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SUMMARY

This thesis describes theoretically the evanescent coupling of a D— fibre, with the 

aim of calculating the propagation constants o f the transverse modes. Both analytical 

and numerical methods are considered for the study o f coupling situations involving a 

fibre.

The first analytical method, Coupled Mode Theory (CM T), provides an understanding 

o f the coupling phenomenon which occurs between two similar guides. In this 

situation, for example, for two fibres/guides with a similar range o f propagation 

constants, coupling does not occur between a guided mode of the first guide and a 

radiation mode o f the second. However, plane wave analysis is preferred to CMT 

for its simplicity and adequacy in prism coupling application.

Secondly, the GF method is selected as the appropriate numerical method for the 

case of a D — fibre coupled to a semi— infinite dielectric medium, in preference to 

the point matching and finite elements methods. The GF method (a semi— numerical 

method) leads to an eigenvalue problem, with the propagation constant as the only 

unknown.

The behaviour o f the GF is dependent on the refractive index of the medium 

surrounding the fibre, the distance from  the core to the flat surface of the cladding, 

and the possible effective refractive indices o f the guided modes. A  program is 

developed to calculate the GF as a function of these variables. By defining these 

parameters, it  enables the testing of several routines which could be later introduced 

into a final program calculating the different propagation constants o f the guiding 

structure.

Finally, the analytical study has been extended to allow direct application in the 

final program.
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CHAPTER ONE INTRODUCTION

Recent technical developments have considerably improved the characteristics of 

optical fibres, and in particular of monomode fibres. These fibres are characterized 

by a very high data rate handling capacity, w ith a bandwidth potential o f several 

GHz over 1km, and hundreds of MHz over 10km. However, their electrical 

counterpart: the co— axial cable, limits the transmission o f a communication system 

to a few hundred M Hz at a distance of the order o f 1km.

The unique properties of these fibres have also stimulated considerable interest in a 

broad range of other applications including interferometers, optical signal processors, 

and optical sensors. In particular, some basic functions required in any optical 

systems such as: polarization controllers, modulators, power dividers, and passive 

filters, all previously performed in bulk materials, are now successfully achieved by 

in— line optical fibre components. One of the first important functions that was 

considered, was the transfer o f signal power between two optical fibres. Thus, the 

fibre to fibre coupler became a basic component o f a 'fibre—based' device, which 

operates on the principle of evanescent coupling, as further explained in chapter 3.

Concurrently, important developments were taking place in integrated optics, 

particularly in modulators ^P, integrated lasers Nk, deflectors ^ m , and detectors Os 

Thus, other optical functions previously elaborated in bulk materials, are replaced by 

their integrated optics equivalents. The main advantage of an integrated system 

comes from  its small size, and therefore such a device is thermally and mechanically 

more stable than its bulk counterpart. What is more, the high electrical and optical 

densities possible in integrated optics lead to very efficient and compact devices.

However, the advance in integrated optics, is o f use only if  an efficient method 

o f coupling optical circuits to optical fibres acting mainly as a data link, exists. 

Therefore, efficient coupling of optical fibres to integrated waveguides is the basis 

for the development o f all guided optics systems.

Note that, the replacement o f an 'electronics system' by optical circuitry based 

on fibre and integrated optics devices, is an attractive solution only if  its
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performance is superior and its cost acceptable ^  . However, the positional and 

dimensional tolerances imposed by the small fibre core diameter (=* 8 /an) are tight, 

and progress has not been spectacular in the domain o f coupling from  a fibre to a 

slab waveguide. Consequently, this problem is still o f great interest, especially that of 

finding a half— coupler based on a fibre, involving a simple, low cost manufacturing 

process. For this purpose the D— fibre was elaborated, and the study of its 

evanescent field coupling behaviour was chosen as the basis o f this thesis. 

Nevertheless, let us first introduce the different possible solutions for a fibre to slab 

waveguide coupler.

1.1 F IB R E -S L A B  W A V E G U ID E  COUPLER

The various fibre— slab waveguide couplers can be classified into two principal 

categories:

1. the end— fire or butt coupler.

2. the transverse, directional or evanescent coupler.

1.1.1. End— fire  coupling

The end— fire  coupler is the most common coupler, and is used as an input or 

output coupler. A  schematic description of a fibre— film  coupler is shown in fig.

1.1.a. The fibre—end is cleaved or polished, and set up so that the beam coming 

or merging from  the fibre is normal to the polished side of the film . D ifferent 

methods are used fo r the alignment and fixation o f the fibre ^1* M p, Thus, the 

light leaving the end— face of the first guide is radiated directly into the end— face 

o f the second. One d ifficu lty  with this technique, is that any loss or misalignment 

results in a degradation o f the primary optical signal. A  second source o f loss comes 

from the Fresnel losses, due to the reflection at the fibre/a ir and air/waveguide 

interfaces.

The butt— jo in t approach, although dependent on very tight alignment and 

geometrically matching conditions, can be satisfactorily achieved in numerous 

applications. Komatsu et al. ^ m , for example, reported a loss from  fibre to

2



(a) end-fire coupling

y

film

substrate

cladding

cladding

(b) transverse coupling

FIGURE 1.1

a. End— fire coupling from a fibre to a film  waveguide.
The arrows represent the direction of propagation of the guided light.

b. Evanescent coupling between a fibre and a film  waveguide
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waveguide to fibre coupler o f only 0.5 dB. Furthermore, it  is simpler to manufacture 

an end— fire coupler than an evanescent coupler. Thus, the former is often preferred 

to evanescent coupling. However, end— fire coupling is not a flexible solution, and it 

would be advantageous i f  the fibre could be coupled at any part o f an integrated 

circuit, and not only at the film  edge. What is more, it does not allow selective 

coupling in terms of power, polarization, mode or wavelength, which can be 

succesfully achieved by the directional coupling method described below.

1.1.2. Directional coupling

This coupling method is a second approach to the fibre to slab waveguide 

coupling problem. The coupling of optical power is made possible by a perturbation 

o f the evanescent field which extends outside the core and the film , fo r the guided 

mode of the fibre and the slab waveguide, respectively, as shown in fig. 1.1 .b. A  

theoretical explanation o f directional coupling is given in chapter 3.

However, we shall mention the main advantages to be gained from  this coupling 

technique in comparison with end—fire coupling:

a. Firstly, the relative cross— section of the waveguides to be coupled does 

not need to be the same or similar.

b. Secondly, coupling can take place at any point on the thin film .

c. Thirdly, thanks to the evanescent coupling properties, some functions can

be directly executed through a selective coupler in  terms of the modes, 

power, polarization or wavelength.

d. Finally, the power transfer can reach a theoretical and maximum value of

100%. However, a successful total power transfer has not yet been

reported in the literature. The fabrication tolerances and the complexity

of the half— fibre coupler, constitute the main difficulties o f the method. 

A  fibre— film — fibre loss of 2dB has been reported at a wavelength

of 1.35 and 1.54 microns, which correspond to the region of minimum 

loss and dispersion in optical fibres, and thus is o f great interest for 

telecommunication applications.
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It is interesting to note that many analogies can be drawn from  the 

well— established microwave technology of directional and distributed couplers The 

technique applied in microwave couplers can in principle be applied to higher optical 

frequencies. However, because of the much shorter wavelengths o f light, the 

dimensional and positional tolerances of such couplers decrease. Thus, further 

difficulties are introduced, although realization is still w ithin the framework of our 

present— day technology.

In conclusion, despite higher losses than a corresponding end— fire  coupler (due 

to the manufacturing process), the directional coupler is the appropriate and 

complementary coupling technique in many cases, due to the particular properties it 

exhibits.

1.2 H A L F -  FIBRE COUPLER

Optical fibres have thick cladding layers, specifically chosen so that the 

evanescent field at the outer cladding surface is negligibly small fo r all well— guided 

modes. To enable directional coupling, much of the cladding must be removed 

locally, thus allowing a perturbation of the evanescent field o f the fibre by the other 

half-coupler (i.e ., to cause sufficient overlap of the evanescent fields of the two 

half—couplers). There are two basic approaches:

1. to use a conventional fibre polished locally.

2. to use a D — fibre.

1.2.1. Use o f a conventional fibre.

The first use o f a fibre in a directional coupler was proposed by Hsu in 1876 

^ s. He demonstrated coupling from  a single— mode fibre to a prism. The fibre was 

disposed in a preferentially etched silicon v— groove and polished to w ithin a few

microns of the core. A  high index prism was then used to remove the fundamental

mode power (see sect. 3.2).

However, the most common method using a polished fibre, was developed by 

Bergh et al. They achieved a tunable fibre— fibre coupler, giving any desired

5



coupling ratio with very low insertion loss or cross— talk. This coupler is known as 

the 'Stanford coupler' or polished 'directional coupler' (PDC) (see fig. 1.2). The

fibre in each coupler was bonded into a groove cut into a silica substrate block.

The groove had a radius o f curvature o f typically 25cm, and was formed using a

wire saw. The surface o f the substrate containing the fibre was polished to remove

the excess cladding.

The main inconvenience o f this method, is that extreme care is necessary to

maintain an accurate radius of curvature. Afterwards, other similar techniques were

used to set up the fibre Pr,Ny,Zh However, each technique involves fastidious

polishing of the whole half fibre— coupler. In order to give access to the evanescent

field of a half— coupler, most o f the cladding must be removed to w ithin a few

microns of the core. Hence, this operation implies the removal o f nearly 60/an for 

a conventional single mode fibre (core radius of 4/an and overall diameter of

125/an).

F inally, for flatness of the polished area of the fibre, and a reproductib ility of the 

core/flat distance, the silica substrate block and the epoxy were chosen because of 

the polishing hardness rather than the optical index matching.

1.2.2. Use of a D—fibre.

Before the use of the D — fibre, another method avoiding fastidious polishing was 

used in a fib re-fib re  SMDC. The two fibres were etched ^h to locally remove most 

o f the cladding around the core. The remaining fibre was locally very thin, and 

susceptible to mechanical damage. However, this method is not applicable to a

fibre— film  coupler.

A  coupler using a D — fibre is another interesting alternative which avoids the 

polishing process o f the polished directional coupler. The first application of a

D — fibre using the evanescent coupling effect was published by ShiJner et al. 

Sc.Hn.Dy^ wh0 manufactured a single mode directional coupler (SMDC) between two 

D — fibres.

6



(a)

Polished fibre surface

Epoxy

Silica substrate block

Fibre

(b)

Superstrate (air or silica)

High index filmEpoxy

Silica substrate block

FIGURE 1.2

a. Geometry of a half— Stanford coupler, also called polished directional 
coupler (PDC), showing s e t-u p  in silica substrate block.

b. Cross— section of fibre— film  coupler using PDC.
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a. Fabrication

Now, let ns briefly describe the fabrication of a D— Fibre, the geometry of 

which is shown in fig. 1.3. First o f all, a fla t is cut and polished parallel to the 

core o f a standard single mode preform. This modified preform is then pulled by 

the usual process for the fabrication o f the fibre. By this means, a fibre w ith an 

approximately semicircular cross— section, called an SCCS— fibre or D — fibre was 

manufactured.

Note, that a preform was previously manufactured to build a directional coupler, 

based on a double core fibre pulled from  two appended partial preforms Sf The 

main advantage of this method is that the core alignment is carried out directly on 

the fibre's preform. However, it  is d ifficu lt to splice or couple two single mode 

fibres at each extremity o f the double core fibre, the two cores o f the fibre being 

close enough to enable evanescent coupling (the spacing was approximately 10/un for 

a fibre monomode at 633/on). To overcome this difficu lty the D—fibre was drawn.

b. Characterisation

In their article 'Fabrication and Characterisation of D— fibres w ith a Range of 

Accurate Controlled Core/Flat Distance', M illa r et al. M l at BRTL defined the first 

study o f the fundamental optical properties of D— fibres drawn from  a standard 

quasi— step— index type 'B ' single mode design preform. This is probably the most 

important class of D — fibres, owing to their compatibility with main stream single 

mode fibres.

First of all, in order to characterize the D— fibres, one preform was cut and 

polished at an angle to the longitudinal axis. This choice of polished preform, should 

therefore allow the fu ll range of fibre samples which could possibly be used in 

evanescent field coupling situations.

Precautions were taken to keep the circular cross— section of the fibre core constant, 

and to reproduce the D — shape by m inim izing the rounding effects due to surface 

tension. Numerical values of these characteristics are given in the article previously 

mentioned.
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FIG UR E 1.3

Typical D—fibre with core/flat distance: d, of 4pm, and variation between 
the core and cladding refractive indices: An= 0.005.
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Transverse coupling behaviour was then investigated by measuring the input 

prism coupling efficiency (see section 3.2.1), as a function of the core/flat distance 

(d), at a wavelength of 633nm. Repeatable input coupling measurements (±0.8dB), 

were achieved, using the curved surface o f a 5cm glass rod to push the fibre against 

the prism. A t this chosen wavelength, the fibre was supporting at least three sets of 

degenerate modes, which were identified by their far field pattern and synchronous 

coupling angle. Figure 1.4 shows the plot o f coupled power against the core/flat 

distance, for the fundamental mode (LP01), and the first order mode (LP11).

The fundamental mode is better confined in the core than the LP11 mode, i.e., its 

evanescent field does not extend into the cladding as far as that o f the higher order 

mode. This implies, that the evanescent input coupling power, which propagates 

along 20cm of fibre, decreases more rapidly fo r the fundamental mode than for the 

first order mode.

The lesser confinement o f the higher order mode, induces important perturbation of 

the evanescent field for small core/flat distances. Therefore, some power from the 

guided mode radiates during its propagation along the fibre to the detector, resulting 

in an apparent decrease in coupling efficiency as 'd ' diminishes.

c. Conclusion

Consequently from  the above characterisation, the alternative method of building 

a half fibre— coupler with a D— fibre becomes quite interesting, especially as it 

avoids partial or total polishing of the half— fibre set— up, and therefore simplifies 

the manufacturing procedure of the coupler. It also allows the advance determination 

o f the appropriate core/flat distance for efficient coupling. Additionally, long coupling 

lengths are possible, allowing weak interactions over extensive propagation distances 

(lO^ —10^ wavelengths), and thus leading to high Q—factor devices.
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1.3 Review of the content of the thesis

The background information on the two principal coupling methods: transverse

and directional coupling, have previously been introduced. We have also given the 

motivation for the use o f a D— fibre in a half— fibre coupler.

The second chapter on waveguide theory introduces the parameters and 

definitions used in the following chapters.

Next, in the th ird chapter we give two analytical approaches to the coupling

problem:

— Coupled Mode Theory (CMT) applied to two similar waveguides,

— plane wave analysis o f a prism coupler.

Both analyses give a basic understanding of the evanescent coupling phenomenon.

Thereafter, in chapter 4 we try to formulate the perturbation theory for 

transverse modes in a coupling structure formed by a D — fibre and a semi— infin ite 

dielectric medium. Thus we want to calculate the propagation constants o f the mode 

of the perturbed D— fibre. We first introduce the assumptions of the problem. Then, 

a review of the theory of the GF is given before the definition of the

K irchhoff— Huygens integral, having this GF as one o f its elements. Finally, we

justify the selection o f the GF method (which is in fact a semi—numerical method), 

for these particular applications.

In chapter 5, we first develop the analytical calculation of the first and second 

parts o f the GF. Then, starting from the K irchhoff— Huygens integral, we derive an 

eigenvalue problem with the propagation constants as the only variables.

However, programming application involves further analytical developments as 

described in chapter 6.

The results o f the GF are reported in chapter 7. Finally, we give the further 

development leading to a total definition o f the evanescent field coupling of a 

D — fibre to a prism.
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CHAPTER TW O W AVEG U ID E THEO RY

Fibres, planar waveguides, and prisms constitute a group of guides between 

which evanescent coupling may occur. Therefore, in the following paragraph let us 

give a brief description of these different guides, which is not exhaustive but which 

aims to introduce the parameters and the definitions used in the following chapters.

2.1 FU N D A M E N T A L PROPERTIES OF TH E MODES

The electric and magnetic field vectors E (jc,y) and H(x,y) are each separated 

into two parts: one part representing the power guided without attenuation along the 

guide, the other representing the power radiated away from  the waveguide. For a 

simple guide (fibre, slab waveguide, rib  waveguide for example), it is possible to

calculate a fin ite number of guided modes and a continuum of radiation modes.

2.1.1 Modal expansion o f the guided or bound modes

Let us consider an ideal guide supporting forward propagating modes only.

Thus, the field vectors satisfying the homogeneous vector wave equations ($1 eqU 

’ 30.18) are expanded as a finite sum of the modal electric or magnetic fields,

En(*,y ,z ), H n(x,y,z) as in:

E ( x , y , z )  = £an En ( x , y , z )  w i t h  n = 1 , 2 , . . , N  ( 2 . 1 )

H ( x , y , z )  = £an Hn ( x , y , z )  

where an are the modal amplitudes, which depend on the source of excitation, 

and where the time dependence exp(— iuX) o f the modal fields is assumed implicit.

Note, that the decomposition in series is a general form  of fitting  boundaries 

and satisfying a partial differential equation, fo r example in our case the wave 

equation. However, the application of this method requires the separation of the 

partial differential equation into coordinates, £n , so that a boundary corresponds to 

one or more constant coordinate values, i.e ., £ , =  constant (M f sect. 6.3).

Consequently, this method is applicable to guides with simple geometry, and we will 

consider only the two main ones: the slab waveguide and the fibre.

13



2.1.2 Translational invariance and propagation constant

a. Translational invariance:

The cylindrical symmetry or translational invariance of a guide enables us to 

express the modal fields in the separable form, as in:

E j ( x , y , z )  -  e j ( x , y )  exp i ( 0 j Z  -  w t )  ( 2 . 2 )

H j ( x , y , z )  -  h j ( x , y )  exp i (/S jz -  o>t) 

where 0j is called the propagation constant or eigenvalue of the mode. 

Furthermore, the translational invariance in conjunction with the homogeneity of the 

guide, implies that no coupling occurs between the modes.

b. /3 fo r guided modes:

The decomposition of the fields in series of eigenfunctions (M w  sect.9, M f sect.

6.3), has the different propagation constants: /3j as eigenvalues. As a result of these

different eigenvalues, the boundary conditions are satisfied for each mode. There is a 

distinct |3j per mode, unless two modes are degenerate. Such modes have equal 

phase velocity, but their transverse field distributions do not need to be identical. 

From a ray approach (Si part 1, ^m  sect. 2.1), or a modal treatment (Si sect. 31, 

T m sect. 2.2.6), the range of all possible values of the propagation constants for the 

guided modes is lim ited w ithin the interval:

k n 3 ^ kn 2 ^ /3 ^  kn^ ( 2 . 3 )

where n j ,  n2, and n3 are the refractive indices of respectively, the film , the 

substrate, and the superstrate, and where k=2x /X is the wave number in free space. 

I f  we consider a fibre, the relation (2.3) becomes:

knc i ^ |3 ^  knco (b )

where nco and ncj are the core and the cladding of a fibre, respectively.

c. Cutoff condition:

I f  the propagation constant o f a mode satisfies the following relation:

@ = kn2 o r  0 =  knc l  ( 2 . 4 )
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the mode is said to be cutoff. In the ray picture, this situation corresponds to the 

loss of total internal reflection, and in the modal analysis, to the loss of optical

confinement and fie ld spreading from the guiding region throughout the surrounding 

medium (substrate or cladding).

Consequently, over the cutoff value, the guide supports radiation modes only, i.e., 

f o r  ft ) kn2 o r  ft > knc j ( 2 . 5 )

2.1.3 Helmholtz equation

There are only a few guides which have an exact analytical solution of their 

modal fields. Planar guides, circular symmetric and elliptical fibres, all with a step

index profile, for example, have an exact solution. A  step index fibre has a core

and cladding o f uniform  refractive index, with the cladding being assumed infinite. 

Thus, the only variation in profile is a step discontinuity at the core/cladding 

interface.

This characteristic implies, that the analytical solution of a waveguide with a

step index profile, can be calculated from a simplification of the homogeneous vector 

wave equation equ. 12.2). Each cartesian coordinate of the electromagnetic field 

satisfies the Helmholtz equation within each region of constant refractive index, i.e.,

{  n2fc2_ 0^2 } e n j  -  0 w i t h  n -  x , y , z  , ( 2 . 6 )

but not at the interface between two different regions. This equation is sometimes 

called the scalar wave equation, and is the appropriate equation fo r a uniform 

electric medium.

2.1.4 TE , T M  and hybrid modes

In general, modes o f an optical waveguide satisfying the homogeneous vector 

wave equation, have both ezj and hzj components, and are called hybrid modes. 

These modes are usually called EH and HE modes for reasons discussed elsewhere 

S1.

However, in special situations depending on the geometry o f the cross— section 

and the profile variation o f the guide, the modes can be separated into two linearly

15



independent sets one w ith hzj  =  0 everywhere, called transverse magnetic mode 

(T M ); the other with ezj  =  0 everywhere, called transverse electric mode (TE ).

The simplest example is the planar waveguide, where all modes can be expressed as 

either TE  or TM  modes. Another example is provided by the modes with azimuthal 

symmetric fields on circular fibres. In these two special cases, the transverse electric 

fie ld components: etj ,  w ith t =  x,y, satisfy the scalar wave equation given below in 

(2.7).

The last and triv ia l case is the one occuring in an infin ite uniform  medium, 

w ith ezj =  hzj  =  0 everywhere. In this situation, the modal fields are called TEM  

waves, and satisfy the following scalar wave equation:

{  Vt 2+ n 2k 2-  /32 }  ^  -  0 ( 2 . 7 )

where the scalar fie ld: represents any one of the following transverse components:

ex or ey, ^y *

Remember, that |3 is supposed to be the propagation constant o f one particular 

mode, and its subscript: j ,  defined in the previous section is omitted, unless it is 

necessary.

To conclude, note that a TE M  mode induces a wave phenomenon, possessing a 

phase constant identical to that o f a uniform  wave propagating in an unbounded 

medium, and is expressed by the following equation:

\p = i/'q e xp { i (kx -  cot ) } (b)

where x is the unit vector in the direction o f propagation of the wave,

and where \f/Q is the scalar field amplitude at x =  0.

2.1.5 Weak guidance approximation (or paraxial approximation)

Let us consider a cylindrical guide with a core and an infin ite cladding region 

o f refractive indices nco and ncj, respectively. By the term 'weakly guiding' (Gloge 

1971 G l), we mean that the refractive indices of the two regions are not too 

dissimilar, or to be more specific that nco — ncj ^  nco.

Thus, i f  the different refractive indices are almost equal, the profile height, defined

by:
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A -  (nco 2 -  nc l 2 ) /  2nCQ2 < 1  ( 2 . 8 )

is small. It follows, that the range o f propagation constants o f the bound modes 

becomes narrow. Consequently, we may assume that:

= nco = nc l  ( 2 . 9 )

Thereby, this slight non— uniform ity maintains total internal reflection inside the 

guide, but the medium is virtually homogeneous as far as the polarization effects are 

concerned. Thus, the modal fields of a weakly guiding waveguide are nearly TEM  

waves, since the direction of propagation of a ray is almost parallel to the z— axis 

(i.e ., ezj=hzj=0), with only a weak dependence on the polarization properties of the 

waveguide.

It follows that, the tranverse electromagnetic fields satisfy the following simple 

re la tion:

h t  = ( e 0/ M 0) 1/2  nco z x  e t  ( 2 . 1 0 )

with the transverse components expressed as in:

h t = hx ( * > y )  x  + hy ( x , y )  y  ( 2 . 1 1 )

e t = ex ( x »y) x + ey ( *>y)  y ( 2 . 1 2 )

Thereafter, i f  we know et , the electromagnetic field is specified. This is done by 

solving the scalar wave equation (2.7) for ex and ey, with the appropriate boundary 

conditions at the interfaces defining the field amplitudes.

