HSV-2 RR2. Comparisons of the RR2 polypeptides of HSV-1 strain $17^{+}$ and HSV-2 strain HG52 are shown as CINTHOM and HOMOL plots in Figs. 46 and 47. The lettering of the CINTHOM diagonal indicates that the $N$-terminal 40 amino acids of both polypeptides exhibit relatively low homology while the remainder are essentialy colinear (Fig. 46). Analysis of homology with the HOMOL program indicated that the colinear parts extend from HSV-1 aa 34 and HSV-2 aa 31 to the respective C-termini (Fig. 47). The percentage homology for these regions is $93 \%$ and from 308 aligned residues 19 changes were observed; five of these are conservative ones according to the Venn diagram of amino acid conservation (Taylor, W.R., 1986a). The percentage homology for the N-terminal 40 amino acids is $44 \%$ and no major insertions or deletions are observed which is in contrast to the case with the equivalent regions of HSV-l RRI and HSV-2 RRI (see Page 84).

Larsson and Sjoberg (1986) reported the localisation of the ribonucleotide reductase radical at a tyrosine residue at E . coli B 2 aa 122. Comparison of the E. coli B 2 amino acid sequence with that of HSV-2 RR2 demonstrated that the tyrosine and adjacent amino acids are well conserved in the RR2 polypeptide; it was therefore proposed that the HSV-2 radical is localised on this tyrosine (McLauchlan, 1986). As can be seen in Fig. 47 the tyrosine residue (indicated by ©) is conserved in the HSV-l RR2 polypeptide as well, and therefore, by analogy with HSV-2 RR2, it is proposed that the HSV-1 RR2 radical is localised on this particular tyrosine.


Figure 46. A CINTHOM plot comparing the amino acid sequence of HSV-1 RR2 with that of HSV-2 RR2. Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=$ 30\%; compressed xlo.

| First sequence: | HSV-1 RR2 |
| :--- | :--- | :--- |
| Second sequence: | HSV-2 RR2 |

1 MDSAAPALS PALTALTDQSATADLAIQIPKCPDPERYFYTSQCPDINHLRSLS I LNRWLETELVF VGDEEDVSK

1 MD PAVSPASTDPLDTHASGAGAAPIPVCPTPERYFYTSQCPDINHLRSLS I LNRWLETELVFVGDEEDVSK A
LSEGELSFYRFLFAFLSAADDLVTENLGGLSGLFEQKDI LHYYVEQECIEVVHSKVYNI IQLVL FHNNDQARRE
 LSEGELGFYRFLFAFLSAADDLVTENLGGLSGLFEQKDILHYYVEQECIEVVHSRVYNI IQLVLFHNNDQARRA

149 YVAGTINHPAIRAKVDWLEAR VRECASVPEKFILMILIEGIFFAASFAAIAYLRTNNLLRVTCQSNDLISRDEA
 YVARTINHPAIRVKVDWLEAR VRECDSVPEKFILMILIEGVFFAASFAAIAYLRTNNLLRVTCQSNDLISRDEA

223 VHTTASCYIYNNYLGGHAKPPPDRVYGLFRQAVEIEIGFIRSQAPTDSHILSPAALAAIENYVRFSADRLLGLI

220 VHTTASCYIYNNYLGDHAKPEAARVYRLFREAVDIEIGFIKSQAPTDSSILSPGALAAIENYVRFSADRLLGLI
297 HMKPLFSAPPPDASFPLSLMSTDKHTNFFECRSTSYAGAVVNDL ** ** *** **********************************
294 HMQPLYSAPAPDASFPLSLMSTDKHTNFFECRSTSYAGAVVNDL

Figure 47. Optimal alignment of the amino acid sequences of HSV-1 RR2 with those of HSV-2 RR2. Arrowheads indicate the amino acid positions where the two sequences become highly homologous. The proposed location of the tyrosine radical (•) is indicated and asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7$, $k$ up to 2000 .
ii) HSV-1 RR2 shares homology with VZV Vmw35. A VZV potential ORF encoding a polypeptide of $35,000 \mathrm{~mol}$. wt., Vmw35, was shown to share homology with HSV-1 RR2 (Davison and Scott, 1986 b ; Nikas et al., 1986). A CINTHOM comparison of VZV Vmw35 and HSV-1 RR2 revealed that both sequences were colinear, although the position of the homology diagonal indicates the existence of additional amino acids at the N -terminus of RR2 (Fig. 48). Alignment of the two sequences with the HOMOL program indicated that this region consisted of 28 amino acids (Fig. 49); the remainder of both sequences share 54\% homology. In common with the HSV-1 RRI/VZV Vmw87 comparison (see Fig. 35), clusters of conserved amino acids exist and these are underlined in Fig. 49. The longest cluster, positioned between HSV-l aa lll to 139 and VZV aa 83 to ll2, contains a tyrosine residue (indicated by $\bullet$ ) which corresponds by position to the RR2 tyrosine on which the radical could be localised. In addition, this cluster contains an RR2 sequence of KDILHYYVE from which six residues are identical in $V Z V$ and one residue is replaced by a conserved one (isoleucine to valine, see Fig. 49). Interestingly, McLauchlan (1986) reported that the HSV-2 equivalent block is retained at the $C$-terminal portion of the homologous E. coli $B 2$ polypeptide.
iii) HSV-1 RR2 shares homology with VV Vmw37.

Recently, Slabaugh et al. (1988) identified and sequenced a gene which encodes a polypeptide of 37,000 mol. wt. (Vmw37) as deduced by translation of the nucleotide sequence. This polypeptide was found to be highly homologous to the mouse M2 polypeptide and was therefore suggested to encode the small subunit of the $V V$-induced ribonucleotide reductase. Amino acid comparison of HSV-1 RR2 with VV Vmw37 with the CINTHOM program revealed the existence of homology (Fig. 50). Alignment of the two polypeptides with the HOMOL program identified three clusters of identical amino acids and the sequences displayed $27 \%$ overall homology (Fig. 5l). Further, one of these clusters contain a tyrosine residue corresponding by position to the RR2 tyrosine on which the radical could be localised. Analysis of the amino acid


Figure 48. A CINTHOM plot comparing the amino acid sequence of HSV-1 RR2 with that of VZV Vmw35. Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=$ 30\%; compressed xl0.
First sequence: VZV Vmw35
Second sequence: HSV-1 RR2

223 VHTTASCYIYNNYLGGHAKPPPDRVYGLFRQAVEIEIGFIRSQAPTDSHILSPAALAAI ENYVRFSADRLLGLI


Figure 49. Optimal alignment of the amino acid sequences of HSV-1 RR2 with those of VZV Vmw35. The proposed location of the tyrosine radical (•) is indicated and regions of clustered homology are underlined. Boxed amino acids indicate $N$-terminal sequences which are conserved at the C-terminus of the E. coli $B 2$ polypeptide (McLauchlan, 1986). Asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7$, $k$ up to 2000 .


Figure 50. A CINTHOM plot comparing the amino acid sequence of HSV-1 RR2 with that of VV Vmw37. Program settings were: range $=15$; scale factor $=0.95$; minimum value plotted $=$ 30\%; compressed xlo.

First sequence:	VV Vnw 37
Second sequence:	$H S V-1$ RR2



HSV-1 RR2


VV Vmw37


20aa

Figure 51. Optimal alignment of the amino acid sequences of HSV-1 RR2 with those of VV Vmw37. Regions of clustered homology are underlined and the proposed location of the tyrosine radical (•) is indicated. Boxed residues indicate a $N$-terminal RR2 amino acid sequence which is conserved at the $C$-terminus of the $V V$ polypeptide. Asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7, k$ up to 2000. Below the alignment, the two polypeptides are depicted in a linear form showing the respective locations of the conserved amino acid sequence.
sequences demonstrated the existence of one stretch of residues (boxed residues in Fig. 5l) which is present in different positions along each polypeptide backbone.
iv) HSV-1 RR2 is not homologous to HCMV M3. PRO. The sequencing studies of Barrell and co-workers in HCMV strain AD169 identified a putative ORF, termed M3. PRO, which corresponds by position to HSV-l RR2 (B.G. Barrell, personal communication). This ORF has an extreme C-terminal composition of three interrupted stretches of 7,21 and 12 glycine residues. CINTHOM comparison of HSV-1 RR2 with M3. PRO revealed low conservation (Fig. 52). This was clearly demonstrated with the HOMOL alignment of the two sequences; the homology percentage was $17 \%$, and only one small stretch of identical amino acids exists (underlined in Fig. 53). Further, the RR2 tyrosine residue (indicated by -) on which the radical could be localised is not conserved in the HCMV sequence. Interestingly, the amino acid sequence LGGLSG which is located close to the $N$-terminus of RR2 (Fig. 53, HSV-1 aa 101 to l06), is retained close to the C-terminus of M3. PRO (Fig. 53, M3.PRO aa 326 to 331) with only one conservative change from a serine to a glycine.

## DISCUSSION.

In the first part of Section $B$ the HSV-l RRI polypeptide was compared with homologous herpesvirus sequences and with the equivalent polypeptides of the eukaryotic and prokaryotic enzymes. In the second part, the HSV-1 RR2 polypeptide was compared with recently obtained viral polypeptide sequences. The main feature that emerges from this analysis is thatsimilaritybetween colinear polypeptide regions is primarily retained in stretches of identical or conserved amino acids. Other features are: i) the RRI $N$-terminal region is conserved only in HSV-2 RRI, whereas it is absent from other viral, eukaryotic and prokaryotic polypeptides, ii) EBV Vmw9 3 contains an


Figure 52. A CINTHOM plot comparing the amino acid sequence of HSV-1 RR2 with that of putative HCMV ORF termed M3.PRO (B. Barrell, personal communication). program settings were: range $=15 ;$ scale factor $=0.95$; minimum value plotted $=30 \%$; compressed xl0.


## HSV-1 RR2



HCMV M3.PRO


20aa,

Figure 53. Optimal alignment of the amino acid sequences of HSV-1 RR2 with those of a putative HCMV ORF termed M3. PRO (B. Barrell, personal communication). The single region of clustered homology is underlined and the proposed location of the tyrosine radical in RR2 (•) is indicated. Boxed residues indicate a $N$-terminal $R R 2$ amino acid sequence which is conserved at the C-terminus of the M3.PRO. Asterisks denote conserved residues. The program parameters were: mutation weight $=5$, gap weight $=3 k+7$, $k$ up to 2000 . Below the alignment, the two polypeptide sequences are depicted in a linear form showing the respective positions of the conserved amino acid sequence.
insertion which separates highly conserved regions in the HSV-1, HSV-2 and VZV homologue polypeptides, and iii) the first of two putative HCMV ORFs, which corresponds by position to RRl exhibits low but detectable homology; the second ORF, which corresponds by position to RR2 exhibits extremely low conservation.
6. Relationship Between HSV-l and Other Herpesviral and Non-herpesviral Polypeptides.
a) Polypeptide conservation between HSV-1 and HSV-2. The comparisons presented in this section clearly demonstrate that the highest percentage homology is observed between the HSV-l and HSV-2 polypeptides. The DNA sequences for a number of genes such as TK (McKnight, 1980; Wagner et al., 1981), gC (Swain et al., 1985), AE (Draper et al., 1986) and for most of the polypeptides encoded by the $U_{S}$ segment (McGeoch et al., 1985 and 1987), have been obtained for both HSV serotypes. Comparisons between equivalent polypeptides indicate relatively low homology for the N-termini, as compared with the remainder of the coding regions which are quite well conserved (McGeoch et al., 1987); the only exception reported so far is the HSV-l IE Vmw63 which differs in one out of twenty $N$-terminal amino acids from its HSV-2 counterpart (Whitton et al., l983). In some instances, most of the $N$-terminal amino acid changes are conservative and, therefore, their predicted secondary structures are quite similar as is the case for the AE (Draper et al., 1986) and RRl (Nikas et al., 1986; see Results and Discussion, Section C). Only two cases of major differences within the $N$-termini of homologous HSV-l and HSV-2 polypeptides have been reported so far; the first one is for $H S V-2 \mathrm{gG}$, which contains an insertion of approximately 480 residues (McGeoch et al., 1987), and the second for $H S V-1 \mathrm{gC}$, which contains an additional 28 amino acids (Swain et al., 1985).
b) Polypeptide conservation between HSV-l and VZV. The genomes of $\mathrm{HSV}-1$ and $V Z V$ are quite similar in that they both have $U_{L}, R_{S}$ and $U_{S}$ segments. $V Z V$ does have an $R_{L}$ segment but this is only 88 bp (Davison, 1984). Comparisons of equivalent HSV-l and VZV polypeptide coding regions demonstrated a wide variation of homology, ranging from similar polypeptides, such as the HSV-l Vmwl 75 and VZV Vmwl 40 (McGeoch et al., 1986) and the DNA polymerase (McGeoch et al., 1988), to the very limited relationship of the polypeptides encoded by the HSV-l USl0 and VZV RS3 genes (Davison and McGeoch, 1986). In most comparisons reported so far, there is a significant dissimilarity in length and amino acid composition at the $C$ - and, particularly, the $N$-termini, the latter being the least conserved regions (Davison and McGeoch, 1986). In that respect, these authors reported that HSV-1 Vmw68, US3, US10 and VZV Vmwl40, USl, US4, have more residues in their $N$-terminal portions than their counterparts; in contrast, HSV-l Vmw65, the IE trans-inducing factor, has 80 C-terminal amino acids which are not present in the VZV Vmw54 homologue (Dalrymple et al., 1985). However, an N-terminal difference of approximately 360 residues, as the one observed in the HSV-1 RRI/VZV Vmw87 comparison (see Page 84), has not been reported as yet (D.J. McGeoch, personal communication).
c) Polypeptide conservation between HSV-l and EBV. Although the genome sequences of both HSV-l and EBV have been obtained, comparisons have been performed for only a limited number of polypeptides such as the DNA polymerase (Quinn and McGeoch, 1985) and gB (Pellet et al., 1985) where homology is approximately 40\%; a systematic analysis such as the one performed for $\mathrm{HSV}-1$ and $V Z V$ has not been carried out as yet. However, Davison and Taylor (1987) have compared all the VZV and EBV ORFs and found three major regions of approximate colinearity in the $U_{L}$ segments (Fig. 54, regions $A, B$ and $C)$ while no relationship was observed for the repeats or the $U_{S}$ segments. Within the $A, B$ and $C$ regions, certain genes are strongly conserved while the majority have barely detectable homology; their identification


Figure 54. This diagram shows the relationship between the VZV and EBV genomes. The VZV genome comprises two unique components ( $U_{L}$ and $U_{S}$ ) each flanked by inverted repeats ( $T_{L} L^{\prime}, I R_{L}, I R_{S}$ and $T R_{S}$ ). The EBV genome also consists of two unique components ( $U_{L}$ and $U_{S}$ ) joined by a variable number of copies of a direct repeat (IR). The VZV $U_{L}$ component is represented as three major regions ( $A, B$ and $C$ ) which correspond on the basis of homology to regions $C, A^{\prime}$ and $B$ in the EBV $U_{L}$ component. A' denotes the $A$ region in reverse orientation.
as homologues was based on characteristics such as hydropathicity profiles or glycoprotein-like sequences. Further, the VZV genes 9 through to 17 which map between the $A$ and $B$ regions have no obvious homologue in the EBV genome. The HSV-1 counterparts of these VZV genes are UL4l through to UL49 and these include the genes for the IE trans-inducing factor Vmw65, gC and the $65 K_{\text {DBP }}$ protein.
d) Polypeptide conservation between HSV-l and HCMV.

As reported above, the lowest percentage homology was observed in the RR1 and RR2 comparisons with the respective putative HCMV ORFs. To date, the only HCMV available sequencing data are for the $U_{S}, R_{S}$, a portion of the $T R_{L}$ segment (Weston and Barrell, 1986), and a 20 kbp fragment in $U_{L}$ (Kouzarides et al., 1987). Comparisons of the HCMV $U_{S}$ ORFs with $H S V-1, ~ V Z V$ and $E B V U_{S}$ sequences revealed no homology at all (Weston and Barrell, 1986). However, from the eight ORFs in the $U_{L}$ fragment one exhibits $31 \%$ homology to the HSV-1 DNA polymerase and another to HSV-l gB (Kouzarides et al., 1987). These homologous pairs of sequences exhibit extremely low conservation at the $N$-termini while close to the C-termini a substantial degree of conservation can be observed (Kouzarides et al., 1987).
e) Polypeptide conservation between HSV-1 and non-herpesviral polypeptides.
Apart from the ribonucleotide reductase genes, which, as already mentioned, share homology with non-herpesviral polypeptides only two other HSV-l genes have been shown to share homology. Earl et al. (1986) reported that the herpesvirus DNA polymerase shares homology with the corresponding adenovirus gene, and McGeoch and Davison (1986b) demonstrated that a non-characterised HSV-1 ORF exhibited homology, spanning an 80 amino acid region at the middle of the ORF, with a eukaryotic protein kinase. This ORF was subsequently shown to encode a protein kinase (see Introduction, Page 35) and is the first HSV-l gene for which a function has been assigned by this approach.
7. Constituents of the Viral Ribonucleotide Reductases.

As already mentioned (see Introduction, Page 49), the HSV-l-specified enzyme consists of the RR1 and RR2 polypeptides. On the basis of the strong homology observed in the HSV-l RRI/VZV Vmw87 and HSV-l RR2/VZV Vmw35 comparisons it appears that these VZV ORFs code for the large and small subunits of the VZV-induced enzyme, respectively. This is further supported by the similarity of the properties of the HSV- and VZV-induced enzymes (Spector et al., 1987). Dutia et al. (1986) attempted to immunoprecipitate the $V Z V$ activity by means of an oligopeptide antiserum directed against the 7 C-terminal amino acids of HSV-2 RR2. This approach, based on the observation that the C-terminal portions of the HSV-2 and VZV small subunit polypeptides are highly conserved (McLauchlan, 1986; Nikas et al., 1986), resulted in the precipitation of the Vmw35 protein species. However, the antiserum did not precipitate the Vmw87 polypeptide, most probably because different immunoprecipitation conditions are required to achieve this.

On the basis of the strong homology observed in the HSV-l RRI/EBV Vmw9 3 (see Page 85) and in conjunction with the observed similarity of HSV-l RR2 with EBV Vmw34 (McLauchlan, 1986) it appears likely that these polypeptides encode the large and small subunits of the EBV-specified activity in infected cells. Equally, the observed percentage homologies of the VV Vmw86 and Vmw37 polypeptides with HSV-1 RRI and RR2 would indicate that they code for the large and small subunits of the $V V$-induced enzyme.

The same suggestions cannot be applied with certainty to the HCMV putative ORFs. The larger of these, M4.PRO, exhibited some homology to HSV-l RRl and as can be seen in Fig. 41 two regions were conserved. The first region contains a sequence that resembles the proposed nucleotide binding site identified in the ribonucleotide reductase large subunit polypeptides (see Page l03). The second region corresponds to a region in the large subunit polypeptides which appears to be important for structure of the enzyme (see Page ll2). These similarities would suggest that M4. PRO resembles a remnant of a protein which contains
a nucleotide binding site; this could possibly be the large subunit of ribonucleotide reductase although for the time being there are no reports describing such an HCMV-specified activity.

On the other hand, M3.PRO exhibits the lowest similarity to HSV-1 RR2 observed so far. Further, the RR2 tyrosine residue on which the radical is thought to be localised and a block of residues which are highly conserved in all the small subunit polypeptides (see Page l00) are not conserved in M3.PRO. The observed lack of similarity would suggest that this ORF does not code for the ribonucleotide reductase small subunit, although, it should be stated that lack of homology of the primary structure of two proteins is not adequate evidence for assigning different functions to these proteins. The latter has been clearly shown in the EBV/VZV comparisons (see Page 92) and in the case of the HSV-1 protein kinase which shares limited degree of conservation with the eukaryotic equivalent polypeptide (McGeoch and Davison, 1986b). In conclusion, although the available data are insufficient to propose whether the HCMV ORFs code for a ribonucleotide reductase, it is suggested that at least in the corresponding HSV-1 genomic position this virus does not code for such an activity.
8. Putative Common Epitopes in the HSV-1 RRI and RR2 Subunits.

A number of immunoprecipitation studies using monoclonal antibodies or anti-oligopeptide sera specific for either the RR1 or RR2 polypeptides resulted in the co-precipitation of both subunits (Frame et al., 1985; Bacchetti et al., 1986; Cohen et al., 1986b; Dutia et al., 1986; Langelier et al., 1986). It was therefore suggested that this is due either to the tight binding of the RRI and RR2 subunits or that these subunits share common epitopes. Cohen et al. (1986b) investigated the latter suggestion by raising a polyclonal antiserum(P9) against a nonapeptide representing the $C$-terminus of RR2 and demonstrated that $P 9$ could precipitate RR2 and in addition, albeit less efficiently, RR1. The P9 antiserumwas reacted with RR2

```
CONSERVED AMINO ACID STRETCHES IN THE HSV-1
 RR1 AND RR2 POLYPEPTIDES
```

Sequence	RR1 AA Position	RR2 AA Position
TAD	139	21
LGG	147	236
TDS	204	268
AVA	119	335
AGA	281	333
PAL	338	10
REYV	403	147
HLR	432	48
NLG	571	100
AAIA	785	196
LGL	878	293
PDA	936	307
DVS	977	71
RLL	1018	287

(*) The numbers indicate the position of the first amino acid (AA) in the RR1 and RR2 sequences shown.
which was bound to nitrocellulose paper and RR2-specific antibodies were eluted; these were then reacted with a partially purified HSV-l-infected cell extract which was separated by SDS-polyacrylamide gel electrophoresis and electroblotted to nitrocellulose paper. The RR2-specific antibodies reacted with both the RR2 and RRI polypeptides thus indicating that the two subunits share common antigenic determinants.

Comparison of the nonapeptide amino acid sequence with the RRl amino acid sequence showed that the peptides AVA and AVV were present in RRl (Cohen et al., 1986b). These authors suggested that, although the homologous sequences were not particularly stri king, they could be considered as common epitopes. It is generally believed that protein epitopes comprise five to seven amino acids which can either be consecutive or reside in different parts of the primary structure of the protein (conformational epitopes). However, shorter epitopes of three consecutive amino acids have been reported (Wehland et al., 1984), and on that basis the suggestion of Cohen et al. (1986b) is plausible. Further to these RR1 and RR2 homologous stretches, a number of others were identified which could represent common epitopes (Table III). However, it is equally possible that these may simply reflect similarities of the codon usage in the RRI and RR2 polypeptide DNA coding regions. Further studies are required in order to distinguish between these possibilities.
9. Alignment and Secondary Structure Predictions of the Identified or Potential Large and Small Subunit Ribonucleotide Reductase Polypeptides.

The results presented in Section $B$ and other reports (see Page 87) indicate that there is a high degree of clustered conservation between the identified or potential large ( $R R_{L}$ ) and small ( $R R_{S}$ ) ribonucleotide reductase subunits of viral, prokaryotic and eukaryotic origin. Thus, it became of interest to identify conserved structural or functional elements and to determine, if possible, the secondary structure of the enzyme's subunits. The program used for this alignment was the consensus template alignment program (Taylor, W.R., 1986b; see Materials and Methods, Page 77). In contrast to the HOMOL program, which can align only two sequences and scores only for identical amino acids, the consensus template alignment program can align more than two sequences and scores for both identical residues and residues with similar physico-chemical properties. Due to the difference in scoring between these programs the sequence alignments are slightly different and some of the insertions or deletions predicted with the HOMOL program map within aligned polypeptide regions of the consensus template alignment output. The latter program can further predict the secondary structure for each amino acid sequence with the GARNIER algorithm (Garnier et al., 1978), and from the combination of the individual predictions a consensus one can be derived. Below the aligned sequences there are two consensus lines; the first line indicates conserved amino acids and the second line contains the consensus secondary structure prediction. As individual predictions did not give identical answers, the most frequent prediction was taken for each position. Gaps introduced into the sequences for alignment were designated as unstructured areas and boxed regions represent blocks within which the majority of amino acids are conserved.
a) Alignment of the $R R$ polypeptides. The $\mathrm{RR}_{\mathrm{L}}$ polypeptide alignment contained the HSV-l RRI, HSV-2 RRI, VZV Vmw87, EBV Vmw93, the amended E. coli Bl and the mouse Ml polypeptide sequences. On the basis of the secondary structure predictions, the $\mathrm{RR}_{\mathrm{L}}$ sequences can be divided into four regions.

Region 1 contains the HSV-1 RRI and HSV-2 RRl $N$-terminal regions, spanning HSV-1 positions 1 to 312 (see Page 84) and, in addition, sequences up to HSV-1 position 400 (Fig. 55); the latter were included because they are not present in other $\mathrm{RR}_{\mathrm{L}}$ polypeptides (see Page 91). The predicted secondary structures for each Region 1 were homologous and $80 \%$ of aligned residues had similar structural predictions (data not shown). The consensus secondary structure emphasised four distinct parts. The first part starts at HSV-l RRI position 1 and terminates at the short run of prolines at aa 150 to 155 where there are two deletions comprising a total of 12 amino acids in the HSV-1 sequence. Within this portion of the sequence, $30 \%$ of aligned amino acids were predicted to adopt $\beta$-strand conformation and $1 \%$ to adopt $\alpha$-helical conformation. Most of the amino acids adopting $\beta$-strand conformation were clustered so that the first part of the sequence is punctuated by short $\beta$-strand stretches. The intervening sequences were predicted as unstructured regions and contain all the predicted insertions and deletions. Interestingly, $90 \%$ of amino acids in the $\beta$-strands are either identical or replaced by similar residues and $36 \%$ of them are hydrophobic ones, predominantly isoleucine, valine and alanine. The second and third parts extend beyond the stretch of prolines up to HSV-l RRI position 255 where there is a deletion of eight amino acids in the HSV-l sequence; these parts are separated between them by a deletion of six amino acids at HSV-l RRI position 205. Parts 2 and 3 are predicted as unstructured, and within them the sequence becomes more hydrophilic with few conserved clusters of hydrophobic residues. The fourth part spans HSV-l RRI amino acid positions 256 through to 400. Within this part the sequence becomes increasingly $\alpha$-helical with a small number of predicted $\beta$-strands.


Figure 55. Alignment of the HSV-1 and HSV-2 RRI polypeptide Region l. The consensus line below the alignment (C) shows the consensus GARNIER secondary structure prediction for each aligned position; (E) represents $\beta$-strand conformation and (H) represents $\alpha$-helical conformation. The blocks of prolines are boxed and amino acid sequences in numbered boxes indicate the short $\beta$-strand stretches thought to punctuate the RRI region between positions 1 to 150 . The Regions are shown separated in four parts ( $P$ ) on the basis of the consensus GARNIER prediction and the predicted HSV-l RRI deletions. Underlined amino acids indicate the potential nuclear localisation signals (see General Discussion, Page 127). The amino acid positions of the alignment are numbered as in HSV-1 RRI (see Fig. 26) and asterisks, introduced by the operator, denote conserved amino acids. Dots within the aligned sequences have been introduced by the program to optimise the alignment.

Region 2 extends approximately from HSV-1 aa 400
to 530 where there are two major insertions of 16 and 12 residues in the eukaryotic and prokaryotic polypeptides, respectively (Fig. 56). Within this region, $50 \%$ of the amino acids were predicted to adopt $\alpha$-helical conformations and no $\beta$-strands were observed. Region 2 contains 4 conserved residues and one block of identical amino acids, labelled 1 in Fig. 56 , which is conserved in the viral $R_{L}$. The remainder of the polypeptides have been separated into Regions 3 and 4 by two EBV insertions at HSV-l RRI aa 842 and aa 856 (Fig. 56). These insertions, which comprise a total of 30 residues, approximately correspond to the major insertion of 34 amino acids in the HSV RRI/EBV Vmw9 3 comparison (see Fig. 37); however, as described on Page 97, the length and positions of these insertions differ slightly between different programs. The secondary structure prediction for Regions 3 and 4 identified areas of both $\beta$-strand and $\alpha$-helix, which occur one after the other so that most of the $\alpha$-helices are separated by $\beta$-strands along the sequences and vice versa. Region 3 is the most conserved $R_{\text {L }}$ region; it contains 21 conserved amino acids and the majority of the blocks are retained in all the polypeptides (Fig. 56, blocks 2, 3, 4, 6 and 7). In Region 4 only blocks 9,11 and 15 are conserved in all the $R_{L}$ and the program identified 20 conserved amino acids.
b) Alignment of the $R R_{S}$ polypeptides.

The small subunit comparison contained the HSV-1 RR2, HSV-2 RR2, VZV Vmw34, EBV Vmw34 and E. coli B2 polypeptides (Fig. 57). The program identified 33 conserved amino acids and two major insertions of 19 and 23 amino acids in the E. coli B2 polypeptide (Fig. 57, HSV-2 RR2 aa 156 and 315). In common with $\mathrm{RR}_{\mathrm{L}}$ Region 2 (see above), $50 \%$ of the amino acids were predicted to adopt $\alpha$-helical conformation although there were a few $\beta$-strand structures observed close to the C-termini of the polypeptides. The $\mathrm{RR}_{\mathrm{S}}$ alignment further identified six blocks of conserved residues (Fig. 57, blocks 16 through to 21 ); these were subsequently compared with other $\mathrm{RR}_{\mathrm{S}}$ sequences reported on Page 87 , which were not previously available. In these additional

Figure 56. Alignment of Regions 2, 3 and 4 of the identified or proposed ribonucleotide reductase large subunit polypeptides of viral eukaryotic and prokaryotic origin ( $R R_{L}$ ). Below the alignment, the first consensus line (Cl) displays the amino acids conserved in all $\mathrm{RR}_{\mathrm{L}}$ and the second line (C2) shows the consensus GARNIER secondary structure prediction for each aligned position. (E) represents $\beta$-strand conformation and (H) represents $\alpha$-helical conformation. The amino acid positions of the alignment are numbered as in HSV-l RRl (see Fig. 26), and amino acids sequences of higher homology are boxed. Dots within the aligned sequences denote gaps introduced by the program for optimal alignment.

