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SUM M A R Y.

The major part of this work is concerned with spectrally synthesised fields, in 

two dimensional tapered waveguides with planar boundaries. The derivation of the 

spectral objects of interest are from work by Arnold and Felsen [1], in which the 

tracking of plane wave species throughout the wedge environment is manipulated into 

a modal form. The collective form of the ray species (mode) is facilitated by the 

application of the Euler—Maclaurin summation formula [2]. The application of this

summation formula furnishes the concept of an Intrinsic Mode and a source induced

field which is maintained to be a Green's function for the tapered geometry.

Numerical calculation of Intrinsic Modes has been a feature of several authors' 

work [3,4,5,6], but in this exposition a highly efficient numerical algorithm is 

developed, by using Fast Fourier Transform routines [7], which exploit the oscillatory

nature of the spectrum. This high efficiency enables confirmation of the power

conserving property of the Intrinsic Mode on a transverse cross— section as it 

traverses the c u t-o ff  region of the Adiabatic Mode, provided that at least an 

asymptotic form of the Euler— Maclaurin remainder is included.

The Intrinsic Mode and the source induced spectral field are shown to be exact 

solutions of the tapered geometry (excluding the apex) and the latter is demonstrated 

to possess all the properties of a Green's function.

This work also examines derivations and properties of four different 

contemporary theories, and attaches plane wave significance to their approximations 

by consideration of their wave vector loci. The marching algorithm methods — Beam 

Propagation Method [8] and the Parabolic Equation Method [9] — are compared and 

assessed with the Intrinsic Mode and the Green's function for the wedge environment 

(calculated using Fast Fourier Transforms).

The final section deals with applications of the Green's function using the 

Kirchhoff integral representation. Here propagation of fields represented on a 

boundary are investigated. A  method of calculating reflection loss from simple 

connected structures is also examined.
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IN T R O D U C T IO N .

Wave propagation in many forms can be adequately described, in numerous 

instances, by the scalar Helmholtz equation. When considering environments in which 

the configuration coordinates can be decoupled, using appropriate separability 

parameters, the method of separation of variables [10] or transform approaches [11] 

will suffice. Many interesting practical problems cannot be solved using the above 

methods because the symmetry of the structures will not allow a decoupling of 

coordinates. Particular attention is focused on two dimensional non— separable 

geometries, in which a slow change in the longitudinal field is permissible, termed 

weakly range dependent. In the 1960s weakly range dependent fields were examined 

by Pierce [12]. Unfortunately this approach is unable to model certain physical 

phenomena, such as mode disappearance, as sufficient information about the 

propagating field is not present. However, the advent of modern computers facilitates 

fast, stable numerical algorithms which 'solve' many analytically intractable problems, 

approximately. Numerical modelling of weakly range dependent acoustical fields in 

fluids has developed mainly from approximate analytical analysis by Tappert [9]. In 

the above work Tappert derives approximate equations, possessing parabolic wave 

vector loci, which represent the elliptic Helmholtz equation in nearly— separable

structures. These parabolic equations form the backbone of approximate numerical 

algorthims in acoustics, in which recent developments have produced more esoteric 

theories [13].

In optical environments the main approximate numerical machinary for 

examining wave propagation phenomena is the Beam Propagation Method (BPM), 

developed by Baets and Lagasse [8], which has been further enhanced to 

accommodate weakly non-linear wave propagation [14]. Feit and Fleck have also 

carried out extensive numerical work using the BPM [15,16]. All these numerical 

approaches essentially convert the boundary value problem, of the elliptic equation,

into an initial value problem. This transformation is obtained by assuming 

approximate parallel propagation and weak confinement in the plane transverse to the 

propagation direction. These qualitative constraints imply that the range of

applicability of these algorithms is not precisely known, as the true physical nature of 

the field is obscured. This lack of information about the wave nature of the field is 

highlighted in the investigation of geodesic lenses [17]. Here the focal shift computed 

using the BPM  was different from the exact analytical solution. The discrepancy, 

after detailed analysis using Geometrical Optics [18], was attributed to the 

approximations inherent in the BPM algorithm. This inability to determine precisely 

the nature of the field has been the motivation for analytically approximate methods 

[19,20] and numerical approximations of coupled mode analysis [21]. In these

approaches the ocean acoustics problem of Jensen and Kuperman [22] is addressed,
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in which a slowly varying wedge shaped ocean overlies a fluid ocean floor. The work 

by Pierce [19] uses a boundary layer method [23] where matching of the guided

mode field to the radiation field is made. This produces a uniform asymptotic 

representation of the field throughout the wedge environment.

All these methods, whether analytical or numerical, do not represent exactly 

any field propagating in a non— separable geometry'. This reason is the main impetus 

in the search for a different representation of the field inside a non— separable 

environment. This search leads inevitably to the examination of other wave 

propagation phenomena. Particular interest is placed on the theory of diffraction [24], 

where the source fields are often represented in angular plane spectrum form [25], 

This angular plane wave spectrum is used in many diffraction problems [26,27,28], 

and its representation of fields is essentially an integral over plane waves, 

parameterised by the propagation angle from a chosen datum. Indeed this method 

was used by Sommerfeld to calculate the diffracted field from a perfectly conducting 

half plane [29,30]. More recently this spectral approach has been used in an 

approximate manner [31], by exploiting the principle of stationary phase [32]. This 

type of patching has led to more esoteric representations (differential forms) of a 

global theory of diffraction [33]. The evolution of this spectral formulation is 

discussed comprehensively by Arnold [34]. However, in the class of approximate 

solutions there is one non— separable wave propagation environment which can be

calculated exactly [1]; this being the two dimensional tapered waveguide with planar 

boundaries. The solution to this problem draws on several well known formulations. 

Firstly the source field is represented by the angular plane wave spectrum. The 

scattered field is then the sum of all possible image points of the source, with the 

information of the number of reflections and refractions contained in each spectral 

function. This slowly converging ray series is then manipulated using the Poisson

summation formula [2] into a modal form. Several publications on the importance of 

this summation formula have recently been published [35,36,37]. It is of interest to 

note that the construction of this type of field is based, loosely, on the field due to 

a source point placed between two parallel, perfectly conducting, infinte planes [10].

This thesis is concerned with the analysis and evaluation of the spectral objects 

in the exactly soluble wedge geometry. This interest is motivated by a necessity to

produce benchmark solutions with which to compare other approximate algorithms and 

assess their performance.

The first chapter considers four different standard approximate methods of 

solving the wedge environment. Here examination of the derivations, with specific 

emphasis placed on the plane wave content present in these representations, by 

discussion of their appropriate wave vector loci, is given.

A  rigorous derivation of the Intrinsic Mode concept and the Green's function 

for the wedge environment are given as a demonstration of the necessary detail,
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essential if elimination of all approximations is desired.

Having derived the appropriate spectral objects a method of exploiting the 

oscillatory nature of the spectrum by using the Fast Fourier Transform (FFT) 

methods [7] is developed. This exploitation reveals more efficient 'intrinsic' directions 

when calculating these spectral objects, which are dependent upon the plane wave 

structure of the field. A  physical description of the plane wave structure of the 

Intrinsic Mode field demonstrates its ability to be calculated by this FFT approach.

The newly developed highly efficient algorthims are then used as a comparative 

tool in assessing the performance of other theories against the Intrinsic Mode for the 

Jensen— Kuperman (J— K) ocean [22] by examination of the field along the interface 

between the ocean and the ocean floor. The discrepancies in the field are accounted

for by using the simplistic plane wave approach adopted in the first chapter. Also

Intrinsic Mode fields are generated for T E  and T M  propagation in optical tapers. 

The Intrinsic Mode field is demonstrated to conserve power numerically across a 

transverse cross— section as the mode propagates upslope provided at least an

aymptotic form of the Euler—Maclaurin remainder term is included.

Analysis of the source free and source induced fields is given which

demonstrates that both representations are exact solutions of the Helmholtz equation, 

the latter possessing Green’s function properties. Asymptotic analysis of these spectral 

objects shows agreement with other derivations and approaches upto the First order in 

the wedge angle. The calculation of the Green's function is demonstrated using the 

FFT method developed previously. Also gaussian and normal mode fields were

propagated using Green's theorem [38] in two dimensions. A  method is then discussed

for calculating the reflected field, in principle exactly, from a simple connected 

structure, consisting of a parallel guide joined to an expanding wedge structure.

Chapters 2 and 4, and the asymptotic forms of the modal spectrum in chapter

6, together with the appropriate calculations (Appendices A, B, D , E, J) are this

authors' interpretation of previous work by Arnold and Felsen [1,39,40]. The other 

wave propagation theories, discussed within a plane wave framework, are already well 

documented. All other work is by this author.
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Chapter 1: W A V E  PRO PAG ATIO N IN  N O N -U N IF O R M  W A VEG U ID ES.

Introduction.

Weakly range dependent wave fields can be modelled by a variety of different 

techniques [8,9,12]. There are many publications demonstrating numerical results, 

implementation and rigorous detail. Here, four of the main types of technique are 

examined with specific attention placed on the physical anomalies arising out of their 

inherent approximations. The inability of all these theories to exactly model the 

planar wedge environment is greatly stressed as it is the prime motivation for the 

spectral synthesis approach discussed in chapter 2. The defficiencies of these methods 

in calculating the solution of

V2 + n 2( z , x ) k 2 j u ( z , x )  -  0 ( 1 . 1 )

for non— separable two dimensional scalar fields are examined using simple spectral 

domain analysis. The theories under consideration in this chapter assume that the 

field varies arbitrarily in the transverse (x) direction and slowly over a wavelength 

scale in the longitudinal (z) direction. The four theories scrutinised are;

(1) Adiabatic Mode Theory (A M T ).

(2) Coupled Mode Theory (C M T).

(3) Beam Propagation Method (BPM).

(4) Parabolic Equation Method (PEM ).

These techniques, and most of the other wave propagation theories not discussed 

here, can be placed into two categories each having a different underlying philosophy. 

The first two theories are born out of the same type of approach. In this instance 

the field is modelled by using known solutions of the range independent problem at 

each cross— section and massaging these in such a way as to account for the weak 

range dependence (non—separablity) in an approximate manner. Indeed, coupled 

mode theory is a natural mathematical progression from the standard adiabatic mode 

theory as more information about the wave processes is retained.

The last two techniques are created from a totally different philosophical 

standpoint. Here, the advent of fast computers has allowed algorithms to develop that 

are computer—oriented. The boundary value problem is approximated by utilising a 

numerically stable, initial value alogrithm. The last two methods discussed are from 

this category of approach and the consequences of assumptions used to generate the 

algorithms are examined in k— space.
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Adiabatic Mode Theory.

This section discusses the basic assumptions used in adiabatic mode theory in a 

general weakly non— separable environment. It then highlights its severe limitations 

and how these may be overcome by employing a patching method, with particular 

reference to the specific geometry of Jensen and Kupermann [22]. Consider a general 

slowly varying structure in the longitudinal direction as shown in Figure 1.1.1

Figm-? 1.1.1; A General Range Dependent Environment.

The field at a general transverse cross-section, £, can be decomposed into its 

transverse modal components at that cross-section. In A M T  the field is assumed to 

consist only of the discrete guided mode set $q( ez.x) of each transverse plane. The 

use of ez as an argument in any function expresses in a formal representation its 

weak dependence on the longitudinal parameter z. Thus the field, U (z,x), can be 

approximated globally by,

U ( z , x )  «  J  ( e z , x ) e * ^ q ^ Z  ̂ ( 1 . 1 . 1 )
q *

with the phase of each mode represented explicitly. Substituting this approximate 

expression into the wave equation (1.1) yields two one dimensional equations.

[ 5 x 2 +  n 2 ( £ Z - x ) k2 " 0 2 ] $  ( e z . x )  -  0 ( 1 . 1 . 2 )

Cq-(ia]2 + ̂ -° <113)
The first equation confirms the constraint that 4>q( ez.x) forms a discrete orthonormal 

set for each cross— section £  with the inner product relation defined as,
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<<t> ( f z , x ) , 4 >  ( e z , x ) >  -  6
q p qp

( 1 . 1 . 4 )

The second differential equation can be simplified by imposing the constraint of slow 

variation of field in the longitudinal direction, which allows for the neglect of the 

second z derivative of the phase, 'i'q(z). Equation (1.1.3) then has the approximate 

solution,

A  connection between each transverse mode at £  flowing into the transverse modes 

of a cross-section is required. In A M T  a mode, indexed by the integer q, is 

assumed to flow in a manner that retains the invariance of q. This effectively states 

that power is retained in a mode q throughout the geometry under consideration 

(hence the term adiabatic). A  mode propagating in the z—direction must conserve the 

quantity

across each transverse plane (see chapter 5), where * represents complex conjugate. 

The adiabatic mode field propagating upslope can then be represented by,

This approach has been used by Pierce [12] to examine acoustic pressure fields in 

non—separable structures in which a ray tracing technique has been employed. There 

is a severe limitation to this theory which will be discussed with particular reference 

to the planar wedge configuration depicted in Figure 1.1.2. The discrete mode set at 

each cross-section is easily found to be [41],

z

* ( z )  -  ± 0 ( z ' ) d z '
q q

( 1 . 1 . 6 )

<t>q ( e z , x )  -
A^( f z ) s i n j ^ ( h - x )  J 0<x< h(ez )

A ( e z ) s i n ( 7  h ) e TqX x<0
q q

x<0

( 1 . 1 . 7 )

and where

-d v  c o t ( y  h ) -  d . r
q 'q  1 q

h is the local guide height and d and d , are the densities inside and outside guiding 

duct.
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Figure 1.1.2; The Jensen -Kuperman Wedge Environment

x

air

ocean

Fluid Boundaries

ocean floor n

The inner product relation is given as [42],

rh ( c z )

4>*(x)4> ( x ) d x  + i -  
P q d.

<J> (x)<J> ( x ) d x  
P q

( 1 . 1 . 8 )

The orthonormality of this inner product relation when the densities in both media 

are equal to 1, together with the energy requirements, implies that,

V £ Z )  “  [  i  ■ / ? „ h  ]  * e x p  * /3(z'  ) d z '  

z n

Thus the adiabatic mode field propagating upslope for the wedge region is,

U ( z ' X) "  l f fq ( l+ T q h ) ] iexp 1 |3(z'  )d z '  

z„

s 1n ITq <h-x>] 0<x< h(cz )
( 1 . 1 . 10)

s i n ( 7  h ) e Tq X
q

x<0

As stated previously, for this theory to be valid, the environment must have slow 

dependence on the longitudinal variable. However, Jensen and Kuperman [22] have 

demonstrated numerically that, regardless of weak non— separability, the field changes 

rapidly over a wavelength scale in the longitudinal direction as the mode approaches 

cut— off. In this instance the evanescent field tends to a constant value and to 

compensate for the adiabatic nature of the theory leads Aq( ez) to tend to zero. Thus
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at and beyond cut -o f f  there is no description of the field. This collapse in the 

theory is due to considering only the discrete spectrum corresponding to the modal 

field. As the mode approaches cut— off the modal angle 0q tends to the critical angle 

0C. When 0q is close to the critical angle, 0C, the guided mode field couples

strongly to the radiation spectrum. In A M T  this continuous radiation spectrum is not 

considered and consequently the field calculations in this region are invalid.

Pierce [20] has shown that a critical transition region such as the one discussed 

above can be modelled by using a boundary layer technique [23]. This effectively 

expands the critical transition region so that the field can be said to be slowly 

varying with respect to a chosen parameter in this region and approximated 

asymptotically. This is then matched to the asymptotic form of the adiabatic mode

before entering the critical transition region. Pierce [43] has augmented this method 

by using a collective form of this approach to model a point source in the Jensen — 

Kuperman (J— K) ocean [22]. The analysis of Pierce in this instance is in good

agreement with the parabolic equation method of Jensen and Kuperman.

1.2: Coupled Mode Theory.

There are two main avenues of approach for generating coupled mode field 

solutions. The first method attempts generation by constructing numerically stable 

algorithms, which unfortunately obscure the physical processes occuring in the

non—separable environment. This is the approach adopted by Evans [21] wherein the 

introduction of reflecting boundaries, sufficiently far from the transverse region of 

interest, facilitates an approximate method of sectioning through the discrete and

continuous spectrum. The sectioning is achieved by evaluating all the discrete modes 

of the pseudo cross-section, at each cross-section, and applying the connection rules 

used in the Adiabatic Mode process. This method produces a stable algorithm and 

accurate results provided a large cross— section is used to generate the pseudo 

cross-section. This limitation has the effect of generating more pseudo modes and

consequently field calculations require a large amount of computer time.

The second type of approach used to examine C M  fields is derived from a 

purely mathematical background [42], which is the obvious extension of A M T . In this 

instance the continuous and discrete modal spectra are not subjected to a further 

boundary condition as above. Individual modes in the continuous spectrum do not

satisfy the radiation conditions at infinity; it is possible, however, to contruct a 

radiation field which is not only convergent, but also satisfies the desired radiation 

condition by superposition of the modes in the continuous spectrum [44]. To complete 

a formal representation of the coupled mode equations requires the introduction of
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extra orthogonality relations,

<<t> , >  -  0 « t  ,<t> >  -  6 (k  -k  ) ( 1 . 2 . 1 )
q M M v M v

where represents the transverse wave number (of the /xth radiation mode 

in the medium which extends to infinity. The above relations together with equation

(1.1.4) allow the guided field and the continuous spectrum to form a complete basis 

for that particular transverse cross— section. Thus it is possible to represent the field 

at any transverse plane by,

A (z)<t ( x ) d k  
V- V- ~  V-

( 1 . 2 . 2 )

To ease notation the modal description of the field in (1.2.2) is represented formally 

as,

U( x )  -  j  A ( z ) $  ( x )  ( 1 . 2 . 3 )
q q q

Substituting this into equation (1.1) and employing the orthogonality relations leads to 

the representation of the Helmholtz equation given in equation (1.2.4)

+ i  f2<4> ,^ q > !^ P  + <$ ,^ |q > A  1 + 0 2A -  0 ( 1 . 2 . 4 )d z 2 ^ I p dz Bz p d z 2 q J p p

where p and q extend over into the radiation spectrum and /3p is the eigenvalue of

the pth transverse mode. If  just the discrete mode set is considered then this 

expression is identical to the equations (4), (5) and (6) given by Pierce [12]. Again

in the limit of negligible coupling (the inner product terms in (1.2.4) are made zero)

and considering only the discrete mode spectrum will generate the approximate 

solution given in equation (1.1.6), with positive and negative signs in the exponent

indicating fields propagating to the right and left respectively. The assumption may 

then be made that each Ap consists of two modes, one propagating to the left, the 

other to the right. This assumption together with the ability to express the second

order partial differential equation of (1.2.4), in terms of two coupled first order

equations, gives (1.2.4) in matrix notation as,

a x
5^ + MX -  i BX ( 1 . 2 . 5 a )

with,
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X+ 0 0
X - B -

x " . 0 - 0  .
( 1 . 2 . 5 b )

with X ± representing the amplitudes of the modes propagating to the right ( + )  and 

left (—), and

where,

N ( 1 ,2 . 5 c )

K = < $  ^ q >
pq p ’ dz; ( 1 . 2 . 5d)

and (3 is the diagonal operator which contains on the qth diagonal 0qAq. Thus 

equations (1.2.5) represent exactly the Helmholtz equation (1.1). A  full derivation of 

this formalism in terms of a composite Hilbert space containing the discrete and 

continuous spectrum is given in [42]. Equations (1.2.5) express concisely and exactly

the modal processes occuring at each cross— section in a translationally variant

structure. A  simple understanding of these equations can be obtained by examination 

of a single mode; in this case the pth discrete mode propagating to the right. 

Suppressing the coupling matrix M , then the pth mode will propagate with a phase

factor exp(i(3pz), which is as expected. Introducing the matrix M , it is clear that the 

pth mode interacts with all other fields propagating to the right and to the left, with 

k encapsulating all possible mode coupling at a particular cross-section; discrete to

continuous, discrete to discrete, continuous to discrete and continuous to continuous.

The authors of [42] state that successive diagonalisation of the coupled mode 

equations in (1.2.5) leads to successively more adaptable functions of the

non— separable environment. It is suggested that the series obtained from this

diagonalisation procedure can in principle furnish more adaptable modes (i.e. modes

containing less intermode coupling). The computation of these functions is obviously 

faster than numerical solutions of the coupled mode equations as intermode coupling 

between these more adaptable modes is reduced. The disadvantage of this approach is 

that implementation of the analytic diagonalisation procedure is time consuming. In 

[42] Arnold and Felsen show that the coupled mode equations decoupled to O(o) are 

equivalent to the asymptotic form of the Intrinsic Mode derived in chapter 2. Indeed 

it is believed that this Intrinsic Mode will satisfy the coupled mode equations

decoupled to any order a  as this function is 'intrinsic' to its defined environment.
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1.3: The Beam Propagation Method.

The BPM was placed on a stable numerical basis by Baets and Lagasse [14] 

and theoretical analysis, using integral equations and Green's functions, of the 

approximations, given by Van Roey, van der Donk and Lagasse [45]. However, both

these expositions do not attempt to give physical descriptions of the approximations

used for successful implementation of the BPM algorithm. The BPM and an altered 

BPM code (used to simulate the PEM) are used as a comparative tool in the 

assessment of the performance of the Intrinsic Mode concept. The finer points of 

implementing the BPM are omitted as interest is in analytical approximations which 

affect the physical nature of the model.

The elliptic equation is a boundary value problem and as such requires the 

field and its derivative normal to the boundary to be known on the boundary 

enclosing the region of interest. To make algorithms easier to generate, the field is 

assumed to consist only of forward propagating (positive z) fields, which is effectively 

stating the weak range dependence criterion in another guise. This does however 

mean that backward reflected fields and gratings cannot be modelled using this type 

of approach. The satisfaction of the radiation condition for a finite spectral domain, 

used in these methods, is achieved numerically by including an absorbing index 

profile (imaginary refractive index) at a sufficient distance from the region of 

interest. This profile must be such that no strong reflections occur back into the 

desired environment and in all computations the profile was of the form exp(cosx),

where x is a transverse coordinate from a fixed point at a sufficiently isolated 

distance from the region of interest. The last restriction on the geometry is that the 

refractive index profile must be expressible in the form,

n ( z , x )  -  n (x)  + 5 n ( e z , x )  ( 1 . 3 . 1 )o

This states that the index profile must be representable in the form of a transverse 

index structure with a small perturbation representing the weak non— separability. The 

practical implementation of the BPM makes n 0(x) a constant and equal to the 

background index. These preceeding statements imply that the global change of index 

must be small compared to the background index. Using the above assumptions a 

derivation of the BPM algorithm to calculate the field from a transverse plane at 

z = z Q to a plane z Q+  bz is given with all the ensuing approximations.

The field at the plane z = z 0+  bz can be represented by,

U(z + 6 z , x )  -  W(z + 6 z , x ) e  o o
F ( z , x ) ( 1 . 3 . 2 )
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Substituting this into Helmholtz equation (1.1) and allowing,

[ V 2 + n 2k 2 ] w ( z , x )  -  0 ( 1 . 3 . 3 )

Leaves the relationship,

WV2F + W (VF)2 + 2VW.VF + k 2( n 2- n 2) -  0 ( 1 . 3 . 4 )o

If  the stepsize in z ( bz) is made small enough so that separability can be assumed 

then F(z,x) can be represented by,

F ( z , x )  -  A ( x ) 6 z  ( 1 . 3 . 5 )

where A(x) is constant throughout bz. Baets and Lagasse treat F(z,x) as a series 

expansion in bz. However, if bz is assumed small, the equality of (1.3.5) will be 

satisfactory for a first order solution of (1.3.4). Substituting (1.3.5) into equation

(1.3.4) means that A(x) must satisfy the quadratic,

. 2 2 dW . , 2 , 2  2 . f. / - l o r xA + m ■'T-  A + k (n  -n  ) -  0 ( 1 . 3 . 6 )w a z o

Solving this equation gives A(x) as,

A (x ) i  aw
W 3z -1  + 1 -  k 2( n 2- n 2)W2 

o
( 1 . 3 . 7 )

If  the index pertubation is small then the second term under the square root can be 

assumed to be small and thus the square root term can be expanded to give the 

approximate value of A(x) as,

k 2 9 9 f Au/ i
A (x )  -  -  £  <n - n o)Wl 5 i  ( 1 . 3 . 8 )

This quantity can be calculated numerically, but to increase speed and numerical

stability, paraxiality is introduced. The homogeneous field is said to consist of plane

waves travelling almost parallel to the z axis in the background medium, allowing 

W (z,x) to be well approximated by exp(in0kz), n 0 being the background refractive

index. This makes F(z,x) the standard approximation for thin lenses [46].

. . n 2- n 0 2
Ik  9 n - a~

F ( z , x)  -  e ° ( 1 . 3 . 9 )

Using the constraint of equation (1.3.1) and retaining terms upto 0 (5n) ,  then the 

BPM field at the cross—section z = z 0+  bz from (1.3.2) is given by,
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U( z  + 6 z , x )  -  W(z + 5 z , x ) e i k6 n ( x )  6z ( 1 . 3 . 1 0 )o o

To examine the algorithm in more detail it is advantageous to derive a BPM wave 

equation. The above formalism suggests that the BPM field consists of plane waves of 

the form,

Using an obvious first order differential equation in z and considering all possible 

plane waves gives the BPM wave equation as,

As the field is weakly range dependent the second derivative with respect to z is 

neglected which gives the dispersion relation,

In Figure 1.3.1 the dispersion relation is shown for the case when 6n(x)?*0. The 

diagram gives a clear indication of how the BPM approximates the elliptic equation. 

At the cross-section z 0 the field is transformed into the plane wave spectrum 

propagating in the positive z direction. The phase for each plane wave, denoted by 

kz 6z, propagating from z Q to the plane z Q+  6z in the background medium is,

To obtain the configuration space field the plane wave spectrum must be inverse 

Fourier transformed. In the spectral domain, at z = z 0+ 6 z ,  this procedure corresponds 

to a sem i-circular wave vector locus of radius n Qk and centre at the origin. 

However, to account for the perturbation of the medium the phase factor of the thin

V ( z , x )  -  B(k  ,k  )e  z  x

i ( k z  + k 6 n ( x ) ) z  Ik^ x
( 1 . 3 . 1 1 )e

where from (1.3.3) the dispersion relation is,

The BPM wave equation can derived [18] by noting that,

V 2V ( z , x )  ------ [ k 2 + ( k z + k 6 n ( x ) ) 2] V ( z , x )

-  - | n 2k 2 + 2 k 6 n ( x ) ( k  + k 6 n ( x ) )  -  k 26n2( x ) 1V ( z , x)t o  z  J

( 1 . 3 . 1 2 )

o ( 1 . 3 . 1 3 )

k 2 1 *e x p ( i k  6z) -  exp in  k 1 -  — 6z 
2 0 i n q K

( 1 . 3 . 1 4 )
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lens approximation,

i k 6 n ( x ) 6 z
e ( 1 . 3 . 1 5 )

is added. This has the effect of shifting the plane wave locus to the right by k6n(x) 

and from the diagram it is observed that this is a good paraxial approximation to the 

true elliptic field.

Figure 1,3.1;— The Plane Wave Locus of the BPM

exact dispersion relation

BPM dispersion relation
ilPM,

kSn

1.4: The Parabolic Equation Method.

There is a variety of different types of parabolic equation [9], but all are 

grouped as parabolic because they possess parabolic dispersion relations. A  simple 

derivation of the PEM  used later in the thesis is given by firstly assuming that all 

the field propagates as though it were in the background medium and travelling 

almost parallel to the z axis. Thus the field can be represented by,

U ( z , x )  -  G ( e z , x ) e * n °^Z ( 1 . 4 . 1 )

Substituting this expression into the elliptic wave equation (1.1) implies that G( rz.x)
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satisfies,

f ^2 ^ 2 2 2 1
I  5 x 2+ 5 z 2 + 2 i n okSz + k - n 0) J G ( c z » x )  -  0 ( 1 . 4 . 2 )

exactly. Noting the implied slowness of G in the z direction means that the problem 

can transformed into an initial value problem by the neglect of the second z

derivative of G. This gives the parabolic dispersion relation as,

k 2 + 2n kk -  ( n 2- n 2) k 2 ( 1 . 4 . 3 )x 0 z  0

Figure 1.4.1 shows how this dispersion relation approximates the elliptic equation

dispersion relation.

Figure 1,4,1; Parabolic Equation Dispersion Relation

exact dispersion relation
nk

PEM

PEM dispersion relation

To emulate the PEM , the BPM framework can be used. If  the phase change of each 

plane wave as it propagates from one plane to the next is changed from (1.3.14) to,

e x p ( i k z 6z) -  exp i n Qk [  1 -  ] 6z ( 1 . 4 . 4 )

and the thin lens approximation accounting for the perturbation is changed from 

(1.3.15) to,
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exp i k j  6n( x)  + - - ^ ( 1 . 4 . 5 )

the BPM algorithm will then generate approximate solutions to the parabolic equation 

given in (1.4 .2). To facilitate this emulation requires changing only two lines of code 

in the BPM alogrithm.

Conclusions.

The analytical approaches of A M T  and C M T examine closely the wave 

propagation phenomenon by employing previous knowledge of similar separable 

structures. This type of method allows for arbitrary varying media in the transverse 

plane to be modelled accurately while still retaining physical insight as the wave field 

moves through critical transition regions. Unfortunately, because of the necessary 

examination of each geometry, each algorithm generated is specific to that 

environment. Consequently immediate versatility of algorithms is limited, even though 

the actual validity of application to many structures is possible.

The marching algorithm methods, where boundary value problems are 

transformed into initial value problems, have great versatility provided that weak 

guidance in the transverse plane and weak range dependence are encountered. These

methods can be applied easily to the class of structures mentioned above, but it must

be noted that these methods do not solve the exact elliptic wave equation of (1.1). 

These types of methods which solve different, but approximately similar, wave

equations lead to difficulties when the comparison of data is required, because 

different conserved quantities exist in each particular wave equation. The effect of 

these approximations has been observed when predicted focal lengths of geodesic 

lenses using the BPM have not agreed precisely with exact analytical results [17].

Geometrical optics analysis by Gribble and Arnold [47,48] has adequately accounted 

for the discrepancies in the predictions of these focal lengths.

All these methods are under the umbrella of approximate solutions, which 

prompts research into new methods that may obtain exact solutions of specific 

non— separable geometries. The spectral synthesis approach used extensively throughout 

the following chapters allows for an exact solution of the planar wedge environment 

to be obtained.
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Chapter 2: F O R M U L A T IO N  OF T H E  W E D G E  GREEN'S FU N C TIO N  
A N D  T H E  IN TR IN SIC  M O D E .

Introduction.

Wave propagation in range independent media is a well explored phenomenon 

[24], the solutions of which are obtained by either of several standard techniques.

Arguably the most powerful of these techniques is the separation of variables 

method. However, in range dependent environments the symmetry necessary for the

decoupling of the wave equation to coordinate first order ordinary differential

equations is not present and the above techniques cannot be applied. Most of the 

previous methods used to examine wave propagation in these structures can be 

divided into two main categories as mentioned in the previous chapter. Unfortunately 

while these methods may have reliable solutions for many slowly varying geometries, 

they lack a precise physical interpretation of the exact geometry, which will be 

intrinsic to the structure of the problem. This chapter presents a detailed account of 

the method of solution of the scalar Helmholtz equation for a wedge shaped 

refractive index profile for both the source— free and source excited cases. The

method outlined in the following sections is that of spectral synthesis. This approach 

involves the introduction of a ray integral representation of the field from a source 

point. The ray integrals are such that their asymptotic forms behave locally like ray 

fields [11]. The field at an observation point in a wedge shaped structure is then 

said to consist of the direct ray integral field and all the multiple reflected ray 

integral fields. While this interpretation will in principle yield an exact solution, a 

large number of ray integral terms are required. To make the infintie series of ray 

integrals more rapidly convergent the ray field is transformed into a modal field, the 

passage to which is achieved by interchanging sum and integral and then applying 

the Euler—Maclaurin formula [2], The presentation in this chapter is in the form of 

five main sections based on several publications by Arnold and Felsen [1,39,40].

The first section derives the scattering equation and explains the foundation of 

two cases of interest (i.e. source free and source excited cases). The second section 

examines the source free (Intrinsic Mode) case for the desired geometry of Figure 

2.1.1. The third section is concerned with the niceties of mathematical detail 

necessary for a rigorous theory. The fourth section explores in detail the field due 

to a point source inside the guiding structure. This solution is the Green's Function 

for the wedge environment. The fifth section is again concerned with mathematical 

niceties, this time for the source excited geometry and demonstrates that the field 

can indeed be constructed for any open subset of the wedge geometry, excluding the 

apex.