Note, that the scalar wave equation gives no information about the electric field 

polarization, i.e ., its vector field direction. Thus, this direction must be determined 

from  the polarization or symmetry properties o f the waveguide.

2.2 SLAB WAVEGUIDE AND WEAK GUIDANCE APPROXIMATION

The slab waveguide has been extensively studied and its behaviour is well 

known. However, let us recall some of its properties.

2.2.1 Mode fie ld  shape

From the geometry of the slab waveguide defined in figure 2.1, a guided mode 

propagates in the z— direction, with the assumption of a z— dependence o f the form
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n1 : refractive index of the film/guide 

n 2 : refractive index of the substrate 

n3 : refractive index of the superstrate 

0 1 : incidence angle of ray 

P : propagation constant of guided mode 

k : free space wave number

FIG URE 2.1

Geometry of a slab waveguide with conditions of guidance of the waves 
inside the film  defined by: n j >  n2 > n3 and 0\ <  0C.
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exp(i0z). Secondly, a guided mode has no variation along its y -a x is , i.e ., d /3y=0 .

Finally, this mode is confined in the x— direction, and thus the guide has a

confinement o f order one. Thus, a phase front o f a mode lies in the xy— plane and

extends at in fin ity  in the y— direction.

The above invariance assumption in the y—direction, implies (via Maxwell's 

equations) that the only nonzero field components are, respectively: Ey, H x , H z for 

a T E  mode and Hy, Ex, Ez fo r a T M  mode. This implies that, starting from the

solution of the Helmholtz equation (2.6), the magnetic field o f a TE  mode can be

written in terms of the electric field, as in:

hx -  /3/u)/t0 ey  ( 2 .1 3 )

h2 = 3ey /d x

with hx(*,_y), hy(jt,y), and ey(x,y) as defined in (2.2).

Then, as we want a guidance of the modal power to be largely confined inside 

the guiding layer o f the planar waveguide (see fig. 2.1), the solution of the wave 

equation must be oscillatory in region 1. The previous condition associated with the 

assumption of a finite guided energy inside the guide, implies an exponential decay 

o f the fields towards ±°° in the x— direction. Consequently, the fields have an 

evanescent 'ta il' in the substrate (region 2), and in the superstrate (region 3). From 

the above consideration, and the inequation concerning the propagation constant in 

(2.3), we write the solution for the electric field o f a TE mode fo r the three 

regions o f the guide, in the y—direction, in the following form :

A e _ ( ^ 2 "  n32 k2) /  *  ( 2 .1 4 )

w i t h  x  ) 0 and /3  ̂ > k.2

B c os (n ^ 2  fc2 _ c s i n ( n ^ 2  fc2 _ ^2 )  (b)

w i t h 0 ) x ) 2 a  and (3̂  < n l ^

D e - ( 0 2 -  n22 k 2) 1 / 2 ( x  + 2a)

w i t h  -2 a  ) x  and > n2^ k^ (c )

where A ,B ,C ,D  are constants to be determined.

As the tangential field components (i.e ., ey and hz-dey/dx) must be continuous
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across a boundary between two different regions, we obtain four equations from 

which the unknowns o f (2.14) w ill be calculated.

2.2.2 Eigenvalue equation

We assume that the slab waveguide is symmetric, i.e ., the refractive index of 

the substrate equals that o f the superstrate (i.e ., n2= n 3= n cj). By elimination of the 

constants A ,B ,C ,D  in equation 2.14, and by satisfying the continuity conditions at 

the interfaces, i.e ., by using the modal approach, or by means o f the ray approach, 

the eigenvalue equation (also called the characteristic equation) fo r a TE mode of a 

weakly guiding step index slab waveguide, becomes:

t a n ( 2 u )  = 2 u ( v 2 -  u 2 ) ^ 2 / ( 2 u 2 -  v 2 ) (2 .1 5 )

The normalized variables u, v, b are given by:

v  = a k ( n ^ 2 _ (2 .1 6 )

u = a2 ( k 2n i 2 -  02 ) 1/2 (b)

b = 1 -  u 2/ v 2 (c )

where 2a is the width o f the guiding layer.

Using u and b as the dependent variables, and v as the independent variable, the 

eigenvalue equation may be rewritten as:

2 v ( l  -  b ) 1/ 2 -  t  a n ' l 2b1 / 2 ( l  -  b ) 1 /2
+  J *  ( 2 • 1 7 )

1 -  2b

where j =  0 ,1 ,2 ,..J is the mode number.

Therefore, the numerical resolution o f the above transcendental equation leads 

to the values o f the propagation constants, /3j, of the particular TEj modes. 

Furthermore, from  the above characteristic equation, we define the normalized 

frequency at cutoff, vc , for a symmetric slab waveguide, as in:

v c = j tt/ 2 w i t h  j  = 0 , 1 ,  . . , J  (2 .1 8 )

Thus, the corresponding expression for the number of propagating modes, M, in a 

guide of normalized frequency v, is:

M < 2 v / x  (2 .1 9 )

where M is the lowest integer satisfying the above inequality.
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Finally, from the characteristic equation (2.17), we deduce that higher order modes 

have a smaller |3j than the fundamental mode (w ith j  =  0). Then, thanks to the 

expression of the mode field in the guiding layer (2.14.b), we can also tell that 

higher modes have more field turning points, which affect the evanescent coupling 

between two modes o f two parallel waveguides (see sect. 3.1.6).

2.2.3 Confinement o f the modal power inside the core

The time average power flow, P, of a mode in a waveguide, is given by the 

integral over the guide cross— section of the z— component o f the Pointing vector, 

Sz , as in:

+ 00  + 00

Sz dx -  1 /2 Re(Ej  X H j * )  z dx ( 2 .2 0 )

where Re means that the real part of the complex number is used, and where the 

superscript * defines the complex conjugate.

A fter some calculation, the proportion of modal power in the guiding region, P fjim , 

versus the total modal power, P, is expressed as:

P f i l m  v  b l / 2 +  b
  =   ( 2 . 2 1 )

P v  b1/ ^  1

fo r the case o f a weakly symmetric slab waveguide. Thus, the power in the cladding 

region, Pciacj, versus the total modal power, is given by:

Pcl ad P f i l m
 1   ( 2 . 2 2 )

P P

Now, i f  we introduce the cutoff value o f the propagation constant (/$=nci) 

inside the normalized variables in (2.21), we see that the power in the guiding layer 

is zero. I f  /3 is close to the propagation constant o f a wave in an unbounded 

medium of refractive index n j (i.e., / S ^ n ^ k 2), nearly all the power is in the 

guiding region, and the mode has a strong confinement inside that region. Thereby, 

the equivalent refractive index:

ne = 0 /k  ( 2 . 2 3 )
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leads to an intuitive understanding of how strongly a mode is guided. An effective 

index close to n j indicates that the corresponding mode is well confined inside the 

guide. However, the extent o f the evanescent field is greater for a mode with an 

effective index close to that o f the cladding.

Finally, as the low order modes have higher 0 values than the higher order 

modes (see previous sect.), we deduce that the fundamental mode has the highest 

confinement inside the guide.

2.3 M O DE SINKS

In order to give an intuitive understanding of mode sinks, we first o f all

consider a planar symmetric guide. Then, we increase the thickness of the guiding

layer o f width equal to 2a. This also implies an increase in the number o f guiding 

modes defined in (2.19), which is rewritten explicitly as in:

2a k (n ^2 _ r ^ ) ^ ^
M < ---------------------------------  ( 2 .2 4 )

T

When the guiding layer is extremely thick, i.e., 1000's of wavelengths, the mode 

density is so high, that it  can be considered as continuous. This mode continuum is 

known as a mode sink. The prism is one example of this, and has a confinement of 

order zero.

Observe, that a mode sink situation comes from the loss of at least one order 

o f confinement, which is also the case fo r a coupling structure formed by a fibre 

and a slab waveguide.

Note finally, that this approach using an increasing thickness of guide, w ill be

used to calculate the weak coupling between a planar guide and a semi— infinite

substrate or a prism (see sect. 3.1.8).

2.4 W EAKLY G U ID IN G  O PTIC AL FIBRE

Now we consider the properties o f a weakly guiding fibre, where its geometry 

implies a confinement o f order two.
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2.4.1 The equivalent step index fibre

The only optical fibres which have an exact analytical solution are the step 

index fibre and some graded index fibres chap. 14, Tm  sect. 2.4). The solution 

of the mode fields o f a step index fibre is mathematically more involved than the 

slab waveguide analysis, since it is stated in terms of circular functions, and its 

modes are a solution o f the vector wave equation.

However, ultra low loss single mode fibres used in telecommunication, as 

described for example by Miya et al. M y an(j Linke et al. ^ n, have a graded index 

profile. What is more, very few graded index profile fibres are amenable to exact 

analytical solution, fo r example, fibres with smoothly varying profiles. Nevertheless, 

the other fibres are approximated by numerical methods. Very accurate solutions 

have been obtained by the variational technique Ok, an(j  by the beam propagation 

method Ft. Another technique, known as the 'equivalent step index' method (ESI) 

B1,M12} has been demonstrated to a sufficient accuracy to explain the fibre— film  

coupling behaviour ®r . From an index profile measurement the corresponding ESI 

profile is calculated, and thus the equivalent index difference and the ESI core 

radius are determined. Consequently, the step index fibre w ill be considered in the 

coupling theory, in the situation where a fibre is one element o f the coupler.

2.4.2 Weakly guiding step index fibre

Most monomode fibres, for example those used in telecommunication, are 

weakly guiding. The weak guidance, as defined in sect. 2.15, allows the use of the 

scalar wave equation (2.7). It follows that, the mode fields are nearly TEM , i.e., 

Ez=Hz-0.

As a result o f the above approximation, it is possible to define linearly polarized 

modes or 'pseudo—modes': LP jm modes. Several approaches have been used to build 

these LP modes and their approximate eigenvalue equation. Adams ( ^  sect. 7.2.2) 

started from the exact eigenvalue equation and field components. However, Gloge G1 

derived his results by assuming linearly polarized modes. Arnaud A i  then pointed out 

that these results can also be simply achieved by scalar analysis, so that the
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approximation relies on the solution o f the scalar wave equation, rather than on 

vector solution of the vector wave equation.

a. Fundamental LPqi mode

Several authors used the same approach as Arnaud, in particular Snyder (Sn.Sl 

sect. 13), who defined the modal parameters in the case of a weak guidance 

approximation as:

U -  p ( n co2 k.2 -  02 ) (2 .2 6 )

W -  p ( 0 2 .  nc ,2 k 2) ( 2 .27 )

V -  (U2 + V2) -  k p ( n co2 -  nc l 2 ) 1 /2  ( 2 .2 8 )

where U i s  the  co re  pa ram ete r ,

W i s  the  c l a d d i n g  paramete r ,

V i s  th e  waveguide o r f i b r e  p a ram e te r ,  

and £ i s  the  s c a l a r  p r o p a g a t i o n  c o n s t a n t .

As a result o f his calculation, the eigenvalue equation derived from the scalar wave 

equation for the fundamental mode of a weakly guiding step index fibre is:

U J X(U) W (W)
  -    ( 2 .2 9 )

J 0 ( u > Ko ( w)

where the range of single mode operations is given by 0< V < 2.405. W ith this

convention, the fundamental modes H E ^ ,  i.e ., the two polarizations, are

degenerated into the LPqi mode. The degeneracy of the LP modes is o f course

exact only when the profile height is equal to zero (i.e ., A =0 as defined in (2.15)).

Then, to improve the accuracy of the LP modes, Snyder (SI table 14—3) gives

a polarization correction, 9/3, to the scalar propagation constant. I f  we compare the

corrected mode parameters:

U + au

with the exact solution: U , of the fundamental mode, we find that the maximum

relative error has a magnitude of less than 0.005% for A= 0.005. Note, that this

profile  height is a typical value for the low loss fibre used in telecommunication or
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fo r a D — fibre.

b. LP designation for 1)1

The construction o f the remaining LP|m modes degenerate the four even 

H E j+ 1 and odd E H j_  |  m modes, the latter denoting TMQm and TEQm when 

1= 1. However, unlike the fundamental and other LPQm modes, all the LP jm modes 

w ith 1)1 are not plane polarized. Instead, due to fibre polarization effects, the 

direction of the field depends on the position in the fibre cross— section.

Accordingly, the LP designation of the fundamental mode is applicable if  we 

ignore the polarization properties of the fibre. Thus, all degenerate modes have the 

same propagation constant (see fig.2.2). Nevertheless, such a description w ill lead to 

more significant errors for the higher order modes. In practice, even for a small

profile height, the H E j+  j  and E H j_  j  >m modes have slightly different propagation 

constants. Only after a distance of a beat wavelength, i.e ., 2rl{(5 \— ($2) ,  are the two 

constituant hybrid modes exactly in phase, so that a linear polarization is achieved. 

This means, that a LPjm or 'pseudo—mode' w ill change its field distribution during 

its propagation.

Despite its disadvantages, the LP mode treatment of the weakly guiding fibre

has provided useful results for fibre design.

2.4.3 Birefringence of a D — fibre

Consider a D— fibre pulled from a weakly guiding single mode fibre. I f  the

core/flat distance, d, (see fig. 2.3a) is sufficiently small, i.e., if  d is smaller than 

the effective penetration of the fundamental mode of an equivalent unperturbed 

fibre, then the cladding cannot be considered everywhere as infinite. The circular

symmetry of the fibre cross— section is broken and the D— fibre becomes 

birefringent. Thus, the propagation constants, @y and 0X, differ along the axes of 

symmetry (see fig. 2.3b) defining the principal axes of birefringence.

However, in a first approximation, we consider that the modes are far from 

cutoff and well confined in the core region, so that 0x -/3y. Thus, we also ignore
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Numerical solutions of the eigenvalue equation (from  SI p. 320), showing 
the mode labelling and the corresponding values of 1 and m. The values 
along the dashed lines are the cu to ff values, vc (one fo r each mode).
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the radiation leakage due to a small coupling effect between the two polarization 

states, and the resulting slight difference o f propagation constant sect. 13.13), 

and therefore /3X and 0y remain constant during the propagation of a mode of a 

D — fibre.
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n o : refractive index of the air

n C| : refractive index of the core

rico: refractive index of the cladding

d : core/flat distance 

x,y : axes of birefringence

(b)
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n : refractive index
x,y : axes of birefringence centred on the core 
d : distance core/flat surface

FIGURE 2.3

a. Geometry o f a D —fibre showing the main axes of birefringence: x and 
y, and the core/flat distance: d, on which depends the anisotropy of the 
fibre.

b. Schematic refractive index profiles of a D -  fibre along the main axis 
of birefringence.
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CHAPTER THREE COUPLED WAVEGUIDES

3.1 COUPLED MODE THEORY (CMT)

Solving electromagnetic problems by the eigenvector or modal expansion 

approach (see sect. 2 .2 .2), where fields are expanded into modes that individually 

satisfy the boundary conditions, is both mathematically powerful and physically

intuitive in special situations, where separation of variables is possible. However, for 

complicated boundary conditions, in which separation o f variables is no longer

possible, the modal approach must be abandoned, as it is not possible to define 

some of them.

Couple mode theory (CM T) attempts to preserve the mode concept in some

situations in which the modes cannot be easily found by analytical calculation, but 

where they remain physically intuitive. However, CMT is applicable to weak 

perturbation, for example, to slightly irregular or lossy fibres, or in our case, to a 

two— waveguide structure with a weak coupling between them. By weak perturbation, 

in a coupling situation fo r example, we mean that the modal fields of the guiding 

structure are nearly the modes of each guide.

3.1.1 Perturbation assumption of CMT

CMT is accomplished by expanding the fields of a complicated system, in terms 

of a complete set o f known and local modes for simpler subsystems. In the case of 

a directional coupler, the subsystems are formed by the two guides in isolation. 

However, in this theoretical approach, we w ill consider the coupling between two 

similar monomode guides. Thereafter, we w ill briefly extend our study to the case of 

guides supporting several modes.

Therefore, let us first consider two dielectric waveguides placed alongside each

other. The introduction o f the second guide distorts the field distribution of the first 

one. In order to solve the theoretical problem, CMT uses a perturbation formalism 

to approximate the solution. This approximation M r,Y r,T y  involves the assumption of
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a weak perturbation caused by the coupling situation, so that each waveguide mode 

distribution remains unaffected by the presence of the other guide. Consequently the 

fields o f the two waveguide system: E and H , are expressed as a linear combination 

o f the unperturbed fields o f each guide. I t  follows, that the total fields: E and H  at 

the plane z= 0 (see fig. 3.1), are assumed as the sum of the fields of the two 

waveguides in isolation, so that:

E -  Ea + Eb ( 3 . 1 )

H = Ha + Hb (b)

where Ea,Ha, and Eb ,H b are respectively, the local mode fields in the two guides a 

and b.

However, the field coefficients of the local modes now depend on their position 

along the z— axis. Consequently, they can no longer be obtained directly from 

orthogonality properties (see SI sect. 31.3), as the local modes do not satisfy the 

boundary conditions o f the whole structure. Instead, they are found by solving a set 

o f first order differential equations, called coupled line equations.

3.1.2 Coupled line equations

First of all, we consider a coupler formed by two parallel single mode guides, 

i.e., with a non—absorbing, uniform dielectric structure along their length. We also 

set the two guides to have equal confinement (for example two fibres), and to 

support guided modes.

To begin our study, we consider the two guides in isolation. The fields of the 

local forward propagating modes in guides a and b, can be written as follows:

Ea = A ea ( x , y )  ex p (1 0 a z )  Eb -  B eb ( x , y )  ex p ( i | 3b z )  ( 3 . 2 )

Ha =* A ha ( x , y )  ex p ( i | 3 a z)  Hb -  B hb ( x , y )  e x p ( i 0 b z)  (b)

where the subscripts a,b refer to guides a and b, respectively, 

ea , ha , and eb , hb are the transverse field distributions,

A , B are the modal amplitudes at t=  0 (or modal field coefficients),

/3a, (3b are the propagation constants o f the two modes to be coupled.

Now, we can write the phase change of the electric field, according to the following
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(3 a ; propagation constant of guide a in isolation

P b : propagation constant of guide b in isolation

P X - : propagation constants of the coupled mode of the whole structure

FIG URE 3.1

Geometry of a directional coupler formed by two guides of equal 
confinement. The arrows represent the direction of propagation of the 
local modes, fa  and fa ,  to be coupled between guides a and b.
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differential equations:

dEa/d z  -  i 0a Ea 

dEb/d z  -  i 0b Eb

( 3 . 3 )

(b)

Next we suppose the modes to be coupled together by some means, so that E a 

is affected by the amplitude of E b and vice— versa. Therefore, in the presence o f a 

coupling effect, we can write the general coupled line equations of the two modes

where the coupling coefficients which quantify the effect o f guide b on guide a, and 

vice— versa, are Cab and Cba, respectively.

Cab anc* Cba, may be complex since we want to include the case of lossy 

modes.

Note finally, that similar equations as in (3.3) and (3.4) can be written for the

magnetic field.

3.1.3 Coupled modes

We consider the coupling between two modes only. As demonstrated in the

following section, efficient directional coupling is possible, only if  the propagation

constants of one mode in each guide are identical, i.e. |3a=  |3b=  0, and these modes

(also called local modes) are said to be degenerate. Note that the coupling 

coefficients are allowed to be different, since the two modes can be different though 

degenerate.

Now let us assume that, the two guides constuting the coupler would support 

forward propagating modes only, if  uncoupled. Thus, if  the waveguides are lossless, 

conservation of power in a co— directional coupler imposes the following relation 

between their two coupling coefficients such that:

The asterisk indicates complex conjugation.

Since we consider the coupling of two degenerate local modes with 0, Cab, and Cba

M r , as m:

dEa/d z  “  1 0^  Ea + Cab Eb 

dEb/d z  ”  1 $b Eb + Cba Ea

( 3 . 4 )

(b)

( 3 . 5 )
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constant, the solution of the coupled line equation for synchronous guides has the 

following form:

+iT+z +iT“z +iT+z + iT “z
Ea (z )  -  1 /2 A e + e +(Cab/C ba) 1/ 2 B e -  e

(3 .6 )

+ iT+z +iT“z +1T+Z +iT”z
Eb (z )  -  1 /2 B e + e + (Cba/C ab) V 2  A e -  e

(b)

w i t h  &0  -  i (Cab Cba) l / 2 ,  (3.7)

T*- -  /3 + A/3, and T"  -  0 -  A/3. ( 3 . 8 )

Consequently, the modal amplitude in each guide appears as the superpositon of two 

new modes, called coupled or normal modes, with new propagation constants, T+-

and T —, as described in fig. 3.1. The degeneracy of the two modes of the isolated

waveguides is removed by coupling. The amount o f mode splitting of the two 

coupled modes depends on the coupling strength, i.e., on the coupling coefficients: 

Cab» Cba.

Next, from a linear combination of Ea and E b o f two identical fibres, the

normal mode amplitudes, which satisfy the boundary conditions of the whole

structure, can be defined as in:

+ iT +z
A+ = Ea (z )  + Eb (z )  = (A + B) e ( 3 . 9 )

+ i T “ z
A '  = Ea ( z )  -  Eb ( z )  -  (A + B) e (b)

where A +  and A -  define the amplitudes o f the symmetrical and anti— symmetrical 

coupled modes, also known as normal modes. Due to their differing propagation 

constant (A/3), the two coupled modes beat with each other in a distance, 1,

satisfying the relation: 1= x/A/3. This gives the appearance of an interchange of 

power from  the local mode of one fibre to the local mode o f the other fibre.

3.1.4 Power transfer between two single mode guides

From the solution of the coupled line equations (3.6), let us study the
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cross— talk o f power in a co— directional coupler w ith two single mode guides of 

equal confinement. To start, we consider that the modes are lossless (i.e ., 

Cab~ ^ba* an<* and that all the power is in itia lly  in the first guide. Therefore, 

the power in each guide can be written as a function o f the distance z, as in:

Pa ( z )  -  A2 cos2(A(3) ( 3 . 1 0 )

Pb ( z )  -  B2 s i n 2 (A(3) (b )

From the above equations, it  follows that the two waveguides exchange power after 

a distance, D , given by:

D = t /2  A/3 (3 . 1 1 )

The previous equation also demonstrates, that the cross— talk between the two 

degenerate modes, is determined by the change in their propagation constants and 

not by their coupling coefficient. It follows that, with the perturbation assumption 

(3.1), it  is sufficient to calculate A/3 to define the mode fields of the coupler formed 

by two similar single mode guides interacting weakly (see sect. 3.1.6).

Then, let the ideal guides have different propagation constants, i.e., |3a*|3b. It 

can therefore be demonstrated Ls.Sn that the distribution of power in itia lly in guide 

a, satisfies the following relations:

Pa ( z )  -  1 -  Pb ( z )  ( 3 . 1 2 )

Pb ( z )  -  F s i n 2 [ ( ( 0a-  <3b) / 2 ) l / 2 + |Ca b | 2 z J V 2 (3 .1 3 )

where

F = -----------------------------------------------  (b)
1 + ( (Pa-  Pb>/  2 ICab l 2 )

is the maximum of power transfer (see fig. 3.3).