	$\rightarrow \mathrm{R} 2$				415					439
HSV-1 KRI				EY	VTKLVNGFKP	LVSRSA.			RL. YRILGVL	V.hLRIRTKE
HSV-2 RRI				YHLREY	ATkLVNGFKP	LVRrSA			RL. YRILGIL	V.hLrirtre
vzV Vmw87	MEFKKIFN'TV	HDIINKLCQH	GYKEYIIPPE	STTPVELMEY	ISTIVSKLK.	AVTKQD		DE	RV. YRCCGE	HCKINLKS
EBV Unw9 3			MATT	HVEHELLSKL	IDELKANSTP	EadVLa.			RLLHKLKAEV	Stht vaeyle
Mouse Ml	MHVIKR	DGRQERVMFD	Kı'tskiQklc	YGLNMDFVDP	AQI'TMKVIQG	LYSGVI'TVEL	d'thanetant	LTTTKH. PDY	ILAARIAVSN	L. HKET. . KK
E.coli Bl	MNQNLLVTKK	DGSDEHINFD	Klhrvldowas	EGLHN. . VS 1	SQVELRSHIQ	FYOGIKTSDI	HETIIKAAAD	LISKDAPDYQ	YLAARLAIFH	L.KK....KA
Cl										
C2					НННHi---EE				-пнннннннн	
					489	1				析
HSV-1 RRI	ASFEEWLRSK	EVALDFGLTE	RLREHEAQLV	ILAQALDHYD	CLIHSTPHTL	vergldsalk	Yeefylk.rf	G. GHymes vf	QMYTKIAGFL	acratrgmrh
HSV-2 RRI	ASFEEWMRSK	EvDLDFGLTE	RLREHEAQLM	ILAQALNPYD	CLIHSTPNTL	verglqsalk	Yeefylk.rf	G. GHymes vf	QMYTRIAGFL	ACRATRGMRH
v2V Vmw87	VSMETWLTSP	ILCLTPRVKQ	AIEGRRDE.	IRRAILEPF.	. .LKDQIPAL	atlgldsalk	YEDFYLT. KL	EEGK. LESLC	QFFLRLAATV	TTEIVNLPKI
EBV Vmw9 3	vFSDKFYDEE	FFKMHRDE. .	LETRVSA		FAQSPAYERI	VSSGYLSALR	YfYDTYLY.VG	KSGKQ.ESVQ	HFYMRLAGFC	ASTTCLYAGL
Mouse Ml	VFSDVMEDLY	NYINPHNGRH	SPMVASST. .	LDI Vmankdr	LNSAIIYDRD	FSYNYFGFKT	LERSYL..LK	INGKVAERPQ	HMLMRVSVGI	
E.coli Bl	YGQFEPPALY	DHVVKNVEM.	GKYDNHLL.	EDYTEEEFKQ	MD'TFIDHDRD	MTFSCAAVKQ	LEGKYLVQNK	VTGEIYESAQ	FLYillvasd	
$\mathrm{Cl}^{\text {cl }}$										
	H- HH HHHHHH	H	H\%HHHHHH--	нНнннннн--	-EE-	EHH	нннннн	-- HH H		
HSV-1 RR1	$\longrightarrow$ R 3				582	2			3	25
	. IALGREGS.	. WWEMFKF	FFHRLYDHQI	vPSTPAMLNL	GTRNYYTSSC	YLJN PQATTN	Katlraitsn	vSAILARNGG	IGLCV.	QAFNDSG
HSV-2 RR1	. IALGRQGS.	. WWEMFKF	FFHRLYDHQI	VPS'TPAMLNL	GTRNYYTSSC	YLUNPQATTIN	QA'Tluaitg	VSAILAKNGG	iglacm.	. QaFNDAS
VZV Umw87	.ATLIPGIND	GYTWTDVCRV	FFTALACQKI	VPATPVMMFL	Gretgatas	YLMDPESITV	Gravral'tGd	vGTVLQSRGG	vgislos	LIPTEN
EBV Umw9 3	RAALQRARPE	IESDMEVFDY	YFEHLTSQTV	CCSTPFmRFA	GVENSTLASC	ILTTPDLSSE	WDVTQALYRH	LGRYLFQRAG	vgVGV.	TGAAQ
Mouse Ml	. HKED	IDAAIETYNL	LSEKWFDHA.	. Sptlefa	GTNRPQLSSC	FLLS.MKDDS	IEGIYDTLKQ	calisksagg	iguavscira	TGSYIAGTNG
E.coli Bl	-FSNYPRETR	LQYVKRFYDA	VSTFKISLP.	trimsga	RTPTRQFSSC	VLI. .ECGDS	LDSINATSSA	IVKYVSQRAG	IGINAGKIRA	LGSPIRGGE
$\begin{aligned} & \overline{\mathrm{C} 1} \\ & \mathrm{C} 2 \end{aligned}$										
		--- - Hhththr		Et	-EE	E	E	EEE	EE	
				4	674			5		24
HSV-1 RRI	GTasumpalk	VLDSLVAAHN	KESA.RPTGA	CVY EPWHTD	VRavlrmkg	LAGEEAQRCD	NIFSALWMPD	LFFKKLIRHL	DGEKNVTWTL	FORDTSMSL
HS V-2 RRI	GTASIMPALK	vLDSLVAahn	KQST.RPTGA	CVYLEPWhSD	vravlrmkg	Lageeaprcd	NIFSALWMPD	LFFRKLIRHL	dGEKNVTWSL	FDRDTSMSL
V2V Vmw87	QTKGLLAVLK	LldCmvmain	SDCE.rptGV	CVYIEPWHVD	LQTVLATRGM	LVRDEIFRCD	NIFCCLWTPD	LfFEEYydSyl	KGASNVQWTL	FDNRADI
EBV Vmw9 3	DGKH ISSLMR	MINSHVEYHN	YGCK.RPVSV	AAYMEPWHSQ	IFKFLETK.	. LPENHERCP	GIFTGLFUPE	LFFE. LFRDT	...PWSDWYL	FDPKDASG
Mouse Ml	NSNGLVPMLR	vynntaryvd	QGGNKRPGAF	AIYLEPWHLD	IFEFLDLK..	. KNTGQGR TA	STRS.	...LLC	TLDPNQDWSL	MCPNEC
E. coli ${ }^{\text {Cl }}$	FHTGCIPFYK	HFQTAVKSCS	QGGV.rgGAA	TLFYPMWHLE	VESLLVLK.	. NNRGGVEGNR	VRHMDYGVQI	NKLMYTKLLL.	. KGEDITL	FS
$\begin{aligned} & \overline{\mathrm{C} 1} \\ & \mathrm{C} 2 \end{aligned}$				-						
	--EE-HHH	HHH-- $\mathrm{HHHH}-$		--HHH	нНннни--	E	- $\mathrm{EE}-\mathrm{-}-\mathrm{H}-$	- $\mathrm{HHH}-\mathrm{H}$	-EEE	
	6				768			7		$8 \quad 81$
HSV-1 RRl	DFHG. . .EEF	EKLY. QhLEV	MGFG. EQ. IP	IQELAYGIVR	SAATTGSPFFV	MFKDAVNRHY	IYDTQGAAIA	GSNLCTEIVH	PASkRSSGYC	NLGSJUNLAR
HSV-2 RR1	DFHG. . . EEF	EKLY.EHLEA	MGFG. ET. IP	IQDLAYAIVR	SaATTGSPFI	MFKDAVNRHY	IYDTQGAAIA	gSnlcteive	PSSKRSSGYC	NLGS VNLAR
VZV Vmw87	TLHG. . EAF	TSTY.LRLER	EGLGVSS. VP	IQDIAFTIIR	SAAVTGSPFL	MFKDACNRNY	HMNTQGNAIT	gSnlqreive	KADAHQHGYC	NLASINLTT
EBV Vmw9 3	RLyG. . . EEF	EkEyYRLVTA	GKFC. GR. vs	IKSLMFSIVN	Cavkagspri	LLKEACNAHF	WRDLQGEAMN	afanccaevle	PS.KKSVATC	NLANICLPK
Mouse ${ }_{\text {E.coli }} \mathrm{Ml}$ Bl	EVFG. . . EEF	EKLY.ESYEK	QGR VRKV. VK	AQQLWYAIIE	SQTETGTPYM	LYKDSCNKKS	NQQNLG.TIK	osnlgteive	YTSKDENAVC	NLASLALNM
$\frac{\text { E.coli }}{\text { Cl }} \mathrm{Bl}$	DAFEADQEEF	ERLY.TKYEK	DDS IRKQRVK	AVELFSLMMQ	ERASTGRIYI	QNVDHCNTSP	FDPAIA.PVR	QSNLOUEIAL	PTKPLNDVND	ENGEIALCTL
$\begin{aligned} & \mathrm{C1} \\ & \mathrm{C} 2 \end{aligned}$										


 CLRLGFDLTS FILMKYPFES
LANDGKKYSD LANDGKKYSD 1
1
1
1
1
1
1
a
I



$\stackrel{\infty}{\infty}$ SoIW $\dot{y}$ 号
o
o
H
0 YPIPEAHL 1
1
1
1
1
1
1
1
1

## G-G------- -EEEEEEHH


 . GVKNNRSL
 SNKKHRPI
GAMGRRTL

## $\stackrel{\omega}{5}$



H-------- $E$
PGEGPGGWCV
 AMVCSLENRE ECLMCGS

 a










$\begin{aligned} & \text { ACVLMVNI. } \\ & \text { ACVLMVNI. }\end{aligned}$



1	1
1	1
1	1
1	1
1	1
1	1
	1
1	1

$$
\underset{y y y y}{x}
$$

## 

## $\stackrel{\sim}{\sim}$

 LEAMDGLEAKLEVINILEKN EaLnlvgGrb NEEMKNQIIA
WEMPGNDGYL WEMPGNDGYL ннннннннн-




## 15

PGGLEVCYKY RQLFSEDDLL ETDGFTERAC ESCQ

ETELVFVGDE EDVSKLSEGE LSFYRFLFAF LSAADDLVTE 99



项各吴：仙


草心



$$
\begin{aligned}
& \text { YVAGTIN. . } \\
& \text { YVARTIN. } \\
& \text { YVNVTIN. . } \\
& \text { YAEAIMA. } \\
& \text { I VTNEQIQKR }
\end{aligned}
$$

$\stackrel{9}{-}$ VIHVOGNNH FRGDESLRVQ

FDGDRAAMNA
VNDPSVVFDD




N N゙がN	さN゙が
	$\underset{\sim}{\sim}$
$\rightarrow \sim 5{ }_{\text {F }}^{\text {F }}$	$\rightarrow N E=$
$>^{\prime}>^{\prime} \gg 00$	$>^{\prime}>^{\prime} \gg 0$


 SXTAVDGIGA $\forall \exists S A T O H I 甘 L ~ I \forall d भ G . . . ~$


 N＾A $\wedge$ V $\wedge$ KSLS

 ．QL

N






Figure 57. Alignment of the identified or proposed ribonucleotide reductase small subunit polypeptides of viral eukaryotic and prokaryotic origin ( $\mathrm{RR}_{\mathrm{S}}$ ). The first consensus line (Cl) displays the amino acids conserved in all $\mathrm{RR}_{\mathrm{S}}$ and the second line (C2) shows the consensus GARNIER secondary structure prediction for each aligned position. (E) represents $\beta$-strand conformation and (H) represents $\alpha$-helical conformation. The proposed location of the tyrosyl radical is indicated ( $\bullet$ ) and amino acids sequences of higher homology are boxed. The amino acid positions of the alignment are numbered as in HSV-l RR2 (McGeoch et al., 1988), and dots within the aligned sequences denote gaps introduced for optimal alignment.
comparisons only block 19 was retained in all the $R_{S}$ polypeptides.

## DISCUSSION.

In the discussion of this Section the available biochemical data are combined with structural features identified from the $R R_{L}$ and $R_{S}$ alignments.
10. Structural and Functional Features of the $\mathrm{RR}_{\underline{L}}$ Polypeptides.
a) Region 1 .

The function of the HSV Region 1 is at present unknown. The absence of this region from other viral $R_{L}$ and the amino acid length of the mammalian and E. coli polypeptides would probably suggest that it is not required for enzyme activity. As reported in the Introduction (see Page 29), proteolytic degradation of HSV-l RRl gives rise to products of $110,000,93,000$ and $81,000 \mathrm{~mol}$. wt. (Ingemarson and Lankinen, 1987). In vitro enzyme activity assays with these products demonstrated that at least the $93,000 \mathrm{~mol}$. wt. was able to associate with RR2 to form an active complex. The $81,000 \mathrm{~mol} . \mathrm{wt}$. may be active as well, however, at that stage of proteolysis the RR2 subunit had dissappeared and therefore a functional complex was not formed. So far there is no indication about the exact polypeptide positions where proteolysis takes place; perhaps it occurs after $H S V-1$ RRl aa 146 since an oligopeptide antiserum directed against amino acids 137 through to 146 failed to label the proteolysis products in immunoblots (H. Lankinen, personal communication). Thus, it can be proposed that, at least in vitro, the first part of the $N$-terminal region is not required for enzymatic activity.

On the other hand, the observed conservation of these regions in both HSV serotypes and the similarity of their predicted secondary structures suggest that there is
evolutionary pressure at the level of protein structure. A possible structure that would incorporate the GARNIER predictions for these regions and a putative function are discussed in the General Discussion.
b) Region 2 .

On the basis that conserved regions of enzymes which catalyse the same reaction are important for activity it is possible that Region 2, which is the least conserved $\mathrm{RR}_{\mathrm{L}}$ region, is not directly involved in enzymatic activity. However, this region is present in all $\mathrm{RR}_{\mathrm{L}}$ polypeptides and is well conserved between the viral $\mathrm{RR}_{\mathrm{L}}$ (percentage homology ranging from $24 \%$ to $32 \%$ ) and between the prokaryotic and eukaryotic $\mathrm{RR}_{\mathrm{L}}$ (percentage homology 26\%); thus it is possible that Region 2 has a structural role in the adopted tertiary structure of the enzyme.

The DNA regions of the HSV-2 genome contained in the Bgl II c and $\underline{n}$ fragments (HSV-2 map units 0.54 to 0.58 and 0.58 to 0.62 respectively) appear to be involved in morphological transformation of cultured cells (reviewed in Macnab, 1987). Jones, C., et al. (1986) reported that the minimal region of the right-hand $30 \%$ of Bgl II c fragment, responsible for transformation of immortalised cell lines, comprises the DNA region coding for the last 60 amino acids of RRl Region 1 and the first 100 amino acids of Region 2 . These authors proposed that transformation may be initiated by insertion sequences and alternating purine- and pyrimidine-rich stretches contained within these DNA coding regions; further, the inability of the respective HSV-l RR1 DNA coding regions to induce transformation was attributed to the absence of similar structures from the latter regions. However, such sequence elements are frequently present in the HSV-2 DNA and hence their correlation with any function remains to be established (reviewed in Macnab, 1987).
c) Region 3.

This region, which is the most well conserved region, appears to be directly involved in enzymatic activity.

Seventeen amino acids upstream from block 4, Eriksson et al. (1986) identified, using photoaffinity labelling reactions, an E. coli cysteine residue on which the dTTP allosteric effector was localised; this cysteine was part of a tryptic octapeptide with sequence of KSCSQGGV (see Fig. 56, HSV-1 RRI aa 642 to 649). Similar photoaffinity experiments with the mouse Ml subunit gave several-fold lower dTTP incorporation (Eriksson et al., 1986). This result could be explained by the fact that, although the equivalent Ml sequence aligns well with the $B 1$ sequence, the former does not contain a cysteine residue (see Fig. 56; octapeptide RYVDQGGN). It was therefore proposed that the cysteine is part of the $\underline{h}$ allosteric site of the E. coli enzyme. However, photoaffinity labelling experiments with a mutant Bl polypeptide where the cysteine was substituted to an alanine showed that, although the mutant Bl was not labelled in the presence of dTTP, it still had $60 \%$ activity in the presence of the general effector ATP and $40 \%$ in the presence of dTTP (Nilsson et al., l988b); these results indicate that the mutation did not confer a substantial conformational change of the allosteric site. Clearly, further studies are required to assess whether this cysteine binds the effector or that it provides an active side-chain in the vicinity of the allosteric site.

As already mentioned (see Introduction, Page 50) the VV-specified activity appears to be allosterically regulated. Interestingly, the VV Vmw86 polypeptide which is thought to be the large subunit polypeptide of the VV-specified enzyme, aligns extremely well with the Bl octapeptide. In contrast, the HSV enzyme which is insensitive to allosteric regulation by dNTPs (see Introduction, Page 50) does not contain an equivalent region (see Fig. 56).

Further downstream from the proposed allosteric site, there is a highly conserved sequence of GEEFE (see Fig. 56, block 6). Comparison of this sequence with protein sequences contained in the NBRF data base with the WORDSEARCH program (see Materials and Methods, Page 75) revealed that it was present in adenylate kinase (AK). AK is an enzyme involved in the dephosphorylation of MgATP to

MgADP and binds the substrate in a site similar to the proposed $\mathrm{RR}_{\mathrm{L}}$ binding site (see below). The tertiary structure of $A K$ revealed that GEEFE is part of an $\alpha$-helix located close to the ATP-binding site (von Zabern et al., 1976); further, the side-chain of a leusine which is located 11 residues upstream from GEEFE was proposed to participate in the formation of the hydrophobic pocket that binds the adenine moiety of ATP (Fry et al., l985). In common with the crystallographic data of $A K$, the $R R$ GEEFE block is shown to adopt an $\alpha$-helical conformation and, moreover, upstream from this block there are two conserved leucines (see Fig. 56). Although in the $\mathrm{RR}_{\mathrm{L}}$ polypeptides the block and the adjacent leucines are positioned 130 amino acids upstream from the $R_{L}$ binding site (see below), whereas, in AK they are 90 amino acids downstream from the binding site, it is possible that they participate in the formation of the hydrophobic pocket of the $\mathrm{RR}_{\mathrm{L}}$ binding site.

Thirty six amino acids downstream from block 6 there is a conserved glycine (see Fig. 56, at HSV-1 aa 764). Platz et al. (1985) reported that substitution of this residue with serine in the E. coli Bl polypeptide drastically reduced the subunit activity (90 to 95\%) for all four substrates in vitro. Thus, it was argued that this glycine participates in the formation of the proposed binding site. Alternatively, the serine may have disrupted the three-dimensional structure of the enzyme in such a way, that the enzymatic activity is abolished although it is notable that the glycine and serine residues are considered as conserved ones according to the Venn Diagram of amino acid classification (Taylor, W.R., 1986a).

Finally, Region 3 contains all the conserved cysteines; two in blocks 2 and 7 and a third one in block 8 although the latter is not present in the E. coli polypeptide. These conserved cysteines are of special interest because two of them could contribute redox-active sulphydryls to the composite catalytic site of the enzyme.
d) Region 4.

The first block within this region (block 9), has a consensus sequence of $G x G x x G$, although the last glycine
is replaced by a glutamine in the E. coli polypeptide (see Fig. 56). This consensus is identical with nucleotide binding site sequences which are shown to adopt a $\beta \alpha \beta$ secondary structure ( $\beta \alpha \beta$-fold). Wierenga et al. (1985) reported that the most important ('fingerprint') amino acids of these sites are (Fig. 58a):
i) three glycines; the first one forms the C-terminus of the first $\beta$-strand and the second is the $N$-terminus of the adjacent $\alpha$-helix. The first and third glycines form a sharp turn between the $\beta$-strand and the $\alpha$-helix, whereas, the second interacts with the nucleotide phosphate moiety.
ii) six hydrophobic residues, which are indicated by squares in Fig. 58a. Two of these are located upstream and four downstream from the GxGxxG pattern and form the hydrophobic core of the fold.
iii) a negatively charged residue (either aspartic acid or glutamic acid) at the end of the second $\beta$-strand which hydrogen bonds with the 2'-hydroxyl group of the nucleotide ribose moiety and, finally,
iv) a hydrophilic residue which is indicated by a triangle in Fig. 58a. This is positioned 5 amino acids upstream of the first glycine and its function is not known.

In most of the binding sites identified so far, the glycines and the negatively charged residue at the end of the fold are strongly retained, whereas, variation has been observed in the hydrophobic residues (Sternberg and Taylor, 1984; Wierenga et al., 1986). The length of the binding folds varies from 29 to 31 residues due to the variable length of the loop connecting the $\alpha$-helix with the second $\beta$-strand.

The alignment of the $R_{L}$ polypeptides in this region shown in Fig. 58b is different from the one shown in Fig. 56 as spaces (indicated by *) were introduced to optimise the binding fold requirements as reported by wierenga et al. (1986). All the spaces were introduced between positions $2 l$
(a)

(b)

12	4	6	8	11	15	18		27	29	31
$\triangle \square$	■	G	G	G	-	¢		-	-	-
N L	S	G	G	G	A	K	*	A	F	D
N $\mathrm{N}^{\text {N}}$	S	G	G	G	T	R	* *	Q	A	R
D M	S	G	G	G	$v$	D	* * *	T	P	S
R H	P	$G$	G	G	A	L	*	P	A	L
G $\mathrm{R}^{\text {R }}$	T	G	G	N	$\underline{Y}$	K	*	G	A	$\underline{N}$
$\underline{\mathrm{K}} \mathrm{L}$	$\underline{p}$	H	G	G	A	R		w	L	E
R H	$\underline{p}$	G	G	G	A	$\pm$	*	L	A	D

## Figure 58.

a) A representation of the secondary structure of the spiny dogfish M-lactate dehydrogenase ADP-binding fold (reprinted from Wierenga et al., 1986). The 'fingerprint' amino acids of the fold are shown in the three letter amino acid code and are numbered. The triangle represents the hydrophilic residue and the hatched circle the negatively charged residue. Boxes represent the hydrophobic residues and semi-filled circles the glycines. The negatively charged residue (aspartic acid) is depicted to form a hydrogen bond with the 2'-hydroxyl group of the nucleotide ribose moiety.
b) Alignment of $R R_{L}$ sequences proposed to be nucleotide binding folds. The 'fingerprint' amino acids are designated and numbered as above. Underlined amino acids represent residues not conforming with the 'fingerprint' positions of the fold as reported by Wierenga et al. (1986). Asterisks denote gaps introduced between positions 21 to 24 of the fold for optimal alignment.
through to 24 of the fold which correspond to the variable loop region. Further, homologous sequences of the HCMV M4. PRO ORF and the VV Vmw86 polypeptide, which were not available at the time of the alignment, have been included. As can be seen, the hydrophilic residues at the start of the sequences are well conserved, with the exception of $B 1$ and M4.PRO, while a greater degree of variation is observed in the positions corresponding to hydrophobic residues; this is clearly apparent at position 4 where none of the aligned residues is hydrophobic. The glycines are well conserved in all the polypeptides, except the last one in the E. coli polypeptide and the first one in M4.PRO. Finally, the C-terminal negatively charged residue is present only in the HSV and VV polypeptides and in the M4.PRO. The secondary structure predictions identified the first $\beta$-strand and the adjacent $\alpha$-helix but not the second $\beta$-strand (see Fig. 56). It is therefore apparent that the proposed $R_{L}$ L binding fold differs in structure and in amino acid composition from the folds observed so far. However, as reported in the Introduction (see Section E), studies with the E. coli, HSV and $V Z V$ enzymes indicate one substrate binding site for all four substrates, and this could possibly influence the structure of the binding site (Nikas et al., 1986).

Wierenga et al., (1986) reported that the $\beta \alpha \beta$ binding folds always occur near the $N$-terminus of the nucleotide binding domains studied. In the $R_{L}$ alignment this sequence is located just 3 amino acids downstream from the second EBV insertion, and given that insertions are indicative of domain junctions, it can be proposed that Region 4 or part of it participates in the formation of the $R_{L}$ binding domain. Another feature of these folds is that, as they are located at the $N$-terminus of the binding domain and are formed by local interactions, it is possible that during the translation process they form spontaneously and then function as a nucleation centre for the folding of the domain (Wierenga et al., 1986).
11. Structural and Functional Features of the $R R$ S

The $\mathrm{RR}_{\mathrm{S}}$ comparison highlighted a number of important features, namely: the conservation of the tyrosine residue on which the radical is thought to be localised, conserved potential iron ligands and the primary structure of the $R R_{S}$ C-termini.
a) The tyrosyl radical and the iron ligands.

As described in the Introduction (see Page 43) the E. coli tyrosine radical is stabilised by the iron centre which is liganded by one aspartic acid, one glutamic acid and five histidine residues. Further, individual alignments performed in the second part of Section $B$ indicated that the E. coli tyrosine at position 122 was conserved in all of the herpesviral polypeptides with the exception of the HCMV M3. PRO ORF. It therefore became of interest to investigate whether the consensus template alignment program would predict that this tyrosine residue is conserved in all the $R_{S}$ polypeptides and, further, to identify conserved potential iron ligands.

As can be seen in Fig. 57 the tyrosine residue was predicted to be conserved in all the aligned $\mathrm{RR}_{\mathrm{S}}$ polypeptides (at HSV-l RR2 position l32); moreover, it is retained at the same position in other $R_{S}$ sequences which were not available at the time of the alignment with the exception of the HCMV M3.PRO. The program also identified two conserved aspartic acid residues at HSV-l RR2 positions 68 and 220 which are conserved at identical positions in the non-aligned $\mathrm{RR}_{\mathrm{S}}$ sequences. Finally, seven conserved glutamic acid residues were identified from which those at HSV-1 RR2 positions 119,124 and 221 are conserved in non-aligned $\mathrm{RR}_{\mathrm{S}}$. Of particular interest are the conserved histidine and glutamic acid residues which are located upstream from the tyrosine residue. These residues are part of a predicted $\alpha$-helix and the distance between them is approximately one helix turn. Thus it is possible that in the tertiary structure of the enzyme they are brought close to each other and ligate the iron atoms which subsequently stabilise the adjacent tyrosyl radical. Conserved aspartic
acid and glutamic acid residues can be found upstream from the second hystidine and these could equally be the iron ligands.
b) The $R R$ C-terminal regions.

Another important $R_{\mathrm{S}}$ region is at the C-termini. As mentioned in the Introduction (see Page 42) Sjoberg et al. (1987) encountered a truncated form of the E. coli B2 protein which lacked thirty C-terminal amino acids and which failed to associate with Bl although it had an almost identical conformation to the normal B2. Therefore, it is likely that the two subunits interact via the C-terminus of $R_{S}$. The same suggestion can be proposed for the viral enzyme although the viral termini exhibit no homology with the respective $E$. coli region; in fact, only eleven E. coli C-terminal amino acids align with the viral terminal sequences and from these nine are not conserved. The suggestion is indirectly supported by studies with the oligopeptide antiserum directed against the seven C-terminal amino acids of HSV-2 RR2 (Frame et al., 1985). These authors demonstated that the antiserum precipitated only the free form of RR2 while it failed to precipitate its complexed form under non-denaturing conditions, thus indicating that the C-terminus of RR2 is masked by RR1.

Further, the sequncing data of Preston, V.G. et al. (1988) localised the nucleotide change in HSV-1 mutant tsl222 within the HSV-1 RR2 C-terminus. The change was shown to be a deletion of a thymine which resulted in the alteration of all but one amino acids at the RR2 C-terminus and the removal of the termination codon; the latter was positioned 42 residues downstream from the wild-type RR2 C-terminus. In the $\mathrm{RR}_{\mathrm{S}}$ alignment, the mutation is localised within block 21 (see Fig. 57), and alters the second phenylalanine residue to a serine.

A summary of the $R R_{L}$ and $R_{S}$ structural and functional features discussed in this Section is shown in Fig. 59.

100aa

Figure 59. This diagram shows in a schematic form the combination of structural and biochemical features of the $R_{L}$ and $R_{S}$ polypeptides. Amino acid blocks of higher homology are indicated by numbers and blocks conserved in all the $R R_{L}$ and $R R_{S}$ polypeptides are underlined.

The $R_{L}$ polypeptides are divided in four Regions on the basis of the secondary structure predictions shown. $(\alpha)$ represents $\alpha$-helix conformation, ( $\beta$ ) represents $\beta$-strand conforamtion and unstructured or loop conformation is depicted by (NS). The locations of the run of prolines (P), the stretches of roughly alternating aspartic acid and serine residues (DS) and conserved cysteine residues (C) are indicated. A leucine residue which could participate in the formation of the $R R_{L}$ nucleotide binding site (GxGxxG) is depicted by (L). Other $\mathrm{RR}_{\mathrm{L}}$ features include the proposed allosteric site in E. coli, the major EBV insertion of 30 amino acids and the location of the amino acid substitution in the RRI polypeptide encoded by the HSV-l mutant tsl207 (see Page lll).

The $R_{S}$ polypeptides are shown as a single Region on the basis of the secondary structure predictions. The location of the conserved tyrosine residue on which the E. coli radical is localised is depicted by (Y) and the amino acid substitution in the RR2 polypeptide encoded by the HSV-1 mutant tsl222 is indicated.

## SECTION D.

12. Sequence Determination of the Mutation(s) in the RRI Xho I/Bgl II DNA Fragment of the HSV-1 mutant tsl207. Dutia (1983) reported that the multiple HSV-1 mutant tsG failed to induce detectable ribonucleotide reductase levels at the NPT. As this isolate had multiple mutations, Preston, V.G. et al. (1984) isolated the Bam HI o fragment from tsG DNA, which spans the region between map units 0.574 to 0.600 , and recombined it into HSV-1 strain $17^{+}$DNA giving rise to the HSV-I tsl207 mutant virus. The mutation(s) was located, with marker rescue experiments, within the Xho I/Bgl II fragment contained in the coding sequences of RRI (Fig. 60). Thus, it was of interest to identify any nucleotide changes within this fragment and from the deduced amino acid sequence to determine any effect of the mutation(s) on the predicted secondary structure of the enzyme.