The third and fifth sections, while being of great mathematical importance,
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place the Intrinsic Mode theory on a solid analytical background. It is therefore 

unnecessary to examine the fine detail of these sections to obtain an understanding 

of the principles and concepts involved in the derivation. However, the results at the 

end of these two section need to be understood so as to realise the applicability of 

the derived spectral objects.

2.1: The Derivation O f The Scattering Equation

The decomposition of fields into an angular plane wave spectrum is a 

mathematical procedure employed to solve many diffraction problems [30], which not 

only furnishes great geometrical insight, but it can often afford more rigorous 

analysis to be implemented. Indeed this is the case for the geometry of interest 

shown in Figure 2.1.1.

Figure 2.1.1: 2-D Planar Wedge Environment

x

2LeX

In the wedge interior the scalar field at a point x is expressible as the sum of 

both an upward propagating and a downward propagating plane wave field at that 

point. Let the upward and downward fields be H +  (x) and H — (x)  respectively. This 

statement may be represented in a spectral integral form by,

H* (x ) lT (0 )V * (2 < )d 0 ( 2 . 1 . 1)

c -

where U ±(0) is the spectral amplitude of each plane wave component,
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V^(x)  “ e
+ - i n k r c o s ( 6± \ ) x € X ( 2 . 1 . 2 )

with the positive and negative signs denoting the upward and downward plane wave 

fields respectively. C * are infinite contours which terminate at ±i°° and in sectors 

which make the integrands of (2.1.1) decay.

The application of this spectral approach has effectively transformed the 

problem into the spectral (0) domain. With this transformation the evaluation of the 

spectral amplitude functions U ±(0) is now addressed. The transformation to the 

0— domain has altered the boundary conditions in such a way that they may be 

expressed in a linear operator notation. Let R u and Rj be the linear reflection 

operators for the upper and lower boundaries respectively, which will act on plane 

waves in the manner shown below,

where 4>j( 0) is the phase change at the lower boundary and <t>y£ 0) the phase change 

at the upper boundary, for a wave incident at an angle 0. Two other reflection 

operators may be similarly defined which represent the phase changes induced after 

two reflections have occured, depending upon which boundary the plane wave was 

first incident.

The action of these operators on appropriate plane waves is depicted in Figure

( 2 . 1 . 3 a )

( 2 . 1 . 3 b )

R+= R.R  1 u ( 2 . 1 .4a)

R -= R R. u 1
( 2 . 1 . 4 b )

These composite reflection operators act in the obvious way to yield,

( 2 . 1 . 5 a )

4>+ (0 )  -  4>u (0 + a ) + <t>j(0+2a) ( 2 . 1 . 5 b )

<t> (0 )  -  4>u (0 + a ) + <t j (0 ) ( 2 . 1 . 5 c )

2.1.2.
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F igure 2.1.2 ;  Geometrical Representation of the Reflection 

and Transmission Operators

0 + a

0+ot y : \ ^  0+a0+av

'0+2a

As the media of immediate concern are linear in nature, then it is possible to 

superpose plane waves to represent the total upward and downward fields, after one 

reflection, inside the guide by,

R jH  (x ) l f ( 0 )  e 1^ 1 ( 0 ) V * ( x ) d 0  0
( 2 . 1 . 6 a )

R H+ ( x )  u U ( 0 )  e u V ( x )  d0  
0+7a

C+

( 2 . 1 . 6 b )

respectively. By a trivial extension the upward and downward field after two 

reflections can be expressed as,

R ±H ± ( x )
± i $ ~ ( 0 )  ±U ( 0 )  e  ̂ ; V ( x )  d0

0+^a
C1

( 2 . 1 . 7 )

inside the guide. However, to facilitate the construction of the field outside the 

guide, the concept of transmission operators must be introduced. Firstly, plane waves 

outside the guide and travelling away from the higher refractive index can be 

represented by,

V , ^ x )  -  e - l n i k r c o s ( * , - x )  

V 3^ x )  -  e - < " 2 * r c o s ( « J+x>

x f X i

X f X 2

( 2 . 1 , 8 a )  

( 2 . 1 . 8 b )

where 0, and 0 2 are the angles the plane waves make with the lower boundary
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(see Figure 2.1.2). In a procedure similar to obtaining the field inside the guide, the 

total refracted field outside the guide can be expressed as

T j H  ( x ) U (0 ) 1 + e V, 0^x)d0 x f Xj ( 2 . 1 , 9 a )

t / ( x ) U+ (9)
C+

1 + e i<t>u (0+ a ) V 2 0 ^ x ) d 0 % e X2 ( 2 . 1 . 9 b )

Here T u and T j are the transmission operators at the upper and lower boundaries 

respectively (c.f. Figure 2.1.2).

The same strategy may be employed to evaluate fields due to plane waves 

incident on the guide structure from outside and will be explored in more detail in 

chapter 6 . By invoking the spectral strategy above it is possible to synthesize the 

source field in the wedge environment. The source field is given in the usual 

notation by,

h ; ( x ) U ' ( 0 ) V ' ( x ) d 0  
o 0

C*

( 2 . 1 . 1 0 )

An intuitive physical interpretation of the problem states that the observed field U(x) 

is the sum of the direct field at x plus the infinite number of possible reflected 

wave fields. This can be expressed by a scattering equation in the form below.

H " ( x ) H ” ( x )  + R ±H± ( x )  +
± 1 2 ±

’ J Ho<* ) + ( 2 . 1 . 11 )

This expression represents the incident field, and all possible evenly reflected incident 

fields. While this notation greatly simplifies the problem it is not obvious if the 

infinite sum of (2 .1 .1 1 ) converges, nor is there any precise indication of the effect 

of truncating the series. However, this scattering equation can be expressed in closed 

form — the motivation for the operator notation — which can be solved exactly 

without the need to address the above stated problems. The scattering equation 

expressed in this closed form is,

[ 1 -  R 1 ] H * ( x )  -  H * ( x ) ( 2.1 . 12)

for which (2.1.11) is the formal solution by iteration. In this form there are two 

distinct modes to the scattering problem, one being the homogeneous case (i.e. 

H 0=  0) and the other the inhomogeneous problem (i.e. H 0 ?0). The examination of 

the former case gives rise to pure Intrinsic Modes, which are exact solutions of the
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source free Helmholtz equation and are discussed in the ensuing section. The 

solution to the more complicated latter problem is fomulated in a later section which 

gives an exact Green's Function for the geometry described in Figure 2.1.1.

2.2: The Intrinsic Mode.

The solution of the source free scattering equation is facilitated by transforming 

to the spectral domain. The explicit representations for the scattering equation are 

given by equations (2.1.1) and (2.1.7). If  the evenly reflected field (2.1.7) is shifted 

by 2 a  and a permissible deformation back to the original contours C 1 is made, then 

the spectral form of the scattering equation is

+
± ± jd) ( 0 —2q)  

U ( 0 ) - U  ( 0 - 2 a ) e  K } V * ( x ) d 0  -  0 ( 2 . 2 . 1 )

c 1

The deformation of the contours is permissible by invoking Cauchy's integral theorem

for infinite contours, whereon the integrands vanish at infinity, provided no

singularities are crossed in the deformation. For notational convenience the

substitution 0 -> 0+ 2a  is employed. As Vfl(x) is an arbitrary solution of the wave

equation, and provided that convergence of the integrals is maintained, the spectral

domain scattering equation is,

U± ( 6+2a)  -  l T ( 0 )  e i4) ( 6 )  ( 2 . 2 . 2 )

For clarity it is desirable to employ the substitution,

+
I T ( 0 ) -  e i Sq ( 0 )  ( 2 . 2 . 3 )

This transforms equation (2.2.2) to,

Sq(0+2cO -  Sq(0)  -  * * ( 6 ) -  2qU ( 2 . 2 . 4 )

If  another variable is defined as

S * ( 0 )  -  S * ( 0 )  + \  * * ( 6 ) + , ( 2 . 2 . 5 )

then equation (2.2.4) becomes,
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S * (0 + 2 a )  -  S * ( 0 )  -  i  [ <tT(0+2a) + <t>± (0 )  ] ( 2 . 2 . 6 )

The right hand side of equation (2.2.6) can be expressed exactly up to an arbitrary 

periodic function (with period 2a) by using the Euler— Maclaurin formula [2] given 

below,

\  ( f ( « + 2 o )  +  f ( 0 )  ] -  j i

6+ 2a

f ( s ) d s  + E ( 0 + 2 a , 6)

6

( 2 . 2 . 7 a )

where

E ( 0 + 2 a , 6) 1_
2a i

—00 .
q*o

r0+2a  

f ( s )  e

0

iqII ( s - 0 )
a ds ( 2 . 2 . 7 b )

Identifying with f, the solution of (2.2.6) can be extricated. It then follows that

the solution of the desired equation (2.2.4) can be obtained by the substitution of 

equation (2.2.5) to yield,

s;<»>

q*o

4>” ( s ) d s  -  qll0 +  E_ ( 0 , 0 q )

•0 

0 ,

<t>~(s) e

i q n ( s - 0 )
a ds

( 2 . 2 . 8 a )

( 2 . 2 . 8 b )

The abitrary lower endpoints 0C and 0q are allowable provided the integrals of 

(2.2.8) converge. This arbitrariness is possible because the periodicity of the spectral 

scattering equation is equal to range of integration of the Euler—Maclaurin formula. 

Thus the solution of (2.2.2) is exact upto arbitrary periodic functions of 0 . The 

upward and downward phases S q ±( 0 )  are unrelated upto period functions of 0 

(period 2a). To maintain consistency with upward and downward fields it is 

profitable to find Sq~ ( 0 ) and then construct Sq"̂  ( 0 ) by applying one of the 

boundary conditions, the obvious one to impose being the lower, i.e.

H ( x )  -  RjH ( x ) ( 2 . 2 . 9 )

which gives the consistency condition,

Sq(0)  -  Sq(0)  -  * j ( 0 )
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Consequently the Intrinsic Mode for the planar wedge geometry may be represented

by,

w (a)

l s q ^ ) e ~ l n k r c o s ( 0±x ) d0 2< f X

C r

.1S^ * ) [ l  + e i * l ( # ) ] e - l n l k r c o s ( ® ' ' x ) d»,  S 1 X,  ( 2 . 2 . 1 1  

iSq(e)[l + ei*u(»+")]e-‘n2krcos(e2+X)dei  ̂ ^

The exact nature of the contours C 1 with the appropriate E— M remainder terms is 

examined in the next section, and in chapter 4 the physical significance of these 

contours and remainders is discussed. With this formalism, it is now essential, for 

mathematical completeness, to examine rigorously the properties of the resolving 

spectra of equation (2 .2 .8 b).

2.3: Rigorous Analysis O f The Resolving Spectra.

In this section the convergence properties of the spectra in equation (2.2.8b) 

are examined, for equation (2 .2 .8 a) will only hold if the series in (2 .2 .8 b) is 

convergent throughout the range of integration. This section analyses the possible 

integration contours which will maintain convergence of the spectral series (2 .2 .8 b). 

To analyse the sum in (2.2.8b) it is necessary to further specify the form of the 

phase function $>*(0), and to define a choice of 0 q for the lower endpoints of the 

integrals. These endpoints are essentially arbitrary because of the permissible 

indeterminancy of the Euler—Maclaurin formula.

Firstly, to ease analysis it is useful to define a generic function <fc( 0) which 

possesses the analytical properties of physical realisable phase functions. These 

functions have several common properties;

(1) Algebraic growth anywhere in the complex plane.

This is a mathematical necessity which allows the spectral representation 

of the field to be governed by the plane wave terms.

(2) Possesses branch points of order J at 0 =  ±0C , n± 0C

These branch points represent mathematically the critical angle at which 

total internal reflection occurs.

(3) Periodic in 2fl
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This condition is necessary for consistency.

( 4 )  <t<0) =  4 < n  -  0)

This condition is necessary for isotropic meida.

The Brewster phenomenon is not discussed in this exposition, but work by Arnold 

and Felsen [1] has shown that identical analysis can be used provided the singularity 

at the Brewster angle is removed and treated separately. Thus the generic form of 

equation (2 .2 .8 b) is,

2 a  f
q *°  J e

e
4>(s)M(qs-q0)ds

q

( 2 . 3 . 1 a )

with

M ( f )

i n f
a ( 2 . 3 . 1 b )

As $( 0 ) is defined as having no more than algebraic growth at infinity, the integral 

in (2.3.1a) is dominated by the exponential term. Thus the integral will converge at 

the lower limit if

0 q  <■= i°° q>o ( 2 . 3 . 2 a )

0 q  -  -i°o  q<o ( 2 . 3 . 2b)

For the complicated non—trivial case where the phase function has a branch point, 

analysis is eased by splitting the sum in (2.3.1a) into positive and negative q parts 

and summing explicitly to yield,

E ( 0 )  -  E p ( 0 , 0 q )  +  E n ( 0 , 0 q )  ( 2 . 3 . 3 a )

where

E ( 0 , 0 q )
1_
2a

E n < * ' V  - 5 5

■0 + i 6

<f>(s)M(s-0)ds 
1 -  M( s - 0 )

i°o

r0 - i  6

<t>(s)M(-s+0 )ds 
1 -  M( - s+0)

-io o

( 2 . 3 . 3 b )

( 2 . 3 . 3c)

where 6 is a small positive constant. Using this formalism the integration contour 

passes above the branch point in the first integral and below the branch point in 

the second integral. The above integrals diverge at s =  0 , but are self cancelling as 

6 -> 0 .
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FiEure 2.3.1: Contours of Imesration for the E-M Remainder,

Im 0
Figure 2.3.1(a)

- 6c
Re0

n-a

Im 0

6+i5
-0c

e-is

n-a

Figure 2.3.1(c)

Im 0

6+i5

0-i5 
—►Ree
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Applying Cauchy's theorem for infinite integrals it is possible to deform the lower 

end—points of both integrals to 0 iioo appropriately, provided that,

I Re ( 0) | < ec

(i.e. no singularities are crossed in the deformation of the contour). From complex 

analysis [51] the analytic properties possessed by an integral are entirely determined 

by the integrand, and as such E( 0) inherits the properties of <t(d). This is shown 

diagramatically in Figure 2.3.1.

The convention for the branch cuts in Figure 2.3.1 will be discussed in later 

chapters. The diagram of Figure 2.3.1(a) shows clearly that E ( 0 ) can be analytically 

continued to arbitrary complex values of 0 , provided it does not cross the branch 

cuts at |R e (0) |  =  0C. However, to retain continuity across the branch cut at Re( 0 ) =  

0C it is necessary to add a branch cut integral F j ( 0 ) to E ( 0 ). Hence E( 0 ) becomes,

E ( 0) = Ep ( 0 , 0 q) + En ( 0 , 0 q) + F1 ( 0 )  0C< Re( 0)  < I1-0C ( 2 . 3 . 4 a )

where,

Fx ( 0) 1_
2a

4 > ( s ) M ( - s + 0 ) d s  
1 -  M ( - s + 0 )

( 2 . 3 . 4 b )

and where Pa is the contour encircling the branch cut at R e(0 )=  0C as seen in 

Figure 2.3.1(b). Due to the nature of the generic phase function $(0) it is obvious 

that,

F^ ( 0 )  0 as Im0 <» ( 2 . 3 . 5 )

The function Fj (0)  is periodic with respect to 0 and has a period of 2a. It is very 

important at this juncture to stress that the addition of this branch cut integral term 

is not analytic continuation in the complex analysis sense, it is merely an

exploitation of the indeterminacy of the Euler— Maclaurin solutions to correct the

discontinuity of E( 0) sectionally. On crossing the branch cut at Re( 0) =  n -  0C

another periodic function must be introduced to give continuity to E ( 0). This case is

observed in Figure 2.3.1(c) and is represented by,

E ( 0) -  Ep ( 0 , 0 q ) + En ( 0 , 0 q ) + Fx ( 0 )  + F2 ( 0 )  ( 2 . 3 . 6 a )

when
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n - 0 c < R e( 0 ) < n + 0 c

and

F2 ( 0) 1_
2 c*

<*>(s)M(s-0)ds  
1 -  M ( s - 0 )

Pb

( 2 . 3 . 6 b )

Again imposing the properties of the generic phase function it is clear that ¥ ^ 6) is 

dependent on the exponent in the integrand of (2 .3 .6 b) and so

F2 (0 )  0 Im( 0) -oo ( 2 . 3 . 7 )

It is useful at this stage to examine the reason for the above procedures. The 

previous manipulations are an attempt to evaluate the properties of the 

Euler—Maclaurin remainder over the complex 0—plane. The nature of the solutions 

— periodic indeterminacy — require that appropriate periodic functions are added to 

E ( 0), so that E( 0) remains continuous across a branch line, these periodic functions

being the corresponding branch cut integrals. While the addition of these functions is

not analytical continuation it will make the E— M  remainder E( 0 ) consistent 

throughout the 0— plane upto an arbitrary periodic function of 0 , with a period of

2c*. The mathematical sectioning can be represented by,

E (0 )  o y - * c < Re ( 0 ) <

E( 0 )  = in o + Fx ( 0 ) , < Re (0) < 3 i o ( 2 . 3

E (0)  o + Fx ( 0)  + F2 ( 0 ) , n - 0 c < Re (0) < n + 0 c

with

Eq ( 0) -  E p ( 0 , 0q ) + En ( 0 , 0 q ) ( 2 . 3 . 8 b )

This analysis has exploited the Euler— Maclaurin indeterminacy sectionally so as to 

construct a consistent Euler— Maclaurin remainder term E( 0) throughout the 

0— plane. However, it is also possible to exploit this indeterminacy globally by 

adding to E( 0) a periodic function in every sector shown in Figures 2.3.1. This 

procedure is equivalent to placing the lower endpoints 0q of the integrals En(0 ,0q) 

and Ep( 0 , 0q) in different sectors of the complex 0 - plane as can easily be observed 

from Figure 2.3.1. I f  the periodic branch cut integral F j ( 0) is subtracted from each 

sector then E( 0 ) can be represented by
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E( 0)'

Eo ( 0)  " Fl ( 0 ) ' ~ ec < Re<0) < ec

Eo ( 0 ) ,  6C < Re ( 0 ) < n - 0 c ( 2 . 3 . 9 )

Eo ( 0 ) + f 2 ( 0 ) ( n - 0 c < Re( 0 ) < n + 0 c

It is desirable to know the asymptotic nature of E (0) as a  -» 0. The properties of 

the three functions Eo( 0), F j ( 0) and F 2 ( 0 ) are obtained in Appendix A  and the 

results are summarised below,

Eq ( 0) ~ 0 ( a ) ,  | I m ( 0 ) | oo

F1 ( 0 )  ~ 0 ( a * ) ,  I m ( 0) > 0 ,  0 *  0 c ( 2 . 3 . 1 0 )

F2 ( 0 )  ~ 0 ( a * ) ,  I m ( 0) < 0 ,  0 *  0 c

It can also be shown that the above equations hold even for 0 =  0C [1]. As the 

functions F j ( 0 ) and F2 ( 0) inherit the branching structure of the phase function <t( 0) 

to the right of their generating branch cuts, continuation deep into these sectors 

should be avoided. Using equations (2.3.8), (2.3.9), (2.3.10) and Appendix A, it is 

noticed that the two remainder terms have only algebraic growth in the shaded 

regions shown in Figure 2.3.2.

The first E—M  remainder term defined by equation (2.3.8a) is denoted by 

Ea( 0) and the E—M  remainder defined by equation (2.3.9) is denoted as E ^ (0). As 

the two E— M  remainders have algebraic growth in the above sectors the 

convergence of the Intrinsic Mode is dominated by the plane wave terms,

e ~ i nk r c os ( 0 ± x )

Therefore when observation points are inside the wedge the allowable contours must 

tend to infinity in the sectors,

-a  < Re( 0)  < n - a ,  l m(0)  -» °°
( 2 . 3 . 1 1 )

-II+ a<  Re( 0 )  < - a ,  II+a< Re( 0)  < 211-a, l m(0)  -* -oo

Two possible contours Ca and C5  depicted in Figure 2.3.2 will maintain convergence

of the Intrinsic Mode field. The Intrinsic Modes calculated using the contour C a and 

Ea( 0 ) correspond to upslope propagating fields, while integrating over C*, and using

Efc(0) represents downslope propagating fields (c.f. chapter 4). The summation of

both these types of field gives the Intrinsic Mode contour C t  of  equations (2.2.11).
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Eigure 2 ,3.2; Regions of Algebraic Growth of thp two 

SgCtiQnally Continuous E-M  Remainder*;

and possible contour?; o f thp fM

Im 6

n -0 c n-a-a

Im e

n+a-0c
■►Ree

n-e,

2.4: The 2—Dimensional Wedge Green’s Function.

This section is concerned with evaluating the field of a line source in a wedge 

environment. The observed field in this case is equivalent to the solution of the 

inhomogeneous scattering equation (2.1.12). As the wedge structure is quasi two 

dimensional (i.e. the geometry is invariant in the y—direction) the line source may 

be represented in two dimensions by a delta function. The free space field at a 

point due to the line source can be represented in the spectral synthesis notation of 

equation (2.1.10). While this notation may at first appear the obvious choice for the 

source term of equation (2 .1 .1 2 ) it is inadvisable to apply it in this form, because 

of convergence difficulties in the final representation. Instead, it is more desirable to 

use source fields that converge even when the observation point is coincident with 

the source point.
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It  was mentioned in the first section of this chapter that the solution to the 

scattering equation consisted of an initial field and all possible even reflected initial 

fields. Using this scattering equation, it can then be seen that to represent only the 

total scattered field, the initial field for the scattering equation must contain four 

wave species. These four wave species are the fields after the direct field has been 

reflected in the upper and lower boundaries both an odd and even number of times 

and are depicted in Figure 2.4.1.

Figure 2.4.1: The Initial fields for the Scattering eouation

x

W ith these reflected fields as the source terms in the scattering equation all possible 

reflections are defined. To obtain the Green's Function for the wedge environment 

requires the addition of the direct term to the total scattered field of equation 

(2.1.12).

The upward and downward fields in free space can be represented by,

where

H+ ( x )

Ho ( x )

W ' ( 0 )  -  e  
o

Wo ( e ) v e <- ) d s
c+

W ( 0 ) V . ( x ) d «
O V

C~

i n k r s c o s ( 0±xs )

( 2 . 4 . 1 a )

( 2 . 4 . 1 b )

( 2 . 4 . 1 c )

and \ q are the plane waves defined by equation (2 .1 .2 ). The contours are the 

Sommerfeld contours depicted in Figure 2 .4.2, which may be freely shifted to obtain 

convergence over the whole space.
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Figure .2,4,2; The Standard Sommerfeld Contour.

Im(e)

Contour shifted to maintain convergence of the integrand

ReO)

This shifting of the contour in the 6— plane corresponds to a rotation of axes 

in the configuration space domain. The integrals of equation (2.4.1) can now be 

operated on using the reflection operators defined in the first section of this chapter. 

The total upward initial incident field is the sum of the single and double reflected 

fields, i.e.

R .H  (x )  + R+ H+ (x )  1 o o
W ~ ( 0 ) e l4>1 ^ v t ( x ) d 0  +

C“

W ( 0 )e  ( \  ( x ) d 0
°  6+Ja

C+
( 2 . 4 . 2 a )

Similarly the downward field, inside the guide, after one and two reflections is,

R H ( x )  +  R H (x )  u o o
W ( 0 ) e  u(  V  ( x ) d 0  +

°  e + l a
C+

W ( f l ) e 1(t) ( ^) v " ( x ) d 0  
°  6+Za

( 2 . 4 . 2 b )

The contours C 1 may be freely shifted and provided no singularities are crossed in 

this shifting process the integrals will remain equivalent. Thus with an obvious 

change of variables in equations (2.4.2) the incident fields can be brought into the 

form of (2.1 .10). The incident field spectral amplitudes then become,
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W ith these definitions of incident field the scattering equation (2.1.12) becomes in 

the spectral domain,

U (0 + 2 a ) -  U ( 0)e  K J -  U" ( 0 + 2 a )  ( 2 . 4 . 4 )o

where the obvious shift of 2a to left has been applied. This is in the form of

equation (2 .2 .4 ), but for ease of notation it is desirable to introduce some

definitions. Firstly let,

+
l T ( 0 )  -  Y * ( 0 ) e 1S ( 2 . 4 . 5 )

where

S * ( 0 + 2 a )  -  S± ( 6 ) «  $ * ( 0 )  ( 2 . 4 . 6 )

I f  the incident field is defined in a similar manner,

I T ( 0 )  = Y ± ( 0 ) e  " lS ( 2 . 4 . 7 )o o

equation (2.4.4) becomes,

Y± ( 0+2a )  -  Y ± ( 0 )  -  Y * ( 0 + 2 a )  ( 2 . 4 . 8 )o

The solution to the scattering problem in the spectral domain without the direct 

term is simply the sum of LT*- (0) and U ~  (0) .  The calculation of these two terms 

requires the solution of the four difference equations of (2.4.6) and (2 .4 .8 ). As in 

the Intrinsic Mode section these difference equations can be solved exactly, upto 

arbitrary periodic functions of 0, using the Euler— Maclaurin formula. The solution 

of (2.4 .6) is identical to the solution of (2.2.4) with q =  0. Thus S±(0)  becomes,

4>"(s)ds + E " ( 0 , 0  )q ( 2 . 4 . 9 )

Again due to the indeterminacy of the Euler— Maclaurin formula, it is more 

practicable to evaluate S— (0) and impose a boundary condition to obtain a consistent



S"*"(0), the most appropriate being the lower boundary, i.e. imposing,

S (0 )  -  S (0 )  -  4 ^ ( 0 )  ( 2 . 4 . 1 0 )

The solution Y ±( 0) of equation (2.4.8) can be solved in a similar manner to yield,

* * ( » >  + 5 5  I v ; ( s ) e

— i qfl ( 0—s ) 
a ds ( 2 . 4 . 1 1 )

q—00 0

The limits 0qoo are arbitrary because of the indeterminacy of the Euler— Maclaurin 

formula. Returning to the original functions U ±(0) via (2.4.5) and (2.4.6) produces,

U ' ( 0 ) K < » > 2 a
q«-oo

U‘ ( s ) eo
'qoo

i S ~ ( 0 ) - i S ~ ( s ) - i qn ( 0 - s )
a ds ( 2 . 4 . 1 2 )

This expression is arbitrary upto periodic functions of 0 and obviously the

convergence of E ±(0) in S±(0) is required. As shown in the previous section there 

are several ways to construct the remainder so that E( 0) has no more than algebraic

growth in some sectors. As 0 ranges over the Sommerfeld contour of Figure 2.4.2

then it can be observed that only the b— type remainder is convergent and the

remainder E( 0) must be interpreted as E jj(0). This then gives the scattered field for 

observation points inside the guide as,

C ( x , x s ) 
s ■ I

+ - K u ' ( 0 )  +
2a

00 r 0
+

I I T
o

— 00 J 8cr

i S - ( 0 ) - i S ~ ( s ) - i qn ( 0 - s )

ds V ' ( x ) d 0

( 2 . 4 . 1 3 )

The Green's function is now the sum of this scattered field and the direct field 

given in equation (2.4 .1). Therefore the Wedge Green's function is,

C ( x , X c )  -  H+ ( x )  + G ( x , x s ) ( 2 . 4 . 1 4 )— —a o s

The extension to this procedure for points anywhere within this wedge region 

excluding the apex can be obtained straightforwardly by application of the above 

outlined theory. A ll that is now required is mathematical rigour in which the 

convergence properties of this function are examined. This rigour is necessary to 

give the theory a solid foundation and is tackled in the next section.
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2.5: The Convergence O f The Source Induced Spectra.

It  is important to mention that there is one basic assumption made in the last 

section which is fundamental to the theory and has no mathematical grounding. This 

section will now correct this inadequacy in essentially two main ways. The 

assumption made was that the contours of the total scattered field integral G^x,?^) 

(equation (2 .4 .13)) and the initial source field integrals (equations (2.4 .2 )) could be 

deformed into a common contour, while maintaining convergence and crossing no 

singularities in the deformation. This central idea is necessary so that reduction to 

the spectral plane is possible and hence the procedures of previous sections 

applicable. The first terms U G( 0) in the expression for G^x.Xg) are identical to the 

initial field and the contours are obviously equivalent. However, the properties of the 

double integral terms are not so clear. Let,

l T ( 0 )

0 i S ' ( 0 ) - i S ~ ( s ) - i q n ( 0 - s )

l T ( s ) e  Q ds ( 2 . 5 . 1 )
o

0qoo

The analysis of the above integrals, which form part of the spectral amplitude 

functions for the observed field, is divided into two main categories. The first 

category is concerned with showing that the integrals Uq( 0) are convergent on the 

same contours as the initial field. This is achieved by firstly examining the 

significance of the lower lim it 0 q co and then the convergence of these integrals when 

multiplied by their appropriate plane wave fields with 0 ranging over the Sommerfeld 

contour shown in Figure 2.4.2. The second stage of analysis then demonstrates that 

while each individual integral term is convergent, the total infinite sum of these 

integrals is also convergent.

As previously stated the limits 0 q oo are arbitrary, however, for convergence of 

the sum in equation (2.5.1) these limits must be such that the exponential term 

involving q decays, i.e.

I m ( 0 Qoo) > l m( 0 )  , q > 0
4 ( 2 . 5 . 2 )

lm(0qco) < l m( 0 )  , q < 0

and since 0 ranges over the infinite Sommerfeld contour C 0 ( C 0 representing either 

of the contours C * )  the convergence of all q terms can only be secured if,

Iro(0qoo) -  00> q > 0
4 ( 2 . 5 . 3 )

lm(0qco) -  -oo, q < 0
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Im ( 0qoo) has been defined to facilitate the decay of the exponent involving the q 

term in equation (2 .5 .1 ), but the exponential form of the remaining integrand has 

not been accounted for. It can be seen through equations (2.4.9) and (2.4.3) that

the convergence of each integral in (2.5.1) is governed by plane waves of the form,

e i n k r scos(s+w)  ( 2 . 5 . 4 )

where w can represent either ±xs or — 2a±xs depending on which term of U G( 8) is 

being considered. These exponential terms vanish exponentially in the sectors,

-w < R e ( s )  < Il-w , I m( s )  < 0
( 2 . 5 . 5 )

—II-w  < R e ( s )  < -w,  I m( s )  > 0

When the source point is in the guide, this being the Green's function of

immediate interest, then Xs» t îe polar source variable is less than a. In equation

(2.4.13) there are four plane wave species and the sector for which all these terms 

converge is obtained from (2.5.4) and the definition of w, to give

-3 a  < R e ( s )  < I I - 3 a ,  I m( s )  < 0
( 2 . 5 . 6 )

-n~3a < Re ( s )  < -3a,  I m( s )  > 0

To  assure convergence in the lower limit tfqoo, the limits should be restricted to the

conditions above. Hence to achieve this the lower limits should be continued off to

infinity in the shaded sectors of Figure 2.5.1.

The Regions O f Which Maintain The Convergence
O f In The Lower Limit.

Figure 2.5.1:

Im e

* *  q>0

Ree
-n-a -3 a n-aq<0
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Now the convergence of these separate integrals needs to be explored as | 0 1 -> oo. 

0 ranges along the infinite Sommerfeld contour C 0 and these are regions where the 

plane waves of (2 .5 .4) diverge. It  must be established, for convergence, that the 

plane wave terms, V 0 (x), in the spectrum decay faster than the rate at which the 

integrals, U q ( 0 ) ,  diverge. An estimation of the increase of these integrals can be 

found by the application of Laplace's method for asymptotic evaluation of integrals

[2]. This yields the asymptotic value of the integrals U q ( 0 )  for |0 |  -> «,

Uq ( 6 )  ~ U> [  - i n k r s s i n ( 0 + w)  ] ( 2 . 5 . 7 )

This is an estimation of the spectral amplitude function and so the approximation to 

the integrand of the scattered field integral is,

l T ( 0 ) V ' ( x )  -  I T ( 0 ) - i n k r s s i n ( 0 + w) ) ( 2 . 5 . 8 )

for 1 0 1 - > o o .  Thus it is plainly observed that the convergence of the separate 

double integrals of G^x.Xg) is secured in the regions where,

V e ) V * >

decay to zero. This sector of convergence is obviously the same as the initial fields 

in the source term of the scattering equation, because the above functions are 

identical to the integrands of (2.4 .2). The above analysis has shown that each 

separate integral, U q ( 0 ) ,  is dominated by the upper endpoint 0. It  has not given 

any indication that the infinite sum over q of U q (  0) is convergent. Employing the 

same procedure as in section 2.3, this infinite sum can be re— written in the form

2 u "<0)  ^ q
q=-oo

0 + i 5

Y ~ ( s ) M ( s - 0 ) d s , 
1 -  M ( s - 0 )

0 - i  5

0

Y ^ ( s ) M ( - s + 0 ) d s  
1 -  M ( - s + 0 )
qoo

( 2 . 5 . 9 )

where 0 qro are defined as in Figure 2.5.1. The divergences of these integrals as i  -> 

0 are self cancelling. The representation G s(x,Xs) has now been shown to be 

convergent in the appropriate sectors, which implies that this function is a bonafide 

solution of the Helmholtz wave equation in the wedge environment.
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Conclusions.