In conclusion, i f  the propagation constants are mismatched, little  power is 

transferred between the modes, unless /3a— /3b^|Cab 1̂ *

Therefore, a strong coupling (i.e ., with a large |Cabl ^ ) ,  allows a relatively large 

propagation constant mismatch: (/3a~  /3b), for a given efficiency. However, in CMT 

we assume a weak coupling, so that significant power transfer occurs only between 

modes o f nearly identical propagation constants, i.e. for /3a^/3b-
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FIG URE 3.3

Power division between two coupled guides when propagation constants of 
the uncoupled guides (or local modes) are different. There is only partial 
power transfer, but it is periodic.
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3.1.5 Other assumptions for CMT in use for single—mode couplers

The first simplification o f CMT comes from  the study o f the coupling between 

forward nearly degenerate modes (i.e ., A/3^/3a,|9b)» o f two similar guides. Thus, to

couple efficiently w ith a weak perturbation condition, i.e ., |Ca^ | being small, the 

power transfer from  a forward mode of the first guide a, with a backward mode of

the second guide b, is very small (see (3.13)) and can be neglected.

Note that:

0 -b = -0 b  (3 .1 4 )

Secondly, we can consider the coupling of a guided mode of one guide to a 

radiation mode of the second guide. As we have previously considered that the two 

guides are sim ilar, they therefore have a similar range of bound modes, so that a 

propagation constant o f a radiation mode, /3ra, /3rb , satisfies the following relation:

nc lmax^ ( » ^b^ (3 .1 5 )

(3a2, 0b2k 2 < k 2 nc lm in 2

with n ^ jn ^ ,  ncjm jn being the maximal and minimal values of the refractive index 

of the cladding o f both guides a and b.

This means, that except for discrete modes close to cutoff (see sect. 2.1.2), the 

propagation constant o f a guided mode is much larger than that o f a radiation 

mode, and can therefore be neglected. Nevertheless, starting with CMT applied to a 

coupler with one lossy guide, Arnaud ^ 12 demonstrated coupling to a mode sink, 

which supports radiation modes only (see sect. 2.3).

3.1.6 Perturbation theory fo r CMT

From the perturbation assumptions in (3.1) and the solution of the coupled line 

equations in sect. 3.3, we have seen that the coupling theory is based on finding the 

difference in propagation constant: A/3, between the two local modes and the coupled 

modes. Remember, that the local modes are those which propagate into the two 

guides in isolation and are supposed to be degenerate, whereas the coupled modes 

are valid for the whole coupling structure and were defined by (3.8). To calculate 

A/3, several perturbation formulae, all equivalent in accuracy, have been derived, for

36



example by Marcuse ^ r , Vanclooster ^ c, Yariv ^ r , Taylor ^*y, and Snyder (^1 sect. 

26). However, we report the one proposed by Arnaud ^ r ,  which involves an integral 

along a contour located between the two waveguides (see fig. 2 .1).

A t first, Arnaud defined Ea, Ha, E^, Hj,, as being the modal fields of the 

local modes of the two waveguides in isolation, with the propagation constants: 0a, 

%

Then, he let E 4" , H"1" = (— Ez , Et , Hz ,— H t)exp(— iTz) be the adjoint field of a

normal mode (E ,H ) o f the two coupled waveguides.

Thus, his perturbation formula, based on Lorentz’s reciprocity theorem, was 

expressed as in:

Ea b X H+ -  E+ X Ha b ds =  0 ( 3 . 1 6 )

, b

where:

Sa,b was the surface formed by Sa b , Sa ^-+-Ca ^  dz shown in fig. 3.1, and ds was

a vector normal to the integration surface pointing outward, with a magnitude of

unity.

Then, he let the spacing, dz, between Sa and Sa tend towards zero, so that the 

above equation was reformulated so that:

( i 0 a -  i T ) (E axH+ -  E+ xHa ) dS. (E a xH+ -  E+xHa ) dCa ( 3 . 1 7 )

^a

Then, by interchanging subscript a with b, a similar expression was written for the 

second guide, b.

From the perturbation assumption (2.1), he replaced the expression for the total 

field (E, H ), by its approximation as a function o f the local Fields (E a,H a, and 

Thereafter, he chose the two contours, Ca and C^, as being coincident with 

the y -  axis, and closed at in fin ity where the field vanishes. Finally, after neglecting 

some second order terms in the development o f (3.17), his perturbation formula ^  

was obtained, as in:

(T  -  0a ) ( T  -  0b > "  c2 / papb <3 - 18>
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where C was the coupling coefficient dependent on the overlap between the fields in 

the two guides, such that:

+ 00

1/2 (EayHbz + EazHby ” EfoyHaz + Ebz^ay) dy (b )

+00

where Ea , b ( Ea , b  x  Ha,b> z dx dy ( c )

with z denoting the unit vector along the z— axis.

I f  we assume now, that the local modes are degenerate, i.e., that /3a= 0b= 0, 

the perturbation formula can be rewritten as in:

(T  -  0) -  ±( C2 /  (PaPb ) )  ( 3 . 1 9 )

This equation leads to the two propagation constants for the two coupled modes 

defined in sect. 3.3, and expressed as:

T 1 -  0 ± A0 (3 .2 0 )

with the variation of propagation constant, or 'mode splitting': A(3, given explicitly

as:

A0 -  (C 2/Pa Pb ) (b )

Consequently, if  the guide separation is increased, the coupling strength is 

reduced, since the field intensity of each guide in the vicinity o f the other would 

fa ll (i .e., also the coupling strength: C). Therefore, T* would converge towards the 

original value of the local modes of the two guides in isolation.

3.1.7 Extension of CMT to multimode guides

A  strict analysis o f the coupling between two multimode guides should include, 

fo r each mode of one guide, the effect o f each mode on the second guide.

As demonstrated in sect. 3.4, the effect o f the coupling between one mode, i, o f 

the first guide, a, with one mode, j ,  in the second guide, b, is negligible, unless 

|3p/3j. This condition comes from the weak coupling assumption, which implies that 

Cij<^0i,/3j. It does not imply that only like modes couple, unless the two guides are
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identical. The coupling w ill occur between two degenerate modes, i and j ,  one in 

each guide. Coupling of the modes i , j  to a third one is negligible, unless the third 

mode is nearly degenerate with the two others, i.e ., Thus, in general, if

m /Sj's o f the first guide have a corresponding nearly degenerate /Sj in the other

weakly coupled and synchronous guides, is simply given by the spatial overlap of the 

interacting modes in the two guides, so that:

+ 00

The variables of the previous equation are defined such that: 

n(jc,y) is the refractive index profile o f the guiding region, 

n2 is the refractive index of the cladding or substrate,

P is the total power carried by the waveguides at t = 0 ,  

co is the angular frequency, and

Ea, Eb are the transverse electric field distributions for the interacting modes 

expanded as in:

respectively.

Consequently, i f  the two guides are not identical, their transverse fields w ill 

have a reduced overlap compared to the modes of identical guides, since positive 

and negative field contributions will cancel each other out as described in fig. 3.4. 

This implies, that the coupling coefficient is reduced and the coupling length 

increased.

guide, m couple line equations as in (3.4) must be solved. Snyder Sn an£j  Digonnet 

^ 8, fo r example, have shown that the total coupling coefficient, C, o f the two

C -  -w e0/4 P  ( n ( x , y ) 2-  n22 ) Ea*  Eb ^  dy ( 3 .2 1 )

—00

m
( 3 .2 2 )

m
(b)

with aj,bj being the modal amplitude at t=  0 ,

and eaj, ebj being the modal transverse electric field distributions of guides a and b,
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Pa ,Pb '• propagation constants of guides a and b, respectively 

na , nb : refractive indices of the guiding regions of guides a and b, respectively 

nc| : refractive index of the cladding region 

— ► : direction of propagation of the focal modes

FIG URE 3.4

Field overlap of two different and degenerate modes of two multimode 
guides. The field overlap is reduced for local or uncoupled modes having 
different mode field distributions, by partial cancellation of positive and 
negative contributions.
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3.1.8 Discussion

I t  follows from  CM T, that the mode splitting A/3 can be calculated directly 

from  the modal fields of the two guides in isolation, i.e ., derived by using the same 

coordinate system fo r both guides i^ r . Thus, the propagation constant o f the coupled 

modes and the transfer o f power between the two guides constituting the coupler, 

can be calculated. However, the results of CM T, even though intended for arbitrary 

waveguides, are accurate only in special cases of nearly identical guides with a weak 

coupling situation. Hardy and Streifer H r have extended the accuracy of CMT by 

starting from the following perturbation assumption:

E =* Ea + Eb + Ere s i  dua l ( 3 .2 3 )

H = Ha + Hfc + ^ r e s i d u a l  (k )

instead of the one defined in (3.1). This improves the accuracy of CMT by a few 

percent, and extends its applicability to stronger coupling, but in very strong 

coupling situations this approximation is still inaccurate.

Finally, note that CMT was used by Arnaud to demonstrate the coupling 

o f a planar waveguide to a semi— infinite dielectric substrate acting as a mode sink, 

such as a prism, for example. A t first he considered a substrate with a finite 

thickness and a complex propagation constant, the imaginary part being responsible 

fo r the radiation losses. Thus, the propagation constants o f the coupled modes, T"1" 

and T - , are still given by (3.18) for two guides o f equal confinement. Now, by 

increasing the thickness of the substrate, the number of lossy guided modes 

increases, until a mode continuum (which characterizes a mode sink) is obtained. 

Therefore, by adding losses associated with each substrate mode, an expression for 

the total loss is obtained along with the coupling coefficient. However, as the 

method is valid fo r feeble coupling only, and as CMT fo r two similar guides has 

already provided an understanding of the weak coupling process, the fu ll development 

is not given here. We w ill prefer a plane wave approach to prism coupling, which 

gives a simple and intuitive understanding o f the parameters used in prism coupling 

application.
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3.2 PLANE W AVE ANALYSIS OF PRISM COUPLING

As prism to fibre coupling is a development o f the prism to thin film  coupler, 

let us first describe the latter. The prism to thin film  coupler was first described by 

U lrich  and Tien and subsequently by numerous workers Md,U12 majn 

application is the input coupler. A  light beam coupled via the prism into the guide 

modes o f the planar guide, is a basic problem for a group o f optical signal 

processing devices Mi,Sb (e.g., modulators). The high power density obtainable in 

such films, and the inherent possibilities o f phase matching conditions, make the 

prism to planar guide a suitable device for electro— optics and non— linear 

experiments.

A  second important application of the prism to th in film  coupler, is the 

determination of the characteristic propagation constant o f the modes in a given 

film , by measuring the 'mode angles', which are also used to calculate the refractive 

index and the thickness of the film  U13.

3.2.1 Input coupler

First, we analyse the propagation constant in the half— space formed by the 

prism and the a ir-g a p . There is total reflection (see fig .3.5), provided that the 

incident angle at the base of the prism satisfies Snell's law:

ep > ecp“  s i n _1 ( l / n p ) (3 .2 4 )

where 0p and 0cp are the incident and critical angles, respectively, at the base of 

the prism, and where np is the refractive index of the prism.

The superposition of the incident and reflective plane waves at the base of the 

prism /air interface, yields a standing wave along the vertical x— axis in the denser 

medium. Below the interface, the standing wave continues into an exponentially 

decreasing function, which is said to be evanescent, since it  decreases rapidly in the 

a ir medium, and does not represent a free radiation.

The incoming wave in the prism has a wave vector o f magnitude: knp> which can 

be decomposed into a vertical component, and a horizontal one of magnitude: 

knps in0p , which is equal to the propagation contant, 0p , o f a free wave in the
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definition of the propagation 
constant inside the film

f : propagation constants of a wave in 
the prism and in the film, 
respectively

0 : incidence angle of the base of the 
prism

FIGURE 3.5

Coupled—mode description of prism coupler:

a. Field o f a plane wave incident from a denser medium, undergoing 
total reflection at the interface to a rarer medium, i.e, 
6> 0C=  sin-  l( n a/nb).

b. Field o f a surface wave propagating along a thin film , with np>na,nc .

c. The two preceding configurations can be brought together by letting ha 
become very small, thus obtaining the prism— air— gap— th in -  film  structure 
shown here. The incident field now couples to the surface wave via the 
evanescent field in the air gap.
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prism. The entire field can be regarded as a radiation mode in the half— space 

geometry, which propagates in the z—direction as a function o f the form : exp(i/3z).

Secondly, consider the second waveguide which is formed by a film  on a

substrate. W ith a similar ray approach, its corresponding propagation constant, |3f, of

the plane wave becomes:

(3f = k n f  s in f l f  ( 3 . 2 5 )

Note that, /Sf corresponds to one discrete mode. Therefore, the critical angle at the 

interface film/substrate is:

0c f  -  s l n - 1 ( ns/ n f )  ( 3 . 2 6 )

with ns and n f being the refractive indices of the substrate and the film ,

respectively. I t  follows that the range o f all possible guided modes is expressed by 

the following inequation:

kns < |3f < k n f  ( 3 . 2 7 )

Observe from fig. 3.5, that each guided mode has its own evanescent fields

extending into the substrate and the air gap.

Finally, the whole structure formed by the prism on top of the film  is 

considered. Provided the air gap between the prism and the film  is sufficiently small 

(one eight to one fourth o f the vacuum optical wavelength), the reflection at the 

base of the prism is no longer total, but frustrated by the presence of the guiding 

layer of the planar guide. I f  the radiation mode of the prism has the same 

propagation constant as one mode of the planar guide (i.e.,/3p= /3f= 0), some energy 

o f the beam in the prism w ill tunnel through the air gap into the film . The optical 

tunnelling, which constitutes a leakage of energy, w ill be explained in sect. 3.2.6.

3.2.2 Phase matching conditions and design of the prism

The degeneracy of the propagation constants of the modes to be coupled is 

necessary to obtain an efficient evanescent coupling, as proved in sect. 3.3.2. This 

condition is equivalent to a phase matching condition, and is effectuated by changing 

the angle of the incoming light at the entrance of the prism, 6'v and thus also the 

angle, 0p , at the base of the prism, as described in fig. 3.6. Provided a refractive
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3 b : base angle of the prism 

3 p : input angle of the light at the base of the prism 

3 i : input angle of the light at the entrance of the prism 
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neff : effective index of the excited mode 

np , nf ,ns : refractive indices of the prism, the film, and the substrate

FIGURE 3.6

Geometry of the symmetrical prism on film  waveguide, which defines the 
variables of the input coupler from a prism to a selected guided mode of 
effective index: n ^ f ,  propagating inside the film .
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index of a guided mode o f the prism superior to the effective index of a guided 

mode of the film , it is possible to couple to any guided mode by selecting the 

suitable synchronous input angle: o f the light wave at the entrance of the prism.

A ll the range of input angles comprised between the m inimal value: fl^max an(* 

maximal value: both chosen at grazing incidence, is defined by the following

relation:

- t / 2 < >ini n  ̂  ̂ ^ i ,m a x   ̂ T/ 2  (3 .2 8 )

I t  follows that, all the guided modes can be excited only i f  the base angle of the 

prism satisfies the inequation:

ne f f
= arc s in  ------- + arc s in

n,

1
—  sin*L
" p

( 3 .2 9 )

*P

calculated by Snell's law.

The design considerations of the prism are well described by Seligson Sg and Ulrich 

U13

3.2.3 Coupling length

We have previously defined the necessary conditions for the transfer of light 

from the prism to the film . However, the energy transferred in the planar guide in 

the region 0 < z < L p ,  defined by fig. 3.7b, escapes back to the prism in the region 

z>  Lp. This leakage of energy from the film  is due to the frustrated reflection at 

the film /a ir gap interface, caused by the presence o f the prism. In a first 

approximation, Tam ir Tm described that the maximal coupling o f a uniform beam 

occurs after a coupling length, L p t defined as:

Lp -  2a /  cosflp  ( 3 .3 0 )

where 2a is the incident beam width and 6p is the incidence angle at the base of 

the prism. It follows that, if  the prism coupling is stopped after a coupling length,

the coupled energy is trapped in the film  and propagates. This is done by using a

right angle prism as described in fig. 3.7b.

In more accurate analysis, Tien Tn for example, considered a uniform beam at

the base of a right angle prism between x = 0  and x= L  satisfying the phase
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(b)

* * z

E

* - z

Lp : coupling length 

2a : diameter of input beam 

0 p : incident angle at the base of the prism

FIGURE 3.7

Use of symmetrical and right angle prisms in an input coupling situation:

a. The light energy transferred from the symmetrical prism in the region 
0< z< Lp is returned to the prism in the region z> Lp. The net energy is 
therefore 0.

b. By using a right angle prism, coupling between the prism and the film  
stops in the region z> L p . The light wave coupled into the film  in the 
region 0< z< Lp is therefore retained in the film  and continues to 
propagate.
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matching condition, and showed that the coupling efficiency, tj, was:

17- 2/  SL(1 -  e x p ( - S L ) ) 2 ( 3 .3 1 )

where L  was the interaction length.

By maximizing the above expression with respect to SL, he found the maximum 

coupling length:

SL -  1 .25  (b)

where the coupling strength, S, was defined by equation 15 in reference Tn

In the coupling situation represented in fig. 3.7, complete transfer o f energy 

from  the beam surface wave cannot occur even if  all the media are lossless. This is 

due to the fact that the amplitude variation within the beam cross— section has been 

neglected. Tien also showed that a maximum energy of about 80% can be coupled 

in the case of an incident beam having a uniform or Gaussian profile, with a 

constant air— gap between the prism and the film . Nevertheless, a perfect input 

coupler (100% efficient) could be realised, if  the input light would be properly 

distributed along the coupling gap, since the uncoupled light is immediately lost upon 

being reflected at the base of the prism. This implies that, the field distribution of 

the output coupler has to match the field distribution of an equivalent output coupler 

with the same coupling conditions, where the amplitude leakage o f the light in the 

right angle of the prism could be described by:

bp ( x )  -  bp (0 )  e x p ( - S x ) , x>0 ( 3 . 3 2 )

bp (x )  = 0 , x<0 (b)

A  better field distribution can be achieved, for example, by varying the a ir -  gap 

between the planar waveguide and the prism ( ^ m sect. 3.1.5).

3.2.4 m— lines

Nevertheless, the symmetrical prism is used for the determination o f mode 

angles. As seen in the previous section, the energy fed into the film  is returned 

after one coupling length. However, as the film  in practice is not perfect and 

scatters light, a more complex phenomenon occurs. Since the incident angle of the 

beam is chosen to match the propagation constant o f one mode, the energy is
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coupled to that selected mode. Then, some of the energy in the film  is rapidly 

scattered into other waveguide modes. I t  follows, that the light wave coupled back to 

the prism consists o f many waveguide modes. The reflection o f each mode onto a 

screen appears as an m— line, as described in fig. 3.8. The angle o f reflection 

allows us to calculate the corresponding propagation constant. The reflected main 

beam is on the m— line which corresponds to the excited mode.

Therefore, by measuring the deviation angle of the different m— lines, it is 

possible to calculate the propagation constant o f the modes by means of the ray 

approach.

3.2.5 Output coupler

By reciprocity relations, the behaviour o f a plane wave propagating in the film  

and then coupled out into the prism, can be deduced. However, as the prism 

supports only radiation modes, the light is not coupled back to the prism. Note, that 

the energy of each mode is coupled out into the m— lines.

3.2.6 Leaky wave theory of beam coupler

a. Inhomogeneous plane wave

We first recall that the solution of the Helmholtz equation in the guiding region 

o f a step index slab waveguide, can be expressed in terms of plane waves, as in:

where (kx^ +  kz^ ) l /2 =  k is the wave number in free space, and 

\f/ stands for the scalar field.

Note that, we assume a two dimensional situation (B/By) and a time dependence of 

the form  exp(—icjt), as in sect. 2.1.2 , with the solution of the fields expressed in 

rectangular coordinates.

I f  the wave vector components: kx and kz, satisfying the following relations:

e x p { i ( k x x  + k z z ) } (3 .3 3 )

k x = k  cosy? (3 .33 b )

k z = k  siny? (3 .3 3 c )
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m-lines

Polariser

Prism

■Film

Substrate

Screen

Adjustable 
pressure

FIGURE 3.8

Experimental arrangement for observation of the mode spectrum of a 
th in— film  waveguide.
Each m -  line is set for one mode, the main beam being on the m -  line 
of the corresponding excited mode.
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are real, then ^  in (3.33) is an homogeneous plane wave, which propagates at an 

angle <p, with respect to the x— axis.

Now, let us consider kx and kz as complex numbers defined by:

k x n -  b -  ia  ( 3 .3 4 )

k z n = (3 -  i a  (b)

so that the modulus o f the wave vector: k, still satisfies the relation: | k | = k .

Due to the complex value o f the wave vector along the x— axis o f both media of

refractive indices: n j and n2 , the reflection o f a TE and a TM  wave are no longer 

total (see fig 3.9b), so that in  general, the magnitude of the reflection coefficient 

cannot be unity. Therefore, some energy is refracted into the less dense medium, 

even i f  the incident angle, 8\, is larger than the critical angle, 6C However, for

6 \>  6C and for /3>o>0, the refracted energy is small and the magnitude of the

reflection coefficient is close to unity. This implies that, some energy leaks into the 

outer region, as for example at the interface between the guiding layer and the 

superstrate in fig. 3.9.b. This leakage rate is expressed by rewriting the plane wave 

equation as in (3.33), but this time with the complex propagation coefficient, such 

that:

\p = \pQ e x p (a x  + az)  e x p i ( b x  + /3z) ( 3 .3 5 )

where the imaginary part o f the propagation coefficient is responsible for the 

radiation loss, which is consistent with a field decay of the form exp(— az) along the 

longitudinal axis.

Consequently, (3.34) is still a plane wave because the equi— phase and

equi— amplitude o f the fields are plane. This wave is known as an inhomogeneous 

plane wave because the variation of the field intensity along any equi— phase line is 

plane.

b. Leaky wave in  beam coupler

First of all, we consider a planar guide formed by a film  on a substrate, in

which a surface wave of propagation constant 0SW is guided. Next, we introduce a

prism on top of the film , leaving an a ir -g a p  between the two.
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equi-phase
line

equi-amplitude
line

(b) x

superstate

guiding layer

FIG URE 3.9

Fields of inhomogeneous plane wave:

a. Propagation o f an inhomogeneous plane wave in free space.

b. Reflection and refraction (leakage) o f an inhomogeneous plane wave at 
the interface between two dielectric media. The density o f the amplitude 
(flux) lines suggests the magnitude of the field intensity, which decays in 
a direction parallel to the equi— phase lines.
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Therefore, the reflection of the wave at the film /a ir— gap interface is frustrated by 

the presence of the higher refractive index prism. It follows, that the wave in the 

film  below the prism is a leaky wave, having a propagation constant: 0— ia. I f  /3

is now very close to /3SW, and i f  the leakage is weak, i.e., a^/3, a surface wave 

varying as exp(— i|3swz) and incident from  the left as in fig. 3.10a, w ill be smoothly 

transmitted as a leaky wave varying as exp(—ik zz), past the 2= 0  plane. Due to the 

leakage of energy in the region where 2> 0 , power is radiated away from  the thin 

film  as in fig. 3.10b, in the form o f a beam that progresses in the film  at an 

angle, given by the relation:

d1 = t a n - ^ / S / b )  ( 3 . 3 6 )

Then the angle of radiation of the fields in the prism, 02, is deduced from  the 

refraction law, so that:

02 = s i n _1 ( ( n i / n 2) s in t f ^ )  ( 3 . 3 7 )

Finally, note that an eigenvalue equation or transverse resonance equation can still 

be used to identify a leaky mode. The phase shifts are then complex rather than 

real, but the picture of the wave inside the guide is still a zig— zag wave, as shown 

in fig. 3.10.

3.3 PRISM COUPLING TO  A FIBRE

The prism to fibre coupler is a development o f the prism to th in film  coupler 

previously described. The ray approach is however valid only for multimode fibres. 