For these reasons, the tsl207 Xho I/Bgl II fragment was isolated from a cloned Bam HI o fragment (obtained from Dr V.G. Preston) and sequenced with the Ml3 dideoxy/chain termination method. However, given the relatively small size of the fragment, it would be inappropriate to follow the 'shotgun' cloning approach followed for the nucleotide sequence determination of the RRI coding region. Instead, the intact Xho $1 / B g l$ II fragment was cloned into a Sma I digested ml3mp8 RF vector. Then, with the use of the New England Biolabs primer (see Materials and Methods, Page 58), approximately 200 bases were read in either orientation. From the sequences at the ends of the obtained gel readings two new pentadecamers were synthesised, shown in Fig. 62, and these were used as primers in sequencing reactions thus advancing the data by approximately 200 bases in either direction. This procedure was repeated and finally the entire sequence was obtained in both orientations.

The sequencing data were collated with computer programs and gave rise to the M1207 data base. This data base contained 26 gel readings (Fig. 61). There were 4865 characters, which produced a final contiguous length of


Figure 60. This diagram shows the location of the Xho I/ Bgl II fragment (black box) of the HSV-l mutant ts 1207 with respect to the Bam HI o fragment between 0.57 to 0.60 map units. The mRNAs specifying the RR1 and RR2 polypeptides are indicated as arrowed lines and their lengths are given above each line. The polypeptide coding regions are indicated as open boxes.

## CONTIG LINES

	99	715	0	1	23
GEL LINES	A	B	C	D	E
G2.002					
G2.003;1	2	1	238	0	2
G2.005;	3	1	268	1	26
G2.007;1	4	467	-223	4	9
G3.029;i	5	152	-238	7	3
G3.076;1	6	1	-47	0	0
G3.041;i	7	391	219	0	0
G3.073;2	8	328	-38	18	4
G3.040	9	528	-188	19	11
G2.1P3	10	156	212	25	24
G3.073	11	328	-38	8	12
G4.1P2	12	156	241	10	16
G5.1P2	13	158	229	15	21
G5.1	14	2	228	26	25
G6.1P1	15	158	201	12	13
G6.1P4	16	377	218	11	17
G6.2P4	17	380	217	16	18
G6.3P4	18	381	208	17	7
G8.38	19	264	-180	22	8
G8.D	20	1	-193	0	0
G9.40	21	234	-209	13	22
G9.41	22	264	-174	21	19
G9.44	23	622	94	24	0
G9.45	24	617	99	9	23
G10.62	25	11	-216	14	10
G10.63	26	2	-221	2	14

Figure 6l. A sorted list (CONTIG LINES) of the gel readings within the Ml207 data base. The column termed GEL LINES represents the name of the clone given by the author. The columns headed A to $E$ are assigned by the DBUTIL program (see Materials and Methods, Page 73) and represent:

A Gel reading database number.
$B$ Position of the left-most base of the gel reading in the contig.

C Length of the gel reading. (-) indicates that the gel reading overlaps on the opposite strand.
D Number of the gel reading overlapping to the left.
E Number of the gel reading overlapping to the right.

 ACATCTACGACADCAGGGGGCGGCCATCGCCGGCTOXAACCTCTGCAOXGAGATCGTCCAT- CGCCCTXCAAACGATC AGTGGGGTCTGCAACCTGCGAAGCGTGAAT TGGCCCGAT

aCATCTACGACACXCAGGGGGCGGCCATCG CGGCTOAACCTCTGCAOXGAGATCGTC ATCCGGC TXCAAACGAT CAGTGCGTCTGCA/ CTGGGA/GCGTGAX

тCCAACCTCTGCAOXGAGATCGTC AT CGGCCTXCAAA* CATCCAGTGCGGTCTGCAAC TGGGAAGCGTGAATCTGGCCCGA
TOXAACCTCTGCAOXGAGATCGTCCAT CGGCCTXCAAACGATOAGTGGGGTTGCAAC TGGGAAGCGTCAAT/TGGCCCGA
XancCTCTGCaCCGagatcGTCCATCCGGCCTXCAAACGATCCAGTGGGGTCTGCAACCTCGGAagCGTCAATLTLGCCCGGA
XAACCTCTGCACCGAGATCGTCCATCCGGCCTCCAAACGAT CAGTGGGGTCTGCAACCTGGGAAGCGTGAAT- TGGCCCCGA



GCGTCTCCAGGCaGACGTT* GaCTTXXX GCGTCT CAGGCAGACGTTTGACTTTGGGCG* XTC GCGGXG* CGTGCAGGC TGCGTGCTGATGGTGAACATCATGATCGACAGCACGCTACAXCCCACGCCOKAGTGCACCCGCGGCA GCGTCT CAGGCAGACGTTTGACTTTGGGCG* XTC GCGAXG* CGTGCAGGC TGCGTGCTGATGGTGAACATCATGATCGA CAGCACGCTACAXCCCACGCCOXAGTGCACCCGCGG

tCTCCAGGCaGAC TTTCA CTTTGGGCGGCTCCGCGACGCOGTGCAGGCGTGCGTGCTGATGGTGAACATCATGATCGACAGCaCGCTACAACCCACGCCCCAGTGCACCCGCGGCA
 TTTGGGCGGCTCOGCGACGCCGTGCAGGCGTGCGTGCTGATGGTGAACATCATGATCGA CAGCACGCTACAACCCA CGCCCCAGTGCACCCGCCGCA
cgCtacaaccca occcccagtgcacccgcgeca
ccctacaacccacgccccagtccaccccccea
GCGTCTCCAGGCAGACGITTGACTTTGGGCGGCTCCGCGACGCCGTGCAGGCGTGCGTGCTGATGGTGAACATCATGATCGACAGCACGCTACAACCCACGCCCGAGTGCACCCGCGGCA


## acgacancctgcgetceatggeantcgecatgiagg

ACGAこA-CCTGCGGTCCATGG*AATC
acgainancttccggtccatggcantcggcatgcagggcctgcacacggcctccctoangctggggctggatctcgagtctgc


Accac:
accac:
 GGGAATCGGCATGCAGGGCCTGCACACGGCCTGCCTGAAGCTGGGGCTGGATCTGGAGTCTGCCGAATTTUAGGACCTGAACAAACACATCGCLGAGGTGA
 TGCA- GGCCTGCACACGGCCTGCCTGAAGCTGGGGCTGGATCTGGAGTLTGCCGAATTTCAGGACCTGAACAAACA/ATCGCCGAGGTGA GaCCT* * ACAA Cacatccea aCGACAACCTGCGGTCCATGGGAATCGGCATGCAGGGCCTGCACACGGCCTGCCTGAAGCTGGGGCTGGATCTGGAGTCTGCCGAATTTCAGGACCTGAACAAACACATCGZCGAGGTGA
$\qquad$ 510
520
530
540
S50
560
570
580
590
600
TGCTLTGTCGGCGATGAAGACCAGCAACGCGCTGTGCGTTCGCGGGGCCCGTCCCTTCAACACTTTAAGCGCAGCATGTATCGCGCCGCCGCTTTCACTGCCAGCGLTTTG TGCTGTGTCGGCGATGAAGACCAGCAACGCGCTGTGCGTTCGCGGGGCCCGTCCCTTTCA* CCACTTTA*GCGGA//ATGTATCGCGCCGGCCGCTTTCACTGGGAGC
TGCTGLTGTCGGCGATGAAGACCAGCAACGCGCTGTGCGTTCGCGGGGCCCGTCCCTTCAACCACTTTAAGCGCAGCATGTATCGCGCCGGCCGCTTTCACTGGCAGCGCTTTCOLGOACG tGGTGTGTCGGCGAT* AAGACCAGCAACGCGCTGTGXGTTCGCGGGССС* GTCCCTTCAACCACTTTAAGCGCAGCATGTATCGCGCCGGCCGCTTTCACTGGGAGCGCTTTCCGGACG TGCTGTGTCGGCGAT/AAGACCAGCAAGGCGCT* GCG* TCGCGGGGCCC TCCCT* CAACCACTTTAAGCGCAGCATGTATCGCGCCGGCOGCTTTCACTGCGAGCGCTTTCCGGACG TGCTGCTGTCGGCGATGAAGA CCAGCAACGCGCTGTGCGTTCGCGGGGCCCGTCCCTTCAACCACTTTAAGCGCAGCATGTATGGCGCCOGCCGTTTCACTGG/AGCGCTTTCEGGACG

610	620	630	640	650	660	670	680	690	710

CCCGÖCGCGGTACGAGGOCGAGTGGGAGATGCTACGCCAGAGCATGATGA AACA CGGCCTGCGCA CAACCAGTTTGTCGCGCTGATG
CCCGCCCGCGGTACGA GGGCGAGTGGGAGATGCTACGCCAGAGCATGATGAAACACGGCCTGCGCAACAACCAGTTTGTCGCGCT* ATG
-
G6GCL ACTCCCA
CCCGOLOGCGGTACGAGGGCGAGTGGGAGATGCTACGCCAGAGCATGATGAAACACCGCCTGCGCAACAACCAGTTTGTCCCGCTGATGCCCACCGCCCGCCTCGGCGCAGATCTC

Figure 62. The Ml207 database. All the gel readings in the database are shown numbered down the lett side of the sequences as in column $A$ of Figure 6l. Computer inserted characters into the gel readings entering the contig database are indicated by (*) while those inserted by the author are indicated by (X) or (/). Underlined sequences represent synthetic oligonucleotide primers used in sequencing reactions; primers built in the left-to-right orientation are indicated by solid lines and those built in the complementary orientation are indicated by dashed lines.

715 bp (Fig. 62). For each contig character, an average of 6.8 characters were read from gels.

The obtained nucleotide sequence of the mutant Xho I/Bgl II fragment was compared with that of the equivalent wild-type fragment with the HOMOL program (Fig. 63). As can be seen, the program identified two nucleotide changes both from a guanine to an adenine at positions 2439 and 2915 of the HINDKK database consensus sequence (see Fig. 26); the nucleotide changes can also be observed in the sequence autoradiograph comparisons in Fig. 64. Translation of the wild-type and mutant fragments with the PTRANS program indicated that the first nucleotide change did not alter the encoded amino acid whereas the second changed a serine residue to an asparagine (see Fig. 63).

## DISCUSSION.

13. The Mode of Action of BUdR as a Mutagen.

Both nucleotide changes in the ts 1207 fragment were transitions from a guanine:cytosine pair to an adenine:thymine pair. These changes are compatible with the procedure followed in order to isolate the initial mutant tsG by Brown et al., (1973); these authors treated HSV-l strain 17 syn infected cells with $5^{\prime}$-bromodeoxyuridine (BUdR). The base of BUdR, 5'-bromouracil (BU), is similar to thymine with the exception that $B U$ has a bromine atom in place of the $5^{\prime}$-methyl group of the thymine ring (reviewed in Freese, 1963). This mutagen can be in the keto and enol states.

In the keto state, the deoxyribonucleoside triphosphate of $B U$ (dBUTP) can base pair to adenine with two hydrogen bonds thus incorporating the deoxyribonucleoside monophosphate of $B U$ (dBUMP) in DNA. This increases the probability of this base pair to mutate because $B U$ undergoes pairing mistakes more frequently than thymine; in the next DNA duplication event, dGTP may pair with dBUMP thus leading to the appearance of a guanine:cytosine pair in the progeny

$\stackrel{\bullet-1}{\sim} \underset{\sim}{\sim} \underset{\sim}{m}$	$\underset{\sim}{\operatorname{onn}} \underset{\sim}{\sim} \underset{\sim}{n}$			$\begin{gathered} \infty \\ \infty \\ \infty \\ \hline \end{gathered}$	으고N			
هUUUUUUU		- ƠO	a			ェƯOU甘O	a ƠO	
の	－		a¢¢	$\begin{array}{r} 0 \\ \times \mathbb{C} \\ \times 4 \\ \hline \end{array}$	EUU甘甘甘氏	w Ơ Ơ		
$\bigcirc$	－	の柋皆	－氝态	－	$$	3 U		
F－UU4	z ${ }^{0}$	＞㦴句	स－		ェ	ェ	ェ	
－	の帒皆		¢	बƯ్ర犬	＜	以綹念		
¢	טƯ్ర̛O	$\sim$ ¢	－	FUUXUXXX	の	๙U⿹弋工力⿰亻弋	৩ પ్પુర	
बర్ᅥU	＜UUU甘才	¢	$\begin{aligned} & U U \\ & \text { HE } \end{aligned}$	ェƯ	人氝	טण్ర్ర	－${ }^{0}$ U	
の管家		－		－	－	¢ ƯƯU	$\cdots \stackrel{4}{4}$	
ェ	¢	$2{ }_{\lll}^{E}$	W	טర్ర犬	इ安它	๔ƯU0		
> Eู						入 ${ }_{\text {¢ }}^{\text {E }}$		
$\rightarrow \underset{\&}{G}$	$\bigcirc$ ט પ్ర	OUU U甘	>	宽	$\omega$ W	ェ	のUU甘犬	
－ƯOU	- ƠS	$\bigcirc$－¢్ర犬	ェ炎	－	＜ƯOU	ぃ	$\alpha \stackrel{\Im}{S}$	
入昏氐盅	FUUU4	，式氝	－	－皆旨	－	$\propto$	¢	
¢ UUU	－	20	>曷获	$\bigcirc$－¢్ర	＝${ }_{\text {US }}$	$\times \underset{4}{0}$	2氝氐	
－		U圌U	UUOU:	药	$\times \underset{\&}{4}$	的晏景		
Wీ	He	>		の氙欨		x ¢ $_{\text {¢ }}$	w్ֹరす	
			－ 0	¢	－	z $\begin{aligned} & \text { U } \\ & 4 \\ & 4 \\ & 4 \\ & 4\end{aligned}$	3 伃	
-	ェ⿹弋⿰㇒丿	心忥念	＞	－		以気旨	w	
－	$\checkmark$	ぃ忽管	बU్ర犬	$2 \stackrel{\bigcup}{\varangle}$	a気年	aưU0	ט પ̧̧ુ	
$-\underset{\&}{\mathbb{E}} \underset{\varangle}{\mathbb{E}}$	2	$\propto$ ¢	－	－Ư弋甘す	的莫夽	$\propto$		
	> O O O	$x \stackrel{\square}{4}$	هưU	$\begin{array}{ll} U \\ \text { n } \\ \mathbb{C} \\ \mathbb{C} \end{array}$	$\omega \mathbb{C} \mathbb{S}$			
w ơ	¢	の	－氝氝		هنٍ		$\times$ ¢	
טU్ర		UUU్ర్ర		$\text { نِّنِّنْ } x$	的氝式	๔ن్రUర	a 0	
的感具	$\times \underset{4}{¢}$				w Ơ Ơ犬	$>\text { > 曷第 }$	x	
$\bigcirc$	的忥忥	$\text { ェ }{ }_{S}^{G G S}$	的晏突			UUU్ట్ర		
$\Sigma{ }^{\circ} \mathrm{E}$	ェ	>	-UU	-0	-		- પ્લૅర్తૅ	
>	P	HO		نِّنِّنِّ:	U	«		
$\omega$	的皆皆	w Ơ	H－ర్¢	F－	$\bigcirc$	z C	G	

Figure 63. Alignment of the nucleotide sequences of the Xho I/Bgl II fragment of the HSV-l wild-type and HSV-I ts 1207 RRI DNA coding regions. The predicted amino acid sequence of the HSV-l RRI polypeptide is shown above the HSV-l DNA sequence, and the amino acid residue which is altered in HSV-l tsl207 RRl is indicated below the tsl207 DNA sequence. Conserved bases are indicated by asterisks and the nucleotide and amino acid positions are numbered as in Fig. 26.


Figure 64. Autoradiographs of sequencing gels showing the nucleotide changes (NC) in HSV-1 tsl207 (TS) compared to the HSV-l wild-type (WT) sequence. The wild-type and substituted nucleotides are indicated by arrows. The panel designated NCl shows the first nucleotide change at position 2439 and the panel designated NC2 shows the second nucleotide change at position 2915 (see Fig. 63).

DNA in place of the original adenine:thymine pair.
In the enol state, dBUTP can base pair with a guanine present in DNA with three hydrogen bonds thus incorporating dBUMP in DNA. In the next DNA duplication event, dBUMP can base pair with dATP, adenine being the 'normal'
complementary base of $B U$, and dAMP is incorporated into the new strand. Thus, an adenine:thymine pair appears in some of the progeny DNA in place of the original guanine:cytosine pair.
14. How does the Mutation in HSV-l tsl207 Inhibit the Association of the RR1 and RR2 Subunits?

As reported in the Introduction (see Page 49),
Preston, V.G. et al. (1984) demonstrated that the mutation in the RRl polypeptide resulted in the inability of tsl207 to express any detectable activity at the NPT. The mechanism by which the mutation inhibits ribonucleotide reductase activity was investigated by means of immunoprecipitation studies using a monoclonal antibody directed against RRI and an anti-oligopeptide serum directed against the RR2 (Frame et al., 1985). It was shown that, at the $P T$ and in the presence of $0.5 \%$ SDS, the antibody and the antiserum precipitated both polypeptides. At the NPT and in the presense of equal SDS concentrations, however, the antibody precipitated only RRl while the antiserum precipitated only RR2.

These results indicated that, although at the NPT both RRI and RR2 polypeptides are expressed, the mutation in RR1 prevents the respective subunits from forming a functional complex. On that basis and in the absence of any biochemical data it was proposed that the region where the tsl207 mutation lies could either be a subunit contact region or an important structural RRI region. These suggestions resulted from a comparison of the predicted secondary structures of the wild-type and mutant RRI polypeptides with the CHOUFAS program (see Materials and Methods, Page 74). This program predicted that the wild-type RRI serine residue is located in an unstructured region between an $\alpha$-helix and a $\beta$-strand (Table IV); this

SECONDARY STRUCTURE PREDICTIONS FOR THE HSV-I RRI AND HSV-1 ts 1207 MUTANT RRI POLYPEPTIDES

AA	HSV-1 RRI			HSV-1 tsl207		RRI
Number	AA	Hy	SS	AA	Hy	SS
950	R	0.300	H	R	0.300	H
951	Q	-0.314	H	Q	-0.314	H
952	S	0.300	H	S	0.300	H
953	M	0.486	H	M	0.486	H
954	M	0.057	H	M	0.057	H
955	K	-0.229	H	K	-0.229	H
956	H	0.157	H	H	0.157	H
957	G	0.371	H	G	0.371	H
958	1	0.600	H	L	0.568	H
959	R	0.200	t	R	0.186	t
960	N	-0.086	t	N	-0.100	$t$
961	S	-0.300		N	-0.314	$t$
962	Q	-0.114	B	Q	-0.129	H
963	F	-0.800	B	F	-0.814	H
964	V	-1.014	B	V	-1.029	H
965	A	-1.057	B	A	-1.057	H
966	L	-1.143	B	L	-1.143	H
967	M	-0.857	h	M	-0.857	H
968	P	-0.714	h	P	-0.714	h
969	T	-0.600	h	T	-0.600	h
970	A	-0.414	h	A	-0.414	h

```
AA = amino acid
Hy = hydropathicity value
SS = secondary structure prediction
H = strong }\alpha\mathrm{ -helical conformation
h = \alpha-helical conformation
B = \beta-strand conformation
t = turn
```

prediction is in good agreement with the individual GARNIER prediction for the HSV-l RRI polypeptide obtained with the consensus template alignment program (data not shown). In contrast, the asparagine of the mutant RRI polypeptide, which substituted the wild-type serine, was predicted to adopt a turn conformation; further, the $\beta$-strand following the wild-type serine was altered to an $\alpha$-helix in tsl207 (tsl207 positions 961 to 968; Table IV). These were the only changes in the secondary structure of the mutant RR1 as compared to that of the wild-type RRI (data not shown). Hence, if the region where the ts 1207 mutation is located is a subunit contact region, alteration of its secondary structure would inhibit subunit association. Equally, if this region is an essential structural RRl region not directly involved in subunit association, alteration of its secondary structure may alter the structure of a 'true' subunit contact region(s) positioned elsewhere along the polypeptide backbone; as a result, the two subunits unable to associate.

Another reason for proposing that the mutation in tsl207 may lie within a contact region or within a region important for RRl structure is the primary structure of this region. As can be seen in Fig. 65, the wild-type serine is located within block 10 of the $R_{L}$ alignment. This residue is a polar one according to the Venn diagram of amino acid classification (see Fig. 18). Polar amino acids are usually positioned in a hydrophilic region (exposed region) of the protein and are the least conserved amino acids between related proteins (Creighton, 1983). As can be seen in Fig. 65, the serine and the adjacent polar asparagine residue are located close to the end of a hydrophilic HSV-l RRl region which, notably, was predicted to be the longest hydrophilic region of the polypeptide (see Page 8l). However, both amino acids are highly conserved in the herpesviral, mammalian and E. coli RRL polypeptides and this would suggest that these residues may have a specific function in RRI. On the basis that substitution of the serine in tsl207 inhibits subunit association, this function would most probably be related to subunit interaction or to the structure of RRl although in the latter case it would not be



HSV-1 RRI
HSV-2 RRI
VZV Vmw87
EBV Vmw9 3

Mouse Ml
E. coli Bl

Sequence

M K H G L R
M K

Figure 65. Alignment of the proposed or identified large subunit ribonucleotide reductase polypeptides ( $R R_{L}$ ) in the region where the HSV-l tsl207 amino acid change is located. The amino acid position of each polypeptide region is given in parentheses. $\quad R_{L}$ sequences contained within blocks 10 and 11 of Fig. 56 are shown. The diagram above the alignment shows the hydropathicity plot corresponding to the aligned HSV-I RRI region. Hydrophobic regions lie between 0 and 20 and hydrophilic regions between 0 and -20 . Program settings were: group length $=9$, shift $=1$, spacing of plotted points $=10$.
directly involved in contact with RR2. In either case, the tsl207 mutation would result in the two subunits being unable to associate.

Experiments designed to distinguish between these possibilities suggest that the region where the mutation lies is not involved in subunit association (A.J. Darling, personal communication). First, high concentrations of a synthetic oligopeptide representing the amino acid sequences flanking the wild-type serine residue (oligopeptide RNSQFVALMPTA, spanning HSV-l RRl positions 959 to 969; see Fig. 63), failed to inhibit wild-type enzymatic activity. Second, this oligopeptide failed to inhibit the in vitro reconstituted activity from the non-defective ribonucleotide reductase large and small subunits encoded by the HSV-I tsl222 and tsl207 mutants respectively, as did an antibody raised against this oligopeptide. Third, a second synthetic oligopeptide with the serine residue positioned approximately in the middle (oligopeptide MKHGLRNSQFVALMPT at HSV-I RRl positions 954 to 968 ; see Fig. 63) failed to inhibit the tsl207/tsl222 in vitro reconstituted activity. Therefore, it appears more likely that the region where the tsl207 mutation is located is an important structural RRI region.

Finally, another possibility, which was not previously considered, was that the region where the mutation lies is a contact region between the RRI polypeptides forming the RRI subunit as opposed to an RRI/RR2 contact region. If the former was the case, the tsl 1207 mutation may prevent the formation a functional RRI subunit in tsl207-infected cells and this may be the reason for the two subunits being unable to associate. However, this possibility was also excluded since the size of the HSV-l tsl207-encoded RRI subunit was found to be identical to the size of the wild-type RRI subunit by means of gel filtration (A.J. Darling, personal communication).


Figure 66. The HSV-2 strain HG52 ribonucleotide reductase locus. This diagram shows the genomic location of the Bam HI $e$ and $t$ fragments and the arrangement of mRNAs between 0.55 and 0.60 map units on the viral genome. The transcripts specified by this locus are shown as arrowed lines. The lengths of the late transcripts are indicated above each line and the mRNAs specifying the ribonucleotide reductase are labelled RR1 and RR2.

Having identified a number of structural and functional features arising from the enzyme's primary structure, experiments were designed to express the HSV-encoded ribonucleotide reductase in eukaryotic cell lines. These experiments are reported in this Section and, in addition, studies on the transcriptional regulation of the ribonucleotide reductase genes in the presence of HSV trans-activating functions are described.
15. The HSV-2 Ribonucleotide Reductase Locus.

The HSV-2 strain HG52 ribonucleotide reductase locus (Fig. 66) specifies two $L$ and two E transcripts which are similarly sized and arranged as in the equivalent HSV-l locus (McLauchlan and Clements, 1983b; McLauchlan, 1986; Swain and Galloway, 1986). The L mRNAs are 5' co-terminal, have sizes of 6.4 kb and 1.7 kb and are presumed to encode the same 54,000 mol. wt. polypeptide. The E mRNAs share a common $3^{\prime}$ terminus with the L 6.4 kb mRNA and have sizes of 4.5 kb (RRl mRNA) and 1.2 kb (RR2 mRNA; Fig. 66). These mRNAs encode the RRI and RR2 polypeptides which constitute the HSV-2-encoded ribonucleotide reductase (McLauchlan, 1986).

DNA sequencing and RNA mapping studies within this locus positioned the $3^{\prime}$ end of the 1.7 kb mRNA 404 nuc downstream from the Sst $I$ site at 0.558 map units and the $5^{\prime}$ end of the RRI mRNA 582nuc downstream from the same site (McLauchlan, 1986; Fig. 67). The start site of the RR2 mRNA was positioned l39nuc upstream from the Bam HI site which separates the Bam HI e and t fragments (Fig. 67). Finally, the $3^{\prime}$ co-terminus of the ribonucleotide reductase mRNAs and the 6.4 kb mRNA was located approximately lo00nuc downstream from this Bam HI site (McLauchlan and Clements, 1983b). In common with the HSV-l equivalent locus, although the HSV-2 ribonucleotide reductase mRNAs overlap, the coding regions of the RR1 and RR2 polypeptides do not (McLauchlan, l986).
mRNA

Sal I
TTGTCGACAG GCTGTACCGC $T G G C A G C C G G$
 150

GCACGCACCT GCACATACGC CGCCTTCGCA GAGCTGGGTG TCATGCCAGA 250
52990
002 GACGCACCT GCACATACGC CGCCTTCGCA GAGCTGGGTG TCATGCCAGA CGACAGCCCC CGCTGTCTGC ACCGCACCGA GCGGTrTGGG GCGGTCGGCG

TTCCGGTITGT CATCCTGGAG GGCGTGGTGT GGCGCCCCGG CGGGTGGCGG GCCIGCGCGT GATCGTCTAT rGACGACGGC CGCCCAACCC GAGCGACCTP

GCCGTGCGCG GCCCCGTGCG TCCGTCTCAA TAAAGCCAGG TTAAATCCGT OSE
$\rightarrow 3^{\prime}$ end 1.7 kb mRNA $\quad 450$ tGTCTCTGAA ATGGCGGAAA CCGACATGCA AATGGGATTC ATGGACATGT TACACCCCCC TGACTCAGGA GATAGGCATA $\rightarrow 5^{\prime}$ end RKI TCGGGGACTT GACGGTCGCC ACTCTCCTGC GAGCCCTCAC GTCTTCGCCC ACCGATTCCT GTTGCGTTCC TGTCGGCCGG TGCTGTCCTG TCGACAGATT CATGATGAAA CACGGCCTGC GCAACAGCCA GTTCATCGCG CTCATGCCCA CCGCCGCCTC GGCCCAGATC TCGGACGTCA GCGAGGGCTr $\quad 3750 \quad 3800$ $006 \varepsilon$ 込 0 ¢8乏 000『
 00tヶ 0SO
 $4150 \longrightarrow 5^{\prime}$ end RR2 mRNA

 CCAACAGCGG GGTGTTCGCC GGCGACGACA ACATCGTCTG CACAAGCTGC GCGCTGTAAG CAACAGCGCT CCGATCGGGG TCAGGCGTCG CTCTCGGTCC


Figure 67. The nucleotide sequences flanking the HSV-2 RRI and RR2 mRNA start sites. The positions of the 5' ends of these mRNAs and the $3^{\prime}$ end of the late 1.7 kb mRNA are shown. Underlined sequences denote the length of the protected RRI and RR2 mRNAs after hybridisation to the specific pGEM-2-produced RNA probes and digestion of hybrids with ribonuclease $T 2$ (see Pages 116 and ll7). Restriction endonuclease cleavage sites are indicated by a double line. The sequences are numbered with respect to the Sst I site (+1) at HSV-2 0.558 map units.
16. Construction of Plasmids Used in Transient Expression Assays.

In order to express the RRl and RR2 mRNAs in eukaryotic cell lines, plasmid pRR was constructed which contains the DNA sequences specifying these mRNAs as they are arranged on the HSV-2 genome (Fig. 68). An Sst I/Bam HI fragment from a cloned Bam $H I$ e fragment (obtained from Dr J. McLauchlan) was subcloned into an Sst I/Bam HI digested puCl2 vector to give plasmid pYNE. Then, a Bam HI/Xho I fragment from a cloned HSV-2 Bam HI t fragment (obtained from Dr J. McLauchlan) was subcloned into a Bam HI/Sal I digested pUCl2 vector resulting in plasmid pYNT. Lastly, the Bam HI/Hind III fragment from pYNT was ligated into Bam HI/Hind III digested pYNE to give pRR. Therefore, pRR contains the entire DNA region specifying the RRI and RR2 mRNAs and, in addition, the region specifying the $3^{\prime}$ end of the $L 1.7 \mathrm{~kb}$ mRNA.