This chapter is an attempt to show the philosophy of the Intrinsic Mode and 

its subsequent application to the source induced field problem. The mathematical 

complexities have not been avoided, in an attempt to show the reader the necessary

mathematical considerations for a 'watertight' theory. This theory is based on the

ability of the slowly converging ray integral field to be manipulated using the

Euler— Maclaurin formula into a rapidly converging modal field. This theory does not 

account for the diffracted field at the apex of the wedge and as such the field near 

this point cannot be accurately represented. A  future publication by Arnold and 

Felsen is planned to alleviate this shortcoming. It  may seem at first sight that this

theory is too esoteric to be of any significant use, this however, is not the case.

The apparent complexity in constructing the Intrinsic Mode field results, in reality,

in an easier object to compute numerically than, say, a large number of ray

integrals. Also, the Intrinsic Mode field is an exact solution of the wave equation, 

which implies that the inaccuracy incurred in evaluating the spectral object is 

entirely contained in the numerical implementation. This is not the case for all of 

the other theories to date. Another interesting point to mention at this time is that 

with this theory it is possible to evaluate the true conserved quantity (i.e . Poynting 

Vector) as shown in a forthcoming chapter. It  may be observed that in evaluating

the Green's Function for the wedge geometry, no reference was made to the

properties of Green's Functions, or as to whether the spectral object of equation

(2.4.14) possessed any of these properties. This is left until chapter 6 where the

properties of Green's Functions are used in verifying the computer programme

developed to compute this field.

There are still, however, several unaddressed questions in this theory and, 

while these are of no great importance in the ensuing chapters, it is desirable to

understand their significance. The Euler— Maclaurin formula has periodic 

indeterminacy and as such the effect of adding periodic functions must be 

determined. Arnold and Felsen [1] have demonstrated that the arbitrariness of the 

Euler— Maclaurin formula can be explained simply. The solution to the 

inhomogeneous equation (2.1.13) consists of the solution to the homogeneous problem 

and the solution to the inhomogeneous problem. The arbitrariness in the solution of 

the inhomogeneous equation is then merely the addition of homogeneous solutions 

(i.e . Intrinsic Modes).
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Chapter 3: N U M E R IC A L  IM P L E M E N T A T IO N  O F  SPEC TR ALLY  
SYNTHESISED F IELD S.

Introduction

The derivation of the spectral objects in chapter 2 require some form of

numerical evaluation. Standard integration techniques can be employed [5], but they

do not exploit fully the nature of the spectral fields.

The numerical evaluation of both the Intrinsic Mode field and the Green's

Function in a wedge environment are addressed in this chapter. To demonstrate 

clearly the method of implementation a generalised spectral integral is considered, 

wherein the desired properties for this type of analysis are assumed. The calculation 

of both these spectral objects is achieved by the application of a Fast Fourier 

Transform (F F T ) algorithm [7] from the NAG software support library, the

properties of which are easily derivable from a knowledge of Fourier Series [54], 

From these properties and the ensuing procedures it will become apparent that any

field which may be well approximated by a finite oscillatory integral can be

evaluated using this F FT  procedure.

The first section describes, abstractly, how an arbitrary spectral integral may

be numerically manipulated so that application of the F FT  algorithm is possible. The

next sections are concerned with demonstrating how the desired spectral objects for 

the wedge geometry can be calculated using differently 'directed' FFTs.

In the subsequent sections it will be observed that if the spectral field is to 

be amenable to the F F T  approach then it must satisfy some basic properties. In this 

chapter it is assumed that the Intrinsic Mode and the Wedge Green's Function 

possess these properties. The justification for these assumptions is given in the 

relevant chapters discussing each spectral object.

3.1: The F F T  Algorithm

Consider an integral of the form,

and assume it has the dominant part of the integrand in an interval (0 ,T ), say. The 

integral may then be approximated by,

( 3 . 1 . 1 )
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F(0) f ( 0 ) e i2n/30d0 ( 3 .1 .2 )

To evaluate this integral numerically for a fixed 0  any number of standard 

techniques may be employed [53]. However, for suitable accuracy and ease of 

implementation Bode's Rule [54] was used. This five point rule states that a finite 

integral may be calculated by applying the formula,

fT
C ( 8 , 0 ) d 8  -  I ^ { 7 C ( / 5 , 0 ) + 3 2 G ( / S , I ) + 1 2 C ( / 3 , I ) + 3 2 G ( | S , 2 J ) + 7 G ( / 3 >T ) }  + OCT?)

0
( 3 . 1 . 3 )

To evaluate (3.1 .2) and as such approximate the integral of equation (3.1 .1), for 

each point 0 in the appropriate admissible space, the algorithm of equation (3.1.3) 

would have to be repeatedly applied, for each 0 , with a sufficient number of points 

for accuracy. If  G ( 0 f 8) is of a slowly varying nature, then the evaluation of such a

space using the procedure of (3.1.3) will be adequate. When G (0,8)  is either rapidly

oscillatory, or non— negligible in a wide range of 8 , or both, a large number of 

data points will be required. If  this is the case then it is desirable to find a more

efficient method of evaluating the field F(0).

The desired improved efficiency can be generated in two significant areas. 

The obvious way to increase the efficiency would be to use a more accurate

integration rule. It  is obvious, however, that the application of a more accurate 

integration rule could not achieve a significant improvement in efficiency and remain 

sufficiently adaptable. Due to this minimum gain in efficiency research into more 

complicated integration algorithms was felt to be unfruitful. The other approach is to 

exploit the periodicity of the integrand and use an F F T  routine. The algorithm used 

for this particular application is from the software support library on the G EC 4180 

computer. The form of the FFT  algorithm is very general and as such some

manipulation of the input data to this routine is required to satisfy its initialisation

procedure. It is therefore desirable to obtain a clear understanding of the properties

of the F F T  algorithm.

Let the function f( 8) of equation (3.1.2) be discretised into N equally spaced 

points in 8 , f j say. This being the case the F F T  produces N data points F k — 

using the butterfly method [7] — such that,

i 2 n j k

Fk - " f f i e  N ( 3 . 1 . 4 )
j * 0  J

The spacing of the data points F k corresponds to a spacing in the 0 -  domian of
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1/T  (from  the properties of Fourier Series [55]). The FFT  procedure itself requires 

that j=  0 corresponds to 6— 0 and the output space is such that k= 0 is equivalent 

to 0 = 0  and increasing k implies increasing 0. There is one glaring defect in the

above statements which needs rapid clarification. It is that the series in equation

(3.1 .4) is not equivalent to the integral of equation (3 .1 .2 ), it is merely the addition

of all the fj values with a corresponding phase change. The required equivalence

between (3.1 .4 ) and F(/3) can be obtained simply by evaluating the integral of 

(3 .1 .2) by the trapezium rule (i.e. multiplying output of algorithm by T / N $  ). It is, 

however more accurate and also tractable to 'window' the input data field so that 

the 'five point' integration rule of (3.1.3) is used to evaluate the integral of 

equation (3 .1 .2 ). This 'windowing' is achieved by the weighting of the 0— domain fj

values by the amounts indicated in equation (3.1.3).

W ith equivalence now achieved accurately between (3.1.4) and (3.1.2) it is

necessary to be able to adjust the spacing of the data points in the 0— domain so a 

desirable 0— space may be computed. To achieve this property a quasi finite interval 

T s is constructed, the construction of which is given below. Assume that the desired 

spacing in 0 is 1 /T S and the non—negligible interval of integration is T , which is

discretised into K + 1 points. Thus the 0 distance between each fj is 0S=  T /K . I f  K a 

zeros are then added to the 0— domain K + 1 field points the quasi interval of 

non— negligible integration is then,

(K+1+Ka ) ( 3 . 1 . 5 )

which must be equal to T s and as such a variable spacing between the points in the 

0 — domian is achieved by the formula,

with 0S being the 0 spacing and K + 1 the true non— negligible field points of 0 and 

the number of added zero field points. Now that a versatile routine has been 

developed for evaluating finite oscillatory integrals it only remains to discuss its 

application to spectrally synthesised Intrinsic Mode type fields.

3.2: Canonical Wedge Environments.

There are many different configurations in which two infinite planar interfaces 

intersect. However, this exposition is only concerned with the excitation of 

two-dim ensional non-separable geometries by an infinite line source. Obviously
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there are many examples of Intrinsic Mode fields to examine, but they are all 

evaluated by using either of two canonical wedge environments, which only depened 

upon the type of upper boundary. I f  the upper boundary has a reflection coefficient 

which is constant and equal to — 1 then the recipe for solution will be of type A  

say. If ,  however, the reflection coefficient on the upper boundary is a function of 

the incident plane wave and environmental parameters, a more complicated 

procedure is required to evaluate the field (recipe B). From the previous chapter a 

general form for the Wedge Green's Function or the Intrinsic Mode, when the 

reflection coefficient is a constant and equal to — 1 on the upper boundary, is,

Wq (x)

l'(0.x )V7(x)d«,
C4

l‘(«,xs)[l + el4,l(e)]v)s(x)de,

x e X

( 3 . 2 . 1 )  

x e X i

while for the type B field (variable reflection coefficient of the upper boundary) the 

spectral fields can be represented in the form

Wq ( x )  =

+ I
I " ( 0 , X s)V‘ (x)d0, X € X

c 1

I ( 0 , x s ) 1 + ei<t>l (0) ) d0 , x f X]

( 3 . 2 . 2 )

l + (0,xs)[l + el4,u(9+Q)]vte(x)de, x « X2

Here I ±( 0,21s) are the appropriate spectral amplitudes depending on which global 

object is being considered and in which particular subset of the wedge geometry. 

The plane wave components V# can be expressed in a more useful Cartesian 

coordinate system which facilitates efficient evaluation of the fields along the new 

configuration space axes. The plane waves become,

+ , . -inkrcos(6 ± \ )  ink(zcos0±xsin0)V«(x) = e - e ( 3 . 2 . 3 )

V" (X) - e-inikcos(01-x) _ einkzcos0-in1kxsin01 (3 .2 .4 )

v+ ^  e-in2kcos(02+x) _ einkzcos0 2+in2kxsin0 2 2
20 2“
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where z and x are the coordinates given in Figure 2.1.1 of chapter 2. It  is apparent 

that there is the possiblity of exploiting the periodicity of these oscillatory functions 

in two orthogonal directions. There are however, difficulties in implementation of 

either of these two possible directions, which will be outlined. Consider firstly 

exploiting the transverse (x) periodicity of a type A  field.

3 .3: The Transverse (x l F F T .

Manipulating the integrals of equations (3.2.1) into a form more sutiable in 

which to explain the substitutions required to allow the application of the F FT  leads 

to,

Wq ( x )

I
+  -

rb

rb
. ± inkxs  in 0  . .  C ( 0 , z , x s )e d 6 ,

C ( 0 , z , x g )

x e X

( 3 . 3 . 1 )

. i $ l ( 0 ) l  - i n i k x s i n 0 ,  , .1 + e 1 v '  le 1 M S ,  x e X j

where G( 6 ,2 , ^ )  are, the appropriate functions easily obtainable from equations (3.1.1) 

and the interval (a,b) is assumed to be sufficiently large in some sense (see later 

chapters). These integral forms must be massaged into a canonical form for the FFT  

application. To show analysis succinctly it is easier to consider the upward 

propagating field inside the guide (x f X)  initially. With the change of variable,

2 FIs *= nk(sin0— sina) 

the integral of (3.3.1) is transformed into,

( 3 . 3 . 2 )

nk
2 U

s inb - s i n a j

in kxs  in a d6 » 12Ilxs—  C ( 0 , z , x )e ds
ds s

( 3 . 3 . 3 )

which is amenable to F FT  exploitation provided in evaluation s is stepped through in 

equal increments. The downward field can be transformed in a similar manner.

The field in the lower medium consists of the transmitted field due to plane 

waves from the guiding medium incident on the lower boundary. As some of the 

plane waves have an incident angle less than the critical angle ( 0 q),  the field must 

be split into two sections.
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C ( » . z , 2 s ) [ l  + e i 4 l ( 9 ) ] e - i n l k x s i n S ' d«  ( 3 . 3 . 4 )

The first integral is a sum of inhomogeneous plane waves (as sin 0 1 is purely 

positive imaginary) which correspond to wave fields trapped inside the guiding 

medium. These fields have lost their x periodicity — they constitute the evanescent 

field — and consequently the FFT  cannot be applied to this region. However, the 

integral over the interval (0 c,b) is plane wave in nature (this is the refracted field) 

and as such can be manipulated into the form,

C(b)

de d 0 i rta n f-, ^ i<t>l(0)l i 2 n x S j
3 ? , a r  c <# ’ Z i * s ) l 1 + e Je ds ( 3 . 3 . 5 a )

with

_ / u . nk C (b)  = ^  s i n c o s n c o s b
n l ] ] ( 3 . 3 . 5 b )

where the F F T  may then be applied. Fortunately the substitution (3.3 .2) is such that

the spacing between the points in the 0 domain around zero is decreased to 0 (  5s)

where 5s is the equal increment in s space. This implies that the number of points 

required to evaluate the integral accurately would be the same as if  the substitution

(3.3 .2 ) had not occurred, as the dominant part of the field is situated near zero

(c.f. chapters 4 and 6). The lack of being able to evaluate the spectal object

outside the guide by using the FFT  exclusively has the effect of increasing run 

times, because an integral must now be evaluated for every point considered outside 

the guide. The useful substitution of (3.2.2) does not compensate for having to 

calculate the evanescent field by a standard method and so overall efficiency, while 

being significantly greater than a standard integration technique, does not utilise fully 

the periodicity of the spectral fields.

3.4:  The Longitudinal (z) F FT .

As stated in the previous section the evanescent field has no x— periodictiy 

associated with it. However, this field still retains its longitudinal (z) periodicity -  

due to the tangential components of the field being continuous at an interface -  so 

that exploitation by the FFT  method with respect to the z ordinate may be 

employed. W ith this knowledge it is obvious that the field can be calculated
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everywhere in the type A  wedge configuration by using this longitudinal FFT  alone. 

This type of F F T  'direction' is termed the 'intrinsic direction' for the geometry, 

because it exploits fully the intrinsic nature of the wedge environment. Thus the 

spectral objects may be represented by

Wq ( x )

is ra  \ i n k z c o s 0 -„ K ( 0 . x . * 5) e  d 0 ,

!✓ / «  \ i n k z c o s 0 J/1K ( 0 , x , x  ) e  d 0 ,
2 s

2C c X

x f X

( 3 . 4 . 1 )

with KjCfi.XjXj) and K2(0,x,3cs) being the kernels calculated from equations (3.2.1). 

The desired substitution to allow this periodic exploitation is,

2ITs -  nk(cos0— cosb) ( 3 . 4 . 2 )

The application of this substitution to equations (3.4.1) gives rise to the formalism,

i n k z c o s b

nk
2fi

c o s a - c o s b

d 0 . . i 2r i z s .^  K ( 0 , x , x g ) e  ds ( 3 . 4 . 3 )

Here the K(0,x,5cs) is the function Kj ( 0 , x , xs) or K ^ 8 , x , \ ^ )  depending on whether 

the observation point is inside or outside the guide. This approach appears at first 

sight to have no disadvantages. Unfortunately this is not the case. The substitution

(3.4 .2) has the effect that as s-»nk/2n, and thus 0->O, the equal spacing in the 

s— domain (6s) causes the spacing in the 0—domain to increase. The spacing in the 

0— domain is

60 2IT 6 s
7[ n 2k 2 -  4 n 2s 2 ] ( 3 . 4 . 4 )

The 0— domain spacing around zero obviously increases dramatically and 

unfortunately this is where the dominant contribution to the field occurs. To

circumvent this problem the region of integration is truncated in such a manner that 

important spectral topologies (c.f. chapter 4 and 6) are sufficiently far away from

the endpoints. An asymptotic approximation (in terms of wedge angle) is then added

to correct this truncation.

The previous two sections have dealt with FFT  directions depicted in Figure 

2.1.1 of chapter 2. There are many other possible directions which may be

considered, but they have the obvious disadvantage of having to calculate some form 

of evanescent field.
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Parallel and Perpendicular Directed FFTs.

The type B fields can be evaluated using the FFT  methods of sections 3.3 

and 3.4. However, when the observation point is in the superstrate ( x e X ^  the 

evanescent field cannot be calculated totally by the F FT  method and standard 

integration techniques, as used in section 3.3, are necessary to calculate the 

remainder of the evanescent field. Thus to calculate the total field above the guide 

by using only the F FT  method requires an FFT  direction which runs parallel to the 

upper boundary. To achieve this different FFT  'direction' a rotation of axes is 

required (see Figure 3.5.1 below).

F igure 3.5.1; Rotation of Cartesian Coordinates.

X T|

X e X
,6-t-a

0 -a

x e X

The different orientation of these new orthogonal axes depicted above can be

represented in terms of the Cartesian coordinates of sections 3.3 and 3.4 in matrix

form by,

f cos“  - sin“  1 f 2 1 -  [ M  ( 3 .4 .1 )
I s i  no  c o s a  J L x J I rj J

Thus the plane wave species of equations (3.2 .3), (3.2.4) and (3.2.5) can be 

expressed in the rotated co— ordinate system as,

+ . . ink(Zcos(0±a)+r}sin(c>!±0) )  ( r . s
Vq{.X) “  e

v ; „ ( x )  -  e in l k <£cos( <’ i - o ) - ,'s in ( e i - “ ) )  (3 . 5 .3 )
1

v+ ^ i n 2k (£cos  (0 2+a)+r js  i n(  0 2+ a ) ) ( 3 . 5 . 4 )
2 

2

Although the primary reason for this rotation of co ordinates is the efficient

52



evaluation of fields in a type B geometry, another useful FFT  direction arises.

3 .6: The ry— directed F F T .

Examine firstly the rj— directed FFT  (useful for calculating fields in integrated 

optical structures). The field in the guiding duct can then be manipulated into the 

form,

nk
2fi s i n ( a ± b ) - s  i n ( a ± a ) J

i n k ^ s i n C a i a ) i ± / a t  \  i 2 I I77S , 
TZT L ’ * c) e dsn k c o s (a ± 6) ( 3 . 6 . 1 )

The field outside the guide must be split up into the evanescent and plane wave 

spectrum as previously shown to give,

b

L - ( # . { . s s ) ( l + e I4’» ( S ) ] e - , n l k, 's l n ( ®’ - " ) d« ( 3 . 6 . 2 )

»c

in some subset of the wedge configuration. The obvious substitutions can be made 

for the second integral to give

C(b)

2 n L - ( f l , S , a s )
n k c o s (a - 6) 1+e

jet)] ( g ) 1dg
Jd0

i 2 n Sje ds ( 3 . 6 . 3 a )

with

C( b )  -  a  + ^  s i n  [ c o s " 1 [ j ] ( 3 . 6 . 3 b )

which can be evaluated using the FFT  approach. The evanescent field must be 

evaluated by using Bode's rule, as periodicity in the rj variable is not present. A  

similar representation may be obtained for the field above the guide, but for brevity 

this is omitted.
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The £—directed FFT.

The £ directed FFT  can be used to evaluate efficiently the field in both the 

guiding duct and the superstrate. It can be seen that this direction of FFT  for 

evaluating the field inside and above the guide is the 'intrinsic direction', because it 

exploits fully the nature of the interaction of the fields between two linear media 

(c .f. longitudinal (z) F F T ). In the guiding duct the field can be represented in the 

usual manner for FFT  exploitation, as,

rb

W (a) mra  \ in k £ c o s (0 + a ) -.vN (0 ,r? ,x  )e  s yd0, x e X ( 3 . 7 . 1 )'S

W ith the obvious change of variables (3.7.1) becomes

7 ^ | c o s ( a + a ) - c o s ( b + a ) J

W (x )  -  e in k ^c o s ( b+Q!)
q “ e i 2 I1* Sd s, x e X ( 3 .7 .2 ;nks i n ( 0 + a )

o

Noting that the field must be continuous across the boundary, then,

n c o s (0 + a ) -  n2 c o s ( 0 2+ a ) ( 3 . 7 . 3 )

The field for x f X 2  can be manipulated into the similar form of,

nk
2 fl c o s (a + a )-c o s (b + a )

W (x )  -  e in k £ c o s (b + a ) 2 I IN d ( 0 , ^ , 2 < s ) e 1 2 n « s d S i  ^  f x  ( 3  7
n k s in ( 0 + a ) ’ — 2

4 )

N 0 ( 0 , 17,2̂ ) and N( 0 , 17,2̂ ) are the obvious spectral amplitude coefficients derived from 

equations (3.2*2) . All that now remains is to marry the z and £ FFTs so that an 

efficient algorithm can be generated to calculate either of the spectrally synthesised 

linear fields.

To calculate the field in the total space the field below the upper boundary 

(guiding duct and substrate) is evaluated using the intrinsic z F FT . The field in the 

upper medium is evaluated using the £—directed FFT  (intrinsic direction). However, 

it has been observed that the spacing in the configuration domain is dependent upon 

the interval of non-negligible integrand (0 ,T ). This interval can be varied using the 

technique of the first section, but there is still the problem of calculating the fields 

at regular points in a two dimensional grid which is shown below.

Take the field points generated by the z -  FFT  to be the reference data points
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in the two dimensional configuration as shown in Figure 3 .7 .1 .

Figure 3.7.1; Generating a data Grid for the Global Wedge profile

Data mesh points

Here the mesh points are parallel and perpendicular to the lower boundary as would 

be expected with the z—F FT  routine. In the upper medium this configuration of 

mesh points is required to be conserved, but the £—directed F FT  generates points

that are parallel to the upper interface. To ensure that the field points evaluated, 

lie on the reference mesh the spacing and the initial starting point of the 

£ — directed F F T  must be adjusted. From the diagram of Figure 3.7.1,

6 $ -  ( 6 x 2 + 6 z 2 ) *  ( 3 . 7 . 5 )

with 6 x and 6z being the spacial increments in x and z respectively and 6 £ the

spatial increment in the £ -  directed F FT . The initial starting value for each of the

£ — FFTs is at data points of the mesh that lie on the Boundary sections S, and S 2. 

This technique utilises the 'intrinsic' nature of the z and £ FFTs below and above 

the upper boundary respectively.
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Conclusions.

This chapter has not offered any constructive arguments to demonstrate that 

the spectrally synthesised fields of interest possess the properties essential for this 

type of numerical evaluation. These arguments are left to the chapters were the 

appropriate spectral object is examined more closely. The efficient evaluation of 

spectral fields discussed in this chapter is achieved by exploiting the oscillatory

nature of the fields. It is observed that the spectral amplitudes of the plane waves 

in each particular environment can be calculated without any positional dependence. 

The introduction of the positional dependence of the fields is expressed using 

Cartesian coordinate systems. Obviously the two 'intrinsic directions' z and £ are the

most efficient approach to field calculations using this method, as the evanescent

field outside the guide is contained within the appropriate F FT  evaluation. The other

two directions are useful as comparisons of other field plots and for generating the 

input fields to other numerical algorithms. A  large number of orientations of these 

systems are possible, but the four chosen directions of this chapter are the most 

numerically efficient when using the FFT method. It will also be noted that the 

plane polar orthogonal system (r,x ) used for the derivation of the Intrinsic Mode 

and the Wedge Green's Function was discarded. This rejection is because the 

numerical evaluation of the spectral amplitudes cannot occur without dependence on 

either the range or angle parameter.
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Chapter 4: G E O M E T R IC A L  A N D  M A T H E M A T IC A L  IN T E R P R E T A T IO N

O F T H E  IN TR IN SIC  M O D E  F IE L D .

Introduction.

The preceeding two chapters discussed the derivation of the Intrinsic Mode 

field and its subsequent numerical implementation. In both these chapters several 

properties of the Intrinsic Mode field were stated without any apparent justification. 

This chapter attempts to rectify these omissions.

It  was stated in chapter 2 that the Intrinsic Mode is an exact solution of the 

elliptic wave equation in the wedge shaped environment. This statement is extremely 

important for it is the first exact solution of this non— separable structure and as 

such it will allow detailed estimation of the errors incurred when calculating the

Intrinsic Mode field numerically, this estimation being virtually impossible for any

other method.

The numerical implementation of the Intrinsic Mode field assumes that the

field is constructed in such a manner that it can be well approximated by a finite

oscillatory integral. The grounds for this argument and other omissions from the 

spectral field are examined from both a physical and mathematical standpoint. In the 

interests of clarity a specific example, that of the Jensen—Kupermann ocean [22], 

has been chosen.

4.1: The Exact Intrinsic Mode.

The exactness of the Intrisic Mode field is examined for an arbitrary wedge 

environment. To  achieve this, and before embarking on the physical interpretation of 

the Intrinsic Mode field, it must be demonstrated that this field satisfies the elliptic 

wave equation and the boundary conditions away from the apex exactly.

As the field is formulated in the spectral domain (each plane wave being an

exact solution of the wave equation) and as the media are linear, allowing

superposition, then the field must satisfy the wave equation exactly.

The field under scrutiny has been constructed in such a manner that the

source free field may be represented in the form of a single spectral object. To 

demonstrate that this Intrnsic Mode satisfies the boundary conditions requires the use 

of Cauchy's theorem for closed contours and the application of the E u le r- Maclaurin 

summation formula. This calculation, while essential, would only serve to cloud the 

issue. Accordingly only the geometrical interpretation of the procedure is outlined,

with the mathematical detail given in appendix C. For clarity consider the bottom
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boundary, knowing that identical analysis can be carried out on the upper boundary. 

Consider a downward propagating plane wave, after N  internal reflections, 

approaching the lower boundary at an angle 6. The refracted field at the boundary 

is then this field with the 1+ exp(i<t>j( 6)) transmission coefficient attached. The 

reflected field corresponding to this particular plane wave after interaction with the 

lower boundary is the N + 1 reflected upward propagating field. Obviously there is an 

infinity of reflected and refracted plane wave fields. Thus to satisfy the lower 

boundary condition it must be demonstrated that any refracted field, which has 

undergone N  internal reflections (where N  is from 1 to « ), must be equal to the 

upward field after N + 1 reflections, and the Nth reflected downward field inside the 

guide evaluated on the boundary.

It  now only remains to show how the geometrical interpretation and the 

mathematical analysis of the field can explain phenomena associated with this form 

of spectral construction.

4.2: The Geometrical Approach.

To be able to apply the FFT  algorithm to evaluate the Intrinsic Mode integral 

it is essential that the infinite integral must be well approximated by a finite

oscillatory integral. This section examines the spectral Intrinsic Mode integral and

demonstrates that it can be calculated accurately for the approximations necessary

when implementing the FFT  algorithm. Using a consistent notation the Intrinsic

Mode field in the Jensen— Kupermann ocean can be represented by — see chapter 2

Wq ( x )

♦ I
lSq(0)v^(x)d0,

i s q ( 0 ) + e i(i,l ( 0 ) ] v ; ^ ( x ) d 0 ,

x  e X

x ( X i

( A. 2 . 1 )

Section 2.3 of chapter 2 demonstrates that there are essentially two possible contours 

Ca and Cfo, with corresponding Euler-M aclaurin  remainder types, over which the 

spectral Intrinsic Mode field can be integrated. Integrating over the contour Ca 

accounts for an upslope propagating field and over Cjj downslope propagation. It was 

demonstrated in appendix A  that the two E—M  remainders are O (o i)  along their 

respective contours and consequently in all subsequent analysis and assessment in this 

chapter these E — M  remainders are neglected. The neglect of these remainder terms 

allows the two contours of Figure 2.3.2 of chapter 2 to be added together to give C 

as in Figure 4.2.1.
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Elgure 4,2,1 The Intrinsic Mode Contour

Im 0

<2>

-a
<2b> <2 c>

Re 0
<2a> n/2 n-e

<i>
Branch Cuts

<3>

It  is instructive to examine the nature of the plane wave fields along different 

portions of the contour C. The contour allows two different types of plane wave 

propagation to exist, essential for mathematical completeness, which give rise to the 

exactness property of the Intrinsic Mode. The field due to the two complex portions 

of the contour, < 1 >  and < 3 > ,  represent inhomogeneous plane wave propagation, 

while the field due to the integration along the real axis gives rise to a 

homogeneous plane wave field inside the guide and both an inhomogeneous and 

homogeneous plane wave field outside the guide.

The inhomogeneous plane wave field has two forms of propagation associated 

with it. On the contours < 1 >  and < 3 >  the integrands of (4.2.1) are dominated by 

the exponential decay of the plane wave terms,

- i n k r c o s ( 6 ± \ )  and e ~ i n i k r c o s ( 0 1 ~x)

for observation points inside and outside the guide respectively. The integral over the 

interval <  1 >  corresponds to the inhomogeneous plane wave field which propagates 

upslope and is obviously significantly less than the homogeneous contribution to the 

field, due to its exponential decay. The field arising from the interval < 3 >  

represents the inhomogeneous plane wave field which is propagating downslope 

because of a large number of internal reflections which have rotated the direction of 

the propagation.
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The homogeneous plane wave propagation inside the guide has three distinct 

categories of propagation shown by <  2 a > , <  2b> and <  2 c > . To aid clarity it is 

useful to examine these categories in the spectral domain. The diagram of Figure 

4.2.2  indicates the forms of homogeneous wave propagation inside and outside the 

guiding duct.

Figure 4 .2 .2 : Different Plane Wave Species of Region <2 >

x

ieX<2 b>'
<2c>,<2a>

Plane wave field

Evanescent Field

In region < 2 a > ,  (0<0q)  the plane waves are totally internally reflected (i.e. 

they are trapped in the higher index medium at the local cross-section). In this 

region there will be specific plane waves at angles, 0 q say, which interfere 

constructively to generate a modal field. The angles 0q are asymptotically the local 

normal mode angles at the local observation cross-section (see later for verification). 

Outside the guide these modal angles produce an evanescent field. The remaining 

continuous spectra form ray bundles which decay in the usual manner, but are 

trapped inside the guide at this particular observation point and so give rise to 

inhomogeneous wave propagation outside the guide (as sin#, is purely imaginary).

In the second region, < 2 b > ,  the plane waves can refract out into the lower 

medium and so leak energy out of the guiding layer. The greater the angle of 

incidence the greater the amount of energy which leaks out of the guide. The 

refracted field is truely plane wave in nature and will form ray bundles which will 

decay accordingly.

Region <  2c> corresponds to plane waves which have travelled past the local 

cross— section towards the apex and have been rotated — by the angled boundaries 

-  to such a degree that they are now travelling away from the wedge apex. The 

plane waves of region <  2 c> have undergone many reflections where the incident
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angle is greater than 0 C and will consequently be carrying little energy in the 

guiding duct. The field outside the guide is homogeneous, but after a large number 

of reflections (and hence refraction loss) there is little energy present.

4.3: Mathematical Analysis of the Intrinsic Mode.

The geometrical interpretation given above — while convincing — requires 

some form of mathematical rigour, so that estimates of the order of magnitude of 

particular regions of the spectral function may be obtained. To facilitate analysis and 

for notational simplicity it is useful to note that the range parameter z can be 

asymptotically ordered in wedge angle a  to,

5  (  1 +  0 ( “ 3 ) 1 ( 4 . 3 . 1 )

with h being the local hieght of the guide. This leads to an asymptotic form of the 

Intrinsic Mode,

W (x )  ~
q

i Z q (0 )

F " ( 0 )  e d 0, x e X

i Z q ( 0 )

F ° ( 0 )  e a  d0,  x € X i

( 4 . 3 . 2 a )

with,

4 > j ( s ) d s  -  qII0 -  n k h c o s 0 ( 4 . 3 . 2 b )

and

F " ( 0 )  «  e
l {  i  -  5  ± n k x s i n f l  ]

( 4 . 3 . 2 c )

i f  _ * 1 < 1 1  _ ^  .  n x k x s i n e , ]
F ° ( 0) -  [ 1 + e i4 , l (<?) ] e  1 2 2  ( 4 . 3 . 2 d )

The E u ler-M aclaurin  remainder term is omitted for the reasons discussed in section



4.2. The asymptotic analysis of the Intrinsic Mode field is achieved by examining 

three different local cross-sections of the guide (i.e. the field as the observation 

point moves upslope). There are fortunately several different ways to view the same 

phenomena and in this section these approaches will be blended together to form a 

coherent picture of the wave field structure. The approach will be as mathematically 

sparse as possible so that concepts can be discussed clearly. However, most of the 

results are of significant importance and the derivations are placed in appendices.

4.3.1:  A  W ell Guided Local Normal Mode.

Firstly consider an observation point in a particular cross— section with local 

guide height (h) large enough to support the local normal mode of interest. In a 

translationally invariant guide this mode would consist of two counter— propagating 

plane waves with an angle of incidence 0q to the lower boundary which interfere. 