Starting from Maxwell's equations in the core region, it can be shown that fo r large 

values of core radius, the waves in the guide can be described in plane wave terms, 

w ith three orthogonal wave vector components: kz, k^, and kr . These are illustrated 

in fig. 3.11. Also shown in the same figure, are the angles as and ae, which 

respectively indicate the angle o f skew and the angle of elevation of the local plane 

wave in the fibre. These relations are simply expressed as in:

a s = ta n “ l(k^>/|3) 

a e = t a n “ l ( k r / / 3 ) (b )

( 3 .3 8 )
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(a)

prism

flux line

film

substrate

x
(b)

flux line

0 1 : incidence angle inside the film 

9 2 '■ radiation angle due to leakage of energy inside the film

FIG URE 3.10

Leaky wave description of prism coupler:

a. basic film —on—substrate configuration;

b. leakage due to prism coupling. The density and thickness of flux lines 
suggests intensity variation.
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where k(y?,r,z) is the wave vector in a homogeneous medium o f refractive index nc, 

so that:

Ik |  -  k 2 nc 2 -  k r 2 + k^ 2 + 02 (3 . 3 9 )

3.3.1. M odification o f the cladding

Optical fibres have thick cladding layers, specially chosen so that the evanescent 

fie ld at the outer cladding surface is negligibly small for all well guided modes.

Therefore, to reach the evanescent field o f the fibre, and thus allow optical

tunnelling of some energy from the fibre to the prism, or vice versa, the cladding 

thickness has to be reduced.

I f  enough cladding is removed so that the core is nearly reached, it is possible to 

create a leaky mode situation for all guided modes of the fibres.

There are several ways of doing this:

1. One method was illustrated by M idwinter Md, wh0 tapered down a fibre 

on its fu ll circumference. The result is that the light o f an output coupler 

radiates all around the modified cladding in the shape of a cone.

Consequently, only low efficiency coupling is possible, as the field 

distribution of the equivalent output coupler is impossible to reproduce.

This tapered fibre cannot be used to couple to other guides, and is thus 

o f little  interest.

2. Secondly, the cladding can be modified locally at one side of the fibre

contour. This is effectuated by polishing, as fo r the directional coupler 

(see sect. 1.2.1), or by etching a D—fibre locally. By the etching

process, some cladding is removed all around the core, including the fla t

surface, which remains flat. Thus, we obtain a smaller core— flat distance, 

which enables evanescent field coupling.

3. Finally, a D— fibre with a very small core/flat distance can be used (see

sect. 1 .2.2), although with this method the fibre becomes very sensitive to 

bending. Nevertheless, a small sample of D - f ib re  can be spliced to a 

normal fibre to reduce radiation losses outside the coupling region.
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z

a e = tan' 1 ( k r/p) : elevation angle 

<xs = tan"1( k<y p) : skew angle 

p : propagation constant of a guided mode

FIG URE 3.11

Definition of the vector wave components in a cylindrical coordinate 
system with: k =  <p +  kr r  +  z, where |3= kzn is the propagation
constant o f a guided mode inside the fibre, n being the refractive index 
o f the fibre core.
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3.3.2 Phase matching conditions

From the study o f the prism to thin film  coupler, it  is evident that efficient 

coupling is achieved when the best possible phase matching occurs between an 

incoming quasi— plane wave from a laser beam, and the local plane wave of the 

fibre at the point o f conjunction. Note that, the condition o f a sufficient overlap

between the evanescent wave at the base of the prism, and the evanescent radial

wave of the fibre, is implicit.

Thus, for the optimum excitation of a particular mode, the synchronous and tilt  

angles: 0m and ^e, at the entrance of the prism, must be selected to phase match 

the characteristic skew and elevation angles: ct$ and ae, o f the ray inside the fibre 

corresponding to the chosen mode.

From simple geometrical considerations as seen in fig. 3.12, we obtain:

dm = s i n “ l [ n p s i n ( s i n _1 ( s i n a e nc o re / n p ) -  ap ) ] ( 3 .4 0 )

<pe = s i n -1 ( n p s i n a s ) -  s i n _1 (n pkp ) (b )

where the subscript m denotes the angle at the entrance of the prism, 

np and ap are the prism refractive index and angle, respectively, 

and is the angular component of the vector wave, expressed in a cylindrical

coordinate system as defined previously in fig. 3.11.

Observe that, as in the prism to thin film  coupler, each mode of the fibre has

its corresponding m— line, which allows the characterization of its different

propagation constants. Finally, note that as the fundamental mode (H E jj or LPq i)

and the higher order H E jm modes of a fibre satisfy the scalar wave equation, they 

have no azimuthal variation, i.e., 05= 0. Therefore, they are formed by meridional 

rays only.

3.3.3 Launching efficiency of a prism to fibre coupler

As a first approximation, the coupling region can be divided into the xy and

xz— planes, and the efficiency in each plane is discussed separately.

In the xz -p la n e , we can apply the results for the efficiency of a plane wave 

such as in the prism /film  coupler (see sect. 3.2.3), which can be noted as rjxz, and
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0 m : synchronous angle 

ab : base angle of the prism 

2a : diameter of the fibre core 

ote : elevation angle 

a s : skew angle

D : diameter of the incoming beam

FIGURE 3.12

Geometry o f prism/circular fibre coupler.

a. The synchronous angle, 0m , at the entrance of the prism, allows the 
phase matching of the elevation angle, o^, inside the fibre core.

b, c. The appropriate skew angle, o^, defined in fig. b and c is obtained 
by variation of a t i lt  angle, =  sin- 1(np sino^), o f the prism.
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is equal to the value in equation (3.31).

However, in  the xy— plane the situation is more complex. Not only does the 

strength o f the coupling vary in the y—direction, but due to the geometry of the 

cross— section, the radial wave vector component, kr , becomes mismatched with the 

incoming evanescent wave vector in the air— gap medium along the y— axis. 

Therefore, coupling occurs only over a small region, which is defined by M illar M 

as:

where D is the width o f the incoming beam.

Note, that 5y has been estimated as an order lower than the fibre diameter.

Finally, we deduce the total efficiency as the product o f the two efficiencies, 

the first one in the xz—plane and the other in the xy—plane, so that:

y (0 )  ± 5y secas/2  

so that the efficiency, rjXy, in the xy—plane w ill be: 

Vxy “  ^xy secas/D

(3 .4 1 )

( 3 .4 2 )

’I t o t a l  ”  Vxy Vxz, ( 3 .4 3 )
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CHAPTER FOUR DEFINITION OF THE PROBLEM AND 

USE OF THE GREEN FUNCTION METHOD

4.1 DEFINITION OF THE PROBLEM AND ASSUMPTIONS

The aim o f this project is to try to formulate and solve the perturbation theory 

fo r a fibre core in a half—space cladding, by means of the Green functions (GF). 

We then want to calculate the propagation constants o f the perturbed fibre, knowing 

the refractive indices of the step index fibre. Note, that the core/flat distance as 

defined in fig. 4.1 can take any value between zero and the distance corresponding 

to a circular fibre. Thus, we include all the range of D— fibres which can be drawn 

from  a preform (see sect. 1.2.2), or any half—directional coupler formed by a 

polished fibre (see sect. 1.1.2).

Now let us define the assumptions of our problem.

a. A t first, we consider that the whole structure formed by the core, the

modified cladding, and the surrounding medium, is translationally invariant 

in the z—direction, i.e., in the direction of propagation. The problem is

therefore reduced from a three dimensional to a two dimensional one.

b. , Secondly, the fibre used in our study is weakly guiding, i.e ., the profile

height is small (see sect. 2.2.3). The previous assumption allows us to 

substitute the vector wave equation by the scalar wave equation. Hence, 

we ignore the polarization dependence of the mode fields in the fibre.

c. Finally, we assume that the modes are far from their cutoff frequency 

(see sect. 2.2.4). This implies a strong guidance of the modes inside the 

core, and a small evanescent field outside the core. Consequently, as the 

modes are well confined inside the core, the boundary at the 

cladding/surrounding medium is supposed to be at in fin ity , on all but one 

side. This means that the core is considered to be in a half-space 

cladding.
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s u r ro u n d in g  m e d iu m

n 3

c la d d in g

d : variable core/flat distance

n1 : refractive index of the core

n2 : refractive index of the cladding

n3 : refractive index of the surrounding medium

FIGURE 4.1

Fibre core with variable core/flat distance, d, in a half— space cladding.
I f  n i > n 2> n 3, we have the situation of a D —fibre surrounded by a low 
refractive index medium, for example the air in the case o f a D— fibre 
in isolation.
If  n3> n j > n 2, we have a prism coupling situation, provided that the 
core/flat distance is sufficiently small.
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4 2 G ENERAL TH EO R Y ON GREEN FUNCTIONS (G F 1

We want to study the guiding structure formed by a fibre core in a half— space 

cladding, as defined in the previous section, by means o f the GF. Therefore, let us 

first introduce the GF and their properties.

4.2.1 D efin ition  and properties of the GF

First o f all, let us recall that the electric and magnetic field vectors, E (r,t) and 

H (r,t) , respectively, in a homogeneous medium of refractive index n= (e/ e 0) ^ ,  

satisfy the following Maxwell or field equations:

VxE + /*0d H / d t  M ( 4 . 1 )

VxH -  edE/dt  -  J (b)

where the source excitation: J(r,t) and M (r,t) are, respectively, the vector electric 

and magnetic current densities, and where e0 and / i0 represent, respectively, the 

dielectric constant and the permeability in the vacuum.

A t any time, the field equations are supplemented by the auxiliary equations:

where p and pm are respectively, the electric and magnetic charge densities.

Then, due to the linearity of the field equations, the field can be expressed in 

terms of the excitation charge densities in the following integral representation:

where the integrals are extended over a volume, within which the currents M  and J 

are non— vanishing, and where the im plicit time dependence has been omitted.

From the above equations, we identify the dyadic components G n - e '  anc* ^21 e ' as 

being the negative o f the vector electric and magnetic field, respectively, at r  

produced by a unit electric current density at r \  in the direction e \  

Correspondingly, G ^ e '  and G22•«' are the negative components of the vector 

electric and magnetic field, respectively, at r  produced by a unit magnetic current

V eE = p ( 4 .2 )

(b)

( 4 . 3 )

(b)
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density at r ' ,  in  the direction e \  The four dyadics are called Green's functions of 

the electromagnetic fields.

We deduce from the above integral equation that i f  G n ( r , r ')  is the electric 

field at the observation point r, caused by a unit source point r \  Thus, the field at 

the observation point r, caused by a source distribution p (r'), is proportional to an 

integral of the GF over the whole range of unit source points constituting the total 

source. In other words, the Field caused by any source distribution can be calculated 

by adding the effects o f each elementary portion of source.

4.2.2 Wave equation fo r the GF

As the current application involves no magnetic charge densities, pm, we 

consider a uniform medium with none. It follows that, by substitution of (4.3a,b) 

into the field equations, we obtain the following defining equations:

V x  C21 + € d c n / d t  -  -1  6( r  -  r ' )  ( 4 . 4 )

V X CU  + n Q d C 2 i /d t  -  0 (b)  

where 5(r— r ')  is the delta function,

and 1 is the unit dyadic which is defined by: l . A  =  A . l ,  w ith A  being a vector.

Next, on elimination of the GF: G21, in the defining equation, we obtain the 

second order differential equation for the electric type o f GF: G ^ ,  for an

homogeneous medium. Hence:

n2 ^ ^ 1 1  ^
VxVx C1 1  +  -----------   -  Ho —  1. 5 ( r - r ' )  ( 4 . 5 )

c 2 a t 2 a t

Therefore, Gjj satisfies the inhomogeneous vector wave equation.

From the above equation, Felsen Fm in sect.l, showed that the electromagnetic 

fields in an unbounded region are derivable from a scalar Green’s function: g (r,r ') , 

which satisfies the following scalar wave equation:

n2 a 2
V2  --

c 2 a t 2
g ( r , r ' ) -----  5 ( r - r ' )  ( 4 . 6 )

subject to the boundary conditions g= 0  if  | r  — r ' |  -» °°
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4.2.3 Boundary conditions and surface charges

A t first, we want to show how the solution of an inhomogeneous equation, with 

homogeneous boundary conditions (BC), will help us to solve a homogeneous 

equation with inhomogeneous BC. We consider, for example, a homogeneous 

differential equation in terms of a scalar field potential: yj(j<,y), which must satisfy 

an arbitrary set o f D irichlet BC on a surface S (i.e., <p=<p$ on the surface). This is 

done by replacing the inhomogeneous BC on S by homogeneous BC: <p=- 0, together 

with a surface layer o f charge density: ps/e, just inside the surface, S, as shown in 

fig. 4.2, with ps being the surface charge density. The distance to the boundary 

surface, c, is taken to be much smaller than the radius o f curvature o f the surface, 

and also smaller than the distance over which ps varies appreciably. Therefore, for a 

distance of order e, the surface is plane, and the charge density may be considered 

uniform . Furthermore, from electrostatics, we can consider that, the normal gradient 

o f potential changes by an amount: 4 tp s/e, when going through such a charge layer. 

Because e is assumed small, the gradient between the charge layer and the boundary 

must be very much larger than that outside the charge layer, and can therefore be 

neglected. Thus, in this region between x= — e and x=  0, the potential must be:

<p = -  (4x  p s/ e ) x  , w i t h  -e < x  < 0 ( ^ . 7 )

Consequently, i f  we make the surface density: ps, which is infinitesimally close to 

the boundary, equal to y?s/4ir, the potential just outside the charge layer at x= — c, 

is <^, and the potential at x = 0  is y j= 0, i.e., the new boundary value we wish to 

satisfy. O f course, we have not proved the equivalence between a homogeneous 

equation with inhomogeneous BC, and an inhomogeneous equation with homogeneous 

BC, but we have made it  plausible.

Thus, we deduce that the above property is applicable to either the 

homogeneous or inhomogeneous scalar wave equation, with inhomogeneous or 

homogeneous BC, respectively. This implies that the same GF can be used to build 

up a solution for an arbitrary charge distribution inside the definition domain, as 

shown by fig. 4.3a, and also for an arbitrary set o f D irich let BC on the surface 

enclosing the same definition domain, as described in fig. 4.3b.
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Potential <PS

Charge Boundary 
Layer a Surface S

FIG UR E 4.2

Potential o f a source layer, <r, over a small distance, e, outside a 
grounded surface S.
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Origin
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Observation 
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r-r' Equivalent 
Source Point

FIGURE 4.3

a. Definition domain of the GF used to build up the solution of an 
inhomogeneous scalar wave equation with homogeneous boundary 
conditions (BC). The source and observation points are inside or on the 
boundary defined by the surface S.

b. Definition domain o f the GF leading to the solution of a homogeneous 
scalar wave equation with inhomogeneous BC. The value o f the field at 
that boundary is replaced by an equivalent unit source distribution, so that 
the GF is that o f an equivalent source point at that boundary.
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Therefore, we suppose at first that we know the scalar field: ^ {*5') (and/or its 

gradient), on a surface S. The value of i/(rs'), which represents the BC, can be 

thought o f as being equivalent to a unit source distribution on this surface. 

Thereafter, we want to calculate the field at the observation point: r, w ith the BC 

equal to zero, at every point on the surface, except at the point: r s\  The boundary 

value behaves as a delta function at this equivalent source point, meaning that the 

integral over a small surface around r s' is unity Hence, this field at the observation 

point: r, caused by an equivalent source point at: rs', is also a GF noted g (r,rs'), 

which w ill enable us to calculate the inhomogeneous wave equation (4.6).

Finally, as a result of the above equivalence, and the linearity of the scalar 

wave equation, we can also solve the inhomogeneous equation with inhomogeneous 

BC, by superposition of the two individual solutions.

4.2.4 Reciprocity relations

We want to show that the GF is a symmetric function of the source and 

observation point at r '  and r, respectively. We start from (4.6) with the scalar GF: 

g ( r ,r ') ,  rewritten below with the implicit time dependence, so that:

V2g ( r , r ' )  + k 2 g ( r . r ' )  -----  5 ( r - r ' )  ( 4 . 7 )

Let us now consider a source point at r j ', and then write its corresponding 

d ifferentia l equation as in:

V2g ( r , r 1 ’ ) + k2 s C r . r j ' )  -  -  { ( r - r j ' )  (b )

Next, we multiply (4.7a) by g (r,r ') , and (4.7b) by g t r . r j ' ) ,  and subtract the two 

resulting equations. Thereby, we obtain after integrating over a volume:

0 = L I T  S<r ’ r l , >v2S ( r ’ r ' ) " S<r «r ' ) v2S<r ' r l ' )  dv

+ JJJ g ( r , r \ ' ) 5( r - r ' ) -  g ( r , r ' ) 6( r - r 1 ' ) dV ( 4 . 8 )

We now recall the second Green's formula, which gives the following relation 

between a surface and a volume integral, such that:

JJ[u v v  -  V  V u ] ns dS -  Jjj[ u V2v  -  v  V2u ]  dV (4.9)

where S is a closed surface bounding the volume V, and ns denotes the normal unit
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vector, 115, directed outward from the volume enclosed by the surface S (see fig. 

4.4a). The continuity conditions on u and v are defined by Kreizig ^  in sect. 9.7, 

for example. As a result o f the above relation, (4.8) becomes:

J J g ( r , r '  ) V ( g ( r , r 1 ' ) - g ( r , r i '  ) V ( g ( r , r ' ) ns ds -  g ( r i ' , r ' ) - g ( r ' , r i ' )

Since both g(r , r ')  and g (r,r^ ') satisfy the same homogeneous BC, the surface integral 

vanishes, and therefore we have demonstrated the following reciprocity relation:

# ( r , r 1) = g ( r * , r )  ( 4 . 10)

as long as both r  and r '  are inside or on the surface of integration.

4.3 D E F IN IT IO N  OF THE A N ALYTIC AL PROBLEM: K IR C H H O FF- HUYGENS 

IN TE G R A L

4.3.1. Data

First of all, let us define the problem of a guiding structure formed by a fibre 

core in a half— space cladding. This guide can be either a D— fibre or a half— fibre 

coupler based on a conventional Fibre, and both fibres are assumed to be monomode 

w ith step index profiles. The geometry o f the guide implies a longitudinal 

translational invariance. Each region of the guide is also supposed to be 

homogeneous. Finally, the fibre is assumed to be weakly guiding, so that the 

transverse electromagnetic fields satisfy the scalar wave equation (see sect. 2.1.3) in 

each region, so that:

v f y  + K ^  = 0 (4 .1 1 )

with

V2^  =* Vt 2^  -  02iP and K2 -  k 2n2 -  02 ( b , c )

where ^  is the scalar field.

Note that, we have assumed a time harmonic and z— dependence of the form 

exp{i( (3z— oX )}. This assumption also applies to the the next equations.

Then, the fields must also satisfy the boundary conditions (BC) at the 

core/cladding and cladding/surrounding medium interfaces, as described in fig. 4.1. 

However, due to the boundary at the flat surface of the cladding, it  is impossible to
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X ' : source point

n s : outer unit normal vector to s 

S  : surface enclosing the volume V

cladding

core

cladding region

P : is the surface enclosed by the contours C and

C : is the contour at the core cladding boundary

C^, : contour closed at infinity 

n 8 : outer unit normal vector to C

n : inner unit normal vector to Coo

FIG U R E 4.4

a. Definition domain for Green's second formula with the source points 
inside or on the surface, S, enclosing the definition domain, P, and 
applied to a three dimensional problem.

b. Definition domain for Green's second formula with the source points 
on or outside the contour, C. Note, that the definition domain defined 
between the contours C and Coo, is closed at in fin ity  by the contour, C^.
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find an appropriate coordinate system which would enable the separation of the

partial differential equation (4.11) in terms o f coordinates: £n , so that each boundary 

would correspond to one (or more) coordinate equal to a constant, i.e .,

£n=  constant.

This explains the reason for the use of a numerical method, in our case the GF 

method as opposed to the eigenfunction method or modal expansion M f

4.3.2 Development leading to the K irchhoff— Huygens integral

Now we consider the GF of our study. In sect. 4.2, we have shown that a GF

expressed the field at one observation point (r), caused by one source point when

the BC are homogeneous and the equation to satisfy is inhomogeneous. The same 

GF applies i f  the GF is caused by one equivalent source point, when the BC are 

inhomogeneous and the scalar wave equation homogeneous, as in our problem. In 

both cases the GF, which must satisfy the inhomogeneous scalar wave equation 

(4.7a), written below, with a time and 2—dependence as defined in (4.11b,c), as in:

Vt 2 g ( r , r ' )  + K g ( r , r ' )  -  -  J ( r  -  r ’ ) ( 4 .1 2 )

Let us assume that we know the GF for an equivalent source point at the 

core/cladding interface, which w ill be calculated in chapter 5, and which w ill also 

satisfy the boundary conditions at the cladding/surrounding medium interface. With 

the previous considerations, we can thus show that the homogeneous scalar wave 

equation having inhomogeneous BC at the core/cladding interface, may be expressed 

in terms of g (r,r ') .

To do this, we first multiply (4.12) by t  and (4.11) by g (r ,r ') , and subtract 

the product, exchanging r for r '  at the same time, so that:

\ K r ' )  Vt 2g ( r , r ' )  -  g ( r , r ' )  Vt 2f ( r ' )  + ^ ( r ' )  5 ( r - r ' )  -  0 ( 4 .1 3 )

As the 2— invariance implies a two dimensional problem, we want to integrate 

equation (4.13) over the xy-p lane , and then by using the second Green's formula 

(see 4.9), to reduce it to a line integral. Therefore, let the definition domain. P, as 

shown in fig. 4.4b, be limited between the contour o f the core: C, which is 

included, and a contour closed at in fin ity : C
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Their corresponding normal unit vectors: and n^, are directed outwards fo r C

and inwards fo r Cm, to the centre o f the core.

Note that the definition domain is the same for both the source and observation 

point, so that C — C, 0 ^  =  C ', and n^', iig have the same direction.

Thus, the integral o f (4.13) over the definition domain, P, with the source points 

(or equivalent source points) on or outside the contour o f the core, becomes:

j j \ K r ’ ) Vt 2g ( r , r ’ ) -  g ( r , r ’ ) v f y ( r ' )  + ^ ( r ' )  5( r - r ' )  dsm'

Sec'

+ Vt 2g ( r > r *) _ g ( r , r ' )  Vt 2^ ( r ' )  ds '  ( 4 . 1 4 )

S'

where S^' and S' represent, respectively, the surfaces enclosed by the contours C ^  

and C \

Sommerfeld's radiation conditions at in fin ity  make the integral over Sm' tend to zero,

as defined for example by Jones in sect. 1.31 and 1.34.

As a consequence of the previous conditions, and the property of the delta function,

the integral around S^' is equal to ^ { r ') , which is the scalar field at the source

point (4.14) is reformulated as in:

Vt 2g ( r , r ' )  -  S ( r , r ' )  v f y ( r ' )  dS’ + v H r ’ ) -  0 (4 .1 5 )

S'

Thereafter, using Green's formula in the plane, we obtain the following line integral:

d g ( r , r ' )  a ^ ( r ' )
0 ^ ( r ' )  -----------  -  -------  g ( r , r ' ) d l ' ----- i ^ ( r )  ( 4 . 1 6 )

ans ' ans '
C'

where 1' is the integration path along the contour C \

Consequently, the above equation is the K irchhoff-Huygens integral for a two 

dimensional problem with the following variables:

1. The Green function: g (r.r ')  is the value chosen for an equivalent source 

point on the core, which takes into account the boundary conditions at 

the core/cladding interface due to the equivalence between a boundary 

condition and a unit source distribution on the contour o f that boundary 

(see sect. 4.2.3).
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2. lKr ) is the general solution o f the homogeneous scalar wave equation at 

the coordinate of the selected source point.

3. V<r) is the expression of scalar field at any observation point inside the 

definition domain.