RNA probes specific for the detection of the RRI and RR2 mRNAs were constructed with the use of pGEM-2 Riboprobe Gemini transcription vectors (see Materials and Methods, Page 58). For RRI mRNA, a 636nuc Sal I fragment spanning the DNA sequences specifying the $5^{\prime}$ end of the RRI mRNA (see Fig. 67), was ligated into Sal I digested pGEM-2. For RR2 mRNA, a 547 nuc $H S V-2$ Bgl II/Bam HI fragment spanning the DNA sequences specifying the $5^{\prime}$ end of the RR2 mRNA (see Fig. 67) was ligated to Bam HI linearised $\mathrm{PGEM-2}$ vector. Recombinants were analysed by restriction endonuclease digestion for appropriate insert orientation relative to the SP6 promoter, such that transcripts synthesised from the SP6 promoter would be complementary to RR1 and RR2 mRNAs. This screening procedure resulted in the selection of plasmids pR45 and pR12 (Fig. 69). Subsequently, both plasmids were digested to completion with Hind III and SP6 transcripts labelled with $\left[\alpha-{ }^{32}\right.$ P]UTP were prepared as described in Materials and Methods (see Page 7l).
17. Transient Expression Assays with Plasmid pRR. Expression of RR1 and RR2 mRNAs in eukaryotic cells was investigated by short-term transfection assays.


Figure 68. Construction of plasmid pRR. At the top left of the diagram, the HSV-2 Bam $H I E$ and $t$ DNA fragments are depicted in a linear form showing the region (dark area) specifying the RR1 and RR2 mRNAs and the $3^{\prime}$ end of the 1.7 kb mRNA. The mRNAs are shown as arrowed lines and the part of the 1.7 kb mRNA specified outwith this area is indicated by a dashed line. To construct pRR, the Sst I/Bam HI subfragment of Bam HI e was ligated to a Sst I/ Bam HI digested pUCl2 vector to give pYNE. The Bam HI/Xho I subragment of Bam HI $t$ was ligated to a Bam HI/Sal I digested pUCl2 vector to give pYNT. Finally, the pYNT Bam HI/Hind III fragment was ligated to a Bam HI/Hind III linearised pYNE to give pRR. The ampicillin resistance ( $a m p^{r}$ ) and $\beta$-galactosidase genes (lacZ) of pUCl2 are indicated.


Figure 69. The structure of the pR45 and pR12 plasmids used for the production of RNA probes specific for the RRI and RR2 mRNAs respectively. pR45 plasmid was constructed by inserting a sal $I$ fragment, spanning positions 58 to 695 relative to the Sst $I$ site at HSV-2 0.558 map units (see Fig. 67), into a Sal I digested pGEM-2 vector. pRl2 plasmid was constructed by inserting a Bam $\mathrm{HI} / \mathrm{Bg} \mathrm{l}$ II fragment, spanning positions 3771 to 4318 relative to the above mentioned Sst I site (see Fig. 67), into a Bam HI digested pGEM-2 vector. The lost Bg l II site is shown in brackets. Recombinant plasmids were screened for appropriate insert orientation with the use of the restriction endonuclease site indicated within each insert. The SP6 and T7 promoters are shown as hatched boxes and the transcriptional direction of SP6 is depicted by an arrow. The location of the Hind III site used to linearise the pR45 and pRl2 plasmids is depicted by (•).

Sub-confluent monolayers of HeLa cells in 90 mm petri dishes were transfected each with $20 u g$ of $p R R$ using the calcium-phosphate transfection procedure (see Materials and Methods, Page 69). However, the RR1 and RR2 genes have been considered as essentially $E$ genes and as such they should require the presence of HSV trans-activating functions for maximal expression (see Introduction, Page 2l). Therefore, some dishes of pRR-transfected HeLa cells were infected with HSV-1 strain $17^{+}$at a multiplicity of 10 p.f.u./cell. This virus was selected, in preference to HSV-2 strain HG52, to allow descrimination between virus-encoded (HSV-l) and plasmid-encoded (HSV-2) ribonucleotide reductase mRNAs. Further, this virus was selected because, although pRR specifies the HSV-2 ribonucleotide reductase mRNAs under the control of their own promoters, HSV-l IE functions can trans-activate HSV-2 E promoters (O' Hare and Hayward, 1985b). The controls consisted of HeLa cells infected with: HSV-2 strain HG52 at a multiplicity of 10 p.f.u./cell, HSV-1 strain $17^{+}$at a multiplicity of 10 p.f.u./cell or mock-infected. Cells from all five treatments were harvested at 16 h p.i. and cytoplasmic RNA was isolated as described in Materials and Methods (see Page 70). Then, 4 ug of cytoplasmic RNA from the pRR transfected dishes and $0.5 u g$ from the control dishes were hybridised to approximately 200ng of RNA probes specific for RRI and RR2 mRNA. RNA hybrids were digested with ribonuclease $T 2$ and the products were analysed on $8 \%$ denaturing polyacrylamide gels. Size standards were Hpa II digested pATl53 DNA fragments which were end-labelled with $\left[\alpha-{ }^{32}\right.$ P]dCTP. After suitable exposure of the gel, the relative levels of hybridisation were measured by densitometry of autoradiographs as described in Materials and Methods (see Page 62).
a) pRR-borne constitutive and induced levels of RRI mRNA. Fig. 70 shows the results obtained after hybridisation of cytoplasmic RNA with the RNA probe produced from plasmid pR45. The RNA samples analysed were isolated from HeLa cells: transfected with pRR (track l), transfected with pRR and infected with HSV-1 (track 2), infected with HSV-2 (track 3), mock-infected (track 4) and infected with HSV-l
(track 5). Comparison of the protected RNA bands appearing on tracks 1 and 2 with the negative and positive control tracks (tracks 3, 4 and 5), indicates that the bands arising from hybridisation of the probe to RRI mRNA migrate at approximately ll5nuc (indicated by solid arrowheads in Fig. 70). This is in good agreement with the size of the protected RNA (ll3nuc) as deduced from DNA sequence and RNA mapping data (McLauchlan, 1986; see Fig 67). The size difference observed probably reflects the higher mol. wt. of RNA as compared to the DNA size standards.

Ribonuclease $T 2$ analysis generated a number of additional bands on tracks 2 and 3 of Fig. 70. As shown in Fig. 67, the HSV-2 DNA fragment which was subcloned in pGEM-2 in order to obtain the probe specific for RRI mRNA, spans the $5^{\prime}$ end of the RRI mRNA and in addition the $3^{\prime}$ end of the L l. 7 kb mRNA. Comparison of the HSV-2 nucleotide sequence of the probe with the corresponding HSV-l region revealed the existence of a 209 nuc highly conserved region within the $3^{\prime}$ end of the 1.7 kb mRNA (HSV-2 probe positions 58 to 267 in Fig. 71). Therefore, in HSV-l infected samples the $H S V-2$ probe is likely to hybridise to the HSV-l-specified 1.7 kb mRNA and this would generate the bands at around $217 n u c$ on track 2 (indicated by in Fig. 70). These bands are also present in the HSV-l-infected control sample (track 5 in Fig. 70).

Three other obvious bands can be observed on track 2 (indicated by open arrowheads) from which the longest one migrates above the RRI mRNA main bands and the others have sizes of approximately $95 n u c$ and 80 nuc. As already mentioned (see Results and Discussion, Page 78), the HSV-1 ribonucleotide reductase locus specifies a L 7.0 kb mRNA which overlaps entirely with the RRI and RR2 mRNAs. Therefore, these bands of track 2 probably result from hybridisation of the probe to portions of the 7.0 kb mRNA spanning the intergenic region between the 1.7 kb and RRI mRNAs of the infecting HSV-l virus (see Fig. 71). As expected, these bands also appear on the HSV-l-infected control track (track 5 in Fig. 70), although, their intensity is low due to the small amount of RNA analysed on this track ( 0.5 ug ) as compared to that analysed on track 2


Figure 70. Ribonuclease $T 2$ analysis of pRR-borne constitutive and HSV-l-induced RRI mRNA levels with the pR45-produced RNA probe. Cytoplasmic RNA samples were from HeLa cells transfected with plasmid pRRl which were either mock-infected (track l) or HSV-l-infected (track 2). The negative and positive control cytoplasmic RNA samples were: HSV-2-infected HeLa RNA (track 3), mock-infected HeLa RNA (track 4) and HSV-l-infected HeLa RNA (track 5). Following hybridisation at $50^{\circ} \mathrm{C}$, samples were digested with ribonuclease $T 2$ and the $T 2-r e s i s t a n t$ products were analysed on $8 \%$ denaturing polyacrylamide gels. The position of the RRI mRNA main hybrids is indicated by arrowheads; other obvious bands are indicated by symbols and have been accounted for in the text (see Pages 117 and ll8). The DNA size standards (M) were pATl53 DNA digested with Hpa II.

```
CAGGCTGTACCGCTGGCAGCCGGACCTGCGGGGGCGCCCCACCGCACGCACCTGTACGTACGCCGCCTTTTG

CAGGCTGTACCGCTGGCAGCCGGATCTGCGGGGGCGCCCTACCGCACGCACCTGCACATACGCCGCCTTTCG
CAGAGCTCGGCATGATGCCCGAGGATAGTCCCCGCTGCCTGCACCGCACCGAGCGCTTTGGGGCGGTCAGCGTC
********* * ***** ***
CAGAGCTGGGTGTCATGCCAGACGACAGCCCCCGCTGTCTGCACCGCACCGAGCGGTTTGGGGCGGTCGGCGTT
CCCGTTGTCATTCTGGAAGGCGTGGTGTGGCGCCCCGGCGAGTGGCGGGCATGCGCGTGAGCGT
** ******** **************************** ********* *************
CCGGTTGTCATCCTGGAGGGCGTGGTGTGGCGCCCCGGCGGGTGGCGGGCCTGCGCGTGATCGT FTATTGACGA
```

    AGCAAAC GCCCCGCCCACACAACGCTCC GCCCCCAACCCCTTCCCCGCTGTCACT
    CGGCCGCCCAACCCGAGCGACCTTCCCCTCCCACTTCCCCCCCCCTACACACCAACTCCGCCCTCGCCGTC
CGTTGTTCGTTGACCCGGGCGTCCG CCAAATAAAGCCA CTGAAACCCGAAACGCGAGTGT TGTAACGT
GGCCGTGCGCGGCCCCGTGCGTCCGTCTCAATAAAGCCAGGTTAAATCCGTGACGTG GTGTGTTTGGCGTGTG
$3^{\prime}$ end 1.7 kb mRNA
CCTTTGGGCGGGAGGAAGCCACAAAATGCAAATGGGATACATGGAAGGAACACACCCCCGTGACTCAGGACATC
**** ****************************** *********************
GGTGTGTCCTTTTGGGTTTCACTGA AACTGGCCCGCGCCCCACCCCTGCGCGATGTGGATAAAAAGCCAGCGC
** * **** * * ** *** * ** * *** ****************** ******** ***
gGCATATCCTCCTTAGATTGACTCAGCACACGATCGCACCCCACCCCTGTGTGCCGGGGAT AAAAGCCAACGC
GGGTGGTTTAGGGTACC ACAGGTGGGTGCTTTGGAAACTTGCCGGTCGCCGTGCTCCTGTGAGCTTGCGTC
*** *** * ** **** **************** ************* ********
b8 GGGCGGTCTGGGTTACCACAACAGGTGGGTGCTTCGGGGACTTGACGGTCGCCACTCTCCTGCGA
$\longrightarrow 5^{\circ}$ end HRI mRNA
So CCTCCCCGGTTTCCTTTGCGCTCCCGCCTTCCGGACCTGCTCTCGCCTACTCTTCTTTGGCTCTCGGTGCGATT
$\begin{array}{ll}* * * * * * * * * & \star * * * * * * \\ \text { GCCCTCACGTCT } & \text { TCGCCCAC }\end{array}$

GAAACCCGCCGCGTCTGTTGAAATGGCCAGCCGCCCAGCCGCATCCTCTCCCG

******	
CTGTCGA	*** **

Rigure 71. Nucleotide sequence comparison of the HSV-2 DNA region which was subcloned into PGEM-2, in order to produce the RNA probe specific for the HSV-2 RRI mRNA, with the corresponding HSV-1 DNA region. The $3^{\prime}$ end of the HSV-2 l.7kb mRNA and the $5^{\prime}$ end of the RRI mRNA are indicated. The nucleotide sequences sharing extremely high homology are boxed and the HSV-2 sequence is numbered as in Fig. 67.
(4ug). Track 2 also contains a minor band (indicated by o) with an approximate size of 400 nuc. This band is likely to represent pRR-specified transcripts which are not proccessed at the $3^{\prime}$ co-terminal polyadenylation signal for the RRI and RR2 mRNAs; possibly, these transcripts run throught this signal and terminate at the polyadenylation signal of the l. 7 kb mRNA which is present in pRR. This is based on the fact that the size of the band approximates the size of the probe region that corresponds to the HSV-l DNA region specifying the $3^{\prime}$ end of the 1.7 kb mRNA. A similar 400 nuc band appears in the HSV-2-infected control sample (track 3 in Fig. 70) and this probably results from the probe hybridising to the $3^{\prime}$ end of the $L$ l. 7 kb mRNA specified in HSV-2-infected cells. Further, this band appears as a major species because cytoplasmic RNA was isolated at $L$ times p.i. (16h; see Materials and Methods, Page 69). Finally, the band appearing in the HSV-2 control sample (indicated by p; track 3) most probably represents the full-length pR45-produced probe hybridising to the $L 6.4 \mathrm{~kb}$ mRNA which, as shown in Fig. 66, overlaps entirely with the RRI and RR2 mRNAs.

As can be seen in Fig. 70 the pRR-specified constitutive levels of RRI mRNA are readily detectable while after induction by HSV-1 infection a moderate increase is observed; this increase is approximately 5-fold (S. Simpson, personal communication).
b) pRR-borne constitutive and induced RR2 mRNA levels. For the detection of the RR2 mRNA, equal amounts of cytoplasmic mRNA to those used for the detection of the RRI mRNA were hybridised to the RNA probe produced from plasmid pRl2. The results obtained after hybridisation are shown in Fig. 72 where the order of RNA samples analysed is similar to that of Fig. 70. The expected ribonuclease T2-resistant hybrid should be l44nuc (see Fig. 67); however, due to the higher mol. wt. of RNA, the bands resulting from hybridisation of the pRl2-produced probe to RR2 mRNA migrate between the l47nuc and l60nuc bands of the DNA size standards (Fig. 72).

As mentioned on Page ll3, the HSV-2 ribonucleotide
reductase locus specifies a family of three $3^{\prime \prime}$ co-terminal mRNAs, comprising the RRI, RR2 and 6.4 kb mRNAs. As a result of the overlapping nature of the transcripts specified by this locus, a probe specific for RR2 mRNA will also hybridise to RRl and 6.4 kb mRNAs. This can clearly be seen in tracks 1,2 and 3 of Fig. 72 where bands of size greater than 622 nuc were detected (indicated by $p$ ). In track 1 , the band represents the probe hybridising to $p R R$-borne RRI mRNA. In track 2 the probe hybridises to pRR-borne RRI mRNA and, in addition, to mRNA specified by the infecting virus; this is proposed on the basis of the high homology between the HSV-1 and HSV-2 regions upstream from the RR2 mRNA cap site (Fig. 73). Finally, in the HSV-2-infected control sample (track 3 in Fig. 72) the probe hybridises, as expected to the HSV-2 specified RRI and 6.4 kb mRNAs. Other bands of different sizes appearing on track 2 probably arise from the probe hybridising to HSV-1 infecting virus mRNA; these bands appear also in track 5 although, as already noted, their intensity is low due to the small amount of RNA analysed on this track ( 0.5 ug ) as compared to that analysed on track 2 (4ug).

As can be seen in Fig. 72, the pRR-borne constitutive RR2 mRNA levels were barely detectable (track l) whereas, after induction by HSV-l, elevated RR2 mRNA levels were observed (track 2).
18. Trans-activation of Ribonucleotide Reductase Gene Transcription by HSV-1 IE Polypeptides.

The rationale behind these experiments was to study effects of the HSV-l IE polypeptides Vmwl 75 and Vmwllo on mRNA basal levels specified from pRR. For this purpose pRR-transfected HeLa cells were co-transfected with plasmids: i) pl75, which contains the coding sequences of Vmwl75 under the control of the SV40 E promoter and enhancer (Perry et al., 1986) and ii) plll, which encodes Vmwllo (Perry et al., 1986).

Sets of four sub-confluent 90 mm dishes of HeLa cells were transfected each with loug of pRR. From each set, in addition, the second was transfected with loug of plll, the


Figure 72. Ribonuclease $T 2$ analysis of pRR-borne constitutive and HSV-l-induced RR2 mRNA levels with the pRl2-produced RNA probe. Cytoplasmic RNA samples were from HeLa cells transfected with plasmid pRRI which were either mock-infected (track l) or HSV-l-infected (track 2). The negative and positive control cytoplasmic RNA samples were: HSV-2-infected HeLa RNA (track 3), mock-infected HeLa RNA (track 4) and HSV-l-infected HeLa RNA (track 5). Following hybridisation at $50^{\circ} \mathrm{C}$, samples were digested with ribonuclease T 2 and the T 2 -resistant products were analysed on $8 \%$ denaturing polyacrylamide gels. The position of the RR2 mRNA main hybrids is indicated by arrowheads and the full-length protected pRl2-produced probe is indicated by (p). The DNA size standards (M) were pATl53 DNA digested with Hpa II.

First sequence:	HSV-1
Second sequence:	HSV-2

1

139 GTGATGGACAGTCTCGACGCCAAGCAGTGGTCCGTGGCGCAGGCGCTCCCGTGCCTGGAGCCCACCCACCCCCT * ******* * ***** ************** ***** ***** ** ** ******************* 3909 GCGATGGACGGGCTCGAGGCCAAGCAGTGGTCTGTGGCCCAGGCCCTGCCTTGCCTGGACCCCGCCCACCCCCT

213 CCGGCGATTCAAGACCGCGTTTGACTACGACCAGAAGTTGCTGATCGACCTGTGTGCGGACCGCGCCCCCTACG ****** ******** ** ** ************ * ******************* *************
3983 CCGGCGGTTCAAGACGGCCTTCGACTACGACCAGGAACTGCTGATCGACCTGTGTGCAGACCGCGCCCCCTATG

361 CGCCTTCTGGTCCACGCATATAAGCGCGGACTAAAAACAGGGATGTACTACTGCAAGGTTCGCAAGGCGACCAA
 CGCCTTCTCGTCCACGCATATAAGCGCGGCCTGAAGACGGGGATGTACTACTGCAAGGTTCGCAAGGCGACCAA $\longrightarrow 5^{\prime}$ end RR2 mRNA

435 CAGCGGGGTCTTTGGCGGCGACGACAACATTGTCTGCATGAGCTGCGCGCTGTGACCGACAAACCCCCTCCGCG ********* ** * *************** ******* ****************** ***** 4205 CAGCGGGGTGTTCGCCGGCGACGACAACATCGTCTGCACAAGCTGCGCGCTGTAAGCAACA GCGCTCCGAT

509 CCAGGCCCGCCGCCACTGTCG TCGCCGTCCCACG
4275
CTCGGACGTCAGCGAGGGCTTTGCCCCCCTGTTCACCAACCTGTTCAGCAAGGTGACCCGGGACG
 CTCGGACGTCAGCGAGGGCTTTGCCCCCCTGTTCACCAACCTGTTCAGCAAGGTGACCAGGGACG

GCGAGACGCTGCGCCCCAACACGCTCCTGCTAAAGGAACTGGAACGCACGTTTAGCGGGAAGCGCCTCCTGGAG ****************************** ******** ** ******** ********** ******** GCGAGACGCTGCGCCCCAACACGCTCTTGCTGAAGGAACTCGAGCGCACGTTCGGCGGGAAGCGGCTCCTGGAC

TCGACCATAGCCAATCCATGACCOTGTATGTCACGGAGAAGGCGGACGGGACCCTCCCAGCCTCCACCCTGGTC * ** ** ************** *********** ********************** *************** TTGATCACAGCCAATCCATGACTCTGTATGTCACAGAGAAGGCGGACGGGACGCTCCCCGCCTCCACCCTGGTC
 CGGGGTCAGGCGTCGCTCTCGGTCCCTCATATCGCCATGGATCC

Figure 73. Nucleotide sequence comparison of the HSV-2 DNA region which was subcloned into pGEM-2, in order to produce the RNA probe specific for the HSV-2 RR2 mRNA, with the corresponding HSV-1 DNA region. The $5^{\prime}$ end of the RR2 mRNA is indicated and the HSV-2 sequence is numbered as in Fig. 67.
third with loug of pl75 and the fourth with loug each of plll and pl75. The total amount of transfected plasmid DNA in all four dishes was 30 ug, and this was made up by the addition of an appropriate amount of pUC8 plasmid DNA. As a positive control, subconfluent monolayers of HeLa cells were infected with HSV-2 strain HG52 at a multiplicity of 10 p.f.u./cell. After a 24 h incubation, the medium was replaced with fresh medium, and the dishes were incubated for a further 16 h at $37^{\circ} \mathrm{C}$ (see Materials and Methods, Page 69). At the end of the second incubation, cells were harvested and cytoplasmic RNA was prepared. Then, 4 ug of RNA from co-transfected cells and $0.5 u g$ of RNA from HSV-2-infected cells were hybridised to probes produced from plasmids pR45 and pRl2; the hybrids were treated with ribonuclease $T 2$ and analysed on $8 \%$ denaturing polyacrylamide gels.

The autoradiographs of Figs. 74 and 75 show the results obtained after hybridisation of cytoplasmic RNA to the PR45- and pRl2-produced probes respectively. The RNA samples analysed on these gels were isolated from HeLa cells co-transfected with: pRR and pUC8 (track l), $\mathrm{pRR}, \mathrm{plll}$ and pUC8 (track 2), pRR, pl75 and pUC8 (track 3), pRR, plll and pl75 (track 4). The RNA sample analysed on track 5 was from HeLa cells infected with HSV-2. As can be seen, the bands due to the probes hybridising to the RRI (Fig. 74) and RR2 (Fig. 75) mRNAs migrate at positions corresponding to those observed in Figs. 70 and 72 respectively. These bands were quantitated as described in Materials and Methods (see Page 62), although, cells were not transfected with a control plasmid, to allow standardisation of the transfection procedure; this was due to the limited amount of DNA that can be taken up by transfected cells ( 30 ug per 90 mm Petri dish; R.D. Everett, personal communication). The results of this analysis, shown on Table $V$, demonstrated that Vmwllo had no detectable effect on RRI mRNA basal levels, whereas, Vmwl75 or a combination of Vmwll0 and Vmwl75 resulted in a 2- to 3-fold increase. In contrast,

Vmwl 75 substantially increased the RR2 mRNA levels by
12-fold
In the presence of both of these IE polypeptides, the highest increase was observed resulting in


Figure 74. Transcriptional activation of pRR-borne RRl mRNA levels by plasmid-borne HSV-1 LE Vmwl75 and Vmwllo polypeptides. Cytoplasmic RNA samples were from HeLa cells co-transfected with plasmids:

```
pRR and pUC8 (track l)
pRR, plll and pUC8 (track 2)
pRR, pl75 and pUC8 (track 3)
pRR, plll and pl75 (track 4)
```

As a positive control, HeLa cells were infected with HSV-2 virus (track 5). Samples were hybridised to pR45-produced probe at $50^{\circ} \mathrm{C}$, digested with ribonuclease T 2 and the T2-resistant products were analysed on $8 \%$ denaturing polyacrylamide gels. The position of the RRI mRNA hybrids is indicated by an arrow. The DNA size standards (M) were pATl53 DNA digested with Hpa II.


Figure 75. Transcriptional activation of pRR-borne RR2 mRNA levels by plasmid-borne HSV-1 IE Vmwl75 and Vmwllo polypeptides. Cytoplasmic RNA samples were from Hela cells co-transfected with plasmids:

```
pRR and pUC8 (track l)
pRR, plll and pUC8 (track 2)
pRR, pl75 and pUC8 (track 3)
pRR, plll and pl75 (track 4)
```

As a positive control, HeLa cells were infected with HSV-2 virus (track 5). Samples were hybridised to pRl2-produced probe at $50^{\circ} \mathrm{C}$, digested with ribonuclease $T 2$ and the T2-resistant products were analysed on $8 \%$ denaturing polyacrylamide gels. The position of the RR2 mRNA main hybrids is indicated by an arrow. The DNA size standards (M) were pATl53 DNA digested with Hpa II.

## TABLE V

RELATIVE INCREASES OF THE RR1 AND RR2 mRNA CONSTITUTIVE LEVELS AFTER TRANS-ACTIVATION WITH THE HSV-I IE POLYPEPTIDES Vmwllo AND Vmwl75

	Vmwll0	Vmwl75	Vmwl10/   Vmwl75
RR1 mRNA	1	2	$2-3$
RR2 mRNA	1	12	17.

17-fold elevated RR2 mRNA levels.

## DISCUSSION.

In this Section, in vitro expression of the RRI and RR2 genes was studied using transient expression assays. Further, studies were performed on regulation of expression of these genes using HSV-l infection or trans-activation with plasmid-borne IE polypeptides. In the Discussion, the results obtained from these experiments will be combined with other available data on the regulation of ribonucleotide reductase gene expression.
19. Regulation of HSV-2 RR1 Gene Transcription.

The main observations on HSV-2 RRI gene expression
were: i) RRl mRNA basal levels are readily detectable in the absence of HSV-l trans-activating functions, ii) HSV-l infection or trans-activation with the HSV-1 IE polypeptide Vmwl75 results in a 5 - and 3-fold increase of RRI mRNA basal levels respectively and iii) the HSV-l IE polypeptide Vmwllo has no detectable effect on RRI mRNA basal levels.
a) Constitutive transcription from the HSV-2 RRI gene
promoter.

A striking observation on RRI gene expression was that RRI mRNA basal levels were readily detectable in the absence of viral trans-activating functions. The RRl gene has been classified as an $E$ gene because studies on the kinetics of appearance of the RRI mRNA in the cytoplasm of HSV-infected cells demonstrated its detection by 2 h p.i. and levels continued to accumulate by 6 h to 8 h p.i. after which there was no increase in abundance (McLauchlan and Clements, 1982; McLauchlan, 1986). As an E gene, activation of RRI expression should require the presence of functional IE polypeptides (see Introduction, Page 22). However, further to the data presented in this Section, a number of reports
have identified either the RRI mRNA or the RRI polypeptide present under IE conditions: in fact, certain of these reports have classified the RRl gene as an IE gene. First, Clements et al. (1977) detected, by blot hybridisation to viral DNA fragments, low levels of the RRI mRNA under IE conditions; following reversal of the cycloheximide block, RRI mRNA was rapidly and abundantly synthesised and its synthesis preceded that of other E mRNAs such as the DNA polymerase or the TK. Second, watson et al. (1980) detected the RRI polypeptide after in vitro translation of pooled IE mRNA. Third, the RRI polypeptide is expressed by HSV ts-Vmwl75 or ts-Vmwll0 mutants grown at the NPT (Marsden et al., 1976; Preston, 1979; DeLuca et al., 1985; Stow and Stow, 1986; Sacks and Schaffer, 1987). Fourth, infection with HSV-1 or HSV-2 result in the expression of the RRI polypeptide at very early times (Pereira et al., 1977; Easton et al., 1980; Frame et al., 1986b; A. Cross, personal communication). Finally, by nuclease Sl analysis, RRI mRNA was detected after infection with HSV-l mutant tsk at the NPT or HSV-l wild-type virus infection under IE conditions, although, its levels were lower than those of other IE mRNAs (J. McLauchlan, personal communication).

Since E gene promoter activity is generally low in the absence of $H S V$ trans-activating functions (reviewed in Everett, 1987b) the readily detectable pRR-specified RRI mRNA levels would suggest that the RRl gene promoter (Pl) is activated by cellular transcription factors. For this reason, the upstream HSV-2 PI DNA sequences were analysed for the presence of sequence elements known to bind cellular transcription factors.
i) Potential binding sites of the Spl cellular transcription factor within the Pl sequences. Initially, Pl sequences were examined for potential binding sites of the Spl transcription factor known to enhance transcription from RNA polymerase II promoters (see Introduction, Page 19; reviewed in Kadonaga et al., 1986). This analysis revealed the presence of a C-rich sequence located between -50 to -40 nuc relative to the RRI mRNA start site ( +1 ) whose complement exhibits reasonable homology to the Spl consensus
(Fig. 76). Further upstream from the putative Spl binding site, there is a G-rich tract on the complementary strand at position -llo relative to the RRI mRNA start site. G-rich motifs like the latter were observed in the $E$ gD promoter and share similarities with the Spl binding site in the human immunodeficiency virus long terminal repeat (see Introduction, Page 22). Further, the complement of this motif has been found located at a similar distance from the cap sites of several HSV mRNAs and, although not all E promoters contain these sequences, they appear to be absent from most $L$ promoters (reviewed in Wagner, 1985). The highly conserved nature of this motif would indicate that it may represent a functional component of Pl . Interestingly, both of these elements are well conserved in the promoter of the HSV-1 RRI mRNA although their distances from the HSV-l mRNA start site differ from those observed in HSV-2.
ii) A potential binding site of the cellular 'octamer motif binding factor' in the Pl sequences. Further analysis of the Pl sequences revealed the existence of a $5^{\prime}-A T G C A A A T-3^{\prime}$ sequence (octamer) at position -136. This sequence element is well conserved in the SV40 enhancer, in the enhancer and the promoter of both heavy- and $K$ light-chain immunoglobulin genes (Falkner and Zachau, 1984), in different H 2 B histone promoters (Harvey et al., 1982) and in the enhancers or promoters of several other genes (Falkner et al., 1986). Studies with different octamer motifs demonstrated that each gave rise to complexes with fractionated HeLa cell nuclear extracts which had identical mobilities in gel retardation assays and that different motifs were almost equally competitive for binding to the same factor of the complex (Bohmann et al., 1987). Purified 'octamer motif binding factor' has a stimulatory effect on transcritpion in vitro (Bohmann et al., 1987; Flether et al., 1987). The protein factors that bind the octamer motifs have been designated either OTF-I, or OBPIOO, or IgNF-A (reviewed in Jones et al., 1988), and they appear closely related to each other and to NF-III (see Introduction, Page 20; reviewed in Hames and Glover, 1988).
RR1
$\stackrel{\sim}{\sim}$
$\underset{\sim}{\sim}$

Figure 76. Cis-acting transcriptional elements within the promoter sequences of the HSV-2 RRI and RR2 genes. The nucleotide sequences of both DNA strands are shown and the locations of the mRNA 5' ends are indicated. The consensus sequence of the Spl cellular transcription factor binding site is given in the $3^{\prime}$ to $5^{\prime}$ direction and is aligned with homologous RR1 and RR2 promoter sequences. Residues on the mRNA coding strands which have homology to the Spl consensus are indicated by asterisks. The two G-rich motifs (G) are boxed as is the putative 'octamer motif binding factor' consensus.