This modal angle is obtained from the standard eigenvalue equation for open 

waveguides. To calculate the asymptotic field in the wedge, for small wedge angle, 

the method of steepest descents [32] is applied and the appropriate deformation of 

the contour C is shown in Figure 4.3.1.1.

Steepest Descent Paths of the Intrinsic Mode

Figure 4,3,1,1; when the Adiabatic Mode is well guided.

Steepest descent va

Branch cut

Branch cut integral

Re 0

SDP
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The steepest descent sectors around a stationary point, 0g, are easily found by using 

the conditions,

( 4 . 3 . 1 . 1 )

These steepest descent regions are shown as the shaded sectors in Figure 4.3.1.1. 

Due to the symmetry of the reflection coefficient there are two stationary phase 

points at 0q and fl— 0q which are defined by

dZQ( 0 s )

where 8S is either 0q or n -  0q. Using (4.3.2b) gives the condition,

( 4 . 3 . 1 . 2 a )

n + <^1 ( ^q ) + 2n k h s in 0 q -  2qU ( 4 . 3 . 1 . 2 b )

The above condition is also recognisable as the eigenvalue equation for the transverse 

wave number of the local parallel guide. When the local normal mode is well 

guided, 0q < 0c the asymptotic field to first order in wedge angle can be evaluated by 

considering the isolated stationary phase points 0 q and II— 0 q, and the branch cut 

integral around II— 6C. The asymptotic description of the upslope propagating field is, 

from appendix D ,

Wq (x )

8 ria
- d 2 Zq ( 0 q ) 

d 0 2

8 ITa

i i Zq ( 0 q ) -  in

s i n

- d 2 Zq ( 0 q )
d 0 2

i  i z q (0 q) -  in

[ h - x ] n k s i n 0 q J , x  e X

( 4 . 3 . 1 . 3 )

a ; i n | n k h s i n 0 qj e  *- i n k x s i n 0 n 1 x eX

Here 0 q i is the refracted stationary phase point angle. This asymptotic form can be 

shown [39] to be equal to the Adiabatic Mode of Pierce (chapter 1 equation

(1 .1 .9 )), by using the procedure in appendix D . It was stated previously that the 

field due to the stationary phase point at IT- 0q and the branch cut integral at 

n -  0C, correspond to the Adiabatic Mode and the lateral ray field propagating 

downslope respectively. The plane waves that constitute these phenomena are 

indicated in Figure 4.2.2, where physically it is obvious that they must be 

significantly smaller than the upslope asymptotic field because of the large 

accumulated refraction loss. It can be shown (appendix D) that the downward 

asymptotic field amplitude and phase from the stationary phase point at II— 0q are,
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8Ito 1*  - 1 21 ( 8q) - i n
Of 4

i q f I ( s - 0 )

This extra integral term has a large positive imaginary part which confirms the 

physical predictions of the nature of the fields. Note also the change of sign of the 

phase indicating an outward propagating field. The branch cut integral at IT- 0 C 

arises when 0q < 0c because the observation point must be downslope of the point at 

which the mode couples to the lateral wave. The previous arguments allow the 

asymptotic field to consist of only upslope propagation and consequently the fields 

due to the stationary phase point II— 0q and the branch cut integrals at II— 0C are 

neglected, but will be formally retained in the steepest descent analysis to 

demonstrate the completeness of the theory. A  visual demonstration of the above 

arguments can be seen numerically by examination of the real part of the downward 

spectrum against incident angle for observation points inside and outside the guide 

(depicted in Figure 4.3.1.2).

Figure 4.3.1.2:

inside guide

outside guide

Real Pari OF 2nd In trinsic  ffode S p e c ie .

propagating angle in radians
propagating angle in radians
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The Intrinsic Mode field at this cross-section was calculated using and x ’directed' 

F FT  routine. For observation points inside the guide a lower endpoint correction, 

evaluated using Laplace's method in appendix D  was added to the field. This

addition is necessary because when employing the FFT  method the integrand should 

be negligible outside the interval of integration. The diagram of Figure 4.3.1.2

indicates clearly that this necessity is not met for points inside the guide, but if the 

endpoint is a sufficient distance from the stationary phase point the endpoint

correction in appendix D  will be a good approximation to the remaining field not

accounted for by the FFT  algorithm. The field at this cross— section is shown in 

Figure 4 .3.1.3 .

Figure 4.3.1.3:
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4.3.2: The Critical Transition Region.

In  configuration space this region corresponds to the local guide height

approaching the critical hieght 1̂  for the particular mode; the critical height being 

where the local structure will no longer support that mode. In spectral terms this is 

when the stationary phase point lies close to the branch point of the reflection 

coefficient (i.e . 0q*0c). The asymptotic analysis is slightly more complicated than 

before because the effect of the branch point must be accounted for; this being 

interpreted as the region in which the Intrinsic Mode couples to the lateral ray. The 

contour deformed into its Steepest Descent Path (SDP) is shown in Figure 4.3.2.1.

In this region the asymptotic analysis is eased greatly by mapping the 0— plane to 

the t-p la n e  via the function t = y ( 0 - 0c), which transforms the branch point in the 

0 - domain into a saddle point, at t = 0 ,  in the t -  plane. Using the method of 

Chester, Friedman and Ursell [2] a uniform asymptotic expansion, with respect to q, 

can be obtained. The upslope field inside the guide (from appendix E) in this region 

is approximated by,

Steepest Descent Paths of the Intrinsic Mode 

Figure 4 .3 .2 .1 : in the Critical transition region.

Steepest descent valleys
\

Branch cut integral

Branch cut

Steepest descent valleys

a ( 2 cot 0 C) £
6 ( 4 . 3 . 2 . 1 )
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Again plotting the real part of the downgoing Intrinsic Mode field for observation 

points inside and outside the guide, at a cross-section within the critical transition 

region is given in Figure 4.3.2.2.

Reel Pori OP 2nd In trinsic  Hode Spectra. Part OF 2nd In trinsic  fode Spectre.

outside guide
§-0 .2 5

inside guide

Figure 4.3.2 .2:

propagating angle in radians propagating angle in radians

From the above diagrams it is obvious that the dominant contribution to the field in 

this region is the plane waves propagating at angles around the critical angle 6C. 

The field in this region was numerically calculated using the method outlined in the 

section 4.3.1 and is shown in Figure 4.3.2.3.
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4 .3 .3 : The Radiating Regime.

In this situation the local guide height is less than the critical height for that 

particular mode and the local normal mode no longer exists. In this region the 

stationary phase point becomes complex and 0 q> 0 c and Im ^ ^ c O  to maintain 

exponential decay in the propagating direction. The diagrams of Figure 4.3.3.1 show 

the steepest descent paths for this particular region in the wedge environment.

Steepest Descent Paths of the Intrinsic Mode 

Figure 4.3.3.1: for the Radiating regime

Im 0 SDP

Branch cut

Steepest descent valley:

Steepest descent valleys

Re 0
> / ' /

Branch cut integral,

SDP

In this radiating regime 0q and 0C are isolated points which are then amenable to 

separate analysis. The branch cut integral term, which represents the launching of a 

lateral ray, is retained in the asymptotic expression for the field, as 0 q is now a 

complex solution of the transverse resonance condition giving rise to a decaying 

field. The calculation of the lateral ray field using the stationary phase point 

method, inside the guide is easily achieved [39]. The real part of the downward field 

contribution to the Intrinsic Mode, as a function of angle of incidence, for 

observation points inside and outside the guide is given in Figure 4.3.3.2.
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Figure 4.3.3.2-

propagating angle in radians propagating angle in radians

It  is observed that the rapid oscillation of these integrands implies that the 

contribution to the field is from plane waves around the critical angle, which is in 

agreement with the asymptotic analysis. Also, it is interesting to note that there is 

no longer a branch cut integral at II— 0C as the observation point now lies upslope 

of this lateral ray launch. The field in this region is mostly outside the guide (see

Figure 4.3.3.3).

Figure 4.3.3.3:
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Conclusion.

In  this chapter, the physical significance and numerical confirmation of the 

asymptotic analysis of the Intrinsic Mode field have been given, by firstly examining 

the nature of the plane wave fields on each different segment of the contour C. 

Although the physical significance of the fields is of prime concern in this chapter it 

is important to stress that these asymptotic forms agree with the analysis of Pierce 

[20] and that of Kamel and Felsen [55].

The numerical computation of the field at a local cross— section was achieved 

by using the x 'directed' FFT . The interval of integration was from 0 to .8  radians 

along the real axis and the CPU time required to generate a fifty data point field 

was about fifteen seconds, making the routine as efficient as the algorithms used by 

Xiang [5]. This however is not the most efficient method of calculation because of 

the necessity to calculate the evanescent field using Bode's rule. The transverse field 

profiles generated by Dendane and Arnold [6 ] using a standard integration rule, for 

the Jensen — Kuperman ocean were calculated using the above F FT  direction and 

were found to be in good agreement.
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Chapter 5: N U M E R IC A L L Y  C A LC U LA TE D  IN TR IN S IC  M O D E  F IELD S.

Introduction.

This chapter is concerned with the propagation of pure Intrinsic Mode fields, 

using the numerical algorithms discussed in chapter 3 , throughout different wedge 

environments. Obviously there is a plethora of wedge configurations that could be 

investigated. However, to indicate succinctly the differences between field propagation 

methods requires only a limited number of pure Intrinsic Mode geometries. In the 

chosen structures, of either Integrated Optics or Ocean Acoustics, the diffracted field 

from the apex is ignored so that the source free field can be represented as in 

chapter 2  by,

w (a)

with,

I
+ -

e i s q ( 0 ) e - l n k r c o s ( 0 ± x ) d 0 t

C4

X € X

iS q ( « ) [ i  + e i * , ( e ) ] e- i ni k r c ° s (« -X) d9 S { X j  (5 l a)

i S q ( « ) [ i  +  e i * u («-K»>je - I n 2k r c o s ( « + x ) dJi  g  £ ^

S-(«+2a) -  |  (9 )+ 4>~(s)ds -  S l l£  + E ' ( « , 0 q ) ( 5 . 1 b )

and,

Sq ( 0 )  -  S ~ ( 0 )  -  4 ^ ( 0 ) ,

4>~(0) -= $ i ( 0 ) + <t>u ( 0+cO, n cos 0 -  n icos f l ,  .

( 5 . 1 c )

The neglect of the diffracted field from the apex means that the Intrinsic Mode does 

not satisfy the boundary conditions in the vicinity of the apex. The only 

configuration— dependent quantities are the reflection coefficients at the two infinite 

planar interfaces. A  brief summary of the derivation of these spectral functions is 

now given for the Integrated Optical and Ocean Acoustical wave propagation 

environments.

Using appropriate scaling of wavelength and configuration space scales; optical 

fields can be transformed into acoustical fields and vice versa. It can thus be argued
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that the type of wave phenomena discussed is independent of the actual wave field in 

these cases and as such actual physical dimensions are unimportant. This approach 

has been used by Xiang, Cada and Felsen [5], but it loses some physical contact as 

all scales are normalised to wavelength. In this exposition this approach has not been 

adopted so that a demonstration of the true dimensions of the fields can be given, 

with the knowledge that it is trivial to convert acoustical fields to optical fields in the 

manner discussed above. Sections 5.1 and 5.2 show qualitative plots of both optical 

and acoustical fields. The qualitative statements made in these sections are quantified 

in section 5.3. Section 5.4 discusses an essential numerical calculation of power, 

necessary for demonstrating that the Intrinsic Mode is an exact solution of the 

elliptical wave equation.

5.1: Derivation O f The Optical Boundary Conditions.

There are two types of electromagnetic propagation of interest, that of T E  and 

T M  propagation in linear isotropic dielectric media. A  brief derivation of the spectral 

boundary conditions for each type of propagation is given. Consider the diagram of 

Figure 5.1.1,  where the interface between the two media lies along x=  0 and the 

plane of incidence is the xz— plane.

E&lurg 5,1,1; Plane Wave Striking an Infinite Planar boundary

E oriJ Vector polarisation

Plane of Incidence
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Let the incident field be plane polarised so that its E field is perpendicular to the 

plane of propagation. This field can be represented by,

ik,- . r - icot
( 5 . 1 . 1 )

where E j may be complex and j  is the unit vector in the y direction. The reflected 

and refracted fields may be similarly represented by,

E r  -  j p r . ' k r - r - i « t  E t  _  J E t e i k t - r - i o , t  ( 5 A  2 )

respectively. The two boundary conditions needed to evaluate the spectral reflection

coefficients are that the tangential components of the E  and H  field must be

continuous [57]. The first condition gives,

E j e 1- 1 - 11 + E r e 1- 1* ' 11 -  Et e i - f J1 ( 5 . 1 . 3 )

If  this equation is to be consistent for every point in the interface then,

k i •£  -  k r  L  ~  k f l  £  e { x -o }  ( 5 . 1 . 4 )

this being the vector representation of Snell's law. The second condition, regarding

the H  field can be transformed using,

VAE - - | f  ( 5 . 1 . 5 )

into a condition for E which is that the continuity of the tangential component of

t - i -  § £  ( 5 . 1 . 6 )
1 0 ) / /0 ox

must be conserved. Applying this condition and using equation (5.1.3) leads to the 

expression of the Fresnel reflection coefficient for an E field perpendicular to the 

plane of incidence to be,

- i f  i n i s i n f l .  1 
E»- 1 2 t an — 1 . - - -1l nsinfl  J
Ei

e I ns i n0 J ( 5 . 1 . 7 )

When the E  field is parallel to the plane of incidence (no component of the E field 

is in the y direction) it is easier to consider the H  field, which will be normal to 

the plane of incidence. As the tangential components of the H  field must be 

continuous the same equation as (5.1.3) is obtained when E is interchanged with H. 

To satisfy the continuity requirements of the E field in terms of H  requires the use 

of,

73



VAH "  ' “ ' r S t  ( 5 . 1 . 8 )

This then has the condition on the H  field that the tangential components of,

1 dH

ic^ o f ocr  5 * ( 5 . 1 . 9 )

must be continuous across the interface. Applying (5.1.9) and the analogy of (5.1.3) 

for the H  field and implementing (5.1.8) gives the reflection coefficient for E fields 

parallel to the plane of incidence as,

These derivations of the spectral boundary conditions for the two modes of

propagation now fully specify the electromagnetic field anywhere in the

two-  dimensional structure, excluding the apex. There is little difference in the

reflection coeffients for the T M  and T E  propagation if a weak guiding regime is

considered and this is demonstrated in the field plots.

5.2: F F T  Evaluation O f Optical Intrinsic Modes.

semiconductor laser line, and the taper angle is 3 °. All the optical fields calculated

in this section are evaluated using the B type field routines, with the appropriate

endpoint corrections described in the previous chapter. This type of field calculation

shows clearly the advantage of greater efficiency of the F F T  approach over 

conventional integration methods. The Intrinsic Mode field for these types of 

geometries using a standard integration technique would take approximately ten 

seconds of CPU time to produce fifty data points [5]. Employing the FFT  method a 

data grid of 256 transverse points by 512 longitudinal points could be generated in 

under two minutes. In fact altering the number of longitudinal data points does not

greatly effect run times, as the rate determining step in the program is the 

calculation of the spectral integrand over the desired spectral interval and not the 

time taken for the F FT  routine. In the plots shown below the number of transverse 

and longitudinal field points is 256 and 1024 respectively. There is redundancy 

generated in these field constructions because of the large number of points obtained 

from the F F T  algorithms and although this increases run times to around 4 minutes, 

better accuracy is attained. If  a direct application of the type B method of solution 

is used the lower boundary of the guide will be parallel to the upper boundary of

( 5 . 1 . 1 0 )

The fields of this section have a free space wavelength of 1.55/mi, a
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plot. To construct the field so that the upper boundary is parallel to the upper 

boundary of the plot (the standard representation of the fields) requires the

interchanging of the substrate and superstrate indices which also reduces efficiency.

Consider a strong asymmetry in the guiding structure where the guide index is 

1.54, substrate index is 1.2 and the superstrate index is 1.47. The diagrams in

Figures 5.2.1 are of fields when the electric vector is pctptywlicatar to the plane of

incidence (T E ). The plots are normalised by taking the peak height of the field on 

the initial plane as one, and all contours are in — 4dB intervals from OdB (all 

contour plots have this interval). The diagrams in Figure 5.2.2 show the Intrinsic

Mode field in the above described geometry with the electric vector parallel to the 

plane of incidence (T M ).

Figure 5.2.1(a):

T E  field plots
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From these field plots the power transfer of the fields from the guide to the 

substrate occurs around the critical height for the corresponding Adiabatic Mode 

defined in this case by

(q -  $ )n  -  <E(flr i +cO 

k ( n 2 -  n j 2) *
( 5 . 2 . 1 )

where i=  1 , 2  depending on which is the higher index of nj and 4 ( 0 cj+ a) is the 

phase of the reflection coefficient at the interface with the larger refractive index 

change and 6C\ is the critical angle at the other boundary. The phenomenon is as 

expected from chapter 4 as the asymptotic forms to first order are the Adiabatic 

Mode fields in the guiding region. Figures 5.2.3(a), 5.2.3(b) shows the Intrinsic Mode 

field of a weakly asymmetric structure where the guide index is as before and the 

substrate index and the superstrate index are 1.47 and 1.5 respectively. Both T E  and 

T M  propagation are shown.

Figure 5.2.3(a)
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Figure 5.2.3(b):

TM  field plots

2nd INTRINSIC IHDE Of AIBKLT A T O M IC  OPTICAL S U M .

Another interesting feature of these fields is that although the T M  and T E  fields 

have almost identical cut— off widths, the leakage of power into the substrate is 

greater for T M  propagation.

5.3: Derivation O f The Acoustical Boundary Conditions.

In this thesis attention is placed on the pressure acoustic fields in fluids, as the 

J -  K ocean of interest is assumed to behave as two immiscible fluids. This 

assumption implies that no shear forces are present in the structure under 

consideration. A  simple continuity equation can be developed in fluids by examinig 

the flow of matter through a vanishingly small cube [53] to give,

- | £ . V . ( p y )  ( 5 . 3 . 1 )

where p is the density of the fluid and v the velocity of the particles constituting the
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fluid. The above equation states that the rate of change of matter is equal to the 

net flow of matter throughout an infinitesimally small volume, with the minus sign 

indicating matter flowing away from volume element. Applying Newton's third law to 

this cube gives,

3v
Pd t  ~  ( 5 . 3 . 2 )

where P is the pressure field. Differentiating equation (5.3.1) and substituting in

(5.3.2) leads to,

.  V 2 P _ y  ( W . ( p v ) )  ( 5 . 3 . 3 )

The second term in the right hand side of (5.3.3) generates second order terms and

is neglected. Assume also that the density and pressure are related by a first order

effect P = c 2p then the equation of motion of the pressure field to first order is,

v 2 p ' ^ ! r l  ( 5 . 3 . 4 )

Consider a pressure field incident on a boundary in a similar fashion to that

demonstrated in Figure 5.1.1. Then the transmitted pressure field must be equivalent 

to the incident and reflected pressure field at the boundary as a build up of pressure 

at the boundary is non-physical. Thus suppressing the time dependence this can be 

expressed as,

„ i k , - . r  „ i k r . r  _ i k t . r  o c\P j e  - 1 ~  + Pr e ~ r  "  -  Pt e “  ( 5 . 3 . 5 )

with the same notation as in section 5.1. The change in velocity of the particles

from one medium to the other must be continuous which gives,

i k i . r  i k r . r  iJ it • T /c ov j e  - 1 ~  +  v r e ~ r  -  v t e 1 ( 5 . 3 . 6 )

Using (5.3 .5 ) and (5.3.6) and the relationship (5.3.1) the reflection coefficient for 

acoustic pressure fields can be expressed as,

Pr  i 2 t a n  *
p f  - e

in-] ps in fl,  1 
np ,s in0  J ( 5 . 3 . 7 )

Thus if p= p 1 this reflection coefficient is analogous to the optical case when the 

E— vector polarisation is perpendicular to the plane of incidence (T E ). When p—n/nj  

and p ^ n j / n  the pressure field is analogous to the optical case when the E — vector 

is parallel to the plane of incidence (T M ).
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FFT  Evaluation O f Acoustical Intrinsic Modes.

The Intrinsic Mode fields for the J— K ocean were generated using the same 

algorithms used for the optical structures above, although in this instance the density 

of the two fluids was varied. The J— K ocean has a pressure release upper boundary, 

which implies that the pressure field on this boundary is zero. It must be noted that 

the BPM  and the PEM  can only model structures with small perturbations of the 

medium. This restriction implies that these methods applied in the standard way 

cannot model accurately the zero boundary condition. There is a method which will

circumvent this problem for a number of geometries. The zero boundary condition is

attained by reflecting the desired environment in the interface with the zero boundary 

condition, so that antisymmetric modes propagating in the new structure will have a 

zero boundary condition in the desired environment. The input data to these new 

expanded models must also be antisymmetric, to obtain only antisymmetric fields. The 

antisymmetry on the input data is achieved by reflecting the desired input of the

J— K ocean in the upper boundary and attaching a phase change of n, and 

summing.

Using the 77 — FFT method, of chapter 3, the Intrinsic Mode fields were 

generated and used as inputs to the BPM and PEM  using the antisymmetrising 

procedure outlined above. In all comparisons the densities of all media are equal to 

one. The field plots in Figure 5.4.1 are 1st order Intrinsic Mode fields propagating 

through the wedge environment using BPM, PEM  and IM  numerical algorithms.

Figures 5.4.2 show the propagation of the 3rd Intrinsic Mode through the J—K 

ocean.
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The BPM  and PEM  fields have significantly more noise associated with them 

than the IM  fields. This can be explained by an overall intrinsic mode strategy. As 

stated in chapter 1, the BPM and the PEM  solve particular equations. In principle it 

is possible to construct intrinsic modes for the BPM equation and the PEM  equation 

in the J— K environment. These new intrinsic modes will be exact solutions of their 

respective equations. Thus when a pure IM  is input into these BPM  and PEM  

environments a set of BPM  or PEM  intrinsic modes will be excited and these new 

intrinsic modes may not exhibit the same properties. In the case of the PEM  the 

cut-  off point of the field and leakage into the lower medium agree well with the 

IM  fields. The BPM  intrinsic mode field is noticably different from the IM  field in 

that the leakage of energy in the lower medium is weaker and the cut— off point for 

each mode is further away from the apex. These methods of comparison are poor as 

the orders of the discrepancies in the field are of the order of the plot interval of 

the fields and consequently a more quantitative approach is required.

5.5: Quantitative Comparisons with B .P .M . and P .E .M .

The quantity examined most readily for the comparison of wave propagation 

programmes, in the J— K ocean, is the variation in the widths of the guiding layer 

when the adiabatic mode cuts off (c u t-o ff  heights). As an adiabatic mode propagates 

upslope, the modal angle (0q) rotates until it eventually equals the critical angle ( 6C), 

at which point the mode is said to be cut— off. An examination of the transverse 

spectral content of the field at each cross— section should give an indication of the 

variations in local cut— off heights. Unfortunately, this method is redundant as the IM  

is formed by spectral synthesis and the BPM and PEM  consist of a set of their own 

intrinsic modes (c.f. previous section), so that the spectral content of the fields are 

high.

As stated previously, as the mode approaches c u t-o ff  then 0q->0c and the 

magnitude of the longitudinal component of wave vector of the mode tends to the 

magnitude of the wave vector in the substructure (i.e /3-tfijk). Using this fact 

combined with the transverse resonance condition, the component of the gradient of 

the adiabatic field normal to the interface between the two media (from chapter 1) 

is,

Noting that <t>j( 0C)=  0 and r q=  0 at 0q=  0C, then it is obvious that the component
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of the gradient normal to the interface is zero at mode c u t- off. Thus the

comparisons of the c u t-o f f  points with respect to the local guide height can be 

achieved by the plotting of the gradient of the field normal to the interface, at a 

point along the interface of the two media. This argument while correct is limited 

because the physics of the marching algorithm methods are such that the pure IM  

input consists of BPM  (or PEM ) intrirnsic modes. Consequently modal interference

will occur which may cause the gradient of the field normal to the boundary to be 

zero at points away from the actual c u t-o ff. To find the appropriate quantity the 

physics of the phenomenon must be examined more closely.

As the mode approaching cut— off has to spread its energy over an effectively 

smaller and smaller cross— section (as the mode is guided) the energy density will

increase. From adiabatic mode theory the peak value of the field on the boundary is 

at the point before cut— off (just before the evanescent field in the substrate becomes 

constant). In the true physical situation the zero field after c u t-o ff , which the A M  

theory predicts, does not occur. The condition for maximum field to occur on the 

boundary is coincident with a zero value of the normal derivative of the field, and is 

termed the cut— off condition.

Accounting for all these arguments implies that the field at the interface is 

required as a function of local guide height; the occurence of maximum field

corresponds to adiabatic mode cut— off.

The Adiabatic Mode c u t-o ff  height is easily calculated by letting /3-»njk in the 

transverse resonance condition of the J—K ocean (equation (4.3.1.2) chapter 4), and 

is

h _ (q ~ i  ) 2n ( 5 . 5 . 2 )
c k ( n 2 -  n i 2) *

This is asymptotically equivalent up to O (a) to the IM  staionary phase point 

description of the local c u t-o f f  height (c.f. chapter 4). Thus the IM  c u t-o f f  height 

should correspond to the A M  c u t-o ff  height. The denominator in equation (5.5.2) is 

the transverse wave number in the guiding layer. Consequently the cut— off height for 

a particular mode using a particular algorithm depends only on the evaluation of the 

transverse wave vector in the guiding medium.

In the BPM  the wave vector locus derived in chapter 1 and the c u t-o f f  wave 

number for a particular mode is shown in Figure 5.5.1 below.
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Figire 5.5,1; Hig PPM Transerse Wave Vector
Al Adiabatic Mode Cut-off. 

-  exact dispersion relation
nk

BPM dispersion relation

Transverse Wave vector 
at cutoff

BPM

k5n

From this diagram the magnitude of the transverse wave vector in the guiding 

medium can be seen to be,

kBPM= k ( 6 n ( 2 n 1 - 5 n ) )  

and so the BPM cut— off height is,

( 5 . 5 . 3 )

4 _  (q -  j  ) 2n

CBPM k ( 6 n ( 2 n 1 - 6 n ) ) ^
( 5 . 5 . 4 )

By contrast, the parabolic equation method (PEM ) of chapter 1 is such that

the field is assumed to have a wave vector equivalent to the wave vector in the

background medium, with a perturbation to this wave vector attached. This means 

that at the adiabatic mode cut— off this perturbation of wave vector must be zero

and hence the parabolic equation method correctly defines this cut— off point.

The table below indicates the shifting of the cut— off points for the three

modes considered in the J— K ocean problem.
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Figure 5 .5 .2  Local C u t-o f f  heights for the J-K  ocean.

Mode Number BPM c u t - o f f  h e i g h t PEM + IM c u t - o f f  h e i g h t s

1 3 3 . 81m 31.57m

2 101 .4 2m 94.72m

3 169.03m 157 .87m

In Figures 5.5.3(a)(b)(c) field plots of the BPM, PEM  and the IM  along the interface 

between the two media are shown for the three different IM  inputs. Also the 

corresponding A M  field at the interface is shown so that qualitative comparisons can 

be made. A ll fields on the boundary are normalised at the local guide height of 

200m.
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An overall analysis best serves the discussion and interpretation of these plots, 

because the phenomena occuring are observed in each case. Immediately it can be 

noticed that the maximum height of the IM  field corresponds to the adiabatic 

c u t -o f f  point as expected.

The obvious detail is that the BPM and PEM  appear to possess a large amount 

of noise. Closer examination reveals a more fundamental structure confirming 

qualitative descriptions given in section 5.2. Firstly the maximum heights of the fields 

compare favourably with those predicted in Figure 5.5.2. Secondly the pure IM  input 

can be decomposed into an infinite set of BPM or PEM  intrinsic modes where 

applicable. As a consequence of this, the three dominant BPM (or PEM ) intrinsic 

modes can be seen cutting off at their correct heights for each pure IM  input and 

are indicated on the diagrams. This adds considerable weight to the intrinsic mode 

arguments of the preceeding two sections.

5.6: The Conservation of Total Power.

A  further requirement of the Intrinsic Mode if it is to be an exact solution of 

the elliptic wave equation is that no net flow of power can occur across any closed 

surface (excluding the apex). This power calculation has been carried out by Xiang, 

Cada and Felsen [5] and discrepancies of the order of 0.6dBs occured when the 

Adiabatic mode was still guiding; after c u t-o ff  more substantial errors were incurred, 

these being attributed to several causes. This section explains how and why the 

inclusion of certain terms will describe adequately the propagation through the 

transition region and subsequent conservation of power. Let U(x) be a solution of the 

elliptic equation,

] U (x )  -  0

Then it follows that its complex conjugate U *(x ) must also be a solution,

( 5 . 6 . 1 )

[ V 2 + n 2k 2 ] U * ( x )  -  0  

Multiplying (5.6 .1 ) by U *(x ) and (4.2) by U(x) and subtracting gives,

( 5 . 6 . 2 )

U * (x )V 2U(x) -  U(x)V2U*(x) -  0 ( 5 . 6 . 3 )

With the use of the vector indentity,
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FVC ] -  VF.VC + FV2C 

equation (5 .6 .3) can then be expressed in the form,

V . [ Im U ( x ) ^ U * ( x ) ] -  0

( 5 . 6 . 4 )

( 5 . 6 . 5 )

Integrating this equation throughout the volume of interest and applying the 

divergence theorem leads to,

£ . d A  -  0 ( 5 . 6 . 6 )

where A  is the unit normal to the surface A  enclosing the volume and

S -  Im [ U ( x ) V U * ( x ) ] ( 5 . 6 . 7 )

This states that if no sources are present in the volume, then no net flux of S 

crosses the total surface. To evaluate the power in the IM  as it propagates upslope it 

is useful to introduce infinite contours which close the J  contour in the left hand 

quarter plane as the field is zero above the upper boundary. This contour is shown 

in Figure 5.6.1

Figure 5.6.1;
rnntour For Conservation O f Power Algorithm.

field on these contours is negligible
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As equation (5 .6 .6) must be satisfied and the value of the field on the infinite 

portion of the contour must be zero then the power crossing the section £  is,

S . d l ( 5 . 6 . 8 )

where 1 is the unit normal to the cross-section J  depicted in Figure 5.6.1. The 

calculated quantity at each possible £  plane from the cartesian coordinates of Figure 

5.6.1 is,

Im U ( x 0) ^  ( - o)dx, (5.6.9)

Previous authors [5,5g] calculating the above conserved quantity did not include an 

expression for the E— M  remainder. In this exposition, this remainder term has been 

asymptotically evaluated (appendix A ), to give

where,

E (0) b
E ( 0 ) ,  

o

E'(0) + FiCO, o

Re0 < 0,

0C < Re0 < n - i ( 5 . 6 . 1 0 )

-  f  w 1 ' ”  *  « ■ ■ >

i n ( 0 - 0 c ) _ i n
F m  (2a co t  0C) a  4
Fi ( e )  2n e

( 5 . 6 . 1 1 )

( 5 . 6 . 1 2 )

This approximation will be sufficient for small wedge angle, which is a feature of the 

ocean acoustical problems. Figures 5.6.2 show the conservation of power in the 

acoustic pressure field crossing a desired cross-  section J  in an ocean overlying a 

fluid bottom, wherein the wedge angle and the density of the fluid bottom are 

varied.
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FIGURE 5.6.2(e)

0

  Poynting Vector without E -M  remainder.
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In each of these environments there are three calculated quantities, so as to 

demonstrate conclusively that the integral of the Poynting Vector S, over J, including 

the Euler— Maclaurin remainder, is a conserved quantity. Using equation (5.6 .9), and 

in the lim it of small wedge angle, the conserved quantity for the Intrinsic Mode field 

can be approximated by,

W (x  ) in k c o s 0  W (x  )dx  
q (T q q o o

( 5 . 6 . 1 3 )

With the z dependence of the Intrinsic Mode obtained from equation (3.5.22) of 

chapter 3 and 0a is the modal angle. Thus the conserved quantity is of the 

approximate form

p  -  e i w q ( x o ) i ? d x o

I
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where 0 is the adiabatic mode propagation constant. Thus, as the cross-section J

passes through the adiabatic mode regime (/3«nk) into a radiative regime (|3«n|k), 

there must be a corresponding increase in the field to compensate for the decrease 

in 0  as P remains constant. In ocean acoustics the accuracy of numerical data is

often checked by calculating the conserved quantity. Figures 5.6.2 and the derivation 

of the conserved quantity (equation (5.6.14)) demonstrate that the correct quantity 

must be calculated and that is not necessarily | U | 2. To make sure that this critical 

transition region is traversed fully it essential to calculate the local height of the 

guide where adiabatic c u t-o f f  occurs. The local c u t-o ff  height (h ^  for the qth 

adiabatic mode can be calculated from the transverse resonance condition given in

equation (5 .5 .2 ).