F ina lly, note that the choice of this K irch h o ff- Huygens integral w ill be justified by 

further analytical development in chapter 5, leading to one unknown: the propagation 

constant, 0.

4.4 JU STIF IC ATIO N  OF TH E CHOICE OF TH E NUM ERICAL GF M ETH O D

4.4.1 Diverse aspects o f numerical methods

A  D— fibre with its surrounding medium, constitutes a m ulti— layer longitudinal 

uniform  waveguide. In order to characterize the guide, Maxwell’s equations are the 

basic relations. These equations are valid over each layer or region, and are subject 

to the boundary conditions, such that the tangential field components must be 

continuous at the interface between two regions.

The various numerical methods satisfying Maxwell's equations d iffer mainly according 

to three different criteria.

1. Some methods are directly applied to the Maxwell equations, their integral 

form , or any other reduced forms. However, the m ajority of the methods 

are semi— numerical, in the sense that the original equations are 

transformed through various mathematical modelling schemes, into a 

system of linear equations solvable by standard matrix techniques.

2. Secondly, one method may approximate the fields over each dielectric 

layer, or over a subregion o f a dielectric layer, as in the fin ite elements 

method. Note, that for our GF method, the field is explicitly expressed 

only for the cladding region (which is sufficient to find 0), although the 

GF has been formulated for all the regions.

3. Third ly, methods differ from  the way they deal with the boundary at

infin ity.
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4.4.2 Different methods to solve a homogeneous problem

Saad Sm gives a review of the main methods used in the analysis o f the 

a rb itra rily  shaped dielectric waveguides. In the case of an isotropic homogeneous 

guide, our D — fibre for example, for simplicity he considers three main approaches,

although a combination between several methods sometimes offers the best solution

for one particular case.

1. The first and one of the oldest approaches is the point matching method 

Jm , which uses an expansion in series of the fields in each region, and a 

matching of the tangential field at optimal selected points around the

boundaries. However this method would be cumbersome if  applied to our 

problem, and is therefore excluded.

2. The second group of methods is formed by the variational and integral 

approaches, for example our GF method.

3. Third ly, the finite elements method R.Sv 1S considered. This method 

offers probably the most powerful and efficient numerical solution of the 

most general problem (i.e., for an arbitrarily shaped, inhomogeneous, and 

anisotropic guide).

Consequently, for the selection of the most appropriate method for our

problem, the finite elements method and the GF method were taken into 

consideration. As the latter method was previously described, we w ill now give a 

brief explanation of the finite elements method. For this approach, the waveguide 

cross-section is divided into a large number of triangles (or elements), and the 

fields in each element are represented by a polynomial. The continuity conditions of 

the fields are then imposed on all the interfaces between the different elements. By 

employing a variational expression for Maxwell's equations, or its equivalent wave 

equation, an eigenvalue matrix equation is obtained, and solved using standard 

methods.
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4.4.3 Choice of the appropriate numerical method

First o f all, we consider the main criterion for selection o f the appropriate 

numerical method for our study, which is the formulation of the boundary 

conditions, in  particular, those at in fin ity.

For example, the conventional finite elements method is based on the fact that the 

fields o f a mode above cutoff decay in the cladding, so that the infin ite cladding 

can be approximately modelled by a closed region bounded by an artific ia l D irichlet 

boundary, or others YhiMb However, in  the case of our D—fibre used in coupling 

situations, the distance core/flat surface o f the cladding cannot be considered as 

in fin ite . Therefore, in a guided mode situation, the evanescent field also extends into 

the surrounding medium. Then, i f  the refractive index of the surrounding medium is 

higher than that o f the cladding as in prism coupling, for example, and i f  the 

core/flat distance is small, the evanescent field decay of a guided mode of the 

D— fibre is slower than that of a guided mode propagating in a similar circular fibre 

with a cladding supposed to be infinite. Consequently, a larger number of elements 

outside the fibre in the surrounding medium, would be necessary, as the evanescent 

field decays very slowly.

On the contrary, for the GF method, the boundary conditions at in fin ity  are 

formulated in the same way for any refractive index of the surrounding medium. 

What is more, they are easily included in the GF formulation (see (5.23) and 

(5.28)), which constitutes one element o f our integral equation (5.30), and thus 

simplifies the calculation leading to the final eigenvalue matrix (5.42).

Furthermore, i f  we consider the case where the core/flat distance is small 

enough to allow a non - negligible penetration of the evanescent field inside the 

surrounding medium, which has a refractive index higher than that o f the core, the 

D -  fibre can become leaky. In that situation, the boundary at in fin ity  has no 

significance, since a leaky mode represents a free radiation in the surrounding 

medium, and therefore, the field does not decay towards zero at in fin ity  (see sect. 

3.2.6). Nevertheless, with the GF method, it  would still be possible to calculate the 

complex propagation constants of the leaky modes, by analytical continuation o f the
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theory elaborated for the real propagation constants of the guided modes. However, 

as the fin ite  elements method is purely numerical, no analytical continuation is 

possible, and thus a leaky mode guiding structure cannot be considered.

Consequently, fo r a D— fibre supporting guided modes, the GF formulation of 

the boundary conditions at in fin ity is exact, and simpler than that o f the fin ite 

elements method, which requires an approximation of the boundary at in fin ity  and 

does not enable the direct extension of the study to include leaky modes.

Next, we consider the convenience of the two methods with respect to the 

particular geometry of the D - f ib re . The GF method is ideally suited to planar 

stratified environments, where the GF can be calculated by an elementary Fourier 

method. The fin ite elements method is better suited to application to linear 

boundaries. The curved boundaries present in our problem would increase the 

number o f numerical operations.

Another important criterion of selection is based on the computational 

efficiency. As the GF method is not a direct method, it requires more programming 

tasks to obtain the final matrix, than the finite elements method. A t first, in order 

to solve the Helmholtz equation for the GF, the inverse Fast Fourier transform must 

be computed, and an iteration of the GF in the x -  direction is necessary for each 

sampling point around the core.

Therefore, the program must be optimized to minimize the computing storage 

requirement. However, the matrix of the finite elements method is sparser than that 

o f the GF method, but its order is higher.

In  conclusion, despite the additional computing requirements, the GF has been 

chosen to calculate the propagation constant o f a D —fibre, with different core/flat 

distances and surrounded by different refractive index media, because of the intrinsic 

formulation of the boundary conditions, and the possible extension to leaky mode 

situations.
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CHAPTER FIVE ANALYTICAL STUDY

5.1 A N A L Y T IC A L  PART OF THE CALCULATIO N OF TH E  GF

In the previous section we have seen that the GF must satisfy the boundary 

conditions at the core/cladding and cladding/surrounding medium interfaces. 

Furthermore, as the definition domain of the GF was chosen on and outside the 

contour o f the core, the scalar field must tend towards zero at in fin ity.

We have also assumed that the GF would be the that of an equivalent source point 

at the core/cladding boundary.

Finally, the complete GF must also include the effect of the flat/surrounding medium 

boundary, the cladding being supposed infinite on all but one side (see fig. 5 .4). 

Therefore, let us first calculate the GF of a source point in a half-space cladding 

as defined in fig. 5.1, before solving the Kirchhoff—Huygens integral, from  which 

the d ifferent propagation constants of the guided modes of a D—fibre (i.e ., for 0 

real) w ith a variable core/flat distance, w ill be determined.

5.1.1 Fourier transform of the Helmholz equation

a. Helm holtz equation and choice of the coordinate system

As defined in sect. 4.3, a GF is the solution of the Helmholtz equation, except 

at the source point. Hence, this equation can be rewritten as below: 

a2g d2g
—  + —  K2 = -  5( x - x ' )  6( y - y ' )  ( 5 . 1 )
3 x 2 3y2

where K2 =  n2k2 -  02 ,

g (r ,r ')  is the scalar GF, 

t,y) is the vector position of the observation point, 

r ' ( x ' ,y ' )  is the vector position of the source point, 

n is the refractive index of the medium, 

k is the free space wave number, 

and (3 is the propagation constant o f one guided mode, and is thus real.
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Now, let us choose the appropriate coordinate system for the calculation o f the 

GF o f a unit source point in the cladding region, as defined in fig. 5 .1.

As the cladding and surrounding medium are infinite along the x— axis, the wave 

equation possesses a translational invariance along this axis. It follows that, in  the

x— direction, the solution, which is our GF, depends only on the difference in 

abscissa between the observation and source points, i.e., on ( * - * ' ) •  Consequently,

we can set the abscissa of the source point equal to zero (i.e ., jc '= 0), so that the 

origin o f the x— axis is moving with the source point. Secondly, let the origin o f the 

y— axis be at the interface between the flat surface of the cladding and the 

surrounding medium. The refractive indices: n2 and n3, are those of the cladding

and the surrounding medium, respectively.

b. Fourier transform of the differential equation

As the partial differential equation (5.1) is translationally invariant in the

x— direction, a Fourier transformation in terms of x, reduces the partial differential 

equation (5 .1) into an ordinary differential equation, with y as the variable, as in:

(n j=  n2) or the surrounding medium (nj—n3).

Note that we use the time convention e xp (-io *). The Fourier transform is thus

defined as:

a2c

where K 2 =  n j2k2 — 02 , and nj is the refractive index of either the cladding

- i y x
C ( 7 )  -  g ( * )  e

( 5 . 3 )

-0 0

where y  is the spatial angular frequency,

and where the inverse Fourier transform is defined as.

1
g ( x ) -----

iY *
C(y ) e dY (b)

-0 0
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y

surrounding
medium

half-space
cladding

x' : coordinates of the source point 

X : coordinates of the observation point 

n3 : refractive index of the surrounding medium 

n2 : refractive index of the cladding

FIGURE 5.1

D efin ition of the parameters of our GF.
The source and observation points are inside a half-  space cladding 
(interface included). The origin o f the x—axis is based on the source 
point, and that of the y -a x is  at the interface between the two media.
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Now, by rewriting (5.2) for the cladding and surrounding medium regions, we

obtain:

a2c
+ (K 22 -  7 2 )G -  -  5 (y  -  y ' )  , f o r  y < 0 (5 4)

d y z

a2c
“ 2+ ( k 32 ~ 7 2 ) g -  0 , f o r  y y '  and y > 0 (b)

with K22 =  n22k2 -  02, n2 being the refractive index of the cladding,

and w ith K 3 — n j2k2 — /32, 113 being the refractive index of the surrounding

medium.

Then, let us define the sign of the constants: K22 and K32.

I f  we consider the structure for a D— fibre surrounded by a sem i- infinite medium,

several refractive index profiles are possible. The value of the propagation constant,

(3, or its effective refractive index, ne, determines the possible guidance of a mode 

as shown in fig. 5.2 and described below.

a. The firs t case allowing the guidance of a mode is that o f a

D — fibre/surrounding medium structure with refractive indices satisfying the 

follow ing inequality as in fig. 5.2a: n3 < n2 < ne < n j.  The refractive

index o f the surrounding medium is lower than that of the cladding, as

in the case o f a D— fibre surrounded by an air medium.

b. The second case still allows guidance inside the fibre, and is formed by a 

fibre surrounded by a medium with a higher refractive index than that of 

the cladding, but lower than the effective refractive index of the mode, 

as in : n2 < n3 < ne < n j.

c. However, i f  the effective refractive index is lower than at least one of

the refractive indices of the cladding or surrounding medium, this 

corresponding mode is not guided into the D— fibre, but is leaky.

This is the case of a prism to fibre coupler where the leakage is due to 

the high refractive index of the surrounding medium. The values of the 

refractive indices satisfy the following inequation: n2 < ne < n3, and their

values in comparison with the effective refractive index of the mode are
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refractive
indices

(a) n3 < n 2 < n e< n 1

(b) n 2 < n 3< n e< n 1

(c) n2 < n e < n 3< n 1

(d) ne < n 3 < n 2< n 1

surrounding cladding 
medium

n3

core

n l

F IG U R E 5.2

D efin ition of the different refractive index profiles.
a. Refractive index profile o f a D — fibre surrounded by a low refractive 
index medium, for example the air. Thus the guided mode has an 
effective refractive index profile superior to the refractive indices of the 
cladding and surrounding medium.
b. Refractive index profile for a surrounding medium o f a higher 
refractive index than that of the cladding, but lower than the effective 
refractive index of the guided mode.
c. Refractive index profile of a fibre to prism coupler. A  refractive index 
o f the surrounding medium higher than the effective refractive index o f 
the mode creates a leaky mode situation.
d. I f  the effective refractive index o f a mode is lower than the refractive 
index o f the cladding and/or the surrounding medium, the mode is leaky.
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represented in fig. 5 .2c.

Even if  the D — fibre is surrounded by air, the guide can support leaky 

modes, fo r example after coupling from  a laser to a fibre, until all the 

energy injected into that mode has leaked out and radiated inside the air 

medium.

In conclusion, as in our problem we want to consider only the guided modes w ith a 

real propagation constant, the first two cases are considered. It follows that fo r a 

given value o f the core and refractive indices, the range o f propagation constants, |3, 

is defined by the follow ing inequality (see sect. 2.1.2):

k 2n 32 < k 2 r»2^ < |32 < k 2n^ 2 ( 5 . 5 )

or

k 2n2^ < k 2n 32 < |32 < k 2n^ 2 (b )

Consequently, we can write the following inequations:

K2 2 < 0 ( 5 . 6 )

and

K32 < 0 ( 5 . 7 )

5.1.2 General solution o f the ordinary d iffe rentia l equation

First o f all, let us make the following change o f variables:

7)2̂  = y2 -  k22 > 0 ( 5*8)

*?32 = 7 2 -  K32 > 0 (b )

Hence, w ith the above change of variables we can rewrite the ordinary d ifferentia l 

equation for the three regions, as defined in fig 5.3, which w ill lead to the different 

particular solutions. The first region is formed by the surrounding medium, and its 

corresponding d ifferentia l equation is:

a 2c
 r j ^ 2  c  = 0 , w i t h  y >  0 ( 5 . 9 )
a y 2

The second region is formed by the cladding region from  the source point (included) 

to the cladding/surrounding medium interface, and its corresponding equation is:
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d 2C
— -  ^2 2 G -----  5(y -  y ' )  , w i t h  y 0 < y  < o ( 5 . 9 b )
dy^

The th ird  and last region is formed by the cladding region below the source point, 

and its corresponding equation is:

a 2c
—  -  t*22 G = 0 , w i t h  y < yo ( 5 . 9 c )
d y 2

Note that the distance from the source point to the boundary between the 

cladding and the surrounding medium, is im p lic itly  given by the ordinate of the 

source point.

Next, we want to include the boundary conditions, which w ill define the 

particular solution of the differential equation in each region.

First o f all, due to conservation of the energy, the GF that represents the fie ld 

produced by a source point (at y '), must tend towards zero at in fin ity , i.e ., for 

y— ±oo. Hence, the GF along the y— axis must have an evanescent decay fo r an 

observation point in the surrounding medium, i.e ., for y>  0 in region 1 , and also 

fo r the values of the ordinate o f the observation point in ferior to those o f the 

source point, i.e, fo r y< y ' in region 3.

However, due to the reflection at the interface between the two media of refractive 

indices n2 and n3 , the solution in region 2 (fo r y'<y<0) is the sum o f a progressive 

and retrograde wave.

Therefore, from  the following general solutions fo r each region:

-173 y
G = A e w i t h  y > 0 ( 5 . 1 0 )

~V2 y n
G = C e + D e w i t h  y '  < y  < 0 (b)

V2 y
G = B e w i t h  y < y ’ ( c )

the particular solutions are determined by the calculation o f the constants: A , B, C, 

D , which depend on the boundary conditions at the interface between the two 

media, and at the source point: i.e ., at y= 0  and y = y ' ,  respectively.
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surrounding 
medium  
(air or prism)

cladding

region 1 : y > 0

region 2 : y'< y < 0

r’ (e y )  : source point

region 3 : y < y'

d : distance from the source point to the surrounding medium 

r»2> n3 : refractive indices of the cladding and surrounding medium, respectively

FIG U R E 5.3

D efin ition o f the region for the resolution o f the system o f differentia l 
equations (5.7).
Region 1 is formed by the surrounding medium.
Region 2 is formed by the cladding from  the source point to the 
cladding/surrounding medium interface.
Region 3 is formed by the cladding below the source point.
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5.1.3 Boundary conditions and particular solution o f the o rd inary d ifferentia l equation 

First o f all, we want to calculate the boundary at the interface between the 

cladding and the surrounding medium. A t y= 0, the tangential component o f the GF 

must be continuous. This can be achieved by making the Fourier transform o f the 

GF and its derivative continuous. It follows that, at y = 0 :

O'

dC

a y

0+

ac

a y

th e n  A -  C + D

t h e n  - r j3 A — y)2^~ C + D)

( 5 . 1 1 )

(b )
0+

Secondly, at the source point, the boundary condition also implies that the 

Fourier transform o f the GF must be continuous, to satisfy the law of conservation 

o f energy. However, the l.h.s term in (5.9b) is equal to a delta function, and 

therefore the 1st derivative must decrease by unity at this source point as in:

-1
ac  aG

ay  y ' +  ay 

as described in fig. 5.4, such that:

a 2c
= - 6 ( y  -  y ' )

Hence, from  the above equations the boundary condition at y= y ' becomes:

( 5 . 1 2 )  

(b)

*12 y - w  w
B e  = C e + D e

V2y'  -V2V'  
and (D -  B) e -  C e

V2

A fte r some calculations, the insertion of the constants in  the general solution gives 

the particular solution of the ordinary differential equation in the three regions, such 

as,

fo r region 1, where y >  0 :

G =
V2 +  *73

- w

(5 .13 )
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FIGURE 5.4

Representation o f the unit step of the first derivative o f the Fourier 
transform of the GF, leading to a delta function o f the differential 
equation (5.7).
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fo r region 2, where y ' < y < 0 :

T7 2y* -*72y * 7 2 y '  W
e e 

G -  +
t j 2  -  *73 e e

2*72 *72 + V3- 2*72

f o r  r e g i o n  3, where y  < y 1 :

(b)

Tj2y '  -r?2y

2*72

-  V2 + V3

*72 + ^3

T72y ' Tj2y 
e e

(c )

2*72

Observe that all the boundary conditions have been included, i.e ., the one at 

in fin ity  and the one at the interface flat/surrounding medium, by solving the above 

ordinary d ifferentia l equation. The resolution o f the BC by the FT of the original 

partia l d ifferentia l equation, is the appropriate calculation method because of the 

translational invariance of the field along the x— axis. Remember also, that the 

boundary at the core/cladding interface is im plic itly  satisfied by the defin ition of the 

GF fo r an equivalent source point at that boundary.

In  conclusion, from the above equation i f  we want to solve the Helmholtz 

equation, which was the original partial differential equation, and thus find our GF, 

the solution of the ordinary differential equation must be inverse Fourier 

transformed.

5.1.4 Integral fo rm  o f the GF

a. Integral form  o f the tota l GF

As we choose the equivalent source points o f the GF to be on the contour o f 

the core, we are concerned by region 2 in fig. 5.3, formed by the cladding from 

the source point, which is included in the region, to the flat/surrounding medium 

interface. Therefore, its corresponding particular solution is the one where y'<y<0, 

and w ill lead to the whole range of the GF. The solution o f the corresponding 

partia l d ifferentia l equation is then calculated by means o f an inverse Fast Fourier 

transform (FFT -  *), in order to reintroduce the x— dependence o f our GF. From 

the defin ition of the FFT- 1  in (5.3b), the integral form  o f our GF is written as:

86



+ 0 0

g ( r , r ' )  -  _
2t

m y '  e- y i y

2172

t j 2  - . w '  i

2V2

i y x  
e dy

■12 + 13-
—00

( 5 . 1 4 )

A t first note, as our problem is translationally invariant along the x— axis (see 

sect.5 .1 .1), the system o f coordinates was centred on the source point for the

x—axis. The value o f the source point was thus assumed to be equal to zero, i.e ., 

x ' =  0. Hence, in the above equation the variable x can be replaced by the

difference in abscissa between the source and observation points, i.e ., (x—x ’).

Secondly, we replace the variables rj2 and 773, by their equivalents in (5.8). It

follows that the above integral form of the GF becomes:

+00

g ( r . r ' )  = —  
2x

- ( 7 2- K 22) 1 /2  (y  - y ' )

2 ( y 2 - K22 ) 1 /2

i y ( x  - x 1) 
e d^

+00

1 /2
o o 1 /2  ,  ,  1/ 2' "  ( y 2- k 22 > < y + y ’ >
2- K 22 ) '  - ( Y 2 -K32 ) '  e 1(7  K2 ‘

(7 2 -K22 ) 1 /2 + (7 2-K 32 ) 1 /2  2 (7 2 -K 22 ) 1 /2

7 ( x  - x ' )  
d*y

( 5 . 1 4 . b)

From  sect. 5.1.1b, we have defined that the propagation constant o f a free wave in 

the surrounding medium is in ferior to that o f a guided mode in the Fibre, i.e ., 

K ^ n ^ <  (ft. This integral form  of the GF is valid only fo r a surrounding medium 

w ith a refractive index lower than the effective refractive index o f the guided mode. 

Remember that:

K22 -  n22k 2 -  e2 < 0 , so t h a t  (K22) 1 /2  -  i I K 2 I

K32 -  1132k 2 -  (32 < 0 , so t h a t  (K32) 1 /2  -  i | K 3 |

Consequently, the above integral equations are the same fo r a surrounding 

medium o f high or low refractive index, i f  guidance exists. Furthermore, this 

solution, and the boundary conditions (5.11 and 12) do not vary in form  with 

d ifferent values of the refractive indices.
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b. Separation o f the GF in to  two parts

From (5.14) we can separate the integral equation into two terms, so that: 

g ( r , r ' )  -  gi. ( r , r ' )  + g 2 ( r , r ' )  ( 5 . 1 7 )

The firs t term does not involve the refractive index o f the surrounding medium, and 

therefore is independent o f the surrounding medium. Hence, this term  is valid for 

any value o f K32, and is defined from (5.14) as in:

+00

g \ ( r , r ' )

- ( 72 -K 22) 1 /2  (y  - y ' )

2 ( 7 2_K22 ) l /2

i “y(x - x 1 ) 
e dy ( 5 . 18)

The second term of the GF depends on the refractive index of the surrounding 

medium and is defined by the following integral:

+00

/2_k'02 '11/ 2 w  ,

i 7 (x  -
dy£ 2 ( r * r ' )

1/9 1/9 (? 2- k 22> ( y + y ' >
(72-K22) - ( 72-K32) /  e i 7 (x - x ' )

( 7 2_K22 ) 1/ 2+ ( 72_K32) 1/2  2 ^ ^ 1 /2

( 5 . 18b)

Note that t 2— K22 < 0 and t 2— K32 < 0.

A  physical explanation o f this separation of the GF into two terms w ill be given in 

the fo llow ing subsection.