Analyses of the Pl sequences for potential binding sites of other cellular transcription factors, such as the CTF/CBP (see Introduction, Page 19), were negative. It is therefore suggested that the readily detectable pRR-specified RRI mRNA constitutive levels of expression are mainly due to the interaction of a complex of cellular transcription factors, one of which is the 'octamer motif binding factor', with the Pl sequences. This is based on the fact that, in analogy to Pl , the RR2 gene promoter ( P 2 ) sequences contain both a potential Spl binding site and a G-rich motif (see Fig. 76). However, P2 lacks the octamer sequence and this may possibly account for the extremely low pRR-borne RR2 mRNA levels observed (see Page ll8). This suggestion is currently being investigated by means of deletion mutagenesis (J. McLauchlan, personal communication).

## b) Effects of HSV-l trans-activating functions on RRI mRNA transcription.

Activation of pRR-specified RRl mRNA levels with Vmwllo had no detectable effect. As has been noted previously, an internal control plasmid was not included in the co-transfection experiments due to the limited amount of DNA that can be taken up by transfected cells. Nevertheless, Vmwllo is most probably present in cells transfected with pRR and plll, since the pRR-borne RR2 mRNA levels are increased (see Table V). Thus, the failure of Vmwllo to increase RRI mRNA levels may reflect a real inability, rather than a failure of transfection. On the contrary, Vmwl75, either independently or in combination with Vmwllo, induced RRI mRNA constitutive levels by 3 -fold. This is in good agreement with the increase in CAT activity observed after co-transfection of a Pl-CAT construct with Vmwl75 (S. Simpson, personal communication). Equally, induction by HSV-1 infection resulted in an increase of RRl mRNA levels which, however, was higher than that observed with Vmwl75 (5-fold; S. Simpson, personal communication). This result suggests that perhaps one or more of the remaining HSV-l IE functions may account for this. The most likely candidate
appears to be Vmwl2, which is thought to augment the effect of Vmwl75 and Vmwllo in activation of $E$ gene expression ( $O^{\prime}$ Hare and Hayward, 1985b).
20. Constitutive and Induced Transcription Levels from the HSV-2 RR2 Promoter.

The main observations on HSV-2 RR2 gene expression were: i) RR2 mRNA basal levels are extremely low in the absence of HSV-l trans-activating functions, ii) HSV-l infection or trans-activation with HSV-l $V_{m w l} 75$ results in a substantial increase of RR2 mRNA basal levels

The observation that the RR2 mRNA basal levels are barely detectable in the absence of viral trans-activating functions is consistent with the regulation pattern of HSV E genes whereby, in the absence of these functions, $E$ gene promoter activity is generally low (reviewed in Everett, 1987b). In the presence of HSV-1 IE functions, however, a substantial increase of RR2 mRNA levels was observed (see Table V). From the two IE products used in this study, Vmwl75 activates P2 more efficiently than Vmwllo and this is in good agreement with other reports on E gene regulation of expression (O'Hare and Hayward, l985b; reviewed in Everett, 1987b; S. Simpson, personal communication). However, the effect of these polypeptides in combination was additive, whereas, in a study by O'Hare and Hayward (1985b), it resulted in a synergistic increase of P2-CAT-specified CAT levels. Analysis of the trans-activation efficiency of the gD promoter under a variety of experimental conditions demonstrated that quantitative differences, like the one described above, may be due to different cell types and/or transfection methods used (Everett, 1987c). For example, it was shown that co-transfection of a gD promoter-CAT plasmid with Vmwl 75 and Vmwll0 in WSHeLa cells had a very strong synergistic effect whereas in Flow HeLa or BHK cells the effect of these IE products was additive rather than synergistic.

The work presented in the Results and Discussion Sections has identified a number of points concerning the HSV-l-encoded ribonucleotide reductase, namely:
i) structural and potential functional features resulting from the predicted primary and secondary structures of the large and small subunit polypeptides
ii) the conservation of these features in homologue herpesviral polypeptides and in the equivalent subunit polypeptides of the eukaryotic and prokaryotic enzymes and,
iii) the transcriptional regulation of the HSV-induced ribonucleotide reductase mRNAs.

This Section is concerned with the evolution and the function of the RRI N-terminal region and with unique features of the RR1 and RR2 subunits which could represent targets for antiviral compounds. Further, the enzyme's transcriptional regulation during the IE and E stages of the HSV lytic cycle is also discussed.

1. The HSV-1 RRI N-terminal Region.
a) On the evolution of the HSV-1 $N$-terminal region. The most interesting feature resulting from the analysis of the HSV-1 RRI predicted amino acid sequence is the $N$-terminal region, whose amino acid composition differs from the remainder of RR1, and which is absent from other $\mathrm{RR}_{\mathrm{L}}$ polypeptides; as already mentioned (see Results and Discussion, Page 81), this region contains a run of prolines, two stretches of roughly alternating aspartic acid and serine residues and seven sets of tandemly repeated amino acid sequences.

On the basis of these amino acid composition features a hypothetical scheme of evolutionary events leading to the formation of this region can be proposed.
i) It appears likely that an ancestral RRI gene, which would be similarly sized to the other herpesviral ${R R_{L}}^{\prime}$,
acquired part of the DNA sequences coding for the $N$-terminal region by a recombination event; this step is suggested by the abserice of the RRI N-terminal region from other $R_{L}$ polypeptides. The acquired sequences may have originated from a second virus in the cell or from the host cell.
ii) Second, the DNA regions coding for certain amino acid sequences were duplicated by a gene duplication event whereby the DNA regions corresponding to certain amino acid sequences were duplicated. This step is proposed on the basis of the repeated amino acid sequences observed within this region (see Fig. 29). A number of proteins appear to have evolved by gene duplication (reviewed in Doolittle, l981), a process resulting in increased stability of the protein or in the enhancement of its functions (reviewed in Li, 1983). One example of this evolutionary mechanism is the ovomucoid protein of bird egg white which is involved in the inhibition of trypsin. It appears that this protein evolved by triplication of the DNA sequences coding for a primordial domain because it consists of three domains exhibiting between them 338 amino acid homology (Kato et al., 1978). As a result of this event, each of the three domains is capable of binding one molecule of trypsin or other serine protease thus enhancing the catalytic activity of the protein.
iii) Finally, it appears that mutations accumulated within the duplicated DNA sequences, and this is reflected by the observed insertions and deletions within the $N$-terminal regions of the HSV-l and HSV-2 RRI polypeptides (see Figs. 33 and 55). It has been proposed that accumulation of mutations within duplicated regions of proteins is due to a relaxation of evolutionary restraints imposed by natural selection (reviewed in Doolittle, l981).

This evolutionary scheme, however, does not exclude other possible events which lead to the formation of the RRI N-terminal region (D.J. McGeoch, personal communication). For example it is possible that, instead of this region being acquired by a recombination event, it evolved by mutation of sequences which were originally located upstream from the coding sequences of the ancestral RRI gene. Further, the evolutionary events might not have occured in
the order described above such that the DNA sequences acquired by the ancestral RRl gene might have already been duplicated; therefore, the duplication event might have preceded the recombination event.
b) A possible function for the RRI $N$-terminal region. Although the RRI N-terminal region appears not to be directly involved in ribonucleotide reductase activity (see Results and Discussion, Page l00), it is thought that it has an additional function. This is primarily based on the retention of this region in RRl and on its distinct amino acid composition as compared to the remainder of RRI. A similar case exists between the HSV-l Vmw65 IE trans-inducing virion polypeptide which contains a C-terminal region of 80 amino acids not present in its VZV homologue Vmw54 (Dalrymple et al., 1985). Studies concerning the function of this Vmw65 region demonstrated that it is required for the trans-induction of $I E$ gene expression as an HSV-1 Vmw65 insertion mutant in this region displayed strongly reduced ability to trans-induce IE polypeptides (Ace et al., manuscript in preparation). On the other hand, Vmw54, which does not contain a corresponding region, appears to be unable to trans-induce the VZV IE polypeptides (T. McKee, personal communication).

It is interesting to propose that certain portions of
RR1 Region 1 , which comprises the $N$-terminal region (see Results and Discussion, Page 98), are involved in nuclear localisation of the polypeptide. This suggestion arises from analysis of the amino acid sequences of RRI Region 1 for motifs indicative of a certain function, whereby, a sequence of KRVPPR was identified (at HSV-1 position 356; see Fig. 55). This sequence is also present in HSV-2 RRI and closely resembles the proposed nuclear localisation signal for the yeast MATん2 which comprises three hydrophobic amino acids, one of which is a proline, flanked by basic amino acids (Hall et al., 1984). However, it has been proposed that multiple signals may be present in polypeptide domains involved in nuclear localisation (Dingwall et al., 1987). In that respect, another highly conserved HSV-l and

HSV-2 sequence of RPAAS was also identified (at HSV-l RRI position 4; see Fig. 55). Interestingly, this sequence is quite similar to one of the proposed signals for nuclear localisation of nucleoplasmin (RPAAT; Dingwall et al., 1987). Analysis of other HSV-l polypeptides known to translocate to the nucleus of infected cells identified at the $C$-terminus of the DNA polymerase two sequences of KRPR and KPKK which resemble the proposed signal for nuclear localisation of the adenovirus ElA gene products (KRPR; Krippl et al., 1985). As can be observed, these signals are homologous to the first of the potential RRl signals.

Large protein molecules appear to accumulate in the nucleus by an ATP-dependant selective entry mechanism which is mediated by the part of the protein containing the nuclear localisation signals (Feldherr et al., 1984; reviewed in Dingwall and Laskey, 1986). This is evidenced by the fact that the rate of nuclear uptake is faster than can be accounted for by diffusion. Feldherr et al. (1984) studied the selective entry mechanism of nucleoplamin, a $165,000 \mathrm{~mol}$. wt. nuclear protein of the Xenopus laevis oocyte. These authors proposed that nucleoplasmin binds to proteins, termed the annular material, at the cytoplasmic surface of the nuclear pores and that this binding occurs only when the domain comprising the nuclear localisation signals is present. Then, nucleoplasmin is transported in the nucleus through the centre of the nuclear pore where it is dissociated from the annular material.

If RRI is transported to the nucleus, one could speculate that binding of RRl to the annular material and subsequent transport in the nucleus is mediated by part 1 of the $N$-terminal region (RRI positions 1 to 150 , see Fig. 55). The GARNIER program demonstrated that this part of the N-terminal region is punctuated by seven stretches of hydrophobic amino acids, predicted to adopt $\beta$-strand conformation, while the intervening sequences were predicted as unstructured. Hence, part $l$ may adopt an ordered three-dimensional structure consisting of a hydrophobic core of seven $\beta$-strands which are joined by unstructured or loop regions and which are arranged in one or more $\beta$-sheets (Nikas et al., 1986). This structure resembles the
three-dimensional structure of the immunoglobulin $V_{L}$ domains; these consist of seven $\beta$-strands which are arranged in two $\beta$-sheets and which are joined between them by hypervariable loops (Poljak et al., 1974). On the basis of the similarity of the three-dimensional structures of part 1 with the immunoglobulin $V_{L}$ domains and in conjunction with the fact that the latter are involved in antigen binding, it is possible that part $l$ of the RRl $N$-terminal region is involved in protein-to-protein interactions (W.R. Taylor, personal communication). These could possibly be interactions with the annular material of the nuclear pore in order to transport RRl into the nucleus. In that respect, it is interesting to note that the mammalian Ml subunit, which lacks the $N$-terminal region, is exclusively localised in the cytoplasm of cells as deduced from studies using monoclonal antibodies directed against Ml (Engstrom et al., 1984). Clearly, the involvement of the $N$-terminal region in RRI nuclear localisation requires rigorous investigation.

It is unclear as yet why the RRI polypeptide should localise to the nucleus of infected cells. A strong possibility is that nuclear localisation of RRl is not related to ribonucleotide reduction as dNTPs are formed in the cytoplasm of cells (reviewed in Reichard, l988). As reported on Page 81 , the $N$-terminal region contains two aspartic acid and serine rich stretches which are similar in amino acid composition to stretches present at the $N$-terminal regions of all the IE polypeptides with the exception of Vmwl2. One could therefore speculate that the RRI and the equivalent IE polypeptide stretches may be involved in similar processes. In an attempt to elucidate the function of the aspartic acid and serine rich stretch of Vmwl75, Paterson and Everett (1988) have shown that deletion of these sequences reduces, althought not drastically, the ability of Vmwl75 to trans-activate $E$ gene expression in short-term transfection assays.
2. Ribonucleotide Reductase as a Target for Antiviral Compounds.

As reported in the Introduction (see Page 53), studies with the synthetic oligopeptide YAGAVVNDL demonstrated that, in vitro, it selectively inhibited the HSV-specified activity by subunit dissociation. Thus, it became apparent that inhibition of subunit interaction may have important therapeutic implications. However, exposure of infected cell monolayers to various concentrations of the nonapeptide did not reduce the yield of infectious virus most probably because it was too large to enter the cell (Dutia et al., 1986). As a result, effort is currently being put into the development of antiviral compounds designed to mimic the mode of function of the nonapeptide; these compounds should have a three-dimensional structure similar to the nonapeptide and be able to enter the infected cell.

The $\mathrm{RR}_{\mathrm{L}}$ alignment identified a number of amino acid sequences which are not conserved in the prokaryotic or eukaryotic polypeptides and which may be contact regions of the RR1 and RR2 subunits or may represent regions related to the activity of the HSV-l-induced enzyme. These sequences are retained in blocks $1,5,12$ and 13 of the $R_{L}$ alignment (see Fig. 56). From these, of particular interest is block 5 which is missing from the mammalian polypeptide and is predicted to map within a hydrophobic region of the HSV-l RRI polypeptide (see Fig. 27); therefore, it is quite possible that it may be located at the interface of the RRI and RR2 subunits and be involved in their association. Further, as block 5 is highly conserved between the herpesviral $\mathrm{RR}_{\mathrm{L}}$, compounds that prevent its function could prove general inhibitors of the herpesviral enzymes. Another region of interest is the $N$-terminal region which is unique to the $H S V R R I$ and may be required for translocation to the nucleus. As postulated above, any nuclear localisation of RRl may be unrelated to ribonucleotide reduction but insteadoto some as yet unknown function. If this was an essential HSV function, compounds preventing nuclear localisation of RRI may prove potential antivirals.

In contrast to the $R_{L}$ polypeptides, the majority of
the mammalian enzyme (McLauchlan, 1986). The only exception appears to be block 16 which, along with its flanking amino acid sequences, is conserved only in the HSV and VZV polypeptides (see Fig. 57). However, this region may not be involved in subunit association as it was predicted to map within a hydrophilic region of HSV-l RR2 (data not shown).
3. Regulation of the HSV Ribonucleotide Reductase Activity. The results reported in Results and Discussion Section E, in conjunction with the unpublished data of J. McLauchlan and S. Simpson, allow the proposal of a general scheme for the transcriptional regulation of the ribonucleotide reductase genes under $I E$ and $E$ conditions.
a) Transcriptional regulation of the RR1 and RR2 genes under IE conditions.

On the basis that RRI mRNA constitutive levels are readily detectable in the absence of functional IE polypeptides (see Results and Discussion, Page ll7), it is proposed that during viral infection, RRl gene expression is activated under IE conditions. This is most probably achieved by the interaction of cellular and/or viral transcription factors with target sequences positioned in the Pl promoter. One of the cellular factors may possibly be Spl, potential binding sites of which have already been identified in the Pl sequences (see Results and Discussion, Page l2l). Second, RRl expression could be activated by a complex containing Vmw65 and cellular transcription factors. Vmw65 is considered as a Pl activator because co-transfection of a Vmw65-expressing plasmid with a Pl-CAT construct resulted in a significant increase of CAT levels (S. Simpson, personal communication). However, as Vmw65 does not bind HSV DNA directly (see Introduction, page 20), it is expected to act as a constituent of a complex with cellular transcription factors. One of these may be related to the 'octamer motif binding factor', this suggestion being based on the presence of the octamer in the Pl sequences (see Results and Discussion, Page l22). Recent data indicate that HSV-2 DNA fragments containing the Pl octamer
are retarded in gels by Vmw65/cellular transcription factors complexes (J. McLauchlan, personal communication).
Interestingly, these complexes have similar mobility in gels with the IEC complex formed between DNA fragments containing the TAATGARAT motif of the regulatory region of the $1 E$ gene promoters (see Introduction, Page 20).

In contrast to RRI, under IE conditions, the RR2 gene is not expressed. This suggestion is clearly evidenced by the extremely low contitutive RR2 mRNA levels observed: i) in the absence of functional IE products (see Results and Discussion, Page ll9) and ii) after infection with the HSV mutant tsk in the presence of cycloheximide (J. McLauchlan, personal communication).
b) Transcriptional regulation of the RR1 and RR2 genes under E conditions.
In the presence of functional IE gene products the RRI mRNA levels increase further as compared to the levels observed under IE conditions; upon reversal of the cycloheximide block and in the presense of actinomycin $D$, tsK specified elevated levels of RRl mRNA as compared to those specified under IE conditions (J. McLauchlan, personal communication). Likewise, under E conditions, RR2 gene expression is also activated and this is evidenced by the substantial increase of RR2 mRNA levels in the presence of Vmwl 75 and/or Vmw1l0 (see Results and Discussion, Page ll9).

Ace, C.l., Dalrymple, M.A., Ramsay, F.H., Preston, V.G. and preston, C.M. (1988). Mutational analysis of the herpes simplex virus type 1 trans-inducing factor Vmw65. J. Gen. Virol. 69, 2595-2605.

Alford, C.A. and Britt, w.J. (1985). Cytonegalovirus. In: 'Virology', (B.N. Fields, ed.) Raven Press, New York.

Allen, G.P., Cohen, J.C., Randall, C.C. and O'Callaghan, D.J. (1978). Replication of equine herpesvirus type 1 and type 3: resistance to hydroxyurea and thymidine. Intervirology 9, 276-285.

Alwine, J.C., Steinhart, w.L. and Hill, C.W. (1974). Transcription of herpes simplex type 1 DNA in nuclei isolated from infected HEp-2 and KB cells. Virology 60, 302-307.

Anderson, K.P., Costa, R.H., Holland, L.E. and Wagner, E.K. (1980). Characterisation of herpes simplex virus type 1 RNA present in the absence of de novo protein synthesis. J. Virol. 34, 9-27.

Anderson, K.P., Frink, R.J., Devi, G.B., Gaylord, B.H., Costa, R.H. and Wagner, E.K. (1981). Detailed characterisation of the mRNA mapping in the HindIII fragment $k$ region of the herpes simplex virus type 1 genome. J. Virol. 37, l011-1027.

Ashley, G.W., Harris, G. and Stubbe, J. (1986). The mechanism of Lactobacillus leichmannii ribonucleotide reductase. J. Biol. Chem. 261, 3958-3964.

Atkin, C.L., Thelander, L., Reichard, P. and Lang, G. (1973). Iron and free radical in ribonucleotide reductase: exchange of iron and Mossbauer spectroscopy of the protein $B 2$ subunit of the Escherichia coli enzyme. J. Biol. Chem. 248, 7464-7472.

Aurelian, L. and Roizman, B. (1964). The host range of herpes simplex virus. Interferon, viral DNA and antigen synthesis in abortive infection of dog kidney cells. Virology 22, 452-461.

Averett, D.R., Lubbers, C., Elion, G.B. and Spector, T. (1983). Ribonucleotide reductase induced by herpes simplex type l virus. Characterisation of a distinct enzyme. J. Biol. Chem. 258, 9831-9838.

Averett, D.R., Furman, P.A. and Spector, T. (1984). Ribonucleotide reductase of herpes simplex virus type 2 resembles that of herpes simplex virus type 1. J. Virol. 52, 981-983.

Bacchetti, S., Evelegh, M.J. and Muirhead, B. (1986). Identification and separation of the two subunits of the herpes simplex virus ribonucleotide reductase. J. Virol. 57, ll77-1181.

Bachmann, B.J., Low, K.B. and Taylor, A.L. (1976). Recalibrated linkage map of Escherichia coli Kl2. Bacteriol. Rev. 40, ll6-167.

Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C., Tuffnell, P.S. and Barrell, B.G. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-2ll.

Baringer, J.R. (1974). Recovery of herpes simplex virus from human sacral ganglions. New England J. Med. 291, 828-830.

Beard, P., Faber, S., Wilcox, K.W. and Pizer, L.I. (1986). Herpes simplex virus immediate-early infected cell polypeptide 4 binds to DNA and promotes transcription. Proc. Natl. Acad. Sci. (USA) 83, 4016-4020.

Benoist, C. and Chambon, P. (1981). In vivo sequence requirements of the SV40 early promoter region. Nature 290, 304-310.

Ben-Zeev, A., Asher, Y. and Becker, Y. (1976). Synthesis of herpes simplex virus-specified RNA by an RNA polymerase II in isolated nuclei in vitro. Virology 7l, 302-3ll.

Berglund, O. (1969). Identification of a thioredoxin induced by bacteriophage T4. J. Biol. Chem. 244, 6306-6308.

Berglund, O. (1972a). Ribonucleoside diphosphate reductase induced by bacteriophage T4. I. Purification and characterisation. J. Biol. Chem. 247, 7270-7275.

Berglund, O. (1972b). Ribonucleoside diphosphate reductase induced by bacteriophage T4. II. Allosteric regulation of substrate specificity and catalytic activity. J. Biol. Chem. 247, 7276-7281.

Berglund, O. (1975). Ribonucleoside diphosphate reductase induced by bacteriophage T4. III. Isolation and characterisation of proteins Bl and B 2 . J. Biol. Chem. 250, 7450-7455.

Berglund, O., Karlstrom, O. and Reichard, P. (1969). A new ribonucleotide reductase system after infection with phage T4. Proc. Natl. Acad. Sci. (USA) 62, 829-835.

Biggin, M.D., Gibson, T.J. anḑ5 Hong, C.F. (1983). Buffer gradient gels and ${ }^{35}$ S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. (USA) 80, 3963-3965.

Biswal, N., Feldan, P. and Levy, C.C. (1983). A DNA topoisomerase activity copurifies with the DNA polymerase induced by herpes simplex virus.
Biochim. Biophys. Acta 740, 379-389.

Biswas, C., Hardy, J. and Beck, W.S. (1965). Release of repressor control of ribonucleotide reductase by thymine starvation. J. Biol. Chem. 240, 3631-3640.

Bohmann, D., Keller, w., Dale, T., Scholer, H.R., Tebb, G. and Mattaj, I.W. (1987). A transcription factor which binds to the enhancers of SV40, immunoglobulin heavy chain and U2 snRNA genes. Nature 325, 268-272.

Braun, D.K., Roizman, B. and Pereira, L. (1984). Characterisation of post-translational products of the herpes simplex virus gene 35 proteins binding to the surfaces of full capsids but not empty capsids. J. Virol. 49, 142-153.

Brown, N.C. and Reichard, P. (1969a). Ribonucleoside diphosphate reductase. Formation of active and inactive complexes of proteins Bl and B2. J. Mol. Biol. 46, 25-38.

Brown, N.C. and Reichard, P. (1969b). Role of effector binding in allosteric control of ribonucleoside diphosphate reductase. J. Mol. Biol. 46, 39-55.

Brown, N.C., Larsson, A. and Reichard, P. (1967). On the subunit structure of ribonucleoside diphosphate reductase. J. Biol. Chem. 242, 4272-4273.

Brown, N.C., Canellakis, Z.N., Lundin, B., Reichard, P. and Thelander, L. (1969). Ribonucleotide diphosphate reductase. Purification of the two subunits, proteins B1 and B2. Eur. J. Biochem. 9, 561-573.

Brown, P.O. and Cozzarelli, N.R. (1981). Catenation and knotting of duplex DNA by type 1 topoisomarases: a mechanistic parallel with type 2 topoisomerase. Proc. Nat. Acad. Sci. (USA) 78, 843-847.

Brown, S.M., Ritchie, D.A. and Subak-Sharpe, J.H. (1973). Genetic studies with herpes simplex virus type 1. The isolation of temperature sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. J. Gen. Virol. 18, 329-346.

Brown, S.M. and Harland, J. (1987). Three mutants of herpes simplex virus type 2: one lacking the genes USl0, 11, and 12 and two in which $R_{s}$ has been extended by 6 kb to 0.91 map units with loss of $\mathrm{U}_{\mathrm{s}}$ sequences between 0.94 and the $\mathrm{U}_{\mathrm{S}} / \mathrm{TR}_{\mathrm{S}}$ junction. J. Gen. Virol. 68, 1-18.

Buckmaster, E.A., Gompels, U. and Minson, A. (1984). Characterisation and physical mapping of an HSV-l glycoprotein of approximately $115 \mathrm{xlO}^{3}$ molecular weight. Virology 139, 408-413.

Busby, D.W.G., House, W. and McDonald, J.R. (1964).
In: 'Virological Techniques'. Churchill, London.

Bzik, D.J. and Preston, C.M. (1986). Analysis of DNA sequences which regulate the transcription of herpes simplex virus immediate-early gene 3: DNA sequences required for enhancer-like activity and response to trans-activation by a virion polypeptide. Nucl. Acids Res. 14, 929-943.

Bzik, D.J., Fox, B.A., DeLuca, N.A. and Person, S. (1984). Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type l. Virology 133 , 301-314.

Cameron, J.M., McDougall, I., Marsden, H.S., Preston, V.G., Ryan, D.M. and Subak-Sharpe, J.H. (1988). Ribonucleotide encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J. Gen. Virol. 69, 2607-2612.

Campbell, M.E.M., Palfreyman, J.W. and Preston, C.M. (1984). Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J. Mol. Biol. 180, 1-19.

Caradonna, S.J. and Cheng, Y.C. (1981). Induction of uracil-DNA glycosylase and duTP nucleotidylhydrolase activity in herpes simplex virus-infected cells. J. Biol. Chem. 256, 9834-9837.

Caradonna, S., Worrad, D. and Lirette, R. (1987). Isolation of a herpes simplex virus cDNA encoding the DNA repair enzyme uracil-DNA glycosylase. J. Virol. 6l, 3040-3047.

Caras, I.W., Levinson, B.B., Fabry, M., Williams, S.R. and Martin, D.W.Jr. (1985). Cloned mouse ribonucleotide reductase subunit $M 1$ cDNA reveals amino acid sequence homology with Escherichia coli and herpesvirus ribonucleotide reductases. J. Biol. Chem. 260, 7015-7022.

Carlson, J., Fuchs, J.A. and Messing, J. (1984). Primary structure of the Escherichia coli ribonucleoside diphosphate reductase operon. Proc. Natl. Acad. Sci. (USA) 81, 4294-4297.

Challberg, M.D. (1986). A method for identifying the viral genes required for herpesvirus DNA replication. Proc. Natl. Acad. Sci. (USA) 83, 9094-9098.

Chang, C. -H . and Cheng, Y. (1979). Effects of nucleoside triphosphates on human ribonucleotide reductase from Molt-4F cells. Cancer Res. 39, 5087-5092.

Chartrand, P., Stow, N.D., Timbury, M.C. and Wilkie, N.M. (1979). Physical mapping of paa mutations of herpes simplex virus type 1 and type 2 by intertypic marker rescue. J. Virol. 3l, 265-276.

Chen, A.K., Bhan, A., Hopper, S., Abrams, R. and Franzen, J.S. (1974). Substrate and effector binding to ribonucleoside triphosphate reductase of Lactobacillus leichmannii. Biochemistry 13, 654-561.

Chiou, H.C., Weller, S.K. and Coen, D.M. (1985). Mutations in the herpes simplex virus major DNA binding protein gene leading to altered sensetivity to DNA polymerase inhibitors. Virology 145, 213-226.

Chou, J. and Roizman, B. (1985). Isomerisation of herpes simplex virus l genome: identification of the cis-acting and recombination sites within the domain of the 'a' sequence. Cell 4l, 803-811.

Chou, P.Y. and Fasman, G.D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47, 54-147.

Chousterman, S., Lacasa, M. and Sheldrick, P. (1979). Physical map of the channel catfish virus genome: location of sites for restriction endonucleases EcoRI, HindIII, HpaI and XbaI. J. Virol. 3l, 73-85.

Chu, F.K., Maley, G.F., Maley, F. and Belfort, M. (1984). An intervening sequence in the thymidylate synthase gene of bacteriophage T4. Proc. Natl. Acad. Sci. (USA) 81, 3049-3053.

Churchill, A.E. and Biggs, P.M. (1967). Agent of Marek's disease in tissue culture. Nature 215, 528-530.

Clements, J.B., Cortini, R. and Wilkie, N.M. (1976). Analysis of herpesvirus substructure by means of restriction endonucleases. J. Gen. Virol. 30, 243-256.

Clements, J.B., Watson, R.J. and Wilkie, N.M. (1977). Temporal regulation of herpes simplex virus type 1 transcription: location of transcripts on the viral genome. Cell 12, 275-285.

Clements, J.B., McLauchlan, J. and McGeoch, D.J. (1979). Orientation of herpes simplex virus type 1 immediate-early mRNAs. Nucl. Acids Res. 7, 77-91.

Coen, D.M., Weinheimar, S.P. and McKnight, S.L. (1986). A genetic approach to promoter recognition during trans-induction of viral gene expression. Science 234, 53-59.