W ith the appropriate regions of interest calculated it only remains to examine 

and interpret the plots. It must be stated that all the plots start to decrease at the 

small local guide heights because the finite cross-section considered, at these points, 

does not span all the dominant contributions to the field.

The first three cases (Figures 5.6.2(a)(b)(c)) are slight variations of the wedge 

angle ct on a specific geometry considered by Topuz and Felsen [3]. It  is observed 

that the change in 1 Wq | 2 is equivalent to the ratio of the velocities in the two

media. Also the inclusion of the asymptotic remainder accounts for previous 

discrepancies in Poynting Vector calculations [5]. However, as the wedge angle is 

increased, the asymptotic form of the remainder becomes insufficient. It  is believed 

that a numerical computation of the remainder would improve accuracy, but it is 

adequate to demonstrate that the inclusion of this term verifies energy conservation 

for small wedge angles and there is no reason to suppose that successive 

approximations will not hold for a<6c/2. Figures 5.6.2(d)(e) demonstrate that the IM  

of wedge geometries with constant angle and varying media still conserve the quantity 

in equation (5 .6 .9 ).

Conclusions.

This chapter has demonstrated that the IM  field derived in chapter 2 can be 

calculated very efficiently using the FFT algorithms of chapter 3. The accuracy of 

these field calculations was determined by a simplistic method; that of observing the 

required number of integration points to produce a zero boundary condition in the 

J— K ocean. Maintaining accuracy when examining other structures was achieved by a 

scaling of wavelength and refractive index to determine a sufficient number of 

integration points.
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This efficient evaluation of the IM  field has allowed previously time consuming 

calculations on this field to be accessible within the order of minutes. This facility is 

clearly demonstrated with the two dimensional field plots in the first two sections of 

this chapter. The IM  field plots along the interface between the guide and the 

substrate for the J— K ocean were generated using the z—directed FFT  of chapter 3, 

which allowed comparisons with the BPM, PEM  and A M  fields. These comparisions 

demonstrated quantitative discrepancies which were discussed using a simplistic wave 

vector approach and enabled the concept of BPM and PEM  intrinsic modes to be 

introduced.

The final section on calculated power demonstrates the efficiency of these FFT  

routines, as previous calculations of this type required many hours of computer time

[3], whereas now minutes are all that are needed. Indeed this last section has laid to 

rest any previous speculation [5%] as to whether the IM  conserves power as the 

observation point moves upslope through the cut— off of the appropriate A M . It  is 

clearly shown that the with the inclusion of the asymptotic form of the E— M  

remainder, for small wedge angles, the IM  field conserves power to within .2dBs.

The underlying message of this chapter is that a fast and accurate method of 

calculating the field inside a planar wedge has been obtained which may serve as a 

benchmark solution because errors can be quantified asymptotically.
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haoter 6: THE W EDGE GREEN'S FUNCTION.

Introduction.

The Green's function for translationally invariant structures can be calculated by a 

variety of different methods [44] ; usually in geometries of more than one dimension 

the simplest systematic approach is of a transform type [59] . However, in range 

dependent geometries this type of approach is inapplicable. The spectral synthesis 

approach of Arnold and Felsen [1], described in chapter 2, is claimed to produce an 

exact Green's function for the wedge structure, excluding the apex, and this spectral 

object is termed the Wedge Green's Function (W G F). The major aim of this chapter 

is to substantiate the above claim and in the process gain a greater understanding of 

the physical phenomena involved in the propagation of wave fields throughout a wedge 

environment.

The first two sections investigate the properties of the W G F for a general wedge 

configuration, by firstly deriving the W G F for all possible orientations of source and 

observation point, using analysis analogous to that in chapter 2. The derivation of this 

global W G F  then permits a rigorous analysis of its properties by tracking individual 

plane wave fields.

With the identity of the W G F rigorously proved in the previous sections, it now 

remains to investigate asymptotically a W G F of a particular geometry. This analysis of 

the Jensen— Kupermann ocean [22] allows for the identification of previously defined 

global spectral quantities, necessary for a confirmation of a correct numerical 

algorithm.

The final section of this chapter examines the WGFs for several different wedge 

geometries and discusses the implications of the position of the source point.

6.1: Derivation of the W G F for the Global Wedge Geometry^

The derivation of the W G F in chapter 2 considered only source points inside the 

guiding wedge. However, for completeness and further analysis it is necessary to obtain 

the W G F  for all the other possible configurations of source and observation points.

A  close examination of the method employed in chapter 2, suggests that all the 

multiply— reflected fields can be expressed in the simple closed form of equation 

(2.4.13) (chapter 2), provided that all possible initial reflected fields are obtained. 

From equation (2.1.11) of chapter 2 it can be seen that the total scattered field is the 

sum of the initial field, plus all possible multiple even reflections of this initial field.
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To obtain the total scattered field for all possible orientations of the source and 

observation point requires the identification of the initial fields of the scattering 

equation, which are necessary to correctly define the infinite reflection processes in a 

collective form. The W G F then consists of this scattered field and all other possible 

fields unaccounted for in the above collective form. In this chapter an examination of 

the convergence of the global W G F is omitted for brevity, with the knowledge that the 

analysis follows the same form as in chapter 2.

Consider firstly source points lying in the medium below the wedge— shaped high 

refractive index (denoted by i) .  Figure 6.1.1 shows the initial plane wave species 

( < 1 >  and < 2 > )  which then undergo multiple reflections, and also the direct < 4 >  

and reflected <  3 >  plane wave species when the observation point is in the lower 

medium.

Figure 6.1.1: Plane Wave Species for Source Points

in the Substrate (medium 11

x

0-KX <2>

< 1>

<3>

To interpret these fields mathematically requires the introduction of the quantities,

W7(0 ) -  e- f n i k (zscos9i ix ss in9i> (6 . 1 . 1)

Let the transmission of a plane wave through the lower boundary be represented by 

the operator T j  and the reflection at the upper boundary be R u. Using the principle 

of superposition the initial upward field (path < 1 > )  is then,



In a similar manner the initial downward field (path < 2 > )  at the observation point 

can be represented by,

wt (<l’ ) T i Ruv e (2>ds ( 6 . 1 . 3 )
c

with C being the appropriate Sommerfeld contour necessary for convergence. While 

these equations are correct they are not amenable to the collective procedure of

chapter 2. (i.e . they must be in a form in which the observation plane wave is V  ^x)

and the integration variable is also 8). This manipulation, demonstrated in appendix F,

gives the spectral amplitudes of the initial upward and downward fields at the

observation point to be,

(c.f. equation (2.4.3) of chapter 2). In this form these functions may be directly 

substituted into equation (2.4.13) to obtain the scattered field. I f  the observation point 

is in the same medium then the direct and reflected fields must be added. These 

fields are calculated in appendix F using Figure 6.1.1 and are found to be,

The preceeding derivation of all the initial incident fields allows for a complete 

representation of the W G F for a source point in the lower medium.

When the source point is in the upper medium (denoted by 2) it is essential to 

introduce the plane wave terms,

so that the trajectories of the initial plane wave types of Figure 6.1.2 can be 

described mathematically.

+
l T ( 0 )  - ( 6 . 1 .A)

with,

nc osf l  -= n ^ c o s ^ ,  , n c o s ( 0 - 2 a )  -  n i c o s ( 0 ^ )

( 6 . 1 . 5 a )

C

( 6 . 1 . 5 b )

C

UT(0 ) -  e - i n 2M z s c o s 0 , i x s s i n e 2) ( 6 . 1 . 6 )
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Figure 6.1.2;
Bang Wave Species for S o u r P n i n ,  ̂

iB-the Suremrate (medium 7)
<4>

<3>

0 +a 0 + a  B

<2>

< 1>

The expressions for the initial downward, < 1 > ,  and upward, < 2 > ,  plane wave field 

types at the observation point depicted in Figure 6.1.2 are,

W ( 0 2+ 2 a ) T  V  ( x ) d f l 2 
2 2 0+7a

( 6 . 1 . 7 )

W ( 0 _ + 2 a ) T oR . V  ( x ) d 0  
2 2 1  6 + la

( 6 . 1 . 8 )

respectively, where T 2  and Rj are the transmission and reflection operators for an 

incident plane wave. In a procedure analogous to the calculation of the initial spectral 

amplitudes of the previous W G F (appendix F) the upward and downward initial 

spectral amplitudes at the observation point are,

I T ( 0 )

with,

W (0  '+£*)

H f (  V + o ) [ l  +  e i4>u(0_a) ]

( 6 . 1 . 9 )

n c o s ( 6 - a )  *  n 2 c o s ( 0 2 ' )  n c o s ( 0+ a )  ■■ n 2 C o s ( 0 2'*'O!)

Again, as previously, these spectral amplitudes can only be used to evaluate the total 

reflected field and so that when the observation point is in the upper medium the 

W G F requires the addition of the direct < 4 >  and single reflected < 3 >  fields, shown 

in Figure 6.1.2, which are found to be,
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W . ( x , x s ) - w+ (g )_n? ; n ( ^ )  +
2 n2s i n (  6 2+ot) 2 {ef dd

C
( 6 . 1 . 1 0 a )

W ( x , x s ) 
1 2

n s i n ( 0 + a )
w2^ 2+2a^ngs in ( 62+ot) Vl < ? d '  <6 1 -10b>

respectively. W ith all the initial fields fully described for all possible orientations of the 

source and observation point the W G F can be defined as,

C j ( x , x 0 ) D I + j
o o  _

1 ± 1 00 
5 Y » > i s 2

q— oo-'
U " ( s ) F “ ( 0 , s ) d s

J 4
q̂oo

V ' ( x ) d 0

G . ( x , x  ) 
J “  "s

i u " ( 0 ) + D  W“+ ^ i  f2 j  o o 2a *- U . ( s ) F  ( 0 , s)ds  
J qq — 00 e qoo

G . ( x , x  ) J ' “ ’“ s ' D I +
2 2

r 0
1 + + 1 00 
Tu (0 )+ D  w  + i -  1I  j  0 0  l a  £- U+ ( s ) F + ( 0 , s ) d s  

j  q\ q=-ooJ
®qco

[ l + e i 4 > l ( 0 ) ] v " ( x ) d 0

( 6 . 1 . 1 1 a )

[ l + e i ' V ( , + “ > | v + ( x ) d ( >
1 J 2e 2

with,

F " ( 0 , s )  -  exp i * ' ( s )  * " ( * ) .  _1
2 " 2  2a

4 , ± ( 5 ) d 6 - 3 n i 0_ S)+ E * ( 0 , s )  ( 6 . 1 . 1 1 b )Q

and where,

D0 -  ( j - 2 ) ( j - l ) j ,  D] -  j ( 2 —j >, -  j ( j - l ) j

Remembering that j ranges from o to 2 and that all quantities are as defined in 

chapter 2. The superscript and subscript of G denote the position of the observation 

and source positions respectively. The functions Ij  are the direct and reflected fields in 

each case. i.e. I 0 is the direct field given in equation (2.4.1a) of chapter 2 and

l , ( x , x s ) -  Wd ( x , x s ) + Wr ( x , x s )

I ( x , x  ) -  W . ( x , x  ) + W ( X , x  ) 
2 s a 2 s r  2
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6.2: The Spectral Structure.

The expostion of the W G F for all configurations of source and obervation points 

in the above section facilitates the examination of its claimed properties. If  the identity 

of the W G F  is a true Green's function for the wedge geometry, excluding the apex, it 

must possess the following properties:—

(1) Satisfies the wave equation with a delta function source term.

(2) Continuity of the observed field and its normal derivative at each boundary.

(3) Continuity of the observed field for source points crossing each boundary.

(4) Reciprocity.

The first property in this rubric is considerably easier to prove than the others 

and is dealt with immediately, by noting that the W G F must be a solution of the

homogeneous wave equation, as it is constructed spectrally, and in such a manner, that 

all the integrals are convergent. However, at the point x= Xg the exponentials defining 

the plane wave fields and maintaining the convergence properties of the integrals 

cancel, causing the field to become infinite.

The last three properties are more complicated to prove and are simplified if a 

systematic plane wave approach is adopted. This technique involves tracking single or 

collective plane wave species throughout the wedge environment. Using this approach 

still requires complicated mathematical expressions to be manipulated, the bulk of 

which are placed in appendices. This allows for a physical explanation of the

procedures in the text using a diagramatical approach where, in the interests of clarity, 

a particular plane wave species is treated as a local phenomenon. The introduction of 

terminology, consistent with proceeding sections and chapters, aids the analysis of this 

section. The double integrals of equation (6.1.11a) will be termed the modal field, as 

its structure is such that it represents the infinity of wave processes inside the wedge 

environment by a rapidly convergent modal type series. The source terms required for 

the above modal field are termed the initial plane wave fields, and all other additional 

fields are labelled in an obvious manner.

6.2.1: Continuity of the Observed fields

Consider firstly the continuity of the field and its derivative at the upper 

boundary. This can be mathematically stated as,
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C j ( x , x s ) -  C j ( x , x s ) _ _ j ^ x >x s)  _ d g j ( x , x s ) *  6 Bu ( 6 . 2 . 1 . 1 )

where n is the direction normal to the interface. At this upper boundary, B u, the 

observation plane wave fields are found to be,

inkzCOs(»-o) ln ;kzcos(^ io)
coso ;  ̂ cosotinokz-

v : ( x )  -  e —  V j ( x )  -  e cosu jc £ B ( 6 . 2 . 1 . 2 )e o 2 u

The application of Snell’s law on the upper boundary -  given in equation (6.1.9) -  

to these plane wave terms gives an initial indication of the wave relationships occuring 

at Bu, which are governed by the identities,

V * ( x )  -  V ' ( x )  -  V * ( x )  -  V ^ (x )  x t B ( 6 . 2 . 1 . 3 )
6 6 + 1 a  6 2 6 2+ 2 q  u

O f the three W G Fs, the simplest demonstration of the continuity of the observed field 

across the upper boundary, is when the source point is in the lower medium. In this 

case all the wave fields are contained in the initial and modal spectra, which is 

obvious from its construction. The diagram of Figure 6.2.1.1 describes the first two 

different types of plane wave field which are transmitted into the upper medium and 

the associated plane wave fields in the guiding layer.

Figure 6.2.1.1; Plane Wave Species for Source Points 
in medium 1 for the proof of the 

U pper boundary condition.

< 1>

<6><3>
<5>
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There is obviously an infinity of other different types of plane wave field transmitted 

into the upper medium. These other types of field differ from either < 1 >  or < 4 >  

by an integer number of double reflections (reflected off Bu and Bj), an appropriate 

path length change and by a propagation direction rotated by 2na, where n is an 

integer. A ll these different species of plane wave field are represented collectively as a 

specific plane wave field, which is the modal expression defined in (6.1.11). The 

preceeding description is applicable to all other infinite reflection processes represented 

collectively by a modal concept and discussed in this work. On examination of 

equations (6.1 .11) and (6 .2 .1 .3), in conjunction with Figure 6.2.1.1, it can be observed 

that a transmitted plane wave field ( < 1 >  or < 4 > )  on B u consists of the 

corresponding upward plane wave field ( < 2 >  or < 5 > ) ,  calculated in the guiding 

medium, with an appropriately defined transmission coefficient attached. The two types 

of plane wave field corresponding to the above transmitted field in the guiding layer 

consist of an upward field ( < 3 >  or < 6 > ) ,  orientated at the appropriate angle, and a 

downward field propagating with a defined angle 2a  greater than the upward field. 

Using the above statements and equations (6.1.11), (6.2.1.3) the proof of the continuity 

of the observed field across B u for the W G F, when the source point is in the 

substrate, requires that the downward field in medium o, rotated by 2a, must be 

equivalent to the upward field in the same medium with the corresponding reflection 

coefficient attached. This equivalence is demonstrated in appendix G and hence the 

boundary condition is satisfied.

The next case to consider is when the source lies in the guiding medium, the 

problem being made slightly more difficult because of the necessary introduction of the 

direct and refracted fields. The diagrams of Figure 6.2.1.2 illuminate the presence of 

two distinct categories of plane wave field. The first category is comprised of fields 

where the plane waves are launched from the source in a negative x direction, the 

second category being where the plane waves are launched in a positive x direction. 

Figure 6 .2.1.2(a) describes pictorially the general types of plane wave field in category 

one. Using identical analysis as for the previous W G F, it is found that for the proof 

of the continuity requirement it is necessary that the downward plane wave field 

(rotated by 2a) in the guide must equal the upward field in the guide with a sutiable 

reflection coefficient attached. This equality is demonstrated in appendix G. The second 

category of plane waves is more difficult to analyse. The simplest method for analysing 

this complicated wave category is diagramatically, noting from equation (6.1.11) that 

the direct field and the refracted direct field are twice the size of the initial and

modal fields. Using Figure 6.2.1.2(b) the transmitted species < 5 > ,  on B u, is equal to 

the two plane wave species <  4>  and <  6>  at the upper boundary. In a similar

fashion the refracted type < 1 >  is equal to the the direct species , < 2 >  and twice the 

initial species < 3 >  at the upper boundary. It must be noted that < 5 >  and < 4 >  are

initial species and < 6 >  is part of the modal plane wave species. Consequently the
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continuity of the observed field at Bu is preserved if the difference between the modal 

field inside the guide and the transmitted modal field (both evaluated at are equal 

to the downward initial field <  3 > , rotated by 2ct, and the difference between the 

initial transmitted plane wave species, < 5 > ,  and the upward species < 4 > .  This 

equality is demonstrated in appendix G and as a result the continuity requirements of 

the observed field for the upper boundary Bu when the source is in medium o are 

satisfied.

F igure 6.2.1.2fa.fr);
Plane Wave Species for Source Points 

in medium 0 for the proof of the 

Upper boundary condition.

<1> Figure 6.2.1.2(a): Category 1

<4>

Figure 6.2.1,2ffr): Category 2 

<5>

< 1>

<2> <6:s<3>
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The final case to examine is when the source point is in the upper medium. 

The first initial plane wave species are shown in Figure 6.2.1.3.

F-isure 6,2,1.3; Bane Wave Species for £™m
in medium 2 for proof of thp. 

upper boundary condition

<2>
<5>

,<3>

< 1>
<6>

<4>

As with source points in the guiding medium, the proof of observed field continuity 

across Bu is eased greatly by using a schematic approach. The plane wave species are 

depicted for this situation in Figure 6.2.1.3. As previously it is apparent from equation 

(6.1.11) that the direct species, < 2 > ,  and the reflected species, < 3 > ,  are twice as 

large as all other plane wave species. Consequently from Figure 6.2.1.3 twice the 

transmitted field, < 1 > ,  must equal the direct field < 2 >  and reflected field < 3 > .  In 

a similar manner the transmitted species <  5>  must be equal to species <  4>  and 

<  6> evaluated on Bu. The transmitted species < 5 >  is represented by the initial 

fields, which is equal to the initial field <  4> and a portion of the modal field <  6>  . 

Thus the continuity of the observed field requires that the difference between the 

modal field inside the guide and the transmitted modal field calculated at the boundary 

Bu must equal the initial downward field inside the guide and the difference between 

the initial transmitted field <  5>  and the initial upward field <  4 > . This equality is 

proved in appendix G and hence the W G F for source points in the upper medium 

possesses the correct boundary conditions at Bu.

At the lower boundary Bj the boundary conditions can be stated mathematically

as,

c V x  X  1 -  c ’ f x  X 1 d C j ( 2 . 2 s > _  d C j ( x , x s ) ( g  ( 6 . 2 . 1 . 4 )

The proof of the lower boundary conditions follows a similar procedure as for the
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upper boundary, which is discussed geometrically in the text and proved mathematically 

in appendix G . The observable plane wave identities for the lower boundary are found 

to be,

"  V 0 ( - ) "  ( 6 . 2 . 1 . 5 )V1 0 i

As before the simplest case to examine is when the W G F can be represented totally 

by only initial and modal fields at the lower boundary. This situation arises for the 

W G F representing source points in the upper medium. Figure 6.2.1.4 depicts the plane 

wave species of this particular W G F incident on Bj.

F igure 6.2.1.4:
Plane Wave Species for Source Points 
in medium 2 for the proof of the

Lower boundary condition.

x

<6>
<5>

<3>

<2>
<4>

Examining Figure 6 .2.1.4  it is immediately apparent that the initial transmitted field 

< 1 >  is equal to the initial fields < 2 >  and < 3 >  evaluated on Bj. Similarly plane 

wave species <  4 >  must equal <  5>  and <  6>  , all of which are represented in modal 

form. Thus to demonstrate the satisfaction of the lower boundary condition requires 

that the transmitted modal field equals the modal fields inside the guide, evaluated at 

Bj, and that the transmitted initial field is equivalent to the initial fields <  2>  and 

< 3 >  on the boundary. These two equalities are demonstrated in appendix G.

The second case to consider is when the source point is in the guiding medium. 

In this case the same two categories described for the upper boundary exist, except 

here the second category can be treated as for the source point in the upper medium 

(shown in appendix G) and more complicated analysis has to be utilised for the first 

category.
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Figure 6.2.1.5(a.h); H ang Wave Species for Source Points
ia -m edium o for the ^

lower boundary conrfipfm.

EUurg 6.2.1.5(a): Catepnry ?

<2> <6>
<5>

y<3>4

<4>

<1>

Figure 6.2.1.5(b): Category 1

<2> <5>, <6>

<3>

<4>

< 1>

Using Figure 6 .2 .1 .5 (a), where category two is depicted it is immediately obvious that 

the transmitted initial species <  1 >  is equivalent to the the initial species <  2 >  and

<  3 >  . As <  4 >  , <  5>  , and <  6>  are represented in modal form in the W G F  and

the obvious equality (i.e . < 4 >  =  < 5 >  +  < 6 >  on Bj) must be preserved, then boundary 

condition is satisfied if total transmitted field equals field inside the guide evaulated at

Bj. This property is shown in appendix G. Category one is slightly more complicated,

however using a diagramatical approach (Figure 6.2.1.5(b)) the analysis of appendix G 

is made much simpler. In this instance the transmitted field, < 1 > ,  is equal to the 

direct field, < 2 > ,  and twice the reflected field, < 3 > ,  (from equation (6.1.11a)) 

calculated on the boundary Bj. In an analogous manner species <  4>  must equal 

species < 5 >  and < 6 >  on the boundary. As the transmitted species < 4 >  and 

downward species <  5 >  are represented in the initial fields, then to demonstrate 

continuity of observed field requires that the difference in modal fields on Bj is 

equivalent to the initial field < 3 >  and the difference between the initial fields < 5 >  

and <  4 >  . The above requirement is proved in appendix G.
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Figure 6.2.1.6: B ang Wavg Species for Source PniT^
in medium i for thf  rr^ f  r f  ttlf

lower boundary condition

x

< 1>
<6>

<3>

<4>
<2>

The last boundary condition to satisfy for the observed field is the lower 

boundary Bj when the source point is in the lower medium. Figure 6.2.1.6 displays the 

first few initial spectral species present in this situation. Again it is seen from equation 

(6.1.11) that the direct species < 2 >  and the reflected species < 3 >  are twice as large 

as all other plane wave types. Using Figure 6.2.1.6 twice the transmitted initial 

species, < 1 > ,  equals the plane wave species < 2 >  and < 3 > .  Also the initial 

transmitted species <  4 >  must equal plane wave species <  5>  and <  6 > . From the 

above two statements the continuity of the observed field is preserved if the difference 

in the modal fields is equal to the initial field of type <  1 >  and the difference 

between the field types < 4 >  and < 5 > .  This is demonstrated in appendix G.

6.2.2: Continuity of the Observed Field for Different WGFs.

The preceeding analysis has demonstrated that the three independently derived 

WGFs satisfy the continuity requirements on the observed field at the upper and lower 

boundary. As the W GFs were constructed independently it is necessary to demonstrate 

that these functions are also consistent. In other words the evaluation of the observed 

field when a source point is coincident with a boundary must be independent of either 

of the two W GFs that may be legitimately applied. On first inspection it would appear
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that six different categories need to be examined, because of two boundaries and three 

possible positions of the observation points. However, as the continuity of the observed 

field has been demonstrated, a single arbitrary observation point will be sufficient to 

demonstrate the continuity of the source field. Due to these properties of the WGFs 

only two cases need to be examined -  i.e those for source on either of the two 

boundaries -  with the arbitrary observation point placed in the guiding medium. 

Consider firstly the source points on the lower boundary. The different spectral species 

for the two W G F  representations are shown in Figures 6.2.2.1

Figure 6.2.2.1;
The Plane Wave Species for the Continuity 

of the Observed field as the source point 
traverses the lower boundary

Category lwave species
i

Category 2 wave species

Using the geometrical representations in Figure 6.2.2.1 the source point inside the 

guide has the two categories defined for the proof of the observation boundary

conditions. When the source point is on the lower boundary then the species of

category 1 are either initial or modal fields and are all downward. Applying Snell's

law for the lower boundary from equations (6.1.4) generates source plane wave 

identities,

W- (0  ) -  W- ( 0 )  -  W+ (0 ) -  W+ ( 0 )  ( 6 . 2 . 2 . 6 )
1 1  o i i  o

Using the above identities and appropriate shifts of 2a  it is clearly seen that the

downward field from source points outside the guide (equation (6.1 .4 )) is identical to 

the downward field for source points inside the guide (equation (2.4.3b)). Thus 

continuity o f the observed downward field is maintained as the source point crosses the 

lower boundary. The category 2 plane wave species are such that the difference
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between the two modal expressions for this category must equal the difference in the 

initial and direct fields. This equality is proved in appendix G.

Figure 6.2.2.2:
lb? Plane Wave Species for the Continuity 

fifllhe Observed field as the source point 
traverses the upper boundary

Category 2 wave species

Category lwave species

The upper boundary case is similiar in construction and is shown in Figure

6.2.2.2. Using the particular definitions of Snell's law on this boundary from equation 

(6 .1 .9 ), produces the source plane identities,

The upward field consists of only the initial and modal spectrum, and is shown 

pictorially as category 1 species. Applying shifts of lot  to the even— order reflected 

fields and using the identities (6.2.2.7) then it is clear that the upward field from the 

source point inside the guide (equation (2.4.3a)) is equal to the upward field from the 

source point in the upper medium (equation (6.1 .9)). Category 2 fields must also be 

equivalent and this equality is proved in appendix G by noting that the difference in 

modal fields of the two representations is equal to the difference between their initial 

and direct fields.

6.2.3: Reciorocitv.

The last property which needs to be proved is reciprocity. This can be stated 

mathematically in a simple way by,

W (0  +c0 « W (0 )
2 2 0

W"(0 +2ct) -  W+ (0 )  
2 2 0

( 6 . 2 . 2 . 7 )

C ^ ( x , x s ) -  c " ( x s , x ) ( 6 . 2 . 3 . 1 )
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where n and j range from o to 2 . There are nine equations in the representation of

(6 .2 .3 .1 ), but because of the properties of the WGFs necessitates only examination of 

one particular configuration of source and observation point. The case considered is 

when the source and observation point are in the guiding medium (medium 0). While 

this property can be stated simply as in equation (6 .2 .3 .1), the proof is considerably 

more involved than any of the preceeding analysis. As previously the bulk of the 

mathematical analysis is in appendices, and a geometrical exposition of the proof is 

given in the text.

Figure 6.2.3.1: Different plane wave types for th£_

proof of Reciprocity.

even reflected downward plane waves x

<3>

<2:

< 1>

odd reflected downward plane waves

even reflected upward plane waves

<4>
<5>

odd reflected upward plane waves

Reciprocity must be demonstrated for all plane wave species in the wedge geometry. 

The method of proof for reciprocity is achieved by the following analytical steps. The 

upslope W G F  has its source and observation point interchanged and then substitutions 

are used (obtained from Figure 6.2.3.1) in conjunction with contour shifts to show that 

this is equivalent to the original upslope W G F formalism. The simplest case to prove 

is the direct field depicted as species < 1 >  in Figure 6.2.3.1. The substitution 6— n is 

applied to the direct field when source and observation points are interchanged, and 

then deforming the contour produces the original formalism of the direct field. All
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other reflected field processes can be described by either an odd or even number of 

reflections. Using the diagram of Figure 6.2.3.1 there are two different cases to 

examine in each of the above reflection cases.

Consider firstly the odd reflected field which is downward at the observation 

point, represented as the plane wave species < 2 > .  The initial and modal fields for 

this case can be represented by,

respectively. The source and obervation points are interchanged and then with the aid 

of Figure 6.2.3.1 the appropriate substitutions are made to show that this formalism is 

equal to (6 .2 .3 .9a) and (6.2.3.9b). This is carried out in appendix I  where similar

analysis is used on the other odd field (denoted by species < 4 > ) .

The even reflected fields are slightly different as both the upward and downward

fields are interelated. The upward even reflected initial and modal fields at the

observation point (species <  5 > ) are,

respectively. Interchanging the source and observation point and using the substitutions 

indicated by Figure 6.2.3.1 will give the same field as if the observed field were even 

reflected downwards <  3>  . This is demonstrated in appendix I  as is the case when the 

original modal spectrum is downward at the observation point and interchanging the 

source and observation looks like the upward field at observation point <  5 >  .

The above demonstration of the reciprocity of all the different plane wave types 

which constitute the W G F  implies that this function itself possesses the reciprocity 

property.

e i  n k r s c o s  ( 6-2o t+ xs ) e i <t>u ( 6-ot) i  n k r c o s  ( 0-%)
( 6 . 2 . 3 . 9 a )

C

f  F‘ ( « , s ) e i n k r s C o s ( s ' 2"+ x s ) e llI,u ( s ‘ “ ) d s e ' i n k r c : o s ( # ' x') d9 ( 6 . 2 . 3 . 9 b )

e i n k r s c o s  ( 0-2cH-\s ) e i $ + ( 0 ~ 2 a ) e “ i n k r c o s ( 0 + x ) (j^

C

( 6 . 2 . 3 . 1 0 a )

1 v  \ i n k r - c o s ( s - 2 o + x s ) i4)+( s - 2 o ; l  - i n k r c o s ( 0 + \ )j — 2  F ( p » s ) e  *  e a s e d6  ( 6 . 2 . 3 . 1 0 b )
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Asymptotic Analysis of a Wedge Green's Function.

The above section dealt with the exact analytical proofs of the W G F. This 

section is concerned with approximate asymptotic forms of the W G F , which will allow 

further confirmation of a correct numerical algorithm. This analysis, although specific 

to the Jensen— Kupermann ocean problem and a W G F  having a source point in the 

guiding duct, can be applied to any wedge environment. The method of approach 

involves treating the modal spectrum and the initial spectrum separately as different 

asymptotic parameters are employed in their evaluation. This analysis considers only 

source points which are in guide cross— sections much greater than the critical guide 

height hc.

6 .3 .1: The Modal Spectrum.

Inspection of one particular term in the infinite modal sum allows for a cleaner 

exposition of the analysis. The modal term indexed by the integer q can be 

represented asymptotically with respect to the smallness parameter a  as,

0 i Ba (0,s)
++  +£ H~(0,s)e

C q̂<»

a dsd0 + 0(a2) xeX o

(6.3.1.1a)
00 iBq(0,s)
[l + ei<i,l(0)]T(0,s)e ° dsd0 + 0(q2) x e X ^

where,

ct>j (5)d6-n(q—i) ( 0-s) -nk(hcos0-hscoss)+E^( 0 , s)
s

and from equation (6.1.11) and using the analysis of appendix B,

+

eid>j (s) einkxssins_eink(2hs-xs)sins ginkxsin0giJ(0,s)
H'(0,s) -

T(0,s) ~ -e

ink(2hs-xs)sins_ i4>j(s) ink(2hs+xs)sins e>inkxsin0eiJ(s,0) 
—0 "6 ©

(6.3.1.1c)

e ink(2hs-xs)sins_e ict>1(s)eink(2hs+xs)sins ^ n ^ x s i n 0 , g i J (s , 0)
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and

The reason for the MqCx.x^ being defined as the 'modal' term is now demonstrated. 

As stated previously the analysis of each modal term MqCx.x^ is concerned with 

instances when the source point, in the guiding layer, is in a region where the 

Adiabatic Mode, indexed by the integer q, exists. Although this analysis examines only 

a subset of possible source and observation point configurations, it is sufficient to 

indicate the nature of the field. The phase of the modal field M ^ x .X j) , with q = 2 , is 

shown in Figure 6 .3 .1 .1 .. In these diagrams the phase of the odd reflected upward 

field of Mq(x,Xs), for observation points inside the guide, is plotted against the 

propagation angle of the source and observation plane waves.

Figure 6.3.1 .l(a l:

FHISE PLOT OF D£ EM) HHL1BH OF T)E BE M E D  IFUBD FED.