5.1.5 1st term  o f the GF

The firs t term of the GF can be solved analytically. First o f all, let us make the 

fo llow ing change o f variables:

y  -  (K22 ) 1^ 2c h (0  -  i p )  -  i |K2 | ch (0  -  i p )  ( 5 . 1 9 )

d7  = (K22 ) 1//2s h (0 -  i p )  d 0

x  -  x '  = R cosp = R c h ( i p )  (b )

y  -  y* = R s i n p =  - i  R s h ( i p )

Hence,  ( ( x - x ' ) 2 + ( y - y ' ) 2 ) 1 /2 = R , and p  = tg [  ( y - y ' ) / ( x - x '  ) ]

Thereby, we find:
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+ 0 0

81'

- { K 22[ c h 2 ( 0 - i p ) - l  ] } 1/ 2[ - i R s h ( i p )  ]+-i (K22 ) 1/ 2h ( 0- i p ) R c h (  i p )

(K22K 2s h ( 0- i p ) d 0
2 {K 22[ c h 2 ( 0- i p ) - l ] } 1 /2

Then, as ch2u — sh2u =  1, this integral is transformed and becomes:

- i ( K 22} ^ 2R [ s h ( 0 - i p )  s h ( i p )  + c h ( 0 - i p )  c h ( i p ) ]

+ 00

g l ( r , r ' )  -------

4 t

d 0

( 5 . 2 0 )

Now, thanks to the properties of the hyperbolic functions, the argument o f the 

exponential is simplified, and the above integral expression of the firs t part o f the 

GF is explained such that:

+ 00

i ( K 22 ) 1 / 2 R ch0
g l ( r , r ' )  = —  

4x
d 0

Then, as [K 22 ] ^ 2 =  i | K 2 |, and as the function to be integrated is even, the 

lim its o f the integral are changed as written below:

+00

- | K 2 | R ch0
£ 1 ( r , r ' )  = —  

2 t

d 0 ( 5 . 2 1 )

0

F ina lly, we use an integral expression o f a modified Bessel function (see equ. 9.6.24 

in  Abramowitz and Stegun A), which is rewritten for the zero order o f the Bessel 

function as in:

+00

K0 ( x )  "  "  
2

-  z ch t
e d t , w i t h  | a r g  z |  < x /2 ( 5 . 2 2 )

This implies that we can write the solution o f the first part o f the GF in terms o f 

a modified Bessel function as in:

g (  r , r ' )  -  1 /x  K0 {  11<2 I R)  « where I K21R > 0 and r e a l  ( 5 . 2 3 )

89



This solution can be transformed into a Bessel function o f the th ird  kind, o f order 

zero, also called a Hankel function: H ,,. The relation between the two Bessel 

functions is given below fo r the zeroth order (see Abramowitz and Stegun A  equ. 

9.6.4):

K0 (z )  = i x / 2  Hq ( ! ) [ z  e x p ( i x / 2 ) ]  -  i x / 2  Hq ^ O z ) ( 5 . 2 4 )

where — x <  arg z < x /2 , and z is a complex number.

Hence, we find the following expression o f the first part o f the GF as in:

g l (  r . r )  = i / 2  H0 d ) [  (K22} /2  ] -  i / 2  H0 <1 ) [ i | K2 1R ] ( 5 . 2 5 )

where the argument of the Bessel function is purely imaginary.

Note that, the expansion o f Hq(1)(u) fo r a large argument (see SL equ. 37.87), 

i.e ., fo r u -----» oo, is:

XU

1 / 2

exp[ i (u  -  x / 4 )  ] ( 5 . 2 6 )

I f  we apply the above relation, the solution o f the first part o f the GF would be 

proportional to:

g ( r . r ' )  *  e x p ( - | K 2 | R ) /  [ x | K 2 | R ] 1 / 2 , w i t h  R -----» <*> ( 5 . 2 7 )

This shows that, if  the distance between the source and observation point (R) tends 

towards in fin ity , the first GF tends towards zero according to the conservation of 

energy law.

Note that the first part o f the GF is independent o f the refractive index of the 

surrounding medium (n3), and thus is independent o f the boundary at the 

cladding/surrounding medium interface. Therefore, this part o f the GF is equivalent 

to that o f a source point in an unbounded medium. It  follows that, i f  the 

observation point is far from  the source point, the fie ld produced by that source 

point becomes negligible. Furthermore, this term is completely symmetrical, and 

depends only on the magnitude o f the distance R, between the source and 

observation point. Finally, this first GF is also regular and continuous everywhere, 

except when the source point has the same coordinates as the observation point, 

i.e ., fo r r = r \
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5.1.6 2n(* term of the GF

The second term  of the GF (5.18.b) is not simply a function o f the distance 

between the source and observation point. The distance between the 

cladding/surrounding medium interface and the source point, appears im plic itly  in the 

expression (y-*-y'), as y = 0  at that interface (see fig. 5.3). This second part o f the 

GF also depends on the refractive index o f the surrounding medium (n 3). Therefore, 

this term takes account o f the boundary conditions, and is regular and continuous 

everywhere inside the contour formed by the boundary o f the cladding.

However, this second term o f our GF can only be solved by means o f a numerical 

Fourier transform. W ith the following change o f variable: x— x ' = x ,  this term 

becomes:

( T2- K 22 ) 1 / 2 ( y  + y ' )
g 2 ( r , r ' )  -  FT *1 (C o r  C1) e ( 5 .2 8 )

where the constant C is for the case where 7^ >  K 32, and equal to:

C =

1 / 2  1 / 2

( y 2 - K 22 ) 1 / 2 + ( y 2 - K32 ) 1 / 2  2 ( y 2 - K22 ) 1 / 2
( 5 . 2 9 )

Observe from  (5.28), that the function to be inverse Fourier transformed is an 

even and real function, so that the second part o f the GF w ill also be an even and 

real function, w ith x=  x— x'  as abscissa, and w ith y and y'  being constant and 

selected fo r each pair o f source and observation points as shown in fig. 6 .2.

5.1.7 Discussion

The GF has been separated into two terms: its firs t term  is equivalent to the 

GF o f a source point in an unbounded medium, has an analytical solution, and is 

regular and continuous everywhere, except at the source point. The second term 

takes the boundary conditions into account. I t  is regular and continuous everywhere 

inside the defin ition  domain of the K irchhoff-H uygens integral, and leads to the 

integral form  o f the GF in the cladding region, i.e. from  the source point to the 

cladding/surrounding medium interface. However, this second GF must be solved

91



numerically. Remember that the source points have been chosen on the contour o f 

the core in sect. 5.2, and are included in the defin ition domain.

Note finally, that these properties o f the GF are explained in sect. 7.2 by Morse 

and Fesbach MF

In conclusion, defining the refractive indices o f the cladding and the surrounding 

medium (prism or a ir), and the distance from  the source point to the fla t surface of 

the cladding, implies that the Green function o f the problem is to ta lly defined (see

(5.25) and (5.28)), leaving the propagation constants o f the different guided modes 

as the only unknowns.

5.2 A N A L Y T IC A L  APPROACH TO  TH E  E IG E N V A LU E  PROBLEM

5.2.1 Introduction : elements o f the K irchhoff—Huygens integral

The chosen K irchhoff—Huygens integral (4.16) expresses the scalar fie ld : U (rc) 

w ith rc(xc ,yc^  on the contour o f the core and in the cladding, in terms o f a line 

integral around the contour (C ') o f the core, and is written below w ith  the orig in o f 

the Cartesian coordinates centred on the core (see fig. 5.5).

U ( r c )
* g ( r c , r c ' )  d U ( r c ' )

U ( r c . )  ------------------------------------- g ( r c , r c ' )  d l 1 ( 5 . 3 0 )
3n '  3n '

C

where rc and rc ' defined the position o f the observation and source point, 

respectively.

The first element o f this integral is the GF previously expressed in sect. 5.1. 

The GF is chosen for an equivalent source point at the core/cladding boundary, with 

the observation point defined on the contour and in the cladding region. Note, that 

the boundary conditions at the cladding/surrounding medium interface and at in fin ity  

have also been included (see sect. 5.2.4c).

The second element o f this integral is the particular value o f the fie ld on the 

contour C ': U (rc '), satisfying the homogeneous scalar wave equation at the

coordinates o f the equivalent source point.

As we want to determine the propagation constants (0) o f the guided modes
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y
surrounding medium 
with refractive index n

flat surface of the cladding

core with refractive 
index n<

cladding with refractive index n

a : is the core radius

d : core/flat distance

D : difference in ordinate between the two Cartesian coordinate systems Oxy, Oxc yc 

n ' : normal outer vector to the contour of the core, C-j 

: core/cladding boundary 

C^: boundary of the cladding at infinity

FIG U R E 5.5

D efin ition  of the different coordinate systems, where:
O xy is the Cartesian coordinate system w ith the orig in o f the y— axis on 
the fla t surface of the cladding, and the orig in o f the x -  axis based on 
the source point,
Oxcyc is the Cartesian coordinate system centred on the core, 
and O r '0' is the polar coordinate system also centred on the core.
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o f a D  fibre, im plic itly  expressed in the GF, the unknowns UCi^), U (rc ') and 

dU (rc ') /d n ' have to be eliminated. Therefore, the K irchhoff—Huygens integral is only 

an intermediate equation, which is worked out below to obtain an eigenvalue 

problem with |3 as the only unknown.

5.2.2 Form ulation o f the eigenvalue problem

a. Expansion o f U (rc ') and dU(rc ') /d n '

First o f all, note that the transverse component o f the fie ld and its derivative 

are continuous at the core/cladding boundary. Thus, its form ulation inside the core is 

also valid at the boundary. Furthermore, the spatial transverse dependence o f a field, 

which has a circular cylindrical symmetry in a homogeneous medium, can be 

expanded in a Fourier series, as for example in our problem, fo r a point inside or 

on the contour o f the core. Consequently, the field at the core boundary is 

expanded in polar coordinates, with the origin o f the coordinate system also taken at 

the centre o f the core (see fig. 5.5). This gives:

im tf'
u <r c ’ ) |  “  L um J m ( T1 r ’ ) e  ( 5 . 3 1 )

m = -o o
r ' - a

where the Fourier coefficient: um , is given by:

+ 0 0

1
um =

2t

- im 0 '
U (r  ' )  e d0'  (b )

1/2
where 7 ^ -  ( n j ^ k ^  -  ( 5 . 3 2 )

and where n j is the refractive index o f the core.

r \  6' are the radius and the angle of a source point in  polar coordinates, which is

chosen at the core/cladding boundary.

Next, starting from  the above expansion, we derive U (rc ') w ith respect to the

normal vector: n \  defined outward from  the contour o f the core. Thus, we obtain

the corresponding expansion o f the derivative o f the first part o f the GF:
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au(r ')

3n '

au

ar
r ' - a

where aU(rc')/a0' = 0.

■ l u
Ift--oo

r ’ »a

im 0 ’
m Jm (71 r > e ( 5 . 3 3 )

b. Introduction o f the expansion o f U

Now, starting from  the K irchhoff— Huygens integral this time expressed in 

coordinates centred on the core, we substitute U  and a u /a n ' by their above 

corresponding expansions. Hence,

2t+O0

U ( r c ) I  a um Jm(7l  a)
m=-oo

im 0 ' d g ( r c , r c ' )
e   d 0

d r '

+ 0 0  

I  a um Jm *'m (71 a)
m=-oo

im 0 '
e g ( r c , r c ' )  dd' ( 5 . 3 4 )

0

Note, that C ' is defined by r ' = a  and by O<0'<2x, and d r = r ' d 0'.

Next, i f  we m ultip ly the above equation by exp(— in 0), and integrate over 6 along 

the contour C (i.e. for r=  a and O<0<2x), the above equation becomes:

2x
1
— I  a um J
2x m=-co

0=0 0 ' , 0=0

2x

1

2x

2x 
- i n 0 

e U ( r c )d0 (71 a)
im0 ’ - i n 0 ag(rc , r c’ ) 

e   d 0 ' d 0
a r ’

1
+00

—  I  a u
2t  m=-oo

m Jm (71 a)
im 0 ' - i n 0 

e 5 ( r c » r c ' )  d 0 ' d 0

0 ' , 0=0

( 5 . 3 5 )

where r ,0 are the radius and the angle, respectively, o f one observation point. A ll 

the observation points are also chosen to be on the contour o f the core, and 

therefore inside the lim its o f the definition domain (see fig. 5.4) o f the 

K irchho ff-H uygens integral. Thus, the r.h.s o f (5.35) has the form  o f a Fourier 

coefficient o f U (rc), as in:
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2t
- i n 0 

U ( r c ) e d0 ( 5 .3 6 )

As both the observation and the source point are selected on the contour o f 

the core, both contours C and C ' are equal. The expansion (5.31) is thus applicable 

to U (rc), provided the exchange of variables 0', r ',  m for 0, r, n. Therefore, both 

U (rc) and U (rc ') have the same Fourier coefficient (i.e ., (5.36) equal (5.31.b)).

I t  follows that (5.35) can be reformulated by the following linear equation:

+ 0 0  + 0 0  

un = ^ a um Jm (7l a ) Gmn “ ^ a um Jm (71 a ) GrJmn ( 5 . 3 7 )
m=-oo m=-oo

w ith :

Gm n -------
1

2x

im 0 ' - i n  0 d g ( r c , r c ’ ) 
e   d 0 ' d 0 (b )

dr
0 \  0=0

2x

Jmn
2x

im 0 -  in  0 
e g ( r c > r c ' )  M ' d d ( c )

0 ' , 0=0

F inally, we apply a last change of variable:

^mn = a *^ran(7l a) Gmn "  a ^mn (71 a ) G 

so that (5.37) is reduced to a simple in fin ite  series:

( 5 . 3 8 )

+ 00

u n = 1  u‘mn um , w i t h  -oo < n < +oo ( 5 . 3 9 )
m=-oo

Consequently, the K irchhoff-H uygens integral (5.30) has been transformed into an 

eigenvalue problem, which can be rewritten by the following set o f linear equations:

+00

X-00 u -c

^n  un

I  Am -i-oo nr'm, +oo um
m=-oo

+oo

 ̂ ^m, n um
m=-oo

+oo

^+oo U+co ^  Am —oo ur'm, -oo um
m=-oo

96



where the eigenvalues X_ „ , . . . , Xn  X+00 are equal to 1.

Thus, in the matrix notation, the system o f equations becomes:

X U -  M U ( 5 . 4 1 )

U—oo > i •8 I 8 . . . A+oo-oo
w i t h  X -  1 U - M - Amn • • •

U-Ko A_oo-H» • • • A+o^oo

As we want a non— triv ia l solution of our eigenvalue problem, the determinant 

o f the resulting matrix must be equal to zero, as in:

d e t {  M -  XI }  -  0 ( 5 . 4 2 )

where X is a real number equal to one. First o f all, observe that the scalar field at 

the source and observation points: L ^ r ^  and U (rc '), respectively, and 3U (rc ')/dn ' 

have been suppressed from  (5.42). Consequently, the only unknown o f our problem 

is now the propagation constant: 0, which appears explic itly in  the formulation of 

the GF and its derivative in (5.23) and (5.28). This implies that, the above equation 

to ta lly defines the values o f the propagation constants o f the guided modes of a 

D — fibre. One value o f the above determinant equal to zero, yields one propagation 

constant o f one guided mode of our D— fibre.

5.2.3 Conclusions

Starting from  the scalar wave equation, we have calculated the 

K irchho ff— Huygens integral, which includes a GF as one o f its elements. This 

integral is an intermediate equation, which has been transformed through some 

form al analytical procedures, into an eigenvalue problem, leaving the propagation 

constant o f a guided mode as the only variable. Thus, we have obtained a system of 

equations, which can only be satisfied fo r the values o f the d ifferent propagation 

constants of the guided mode in the D— fibre. These discrete values w ill be 

calculated by an iterative method, and some classical matrix calculation.

Furthermore, after the calculation of the different propagation constants (0),  it is 

possible to return to the K irchhoff-H uygens integral, and therefore, to calculate the 

transverse electromagnetic field at any observation point, either inside the cladding 

region or on the surface o f the core.
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CHAPTER SEX R EFO R M U LATIO N  OF T H E  EQ UATIO NS 

FOR COM PUTER APPLICATIONS

6.1 IN TR O D U C TIO N

The programming language in use fo r numerical calculation is Turbo—Pascal. Its 

disadvantage is that the complex numbers are not defined as in Fortran. Therefore, 

the calculation o f the real and imaginary parts has to be considered separately. The 

main calculus routines come from  the book: 'Numerical Recipes: The A rt of

Scientific Computation' * \

Starting from  the eigenvalue problem defined in the previous chapter in sect. 

5.2.2b, we want to calculate numerically the different propagation constants o f the

guided modes of the D — fibre. However, the analytical equations defining our 

problem need some further development before their insertion into the calculus 

routines and the programme itself.

Before in itiating further calculations, we recall the equations leading to the

eigenvalue matrix.

A t firs t let us recall the separation o f the GF into two parts, as in:

g ( r . r ' )  = g i C r . r ' )  + g 2 ( r , r ' )  ( 6 - 1 )

given in  (5.23) and (5.28). Then the derivative o f the 2n£* GF has to be calculated,

w ith the derivative of the total GF expressed as in:

d g ( r , r ' )  a g i C r . r ' )  ag2 ( r , r ’ )
  =    +   ( 6 . 2 )

dr'  ar'  3r'

Next, we rewrite the two main constants o f the elements o f the eigenvalue m atrix:
2ir

^mn “
1

2 t  .

im 0 ' - i n 0
e g ( r c , r c ' )  d d ' d d  ( 6 . 3 )

0

w i t h  Cmn -  Cmnl + Cmn2 (b )

2x

^mn

1

2 t  .

im 0 ' - i n 0 d g ( r c , r c ’ ) 
e   d 0 'd 0  ( 6 . 4 )

a r '
0

w i t h  Gmn = Gmni  + Cmn2 . (b )
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Note, that the GF is expressed in Cartesian coordinates w ith the origin o f the 

y—axis on the fla t, and that o f the x—axis based on the source point (see fig. 5.5). 

Therefore, a reformulation o f the above equation into a polar coordinate system is 

necessary to solve the double integral leading to the above constants, otherwise the 

result o f the GF would have to be interpolated fo r each angular sampling point of 

the integrals in terms o f 8 and 8*. Moreover, we recall the expression o f the 

elements of the eigenvalue m atrix, as in:

V n  “  r  r  ) ^mn ”  r ' (71 r ' )  ^mn

w ith  r '  being equal to the core radius, a, i.e ., r '  =  a,

so that the matrix M  is rewritten such that:

^ - 00—00 • • • A+OO-

M = . . .  Amn

■A+OO -00  • • * A+OO+OO

where — < n < -+- oo.

Finally, (3 are found by satisfying the following determinant equation: 

d e t {  M -  X I )  -  0, 

w ith X =  1 as defined in sect. 5.2.2b, and I is the identity matrix.

( 6 . 5 )

( 6 . 6 )

(b)

6.2 R E FO R M U LA TIO N  O F TH E  1ST PART OF TH E  GF

6.2.1 Expression in  polar coordinates

The first part o f the GF in (5.23) is expressed in Cartesian coordinates centred 

on a source point along the x— axis, with the origin o f the y— axis on the fla t 

surface o f the cladding. However, the variables Gm n' and Gmn are in polar 

coordinates centred on the fibre core. Therefore, reformulation o f this equation is 

necessary. The first part o f the GF depends only on the distance from  the source to 

the observation point,

R -  [ ( x  -  x ' ) 2 + (y -  y ’ ) 2 ]1/2 

where x' {x' ,y' )  is the source point, 

and r(x,y)  is the observation point.
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Consequently, this term is valid fo r any Cartesian coordinate system, and in 

particu lar fo r the one centred on the core as in fig. 5.5. Finally, we rewrite the 

relationship between the Cartesian and polar coordinate system, as in:

x c “  r  c o s 0 y c “  r  s i n #  ( 6 . 8 )

x c ' -  r ’ c o s 0 ' yc ' -  r '  s i n f l '

where xc \  yc ' and xc , yc express the position o f the source and observation points, 

respectively, in a Cartesian coordinate system centred on the core; 

and where r ',  O' and r, 6 are the radius and the angle o f the source and 

observation points, respectively, in polar coordinates.

Then R is transformed by this change o f coordinate system to:

R -  ( r 2 + r ' 2 -  2 r  r '  c o s (0  -  0 ' )  ) 1 /2  ( 6 . 9 )

As both source and observation point are on the contour o f the core (i.e ., r = r ' = a ) ,  

the above equation is simplified such that:

R -  a [ 2 (  1 -  c o s (8 -  0 ' )  ) ] 1 /2  (b )

w ith a being the core radius.

I t  follows, that the solution of the 1st GF in terms o f a modified Bessel function as 

in (5.23), leads to the corresponding expression in polar coordinates to give:

g l ( r c , r c ' )  -  i /2  H0 (1 )  { i I K 2 I [ r 2 + r ' 2 -  2 r r '  c o s (0  -  « • )  ] 1 /2  }  

w i t h  i | K2 I = . ( 6 . 10 )

This implies that, for a source and observation point at the core/cladding boundary, 

the 1st GF becomes:

£ 1 ( r c ■r c ' ) -  i /2  H0 (1 )  { i | K 2 | a [ 2 ( 1 -  c o s (0  -  t ' ) ) ) / 2  > (b )

6.2.2 Reform ulation w ith G raf's expansion: Gjjujj

I f  the source and observation points have the same angular coordinate, i.e ., 

6'= e, the corresponding Bessel function in  (6.10) tends towards in fin ity , as both

points were selected to be on the contour o f the core so that: r = r \  Thus, the
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numerical calculation o f the double integral leading to the variable G mn would be 

impossible.

Nevertheless, the use o f G raf's expansion w ill allow the calculation o f G m n. 

Therefore, let us rewrite G raf's expansion given in equ. 7.1.79 in Abramowitz and 

Stegun AS as follows:

+ 00

Cy (w) c o s ( v y )  =• £ ^ W p ( u ) J p ( v )  cos (p a )  ( 6 . 11 )
P = - 0 0

where C v is a Bessel function and where u, v, w, y,  and a  are defined in fig. 6.1, 

so that w satisfies the cosine theorem:

w = ( u^ + -  2uv cosa  (b )

Additionally, the following inequality:

± ia
v  e < u (c )

must be satisfied.

The corresponding parameters fo r our expansion are defined in fig. 6.1. I t  follows 

that the first part o f the GF in  (6.10a) becomes:

+00

‘p

r  / i \  i p ( 0- 0 ' )
g l  -  i / 2  I  Hp ; { i | K 2 | r }  J p { i | K 2 | r ' }  e ( 6 . 1 2 )

P = - 0 0

Note, that the condition on u and v expressed in (6.11c), is satisfied by supposing 

that the observation point is just outside the core— cladding boundary, as defined in 

fig. 6.1b. In fact that supposition can be neglected once the expansion (6.12) is 

introduced into the double Fourier integral (6.3a), which becomes:

2t
1 * *

O m n i----------  I Hp ( 1 ) { i | K 2 |r> Jp{ i | K 2 | r ' }
4x p*=-co

i ( m - p ) 0 ' i ( p - n )0
e e d 0 d 0 '

(6 .1 3 )

This double integral is not equal to zero only i f  p=  m = n. I t  follows, that the 

variable Gmn is defined for any value of 0 and 0', and is simplified such that:

1 / • \
c m n l ----------------HmU ; { i | K 2 |r> Jm{ i IK2 I r • > J(m-n) ( 6 . 14 )

4ir

where -oo < m,n < +°° .
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(a)

= a

+ * X,

core boundary

r' : coordinate of the source point 

r : coordinate of the observation point 

O Xcyc : Cartesian coordinate system centred on the core 

R : distance between the source and observation point

F IG U R E  6.1

a. Relation between the different variables o f the cosine theorem:
w =  ( iP  +  — 2uv cosot

b. Variables for the application o f G raf's expansion to the Bessel
function: K q { |k2 1 R } ,  w ith:
|k2 I r =  u 
Ik2 I r ' =  v 
| k2 1R =  w

The source point is supposed to be just outside the core— boundary, so 
that: r =  a-1" , where a is the core radius.
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Thereafter, the in fin ite  number o f integer components m and n, have to be 

reduced to a fin ite number, to allow numerical calculation. I t  follows that, the 

d ifferent variables: Gmn| , associated w ith the chosen range o f discrete integer values 

m and n, lead to a m atrix w ith only the diagonal elements non zero, as in :

C i *

H ( 1 ) J -m J -m

( i ) f
. . .  HO J 0

where mmax -  nmax < -h*

h ^ > i  . . .  Hq J q

( 6 . 1 5 )

(b )

6.3 D E R IV A T IV E  OF T H E  1st G F A N D  ITS IN TE G R A TIO N : G m n j '

The derivative of the 1st GF could be calculated from  its expression in terms

o f the Bessel function Kg in (5.23). However, we encounter the same problem as

fo r the function itself, i.e ., the in fin ite  value when the source and observation points

are superposed. Therefore, we calculate this derivative w ith respect to the normal to 

the contour o f the core from  G raf's expansion o f the Bessel function (6.12), as in:

a81 “ l K2 1 y * 00 m  P i p ( 0 - 0 ' )
I  Hp k { i | K 2 I r } [ - J p + i { i | K 2 I r ' }  + -------- i | K 2 | r ' }  ]e

d r p = - c i | K 2 | r
( 6 . 1 6 )

where J^ ' (z)  =  — J vH. j ( z )  ■+■ viz J „(z)  and z = i | K 2 | r ' .