Cohen, E.A., Charron, J., Perret, J. and Langelier, Y. (1985). Herpes simplex virus ribonucleotide reductase induced in infected $\mathrm{BH} \mathrm{K}-2 \mathrm{l} / \mathrm{Cl} 3$ cells: biochemical evidence for the existence of two non-identical subunits, Hl and $\mathrm{H} 2 . \mathrm{J} . \mathrm{Gen}$. Virol. 66, 733-745.

Cohen, E.A., Gaudreau, P., Brazeau, P. and Langelier, Y. (1986a). Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature 321, 441-443.

Cohen, E.A., Gaudreau, P., Brazeau, P. and Langelier, Y. (1986b). Neutralisation of herpes simplex virus ribonucleotide reductase activity by an oligopeptide induced antiserum directed against subunit H 2 .
J. Virol. 60, 1130-1133.

Cohen, E.A., Paradis, H., Gaudreau, P., Brazeau, P. and Langelier, Y. (1987). Identification of viral polypeptides involved in pseudorabies virus ribonucleotide reductase activity. J. Virol. 6l, 2046-2049.

Cohen, G.H. (1972). Ribonucleotide reductase activity of synchronised KB cells infected with herpes simplex virus. J. Virol. 9, 408-4l8.

Cohen, G.H., Factor, M.N. and Ponce de Leon, M. (1974). Inhibition of herpes simplex virus type 2 replication by thymidine. J. Virol. 14, 20-25.

Cohen, J.C., Henry, B.E., Randall, C.C. and O'Callaghan, D.J. (1977). Ribonucleotide reductase activity in hydroxyurea-resistant herpesvirus replication. Proc. Soc. Exp. Biol. Med. 155, 395-399.

Cohen, S.S. and Barner, H.D. (1962). Spermidine in the extfaction of the deoxyribosyl-synthesising system from T6r ${ }^{+}$-infected Escherichia coli. J. Biol. Chem. 237, 1376-1378.

Conley, A.J., Knipe, D.M., Jones, P.C. and Roizman, B. (1981). Molecular genetics of herpes simplex virus. VII. Characterisation of a temperature-sensitive mutant produced by in vitro mutagenesis and defective in DNA synthesis and accumulation of polypeptides. J. Virol. 37, 191-206.

Costa, R.H., Cohen, G., Eisenberg, R., Long, D. and Wagner, E.K. (1984). Direct demonstration that the abundant 6 -kilobase herpes simplex virus type 1 mRNA mapping between 0.23 and 0.27 map units encodes the major capsid protein VP5. J. Virol. 49, 287-292.

Cook, K.S. and Greenberg, G.R. (1983). Properties of bacteriophage T 4 ribonucleoside diphosphate reductase subunits coded by nrdA and nrdB mutants. J. Biol. Chem. 258, 6064-6072.

Cordingley, M.G., Campbell, M.E.M. and Preston, C.M. (1983). Functional analysis of a herpes simplex type 1 promoter: identification of far upstream regulatory sequences. Nucl. Acids Res. ll, 2347-2365.

Corsalo, C.M. and Pearson, M.L. (1981). Enhancing the efficiency of DNA-mediated gene transfer in mammalian cells. Genetics 7, 603-616.

Cortini, R. and Wilkie, N.M. (1978). Physical maps for HSV type 2 DNA with restriction endonucleases. J. Gen. Virol. 39, 259-280.

Costanzo, F., Campadelli-Fiume, G., Foa-Tomasi, L. and Cassai, E. (1977). Evidence that herpes simplex virus DNA is transcribed by cellular RNA polymerase B. J. Virol. 2l, 996-1001.

Creighton, T.E. (1983). In: 'Proteins. Structure and Molecular Properties.' W.H. Freeman and Co., New York.

Dalrymple, M., McGeoch, D.J., Davison, A.J. and Preston C.M. (1985). DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucl. Acids Res. 13, 7865-7869.

Dalziel, R.G. and Marsden, H.S. (1984). Identification of two herpes simplex virus type l-induced proteins (2lK and 22 K ) which interact specifically with the a sequence of herpes simplex virus DNA. J. Gen. Virol. 65, 1467-1475.

Darling, A.J. (1988). The principal hydrogen donor for the herpes simplex virus type l-induced ribonucleotide reductase in infected cells is a cellular thioredoxin. J. Gen. Virol. 69, 515-523.

Darling, A.J., Mackay, E.M., Ingemarson, R. and Preston, V.G. (1988). Reconstitution of herpes simplex virus type 1 ribonucleotide reductase activity from the large and small subunits. Virus Genes (in press).

Darlington, R.W. and Moss, L. H. (1968). Herpesvirus envelopment. J. Virol. 2, 48-55.

Davison, A.J. (1983). DNA sequence of the $U_{S}$ component of the varicella-zoster virus genome. $E_{M B O}{ }^{S} J . \underline{2}$, 2203-2209.

Davison, A.J. (1984). Structure of the genome termini of varicella-zoster virus. J. Gen. Virol. 65, 1969-1977.

Davison, A.J. and Wilkie, N.M. (1981). Nucleotide sequences of the joint between the $L$ and $S$ segments of herpes simplex virus types 1 and 2. J. Gen. Virol. 55, 315-331.

Davison, A.J. and Wilkie, N.M. (1983). Inversion of the two segments of the herpes simplex virus genome in intertypic recombinants. J. Gen. Virol. 64, l-l8.

Davison, A.J. and Rixon F.J. (1985). Cloning of the DNA of alpha-herpesvirinae. In: 'Recombinant DNA Research and Virus', pp. 103-124, (Y. Becker, ed). Martinus Nijhoff Publishing, Boston.

Davison, A.J. and McGeoch, D.J. (1986). Evolutionary comparisons of the $S$ segments in the genomes of herpes simplex virus type $l$ and varicella-zoster virus. J. Gen. Virol. 67, 597-6ll.

Davison, A.J. and Scott, J.E. (1986a). DNA sequence of the major capsid protein gene of herpes simplex virus type l. J. Gen. Virol. 67, 2279-2286.

Davison, A.J. and Scott, J.E. (1986b). The complete DNA sequence of varicella-zoster virus. J. Gen. Virol. 67, 1759-1816.

Davison, A.J. and Taylor, P. (1987). Genetic relations between varicella-zoster virus and Epstein-Barr virus. J. Gen. Virol. 68, 1067-1079.

Dayhoff, M.O., Barker, W.C. and Aunt, L.T. (1983). Establishing homologies in protein sequences. Meth. Enzymol. 91, 524-545.

Deininger, P.L. (1983). Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Anal. Biochem. 129, 216-223.

Deiss, L.P. and Frenkel, N. (1986). The herpes simplex amplicon: cleavage of concatemeric DNA is linked to packaging and involves the amplification of the terminally reiterated 'a' sequence. J. Virol. 57, 933-941.

Deiss, L.P., Chou, J. and Frenkel, N. (1986). Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J. Gen. Virol. 59, 605-6l8.

Delius, H. and Clements, J.B. (1976). A partial denaturation map of herpes simplex virus type 1 DNA: evidence for inversions of the unique DNA regions. J. Gen. Virol. 33, 125-133.

DeLuca, N.A. and Schaffer, P.A. (1985). Activation of immediate-early, early and late promoters by temperature-sensitive and wild-type forms of herpes simplex type 1 protein ICP4. Mol. Cell. Biol. 5, 1997-2008.

DeLuca, N.A., Courtney, N.A. and Schaffer, P.A. (1984). Temperature-sensitive mutants in herpes simplex virus type 1 ICP4 permissive for early gene expression. J. Virol. 52, 767-776.

DeLuca, N.A., McCarthy, A.M. and Schaffer, P.A. (1985). Isolation and characterisation of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol. 56, 558-570.

Denhardt, D.T. (1966). A membrane-filter technique for the detection of complimentary DNA. Biochem. Biophys. Res. comm. 23, 641-646.

Devereux, J., Haeberli, P. and Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12, 387-395.

Dingwall, C. and Laskey, R.A. Protein import into the nucleus. Ann. Rev. Cell Biol. 2, 367-390.

Dingwall, C., Dilworth, S.M., Black, S.J., Kearsey, S.E., Cox, L.S. and Laskey, R.A. (1987). Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localisation signals. EMBO J. $\underline{6}$, 69-74.

Dixon, R.A.F. and Schaffer, P.A. (1980). Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VPl75. J. Gen. Virol. 36, 189-203.

Doolittle, R.F. (1981). Similar amino acid sequences: chance or common ancestry? Science 214, l49-159.

Draper, K.G., Frink, R.J. and Wagner, E.K. (1982). Detailed characterisation of an apparent unspliced $\beta$ herpes simplex virus type $l$ gene mapping in the interior of another. J. Virol. 43, ll23-ll28.

Draper, K.G., Devi-Rao, G., Costa, R.H., Blair, E.D., Thompson, R.L. and Wagner, E.K. (1986).
Characterisation of the genes encoding herpes simplex virus type 1 and type 2 alkaline exonucleases and overlapping proteins. J. Virol. 57, 1023-1036.

Dutia, B.M. (1983). Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. J. Gen. Virol. 64, 513-52l.

Dutia, B.M., Frame, M.C., Subak-Sharpe, J.H., Clark, W.N. and Marsden, H.S. (1986). Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature 321, 439-441.

Earl, P.L., Jones, E.V. and Moss, B. (1986). Homology between DNA polymerases of poxviruses, herpesviruses and adenoviruses: nucleotide sequence of the vaccinia virus DNA polymerase gene. Proc. Natl. Acad. Sci. (USA) 83, 3659-3663.

Easton, A.J. and Clements, J.B. (1980). Temporal regulation of herpes simplex virus type 2 transcription and characterisation of virus immediate-early mRNAs. Nucl. Acids Res. 8, 2627-2645.

Ecker, J.R. and Hyman, R.W. (1981). Analysis of interruptions in the phosphodiester backbone of herpes simplex virus DNA. Virology llo, 2l3-2l6.

Efstratiadis, A., Posakony, J.W., Maniatis, T., Lawn, R.M., O'Connell, C., Spritz, R.A., DeRiel, J.K., Forget, B.G., Weissman, S.M., Slighton, J.L., Bleche, A.E., Smithies, O., Baralle, F.E., Shoulders, C.C. and Proudfoot, N.J. (1980). The structure and evolution of the human 3 -globin gene family. Cell 2l, 653-668.

Ehrenberg, A. and Reichard, P. (1972). Electron spin resonance of the iron-containing protein $B 2$ from ribonucleotide reductase. J. Biol. Chem. 247, 3485-3488.

Eisenberg, R.J., Long, D., Hogue-Angeletti, R. and Cohen, G.H. (1984). Amino-terminal sequence of glycoprotein $D$ of herpes simplex virus types 1 and 2. J. Virol, 49, 265-268.

Elias, P. and Lehman, I.R. (1988). Interaction of origin binding protein with an origin of replication of herpes simplex virus type l. Proc. Natl. Acad. Sci. (USA) 85, 2959-2963.

Elias, P., O'Donnell, M.E., Mocarski, E.D. and Lehman, I.R. (1986). A DNA binding protein specific for an origin of replication of herpes simplex virus type l. proc. Natl. Acad. Sci (USA) 83, 6322-6326.

Elledge, S.J. and Davis, R.W. (1987). Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol. Cell Biol. 7, 2783-2793.

Engstrom, Y., Eriksson, S., Thelander, L. and Akerman, M. (1979). Ribonucleotide reductase from calf thymus. Purification and properties. Biochemistry 18 , 2941-2948.

Engstrom, Y., Rozell, B., Hansson, H.-A., Stemme, S. and Thelander, L. (1984). Localisation of ribonucleotide reductase in mammalian cells. EMBO J. $\mathbf{3}^{\text {, }}$ 863-867.

Engstrom, Y., Eriksson, S., Jildevik, I., Skog, S., Thelander, L. and Tribukait, B. (1985). Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J. Biol. Chem. 260, 9114-9116.

Epstein, M.A., Henle, W., Achong, B.G. and Barr, Y.M. (1965). Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt's lymphoma. J. Exp. Med. 121, 761-770.

Eriksson, S. and Berglund, O. (1974). Bacteriophage-induced ribonucleotide reductase systems: T5- and T6-specific ribonucleotide reductase and thioredoxin. Eur. J. Biochem. 46, 271-278.

Eriksson, S. and Martin, D.W.Jr. (1981). Ribonucleotide reductase in cultured mouse lymphoma cells. Cell cycle dependent variation in the activity of subunit protein M2. J. Biol. Chem. 256, 9436-9440.

Eriksson, S., Thelander, L. and Akerman, M. (1979). Allosteric regulation of calf thymus ribonucleoside diphosphate reductase. Biochemistry 18, 2948-2952.

Eriksson, S., Caras, I.W. and Martin, D.W. Jr. (1982). Direct photoaffinity labeling of an allosteric site on subunit protein MI of mouse ribonucleotide reductase by dTTP. Proc. Natl. Acad. Sci. (USA) 79, 81-85.

Eriksson, S., Graslund, A., Skog, S., Thelander, L and Tribukait, B. (1984). Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The $S$ phasecorrelated increase in subunit M2 regulated by de novo protein synthesis. J. Biol. Chem. 259, ll695-1l700.

Eriksson, S., Sjoberg, B.-M., Jornvall, H. and Carlquist, M. (1986). A photoaffinity-labelled allosteric site in Eschrichia coli ribonucleotide reductase. J. Biol. Chem. 261, 1878-1882.

Everett, R.D. (1983). DNA sequence elements required for regulated expression of the HSV-l glycoprotein D gene lie within 83 bp of the RNA capsites. Nucl. Acids Res. 11, 6647-6666.

Everett, R.D. (1984a). Trans-activation of transcription by herpes virus products: requirement for two HSV-l immediate early polypeptides for maximum activity. EMBO J. 3, 3135-3141.

Everett, R.D. (1984b). A detailed analysis of an HSV-l early promoter: sequences involved in trans-activation by viral immediate-early gene products are not early gene specific. Nucl. Acids Res. 12, 3037-3056.

Everett, R.D. (1985). Activation of cellular promoters during herpes simplex virus infection of biochemically transformed cells, EMBO J. 4, 1973-1980.

Everett, R.D. (1986). The products of herpes simplex virus type 1 (HSV-l) immediate early genes 1,2 and 3 can activate HSV-l gene expression in trans. J. Gen. Virol. 67, 2507-2513.

Everett, R.D. (1987a). A detailed mutational analysis of Vmwllo, a trans-acting transcriptional activator encoded by herpes simplex virus type l. EMBO J. 6, 2069-2076.

Everett, R.D. (1987b). The regulation of transcription of viral and cellular genes by herpesvirus immediate-early gene products. Anticancer Res. 7, 589-604.

Everett, R.D. (1987c). Promoter sequence and celltype can dramatically affect the efficiency of transcriptional activation induced by herpes simplex virus type $l$ and its immediate-early gene products Vmwl75 and vmwllo. J. Mol. Biol. 203, 739-751.

Everett, R.D. (1988). Construction and characterisation of herpes simplex virus type 1 mutants with defined lesions in immediate-early gene l. Submmited to J. Gen. Virol.

Faber, S.W. and Wilcox, K.W. (1986). Association of the herpes simplex virus regulatory protein ICP4 with specific nucleotide sequences in DNA. Nucl. Acids Res. 14, 6067-6083.

Falkner, F.G. and Zachau, H.G. (1984). Correct transcription of an immunoglobulin $k$ gene requires an upstream fragment containing conserved sequence elements. Nature 310, 71-74.

Falkner, F.G., Mocikat, R. and Zachau, H.G. (1986). Sequences closely related to an immunoglobulin gene promoter enhancer element occur also upstream from other eukaryotic and prokaryotic genes. Nucl. Acids Res. 14, 8819-8827.

Fenwick, M.L. and Walker, M.J. (1978). Suppression of the synthesis of cellular macromolecules by herpes simplex virus. J. Gen. Virol. 41, 37-51.

Fiddian, A.P., Yeo, J.M. and Clark, A.E. (1983). Treatment of herpes labialis. J. Infect. 6, Suppl. l, 4l-48.

Fisher, F.B. and Preston, V.G. (1986). Isolation and characterisation of herpes simplex type l mutants which fail to induce duTPase activity. Virology 148, 190-197.

Flanagan, J.F. (1967). Virus-specific ribonucleic acid synthesis in $K B$ cells infected with herpes simplex virus. J. Virol. $1,583-590$.

Flethcer, C., Heintz, N. and Roeder, R.G. (1987). Purification and characterisation of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2B gene. Cell 5l, 773-781.

Follmann, H. and Hogenkamp, H.P.C. (1971). Interaction of ribonucleotide reductase with ribonucleotide analogs. Biochemistry 10, 186-194.

Frame, M.C., Marsden, H.S. and Dutia, B.M. (1985). The ribonucleotide reductase induced by herpes simplex virus type $l$ involves minimally a complex of two polypeptides (136K and 38 K ). J. Gen. Virol. 66, 1581-1587.

Frame, M.C., Marsden, H.S. and McGeoch, D.J. (1986a). Novel herpes simplex virus type $l$ glycoprotein identified by an antiserum against a synthetic oligopeptide from the predicted product of US4. J. Gen. Virol. 67, 745-75l.

Frame, M.C., McGeoch, D.J., Palfreyman, J.W., MacLean, C.A. and Marsden, H.S. (1986b). Identification of herpes simplex virus gene products using antipeptide sera. In: 'Protides of the Biological Fluids' - An international review series devoted to proteins and related studies', Vol.34. Pergammon Press.

Frame, M.C., Purves, F.C., McGeoch, D.J., Marsden, H.S. and Leader, D.P. (1987). Identification of the herpes simplex virus protein kinase as the product of viral gene US3. J. Gen. Virol. 68, 2699-2704.

Freeman, M.J. and Powell, K.L. (1982). DNA-binding properties of a herpes simplex virus immediate-early protein. J. Virol. 44, l084-1087.

Freese, E. (1963). Molecular mechanisms of mutation. In: 'Molecular Genetics' pp. 207-264 (J.H. Taylor, ed.) Academic Press, New York.

Friedmann, A., Schlomai, J. and Becker, Y. (1977). Electron microscopy of herpes simplex virus DNA molecules isolated from infected cells by centrifugation in CsCl density gradients. J. Gen. Virol. 34, 507-522.

Friedman, H.M., Cohen, G.H., Eisenberg, R.J., Seidel, C.A. and Cines, D.B. (1984). Glycoprotein C of herpes simplex $l$ acts as a receptor for the C3b complement component on infected cells. Nature 309, 633-635.

Frink, R.J., Eisenberg, R., Cohen, G. and Wagner, E.K. (1983). Detailed analysis of the portion of the herpes simplex virus type $l$ genome encoding glycoprotein $C$. J. Virol. 45, 634-647.

Fry, D.C., Kuby, S.A. and Mildvan, A. (1985). NMR studies of the MgATP binding site of adenylate kinase and of a 45 -residue peptide fragment of the enzyme. Biochemistry 24, 4680-4694.

Fuchs, J.A. and Karlstrom, H.O. (1976). Mapping of nrdA and nrdB in Escherichia coli K-12. J. Bacteriol. 128, 810-814.

Furlong, D., Swift, H. and Roizman, B. (1972). Arrangement of the herpesvirus deoxyribonucleic acid in the core. J. Virol. 10, 1071-1074.

Gaffney, D.F., McLauchlan, J., Whitton, J.L. and Clements, J.B. (1985). A modular system for the assay of transcription reulatory signals: the sequence TAATGARAT is required for herpes simplex virus immediate-early gene activation. Nucl. Acids Kes. 13, 7847-7863.

Garnier, J., Osguthorpe, D.J. and Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97-120.

Gellert, M. (1981). DNA topoisomerases. Ann. Rev. Biochem. 50, 879-910.

Gelman, I.H. and Silverstein, S. (1986). Co-ordinate regulation of herpes simplex virus gene expression is mediated by the functional interaction of two immediate-early gene products. J. Mol. Biol. 19l, 395-409.

Gelman, I.H. and Silverstein, S. (1987). Herpes simplex virus immediate-early promoters are responsive to virus and cell trans-acting factors. J. Virol. 61, 2286-2296.

Gibson, W. and Roizman, B. (1972). Proteins specified by herpes simplex virus. VIII. Characterisation and composition of multiple capsid forms of subtypes 1 and 2. J. Virol. 10, 1044-1052.

Gibson, M.G. and Spear, P.G. (1983). Insertion mutants of herpes simplex virus have a duplication of the glycoprotein D gene and express two different forms of glycoprotein D. J. Virol. 48, 396-404.

Gibson, T., Stockwell, P., Ginsburg, M. and Barrell, B. (1984). Homology between two EBV early genes and HSV ribonucleotide reductase and 38 K genes. Nucl. Acids Res. 12, 5087-5099.

Godowski, P.J. and Knipe, D.M. (1985). Identification of a herpes simplex virus function that represses late gene expression from parental viral genomes. J. Gen. virol. 55, 357-365.

Godowski, P.J. and Knipe, D.M. (1986). Transcriptional control of herpesvirus gene expression: gene functions required for positive and negative regulation. Proc. Natl. Acad. Sci. (USA) 83, 256-260.

Goldstein, D.J. and Weller, S.K. (1988a). Herpes simplex virus type l-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterisation of an ICP6 lacZ insertion mutant. J. Virol. 62, 196-205.

Goldstein, D.J. and Weller, S.K. (1988b). Factor(s) present in herpes simplex virus type l-infected cells acn compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterisation of an ICP6 deletion muatnt. Virology, 166, 4l-5l.

Goulian, M. and Beck, W.S. (1966). Purification and properties of cobamide-dependent ribonucleotide reductase from Lactobacillus leichmannii. J. Biol. Chem. 241, 4233-4242.

Grafstrom, R.H., Alwine, J.G., Steinhart, W.L. and Hill, C.W. (1974). Terminal repetitions in herpes simplex virus type 1 DNA. Cold Spring Harbor Symp. Quant. Biol. 39, 679-681.

Grafstrom, R.H., Alwine, J.C., Steinhart, W.L., Hill, C.W. and Hyman, R.W. (1975). The terminal repetition of herpes simplex virus DNA. Virology 67, 144-157.

Graslund, A., Ehrenberg, A. and Thelander, L. (1982). Characterisation of the free radical of mammalian ribonucleotide reductase. J. Biol. Chem. 257, 5711-5715.

Gray, C.P. and Kaerner, H.C. (1984). Sequence of the putative origin of replication in the $U_{L}$ region of herpes simplex virus type 1 ANG DNA. J. Gen. Virol. 65, 2109-2119.

Gustafsohn, D.P. (1970). Pseudorabies in Diseases of Swine. 3rd ed pp. 337-355, Iowa State Univ.

Haarr, L. and Marsden, H.S. (1981). Two dimensional gel analysis of HSV type $l$ induced polypeptides and glycoprotein processing. J. Gen. Virol. 52, 77-92.

Hall, M.N., Hereford, L. and Herskowitz, I. (1984). Targeting of $E$. coli $\beta$-galactosidase to the nucleus in yeast. Cell 36, 1057-1065.

Hanahan, D. (1983). Studies on transformation of E.coli with plasmids. J. Mol. Biol. 166, 557-580.

Hanke, P.D. and Fuchs, J.A. (1983a). Characterisation of the mRNA coding for ribonucleoside diphosphate reductase in Escherichia coli. J. Bacteriol. 156, 1192-1197.

Hanke, P.D. and Fuchs, J.A. (1983b). Regulation of ribonucleoside diphosphate reductase mRNA synthesis in Escherichia coli. J. Bacteriol. 154, l040-1045.

Hanke, P.D. and Fuchs, J.A. (1984). Requirement of protein synthesis for the induction of ribonucleoside diphosphate reductase mRNA in Escherichia coli. Mol. Gen. Genet. 193, 327-331.

Harris-Hamilton, E. and Bacchenheimer, S.L. (1985). Accumulation of herpes simplex virus type 1 RNAs of different kinetic classes in the cytoplasm of infected cells. J. Virol. 53, 144-15l.

Harvey, R.P., Robins, A.J. and Wells, J.R.E (1982). Independently evolving chicken histone H 2 B genes: identification of a ubiquitous H2B-specific $5^{\prime}$ element. Nucl. Acids Res. 10, 785l-7858.

Hay, J., Koteles, G.J., Keir, H.M. and Subak-Sharpe, J.H. (1966). Herpes virus specified ribonucleic acids. Nature 210, 387-390.

Hay, J., Moss, H. and Halliburton, I.W. (1971). Induction of deoxyribonucleic acid polymerase and deoxyribonuclease activities in cells infected with herpes simplex virus type 2. J. Biochem. 124, 64-71.

Hay, R.T. and Hay, J. (1980). Properties of herpesvirus-induced immediate-early polypeptides. Virology 104, 230-234.

Hayward, G.S., Jacob, R.J., Wadsworth, S.C. and Roizman, B. (1975). Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short component. Proc. Natl. Acad. Sci. (USA) 72, 4243-4247.

Hearing, P. and Shenk, T. (1983). The adenovirus type 5 ElA transcriptional control region contains a duplicated enhancer element. Cell 33, 695-703.

Heine, J.W., Spear, P.G. and Roizman, B. (1972). Proteins specified by herpes simplex virus. VI. Viral proteins in the plasma membrane. J. Virol. 9, 43l-439.

Heine, J.W., Honess, R.W., Cassai, E. and Roizman, B. (1974). Proteins specified by herpes simplex virus. XII. The virion polypeptides of type-l strains. J. Virol. 14, 640-651.

Henry, B.E., Glaser, R., Hewetson, J. and O'Callaghan, D.J. (1978). Expression of altered ribonucleotide reductase activity associated with the replication of the Epstein-Barr virus. Virology 89, 262-271.

Herbommel, P., Bourachot, B. and Yaniv, M. (1984). Two distinct enhancers with different cell specificities co-exist in the regulatory region of polyoma. Cell 39, 653-662.

Ho, M. (1982). Human cytomegalovirus infections in immunosuppressed patients. In: 'Cytomegaloviruses, Biology and Infection, current topics in infectious disease.' (W.B. Greenough III and T.C. Menigan, eds.) Plenum Press, N.Y.

Hoffmann, P.J. (1981). Mechanism of degradation of duplex DNA by the DNase induced by herpes simplex virus. J. Virol. 38, l005-1014.

Hoffmann, P.J. and Cheng, Y.C. (1979). DNase induced after infection of $K B$ cells by herpes simplex virus type 1 or type 2. II. Characterisation of an associated endonuclease activity. J. Virol. 32, 449-457.

Holmes, D.S. and Quigley, M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114, 193-197.

Holmes, A.M., Wietstock, S.M. and Ruyechan, w.T. (1988). Identification and characterisation of a DNA primase activity present in herpes simplex virus type l-infected HeLa cells. J. Virol. 62, 1038-1045.

Holmgren, A. (1968). Thioredoxin. 6. The amino acid sequence of the protein from Escherichia coli B. Eur. J. Biochem. 6, 475-484.

Holmgren, A. (1976). Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc. Natl. Acad. Sci. (USA) 73, 2275-2279.

Holmgren, A. (1978). Glutathione-dependent enzyme reactions of the phage T4 ribonucleotide reductase system.
J. Biol. Chem. 253, 7424-7430.

Holmgren, A. (1979a). Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterisation of glutaredoxin from Escherichia coli. J. Biol. Chem. 254, 3664-3671.

Holmgren, A. (1979b). Glutathione-dependent synthesis of deoxyribonucleotides. Characterisation of the enzymatic mechanism of Escherichia coli glutaredoxin. J. Biol. Chem. 254, 3672-3678.

Holmgren, A., Soderberg, B.-O., Eklund, H. and Branden, C.-I. (1975). Three-dimensional structure of Escherichia coli thioredoxin-S 2 to 2.8 A resolution. Proc. Natl. Acad. Sci. (USA) 72, 2305-2309.

Homa, F.L., Otal, T.M., Glorioso, J.C. and Levine, M. (1986). Transcriptional control signals of a herpes simplex virus type late ( $\gamma$ 2) gene lie within bases -34 to +124 relative to the 5 ' terminus of the mRNA. Mol. Cell Biol. 6, 3652-3666.

Honess, R.W. and Roizman, B. (1973). Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and nonstructural herpes virus polypeptides in the infected cell. J. Virol 12, 1347-1365.

Honess, R.W. and Watson, D.H. (1974). Herpes simplex virus-specific polypeptides studied by polyacrylamide gel electrophoresis of immune precipitates. J. Gen. virol. 22, 171-185.

Honess, R.W. and Roizman, B. (1975). Proteins specified by herpes simplex virus. XIII. Glycosylation of viral polypeptides. J. Virol. 16, l308-1326.

Honess, R.W., Bodemer, W., Cameron, K.R., Niller, H-H., Fleckenstein, $B$. and Randall, R. (1986). The A+T rich genome of herpesvirus saimiri contains a highly conserved gene for thymidylate synthase. Proc. Natl. Acad. Sci. (USA) 83, 3604-3608.

Hoog, J.-O., Jornvall,H., Holmgren, A., Carlquist, M. and Persson, M. (1983). The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulphide/cysteine dithiol. Eur. J. Biochem. 136, 223-232.

Hooper, S. (1972). Ribonucleotide reductase of rabbit bone marrow. I. Purification properties and separation into two protein fractions. J. Biol. Chem. 247, 3336-3340.

Hooper, S. (1978). Ribonucleotide reductase of rabbit bone marrow. Methods Enzymol. 51, 237-246.

Hope, R.G. and Marsden, H.S. (1983). Processing of glycoproteins induced by herpes simplex virus type l: sulphation and nature of the oligosaccharide linkages. J. Gen. Virol. 64, 1943-1953.

Hope, R.G., Palfreyman, J.W., Suh, M. and Marsden, H.S. (1982). Sulphated glycoproteins induced by herpes simplex virus. J. Gen. Virol. 58, 399-415.