8

I

a 0.2

>1: <•>>

0 .4  0 .5  0.G

( rads ) .
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Figure 6 .3 .1 .1(c):

FWSE fUfT OF THE £00 ItML 1BJ1 OF Uf BE ElETIHl IFUUS RED. 
t------------------1----------------- 1------------------1----------------- 1------------------1------------------r



In the above two dimensional phase plots the source point is in a cross— section where 

the local guide height is 216m and the propagation angle of the second normal mode 

in a translationally invariant guide of this cross-section is .225 radians. In Figure 

6.3.1.1(a) the observation point is at a range where the local guide cross-section is 

200m, and the second A M  at this point can be constructed by two 

counter-propagating plane waves at an angle .274 radians. Figure 6.3.1.1(b) has its 

observation point in a cross-section where the local guide height is 105m and the 

plane waves which constitute the second A M  are propagating at an angle .4724 

radians. Figure 6 .3.1.1(c) has the observation point in a region where the local guide 

height is 94m, which is unable to support a second normal mode, and consequently 

the modal angle is now complex. In this case a two dimensional saddle point is still 

observed because the integrand will still be slowly varying around the real part of the 

complex angle if this modal angle possesses only a small imaginary part. From all 

three diagrams the two dimensional saddle points are positioned at (0q,0qs) where 0q 

and 0qS are the stationary phase points in the observation and source variables which 

solve the equations,

3Bq ( « , s ) _  0 SBq ( « , s ) _  o ( 6 . 3 . 1 . 2 )
oO as

respectively. These equations are the transverse resonance conditions for the observation 

and source cross-sections respectively. The observed spectral content of M q(x,xs), for 

observation points inside the guide, reveals a modal structure which can be explained 

by a Intrinsic Mode interpretation of the wave processes. When the observation point 

is inside the guide, Mq(x,Xs) can ^  represented in the same notation as in equation

(6.3 .1 .2) of chapter 4 by noting that Bq(0,s) =  Zq(0 ,x)— Zq(s,2fs), to give,

M ( x , x  ) F " ( 0 , x ) e

C

i Z q ( 0 , x )
a ±*

F ( s . x j e

i Z q ( s , x s )
a  , ds d0 ( 6 . 3 . 1 . 3 )

where * denotes complex conjugation and dependence on source or observation point is 

indicated explicitly. From equation (6.3.1.3) it is clear that if the bracketted term is a 

constant, D  say, with respect to 8 then the asymptotic modal term is merely the 

Intrinsic Mode field multiplied by D . It  will be demonstrated later in this chapter that 

this assumption is approximately valid when the source and observation points are 

many wavelengths apart. There are three different regions which are examined 

asymptotically and these are determined by the position of the observation point, which 

can be situated in any of the following regions:—
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(1) A  region where the qth Adiabatic Mode exists.

(2) The critical transition region for the qth modal term.

(3) A  purely radiative region.

and the source point is positioned at Zg= — 9Km and x^S O m . This source position is

such that it is a sufficient distance from any observation point of interest to enable

the saddle point to be considered as isolated (this is the case for Figures 6.3.1.1(b)

(c)). Consider firstly the case when the observation point is in region (1 ). This

configuration produces the constraint 0c>0q>0qS. The spectral content of the observed 

odd reflected downward field inside and outside the guide for this situation is shown in 

Figure 6 .3 .1 .2 . noting that no topological differences occur in any of the other possible 

wave species.

Figure 6 .3.1.2:

Real Part O f Odd Reflected Downward Field

inside guide

np
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-1  ■

0 .1

outside guide

0.2

observation angle in radians observation angle in radians
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The steepest descent paths for this case are indicated in Figure 6 .3 .1 .3

Im eFigure 6.3.1.3:

Steepset Descent Paths of the Modal nan of the WfiF  

in the Observation plane 

when the mode is well guided
SDP Branch cut integral

n-e,
Re 6

n-e

SDP
Branch cut

The field in this region can be asymptotically represented considering only the 

contribution from the stationary phase point at (0q,0qS) (see appendix J) which is,

X  2*
Mq ( x , x s ) -  wq ( x s ) w q ( x ) 1 -  n“ * e ~ P s d p s

— CO

where Wq(x) is the asymptotic function defined in equation (4.3.1.3) of chapter 4. The 

remaining integral term in (6.3.1.4) corresponds to the saddle point being close to the 

endpoint of the source integral which is the case highlighted in Figure 6.3.1.1(a). The 

retention of the Fresnel integral term in (6.3.1.4) is necessary only when the source 

and observation point are in close proximity. As mentioned earlier the source and 

observation points are well separated and using appendix J for asymptotically small 

wedge angle it is found that X-»— ® and the Fresnel integral of (6.3.1.4) can be 

neglected. The neglect of the Fresnel integral is assumed for all the following analysis, 

which is justifiable because separation between source and observation point will be 

greater than when the observation point is in region (1).

It  is useful to examine the nature of the modal term Mq(x,5cs) by investigating,

in an asymptotic manner, the phenomena occuring at the source and observation

cross-sections independently. The field from the source point which excites the modal

field is the same for all positions of observation point so that this discussion of the 

wave processes at the source plane can be applied to the other two regions of interest. 

The steepest descent contours for the source variable, shown in Figure 6 .3.1.4, are
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similar to those for the reflected field from a source point above a half plane [43] 

which is as expected.

Figure 6.3.1.4;

S lggpset P escem  Paths o f  the M odal part o f  the W f t p

in  the sonrrp. 
fc rflJ l positions Of Observation pp jnt consiriprp^Im S

SDP

Re S

Branch cut integral

Branch cut

The contour integral around the branch point represents collectively the launching 

of all possible lateral rays and their further interaction with the planar boundaries. As 

the decay of these lateral ray fields is large compared to the modal field they are 

neglected from any asymptotic analysis. The source field from around 0qS contributes 

significantly to the modal term which can easily be demonstrated by examination of 

the observed spectrum.

It  must be remembered that the amplitude of each plane wave, propagating at 

an angle 0 say, in this spectrum, has been obtained by an integral over the source 

field from 0qco to 0 and an Intrinsic Mode like amplitude function (see equation

(6 .3 .1 .3 )). The above statement can now explain adequately the phase plots of Figure

6.3.1.2. When the observed plane waves are propagating at an angle less than 0qS 

then the source integral does not contain a stationary phase point. Consequently the 

contribution from this integral to the field is asymptotically small, which is clearly seen
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in Figure 6 .3 .1 .2 . When the plane waves are propagating at angles greater than 0qS 

the endpoint of the source integral is greater than the stationary phase point and the 

integral contributes to significantly to the field. As there are no more features which 

will change the source integral contribution asymptotically for all 0>0qS, this integral

can be regarded as a constant. Thus it is seen in Figure 6.3.1.2 that the spectrum of

the observed field for angles greater than 0qS is very similar to the spectrum of the

Intrinsic Mode (c .f. Figure 4.3.3.1 of chapter 4) which is as predicted.

When the observation point is in the critical transition region for the qth

Adiabatic Mode, the steepest descent paths for observation field are as shown in Figure 

6.3.1.5 .

Fieure 6 3 15- SlggPSt decent path in the observation plane
o f the Modal part o f the WGF 

when the observation point is in the critical transition repion

Ime

Branch cut integral

SDP

Steepest descent valleys
n-e,

Re 0

Branch cut

SDP

The observed spectral content for the odd reflected downward field, for observation 

points in region two is depicted in Figure 6.3.1.6, which are as expected similar, 

topologically speaking, to Intrinsic Mode spectral fields. The noise introduced in these 

amplitude plots is due to round off errors in the numerical evaluation as only single 

precision complex number representation was possible. This computer generated noise 

has little effect on the actual field as it has then to be integrated, which will have the 

effect of filtering this high frequency noise.

122



Figure 6 .3 .1 .6 :

Real Part O f Odd Reflected Downward Field

A
np
L
i
Tu
i
0
F

sp
E
C
T
R
A inside guide

outside guide

-0 .5

observation angle in radiansobservation angle in radians

The field in this region can be calculated by the same method as the Intrinsic Mode 

field, given in appendix E , with the appropriate source weighting function attached. 

When the observation point is in region 3, the contribution to the modal term 

Mq(x.Xs). is dictated by the steepest descent paths shown in Figure 6.3.1.7

123
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The appropriate spectrum of the observed odd reflected downward field for observation 

points inside and outside the guide is shown in Figure 6.3.1.8.
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The asymptotic field in this region consists of the Adiabatic Mode coupling to the 

lateral field, arising from the branch cut integral and the radiation field from the 

complex stationary phase point. The field in this region is the same as in chapter 4 

with the weighting function wq*(Xs) attached. Arnold and Felsen [24] have

demonstrated that these asymptotic forms are asymptotically equivalent to the boundary 

layer approach of Pierce [20].

Having discussed the asymptotic forms and the physical implications of a part

term in the modal portion of the W G F it would now be suitable to calculate this 

spectral term. Firstly the endpoint 0qoo was made equal to zero, which is allowable as, 

from Figures 6 .3 .1 .2 , 6 .3.1.6 , 6 .3.1.8, any source plane wave propagating at an angle

significantly less than 0qs can be neglected. The most desirable property, in terms of

numerical evaluation, of this spectrum is that the dominant contribution to the field

occurs over a finite portion of the real axis and as such is amenable to the FFT

approaches of chapter 3, without the need for any additional endpoint corrections. The 

speed of calculation of this modal term was increased by having a variable number of 

integration points for the source integral, whose number was dependent on the size of 

the integration range. In Figures 6.3.1.9 the second modal term has been calculated 

for the Jensen— Kuperman ocean with different source positions. To generate a 256 by 

512 data field, integrating over the real axis from zero to .85 radians took

approximately 40 minutes of CPU time.
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The above Figures confirm previous descriptions of a single modal field as the

observation point moves upslope. This modal term is small when the source and 

observation point are close, as the saddle point is now near the endpoint of the source 

integral and the Fresnel integral in (6.3.1.4) must be retained. A  physical

interpretation of this is enlightening. As this modal term represents the scattered field

which has undergone more than one reflection, the angle of propagation of any plane

wave represented in this collecteive form must be close to normal incidence.

Consequently as the plane waves represented in the modal term have propagating 

angles greater than the modal angle at that cross— section they are unable to generate 

a modal type field.

It  will also be noticed that as the source point is positioned further away from 

the apex of the wedge, the observed field of interest asymptotically satisfies the 

boundary conditions.

Another property of the total modal field can be demonstrated if the source 

point is moved along a fixed cross-section as depicted in Figure 6.3.1.10. In these

diagrams only the z— directed FFT  is implemented as this reduces run times by half,

but as a consequence the data field has been rotated by a.

Figure 6 .3 .1 .10(bV.
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In Figure 6.3.1.10(a) a source point is placed in the desired cross—section in such a 

manner that all the Adiabatic Modes of the structure are excited. The modal 

interference and their corresponding cut— off points are clearly seen. In Figure 

6.3.1.10(b) the source point was placed at the null of the second Adiabatic Mode in

that cross— section and it is clear that in this situation no excitation of this mode 

occurs. This phenomenon is expected from the asymptotic nature of the field due to

the Wq*(Xs) term. The form of the asymptotic results of this section suggest that when 

the source and observation points are well separated the W G F  may be well

approximated by,

2  W * ( x s ) W ( x )  ( 6 . 3 . 1 . 5 )q  q  q
where W q(x) is the standard Intrinsic Mode. This effectively states that the W G F  can 

be said, in the far field, to consist of all possible Intrinsic Mode fields. The modal 

contribution to the field for a strongly asymmetric optical structure is shown in Figure 

6.3.1.11.

Figure 6.3.1.11:
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6 .3 .2 : T he Initial Field.

This section deals with a systematic approach to the calculation and confirmation 

of the correct initial fields. The direct field which has not been refracted can be 

calculated straightforwardly, by using the asymptotic approximations of the Hankel 

functions for large and small argument given in [54]. The remaining initial fields for 

observation points inside the guide can be mainpulated into the form,

A( (J )e i n k R c o s ( 0 - r ) de ( 6 . 3 . 2 . 1 )

C0

where nkR is the optical path length from source to observer and r is the

corresponding stationary phase point. A( 0) represents phase changes due to the

reflection processes inside the guide (see equation (2 .4 .3 )). This analysis is concerned 

with generating some measure of the initial fields. To simplify this approach a single

term representing the single reflected upward field is examined. In this case,

A ( 0 )  -  e 1(* l (6, )  R 2 -  ( z - z s ) 2 + ( x+xs ) ( 6 . 3 . 2 . 2 )

It will be immediately noticed that the asymptotic parameter is no longer 1 /a , but is 

the optical path length nkR. Thus when the source and observation point are separated 

by many wavelengths the Sommerfeld contour C 0 can be deformed so that the field 

consists of a ray field (generated from the stationary phase point r )  and a lateral ray 

field (from  plane waves around the critical angle). Subsequent reflections of the lateral 

ray field are neglected. The asymptotic analysis for the ray field from appendix K is,

-  ( T ®  ( 1 +  k L  ( +  1 ]  ]  C 6 . 3 . 2 . 3 )

where A q(t) is the derivative of A (0) with respect to 0 evaluated at r .  The lateral 

ray field is calculated to be,

i n k r c o s (  0c - r ) - i l l / 4
i .  ( R T ) _ C i yne__________ ( 6 . 3 . 2 . A)

b ’ (nkRs i n ( 8c - t ) )  3/ 2

A  uniform asymptotic expansion as r traverses 0C can be obtain by using Bleisteins 

method [60 ]. However, when nkR is large r will always be well separated from 8C as 

the wedge angle a  is small and the uniform approach of Bleistein is not required. The 

combination of the two fields of (6 .3 .2.3) and (6 .3 .2.4) will now be used, in 

conjunction with another approach, to verify a correct numerical algorithm for the 

calculation of the initial fields.
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The numerical evaluation of the initial fields was achieved by employing the FFT  

routines of chapter 3. There are underlying difficulties with this method of calculation 

as the dominant contribution to the field is not contained in a finite portion of the 

real axis. This problem is circumvented, when nkR is large, by using Laplace's method 

to correct for the endpoint contributions as used in chapter 5 and calculated in 

appendix D . The finite interval of integration for the FFT  was shifted to be from -  .3 

radians to .8 radians, so that the Laplace's approximations will be accurate.

Two different checks were then carried out on this FFT  evaluation of the initial 

fields when the optical path length is large. Firstly, comparisons between the FFT  

method and the asymptotic field given in (6.3.2.3) and (6.3.2.4) were taken and found 

to be in good agreement with even the first term of (6.3.2.3) provided that nkR is 

>15. The second check on the initial fields when nkR is large can be developed from 

exact analysis of the boundary conditions given in this chapter. It  is observed that 

certain combinations of plane wave species satisfy particular boundary conditions 

independently of the modal field. Using this knowledge it was observed that the 

boundary conditions were satisfied to within approximately 3% of the maximum value 

of the field provided that nkR was >15. From these two tests it can be concluded that 

provided the source and observation point were separated by more than fifteen 

wavelengths the W G F  can be accurately calculated using the F F T  methods of chapter 

3.

When the optical path length is small asymptotic forms become difficult to 

obtain as the evanescent wave fields contribute significantly to the field. Thus with no 

asymptotic form to compare any reflected field the confirmation of a correct algorithm 

was only obtainable through the satisfaction of the boundary conditions. The evaluation 

of the initial fields in this instance consists of the FFT  method along the real 6 axis 

and a small portion of the evanescent spectrum was calculated using Simpson's rule for 

a contour progressing into the complex plane. The satisfaction of the boundary 

conditions was *10%  for nkR <10, and as only far fields were of interest this 

restriction is adequate.

The analysis of the modal field and the initial field leads to the conclusion that 

accurate and efficient generation of the W G F field can be obtained using the FFT  

method provided the source and observation point are separated by more than 15 

wavelengths. In Figure 6.3.2.1 the W G F for the J— K ocean is demonstrated. The first 

diagram shows that the source point was positioned at the null of the second local 

mode in the source local cross- section. The last diagram shows the excitation of all 

modes present in the wedge environment. It is clearly seen that the initial fields are 

significantly smaller than the modal field as this field is easily recognised.
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Conclusions.

This chapter has examined closely the properties of the source induced global 

object of chapter 2. This examination has proved rigorously that the global object in 

question is the true Green's function for the wedge environment, excluding the apex of

the wedge. A  by— product of this analysis, together with asymptotic forms, has enabled

a systematic approach to the confirmation of a correct numerical algorithm. The 

asymptotic forms facilitated another confirmatory test on the F F T  evaluation of the 

W G F , while also demonstrating the dominant wave processes.

The final two sections demonstrate the close physical links between the pure IM

and the W G F . However the nature of the W G F suggests that all possible IMs does

not form a complete set in the wedge environment. This chapter has also demonstrated 

that an accurate calculation of the modal field can be obtained everywhere in the 

wedge geometry (excluding the apex) due to the finite nature of the spectral field. 

This statement is confirmed numerically by examination of the boundary conditions for 

specific plane wave species in the modal sum. A  qualitative comparison between the 

W G F  and the BPM  and the PEM  is left to the next chapter as difficulties in 

generating a delta function occur in the marching algorithm methods. In conclusion it 

is interesting to discuss the behaviour of the initial and modal fields throughout a 

typical wedge environment. The modal field close to the source point is small for the 

reasons discussed above and the initial fields are the dominant field terms. In this 

region it is apparent that the initial fields will be a good approximation to the W G F  

and will satisfy the boundary conditions in this region. As the optical distance between 

source and observation point is increased, the initial fields decay at least as fast as 

R ~  1, yet the modal term increases. Thus in the far field the W G F  is well 

approximated by the asymptotic modal field given in (6.3 .1 .5).
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Chapter 7: APPLICATIONS OF THE W EDGE GREEN'S FUNCTION.

Introduction.

This chapter explores methods which exploit the properties of Green's functions 

to solve the elliptic wave equation in a non— separable environment. The central 

principle is that of being able to represent the field inside an enclosed surface by an 

integral over the surface. This idea has extensive use in diffraction problems [30]. 

The first section of this chapter derives briefly this boundary integral representation 

of a field enclosed by the said boundary.

This formalism is then applied to the two dimensional planar wedge 

configuration of interest, where a description of a suitable contour, necessary for a 

good approximate solution, is given. In the following sections, input fields are placed 

on the prescribed contours and the propagation of these input fields throughout the 

wedge structure is examined. The final section shows how, using similar structures to 

those developed in preceeding sections, it is possible to model simply connected 

structures. W hile this is future work, arguments are given for and against pursuing 

this course of action further.

7 .1: Green's Theorem.

Consider a volume V  enclosed by a surface S, which has an associated 

3 - dimensional vector Green's function GCx.Xg). This Green's function is constrained 

in such a manner as to satisfy the equation [10],

[ V 2 + n 2 ( x s ) k 2 ] c ( x , x s ) "  f i fes- * )  ( 7 . 1 . 1 )
~s

with the subscript Xs denoting differentiation with respect to the source variable Xg, 

and V 2 taken as acting on each component of the vector Green's function. The wave 

vector magnitude is k and the refractive index n(Xg). A  solution, U(2Ls)* of the 

homogeneous elliptic equation can be mathematically described by,

—s

I f  equation (7 .1 .1 ) is multiplied by U(Xs) and equation (7.1.2) multiplied by the 

Green's function, then subtracting these two altered equations gives,
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U (x s ) 6 ( * s - * )  -  U (x s ) v ^ (* ’* s )  -  C ( x , x s ) V 2U ( x s )
X“
'S x~ ( 7 . 1 . 3 )

I f  this equation is then integrated throughout the entire volume V  in conjunction with 

the sampling property of the delta function, gives the field anywhere in the volume 

V  is given as,

U ( x ) [u<><s)^C(x,xs) - C(S ,jSs)V^J(Ss)]dV (7.1.4)

Using the vector identity (equation (5.4 .4)) and the divergence theorem, then the 

field inside and on the boundary S is given by,

U ( x ) U(><s)VC(x,xs) -  G(x ,xs)VU(xs) ] . d £  ( 7 . 1 . 5 )

where S is the unit outward normal to the surface S. This diffraction integral can be 

interpreted physically by using the Kirchoff— Huygens concept. The field anywhere 

inside or on the surface S (which does not enclose any sources) can be said to 

consist of the field from appropriately weighted source points from every point on S,

7 .2: Application to the Wedge Environment.

Enclosing Contour shape for modelling Wave 

Figure 7.2.1, Propagation bv Boundary integral method.
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Armed with the above representation of the field in a region where the 

Green's function is known, the field in the wedge region can be calculated. The

applicability of the W G F  is such that the apex of the wedge must not be included in

the interior or situated on the the contour enclosing the region of interest. This

constraint motivates the contour shape depicted in Figure 7.2.1. In this representation

r  1 and r 2, sections of the enclosing contour, are coincident and as they are in

different directions their field contribution is zero. T 1 and T 2 meet r  at infinity

where the radiation condition holds. Thus the contributions from the sections of the

contour at infinity are zero. As a consequence the field in the wedge region with no

source points can be represented exactly as the integral over the T and e contours 

shown in Figure 7.2.1. I f  the mode is propagating upslope the field incident on the

apex will be small. Also if the observation points are many wavelengths away from e

then its contribution can be neglected. Thus the field in the wedge away from the

wedge apex can be given approximately by,

U (x )  - u ( xs) ^ (- ’- s) -  C ( x , x s ) j ^ ( - s ) ] d r  ( 7 . 2 . 1 )

n is the outward normal to T, and the vector representation has been removed as 

only scalar fields are of interest. The fields U(x) could be evaluated numerically by 

the above method, but the calculation of the Green's function for source and 

observation points in close proximity is difficult and also would require a vast amount 

of CPU time, as the W G F  would have to be calculated for every point on T for 

every observation point. A  more efficient algorithm can be generated, without the 

singularity difficulty of the W G F, if the T source integral is calculated first. This 

route can be followed if the contour r  and the angular spectrum integral over 6 are 

interchanged, which is plausible as the field is convergent. Using the standard 

coordinate system used in Figure 7.2.1 for the wedge geometry the field can then be 

represented as,

U(x)  - -  I ( x , x s , 9 ) ^ (- s ) ]d x sde ( 7 . 2 . 2 )
dz S S

c r

where I  is the plane wave spectrum of the appropriate W G F. Inspection of the 

spectral function I(x,Xs>0) (from equation (6.1.11) of chapter 6) it is apparent that 

the Xg dependence is only present in the source plane wave terms. Therefore to 

calculate the field in this boundary integral efficiently requires the evaluation of the 

W G F  with the source plane wave terms, W j^ S ), replaced by,

134



[ u ( x s ) a i ' ( i )  -  " t < s > § (H dxs
p s s

( 7 . 2 . 3 )

7.3: The Gaussian Beam Input.

This section is concerned with initiatiing fields into the wedge environment 

which enable at least qualitative comparisons with the BPM  and P E M  discussed in 

chapter 1. Discussion in the previous chapter highlighted the difficulties involved when 

comparing the W G F  with other methods, due to the difficulty of modelling the 

source point. To circumvent this problem, consider a two dimensional gaussian field 

with its peak (Zp,Xp) and a 1/e point of d, is used as an input to all numerical 

routines, at the cross-section z= Z p , the form of which is given in equation (3.1).

U ( x ) L _  e - ( ( x - x p ) / d )  -  ( ( z - Z p ) / d ) )
d 2n ( 7 . 3 . 1 )

In the usual manner letting d-»0 implies that U(x)-»5(x— Xp) 6(z— Zp). Thus using this 

type of input with a finite value of d avoids the singularity problem incurred when 

comparing the W G F. To successfully model a field due to a delta function the width 

of the gaussian must be considerably less than the wavelength of the field in the 

guide. Also to simplify the problem only cases where the majority of the gaussian is 

inside the guide will be examined, although there is no loss of generality to the 

principle in this constraint. If  the T contour is placed at z^= Zp then the field 

evaluation requires the source plane waves W 0±(6) to be replaced by,

, h ( z p )
- i n k c o s S  - i n k z ncos5

lid * e P
f e ?i n k x s s i n S ^ - C ( x s - X p ) / d )  ( 7 . 3 . 2 )

Completing the square in the exponent gives the integral in the form

- i n k c o s f i  - i n k ( z ncos5±xDs i n 6 ) - ( d n k s i n 6 / 2 )
rid2— 6 p p

h ( Z p )

f x c - x n in k d s in S ]
- l - V * ----- 2------Jdx ( 7 . 3 . 3 )  

s

Applying the substitution,

t -  ( x s - x p ) / d ? ( i n k d s i n 6 ) / 2  

and noting that the beam is well contained in the guide cross-section (allowing the
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endpoints to be taken to ±00) alters the source plane waves to

-inkcos 5_-ink(zncos 6±xnsin6) -(dnksin6/2^ .fUd (7.3.4)

As the gaussian profile is well contained inside the guiding duct, then to generate an 

accurate field structure throughout the wedge environment requires the G 0Kx,Xs) 

W G F . The gaussian beam was positioned at 88m above the J— K ocean floor at an 

ocean depth of 200m (i.e . Xp= 88m, Zp= —7391m for a = 1 . 5 5 ° )  which corresponds to 

the null of the second order mode in a translationally invariant guide possessing this 

local transverse plane. The 1/e point of the gaussian is 20m and was used as an 

input to the B P M  and PE M  algorithms in the same manner as used in chapter 5. 

Figure 7.3.1 depicts the field throughout the J—K wedge shaped ocean for the 

particular input

Figure 7.3.1(a):

Gaussian Input Using Boundary Integral Method.
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It  is first noticed that the W G F field is orientated at an angle cx to the other 

marching algorithm fields, which is merely a consequence of employing the 

z— directed F F T  only so that a fast generation of the data field was possible. 

Quantitative comparisons of the fields would require a similar approach to section 5.3 

of chapter 5 and to avoid repetition this is neglected. In a qualitative description of 

the fields this rotation of a  in the W G F field is of little consequence as it is the 

confirmation of the global effects which is of importance.

A ll three plots of Figure 7.3.1 demonstrate clearly non—excitation of the 

second normal mode which is as expected for this position of the narrow gaussian 

beam. Also the appropriate cut— off points of each mode (calculated in chapter 5) 

for each different propagating field method are still maintained, even though their 

determination is approximate. The inconsistency in the penetration of the field into 

the substrate for each different algorithm can be attributed to two main causes. 

Firstly, the discrepancy is in part due to the method of normalisation of the plots: 

the zero dB point is the maximum value of the field in the wedge geometry. The 

second cause is purely physical. It  can be argued that the input field, in this case 

the gaussian, in each algorithm excites the appropriate intrinsic modes, be they pure, 

B PM  or P E M . As a consequence of this coupling into different intrinsic modes their 

excitation amplitudes can be altered. Unfortunately, as for the W G F , only observation 

points that are greater than 15 wavelengths away could be computed with any sureity, 

as the same problems in calculating the initial fields for the W G F  befall this 

boundary approach.

7.4: The Adiabatic Mode Input.

It  would be useful to demonstrate that a pure IM  field input on the boundary

would propagate as a pure IM . The calculation of this input involves evaluating triple 

integrals: one for the IM  and two for the W G F together with an analytically

calculated configuration space integral. Due to this complexity the evaluation of this

field required more CPU time than was permissible on the computer available and

consequently this approach was abandoned. However, a simpler case can be

considered which will approximate well the IM  input, and will prove useful in future

work. I f  a transverse section of the wedge is taken where the local normal mode is

well guided, then the IM  field will be well approximated by this local normal mode. 

Thus the Adiabatic Mode of the J—K ocean,
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wq ( x )
A(z)sin|*v(h-x)j 

A ( z ) s i n 7 h e T9 X
q

0 < x < h (z )

x<0

( 7 . 4 . 1 )

into the wedge configuration by the Green's function boundary value approach, where 

A (z) is such as to normalise the inner product for the wedge. The boundary r  is 

situated at z— zp= — 7391 m and the field upslope of T, away from the wedge apex, 

can be approximated by,

U(x) ~

h ( z p )

5*£<X ' XS> _ i(3 C( x , x s ) ]w  (SsM x . ( 7 . 4 . 2 )

This integral can be can then be split into two parts, for source fields above and 

below the interface between the ocean and the ocean floor, to give the field as,

U ( x )  ~

h ( z p )

[ H § ° (” , “ s ) " i ^qGo(^ ’^ s ) ] s i n ( 7 q ( h - x s ) )dx«

o 
0

d G ,  ( x , x s ) _ i / 3  G J ( x , x s ) J s i n ( 7 q h ) e l r q d x s
( 7 . 4 . 3 )

where the G nj(x,Xs) are as defined in chapter 6. In a similar manner to the gaussian 

input the source plane wave terms for points inside the guide, W p ^ S )  must be 

replaced by,

. ,_  , - i n k z ncosS
l ( p q + n k Z p C O S 6 )e  P

h ( z p)

+ in k x e . s in 6 s i n ( 7q ( h - x s ) ) d x g ( 7 . 4 . 4 )

to generate an Adiabatic mode field on the boundary. This integral can be evaluated

easily by noting that the normal mode and the plane waves are solutions of

particular one dimensional wave equations. Using the Sturm- Louiville approach [10] 

requires that the source plane waves be replaced by,

n 7 f C n ^ - ; q 7 4 - inkZPCOSi7 q e o s ( 7qh ) , in k s in 6 s i n (7qh ) - 7qeI in k h s in { ]

( 7 . 4 . 5 )

This is indeterminate when 5 is equal to modal angle and applying L'Hopital's rule

gives the plane wave species at this particular 6 as,
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* ftq e ~ ^ q z p * s i n ( 7q h ) - 7q h e * I'yqh ] ( 7 . 4 . 6 )

When the boundary is in the lower medium (the ocean floor) the plane wave terms 

of G ^ x , ^ ) ,  given as W , * ( 6 ) ,  need to be replaced by,

rO

i ( 0 q+nkZpC os6)s in (7qh)e ^n^z pcos5 ( T q ~ i n 1 k x s s i n 5 1 > x S d x ( 7 . 4 . 7 )

where 6 , is the refracted angle calculated from Snell's law (equation (6.1.4) of 

chapter 6 ). Evaluating this integral implies that the source plane wave terms for 

input fields in the ocean for must be replaced by,

i ( P q+ n k z pc o s { )  s  
( T q - i n ^ k s i n 6 , ) ^1

- i n k z nc o s  5 e P ( 7 . 4 . 8 )

Again, as in the evaluation of the W G F and the gaussian boundary value problem, 

the calculation of the initial fields can be considered as accurate only when the 

distance between the boundary and the observation point is greater than 15 

wavelengths. It  is sufficient for the purposes of this thesis to examine the modal 

terms in this boundary value problem, so that possible future work can exploit this 

known accurate field calculation.

Figure 7.4.1(a):
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Figure 7 .4 .Kb"):
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In Figure 7.4.1 it is clearly seen that the A M  input does not propagate as one would 

expect a pure IM  to propagate. This discrepancy in the expectation of the two inputs 

is due to two main effects. The first effect is non— physical and is due to numerical 

error in the calculation of the fields, as the new source plane wave terms are 

significantly more complicated than for the W G F. This type of error could be easily 

eradicated by using double precision complex numbers, which was unfortunately 

unobtainable on the machine available.

The second and more profound reason for the A M  input not behaving as an 

IM  input would be expected to behave can be explained by examination of the

boundary value expresssion. If  the IM  were input on the same boundary as the A M ,

then the kernel of this spectral integral would obviously differ from the kernel

produced by initiating the A M . Thus at each point, upslope of T, the field

expression has retained the exact nature of the input field. This last statement 

confirms that everywhere in the wedge environment the information of the coupling 

of the input field to the IM  field is retained. These above statements then facilitate 

an understanding of the field plots in Figure 7.4.1. In these diagrams the first mode 

is well guided and will consequently be a good approximation to the IM  at the 

boundary cross-section so that a pure IM  is generated. The second mode is less well

141



guided than the first mode and consequently will not approximate its corresponding 

IM  as well, thus exciting other IMs.

The above concept has significant ramifications in that in the IM  the 

information of the field on any boundary is retained at any point inside the enclosing 

boundary. This retention of information, necessary for exact field evaluation, implies 

that this boundary value approach can be implemented as a benchmark solution for 

fields input into the wedge environment.

7.5:  A  Simple Connected Structure.

The propagation of the normal mode throughout the wedge environment by

employing the Green's function approach was an attempt to approximate the

propagation of the IM  field. However, there was an ulterior motive to this

calculation, as it is necessary for the evaluation of reflected fields from particular

connected geometries. It  is possible, in principle, to calculate exactly the field

propagation throughout a simple structure by using the previously discussed Green's

function method, the mechanism for which is demonstrated below. Consider the

simple structure of a single mode guide attached to an expanding wedge region as

depicted in Figure 7.5.1, with the upper boundary totally reflecting. This geometry is 

of significant importance in integrated optics as it forms part of a Y — junction 

structure [6].