Further, as developped in the previous section, the term G mni '  including the 

derivative o f the 1st GF is expanded as in:

- 1 * 2 1 ( n  P
Gmnl’ --------------- Hm I  < IK2 I r }  [ { i |K2 | r ' ) H  Jm( i |K2 | r  • ) ] { ( m - n )

i 1K2 | r '

where -oo < m,n < -H»,

and leads to the corresponding diagonal m atrix:

( 1 )

( 6 . 1 7 )

C i  -

H-m [ - J - ( m + l ) + c J - ( m ) ] •

H0 (1 )  [ J - l + c J 0 ]

where m,max = n,max < +oo , and where c -  m / i | K 2 | r ' . ( 6 . 1 8 )

In  conclusion, using G raf's expansion o f the Bessel function in  the firs t part o f the 

GF and its derivative avoids the numerical integration leading to the variables G mni
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and Gmni ’ .

6.4 R E FO R M U LA T IO N  OF T H E  D E R IV A T IV E  O F T H E  2nd GF

As seen in (5.28), the 2nc* GF is still an integral, and the inverse Fourier 

transform must be achieved by a numerical method. In order to obtain the variable 

Gm n2' *n (6-4), this 2nc* GF has to be derived, which can be done prio r to the 

F T -  * , as demonstrated in the following equation:

+00  +00

dg2 1

Or

0C2 i y ( x - x ' ) 1
  e dY + —
a r ’ 2x

i 7 ( x - x ' ) 
d i e

C2 ------------------------  dY ( 6 . 1 9 )
a r ’

As the derivative w ith respect to r \  is calculated in polar coordinates centred on the 

core (see fig. 5.5), the FT of the 2n<* GF: G2, in (5.28), requires two successive 

changes o f variables. The first one transforms the integral expression of G 2 from  the 

Cartesian coordinate system with its y— axis origin at the fla t surface of the cladding, 

in to a Cartesian coordinate system centred on the core (see fig. 5.5). The relation 

between the two systems is as follows:

y  = y c -  D w i t h  D = d + a ( 6 . 2 0 )

y ' -  y c -  D

where the subscript c denotes the coordinate system w ith the core centre as origin, 

and no subscript denotes the one with the orig in o f the y— axis based on the fla t 

surface o f the cladding.

Remember, that d is the core/flat distance, a is the core radius, and y'  and y are 

the ordinates o f the source and observation points, respectively.

Note that, as the abscissa appears only as a difference between the source and 

observation point, its expression is the same fo r any Cartesian coordinate system, 

thus:

x  -  x '  = xc -  x ' c (b)

This implies that the integral form  o f the 2nc* GF becomes:
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+ 0 0

£ 2 ( r c  > r c ' )  - 1 / 2 t

(? 2 -  K22 ) 1/ 2 ( - 2D+y c+y c ' )  i 7 ( ^ c - x c ’ )
C e  e d7  (6  . 21)

w ith C =  C or C ', as defined in (5.28).

Secondly, we transform the expression under the above integral into polar 

coordinates by the following change o f variables:

x c ' -  r '  c o s 0 ' y c ' -  r '  s i n 0 ' ( 6 . 22 )

x c -  r  c o s 0 y c -  r  s i n 0

where r ' , r ,  and 0',0 are the radius and the angle in polar coordinates o f the source 

and observation points, respectively.

Thus, we find:

+00

d g 2 1 

d r ’ 2t d r

( 7 2-K 22} / ^ ( r  s i n 0  + r ' s i n 0 '  -2D)  i > ( r  cos0 - r ' c o s 0 ' )
d ^

( 6 . 2 3 )

Then, after calculating the derivative o f the above product, we revert back using this 

result to the original Cartesian coordinates based on the fla t surface o f the cladding 

fo r the y— axis.

Hence,

+ 0 0

a g 2 ( r , r ' )  1
s i n 0 1

d r
C ( 7 2 - K 22 ) e

1 /2  ( - ^ . k ^ ) 1/ 2 ( y + y . )  i 7 ( x - x ’ ) 1 /2
d7

+00

COS l

( 7 2 -K 22 ) 1//2 ( y + y ‘ ) i 7 ( x - x ' )
C 7 e e d 7 ( 6 . 2 5 )

Next, by setting x=  x— x'  as the spatial domain variable, and 7 as the frequency 

domain variable, we can explain the above equation in terms o f two F T - 1 , such 

that:
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dg 2 ( x >y>y ' )

d r
s i n 0 '  FT" 1 c ( 7 2- K 22 ) e

1 /2  ( y 2 - K22 ) 1/ 2 ( y + y ' )

-  cos0 '  FT-1
( y 2- K 22) 1/ 2 ( y + y ' )

i  C 7  e ( 6 . 2 6 )

Observe that, the sine and cosine terms are independent o f the integration variable 

o f the F T - * ,  and have not been transformed into Cartesian coordinates. Thus,

(6.26) is one element o f the double integral, w ith 0 and 0' as integration variables, 

leading to the formulation of Gm n\

Note that, from  the properties o f the F T -  * , a real and even function is 

transformed into a real and even function, and an imaginary and odd function, into 

a real and odd function. Thus, (6.26) w ill be transformed by the two internal 

F T ~  * 's, into the sum of two real functions which can be reformulated as below:

a£2 aS2r  a£2 i 
—  =   + -------
d r

( 6 . 2 7 )
d r d r 1

aS2r
where -------- = s i n /

w here

d r '

aS2 i

d r '

FTG2 r , FTG2r ( x , y , y ')=■ F T -1 {C  ( 7 2- K 22 ) * / ? s e e  ( 6 . 2 6 ) }

( 6 . 2 8 )

cosd '  FTG2 i , FTG2 i ( x , y , y ' )=  FT“ ^ {C  y  . . . s e e  ( 6 . 2 6 ) }

( 6 . 2 9 )

6.5 IN T E G R A T IO N  OF TH E  2nd GF A N D  ITS D E R IV A T IV E : G mn2. G mn2'

6.5.1 Development

We want to formulate the complex integrals (6.3) and (6.4) into two integrals, 

one fo r the real part, and the other fo r the imaginary part, to enable numerical 

integration. A t firs t, we transform the exponential complex term into a real and an 

imaginary part such as: 

im 0 ' -  i n 0
e = cos (m 0 ' - n 0) + i  s i n ( m 0 ' - n 0 )  ( 6 . 3 0 )

Secondly, as g2(x >y>y’) ls onty a real function as seen in (5.28), the double integral
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can be separated into real and imaginary parts, so that:

c mn2 “  Gmn2r e a l  + cmn2 im (6 .31)

2t

(b )

0

2t

( c )

0

w ith x = x —x'.

As mentioned in the previous section, in (6.27) is a real function only. The

6.5.2 Discussion

F irstly we should recall that the FT are in Cartesian coordinates, based on the

fla t surface o f the cladding fo r the y— axis, and on the source point fo r the x— axis.

I t  follows that, after their numerical F T - *,  the terms involved in  the 2n<* GF:

g2(r ,r ') in  (5.28), FTG 2r in (6.28a), FTG 21 in (6.28b), are functions o f x=  x— x' ,  y , 

and y \  However, the integrals leading to Gmn2 and G mn2' are expressed in polar 

coordinates centred on the core. Therefore, the results o f the numerical F T -  * must 

be interpolated to correspond to the discrete angular values o f the integration steps. 

As the variables: y, y* are independent o f the F T -  fo r each incrementation o f 

the source and observation points: j  Ad'  and kA0 ( j,k  being integer numbers, and

AO’ ,Ad being the angular incrementation o f 6 \  6), their corresponding y ' and y in

term  G mn2 », involving the derivative o f the 2nc* GF, can be developed as above. 

Hence:

Gmn2 ”  Gmn2 r e a l  + Gmn2 ' i m ( 6 . 3 2 )

w h e r e :

1 2t
c mn 2 r e a l =—  [ [ c o s ( m 0 ’ - n 0 ) [  s i n 0 '  FCT2 r ( x , y , y ' ) - c o s 0 '  FTC2  j ( x , y , y ' )  ]d0'd0
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g(x-x') *

surrounding
medium

i

Vc‘

cladding

92(r.r') =  g int( e , e ) ^  

------

i
Jl- - - - - - - - - - - - - - - - - - - w

♦♦«♦•♦

N C  \ e
V

/ / M

- — -  - . ......  ^

\ 0 \ A 0 \  \
V  1 i/ w

^  1 ^  XV V  /  A c

A 0 \ A 0  : angular incrementation for numerical integration

r' : coordinates of the source point

r : coordinates of the observation point

Oxy • Cartesian coordinate system with the abscissa, x, based on the source point,
and the ordinate, y, based on the flat surface of the cladding

Oxcyc : Cartesian coordinate system centred on the core

g jnt(0 ,0 )  : result of the 2 nd GF after interpolation of the FFT ‘1g 2 (x-x')

F IG U R E  6.2

D efin ition  o f the angular incrementation fo r the numerical integration 
leading to Gmn2 and Gmn2' in (6.31) and (6.32).
Note that the 2ncl GF: g (r .r ') ,  is an element o f the variable Gmn2. This 
term  o f the GF is calculated by means o f a numerical Fast Fourier 
transform and then interpolated fo r the distance in abscissa corresponding 
to the difference in abscissa between the source and observation points: 
x=  x— x' .  This is also the case fo r the variables FTG 2r anc* FTCi2i 
leading to G m n2\
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Cartesian coordinates, are directly calculated. Then, with these selected y, y'  values, 

the F T ”  * is worked out, and leads to a function w ith x=  x— x % as abscissa, as 

shown in fig. 6.2. Thereby, the 2nc* GF and its derivatives fo r a source and 

observation point corresponding to the angular incrementation o f the integral in 

terms of 0' and 0, can be deduced by linear interpolation, knowing the difference 

in  the x— direction from  the source to the observation point.

Secondly, we want to reformulate the terms: G mn2 and G mn2', in  a matricial 

notation. In (6.31) and (6.32) only the sine and cosine depend on m and n. Let us 

consider G mn2 first, and in particular its real part: G mn2reai (6.31b).

Using the follow ing trigonometric relation:

c o s (m 0 ' - n 0) = c o s ( n 0-m 0 ' ) ,  

we find :

Gm nrea l = Gnm rea l ( 6 . 3 3 )

Then fo r the imaginary part: Gmn2jm> the following trigonometric relation:

s i n ( m 0 ' - n 0) = -  s i n ( n 0-m0 ' )  

leads to the equality:

Gmn2im “  “  Gnm2im ( 6 . 3 4 )

Thereby:

Gm nrea l + 1 Gmn2im = Gnm rea l “  * Gnm2im ( 6 . 3 5 )

Next, in  order to sim plify the notation, we make the following change o f variables:

Gmn2r e a l  = amn > Gmn2 iim 4nn

Thus, the simplified notation o f the complex m atrix o f Gmn2 is reformulated as in: 

+ ib_
C2

— 00 —00 * A — 00-00 

2mr\ 1 for

amn + ^ ra n

lmn 'mn
+ ib .

( 6 . 3 6 )

.......................................................................... a +otH-oo ~r  1 LJ-f-oo+-oo

Finally, a sim ilar matricial form ulation is applied to the elements: G mn2*, so that 

we can define the corresponding m atrix: G 2' as:

C—oo-co + i d _00_00 . . .

cmn " * ^mn . .
G2

*mn

w h e r e :

Gmn2r e a l  = cmn » Gmn2 i m

C+OO-f-OO i  ̂ +00+00

'mn

( 6 .3 7 )
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Finally, observe that both matrices: G2* and G2 are H erm itian, and thus:

G2' -  G2' T * ,T *G2 -  C21"  ( 6 .3 8 )

w ith the superscripts T and * denoting a transposate and conjugate matrix, 

respectively.

6.6 R E FO R M U LA T IO N  O F Jm '

The variable Jm ' o f the components: Am n, o f the eigenvalue m atrix, is the last 

element to be reformulated. We can rewrite the property o f the derivative o f Jmn 

as follows:

dJm( z )  1
( 6 . 3 9 )

dz 2

W ith  the following change o f variable:

z “  71 r ' and dz “ 7 i  d r '

the derivative o f the Bessel function becomes: 

d V T i r ' )  1
  { Jm - l ( Y l  r ' )  -  Jm + l ( 7 l  r ' ) >  ( b )
d r '  2

Note t h a t :  J_m( z )  -  ( - 1 ) "1 Jm(z )

F inally, note that the elements r 'J m( 7i  r ')  and — r 'J m '( 7i  r ')  constitute diagonal 

matrices w ritten as in:

0 0 0
r ' J+m(7l r ' )  0 0

0 r ' J o(71 r '> 0
0 0 r ’ Jm( 7 l  r ' )
0 0 0

0 0 0
r ' J + m (71 r ' )  0 0

0 r ' J0' ( 7 l  r ' )  0
0 0 r , J m’ (71 r ' )
0 0 0

( 6 . 4 0 )

(6 . 4 1 )

6.5 M A T R IC IA L  R EFO R M U LATIO N  O F T H E  PRO BLEM

W ith  the previous matricial notation we can rewrite m atrix M  in (6 .6) as in:

M -  J {  G l ' + G 2 ' }  + J '  {  G1 + G2 } ( 6 . 4 2 )
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where:

— J and J ' are the diagonal matrices given in  (6.40) and (6.41),

— G1 and G l '  are the diagonal matrices defined in (6.15) and (6.18) which

include the effect o f the 1st part o f the GF and its derivative,

respectively,

— G2 and G 2' are the Herm itian matrices defined in (6.36) and (6.37) which 

include the effect o f the 2n<* part o f the GF and its derivative, respectively.

For the computational operations, we separate the real and imaginary parts o f the

fina l m atrix M  as in:

M = A + i  B (6 .4 3 )

The imaginary part is due to the 2nc* GF and its derivative, and appears in the 

form ulation o f G2 and G 2 ', as seen in (6.36) and (6.37).
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CHAPTER SEVEN RESULTS OF THE GF AND CONCLUSIONS

7.1 IN TR O D U C TIO N

In order to optim ize the numerical calculation o f the propagation constants from  

the eigenvalue problem defined in sect. 6 .5 , it  is necessary and interesting to know 

the behaviour o f the GF for any pair o f source and observation points on the 

contour o f the core.

As the 1st part o f the GF was analytically defined in equation (5.23) o f section

5.1.5, we start by considering the values o f the 2n<̂  GF, which involves further 

numerical calculation from  its integral form  defined in  equation (5.28).

7.2 FF T ~  1 A N D  L IN E A R  IN TER PO LATIO N  LE A D IN G  TO  T H E  2nd GF

As defined in sect. 5.1.7, the 2n(* GF is regular and continuous everywhere, 

and is the part o f the GF which takes the boundary conditions into account, and in 

particular those at the interface between the fla t surface o f the cladding and the

surrounding medium. However, this term o f the GF is calculated by a numerical 

inverse Fast Fourier transform (FFT—1), followed by a linear interpolation fo r a 

pair o f source and observation points.

7.2.1 Choice o f the numerical parameters

From the results o f the FFT— for example in fig. 7.1, we firs t choose the 

sampling frequency: Ay  > 1/(2 dm), where dm is the core diameter, so as to

include all the possible pairs o f source and observation points on the contour o f the 

core. Remember that the propagation constant, 0, or its equivalent, the effective 

refractive index o f its corresponding guided mode, ne> is the only unknown o f our 

eigenvalue problem defined in chapter 5. I t  follows that, we have to choose an

arbitrary value o f ne to study the behaviour o f the GF, fo r example, ne=  1.455,

which is included w ith in  the possible range o f guided modes (i.e ., n2< n e< n j ) .  To 

define our problem, we set the core/flat distance equal to zero. Then, we define the 

refractive indices o f the core, cladding and surrounding medium as: n j=  1.4563,
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FIG U R E  7.1

FFT-  * leading to the 2n£* GF fo r an arbitrary value o f the effective 
refractive index, ne, o f a guided mode, and several core/fla t distances: 

d =  2, 1, 0.5, 0 pun.
The source and observation points have the follow ing values:

6 =  80° and 6' =  90°, or vice versa.
The refractive indices o f the guiding structure are given by the following 
inequality:

n3 < n2 < ne < n j ,
where

n3 is the refractive index o f the surrounding medium (a ir in  this 
case),
n2 is the refractive index o f the cladding,

* n j is the refractive index o f the core.
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n2= 1.45 and n3= l ,  respectively, and a core radius of 4 pun. In  this situation, to 

m inim ize the aliaising effects caused by the numerical Fourier transform, we choose 

that:

Ay > l / { 2  ( x - x ' ) max where ( * - x ' ) max-  3 /2  dm 

where x =  (x— x' )  is the spatial domain variable o f the FFT-  * .

The number o f points is then optimized so that the linear interpolation of the 

FFT-  * is o f sufficient accuracy, as shown in fig. 7.2. We could have chosen a 

higher order interpolation and a larger interval in the spatial domain, but the linear 

interpolation was preferred fo r the simplicity o f the algorithm and because of its 

suitability to the discrete curve to be interpolated.

7.2.2 Results o f the F F T "  1

Even with an arbitrary value of |3, the result o f the F F T -  1 can already give 

an intuitive understanding o f the behaviour o f the 2nc* GF by varying the core/flat 

distance and the angular position of the source and observation points.

a. We first analyse the effect o f the core/flat distance on the result o f the 

FFT- 1. From fig. 5.4, which defines the coordinate system, and from 

the formula (5.28) to be FFT-  we recall that the distance from  the

core to the fla t surface o f the cladding, is im p lic itly  given by the choice 

of the y— coordinate at the cladding/surrounding medium interface. Having 

set the data o f the FFT-  * , we can demonstrate the effect o f the

core/flat distance, d, by comparing the results fo r a pair o f source and

observation points with angular positions of 80° and 90°, respectively, 

where d=  0, 0.5 and ljo n , as in fig. 7.1. We firs t observe that, the

FFT- 1 used to calculate the 2n(* GF, induces a negative contribution 

which decreases with an increase in core/flat distance, fo r any difference 

in abscissa between the source and observation points, i.e ., x—x \  This 

implies that, i f  the distance: d, is sufficiently large, the whole cladding is 

supposed in fin ite . We also confirm  the reciprocity relation o f the 2nc* GF, 

i.e ., g2( r *r *)=  £2(r '»r ) by the symmetry o f the FFT- * in terms o f its
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FIG U R E 7.2

a. FFT-  1 leading to the 2n£* GF fo r a source point fixed with 0’=9O,
and the observation point variable w ith :

9 =  90°, 60°, 45° and 10°.
The other parameters are defined in  fig. 7.1.

b. Value o f the 2nc* GF for the pair o f source and observation points 
defined below, after the addition o f the 1st GF and interpolation of the 
FFT-  1 curves.
X  represents the value of the total GF.
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abscissa values: x— x \  and by the y and y ' dependence of the function to

be transformed, as in : y+ y '=  y*+ y.

b. Secondly, we study the effect o f the angular position of the source and 

observation points. From the previous subsection on the effect o f the 

core/flat distance, we can deduce the additional effect caused by the 

angular position o f both points decays exponentially w ith the distance to 

the fla t o f the cladding, or in other words fo r both source and

observation point w ith an angular position o f 90° (see fig. 7.3 fo r the 

defin ition o f the angles). This property is confirmed by fig. 7.2a showing 

the FFT~  1 w ith x— x ’ as abscissa, w ith the ordinate o f the source point 

at an angular position o f 90°, and with several observation points (one

per curve). We then observe that, for 0=90° and 180° <0<360°, or vice 

versa according to the reciprocity relation, the maximal value o f the GF 

becomes negligible. However, before the automatic suppression o f the 

calculation o f these FFT— * producing negligible values, we want to take 

into account their interpolation which gives the value o f the 2nc* GF, and 

also the offset values caused by the addition o f the 1st GF, as described 

in fig. 7.2b, and demonstrated in later subsections. We also recall that, 

the effective refractive index, nCj is arbitrary. Consequently, it  may affect 

the behaviour o f the FFT- * , and thus the whole GF, as explained

below.

7.3 V A R IA T IO N  OF T H E  GF AS A  FU N C TIO N  OF 6 A N D  O'

W ith the same parameters as the in the previous section, i.e ., d= 0,

n j=  1.4563, n2= 1 .45, n3= l ,  and ne=  1.455, we want to analyse the effect o f the 

angular position o f a ll the range o f source and observation points on the contour o f

the core. Therefore, we compute the GF fo r several source points, fo r example,

0'= O 0, 30°, 60°, and 90° (one per curve), and for all the range o f observation 

points, 0, which occur in the interval: O<0<12O°, as abscissa.
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FIG U R E 7.3

a. Variation o f the 1st GF and 2nc* GF as a function o f the angular 
position, 0', o f the observation points, the source point having a fixed 
angular coordinate fo r each curve, i.e ., fo r 6 =  0 ° , 30°, 60° and 90°. 
The curves w ith positive values represent g i ( d and the negative ones

The other parameters of the guide defined in fig. 7.1, are set as follows: 
d = 0 , n3= l ,  n2= 1.45, n j=  1.4563, ne=  1.455.

b. Variation o f the total GF: £ i (0 ,0 ,) 'h same
parameters as above.
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FIG U R E  7.3

a. Variation o f the 1st GF and 2nc* GF as a function of the angular 
position, 0', o f the observation points, the source point having a fixed 
angular coordinate fo r each curve, i.e ., fo r 0 =  0 ° , 30°, 60° and 90°. 
The curves w ith positive values represent g j(0 ,0 ') .  anc* the negative ones

The other parameters of the guide defined in  fig. 7.1, are set as follows: 
d = 0 , n3= l ,  n2= 1.45, n j=  1.4563, ne=  1.455.

b. Variation of the total GF: 0,0 ,)+  82( &')> ^ h  the same
parameters as above.
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The upper values in fig.7.3 show the variation o f the 1st GF as a function of 

the variation o f the angular position o f the observation point, w ith the source point 

fixed. Each curve is valid fo r one value o f the observation point. We remember that 

the 1st GF represents the intensity o f the field caused by a source point at an

observation point also on the contour o f the core (as set in chap. 5). This implies 

that the 1st GF is only dependent on the angular position of both source and 

observation points, i.e ., £ i(0 ,0 ') .  These field intensities have a positive value only. 

T he ir maximum value is in fin ity , when the coordinates o f the selected source point 

are equal to that o f the observation point, as seen in fig. 7.3. This confirms that 

the value o f £ i(0 ,0 ')  fo r 0= 0' in (5.23) is proportional to the Bessel function

Kq(0 )=  K q( |K ^  |R ), with R being the distance between the source and observation 

points. Finally note, that each curve formed by the d ifferent values of the GF for 

all the range o f observation points, has equal amplitude. This proves the 

independence o f the 1st GF towards the boundaries, and its dependence o f the 

distance between the source and observation points (R).