Huang, A., Jacobi, G., Haj-Ahmad, Y. and Bacchetti, S. (1988). Expression of the HSV-2 ribonucleotide reductase subunits in adenovirus vectors or stably transformed cells: restoration of enzymatic activity by reassociation of enzyme subunits in the absence of other HSV proteins. Virology l63, 462-470.

Hummeler, K., Tomassini, N. and Zajac, B. (1969). Early events in herpes simplex virus infection: a radioautographic study. J. Virol. $\underline{4}^{4}$ 67-74.

Hurd, H.K., Roberts, C.W. and Roberts, J.W. (1987). Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate. Mol. Cell. Biol. 7, 3673-3677.

Huszar, D. and Bacchetti, S. (1981). Pratial purification and characterisation of the ribinucleotide reductase induced by herpes simplex virus infection of mammalian cells. J. Virol. 37, 580-588.

Ingemarson, R. and Lankinen, H. (1987). The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type $\alpha_{2} \beta_{2}$ composed of 40 K and 140 K proteins, of which the lat ter shows multiple forms due to proteolysis. virology 156, 417-422.

Jacob, R.J. and Roizman, B. (1977). Anatomy of herpes simplex virus DNA. VIII. Properties of replicating DNA. J. Virol. 23, 399-411.

Jacob, R.J., Morse, L.S. and Roizman, B. (1979). Anatomy of herpes simplex virus DNA. XII. Accumulation of head-to-tail concatemers in nuclei of infected cells and their role in the generation of the four isomeric arrangements of viral DNA. J. Virol. 29, 448-457.

Jamieson, A.T. and Subak-Sharpe, J.H. (1974). Biochemical studies on the herpes simplex virus specified deoxypyrimidine kinase activity. J. Gen. Virol. $\underline{24}$, 481-492.

Jamieson, A.T, and Bjursell, G. (1976). Deoxyribonucleoside triphosphate pools in herpes simplex virus type l-infected cells. J. Gen. Virol. 31, l0l-113.

Jamieson, A.T. and Subak-Sharpe, J.H. (1976). Herpes simplex virus specified deoxypyrimidine kinase and the uptake of exogenous nucleosides by infected cells. J. Gen. Virol. 3l, 303-3l4.

Jamieson, A.T. and Subak-Sharpe, J.H. (1978). Interallelic complementation of mutants of herpes simplex virus deficient in deoxypyrimidine kinase activity. virology 85, 109-117.

Jamieson, A.T., Gentry, G.A. and Subak-Sharpe, J.H. (1974). Induction of both thymidine and deoxycytidine kinase activity by herpes viruses. J. Gen. Virol. 24, 465-480.

Jamieson, A.T., Hay, J. and Subak-Sharpe, J.H. (1976). Herpesvirus proteins: induction of nucleoside phosphotranferase activity after herpes simplex virus infection. J. Virol. 17, 1056-1059.

Jenkins, F.J. and Roizman, B. (1986). Herpes simplex virus type 1 recombinants with non-inverting genomes frozen in different isomeric arrangements are capable of independent replication. J. Virol. 59, 494-499.

Johnson, P.A. and Everett, R.D. (1986a). DNA replication is required for abundant expression of a plasmid-borne late USIl gene of herpes simplex virus type l. Nucl. Acids Res 14, 3609-3625.

Johnson, P.A. and Everett, R.D. (1986b). The control of herpes simplex virus type-l late gene transcription: a 'TATA'-box/cap site region is sufficient for fully efficient regulated activity. Nucl. Acids Res. 14 , 8274-8264.

Jones, C., Ortiz, J. and Jariwalla, R.J. (1986).
Localisation and comparative nucleotide sequence analysis of the transforming domain in herpes simplex virus DNA containing repetitive genetic elements. Proc. Natl. Acd. Sci. (USA) 83, 7855-7859.

Jones, K.A. and Tjian, R. (1985). Spl binds to promoter sequences and activates herpes simplex virus immediate-early gene transcription in vitro. Nature 317, 179-182.

Jones, K.A., Yamamoto, K.R. and Tjian, R. (1985). Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell 42, 559-572.

Jones, K.A., Kadonaga, J.T., Luciw, P.A. and Tjian, R. (1986). Activation of the AIDS retrovirus promoter by the cellular transcription factor, Spl. Science 232, 755-759.

Jones, N.C., Rigby, P.W.J. and Ziff, E.B. (1988). Trans-acting protein factors and the regulation of eucaryotic transcription: lessons from studies on DNA tumor viruses. Genes and Development $\underline{2}$, 267-281.

Jones, P.C. and Roizman, B. (1979). Regulation of herpesvirus macromolecular synthesis. VIII. The transcription program consists of three phases during which both the extend of transcription and accumulation of RNA in the cytoplasm are regulated. J. Virol. 3l, 299-314.

Jongeneel, C.V. and Bachenheimer, S.L. (1981). Structure of replicating herpes simplex virus DNA. J. Virol. 39, 656-660.

Josephs, S.F., Salahuddin, S.Z., Ablashi, D.V., Schachter, F., Wong-Staal, F. and Gallo, R.C. (1986). Genomic analysis of the human B-lymphotropic virus (HBLV). Science 234, 601-603.

Kadonaga, J.T., Jones, K.A. and Tjian, R. (1986). Promoter-specific activation of RNA polymerase II transcription by Spl. Trends in Biochem. Sci. ll, 20-23.

Kaerner, H.C., Maichle, I.B., Ott, A. and Schroder, C.H. (1979). Origin of two different classes of defective HSV-1 Angelotti DNA. Nucl. Acids Res. 6, 1467-1478.

Kato, I., Kohr, W.J. and Laskowski, M.J. (1978). Evolution of the avian ovomucoids. In: 'Proceedings of llth FEBS Meeting'. pp. 197-206 (Magnuson, S., Ottensen, M., Taltmann, B., Dano, K. and Neurath, H. eds.) Pergammon Press, New York.

Kazama, F.Y. and Schornstein, K.L. (1972). Herpes-type virus particles associated with a fungus. Science 177, 696-697.

Keir, H.M. and Gold, E. (1963). Deoxyribonucleic acid nucleotidyltransferase and deoxyribonuclease from cultured cells infected with herpes simplex virus. Biochim. Biophys. Acta 72, 263-276.

Keir, H.M., Subak-Sharpe, J.H., Shedden, W.I.H., Watson, D.H. and Wildy, P. (1966). Immunological evidence for a specific DNA polymerase produced after infection by herpes simplex virus. Virology 30, 154-157.

Kessler, I. (1977). Venereal factors in human cervical cancer. Cancer 39, 1912-1919.

Kieff, E.D., Bachenheimer, S.L. and Roizman, B. (1971). Size, composition and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and $2 . J$. Virol. 8 , 125-132.

Kit, S. and Dubbs, D.R. (1963). Acquisition of thymidine kinase activity by herpes simplex virus infected mouse fibroblast cells. Biochim. Biophys. Acta ll, 55-59.

Kjoller-Larsen, I., Sjoberg, B.-M. and Thelander, L. (1982). Characterisation of the active site of ribonucleotide reductase of Escherichia coli, bacteriophage $T 4$ and mammalian cells by inhibition studies with hydroxyurea analogues. Eur. J. Biochem. 125, 75-81.

Knipe, D.M. amd Smith, J.L. (1986). A mutant herpesvirus protein leads to a block in nuclear localisation of other viral proteins. Mol. Cell. Biol. 6, 2371-2381.

Knopf, K.-W. (1979). Properties of herpes simplex virus DNA polymerase and characterisation of its associated activity. Eur. J. Biochem. 98, 231-244.

Kouzarides, T., Bankier, A.T., Satchwell, S.C., Weston, K., Tomlinson, P. and Barrell, B.G. (1987). Large-scale rearrangement of homologous regions in the genomes of HCMV and EBV. Virology 157, 397-413.

Kozak, M. (1981). Possible role of flanking nucleotides in recognition of the AUG initiator codon of eucaryotic ribosomes. Nucl. Acids Res. 9, 5233-5252.

Kozak, M. and Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis: nuclear retention of non-translated viral RNA sequences. Proc. Natl. Acad. Sci. (USA) 71, 4322-4326.

Krippl, B., Ferguson, B., Jones, N., Rosenberg, M. and Westphal, H. (1985). Mapping of functional domains in adenovirus ElA proteins. Proc. Natl. Acad. Sci. 82, 7480-7484.

Kristie, T.M. and Roizman, B. (1986a). $\alpha 4$, the major regulatory protein of herpes simplex virus type l, is stably and specifically associated with promoter-regulatory domains of $\alpha$ genes and of selected other viral genes. Proc. Natl. Acad. Sci. (USA) 83, 3218-3222.

Kristie, T.M. and Roizman, B. (l986b). DNA-binding site of major regulatory protein $\alpha 4$ specifically associated with promoter-regulatory domains of $\alpha$ genes of herpes simplex virus type l. Proc. Natl. Acad. Sci. (USA) 83, 4700-4704.

Kwong, A.D. and Frenkel, N. (1987). Herpes simplex virus-infected cells contain a function(s) which destabilises both host and viral mRNAs. Proc. Natl. Acad. Sci. (USA) 84, 1926-1930.

Kwong, A.D., Kruper, J.A. and Frenkel, N. (1988). Herpes simplex virus virion host shutoff function. J. Virol. 62, 912-921.

Kyte, J. and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132.

Lang, J.C., Spandidos, D.A. and Wilkie, N.M. (1984). Transcriptional regulation of a herpes simplex virus immediate-early gene is mediated through an enhancer-type sequence. EMBO J. 3, 389-395.

Lankinen, H.M., Graslund, A. and Thelander, L. (1982). Induction of a new ribonucleotide reductase after infection of mouse $L$ cells with pseudorabies virus. J. Virol. 41, 893-900.

Larsson, A. and Reichard, P. (1966a). Enzymatic synthesis of deoxyribonucleotides. IX. Allosteric effects in the reduction of pyrimidine ribonucleotides by the ribonucleoside diphosphate reductase system of Escherichia coli. J. Biol. Chem. 24l, 2533-2539.

Larsson, A. and Reichard, P. (1966b). Enzymatic synthesis of deoxyribonucleotides. X. Reduction of purine ribonucleotides; allosteric behaviour and subtrated specificity of the enzyme system from Escherichia coli. J. Biol. Chem. 241, 2540-2549.

Larsson, A. and Sjoberg, B.-M. (1986). Identification of the stable free radical tyrosine residue in ribonucleotide reductase. EMBO J. 5, 2037-2040.

LaThangue, N.B., Shriver, K., Dawson, C. and Chan, W.L. (1984). Herpes simplex virus infection causes the accumulation of heat-shock proteins. EMBO J. 3, 267-277.

LaThanque, N.B. and Rigby, P.W.J. (1988). Trans-acting protein factors and the regulation of eukaryotic transcription. In: Transcription and Splicing, edited by Hames B.D. and Glover.D.M., IRL press limited Oxford and Washincton D.C.

Laurent, T.C., Moore, E.C. and Reichard, P. (1964). Isolation and characterisation of thioredoxin, the hydrogen donor from Escherichia coli B. J. Biol. Chem. 239, 3436-3444.

Leinbach, S.S., Reno, J.M., Lee, L.F., Isbell, A.F. and Boezi, J.A. (1976). Mechanism of phosphonoacetate inhibition of herpesvirus-induced DNA polymerase. Biochemistry 15, 426-430.

Lemaster, S. and Roizman, B. (1980). Herpes simplex virus phosphoproteins. II. Characterisation of the virion protein kinase and of the polypeptides phosphorylated in the virion. J. Virol. 35, 798-811.

Li, W.-H. (1983). Evolution of duplicate genes and pseudogenes. In: 'Evolution of Genes and Proteins'. (M. Nei and R.K. Koehn, eds) Sinauer Associates Inc. Sunderland, Massachusetts.

Littler, E., Purifoy, D.J.M., Minson, A.C. and Powell, K.L. (1983). Herpes simplex virus non-structural proteins. III. Function of the major DNA binding protein.
J. Gen. Virol. 64, 983-995.

Locker, H. and Frenkel, N. (1979). Structure and origin of defective genomes contained in serially passaged HSV type 1 (Justin). J. Virol. 29, 1065-1077.

Lockshon, D. and Galloway, D.A. (1986). Cloning and characterisation of ori 2, a large palindromic DNA replication origin of hérpes simplex virus type 2. J. Virol. 58, 513-521.

Longnecker, R. and Roizman, B. (1986). Generation of an inverting herpes simplex virus type 1 mutant lacking the L-S junction a sequences, an origin of DNA synthesis, and several genes including those specifying glycoprotein $E$ and the $\propto 47$ gene. J. Virol. 58, 583-591.

Longnecker, R., Chatterjee, S., Whitley, R.J. and Roizman, B. (1987). Identification of a herpes simplex virus type 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture. Proc. Natl. Acad. Sci. (USA) 84, 4303-4307.

Lonsdale, D.M., Brown, S.M., Subak-Sharpe, J.H., Warren, K.G. and Koprowski, H. (1979). The polypeptide and the DNA restriction enzyme profiles of spontaneous isolates of herpes simplex virus type 1 from explants of human trigeminal, superior cervical and vagus ganglia. J. Gen. Virol. 43, 151-171.

Lowe, P.A. (1978). Levels of DNA-dependent RNA polymerase in herpes simplex virus-infected BHK 21 Cl 3 cells. Virology 86, 577-580.

MacDonald, D. (1980). Herpes simplex virus-induced early proteins. Ph.D. Thesis, University of Glasgow.

MacLean, C.A., Rixon, F.J. and Marsden, H.S. (1987). The products of gene USll of herpes simplex virus type 1 are DNA-binding and localise to the nucleoli of infected cells. J. Gen. Virol. 68, 1921-1937.

MacPherson, I. and Stoker, M. (1962). Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16, 147-151.

McClements, W., Yamanaka, G., Garsky, V., Perry, H., Bacchetti, S., Colonno, R. and Stein , R.B. (1988). Oligopeptides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separation. Virology 162, 270-273.

McCombs, R.M., Brunschwig, J.P., Mirkovic, R. and Benyesh-Melnyck, M. (1971). Electron microscopic characterisation of herpes like virus isolated from tree shrews. Virology 45, 816-820.

McGeoch, D.J. (1984). The nature of animal virus genetic material. In: 'The Microbe 1984', part l, pp.75-107 (B.W.J. Mahy and J.R. Pattison, eds.) Cambridge University Press, Cambridge.

McGeoch, D.J. (1987). The genome of herpes simplex virus: structure, replication and evolution. J. Cell Sci. (suppl.) 7, 5194-5222.

McGeoch, D.J. and Davison, A.J. (1986a). DNA sequence of the herpes simplex virus type 1 gene encoding glycoprotein $g H$, and identification of homologues in the genomes of varicella-zoster virus and Epstein-Barr virus. Nucl. Acids Res. 14, lll-114.

McGeoch, D.J. and Davison, A.J. (1986b). Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucl. Acid Res. 14, 1765-1777.

McGeoch, D.J., Dolan, A., Donald, S. and Rixon, F.J. (1985). Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type l. J. Mol. Biol. 181, l-13.

McGeoch, D.J., Dolan, A., Donald, S. and Brauer, D.H.K. (1986a). Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucl. Acids Res. 14, 1727-1745.

McGeoch, D.J., Dolan, A. and Frame, M.C. (1986b). DNA sequence of the region in the genome of herpes simplex virus type 1 containing the exonuclease gene and neighbouring genes. Nucl. Acids Res. 14, 3435-3448.

McGeoch, D.J., Moss, H.W., McNab, D. and Frame, M.C. (1987). DNA sequence and genetic content of the Hind III $\underline{l}$ region in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein $G$, and evolutionary comparisons. J. Gen. Virol. 68, 19-38.

McGeoch, D.J., Dalrymple, M.A., Davison, A.J., Dolan, A., Frame, M.C., McNab, D., Perry, L.J., Scott, J.E. and Taylor, P. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type l. J. Gen. Virol. 69, 1531-1574.

McKnight, S.L. (1980). The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucl. Acids Res. 8, 5949-5964.

McKnight, S.L. and Tjian, R. (1986). Transcriptional selectivity of viral cells in mammalian cells. Cell 46, 795-805.

McLauchlan, J. (1986). Herpes simplex virus ribonucleotide reductase DNA and requirements for mRNA $3^{\prime}$ end formation. Ph.D. Thesis, University of Glasgow.

McLauchlan, J. and Clements, J.B. (1982). A 3' co-terminus of two early herpes simplex virus type 1 mRNAs. Nucl. Acids Res. 10, 501-512.

McLauchlan, J and Clements, J.B. (1983a). Organisation of the herpes simplex virus type $l$ trasncription unit encoding two early proteins with molecular weights of 140000 and 40000. J. Gen. Virol. 64, 997-1006.

McLauchlan, J. and Clements, J.B. (1983b). DNA sequence homology between two colinear loci on the HSV genome which have different transforming abilities. EMBO J. $\underline{2}$, 1953-1961.

Mackem, S.and Roizman, B. (1982a). Differentiation between $\alpha$ promoter and regulator regions in herpes simplex virus 1: the functional domains and sequence of a movable $\alpha$ regulator. Proc. Natl. Acad. Sci. (USA) 79, 4917-4921.

Mackem, S. and Roizman, B. (1982b). Structural features of the herpes simplex virus $\alpha$ gene 4,0 and 27 promoter-regulatory sequences which confer $\alpha$ regulation on chimeric thymidine kinase genes. J. Virol. 44 , 939-949.

Macnab, J.M.C., Orr, A. and LaThangue, N. B. (1985). Cellular proteins expressed in herpes simplex virus transformed cells also accumulate on herpes simplex virus infection. EMBO J. 4, 3223-3228.

Macnab, J.M.C., Walkinshaw, S.A., Cordiner, J.W. and Clements, J.B. (1986). Human pappilomavirus in clinically and histologically normal tissue from patients afetr radical surgery for neoplatic disease. New England Journal of Medicine, 315, 1052-1058.

Macnab, J.C.M. (1987). Herpes simplex virus and human cytomegalovirus: their role in morphological transformation and genital cancers. J. Gen. Virol. 68, 2525-2550.

Maniatis, T., Jeffrey, A. and van de Sande, H. (1975). Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry 14, 3787-3794.

Marek, J. (1907). Multiple nervenentzundung bei huhnen. Deithce Tierarztliche Wochenschrift. 15, 417-421.

Marchetti, M.E., Smith, C.A. and Schaffer, P.A. (1988). A temperature-sensitive mutation in a herpes simplex virus type $l$ gene required for viral DNA synthesis maps to coordinates 0.609 through 0.614 in $U_{L}$. J. Virol. 62, 715-721.

Marsden, H.S. (1987). Herpes simplex virus glycoproteins and pathogenesis. In: Molecular Basis of Virus Disease' Society for General Microbiology 40 , pp.239-288. Cambridge University press.

Marsden, H.S., Crombie, I.K. and Subak-Sharpe, J.H. (1976). Control of protein synthesis in herpes virus-infected cells: analysis of the polypeptides induced by wild-type and sixteen temperature-sensitive mutants of strain 17 .
J. Gen. Virol. 31, 347-372.

Marsden, H.S., Stow, N.D., Preston, V.G., Timbury, M.C. and Wilkie, N.M. (1978). Physical mapping of herpes simplex virus-induced polypeptides. J. Virol. 28, 624-642.

Marsden, H.S., Lang, J., Davison, A.J., Hope, R.G. and McDonald, D.M. (1982). Genomic location and lack of phosphorylation of the HSV immediate-early polypeptide IEl2. J. Gen. Virol. 62, 17-27.

Marsden, H.S., Campbell, M.E.M., Haarr, L., Frame, M.C., Parris, D.S., Murphy, M., Hope, R.G., Muller, M.T. and Preston, C.M. (1987). The 65,000-Mr DNA-binding and virion trans-inducing proteins of herpes simplex virus type l. J. Virol. 61, 2428-2437.

Martin, W.B., Hay, D., Crawford, L.V., Lebouvier, G.L. and Crawford, E.M. (1966). Characterists of bovine mammillitis virus. J. Gen. Microbiol. 45, 325-332.

Mavromara-Nazos, P., Silver, S., Hubenthal-Voss, J., McKnight, J.L.C. and Roizman, B. (1986). Regulation of herpes simplex virus 1 genes: $\alpha$ gene sequence requirements for transient induction of indicator genes regulated by $\beta$ or late $\left(\gamma_{2}\right)$ promoters. Virology 149 , 152-164.

Maxam, A.M. and Gilbert, W. (1980). Sequencing end-labelled DNA with base specific chemical cleavage. Methods Enzymol. 65, 499-560.

Mayman, B.A. and Nishioka, Y. (1985). Differential stability of the host mRNAs in Friend erythroleukaemia cells infected with herpes simplex virus type 1. J. Virol. 53, 1-6.

Melendez, L.V., Daniel, M.D., Hunt, R.D. and Garcia, F.C. (1968). An apparently new herpesvirus from primary kidney cultures of a squirrel monkey (Saimiri sciureus). Laboratory and Animal Care 18, 374-381.

Melendez, L.V., Hunt, R.D., King, N.W., Barahona, H.H., Daniel, M.D., Fraser, C.E.O. and Garcia, F.C. (l972). Herpesvirus ateles, a new lymphoma virus of monkeys. Nature New Biology 235, 182-184.

Messing, J. and Vieira, J. (1982). A new pair of Ml3 vectors for selecting either DNA strand of double-digest restriction fragment. Gene 19, 269-276.

Messing, J., Crea, R. and Seeburg, P.H. (1981). A system for shotgun DNA sequencing. Nucl. Acids Res. 9, 309-321.

Mocarski, E.S. and Roizman, B. (1981). Site specific inversion of the herpes simplex virus genome: domain and structural features. Proc. Natl. Acad. Sci. (USA) 78, 7047-7051.

Mocarski, E.S. and Koizman, B. (1982a). Herpesvirus dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by a sequences and linked to an origin of DNA replication. Proc. Natl. Acad. Sci. (USA) 79, 5626-5630.

Mocarski, E.S. and Roizman, B. (1982b). Structure and role of the herpes simplex virus DNA termini in inversion, circularisation and generation of virion DNA. Cell 3l, 89-97.

Mocarski, E.S., Post, L.E. and Roizman, B. (1980). Molecular engineering of the herpes simplex virus genome: insertion of a second $\mathrm{L}-\mathrm{S}$ junction into the genome causes additional genome inversions. Cell 22, 243-255.

Moore, E.C. (1977). Components and control of ribonucleotide reductase system of the rat. Adv. Anz. Reg. 15, l01-114.

Morrison, J.M. and Keir, H.M. (1968). A new DNA-exonuclease in cells infected with herpes virus: partial purification and properties of the enzyme. J. Gen. Virol. 3, 337-347.

Moss, H.W.M. (1986). The herpes simplex virus type 2 alkaline exonuclease activity is essential for replication and growth. J. Gen. Virol. 67, ll73-1l78.

Moss, H.W.M., Chartrand, P., Timbury, M.C. and Hay, J. (1979). Mutant of herpes simplex virus type 2 with temperature-sensitive lesions affecting virion stability and DNase activity: identification of the lethal mutation and physical mapping of the nuc lesion. J. Virol. 32, l40-l46.

Muller, M.T. (1987). Binding of the herpes simplex virus immediate-early gene product ICP4 to its own transcription start site. J. Virol. 61, 858-865.

Muller, M.T., Bolles, C.S. and Parris, D.S. (1985). Association of type l topoisomerase with herpes simplex virus. J. Gen. Virol. 66, 1565-1574.

Murchie, M.-J. and McGeoch, D.J. (1982). DNA sequence of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0.950 to 0.978 ). J. Gen. Virol. 62, l-15.

Nakai, H., Maxwell, I.H. and Pizer, L.I. (1982). Herpes virus infection alters the steady-state levels of cellular polyadenylated RNA in polyoma virus transformed BHK cells. J. Virol. 42, ll31-ll34.

Nazerian, K. (1974). DNA configuration in the core of Marek's disease virus. J. Virol. 13, ll48-ll50.

Nikas, I., McLauchlan, J., Davison, A.J., Taylor, W.R. and Clements, J.B. (1986). Structural features of ribonucleotide reductase. Proteins l, 376-384.

Nilsson, O., Aberg, A., Lundqvist, T. and Sjoberg, B. - M. (l988a). Nucleotide sequence of the gene coding for the large subunit of ribonucleotide reductase Escherichia coli. Correction. Nucl. Acids Res. 16, 4174.

Nilsson,O., Lundqvist, T., Hahne, S. and Sjoberg, B. - M. (1988t). Structure-function stusies of the large subunit of ribonucleotide reductase from E.coli. Biochem. Soc. Trans. (in press).

Nishioka, Y. and Silverstein, S. (1977). Degradation of cellular mRNA during infection by herpes simplex virus. Proc. Natl. Acad. Sci. (USA) 74, 2370-2374.

Nishioka, Y. and Silverstein, S. (1978). Requirement of protein synthesis for the degradation of host mRNA in Friend erythroleukaemia cells infected with herpes simplex virus type 1. J. Virol. 27, 619-627.

Notarianni, E.L. and Preston, C.M. (1982). Activation of cellular stress protein genes by herpes simplex virus temperature-sensitive mutants which overproduce immediate-early polypeptides. Virology 123, 113-122.

Nutter, L.M., Grill, S.P. and Cheng, Y.-C. (1985). Can ribonucleotide reductase be considered as an effective target for developing antiherpes simplex virus II (HSV-2) compounds? Biochem. Pharhacol. 34, 777-780.

O'Hare, P. and Hayward, G.S. (1985a). Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feedback regulation. J. Virol. 56, 723-733.

O'Hare, P. and Hayward, G.S. (1985b). Evidence for a direct role for both the $175,000-$ and 110,000 -molecular-weight immediate-early proteins of herpes simplex virus in the trans-activation of delayed-early promoters. J. Virol. 53, 751-760.

O'Hare, P. and Goding, C.R. (1988). Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation. Cell 52, 435-445.

Olfsson, S., Jeansson, S. and Lycke, E. (1981). Unusual lectin-binding properties of a herpes simplex virus type l-specific glycoprotein. J. Virol. 38, 564-570.

Olivo, P.D., Nelson, N.J. and Challberg, M.D. (1988). Herpes simplex virus DNA replication: the UL9 gene encodes an origin-binding protein. Proc. Natl. Acad. Sci. (USA) 85, 54l4-54l8.

Palfreyman, J.W., Haarr, L., Cross, A., Hope, R.G. and Marsden, H.S. (1983). Processing of herpes simplex virus type $l$ glycoproteins: two dimensional gel analysis using monoclonal antibodies. J. Gen. Virol. 64, 873-886.

Panagou, D., Orr, M.D., Dunstone, J.R. and Blakley, R.L. (1972). A monomeric allosteric enzyme with a single polypeptide chain. Ribonucleotide reductase of Lactobacillus leichmannii. Biochemistry 11, 2378-2388.

Para, M.F., Baucke, R.B. and Spear, P.G. (1980). Immunoglobulin $G$ ( Fc )-binding receptors on virions of herpes simplex virus type 1 and transfer of these receptors to the cell surface by infection. J. Virol. 34, 512-520.

Park, M., Kitchener, H.C. and Macnab, J.C.M. (1983). Detection of herpes simplex virus type 2 DNA restriction fragments in human cervical carcinoma tissue. EMBO J. $\underline{2}$, 1029-1034.

Parris, D.S., Cross, A., Haarr, L., Orr, A., Frame, M.C., Murphy, M., McGeoch, D.J. and Marsden, H.S. (1988). Identification of a gene encoding the 65-kilodalton DNA binding protein of herpes simplex virus type 1 . J. Virol. 62, 818-825.

Paterson, T. and Everett, R.D. (1988). Mutational dissection of the HSV-l immediate-early protein Vmwl 75 involved in transcriptional trans-activation and repression. Virology $166,1 \overline{86-196 .}$

Pellett, P.E., Biggin, M.D. and Barrell, B. and Roizman, B. (1985). Epstein-Barr virus genome may encode a proten showing significant amino acid and predicted secondary structure homology with glycoprotein $B$ of herpes simplex virus l. J. Virol. 56, 807-813.

Pereira, L., Wolff, M.H., Fenwick, M. and Roizman, B. (1977). Regulation of herpesvirus macromolecular synthesis. V. properties of $\alpha$ polypeptides made in HSV-1 and HSV-2 infected cells. Virology 77, 733-749.

Perry, L.J. and McGeoch, D.J. (1988). The DNA sequences of the long repeat region and the adjoining parts of the long uniqueregion in the genome of HSV-l. J. Gen. Virol. 69, 283l-2846.

Perry, L.J., Rixon, F.J., Everett, R.D., Frame, M.C. and McGeoch, D.J. (1986). Characterisation of the IEll0 gene of herpes simplex virus type l. J. Gen. Virol. 67, 2365-2380.

Petersson, L., Graslund, A., Ehrenberg, A., Sjoberg, B. -M. and Reichard, P. (1980). The iron center in ribonucleotide reductase from Escherichia coli. J. Biol. chem. 255, 6706-6712.

Pizer, L.I. and Beard, P. (1976). The effect of herpes simplex virus infection on mRNA in polyoma virus-transformed cells. Virology 75, 477-480.

Pizer, L.I., Cohen, G.H. and Eisenberg, R.J. (1980). Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production. J. Virol. 34, 142-153.

Pizer, L.I., Tedder, P.G., Betz, J.L., Wilcox, K.W. and Beard, P. (1986). Regulation of transcription in vitro from herpes simplex virus genes. J. Virol. 60, 950-959.

Platz, A., Karlsson, M., Hahne, S., Eriksson, S. and Sjoberg, B-M. (1985). Alterations in intracellular deoxyribonucleotide levels of mutationally altered ribonucleotide reductase in E.coli. J. Bacteriol. 164, 1194-1199.

Poffenberger, K.L. and Roizman, B. (1985). A noninverting genome of a viable herpes simplex virus l: presence of head-to-tail linkages in packaged genomes and requirements for circularisation after infection. J. Virol. 53, 587-595.