Figure 7.5.1: A^simple Connected Structure.

Reflected mode

Incident mode

Assume that a single guided mode field of unit amplitude is incident from the left on 

the boundary T. It  would be desirable to be able to calculate the total back reflected
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field or the amount of power in the reflected guided mode, or both. The field in 

region 2 can be expressed by the boundary integral form of (7.1.5).  The radiation 

condition at infinity allows the representation of the field to be,

U2 ( x )  - [u(>Ss ) ^ (- , - s> -  C ( x ,x s) § H (S s ) ]d r ( 7 . 5 . 1 )

where GCx.x^) is the appropriate W G F. The field in region 1 can be represented by 

the guided modes propagating to the left and right and the radiation field [44]. Thus 

the field in region 1 can be expressed mathematically as,

Ux ( x ) W1( * )  + Rw ( x )  + A w ( x ) d k ( 7 . 5 . 2 )

where w , represents the guided mode field propagating to the left and right and R 

the amplitude of the reflected mode. The integral term is the radiation field with the 

the unknown amplitude of each individual radiation mode. The integration extends 

over all possible transverse wave numbers k^ in the substrate. Let the boundary T be 

situated at z = 0 ,  the variable of the observed field on T be x and the integration 

variable in (7 .5 .1 ) be xs. In this expostion consideration is given only to the guided 

mode fields. The field and its derivative must be continuous across the boundary T, 

which gives rise to the two integral equations in (7.5.3).

(1+R)w ( x ) [ u ( x s ) ^ ( x , x s ) - C ( x , x s ) ^ ( x s ) ] d x s  ( 7 . 5 . 3 a )

i / 3 ( l - R ) w  ( x ) U (X s ) 5 ^ x -x s> “ ( x . * s > d H < * S) ] dx ( 7 . 5 . 3 b )
s dzdz dz dz J s

with 0  the propagation constant of the guided mode. These equations require 

simplification which can be achieved by first assuming that the U(Xg) in the 

diffraction integral is equivalent to the field in region one evaluated at the boundary. 

Thus multiplying equations (7.5.3) by w , (x ) ,  integrating over all x and applying the 

orthogonality relations gives,

(1+R) [ (1+R)w ^xs ) ^ ( x ) - C ( x ) i ( 3 ( l - R ) w i ( x g ) ] w i ( x ) d x g dx ( 7 . 5 . 4 a )

X X ,

i0(l-R) = -
X X

(1+R)w ( x  ) J - § ^ “ ^ i 0 ( l - R ) w  ( x  ) | w  ( x ) d x  dx ( 7 . 5 . 4 b )  i s dzdz dz i s j i s
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with dependence on omitted for clarity. The notation can be simplified further to 

give the simultaneous equations,

R -  D
( 7 . 5 . 5 a )

R -  F

where,

( 7 . 5 . 5 b )

with the z subscript denoting differentiation with respect to z and evaluated on T, 

and with,

Although these equations are over specified, due to the neglect of the radiation field 

and the known input mode amplitude, a good approximation to the reflected field is 

obtained from either of the equations (7.5.5a). The calculation of the exact field with 

radiation modes considered would require implementation of the orthogonality relation 

for radiation modes and the result would be two coupled integral equations. This 

more complicated approach would require large amounts of computer time, yet the 

result would not be significantly more accurate than the above approximate solution 

as numerical rounding error and an iterative method of solution would be important 

factors. Thus a simple approximation to the reflected field could be calculated from 

above where C *  can be evaluated using the same method as in section 4.

The exact W G F  representation of chapter 2 can be exploited in an integral

equation form obtained from work by Green [6 f] . This method has distinct

advantages over the W G F  field when assessing the performance of other theories as 

the singularity present in the W G F (difficult to model in other theories) is integrated 

out analytically. Unfortunately the same difficulty in evaluating the initial fields near 

the source plane occurs in this formalism. The propagation of a Gaussian input field 

is demonstrated and compared with the BPM and PE M  calculation of the same input 

field. The calculation of the modal part of the constructions in section 7.3 and 7.4 is

accurate throughout the wedge geometry away from the apex. Also a method of

C ~  “  [ ^ X X s >±i<3G( X, x s ) ] w1 ( x s ) w1 ( x ) dXsdx ( 7 . 5 . 5 c )

X x s
s

Conclusions.
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calculating the reflection coefficient of a mode in a parallel guide when striking an 

interface with a wedge environment is given. No numerical calculations of this 

quantity were carried out.
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CONCLUSIONS A N D  FU TU R E CONSIDERATIONS.

This work can be divided into two main areas. The first area is concerned 

with the numerical implementation of the spectral objects derived in chapter 2 and 

subsequent fields generated from the boundary approach of chapter 7. The second 

area of work was involved with the application, properties and usefulness of these 

spectral synthesised functions. As some of the applications of the spectral approach 

arise as a consequence of formulated numerical algorithms it is logical to examine 

firstly the numerical aspects of the work.

Previous calculations of the IM  field in the J— K ocean have been carried out 

by several authors [4,5] , and Topuz and Felsen [3] have generated IM  fields in 

optical wedge structures for both T E  and T M  propagation. In all these calculations a 

simple quadrature integration rule was applied along the real axis in the spectral

domain to generate the fields. This method of calculation requires approximately .2 

seconds of C PU  time to generate one field point. In chapter 3 exploitation of the 

oscillatory spectrum with respect to four configuration space axes is demonstrated, 

which when used in the intrinsic direction enables calculation of an IM  field point in 

approximately 10— 3 seconds, provided at least 128 by 256 points are calculated. The  

employment of these highly efficient FFT  routines has enabled the contour and 

isometric plots of the field throughout the wedge environment, highlighted in chapter 

5, to be calculated in the order of minutes. This efficient evaluation of the IM  field 

has allowed accurate examination of the conservation of power in this quantity as the 

observation point moves upslope, in minutes, which would previously have taken

several hours. This facility has also made possible the introduction of an asymptotic 

form of the E — M  remainder without dramatically increasing run times, and thus 

demonstrating conservation of power to within numerical capability. Another useful 

property of the IM  field is that to calculate a point anywhere within the wedge does 

not require knowledge of any other field point. This fact combined with the 

z— directed F F T  (along the interface) generates field points without the necessity of

calculating redundant data field points. The field plots described above are shown in 

chapter 5. A  marching algorithm method (which changes the boundary value problem 

into an initial value problem) used to evaluate this type of longitudinal field at 

specific transverse coordinates introduces a large amount of redundancy, and 

consequently increases run times. This advantage possessed by the IM  over other 

marching algorithms has particular use in the field of acoustics. Practical

measurements of acoustic fields are obtained by trailing a hydrophone behind a ship 

at a constant depth. The IM  field generated using the £— directed F F T  will produce 

comparable data field points with no redundancy in a very short period of time. The 

marching algorithm methods of the BPM  and P E M  will, by their nature, generate a 

large amount of redundant information, which will require some manipulation to
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obtain the appropriate data field. It should be noted at this point that the inclusion 

of the end— point correction to the IM  field did not increase run times perceptibly as 

this correction term was evaluated from previously calculated quantities.

The numerical evaluation of the W G F  discussed in chapter 6 was split into two 

different problems; the evaluation of the modal and initial fields. The modal field 

proved simple enough to evaluate by the F FT  method. Although the actual integrand 

was significantly more complicated to evaluate than the IM  integrand, the actual FFT  

implementation was easier as the dominant spectral contribution was well confined to 

a small finite portion of the real axis and did not require any additional end— point 

corrections. To calculate the W G F  three integrals needed to be evaluated; the phase 

integral, the source integral and the observation integral, with the latter being

calculated by the F F T  approach. However, with the kernel calculated for the desired

wedge geometry (i.e. the integrand of the modal field, with source integral calculated,

but independent of observation position) the field evaluation using FFTs is very fast. 

Thus the rate determining step in the calculations of the modal field is the 

evaluation of the kernel for the wedge geometry and source point, which takes

typically 40 minutes. The evaluation of the initial fields was achieved using the FFT  

method, with additional e n d -p o in t corrections caluclated by Laplace's method. 

However, as the distance between the source and observation points decreases, the 

large parameter essential for a good Laplace approximation also decreases and this 

method of end— point correction proved inaccurate. The asymptotic end— point 

correction was replaced by a Simpson's rule integration into the complex plane. Little 

improvement in accuracy was obtained by using the above method as the range of 

inhomogeneous plane waves which contribute significantly to the field increases as

source and observation point converge. Indeed this inability to calculate accurately the 

initial terms when the source and observation point separation is small has hampered 

the calcualtion of the reflected field from the simply connected structure in chapter 

7.

Having concluded as much as is possible of the numerical aspects of the work 

without reference to the properties of the spectral approach, it is appropriate to 

examine these, their utility and possible applications. The IM  field has obvious

disadvantages compared to marching algorithm methods and the numerically calculated 

coupled mode theory [21] discussed in chapter 1. The most glaring disadvantage in its

present form is is its inflexibility in modelling other non—separable, weakly range

dependent, environments. Also the generation of IM  fields requires careful attention 

as the spectral integrands for different environments can vary significantly. This latter 

minor problem can be avoided by using a large number of integration points, but 

this will obviously reduce efficiency in computation. The other defect in the IM  field 

approach is that it can only approximate different field inputs to the wedge 

environment by using the IM  summation (equation (6.3.1.5) of chapter 6) and
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employing the boundary value approach of chapter 7. While this method will produce 

stable numerical results they are only asymptotically accurate (i.e. provided source

and observation point are well separated) and thus the exactness property of the IM  

becomes redundant.

The advantages of the IM  formulation over contemporary theories are many 

and upon close inspection of the work in this thesis it becomes obvious that there 

are many possibilities for future work. In chapter 3 the IM  was proved to be an 

exact solution of the source free wedge geometry (excluding the apex) which no

other previous theory has achieved. This property implies that the IM  can be used, 

in conjuntion with F F T  algorithms, to generate efficient, accurate, benchmark 

solutions with which to compare approximate numerical and analytical methods. As all 

approximations used in the implementation of the IM  field can be explicitly

quantified, it allows quantitative comparisons, similar to those demonstrated in chapter 

5, to be made. Indeed if the spectral integration range is large enough then the

upper bound on error is the associated numerical rounding errors and the numerical

solution can be considered exact. The construction of this spectral object furnishes a 

physical insight into the coupling processes as a mode propagates upslope. As a 

particular Intrinsic Mode propagates through the Adiabatic Mode critical transition

region asymptotic analysis of the IM  demonstrates how the field, asymptotically 

Adiabatic, couples to the multiply—reflected lateral ray field and the complex mode 

(i.e. A M  representation with a complex propagation angle). It  would be instructive to 

compare the IM  field with other marching algorthims in this wedge environment as 

an assessment of their performance. Although the IM  is limited in its versatility a 

further area of research could be concerned with the local intrinsic mode concept 

[31] in which local spectral patching techniques [62] are implemented. This type of 

approach will produce computable objects (by applying the F F T  routines) which will 

be uniformly valid across caustic surfaces and other similar topologies, and as such 

will prove extremely useful in the modelling of focusing systems such as antennas and 

geodesic lenses.

The source induced global object derived in chapter 2 was demonstrated to 

possess all the properties of a Green's function in the wedge geometry excluding the

apex. This demonstration was achieved by treating collectively the plane wave species

in the wedge environment and tracking their consequent propagation. The asymptotic 

analysis of this W G F  was shown to be equal to the asymptotic forms of the spectral 

function in [39], in which Arnold and Felsen construct an approximate solution. This 

as stated is equivalent at least asymptotically to work by Pierce [20] and Kamel and 

Felsen [19], although a different representation of the field after c u t - o f f  is used in 

the former.

There are distinct disadvantages in the application of the Wedge Green's 

Function to calculating fields in the wedge geometry. Two obvious disadvantages are
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that the calculation of the initial fields proved significantly more difficult than 

expected and the evaluation time for the modal spectrum was approximately 40 

minutes. Also, in a similar manner as for the IM , the W G F  is only applicable to 

wedge shaped non— separable linear environments.

However, the advantages of this approach, its implications with respect to other 

theories, and possible applications are many. Before embarking upon applications, 

future attention must be placed on calculating the initial fields, so that it becomes 

possible to evaluate these quantities throughout the wedge structure (excluding the 

apex). When the initial fields can be correctly calculated arbitrarily close to the 

source point, the W G F  will then produce a field due to that source point, in which 

the quantities neglected can be easily quantified. Thus the W G F  in its pure form can 

be used as a tool for estimation of accuarcy of approximate numerical algorithms.

A  more substantial use of the W G F occurs in the boundary value approach 

(Kirchhoff— Huygens diffraction integral) described in chapter 7. It  is observed that 

with correctly calculated initial fields this method is a better comparitive tool than 

the W G F  used on its own, because the occurrence of the singularity in the latter 

approach is integrated out in the former. The Kirchhoff diffraction integral method 

also allows any input to the wedge structure to be modelled, in principle exactly, and 

practically is at least able to account for all analytical approximations. Future 

investigations could be concerned with propagating the IM  field by the above method 

to confirm its exact nature. To achieve this type of calculation further investigation 

of faster methods of integration are required.

A t first sight the best area for future work is the calculations of reflected fields 

from connected structures. The method is demonstrated for a simple structure in 

chapter 7. O n closer inspection it is clearly seen that this type of calculation will still 

require vast amounts of computer time. Generating solutions which account for the 

radiation fields in these geometries will obey the law of diminishing returns. Thus this 

approach, while interesting, is only worthwhile pursuing to the order of complexity 

demonstrated in chapter 7.

To  conclude concisely, the work in this thesis has demonstrated conservation of 

power in this spectral treatment of Arnold and Felsen. Confirmation of the exactness 

of the IM  and the W G F  has been given. Also, asymptotic analysis has demonstrated 

applicability with other methods and different derivations of the same spectral object. 

This exact expression of the Green's function in the wedge environment has enabled 

integral approaches to be formulated for calculation of reflection coefficients of modes 

and propagation of fields throughout the taper. The numerical aspects of the work 

have derived efficient methods of calculating spectrally constructed fields. This work 

has enabled a practical assessment of future work. Firstly the boundary value 

approach for calculating reflected fields should not be applied in any greater depth 

than demonstrated in chapter 7. Work on the initial fields would be useful for
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propagation of fields from a boundary and used as a comparative tool. Essentially the 

work on the IM  field is complete and can now be used without hesitation as a 

benchmark solution of the 2— dimensional wedge geometry. The F F T  methods are 

highly efficient in calculating spectrally synthesised fields and should be used in 

conjuntion with recently developed spectrally approximate field theories [63].  This 

type of approximate analysis is where the future of the techniques in this thesis can 

be best employed.
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APPENDIX A  Asym ptotic Forms of the Euler— Maclaurin Remainder.

This appendix evalutates the asymptotic forms of E o(0),  F j ( 0 )  and F ^ 6 )  with 

respect to the reciprocal of the smallness parameter a  (the wedge angle). Examine 

firstly the function E 0( 0),

E (0 )  -  E ( 0 , 0  ) + E ( 0 , 0p ) o p 4 n 4 ( A l )

with Ep(0,0q) and E n(0,0q) obtained from (2.3.3a). This can be evaluated straight 

forwardly by first letting 6 -» 0 and deforming the lower end points to 0±ioo 

appropriately. I f  the substitution s— 0= t is made in Ep( 0 ,0q) and s— 0= — t in 

En(0,0q) then the two integrals can be combined so that Eo(0) becomes,

E («) 2a J .
$ ( 0 + t )  -  $ ( 0 - t ) M ( t ) d t

100
1 -  M ( t )

(A2)

As $(t) has only algebraic growth at infinity the convergence of the integral is 

dominated by the exponential term. The integrand rapidly decays away from the upper 

lim it and exploiting this dominance the bracketed term is expanded in a Taylor series 

about this point to give,

$ ( 0 + t ) - < t > ( 0 - t )  -  2t<f> ( 0 )  + t $
9 3 '

(A3)

with <J>fl( 0) denoting the derivatives with respect to 0. Substituting this into (A2) allows 

the asymptotic form of E 0( 0) to be,

E ( 9 )  - 1  V » >o a

0

+ 0 ( t  3) 
1 -  M ( t ) k ;

ioo

(A4)

Making the substitution,

v  = - i fl t
a

(A5)

E 0( 0) is thus transformed into the more managable form of,
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E (<o .  2  *  ( 9 )
° n2 e

- V  ,
v e  dv

1 -  e - v + 0(c*3 ) ( A6 )

The series representation,

- v

1 -  e
- v

- n v
(A7)

n-'-oo

can be exploited so that with a change of variables nv =  s the integral becomes,

I  -■n-
e Ss d s (A8)

0

Here the integral is the standard gamma function and the series sum is the zeta 

function [52]. This function can be calculated in this instance by Fourier series [53]. 

This then gives E 0( 6) as,

e q ( « )  -  £  * e ( « )  + 0 ( . 3 ) (A9)

To examine fully the asymptotic nature of E o(0) for a  -» 0 it is essential to look at 

the behaviour of e) throughout the complex 6— plane. The branch cut integral

F i ( 0 )  needs to be asymptotically evaluated.

F l ( e > -  25
<t>(s)M(-s+0)ds  
1 -  M( - s +0 )

(A10)

I f  6 is such that it has a very small positive imaginary part, then the integral can be 

approximated by,

$>(s)e

i n ( o - s )  
a ds ( A l l )

Assume that the phase function can be expanded about its branch point such that,

“  1  Cm(s ~ 0c)  
m

£+m (A12)

With the substitution
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t 2 -  (s -» c ) (A13)

the branch cut integral can be approximated by,

Fi ( 6 )  -  I  Sm

ooe
i n /4

in t  i n ( e - 0 c )
2+m a  a  2t  e d te

—ooe in /4

Making the substitution

r 2 -  ‘ 2  t 2
a

and considering the first term leads to

F l ( «) -  "

i I T ( 0 - 0 c ) 3y 2

—  1 i n  J
J-2 A ts e ds

recognising the gamma function and C 0 from appendix B the branch cut

i n ( 0 - 0 c )  i n
F  ( 6 )  -  ( 2 Qc o t » c )  e “  '  4

I 1 ; 211

Indentical procedures gives rise to a similar branch cut integral for F 2 ( 6).

(A14)

(A15)  

integral is,

(A16)
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A PPEN D IX  B Asym ptotic Properties of Reflection C oefficients.

This appendix contains all the properties and asymptotic nature of the reflection 

coefficients and other functions necessary for the first order asymptotic evaluation of 

the Intrinsic Mode field. A  generic reflection coefficient is,

i 2 t an -1 i rn i s 1 n(
ns in #

( B l )

with ncos 0— n j cos 0 1 and r=  d /d , for ocean acoustics and r=  1 or n 2/n j 2 for optical 

T E  and T M  propagation respectively. Expanding sin01 about the critical angle requires,

s i n 0  -  s i n 0 c + 6cos0C + 0 ( 6 2)

cos0 — cos 0C -  6 s i n 0 c + 0 ( 6 2) 5 -  ( 0 - 0 c )
(B2)

i r n ^ s i n 0  ■= l r n 2 -  n 2 (co s0c - 5 s i n 0 c+ O ( 6 2) ) 2

i n r 2 6 s in 0  cos0 + 0 ( 6  
c c ')] (B3)

As the expansion for tan ’ x is x +  0 ( x 3) then the phase of the reflection

coefficient can be expressed as,

i $ ( 0) =
n r ( 2 6 s i n 0 ccos0c + 0 ( 6  ) )  
n s i n 0 r  + n6cos0r  + 0 ( 6 2)

r ( 2 ( 0 -0  ) cot  0 ) *  + 0 ( 6 3 / 2 ) c c

Now require to expand H ±(0,s) of chapter 6 to 0 (1 )

(B4)

(B5)
s i n ( s - a a )  «= s in s  + 0 ( a )

2
c o s ( s - a a )  — coss + a a s in s  + 0 ( a  )

where a is either 2 or 0. Using the quantities in equation (B5) gives the source plane 

waves as,

„+  . in k h sc o s s / a  i n k s i n s ( a h s +xs N f  .
W ( s - a a )  -  e s e s +  0 ( a )

o

The phase function shifted by aa is,

(B6)

2
i 4 > i ( s - a a )  n s i n ( s - a a )  -  (n^J ws J

2 h( n c o s ( s - a a ) )  )

n s i n ( s - a a )  -  ( n j  
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( n c o s ( s - a a ) )  )

(B 7)



Substituting in equations (B5) gives,

e i * j ( s - a a )  _  e i * j ( s )  +  ^  (Bg)

Using (B6) and (B8) the appropriate asymptotic representation of the modal part of 

the W G F  is demonstrated as in chapter 6.
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A PPEN D IX  C Proof of Exactness Property O f Intrinsic Mode.

This appendix demonstrates that the Intrinsic Mode field satisfies the boundary 

conditions of the wedge geometry. Before any proof of the boundary conditions it is 

essential to prove a specific result. From (2.2.8) of chapter 2,

Sq ( 0 2 2a <t> ( s ) d s  - a M  + E ^ ( e , 0 q )
a ( C l )

e.

When Sq( 6) is shifted by 2a to the right one obtains,

S ( 0+2a)
q

$  ( 0+2a) _1
2 2a

6+2a  

<t> ( s ) d s 9 ^ e + 2a )+ E - ( 9 + 2 a , e q ) (C2)

Adding and substracting <t> ( 6)12 to (C2) and applying the Euler— Maclaurin formula 

(equation (2.2.7)  of chapter 2) leads to,

S - ( * + 2a )  -  |  ( 6 ) +  j l ( s ) d s  -  S H  + E ^ ( 6 , 0 q ) (C3)

e,

In this form it becomes obvious that the shifted spectral amplitude function satisfies 

the relation

e i S q ( 0 + 2 a )  _  e i S “ ( 0 ) e i < M 0 )

The uniqueness condition,

(C4)

Sq ( 6 )  -  S q (0 )  «  ^ ( 0 )  (C5)

allows the identification of the shifted downward phase in terms of the upward phase

as,

i S q (0 + 2 a )  _  g i S q ( 0 ) e -i<i>i ( 0 ) e i $  ( 6) (C6)

Consider first the upper boundary condition where x— — ztana. The total field at this 

upper boundary from inside the guide, from equation (2.2.11) of chapter 2, is
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inkzcos( 0±a)
1SO( 0 )  cosa  e q e (C7)

I f  the downward field is then shifted to the right by the substitution 0-»0+ 2a  and 

using Cauchy's theorem for infinite contours, so as to shift the contour by 2a  to the 

left (to regain the C contour) leads to an Intrinsic Mode field, defined from inside the 

guide, on the boundary as,

Wq ( x )  -

i n k z c o s ( 6+a)
e i s q ( 0 ) + e i S q (0+ 2 a )  1 cosa d0 (C8)

Utilising the derived identity of equation (C6) gives,

Wq ( x )

i n k z c o s ( 0+a)

[ 1 + e ictu (0 +Q;) ] e iSq ( 0 ) e COSQ! d0 (C9)

This is exactly the derived form for the field on the boundary evaluated from the 

expression for the field above the upper interface as can be seen from equation 2.2.11 

of chapter 2.

The lower boundary corresponds to x= 0 and so the field on the boundary 

calculated from inside the guide is

Wq (x ) e iSq ( 0 ) + e iSq (0)  ] e inkzCOS0d0 (CIO)

The uniqueness condition of equation (C5) leads to the expression for the field on the 

lower boundary, from inside the guide as,

Wq ( x ) [ e i * l ( » ) e i s q ( » ) +  e iS q (<0 ] e fnkzCOsSd0 ( C l l )

This is exactly the same form as the field on the lower boundary from outside the 

guide as given in equation 2.2.11 of chapter 2. Hence the field is continuous across 

both boundaries of the wedge environment. To show continuity of the derivative of the 

field is a trivial extension of this approach.
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APPENDIX D  Stationary Phase Evaluation O f The Intrinsic M ode.

The equations of (4.3.2) are in a canonical form applicable for asymptotic 

evaluation by the method of steepest descents. The integrand has a rapidly oscillating 

phase except for a stationary phase point (0 q) given by,

-  o  ( D i )
The substitution,

Zq ( 0) -  Zq ( 0 q ) -  a S 2 (D2)

can be made as the branch point 0C in the phase function is not 'near' the stationary 

phase point 0q For the above change of variable the derivative,

2aSd0
dS - d Z g ( 0 )  

d0

(D3)

is indeterminate at the stationary phase point 0q. However, application of L'Hopital's  

rule yields,

L im  d0 
dS

2a
- d 2Zn ( 0 n ) 

d 0 2

i

(D4)

The positive square root been chosen. Using the substitutions of (D 2) in (4 .3 .2) and 

considering only first order terms yields the asymptotic form for the field inside the 

guide to be,

Wq ( x )  -  |
2a

~ d 2Zn ( 0a ) 
d

i  i Z g ( 0 q )
i s 2 j qe dS (D5)

Rotating the contour through n / 4  radians allows the recognition of the gamma function. 

The field inside the guide is then,

Wq ( 2 )  -  |
2Ua

- d JZQ( « p )
d 0 !

t izq(eri)-in 
e “  u F t ( e q ) (D6)

From equation (4.3.2c) the addition of the upward and downward components in the 

guiding duct are,
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2 F ' ( 0 q) -  2e i n / 2 sin
+ -

^ 4 ^ 1  + nkxsineq] (D7)

Applying similar analysis to the field outside the guiding duct and using the stationary 

phase condition ( D l )  gives rise to the asymptotic form of the Intrinsic Mode field, 

when the adiabatic mode is well guided, as,

Wq ( x )

8Ito
- d 2Zn ( 0 n )

d 0 2

8fla

i n | [  h -x  ]nks i n0qj  , x c X

- d ; Zn (fln )
d e 2

i  izq(gq)-in
a 4 e s in

(D8)

in«q]. . . .  i - i n k x s i n 0 ni  n k h s in 0 r i |e 4 1 x c X

where 0., is the refracted stationary phase point angle.

Demonstrating that the Approximation of the Intrinsic Mode to 0 (11  is equal to

the Adiabatic Mode.

Noting from (4.3.2b) that,

3 ^ (Sq) “  5?( V * 072 + nkhsine ]# -»  <D9>

Using the reflection coefficient for acoustic fields with constant density and 

implementing the differentiation gives,

d 2Zq ( f l g )  ^ nkcos0q ( l  4- i n i k h s i n 0 q i ) 
d 0 2 i n ^ k s i n 0 qi

(DIO)

Also it is observed that,

-  n kc o s 6 +  !(<!>. (0 )  + ( I I - 2 q I I ) )  + nkhs in 0  ] e=e ( D l l )
Q Z  q  Q Z  I Z 1 q

Using these equations together with the definitions of equation (1.1 .7) of chapter 1 and 

the transverse resonance condition shows that the asymptotic form of the Intrinsic 

Mode is equal to the Adiabatic Mode field up to a constant multiplier.

Demonstrating the Smallness of the Field due to the Stationary Phase Point II__

The stationary phase point at IT" 0q is evaluated in the same way with 0q replaced by 

n— 0q and with the identity,
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z„(n-» ) - 5 d - 2 q )  - z e e )  + i -  fq q 2 q q 2a
n --o o -/

■ n - 0 c  i nFK f lg-5)

( 6 )  e a  d6 (D12)

6,

The integral in equation (D12) has a large positive imaginary part and consequently 

the field is small compared to the stationary phase point field at 0q.

Approximation of the Endpoint Correction for the Intrinsic Mode.

Together with this staionary phase point there are other contributions to the field if 

the contour evaluation is finite and these endpoint fields can be calculated by using 

Laplaces Method. This situation arises for observation points inside the guiding 

structure. Assume,

rb

Wq(*> “ I  M + -
F ~ ( 6 )  e d0, x e X (D13)

The only contribution to consider is from — i«  to the lower endpoint a. Thus an 

approximation can be derived by integration by parts so that the contribution to the 

field from this contour is,

i Z q ( 0)
a

± a
ccT ( 8 ) e

i d Z q (0 )
de .

i Z q ( 6 )
± ' ry

aF ( 0 ) e  
i d Z q (0 )

. d0

dd (D 14)

Evaluating this integral then gives

ct2F ~ ( 6 ) e  
i d Z q ( 0 ) 12

+ »
i Z q (9 )

+  0 ( a 3 )  ( D 1 5 )
a - i «

Here a  is chosen such that the integrand decays exponentially as 0-»- i® and 

represents differentiation with respect to 8. Thus the lower endpoint of the finite 

integral can be approximated by,

ote

+ -

i Z q ( a ) 

Zq (a ) { iF±(a) ■ 0 z : (a ~ r  J+ 0 ( “ 3)
(D16)
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APPEN D IX  E Asymptotic Evaluation of the IM throughout the

Critical Transition Region.

This appendix calculates a uniform asymptotic field in the critical transition region 

when the Adiabatic Mode is close to cut— off using the method of Chester, Friedman 

and Ursell [32]. The Intrinsic Mode field inside the guiding structure is,

The method of Chester, Friedman and Ursell produces a uniform asymptotic expansion 

of an integral with two nearby saddle points. The branch point, at 0C, in (E l )  can be 

transformed into a saddle point using the substitution t=  (0 — 0q) £, which gives the field 

inside the guide as,

This has transformed the branch point in the 8 plane into a saddle point at t=  0 in 

the t plane. The transformation is such that,

Applying the method of Chester, Friedman and Ursell requires the substitution,

The right hand side of equation (E5) has stationary points at S = 0 ,+  ib which will 

correspond to 8= 0c ,0q respectively. This gives A  and B as,

Wq ( x )  -  2  F ± ( 0) e 
M + -

a (El)
C

Wq ( x )  -  2  t F ± ( 6)  e  “  dt

+ ’  c t
The stationary phase points of this integral are determined by,

a (E2)

dZq (0 )  _  dZq ( 8 ) d 8  _  Q
dt d0 dt (E3)

I a r g t  | < ^  | a r g ( 0 - 0 c ) | < II (E4)

c T ’ z  ( 0 )  -  A -  ~ s 2 + i s 3
q

(E5)

A -  a _1 Zq ( 0 c ) B 3 - - yv) (E6)

and thus the field inside the guide can be expressed as,
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Expanding the remaining integrand about the maximum value of the exponent gives 

(S= 0) the field as,

Wq (x )  -  e
j Z q ^ c )

£
S e - )B I  / 2 - S  / 3 ds

where,

carrying out the differentiation leads to,

P -  F * „ , .v y ' ^ ' ■ s - o ,  t - o ,  e-oc

From equation (E5) it is possible to obtain,

d t (BS - i S 2)a
dS d6_ dZq (8 )  

dt d 6

This is indeterminate at S = 0 , but applying l'Hopital's rule gives,

[ & ]
Bo

2Zq ' ( 0 c )

and using this gives the field inside the guide as,

W (x )  - 5  F 
q 2Zq ' ( 6C)

Se

C .

- iB ^  / 2 - 1  / 3 dS

From equation (4.3.2c) >f chapter 4 it is obvious that,

+ .„  . ± in k x s in 0 r  
F (8  ) -  e cc

and expanding B about the critical angle 8C gives,

6 (»  > S » ( , c>q c dfl

1 / 3

Expanding Z q(0q), differentiated with respect to 8, about 8C gives,
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(E 9 )

(E 1 0 )

(Ell)

(E 1 2 )

(E 1 3 )

(E 1 4 )

(E15)



# ,(9q ) -  ^ a(Cc) + (2 (»  - e j e c t s  ) * (E16)dd dd ' q c ' c'

which is known to be asymptotically small (i.e . equal to zero) and thus B is given as,

B d Z ^ c )  
dd  I a (2 c o t0 c7T ]

l / 3
(E17)

and hence ( E l )  becomes

w ( x ) - 5  F ( e.c ).£Lwq US> + 2  2Za ’ ( e c ) a (2 c o t 5.1
- I B l  / 2 - S  / ! (E l  8)
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A PPEN D IX  F Calculation o f the Initial Fields for the Global W GF.

This appendix derives the initial, direct and reflected plane wave fields for 

W G Fs which have source points outside the guiding medium.

Plane Wave Analysis of W G F  for Source Points in Substrate.