The lower values o f fig. 7.3 represent the 2nc* GF fo r an abitrary source point, 

as a function o f the angular value o f the observation point. As fo r the 1st GF, each 

curve is valid fo r one value o f the source point. However, the 2nc* GF is dependent 

on the boundary conditions. I t  follows that, its contribution to the total GF in fig.

7.3b w ill vary fo r d ifferent pairs o f source and observation points around the core.

The boundary conditions also im ply a dependence o f the 2nc* GF as a function on 

the refractive index of the surrounding medium and the geometry o f the guiding 

structure, i.e ., on the core/flat distance, d. Any variation o f these above parameters 

w ill also affect the value o f the propagation constants o f the modes and their 

corresponding effective refractive indices. Consequently, we w ill consider the effects 

o f these different parameters in the follow ing sections.

Now, let us explain the lim ita tion  o f the range in abscissa (0) o f the curves in 

fig. 7.3a and 7.3b. The truncation o f the figures along the ir abscissa was chosen to 

enable the fu ll decay of the curve corresponding to the angular position o f the 

source point at 90°. Then, the discrete values of the source points were chosen in
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the firs t quadrant, i.e ., fo r O °<0'<9O0, to induce a maximum effect on 

from  the boundary at the core/flat surface o f the cladding. Due to the axial

symmetry o f the guide along the y—axis, i.e ., g (0, 0')=  # ( t— 0, t — 0'), the second

quadrant could also have been chosen.

7.4 VARIATION OF THE GF AS A FUNCTION OF d AND n 3

7.4.1 GF(d)

First o f all, we analyse the variation o f the GF as a function o f the distance 

from  the surface o f the core to the fla t o f the cladding (see fig. 4.1). We first

consider the effect on the 1st GF and then on the 2nc* GF.

a. As the 1st GF is independent o f the boundaries, it  is not directly

dependent on the core/flat distance, but indirectly affected by the change 

o f |3. This change in propagation constant may be caused by the variation 

o f the refractive index, n j ,  o f the surrounding medium at the side of the 

fla t surface o f the cladding, and o f the core/flat distance, d, i f  it  is small

enough as defined in (5.14b). The other parameters, the refractive indices

o f the core, n j,  and the cladding, n2, the core diameter o f the fibre and

the wavelength of the light source are fixed. Thus, the propagation

constant o f the coupler has a different value to that o f a circular fibre

built from  the same preform and having a cladding supposed infin ite.

This effect has already been discussed in the CM T fo r a weak coupling

situation in chapter 3.

b. The 2n(* GF takes into account the boundary conditions and is directly

dependent on the distance: d. In fig. 7.4a and 7.4b we show the values

o f the 2n(* GF for different source points at 30°, 60° and 90°, with the 

observation points as abscissa. As mentioned in sect. 7.1.2 on the FFT-  * 

leading to the 2n£* GF, its negative amplitude is at a maximum for both 

source and observation points at 90°, and its decay is proportional to an
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FIGURE 7.4

Variation of the 2nc* GF as a function of the angular position, 0', o f the 
observation points, the source point having a fixed angular coordinate for 
each curve, i.e ., fo r 0 =  0 °, 30°, 60° and 90°.
The following parameters o f the guide:

n3=  1, n2= 1.45, n j=  1.4563, ne=  1.455 
are defined in fig. 7.1.

a. The first figure represents g2(9>0') w ith a value o f the core/flat 
distance equal to zero, i.e ., d =  0 /zm.

b. The second figure represents g2(0>0') with d =  0.5/m i.
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increase in the core/flat distance. For d ) l / im  the maximum o f the GF 

becomes negligible fo r the guiding structure defined in  sect. 7.2.

7.4.2 GF(n3)

We now study the variation of the GF as a function o f the refractive index of 

the surrounding medium. We set the core/flat distance equal to zero, to allow the 

maximum effect o f the boundary between the cladding and the surrounding medium, 

and assume a constant value of /3 as above. We also recall that the calculation of /3 

by the GF applies to all the values o f n3, allowing at least the propagation of one 

guided mode.

A t first, we consider the effect o f n3 on the 1st GF. This function is 

independent o f n3, and thus the same comments as those previously used to analyse 

the effect o f d, apply to the variation o f /3 caused by the change o f n y

We then consider the second part o f the GF fo r d ifferent n 3, which can be 

either superior or in ferior to the refractive index o f the cladding. Note that, in both

cases at least one guided mode must propagate inside the D — fibre (w ith n3<  ne<  n^)

as explained below.

a. In the firs t case, the 2n(* GF induces a negative contribution on the total

GF as described by fig. 7.5a, and fo r example, as assumed in the

previous sections where n3= l< n 2 <ne. This can be seen as if  one

equivalent source point taken on the contour o f the core, was reflected at 

the cladding— surrounding medium interface, and then observed at one

observation point also on the contour o f the core.

b. The second case, described in fig. 7.5b is valid fo r: n 2 <n3 <ne. I t  induces

the positive contribution from  the 2n<* GF on the total GF, as i f  the

equivalent source point was this time transmitted at the

cladding— surrounding medium interface.
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F IG U R E  7.5

Variation o f the 2n£* GF as function o f the angular position, 0', o f the 
observation points, the source point having a fixed angular coordinate fo r 
each curve, i.e ., for 0 =  0 °, 30°, 60° and 90°.
The follow ing parameters o f the guide:

d=  0, n2= 1.45, n j=  1.4563, ne=  1.455 
are defined in fig. 7.1.

a. The first figure represents g2(0,0' )  fo r a value o f the refractive index 
o f the surrounding medium satisfying the follow ing inequality: n3>  n2, and 
in particular: n3= n e=  1.455

b. The second figure represents g2(6>9’) fo r n3<  n2 and in particular for: 
n3=  1.445.
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7.5 V A R IA T IO N  OF T H E  GF AS A  FU N C TIO N  OF n e

Finally, let us see the influence o f the effective refractive index o f a guided 

mode on the 2n<* GF. The maximal possible value of ne, occurs when its value is 

equal to the refractive index o f the core. In  this situation, the mode is well 

confined inside the core, and its evanescent field decays rapidly inside the cladding 

region. This implies, that the perturbation caused by the reduced cladding at one

side o f the fibre is m inimal. However, when the value o f ne is close to the

refractive index of the cladding, the mode has a weak confinement, and its 

evanescent field extends further in to the cladding than in the previous situation. It 

follows that, the influence o f the boundaries increases fo r an effective refractive 

index closer to the value o f n2 than that o f n j . We demonstrate this effect by 

comparing the curves describing g2(90° , 6): one w ith ne =  n j and the other with 

^ ^ 2* as 7.6a and 7.6b, respectively. This effect is also seen on the total

GF as shown in fig. 7.7.

7.6 DISCUSSION

First o f all, we recall that the parameters of the numerical calculation (FFT -  * 

and interpolation) o f the 2nc* GF, using the intermediate analytical result obtained in 

(5.28) as the basic formula, have been determined in the previous sections.

Then, from  the analytical approach to the eigenvalue problem where the

propagation constant o f the guided mode, (3, is the only variable, we remember that 

both source and observation points were chosen on the contour o f the core (see 

sect. 5.2.2). Thus, the radial angular coordinate o f both points satisfies the following 

equality: r=  r '=  a (a being the core radius), and the GF is simply a function o f the 

angular position, i.e ., g (0 ,0 ')- We also recall from  sect. 7.3, that the number of

FFT-  * to be calculated, can be reduced due to the following properties o f the GF: 

g ( M ’) = g ( e \ e )  

and g( t — 0,n— 0') =  g (0, 0')

However, as 0 (or the corresponding effective refractive index, ne) is the unknown 

o f our problem, it  is impossible to determine i f  the calculation o f the FFT-  * is
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F IG U R E  7.6

Variation o f the 2nc* GF as a function o f the angular position, 8', o f the 
observation points, the source point having a fixed angular coordinate for 
each curve, i.e ., for 6 =  0°, 30°, 60° and 90°.
The follow ing parameters of the guide: 

d= 0, n |=  1.4563, n2=1.45, n3= l ,  
are defined in fig. 7.1.

a. The first figure represents g2( 8,B') fo r a value o f the effective
refractive index o f a guided mode equal to the refractive index o f the
core, i.e ., fo r ne= n j .

b. The second figure represents g2(B,B ’) fo r a value o f the effective
refractive index of a guided mode equal to the refractive index of the
cladding, i.e ., for ne=  n j.
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Variation o f the total GF as a function o f the angular position, 0', of 
the observation points, the source point having a fixed angular coordinate 
fo r each curve, i.e ., fo r 0 =  0 °, 30°, 60° and 90°.
The follow ing parameters o f the guide: 

d = 0 , n j=  1.4563, n2=1.45, n3= l ,  
are defined in fig. 7.1.

a. The firs t figure represents £ (0 ,0 ') f ° r a value o f the effective
refractive index o f a guided mode equal to the refractive index of the
core, i.e ., fo r ne= n j .

b. The second figure represents g (0 ,0 ') fo r a value o f the effective
refractive index of a guided mode equal to the refractive index o f the
cladding, i.e ., fo r ne= n 2-
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necessary fo r the fu ll range o f source and observation point, with angular positions 

between: 180°< 9 \  6< 360°. For these values o f 6' and 0, it  would be possible to 

suppress the calculation o f the 2n<* GF, and therefore its FFT- 1, fo r a value o f n e 

close to the refractive index of the core. In  this situation only, the corresponding 

guided mode is well confined inside the core, and the disturbance o f the evanescent 

fie ld  by the surrounding medium is weak, and thus the 2nc* GF is small and

negligible in comparison with the value o f the 1st GF.

Consequently, the program developed to calculate the GF (see appendix 1) w ill 

help us to reduce the operational time o f the main program, which calculates the 

propagation constant o f a D— fibre with d ifferent values o f the refractive index o f 

the surrounding medium. What is more, several procedures used and tested in this 

firs t program calculating the GF, w ill be introduced in the main program, fo r

example: the FF T -1 , INTERPO LATIO N, and BESSEL procedures.

Note fina lly, that the numerical calculation and the introduction o f the 1st GF 

in to the total GF, w ill not be used in the main program. As seen in  chapter 6 , the 

1st GF is reformulated with Graf's expansion, and introduced inside a double 

integral (6.13) to suppress the singularity caused by g \ (8 ,d ' )=  K(0) in (6.14), when 

the angular coordinate of the source point equals that o f the observation point.

7.7 FU R TH E R  DEVELOPMENTS AN D  CONCLUSIONS

Using the results and some of the procedures from  the program calculating the 

GF, we can now develop the main program which calculates the propagation

constant o f a guided mode, /3, of a D— fibre. Its proposed flow  chart is given in

appendix 2. Its procedures have been tested separately, although the fu ll program is 

not in  operation. This program stores several important matrices simultaneously. We 

give the dimensions of the main matrices below:

2 x cpnt—M , created in the G 1-G 2-C A LC . procedure

4 x nb-angle x nb-angle, created in the g2—FTG 2r—FTG 2i-C ALC . procedure 

2 x cpnt—M  x cpn t-M , created in the M -C A L C U L A T IO N  procedure.

Each o f these procedures has one internal im portant m atrix o f the following
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dimensions: cpnt-serie, 2 x point, and 2 x nb-angle, respectively.

The integer variables: cpn t-M , nb-angle, cpnt-serie, and point are defined in 

appendix 2 in the IN PUT-CO NST procedure. The only m atrix in which the 

optimum number o f elements (cpnt— M) has to be determined by running the whole 

program is the complex m atrix M =  A +  iB as seen in sect. 6 . We recall that the real 

and imaginary part o f a complex matrix are calculated separately because o f the 

choice o f programming language. In  chapter 6 , the number o f components o f the 

matrices A  and B is still defined as in fin ite , i.e ., — °°< m ,n <+ <», w ith m being the 

number of column elements, and n being the number o f row elements. The real and 

imaginary part o f the elements o f m atrix M , i.e ., Amn and Bmn as defined in  sect.

6.5, are negligible fo r a high order value o f their row or column elements.

Therefore, we can truncate matrices A  and B, so that:

— cpnt—M  div 2 <  m,n <  cpnt—M  div2 , 

w ith cpnt—M being the number o f elements o f these square matrices. Now, i f  we

suppose a value o f cpn t-M  equal to 20, the total storage capacity used to 

memorized the above matrices simultaneously, is approximately 37 Kbytes. However, 

we cannot double the number o f angular integration points w ithout exceeding the

maximum memory capacity assigned to data by the operational system DOS (i.e , 64 

Kbytes. Another inconvenience o f using Turbo Pascal— 3 on a personal computer, in 

our case the IB M —A T, is the operational time. The transfer o f the program to a 

main frame computer, would overcome these disdvantages.

Having thus defined the program calculating the propagation constant, we w ill 

be able to compute by successive iterations, the /9 eigenvalues which are the 

solutions of our problem as defined in (5.42). The different /3 are real, as we have 

defined our problem for guiding situations only. The ir variation is a combination of 

the core/flat distance, d, and the refractive index o f the surrounding medium, n 3_ 

The other parameters are fixed by the characteristics o f the fibre and the 

wavelength o f the laser. The two main observations which can be made on the

variation of (3 are described below.
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a. A t first, we determined the fu ll range o f core/flat distances, d, and 

refractive indices o f the surrounding medium, n3, which still allows the 

propagation of at least one guided mode inside our D— fibre. The lim iting 

case o f the existence of 0 , w ill give the condition on d and n 3 fo r the 

loss o f a guided mode in favour o f a leaky mode.

The loss of one guided mode propagating in a D — fibre surrounded 

by an air medium, in comparison w ith the propagation constant o f the 

same fibre surrounded by a higher refractive index medium, implies that 

this mode leaks out into the surrounding medium. Therefore, i f  this high 

refractive index surrounding medium is locally introduced on top o f a 

D — fibre, fo r example as in a fibre to prism coupler, the energy of the 

in itia l guided mode, leaks and couples out into the radiation mode with 

the same propagation constant as the in itia l guided mode of the D— fibre.

Observe that, i f  we increase the value o f n3 for a small value of 

d, the real propagation constant o f the high order guided mode w ill 

disappear before that o f low order. This is due to a value of the 

effective index of a higher order mode closer to n2 than that o f a low 

order mode. The effect o f ne has been discussed in sect. 7.5.

b. Secondly, we w ill also be able to calculate the difference in propagation 

constants induced by the reduced cladding o f a D— fibre and/or a 

refractive index of the cladding superior to that o f the air. For example, 

the difference in propagation constants between a D— fibre and its 

corresponding circular fibre pulled from  a sim ilar preform, is found by 

calculating the 0 for a value o f the refractive index o f the surrounding 

medium different to that o f the cladding, i.e ., fo r n3*n 2, and then for a 

value o f its refractive index equal to that o f the cladding, i.e ., n3=  n2-

Next, we observe that the definition o f one 0— value can enable the calculation 

o f the scalar fie ld in the caldding region, by the use o f the K irch h o ff-  Huygens
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integral in (4.16) which was the basic function of our analytical developm ent.

In conclusion, in this thesis we have considered several approaches to the 

evanescent field coupling of a D — fibre.

The simplest is the ray approach applied to a multimode fibre. By plane wave

analysis, the input skew and elevation angle of a fibre to prism coupler, were

defined (see sect. 3.3.1). The leaky rays provide a firs t understanding o f an

evanescent coupler formed by a fibre and a semi—infin ite  dielectric substrate (3.26). 

We then studied the CM T (see sect. 3.1) which is defined fo r a weak coupling

situation, and usually applied to a guiding structure formed by two sim ilar guides,

and which was extended by Arnaud ^ 2  tQ demonstrate the coupling from  a planar 

guide to a semi— in fin ite  medium acting as a mode sink. However, this method is

not accurate.

Next, w ith the chosen GF method, we analysed the loss o f confinement o f a 

coupling structure formed by a D — fibre and a semi— in fin ite  dielectric medium, for 

example a prism. This loss o f one guided mode in favour o f a leaky mode,

characterizes the lim iting  values o f the core/flat distance and refractive index of the 

surrounding medium, over which one guided mode o f the fibre couples into the

radiation mode o f the prism.

Note that, this semi— numerical method is ideally suited to a planar stratified 

environment, and in particular our D — fibre, where the GF can be calculated by an 

elementary Fourier method. The use o f the scalar fie ld is appropriate fo r our weakly 

guiding fibre, and implies a scalar GF. The formulation o f the boundary conditions 

is exact and intrinsic. The main disadvantage o f the chosen GF comes from  the 

im portant computational operations.

Finally, it  would be of great interest to extend the GF method to leaky mode 

situations, by an analytical continuation o f the theory elaborated fo r the guided 

modes. Therefore, it  would be possible to calculate the complex propagation 

constants o f the leaky modes, thus to tota lly define the evanescent fie ld coupling of 

a D — fibre to a prism.
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APPENDIX 1

PROGRAM FOR C A LC U LA T IO N  O F  G F (fl.f l')

INPUT-CONST

d i s t :  c o r e / f l a t  d i s t a n c e
n 3 : r e f r a c t i v e  in d e x  o f  th e  s u r ro u n d in g  medium i n t e r f a c e  
ne : e f f e c t i v e  r e f r a c t i v e  in d e x  o f  th e  g u id e d  mode 
d e l t a :  i n t e r v a l  i n  the  s p a t i a l  dom ain  o f  th e  FFT 
nb—a n g le :  number o f  p a i r s  o f  so u rce  and o b s e r v a t i o n  p o i n t s  

s e l e c t e d  on the  c o n to u r  o f  th e  c o re

CALCULATION

  -  c h o i c e  o f  the  a n g u la r  p o s i t i o n  o f  t h e  s o u rc e  p o i n t :
0 ' -  ?

b = -0  w i t h b { 0  n b - a n g le )
p- - i n c r e m e n t a t i o n  o f  the  o b s e r v a t i o n  p o i n t :

0 -  b Ad

GREEN-FUNCTION : c a l c u l a t i o n  o f  g ( 0 , 0 ’ )
-  c a l c u l a t i o n  o f  x , x ' , y , y '  o f  t h e  s o u r c e  and o b s e r v a t i o n  

p o i n t  i n  c o o r d i n a t e s  o f  the  f l a t  s u r f a c e  o f  t he  c l a d d i n g

-  FUNCT
c a l c u l a t i o n  o f  t h e  f u n c t i o n  t o  be FFT“ 1 
s e p a r a t i o n  i n  a r e a l  and i m a g i n a r y  p a r t

-  FFT-1
use o f  th e  FFT r o u t i n e :  FOUR, and 
c o r r e c t i o n  o f  the  phase and th e  a m p l i t u d e

-  c a l c u l a t i o n  o f  the  1s t  GF by t h e  use o f  t he  
Besse l  f u n c t i o n  r o u t i n e :  BESSEL

-  INTERPOLATION
i n t e r p o l a t i o n  r o u t i n e  o f  th e  2n<* GF

Y
 i f  0 < 360°

GRAPHIC
g r a p h i c  o f  the  GF f o r  th e  s e l e c t e d  s o u rc e  p o i n t  and 
th e  o b s e r v a t i o n  p o i n t  v a r i a b l e  as a b s c i s s a .

Y
-  ■ ■-  c h o i c e  o f  a n o t h e r  source  p o i n t ?

SUMMARY

summary o f  th e  in p u t da ta
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APPENDIX 2

PROGRAM FOR CALCULATION OF B FOR A D -  FIBRE

INPUT-CONST
d i s t :  c o r e / f l a t  d i s t a n c e
0 3 : r e f r a c t i v e  in d ex  o f  the  s u r ro u n d in g  medium i n t e r f a c e  
ne : e f f e c t i v e  r e f r a c t i v e  i n d e x  o f  t he  g u id e d  mode 
d e l t a :  i n t e r v a l  i n  the s p a t i a l  dom ain  o f  th e  FFT 
nb—a n g le :  number o f  p a i r s  o f  s o u r c e  and o b s e r v a t i o n  p o i n t s  

s e l e c t e d  on th e  c o n t o u r  o f  t h e  co re  
c p n t - s e r i e :  number o f  e lem en ts  o f  t h e  G r a f  e x p a n s io n  

f o r  t h e  c a l c u l a t i o n  o f  t he  1s t  GF 
c p n t - M :  o r d e r  o f  the  m a t r i x  M
nb—i t e r a t i o n :  number o f  i t e r a t i o n s f o r  th e  c a l c u l a t i o n  

o f  0

i t  =0 , i n t e g e r  f o r  the  i n c r e m e n t a t i o n  o f  th e  number
o f  i t e r a t i o n ,  w i t h  i t s  maximum: n b - i t e r a t i o n s

Cl-G2-CALCULATION
c a l c u l a t i o n  o f  the  d ia g o n a l e le m e n ts ,  Gmnl ( 6 . 1 3 )  and 
C m nl' o f  th e  m a t r i c e s  Cl  ( 6 . 1 5 )  and G2 ( 6 . 1 8 ) ,  r e s p e c t i v e l y

use o f  t h e  p roc e d u re s  BESSEL-J and BESSEL-K f o r  the  
c a l c u l a t i o n  o f  Km, Jm+i and Jm

g2-FTG2r-FTC2i-CALCULATION
c a l c u l a t i o n  o f  the  v a r i a b l e s :

g 2 ( 6 , 6 ' ) ,  FTC2r ( 0 , 0 ' ) , FTG2 i ( 0 , 0 ' )  
f o r  a l l  th e  range o f  0 ' -  a . A d ' , a { 0 , . . . nb—a n g le }

0 ' -  b .  A 6 ' , b { 0 , . . . n b - a n g l e )

use o f  the  p rocedu re s  FFT-1 and INTERPOLATION

M-CALCULATION
m=l

  m=m +1 - ( c p n t —M d i v  2 ) : i n c r e m e n t a t i o n  o f  th e  rows
n = - l

—  n -n  +1 - ( c p n t - M  d i v  2) : i n c r e m e n t a t i o n  o f  the  colum ns

Gmn2-Gmn2' - c a l c u l a t  i o n
dou b le  n u m e ric a l i n t e g r a l  e x p r e s s i n g :

^m n2rea l *n ( 6 . 3 1 b )
^mn2im *n ( 6 . 3 1 c )
(- 'mn2' rea l  *n ( 6 . 3 2 b )

i \  1 ^mn2 ' i m  *n ( 6 . 3 2 b )
c a l c u l a t i o n  o f  Jmn ( 6 . 4 0 )  and Jmn' ( 6 . 4 1 )
c a l c u l a t i o n  o f  the  r e a l  com ponents o f  M:
Amn = Jmn(Cmn2* r e a l  +Gmn2' im)  +Jmn(Gmn2' r e a l  +Gmn2l im) 
c a l c u l a t i o n  o f  th e  im a g in a ry  com ponents o f  M:
Bmn = Jmn(Gmn2' im) +Jmn(Gmn2' im)

— i f  n<cpn t- M  d i v  2

 i f  m<cpnt-M d i v  2
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DETERMINANT
c a l c u l a t i o n  o f  the complex determinant o f  the matrix:  

det(M -  I ) ,  (I be ing  the i d e n t i t y  matr ix )  
u s in g  an a lg o r i th m  with  Gaussian e l i m i n a t i o n  and 
p a r t i a l  p i v o t i n g

ITERATION
i f  i t >0 then

0 i t + l  “  

i t  -  i t  + 1

Y
   i f  (det>0 and i t < n b - i t e r a t  ions )

N

SUMMARY

summary o f  the input data

i t e r a t i o n  by the secant  method a lg o r i th m

( 0 i t - l - 0 i t> 1(det  i t /detit_i
1 -  ( d e t i t / d e t j t _i>
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