Pogue-Geile, K.L. and Spear, P.G. (1986). Enhanced rate of conversion or recombination of markers within a region of unique sequence in the herpes simplex virus genome. J. Virol. 58, 704-708.

Poljak, R.J., Amzel, L.M., Chen, B.L., Phizackerley, R.P. and Saul, F. (1974). The three-dimensional structure of the Fab' fragment of a human myeloma immunoglobulin at 2.0A resolution. Proc. Natl. Acad. Sci. (USA) 7l, 3440-3444.

Polvino-Bodnar, M., Orberg, P.K. and Schaffer, P.A. (1987). Herpes simplex virus type $l$ ori is not required for virus replication or for the establishment and reactivation of latent infection in mice. J. Virol. 6l, 3528-3535.

Ponce de Leon, M., Eisenberg, R.J. and Cohen, G.H. (1977). Ribonucleotide reductase from herpes simplex virus (type 1 and 2) infected and uninfected KB cells: properties of the partially purified enzymes. J. Gen. Virol. 36, l63-l73.

Post, L.E., Mackem, S. and Roizman, B. (1981). Regulation of $\alpha$ genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with $\propto$ gene promoters. Cell 24, 555-565.

Powell, K.L. and Courtney, R.J. (1975). Polypeptides synthesised in herpes simplex virus type 2-infected HEp-2 cells. Virology 66, 217-228.

Powell, K.L. and Purifoy, D.J.M. (1977). Nonstructural proteins of herpes simplex virus. I. Purification of the induced DNA polymerase. J. Virol. 24, 618-626.

Powell, K.L., Littler, E. and Purifoy, D.J.M. (1981). Nonstructural proteins of herpes simplex virus. II. Major virus-specific DNA-binding protein. J. Virol. 39, 894-902.

Preston, C.M. (1977). The cell free synthesis of herpes-induced polypeptides. Virology 78, 349-353.

Preston, C.M. (1979). Control of herpes simplex type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsk. J. Virol. 29, 275-284.

Preston, C.M. and Cordingley, M.G. (1982). mRNA- and DNA-directed synthesis of herpes simplex virus-coded exonuclease in Xenopus laevis oocytes. J. Virol. 43, 386-394.

Preston, C.M. and Tannahill, D. (1984). Effects of orientation and position on the activity of a herpes simplex virus immediate early gene far-upstream region. Virology 137, 439-444.

Preston, C.M., Cordingley, M.G. and Stow, N.D. (1984). Analysis of DNA sequences which regulate the transcription of a herpes simplex virus immediate early gene. J. Virol. 50, 708-716.

Preston, C.M., Frame, M.C. and Campbell, M.E.M. (1988). A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate-early gene regulatory DNA sequence. Cell 52, 425-434.

Preston, V.G. and Fisher, F.B. (1984). Identification of the herpes simplex virus type 1 gene encoding the duTPase. Virology 138, 58-68.

Preston, V.G., Palfreyman, J.W. and Dutia, B.M. (1984). Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. J. Gen. Virol. 65, 1457-1466.

Preston, V.G., Darling, A.J. and McDougall, I. (1988). A herpes simplex virus type $l$ temperature-sensitive mutant tsl222 has a single base pair deletion in the small subunit of ribonucleotide reductase. Virology (in press).

Proudfoot, N.J. (1986). Transcriptional interference and termination between duplicated $\alpha-$ globin gene constructs suggests a novel mechanism for gene regulation. Nature 322, 562-565.

Pruijn, G.J.M., van Driel, W. and van der Vliet, P. C. (1986). Nuclear factor III, a novel sequence-specific DNA-binding proten from Hela cells stimulating adenovirus DNA replication. Nature 322, 656-659.

Purifoy, D.J.M., Lewis, R.B. and Powell, K.L. (1977). Identification of the herpes simplex virus DNA polymerase gene. Nature 269, 621-623.

Purves, F.C., Deana, A.D., Marchiori, F., Leader, D.P. and Pinna, L.A. (1986). The substrate specificity of the protein kinase induced in cells infected with herpes viruses: studies with synthetic substrates indicate structural requirements distinct from other protein kinases. Biochim. Biophys. Acta 889, 208-215.

Pustell, J. and Kafatos, F.C. (1982). High speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucl. Acids Res. 10, 4765-4782.

Quinlan, M.P. and Knipe, D.M. (1985). Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions. Mol. Cell. Biol. 5, 957-983.

Quinn, J.P. and McGeoch, D.J. (1985). DNA sequence of the region in the genome of herpes simplex virus type l containing the genes for the DNA polymerase and the major DNA binding protein. Nucl. Acids Res. l3, 8143-8163.

Randall, C.C., Ryden, F.W., Doll, E.R. and Shell, F.S. (1953). Cultivation of equine abortion virus in foetal horse tissue in vitro. Amer. J. Pathol. 29, 139-153.

Randall, R.E. and Dinwoodie, M. (1986). Intranuclear localisation of herpes simplex virus immediate-early and delayed-early proteins: evidence that ICP4 is associated with progeny virus DNA. J. Gen. Virol. 671, 2163-2177.

Read, G.S. and Frenkel, N. (1983). Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of $\alpha$ (immediate-early) viral polypeptides. J. Virol. 46, 498-512.

Reichard, P. (1978). From deoxynucleotides to DNA synthesis. Fed. Proc. 37, 9-14.

Reichard, P. (1988). Interactions between deoxyribonucleotide and DNA synthesis. Ann. Rev. Biochem. 57, 349-375.

Reichard, P. and Ehrenberg, A. (1983). Ribonucleotide reductase - a radical enzyme. Science 221, 514-519.

Richman, D.D., Buckmaster, A., Bell, S., Hodgman, C. and Minson, A.C. (1986). Identification of a new glycoprotein of herpes simplex virus type $l$ and genetic mapping of the gene that codes for it. J. Virol. 57, 647-655.

Rixon, F.J. and Clements, J.B. (1982). Detailed structural analysis of two spliced HSV-l immediate-early mRNAs. Nucl. Acids Res. 10, 224l-2256.

Rixon, F.J. and McGeoch, D.J. (1984). A 3' co-terminal family of mRNAs from the herpes simplex virus type 1 short region: two overlapping reading frames encode unrelated polypeptides one of which has a highly reiterated amino acid sequence. Nucl. Acids Res. 12, 2473-2487.

Rixon, F.J., Atkinson, M.A. and Hay, J. (1983). Intranuclear distribution of herpes simplex virus type 2 DNA
synthesis: examination by light and electron microscopy. J. Gen. Virol. 64, 2087-2092.

Rixon, F.J., Campbell, M.E.M. and Clements, J.B. (1982). The immediate-early mRNA that encodes the regulatory polypeptide Vmwl75 of herpes simplex virus type 1 is unspliced. EMBO J. l, l273-1277.

Rixon, F.J., Campbell, M.E.M. and Clements, J.B. (1984). A tandemly reiterated DNA sequence in the long repeat region of herpes simplex virus type 1 found in close proximity to immediate-early mRNA 1. J. Virol. 52, 715-718.

Rixon, F.J., Cross, A.M., Addison, C. and Preston, V.G. (1988). The products of HSV-1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. J. Gen. Virol. 69, 2879-2891.

Roizman, B. (1979). The structure and isomerisation of Herpes simplex virus genomes. Cell 16, 481-494.

Roizman, B. and Furlong, D. (1974). The replication of herpesviruses. In: 'Comprehensive Virology', vol. 3, pp.229-403 (H. Fraenkel-Conrat and R.R. Wagner, eds.) Plenum Press, New York.

Roizman, B. and Batterson, W. (1985). Herpesviruses and their replication. In: 'Virology', pp.497-526, (B.N. Fields et al. eds.) Raven Press, New York.

Roizman, B. and Roane, P.R. Jr. (1964). The multiplication of herpes simplex virus. II. The relationship between protein synthesis and the duplication of viral DNA in infected HEp-2 cells. Virology 22, 262-269.

Roizman, B., Kozak, M., Honess, R.W., and Hayward, G.S. (1974). Regualtion of herpesvirus macromolecular synthesis: evidence for multilevel regulation of herpes simplex $l$ RNA and protein synthesis. Cold Spring Harbor Symp. Quant. Biol. 39, 687-701.

Roizman, B., Carmichael, S., de The, G.B., Masic, M., Nahmias, A.J., Plowright, W., Rapp, F., Sheldrick, P., Takahashi, M., Terni, M. and Wolfe, K. (1978). Provisional classification of herpesviruses. In: 'Oncogenesis of Herpesviruses III', Part 2, pp.1079-1082 (G. de The, F. Rapp and W. Henle, eds.) IARC Scientific Publications, Lyon.

Ronchi, S. and Williams, C.H. Jr. (1972). The isolation and primary structure of a peptide containing the oxidation-reduction active cystine of Escherichia coli thioredoxin reductase. J. Biol. Chem. 247, 2083-2086.

Ruyechan, W.T. and Weir, A.C. (1984). Interaction with nucleic acids and stimulation of the viral DNA polymerase by the herpes simplex virus type 1 major DNA-binding protein. J. Virol. 52, 727-733.

Sacks, W.R. and Schaffer, P.A. (1987). Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell. culture. J. Virol. 6l, 829-839.

Sahlin, M., Graslund, A., Ehrenberg, A. and Sjoberg, B. -M. (1982). Structure of the tyrosyl radical in bacteriophage T 4 -induced ribonucleotide reductase. J. Biol. chem. 257, 366-369.

Salahuddin, S.Z., Ablashi, D.V., Markham, P.D., Josephs, F.J., Sturzeneger, S., Kaplan, M., Halligan, G., Biberfeld, P., Wong-Staal, F., Kramarsky, B. and Gallo, R.C. (1986). Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234 , 596-601.

Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H. and Roe, B.A. (1980). Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143, l61-178.

Schek, N. and Bachenheimer, S.L. (1985). Degradation of cellular mRNAs induced by a virion-associated factor during herpes virus infection of Vero cells. J. Virol. 55, 601-610.

Sheldrick, P. and Berthelot, N. (1974). Inverted repititions in the chromosome of herpes simplex virus. Cold Spring Harbor Symp. Quant. Biol. (USA) 39, 667-678.

Shlomai, J., Friedmann, A. and Becker, Y. (1976). Replicative intermediates of herpes simplex virus DNA. virology 69, 647-659.

Singh, D., Tamao, Y. and Blakely, R.L. (1977). Allosterism, regulation and cooperativity: the case of ribonucleotide reductase of Lactobacillus leichmannii. Adv. Enz. Regul. 15, 81-100.

Sjoberg, B.-M. and Holmgren, A. (1972). Studies on the structure of $T 4$ thioredoxin. II. Amino acid sequence of the protein and comparison with thioredoxin from Escherichia coli. J. Biol. Chem. 247, 8063-8068.

Sjoberg, B.-M., Reichard, P., Graslund, A. and Ehrenberg, A. (1977). Nature of the free radical in ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 252, 536-541.

Sjoberg, B.-M., Reichard, P., Graslund, A. and Ehrenberg, A. (1978). The tyrosine free radical in ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 253, 6863-6865.

Sjoberg, B.-M., Loehr, T.M. and Sanders-Loehr, J. (1982). Raman spectral evidence for a u-oxo bridge in the binuclear iron centre of ribonucleotide reductase. Biochemistry 21, 96-102.

Sjoberg, B.-M., Graslund, A. and Eckstein, F. (1983). A substrate radical intermediate in the reaction ribonucleotide reductase from Escherichia coli and 2'-Azido-2' deoxynucleoside diphosphates. J. Biol. Chem. 258, 8060-8067.

Sjoberg, B.-M., Eklund, H., Fuchs, J.A., Carlson, J., Standart, N.M., Ruderman, J.V., Bray, S.J. and Hunt, T. (1985). Identification of the stable free radical tyrosine residue in ribonucleotide reductase: a sequence comparison. FEBS Lett. 183, 99-102.

Sjoberg, B.-M., Hahne, S., Mathews, G.Z., Mathews, C.K., Rand, K.N. and Gait, M.J. (1986). The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron. EMBO J. 5, 2031-2036.

Sjoberg, B.-M., Karlsson, M. and Jornvall, H. (1987). Half-site reactivity of the tyrosyl-radical of ribonucleotide reductase Escherichia coli. J. Biol. Chem. 262, 9736-9743.

Slabaugh, M.B., Johnson, T.L. and Matheus, C.K. (1984). Vaccinia virus induces a ribonucleotide reductase in primate cells. J. Virol. 52, 507-514.

Slabaugh, M.B., Roseman, N., Davi, S.R. and Mathews, C.K. (1988). Vaccinia virus encoded ribonucleotide reductase: sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J. Virol. 62, 519-527.

Smith, C.A. and Schaffer, P.A. (1987). Mutants defective in herpes simplex virus type 2 ICP4: isolation and preliminary characterisation. J. Virol. 61, l092-1097.

Smith, M.G. (1954). Propagation of salivary gland virus of the mouse in tissue cultures. Proc. Soc. Exp. Biol. Med. 86, 435-440.

Smith, M.G. (1956). Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease (22498). Proc. Soc. Exp. Biol. Med. 92, 424-430.

Soderberg, B.-O., Sjoberg, B.-M., Sonnerstam, U. and Branden, C.-I. (1978). Three-dimensional structure of the thioredoxin induced by bacteriophage T4. Proc. Natl. Acad. Sci. (USA) 75, 5827-5830.

Spaete, R.R. and Frenkel, N. (1982). The herpes simplex virus amplicon: a new eukaryotic defective virus cloning-amplifying vector. Cell 30, 295-304.

Spear, P.G. (1976). Membrane proteins specified by herpes simplex viruses. I. Identification of four glycoprotein precursors and their products in type $l$ infected cells. J. Virol. 17, 991-1008.

Spear, P.G. and Roizman, B. (1972). Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpes virion. J. Virol. 9, 143-159.

Spector, T., Stonehuerner, J.G., Biron, K.K. and Averett, D.R. (1987). Ribonucleotide reductase induced by varicella-zoster virus. Characterisation and potent of acyclovir by its inhibition. Biochem. Pharmacol. 36, 4341-4346.

Staden, R. (1980). A new computer method for the storage and manipulation of DNA gel reading data. Nucl. Acids Res. 8, 3673-3694.

Staden. R. (1982). Automation of the computer handling of gel reading data produced by the shot-gun method of DNA sequencing. Nucl. Acids Res. 10, 4731-4751.

Staden, R. and McLachlan, A.D. (1982). Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucl. Acids Res. 10, l4l-156.

Standart, N.M., Bray, S.J., George, E.L., Hunt, T. and Ruderman, J.V. (1985). The small subunit of ribonucleotide reductase is encoded by one of the most abundant translationally regulated maternal RNAs in clam and sea urchin eggs. J. Cell. Biol. 100, 1968-1976.

Standart, N.M., Hunt, T. and Ruderman, J.V. (1986). Differential accumulation of ribonucleotide reductase subunits in clam oocytes: the large subunit is stored as a polypeptide, the small subunit as unstranslated mRNA. J. Cell. Biol. 103, 2129-2136.

Stenkamp, R.E, Sieker, L.C., Jensen, L.H. and Sanders-Loehr, J. (1981). Structure of the binuclear iron complex in metazidohaemerythrin from Themiste dyscritum at 2.2A resolution. Nature 291, 263-264.

Sternberg, M.J.E. and Taylor, W.R. (1986). Modelling the ATP-binding products, the epidermal growth factor receptor and related proteins. FEBS Letters 175, 387-392.

Stevely, W.S., Katan, M., Stirling, V., Smith, G. and Leader, D.P. (1985). Protein kinase activities associated with the virions of pseudorabies and herpes simplex virus. J. Gen. Virol. 66, 661-673.

Stow, N.D. (1982). Localisation of an origin of replication within the $T R_{\mathrm{s}} / I R_{\text {s }}$ repeated region of the herpes simplex virus type l genome. EMBO J. l, 863-867.

Stow, N.D. (1985). Mutagenesis of a herpes simplex virus origin of DNA replication and its effect on viral interference. J. Gen. Virol. 66, 3l-42.

Stow, N.D. and McMonagle, E.C. (1983). Characterisation of the $T R / I R$ origin of DNA replication of herpes simplex virus Eype 1 . Virology 130, 427-438.

Stow, N.D. and Davison, A.J. (1986). Identification of a varicella-zoster virus origin of DNA replication and its activation by herpes simplex virus type 1 gene products. J. Gen. Virol. 67, 1613-1623.

Stow, N.D. and Stow, E.C. (1986). Isolation and characterisation of a herpes virus type 1 mutant containing a deletion within the gene encoding the immediate-early polypeptide Vmwll0. J. Gen. Virol. 67, 2571-2585.

Stow, N.D., McMonagle, E.C. and Davison, A.J. (1983). Fragments from both termini of the herpes simplex virus type $l$ genome contain signals required for the encapsidation of viral DNA. Nucl. Acids Res. ll, 8205-8220.

Stringer, J.R., Holland, L.E., Swanstrom, R.I., Pivo, K. and Wagner, E.K. (1977). Quantitation of herpes simplex virus type 1 RNA in infected cells. J. Virol. 21 , 889-901.

Strobel-Fidler, M. and Franke, B. (1980). Alkaline deoxyribonuclease induced by herpes simplex virus type 1: composition and properties of the purified enzyme. Virology 103, 493-501.

Strom, T. and Frenkel, N. (1987). Effects of herpes simplex virus on mRNA stability. J. Virol. 6l, 2198-2207.

Swain, M.A. and Galloway, D.A. (1986). Herpes simplex virus specifies two subunits of ribonucleotide reductase by $3^{\prime \prime}$ co-terminal transcripts. J. Virol. 57, 802-808.

Swain, M.A., Peet, R.W. and Galloway, D.A. (1985). Characterisation of the gene encoding herpes simplex virus type 2 glycoprotein $C$ and comparison with the type 1 counterpart. J. Virol. 53, 56l-569.

Swanstrom, R.I. and Wagner, E.K. (1974). Regulation of synthesis of herpes simplex virus type 1 virus mRNA during productive infection. Virology 60, 522-533.

Swanstrom, R.I., Pivo, K. and Wagner, E.K. (1975). Resctricted transcription of the herpes simplex virus genome occuring early after infection and in the presence of metabolic inhibitors. Virology 66, 140-150.

Sydiskis, R.J. and Roizman, B. (1967). The disaggregation of host polyribosomes in productive and abortive infection with herpes simplex virus. Virology 32 , 678-686.

Sydiskis, R.J. and Roizman, B. (1968). The sedimentation profiles of cytoplasmic polyribisomes in mammalian cells productively and abortively infected with herpes simplex virus. Virology 34, 562-565.

Taylor, P. (1984). A fast homology program for aligning biological sequences. Nucl. Acids Res. 12, 447-455.

Taylor, P. (1986). A computer program for translating DNA sequences into protein. Nucl. Acids Res. 14, 437-441.

Taylor, W.R. (1986a). The classification of amino acid conservation. J. Theor. Biol. 119, 205-218.

Taylor, W.R. (1986b). Identification of protein sequence homology by consensus template alignment. J. Mol. Biol. 188, 233-258.

Tengelsen, L.A. Slabaugh, M.B., Bibler, J.K. and Hruby, D.E. (1988). Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. Virology 164 , 121-131.

Thelander, L. (1968). Studies on thioredoxin reductase from Escherichia coli. The relation of structure and function. Eur. J. Biochem. 4, 407-422.

Thelander, L. (1973). Physiological characterisation of ribonucleoside diphosphate reductase from Escherichia coli. J. Biol. Chem. 248, 4591-4601.

Thelander, L. (1974). Reaction mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Oxidation-reduction active disulfides in the Bl subunit. J. Biol. Chem. 249, 4858-4862.

Thelander, L. and Reichard, P. (1979). Reduction of ribonucleotides. Ann. Rev. Biochem. 48, l33-158.

Thelander, L. and Berg, P. (1986). Isolation and characterisation of expressible cDNA clones encoding the Ml and M2 subunits of mouse ribonucleotide reductase. Mol. Cell. Biol. $\underline{6}$, 3433-3442.

Thelander, L., Eriksson, S. and Akerman, M. (1980). Ribonucleotide reductase from calf thymus. Separation of the enzyme into two non-identical subunits, proteins M1 and M2. J. Biol. Chem. 255, 7426-7432.

Thelander, M., Graslund, A. and Thelander, L. (1985). Subunit M2 of mammalian ribonucleotide reductase. Characterisation of a homogeneous protein isolated from M2-overproducing mouse cells. J. Biol. Chem. 260, 2737-2741.

Thompson, R., Honess, R.W., Taylor, L., Morran, J. and Davison, A.J. (1987). Varicella-zoster virus specifies a thymidylate synthetase. J. Gen. Virol. 68, 1449-1455.

Timbury, M.C. (1971). Temperature-sensitive mutants of herpes simplex virus type 2. J. Gen. Virol. 13, 373-376.

Umene, K. (1986). Conversion of a fraction of the unique sequence to part of the inverted repeats in the $S$ component of the simplex virus type 1 genome. J. Gen. Virol. 67, 1035-1048.

Varmuza, S.L. and Smiley, J.R. (1985). Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41, 793-802.

Vaughan, P.J., Banks, L.M., Purifoy, D.J.M. and Powell, K.L. (1984). Interactions between herpes simplex virus DNA-binding proteins. J. Gen. Virol. 65, 2033-2041.

Vaughan, P.J., Purifoy, D.J.M. and Powell, K.L. (1985). DNA-binding protein associated with herpes simplex virus DNA polymerase. J. virol. 53, 501-508.

Vernon, S.K., Ponce de Leon, M., Cohen, G.H., Eisenberg, R.J. and Rubin, B.A. (1981). Morphological components of herpesviruses. III. Localisation of herpes simplex virus type $l$ nucleocapsid polypeptides by immune electron microscopy. J. Gen. Virol. 54, 39-46.

Vieira, J. and Messing, J. (1982). The puC plasmids, an Ml3mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259-268.

Vitols, E., Brownson, C., Gardiner, W. and Blakley, R.L. (1967). Cobamides and ribonucleotide reduction. J. Biol. Chem. 242, 3035-3041.

Vlazny, D.A. and Frenkel, N. (1981). Replication of herpes simplex virus DNA: localisation of replicative recognition signals within defective viral genomes. Proc. Natl. Acad. Sci (USA) 78, 742-746.
von Dobeln, U. and Reichard, P. (1976). Binding of substrates to Escherichia coli ribonucleotide reductase. J. Biol. Chem. 251, 3616-3622.
von Zabern, I., Wittmann-Liebold, B., Untucht-Grau, R., Schirmer, R.M. and Pai, E.F. (1976). Primary and tertiary structure of the principal human adenylate kinase. Eur. J. Biochem. 68, 281-290.

Wadsworth, S., Hayward, G.S. and Roizman, B. (1976). Anatomy of herpes simplex virus DNA. V. Terminally repetitive sequences. J. Virol. 17, 503-512.

Wagner, E.K. (1972). Evidence for transcriptional control of the herpes simplex virus genome in infected human cells. Virology 47, 502-506.

Wagner, E.K. (1985). Individual HSV transcripts: characterisation of specific genes. In: 'The Herpesviruses', Vol. 3, pp.45-104 (B. Roizman, ed.) Plenum Press, New York.

Wagner, E.K. and Roizman, B. (1969). Ribonucleic acid synthesis in cells infected with herpes simplex virus. I. Patterns of ribonucleic acid synthesis in productively infected cells. J. Virol. $\underline{4}^{\prime}$, 36-46.

Wagner, M.J. and Summers, W.C. (1978). Structure of the joint region and the termini of the DNA of herpes simplex virus type l. J. Virol. 27, 374-387.

Wagner, M.J., Sharp, J.A. and Summers, W.C. (1981). Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc. Natl. Acad. Sci (USA) 78, 1441-1448.

Watson, R.J. and Clements, J.B. (1978). Characterisation of transcription-deficient temperature-sensitive mutants of herpes simplex virus type l. Virology 91, 364-379.

Watson, R.J. and Clements, J.B. (1980). Identification of a herpes simplex virus type $l$ function continuously required for synthesis of early and late virus RNAs. Nature 285, 329-330.

Watson, R.J., Preston, C.M. and Clements, J.B. (1979). Separation and characterisation of herpes simplex virus type 1 immediate-early mRNAs. J. Virol. 31, 42-52.

Watson, R.J., Sullivan, N. and Vande Woude, G.F. (1981). Structures of two spliced herpes simplex virus type l immediate-early mRNAs which map at the junctions of the unique and reiterated regions of the virus DNA $S$ component. J. Virol. 37, 431-444.

Watson, R.J., Weis, J.H., Salstrom, J.S. and Enquist, L.W. (1982). Herpes simplex virus type-l glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science 218, 381-383.

Weihar, H., Konig, M. and Grus, P. (1983). Multiple point mutations affecting the simian virus 40 enhancer. Science 219, 626-631.

Wehland, J., Schroder, H.C. and Weber, K. (1984). Amino acid sequence requirements in the epitope recognised by the $\alpha$-tubulin-specific rat monoclonal antibody YLl/2. EMBO J. 3, 1295-1300.

Weller, S.K., Lee, K.J., Sabourin, D.J. and Schaffer, P.A. (1983). Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. J. Virol. 45, 354-366.

Weller, S.K., Spadaro, A., Schaffer, J.E., Murray, A.M., Maxam, A.M. and Schaffer, P.A. (1985). Cloning, sequencing and functional analysis of ori , a herpes simplex virus type 1 origin of DNA synthesis. Mol. Cell. Biol. 5, 930-942.

Weller, T.H. (1953). Serial propagation in vitro of agents producing inclusion bodies derived from varicella and herpes zoster. Proc. Soc. Exp. Biol. Med. 83, 3440-3446.

Weller, T.H. (1976). Varicella-zoster virus. In: 'Viral Infections of Humans: Epidemiology and Control', pp.457-480 (A.S. Evans, ed.) Plenum Publishing Corp. Ny.

Weston, K. and Barrell, B.G. (1986). Sequence of the short unique region, short repeats and part of the long repeats of human cytomegalovirus. J. Mol. Biol. 192, 177-208.

Whittley, R.J. (1985). Epidemiology of herpes simplex viruses. In: 'The Herpesviruses', Vol. 3, pp.l-44 (B. Roizman ed.) Plenum Press, New York.

Whitton, J.L. and Clements, J.B. (1984a). Replication origins and a sequence involved in coordinate induction of the immediate-early gene family are conserved in an intergenic region of herpes simplex virus. Nucl. Acids Res. 12, 2061-2079.

Whitton, J.L. and Clements, J.B. (1984b). The junctions between the repititive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide coding regions of two spliced immediate-early mRNAs. J. Gen. Virol. 65, 45l-466.

Whitton, J.L., Rixon, F.J., Easton, A.J. and Clements, J.B. (1983). Immediate-early mRNA-2 of herpes simplex viruses types 1 and 2 is unspliced: conserved sequences around the 5' and $3^{\prime}$ termini correspond to transcription regulatory signals. Nucl. Acids Res. ll, 627l-6287.

Wierenga, R.K., De Maeyer, M.C.H. and Hol, W.G.J. (1985). Interaction of pyrophosphate moieties with -helixes in dinucleotide binding proteins. Biochemistry 24 , 1346-1357.

Wierenga, R.K., Terpstra, P. and Hol, W.G.J. (1986). Prediction of the occurence of the ADP-binding in proteins using an amino acid sequence fingerprint. J. Mol. Biol. 187, 101-107.

Wigler, M., Pellicer, A., Silverstein, S. and Axel, R. (1978). Biochemical transfer of single-copy eukaryotic genes using total cellular DNA as donor. Cell 14, 725-731.

Wilcox, K.W., Kohn, A., Sklyanskaya, E. and Roizman, B. (1980). Herpes simplex virus phosphoproteins. I. Phosphate cycles on and off some viral polypeptides and can alter their affinity for DNA. J. Virol. 33, 167-182.

Wildy, P., Russell, W.C. and Horne, R.W. (1960). The morphology of herpesvirus. Virology 12, 204-222.

Wilkie, N.M. (1973). The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA. J. Gen. Virol. 21, 453-467.

Wilkie, N.M. (1976). Physical maps for herpes simplex virus type 1 DNA for restriction endonucleases Hind III, Hpa II and Xba I. J. Virol. 20, 222-233.

Wilkie, N.M. and Cortini, R. (1976). Sequence arrangements in herpes simplex virus type 1 DNA: identification of terminal fragments in restriction endonuclease digests as evidence for inversion in redundant and unique sequences. J. Virol. 20, 211-221.

Williams, M.V. (1984). Deoxyuridine triphosphate nucleotidylhydrolase induced by herpes simplex virus type l: purification and characterisation of induced enzyme. J. Biol. Chem. 259, 10080-10084.

Williams, M.V. and Parris, D.S. (1987). Characterisation of a herpes simplex virus type 2 deoxyuridine triphosphate nucleotidohydrolase and mapping of a gene conferring type specificity for the enzyme. Virology 156, 282-292.

Wohlrab, F. and Francke, B. (1980). Deoxyribopyrimidine triphosphatase activity specific for cells infected with herpes simplex virus type 1. Proc. Natl. Acad. Sci. (USA) 77, 1872-1876.

Wolf, K. and Darlington, R.W. (1971). Channel catfish virus: a new herpes virus of ictalurid fish. J. Virol. 8, 525-533.

Wu, M., Nelson, N.J., McGeoch, D.J. and Challberg, M.D. (1988). Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. J. Virol. 62, 435-443.

Yamada, M., Takeda, Y., Okamoto, K. and Hirota, Y. (1982). Physical map of the nrdA-nrdB-ftsB-glpT region of the chromosomal DNA of Escherichia coli. Gene 18, 309-318.
zur Hausen, H., Schulte-Holthausen, H., Wolf, H., Dorries, K. and Egger, H. (1974). Attempts to detect virus-specific DNA in human tumors. II. Nucleic acid hybridisations with complimentary RNA of human herpes group viruses. Int. J. Cancer. 13, 657-664.