Consider firstly the initial fields for the W G F  with source points as depicted in 

Figure 6.1.1. It  is possible to represent the transmission coefficient for an incident 

plane wave on Bj, at angle 0 , ,  as,

1 +  e ( F I )

using the same notation as in chapter 2. The reflection coefficient on the upper 

boundary can easily be identified in preceeding analysis. Consequently, using the source 

plane wave definition (6.1.1) and the spectral constructions of equations (6 .1 .2 ),

(6 .1 .3 ), the upward and downward initial plane wave fields are,

W> , )
J e + l a

(F 2 )

respectively. Here C , is the Sommerfeld contour which continues in the imaginary 

6 y— plane making the integrand tend to zero . Using the relationship of (6 .1 .4) the 

substitution,

0 -= c o s c o s  I
d0.
d0

n s i n ( (F 3 )n ^ s in # ,

may be employed. The mathematical description of the transmission coefficient gives a 

relationship between the phase of the reflection coefficients from either side of the 

boundary and it is found to be,

* ^ 0 , )  + n -  4> j(0 ) (F 4 )

Invoking the substitution (F3), applying (F4) and permissible deformations of the 

mapped contour C 1 to C, gives the upward and downward initial plane wave fields to 

be,
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respectively, with 0 , '  given in (6 .1 .4 ). In the downward field a shift of 2a  in the 0 

domain has occured, with allowable contour deformation. The same approach — i.e. 

substitution (F3) — can be adopted for the direct field, < 4 > ,  and the reflected field, 

<  3 >  , to give the plane wave species over the 0 variable as,

Employing the phase relationship (F4) and contour shifts and deformations gives the 

direct and reflected plane wave fields as in (6.1 .5).

Plane Wave Analysis of the W G F for Source Points in the Superstrate.

When the source point is in the upper medium as depicted in Figure 6.1.2 then 

it is clear that the transmission coefficient for a plane wave incident at an angle 

0 2+ a ,  on Bu, can be represented as,

respectively. Using Snell's law for the upper boundary, and permissible shifts of

V ^ (x )
1 07

(F 6 )

(F 7 )
2

and with the corresponding phase reflection identity

^  ( 0 ,+ a )  + n -  $  (0 + a )  u 2 u
(F 8 )

Thus the initial downward and upward plane wave fields are,

C (F 9 )

(0 + 2 a ).,+

C



contours and the the phase relationship (F8) gives the initial downward and upward 

reflected plane wave fields as,

W ~(02 '+ a )  | l  + e 1Ctu(0"Df)]v ^ (x )d 0

C (F 1 0 )

U f ( 0 2 '+ c o [ l  + e ici>u(0"Q;)] e ict>1 ^ 6\ +e ( x ) d e  

C
n 2c o s ( 02 ) -  n c o s ( 0 - o ; )

which provide the spectral amplitudes of equation (6 .1 .9 ). Again, as for the previously 

defined W G F  the direct and reflected fields are required. Using permissible shifts of 

contours and appropriate substitutions gives the direct and reflected fields in the 

spectral domain as,

,+ , .  v d 0 o „+
9.

( F l l )

w ( « 2) ^  V ( x )  
2 ad  2 0

_e i<J>,(«+a) +2a ) l i i  v \ 2 )
2 d0 202

respectively. This then gives direct and relected field as described in equations (6.1.10).
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APPEN D IX  G Proof O f Satisfaction O f The Boundary Conditions By T he W GF.

This appendix gives the manipulations of the spectral fields necessary for the 

proof of the upper and lower boundary conditions. The downward modal plane wave 

field inside the guiding medium is given by,

- f2a  1
q — -oo'

U . ( s ) F  ( 0 , s)d s  
J q

V ^ ( x ) d 0 ( G l )

making the substitutions 0= 0+ 2a and s= s+ 2a  and a permissible shift of the contour 

C (see chapter 2) by 2a  to the left gives,

- i2a  2
q = -c o -

lL  ( s + 2 a ) ( 0 + 2 a , s+2a)ds V " ( x ) d 0
6+Ta

(G2)

Using equations (6 .2 .1 .3) and (H 17), (H18) and (H19) of appendix H  gives the modal 

downward plane wave field, at Bu, from inside the guide as,

r 0 ,
1 00

l L ( s + 2 a ) e " 1C*u(s+Q!)F+ ( 0 , s ) d s  
j  q

e i $ u ( 0 + a ) v + ( x > d 0 (G3)  
02

<i  q=-°°J 0 qoo

This leads to a generalised identity for the downward field at Bu .

l L ( s ) F  ( 0 ,  s ) -  l L ( s + 2 a ) e  1(tu ( s+O!>F+ ( 0 s ) e 1(i,u ( 0+O(>
j  q j q

<C4)

Continuity of Observed field at By for the W G F  with the Source in the Substrate.

When the source point is in the lower medium it is obvious that the transmitted 

modal spectrum on Bu must equal the modal spectrum inside the guide evaluated on 

Bu. Using equations (6.1 .11), (6 .2 .1 .3) and the identity (G 4), the proof of the 

continuity of the observed field requires that,

u T (s + 2 a )e " lCtu(s+D:)e 1Ctu(0+Q!) -  U+ ( s ) e 14,u(0+a) (C5)
J *1

In a similar manner the initial transmitted field must equal the initial fields inside the 

guide evaluated at Bu. Shifting the downward field in this stated equality by 2a, then 

the satisfaction of the boundary conditions requires that,
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Uj(0+2a) -  U j ( e ) e i4,u(e+Q) (C6)

The initial fields for source points in the substrate are calculated in appendix F , and 

their spectral amplitude functions are given in equation (6 .1 .4 ). Substituting these 

spectral coefficients into (G5) and (G6) confirms the proof of the continuity of the 

observed field.

Continuity of Observed field at Bu for the W G F with the Source in the Guide.

In the text and from Figure 6.2.1.2(a) it was stated that category 1 plane wave

species can be treated in an identical manner to that used above. From equation

(2 .4 .3 ) of chapter 2 the category 1 terms are generated from the first term in the 

initial upward fields and the second term in the initial downward fields. These two 

spectral amplitude functions are seen to satisfy the relations (G5) and (G 6). Hence 

continuity is demonstrated for category 1 fields at the upper boundary.

From the discussion in the text the difference between the modal fields and the 

transmitted modal field at Bu of category 2, must be equivalent to the difference

between the initial transmitted fields and the initial fields of category 2. The

difference in these modal fields is,

-  j2a  2  
,q— 00

U . ( s ) F ( 0 , s ) V ( x )  -j  q  6

e
u t ( s ) F + ( ^ s ) e 1(* u ( * +Q!)v t< x )j  q
?qoo

8 2
dsde  (G7)

I f  the substution of 8 ^6 + lot  is made in the first integral with an appropriate 

deformation of the contour C and taking account of the identities (6 .2 .1 .3) and also 

the modal relationships ( H I 7), (H I 8), then the difference in modal fields is,

-  I2a  2  
,q=-°°

0+2a
„ s i4>i ( s )  U ( s ) F q ( 0 , s ) e  1V

0qoo+ 2a

U ( s ) F  ( 0 , s )

0qoo

i<i>u ( 0+a)v-K )dsd<? (Gg)
8 2

From equations (2.4 .3) of chapter 2 it is noticed that the fields of category 2 satisfy 

the relationship,

J J
(G9)

Acknowledging this property and allowing for deformation of the lower endpoint 0qco 

gives the difference of the modal fields to be,
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r d + 2 a

V ,  ( x ) d s d 0
02

(CIO)

Using the Euler Maclaurin formula of chapter 2 (equation (2 .2 .7 )) and the identity 

phase relationship (H I 9) then the difference of modal terms becomes,

J C

Which is exactly the remainder of the initial and direct fields at the boundary and 

hence continuity is maintained.

Continuity of Observed field at By for the W G F  with the Source in the Suoerstrate.

A  similar approach as used for the category 2 plane wave species can be employed to 

demonstrate the continuity requirements of the field where the reflected and direct 

fields are given by (6 .1 .5 ).

Continuity of the Observed field at B} for Source points in the Suoerstrate.

This case is simpler to examine due the plane wave identities (6 .2 .1 .5 ). The difference 

in the modal fields, using the above identites, at this boundary can be shown to be,

When the source point is in the upper medium the spectral amplitudes are given by 

(6 .1 .9 ) and are found to satisfy the relation,

*

1  U+ ( 0 + 2 o ) e
2 j

- i $ + ( 0 + 2 a )

( u : ( s ) F ' ( « , s ) e i4, l ( 9 )  -  U + ( s ) F + ( 0 , s ) ]  V + ( x ) d s d 0

c q "  V
(G12)

U * ( 0 )  -  U ' ( 0 ) e i 't’l (<' )
*J J

(C13)

Using the identity of (H I 7) the difference in modal fields is zero if,

(C14)
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It  can be seen that the spectral amplitudes for this W G F defined in (6.1.9) satisfy

relation (G 14) and consequently the modal field is continuous across the lower

boundary. It  is observed that the difference between the initial transmitted field and

the initial fields satisfies the relation (G13). Thus demonstrating that the continuity of 

the observed field is preserved across Bp

Continuity of the Observed field across B} for a source point in the guide.

As stated in the text there are two cases to examine. The fields of category 2 defined 

in equation (2 .4 .3 ) of chapter 2 satisfy the equations (G13) and (G14) and

consequently category 2 plane wave species are continuous across Bj. The difference in 

the category 1 modal species is,

shifting the first term by 2a to the right and employing identity (H I 9) and a 

permissible deformation of the lower endpoint gives the first term as,

r 0 - 2 a  i

J L f
2 a  z

- i $  (s') -  U . ( s + 2 a ) e   ̂ ; F ( 0 , s ) d s
j q

( 0 ) V~ ( x ) d 0  (G16)  6
L q— ooJ 0qoo

Noting that the modal fields of this category have the relation,

u 7 ( s + 2 a ) e 1(̂  ( s )  -  U+ ( s ) e _1<tl ( s )  (G17)
J *1

then the difference in the modal fields is,

r 0 _ 1

2 a  z
u T ( s + 2 a ) e _1<*> ( s ) F_ ( 0 , s ) d s

j q
e ( 0>V~ ( x ) d 0  (G18)

V
i  q— °°J 0 - 2 a

Employing the Euler Maclaurin formula with a shift of 2a it is found that the above 

is equivalent to minus the difference between the initial fields, so proving the 

continuity of the observation point for the source in the guiding layer.

-  U+ ( s ) e " i<* l ( s ) l F _ ( 0 , s ) e i<t>l(0)V " ( x ) d s d 0  (G15)
J J 0
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Continuity of Observed field across B] for source points in the Substrate.

Applying identical analysis as that used to demonstrate the continuity of the category 1 

species across Bj will yield the desired confirmation of the continuity of the observed 

field, as the relation (G17) holds for all the plane wave species in this case.

Continuity of the Observed field as the source points cross Bp

The difference between the modal terms of category 2 (the upward observed field) is,

1 00 
2 5  2  c q —  e

e
U * ( s )  -  u | ( s ) j F + (0 ,s ) V+(>t)dsd<) (C19)

qoo

Shifting the second term by 2a  and taking account of the identities (6 .2 .2 .6 ), together 

with equations (2.4.3a) of chapter 2 and (6.1.4) leads to the difference in the modal 

field being expressed as,

r e+u

W+ ( s ) F + ( 0 , s ) V ^ ( x ) d s d 0  
0 u

(G20)

Applying the Euler— Maclaurin remainder with a shift of 2a gives this expression equal 

to minus the difference in the remaining plane wave species. This proves the desired 

continuity relation across Bp

Continuity of the Observed field as the source point crosses Bu .

Here the difference in modal field for category 2 species (downward observed field) is,

2a <
, q — c

U2 ( s )

*qoo
- »>>]. . F ( 6 , s ) V  ( x ) d s d 0  

0 J tt
(G21)

Taking the second term in this expression and shifting by 2a, together with the 

identities of equation (6.2 .2 .7) leads to the difference in the modal fields to be,
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2 a  1
, q — c

W £s)F ( 6 , s ) V e ( x ) d s d 6 (G22)

6 - 2a

Using the E — M  remainder gives the above expression as equal to minus the difference 

between the remaining initial fields.
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A PPEN D IX  H Evaluates The Properties O f The Spectral Phase Function O f The WGF

This calculates the properties of the spectral phase function Fq(0,s) given in equation 

(6 .1 .11) of chapter 6 as,

F " ( 0 , s )  -  e x p  i
+ ♦ r 0

* ' ( S )
2

<JT(0)
2 +

1
2a * ‘ ( P ) d p - 9 n t ® ' s ) + E ^ ( e . « ) (HI)

This can be represented in a different manner by,

F " ( 0 , s )  -  e i S ‘ ( 0 ) - i S " ( s )
(H2)

and with the uniquenes condition of equation (2.2.10) chapter 2.

Sq ( 0 )  -  S q ( 0) -  * j ( 0 )  

This gives rise to the uniqueness identity,

(H3)

(H4)

O ther identities also exist and they are essential for the proof of boundary conditions 

and of reciprocity of the Wedge Green's function. Consider the substitution 0 = 0 +  2a  

then,

F ~ ( 0 + 2 a , s )  — e x p i $ * ( s )  $ ~ ( 0 + 2 a )  1
2 "2 2a

P0+2a

$ ± ( p ) d p - 3 l K 0 s ) + E * ( 0 + 2 a , s )
a

(H5)

Adding and subtracting 4>±( 6)12 gives

r0+2a

F “ ( 0 + 2 a , s ) - e *
q

$ r ( s )  V ( 0 )
2 2 "

J<t"(0+2a)+* " ( 0 ) ' ( p )  dp -S n ( .e - s  >+£*(  e + 2 a , s )

Applying the Euler— Maclaurin formula to the square bracketed term leads to,

F ~ ( 0 + 2 a , s )  -  ex p  i

r0
* " ( s )
2

$ 4 ( 0 )
2

1
2a

* ± ( p ) d p - 3 n i #- s >+ E * ( » , s ) (H6)

and hence using ( H I )
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Fq (0+2a,s)  -  Fq(0 ,s )e i $ " ( 0 )
(H7)

Invoking a similar method, substitute s = s + 2 a  and adding and subtracting 4>±(s)/2 leads 

to,

F “ ( 0 , s + 2 a ) - e
q

$ ‘ ( s )  <i>~(0) [<i>~(s+2a)
2

£ ± ( s ) l +- I
2 J 2a

r 6

<*)± (P ) d p - ^ - 0_S^+E( 0, s+2a) 

s+2a

applying the E — M  formula gives,

♦ f 6 1+
F ” ( 0 , s + 2 a )  -  exp <t>~(s)

"2
<tT(0)
2

1
2a

* i ( p ) d p - 3 n i e- s ) +E* ( « , s ) (H8)

and applying ( H I )  then produces the identity,

± ± -  i d)“ ( c )
Fq ( 0 , s + 2 a )  = Fq ( 0 , s )e (H9)

The final useful identity is necessary for the proof of reciprocity. Firstly it is essential 

to define some quantities from chapter 2. The multiple reflection coefficient shifted by 

II— 0 can be represented by,

<t> (11-0) -  <t> (0 )  + D( 0) , D ( 0) -  4>u ( 0 - a )  -  4>u (0 + a )  (H10)

From this it is immediately obvious that

F ( n - 0 , n - s )  -  e 
q

D ( s ) _ D ( 0 )  $  ( s )  *  ( 0 )  1_
2 2 2 "2 2a

IT -0

4>-(p)dP+ 3 n i e _ s ) + E ' ( n - e , n - s )

n's (Hll)

The integrals in this formalism can be expressed differently by using the substitution 

II— p =  6 and applying (H10) and are found to be,

2a
(11-6) e

i qfl ( 0 - 5 )  
a

d5 -  2 5  I

s i qll ( 0 — 6)

4> ( 6 )+ $  ( 5 -a )  6+a) j  e a  d5u u
0 0

I f  the substitution 6 -  a =  p in the first term of the second integral and 6+ a =  p in the 

second term and adding and subtracting the obvious integral then,
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1 00 
2 5  I

i g n ( e - g )

$> (6-a)-<t> ( 6+q) 1 e Q d6 -  ~  ? e iq11u ' i  lot ^

s - a 0+a i q n ( 0 - p )
+

s+a” 0 -a

<t>u (p + a )e dp

Using the Euler— Maclaurin formula of chapter 2 by appropriate shifts on the above 

equation gives the equation below.

1_
2a

rn - 0

ct>~(p)dp + Eb ( n - 0 , n - s )  

n-s

i _
2a <t> ( p ) d p  + Eb ( s , 0 )  +  N ( 0 , s )

e

where

and as

(H12)

N ( 9 , s )  -  i[4>u (e + a )  +  * u ( » - a )  -  * u ( s - a )  -  4>u ( s + a ) ]  (H13)

j [ d ( s )  -  D ( d ) ] +  N ( » , s )  -  * u (M -a )  -  4>u (s + a )  

Using (H I  2 ), (H I 4) in ( H l l )  gives the following identity,

(H14)

F " ( l l - 0 , n - s )  -  F ( S , 0 ) e 1<i5l(s)' l4 , l ( 0 )  q  q
Thus all the relations for this appendix are summarised below,

(H 15)

+ ± i<l>~(0)Fa ( 0 + 2 a , s )  -  Fa ( 0 , s )e   ̂ ;

(H16)

(H17)

(H18)

F q ( 0 , s+2a)  -  F ‘ ( 0 , s ) e  v ' (H19)
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APPENDIX I Dem onstrating The Reciprocity Property O f The W GF.

This demonstrates mathematical the reciprocity of the W G F for the initial and 

modal fields. When the source points are in the guide the plane wave species are 

given by equations (2.4.3) in chapter 2.

Reciprocity for the Odd Reflected fields.

The initial odd reflected downward field <  2 >  at the observation point with 

source and observation point interchanged is,

e inkrcos(0-2aH-x)e i $ u ( 0 - a ) e - i n k r s c o s ( 0 - x s ) d 0 ( n )

C

Make the substitution 0 -»0+  lot  and the permissible shift of the infinite contour gives 

initial field as,

e i nkrcos ( 0+x) e i $u (0+a)g - i  nkrs cos ( 0+2a~xs ) d0  ̂j 2)

C

If  the substitution 0 -*II— 0 is made the contour C is mapped into itself and thus the 

field becomes,

e - i n k r c o s ( 0- x ) e i 4>u ( 0 - a ) e inkrs c o s (0 - 2 o + x s ) de ( I 3 )

which is the identical to (6.2.3.9a). For the modal spectrum the same process is 

adopted. Interchanging source and observation point and making substitutions s -*+  2o 

and 0 -»0+  2a and allowing legitimate deformations of the contour C and endpoint 0 qCC 

gives this modal field as,

C

T F ( 0 + 2 a , s + 2 a ) e  
l ot  q
1 % i nkrcos ( s+x)  i ‘t’u ( s+ a ) dse“ * n k rscos ( 0 + 2 a - x s ) d 0

q
( 1 4 )

Using the identities of appendix H  for F q ±(0,s) gives this field as,

0

i n k r c o s ( s + x ) e i $ u ( s+0;) e * C*) - ^ ( s ) d s e " i n k r s C O S ( 0 + 2 a _ X s ) d 0
2 a  ^ q
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Making the substitutions 0-»n 6 and s-»n~ s and making sure C is mapped into itself

requires that the inner order of integration be reversed giving for each q,

n - 0 q „
F“ ( n - 0 , n - s ) e " l n k r c o s ( s ' x ) e 1(*)u(s"a ) e 1Ct,~ ( n ‘ 0 ) " 1^ ( n - s ) e i n k r sc o s ( 0 - 2 a + ^ )  

C e ( 16 )

The orders of integration can now be interchanged as the contour C can legitimately 

be deformed into the region where IF- 8qoo may lie. The legitimacy of this interchange 

can be demonstrated easily by examination of diagram 2.5.1 of chapter 2.

s

F*"(n_0,n-s)e“ lnkrcos^s"x̂ e iCi)û s“Q^e1Ct) ( n - s )e in k rscos(0-2o!+^)

C ' V  0 7 )

Using the identity ( H I 6) of appendix H  gives the relation,

F “ ( I I - 0 , n - s ) e l4>u^S a > e 1(*  ( rT-0) “ 1<i) ( n _ s ) _  F " ( s ,  0 ) e i4,u^ " a  ̂ ( 1 8 )

and so the modal odd downward reflected field becomes,

1 00 

q = -Cc-

s

F ~ (s  0 ) e ‘ i n k r c o s ( s " x ) e i< tu (0_ a )e in k rsC O S (0 " 2 a + X s ) d0dsq  ’
sqcc

This is exactly the same as (6.2.3.9b) and thus reciprocity is demonstrated for the odd 

reflected downward field at source. Due to the complexity of the contour shifting for 

the modal field, it will be assumed in all additional proofs that the desired contour 

deformations are allowable.

The next species to demonstrate reciprocity is the odd upward field < 4 >  at the 

observation point. The initial field integrand is,

i n k r s c o s ( 8- \ s ) ^ i  $ ] ( 0 ) e ~ i n k r c o s ( 0 + x )

Interchanging source and observation points and applying the substitution 0 - > n ~  8 with 

the knowledge that the single reflection process is symmetrical under this transformation 

leads to the identical integrand and thus this field is reciprocal. The modal field for 

this case is,
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r e
i  00

r q — ^  e qoo

F^ ( ( . ,S) e ,n k r scos (s - ^ > e , * l ( s ) e - in k r c o s ( ^ d s d 9  (110)

Interchanging source and observation point and applying the identities in appendix H  

gives the integrand as,

F " ( ^ , s ) e i 4, l ( 0) " i 4, l ( s ) e inkrCOs(s' x ) e i<J,l(s)e " i n k r scos (^ s >  ( I11)

making the substitutions 0-»n- 0 and s^IT-s with the use of identity ( H I6) gives,

F " ( s , 0 ) e " i n k r C O s ( s + x ) e i ( j5 l ( s )e i n k r s C O s ( ^‘ ;cs ) ( 1 1 2 )

Using the identity (H I 7) with the corresponding variable change gives the integrand to 

be,

F+ ( s , 0 ) e " i n k r C O S ( s + x ) e i 4 , l ( e ) e in k rsC O S (0 " Xs) ( 1 1 3 )

As all contour paths are shown to be equivalent after all substitutions and it is obvious 

that (111) is equal to the integrand of (110) and thus reciprocity for all the odd 

reflected fields is proved.

Reciprocity for the even reflected fields.

Here as in the previous case the shifts of contours are assumed to be legitimate 

so that only the integrands of the fields need to be examined. In  this case the even 

reflected upward field must be shown to be equivalent evenly reflected downward field 

when the source and observation points are interchanged. This inverse of this must 

also be true. The integrand of the upward double reflected field < 5 >  is

e i n k r scos(0-2cH-xs ) e i $ + (0 -2 c O e - i n k r c o s ( 0 + x )  ( 1 1 4 )

The double reflected initial downward field <  3>  must be equal to the above field 

when the source and observation points are interchanged. The downward initial field 

with source and observation point interchanged is,

i nkrcos  ( 6 - 2 a - \ ) ( 0 - 2 a ) e ~ i n k r scos ( 0~X'S) ( 1 1 5 )

W ith a simple shift of 0-»0+2a gives the above integrand as

178



e ~ i nkrcos  ( 0 - x ) e i # ~ ( 0 ) e - i n k r sc o s ( 0 + 2 a - x s ) 

W ith the substitution 0-»n— 0 the integrand becomes,

(116)

e inkrcos(0+x)e i<t>”( n -0 )e inkrs cos(0-2cH-Xs) ( n 7 )

Using the standard formulae for the double reflection coefficient it is observed that the

4>~(n-0) -  <t>+ ( 0- 2a) ( 118)

and hence the integrand of (117) is equivalent to (1114). The integrand of the modal 

even upward field is

F+ ( 0 , s ) e i n k r s C O s ( s "2Qf+X' s ) e i<i)+(s"2o!)e " in kr CO S( 0+ x)  ( 1 1 9 )

As for the initial field, the downward even reflected modal field integrand with source 

and observation point interchanged must be identical to the above integrand assuming 

that all contours are well behaved. The downward modal field integrand is,

F " ( 0  s ) e ” i n k r c o S ^S_2a~x >e i(l) ( s - 2 a ) e - i n k r sc o s ( 0 - X s ) ( 12 0 )
q

Making substitution 0-»0+2c* and s -*+  2a this integrand becomes with the aid of (H I 8) 

and (H I 9)

F~ ( 0  s ) e i4,~ (0 ) - i4>” ( s ) e - i n k r c o s ( s - x ) e i4>‘ ( s ) e - i n k r sc o s (0 + 2 a -x s ) ( , 21) 
q

Then making the substitutions 0-»n— 0 and s-»IT— s gives the integrand as

F " ( n - 0  n_s ) e i * " ( n - 0 ) e i n k r c o s ( s + x ) e i n k r scos(0-2ot+xs ) ( I 2 2)
q

Using the identity (H I 6) and (H I 7) with variable integrchange gives (122) as,

F ~ ( s  0 ) e i(t> ( n- 0) e inkrcos( s+X)e in k rscos(0-2cH-xs )
q ’

The equality of (118) implies that the integrand of (119) is equal to the integrand of 

(120). There is still one more case to consider. It has all ready been proved that 

interchanging source and observation point for the downward evenly reflected field 

< 3 >  is equivalent to the part of the upslope W G F  representing the upward evenly 

reflected field < 5 > .  It now has to be demonstrated that the inverse is true. The
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initial evenly reflected downward is

e i n k r sc o s ( 0 - 2 a - x s ) e i<t> ( 0 - 2 a ) e ~ i n k r c o s ( 0 - x )  (12U)

The evenly reflected initial upward field integrand with source and observation 

interchanged is

Ae  A/ e  ‘ ^  '  e  s — ' - ■ a S / ( I 2 5)i n krcos  ( 0 - 2 a + x ) ^ i ct) ( 0 - 2 a ) ^ - i n k r sc o s ( 0 + x s )

Shifting by 2a  gives

e 1 n krco s  ( 0+x)  g i <t»+ (0 )  g -  i n k r scos ( 0+2a+xs ) ( 1 2 6 )

Again substitution of 0-»n— 0 gives,

r +
e - i n k r c o s ( 0 - x ) ( n - 0 ) e i n k r sc o s ( 0 - 2 a - x s ) ( I 2 7 )

From chapter two and symmetry of phase reflection coefficient gives,

A n - 0 )  -  <t>~(0 - 2 a ) ( 1 2 8 )

Using this identity it is obvious that the integrands of (124) and (125) are equal and 

thus reciprocity is proved for the initial ray fields. The even modal downward field is,

F ~ ( 0  s ) e in k r s C O s ( s " 2o!" X s ) e i4) ( s - 2 a ) e ~ i n k r c o s ( 0~x) ( J 2 9 )
q ’

As for the initial field the downward even reflected field integrand with source and 

observation point interchanged must be identical to the above integrand assuming that 

all contours are well behaved. The upward field with the source and observation point 

interchanged is,

F+ ( 0 s ) e - i n k r c o s ( s - 2 a + x ) e i4) ( s - 2 a ) e - i n k r sc o s ( 0 + x s ) ( I 3 Q )  
q ’

Applying a shift of s -*+  2a and 0-*0+ 2a and using ( H I 7) (H18) and (H19) gives,

F ' ( 0  s ) e i 4 > + W  + ic* l  ( 0 ) " i4)I ( s ) e - i n k r c o s ( s + x ) e - i n k r s c o s (0 + 2 o + x s ) ( J3 1 )  
q

Shifting by n - 0 and n - s  with (H I 6) and (112) demonstrates that this is indeed 

equivalent to (129). This final proof demonstrates that the W G F  does possess the 

reciprocity property.
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A PPENDIX J Asym ptotic Analysis O f The W GF.

Examining a single term in the summation of the modal part of the W G F gives,

Mq ( x , x s )

r 6

H (s , 8 ) e

i X q ( f l t s )
a dsdfl ( J l )

C ®q<»

To  evalute the integral aysmptotically the phase function must be expanded about its 

two dimensional saddle point at (0q,0qS). This is achieved by making the substitution,

-  X ( 6 , s )  -  i  X ( 8a , 8 a s ) +  i t 2 + i t 2 a  q a  q 4 4 s s (J2)

From this equation it can be easily verified that,

i t 2 -  ( « - « q ) 22 j  ^ 9 (e<i ,S )  + 0 ( ( « - « q ) 3) (J 3 )

“ s -  (®-«qs)225 ^ ( 9 ' Sqs)+ 0 ( ( s - 9qs>3> (J4)

This gives 8 and s as asymptotic functions of t and t$ respectively.

( 0 - 0 q )  -
2a

* 2X q ( 0 q , s )  
3 ^ 4 4

i
( J 5 )

( s - 0qs> “

2a
^ 2Xq ( 8 , $q s ) 
a T 7

in /4 t -  x t
s s s

(J 6 )

Using these equations into (J l )  gives,

Mq ( x , x s > l  (XXS) Ht < » q ,» q s ) e ‘ W , qs>' 'a
6=8n

b
“ ( t 2+ t I )s d t sdt

s-< _oo a
q»

where

b -  l _ [ x t  +  « -  e I a -  V  :  " v s7—  I f \ C * v v I \
Xs l q qsJ xs

I f  these axes are then rotated so as to lie parallel to the upper end point, i.e. making 

the transformations
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( l  + JT * s ]  t 1 + H  "  pS S

( v  r -  ‘ l l 1  +  H  -  p ss  s

Using this transformation the q modal term becomes,

( J 7 )

( J 8 )

Mq ( x , x s )

with

l  ( X X S )  H ± ( « q , 9 q s ) e i X q ( e q ,<’ q s ) / "  

e-e„
, - ( P 2+ p | ) dpsdp

s - 0 —  X
qoo

x  -  ( « q „  -  9 q s ) l  X 2 +  X 2[  Xs + ]
- i

with all other limits being permissibly deformed to infinity, which gives integral as,

M „ ( x , x s )  -  I  ( x x s )  H ± ( # q , « q s ) e i X q ( e q ’ flq s ) / a n
e-e(
S“  8

i  -  n - i
rX

■pSdle dps (J9)

qoo

which can be expressed in the form,

M ( x , x Q) ~ w ( x c )w (x ) 1 -  n- i e ”P s dps ( J 1 0 )

where W q ( x )  is the asymptotic function defined in equation (4 .3 .1 .3 ) chapter 4.
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A PPEN D IX  K Asym ptotic Analysis O f The Initial Fields.

This calculates the asymptotic expansion of the ray integral terms when the 

stationary phase point is at a large distance away from the critical point of the 

reflection coefficient. The integral I (R ,t ) can be represented exactly by,

I(R.t)
SDP

A ( e ) e ink Rc OS (* - T ) d0 ( K l )

Pb

The first contour corresponds to the normal ray field and is evaluated as follows;— 

Make the substitution,

i n k R c o s ( 0 - r )  -  inkR  -  S 

To invert asymptotic series assume,

<K2)

0 « a S + a S 2 + a S 3 + 0 ( S 4)
1 2 3

Substituting (K3) into (K2) and equating coefficients of S leads to

<K3)

e S2 i

1 + r m m  1 + °<s5>y ( i n k R )

This gives the derivative of S with respect to 6 to be,

<K4)

d0 J
1 + +  0 ( S  )dS . / ( i n k R )  I ' 4 inkR  

The amplitude function A( 6) may also be expanded in terms of S to give,

<K5)

A<»> "  A(T) + 21® * *  + s? + 0(s3)
( K 6 )

Substituting (K 2), (K5) and (K6) into ( K l )  gives the approximation to the ray integral

as

I r < R . O  -
A

- S 2JCJ n k R - i n / 4  

( K 7 )

Using the integral expression for the gamma function the asymptotic expansion of the 

ray integral to second order is,
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4 " int \ [ 2n 1* . in k R - in /4  [ _ e 7 f 8A«fl( r )  , 1 1
I 1 + s t t m  I — m t t  + 1 J J (k 8 )

where A 0( r )  is the derivative of A(0)  with respect to 0 evaluated at r .  The branch 

cut integral can be calculated asymptotically by using a similar procedure outlined 

below. The function inkcos( 0— r )  can be expanded about the branch point of the 

function A (0 )  denoted by 0C and expanding the integral about this point, such that the 

substitution,

- S 2 -  i n k R c o s ( 0 c - r )  -  ( 8 - 6 ^  i nkRs i n ( 0 ^ 7  ) + O ( ( 0 - 0 c > 2) (K9)

is made. As before for asymptotic inversion of series assume,

e - e c -  a , s 2 + a 2S3 + a 3s 4 (K10)

Inserting this into (K9) and equating coefficients of S gives the asymptotic form of the 

derivative of the change of variable to be,

= ■. \ S ■ ,«  r  + 0 ( S 3) ( K l l )dS i n k r s i n ( 0 c - t )

The amplitude function A( 6) can be represented by an ascending power series of 

(0 — 6C)$  (see appendix B for calculated constants), i.e.

A ( 0 )  — C 0 + C 1 ( 0 - 0 c  ̂ + O ( ( 0 - 0 C) )  (K12)

W ith the substitution (K9) and the subsequent representations of the integrand, the 

branch cut integral can be represented in terms of the variable S. However, as the 

limits on the integral are ±°° all odd powers of S will integrate out to zero. Hence 

the asymtotic value of the branch cut integral to first order is,

i n k r c o s ( 0 c - r ) - H I / 4  

-  ( n k ^ s t n ( f l c - T )  P ' / 2 (K13)

Provided that the branch point and the stationary phase point are isolated the integral 

can be asymptotically represented by (K13) and (K8).
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